A short geostatistical study of the three-dimensional spatial structure of fumonisins in stored maize

M. Rivas Casadoa*, D.J. Parsonsa, N. Magana, R.M. Weightmanb, P Battilanic, A Pietric
a Cranfield University, Cranfield, Bedford, MK43 0AL, UK
b Centre for Sustainable Crop Management, ADAS UK Ltd, Boxworth, Cambridge CB23 4NN, UK.
c Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29100 Piacenza, Italy
*Corresponding author. Email: m.rivas-casado@cranfield.ac.uk

Abstract

The heterogeneous three-dimensional spatial distribution of mycotoxins has been proven to be one of the main limitations for the design of effective sampling protocols. Current sampling collection protocols for mycotoxins have been designed to estimate the mean concentration and fail to characterise the spatial distribution of the mycotoxin concentration due to the aggregation of the incremental samples. Geostatistical techniques have been successfully applied to overcome similar problems in many research areas. However, little work has been developed on the use of geostatistics for the design of sampling protocols for mycotoxins. This paper focuses on the analysis of the two and three-dimensional spatial structure of fumonisins B\textsubscript{1} (FB\textsubscript{1}) and B\textsubscript{2} (FB\textsubscript{2}) in maize in a bulk store using a geostatistical approach and on how results inform on determining the number and location of incremental samples to be collected. The spatial correlation between FB\textsubscript{1} and FB\textsubscript{2}, as well as between the number of kernels infected and the level of contamination was investigated. For this purpose, a bed of maize was sampled at different depths to generate a unique three-dimensional data set of FB\textsubscript{1} and FB\textsubscript{2}. The analysis found no clear evidence of spatial structure in either the two-dimensional or three-dimensional analyses. The number of Fusarium infected kernels was not a good indicator for the prediction of fumonisin concentration and there was no spatial correlation between the concentrations of the two fumonisins.

Keywords
cereals, fungi, Fusarium, mycotoxins, distribution
Introduction

To reduce consumer exposure to mycotoxins it is critical to design sampling protocols that ensure representative samples for analysis. Regulations on how to sample for target mycotoxins and which levels are acceptable for consumption have already been established (European Commission, 2006a, 2006b, 2007). The proposed sampling requires the collection of several incremental samples (i.e. small quantities of the commodity) at different locations. These are mixed to form the aggregate sample. If this is large, it is mixed and subsampled to form the laboratory sample for analysis, otherwise the full aggregate sample is used. However, this type of sampling is intended only to estimate the mean concentration and is unable to characterise the variability or the spatial distribution due to the aggregation of the increments.

The heterogeneous distribution of mycotoxins in space has been recognised to be one of the main limitations for the design of effective sampling protocols (Stroka et al., 2004, Schatzki, 1995a and 1995b, Jewers et al., 1988 and Battilani et al., 2006). Several studies have looked into this limitation in more detail. For example: Johansson et al. (2006) looked at the spatial distribution of fumonisin and aflatoxin concentration in maize; Whitaker (2003) investigated the sources of error in the mycotoxin test procedure for aflatoxin in raw shelled peanuts; Coker et al. (1995) reviewed the complexities associated with the design of sampling plans; Maanen and Xu (2003) identified the difficulties of sampling the spatial aggregation of plant disease; Macarthur et al. (2006) identified the need to account for the spatial heterogeneity of mycotoxins to design adequate sampling programmes; and Whitaker (2006) identified the need for methods that focus on defining the number of samples required to obtain a specific level of confidence on the mean mycotoxin concentration and on determining the location of the samples to be taken.

