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An Eulerian finite-volume scheme for large elastoplastic
deformations in solids
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SUMMARY

Conservative formulations of the governing laws of elastoplastic solid media have distinct advantages
when solved using high-order shock capturing methods for simulating processes involving large
deformations and shock waves. In this paper one such model is considered where inelastic deformations
are accounted for via conservation laws for elastic strain with relaxation source terms. Plastic
deformations are governed by the relaxation time of tangential stresses. Compared to alternative
Eulerian conservative models the governing system consists of fewer equations overall. A numerical
scheme for the inhomogeneous system is proposed based upon temporal splitting. In this way the
reduced system of non-linear elasticity is solved explicitly, with convective fluxes evaluated using high-
order approximations of Riemann problems locally throughout the computational mesh. Numerical
stiffness of the relaxation terms at high strain-rates is avoided by utilising certain properties of the
governing model and performing an implicit update. The methods are demonstrated using testcases
involving large deformations and high strain-rates in one-, two-, and three-dimensions. Copyright c©
2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Under high strain-rate dynamic loading solid materials exhibit complex non-linear behaviour
such as split elastic-plastic shock waves transporting large deformations. From the viewpoint
of numerical modelling this represents a challenge since governing models must, in the very
least, account for the materials ability to resist shear loads, and accurate models consist of
highly non-linear constitutive equations.

Various models and numerical methods have been developed to simulate processes in solid
media. The choice of these methods will depend largely on the problem and the available
resources. Benson [3] provides a detailed review of the most common of these. Lagrangian
methods, where the computational grid conforms to the material, are efficient and can
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resolve material interfaces exactly. However, in circumstances where the material undergoes
large distortions, accuracy cannot be guaranteed and in some cases the methods can fail.
Eulerian methods on the other hand use fixed grids and allow the material to flow through it.
Traditionally, Eulerian methods are based on the finite element or finite difference methods,
requiring the explicit inclusion of artificial viscosity to avoid numerical artifacts in problems
involving shock waves. Whilst this works in practice it is desirable to introduce the necessary
viscosity in a more natural way.

In view of the complex behaviour that can occur in solid materials, the requirements
from the employed numerical algorithms is akin to those of hydrodynamics: the algorithm
must be capable of handling large distortions and achieve high wave resolution. High-order
shock capturing methods, based upon solving Riemann problems locally at each cell edge
throughout a computational domain, have emerged as a favourable approach to meeting these
requirements. Their success in fluid mechanics has led to a wealth of research and consequently
methods of increasing accuracy and efficiency are now available. Many of these numerical
tools are derived on the basis of arbitrary systems of conservation laws, thus retrofitting these
techniques to other physics disciplines is possible given that the governing models are written
in adequate form.

Application of these numerical tools to solid mechanics has been made possible by
formulations of the governing theory as first-order hyperbolic systems of conservation laws in
the Eulerian frame of reference [6, 12, 21, 8]. Neglecting inelastic deformations, the special case
of non-linear elasticity is governed by a homogeneous system of partial-differential-equations,
conserving mass, momentum, strain and energy, in conjunction with compatibility constraints.
Developments of Godunov methods for such formulations include the works of LeFloch and
Olsson [13] and Titarev et al [25]. One immediate advantage of such schemes is the inclusion
of material strength in the Riemann problem solution.

Inelastic deformations can be accounted for by modifying the governing model in a number
of ways. The multiplicative decomposition of the total deformation tensor into elastic and
plastic parts can be used to yield additional conservation laws for the plastic deformation
tensor [12, 21]. Developments using these models include the work of Vorobiev et al [26], Wang
et al [28], Walter et al [27], and Miller and Colella [17]. A disadvantage of this approach is
the additional expense of solving a much larger system of equations. In a different approach, a
modified elastic potential was proposed in [11] such that the resultant constitutive equations
for stress obey von Mises yield criterion, but is restricted to idealised plasticity theory. In
the present study the elastic-plastic formulation of Godunov and Romenski [8] is used, where
plasticity is introduced via source terms for the equations of the elastic deformation tensor.

In another study by the present authors [2] a high-order Godunov method was developed
for the model of Godunov and Romenski [8], using the special case of non-linear elasticity
in one space dimension. Numerical results were compared to exact solutions of initial value
problems involving three-dimensional deformations. High-order accuracy was achieved using
monotonicity-preserving weighted essentially non-oscillatory (MPWENO) reconstruction.
Extension of these methods to inelastic deformations and multi-dimensions using this model
requires little modifications of the method for discretizing convective fluxes. The main difficulty
becomes the evaluation of source terms of the now inhomogeneous system.

The rest of this paper is organised as follows. In Section 2 the governing theories are reviewed,
whilst Section 3 details the eigenstructure for the three dimensional system. Section 4 discusses
the necessary constitutive models. In Section 5 the numerical scheme is proposed, and in
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AN EULERIAN SCHEME FOR LARGE ELASTOPLASTIC DEFORMATIONS 3

Section 6 these are tested using example testcases in one-, two- and three-dimensions. Finally
in Section 7 a concluding summary is given.

2. GOVERNING THEORY

In the model of Godunov and Romenskiy [6, 8], the state of a solid is characterised by the
elastic deformation gradient Fij = ∂xi/∂x0j (where xi and x0j denote the spatial and material
coordinates of the unstressed reference state respectively), velocity ui, and entropy S. One has
the equations for conservation of momentum and energy

∂ρui

∂t
+
∂ (ρuiuk − σik)

∂xk
= 0, (1)

∂ρE

∂t
+
∂ (ρukE − uiσik)

∂xk
= 0, (2)

and equations for Fij providing the conservation of strain

∂ρFij

∂t
+
∂ (ρFijuk − ρFkjui)

∂xk
= −uiβj − ϕij (3)

Here E =
(
E + | u |2 /2

)
is the total energy, with E the internal energy. Density and the stress

tensor are given by

ρ = ρ0/det|F |, (4)

σij = ρFik
∂E

∂Fjk
, (5)

where ρ0 denotes the density of the initial unstressed medium. The terms on the right-hand-
side of Eq. (3) are given by

βj =
∂ρFkj

∂xk
, (6)

ϕij =
1

2Gτ
σ′

ikρFkj , (7)

where σ′

ik = σik − σmmδik/3 is the tensor of deviatoric stress, δik is the Kronecker delta, and
G(ρ, S) is the shear modulus which can depend on the state of the material. The vector β
is an artificial vector variable providing the conservative form of equations for F . The tensor
ϕ provides the necessary mechanisims for decaying deviatoric stress via Maxwell’s relaxation
model; the relaxation time, τ , governs the rate of decay of deviatoric stress. For the case of
small deformations a corresponding rheological law reads as

dσ′
ij

dt
= 2Gε̇′ij −

σ′
ij

τ
, (8)

where ε̇′ij is the strain rate deviator.
The vector β satisfies an additional conservation-form equation

∂βj

∂t
+
∂ (ukβj + ϕkj)

∂xk
= 0. (9)
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4 P. T. BARTON, D. DRIKAKIS & E. I. ROMENSKI

Owing to this equation uiβ in Eq. (3) can be treated as source terms in the governing equations.
Note that in the case of pure elastic processes there is no plastic deformations and it is

necessary to set ϕ = 0. Moreover if ϕ = 0, then β = 0 if it is equal to 0 in the initial data.
It is necessary only to keep in mind that the solutions to the reduced elasticity system must
satisfy the compatibility constraints

∂ρFkj

∂xk
= 0. (10)

It is noted that the conservation laws of non-linear elasticity expressed in terms of the
Lagrangian elastic deformation tensor f = F−1 satisfy the six compatibility conditions

∂fmn

∂xl
−
∂fml

∂xn
= 0. (11)

Eq. (10) follows from (11) since the following relationship can be found

∂ρFkj

∂xk
= ρFijFnm

(
∂fmn

∂xi
−
∂fmi

∂xn

)
, (12)

For the case of inelastic deformations, the conservation laws expressed in terms of f [21, 17]
satisfy six additional unsteady laws (see [8]). Using Eq. (12) along with the conservation laws
for F above it is possible to show that Eq. (9) is a consequence of these.

