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Abstract 

The potential of using an electronic nose (E-nose) as a rapid technique for screening the 

responses of dermatophytes to antifungal agents was studied. In vitro, the 50% and 90% 

effective concentration (EC) values of five antifungal agents including fungicides and 

antioxidant mixtures against T. rubrum and T. mentagrophytes were obtained by mycelial 

growth assays. The qualitative volatile production patterns of the growth responses of these 

fungi to the EC values incorporated into solid media were analysed after 96-120 hours 

incubation at 25°C using headspace analyses using 5 replicates per treatment. Overall, 

results, using principal components analysis and cluster analysis, demonstrated that it was 

possible to differentiate between various treatments within 96-120 hours of growth. The 

EC50 values were discriminated from the controls while the EC90 concentration treatments 

were often grouped with the agar blanks because of very slow growth. This study showed 

that potential exists for using qualitative volatile patterns as a rapid screening method for 

antifungal agents against microorganisms. This approach could significantly improve and 

facilitate the monitoring of antimicrobial drug activities and infection control programmes 

and perhaps also for monitoring of drug resistance build up in microbial populations. 

 

 

Key words: Trichophyton species, volatile fingerprints, anti-fungal compounds, rapid 
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1. Introduction 

 Dermatophytoses are common among skin diseases worldwide. Even in Europe, 

infections such as tinea capitis are an increasing problem [5]. Although, resistance to 

antibiotics among dermatophyte species is very uncommon, determination of the in vitro 

susceptibility of dermatophytes, particularly for management of treatment failures, may 

prove helpful [1]. Many techniques, such as agar-based methods (dilution and diffusion) 

and broth dilution, have been used for antifungal susceptibility testing (AST) but there is no 

standard method for AST of dermatophytes [2, 9].  However, because dermatophytes grow 

slowly, agar-based methods have often been employed [14]. These methods are time-, 

labour-, and resource-intensive which make them unsuitable for rapid screening 

programmes. So, there is a need for novel and quick alternative laboratory approaches.  

 All micro-organisms produce by-products as a result of their normal metabolism 

[17]. Some of these metabolic by-products, including alcohols, aliphatic acids, ketones and 

terpens are volatile at low temperature and are known as volatile organic compounds 

(VOCs). Many VOCs have characteristic odours. Since the production patterns of VOCs 

are unique to certain micro-organisms (or disorders), they can potentially be used as 

biomarkers [19]. Quantitative analysis of VOCs has almost exclusively been based on gas 

chromatography-mass spectrometry which is time-consuming, relatively expensive, and 

required skilled operators [17, 19]. However, rapid qualitative analysis of volatile 

production patterns by means of electronic nose (E-nose) devices for early detection and 

discrimination of infections [3, 4, 7, 10, 11, 12, 18, 15, 16] or non-infectious diseases such 

as lung cancer and diabetes mellitus  [4, 13, 19] has yielded promising results.  

 The aims of this work were to study the potential of using a hybrid sensor array as a 

rapid screening method for antifungal agents for controlling dermatophytes using the drugs 

and other antioxidants using volatile fingerprints. To achieve these objectives we (a) 
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determined the growth responses of two Trichophyton species, T. rubrum and T. 

mentagrophytes, against five antifungal agents (itraconazole, griseofulvin, butylated 

hydroxyanisole, octyl gallate and n-propyl-p- hydroxybenzoate), (b) calculated the effective 

doses for inhibition of 50 and 90% growth (EC50 and EC90); (c) at these EC50 and EC90 

concentrations, the effect on the volatile production patterns by these two fungi when 

grown for up to 96-120 hrs was evaluated and compared with negative and positive controls 

based on the responses of the hybrid sensor array system. PCA and CA were used to 

examine the potential for discriminating between antifungal treatments and the controls.   

