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This study concerns the combination of Raman spectroscopy and multivariate statistical analyses for

the assessment of lymph nodes in the course of breast cancer diagnostics and staging. Axillary lymph

node samples derived from breast cancer patients were measured by Raman microspectroscopy. The

resulting Raman maps were pre-processed and cleaned of background noise and low intensity

spectra using a novel method based on selecting spectra depending on the distribution of the mean of

arbitrary units of all spectra within individual samples. The obtained dataset was used to build different

types of Support Vector Machine (SVM) models, including linear, polynomial and radial basis function

(RBF). All trained models were tested with an unseen independent dataset in order to allow an

assessment of the predictive power of the algorithms. The best performance was achieved by the RBF

SVM model, which classified 100% of the independent testing data correctly. In order to compare the

SVM performance with traditional chemometric methods a linear discriminant analysis (LDA) model

and a partial least square discriminant analysis (PLS-DA) model were generated. The results

demonstrate the enhanced performance and clinical potential of the combination of SVMs and Raman

spectroscopy and the benefits of the implemented filtering.
1 Introduction

Breast cancer is the most common cancer in women worldwide

and, due to the increasing number of newly diagnosed cases, is

a growing health care problem.

Most frequently breast cancer originates in the glandular

elements of the breast, the lobules and the ducts. Malignant

transformation includes such changes as nuclear enlargement,

changes in the number of chromosome and variations in shape and

size.1 These changes affect the chemical composition and do not

cause a large-scale production of new chemicals. One of the most

significant changes in malignant disease development is the change

of the nuclear-to-cytoplasm ratio. In this manner malignant tissue

differs from benign tissue in the concentration of the main building

blocks, nucleic acid, proteins, lipids and carbohydrates.2

Progressing breast carcinoma metastasizes to the regional

lymph nodes over the efferent lymphatic vessels and enters the

subcapsular sinus. For this reason early lymph node involvement

is often found in the subcapsular sinus. An invaded lymph node

may respond by displaying secondary follicles with reactive

germinal centres, sinus histiocytosis and granulation. A further

very specific change is desmoplasia, the change in the formation

of collagenous fibrous stroma around the metastatic cells. With

growing involvement genuine lymph node architecture gets

increasingly replaced by metastases, in the majority of cases

reflecting the features of the primary tumour.3
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Lymph node involvement is an important prognostic factor

for breast cancer patients. Thus, breast cancer staging includes

the assessment of the lymph nodes in the ipsilateral axilla. For

this reason lymph node biopsy is carried out in order to deter-

mine the presence of metastasis.4 A frequently applied method is

sentinel lymph node biopsy, where the first node or nodes with

direct lymphatic drainage from the tumour are identified. These

lymph nodes are considered to be the first ones to be involved

when a tumour metastasizes.5 Lymph node involvement has

a major impact on further treatment of the patient, including

extensive dissection of axillary lymph nodes, chemotherapy and

occasionally radiotherapy.

Current routine histopathology methods for lymph node

assessment encounter several limitations. Traditional histolog-

ical staining techniques are subjective, resulting in missed lesions

and significant disagreement of inter- and intra-observers.6

Alternatively, methods have been developed to allow faster intra-

operative assessment of lymph nodes. These methods, including

imprint cytology7,8 and frozen section analysis,9 also showed

wide variations in the accuracy of detecting metastasis when

compared with traditional methods.

Since current methods lack reliability, techniques are required

which are more sensitive and objective. These requirements can

be met by spectroscopic methods such as Raman spectroscopy.

In this manner Raman spectroscopy has been extensively inves-

tigated for it capability to differentiate between malignant and

benign tissue samples, including breast,10–12 gastric,13,14 colon,15,16

bladder,17,18 cerivical19–21 and parathyroid tissue.22

A further step towards the clinical application of Raman

spectroscopy includes the development of diagnostic algorithms,

which allow reliable classification of tissue samples. For this

purpose several multivariate statistical techniques, such as Linear
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Discriminant Analysis (LDA),13,14,17–19,21 Principal Component

Analysis (PCA),15,20 Artificial Neural Networks (ANN)23 and

Support Vector Machines (SVM),16 have been investigated.