The system is closed by analytic formulae for the specific internal energy and relaxation
time in terms of the parameters of state

E = E (Fij , S), (13)

τ = τ(σij , T ), (14)

where T = ∂E /∂S is temperature.
The complete three dimensional system forms a hyperbolic system of conservation laws in

Cartesian coordinates. In matrix form

∂U

∂t
+
∂Fα

∂xα
= −Sc − Sp, (15)

with

U =




ρu
ρFT e1
ρFT e2
ρFT e3
ρE



, F

α =




uαρu− σeα

uαρF
T e1 − u1ρF

T eα

uαρF
T e2 − u2ρF

T eα

uαρF
T e3 − u3ρF

T eα

uαρE − (σu)eα



. (16)

Sc =




0
u1 (∇ · ρF )
u2 (∇ · ρF )
u3 (∇ · ρF )

0



, Sp =

1

2Gτ




0
(σ′ · ρF ) e1
(σ′ · ρF ) e2
(σ′ · ρF ) e3

0



, (17)

where eα are the Cartesian unit vectors
This particular formulation is a result of the work in [23] where it is shown how to properly

include the source terms associated with inelasticity to yield a thermodynamically compatible
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AN EULERIAN SCHEME FOR LARGE ELASTOPLASTIC DEFORMATIONS 5

system of equations, i.e. its solutions satisfy thermodynamic laws. Using Eqs. (3)-(4),(6)-(7)
it is possible to show that the combination of equations governing the conservation of strain
conserve mass, by means of recovering the continuity equation

∂ρ

∂t
+
∂ρuk

∂xk
= 0. (18)

(see appendix for the proof). Further this equation is used in the development of numerical
methods instead of one equation for deformation gradient in order to provide conservation of
mass. As a consequence of (15) the entropy balance law can be derived in the form

∂ρS

∂t
+
∂ρSuk

∂xk
= Q. (19)

Here Q is the entropy production, which is nonnegative due to the choice of the inelastic
deformation source terms (17):

Q =
1

2GτT
σ′

ijσ
′

ji ≥ 0 (20)

3. CHARACTERISTIC DECOMPOSITION

In the ensuing computational method the convective flux terms in Eq. (15) are discretized
using the well known method of Godunov. The solution is therefore required of a local Riemann
problem at the boundaries of each cell in the computational mesh. The solution is found using
an approximate method based upon characterstic tracing and thus requires detailed knowledge
of the eigenvalues and eigenvectors of (15).

Introducing the vector of primitive variables W =
(
u, FT e1, F

T e2, F
T e3, S

)
, Eq. (15) can

be rewritten as a quasi-linear system

∂W

∂t
+ A

α ∂W

∂xα
= −Sp. (21)

The Jacobian appearing in Eq. (21) is

A
α =




uαI −Aα1 −Aα2 −Aα3 −Bα

−FTDα1 uαI 0 0 0
−FTDα2 0 uαI 0 0
−FTDα3 0 0 uαI 0

0 0 0 0 uα



, (22)

where Dij = ei ⊗ eT
j represents the unit dyads and the coefficients are given by

Aαβ
ij =

1

ρ

∂σαi

∂Fβj
, Bα

i =
1

ρ

∂σαi

∂S
. (23)

The vector of source terms is

Sp =
1

2Gτ




0
(σ′F )e1
(σ′F )e2
(σ′F )e3

− 1
ρT

3∑
i,k=1

σ′

ikσik



. (24)
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6 P. T. BARTON, D. DRIKAKIS & E. I. ROMENSKI

3.1. x1-direction

For the purpose of derivation the eigenstructure for the flux component aligned with the
x1 spatial axis is first investigated. For simplicity the suffix α shall be omitted and only
the one dimensional counterpart, α = 1 is considered. If λ denotes the wavespeeds then the
characteristic polynomial for (22) (|A− λI| = 0) has the form

(u− λ)
7
det

∣∣Ω − (u− λ)2I
∣∣ = 0, (25)

where Ω is the acoustic tensor

Ωij =
(
eT

i A1j

)
·
(
FT e1

)
, 1 ≤ i, j ≤ 3. (26)

Due to the hyperbolicity of the system (15) Ω is positive definite and the diagonal matrix of
positive eigenvalues can be defined D = diag

(√
λac1

,
√
λac2

,
√
λac3

)
, with λac3

≤ λac2
≤

λac1
, and the orthogonal matrix Q, such that (26) can be rewritten

Ω = Q−1
D

2Q. (27)

The diagonal matrix of eigenvalues is thus given by (assuming the order u1 −
√
λac1

≤

u1 −
√
λac2

≤ . . . ≤ u1 ≤ . . . ≤ u1I +
√
λac1

)

Λ = diag (u1I − D , u1I, u1I, u1, u1I + πDπ) , (28)

where the permutation matrix

π =




0 0 1
0 1 0
1 0 0



 , (29)

has been used. The matrix of left eigenvectors is

L = (l1, l2, l3, l4, l5)
T
, (30)

where

l1 =
(
DQ,QA11, QA12, QA13, QA

0
1

)
, (31a)

l2 =
(
0, 1

F11
(F12D11 + F13D21) −D12 −D23,

1
F11

(F12D31) −D32, 0, 0
)
, (31b)

l3 =
(
0, 0, 1

F11
(F13D11) −D13,

1
F11

(F12D21 + F13D31) −D22 −D33, 0
)
, (31c)

l4 =
(
0, 0, 0, 1

F11
(F12D21 + F13D31) −D22 −D33, 0

)
, (31d)

l5 = (0, 0, 0, 0, 1) . (31e)

Using the assumption that the right eigenvectors are orthonormal to the left (RL = I), the
matrix of right eigenvectors is