 

2. Materials and Methods 

2.1 Fugal isolates 

 Two Trichophyton species, T. rubrum (No. 115) and T. mentagrophytes (No. 224), 

were used in this study. The Trichophyton species were human isolates and obtained from 

the National Collection of Pathogenic Fungi (NCPF), Bristol, UK. 

 

2.2 Growth medium 

 Sabouraud’s dextrose agar (SDA) medium was prepared in house by mixing 10 g l
-1 

mycological peptone (Amersham, Little Chalfont, UK; Oxoid, UK), 40 g l
-1 

glucose (Acros 

Chemicals, Belgium), and 15 g l
-1 

agar Technical No.3 (Oxoid, UK). At the end, 0.05 g l
-1 

chloramphenicol (Sigma, UK) was added.  

 

2.3 Antifungal agents 

 Two antifungal drugs, itraconazole (Janssen Pharmaceuticals, Belgium) and 

griseofulvin (Darou Pakhsh Co., Iran), and three antioxidants including butylated 

hydroxyanisole (BHA; C11H16O2) (Sigma, US), octyl gallate (O-G; C15H22O5) (Fluka 
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Chemie GmbH, Germany) and n-propyl-p- hydroxybenzoate (P-P; C10H12O3) (Sigma, US) 

were used in this research work. All antioxidants are considered as Generally Recognized 

As Safe (GRAS) compounds. For each drug, a stock solution with a concentration of 100 

μg ml
-1

 was prepared by dissolving 2mg of anti-fungal agent in 20 ml of 99.5% dimethyl 

sulfoxide (DMSO) (Sigma, US). For antioxidants and based on the molecular weight of 

each preparation, a stock solution with the concentration of 1 mM in 20 ml of 99% ethanol 

was made. Stock solutions were stored at 4°C. 

 

2.4 E.nose system 

 An AppliedSensor 3320 E-nose (AppliedSensor Group, Sweden) was 

employed in this study. The core sensor technology of this machine is based on a hybrid 

array of 10 metal-oxide-silicon field-effect-transistor (MOSFET) sensors and 12 metal 

oxide sensors (MOS), and a capacitance-based relative humidity sensor. These sensors are 

provided as standard in this specific system. The MOSFET sensors were sensitive to 

hydrogen, amines (MOSFET 101A); amines and esters (MOSFET 102A); aldhydes and 

alcohols (MOSFET 103A); hydrogen (MOSFET 104A); hydrogen and amines (MOSFET 

105A); amines, aldehydes, esters, alcohols and ketones (MOSFET 101B); hydrogen, 

amines and alcohols (MOSFET 102B); amines, aromatics, aldehydes, esters, ketenes and 

alcohols (MOSFET 103B); hydrogen (MOSFET 104B) and amines, aldehydes, esters and 

ketones (MOSFET 105B). The sensor array was heated to 140
o
C. 

The 12 MOS sensors were specific for air contaminants such as hydrogen and 

carbon monoxide (MOS 101); hydrocarbons (MOS 102); alcohols, organic solvents (MOS 

104); hydrocarbons (MOS 110); methane (MOS 111); propane and butane (MOS 112); 

hydrogen (MOS 113); organic solvents (MOS 114); alcohol (MOS 115); Freon (MOS 116); 

ammonia (MOS 117); organic solvents, alcohol and hydrogen (MOS 118).  
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  The E.nose system used has a 12 vial auto-sampler system. The 30 ml volume vials 

were sealed and placed into the sample holders which were maintained at 30
o
C. The 

computerized programme used consisted of 30 sec to obtain the base line, 30 sec to take a 

sample, 200 sec flushing, resulting in a total time of 4.20 mins. There are two gas filters 

connected to the inlet including a drying column of silica gel which acts as moisture trap, 

and a hydrocarbon filter which is in two parts, one is a moisture filter and the other is an 

active carbon adsorbent. The individual sample holders for the vials are temperature 

controlled at 37
o
C to maintain stability of presentation of vials for head space analyses. 