However, LDA is the predominantly applied technique for

classifying Raman data derived from tissue samples. In general,

linear classification approaches achieve a diagnostic accuracy of

around 90%, varying between different tissue types.13,14,17–19,21

Nevertheless, there is space for improvement, which is crucial for

future diagnostic application of Raman spectroscopy.

Support vector machines, developed by Vapnik24 and

Burges,25 are considered to be superior over traditional linear

approaches due to their capability to represent non-linear

features within data. For this reason, SVMs increasingly

attracted attention for classifying spectral data derived from

tissue for diagnostic purposes.16,26,27 At present, SVMs have not

been investigated for metastasis detection in lymph nodes.

In this work we report the successful application of SVM for

detecting metastasis in axillary lymph nodes based on Raman

spectroscopic data. The developed algorithm comprises a novel

spectral filter method, which removes noise and low intensity

spectra. For the evaluation of the SVMs over traditional linear

methods, LDA and PLS-DA models were generated. The

performances of these models were compared.
2 Materials and methods

2.1 Samples

A total of 43 axillary lymph node samples were collected after

surgical resection for breast cancer. All samples were obtained

with the full consent of patients and approved by the Glouces-

tershire Research Ethics Committee. Each lymph node was cut

into halves. One half was placed onto acetate paper and snap

frozen in liquid nitrogen in order to maintain the freshness of the

tissue. From the frozen sample a 7 mm section was cut and placed

on a calcium fluoride slide and stored in a �80 �C freezer for

Raman spectroscopy. The other half of the node was sent for the

routine histopathology, which found that out of the 43 samples

13 were positive and 30 were negative for metastasis.
2.2 Raman microspectroscopy

A Renishaw System 1000� Raman microspectrometer coupled to

a diode laser, a Leica� microscope, a Prior� electronic stage,

a video viewer and a desktop computer with customized Grams�

software was used for all measurements. The diode laser had an

output of 350 mW and was set to a wavelength of 830 nm with

the aim to reduce autofluorescence from tissue. Raman mapping

was executed in steps of 100 mm in x and y directions across the

sample surface. At each point the spectra were integrated for

a total of 30 seconds.
2.3 Data preprocessing and spectra selection

All preprocessing and downstream data analyses were executed

in Matlab (Mathworks, USA). For this reason the raw Raman

maps were loaded into Matlab and converted into 3D hyper-

spectral matrices. For each individual map principal component

analysis (PCA) was executed. The resulting first three principal
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components were used to transform the Raman map into

a composite image. According to the composite images hetero-

geneous regions were selected manually by avoiding obvious fat

or blood likely areas. Thus, spectra were collected, which

represent homogenous regions of positive and negative nodal

parenchyma. An example of this process is demonstrated in

Fig. 1. Saturated spectra and spectra containing evidence of

cosmic rays were removed from the dataset. The resulting dataset

consisted of 10 477 spectra, where 3385 were from positive

samples and 7092 were from negative samples. The number of

spectra available for each sample varied from four to 1014

spectra per sample. The high variation of available spectra for

each sample was caused by the fact that some nodes contained

a large amount of fat, what resulted in an increased number of

saturated spectra, which had to be removed before further

analysis.

A filtering method was developed to select spectra in order to

improve the performance of all classification models. This

method filters spectra for every lymph node independently by

calculating the mean of arbitrary intensity units for each single

spectrum within the sample. By assessing the distribution of the

mean values it was observed that data distribution is left skewed

as illustrated in Fig. 2. For this reason it was decided to use the

mean value which occurs most frequently (mode) within the

sample because it is assumed this value represents spectra, which

are diagnostically relevant. Spectra with a mean value smaller

than the mode are dismissed with the aim to remove low intensity

spectra from the dataset.