There has been some interest in characterising the two-dimensional spatial heterogeneity of mycotoxins to determine the number and location of incremental samples in sampling protocols. For example, Rivas et al. (2009a and 2009b) used geostatistics to model the two-dimensional spatial structure of ochratoxin A (OTA) and deoxynivalenol (DON) in bulk commodities and Rekah et al. (1999) used it for Fusarium crown and root rot in tomatoes. However, there has been much less effort on the design of sample collection protocols that account for their three-dimensional spatial heterogeneity. Johansson et al. (2006) looked at the three-dimensional distribution of fumonisin and aflatoxin in maize commodities by investigating the contamination levels in damaged kernels, whole kernels and other materials (i.e. broken and foreign material). They found that toxins were concentrated in the poor quality components within stores of maize. These correspond to the smaller size particles and generally deposit at the bottom of the commodity. However, the study did not statistically quantify the three-dimensional spatial heterogeneity. This could be achieved applying geostatistics. Three-dimensional geostatistics has been successfully applied to reconstruct the large to intermediate heterogeneity of aquifers (Falivene et al., 2007), to reproduce the spatial variability of rock mass quality for geological excavations (Stavropoulou et al., 2007) and to map three-dimensional water-quality data to better protect the future health of the Chesapeake Bay and its tidal tributary system (Chehata et al., 2007).

Geostatistics can also be used to investigate the spatial autocorrelation between variables. The high cost associated to sample collection and analysis usually results in a reduced number of incremental samples being taken from a commodity. This has an impact on the accuracy of the estimated mean concentration. Further understanding of the spatial
correlation between variables will inform on how the mycotoxin concentration can be estimated using variables that are less costly and time consuming. For example, the number of kernels infected could be used for this purpose. Reid et al. (1996) looked at the correlation between the mean disease severity rating and the percentage of symptomatic kernels for *Fusarium graminearum* inoculated maize ears. Results showed that there was a positive association between the two variables. Desjardins et al. (1998) found that the highest levels of *Fusarium moniliforme* were in the symptomatic kernels. Uhlig et al. (2004) looked at the relationship between the number of kernels infected with Fusaria and the moniliformin fungal methabolite in Norwegian grain samples of oats, barley and wheat. However, none of these studies have looked at how spatial statistical analysis could improve the understanding of the correlation between variables.

This paper focuses on the analysis of the two and three-dimensional spatial structure of FB₁ and FB₂ in stored maize using a geostatistical approach. The spatial correlation between FB₁ and FB₂, as well as between the number of kernels infected and the level of contamination were also characterised using geostatistical techniques. For this purpose, a bed of maize was sampled at different depths to generate a unique three-dimensional data set of FB₁ and FB₂. This is the first study that tries to quantify the three-dimensional spatial structure of mycotoxins post-harvest. The analysis investigated the following hypotheses:

- The fumonisin concentrations have spatial structures that can be quantified using geostatistics.
- The concentration of fumonisin is related to the number of infected kernels
- The concentration of fumonisins B₁ and B₂ are spatially correlated.

Materials and Methods

Data collection

Data were collected from a bed of maize in a large store with an area of approximately 3800 m² and a height of approximately 10 m. The kernels, which came from several fields, were stored against the walls, leaving the central space clear. The samples were taken in three planar layers inclined at 45°, parallel to the open face of the bed, providing a three-dimensional grid of points with 10 (horizontal) by 5 (vertical) points in each layer at 0.5 m spacing (Figure 1). The samples were taken using a specially designed probe which was inserted horizontally through the face. The probe had a conical chamber at the tip that could be opened and closed using a lever at the end of the shaft (Figure 2), collecting about 200 g of grain. A metal frame 0.5 m square was placed on the face and used to locate the insertion points, and the three samples from different layers at each point were taken before moving the frame to minimise disturbance of the grain.

Fusarium isolation and analyses of fumonisins

The percentage of kernels infected by *Fusarium* section *Liseola* was also determined. Fifty kernels were randomly selected from each sample, surface disinfected with a solution of 1% sodium hypochlorite and 90% ethyl alcohol for 2 min and rinsed with sterile distilled water. The kernels were plated in Petri dishes on Potato Dextrose Agar containing streptomycin (PDA: potato broth 600 g, sucrose 10 g, agar 15 g, water to 1 L) and incubated at 25°C for 7 days. Colonies which resembled Fusaria, were transferred to new Petri dishes of the same medium, incubated for 7-14 days and identified according to Burgess (1994). The number of kernels with *Fusarium verticillioides* and *F. proliferatum* were counted.
Fumonisin analyses

