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ABSTRACT 

The use of hot surface films for measuring skin friction 
is examined. It is shown that all existing theories, which 
neglect heat conduction within the substrate, are inadequate 
in predicting the variation of heat loss from the film with 
skin friction. A more physically realistic theory is 

presented which accounts for the conductive and convective 
heat transfer into the flow and also heat conduction within 
the substrate. This leads to a more general relationship 
between skin friction and heat loss from the film. 

Experiments conducted in flat plate laminar and turbulent 
boundary layer flow show that this relationship is more 
accurate than previous forms. 

The time and temperature dependence of the heat loss 
from the hot film are also explored theoretically and experi- 
mentally. The effect of surface misalignment of the film is 
shown to alter significantly the convective heat transfer. 
This effect is more pronounced in laminar flow than in 
turbulent flow. 

Using a glue-on hot film probe, calibrations relating the 
heat loss to skin friction were found to be different in 
laminar and turbulent flow. 

An experimental operating procedure for the use of hot 

surface films for measuring skin friction is proposed which 
significantly increases the accuracy of the technique. 
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Subscripts 

e effective value in turbulent flow 
F fluid quantity 
I imaginary part 
m measured value 
max maximum value 
MF mean value over the film 
R real part 

s substrate quantity 
w value at the wall 

o initial value, value at TW =0 
value at infinity 

Units 
Unless otherwise stated the S. I. system of units is used. 



CHAPTER 1 

ý 

Review of the heat transfer technique for the measurement of skin 
friction 

1.1 Introduction 

1 

The drag force exerted on a vehicle moving through a fluid 
is one of the dominant factors determining the performance of 
the body. As the cost of extracting the earth's finite fossil fuel 

reserves grows, the incentive for minimising the drag and hence 
the fuel consumption increases. 

Drag arises through the action of pressure forces and shearing 
forces, or skin friction, upon the body. Approximately 50% 
of the cruise drag on current civil aircraft may be attributed 
to skin friction. Since the success of new aircraft projects 
is dependent upon accurate performance predictions it is 

essential that the skin friction drag is accurately known. Skin 
friction also leads to energy 'losses' in internal flows. To 

maintain the flow a pressure difference is necessary between the 
inlet and outlet of the system. Thus the shearing stress of a 
fluid at a wall, or skin friction, is a parameter of fundamental 

engineering importance. 

Knowledge of the shear stress over a surface is also important 
in understanding the nature of the flow. The wall shear stress 
is an important scale parameter in the study of turbulent flows. 
For a Newtonian fluid the shear stress at the wall is by definition 

TW = ý au 
ry 1w 

(1.1) 
i. e. the product of viscosity and velocity gradient at the wall. 

Although the measurement of skin friction is a problem of 
central importance in the field of applied fluid mechanics, it is 
notoriously difficult to obtain reliable wall shear stress data 
experimentally. The only method available for the direct measurement 
of Tw involves measuring the drag force on a surface element 
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mounted on a balance. Typically the total force acting on the 

element is measured either by a spring displacement mechanism 
or by an electro-mechanical force balancing system. To maximise 
the force for accurate measurement implies bulky devices with 
large surface elements and so an average value of Tw (force/area) 
is measured and not a local value. Furthermore, the effects 
of misalignment of the surface element with the body and flow 
pressure gradients cannot be readily accounted for. 

The wall shear stress may be determined if the velocity 
profile within the boundary layer is known. Obviously, if the 

variation of u(y) as yf0 is known then by using equation (1.1) 

Tw may be deduced. However, in general the accurate measurement 
of u(y) as the wall is approached is extremely difficult and 
so the method has little practical application. Alternatively, 
if the streamwise variation of the complete velocity profile 
is known, Tw may be deduced by application of the momentum integral 

equation. For two-dimensional, incompressible flow this may 
be approximatedt by the expression 

Tp_ä-(Ute) 

fa*Uý 
where o represents the momentum thickness and d* the displacement 
thickness of the boundary layer. The accuracy of the momentum 
integral approach is severely limited as e varies slowly with 
x and hence the determination of 

do/dx is generally unreliable. 

For turbulent boundary layer flows, it has been observed 
in a large number of cases that for a region close to the wall 
the velocity profile may be expressed as 

or 

u sf(Yu 
UT V 

u+=f(y+) 
where uT is the friction velocity defined as 

j!. 