A second threshold was estimated by adding the standard

deviation to the first limit. Spectra with a higher mean value than

this threshold were dismissed due to the fact that it was observed

that they often exhibited non-spectral features and artefacts

without diagnostic value. Further these features are assumed to

decrease the performance of a classification model. Fig. 2 illus-

trates the effect of the spectra selection method on the basis of

two individual lymph node samples.
2.4 Support vector machines

Support vector machines (SVM) are a relatively young classifi-

cation method and were first introduced by Vapnik.24 The

fundamental idea of this technique is to separate classes with

a hyperplane by maximising the margin between them. The

simplest approach is to plot the dataset into the N-dimensional

input space. For spectral data N is equivalent with the amount of

wavenumbers recorded in each spectrum or with the number of

selected features. In the input space samples are considered as

points that are separable by a hyperplane into distinctive groups

(positive and negative in this application). More complex data-

sets are frequently not separable in the input space. In order to

address this problem data are mapped into a higher dimensional

space (feature space) by a kernel function. The most frequently

applied types of kernel functions are:

Linear: K(xi, xj) ¼ xi � xj + 1

Polynomial kernel: K(xi, xj) ¼ (xi � xj + 1)d

Gaussian radial basis function: Kðxi; xjÞ ¼ exp
�kxi � xjk2

2s2

For the application of SVMs the kernel function must be

selected a priori. Depending on the type of kernel, specific
This journal is ª The Royal Society of Chemistry 2010



Fig. 1 (A) White light image of a lymph node effaced with metastatic tumour. (B) The H&E staining shows pale stained areas, which are a result of the

marked desmoplastic reaction to the metastatic tumour. (C) Composite image of the lymph node sample. Each pixel represents one spectrum. Thus, the

grid unities represent spectra for both axes (81 spectra in x direction and 56 in y direction). Areas boxed in blue represent the selected spectra, which were

then used for further investigations.

Fig. 2 This illustration demonstrates the applied spectra selection

method. Sample 1 represents one individual positive lymph node sample

and sample 2 represents one individual negative lymph node sample out

of 43. The histogram illustrating the mean intensity values of spectra for

two individual samples, one positive lymph node and one negative lymph

node. Spectra with a mean intensity value between the two estimated

thresholds are illustrated in red. As a result spectra representing the

majority of the sample are selected and non-spectral features as well as

low intensity spectra are dismissed.
parameters must be set. In this manner, for a polynomial kernel

the polynomial order d and for a Gaussian RBF kernel the

Gaussian width s must be specified.

Once the data are mapped into the feature space an infinite

number of separating hyperplanes may exist, creating the risk of

overfitting the hyperplane to the given data points. An overfit

hyperplane might separate the training data perfectly, but

perform poorly on unseen data. A soft margin was introduced in

order to avoid overfitting the hyperplane by allowing some

training data points to be misclassified. This misclassification

rate is regulated by the penalty weight C. The higher C the lower

the misclassification rate, thus for C ¼N no misclassification is

allowed.

2.5 Model construction and testing

Every individual sample set was filtered according to the method

described earlier (Section 2.3). From the resulting data for each

sample 50 spectra were selected randomly in order to balance the
This journal is ª The Royal Society of Chemistry 2010
dataset. The resulting dataset was split randomly into a training

set (31 samples) and a testing set (12 samples). Samples with less

than 50 spectra available were also integrated into the test set.

Thus the training set consisted of 1550 and the testing set of

355 spectra.

All SVM models were built in Matlab utilizing LIBSVM

toolbox 2.88.1 by Chang and Lin.28 For this study three different

types of kernel functions were investigated: linear, polynomial

and RBF. For every kernel the necessary parameters were opti-

mised by a combined approach of leave one sample out cross

validation (LOOCV) and a grid search. C is the only parameter

which is required to be optimised for a linear SVM. The range of

C was set from 2�5 to 213, increasing in steps of the power of two.