The FB1 and FB2 contents were analyzed according to the method proposed by Visconti et al. (2001), with some modifications. After grinding the entire sample to pass a 1 mm sieve and homogenization, fumonisins were extracted from 20 g of meal in a plastic centrifuge bottle with 100 ml of acetonitrile:methanol:water (25:25:50, v/v/v). After extraction for 45 min using a rotary-shaking stirrer and centrifugation at 4500 x g for 6 min, the supernatant was poured into a flask; another 100 ml of the same solution was added to the residue in the centrifuge bottle, and a second extraction performed for 30 min. The combined extracts were filtered through a folded filter-paper. An aliquot of 2 ml was diluted with 20 ml of 0.1 M phosphate buffered saline (PBS, pH 7.4) and purified through an immunoaffinity column (R-Biopharm Rhône Ltd., Glasgow, Scotland, UK); after washing the column with PBS (2 ml), the fumonisins were slowly eluted (0.5 ml min⁻¹) with methanol (6 ml) into a graduated glass vial; subsequently, the eluate was concentrated to 2 ml under a gentle stream of nitrogen. Analysis was carried out using a LC–MS/MS system, (Thermo-Fisher Scientific, San Jose, CA, USA), as previously described (Battilani et al., 2008). The limit of detection (LOD, signal-to-noise ratio of 3:1) and of quantification (LOQ, signal-to-noise ratio of 10:1) were respectively 10 and 30 µg kg⁻¹. Recovery percentages were evaluated by spiking known blank samples. Average recovery values were: 95.5±1.9% for FB1 and 93.6±2.1% for FB2. The results of the analyses were not corrected for recovery.

Five primary samples, with different fumonisin levels, were re-analyzed two more times to estimate the precision of the analysis, which proved the differences between measurements on the same sample to be smaller than 5%.

Data analysis

Two dimensional geostatistical analysis was conducted to investigate the spatial structure within each layer. Geostatistical analysis is based on the semi-variogram, a plot that relates the distance between any two points with the semi-variance (Figure 3). The semi-variance is a measure of the similarity between any two points; the closer two points are the smaller their semi-variance and the larger their spatial autocorrelation. The semi-variance is calculated as follows:

\[
\hat{\gamma}(h) = \frac{1}{2m(h)} \sum_{i=1}^{m(h)} (z(x_i) - z(x_i + h))^2
\]

where \(z(x_i)\) is the value of variable \(z\) at location \(x_i\), \(m(h)\) is the number of pairs of data points separated by distance \(h\) and \(\gamma(h)\) is the average semi-variance of all pairs of data points separated by distance \(h\), which is known as the lag distance or lag. The semi-variance for a given lag distance is estimated by using all the points separated by distances within a certain tolerance of the required lag distance. The resulting interval is called the lag tolerance. The graph of semi-variance against lag distance is the experimental semi-variogram. The model fitted to the experimental semi-variogram is the empirical semi-variogram.

The empirical semi-variogram is described using three parameters: the sill, the range and the nugget (Figure 3). The sill is the \textit{a priori} variance, \(\sigma^2\), of the process and is generally assumed to be equal to the variance of the population (Barnes, 1991). The range is the
distance at which pairs of points are spatially independent and lack autocorrelation. The	nugget is the semi-variance at a lag distance of 0, and identifies the measurement error and
the variations that occur over lag distances less than the shortest sampling interval (Webster
and Oliver, 2000).

Geostatistical analysis is more effective when the variable has a normal (Gaussian)
distribution and does not present any trend. Values of skewness and kurtosis were calculated
to test for normality. Where the test failed a Box-Cox transformation (Equation 2) was
applied:
\[\tau(X) = \frac{X^\lambda - 1}{\lambda} \] (2)
where \(X \) is the variable to be transformed, \(\tau(X) \) is the Box-Cox transformed variable and the
parameter \(\lambda \) is a constant derived iteratively from the data. Regression analysis was used to
test for linear or quadratic trends in the X and Y directions (Figure 1). Data were assumed to
have trend when the variance accounted for by the fitted model was larger than 20%.