(1.2) 

(1.3) 

t Under adverse pressure gradient conditions additional terms 
may become significant and hence ought to be included in equation (1.2). 



3 

This relation, which may be derived using dimensional arguments, takes 
the form 

=y+ (1.4) 

inside the viscous sublayer (y+ ti 10). For y+ ý 30 and y. 0.156 

equation (1.3) assumes the form 

u+ =K 1ny++C (1.5) 

where K is von Kaman's mixing length constant. 
Between these two regions a buffer or blending zone exists. 

It has been suggested by many authors that for equilibrium 
turbulent flows K and C are 'universal constants'. However, a brief 

comparison between various published experimental results indicates 

the difficulty involved in actually determining their true values. 
Although there would appear to be considerable differences in the 

various suggested values of K and C the actual scatter of each pair 
when used in equation (1.5) is not so large. Possibly the most widely 
accepted values are 

K=0.41 
C=5.0 

Thus if u(y) is known within the region for which equation (1.5) is 

applicable then uT and hence Tw may be deduced. 

A more convenient method for estimating Tw that also relies 
upon the universal nature of the velocity profile in turbulent flows 

is the Preston tube technique. By measuring the Pitot pressure 
recorded by a circular tube in contact with the wall, along with the 

wall static pressure, the shear stress may be estimated using various 
proposed calibrations. Other techniques based upon pressure measure- 
ment include the Stanton tube, sub-layer fences, blocks, etc. A 

comprehensive review of the techniques available for the measurement 
of skin friction is given by Winter (1977). 

Clearly the use of any technique that depends upon the 
'universal' nature of the flow in the wall region will be inaccurate 
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in non-equilibrium flows, e. g. in flows where the turbulent boundary 
layer has been manipulated in an attempt to reduce the skin friction. 
Recent work by Poll, Mathews and Stewart (1985, a) has questioned the 

use of Preston tubes for estimating Tw along the attachment line of a 
swept cylinder. 

The relationship between the heat convected from a hot surface 

element and the local skin friction may also be used as the basis of 
a technique for estimating Two In practice the electrical power 
required to maintain a surface element at a constant elevated 
temperature is measured. The power (i2R) supplied to the hot 

element must balance the rate at which energy (heat) is convected 
into the flow and also that which is conducted into the substratef. 
Since the effects of substrate conduction are not explicitly known, 

probes using this technique require calibration in a flow where the 

skin friction is known. 

This thesis examines the use of the heat transfer technique for 

the measurement of skin friction. 

1.2 Historical development of the technique. 

The foundation to the current knowledge of convective heat 

transfer appears to have been laid towards the end of the 19th 

century and early 20th century - see Eckert (1980). In 1931, Fage 

and Falkner examined the relationship between the heat convected 
from a hot surface element and the skin friction. Their experimental 
results obtained from a nickel strip on a circular cylinder confirmed 
a variation of heat loss from the strip with skin friction. However, 
they did not suggest that such a dependence could be used to measure 

Two Ludwieg (1950) specifically designed, constructed and demon- 

strated the use of a gauge based on the heat transfer technique for 

measuring skin friction. His gauge, see figure 1.1(a) consisted 
of a hollow brass casing across the end of which a thin celluloid 
diaphragm 0. lmm thick was attached. A copper block (2 x9x6 mm), 
with an attached electric heater and thermocouple, was cemented 
onto the diaphragm inside the brass housing. The brass housing was 

t For the moment, the heat conducted into the wires orovidina the elect- 
rical connection to the film is ignored. It is shown later that this is 
negligible relative to the heat conduction within the substrate. 
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then mounted with the celluloid end flush with the surface of a 
flat plate over which the skin friction was known. The air gap 
around the copper block provided good thermal insulation from the 
brass housing, whilst the celluloid skin offered minimal resistance 
to the heat transferred from the hot copper block to the airflow. 