Each individual value of C within the predefined range was used

for LOOCV. For this step only a subset of the training data was

used with the aim to speed up the parameter search. Thus, five

positive and five negative samples were selected randomly out of

the training data, which were considered sufficient for a first

parameter approximation. The parameter C, which resulted in

the highest LOOCV result was estimated and used for a second

more rigid parameter search. This time LOOCV was executed

with C values close around the previously estimated value.

Additionally, the whole training set was used for this fine tuning

step.

For the polynomial and the RBF kernel the parameter opti-

misation was similarly executed as for the linear kernel. The main

difference is that for these kernel types two parameters have to be

optimised, which can be done by a grid search. In a grid search

systematically alternating pairs of parameters are used for

LOOCV. The parameter combination that resulted in the best

LOOCV result is estimated and in the following fine tuned. For

the optimisation of a polynomial kernel changing combinations

of C and the polynomial degree are applied for LOOCV. The

range of C was set from 2�5 increasing in steps of the power of

two up to 215. C and s were the two parameters that have to be

optimised for a RBF kernel SVM. For C the range was set from

2�5 to 215, increasing in steps of the power of two. The range for s

started at 2�15 up to 23, also increasing in steps of the power of

two. For the first parameter approximation again the reduced

training set was applied. The estimated parameter combinations

were then used for a second grid search. In comparison, the

complete training set was applied for the fine tuning procedure.

As a result of the grid search for each kernel function the best

parameters were estimated. These parameters were then used to
Analyst, 2010, 135, 895–901 | 897



build the final SVM model. In that manner, three SVM models,

a linear, a polynomial and a RBF model were generated and

finally tested with the unseen dataset.

In order to obtain further assessment of the performance of the

SVM models the same dataset was used for the investigation of

two other types of classification techniques, linear discriminant

analysis (LDA) and a partial least squares discriminant analysis

(PLS-DA). The LDA model was trained by LOOCV with an

increasing number of PCs (1–25) fed into the model. The number

of PCs leading to the best LOOCV result was used to build the

final model, which was then tested with the independent testing

set. For the PLS-DA model, the number of latent variables (LVs)

was optimised by LOOCV. The number of LVs achieving the

highest LOOCV result was used to build the final model, which

was also tested with the unseen dataset. The PLS-DA model was

built by utilizing PLS Toolbox 3.5 (Eigenvector Research).
2.6 Assessment of model fit

This approach applies Monte Carlo methods for the empirical

assessment of the model fit. Specifically, all samples of the

training set, which was used to build the original model are

assigned randomly with a class membership, either positive or

negative. These samples are then used to build a model using the

same parameters as the originally estimated. The newly gener-

ated model is then tested with the testing set, which has also been

randomly assigned with class membership. This procedure is

executed multiple times, where each time the class membership of

the data is randomly permuted. The achieved testing accuracies

are then used to create a null distribution. The comparison of the

null distribution with the observed testing performance allows

empirical assessment of the model fit. This approach is inspired

by similar workflows, such as that used by Wongravee et al.29 to

estimate the significance of variables for variable selection

purposes.
2.7 Investigation of key features

For the model development the spectral region from

350–1850 cm�1 was used. In order to investigate spectral features

that have the greatest impact on the model performance alter-

nating intervals of 100 wavenumbers were eliminated from the

dataset in a systematically manner. The remaining dataset, with

a total of 1401 wavenumbers, was used to build and test a SVM

model by using the previously optimised parameters. In this

manner for a spectral range starting at 350 to 1850 cm�1 15

models were built and tested. A decrease in testing performance

is assumed to be caused by the fact that the left out spectral

features have a high impact on the model performance.
Table 1 Summary of all built classification model. All results are percentage

Method Parameters Training (%) Te

Linear SVM C ¼ 6.75 97.4 9
Polynomial SVM d ¼ 3, C ¼ 13 95.8 9
RBF SVM s ¼ C ¼ 10 93.7 10
LDA PC ¼ 13 90.3 9
PLS-DA LV ¼ 8 94.5 9
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3 Results and discussion