For each layer, the experimental semi-variograms were derived in the X and Y directions to
test for differences in the spatial pattern. It was found that there were insufficient points in the
Y direction to give a reliable semi-variogram, so the data were assumed to be isotropic (no
change in the semi-variogram parameters due to direction) and the averaged semi-variogram
for all the directions, also known as the omnidirectional semi-variogram, was calculated. The
maximum distance for the semi-variogram calculation was set to 2.5 m, because this was the
point at which the number of pairs of data points started to decrease. The lag tolerance was
set to 0.1 m, because larger values did not provide enough points to fit the semi-variogram
model.

The three-dimensional spatial structure was characterised using a three-dimensional semi-
variogram calculated from the combined data set. The three-dimensional semi-variogram was
calculated for FB\(_1\) and FB\(_2\) for the same values of maximum distance and lag tolerance used
in the two-dimensional semi-variogram calculations. The spherical (Equation 3) and
exponential (Equation 4) empirical semi-variogram models were fitted using least squares:

\[\hat{\gamma}(h) = \begin{cases}
c_0 + c \left(\frac{3h}{2a} - \frac{1}{2} \left(\frac{h}{a} \right)^3 \right) & \text{for } h \leq a \\
c_0 + c & \text{for } h > a
\end{cases} \] (3)

\[\hat{\gamma}(h) = \begin{cases}
c_0 + c \left(1 - \exp\left(\frac{h}{r} \right) \right) & \text{for } h \leq a \\
c_0 + r & \text{for } h > a
\end{cases} \] (4)

where \(c_0 \) is the nugget, \(c \) is the sill, \(a \) is the range, \(r \) is the effective range and \(h \) is the lag
distance. The exponential model approaches its sill asymptotically and therefore, does not
have a finite range. The effective range \(r \) is calculated instead and is assumed to be
approximately 3\(a \). The model with the best fit was selected.

Cross-variograms were used to investigate whether the number of kernels infected was
related to the concentration of the fumonisins within each layer and for the full data set. The
cross-variogram provided information on their spatial correlation. The cross-variogram, that
is the plot of semi-variance between two variables against lag distance, $\Gamma(h)$ is calculated as follows (Nielsen and Wendroth, 2003).

$$\Gamma(h) = \frac{1}{2N(h)} \sum_{i=1}^{N(h)} [A_i(x_i) - A_i(x_i + h)][B_i(x_i) - B_i(x_i + h)]$$ \hspace{1cm} (5)

where h is the distance between sampling locations, A and B are two variables and N is the total number of measurements taken. The cross-variogram was also calculated to assess the spatial correlation of fumonisin B$_1$ with B$_2$. Positive cross-variogram values indicate that the two variables vary jointly in space, negative values show variables that vary in opposite spatial directions and null cross-variogram represent variables that vary independently in space (Nielsen and Wendroth, 2003).

Results

The FB$_1$ and FB$_2$ data sets did not follow Normal distributions. Box-Cox transformations with λ value equal to 0.219273 for FB$_1$ and 0.089097 for FB$_2$ were carried out. This guaranteed the Normality of the data in each layer and in whole data set. Table 1 summarises the descriptive statistics for the raw data set and the results for the Box-Cox transformed data are in Table 2. The trend model accounted for less than 20% of the variance so the data sets were not de-trended. The infected kernel count data was log transformed to meet the normality requirement.

Similar patterns were evident for FB$_1$ and FB$_2$ within each layer, with the peak concentrations occurring at the same locations (Figure 4). However, there was no obvious correspondence between the patterns in different layers. There was insufficient information to conclude whether there was a trend with distance into the bed.