Only when equilibration has been achieved does the system become operative. The air 

enters the system at a flow rate 60 ml min. The divergence response of each sensor was 

used in all analyses.   

 

2.5 Determination of EC50 and EC90 values 

 Molten SDA media were serially diluted with stock solutions of itraconazole and 

griseofulvin so that 0.25, 0.50, 1.00 and 2.00 μg ml
-1 

treatments were obtained. SDA media 

were also amended with two different antioxidant combinations (BHA + P-P; O-G + P-P) 

to obtain final concentrations of 20 mM and 40 mM. Modified media were poured in 9cm 

plastic Petri plates and for each species, three replicate plates of each treatment and plain 

SDA (as control) were inoculated centrally with a 0.5 mm diameter mycelial agar plug 

taken from the margin of actively growing cultures of T. rubrum and T. mentagrophytes on 

SDA. Plates were incubated at 25°C in dark and mycelial extension diameters were daily 

measured in two perpendicular directions for 14 days. Tests were repeated with griseofulvin 

and antioxidants-amended plates over a narrower range of 0.025, 0.050, 0.100, 0.200 μg ml
-

1
 concentrations. The EC50 and EC90 values of all antifungal agents involved in the study for 

T. rubrum and T. mentagrophytes were calculated by linear regression of the temporal 
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extension rates and then plotting the relative growth rates (mm day
-1

) to compare 

treatments. The treatment list is shown in Table 1. All experiments were carried out with 

three replicates per treatment and carried out twice.  

 

2.6 Procedure used for e.nose analyses 

Subsequently, for each antifungal agent (single or combined, for each of the 5 treatment 

types) tested, molten SDA media were amended with the related calculated EC50 and EC90 

values per species (T.rubrum, T.mentographytes) and poured into 9 cm plastic Petri plates. 

A total of 5 replicates per treatment for each time of analyses were prepared and these were 

inoculated with 0.25 ml of a 10
6
 spore mL

-1 
suspension of each species and spread plate on 

the agar surface with a sterile bent Pasteur pipette. Negative and positive controls were used 

as additional treatments. These were incubated at 25°C in the dark for up to 120 hours. At 

each time point, four 2 cm diameter agar plugs from 5 replicate plates of each treatment 

were destructively sampled using a sterile cork borer and placed in sample vials (30 ml) 

which were sealed with a septum and screw-top lid. After one hour to allow sample 

equilibration the vial headspaces were analysed using the E-nose system. The headspace 

volume was approx. 25 ml and this was sampled automatically by a needle from the sample 

port which was then retracted into the e.nose. A second needle replaced the volume of 

headspace removed with filtered air. The headspace volatiles were automatically passed 

through the sensor chamber and over the heated sensor arrays. The air relative humidity 

over the sensor array was found to be in the range 15-30% based on the relative humidity 

sensor included in the array. The flow rate and times for each part of the cycle were 

detailed previously. Every few weeks we also included standards of specific volatiles of 

isopropanol, ethanol, acetone (1-2%) and de-ionised water to ensure that the results 

obtained from sensors were consistent over time when the responses were plotted using 
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PCA analyses and compared over time. Overall, separation of specific standards based on 

the responses are consistent over time. The cultures grown for 96-120 hours (five 

independent replicates per treatment at each time) were used. These were chosen as they 

represented times at which the early stages of microscopic and visible growth occur and 

when identification of these types of fungi is often difficult.  

 

2.7 Data analysis  

 Mycelial growth assays data were analysed by Microsoft Excel. NSTSenstool 

software (an in-built software package in the AppliedSensor 3320 machine) was employed 

to perform principal components analysis (PCA) on the response parameter (mean-centred 

data) which also indicated the maximum peak response for the various sensors. These data 

were also analysed by cluster analysis (CA) using Statistica 8.  

