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 Abstract 

This study concerns with classification techniques in high dimensional space such as 

that of Hyperspectral Imaging (HSI) data sets, with objectives of understanding the 

strength and weakness of various classifiers and at the same time to study how their 

performances can be assessed particularly when there is an absence of ground truth 

target map in the data set. The thesis summaries the work that carried out during the 

course of this study and it encompasses a brief survey of machine learning and 

classification theories, an outline of the HSI instrumentations, data sets that collected in 

the study and classification analysis.  

It is found that the supervised classifiers such as the Maximum Likelihood (QD)  and the 

Mahalanobis Distance (FD) classifiers, especially when they are coupled with 

techniques like Regularised Discriminant Analysis (RDA) or leave-one-out covariance 

estimations (LOOC), have demonstrated excellent performances comparable to that of 

the more complicated and computational costly classifiers like the Support Vector 

Machine (SVM). This work has also revealed that separability measures such as the 

Total Transformed Divergence (TTD) and Total Jeffries-Matusita Distance (TJM) can be 

an invaluable method for assessing the goodness of classification in principle. However, 

the present methods for the evaluation of the separability measures are insufficient for 

achieving this goal and further work in this area is needed. This study has also 

confirmed the effectiveness for using RDA and LOOC techniques for a better estimation 

of the covariance when the sample size is small, ie when the sample size per class to 

band ratio (β)  is less than 100.  

Through team work this study has contributed partially a number of publications in the 

area of hyperspectral imaging and machine visions. 
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RBF parameters: a) (C,γ)=(23,2-9) with 93% accuracy, b) (C,γ)=(23,2-3) with 100% 

GTaccuracy. 138 

Figure 10-14: shows the scatter plot between the GTaccuracy and the separability measures for 

the lab t-shirt data a) TTD and b) TJM. Please refer to Table 10-5 for the complete set of 

the results. 139 

Figure 10-15: shows the relationship between the GTaccuracy & the TTD/TJM using the 

simulated data of the ‘all-mixed’ classification results: a) the T-shirt data with nominal 

β+ values of ~90, b) the Manchester data with nominal β+ values of ~5. The plot shows 

the significance of the β+ values to the TTD evaluation. 143 

Figure 10-16: demonstrates how the β+ value indeed poses an important factor for the evaluation 

of the TD/JM values: a) β+ values =18.8, TTD=0.015 and b) β+ value = 52.6, 

TTD=0.05. In both cases the GT accuracy are ~90% but the TTD of (a) is ~4 times less 

than (b) simply because of the different β+ values. 144 

Figure 10-17: casts the doubt if the evaluation methods for the a) TTD and b) TJM are correct. 

Data presented is the simulation classification results under all-mixed, 5 class mixed and 

2 class mixed conditions. It is clear that the TTD values are sensitive to the distributions 

of the misclassified pixels. 144 

Figure 10-18: to investigate the odd result seen in Table 10-5 which gives ‘abnormally’ high TTD 

value of 0.45 but the GTaccuracy is in fact 91%. See text for more information. 145 

Figure 11-1: Classification results of the lab t-shirt data as function of sample to band ratio β. 151 

Figure 11-2: A close up view of Figure 11-1, highlighting the effects of the RDA and LOOC for 

the better characterisation of the covariance of small sample size. 152 

Figure 11-3: Classification results of the Manchester data as function of sample to band ratio β. 152 
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1 Introduction  

1.1 Research objectives 

Classification technique has been a vital technology for the effective functioning of all 

surveillance system but the assessment of the performance of classifiers can be non-

trivial particularly when there is an absence of ground truth target map.  

This research exploits a range of classification techniques and to implement them for 

assessing the effectiveness of hyperspectral classifications using various statistical 

scoring methods without the need of ground truth target map. 

1.2 Contributions of this research 

Classification of hyperspectral image has been an intensive research within the remote 

sensing community in the last decade, and most of the research performed so far has 

been the development of sophisticated classification techniques such as graph based 

Bayesian network and other neural or genetic clustering techniques. Most of the work 

involves only one or two classification techniques, and furthermore relatively few 

concerns with how the performance of the classifier is assessed particularly when the 

target map is not available, such as those commonly found in the air-borne or space-

borne hyperspectral imaging (HSI) data sets.  

This study explores how the performance of classifiers can be better assessed and the 

contributions of this work have been: 

1. An in-depth knowledge of machine learning theories. 

2. A research which involves a range of classifiers for the classification of various 

hyperspectral image (HSI) data sets, which, have been collected and 

subsequently analysed during the course of this study.  

3. The setting up of hyperspectral instruments involving both electro-optical 

hardware and camera control software developments.  

4. A critical assessment of a range of statistical techniques to examine their 

usefulness as well as limitations for measuring the accuracy of classifiers with 

and without the use of target map. 
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5. Through team work this study has contributed partially a number of 

publications in the area of hyperspectral imaging and machine visions.  

1.3 Why hyperspectral imaging (HSI)?  
Most machine vision research has involved 3-colour spectral bands (normally RGB) 

together with textural/temporal information for target classifications, but in many cases it 

has been found that the usefulness of this kind of technology is very limited. In scenarios 

such as targets in similar shape and colours in the RGB domain, such as the data that 

shown in Figure 1-1, conventional classification technique cannot distinguish visually 

identical objects like the 3 car panels of the same made (Astra) and colour (red) but with 

different ages. On the other hand, the use of a simple HSI classification technique can 

distinguish the two panels which are one year apart in ages (panels 1 & 2) and it even 

manages to separates the two panels (panels 2 & 3) which are only a few months 

different in ages.  

(a) 
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(b)  

Figure 1-1: Three look-alike Astra car panels which differ in ages. a) RGB image of the scene, b) False 

colour map of the classification result using simple HSI classification technique. (Yuen et al., 2005) 

1.4 Future role of this study: Anti-terrorism and Homeland Security applications 

Prior to the attacks of September 11, 2001, organised terrorist activities, such as 

Oklahoma City bombing, have always been the problems for many major cities and 

countries.. After the Sept 11 attack all government bodies have tried their best to tackle 

the problem by adding extra security measures, such as the implementation of additional 

more CCTVs around stations and airports. However, the effectiveness of these 

measures for anti-terrorism has remained to be a hot debate topic.  

By increasing the number of CCTV not necessary improves the security effectiveness. In 

many cases, the police don’t have the resources to cover the CCTV footage (Espiner, 

2009) and therefore the efficiency of the surveillance through human operators on the 

CCTV system is highly questionable. Furthermore, it is a challenge to identify a subject 

from a crowd such as that shown in Figure 1-2. There is a real need to build an 

automatic surveillance system to improve counter-terrorism technology and it is hoped 

that this research will help to lead into a technique for realising a more robust 

surveillance system.  
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Figure 1-2: CCTV technology is not capable of identifying target from a crowd effectively. 
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2 Hyperspectral Imaging (HSI): an introduction 

Hyperspectral imaging is a technique that generates data which consists of multiple 

spectral bands at each pixel location. Hyperspectral images can be thought of a 

collection of tens or hundreds of identical images but at different wavelength channels; 

these images are put together to form an image cube. Each pixel has its own spectral 

characteristic which can be viewed in the spectral space Figure 2-1. 

The developments of pattern recognition and image processing techniques began to be 

seriously addressed since the advance in digital computer in 1960 (Landgrebe, 2002). 

The multi-spectral concept was originally proposed in earth observation remote sensing 

due to the cost of building high spatial resolution sensor in the space system. More 

advanced hyperspectral instruments with higher spectral resolution have been 

developed for remote sensing applications in the past decades. For example, the 

Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) delivers data in 224 contiguous 

spectral channels spaced about 10nm apart from the spectral region from 0.4 to 2.45um.  

 

Figure 2-1: Sample of the hyperspectral image cube (Landgrebe, 2002) 
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2.1 Processing chain of hyperspectral Image (HSI) data 

HSI classification begins with a raw digital image, normally with digital values, which 

passes through several processing steps before the classifier is applied. The general 

steps in HSI involve pre-processing (which includes sensor calibration and atmospheric 

compensation) and dimensional reductions to obtain usual data. Pre-processing plays a 

very important role in classification of hyperspectral image because of the large variants 

in the atmosphere condition and the sensor errors (Shaw and Burke, 2003; Richards 

and Jia, 2006). Although the spectrum of the solar radiation reaching the atmosphere is 

well characterised, the spectrum of the solar radiation reaching the ground is altered 

temporally and geographically dependent, because the solar radiation is propagating 

through the constantly changing atmosphere. Sensor errors, such as the focal-plane 

vibration, spatial and spectral aberrations, can further impede the recovery of the 

reflectance spectra by distorting and contaminating the raw imagery. Therefore the 

sensor must have low jitter and its geographical location must be recorded in real time. 

After calibration and correction to compensate the artefacts and gained variations in the 

sensor, low signal-to-noise ratio (SNR) band channels due to sensor noise are removed 

from the imagery. 

2.2 Atmospheric Compensation 

Atmospheric effects distort the image in a wavelength dependent fashion. Absorption 
and scattering: Before the light is reaching the ground, light is absorbed by gases, 

aerosols and water vapour. Further absorptions and scatterings occur after solar 

radiation is reflected by the target. Upwelling Radiance: Some solar radiation is 

scattered by the atmosphere into the field of view of the sensor without ever reaching 

the ground. Secondary illumination: Solar radiation is reflected by nearby objects 

before it illuminates the targets. Adjacency effects: Solar radiation is reflected by 

nearby objects and then scattered into the field of view of the sensor. Other 

environmental factors may also affect the images such as sun angle relative to zenith, 

sensor viewing angle, surface orientation of the target, cast shadows of clouds and 

ground cover. 
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The easiest correction method could be done by using information drawn from the image 

and averaging the relative reflection (Kruse et al., 1985), but the resulting images have 

not been very precise. The other method is done by creating radiative transfer (physical) 

models. Radiative transfer (physical) models, such as MODTRAN (Berk et al., 1998) or 

6S (Vermote et al., 1997), are widely used and could be found in the public domain. 

Although these may be the preferred method, they require varying degrees of 

knowledge of the surface reflectance properties and the atmospheric conditions at the 

time the image was acquired . Those input parameters are often difficult to obtain. 

2.2.1 Empirical line method (ELM) 

Empirical Line Method (ELM) is a very popular alternative approach to radiative transfer 

models. The method assumes there is a linear relationship between raw digital values 

(or radiance) and reflectance spectra of the image. It also requires users to identify the 

reflectance of at least two homogeneous targets that are larger enough to be resolved 

(Karpouzli and Malthus, 2003). If both requirements are met, the conversion is simply 

done by calculating the gradients and offsets that convert digital values to reflectance for 

each spectral band. The reflectance conversions are considered valid only between the 

bright and dark target extremes and extrapolation outside this range is usually avoided 

(Baugh and Groeneveld, 2008). 

The common way to implement the ELM is to deduce the slope and offset of the 

relationship between the radiance and the reflectance of several calibration panels in the 

scene. Once this relationship is established all other pixel values in the scene can then 

be ‘converted’ into reflectance and this is the method that has been adopted throughout 

in the data analysis of this work.  
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3 Overview of classification process 

The procedure of hyperspectral image classification involves several basic steps: (1) 

Data acquisition, (2) Pre-processing, (3) Data presentation, (4) Decision making and (5) 

Performance evaluation. The issue dictates the choice of sensor, pre-processing 

technique, representation scheme, and the decision making process. 

3.1 Data acquisition 

Hyperspectral data consists of data gathered in more than one spectral band. The 

geometry of vector spaces changes continually as the dimensionality of the space 

increases. Nowadays, it is very normal that data to be analysed contains at least ten and 

perhaps as many as several hundred spectral bands. In hyperspectral images, both 

spatial and spectral resolutions contribute to the sample size, i.e. the data volume. It is 

desirable to gather information as much as possible but it is not feasible in practice; the 

main concerns are the cost and the rate of gathering data (Landgrebe, 2002; Shaw and 

Burke, 2003). High-resolution sensors would be very expensive and data transmission 

rate may be limited due to many factors. It is important to keep a correct balance 

between spatial and spectral resolutions. If the spatial resolution is too low, too many 

different materials may be mixed within a pixel. As a result, the image becomes 

meaningless even the spectral resolution is very high. On the other hand, for low 

spectral resolution, e.g. RGB image may not provide enough information for accurate 

classification, especially when the texture and shape of objects are similar to each other. 

3.2 Pre-processing 

Pre-processing plays a very important role in classification of hyperspectral image 

because of the large variants in the atmosphere condition and the sensor errors 

(Richards and Jia, 2006). Although the spectrum of the solar radiation reaching the 

atmosphere is well characterised, the spectrum of the solar radiation reaching the 

ground is altered temporally and geographically dependent because the solar radiation 

is propagating through the constantly changing atmosphere. Non-linear motion of the 

sensor can corrupt the spectral image by mixing the spectral together. Therefore the 

sensor must have low jitter and its geographical location must be recorded in real time. 
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After calibration and correction to compensate the artefacts and gained variations in the 

sensor, atmospheric correction is normally preformed. 

Atmospheric effects distort the image by absorbing and scattering light in a wavelength 

dependent fashion. Before the light is reaching the ground, light is absorbed by gases, 

aerosols and water vapour. Some solar radiation is scattered by the atmosphere into the 

field of view of the sensor without ever reaching the ground. Further absorptions and 

scatterings occur after solar radiation is reflected by the target. Other environmental 

factors may also affect the images such as sun angle relative to zenith, sensor viewing 

angle, surface orientation of the target, cast shadows of clouds and ground cover and 

secondary illumination caused by nearby target. The correction could be done by using 

information drawn from the image and averaging the relative reflection; but the resulting 

images are not very precise. The other methods include creating empirical or physical 

models, but these require varying degrees of knowledge of the surface reflectance 

properties and the atmospheric conditions at the time the image was acquired (Beisl and 

Woodhouse, 2004). 

3.3 Data presentation 

Most of the distortions caused by the atmosphere should be corrected after the image is 

processed. Each pixel in a hyperspectral image contains a spectral profile which 

typically comprises hundreds of spectral bands. Hyperspectral imagery allows the 

detection and exploitation of narrow spectral features of target classes of interest, 

leading to an improved identification and discrimination of ground targets, and 

characterization of their related properties (Duda et al., 2000; Jain et al., 2000). 

However, the huge amount of data generated by hyperspectral systems may degrade 

the accuracy of classification result. There are no theoretical guidelines that suggest the 

appropriate patterns and features to use in specific situation (Marin et al., 1999). 

However, as Jain et al pointed out (Jain et al., 2000; Jain et al., 1999), a well defined 

feature extraction algorithm will lead to a compact pattern representation and yield 

significantly improved classification results. 
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3.4 Decision making process 

The final step of the classification process is to organise patterns into groups. The 

choice of the decision making rule depends on the specific applications. 

Provided there are enough training samples, supervised classification can normally 

outperform unsupervised algorithms. One of the most commonly used supervised 

classification techniques in hyperspectral imaging is probabilistic method. The 

probabilistic parametric techniques are based on Bayesian & maximum likelihood 

decision theory and require the estimation of its model parameters. The multivariate 

Gaussian density was the most popular density assumption (Duda et al., 2000); however 

it still plays a useful role in image classification (Chen and Peter Ho, 2008). Non-

parametric classification such as K-nearest neighbour (KNN) (Duda et al., 2000) is 

popular methods. Unlike parametric classifiers, they do not require the estimation of its 

probability density function parameters. 

Geometric techniques involve the use of decision boundaries to separate different 

classes.  The use of Artificial Neural Networks (ANN) and Support Vector Machine 

(SVM) are very popular in the remote sensing community (Chen and Peter Ho, 2008). 

Although ANN was first invented by Frank Rosenblatt (Rosenblatt, 1958), it was not 

used in the remote sensing community since the first paper published in the early 1990’s 

(Chen and Peter Ho, 2008). On the other hand, SVM is primarily a two-class classifier 

developed by Vapnik (Vapnik, 2000), which has drawn many attentions in the 

hyperspectral classification community because it achieves good performance in real 

world applications (Junping Zhang et al., 2001; Melgani and Bruzzone, 2004). The SVM 

method aims to find the optimal hyperplane, which is able to separate the input data into 

their respective classes. Melgani & Bruzzone (Melgani and Bruzzone, 2004) has 

compared SVM with two widely used classifiers, KNN and radial bias Functions (RBFs) 

neural network, and found that both linear and non-linear SVM out-performs KNN and 

RBF neural network in terms of classification accuracy.  

If classification is done without the use of training sample sets, unsupervised algorithms 

are used. Unsupervised clustering is divided into hierarchical and partitional clustering. 

Hierarchical Clustering is a well-known unsupervised classification technique and its 

variant binary hierarchical classifier BHC (Kumar et al., 2002) has been found useful for 



UNCLASSIFIED 

  Issue: 1 

27 

UNCLASSIFIED 

hyperspectral imaging in many literatures. The most classical partitional algorithm, k-

mean clustering, has been proposed for many decades ago (MacQueen, 1966) but it is 

still widely used in many applications. Many variants of K-means have subsequently 

been proposed in recent years such as fuzzy c-mean (FCM) (Bezdek, 1981; Dunn, 

1973) . 

Different from the traditional clustering techniques, the Gaussian mixture modelling 

(GMM) approach provides a means of solving both simple and complex classification 

tasks as well as a way to substantiate results. Like supervised parametric technique, 

classification is done by estimating the density of each class but the class parameters 

are determined via the Expectation-Maximisation algorithm (EM), starting from the initial 

values selected systematically by the learning procedure. 

There have been a lot of development to combine multiple classifiers for solving multi-

class classification problem (Kittler, 1998; Ho et al., 1994).For example, SVM is a binary 

classifier. Therefore, in order to achieve multi-class classification, SVM type classifiers 

must be combined together. 

3.5 Performance evaluation 

Accuracy assessment is an important step to analyse and evaluate the quality and 

reliability of hyperspectral data. Assessments are divided into site & non-site specific 

type. We also propose a method when ground truth is not presented for accuracy 

assessment. 
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4 Classification methods: a literature survey 

4.1 Supervised Classification 

Supervised classification can be divided into probabilistic based and geometric based. 

Probabilistic approaches mainly involve finding density estimates of each class and 

classification is done based on those estimations. Density estimation can be sub-divided 

into parametric and non-parametric types of techniques. Geometrical methods are 

based on finding decision boundaries that can separated between different classes. 

Most pattern recognition methods are based on feature vectors and classifications are 

done by calculating similarity or distance within each category. 

A training signature obtained from the parametric method can be critically dependent 

upon the parameters and entities of statistics underlying the data set, such as the 

covariance matrix and the mean of those coordinates of pixels that are contained in the 

array or bunch of the training sample. The following featured characteristics are also 

included in the signature of training that is obtained by the parametric method in addition 

to the standard featured characteristics of the training sets: 

 Number of spectral bands in the image that need to be processed (as entertained 

by the program of training). 

 The maximum and minimum values of data set in each and every spectral band for 

every bunch of training sample (maximum vector and the minimum vector). 

 the mean value of data file in every spectral band for every cluster of training 

sample (called mean vector) 

 For every group of training sets; the covariance matrix. 

 Pixels quantity in the cluster of training sample. 

The classification method of non parametric allots pixels to the class according to their 

location by the utilisation of the signatures that are obtained from non-parametric 

classifier, either outside the area or inside the area in the feature space image. The 

choice of the decision making rule depends on the specific applications. 
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Provided there are enough training samples, supervised classification can normally 

outperform unsupervised algorithms. One of the most commonly used supervised 

classification techniques in hyperspectral imaging is probabilistic method. The 

probabilistic parametric techniques using Bayesian & maximum likelihood decision 

theory require the estimation of model parameters, such as the multivariate Gaussian 

density function.  

Non-parametric classification such as K-nearest neighbour (KNN) (Duda et al., 2000) 

and parallelepipeds are very common in the remote sensing community. K-NN 

categorises a sample which closest to the Kth nearest neighbour. Each class of the 

parallelepiped classifier is implemented finding the upper and lower bounds of each 

feature from the training data, pixel that is within such a parallelepiped are labelled to 

that class. Unlike parametric classifiers, they do not require the estimation of its 

probability density function parameters. 

4.1.1 Parametric classification  

Parametric classification has been one of the most commonly employed techniques for 

hyperspectral applications. This type of classifier is based on the statistical probability 

distributions for each class. 

Let’s assume that there are L classes, Liwi ,...,1, = , in a multivariate mixture model. To 

determine the class in which a pixel x belong to, one must know the observation-

conditional probabilities, ( )xwp i | , the probability of class iw  given by the observation x,. 

Classification is performed by finding the class with maximum conditional probability: 

( ) ( ) ijxwpxwpwx jii ≠∀>∈  ||         ,        [4-1] 

However, in practice these observation-conditional probability functions are often 

unknown. 

Suppose the training data nxx ,...,1  are sufficient enough for an accurate estimation, one 

can then estimate its probability distributions in each class. The probability of finding x 

for each class is given by ( )iwxp | . The probabilities can be derived by using the Bayes’s 

theorem, 
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       [4-2] 

 and the data probability function is given by 

( ) ( ) ( )i

K

i
i wpwxpxp ∑

=

=
1

|          [4-3] 

where ( )xwp i |  is now known as the posterior probability and ( )iwp is known as the prior 

probability. The prior probability for each class occurring is ( )( )10 << iwp  and for 

 ,...,1 Ki = , the total prior probability is equal to ( )∑
=

=
K

i
iwp

1
1.  