For each layer the concentration of FB$_1$ was larger than FB$_2$. Layer 1 showed the largest mean and maximum contamination levels for both FB$_1$ and FB$_2$, followed by layer 2 and layer 3 and the ratio FB$_2$/FB$_1$ was 0.78, 0.70 and 0.57, respectively. Both skewness and kurtosis excess were close to 0 after the transformation (Table 2). A better approximation to Normality could have been obtained by removing the extreme values, but this would have changed the spatial structure by removing the peak values, so no outliers or extreme values were removed.
<table>
<thead>
<tr>
<th>Mycotoxin</th>
<th>Statistic</th>
<th>Layer 1</th>
<th>Layer 2</th>
<th>Layer 3</th>
<th>Combined</th>
</tr>
</thead>
<tbody>
<tr>
<td>FB$_1$</td>
<td>Number of points</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>Min, μg/kg</td>
<td>417</td>
<td>191</td>
<td>159</td>
<td>159</td>
</tr>
<tr>
<td></td>
<td>Max, μg/kg</td>
<td>8903</td>
<td>8013</td>
<td>8292</td>
<td>8903</td>
</tr>
<tr>
<td></td>
<td>1st Quartile, μg/kg</td>
<td>1310</td>
<td>903</td>
<td>683.2</td>
<td>933</td>
</tr>
<tr>
<td></td>
<td>3rd Quartile, μg/kg</td>
<td>4258</td>
<td>3302</td>
<td>3166</td>
<td>3517</td>
</tr>
<tr>
<td></td>
<td>Median, μg/kg</td>
<td>2690</td>
<td>1734</td>
<td>1637</td>
<td>1948</td>
</tr>
<tr>
<td></td>
<td>Mean, μg/kg</td>
<td>3020</td>
<td>2253</td>
<td>2214</td>
<td>2496</td>
</tr>
<tr>
<td></td>
<td>Standard deviation</td>
<td>2057</td>
<td>1932</td>
<td>1959</td>
<td>2005</td>
</tr>
<tr>
<td></td>
<td>Kurtosis excess</td>
<td>3.506</td>
<td>4.42</td>
<td>4.66</td>
<td>4.01</td>
</tr>
<tr>
<td>FB$_2$</td>
<td>Number of points</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>Min, μg/kg</td>
<td>129</td>
<td>119</td>
<td>109</td>
<td>109</td>
</tr>
<tr>
<td></td>
<td>Max, μg/kg</td>
<td>6115</td>
<td>5604</td>
<td>4711</td>
<td>6115</td>
</tr>
<tr>
<td></td>
<td>1st Quartile, μg/kg</td>
<td>637</td>
<td>402</td>
<td>320</td>
<td>430</td>
</tr>
<tr>
<td></td>
<td>3rd Quartile, μg/kg</td>
<td>1970</td>
<td>1552</td>
<td>1563</td>
<td>1660</td>
</tr>
<tr>
<td></td>
<td>Median, μg/kg</td>
<td>1285</td>
<td>856</td>
<td>746</td>
<td>881</td>
</tr>
<tr>
<td></td>
<td>Mean, μg/kg</td>
<td>1414</td>
<td>1193</td>
<td>1068</td>
<td>1225</td>
</tr>
<tr>
<td></td>
<td>Standard deviation</td>
<td>1116</td>
<td>1229</td>
<td>973</td>
<td>1113</td>
</tr>
<tr>
<td></td>
<td>Kurtosis excess</td>
<td>1.86</td>
<td>2.04</td>
<td>1.57</td>
<td>1.88</td>
</tr>
<tr>
<td>Fusarium infected kernels</td>
<td>Number of points</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Min. count</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Max. count</td>
<td>17</td>
<td>25</td>
<td>7</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Median count</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Mean count</td>
<td>3</td>
<td>2.5</td>
<td>2.44</td>
<td>2.65</td>
</tr>
<tr>
<td></td>
<td>Standard deviation</td>
<td>2.76</td>
<td>3.56</td>
<td>1.73</td>
<td>2.79</td>
</tr>
<tr>
<td></td>
<td>Kurtosis excess</td>
<td>12.79</td>
<td>33.57</td>
<td>-0.33</td>
<td>31.48</td>
</tr>
</tbody>
</table>
Table 2. Descriptive statistics by layer of data collected after Box-Cox transformation