R = (r1, r2, r3, r4, r5) , (32)
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AN EULERIAN SCHEME FOR LARGE ELASTOPLASTIC DEFORMATIONS 7

where

r1 =
(

1
2Q

−1D−1, 1
2

(
FT e1

)
⊗

(
eT
1Q

−1D−2
)
,

1
2

(
FT e1

)
⊗

(
eT
2Q

−1D−2
)
, 1

2

(
FT e1

)
⊗

(
eT
3Q

−1D−2
)
, 0

)T
,

(33a)

r2 =
(
0,

(
FT e1

)
⊗

(
eT
1 Ψ1

)
−D21 −D32,

(
FT e1

)
⊗

(
eT
2 Ψ1

)
−D23,(

FT e1
)
⊗

(
eT
3 Ψ1

)
, 0

)T
,

(33b)

r3 =
(
0,

(
FT e1

)
⊗

(
eT
1 Ψ2

)
,
(
FT e1

)
⊗

(
eT
2 Ψ2

)
−D31,(

FT e1
)
⊗

(
eT
3 Ψ2

)
−D22 −D33, 0

)T
,

(33c)

r4 =
(
0,

(
eT
1 Ω−1A0

1

)
FT e1,

(
eT
2 Ω−1A0

1

)
FT e1,

(
eT
3 Ω−1A0

1

)
FT e1, 1

)T
, (33d)

r5 =
(

1
2Q

−1D−1π,− 1
2

((
FT e1

)
⊗

(
eT
1Q

−1D−2
))
π,

− 1
2

((
FT e1

)
⊗

(
eT
2Q

−1D−2
))
π,− 1

2

((
FT e1

)
⊗

(
eT
3Q

−1D−2
))
π, 0

)T
,

(33e)

and

Ψ1 = Ω−1 (A11D21 +A11D32 +A12D23) , (34a)

Ψ2 = Ω−1 (A12D31 +A13D22 +A13D33) . (34b)

3.2. x2- and x3-directions

Whilst it is straightforward to generalise the above eigenvectors to the Jacobians of the fluxes
aligned with the other coordinate directions (x2, x3), it was found in the course of computation
that these do not lend themselves to a formulation convenient for numerical computation.
This is because the ratios of components of the deformation gradient appearing in the left
eigenvectors could, in some special cases lead to a divide by zero. For example, in the case
of a uniaxial deformation all non-diagonal elements of the deformation tensor will be equal
to zero. Using the above structure on the other coordinate directions results in some of these
components appearing as a denominator in the left eigenvectors. It is mentioned that this
problem does not arise in the two-dimensional formulation (see [25]). To overcome this problem
small modifications can be made to the eigenvectors for each of the coordinate directions.

In the x2 direction the left eigenvectors are

l1 =
(
DQ,QA21, QA22, QA23, QB2

)
, (35a)

l2 =
(
0, 1

F22
(F21D12 + F23D22) −D11 −D23,

1
F22

(F21D32) −D31, 0, 0
)
, (35b)

l3 =
(
0, 0, 1

F22
(F23D12) −D13,

1
F22

(F21D22 + F23D32) −D21 −D33, 0
)
, (35c)

l4 = (0, 0, 0, 0, 1) , (35d)

l5 =
(
πDQ,−πQA21,−πQA22,−πQA23,−πQB2

)
, (35e)

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
Prepared using nmeauth.cls

e101466
TextBox
.




8 P. T. BARTON, D. DRIKAKIS & E. I. ROMENSKI

and the corresponding right eigenvectors

r1 =
(

1
2Q

−1D−1, 1
2

(
FT e2

)
⊗

(
eT
1Q

−1D−2
)
,

1
2

(
FT e2

)
⊗

(
eT
2Q

−1D−2
)
, 1

2

(
FT e2

)
⊗

(
eT
3Q

−1D−2
)
, 0

)T
,

(36a)

r2 =
(
0,

(
FT e2

)
⊗

(
eT
1 Ψ3

)
−D11 −D32,

(
FT e2

)
⊗

(
eT
2 Ψ3

)
−D13,(

FT e2
)
⊗

(
eT
3 Ψ3

)
, 0

)T
,

(36b)

r3 =
(
0,

(
FT e2

)
⊗

(
eT
1 Ψ4

)
,
(
FT e2

)
⊗

(
eT
2 Ψ4

)
−D31,(

FT e2
)
⊗

(
eT
3 Ψ4

)
−D12 −D33, 0

)T
,

(36c)

r4 =
(
0,

(
eT
1 Ω−1B2

)
FT e2,

(
eT
2 Ω−1B2

)
FT e2,

(
eT
3 Ω−1B2

)
FT e2, 1

)T
, (36d)

r5 =
(

1
2Q

−1D−1π,− 1
2

((
FT e2

)
⊗

(
eT
1Q

−1D−2
))
π,

− 1
2

((
FT e2

)
⊗

(
eT
2Q

−1D−2
))
π,− 1

2

((
FT e2

)
⊗

(
eT
3Q

−1D−2
))
π, 0

)T
,

(36e)

with

Ψ3 = Ω−1
(
A21D11 +A21D32 +A22D13

)
, (37a)

Ψ4 = Ω−1
(
A22D31 +A23D12 +A23D33

)
. (37b)

Similarly for the x3 direction the left eigenvectors are

l1 =
(
DQ,QA31, QA32, QA33, QB3

)
, (38a)

l2 =
(
0, 1

F33
(F31D13 + F32D23) −D11 −D22,

1
F33

(F31D33) −D31, 0, 0
)
, (38b)

l3 =
(
0, 0, 1

F33
(F32D13) −D12,

1
F33

(F31D23 + F32D33) −D21 −D32, 0
)
, (38c)

l4 = (0, 0, 0, 0, 1) , (38d)

l5 =
(
πDQ,−πQA31,−πQA32,−πQA33,−πQB3

)
, (38e)

and the corresponding right eigenvectors

r1 =
(

1
2Q

−1D−1, 1
2

(
FT e3

)
⊗

(
eT
1Q

−1D−2
)
,

1
2

(
FT e3

)
⊗

(
eT
2Q

−1D−2
)
, 1

2

(
FT e3

)
⊗

(
eT
3Q

−1D−2
)
, 0

)T
,

(39a)

r2 =
(
0,

(
FT e3

)
⊗

(
eT
1 Ψ5

)
−D11 −D22,

(
FT e3

)
⊗

(
eT
2 Ψ5

)
−D13,(

FT e3
)
⊗

(
eT
3 Ψ5

)
, 0

)T
,

(39b)

r3 =
(
0,

(
FT e3

)
⊗

(
eT
1 Ψ6

)
,
(
FT e3

)
⊗

(
eT
2 Ψ6

)
−D21,(

FT e3
)
⊗

(
eT
3 Ψ6

)
−D12 −D23, 0

)T
,

(39c)

r4 =
(
0,

(
eT
1 Ω−1B3

)
FT e3,

(
eT
2 Ω−1B3

)
FT e3,

(
eT
3 Ω−1B3

)
FT e3, 1

)T
, (39d)

r5 =
(

1
2Q

−1D−1π,− 1
2

((
FT e3

)
⊗

(
eT
1Q

−1D−2
))
π,

− 1
2

((
FT e3

)
⊗

(
eT
2Q

−1D−2
))
π,− 1

2

((
FT e3

)
⊗

(
eT
3Q

−1D−2
))
π, 0

)T
,

(39e)

with

Ψ5 = Ω−1
(
A31D11 +A31D22 +A32D13

)
, (40a)

Ψ6 = Ω−1
(
A32D21 +A33D12 +A33D23

)
. (40b)

The differences between the eigenvectors for each coordinate direction are subtle, and thus
only minor changes are required in the programming.
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AN EULERIAN SCHEME FOR LARGE ELASTOPLASTIC DEFORMATIONS 9