Ludwieg's theoretical study suggested that under favourable 
circumstancest the heat convected from the copper block ought to be 
proportional to the cube root of skin friction, or explicitly 

0.807 ( ý2Pý` ý) 3 

pv 
(1.6) 

where Q is the total convected heat transfer rate per unit width, L 
is the streamwise length of the heating element, AT is the mean 
temperature rise of the copper block and k, Pr, p, v represent the 

usual fluid properties. His experimental results, see figure 1.2(a), 

supported the rectilinear variation of Q with TW13. The curvature of 
the results was largely attributed to the presence of the celluloid 
diaphragm which he assumed interfered with the flow in the viscous 
sublayer of the turbulent boundary layer. Ludweig assumed that the 

total heat dissipated from the copper block consisted of two independent 

portions - the heat convected by the flow which scales with Tw 3 

and that which is conducted to the wall as a result of the imperfect 
heat insulation. This second portion he assumed to be dependent 

upon the instrument itself and not the flow. Since it is the total 
heat loss that is measured (i2R), then equation (1.6) becomes: 

12R 
= 0807(L2-W)1/3 +6 wcp ` pv 

where w is the spanwise width of the heating element. 

(1.7) 

t see Chapter 2. 
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Nu = 0.807 PeV3 +B 

where the 'constant' B represents the heat conducted into the substrate. 

Liepmann and Skinner (1954) measured the heat loss from a 
0.0005 inch platinum wire cemented in a groove cut on the surface of 
an ebonite plate. Their results indicated that the convected heat 
transfer per unit rise in temperature of the wire was proportional 
to Tw 3. However, they found that the slope of the calibration did 

not correspond with that of equation (1.7). They therefore suggested 
that another consequence of substrate conduction is to increase the 
effective heating length of the wire in the streamwise direction. 
Thus, in order to account for the effects of substrate conduction 
equation (1.7) is modified to: 

"2A Pry 
wk = 0.807 ef W+B (1.8) 

Since the increase in L to Leff is due to substrate conduction, i. e. 
independent of TW, then 

Nu=APeV3 +6 (t. 9) 

where for a given probe, the 'constants' A and B represent the effects 
of substrate conduction. Liepmann and Skinner also suggested that 

t In the theory of heat transfer a Peclet number is defined as the 
product of Prandtl number and Reynolds number. In the current case 

t%f, %-- PrL2 ý-- 
L, 

- 
a 

pv v 
du L. L! 

= Pr. 
V 

which is the product of a Prandtl number and a Reynolds number (based 

on the characteristic velocity L. I ). Thus L2PrTW 
may be considered 

as a Peclet number. 
yw pv2 
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if Leff was sufficiently small so that the thermal layer over the 
heating element remained within the viscous sub-layer of the turbulent 
boundary layer, then the probe would have identical calibrations in 
laminar and turbulent flows. 

Bellhouse and Schultz (1966) constructed a probe consisting of 
a platinum film baked onto a Pyrex-glass substrate. Their results 
appeared to agree with equation (1.8). However, they obtained 
different calibrations in laminar and turbulent flows. They suggested 
that the probe may be moved from one location to another with no 
effect upon the calibration and that for an error of less than 5% 
in terms of Tw the calibration may be fixed by two points. They 
demonstrated the use of the probe in flows where the boundary layer 

was undergoing transition and also separation. Geremia's results 
(1972) also indicated that the probe's calibration carried out in 

one apparatus can be used for skin friction measurements in another 
apparatus, provided the calibration covers the same range. 

Experiments by Owen (1969) and Pope (1971), using the same 
gauge design as Bellhouse and Schultz, indicated that to within a 
5% error in terms of Tw, identical calibrations for laminar and 
turbulent flow could be obtained. Bellhouse and Schultz (1965) 
demonstrated that the calibration is independent of Mach number, at 
least up to M=3, provided the fluid properties are calculated 
at the appropriate film temperature (see also Appendix A). Owen 

and Bellhouse (1970) apparently obtained a unique calibration for 

laminar and turbulent boundary layers up to M=4.5. 

Brown (1967) showed that if the effective heating length of 
the film is small then the calibration is relatively insensitive to 

pressure gradients (4) except when Tw -* 0. Furthermore, Spence 
and Brown (1968) and also Bellhouse and Schultz (1966) proposed the 
form of the calibration when pressure gradients are significant 
(see Chapter 2). 