 

3. Results 

3.1 Effective concentration values 

 Growth rates relative to the controls (data not shown) were used to determine the 

EC50 and EC90 values for antifungal agent concentrations (Figure 1; Table 1). Except for the 

antioxidant combinations of BHA + P-P where the actual EC90 values for T. rubrum and T. 

mentagrophytes were calculated, for other antifungal agents in the study the highest 

employed concentration in each experiment was equivalent to the EC90 values.   

 

3.2 Early differentiation between inoculated antifungal treatments and controls 

 Figure 2 shows that there was very good reproducibility of the response of ten 

MOSFET sensors as an example, to five replicates of T. mentagrophytes growing on plain 

SDA. Figure 3 presents the PCA of the response of the hybrid sensor based E-nose to 
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inoculated treatments of amended SDA with the EC50 and EC90 values of itraconazole and 

the fungal species grown on antifungal-free SDA (as positive controls) together with blank 

SDA medium (as a negative control) and un-inoculated amended SDA at 2.00 μg ml
-1 

of 

itraconazole after 96 hours. There was a clear separation between the inoculated and un-

inoculated itraconazole treatments, and the negative controls. Because the Trichophyton 

species did not grow at the EC90 values there was no separation after 96 hours based on 

volatile fingerprints. This however accounted for 97.6% of the data described by the first 

two principal components (PC). After 120 hours growth there was also distinct clusters of 

the two dermatophytes growing on un-amended SDA, with these treatments clearly 

differentiated from other treatments (Figure 4). 

Figure 5 shows the CA after 96 hours, using Euclidean distances and Ward’s 

method, for the treatments using griseofulvin as the test antifungal agent. This showed two 

tight clusters of the T. rubrum and T. mentagrophytes replicates growing on plain SDA, and 

clearly shows the T.rubrum EC50 replicates grouped separately. However, for the other 

treatments there was a mixed group with no clear differentiation after 96 hrs.     

 

3.3. Effect of anti-oxidant treatments  

 Analysis of the data related to the response of the E-nose sensors to different anti-

oxidant treatments (BHA + P-P treatments) by PCA after 96 hours showed three clusters of 

T. rubrum and T. mentagrophytes growing on SDA, and T. mentagrophytes growing on 

SDA at the EC50 concentration of the antioxidant combination discriminated from other 

treatments, which were all grouped together. This accounted for 94.9% of the data 

described by PCs 1, 2 and 9. After 96 hrs using the Euclidian distances, the dendrogram 

shows that to a large extent the positive controls of the two species (T.rubrum, 

T.mentographites) and EC50 concentration replicates could be effectively differentiated 



 10 

(Figure 6). This was unclear for the EC90 treatments. After 120 hours, examination of the  

PCA map showed four distinct groups of dermatophyte species growing on SDA and that 

amended with the EC50 concentration of BHA + P-P per species, clearly separated from the 

other treatments (Figure 7).  

 

 

4. Discussion 

 This is the first study to investigate the potential of using the E-nose as a qualitative 

screening tool for rapid assessment of the responses of dermatophytes to antifungal agents. 

Although growth on agar was used to determine the EC values of some antifungal agents, 

overall, the results showed that it was possible to discriminate between T. rubrum and T.  

mentagrophytes growing on un-amended solid media (SDA) from those inoculated on 

antifungal-modified media as early as 96 hours after incubation by analysing their volatile 

production patterns.  

 In the presence of a commonly used antifungal drug, itraconazole, the Trichophyton 

species, growing on control media and those amended with the EC50 and EC90 values of the 

drug were successfully differentiated after 96-120 hours. This supports previous studies 

with four Trichophyton species which showed differentiation within 96 hours using 

qualitative volatile fingerprints [15]. The results also revealed a similarity in the volatile 

production patterns of control media and those dermatophytes inoculated on antifungal 

modified media and hence the inhibition of growth by the antifungal drugs within the same 

time-point. Itraconazole is an azole agent which inhibits ergosterol synthesis in the fungal 

cell wall by inhibiting fungal cytochrome 14α- demethylase, and when given topically, may 

cause direct damage to the fungal cytoplasmic membrane [9].    