3.3. Non-conservative to conservative transformation

In order to maintain high-order accuracy in the numerical methods it is necessary to recover
from (30) and (32) the eigenvectors of the conservative Jacobian, such that the invariants are
expressed in terms of conserved variables. Partial derivatives of non-conservative variables can
be expressed in terms of partial derivatives of conserved variables according to H ≡ ∂W/∂U ,
where

H = − 1
2ρ




−2I u⊗
(
eT
1 F

−T
)

u⊗
(
eT
2 F

−T
)

0
(
FT e1

)
⊗

(
eT
1 F

−T
)
− 2I

(
FT e1

)
⊗

(
eT
2 F

−T
)

0
(
FT e2

)
⊗

(
eT
1 F

−T
) (

FT e2
)
⊗

(
eT
2 F

−T
)
− 2I

0
(
FT e3

)
⊗

(
eT
1 F

−T
) (

FT e3
)
⊗

(
eT
2 F

−T
)

2 dS
dE
uT −2 dS

deT
1

F
− eT

1 F
−T Ψ7 −2 dS

deT
2

F
− eT

2 F
−T Ψ7

u⊗
(
eT
3 F

−T
)

0(
FT e1

)
⊗

(
eT
3 F

−T
)

0(
FT e2

)
⊗

(
eT
3 F

−T
)

0(
FT e3

)
⊗

(
eT
3 F

−T
)
− 2I 0

−2 dS
deT

3
F
− eT

3 F
−T Ψ7 −2 dS

dE



,

(41)

with

Ψ7 =
dS

dE
(
1

2
|u|2 − E ) −

3∑

i,j=1

dS

dFij
Fij . (42)

The matrices of eigenvectors, R, L, of the non-conservative Jacobian A can be transformed to
those of the conservative Jacobian Ac = H−1AH according to

Rc = H−1R, Lc = LH. (43)

The inverse of (41), H−1 ≡ ∂U/∂W , is given by

H−1 = −ρ




−I u⊗
(
eT
1 F

−T
)

u⊗
(
eT
2 F

−T
)

0
(
FT e1

)
⊗

(
eT
1 F

−T
)
− I

(
FT e1

)
⊗

(
eT
2 F

−T
)

0
(
FT e2

)
⊗

(
eT
1 F

−T
) (

FT e2
)
⊗

(
eT
2 F

−T
)
− I

0
(
FT e3

)
⊗

(
eT
1 F

−T
) (

FT e3
)
⊗

(
eT
2 F

−T
)

−uT dE

deT
1

F
− eT

1 F
−TE dE

deT
2

F
− eT

2 F
−TE

u⊗
(
eT
3 F

−T
)

0(
FT e1

)
⊗

(
eT
3 F

−T
)

0(
FT e2

)
⊗

(
eT
3 F

−T
)

0(
FT e3

)
⊗

(
eT
3 F

−T
)
− I 0

dE

deT
3

F
− eT

3 F
−TE −dE

dS



.

(44)

4. CONSTITUTIVE EQUATIONS

4.1. Internal energy density

The internal energy density for a hyperelastic material can be expressed in terms of the
invariants I1, I2, I3 of any symmetric strain tensor. Formulations of a number of the common
strain tensors in terms of F is given in [8]. Taking for example the elastic Green’s tensor

C = FTF (45)
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10 P. T. BARTON, D. DRIKAKIS & E. I. ROMENSKI

then the invariants are

I1 = tr C, I2 =
1

2

[
(tr C)

2
− tr C2

]
, I3 = det|C|, (46)

and the internal energy can be written

E (I1, I2, I3, S) = U (I3, S) + W (I1, I2, I3, S). (47)

The first term corresponds to a hydrostatic contribution, whilst the second accounts for the
elastic energy due to shear strains. In specifying the internal energy in the form of Eq. (47),
symmetry of the stress tensor is ensured. In terms of C, the Murnaghan formulas Eq. (5)
become

σij = 2ρCik
∂E

∂Ckj
. (48)

In this paper, two expressions for the internal energy are considered. The first was presented
in [17], and is an isentropic hyperelastic equation of state in terms of the invariants of the
elastic Greens tensor

E (I1, I3) = −

∫ V

V0

P (V )dV +
G

2ρ0

(
I1 − 3I

1/3
3

)
, (49)

where V = 1/ρ is the specific volume, and

P (V ) = p01(η − 1) + p02(η − 1)2 + p03(η − 1)3 GPa, η = V0/V. (50)

Eq. (50) was taken from [29].
The second formulation considered is the isotropic hyperelastic equation of state from [25, 2]

E (I1, I2, I3, S) =
K0

2α2
(I

α/2
3 − 1)2 + cvT0I

γ/2
3 (exp [S/cv] − 1) +

B0

2
I

β/2
3 (I2

1/3 − I2). (51)

where in this case the invariants correspond to the elastic Finger tensor

G = F−TF−1. (52)

The parameters K0 = c20 − (4/3)b20, B0 = b20 are the squared bulk speed of sound and the
squared speed of shear waves respectively, cv is heat capacity at constant volume, α, β, γ are
constants characterising the nonlinear dependence of sound speeds and temperature on the
mass density.

4.2. Relaxation time of tangential stresses

One function for the relaxation time capable of modelling sufficiently the physical loading
behaviour of metals is the power law function [16]

τ = τ0

(
σ0

σI

)n

, (53)

where σ0, τ0 and n are material specific constants, and the shear stress intensity is given by

σI =
√

[(σ11 − σ22)2 + (σ22 − σ33)2 + (σ33 − σ11)2 + 6(σ2
12 + σ2

13 + σ2
23)]/2. (54)
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AN EULERIAN SCHEME FOR LARGE ELASTOPLASTIC DEFORMATIONS 11

Determination of the parameters entering into (53) can be determined by performing a series
of numerical experiments [15, 22]. Specifically, the system of equations (15) can be reduced for
the special case of uniaxial strain of a thin rod (see [8] for a detailed derivation). Simulations
can then be performed where the sample is deformed in one coordinate direction at a constant
strain rate thus providing stress versus strain data. These numerical tests are analogous to the
Split Hopkinson Pressure Bar (SHPB) test [22] commonly employed to investigate high strain
rate loading behaviour. Therefore any function minimisation method can be used to determine
accurate constants by comparison of the numerical and available experimental data. It is noted
that using this technique it is possible to develop models that take into account microscopic
phenomena such as dislocation motion, with the necessary constants, not readily available for
all metals, being determined via the numerical tests [15, 22]. The model (53) represents a simple
empirical model and admits strain rate dependency of the flow stress. Figure 1 illustrates the
yield stress against strain rate for different values of n. Note that in general the parameters σ0,
τ0 and n will depend on the state of the material [7] to realise influences such as temperature
on the yield stress.