The classification rule of equation [4-1] is now given by: 

( ) ( ) ( ) ( ) ijwpwxpwpwxpwx jjiii ≠∀>∈ ||         ,   with the common factor ( )xp  removed. 

Since the logarithm is monotonically increasing, for mathematical convenience the 

probability terms can be changed to: 

( ) ( ) ( ){ }iii wpwxpxg |ln=  

( ) ( )ii wpwxp ln|ln +=          [4-4] 

where ( )xgi  is sometimes known as the discriminant function and the classification rules 

of equation [4-1]becomes 

( ) ( ) ijxgxgwx jii ≠∀>∈        ,         [4-5] 

4.1.1.1 Maximum likelihood classifier 

In the case of Gaussian density with N bands, the parameter for each class iθ  denotes 

mean im  and covariance matrix i∑ , ( )iii m ∑= ,θ . The likelihood probability is defined by: 

( )
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= −
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     [4-6] 

The logarithmic form of the discriminant function becomes: 

( ) ( ) ( ) ( ) ( )iii
T

iiiii mxmxNwpxg −∑−−∑−−= −1

2
1

2
12ln

2
ln π     [4-7] 

( ) ( ) ( ) ( )xpwpwxpxwp iii || =
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Since the ( )π2ln
2
N

−   term is constant for all ( )xgi , it can be removed to simplify the 

calculation. Often, there is no useful information about the prior probability and equal 

prior probability is assumed. By removing all the unnecessary constant terms, the final 

discriminant function can be refined: 

( ) ( ) ( )iii
T

iiii mxmxxg −∑−−∑−= −1  or  

( ) ( ) ( )iii
T

iiii mxmxxg −∑−+∑= −1'        [4-8] 

where 

( ) ( ) ijxgxgwx jii ≠∀<∈ ''       ,  

This is sometimes known as the maximum likelihood classifier, log-likelihood classifier or 

quadratic (Gaussian) classifier.  

4.1.1.2 Mahalanobis Distance classifier 

If we assume that the covariance i∑ for all classes are equal i.e ∑=∑ i for all i, the 

determined of the covariance is constant and can be ignored. The discriminant function 

becomes 

( ) ( ) ( )ii
T

iii mxmxxfd −∑−= −1           [4-9] 

This is known as the Mahalanobis Distance classifier or Fisher Linear Discriminant 

classifier. A pattern is classified by finding the minimum distance from the normalised 

mean.  

4.1.1.3 Euclidean distance classifier 

Consider the covariance matrices of all classes to be diagonal and equal, and the 

variances in each component to be identical, therefore Ii
2σ=∑ . The logarithmic form of 

the original log-likelihood discriminant function becomes 

( ) ( ) ( ) ( ) ( )ii
T

ii
N

ii mxmxNwpxg −−−−−= −22

2
1

2
12ln

2
ln σσπ     [4-10] 
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Again we assume the prior probabilities are equal and remove all the constant terms, the 

discriminant function becomes 

( ) ( ) ( )ii
T

iii mxmxxg −−−=  or 

( ) ( ) ( )ii
T

iii mxmxxd −−=          [4-11] 

Here, we are trying to find the minimum ( )xdi  which is called the Euclidean distance. 

Therefore this type of classifier is called the Euclidean distance classifier or minimum 

distance classifier. 

4.1.1.4 Regularised discriminant analysis & leave-one-out covariance estimations 

There are many methods previously employed for the estimation of sample covariance 

in the small sample size situations. RDA (Regularized Discriminant Analysis) has been 

one of the most commonly used techniques particularly in face recognition where the 

training sample is small compared to the large dimensions of features. Instead of simply 

estimating the covariance S from the training sample, RDA estimates (S + γΙ) where γ is 

the regularisation parameter and Ι is the identity matrix. 

Consider a D dimension data set which contains L classes { }k
iiX 1=  and each class is 

comprised of a number of samples { } in
jiji xX

1=
=  making up a total of ∑

=

=
L

i
inN

1

 training 

samples. Thus, the estimated covariance iΣ̂  can be given by: 

( ) ( ) ( ) ( )[ ]Itr
D iii λγλγγλ Σ+Σ−=Σ ˆˆ1,ˆ

        
[4-12] 
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and Σi is the covariance directly evaluated from the small training sample set.  

The parameters ( )10 ≤≤ λλ  and ( )10 ≤≤ γγ  handle the contractions of the iΣ  in the 

directions of the class variance and the multiples of identity matrix respectively and both 

can be deduced from the eigen matrix of the data set.(Hayden and Twede, 2002)  

In theory the minimum number of samples required for a fully characterised D-

dimensional data set is D+1 samples, but the Leave-one-out covariance (LOOC) method 

can achieve this by using a minimum of as few as three (Hoffbeck and Landgrebe, 

1996).  

Instead of having the multiple identity matrix common covariances like that in the RDA, 

LOOC uses a mixing parameter for the selection of an appropriate mixture of the 

common covariance, sample covariance, diagonal sample covariance, and the diagonal 

common covariance: 

( )
( ) ( )
( ) ( )
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⎩
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where S is known as the common covariance and it is evaluated from the weighted sum 

of Σi: 

( )∑
=

Σ=
L

i
iin

N
S

1

1

          
[4-14] 

where L is the total number of classes and ni is the number of pixel in class i and N is 

the total number of pixel. 

The value of the mixing parameter iα  is selected so that a best fit to the training 

samples is achieved, in the sense that the average likelihood of the omitted samples is 

maximised. The average leave-one-out likelihood (LOOL) is given by: 

( ) ( )( )[ ]∑
=

Σ=
in

j
ikikiji

i
ii mxf

n
LOOL

1
//,

ˆ,|ln1 αα
       

[4-15] 

where f() is the maximum likelihood function as given in equations [4-7] 
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The mean of class i without sample k is ∑
≠
=−

=
iN

kj
j

ji
i

ki x
N

m
1

,/ 1
1 , where the notation i/k 

indicates the mean is computed without sample k from class i, and j is the pixel sample 

from class i. Similarly, the sample class covariance matrix of class i without sample k is:
 

( ) ( )∑
≠
=

−−
−

=Σ
iN

kj
j

kiji
T

kiji
i

ki mxmx
N 1

/,/,/ 2
1  

Both the iΣ  and the covariance that estimated through the ( )RDA
i γλ,Σ̂  or ( )LooC

ii αΣ̂  are 

used for the parametric classifiers. The LOOC is implemented firstly by removing a 

sample from the training set, and the mean of the remaining samples and their 

covariance matrices are then evaluated. Subsequently the likelihood of the remaining 

samples is calculated according to equation 4-13, producing the estimated covariance 

matrix iΣ̂  and the mean. This is then repeated until every sample is deleted. The mixing 

parameter is chosen when a maximum average likelihood is attained.  

4.1.2 Non-parametric classification 

The problem of using the parametric modelling techniques is that one must make an 

assumption of the parametric forms of the probability density function. For example, the 

Gaussian multivariate distribution is assumed before the parameters km , k∑ are 

estimated using the maximum likelihood method. In the case of unknown density 

function, non-parametric classifiers can be used to estimate the probability density 

function.  

4.1.2.1 K-Nearest Neighbours classifier 

In the K-NN rule, the class of the input pattern X is chosen as the class of the majority of 

its K nearest neighbours. The key idea of nearest neighbour algorithms is that any 

particular input data z and its neighbours are likely to share the same properties. The 

neighbours of z are defined by some distance metric. A distance metric is a scalar 

measurement of the distance between two points. In KNN, the neighbours zj of zi are the 

K data points with the smallest distance metric. The value of K is chosen to be big 

enough to ensure a meaningful estimate. There are many different methods of 
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computing the distances between two points [see Appendix for more information], the 

most common method is the Euclidean distance. 

Suppose we have n labelled training samples in D dimensions, and it is seek to find the 

closest to a test point x (K = 1). The easiest approach is to inspect each training data 

point in turn, calculate its Euclidean distance to x. The test point x is then labelled to the 

class of that training sample that is currently closest to it. 

The performance of K-NN classifier in finite design sample case significantly depends on 

the number K of nearest neighbours. 

4.1.2.2 Parallelepiped Classification 

The parallelepiped classifier is one of the simplest forms of supervised classifiers 

(Richards and Jia, 2006). The multidimensional box or parallelepiped for each class is 

found by inspecting the histogram of the training data for each class. The decision rule is 

form by finding the upper and lower limits of each class for all bands. A modified version 

of parallelepiped classifier is to find the mean and the variance of each class for all 

bands. This type of classifier is simple to train and use, but it suffers from two main 

drawbacks. If one pixel is in a region that no parallelepipeds cover, that the pixel is 

unclassified. Furthermore, parallelepipeds are often overlapping to each other if data is 

correlated, therefore some data will be assigned to more than one class. These factors 

are illustrated in Figure 4-1. The red and green rectangular boxes represent the 

parallelepipeds of class R (red) and class G (green). Any pixels that lie within both of the 

parallelepipeds are classified to the two classes; any pixels that lie beyond both of them 

are unclassified. 
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Figure 4-1: Example of 2-dimensional two classes’ problem using parallelepiped method 

 

4.1.3 Support Vector Machine (SVM) 

Support Vector Machine (SVM) is based on one simple concept: it discriminates two 

classes by fitting an optimal separating hyperplane to the training samples of two 

classes in a multidimensional feature space (Waske and Benediktsson, 2007). Let us 

consider a supervised binary classification problem. Let us assume that the training set 

consists of N vectors from the d-dimensional feature space ( )Nix d
i ,,2,1 K=ℜ∈ . A target 

{ }1,1 +−∈iy  is associated to each vector xi. Let us assume that the two classes are 

linearly separable. This means that it is possible to find at least one hyperplane (linear 

surface) that can separate the two classes without errors. When the points x lies on the 

hyperplane, the hyperplane must satisfy  

0=+⋅ bwx           [4-16] 

where the vector w is normal to the hyperplane, wb  is the perpendicular distance 

from the hyperplane to the origin, and w is the Euclidean norm of w. The SVM 

approach consists in finding the optimal hyperplane that maximises the distance d+ (d-) 

between the closest positive (negative) training sample and the separating hyperplane. 
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Let’s define the margin of a separating hyperplane to be d++d-. For the linearly 

separable case, the support vector algorithm simply looks for the separating hyperplane 

with largest margin. This can be formulated as follows: suppose that all the training data 

satisfy the following constraints: 

1for   ,1 +=+≥+⋅ ii ybwx          [4-17] 

1for   ,1 −=−≥+⋅ ii ybwx          [4-18] 

These can be combined into one set of inequalities: 

( ) ibwxy ii ∀≥−+⋅   01          [4-19] 

In order to find the find the optimal hyperplane, the margin of support vectors 1−w needs 

to be maximised as shown in Figure 4-2. It is convenient to replace maximisation of 

1−w  with minimisation 2

2
1 w and the optimisation problem becomes: 

Choose w,b to minimize 2

2
1 w         [4-20] 

Subject to ( ) ibwxy ii ∀≥+⋅   1  

The above linearly constrained optimisation expression can be switched to the following 

dual problem representation using Lagrangian multipliers: 

maximise: ( )∑ ∑
=

−
n

i ji
j

T
ijijii xxyy

1 ,2
1 ααα        [4-21] 

subject to: 0≥iα and 0
1

=∑
=

n

i
ii yα  

where the weight vector is terms of the training sets: 

∑=
i

iii xyw α            [4-22] 

In the case where there exists no hyperplane that can separate between two classes, 

e.g. two overlapping distributed classes, soft margin method could choose the 

hyperplane that split the classes as clear as possible (Cortes and Vapnik, 1995). The 

solution of the optimisation problem becomes: 
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Choose w,b to minimize ∑
=

+
N

i
iCw

`

2

2
1 ξ        [4-23] 

Subject to ( ) ibwxy iiii ∀≥−≥+⋅    0.    , 1 ξξ  

where iξ  is the slack variables which measure the degree of misclassification and C is 

the cost parameter that determines the trade of between the maximisation of the margin 

and the minimisation of the degree of misclassification. 

One of the advantages of SVM method is its ability to prevent over-fitting of the data by 

controlling the margin measures (Jain et al., 2000; Chen and Peter Ho, 2008). 

Furthermore, SVM algorithm can find the optimal separating hyperplane in a high 

dimensional space via the kernel trick (Boser et al., 1992). It is especially suitable to 

problems when classes are not linearly separable. The training vectors ix  are mapped 

into a higher dimensional space by replacing ( )j
T
i xx  with the kernel 

function ( ) ( ) ( )j
T

ij
T
i xxxxK φφ≡ . The kernel functions include linear, polynomial, radial bias 

Function (RBF) and sigmoid: 

( )
( )
( ) ⎪

⎪

⎭

⎪
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⎬

⎫

⎪
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⎩

⎪
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⎨
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+⋅
−−

=
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Linearxx

ji

ji

p
ji

ji

tanh
exp

*
*

2φ     [4-24] 

The RBF has been the most popular choice of kernel types used in SVM models for 

hyperspectral application and many authors have employed SVM for the classification of 

hyperspectral images (Junping Zhang et al., 2001; Melgani and Bruzzone, 2004; Pal and 

Mather, 2004) 
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Figure 4-2: Support Vector Machine: The two classes of +1 and -1 are separated by the optimal 

hyperplane, and the support vectors are denoted with an extra circle. (Melgani and Bruzzone, 2004) 

 

4.1.3.1 SVM Implementation 

As outlined in previous section the support vector machine (SVM) belongs to a kind of 

binary classifiers that finds the best separation plane between two classes. For multi-

class classifications, SVM can be deployed using multiple binary modules, commonly in 

a one against one or one-against-all manner (Melgani and Bruzzone, 2004). One 

against one involves the building up of one SVM for each pair of classes and the best 

classification is then chosen by voting. One against all classification method involves 

divide and conquer method in which one SVM is trained per class, with an objective to 

distinguish the pixels in a single class from the rest of the classes.  
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Figure 4-3: A typical parallel strategy for one vs one SVM implementation ((Melgani and Bruzzone, 2004)) 

 

Figure 4-4: A typical cascading approach for one vs all SVM implementation ((Melgani and Bruzzone, 

2004)) 

4.2 Unsupervised data clustering techniques 

Patterns within a cluster are similar to each other and individuals from the same clusters 

should be dissimilar from those in other clusters. However, non-predictive clustering is a 

subjective process in nature and the result of classification depends on the methods for 

representing and grouping data. In the case of chemical mixture, one may group them 

by the colouring of the mixture but others may group them by the reactivity level of the 

mixtures. As (Xu and Wunsch, 2005) mentioned, most researchers in the literature 

describe a cluster by considering the internal homogeneity and the external separation. 

Both similarity and dissimilarity should be examinable in a clear and meaningful way. 
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Clustering is very useful in many pattern recognitions problems, such as remote 

sensing, one may not be able to obtain the ground truth information. Clustering 

techniques can be roughly divided into either hierarchical or partitional. In hierarchical 

clustering, data are partitioned in a series of steps from a cluster including all individuals 

into k clusters or vice versa, while partitional clustering separate data into k clusters in 

one step. 

4.2.1 Hierarchical Clustering 

Hierarchical clustering can be sub-divided into two main streams: Agglomerative or 

Divisive. Agglomerative method starts with n clusters and each cluster contains only one 

data, then a series of merge operations of clusters are performed based on the proximity 

(similarity) matrix until the desire amount of clusters are produced. Divisive method on 

the other hand works in an opposite way. The entire data set are treated as a single 

cluster at the beginning and the cluster are split in sequence into smaller clusters based 

on the dissimilarity until a criterion is met. The result of hierarchical clustering in a tree is 

known as dendrogram (Jain et al., 1999) which illustrates the processing of both 

agglomerative and divisive clustering. 

Hierarchical agglomerative methods are more commonly used in practice because of the 

computation complexity of divisive algorithm (Jain et al., 1999). In general, most of the 

hierarchical algorithms are variants of simple linkage, complete linkage or minimum-

variances method. They can be constructed by choosing appropriate coefficients in the 

formula. In simple linkage clustering, the minimum linkage distance of the samples data 

within clusters are measured and clusters are merged with the shortest distance. In 

complete linkage clustering, the maximum linkage distances of the samples data within 

clusters are measured and clusters are merged with the shortest distance. 
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Figure 4-5: Simple Linkage Clustering 

 

Figure 4-6: Complete Linkage Clustering 

Typical hierarchical clustering algorithm is more flexible than partitional algorithms. For 

example, the simple linkage algorithm is able to detect elongated and irregular clusters 

during clustering whereas typical partitional algorithm only works well on isotropic 

clusters (Jain et al., 1999). One of the main disadvantages of hierarchical clustering 

algorithms is lack of robustness. For example, simple linkage ignored the tails of 

distribution whereas complete linkage can be strongly distorted by outliers such as 

noises (Jain et al., 1999). Once an object is assigned to a cluster, it will not be 

considered again which means the algorithms are not able to amend any previous 

misclassification. The time and space complexities are typically higher than partitional 

algorithms, therefore hierarchical clustering is rarely used for hyperspectral application 

because of the large data size and the high dimensionality. Nevertheless, the idea of 

hierarchical architectures has been incorporated in many other classification decision 
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rules such as SVM (Melgani and Bruzzone, 2004), and binary tree classifiers (Kittler, 

1998; Ho et al., 1994). 

4.2.2 Computation complexity for optimal partitional clustering 

The basic methodology of partitional clustering is to assign a set of data into k clusters 

based on some criterions without hierarchical structure. In theory, the optimal partition 

results can be found by trying all the possible combinations, however, it is not practical 

due to the time complexity. In order to search all the possible combinations, the formula 

(Xu and Wunsch, 2005) is given 

( ) ( )∑
=

−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

k

j

njk j
j
k

k
knS

1
1

!
1,          [4-25] 

Suppose n=60 objects and k=3 clusters. It requires more than 1025 partitions to find all 

the possible results. Therefore many algorithms have been proposed for the past two 

decades in order to minimize the time cost but retain the accuracies.  

4.2.3 Square-Error Clustering - K-means, ISODATA 

The most commonly used criterion function in partitional clustering is the squared-error 

criterions. Suppose we have a set of n patterns in d-dimensional and we want to group 

them into K clusters{ }kCCC ,...,, 21 . The sum of squared error criterion is defined as  

( ) ∑∑
= =

−=
K

i

N

j
ijij mxoMDE

1 1

22 ,         [4-26] 

where 

otherwise
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i
oij

1
j  1  

[ ]kmmM ,...,1=  is the mean or centroid vector of the cluster and mi is the sample mean 

of the ith cluster. 

D = the partition matrix 

The objective of the method is to partition the pattern set into K clusters such that the 

sum of square-error is as small as possible. The K-means algorithm, originally 
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proposed by McQueen (MacQueen, 1966), is the best-known square-error based 

algorithm. The meta code of the algorithm is as follows: 

1. Choose the number of clusters K and then assign the mean vector M randomly or 

pick K patterns from the set randomly. 

2. Assign each pattern in the data set to the nearest cluster based on the Euclidean 

distance between the pattern and the cluster centroid. 

3. Recalculate the mean vector M from the current partition. 

4. Repeat step 2-3 until convergence is achieved, i.e., all patterns do not change the 

cluster membership or minimal decrease in squared error. 

Although K-means algorithm is simple to implement and the time complexity is low, there 

are several drawbacks. It can work very well for compact and hyperspherical clusters but 

not if the clusters are non-isotropic or hyperellipsoidal clusters (Jain et al., 1999). One of 

the major problems with K-mean algorithm is that it is sensitive to the selection of the 

initial partition and number of clusters K. Despite many authors had proposed different 

methods to select a good initial partition, there is no efficient and universal method to 

identify the initial partition and the number of cluster (Fraley and Raftery, 1998). The 

general technique is to run the algorithm many times with different K and initial 

centroids. Another problem is that it cannot guarantee convergence to the global 

minimum value. 

There are various techniques to improve the K-means algorithm. The well-known 

iterative self-organising data analysis algorithm (ISODATA) (Ball and Hall, 1965) 

employs the ideal to split and merge clusters during each iteration. A cluster is split if the 

variance is above a pre-defined threshold T1 and two clusters are merged together if the 

distance between their centroids is below the threshold T2. Provided that T1 and T2 are 

carefully chosen, this technique is able to achieve optimum partition starting with an 

arbitrary initial centroid number. However the biggest problem with ISODATA (Appendix 

13.4) is the introduction of more unknown parameters, such as the sample threshold, 

variance threshold and etc, which require the knowledge and experience of the user to 

choose the optimal parameters. 
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4.2.4 Fuzzy Clustering 

The methods that are mentioned in the previous sections are all hard clustering method 

which means each pattern belongs to one and only one cluster. However in many data 

sets, there may not be clear boundaries between clusters, for example, there may even 

be several classes within the sub-pixels due to the spatial resolution of the image in 

hyperspectral data. Fuzzy clustering helps to relax the one pixel one class constraint by 

introducing the notation Uij to represent the degree of membership for each class. The 

membership function U can be interpreted in this form : 

 

 

 

 

 

where each row =1 sample and each column =1 class and iU
n

j
ij ∀=∑

=
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. Using the 

membership matrix, one can find the optimal cluster by minimizing that value of a fuzzy 

criterion function. Fuzzy c-mean algorithm (FCM) (Bezdek, 1981) is the most popular 

fuzzy cluster algorithm, which attempts to find a partition for a set of data by minimizing 

the weighted squared error function 
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where  

[ ]kmmM ,...,1=  is the mean or centroid matrix of the cluster and mi is the sample mean of 

the ith cluster. 