The results of the griseofulvin test suggest that fungal age of cultures may affect the 

discrimination achieved. Differences were not very clear after 96 hrs. However, after 120 
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hrs clear differentiation between treatments of the EC90 values of griseofulvin and negative 

controls were similar to those in the itraconazole study. Griseofulvin, a fungistatic drug, 

acts in a different way, by inhibition of the formation of intracellular microtubules [6].  

 Detailed studies on potential alternative antioxidant compounds for the control of 

dermatophytes have not previously been investigated. Working with the experimental 

combination of BHA+P-P, the E-nose could successfully discriminate between three to four 

treatments of Trichophyton species growing on antifungal-free media and those modified 

with the EC50 values. The clear separation of negative controls and inoculated treatments at 

EC90 values from others within 96-120 hours indicated inhibition of growth similar to that 

for existing drugs such as itraconazole and griseofulvin. This also showed that the E-nose 

was able to differentiate between closely related treatments, notably those of the 

Trichophyton species growing on control media and on media amended to the EC50 value of 

the combination per species.  

 It was observed that the antifungal agents incorporated into the un-inoculated media 

did not affect the quality of the volatiles and therefore the process of discrimination. 

Previous studies have demonstrated that detection of micro-organisms in potable water in 

the presence of low quantities of heavy metals may modify their activity and thus the 

volatile production patterns enabling further separation to be made. Other studies have also 

shown that the nature of the culture media will influence the production of volatiles by 

micro-organisms [17, 19]. In contrast, Sahgal et al. [15] found that, regardless of medium 

the volatile fingerprints were could help in discrimination between four Trichophyton 

species.   

To our knowledge, this is the first study that has employed qualitative volatile 

fingerprints for rapid screening of the susceptibility of dermatophytes to antifungal agents. 

The study shows the reproducibility of the method and the potential of using this approach 
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as a quick and simple way of qualitative screening of the responses of dermatphytoses to 

antifungal agents. 

 

5. Conclusions 

 At the present, mould fungi, particularly dermatophytes, are not routinely tested for 

susceptibility [6, 14]. Most studies have focused on the selection of a medium that supports 

conidial formation in T. rubrum or susceptibility testing of dermatophytes isolated from 

patients by using the protocols of the Clinical Laboratory Standards Institute (CLSI) and 

the European Committee on Antimicrobial Susceptibility Testing (EUCAST) [1, 2, 14]. 

These methods are resource and time-consuming. In contrast, the detection of VOCs by the 

sensor array of an E-nose has many advantages [4]. The E-nose is non-invasive, sensitive, 

portable and relatively inexpensive and has a broad range of potential applications [4]. The 

current study demonstrated the potential for the rapid screening of novel antifungal 

compounds using volatile fingerprints and also offers the potential of use of this approach 

for monitoring the potential build up of resistance to specific anti-fungal or indeed anti-

microbial drugs. By examining the PCA maps it would be possible to identify when poor 

control is being achieved by having both positive and negative controls on a regular basis 

for comparison. 
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Table 1. The treatment values for 50% and 90% effective concentrations (EC50 and EC90) 

for inhibition of mycelial growth of Trichophyton species which were used in this study.  

 

 

Antifungal 

treatments 
Species EC50

a
 EC90

b
 

Itraconazole T. rubrum  0.18 (μg ml
-1

) 2.000 (μg ml
-1

) 

T. mentagrophytes 0.160 (μg ml
-1

; M50) 2.000 (μg ml
-1

) 

Griseofulvin T. rubrum 0.010 (μg ml
-1

) 0.200 (μg ml
-1

) 

T. mentagrophytes 0.012 (μg ml
-1

) 0.200 (μg ml
-1

) 

BHA
c
 + P-P

d
 

 