In some cases inelastic deformations are required to satisfy idealised plasticity theory, or
at least some approximation of it, in order to provide comparison with certain well known
numerical experiments of previous studies. That is, the rate of change of stress is equivalently
zero under further loading once the stress intensity reaches the material specific yield stress.
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 0.3

 0.32

 0.34

 0.36
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Figure 1. Yield stress plotted against strain rate showing the influence of the parameter n in Eq. (53).
Results were obtained using the bar theory in [8], with the isentropic equation of state from § 4.1. The
material was aluminium, with constants equal to those in § 6.1. Values of the constants in Eq. (53)

were σ0 = 0.2976 GPa and τ0 = 1 · 10−5 s.
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12 P. T. BARTON, D. DRIKAKIS & E. I. ROMENSKI

Furthermore, the yield surface is required to be independent of strain-rate effects. There are
different approaches one can take to achieve ideal plasticity with the present governing model.
One would be to use a modified version of the radial return algorithm, see for example [21, 17].
Another might be to use the modified potential function proposed in [11]. However a different
approach is proposed here based upon the model (53). Strain rate effects entering into the
governing model vanish in the limit n → ∞, such that σ → σ0 where σ0 will represent the
required yield stress (Figure 1). Of course this can not be achieved in reality, but n can instead
be taken large enough such that strain rate effects are decreased. Furthermore in doing so a
rigorous test is provided for the time integrator. It is seen (Figure 1) that even at values of
n = 500 strain-rate effects remain apparent, and therefore the model is used for illustrative
purposes only, rather than as a suggested method if one requires strict idealised plasticity.

5. NUMERICAL SCHEME

The conservative system of equations, Eq. (15), is solved over a fixed, structured computational
grid consisting of quadrilateral cells denoted by the indices i, j, k. Each cell has the dimensions
∆x1i,j,k

= x1i+1/2,j,k
− x1i−1/2,j,k

, ∆x2i,j,k
= x2i,j+1/2,k

− x2i,j−1/2,k
, ∆x3i,j,k

= x3i,j,k+1/2
−

x3i,j,k−1/2
, thus forming the control volumes Vi,j,k = ∆x1i,j,k

∆x2i,j,k
∆x3i,j,k

. Integrating
Eq. (15) over Vi,j,k yields the following system of ordinary-differential-equations

(
dU

dt

)

i,j,k

= −∆t
(
LF

i,j,k + Sp
i,j,k

)
. (55)

where Ui,j,k is the vector of volume averaged conserved variables stored at the cell centres,
and the unsplit spatial discretization operator is expressed as

LF
i,j,k =

{
F 1

i+1/2,j,k − F 1
i−1/2,j,k

∆x1i,j,k

+
F 2

i,j+1/2,k − F 2
i,j−1/2,k

∆x2i,j,k

+
F 3

i,j,k+1/2 − F 3
i,j,k−1/2

∆x3i,j,k

+ Sc
i,j,k

}
, (56)

where F 1
i±1/2,j,k, F 2

i,j±1/2,k, F 3
i,j,k±1/2, are the numerical fluxes evaluated at the cell

boundaries. To solve the multi-dimensional problem Eqs. (55)-(56) an unsplit dimension-by-
dimension approach is used. For this, each numerical flux function is calculated via solution
of a one-dimensional Riemann problem orientated normal to the respective boundary. For
F 1

i±1/2,j,k then, the solution is found using data in the i-direction only. Eq. (56) is therefore
constructed using the solutions of six one-dimensional Riemann problems, one across each cell
boundary, for each cell in a three dimensional calculation. Only once all the numerical fluxes
are summed according to Eq. (56) is the solution advanced in time.

In a recent study by the authors [2] a high-order characteristics based approximate solution of
the Riemann problem for the augmented one-dimensional system was presented. This method is
outlined in the next section and generalises to all cell boundaries; each case would simply utilise
data in the normal direction only and the respective eigenvalues and eigenvectors detailed in
§ 3.
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AN EULERIAN SCHEME FOR LARGE ELASTOPLASTIC DEFORMATIONS 13

5.1. Evaluation of the convective fluxes

Consider the non-linear system (21), omitting inelastic source terms, Sp = 0. If it is assumed

that the Jacobian A is evaluated at some constant state Ŵ such that Â = A(Ŵ ) consists
entirely of constant coefficients, then in turn the corresponding eigenvalues and eigenvectors
are constant, Λ̂ = Λ(Ŵ ), L̂ = L(Ŵ ), R̂ = R(Ŵ ). If Q = L̂W is defined as the vector of
characteristic variables, then (21) can be rewritten in the decoupled characteristic form

(
∂

∂t
+ λ̂j

∂

∂x

)
Qj = 0. (57)

In order to maintain high-order accuracy, the relationships in § 3.3 can be used to reexpress
the characteristic variables in terms of conserved variables. Given Ĥ evaluated at the constant
state, then the characteristic variables are constructed as Qc = L̂ĤU . From (57), Qj is

invariant along the characteristic of slope λ̂j , thus the solution for any Cauchy problem is

simply Qcj (x, t) = Qcj

(
U(x− λ̂jt)

)
, which gives

U(x, t) = H−1R̂Qc(x, t). (58)

On a computational mesh these linearised problems are solved at each intercell boundary,
i − 1/2. Locally then one is solving exactly an approximation of the non-linear system (15).

The constant state Ŵi−1/2 used to evaluate the coefficients is found via an arithmetic mean
of the adjoining left and right cell averaged states

Ŵi−1/2 =
1

2
(Wi +Wi−1) . (59)

A convenient function that achieves the solution is [5]

Q(xi−1/2 − λ̂j;i−1/2t) =

(
1

2
+ ψj;i−1/2

)
Q

L
i−1/2 +

(
1

2
− ψj;i−1/2

)
Q

R
i−1/2, (60)

with

ψj;i−1/2 =
1

2

λ̂j;i−1/2

|λ̂j;i−1/2| + ε
, λ̂j;i−1/2 = λj(Ŵi−1/2)

where QL
i−1/2 and QR

i−1/2 represent the left and right characteristic states adjacent to the
boundary found by some high-order reconstruction method, and ε is a small number to prevent
division by zero. The found solution (58) can then be used to construct the flux terms in
Eq. (56).

High order accuracy is achieved by taking in Eq. (60) boundary-extrapolated values from
polynomial reconstruction of cell volume averaged variables. Specifically reconstruction is
carried out on characteristic variables using a weighted essentially non-oscillatory (WENO)
scheme [9]. In [2] a number of WENO schemes of increasing order were analysed against
exact solutions of one-dimensional initial value problems in non-linear elasticity. It was found
that high-order schemes are necessary to resolve delicate features such as discontinuities and
small amplitude waves. The fifth-order WENO scheme proved to be the most practical for the
equations of non-linear elasticity, based upon accuracy and cost. The choice of reconstruction
based upon characteristic rather than conserved variables is based on the latter producing in
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14 P. T. BARTON, D. DRIKAKIS & E. I. ROMENSKI

many cases severe oscillations across discontinuities. To further eliminate such artifacts the
monotonicity preserving modification of [1] is also used.

For a scalar function φ(x) the fifth order accurate left boundary extrapolated value φL
i−1/2

is defined in terms of cell averaged values φi as

φL
i−1/2 = 1

6 [ω0(−φi+1 + 5φi + 2φi−1) + ω1(−φi−2 + 5φi−1 + 2φi)+

ω2(2φi−3 − 7φi−2 + 11φi−1)] (61)

where ωk, k = 1, 2, 3, are nonlinear WENO weights given by

ωk =
αk

3∑
l=0

αl

, α0 =
3

10(β0 + ε)2
, α1 =

3

5(β1 + ε)2
, α2 =

1

10(β2 + ε)2
. (62)

The parameter ε is introduced to avoid division by zero and the recommended value of ε = 10−6

is taken. The smoothness indicators are

β1 =(13/12)(φi−1 − 2φi + φi+1)
2 + (1/4)(3φi−1 − 4φi + φi+1)

2 (63a)

β2 =(13/12)(φi−2 − 2φi−1 + φi)
2 + (1/4)(φi−2 − φi)

2 (63b)

β3 =(13/12)(φi−3 − 2φi−2 + φi−1)
2 + (1/4)(φi−3 − 4φi−2 + 3φi−1)

2 (63c)

The right value φR
i−1/2 is obtained by symmetry.