U=[uij]N*K is the N*K fuzzy partition matrix 

[ ]∞∈ ,1p  is the fuzzy exponent and is usually set to 2 

The fuzzy c-mean algorithm is 

For hard clustering 

Uij =

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

1000
0001
0010
0001

 

For soft clustering 
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1. Randomly initialise the membership matrix U and select appropriate value for the 

stopping threshold e 

2. Calculate the centroid matrix M using the formula 

( )( )

( )∑

∑

=

=

⋅
= N

i

p
ij

N

i
i

p
ij

j

u

xu
m

1

1          [4-28] 

3. Update the membership matrix U’ 
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4. Calculate eUUT −−= ' and set U=U’. If T<0 then STOP, else go back to step 2 

Although fuzzy c-mean algorithm is better than hard k-mean algorithm at avoiding the 

local minima, it can still converge to local minima of the squared error. Also FCM suffers 

the same problems as encountered in k-mean such as the choice of the initial partition 

and sensitive to noise and outliers. 

4.2.5 Neural Networks-Based Clustering 

Artificial neural network (ANN) is built with the use of computer model and mathematics 

to mimic the actual biological nervous systems. Most of the ANNs need a ‘teacher’ to 

train the network, and therefore they are not useful for unsupervised classification. For 

clustering application, neural network-based algorithms are mainly based on Self-
organizing map (SOM) (Kohonen, 1998). 

The self-organizing map (SOM) model is based on the unsupervised learning of the 

neurons organized in a regular lattice structure. The topology of the lattice is triangular, 

rectangular or hexagonal. The objective of SOM is to allow visualization of high-

dimensional patterns by representing them in a two-dimensional lattice structure. It can 

be achieved by grouping similar patterns and representing them by a neuron. The 

architecture of SOM is normally a simple single-layer network. Each input pattern is 

connected to all the output neurons and the weights between the input nodes and the 
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output nodes are changed during the learning process. The basic SOM training process 

is in the following steps. 

1. Define the topology of SOM, e.g. hexagonal; Initial the reference vector mi 

randomly for each neuron i. 

2. Select an input pattern x and compare it with the entire reference vector. 

Compute the distance using any types of metrics; Euclidean distance is normally 

used. Find the best matching unit (BMU) node c, i.e. 

{ }ii mxc −= minarg          [4-30] 

3.  Update the reference vector using 

( ) ( ) ( ) ( )[ ]tmxthtmtm iciii −+=+1        [4-31] 

where the integer t=0,1,2… . The neighbour function  ( )thci  is a smoothing kernel 

and ( ) ∞→→   when t0thci . The function can often be defined in two simple ways. 

( ) ( ) ( )
( )⎩

⎨
⎧

∉
∈

=
t
tt

thci
c

c

Ni if
Ni if

     
0

 α
         [4-32] 

or in terms of Gaussian function 
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Nc(t) is the neighbourhood of the node c. The neighbourhood can be interpreted 

as concentric hexagons around the winner node c in case of a hexagonal neuron 

lattice. Both the learning-rate factor ( )tα  and the width of the kernel ( )tσ  are 

monotonically decreasing function and the value ( )tα  must be bound between 0 

and 1. r represents the location vectors of nodes c & i and ic rr −  increases as 

( ) 0→thci . 

4. Repeat step 2-3 until changes to weights fall below a pre-set threshold value. 

SOM gives good approximation two-dimensional maps from multi-dimensional data and 

has been successfully use for many applications (Kohonen, 1998), but one major 

drawback is the quality of the result depends on the choice of parameters. Like k-mean 
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algorithm, SOM has to predefine the number of neurons, i.e. the number of clusters, for 

classification. The rate of convergence is depended on the learning rate and the 

neighbourhood function of the BMU. Once the SOM is trained, classification is done by 

labelling test samples to its closest neuron.  

4.2.6 Mixture Model-Based Algorithm 

Suppose data are generated by a mixture of several probability distributions and data in 

different cluster are extracted from different probability distributions, e.g., mixture of 

multivariate Gaussian. If the distributions are known, one can find the clusters by 

estimating the parameters of the underlying distributions.  

Let’s refer back the density function 

( ) ( ) ( )i
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i wpwxpxp ∑

=

=
1

|          [4-34] 

The prior probability ( )iwp  is constant, iα  for each class and the likelihood ( )iwxp |  can 

be thought as a function that is dependent on a parameter iθ  and n observation 

},...,{ 1 nxxX = . The mixture distribution probability function can be re-written as: 
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i
ii xfxp
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,θα           [4-35] 

The next issue is to estimate the parameter iθ of the model. One way to solve this 

problem is to apply the maximum likelihood estimation technique. This may be obtain by 

maximising ( )∏
=

n

j
jxp

1

 with respect to iθ  and iα  under the constraint that 1
1

=∑
=

K

i
iα . When 

complete label data is presented, the problem is simplified to the supervised 

classification estimation (see chapter 4.1.1.1). However, if there are many missing labels 

or even no label at all, the parameter cannot be estimated from the training data. In that 

case, the expectation-maximisation (EM) algorithm is often used to find this maximise 

likelihood parameters. 
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4.2.7 EM algorithm 

EM algorithm (Dempster et al., 1977)is an efficient iterative procedure to compute the 

Maximum Likelihood (ML) estimate in the presence of missing or hidden data. In ML 

estimation, we wish to estimate the model parameter(s) for which the observed data are 

the most likely. 

The EM algorithm consists of two processes: The E-step, and the M-step. In the 

expectation, or E-step, the missing data are estimated given the observed data and 

current estimate of the model parameters. This is achieved using the conditional 

expectation, explaining the choice of terminology. In the M-step, the likelihood function is 

maximized under the assumption that the missing data are known(Borman, 2004). 

Convergence is assured since the algorithm is guaranteed to increase the likelihood at 

each iteration (Dempster et al., 1977). Most of the probability density function p are built 

from the multivariate Gaussian and used successfully in a number of applications, 

although the model can be used with many different components such as, Wishart 

distribution (Chen and Peter Ho, 2008).  The meta code of the EM algorithm is as 

follows: 

1. The initial step: Guess the parameters for the mixture density, i.e we have to 

guess { KK θθαα ...,... 11 }.  For Gaussian, },{ ∑= Mθ . 

2. E-step: Estimation of the unobserved y's (which Gaussian is used), conditioned 

on the observation, using the values },{, )()()()( l
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3. M-step: We now want to maximize the expected log-likelihood of the joint event: 

An EM algorithm iteratively improves an initial estimate )()( , l
i

l
i θα  by constructing 

new estimates, )1()1( , ++ l
i

l
i θα . 

4. If the new parameters have converged, i.e. no more change in the estimates, the 

process stops. Otherwise go back to 2. 
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4.3 Classifier Combination 

There are many reasons for combining multiple classifiers to solve a problem. To 

increase efficiency one can adopt multistage combination rules whereby objects are 

classified by a simple classifier using a small set of cheap features in combination with a 

reject option (Atukorale and Suganthan, 1999). For the more difficult objects more 

complex procedures, possibly based on different features, are used. Some classifiers 

can only make binary decisions (Melgani and Bruzzone, 2004) in that case, combination 

of classifiers must be done in order to perform multi-class classification. Neural networks 

show different results with different initialisations due to the randomness inherent in the 

training procedure (Kohonen, 1998). Therefore instead of selecting the best network, 

one can combine various networks together and take the advantage of all the attempts 

to learn from the data. 

The architecture of various classifiers can be divided three categories: Parallel, 

Cascading and Hierarchical (Jain et al., 2000). In the parallel architecture, all the 

individual classifiers are invoked independently, and their results are then combined by a 

combiner. Most combination schemes in the literature belong to this category. In the 

gated parallel variant, the outputs of individual classifiers are selected or weighted by a 

gating device before they are combined. 

In the cascading architecture, individual classifiers are invoked in a linear sequence. The 

number of possible classes for a given pattern is gradually reduced as more classifiers 

in the sequence have been invoked. For the sake of efficiency, inaccurate but cheap 

classifiers (low computational and measurement demands) are considered first, followed 

by more accurate and expensive classifiers. 

In the hierarchical architecture, individual classifiers are combined into a structure, which 

is similar to that of a decision tree classifier. The tree nodes, however, may now be 

associated with complex classifiers demanding a large number of features. The 

advantage of this architecture is the high efficiency and flexibility in exploiting the 

discriminant power of different types of features. Using these three basic architectures, 

we can build even more complicated classifier combination systems (Ho et al., 1994).  



UNCLASSIFIED 

  Issue: 1 

51 

UNCLASSIFIED 

Consider a pattern recognition problem where pattern Z is to be assigned to one of the 

m possible classes ( )mi ww ,..., . Let us assume that we have R classifiers each 

representing the given pattern by a distinct measurement vector. Denote the 

measurement vector used by the ith classifier by xi. In the measurement space each 

class wk is modelled by the probability density function ( )ki wxp | and its prior probability 

of occurrence is denoted ( )kwp . We shall consider the models to be mutually exclusive 

which means that only one model can be associated with each pattern (Baofeng Guo et 

al., 2006). 

Now, according to the Bayesian theory, given measurements Rixi ,...,1, = , the pattern, Z, 

should be assigned to class wj provided the posterior probability of that interpretation is 

at maximum, i.e. 

 assign jwZ →  if 

( ) ( )RkkRj xxwpxxwp ,...,|max,...,| 11 =       [4-37] 

4.3.1 Product rule 

Let us assume that the representations used are conditionally statistically independent. 

We can use the product rule obtain the decision rule by 

assign jwZ →  if 

( ) ( ) ( ) ( ) ( ) ( )∏∏
=

−−

=
=

−− =
R

i
ikk

R
m

k

R

i
ijj

R xwpwpxwpwp
1

1

11

1 |max|    [4-38] 

The decision rule quantifies the likelihood of a hypothesis by combining the posterior 

probabilities generated by the individual classifiers by means of a product rule. It is 

effectively a severe rule of fusing the classifier outputs as it is sufficient for a single 

recognition engine to inhibit a particular interpretation by outputting a close to zero 

probability for it. As we shall see below, this has a rather undesirable implication on the 

decision rule combination as all the classifiers, in the worst case, will have to provide 

their respective opinions for a hypothesized class identity to be accepted or rejected.  
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4.3.2 Sum rule 

In some applications it may be appropriate further to assume that the posterior 

probabilities computed by the respective classifiers will not deviate dramatically from the 

prior probabilities. In such a situation we obtain a sum decision 

assign jwZ →  if 

( ) ( ) ( ) ( ) ( ) ( )⎥
⎦

⎤
⎢
⎣

⎡
+−=+− ∑∑

=
=

=

R

i
ikk

m

k

R

i
ijj xwpwpRxwpwpR

111

|1max|1   [4-39] 

As far as the sum rule is concerned, the assumption that the posterior class probabilities 

do not deviate greatly from the priors will be unrealistic in most applications. 

4.3.3 Max Rule 

Approximating the sum by the maximum of the posterior probabilities, we obtain  

assign jwZ →  if 

( ) ( ) ( ) ( ) ( ) ( )⎥⎦
⎤

⎢⎣
⎡ +−=+−

=== ik

R

ik

m

kij

R

ij xwRwpRxwRwpR |max1max|max1
111  [4-40] 

which under the assumption of equal priors simplifies to 

assign jwZ →  if 

( ) ( )ik

R

i

m

kij

R

i
xwxw |maxmax|max

111 ===
=        [4-41] 

 

4.3.4 Min Rule 

Bounding the product of posterior probabilities from above we obtain  

assign jwZ →  if 

( ) ( ) ( ) ( ) ( ) ( )ik

R

ik
R

m

kij

R

ij
R xwpwpxwpwp |minmax|min

1

1

11

1
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==

−− =    [4-42] 
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which under the assumption of equal priors simplifies to assign  

assign jwZ →  if 

( ) ( )ik

R

i

m

kij

R

i
xwxw |minmax|min

111 ===
=        [4-43] 

4.3.5 Median Rule 

Note that under the equal prior assumption, the sum rule can be viewed to be computing 

the average a posterior probability for each class over all the classifier outputs, i.e., 

assign jwZ →  if 

( ) ( )∑∑
=

=
=

=
R

i
ik

m

k

R

i
ij xwp

R
xwp

R 111

|1max|1
      [4-44] 

Thus, the rule assigns a pattern to that class the average a posterior probability of which 

is the maximum. If any of the classifiers outputs a posterior probability for some class 

which is an outlier, it will affect the average and this in turn could lead to an incorrect 

decision. It is well known that a robust estimate of the mean is the median. It could 

therefore be more appropriate to base the combined decision on the median of the 

posterior probabilities. This then leads to the following rule: 

assign jwZ →  if 

( ) ( )ik

R

i

m

kij

R

i
xwmedxwmed |max|

111 ===
=        [4-45] 

4.3.6 Majority Vote Rule 

assign jwZ →  if 

∑∑
=

=
=

Δ=Δ
R

i
ki

m

k

R

i
ji

111

max          [4-46] 

Note that for each class wk the sum on the right hand side simply counts the votes 

received for this hypothesis from the individual classifiers. The class which receives the 

largest number of votes is then selected as the consensus (majority) decision. 
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5 Classifier complexity and dimensional reduction techniques 

5.1 Introduction 

Spectral information has the advantages of easily expandable dimensionality in feature 

space. In the early days when there were 7 to 10 bands in multi-spectral images, each 

band is treated as one feature and classification based on these features were not a 

problem. This is not true when nowadays each pixel profiles contain hundreds of bands, 

classification results may be degraded due to Hughes phenomenon and information 

redundancy. 

Method of dimensionality reduction can be divided into two categories: feature extraction 

and feature selection. Feature extractions are used to extract the intrinsic properties of 

the data by transformations or combinations of the original data whereas feature 

selections are used to identify and discard features that may have low discriminability or 

may not contribute to the classification task (Jain et al., 2000). The choice between 

feature selection and feature extraction depends on the application domain. 

5.2 Hughes phenomenon 

If the class-conditional densities are completely known or the number of training is large 

and representative enough to estimate the underlying densities, then the classification 

error rate does not increases as the features size increases. However, when the number 

of training samples per class is considerably smaller than the feature dimension (Zeng 

and Trussell, 2004), the classifier accuracy may degrade with an increase in the number 

of features for a fixed and small sample size. This is often known as ‘Hughes 

phenomenon’ or ‘peaking phenomenon’ (Hughes, 1968). Some authors suggest that it is 

a good practice to keep the size of the training samples as least ten times as large as 

the dimensionality (Jain and Zongker, 1997), although the exact relationship between 

the probabilities of misclassification, the number of training samples and the number of 

features are very complicated. Nevertheless, the general guideline is to increase the 

ratio of sample size to dimensionality as the classifiers complexity increases.  
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Figure 5-1: The Hughes phenomenon (Hughes, 1968). When the training sample size is small, the 

recognition accuracy decreases as the number of feature increases.  

5.3 Information redundancy 
High dimensional space is mostly empty in hyperspectral images, thus data can be 

projected to a lower dimensional subspace without losing significant information in terms 

of separability among the different statistical classes (Landgrebe, 2002). In many cases, 

it is unnecessary to process all the spectral bands of a hyperspectral image, since most 

materials have specific characteristics only at certain bands, which makes the remaining 

spectral bands somewhat redundant (Baofeng Guo et al., 2006). Watanabe’s ugly 

duckling theorem (Watanabe, 1969) also supports the need of discarding redundant 

information, because It is possible to make two arbitrary patterns similar when large 

amounts of redundant features exist within both patterns.  

Larger number of spectral bands may potentially make the discrimination between more 

detailed classes possible, but if there are many poor signal-to-noise ratio (SNR) band, 

the classification results will be degraded (Landgrebe, 2002), (Jia and Richards, 1999). 
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Therefore appropriate feature extraction/selection technique can remove those 

unwanted bands, thus improve the classification performance. 

Spectral information has the advantage of easily expandable dimensionality in feature 

space without significant cost. In the early days when there were 7 to 10 bands in multi-

spectral images, each band is treated as one feature and classification based on these 

features were not a problem. This is not true when nowadays each pixel profiles contain 

hundreds of bands. 

If the class-conditional densities are completely known or the number of training is large 

and representative enough to estimate the underlying densities, then the classification 

error rate does not increases as the features size increases. However, when the number 

of training samples per class is considerably smaller than the feature dimension (Zeng 

and Trussell, 2004), the classifier accuracy may degrade with an increase in the number 

of features for a fixed and small sample size. This has been termed “the curse of 

dimensionality” by Bellman (Bellman, 1961), which leads to ‘Hughes phenomenon’ or 

‘peaking phenomenon’ (Hughes, 1968). Larger number of spectral bands may potentially 

make the discrimination between more detailed classes possible, but if the training 

samples are insufficient for the classification requirement, the results will be degraded 

(Landgrebe, 2002), (Jia and Richards, 1999). For example, if quadratic classifier (see 

chapter 4.1.1.1) is applied to an N spectral band image, the size of training samples 

must be at least N+1, otherwise the sample covariance matrix will be singular. Some 

authors suggest that it is a good practice to keep the size of the training samples as 

least ten times as large as the dimensionality (Jain and Zongker, 1997), nevertheless, 

the general guideline is to increase the ratio of sample size to dimensionality as the 

classifiers complexity increases.  

The goal of dimension reduction is to reduce the number of feature without sacrificing 

significant information. It is important to preserve the ‘useful’ information. Reducing too 

much features may lead to a loss in discrimination power, therefore lower the 

classification accuracy (Jain et al., 2000). On the other hand, appropriate reduction 

technique can remove those unwanted bands, thus improve the classification 

performance when training samples are limited. Method of dimensionality reduction can 

be divided into two categories: feature extraction and feature selection. Feature 
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extractions are used to extract the intrinsic properties of the data by transformations or 

combinations of the original data whereas feature selections are used to identify and 

discard features that may have low discrimination power or may not contribute to the 

classification task (Jain et al., 2000; Jain and Zongker, 1997). The choice between 

feature selection and feature extraction depends on the application domain and user 

preference. 

5.4 Feature extraction 

Feature extraction is the transformation of the original data (using all variables) to a data 

set with a reduced number of variables. One of the most commonly used techniques is 

Principal components analysis (PCA) (Duda et al., 2000). PCA is efficient and usually 

yields satisfactory outcomes in extracting useful features. Other interesting techniques 

like projection pursuit (Friedman and Tukey, 1988), and Maximum Noise Fraction 

transform (MNF) (Green et al., 1988) have also been used in hyperspectral imaging 

(Chang and Du, 1999; Jimenez and Landgrebe, 1999). Both techniques are quite similar 

to PCA in the way that they put the principal components from the most significant to the 

least significant. Projection pursuit involves finding the most "interesting" possible 

projections in multidimensional data whereas MNF orders the principal components 

according to the signal to noise ratio. 

Supervised feature extractions algorithms are also used widely in hyperspectral 

applications. The most common example is Fisher linear discriminant analysis (or called 

Discriminate analysis feature extraction, DAFE) (Landgrebe, 2002; Duda et al., 2000). 

Training samples are required  to find the best discriminant functions.  

Neural network can be viewed as massively parallel computing systems consisting of a 

large number of simple processors with many interconnections. Neural networks provide 

a new suite of non-linear algorithms for feature extraction (using hidden layers). The 

popular networks, such as Self-Organizing Map (SOM) and multi-layer perceptions, can 

be used not only in classification and clustering, but also in non-linear feature extraction 

(Kohonen, 1998). Other non-linear feature extraction methods including Kernel PCA 

(KPCA), Isomap  and Locally Linear Embedding (LLE) have also been attempted in 
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hyperspectral data (Scholkopf et al., 1997; Tenenbaum et al., 2000; Roweis and Saul, 

2000). 

5.4.1 Principal components analysis 

The purpose of principal components analysis is to derive new variables that are linear 

combinations of the original variables and are uncorrelated. Geometrically, principal 

components analysis can be thought of as a rotation of the axes of the original 

coordinate system to a new set of orthogonal axes that are ordered in terms of the 

amount of variation of the original data they account for (Webb, 1999). 

One of the reasons for performing a principal components analysis is to find a smaller 

group of underlying variables that describe the data. In order to do this, we hope that the 

first few components will account for most of the variation in the original data (Webb, 

1999). 

Principal components analysis is a variable-directed technique. It makes no assumptions 

about the existence or otherwise of groupings within the data and so is described as an 

unsupervised feature extraction technique (Webb, 1999). 

The transformation is based on the covariance of the original data. Assume x represents 

the vector of a pixel in an N-dimensional image (Tsai et al., 2007). The image 

covariance matrix Σ ,  is an N*N matrix and can be constructed according to all pixels, xi, 

i=1,2, …,K and the mean vector m as below 

 

( )( ){ } ( )( )∑
=
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K

i

T
ii

T
ii mxmx

K
mxmxE

1

1       [5-1] 
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1           [5-2] 

There are two tasks in a PCA. The first is an egien-analysis to generate the 

transformation matrix A; and the second is the linear transformation for each pixel to 

project data onto the new orthogonal space, y (Tsai et al., 2007). The eigenvectors ei of 

the scatter matrix are given by: 
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ii ee λ=Σ            [5-3] 

and the transformation is defined as 

( )mxAy T −=           [5-4] 

where A is a N* d matrix whose columns are the d eigenvectors with the largest d 

eigenvalues iλ , sorted in decreasing order. Note that feature selection is performed 

within the formula because only the first d principle components are selected for 

classification.  