P-P + O-G
e
 

T. rubrum 

T. mentagrophytes 

T. rubrum 

T. mentagrophytes 

0.137 (mM) 

0.100 (mM) 

0.170 (mM) 

0.110 (mM) 

0.227 (mM) 

0.215 (mM) 

0.250 (mM) 

0.250 (mM) 

a
 EC50 is the effective concentration of the antifungal drug at which mycelial growth was 

inhibited by 50%.; 
b 

EC90 is the effective concentration of the antifungal drug at which 

mycelial growth was inhibited by 90%; 
c
 Butylated hydroxyanisole; 

d
 n-Propyl-p- 

hydrohybenzoate; 
e
 Octyl gallate 
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Figure legends 

Figure 1. Dose response curve for itraconazole concentrations and mean growth rate (mm 

day-1) of Trichophyton rubrum (T.r.) and T.metagrophytes (T.m.) used to calculate the 

EC50 and EC90 concentrations used.  

 

Figure 2: Reproducibility of response of the sensor set to volatile produced by replicates of 

T. mentagrophytes after 96 hours growth on SDA at 25
o
C. (Key: M – T. mentagrophytes) 

 

Figure 3: PCA score plot differentiating between Trichophyton species growing on plain 

SDA and various itraconazole treatments after 96 hours.(Key: B, blank SDA; ITZ, SDA 

amended at 2 μg ml
-1

 itraconazole; M, T. mentagrophytes; M50, T. mentagrophytes and 

EC50 itraconazole; M90, T. mentagrophytes and EC90 itraconazole; R, T. rubrum; R50, T. 

rubrum and EC50 itraconazole; R90, T. rubrum and EC90 itraconazole)  

 

Figure 4: PCA score plot after 120 hours separating the positive controls from each other 

and from itraconazole and blank SDA treatments. Key: B, blank SDA; ITZ, SDA amended 

at 2 μg ml
-1

 itraconazole; M, T.mentagrophytes; M50, T.mentagrophytes and EC50 

itraconazole; M90, T.mentagrophytes and EC90 itraconazole; R,  T.rubrum; R50, T.rubrum 

and EC50 itraconazole; R90, T.rubrum and EC90 itraconazole. 

 

Figure 5. Tree diagram of blank SDA, positive control, and griseofulvin treatment samples 

after 96 hours. Key: B – blank SDA; BP – un-inoculated SDA at 0.250 mM concentration 

of BHA + P-P;  M – T. mentagrophytes; M50 – T. mentagrophytes and EC50 of BHA + P-P; 



 18 

M90 –  T. mentagrophytes and EC90 of BHA + P-P; R – T. rubrum; R50 – T. rubrum and 

EC50 of BHA + P-P; R90 – T. rubrum and EC90 of BHA + P-P. 

 

Figure 6. Tree diagram showing the discrimination between the T.rubrum treatments, 

especially the T.rubrum, and T.rubrum EC50 and the blanks. Key: B – blank SDA; BP – un-

inoculated SDA at 0.250 mM concentration of BHA + P-P;  M – T. mentagrophytes; M50 – 

T. mentagrophytes and EC50 of BHA + P-P; M90 –  T. mentagrophytes and EC90 of BHA + 

P-P; R – T. rubrum; R50 – T. rubrum and EC50 of BHA + P-P; R90 – T. rubrum and EC90 

of BHA + P-P. 

 

Figure 7. PCA score plot after 120 hours with clusters of T. rubrum and T. mentagrophytes 

growing on various treatments. Key: B, blank SDA; BP, un-inoculated SDA at 0.250 mM 

BHA+P-P;  M, T.mentagrophytes; M50, T.mentagrophytes and EC50 of BHA+P-P; M90, 

T.mentagrophytes and EC90 of BHA+P-P; R, T.rubrum; R50, T.rubrum and EC50 of 

BHA+P-P; R90, T.rubrum and EC90 of BHA+P-P. 
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