5.2. Evaluation of the compatibility vector

For each cell, the source term Sc is computed according to

Sc
i,j,k =




0
un

1i,j,k
βi,j,k

un
2i,j,k

βi,j,k

un
3i,j,k

βi,j,k

0



. (64)

Here un
αi,j,k

denotes the volume averaged velocity components at the centre of cell i, j, k ,
evaluated at the last timestep or sub timestep in the case of multilevel time integration. The
vector β contains additional derivatives requiring discretization. In the same way as the spatial
operator Eq. (56), β can be evaluated by taking differences across each cell volume

βi,j,k =
(ρFT )i+1/2e1 − (ρFT )i−1/2e1

∆x1i

+
(ρFT )j+1/2e2 − (ρFT )j−1/2e2

∆x2j

+
(ρFT )k+1/2e3 − (ρFT )k−1/2e3

∆x3k

(65)

Following [17], values of those terms evaluated at the cell boundaries are taken from the high
order Riemann problem solution for the corresponding cell edge. In this approach the term Sc

carries little overhead to the overall scheme; the necessary terms are simply added at the end
of each convective flux evaluation.
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AN EULERIAN SCHEME FOR LARGE ELASTOPLASTIC DEFORMATIONS 15

5.3. Time integration

Devising a numerical scheme to solve Eq. (55) is challenging as a result of the terms in Sp

governing the onset of inelastic deformations. The relaxation time, τ , of a metal could, under
dynamic loading, vary over a large range of order of magnitudes. Consideration of the limits of
τ provides a better understanding of the difficulties, and scope for devising adequate numerical
algorithms:

• the elastic limit, τ → ∞
• the hydrodynamic limit, τ → 0

In the elastic limit, Sp → 0 in Eq. (15), i.e. the system approaches the governing equations
of non-linear elasticity. For a solid material the hydrodynamic limit, so called because the
material will behave like a fluid, is reached under very high strain rates. In this regime solids
can be approximated well by the compressible Euler equations

∂U

∂t
+
∂Fα

∂xα
= 0, (66)

with

U =




ρu
ρ
ρE



 , F
α =




uαρu− p
ρuα

uαρE − uαp



 , (67)

where p is hydrostatic pressure; and an appropriate equation of state of the form E = E (ρ, S).
It is desirable to use for computations a global timestep dictated by the grid sizes and elastic

wave speeds

∆t = CFL × min
i,j,k

(
∆x1

|u1| + D1
max

,
∆x2

|u2| + D2
max

,
∆x3

|u3| + D3
max

)
, (68)

where Dα
max denotes the maximum wavespeed of the acoustic tensor, Eq. (27), in the direction

α, and 0 ≤ CFL ≤ 1 is an adjustable scaler parameter used to control the timestep so as to
satisfy the Courant-Friedrichs-Lewy (CFL) condition. However based upon the above limits
the timescales associated with the relaxation operator can be small in comparison, hence the
system of ODEs Eq. (55) will become stiff. Since in most circumstances one cannot forecast
zones in which either stiff or non-stiff regimes will be apparent, it is necessary to solve the
complete system of equations throughout the domain with an appropriate time integration
method that overcomes the problem of stiff ODEs.

Since high order methods have already been established for the homogeneous equations for
non-linear elasticity, Sp = 0 in Eq. (15), a natural extension for solving Eq. (55) would be to
use temporal splitting

U∗ = Un − ∆t LF (Un), (69a)

Un+1 = U∗ − ∆t Sp(Un+1). (69b)

That is the homogeneous system, Sp = 0 in Eq. (15), is updated explicitly using the forward
Euler method, Eq. (69a), whilst the (possibly stiff) source terms are updated implicitly using
Eq. (69b). The latter can then be solved using an L-stable implicit integration technique,
eliminating any influence of the relaxation time on the CFL condition. Jin [10] discusses the
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16 P. T. BARTON, D. DRIKAKIS & E. I. ROMENSKI

use of splitting schemes applied to hyperbolic conservation laws with stiff relaxation operators.
Here it is shown that solutions via temporal splitting is sufficient provided that the numerical
algorithm has the correct asymptotic limit: in the hydrodynamic limit the scheme is a stable
and consistent evaluation of the equilibrium system, Eq. (66), for fixed spatial and temporal
step sizes. Violating this property can result in spurious solutions.

To ensure that in the asymptotic limit the numerical method leads to an explicit integration
of the equilibrium system, small modifications need to be made to the formulation of governing
theory, Eq. (15). As stated in § 2, in conjunction with the equations for F one has the mass
continuity equation, (18). As a result, Eq. (18) can be used in place of one equation for the
deformation gradient tensor whilst maintaining a fully determined system. One choice would
be to replace the equation for ρF11 in (15), thus (16) is replaced with

U =




ρu
ρ

ρF12

...
ρF33

ρE




, F
α =




uαρu− eT
ασ

ρuα

ρuαF12 − ρu1Fα2

...
ρuαF33 − ρu3Fα3

uαρE − ueT
ασ




, (70)

and the source terms (17) adjusted accordingly for the zero right-hand side of (18). Eq. (4)
can be rearranged to recover F11 in terms of ρ0, ρ, F12, . . . , F33. Following [4], there now exists
a constant 5 × 13 matrix

Q =




1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1




(71)

that satisfies QSp = 0 and gives U = QU , i.e. recovers the conserved variables of the Euler
equations. Furthermore it is assumed that Sp(U) = 0 can be solved uniquely in terms of U :
assuming a function E , giving U = E(U), then Sp(E(U)) = 0 [4]. This is apparent since for
the Euler equations the devitoric stress tensor is zero, thus giving the required result. Using
these results the analysis in § 3.2 of [20] can be applied to Eqs. (69a)-(69b), to prove that in
the limit τ → 0 the scheme is an explicit evaluation of the compressible Euler equations.

The accuracy of the explicit update, (69a), has been improved by instead using the third
order TVD Runge-Kutta method [24]

U (1) = Un + ∆t LF, n, (72a)

U (2) = Un +
1

4
∆t LF, (1) +

1

4
∆t LF, n, (72b)

U∗ = Un +
1

6
∆t LF, n +

1

6
∆t LF, (1) +

2

3
∆t LF, (2). (72c)

This is consistent with the TVD requirements of the WENO reconstruction scheme used in
the evaluation of convective flux terms. Since stress can be expressed as functions of the state
parameters the implicit part (69a) is solved using the iterative Newton-Raphson method.
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AN EULERIAN SCHEME FOR LARGE ELASTOPLASTIC DEFORMATIONS 17

6. EXAMPLES
6.1. one-dimensional testcases

For a test in one-dimension the plate impact problem of Wilkins [29] is considered. The
problem consists of an 0.5 cm aluminium flyer plate impacting a semi-infinite aluminium
target. These tests were conducted using a similar Eulerian model in [17], where they proposed
the isentropic hyperelastic equation of state for internal energy discussed in § 4.1. In both
[29, 17] the material is assumed to obey ideal plasticity. This is approximated here using
the model Eq. (53). Constants used for the constitutive equations correspond to Aluminium:
G = 24.8GPa, ρ0 = 2.7kgm−3, p01 = 73GPa, p02 = 172GPa, p03 = 40GPa, σ0 = 0.2976GPa,
n = 100, τ0 = 1.