Principal components analysis produces an orthogonal coordinate system. The axes are 

ordered in terms of the amount of variance in the original data. If the first few principal 

components account for most of the variation, then these may be used to describe the 

data, thus leading to a reduced-dimension representation. We might also like to know if 

the new components can be interpreted as something meaningful in terms of the original 

variables. However, in practice the new components will be difficult to interpret (Webb, 

1999). 

Directly applying PCA to the entire data set of a high dimensional hyperspectral image 

may not be good (Tsai et al., 2007), for example, hyperspectral remote sensing images 

usually exhibit higher variances in the short wavelengths; thus PCA will be dominated by 

those bands. Many authors in the literature have proposed many algorithms to improve 

PCA for better use with hyperspectral images. Segmented principal component 

transformation (SPCT), which is proposed by Jia and Richards (Richards and Jia, 2006), 

compares pairwise bands and then spectral bands are divided into groups according to 

the correlation matrix. The best principal components are extracted from each of the 

group. There is another PCA technique for non-linear feature extraction called kernel 

PCA (KPCA) (Scholkopf et al., 1998) and it has been in development in recent years. 

KPCA can efficiently compute PCs in high-dimensional feature spaces by means of 

integral operators and non-linear kernel functions. The basic idea of KPCA is to map the 

input space into a feature space via the kernel trick (Appendix 13.3) and then to 

compute the PCs in that feature space. Unlike PCA which only focus on second order 

statistics, KCPA can extract higher order statistics features (Mathieu Fauvel et al., 

2006).  



UNCLASSIFIED 

  Issue: 1 

60 

UNCLASSIFIED 

5.4.2 Maximum Noise Fraction transform (MNF)  

The Maximum Noise Fraction transform (MNF) or noise-adjusted principal component 

transform (NAPCT) consists in projecting the original image in a space where the new 

components are sorted in order of signal to noise ratio (SNR) (Green et al., 1988; Chang 

and Du, 1999). While components in PCA maximise the variance in the data, MNF 

components maximise the signal-to-noise ratio. Finally, the inverse MNF allows the 

filtered image to be re-projected in the original space. 

Our choice should then achieve the desired optimal ordering in terms of image quality. 

This transformation can be defined in several ways. It can be shown that the same set of 

eigenvectors is obtained by procedures that maximise either the signal-to-noise ratio or 

the noise fraction. We stress that all the results described can be obtained from either 

measure. 

Let us consider a multivariate data set of p-bands with grey levels 

( ) pix ,...,1,Zi =           [5-5] 

where x gives the coordinates of the sample. We shall assume that 

( ) ( ) ( )xNxx += SZ           [5-6] 

Where ( ) ( ) ( ){ }xZxx P,...,ZZ 1
T = , and S(x) and N(x) are the uncorrelated signal and noise 

components of Z(x). Thus 

( ){ } NSxZCov Σ+Σ=Σ=          [5-7] 

where SΣ and NΣ are the covariance matrices of S(x) and N(x), respectively. The MNF 

transform can be expressed in the matrix form 

( ) ( ) pixZAx T ,...,1,Y ==          [5-8] 

Where ( ) ( ) ( )( )xYxYx P,...,Y 1
T =  and ( )PaaA ,,...1= . 

To obtain the MNF transform, we need to know the covariance matrices of the signal 

SΣ and noise NΣ , components and use the signal-to-noise ratio (SNR) to determine the 

ordering of the MNF components. In many practical situations, these covariance 

matrices are unknown and need to be estimated. Σ is usually estimated using the 
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sample covariance matrix of Z (x) and the noise components NΣ could be extracted by 

some types of spatial filtering of each band. The selection of filters is determined by the 

estimated spatial characteristics of the noise and therefore no filters will extract noise 

completely. Another method is to use the minimum/maximum autocorrelation factors 

(MAF) (Switzer and Green, 1984) which estimates noise by exploiting the fact that, in 

most remotely sensed data, the signal correlation of neighbouring pixels are much 

stronger than the noise correlation at any point in the image. 

5.4.3 Projection Pursuit 

Projection Pursuit was first proposed by Friedman and Tukey (Friedman and Tukey, 

1988) and was used as a technique for exploratory analysis of multivariate data. The 

idea is to project a high dimensional data set into a low dimensional data space while 

retaining the information of interest. It designs a projection index (PI) to explore 

projections of interestingness.  

Let’s assume that there are data N points with dimensionality K, [ ]NxxxX ,...,, 21=  is a 

K*N data matrix, and a  is a K-dimensional column vector, which serves as a desired 

projection. 

Then XaT represents an N-dimensional row vector that is the orthogonal projections of 

all sample data points mapped onto the direction a, where T is the matrix transpose. 

Now if we let ( ).H be a function measuring the degree of the interestingness of the 

projection XaT for a fixed data matrix X, a projection index (PI) is a real-valued function 

of a , ( )aI  defined by 

( ) ( )XaHaI T=           [5-9] 

The PI can be easily extended to multiple directions { }Jaa ,...,1 . In this case, 

[ ]JaaaA ,...,, 21= is a K*J projection direction matrix, and the corresponding projection 

index is also a real valued function ( ) RRAI JK →*:  given by 

( ) ( )XAHAI T=           [5-10] 
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In remote-sensing data analysis, the choice of the projection index is the most critical 

aspect of this technique. Jimenez (Jimenez and Landgrebe, 1999) suggests the use of 

Bhattacharyya distance as a measure of PI and the desired projection matrix A  is 

constantly updated according to the value of PI. 

5.4.4 Independent Component Analysis 

Independent Component Analysis, ICA, has received considerable interest in recent 

years because of its versatile applications ranging from source separation, channel 

equalization to speech recognition and functional magnetic resonance imaging 

(Hyvärinen and Oja, 2000). The key idea of the ICA assumes that data are linearly 

mixed by a set of separate independent sources and de-mix these signal sources 

according to their statistical independency measured by mutual information (Ouyang et 

al., 2008). In order to validate its approach, an underlying assumption is that at most one 

source in the mixture model can be allowed to be a Gaussian source. This is due to the 

fact that a linear mixture of Gaussian sources is still a Gaussian source. More precisely, 

let be a mixed signal source vector expressed by 

Asx =            [5-11] 

where A is an L*N mixing matrix and s is a N-dimensional signal source vector with N 

signal sources needed to be separated. However the mixing matrix is normally unknown, 

therefore, the purpose of the ICA is to find W a de-mixing matrix that separates the 

signal source vector into a set of sources which are statistically independent. The 

independent component can be simply obtain by  

Wxs =            [5-12]  

Pre-processing is performed before ICA is actually applied, which normally involve 

demeaning and whitening the data such that it has zero-mean and its components are 

uncorrelated with unity variances. The estimation of ICA is done measurement of non-

gaussianity, minimization of mutual information and maximum likelihood estimation. The 

classical measure of non-gaussianity is kurtosis or the fourth-order statistics. The 

kurtosis of y is classically defined by  

( ) { } { }( )224 3 yEyEykurt −=          [5-13] 
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A second very important measure of non-gaussianity is given by negentropy. 

Negentropy is based on the information-theoretic quantity of (differential) entropy. To 

obtain a measure of non-gaussianity that is zero for a Gaussian variable and always 

nonnegative, one often uses a slightly modified version of the definition of differential 

entropy, called negentropy. Negentropy J is defined as follows 

( ) ( ) ( )yHyHyJ gauss −=           [5-14] 

where gaussy  is a Gaussian random variable of the same covariance matrix as y . Due to 

the above-mentioned properties, negentropy is always non-negative, and it is zero if and 

only if y has a Gaussian distribution. Negentropy has the additional interesting property 

that it is invariant for invertible linear transformations (Hyvärinen and Oja, 2000; Ouyang 

et al., 2008). 

5.4.5 Fisher Linear Discriminant Analysis 

To that purpose Fisher-LDA considers maximizing the following objective: 

( )
wSw
wSwwJ

w
T

B
T

=           [5-15] 

where SB is the “between classes scatter matrix” and SW is the “within classes scatter 

matrix” (Welling, 2006). Note that due to the fact that scatter matrices are proportional to 

the covariance matrices we could have defined J using covariance matrices – the 

proportionality constant would have no effect on the solution. The definitions of the 

scatter matrices are: 
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 and Nc is the number of cases in class c. Oftentimes you will see that for 2 classes SB is 

defined as ( )( )T
BS 2121

' μμμμ −−= . This is the scatter of class 1 with respect to the 

scatter of class 2 and you can show that BB S
N
NNS '21= , but since it boils down to 

multiplying the objective with a constant is makes no difference to the final solution. It is 

also interesting to observe that since the total scatter, 

( )( )∑ −−=
i

T
iiT mmS μμ          [5-18] 

is given by ST = SW + SB the objective can be rewritten as, 

( ) 1−=
wSw
wSw

wJ
w

T
T

T

          [5-19] 

and hence can be interpreted as maximizing the total scatter of the data while 

minimizing the within scatter of the classes (Welling, 2006). 

An important property to notice about the objective J is that its invariant w.r.t. rescaling 

of the vectors ww α→ . Hence, we can always choose w such that the denominator is 

simply 1=wSw w
T , since it is a scalar itself (Welling, 2006). For this reason we can 

transform the problem of maximizing J into a constrained optimisation problem. Using 

the Lagrangian to minimize wSw B
T

2
1

− , the solution can be simplified to an eigenvalue 

equation as 

wwSSwSwS BWwB λλ =⇒= −1                            [5-20] 

5.4.6 Neural networks feature extractor 

Neural networks can be used directly for feature extraction in an unsupervised fashion. 

A feed-forward network offers an integrated procedure for feature extraction; non-linear 

features can also be extracted by adding an extra hidden layer. The architecture of 

neural networks could also simulate other classical feature extraction technique such as 

PCA, show in Figure 5-2. The network has d input and d output where d is the given 

number of features. The hidden layer with three neurons captures the first three principal 
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components, and instead of using sigmoid, the neurons use linear transfer functions. 

Self Organising Map (SOM) (Landgrebe, 2002) is another type of neural networks, which 

can be used for non-linear feature extraction. The neurons in SOM are arranged in an 

m-dimensional grid, each neuron is connected to all the d-dimensional input features 

with different weights. After training is done, SOM offers an m-dimensional with spatial 

connectivity, which can be interpreted as feature extraction. 

 

Figure 5-2: An example of linear neural network feature extractor (Jain et al., 2000). 

 

5.5 Feature Selection 

Although feature extraction algorithms provide good discrimination power, they may 

suffer from the fact that the transformed features do not have any physical meanings. 

On the other hand, feature selection discards some of the redundant features or bands 

may not be an optimal approach, but the images’ properties remain. Feature selection is 

also optimal to lower the dimensionality for the data. Instead of projecting the features 

into another subspace, some features that are less relevant for classification are 

discarded. Feature selection techniques generally involve a search strategy, a selection 

evaluation function and a stopping criterion. 
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5.5.1 Search strategy 

The next step is to choose the search strategy for feature selection. The most 

straightforward approach to the feature selection problem would require examining all 

possible combination and selecting the subset with the largest discriminant power. 

Although exhaustive search is an optimal approach, the computation complexity is large. 

In order to guarantee the optimality of a 12-dimensional feature subset out of 24 

available features, approximately 2.7 million possible subsets must be evaluated. 

The other optimal feature selection method which avoids the exhaustive search is based 

on the branch and bound algorithm (Narendra and Fukunaga, 1977). It is a top-down 

procedure, beginning with the set of p variables and constructing a tree by deleting 

variables successively. It relies on the monotonic property of the feature selection 

criterion J(). For two subsets of the variables, X and Y, ( ) ( )YJXJYX <⇒⊂ . The 

branch and bound algorithm may not be computationally feasible (Serpico and 

Bruzzone, 2001). The growth in the number of possibilities that must be examined is still 

an exponential function of the number of variables. Hence, in the case of feature 

selection for HSI classification, only suboptimal algorithms can be used. 

There are many types of suboptimal feature selection found in the literature. The 

simplest search strategy is the best individual (BI) (Jain et al., 2000). This technique 

evaluates all features individually and ranks them according to the criterion function. The 

best feature subsets from the rank order. In general, BI method is not suitable for 

hyperspectral due to the fact that the best pair of features need not contain the best 

single feature(Jain et al., 2000; Landgrebe, 2005). are the sequential forward selection 

(SFS) and the sequential back selection (SBS). Although suboptimal algorithms such as 

the sequential forward floating selection (SFFS) method and the sequential backward 

floating selection (SBFS) methods are not capable of examining every feature 

combination, they will assess a set of potentially useful feature combinations. 

5.5.2 Selection Criteria 

The selection process is to identify bands which are a subset of the original spectral 

bands that contains most of the characteristics. Let the feature selection criterion for the 
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set X be represented by J(X). Let us assume that a higher value of J indicates a better 

feature. We can choose the feature set in essentially two ways (Webb, 1999). 

1. Filter method: The first approach is to estimate the overlap between the 

distributions from which the data are drawn. Those feature sets with minimal 

overlap are chosen as final subsets. It has the advantage that it is often fairly 

easy to implement and computationally efficient. The final selection result is also 

independent of the final classifier employed, thus it does not inherit any bias of 

the classification algorithm. However, it has the disadvantage that the 

assumptions made in determining the overlap are often crude and may result in 

a poor estimate of the discriminant power (Webb, 1999). 

2. Wrapper method: Wrapper method is very classifier on the reduced feature set 

can be and choose the feature sets for which the classifier performs well on a 

separate test/validation set. In this approach, the feature set is chosen to match 

the classifier. A different feature set may result with a different choice of 

classifier (Webb, 1999). 

The choice of feature selection evaluation function is mainly depending on the method 

used. If the filter approach is used, then the evaluation function is based from the data 

intrinsic properties. The data intrinsic category includes distance (Keshava, 2004; 

Martinez-Uso et al., 2007), information entropy (Keshava, 2004), and dependence 

measures. If the wrapper method is chosen, then the feature selection criterion J(X)=(1-

Pe), where Pe is the classification error rate.  
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6 Accuracy Assessment of image classification 

6.1 Introduction 
Accuracy assessment is an important step to analyze and evaluate the quality and 

reliability of hyperspectral data. Site-specific accuracy assessment has been commonly 

employed especially in the remote sensing community. The difference between site and 

non-site specific assessment is the use of spatial information of the map. In a non-site 

specific accuracy assessment, the total number of classified pixels for each category is 

compared regardless of the location of the pixels. In a site specific assessment, the 

classified results are compared with the same locations on the reference data. Therefore 

it avoids errors due to the wrongly classified pixels in the wrong locations. There are two 

types of criteria to measure the accuracy of the images: location accuracy and 

classification accuracy. Location accuracy is a measure of how precisely pixels of the 

image cubes are mapped to their true location on the ground. Classification accuracy 

assessment provides a comparison between classification results and known reference 

data. 

6.2 Site-specific assessment 

6.2.1 Confusion Matrix 

The use of confusion matrix, error matrix or contingency matrix is currently the core 

method of the accuracy assessment in remote sensing literature (Foody, 2002). A 

confusion matrix is a square array of numbers which lists the reference/ ground-truth 

data in the columns and the classified results in the rows. The recommend (Foody, 

2002; Congalton and Green, 1999) layout of a confusion matrix is present in Table 6-1. 

Confusion matrix is very helpful in analysing the overall accuracy of the whole images as 

well as the accuracy of individual classes. The overall accuracy is the basic accuracy 

measure which is the sum of the correctly classified pixels (the diagonal of the matrix 

which is shaded grey) divided by the total number of pixels, n. It is normally sufficient to 

provide a good indication of the performance of a classification rule. However, 

presenting the overall accuracy alone may not be enough. The additional information 
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from the confusion matrix may become handy if further investigation about the reliability 

of the classification results is required. 

The producer’s accuracy indicates the percentage of each individual reference class 

was corrected identified in the classified map. The producer’s accuracy of a class can be 

derived by dividing the number of correctly classified pixels by the total numbers of 

pixels of that particular reference class. It also shows the error of omission which refers 

to excluding an area (or some pixels) from the class in which it does truly belong. 

The user’s accuracy is directly related to the error of commission, the amount of area 

that is classified to a category which does not belong to that category. The user’s 

accuracy is the number of correctly classified pixels divided by the total numbers of 

pixels that are classified as that particular class. 

Under this method the ground truth data has been regarded as an accurate and reliable 

representation of the actual site. In fact, as Foody stated, “the ground data are just 

another classification which may contain error” (Foody, 2002). These may be errors from 

mislabelling of certain area and errors due to mis-location of the map. The reference 

data acquisition methods, sampling methods and class definitions are some factors that 

can influence the accuracy of the reference data itself. As long as the accuracy 

assessments are based on the reference data, there is a danger of falsely interpreting 

some classified results as errors which are in fact correct because of the inaccuracy of 

the reference. A thorough and precise ground truthing of the site may result in a more 

accurate map, but this is normally not feasible due to the cost and time of taking data. In 

the situations when actual ground truth data is absent, remote sensing data with finer 

spatial resolution is often used as the reference data. In this case the resulting confusion 

matrix and accuracy of the classified data are based on the derived reference map. This 

derived map is generated by photo interpreters and expert knowledge of the site which 

may notably distort fidelity of the accuracy report. 
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  Reference Class No. of classified pixels 

  1 2 3 K  

1 n11 n12 n13 n1K n1+ 

2 n21 n22 n23 n2K n2+ 

3 n31 n32 n33 n3K n3+ 
Classified Class 

K nK1 nK2 nK3 nKK nK+ 

No. of ground 

truth pixels 

 n+1 n+2 n+3 n+K n 

 

Table 6-1: Standard format of a confusion matrix 

 

Confusion matrix and the statistical measures that were mentioned above had been 

widely adopted in the remote sensing community. They are quite often recognised as 

the standard for accuracy assessment (Foody, 2002; Congalton and Green, 1999). 

However, in many situations when the ground reference data may not be an accurate 

and reliability source of information, the accuracy statements or report of the classified 

results are questionable. In the worst case when reference data is not presented at all, 

the use of confusion matrix and the statistical measures based on it may not be an 

option. Therefore there is a need to employ different accuracy assessment techniques. 

6.2.2 Kappa Coefficient 
The Kappa coefficient is a statistical measure to determine the agreement between two 

maps that was not occurring by chance. It is normally used to compare the agreement 

between reference data and classified result. Kappa coefficient or KHAT ( K̂ ) statistic 

has been used in sociology and psychology for many years since a seminal paper was 

published by Jacob Cohen (Cohen, 1960). However it was only widely promoted in the 

remote sensing community, since Congalton et al. introduced the method in 1983 

(Congalton and Mead, 1994). 
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The KHAT is given by 
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The KHAT value is calculated for the matrix and is measured of how well the 

classification agrees with the reference data. If KHAT is equal to 1, both data sets are in 

perfect agreement and if KHAT is equal to 0, there are no agreements between both 

sets of data. 

6.2.3 Drawbacks of site specific assessment methods 
Confusion matrix and the statistical measures that were mentioned above had been 

widely adopted in the remote sensing community. They are quite often recognised as 

the standard for accuracy assessment (Foody, 2002; Congalton and Green, 1999). 

However, in many situations when the ground reference data may not be an accurate 

and reliability source of information, the accuracy statements or report of the classified 

results are questionable. In the worst case when reference data is not presented at all, 

the use of confusion matrix and the statistical measures based on it may not be an 

option. Therefore there is a need to employ different accuracy assessment techniques. 
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6.3 Non-site specific assessments 

6.3.1 Cross Validation & the Leave One Out Method 
The alternative methods which do not depend on ground truth map are the cross 

validation & Leave One Out (LOO) approach (Landgrebe, 2005). Both methods only use 

the training samples to assess the accuracy of the classification rules. 

The cross validation starts by dividing the available labelled pixels into k subsets. Then 

one of those subsets is treated as the testing data and the rest of the pixels are used to 

train the classifier. Then the process repeats k times with each subset is used as the 

testing data once. The k assessment results can be averaged to produce a single 

estimation.  

The leave one out method is a special form of the cross validation. It treats each 

individual labelled pixel as one subset and trains the classifier on the remainder subsets. 

The trained classifier is used label the pixel left out. That pixel is then replaced but 

another subset and the process repeated. This is done for all pixels in the training set 

and the average classification accuracy is calculated. This method can produce an 

unbiased estimate of classification accuracy if the samples are representative, 

(Landgrebe, 2005), but it is very computational expensive. 

6.3.2 Bootstrapping 
In the simplest form of bootstrapping methods are called the e0 bootstrap. For e0 

bootstrap, the bootstrap training samples are chosen by randomly picking with 

replacement from the original training set. The testing data is drawn from original training 

set that was not chosen for bootstrap training. Another popular method is called the 

0.632 bootstrap method, details of this method found in (Efron and Tibshirani, 1997). 

6.4 Separability Measures 

6.4.1 Overview 
In the case where labelled samples are not presented or the labelled samples extracted 

from the image are not representative, all of the assessment methods like cross 

validation and bootstrapping are not suitable for accuracy purpose. There is a need to 
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use some alternative methods other than assessment methods based on the probability 

of error (correct) classification. 