<table>
<thead>
<tr>
<th>Fumonisin</th>
<th>Statistic</th>
<th>Layer 1</th>
<th>Layer 2</th>
<th>Layer 3</th>
<th>Combined</th>
</tr>
</thead>
<tbody>
<tr>
<td>FB<sub>1</sub></td>
<td>Number of points</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>Min</td>
<td>12.56</td>
<td>9.86</td>
<td>9.29</td>
<td>9.29</td>
</tr>
<tr>
<td></td>
<td>Max</td>
<td>28.93</td>
<td>28.17</td>
<td>28.42</td>
<td>28.93</td>
</tr>
<tr>
<td></td>
<td>1st Quartile</td>
<td>17.37</td>
<td>15.71</td>
<td>14.41</td>
<td>15.82</td>
</tr>
<tr>
<td></td>
<td>3rd Quartile</td>
<td>24.19</td>
<td>22.61</td>
<td>10.40</td>
<td>22.77</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>21.20</td>
<td>18.84</td>
<td>18.53</td>
<td>19.44</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>20.76</td>
<td>18.72</td>
<td>18.43</td>
<td>19.30</td>
</tr>
<tr>
<td></td>
<td>Standard deviation</td>
<td>4.14</td>
<td>4.61</td>
<td>4.96</td>
<td>4.67</td>
</tr>
<tr>
<td></td>
<td>Standard error of mean</td>
<td>0.59</td>
<td>0.66</td>
<td>0.71</td>
<td>0.38</td>
</tr>
<tr>
<td></td>
<td>Skewness</td>
<td>-0.11</td>
<td>0.13</td>
<td>0.016</td>
<td>-0.05</td>
</tr>
<tr>
<td></td>
<td>Kurtosis excess</td>
<td>-0.72</td>
<td>-0.70</td>
<td>-0.85</td>
<td>-0.76</td>
</tr>
<tr>
<td>FB<sub>2</sub></td>
<td>Number of points</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>Min</td>
<td>6.08</td>
<td>5.95</td>
<td>5.82</td>
<td>5.82</td>
</tr>
<tr>
<td></td>
<td>Max</td>
<td>13.18</td>
<td>12.99</td>
<td>12.62</td>
<td>13.18</td>
</tr>
<tr>
<td></td>
<td>1st Quartile</td>
<td>8.71</td>
<td>7.92</td>
<td>7.50</td>
<td>8.02</td>
</tr>
<tr>
<td></td>
<td>3rd Quartile</td>
<td>10.84</td>
<td>10.44</td>
<td>10.40</td>
<td>10.51</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>10.01</td>
<td>9.26</td>
<td>9.00</td>
<td>9.31</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>9.69</td>
<td>9.15</td>
<td>8.99</td>
<td>9.27</td>
</tr>
<tr>
<td></td>
<td>Standard deviation</td>
<td>1.52</td>
<td>1.72</td>
<td>1.70</td>
<td>1.67</td>
</tr>
<tr>
<td></td>
<td>Standard error of mean</td>
<td>0.22</td>
<td>0.25</td>
<td>0.24</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td>Skewness</td>
<td>-0.31</td>
<td>0.24</td>
<td>0.065</td>
<td>-0.018</td>
</tr>
<tr>
<td></td>
<td>Kurtosis excess</td>
<td>0.058</td>
<td>-0.46</td>
<td>-0.97</td>
<td>-0.64</td>
</tr>
</tbody>
</table>

The two-dimensional experimental semi-variograms (Figure 5) show that there is no clear spatial structure in any of the layers, so no empirical variogram was fitted. Layer 1 showed the smallest semi-variance values, followed by layer 2 and 3. This is consistent with the standard deviation values shown in Table 2. The increase in semi-variance values was more obvious for FB₁ than FB₂.

The results for the three-dimensional analysis showed that the semi-variance values increased with distance for both fumonisins (Figure 6). This pattern was clearer for FB₁. The exponential model provided a better fit for the experimental semi-variogram of FB₁ whilst the spherical was a better fit for FB₂. The semi-variogram for FB₁ showed a range of 1.83 m, a sill of 24.23 and a nugget of 17.18. FB₂ had a range of 0.62 m, a sill of 2.71 and 0 nugget. The spatial autocorrelation was lost at closer distances for FB₁ than for FB₂.