Two impact velocities are investigated, u1 = 0.8 km s−1 and u1 = 2.0 km s−1. In both cases
the grid consists of 500 cells in the interval [0:5] cm, with the interface initially located at
x0 = 0.5 cm, and CFL=0.6. The simulation starts with the flyer plate in contact with the
target.

The numerical algorithm for this problem was modified to accommodate the unconstrained
free boundary of the flyer plate. A detailed description of these algorithms shall be left to a
later paper and only a brief summary is given here. The interface location is tracked via a level-
set field which identifies those cells within the material and designates cells in the void region
as ghost cells whose state is determined via solution of a Riemann problem [14]. In this case
a solid-vacuum Riemann problem is solved using a method similar to that proposed in [18].
It is mentioned that a level-set method is by no means a definitive approach for extending
the proposed single component scheme for modelling multi-components. Similar models to
those employed in the current paper have been combined with volume-of-fluid (VOF) methods
[18], marker particle methods [27] and moving grid methods [26]. A level-set method has been
chosen since, unlike conventional VOF methods, this has the potential to allow sliding between
components, and does not posses the complexity of marker particle methods when extending
to multi-dimensions. Level-set methods do however suffer from spurious mass loss as a result
of the inherent regularisation of the numerical scheme used to discretize spatial derivatives
when advecting the level-set fields. In the one-dimensional testcases here, with the high grid
resolutions employed and use of the fifth-order numerical method from [19] to discretize
spatial derivatives in the level-set convection equation, these conservation errors are reduced
to negligible amounts. However, this will not necessarily be the case in multi-dimensional cases
and further efforts may be required in such circumstances to combat conservation errors.

For the lower of the two impact velocities the time series in Figures 2-3 shows that the
impact results in shock waves propagating into both the flyer plate and the target. The left
travelling wave eventually reaches the free surface and is subsequently reflected resulting in a
right travelling rarefaction wave. At later times elastic plastic flow is clearly distinguishable
from the characteristic splitting of waves; the so called elastic precursor travelling faster than
the plastic wave. Unfortunately no analytic solution exists for this problem, but both the wave
speeds and the respective jump in properties are in good qualitative agreement with [29, 17].
It is noted that taking n = 100 in Eq. (53) does not provide strain-rate independent flow
stress (Figure 1), and indeed it can be expected that strain rate effects manifest within the
results, hence no more than a qualitative analysis could be made regardless of the availability
of analytic solutions for idealised plasticity.
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18 P. T. BARTON, D. DRIKAKIS & E. I. ROMENSKI

Despite this, the use of the Eq. (53) provides a rigorous test on the robustness of the time
integration scheme since the large power n results in sharp changes between non-stiff and stiff
regimes. Furthermore the form of Eq. (53) is representative of the types of models one would
like to employ for obtaining physically realistic solutions. The higher velocity impact further
illustrates the robustness of the numerical techniques. The higher peak stresses mean that the
plastic wave travels faster and no splitting of the elastic and plastic parts can be distinguished
(Figures 4-5). These behaviours indicate that the hydrodynamic limit is approached, yet the
scheme predicts correct wavespeeds and high wave resolution using underresolved discretization
parameters.

6.2. two-dimensional testcase

For a two-dimensional example consider a plane of material, with the origin located at
(x1 = 0, x2 = 0). The region r > 2cm (where r =

√
x2

1 + x2
2) is raised to a pressure p = 10GPa

(where p = −ρ2(∂U /∂ρ)) and temperature T = 600K, whilst the inner cylinder, r ≤ 2 cm,
is initiated at ambient conditions, F = I, T = 300 K. Both regions are initially at rest. The
test is chosen on the basis that the resulting behaviours should be cylindrically symmetric,
thus allowing comparison with one-dimensional polar calculations. The hyperelastic equation
of state from [25], detailed in § 4.1 is used, with the material constants taken for copper:
ρ0 = 8.9 gcm−3, c0 = 4.651 kms−1, b0 = 2.141 kms−1, cv = 3.9 ·10−4 kJg−1 K−1, T0 = 300 K,
α = 1.0, β = 3.0, γ = 2.0. For the relaxation model, Eq. (53) is used with the following
constants for copper taken from [16]: τ0 = 0.92 s, σ0 = 0.045GPa, n = 10.1. These were found
in [16] on the basis of producing a best match with experimental data. Solutions were found
using a computational domain [0 : 10, 0 : 10] cm, where the axis are modelled as symmetric
boundaries. The grid was uniform, with ∆x1 = ∆x2 = 1/25cm, and the timestep was restricted
using CFL=0.6. For comparison, one-dimensional cylindrical polar results were obtained (see
Appendix), using ∆r = 1/50 cm and CFL=0.6.

The initial conditions result in a cylindrical shock converging on the origin through
the central ambient material, which subsequently reflects from the origin. Inspired by the
presentation of cylindrically symmetric examples in [17], the Cartesian results are plotted as
a scatter graph in Figure 6 so as to examine the extent to which cylindrical symmetry is
preserved. Results are shown at time t = 10 µs, after the shock has reflected from the origin.
Overall agreement is good for both the wavespeeds and profiles. The preservation of cylindrical
symmetry is also good.

6.3. three-dimensional testcase

For a three dimensional testcase initial conditions are taken similar to the previous two-
dimensional case. Consider a volume of material, with the origin ocated at (x1 = 0, x2 =
0, x3 = 0). The region r > 2cm (where r =

√
x2

1 + x2
2 + x2

3), is raised to a pressure p = 10GPa
and temperature T = 600 K, whilst the inner sphere, r ≤ 2 cm, is initiated at ambient
conditions, F = I, T = 300 K. Again both regions are initially at rest. The material is
again assumed to be copper, with the constitutive equations and respective constants equal
to those before. Solutions were found using a computational domain [0 : 10, 0 : 10, 0 : 10] cm,
where the x1 = 0, x2 = 0, x3 = 0 planes were modelled as symmetric boundaries. The grid was
uniform, with ∆x1 = ∆x2 = ∆x3 = 1/10 cm, and the timestep was restricted using CFL=0.6.
Similarly, one-dimensional spherical polar results were obtained for reference (see Appendix),
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Figure 2. Time sequence of density profiles for an aluminium flyer plate impacting an aluminium
target at 0.8 km s−1 (§ 6.1). Results were obtained with a uniform grid spacing ∆x = 1/100 cm and

using CFL=0.6.
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Figure 3. Time sequence of normal stress profiles for an aluminium flyer plate impacting an aluminium
target at 0.8 km s−1 (§ 6.1). Results were obtained with a uniform grid spacing ∆x = 1/100 cm and

using CFL=0.6.
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Figure 4. Time sequence of density profiles for an aluminium flyer plate impacting an aluminium
target at 2.0 km s−1 (§ 6.1). Results were obtained with a uniform grid spacing ∆x = 1/100 cm and

using CFL=0.6.
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Figure 5. Time sequence of normal stress profiles for an aluminium flyer plate impacting an aluminium
target at 2.0 km s−1 (§ 6.1). Results were obtained with a uniform grid spacing ∆x = 1/100 cm and

using CFL=0.6.
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Figure 6. Scatter graph comparison of two-dimensional cartesian (points) and one-dimensional
cylindrical (solid line) solutions of the testcase in § 6.2 at a time t = 10 µs. Cartesian results were

obtained with a uniform grid spacing ∆x = ∆y = 1/25 cm and using CFL=0.6.
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using ∆r = 1/50 cm and CFL=0.6.
Both the wavespeeds and profiles are again in good agreement with the one-dimensional

results (Figure 7), despite the lower resolution. Spherical symmetry is also seen to be preserved
to a good degree.