Consider a two-class problem with a dimensional space of two, our goal is to determine 

whether each sample belongs to class a or class b with minimum error. If the 

distributions of the two classes are well separated, then it is unlikely that the classifier 

would make a wrong decision. On the other hand, if there is a large degree of overlap 

between the two distributions, the classification error would expect to be large (Richards 

and Jia, 2006). 

Consider now an attempt to quantify the separation between a pair of probability 

distributions as an indication of the degree of overlapping. It is not sufficient to use the 

distance between the two means of two distribution functions, the variances can also 

influence the tails of the distributions and hence the degree of overlapping between both 

of the distributions. Therefore in order to measure the separability one must use the 

mean distance and the covariance of the distributions (Richards and Jia, 2006). 

6.4.2 Divergence 
The calculation of divergence is related to the decision rules of maximum likelihood 

classification. Hence, in computing and estimating the signatures, divergence will be 

helpful in foretelling the results of the c classification obtained from maximum likelihood 

classifiers.   

The separability can be calculated by three options. Covariance and the mean vectors of 

the signatures in the spectral bands that are being examined in order to find similarities 

and differences are taken into consideration by all the formulae. 

The divergence (dij) can be calculated by the formula, 

( )( ){ } ( )( )( ){ }
Term2Term1     

2
1

2
1 1111

+=

−−∑+∑+∑−∑∑−∑= −−−− t
jijiijijjiij mmmmTrTrd    [6-3] 

Where,  

i and j are the two class labels that are being examined for the similarities and the 

differences. 
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Ci is the covariance matrix for signature i 

μi is the statistical mean for signature i 

tr is the trace (algebra of matrix) 

T is the matrix transposition. 

Term 1 uses the covariance matrix and Term2 is the square distance between the 

means that is normalised by the covariance. 

Note that the equation only measures the divergence between two distributions and both 

distributions must be normally distributed. In the case of more than two classes, it is 

important to check all pairwise divergences. 

6.4.3 Problem with Divergence as a measure of classification performance 
In theory, as the distributions of different classes become further away from each other 

classes in the multispectral space, the probability of correctly classifying a pattern is 

asymptotic to 1 as shown in Figure 6-1a. However, if divergence is used instead of 

probability of correct classification, the divergence increases quadratically towards 

infinity as the distances between class means increases as shown in Figure 6-1b. It 

implies that as the separations are already very large, further small increases can lead 

to huge increase in classification accuracy but it is not true in practice. There is only 

slight increase in classification accuracy as the probability gets closer to 1 as shown in 

Figure 6-1a. The Jeffries-Matusita and Transform divergence discuss in the next session 

do not suffer from this problem. 

 

a)      b) 
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Figure 6-1: a) probability correct classification as a function of spectral class separation (Richards and Jia, 

2006) b) divergence as a function of spectral class separation (Richards and Jia, 2006) 

6.4.4 Jeffries-Matusita Distance 
The JM distance is derived by using the Bhattacharyya distance as a measure of 

separability assuming all classes are normally distributed. The Bhattacharyya distance is 

given by 
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where the first term is the square of normalised distance between the class means. 

The JM-distance is then given as follows in which B is referred to the Bhattacharyya 

distance: 

( )B
ij ej −−= 12            [6-5] 

In a two class situation, the JM distance is asymptotic to 2.0 and the relationship 

between JM- distance and distance between class means can be shown in Figure 6-2. 

The shape of the curve is very similar to the plot in Fig a. with 100% classification 

accuracy when the JM-distance is equal to 2. 

Although the JM-distance performs better than divergence as a measure of separability, 

the computationally complexity is high. In the case of divergence, most of the 

computational costs are largely on calculating the matrix inverse whereas JM-distance 

requires the matrix inverses and determinants. This implies the JM-distance is ( )1
2
1

+M  

times as expensive as divergences in time complexity. Due to the disadvantages with 

divergences and the computational cost of using JM-distance, Swain and Davis (Swain 

and Davis, 1978) has proposed the use of transformed divergence as a measure of 

separability. 
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Figure 6-2: Jeffries-Matusita distance as a function of separations between the class means (Richards and 

Jia, 2006) 

6.4.5 Transformed Divergence 
By looking at and the equation of JM-distance, the parameter B is similar to the 

divergence. Both of them involve the use of covariance and the normalised distances 

between class means. Therefore it is possible to make use of the form of JM-distance 

which employs divergence as the parameter instead of the Bhattacharyya distance. The 

transformed divergence is given by: 

 ( )8/12 ijd
ij etd −−=          [6-6] 

Transformed divergence describes the exponential decrement in the weight to the 

increment in the class distances. The range of the values of the transformed divergence 

scale is 0 to 2.0. The numerical value evaluates the separation between the two classes. 

If the obtained results are greater than 1.9 then the classes are able to separate. If the 

obtained results lie in between the values of 1.7 and 1.9 then the separation is 

considered fair enough. And if the value of the obtained results is below 1.7 then the 

separation is considered as poor. 

Swain and King (Swain and King, 1973) have derived an empirical relationship between 

transformed divergence and classification accuracy (for two classes comparison) using 

2790 sets of multidimensional, normally distributed data as shown in Figure 6-3. It 
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provides very useful information to validate the usefulness of transformed divergence as 

an alternative of the classification accuracy assessment. 

 

 

Figure 6-3: Probability of correction classification as a function of pairwise transformed divergence 

(Landgrebe, 2005) 

 

The equations as shown in Equations 6-5 and 6-6 have been developed for measuring 

the dissimilarities between a pairwise of classes, and in this study (for details refer to 

chapter 12) we have derived an overall scoring for ALL the classes in the data sets for 

the Transformed Divergence (TD) and Jeffries-Matusita Distance (JM) as:  

( )
2

2∑
≠

−
= ji

ijTD
TTD           [6-7] 

( )
2

2∑
≠

−
= ji

ijJM
TJM           [6-8] 

where TTD is the Total Transformed Divergence and TJM is the Total Jeffries-Matusita 

Distance 
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7 HSI instrumentations @ DCMT 

There are several types of devices that can be used for measuring optical power level 

quantitatively. Domestic digital photo is more suitable for making images than 

quantitative measures of optical power. The two commonly used devices for 

hyperspectral analysis are thermal detectors and photoelectric detectors. Thermal 

detectors measure the heat generated by the absorption of radiant energy. Photoelectric 

detectors convert incident light to electrical signal. In this thesis, all data has been 

captured by photoelectric based instruments and therefore the fundamental property of 

photoelectric detectors will be briefly described here. 

7.1 Photoelectric detectors 

Photoelectric detectors are based upon quantum mechanics principle. Photon energy 

collected by the detector excites electrons from the valence band to the conduction band 

where they become the charge carriers and raise the conductance of the detectors. The 

photon energy is given by 

light  theofh  wavelengt 
light of speed  c
constant sPlanck' h 

energyphoton   the E

=
=
=
=

=

λ

λ
hcE

         [7-1] 

7.2 Hyperspectral imaging camera 

The advances in semiconductor technology in the last few decades have provided low 

cost and highly efficient devices such as the Charge Coupling Device (CCD), a type of 

photoelectric detectors, for hyperspectral applications. There are three main variants of 

cameras available from the commercial-off-the-shelf that are small and relatively low 

cost (<$100K) for hyperspectral imaging (HSI) application (Fisher et al., 1998). Most of 

them records hyperspectral data by dispersing the incoming light into its constitute 

wavelength, and then these wavelengths are capture by standard CCD camera. The 
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only difference between these three types of camera is the technique used to disperse 

the light. 

The first type of camera captures hyperspectral data by passing the incoming light onto 

a transmission holographic grating such as that built by Kaiser Optical System Inc 

(Kaiser Optical Systems, 1994) as shown in Figure 7-1. Then the light is dispersed in a 

spectrum form which is then capture by a CDD camera. The second type of HSI camera 

uses a prism-grating-prism spectrograph which allows direct light dispersion. Figure 7-2 

shows a design of such camera called ImSpector™ (Aikio, 2001) which is manufacture 

by Spectral Imaging Ltd. of Finland. The third type of camera is designed using standard 

reflective surface gratings without any proprietary hardware. Offner diffraction method 

(Davis et al., 2002; Bowles et al., 1998) was chosen due to its low distortion, high quality 

and its simplicity. In an Offner Imaging Spectrometer, as shown in Figure 7-3, incoming 

light that passes through the input slit is reflected by a mirror. Then reflective light is 

collect and focused onto the reflective grating by a collimating mirror. The grating 

disperses light into spectrum and it is then focused by a collimating mirror and to project 

the wavelength dispersed light onto the y-direction of the CCD sensor. 

One of our visible to near infra-red (VNIR) cameras has been an Offner type camera 

which uses reflective type of grating providing a higher throughput that a transmission 

type of grating. The Offner hyperspectral camera is built and assembled by Headwall 

Photonics Inc. with a 0.040mm slit and it is then coupled with a standard CDD camera 

made by the PCO Germany. 

To form a hyperspectral image cube as shown in Figure 2-1, a mirror scanner as shown 

in Figure 7-4 is normally placed in front of the camera lens because the CCD can only 

capture a line of image with multiple wavelengths for each scan. Typically, pixels on the 

x-direction of the CCD store the spatial information (the x-axis of the image cube) and 

pixels on the y-direction of the CCD store the spectral information (the z-axis of the 

image cube). The mirror is attached on a moving magnet motor and lines of images are 

then collected by rotating the angle of the mirror. Finally, the lines of images are put 

together on the y-axis to form the image cube. 
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Figure 7-1: Holospec™ Spectrograph 

 

 

 

Figure 7-2: Diagram of the ImSpector™ camera 
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Figure 7-3: Diagram of an Offner Imaging Spectrometer and photo of the Headwall Photonics’ built 

camera Hyperspec™ 

 

 

Figure 7-4: A mirror scanner design of the hyperspectral camera by Headwall Photonics 
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7.2.1 Calibrations of the hyperspectral camera 

It is essentially important to check the spectral and radiometric calibration of the 

hyperspectral camera before it is deployed for field measurement. All calibration 

procedures was carried out in our laboratory using various optical instruments consisting 

of helium-neon (HeNe) laser, a sodium lamp, an Ocean Optics S200 spectrometer, a 

photometer and other optical equipments. 

7.2.2 Spectral Calibration 
The relationship between the wavelength and the registered pixel channel in the y-

direction of the CCD array is expected to be linear according to the manufacture’s 

calibration. The first experiment is to verify this relationship. One method is to use 

multispectral gas emission lamp or alternatively a broad band lamp together with a 

monochromator to output several known wavebands of light for spectral calibration. In 

this experiment we have used various light sources such as He-Ne laser, sodium gas 

discharge lamp and fluorescent light. The complete spectral characteristic of each light 

source is firstly measured by the spectrometer in the range of 400nm-900nm. The 

camera is set such that no spatial binning and all 1024 spectral channels have been 

used. Each experiment is repeated 50 times and they are then averaged to reduce the 

noise, subsequently the spectra recorded by the camera are then compared with that 

taken by the Ocean S200 spectrometer.  

The laser experiment was performed by a 632.8nm (red) HeNe laser. The intensity of 

the laser was attenuated by filters and a beam splitter. Shown in Figure 7-5 is the 

spectra of the laser as recorded by the spectrometer and Figure 7-6 is the spectral 

response that recorded by the VNIR HSI camera. The spectral responses for both 

resembles to Gaussian like with full width at half maxima of about 4nm width. Results of 

the sodium lamp and background light from the spectrometer are shown in Figure 7-9 

and Figure 7-12, respectively. These spectra exhibit several characteristic peaks in the 

400-900nm range and they correspond well to that as recorded by the camera as shown 

in Figure 7-10 and Figure 7-13. 
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Figure 7-5: Spectral measurements of the He-Ne laser recorded by the spectrometer  

 
Figure 7-6: Spectral measurements of the He-Ne laser recorded by the camera 
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Figure 7-7: Spectral (y-axis) /spatial (x-axis) false colour image of a He-Ne laser dot (circled) as recorded 

by the VNIR HSI camera 

 

Figure 7-8: Spectral profile of the He-Ne laser dot as recorded by the VNIR HSI camera 
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Figure 7-9: Spectral profile of the Sodium lamp that recorded by the S200 spectrometer  

 

Figure 7-10: Spectral profile of the Sodium lamp as recorded by the camera 
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Figure 7-11: Spectral/spatial of a line of false colour image showing a spot of the Sodium lamp source as 

recorded by VNIR HSI camera 

 

Figure 7-12: Spectral profile of the background fluorescent light as measured by the spectrometer  
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Figure 7-13: Spectral profile of the background fluorescent light as recorded by the VNIR HSI camera  

 

Figure 7-14: A line of spectral/spatial false colour image of the background fluorescent light as recorded 

by the VNIR HSI camera 
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The relationship between the pixel channels of the CCD with respected to the 

wavelength that measured by the spectrometer for the above light sources can be 

plotted out as shown in Figure 7-15. A linear relationship is found without any quadratic 

and higher term which agrees well with the manufacturer’s calibration. The equation of 

the plot is derived using both least-square error and robust regression method. The 

gradient of the plot is the average pixel dispersion of camera and it is found to be at 

around 0.643nm/pixel. The gradient lies between 0.64nm/p-0.65nm/p with an average of 

0.646nm/p being very close to that of the manufacture’s calibration. The offset however 

has been found to be 352.575nm which is quite different from the supplier’s value of 

356.31627. 

 

 
Figure 7-15: Wavelength to Pixel calibration plot deduced in this work 
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7.2.3 Radiometric calibration 
For applications such as target detection and classification, the exact radiometric 

calibration of the image pixels is not always necessary as long as the data are self-

consistent.  However other applications involving the use of physics quantities, such as 

the atmospheric correction by employing radiative-transfer models and the derivation of 

the abundances of elements or compounds within materials, will require that the data to 

be calibrated to standard units of measurement (Bowles et al., 1998). 

Radiometric calibration has not been an easy task due to the artefacts such as non-

uniform illuminations which are hard to estimate in practise. Furthermore, the sensitivity 

of individual pixels and their spectral sensitivity responses across the CCD sensor may 

vary as shown in Figure 7-16. 

 
Figure 7-16:  Spectral sensitivity of the VNIR HSI sensor (extracted from the COOKE Corporation PixelFly 

manual) 

One method for the radiometric calibration of hyperspectral camera is to make use of an 

integrating sphere conforming to UK National Physical Laboratory (NPL) or US National 

Institute of Standards and Technology (NIST) standards (Davis et al., 2002)(Bowles et 

al., 1998). Typical light source is halogen lamp due to its broadband nature and the 

photon fluxes at each wavelength of this lamp have been well studied. The intensity of 

the output from the sphere at various light levels is determined by performing a transfer 
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calibration and data is taken with a range of intensities by using ND filters. The main 

drawback of this kind of setup is that the light sources may have to be recalibrated from 

time to time. 

In this experiment the radiometric calibration is performed using a He-Ne (623.8nm) 

laser, a photometer, the hyperspectral camera together with some filters and optics as 

shown in Figure 7-17. The laser beam is passed through a series of filters before it 

enters the beam splitter, which is then directed to the camera at point A and the other is 

simultaneously detected by the S200 photometer at point B. The ratio of the two beams 

has been pre-calibrated using the S200 situated at the two points A & B for a range of 

beam intensities as shown in Figure 7-18. The linear relationship is calculated using 

both least-squares and robust regression methods. 

 
Figure 7-17:  The experiment setup for the radiometric calibration in this work 

 
Figure 7-18:  The intensity ratio of the beam splitter employed in this study 



UNCLASSIFIED 

  Issue: 1 

91 

UNCLASSIFIED 

The S200 photometer measures in foot-lambert which can be converted into luminance 

using the following equation: 

 

( )
π2

2-1-

3048.0
1*.mlm.sr Luminance tFootlamber=       [7-2] 

However, the conversion between photometry unit and radiometry unit is not trivial. 

According to the definition one watt of monochromatic green light (555 nm) equals to 

683 lumens (lm) and the relationship between watt and lumen is wavelength dependent 

as shown in Figure 7-19. The equation for converting luminance to radiance is given by: 

( ) ( ))ratio(transfer *683
Luminance.W.sr Radiance 21-

λ
=−m

      [7-3] 

 

 
Figure 7-19:  The transfer ratio between photometry and radiometry 
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To minimise the errors due to the sensor noise the HSI camera is kept at a constant 

temperature during the calibration and the dark current is taken after each measurement 

is made. 1024 frames of dark measurements have been averaged to represent the 

mean dark current, and the radiometric measurement is performed by averaging 50 

frames of data less the averaged dark current frame. The experiment is repeated with 

different integration time of the camera until the intensity of the laser spot as measured 

by the camera reaches to its maximum count of 4095 (Figure 7-20). The relationships at 

9 footlambert and 45 footlambert using linear least-squares fits are shown in Figure 7-21 

and Figure 7-22 respectively. 

 

Figure 7-20:  The HSI camera count against integrating time for two different beam intensities 
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Figure 7-21:  The relationship plot at around 9-10 footlambert  

 

 

Figure 7-22:  The relationship plot at around 44-46 footlambert 
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Figure 7-23:  A graph showing the camera counts to radiance relationship 

 

Assuming the light transmission efficiencies from the lens of the camera to the CCD 

sensor are constant at all wavelength, the digital value count to radiance relationship at 

other wavelength could be estimated from the quantum efficiency plot shown in Figure 

7-16. However, in practice, the assumption is normally not true and transmission 

efficiencies are wavelength dependent. Due to the limited available equipments at the 

time of experiment, the radiometric calibration was performed at only the laser 

wavelength, and therefore the result was not sufficient to establish true relationships 

between the digital value count and radiance for all other wavelengths. 
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8 Hyperspectral data set 

There have been two common approaches for the evaluation of classification 

performance in HSI research: one is the use of real data set which has been carefully 

ground-truthed and the other is the use of synthetic data (Landgrebe, 2005). However, 

most simulated HSI data sets have been far from ‘realistic’ because the estimated 

distribution may not always truly characterise the actual scene, and therefore, we have 

employed real data sets throughout this study.  

8.1 Data set 1: Barrax set 

The first experimental data set is taken by ESA/DRL in Barrax, Spain in 2000 at an 

altitude of 4km and it consists of 128 bands in the spectral range of 0.403um to 2.48 um. 

This data set is collected using the Hymap (Hyperspectral Mapping) instrument at 

around noon. The data is also geometric rectified to remove any artefacts due to the 

platform (plane) movement. Patches of the data set have been ground truthed and a 

target map has been drawn manually based on the land use map together with the 

partial ground truth data.  
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Figure 8-1:  RGB image of the Barrax hyperspectral data taken at 4km range equivalent to a ground 

sampling distance of 3m per pixel. 

8.2 Data set 2: Manchester data set 

This data set was taken in Minho region of Portugal under daylight in the clear sky mid-

morning of a summer in 2000 (Nascimento et al., 2002). The original data consists of 33 

bands ranging from 400nm to 720nm and due to the low signal to noise ratio of the first 

and the last wavebands, they are discarded and leaves thirty one useable bands for 

analysis. The RGB image of the data set is depicted in Figure 8-2 and a typical 

classification using unsupervised K-means algorithm for 20 classes is shown in Figure 

8-5. The test data and the training data sets are selected using similarity measures as 

depicted in chapter 6 and in this case the spectral angular mapper and Euclidean 

distance have been employed for assessing the pair-wise class similarities amongst the 

20 classes. For a pair of classes with similarities below a preset threshold they are 

merged together, resulting in a 16-class data set with appreciable dissimilarities. The 

test data set and the training data are selected from homogeneous areas as shown in 

Table 8-2. The ground truth location map is shown in Figure 8-3. According to Equations 

6-7 & 6-8 the total TTD and TJM scores of the training data selected from these 16 

classes are shown in Table 8-1 and the pairwise scores are presented in Figure 8-6. 

These are the ‘best’ dissimilarity scores and all classification results will be equal or 

worse (higher) than these base line values.  

 

TTD score TJM score 

0.0831 0.3059 

Table 8-1: The TTD & TJM scores for the 16-class training data 
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Figure 8-2:  RGB image of the Manchester HSI data set 
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Figure 8-3:  The ground-truthed map of the man data set. 
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Figure 8-4:  The ground-truthed overlay map of the man data set. 
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Figure 8-5: The 20-class clustering result by using k-means for the Manchester data set that presented in 

Figure 8-2. 
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Class Class name Description Data Size No. of Bands

1 'b' Wall tiles 648 31 

2 'ballgreen' Green on the brick 441 31 

3 'basketball' Basketball 2684 31 

4 'bluebear' The bear pattern of the blue box 162 31 

5 'bluebox' The blue box (excluding the bear 

pattern) 

1322 31 

6 'blueradio' The blue radio behind the slippers 961 31 

7 'greenbottle' The green parts of the bottle which is 

behind ‘ballgreen’ and all the boxes 

394 31 

8 'greybrick' The grey brick 2147 31 

9 'redshirt' The red football jersey 2372 31 

10 'redthing' All reds (including the bowl, the red 

box and the cap of the green bottle 

2876 31 

11 'slippers' The blue slippers 666 31 

12 'whitetable' The white table top 2883 31 

13 'whitetableleg' The legs of table 2500 31 

14 'wood' The wooden parts of the toy which is 

on the table  

242 31 

15 'yellowbear' The bear pattern of the yellow box 162 31 

16 'yellowthing’ All reds (including the yellow box 

(without the bear) and the cap of the 

green bottle 

4784 31 

  Total number of pixels 25244  

Table 8-2: The selection of 16-class ROI from the Manchester HSI image as the test and training data set 
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Figure 8-6: The pairwise JM and TD scores for the selected 16-class Manchester data set. (for more 

information about JM/TD please refer to section 6.4.5 & chapter 12) 

8.3 Data set 3: Lab t-shirt 

This data set is recorded in the laboratory using various bright colour t-shirts as targets. 