3.1 Model training

For the first step of the SVM optimisation only a subset of the

training data was used in order to maintain a manageable

training time. For the linear kernel the first parameter approxi-

mation showed that a C of 27 results in the highest LOOCV of

75.4%. A second parameter optimisation was carried for further

optimising the previously estimated C. For this search the range

of C was set from 26 to 28 with an increase of 20.25 and the whole

training set was used. The best parameter C was identified to be

26.75 by achieving a LOOCV result of 88.7%. The training of the

polynomial kernel included the optimisation of two parameters,

C and the polynomial degree. The executed grid search showed

that lower polynomial degree and an increased C result in an

improved LOOCV performance. Thus, less complex polynomial

models seem to be more appropriate for modelling these data.

The best parameter was found to be a polynomial degree of 3 and

C 214 resulting in 87.4% LOOCV accuracy. A RBF kernel like-

wise a polynomial kernel requires the optimisation of two

parameters, C and s. The first grid search resulted in an

approximated C value of 29 and s of 2�13, with a LOOCV

accuracy of 95.6%. The fine tuned parameters were found to be C

¼ 210 and s¼ 2�13.25 with a LOOCV accuracy of 89.4%. The LDA

model was trained by optimising the number of PCs fed into the

LDA. The highest LOOCV accuracy of 89.5% was achieved by

feeding 13 PCs into the LDA model. For the PLS-DA model the

optimised number of LVs was found to be 8 by resulting in

a LOOCV accuracy of 82.7%.
3.2 Model testing

The optimised parameters and the whole training set were used

to build the final classification models, which were then tested

with the unseen testing set. The RBF SVM classified the entire

testing set correctly and thus achieved a 100% classification

accuracy. Almost a similar performance was achieved with the

polynomial SVM by achieving a classification accuracy of

99.2%. In comparison the linear classification models showed

a reduced classification performance. Thus, the linear SVM

identified 92.4% of the testing set correctly, the LDA model

90.3% and the PLS-DA model 95.2%. All results including

sensitivity and specificity are summarised in Table 1. These

results show that for Raman spectral data from human lymph

nodes non-linear techniques perform better on predicting

classes of unseen data than linear ones, although, all applied

methods performed similarly during the training by LOOCV

procedure.
s of correctly classified spectra

sting (%) Sensitivity testing (%) Specificity testing (%)

2.4 100 90.1
9.2 100 98.9
0 100 100
3.8 100 91.9
5.2 100 93.8
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Fig. 3 Null distributions for RBF and polynomial SVM models were created by testing 150 random models. The null distribution generated by the

polynomial SVM is significantly flatter than the null distribution generated by the RBF random model. Thus, the RBF SVM model is better suited to this

application than the polynomial SVM model.

Fig. 4 The graph illustrates the mean Raman spectra for cancerous and

non-cancerous samples including the assignment of major peaks.
3.3 Assessment of model fit

The RBF SVM model, as well as the polynomial SVM model,

was used to investigate the model fit based on Monte Carlo

methods. These two models were used because they achieved the

highest testing performance as illustrated in Table 1. For each of

the SVM models 150 random models were generated. The

resulting null distributions are illustrated in Fig. 3. The

comparison of the two null distributions shows that the fitted

curve for the polynomial model is flatter than for the RBF model.

In this manner, the polynomial SVM model achieved random

testing accuracies above 80% more frequently than the RBF

SVM model. The comparison of the observed testing result

(polynomial SVM 98.9% and RBF SVM 100%) with the null

distributions shows that the polynomial model it is more likely to

achieve a classification in the range of the observed result.

Therefore, it can be said that the polynomial model might be

slightly over fitted and due to that the RBF SVM model is more

suited to this dataset.
3.4 Investigation of key features

Furthermore, the RBF SVM model was used for investigating

the wavenumbers that have the highest impact on the model

performance. For this 100 wavenumbers were eliminated from

the data systematically. It showed that out of 15 generated

models only two showed a decrease in testing performance.