7. CONCLUSIONS

In this paper a high-order shock capturing method was proposed for simulating elastoplastically
deforming solid media. The methods were based upon a governing model cast in the Eulerian
reference frame, thus allowing the use of fixed Cartesian grids. In a previous study by
the authors the reduced system of non-linear elasticity was investigated and high-order
approximations of the Riemann problem for the augmented one-dimensional system were
developed and tested. The extension of these to three-dimensions proved straightforward
requiring only small modifications to the eigenstructure to avoid divisions by zero. The
numerical tools employed are well established in other areas of physics, predominantly fluid
mechanics. The extension to model plasticity required additional terms to be evaluated.
These pose a difficulty to the existing algorithm since the relaxation terms can vary from
zero to infinity. However analysis of the model revealed that in the latter limit the system
can be approximated well by the simpler compressible Euler equations, and that a simple
reformulation yields a mapping between both systems. Application of straightforward temporal
splitting is valid in this case as a result of these modifications. Thus the existing methods
developed for the homogeneous reduced system of non-linear elasticity needed no further
modification and are solved as before using explicit time integration. The addition therefore
due to plasticity is a subsequent time integration of the relaxation terms. In this second
step the relaxation terms are updated implicitly to overcome numerical stiffness when the
relaxation time becomes small in comparison to the employed global timestep dictated by the
characteristic speeds.

Simple functions for the relaxation time were taken that result in strain-rate dependency
of the flow stress. The form chosen is representative of the types of models that can be used
to obtain physically realistic results. In addition, the particular form, a power law function,
provided a rigorous test of the time integration methods. This strain on the methods was
further amplified by using the model to approximate ideal plasticity. Using this assumption one-
dimensional test were conducted simulating plate impact experiments. The processes involved
moderate to high strain-rates. In the numerical calculations the discretization parameters were
underresolved, yet the scheme successfully provided results qualitatively comparable to other
results reported in the litrature. The scheme was also applied to examples in two- and three-
dimensions. In these cases the constants entering into the constitutive equations were taken
from the litrature where they were derived based upon best match with experimental data. The
tests were cylindrically and spherically symmetric respectively and in both cases symmetry
was preserved by the Cartesian solver when compared to one-dimensional polar calculations.
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Figure 7. Scatter graph comparison of three-dimensional cartesian (points) and one-dimensional
spherical (solid line) solutions of the testcase in § 6.3 at a time t = 10 µs. Cartesian results were

obtained with a uniform grid spacing ∆x = ∆y = ∆z = 1/10 cm and using CFL=0.6.
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APPENDIX

II. PROOF OF CONTINUITY

In quasi-linear form the equations governing strain are

∂Fij

∂t
+ uk

∂Fij

∂xk

− Fkj
∂ui

∂xk

= −
1

2Gτ
σ′

imFmj . (73)

Following [8] the following equalities can be found

Dtρ =
∂ρ

∂Fij

DtFij ≡
∂ρ

∂Fij

„

∂Fij

∂t
+ uk

∂Fij

∂xk

«

=
∂ρ

∂Fij

„

Fkj
∂ui

∂xk

−
1

2Gτ
σ′

imFmj

«

, (74)

where Dt ≡ ∂
∂t

+ uk
∂

∂xk
denotes the substantial derivative. Using ρ = ρ0/det|F |, the derivatives of

density with respect to deformation in (74) are

∂ρ

∂Fij

= −
ρ0

det|F |2
∂det|F |

∂Fij

= −
ρ0

det|F |
F−T

ij = −ρF−T
ij . (75)

Thus

∂ρ

∂Fij

Fkj
∂ui

∂xk

= −ρF−T
ij F T

jk

∂ui

∂xk

= −δik
∂ui

∂xk

= −ρ
∂uk

∂xk

. (76)

Expanding the continuity equation gives

∂ρ

∂t
+ uk

∂ρ

∂xk

+ ρ
∂uk

∂xk

=
∂ρ

∂Fij

„

∂Fij

∂t
+ uk

∂Fij

∂xk

− Fkj

∂ui

∂xk

«

=
∂ρ

∂Fij

„

−
1

2Gτ
σ′

imFmj

«

. (77)

Finally, the previous results can be used to find

∂ρ

∂Fij

„

−
1

2Gτ
σ′

imFmj

«

=
ρ

2Gτ
F−T

ij F T
jmσ′

im

=
ρ

2Gτ
δimσ′

im = 0, (78)

Thus the right-hand-side of (77) is equal to zero, which is the required result.
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III. CYLINDRICAL COORDINATES

Partial derivatives in Cartesian coordinates, (x, y, z), can be transformed into cylindrical polar
coordinates, (r, θ, z), using

x = r cos θ (79)

y = r sin θ (80)

z = z (81)

Vectors and tensors are rotated via the rotation matrix

Rcyl =

0

@

cos θ sin θ 0
− sin θ cos θ 0

0 0 1

1

A (82)

giving for example the velocity vector vcyl = Rcylv and deformation tensor Fcyl = RcylFRcyl [17].
Thus the governing system, (15), in cylindrical coordinates becomes

∂U

∂t
+

1

r

∂rF r

∂r
+

1

r

∂F
θ

∂θ
+

∂F
z

∂z
= Sg − Sc − Sp (83)

where the flux vectors F
α, and inelastic source terms Sp maintain the same form as before only the

state variables are replaced with those rotated into the new coordinate system. The source term Sc

and resultant geometric source terms Sg are given by

Sc =
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IV. SPHERICAL COORDINATES
Partial derivatives in Cartesian coordinates, (x, y, z), can be transformed into spherical polar
coordinates, (r, θ, φ), using

x = r sin θ cos φ (84)

y = r sin θ sin φ (85)

z = r cos θ (86)

Vectors and tensors are rotated in the same way as with the cylindrical coordinate transformation,
via the rotation matrix

Rsph =

0

@

sin θ cos φ cos θ cos φ − sin φ
sin θ sin φ cos θ sin φ cos φ

cos θ − sin θ 0

1

A . (87)

Thus the system of conservation laws, (15) can be rewritten in spherical coordinates

∂U

∂t
+

1
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F

r
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+

1

r sin θ

∂ sin θF
θ
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∂φ
= Sg − Sc − Sp (88)

where the vectors are given by
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