The HSI data as shown in Figure 8-7 was taken by the VNIR hyperspectral camera 

under the illumination of halogen lamps. There are ten different t-shirt colours and the 

RGB image and the ground-truthed map of this data set is presented in Figure 8-8 and 

Figure 8-9 respectively. The mean spectra of each class is presented in Figure 8-10, 

highlight the fact that some classes such as the two yellow ones are very similar to each 

other spectrally. Note that all of the t-shirt data have been converted into reflectance 

using the ELM techniques with the in-scene calibration panels (black, grey and white 

spectralons). To avoid complications only the centre part of the t-shirts have been 

selected for processing and all other pixels that are close to the boundaries between the 

t-shirts have been discarded (see Figure 8-9). The JM and the TD scores for this data 

set are found approaching to the theoretical limit of 2, suggesting a large dissimilarity 

between the classes (Figure 8-11). The TJM & TTD scores for this data set according to 

Equations 6-7 & 6-8 are zero. Note that the reflectance of the black material in Figure 
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8-10 dips below 0 at short wavelengths. This is likely due to uneven light illumination on 

scene which causes the black spectralon to be brighter than the black t-shirt, thus the 

black t-shirt negative values at short wavelength were attained when they were 

extrapolated from the ELM. 

 

Figure 8-7:  RGB Photograph of the t-shirt data set taken in the laboratory 
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 Figure 8-8:  RGB model of the t-shirt HSI data  
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Figure 8-9:  The ground-truthed map of the t-shirt data set. Note that the boundaries between the t-shirt 

have been removed due to the shadows. 

 

Figure 8-10:  Mean spectra of the t-shirt data set 
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Figure 8-11:  The pairwise JM and TD scores for the t-shirt data set highlight a large dissimilarity between 

the classes. 

8.4 Data set 4: Shine t-shirt 

This data set is similar to the one above but it was taken in an outdoor environment at 

about noon on the 27th of July, 2009. The background of the scene is the lawn of the 

campus and the data was taken under direct sun light as depicted in Figure 8-12. The 

RGB image of the hyperspectral data and the ground-truthed map are presented in 

Figure 8-13 and Figure 8-14 respectively and the mean spectra of each class is shown 

in Figure 8-15. Like the previous data set, the TD/JM scores for this scene also exhibit 

large dissimilarity with a zero score for both of the TTD & TJM. 
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Figure 8-12:  RGB Photograph of the shine t-shirt data with the lawn as the background. 
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Figure 8-13:  RGB image of the shine t-shirt data set 
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Figure 8-14:  The ground-truthed map of the shine t-shirt data set with the boundaries between the t-shirt 

removed. 

 

Figure 8-15:  Mean spectra of the shine t-shirt data set 
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8.5 Data set 5: Cloud t-shirt 

Again this data set is similar to the above but it was taken on a cloudy day at about noon 

on 27th of July, 2009. Figure 8-16, Figure 8-17 Figure 8-18 and Figure 8-19 respectively 

show the photograph, the RGB image, the target map and samples of the class 

signatures after ELM conversion of the scene. The separation measure for this data set 

is found to be the same as that presented in the last section. 

 

Figure 8-16:  RGB Photo taken in the lawn 
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Figure 8-17:  RGB model of the data of cloud t-shirt image 
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Figure 8-18:  The ground-truthed map of the cloud t-shirt data set. 

 

Figure 8-19:  Mean spectra of the cloud t-shirt data set 
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8.6 Data set 6: Car t-shirt 

This data set was collected in a car park background at 13.05 on the 8th of May, 2009 

under the direct sun light illumination. The background of this scene has been low-

reflectance tarmac, and the photograph, the RGB image, the target map and samples of 

the class signatures are shown in Figure 8-20, Figure 8-21, Figure 8-22 and Figure 8-23 

respectively. The TTD & TJM scores for this data set are zero showing large 

dissimilarities amongst all the classes. 

 

Figure 8-20:  RGB Photograph of car park data set 
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Figure 8-21:  RGB model of the car t-shirt data. 
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Figure 8-22:  The ground-truthed map of the car t-shirt data with boundaries of the t-shirts removed. 

 

Figure 8-23:  Mean spectra of the car t-shirt data set 
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8.7 Difference in apparent reflectance for data set 3-6 

As shown in Figure 8-24, there are some observed differences in the apparent 

reflectance of the same materials under different conditions for data set 3-6. It can be 

seen that the angle of incident of the reference panels (black, grey, white Spectralon) is 

slightly difference from the angle of incident of the targets that are shown in Figure 8-7, 

Figure 8-12, Figure 8-16 and Figure 8-20. Therefore the ELM result of the same target 

can be seen quite different under different illumination conditions. This induces large 

errors in the classification if different data set is used for training and testing. For the rest 

of the study, only Barrax data (data set 1), Manchester data (data set 2) and lab t-shirt 

data (data set 3) are used for experiments. 

 

a) b)  

c) d)  
400 500 600 700 800 900 1000

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

re
fle

ct
an

ce

wavelength (nm)

mean of spectra -black t-shirt

 

 
lab
shine
cloud
car

400 500 600 700 800 900 1000
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

re
fle

ct
an

ce

wavelength (nm)

mean of spectra -white t-shirt

 

 
lab
shine
cloud
car

400 500 600 700 800 900 1000

0.35

0.4

0.45

0.5

0.55

re
fle

ct
an

ce

wavelength (nm)

mean of spectra -grey t-shirt

 

 
lab
shine
cloud
car

400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

re
fle

ct
an

ce

wavelength (nm)

mean of spectra -purple t-shirt

 

 
lab
shine
cloud
car



UNCLASSIFIED 

  Issue: 1 

111 

UNCLASSIFIED 

e)
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i) j)  
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Figure 8-24: shows the mean ELM reflectance spectra of the same t-shirts targets collected under 
various illumination conditions. a) purple t-shirt, b) grey t-shirt, c) black t-shirt, d) white t-shirt, e) 
blue t-shirt, f) dark yellow t-shirt, g) light yellow t-shirt, h) dark green t-shirt, i) light green t-shirt, j) 

red t-shirt 
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9 Hyperspectral image classification experiment 

This chapter exploits a range of classification techniques using the TTD and TJM 

scoring methods. Throughout the chapter, all data points from the ground truth are used 

for training the supervised classifiers and the whole HSI scene (including the ground 

truth points) are classified and assessed using the TTD/TJM methods. It is hoped to 

establish a technique that could evaluate the classification performance without the need 

of ground truth target map. 

9.1 Supervised classifications 

9.1.1 Supervised Parametric Classification 
Parametric classification method is based on statistical parameters established from the 

training samples, such as the mean and covariance matrix. In this experiment, three 

parametric classifiers have been employed and they are the minimum distance 

classifiers (ED), Mahalanobis distance (FD) classifiers and the Maximum-likelihood (QD) 

classifiers. The classifications were carried out using ALL of the 16-classes (selected) 

pixels as the training samples and the whole image as the test data set, and they are 

then classified by these classifiers which have been implemented in Matlab. The 

classification results of these three classifiers in false colour maps are presented in 

Figure 9-1, Figure 9-2 and Figure 9-3 respectively. The classification performances of 

these classifiers as measured by TTD and TJM have been tabulated in Table 9-1. Recall 

Equations 6-7 & 6-8 and Table 8-1 that the ideal TTD and TJM for this data set are 

0.08316 & 0.3 respectively. It is clear that none of these classifiers perform anywhere 

close to this ideal condition, with the best score of ~0.6 attained by both the Mahalanobis 

(FD) and the maximum likelihood (QD) classifiers. In complex scene like the Manchester 

data set, it is expected that the QD classifier should have performed better than the FD 

because the QD models the probability density function for each class individually while 

the FD employs the common covariance for all the classes. However the TTD and TJM 

scores as shown in Table 9-1 indicates that the FD performs slightly better than that of 

the QD. This small difference in performance is likely due to the poor estimation of the 

covariance matrix in the QD for the two classes which are small in sizes (for more details 

refer to the next chapter). 
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Type of Classifier TTD score TJM score 

Maximum-likelihood classifier (QD) 0.6279 2.29555 

Mahalanobis distance classifier (FD) 0.6116 2.15585 

Euclidean distance classifier (ED) 1.0635 3.00595 

Table 9-1: The performance assessment for the classifications using 3 different parametric classifiers on 

the 16-class Manchester data set. Note that the training sample set consists of 100% of the test data.  

 

 

Figure 9-1: Typical classification result presented in false colour map by the Maximum-likelihood (QD) 

classifier using all ground truthed data as the training samples. The TTD is 0.627 which is far from ideal 

(base line TTD=0.08316)  
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Figure 9-2: Typical classification result presented in false colour map by the Mahalanobis distance (MD) 

classifier using all ground truthed data as the training samples. The TTD is 0.61 which is far from ideal 

(base line TTD=0.08316)   

 

Figure 9-3: Typical classification result presented in false colour map by the Euclidean distance (ED) 

classifier using all ground truthed data as the training samples. The TTD is 1.06 which is far from ideal 

(base line TTD=0.08316) 
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9.1.2 Supervised Non-Parametric Classification 
The objective of this experiment is to employ non parametric classifier such as KNN to 

compare the classifications by the parametric methods. One and eight neighbourhood 

conditions have been utilised here, and like the previous experiment all of the test data 

has been employed as the training data for this K-NN classifier. The classifier is 

implemented in Matlab and the classification performance as measured by TTD and 

TJM are shown in Table 9-2, showing no significant improvements by increasing the 

number of nearest-neighbourhoods in the KNN classifier. Typical results by the 1-KNN 

and 8-KNN are shown in Figure 9-4 which indicates very similar classification 

performances between them. By comparing this result with that of the classification by 

parametric methods presented in Table 9-2, it is clear that the KNN performs not as 

good as the parametric classifiers presented in the last section.  

K-NN  Classifier TTD score TJM score 

1-NN 1.3935 3.70555 

8-NN 1.3887 3.58075 

Table 9-2: The performance assessment for the classifications by the KNN nonparametric classifiers on 

the 16-class Manchester data set. Note that the training sample set consists of 100% of the test data.  

(a) (b)  

Figure 9-4: Typical classification result presented in false colour maps by (a) 1NN and (b) 8NN classifiers 

which utilise all ground truthed data as the training samples. TTD for both ~=1.4 which are worse than the 

parametric classifiers presented in the last section. 
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9.1.3 Parallelepiped Classifier 

Two different decision rules have been adopted in the parallelepiped classifier:  

1. The use of the maximum and minimum value of each band in the signature as 

the upper and lower limits of the parallelepipeds, and 

2. The upper and lower bounds was determined by the mean of each bands, 

plus and minus 2*the standard deviations of each bands. 

The classifications by using these two methods have been respectively presented in & 

Figure 9-5 & Figure 9-6, and for the first approach there are 27.24% and 18.76% of 

overlapped and unclassified pixel respectively, resulting in ~46% of the data remain 

either unclassified or undetermined. The second approach has shown an even worse 

result with a total of 57.4% undetermined region. This classifier is good in terms of 

speed but poor in terms of performance. Consequently, it is normally used in conjunction 

with other classifier such as maximum likelihood classifier (Richards and Jia, 2006). The 

TTD and TJM scoring measures have been avoided in this case due to the missing of 

large number of pixels in the classification.  

 

 

a. b. c.   

Figure 9-5: Parallelepiped classification result using the Max, Min of each band in the signature, a) the 

overall result, b) the amount of overlapped pixel (27.24%), c) the amount of unclassified pixel (18.76%) 
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a) (b) (c)  

Figure 9-6: Parallelepiped classification result using the mean of each band, plus and minus 2*standard 

deviations a) the overall result, b) the amount of overlapped pixel (33.18%), c) the amount of unclassified 

pixel (24.22%) 

9.2 Unsupervised classification 

9.2.1 K-means clustering 

K-means clustering has been a popular unsupervised classification technique due to its 

algorithmic simplicity. In this experiment the Manchester data set is examined by a K-

means classifier that has been implemented in Matlab. The experiment is repeated for 

50 runs and each begins with a random initialisation of 16 clusters. It is found that the 

classifications are quite sensitive to the initial conditions and typical results for a 

consecutive of two runs are presented in Figure 9-7. The overall averaged TTD and TJM 

for these 50 runs of classifications are shown in Table 9-3, which gives a TTD of ~0.91 

being quite close to that of the best supervised parametric classifier given by the FD 

(0.61) for this data set (refer to section 9.1.1). Note that K-means has been an 

unsupervised classifier without any need of training, and its performance is seen better 

than some supervised techniques such as the ED (TTD~1) and the KNN (TTD~1.4) 

classifiers.  

 K-means run TTD score TJM score 

 1 0.6951 1.86595 

 2 1.0671 2.08195 

Average 1-50 0.9084 2.0735 

Table 9-3: The performance assessment for the classifications by the K-means unsupervised classifiers 

on the 16-class Manchester data set. Note that the k-means classification according to the TTD is close to 

that of the best supervised parametric classifier. 
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a. b.  

Figure 9-7:  Typical consecutive runs of K-means classification with results presented in false colour maps 

(a) 1st run (b) 2nd run. 

9.2.2 Fuzzy C-means 
Fuzzy C-means can be regarded as a version of soft clustering K-means technique 

which uses the same cost function for minimising the mean squared errors of the cluster 

centriods (see section 4.5.4 above). In addition, the fuzzy C-means utilises a radial 

weighting function which is characterised by the exponential distance of the test pixel 

with respected to the cluster centriod. The settings of this exponential p (see equation 4-

25) are data dependent. In this case two different values of p=(2,5) have been employed 

and the TTD and TJM scores over 50 runs are presented in Table 9-4, which highlights 

a really bad classification particularly when p=5 where the radial function becomes so 

peaky that some classified clusters have got only a few pixels inducing an ill-defined 

covariance and thus a very small TD/JM scores. This effect is exemplified in the 

classification results as depicted in Figure 9-8 for p equals to 2 and 5. Although fuzzy C-

means belongs to a kind of unsupervised classification, the parameterisation of the 

‘correct’ radial weighting function to suit for the data sets is found non-trivial.  

(fuzzy-exponent) P TTD score TJM score 

2 1.6416 3.2784 

5 12.6624 13.9908 

Table 9-4: shows the goodness of the fuzzy c-means classifications via the separability measures. Note 

that large errors are resulted particularly when the radial function is chosen to be very peaky (p=5). 
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a. b.  

Figure 9-8: Typical classification result in false colour map by fuzzy c-means using a radial exponent 

(a)p=2 (b) p=5. Note that there are a lot of mis-classified pixels in (b) purely because of the wrongly 

choose of the radial weighting function. 

9.2.3 Self-Organising Maps 
Three different versions of SOM algorithm have been testified in this study: a) Matlab’s 

neural network toolbox, b) Helsinki University’s SOM toolbox and c) own algorithm 

developed in this work. One drawback for the MATLAB’s SOM toolbox has been the 

limitation of only one learning rule (linear) and neighbourhood function is available. The 

Helsinki’s SOM toolbox (version 2.0) has been a powerful and versatile algorithm but 

unfortunately there is a compatibility issue with the MATLAB version 7 and higher. Some 

of the SOM functions, e.g. the learning rules and the neighbourhood, have been 

developed during the course of this study and it is planned to piece this together with 

other SOM codes available from the public domain. 

The basic idea of SOM is a self-evolving network which ‘learns’ when data is passed 

through the network in a sequential manner. Like other neural network (NN) based 

clustering algorithms, there are many parameters such as the topology of the network, 

the learning rules, the updating mechanism and the data input strategy which all can 

critically affect the performance of the classification.  

Example of SOM clustering is illustrated in Figure 9-9 & Figure 9-10 where the 3 bands 

(band 3, 6, 22) of the Manchester data set have been passed through a 16-neuron SOM 

network using rectangular topology. The figures are plotted in the 3 dimensional 
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weighting of the net and the green dots represent the pixel vectors in the network’s 

(weight) space. The red dots represent the centres of the 16 neurons. Figure 9-10 

shows another view of the same plot which exhibits a planar structure, indicating that at 

least two of these dimensions are in a linear relationship.  

 

 

 

Figure 9-9: shows the clustering of 3-band Manchester data in a 16-neuron SOM network using 

rectangular topology. The plot is shown in the 3 weighting space of the net, with green dot represents the 

pixel vectors and red dot the centre of the 16 neurons. 

 

 

Like many other classifiers the parameterisation of the SOM network requires a 

systematic investigation. In here the experiment involves a stepwise change of topology 

of linear, rectangular and hexagonal; various number of pixel vectors, epochs and 

experimental runs. 
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Figure 9-10: shows the same plot as the previous figure but in a different view, highlighting the planar 

structure of the pixel vector in the net space. 

The classification results have shown that the performance is weakly dependent on the 

topology of the network (see Figure 9-11), and by using a power learning function 

together with a Gaussian neighbourhood and linear decreasing neighbourhood radius, 

the best TTD and TJM scores for the Manchester data set that have achieved are 0.95 

and 2.49 respectively (see Table 9-5). This performance is very close to that of the K-

Means and is comparable to the best supervised classifier (FD) for this data set. 

SOM sample size Topology Fine tune (Y/N) TTD score TJM score 

400*500(whole image) Line N 1.07856 2.181 

Ran50 Rectangular N 30.76824 31.85004 

10000 Rectangular N 0.7248 1.62168 

whole image Rectangular N 0.94836 2.49168 

whole image Rectangular Y 1.03452 2.27364 

whole image Hexagonal N 0.94836 2.49168 

whole image Hexagonal Y 1.03452 2.27364 

Table 9-5: The performance of the classifications for the Manchester data set using the Helsinki SOM 

code. 
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a. b.  

Figure 9-11: showing the classification results in false colour maps by the SOM using (a) rectangular and 

(b) hexagonal topology network. Both results exhibit a TTD of ~0.95, close to that of the K-Means and FD 

classifiers.  

9.3 Effect of spectral range to classification accuracy 

9.3.1 Spectral range experiment 

It is mentioned in the previous section that the number of the spectral bands, the 

spectral range as well as the band resolutions are some of the factors that affect the 

classification performance. As a first step we have studied the GT accuracy (see 

Equation 10-1) of the Barrax data set (see section 8.1) as functions of these parameters. 

The classification accuracies have been evaluated with respected to the target map and 

the unsupervised K-means classifier has been employed for this study. As highlighted in 

the previous section 9.2.1 that the classifications by K-Means are prone to the initial 

conditions and hence experiment is repeated for 10 times to obtain an average. Figure 

9-12 plots the accuracies versus the number of spectral bands (7,14,42,126,and 128) 

that have been employed for the classification of the Barrax data set. 126 bands were 

attained by discarding the two band extreme of both end of the spectral; 42 bands were 

achieved by aggregating three neighbouring bands into one band from the 126 bands 

dataset; 14 bands were achieved by aggregating three neighbouring bands into one 

band from the 42 bands dataset; and 7 bands were achieved by aggregating two 

neighbouring bands into one band from the 14 bands dataset. The dash lines represent 

the results of each run and the red solid line indicates the mean over all the runs. It is 
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seen from the figure that the performance reaches to a plateau at the range of 40th 

bands equivalent to a spectral range of 0.4-2.48um in this data set. This result may thus 

suggest that the classification performance will be further improved by using a proper 

band selection scheme for reducing the dimensionality of the data set conforming to the 

Hughes phenomenon.  

The experiment is subsequently repeated by sub-sampling the spectral bands into every 

20nm intervals and the classification result for this case is shown in Figure 9-12 which is 

remarkably similar to that presented in Figure 9-13. 

 

 

 

Figure 9-12: The accuracy of the K-Means classifier for the classification of the Barrax data set as a 

function of five input spectral ranges of 7,14,42,126 and128 bands.  
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Figure 9-13: The accuracy of the K-Means for the classification of Barrax data after subsampling data in a 

step of 20nm intervals. Note that the dimensionalities as well as the spectral ranges are both increasing as 

the trace goes from left to the right.  
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10 Supervised classifications & performance assessments 

10.1 SVM:- T-shirt and Manchester data sets: 40% training samples 

SVM has been shown to be one of the most versatile supervised classifier ever invented 

in the machine learning research. The objective of this experiment is to test the 

performance of this classifier and to study how the model parameters affect its 

classification accuracy. A number of kernel functions with various model parameters 

implemented in a one-against-one as well as the one-against-all modes have been 

implemented in MATLAB, and their classification performances have been assessed 

through the class dissimilarity and site specific measures for the classification of the 

Manchester and the lab t-shirt data sets. The site specific measure directly compares 

the class labels of every pixel with respected to the ground truth: 

%100*1

c

N

i
i

C N

CL
GTaccuracy

C

∑
==         [10-1] 

where  

C is the labelled classes 

NC is the total number of pixel in Class C 

CLi=1 for the ith pixel in class C being correctly classified and is equal to 0 otherwise. 