The cross-variograms were pure nugget: none of the cross-variograms showed any significant spatial autocorrelation between the variables (Figures 7 and 8). This indicates that there is no spatial correlation between the two fumonisins or between the number of infected kernels and the fumonisin concentration.

Discussion

The results of the geostatistical analysis showed no evidence of spatial structure for fumonisins in two dimensions. This contrasts with Rivas *et al.* (2009a and 2009b) where DON in wheat, which is also produced by *Fusarium spp.* (*F.culmorum*, *F.graminearum*) presented spatial structure. There was some evidence of structure in the three dimensional semi-variogram for FB₁.
The random spatial pattern may be due to the nature of the mycotoxin, the way the grain was mixed and stored, the presence of spatial structure at a finer or coarser scale than the sampling grid or due to insufficient data points. There were only 50 points in each layer, whereas 100 are usually required (Webster and Oliver, 2000). The three-dimensional variogram contained 150 points, which may explain the appearance of some structure, but was limited by containing only three points in the third axis. If there is spatial structure at a finer scale than the sampling grid, it implies that practical sampling, which would normally be at a coarser scale, could treat the distribution as random.

Fumonisins B₁ and B₂ showed similar distribution patterns within each layer when visually inspected. The similarity was expected because both are produced by the same organisms. Few data are available on the ratio of FB₂/FB₁ and FB₂ seems more prevalent than in a previous report (Battilani et al., 2008). However, the patterns of both fumonisins were not sufficiently correlated for the cross-variograms to detect it. Similarly, the cross-variogram did not show significant correlation between the number of Fusarium infected kernels and each of the fumonisins. Again this could be due to the limited number of samples. It may also be that the absence of infected kernels gives a low or zero mycotoxin concentration, but the presence of a large number of infected kernels does not necessarily correspond to large concentrations because of other factors.

Given the evidence found for spatial structure in two dimensions by Rivas Casado et al. (2009a) and the inconclusive results here, further research is needed into the presence of three-dimensional structure. This needs to consider the influence of several factors, including the type (barn or silo) and depth of the store, the method of loading, the average level of contamination and the effects of mixing as commodities are moved from stores to vehicles for transport and back into storage. If there was spatial autocorrelation it could be isotropic (the same in all directions), or anisotropic if the vertical properties were different from the horizontal ones. There might also be vertical trends due to relationships between disease and grain size. The objective should be the development of practical sampling plans for monitoring.

The arrangement of the sampling planes in this study was constrained by the practical problems of sampling from a deep bed of maize and the available time and resources. The ideal protocol for such studies in future would sample without disturbance from as many horizontal planes as the depth allowed, and would have a minimum of 8 x 8 points, preferably 10 x 10, in each plane to give a rectilinear grid in three dimensions. Clearly equipment would have to be designed to facilitate this. Nested sampling designs could be implemented to characterise the spatial variability of the mycotoxins at different scales.

Conclusions

This paper presents the first analysis of the spatial structure of a three dimensional data set of fumonisin B₁ and B₂. There was no clear evidence of spatial structure in either the two-dimensional or three-dimensional analyses. The number of infected kernels was not a good indicator for the prediction of fumonisin concentration and there was no spatial correlation between the concentrations of the two fumonisins.

Acknowledgements
This research was funded by the UK Food Standards Agency Project CO3055.

References

Figure 1. Schematic of the sampling locations and probe (not to scale)

Figure 2. Detail of the chamber on the sampling probe in the open position
Figure 3. Typical experimental (points) and empirical (line) variograms showing the semi-variogram parameters.
Figure 4. Grid-cell plots showing the spatial distribution of fumonisin B$_1$ and B$_2$ per sampled layer. Concentrations are given in μg/kg.
Figure 5. Two dimensional semi-variogram for each of the layers for fumonisin B1 (left) and B2 (right)

Figure 6. Three dimensional semi-variogram for fumonisin B1 (left) and B2 (right)
Figure 7. Semi-variograms for fumonisin B1 and B2 and the cross-variogram for the two fumonisins in layer 3.

Figure 8. Semi-variograms for fumonisin B1 and number of infected kernels (labelled B3) and their cross-variogram in layer 3.