These regions were identified as 451–550 cm�1 (decreased testing

accuracy: 99.2%) and 1151–1250 cm�1 (decreased testing accu-

racy: 98.9%). Nevertheless, the loss in performance is not

significant and thus the impact of these spectral features cannot

be considered as major. This becomes even more obvious by the

fact that when these two regions were eliminated from the

dataset the generated model still achieved a testing performance

of 98.9%. On the other hand, creating a model by only using

these two regions resulted in a relatively low testing perfor-

mance of 76.9%. For this reason an assessment of whether the

model performance could be improved by adding a third spec-

tral region was performed. The two previously identified spec-

tral regions (450–549 cm�1 and 1150–1249 cm�1) were combined

with one of the remaining ones. Thus, a total of 13 models were
This journal is ª The Royal Society of Chemistry 2010
generated. As showed that an extract of 300 wavenumbers is

sufficient to achieve a 100% testing result and a training result

of 90.3%, what is close to the 93.7% testing result of the model

build on the whole spectral range. This training and testing

results were achieved by the combination of the spectral inter-

vals starting from 450–550 cm�1 and 1150–1350 cm�1. Peaks

identified in these regions are 540, 1184, 1264, 1304 cm�1

(Fig. 4). A summary of all models including peaks and their

major assignment is illustrated in Table 2. This demonstrates

that 300 wavenumbers are sufficient to generate an accurate

SVM model and further brings the advantage of reducing

computational time.
4 Conclusions

This study demonstrated that SVM coupled with Raman

spectroscopy is a superior approach over traditional methods

for the classification of Raman spectral data derived from

tissue. Especially, the RBF SVM shows high diagnostic
Analyst, 2010, 135, 895–901 | 899



Table 2 Spectral intervals given in italics were shown to be the only ones to have a minor impact on the model performance. The combination of these
two intervals with a third one was used to build a SVM classification model based on only 300 wavenumbers. These two intervals were rotationally
combined with each of the remaining spectral regions and then used to generate a RBF SVM model. As the training and testing results show models built
by only using 300 features are a good approximation to the original RBF SVM model applying 1500 features

Interval/cm�1 Train (%) Test (%) Peak position/cm�1 Major assignments

350–450 81.6 93.0 429 Calcium hydroxyapatite
450–550 — — 540 Disulfide bonds
550–650 82.5 85.9
650–750 85.3 85.9 665 Thiamine

726 C–S(protein)/CH2 rocking/adenine
750–850 90.3 97.8 755 Symmetric breathing of tryptophan

786 DNA: O–P–O, cytosine, uracil, thymine
850–950 88.8 98.6 859 Tyrosine/collagen

932 Skeletal C–C: a-helix
950–1050 87.6 96.9 1006 Phenylalanine, carotenoids
1050–1150 86.8 100 1086 Skeletal C–C stretch
1150–1250 — — 1184 Cytosine, guanine, adenine
1250–1350 90.3 100 1264 Amide III (a-helix), ]C–H in plane bending (lipid)

1304 CH2 deformation (lipid)/adenine, cytosine
1350–1450 90.1 100 1446 CH2 bending modes of proteins
1450–1550 86.4 99.2 1520 –C]C–carotenoid
1550–1650 90.1 100.0 1616 C]C stretching mode of tyrosine and tryptophan
1650–1750 89.4 99.7 1660 Amide I (protein)

1746 C]O stretch (lipid)
1750–1850 77.6 99.2 1782 Unknown assignment
potential for future application due to the fact that this achieved

a 100% classification accuracy on previously unseen data.

Further testing also proved the statistical significance of the

model. Further it was found that not any spectral region has

a major impact on the model performance. Nevertheless, an

extract of 300 wavenumbers is sufficient to achieve the same

testing performance as a model generated by using the whole

Raman spectra consisting of 1500 wavenumbers. A lower

number of spectral features results in a reduced computing time,

which is desirable especially for future clinical application of

Raman spectroscopy.
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