ClassofNumber  Total

∑
= C

cGTaccuracy
ccuracyAverageGTa       [10-2] 

Figure 10-1 and Figure 10-2 showing the classification results for the t-shirt and the 

Manchester data respectively using both SVM modes and kernel functions of linear, 

polynomial and radial bias Functions. All results have shown that the one-against-one 

(OAO) mode achieves a much better classification than the one-against-all (OAA) mode 

regardless of the kernel function employed. Thus in the rest of this section the SVM 

classification result will be presented for the one-against-one (OAO) mode only.  
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Figure 10-1: Classification results of SVM using various kernels in the OAO and OAA modes for the T-

shirt data set. The accuracy is measured with respected to the ground truth (equ 10-1). 
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Figure 10-2: Classification results of SVM using various kernels in the OAO and OAA modes for the 

Manchester data set 

10.2 SVM:- T-shirt and Manchester data sets: 100% training samples 

It is seen from the previous experiment that the SVM that employs linear, polynomial 

(p=4) and the RBF (gamma=0.1) kernels exhibit classification accuracies of 100%, 87% 
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100% and 90%, 30% and 86% for the T-shirt and Manchester data sets respectively 

under the OAO mode. Note that this classification had been carried out using 40% of the 

training data set, and it is of interest to see how the accuracy is affected by extending 

the training data set to 100%.  

10.2.1 Lab T-shirt data set 

In this experiment the classification has been carried out the same way as that in section 

10.1 but a 100% of the data pixels have been used for the training in this case. Table 

10-1 shows a substantial performance improvements by the SVM polynomial (p=4) 

classifier going from an accuracy of 87% when 40% of training data is used, to almost 

100% when the full data set is employed for the training. Figure 10-3 shows typical 

classification results to highlight almost 100% accuracies attained by all three SVM 

classifiers when the training is increased to 100% of the data set. 

Type of SVM Classifier (cost=1) Average GT accuracy TTD score TJM score 

Linear 100% 0 0 

Polynomial p=4 99.94% 1.18E-15 1.18E-14 

RBF gamma=0.1 100% 0 0 

Table 10-1: The performance assessment for the classifications using 3 different kernels for the SVM 

classifiers on the 10-class t-shirt data set. Note that TTD and TJM are calculated from the ground-truth 

region of interest only (see chapter 8), and it is not evaluated from the whole data set.  
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Figure 10-3: The classification results for the lab t-shirt data set using SVM with kernels of (a) linear, b) 

Polynomial (p=4) and c) RBF (gamma=0.1). The maps show the classifications of the ROI test areas in 

false colours and all results have shown almost 100% accuracy when ALL of the data have been used for 

the training (c.f. Figure 10-1 & Figure 10-2). 
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10.2.2 Manchester data set 

The purpose of this section is to make a direct comparison between the classification 

performances by the SVM with respect to other supervised and unsupervised classifiers. 

Thus this experiment is run under exactly the same conditions as that of chapter 9, and 

three different kernels of linear, polynomial and RBF for the SVM have been employed 

here in this work. It is seen that the SVM classifier have performed excellently, achieving 

~100% accuracy with almost ideal 0.088 TTD when the RBF kernel is employed (Table 

10-2). Recall that the separativity measure TTD of the training data set is about 0.083 

(Table 8-1). To make sure if the classification really achieves this high level of accuracy, 

the classification results in false colour maps obtained by the linear, polynomial and the 

RBF kernels are presented in Figure 10-4, Figure 10-5 and Figure 10-6 respectively. In 

Figure 10-6 it is verified that the number of mis-classified pixels in this classification 

result amounts to 126 pixels, which is exactly 0.5% of the overall 16-class data sets 

(25244 pixels). It is also noted from this experiment that the RBF has performed 

excellently over other kernels, and it is intuitive to study how the parameterisation of the 

RBF kernel can be achieved from the image data. 

Type of SVM Classifier (cost=1) Average GT accuracy TTD score TJM score 

Linear 97.57% 0.1839 0.56995 

Polynomial p=4 68.32% 183.9951 184.038 

RBF gamma=10 99.50% 0.08886 0.31675 

Table 10-2: The performance of 3 different SVM classifiers for the 16-class Manchester data set. Note that 

TTD and TJM are calculated from the ground-truth region of interest only, and it is not evaluated from the 

whole data set. 

10.3 SVM:-The RBF and the cost parameter 

To handle non-linearly separable classes, the RBF kernel are normally employed. The 

RBF is controlled by the parameters gamma (γ), which inversely scale to the variance of 

the cluster. To allow a soft margin for accommodating small amount of 

misclassifications, a cost parameter denoted by C can be implemented within the SVM 

to handle the exchange between the errors of the allowed training and stiffness of the 

separation plane. A larger C represents a greater capacity for the accommodation of 

misclassification errors. This cost parameter can be found by using either a pattern or a 



UNCLASSIFIED 

  Issue: 1 

130 

UNCLASSIFIED 

grid search method. Grid search processes every value of the parameter in its total 

range with the help of the geometric shapes in the feature hyper-space. Pattern search 

method is commonly referred as the line search or compass search. It normally begins 

with the centre of its range and then processes every value parameters in all directions. 

The nucleus of the search, in this case the one with the highest accuracy, shifts towards 

a new point if the model appears to be better and the whole process repeats itself again. 

And in case of no improvement then the search decreases in step size, and the process 

will be terminated when the step size is reduced enough to a preset value. 

a.

svm linear kernel c=1
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Figure 10-4: Shows the classification results in false colour map for the 16-class Manchester data by using 

the SVM linear kernel classifier, (a) the complete image (b) the selected ROI data set (25244 pixels). The 

accuracy of this classification is 97.6%. 

a.

svm poly kernel p=4 c=1

 

 

50 100 150 200 250 300 350 400

50

100

150

200

250

300

350

400

450

500

4

6

8

10

12

14

16

b.

svm poly kernel p=4 c=1
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Figure 10-5: Shows the classification results (68% accuracy) in false colour map for the 16-class 

Manchester data by using the SVM polynomial kernel classifier, (a) the complete image (b) the selected 

ROI data set (25244 pixels). 
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b.

svm RBF kernel gamma=10 c=1
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Figure 10-6: Shows the classification results (99.5% accuracy) in false colour map for the 16-class 

Manchester data by using the SVM RBF kernel classifier, (a) the complete image (b) the selected ROI 

data set. Note that the number of misclassified pixels in (b) amounts to 126 equivalent to 0.5% error. 

Grid search has been a costly method as it involves calculations for many points within 

the search range for each of the parameters. For instance, if there are 10 intervals in the 

search for two parameters Gamma and C as in the RBF, then the model needs a 100 

point-grid search.  

The first objective of this experiment is to illustrate how the cost parameter of the SVM 

RBF can be found using a grid search method. Secondly, we’d like to make use of the 

grid search result to deduce the trustworthiness of the TTD and TJM as a means of 

performance assessment.  

10.3.1 SVM RBF parameterisation: Grid search 

The experiment is conducted in the same way as that presented in chapter 10.1 using 

randomly selected 40% of the data as the training set and 100% of the pixels in the ROI 

for the test data (see chapter 8 for details). In the RBF kernel there are two parameters 

γ, which inversely scale to the variance of the cluster; and C which controls the softness 

of the separation plane as mentioned above. The grid search tends to propagate in the 

directions of increasing variance and at the same time to minimise the γ.  
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Typical grid search result for the Manchester data set is shown in Figure 10-7, which 

plots the contour of classification accuracies as functions of the C and γ parameters. The 

optimum condition according to the search result is nucleated at (γ,c)=(16,128) giving 

almost 100% classification accuracy at the peak. To verify the results given by the 

search result as shown in Figure 10-7 , the classifications along three grid points of C=27 

and to pick γ=2(0,4,7), the accuracies for using these parameters in the SVM RBF are 

presented in Figure 10-8 and they are then compared with that of the QD, FD and ED 

supervised classifiers.  

It is evidenced from Figure 10-8 that the SVM RBF has indeed achieved accuracies of 

99.5%, 99.7 and 98.6% when the parameters of (γ,C)=( 2(0,4,7), 27) are employed 

respectively. This classification performance exhibits remarkable accuracy compared to 

the well-known supervised classifiers such as QD & FD, provided that the optimal 

parameters of the SVM kernels are found. In contrast, the QD and the FD have achieved 

accuracies of ~99% and ~95% (see Table 10-3) without the need for elaborate 

parameterisation routines. Furthermore, the computational cost of these classifiers has 

been only a fraction of that required by the SVM.  
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Figure 10-7: The grid search result for the parameterisation of the SVM RBF classifier plotting the contour 

relationships between the (γ,C) with respected to the classification accuracy. The employed image set is 

the Manchester data (40% training size) and the dotted line shows the grid points along C=27. 
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svm RBF kernel gamma=24 c=27

 

 

50 100 150 200 250 300 350 400

50

100

150

200

250

300

350

400

450

500 0

2

4

6

8

10

12

14

16

 

c. d.

Maximum-likelihood classifier
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e.

Mahalanobis distance classifier
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f.

Minimum distance classifier
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Figure 10-8: Shows the various SVM RBF classification results using parameters of C=27 and γ= a) 1, b) 

24, c) 27 along the dashed line of the grid search as shown in Figure 10-7, and their classification 

accuracies are compared with d) QD, e) FD and f) ED classifiers. Note that the QD has achieved ~99% 

accuracy close to that of the optimised SVM RBF at (C,γ)=( 27 , 24) with accuracy of ~99.5%. 

Classifier Gamma C GT accuracy TTD score TJM score 

SVM (RBF) 2^0 128 (2^7) 99.47% 0.0773 0.29735 

SVM (RBF) 2^4 128 (2^7) 99.73% 0.085 0.30505 

SVM (RBF) 2^7 128 (2^7) 98.58% 0.0958 0.32695 

SVM (RBF) 2^-1 1 96.91% 0.0961 0.3357 

Kmeans - - 72.17% 0.1528 0.4207 

KNN (k=1) - - 99.38% 0.1211 0.3830 

Minimum distance classifier - - 81.78% 0.2585 0.63215 

Mahalanobis distance classifier - - 95.34% 0.143 0.52065 

Maximum likelihood classifier - - 99.13% 0.0848 0.30125 

Table 10-3: shows the performances of the SVM and other classifiers for the classification of the 

Manchester data using 40% training sizes. Note that this experiment uses the ROI pixels of the data set 

while the experiment that presented in chapter 9 involves classification for the whole image.  

It is noted that the classification accuracies that presented in Table 10-3 seemingly 

exhibited some degree of correlations with the separability measures such as the TTD 

and TJM. A scatter plot of the GTaccuracy against the TTD & TJM is shown in Figure 

10-9, which shows an apparent polynomial-like relationship between the ground truth 

accuracy and the separability measures. Before the exact form of this polynomial 

relationship is established, it is essentially important to explore if the relationship is 

dependent on the data structure or statistical property of the data set. 
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a. b.  

Figure 10-9: shows the scatter plot between the GTaccuracy and the separability measures a) TTD and b) 

TJM. It is not known if this relationship is dependent on the data characteristics (see next section).  

To this end another data set, the lab-t-shirt image, which is characterised by almost 

uniform class size, is examined here using the same way as that performed in the last 

experiment. Due to the abundance of training data (minimum sample to band ratio β~68) 

and relatively uniform class sizes, the grid search shows quite a range of (γ,C) that gives 

the optimum classification performance of ~100% accuracy (Figure 10-10). Again, 

similar to the Manchester data set, this excellent performance has also been achieved 

by other supervised classifiers such as the QD and FD (100% accuracy) but they only 

need a fraction of the computational cost as that of the SVM (Table 10-4). One main 

difference between this data set with respect to the Manchester data is that, there are 

two classes (the yellow ones) which are quite similar to each other spectrally within this 

T-shirt data, although their class separabilities (such as TD) has shown an ideal value of 

2 (see Figure 8-11). Hence the grid search result of Figure 10-10 has exhibited a very 

steep contour, falling off the accuracies very steeply from the peaked due to the 

misclassification of these two classes when the parameters are not optimum values. 
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Figure 10-10: The grid search result for the parameterisation of the SVM RBF classifier plotting the 

contour relationships between the (γ,C) with respected to the classification accuracy. The data set 

employed is the lab T-shirt (40% training size) and the dotted line shows the grid points along C=23. 

The presence of these two closely related classes in this data set has induced another 

issue for the calculation of the TTD and TJM. For example, when (C,γ)=(23,2-15) the SVM 

RBF shows ~61% accuracy (see Table 10-4) and there are 4 classes completely 

missed. When (C,γ)=(23,2-11) the SVM RBF shows ~92% accuracy with one class 

completely missed as shown in Figure 10-11. The TD values in these missed classes 

are zero (see Figure 10-12), and the TTD will be effectively increased by Nm*(Nc-1)*2, 

where Nm and Nc are the number of the missed class and the total number of classes 

respectively. This induces an artificial abrupt ‘jump’ on the TTD values. 

Classifier Gamma C GT accuracy TTD score TJM score 

SVM (RBF) 2^--15 2^3 60.95% 60 60.0001 

SVM (RBF) 2^--13 2^3 76.09% 48 48 

SVM (RBF) 2^-11 2^3 92.30% 18 18 

SVM (RBF) 2^-9 2^3 93.38% 0 0.1069 

SVM (RBF) 2^-3 2^3 100% 0 0 
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kmeans - - 85.72% 18.2143 18.3106 

Minimum distance classifier - - 99.83% 1.1759e-10 6.6150e-11 

Mahalanobis distance classifier - - 100% 0 0 

Maximum likelihood classifier - - 100% 0 0 

Table 10-4: shows the performances of the SVM and other classifiers for the classification of the lab T-

shirt data using 40% training sizes.  
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Figure 10-11: highlights the classification results in false colours when classes are missed (circled) using 

RBF parameters of : a) (C,γ)=(23,2-15) with 61% accuracy, b) (C,γ)=(23,2-11) with 92% accuracy.  

a. b.  

Figure 10-12: highlights the issue for the calculation of the TTD and TJM when some classes are 

completely missed in the classification result. The figure shows the TTD and TJM for a) (C,γ)=(23,2-15) with 

TTD of 60, b) (C,γ)=(23,2-11) with TTD=18. The very high values of the TTD in these cases are caused by 

the zero TD in the missed classes (highlighted in yellow).  
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When all classes are present such as in the case of (C,γ)=(23,2-9) and (23,2-3), the 

classifications have shown accuracies of 93% and 100% corresponding to the TJM 

values of 0.1 and zero respectively (see Figure 10-13). Note that the TTD for these two 

cases both show zero values and this will be investigated in the next section.  
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Figure 10-13: shows the classification results in false colours when using slightly non-optimal RBF 

parameters: a) (C,γ)=(23,2-9) with 93% accuracy, b) (C,γ)=(23,2-3) with 100% GTaccuracy.  

10.4 Separability measures vs ground truth: relationships and issues 

It is of interest to study if the GT accuracy can be correlated with the TTD and TJM 

values according to the results presented in the last few sections. It is noted from the 

previous section that the current method for the evaluation of the TTD/TJM values 

according to Equation 6-7 and 6-8 are not valid if there are classes completely missed in 

the classification result. Henceforth all data presented in this section will be restricted to 

the classification results that do not miss any classes, i.e. Nm=0. 

10.4.1 T-shirt data sets and β+ issues 

This data set is characterised by having almost uniform class sizes which is 

advantageous for the proper evaluation of the most important ingredients of the TD and 

JM: the class covariance. Table 10-5 shows the results obtained from a range of 

classifiers on various data sets collected during the course of this study, and a selection 
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of those are then plotted in Figure 10-14 ,which, hardly shows any correlation of the GT 

accuracy with respected to both the TTD and TJM at all.  

a. b.  

Figure 10-14: shows the scatter plot between the GTaccuracy and the separability measures for the lab t-

shirt data a) TTD and b) TJM. Please refer to Table 10-5 for the complete set of the results.  

Recall the TD and JM equations in 6-3 and 6-4 that both techniques require the 

estimation of the class covariance Σi and hence it is important to make sure that the 

ratios of the number of the samples in each class of the classification result, with 

respected to the band ratio, denoted in henceforth as β+, are appreciable and in large 

values typically >60. Otherwise, the covariance will be badly estimated due to the small 

sample size (for more details please refer to the next chapter). 
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Table 10-5: shows all the classification results performed in this work using a range of classifiers, with a 

hope to establish the relationship between the GT accuracy with respected to the TTD and TJM scores. 

Classifier Training data Test data 
set

Training 
sample 

size

Min class 
size to band 

ratio β+

GT 
accuracy

TTD score TJM score

kmeans lab t-shirt lab t-shirt 40% 0.68 85.720 18.214 18.311
QD car t-shirt car t-shirt 101 1.58 77.766 0.049 0.215
QD car t-shirt car t-shirt 101 1.72 71.386 0.000 0.230
QD car t-shirt car t-shirt 101 3.34 74.080 0.000 0.179
QD car t-shirt car t-shirt 101 4.26 61.311 0.000 0.106
QD cloud t-shirt cloud t-shirt 101 4.46 71.531 0.000 0.002
QD Man Man 40% 5.16 99.130 0.085 0.301

KNN (k=1) Man Man 40% 5.22 99.380 0.121 0.383
SVM (RBF) Man Man 40% 5.23 99.470 0.077 0.297
SVM (RBF) Man Man 40% 5.23 99.730 0.085 0.305
SVM (RBF) Man Man 40% 5.23 98.580 0.096 0.327
SVM (RBF) Man Man 40% 5.23 96.910 0.096 0.336

QD car t-shirt car t-shirt 101 5.34 56.831 0.000 0.046
FD Man Man 40% 5.39 95.340 0.143 0.521
QD car t-shirt car t-shirt 101 5.48 62.500 0.000 0.012
ED Man Man 40% 6.77 81.780 0.259 0.632
QD cloud t-shirt cloud t-shirt 101 6.91 80.999 0.000 0.004
QD shine t-shirt shine t-shirt 101 7.85 70.817 0.000 0.138
QD car t-shirt car t-shirt 101 8.35 68.232 0.405 0.801
QD car t-shirt car t-shirt 101 8.49 58.033 0.010 0.264
QD cloud t-shirt cloud t-shirt 101 9.76 77.559 0.000 0.055

Kmeans Man Man 40% 10.19 72.170 0.153 0.421
QD lab t-shirt lab t-shirt 101 11.56 72.975 0.000 0.107
QD car t-shirt car t-shirt 101 14.06 78.278 0.000 0.189
QD lab t-shirt lab t-shirt 101 15.23 77.344 0.058 0.762
QD lab t-shirt lab t-shirt 101 15.59 68.455 0.000 0.198

SVM (RBF) lab t-shirt lab t-shirt 40% 15.86 93.380 0.000 0.107
QD cloud t-shirt cloud t-shirt 101 16.93 65.912 0.000 0.011
QD cloud t-shirt cloud t-shirt 101 17.02 85.477 0.000 0.000
QD cloud t-shirt cloud t-shirt 101 17.68 79.834 0.000 0.045
QD shine t-shirt shine t-shirt 101 18.24 78.313 0.007 0.024
QD shine t-shirt shine t-shirt 101 18.68 90.066 0.000 0.016
QD car t-shirt car t-shirt 101 18.74 80.717 0.000 0.345
QD lab t-shirt lab t-shirt 101 21.29 78.734 0.524 0.821
QD shine t-shirt shine t-shirt 101 21.95 80.194 0.000 0.072
QD cloud t-shirt cloud t-shirt 101 23.48 85.951 0.000 0.000
QD shine t-shirt shine t-shirt 101 26.73 84.304 0.000 0.083
QD cloud t-shirt cloud t-shirt 101 30.57 74.481 0.000 0.035
QD lab t-shirt lab t-shirt 101 37.72 75.828 0.000 0.160
QD lab t-shirt lab t-shirt 101 37.84 69.664 0.000 0.292
QD shine t-shirt shine t-shirt 101 41.05 83.625 0.000 0.017
QD lab t-shirt lab t-shirt 101 41.68 83.942 0.219 0.469
QD shine t-shirt shine t-shirt 101 47.69 86.933 0.000 0.043
QD lab t-shirt lab t-shirt 101 50.4 87.088 0.000 0.162
QD cloud t-shirt cloud t-shirt 101 52.45 91.411 0.000 0.007
QD shine t-shirt shine t-shirt 101 52.61 91.043 0.053 0.109
QD cloud t-shirt cloud t-shirt 101 56.97 91.474 0.427 0.524
QD shine t-shirt shine t-shirt 101 61.75 85.125 0.000 0.026
QD shine t-shirt shine t-shirt 101 61.97 87.472 0.000 0.003

SVM (RBF) lab t-shirt lab t-shirt 40% 67.86 100.000 0.000 0.000
ED lab t-shirt lab t-shirt 40% 67.86 99.830 0.000 0.000
FD lab t-shirt lab t-shirt 40% 67.86 100.000 0.000 0.000
QD lab t-shirt lab t-shirt 40% 67.86 100.000 0.000 0.000
QD shine t-shirt shine t-shirt 150 73.43 99.970 0.000 0.000
QD lab t-shirt lab t-shirt 101 82.06 73.089 0.028 0.331
QD lab t-shirt lab t-shirt 101 99.96 91.095 0.456 0.758
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The results in Table 10-5 have been sorted in ascending order of the β+. It clearly shows 

that the GTaccuracy vs TTD/TJM plots presented in Figure 10-9 and Figure 10-14 for 

the Manchester and the T-shirt data sets, respectively, contain substantial errors due to 

the small values of the β+. It is the worst for the Manchester data which typically exhibits 

very small β+ of ~5. A quick glance at the Table 10-5 shows that there are only a handful 

of 9 runs that listed at the bottom of the table may be suitable for establishing the 

relationship between the GTaccuracy and the separability measures (TTD/TJM). 

Unfortunately, most of these 9 results have got very similar GT accuracy of ~100% and 

there is only one at ~70%, giving us only two data points which is too few to establish a 

proper relationship.  

It is also noted from the bottom of Table 10-5 that an outliner of TTD/TJM value is seen 

having a very high separability score even though the GT accuracy is in fact at ~91%.  

10.4.2 GTaccuracy simulation results 

To understand more about the puzzles raised in the previous sections, a series of 

experiment is designed hoping to shed some light into the problem and also with a hope 

to establish a true relationship between the GT accuracy and the TTD/TJM scores. To 

this end, a simulation experiment is conducted such that the class labels of a control 

number of pixels in the ground truth maps are artificially altered, creating simulated 

‘misclassification’ situations. Two sets of simulations have been performed using the 

Manchester and the T-shirt data as the templates, and the ‘misclassifications’ have been 

controlled under the following three scenarios: 

1. All misclassified pixels are randomly selected from ALL classes and this is 

designated as ‘all mix’ in Table 10-6 

2. All misclassified pixels are randomly selected from 5 classes and this is 

designated as ‘5 class mix’ in Table 10-6 

3. All misclassified pixels are randomly selected from 2 classes and this is 

designated as ‘2 class mix’ in Table 10-6 
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Table 10-6: shows simulated classification results for the T-shirt and Manchester data sets in a controlled 

manner. Please refer to the text for the full details of the experiment. 

Simulation Data set Min class size to 
band ratio β+

GT accuracy TTD score TJM score

All mix Sim lab t-shirt 119.37 39.999 30.643 35.457
All mix Sim lab t-shirt 116.99 45.000 22.748 28.411
All mix Sim lab t-shirt 113.9 49.999 15.794 21.880
All mix Sim lab t-shirt 108.53 55.000 10.524 16.501
All mix Sim lab t-shirt 102.4 59.999 6.622 12.296
All mix Sim lab t-shirt 97.81 65.000 3.926 8.954
All mix Sim lab t-shirt 93.61 69.999 2.106 6.313
All mix Sim lab t-shirt 89.34 75.000 0.949 4.112
All mix Sim lab t-shirt 85.16 79.999 0.370 2.526
All mix Sim lab t-shirt 81.64 85.000 0.108 1.292
All mix Sim lab t-shirt 76.74 89.999 0.024 0.448
All mix Sim lab t-shirt 72.13 95.000 0.003 0.055
All mix Sim lab t-shirt 67.87 99.999 0.000 0.000
5 Class mix lab t-shirt 99.96 55.000 16.289 16.329
5 Class mix lab t-shirt 99.96 59.999 17.443 17.458
5 Class mix lab t-shirt 99.96 65.000 13.805 13.916
5 Class mix lab t-shirt 99.96 69.999 8.841 9.176
5 Class mix lab t-shirt 99.96 75.000 4.516 5.054
5 Class mix lab t-shirt 99.96 79.999 2.155 2.694
5 Class mix lab t-shirt 98.52 85.000 0.842 1.313
5 Class mix lab t-shirt 89.79 89.999 0.160 0.479
5 Class mix lab t-shirt 78.09 95.000 0.005 0.086
5 Class mix lab t-shirt 67.86 99.999 0.000 0.000
2 Class mix lab t-shirt 67.86 65.000 1.030 1.068
2 Class mix lab t-shirt 67.86 69.999 2.029 2.070
2 Class mix lab t-shirt 67.86 74.999 3.101 3.113
2 Class mix lab t-shirt 67.86 79.999 3.132 3.142
2 Class mix lab t-shirt 67.86 84.998 1.623 1.672
2 Class mix lab t-shirt 67.86 89.998 0.286 0.356
2 Class mix lab t-shirt 67.86 94.998 0.007 0.019
2 Class mix lab t-shirt 67.86 99.997 0.000 0.000
All mix Sim man data 8.55 54.999 73.535 99.485
All mix Sim man data 7.5 59.998 59.575 87.616
All mix Sim man data 6.7 64.998 46.614 75.376
All mix Sim man data 6.16 69.997 36.264 62.958
All mix Sim man data 5.24 74.996 25.434 51.311
All mix Sim man data 4.74 79.999 17.589 40.105
All mix Sim man data 3.95 84.998 10.801 28.286
All mix Sim man data 3.08 89.998 5.025 17.168
All mix Sim man data 2.32 94.997 1.520 6.391
All mix Sim man data 1.62 99.996 0.077 0.294
5 Class mix man data 7.11 64.998 30.963 61.216
5 Class mix man data 6.36 69.997 20.903 49.389
5 Class mix man data 5.79 74.996 13.595 38.262
5 Class mix man data 5.03 79.999 7.782 27.852
5 Class mix man data 3.99 84.998 4.629 19.870
5 Class mix man data 3.27 89.998 2.387 11.015
5 Class mix man data 2.43 94.997 1.362 4.687
5 Class mix man data 1.62 99.996 0.083 0.306
2 Class mix man data 1.62 57.978 0.509 3.328
2 Class mix man data 1.62 63.991 0.404 3.264
2 Class mix man data 1.62 69.981 0.327 3.111
2 Class mix man data 1.62 75.994 0.231 2.867
2 Class mix man data 1.62 81.984 0.157 2.593
2 Class mix man data 1.62 87.997 0.102 2.183
2 Class mix man data 1.62 93.987 0.082 1.507
2 Class mix man data 1.62 99.976 0.083 0.284
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10.4.2.1 Minimum sample to band ratio (β+) issues 
The significance of the β+ to the separability scores can be examined according to the 

simulation results presented in Table 10-6. Figure 10-15 a & b shows the GT accuracy 

relationship of the all-mixed simulation data with the TTD and TJM using the T-shirt and 

Manchester classification results, respectively. Noted that the TTD/TJM scores of the T-

shirt data that presented in Figure 10-15a has been evaluated from classes with very 

large β+ values, nominally ~90, whereas the Manchester data (Figure 10-15b) has been 

evaluated with a maximum β+ values of ~8. Figure 10-15 shows quite clearly that the GT 

accuracies do indeed scale very well with the separability measures such as the TTD 

and the TJM, and this relationship is very dependent on the β+ values of the data set. 

When the β+ values of the classes over ~90 the GT accuracies scale non-linearly with 

the TTD and TJM (see Figure 10-15a)., and the relationship becomes linear when the β+ 

values are small (see Figure 10-15b). Thus, this result has shown the very important role 

of the β+ values for the proper evaluation of the TD/JM scores and thus their total 

TTD/TJM values. Figure 10-16 demonstrates how the β+ value misleads the TD/JM 

assessment. Figure 10-16a and Figure 10-16b both have the same GT accuracies but 

the one with much larger β+ value, Figure 10-16b, shows a much higher TTD scores 

than the one in Figure 10-16a.  

a. b.  

Figure 10-15: shows the relationship between the GTaccuracy & the TTD/TJM using the simulated data of 

the ‘all-mixed’ classification results: a) the T-shirt data with nominal β+ values of ~90, b) the Manchester 

data with nominal β+ values of ~5. The plot shows the significance of the β+ values to the TTD evaluation. 
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a. β+=18.8 [TTD=0.015]β+=18.8 [TTD=0.015] b. β+=52.6 [TTD=0.05]β+=52.6 [TTD=0.05]  

Figure 10-16: demonstrates how the β+ value indeed poses an important factor for the evaluation of the 

TD/JM values: a) β+ values =18.8, TTD=0.015 and b) β+ value = 52.6, TTD=0.05. In both cases the GT 

accuracy are ~90% but the TTD of (a) is ~4 times less than (b) simply because of the different β+ values. 

10.4.2.2 TTD/TJM evaluations issues 
Having identified the importance of the β+ values to the separability assessments, it is 

doubtful if the method for the evaluation of the TTD/TJM using the equations 6-7 & 6-8 

are sufficient. Figure 10-17a & b plots TTD/TJM values using the simulation 

classification results under all-mixed, 5 class mixed and 2 class mixed conditions. It is 

clear from the figure that the TTD/TJM values are sensitive to the distributions of the 

misclassified pixels. 

a. b  

Figure 10-17: casts the doubt if the evaluation methods for the a) TTD and b) TJM are correct. Data 

presented is the simulation classification results under all-mixed, 5 class mixed and 2 class mixed 

conditions. It is clear that the TTD values are sensitive to the distributions of the misclassified pixels.  
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10.4.2.3 One single imperfect class in the classification 
It is noted from Table 10-5 that there is one odd result which gives apparently very high 

TTD and TJM values even though the GT accuracy is in fact achieves 91%. The β+ 

value of this run has been very high at ~100, and the classification result as shown in 

Figure 10-18a has indicated the presence of misclassified pixels variably distributed in 5 

classes, but most of them are in fact cumulated in a single class. Figure 10-18b shows 

the pairwised TD and JM values, and there is only one class which exhibits particularly 

low value, and this is directly translated into the TTD giving an apparently high 

inaccuracy.  

According to the results presented in the last few sections, it is confirmed that 

separability measures can be an invaluable method for assessing the goodness of 

classification in principle. However, the present ways for the evaluation of the 

separability measures are insufficient for achieving this goal and further work in this area 

is greatly needed.  

 

a. 

QD=91.10% lab t-shirt train, samplesize=101

Pixel

P
ix

el

 

 

100 200 300 400 500 600 700 800

50

100

150

200

250 0

1

2

3

4

5

6

7

8

9

10

b.  

Figure 10-18: to investigate the odd result seen in Table 10-5 which gives ‘abnormally’ high TTD value of 

0.45 but the GTaccuracy is in fact 91%. See text for more information.  
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10.5 Summary 

In the first part of this chapter, HSI classification using both SVM modes and kernel 

functions of linear, polynomial and radial bias Functions have been experimented. It can 

be seen that one against one (OAO) implementation was the preferred choice compare 

to one against all (OAA) implementation in all cases. Furthermore, assuming that all 

parameters were fully optimised, SVM classification could give the best GT accuracy 

when radial bias function kernel was used. 

In the second of this chapter, the first objective of the experiment was to illustrate how 

the cost parameter of the SVM RBF can be found using a grid search method. The 

second objective was to deduce the trustworthiness of the TTD and TJM as a means of 

performance assessment by using of the grid search result. It can be seen that grid 

search method was suitable for finding optimal parameters of SVM with kernel and cost 

functions. On the other hand, it had been confirmed that separability measures can be 

an invaluable method for assessing the goodness of classification in principle. However, 

the present ways for the evaluation of the separability measures are insufficient for 

achieving this goal and further work in this area is greatly needed 
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11 Small sample classifications 

11.1 Introduction 

Most classifiers such as maximum likelihood require the estimation of the class 

covariance and mean but in general they are not known and one common way is to 

estimate them from the training data set. If the sizes of the training data are comparable 

to the number of features, the covariance and mean are generally good representation 

of the complete data set. Unfortunately, in many real cases the availability of labelled 

data is very limited and this leads to a bad classification as the result of badly estimated 

classifier parameters. In HSI it is well-known that the accuracy of the parameter 

estimation could achieve within ~1% error provided a sample size to band ratio β of 

~100 is available. One way to increase β is via feature extraction or feature selection, 

however, the discriminate power of classification decreases as useful information is 

discarded. This chapter investigates how the performances of classifiers are affected as 

a function of various sizes of training samples. The effectiveness of a couple methods 

proposed for solving this small sample size problem have been testified in this study. 

11.2 Experimental conditions 

Two data sets in which one consists of classes in appreciable sizes (lab t-shirt data set 

with minimum β ~75), and the other having classes in various different sizes with a 

minimum β~5 (the Manchester data set), have been employed in this experiment. The 

lab t-shirt data set which consists of 100 bands and training samples of 1000, 500, 200, 

150, 130, 110, 50, 20, 10 samples corresponding to sample to band ratio β of 100, 5, 2, 

1.5, 1.3, 1.1, 0.5, 0.2 and 0.1 have been utilised in this work. The Manchester data set 

has 31 bands and training sample sizes of 60, 50, 45, 40, 32, 30, 25, 20, 15, 10, 5, 

corresponding to the max and min of the β of 2 and 0.17 respectively have been utilised. 

All experiments are repeated ten times and the averaged GTaccuracy according to 

Equation 10-1 and 10-2 have been used for assessing the performances of the 

classifiers. 
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To highlight the effect, some supervised classifiers that do not involve covariance have 

been included for a direct comparison. Three different kinds of classifiers have been 

included in this experiment: 

 

A. Classifiers NOT using covariance: 

1. Euclidean distance classifier (ED)  

2. SVM with RBF kernel (SVMRBF) 

B. Classifiers that use covariance: 

1. Mahalanobis distance Classifier (FD)  

2. Maximum Likelihood classifier (QD) 

C. Classifiers that use the covariance estimated for small sample problems: 

1. Maximum Likelihood Classifier with RDA (QD+RDA) 

2. Maximum Likelihood Classifier with LOOC (QD+LOOC) 

 

The parameters λ , γ  in RDA and iα in LOOC (Equation 4-12 to 4-15) are found by 

performing a grid search on the training data to obtain the contour map as functions of 

maximum likelihood using the leave-one-out method (see section 4.1.1.4). (Landgrebe, 

2005; Hoffbeck and Landgrebe, 1996). Then the parameters are chosen which 

correspond to the highest maximum likelihood for the test data set.  

 

The pseudo-code for running the experiments using QD classifier as an example: 
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3. Repeat step 1-2 for L number of times for all other classes 

4. Use ( )xgi  to determine the class of each test sample. 

 

The pseudo-code for running the experiments using LOOC classifier as example: 

1. Choose a value for parameter iα  

2. Remove 1 sample, k, from the training data set of class i 

3. Calculate the class mean without k, ∑
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4. Repeat step 1-2 for L number of times for all other classes 
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6. Calculate the LOO covariance ( )iki α/Σ̂  from Equation [11-2] 

7. Calculate the logarithm of maximum likelihood for a give iα for all sample x. 
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8. Repeat step 2 to step 7 until all samples have been removed once 

9. Calculated the ( ) ( )( )[ ]∑
=

Σ=
in

j
ikikiji

i
ii mxf

n
LOOL

1
//,

ˆ,|ln1 αα   => 

( ) ( )∑
=

=
in

j
iki

i
ii xg

n
LOOL

1
/ ,1 αα  for all class L 

10. Repeat step 1-10 for a range of iα  

11. Choose the parameter iα  for each class i with the maximum LOOL. 
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12. Run the QD classifier but replace the sample covariance iΣ  with the new 

covariance ( )ii αΣ̂ . 

11.3 Results 

The classifications by using the above mentioned classifiers for the T-shirt lab and the 

Manchester data sets are shown in Figure 11-1 and Figure 11-3 respectively. The 

figures plot the GT accuracy of the classifiers against the sample to band ratio β. It is 

seen from Figure 11-1 that the classifiers, such as the ED, achieves relatively constant 

performance independent of sample sizes, than that of the QD which makes use of the 

training sample for the estimation of the class covariance. Note that although SVM does 

not need to estimate class covariance for the RBF classification, the small sample size 

induces larger error in the parameterisation of the kernel and which in turn affects the 

overall performance.  

The FD, which uses the common covariance of the data set via the mean of the overall 

class covariance estimated from the training samples, shows excellent performances 

independent of training sample sizes. This is partly because of the more or less uniform 

class sizes in this data set, and partly due to the highly homogeneous of the scene: all 

samples have uniform colours (spectra) over the entire t-shirt. These will help a better 

estimation of the common covariance and thus enhancing the classification efficiency, 

even when β approaches to as small as ~0.2.  

It is seen from Figure 11-2 that both the RDA and the LOOC method have indeed 

improved the characterisation of the covariance very effectively as evidenced by the 

much improved classification accuracy at very small β of ~0.5. When using the same 

classifier (QD) alone without RDA or LOOC, the classification performance is seen to 

stabilise not until β>3. 

The high effectiveness for both of the RDA and the LOOC to help solve small sample 

size problem is further reinforced by observing similar behaviour from another set of 

results using the Manchester data under the conditions similar to the experiment as 

described above (see Figure 11-3).  
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Figure 11-1: Classification results of the lab t-shirt data as function of sample to band ratio β.  
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Figure 11-2: A close up view of Figure 11-1, highlighting the effects of the RDA and LOOC for the better 

characterisation of the covariance of small sample size. 
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Figure 11-3: Classification results of the Manchester data as function of sample to band ratio β. 
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12 Conclusions & outlook 

The development of classification techniques has been one of the most active research 

within the machine learning and remote sensing community. The real driving force 

behind it is the real need of a robust technology for material differentiations. Despite of 

over half of a century of developments in classification technology, the advantages and 

disadvantages of each techniques and in particular, the assessment of classification 

performance for the very high dimensional of hyperspectral imaging (HSI) data sets 

were hardly documented. 

This study exploits a range of classification techniques and the implementation for 

assessing the effectiveness of hyperspectral classifications using various statistical 

scoring methods. It is hoped to establish a technique that could evaluate the 

classification performance without the need of ground truth target map. 

Throughout this study the author has conducted an in-depth survey of machine learning 

and classification theories, and subsequently to implement them for assessing their 

performances. In this work the author has also helped to establish the HSI 

instrumentations such as camera calibrations and machine computer interfacing, 

experimental trials for data collections and instrument maintenances.  

This research has involved a range of supervised and unsupervised classifiers for the 

classification of a number of HSI data sets, and in general the supervised ones such as 

the Maximum Likelihood (QD) and the Mahalanobis Distance (FD) classifier, especially 

when they are coupled with techniques like Regularised Discriminant Analysis (RDA) or 

leave-one-out covariance estimations (LOOC), have shown excellent performances 

comparable to that of the more complicated and computational costly classifiers like the 

Support Vector Machine (SVM). It is also found that separability measures such as the 

Total Transformed Divergence (TTD) and Total Jeffries-Matusita Distance (TJM), can be 

an invaluable method for assessing the goodness of classification in principle. However, 

the present ways for the evaluation of the separability measures are insufficient for 

achieving this goal and further work in this area is greatly needed. This study has also 

confirmed the effectiveness for using RDA and LOOC techniques for a better estimation 
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of the covariance when the sample size is small, ie when the sample size per class to 

band ratio (β) is less than 100.  

Through team work this study has contributed partially a number of publications in the 

area of hyperspectral imaging and machine visions. 

12.1 Outlook  

During the course of this work it is found that the future research related to the 

objectives of this work can be pursued in the following directions: 

1. Further feature selection and extraction technique for computation cost reduction 

and at the same time to improve classification efficiency. For example, the 

dimension of t-shirt data could be reduced to 32 when PCA is utilised which will 

immediately solve the β ratio problem in the experiments. Therefore future research 

could be pursued in this direction. 

2. Other forms of separability measures such as the entropy. The shortfall of TD and 

JM could also be verified by collecting data that are not normally distributed. In the 

future, other types of distributed could be utilised such as the Wishart distribution or 

mixture of Gaussian. distribution 

3. A more robust method for the computation of the TTD and TJM. One way of 

improvement could be done by weighting the TD/JM score according to the size of 

pixels for each class. Another way to improve the current method could be done by 

coupling TD/JM with RDA and LOOC. 

4. A more effective scene calibration method: as shown in Figure 8-24, the ELM 

reflectance of the same target can be seen quite different under different 

illumination conditions. Simple ELM conversion cannot handle non-linear effects 

and this induces large errors in the classification. One solution is to capture the 

scene under controlled environments and therefore all non-linear effects should be 

eliminated. This may not be practical in capturing nature scene and large area of 

scene. Another way to solve the problem could done by using some equipments 

that can calculated the Bidirectional Reflection Distribution Factor  (BRDF) for each 

target. The shortfall of this solution is the excess cost and man power to operate. 
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13 Appendix 

13.1  Distance Measures 
Measures Formula 
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13.2 Tables of Search Algorithms (Jain et al., 2000) 

 

13.3 Kernel trick 

Kernel trick is method of using a linear algorithm to solve non-linear problem by mapping 

the data into a higher dimensional space. The kernel trick is based on Mercer's theorem, 

given that the function satisfies 

1. ( )', xxK  is continuous 
2. ( ) ( )xxKxxK ,'', = . Symmetric 

3. ( )', xxK  is positive-definite, i.e. ( ) 0,
.

>∑
ji

jiji xxKaa  for any finite subset {x…xn} of X 

and real numbers { }N
iia 1=  
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If the function satisfies the three criteria, then it can be express as the inner product  

( ) ( ) ( )',', xxxxK ΦΦ=  

Some common kernels are: 

Polynomial: ( ) ( )dtxxxxK +⋅= '',  

Radial Bias Function: ( )
⎟
⎟
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⎞

⎜
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⎛ −
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exp',
σ

xx
xxK  



UNCLASSIFIED 

  Issue: 1 

158 

UNCLASSIFIED 

 

13.4  ISODATA flow chart 
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