Murthy and Rose (1977) constructed a probe consisting of a 
platinum-rhodium wire, 5-10um diameter, solvent bonded onto a 
polystyrene substrate, see figure 1.1(b). They also proposed the 
use of two points for fixing the calibration and suggested that the 
no-flow reading Nuo may be used. Rubesin et al (1975) examined a 
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range of probe designs and suggested that the substrate ought to 

have the lowest possible thermal conductivity so as to reduce the 

effective length of the heating element. They therefore proposed a 

gauge consisting of a heating wire (0.025mm diameter) embedded in a 
Polyester resin film on a styrene copolymer substrate. From their 

experiments it appeared that such probes have identical calibrations 
in laminar and turbulent boundary layer flows and also that the 
interference on a probe due to the operation of another one further 

upstream is negligible when their spacing is greater than 10mm. 

Using a photo-etching process McCroskey and Durbin (1972) 

manufactured a probe consisting of two mutually perpendicular 
heating films. By considering the response of both films, they 
demonstrated that such a probe could be used to determine both the 
magnitude and direction of the skin friction vector, thus suggesting 
that the dual film probe may be used to measure skin friction in 

three-dimensional flows. McCroskey and Fisher (1972) applied the 
technique for measuring the skin friction distribution on a model 
helicopter rotor. Higuchi and Peake (1978) and Kreplin and Meier 
(1979) also demonstrated the use of dual sensor probes for estimating 
the skin friction vector in complex three-dimensional flows. 

Poll and Watson (1984) suggested that because the technique 
does not require the mean velocity profile to exhibit any special 
features (e. g. a universal law of the wall), it may be applied in 
flows where the velocity profile has been manipulated, possibly through 
the use of large eddy break up devices, etc. 

The technique has also been applied by Armistead and Keyes 
(1968a, b) for measuring the fluctuating component of the wall shear 

stress in turbulent flow. Owen (1969) proved the technique as a useful 
tool in studying transition. 

From the above discussion, it would therefore appear that the 
use of heated films for measuring skin friction has the following 
advantages: 

(i) Possibility of a unique calibration in laminar and 
turbulent flows. 

(ii) Calibration is independent of Mach number. 
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(iii) Calibration is reasonably insensitive to pressure gradients. 
(iv) Calibration is relatively insensitive to flow alignment. 
(v) Probe may be mounted flush with the surface, i. e. no flow 

disturbance. 
(vi) Probes are generally small and robust. 

(vii) Calibration may be fixed by any 2 points - one of which 
may be the no flow measurement. 

(viii) Calibration may be transportable from one test rig to 
another. 

(ix) Probe may be used in a wide range of flows. 
(x) Interference from upstream gauges is small. 

(xi) Probe may be used to measure fluctuating skin friction. 
(xii) Technique is easy to operate, requiring only basic hot 

wire control equipment. 
(xiii) Technique does not rely upon the apparent universality 

of the law of the wall. 

1.3 Disadvantages and problems of the technique. 

A major drawback of the heat transfer technique is that the 
accuracy of the method is severely limited by the extremely weak 
dependence of the total heat loss from the film upon the wall shear 
stress. During calibration any errors in determining Tw have 
little effect upon the calibration line, equation (1.9). However, 
when the calibration is used to determine Tw, any small error in 
measuring Nu will give a larger error in Tw. This point is graphically 
demonstrated in figure 1.3 where a calibration from Poll and Watson 
(1984) is plotted in the direct wall shear measuring mode. As shown, 
a 1% error in the measured value of ýdT (which is proportional to 
Nu) can result in a 20% error in the deduced value of Tw. 

Since Nu requires AT to be known, any change in AT, if not 
properly accounted for, could lead to large errors in estimating Tw. 
Reichert and Azad (1977) found that the calibration varied with the 
temperature of the fluid even when the corresponding changes in AT 
were included in the calculation of Nu. Similar trends were observed 
by Cousteix and Juillen. (1982). Hulton and Gammon (1976) also found 
that the calibration was sensitive to changes in the substrate 
temperature. 



From the literature there appears to be some confusion concern- 
ing the measured no-flow value of Nu, Nuo, relative to the calibration 
intercept B. Murthy and Rose (1977) suggest that B= Nuo whilst 
McCroskey and Durbin (1972) found Nuo to be less than B. Kreplin and 
Meier (1977) found that in some instances Nuo was greater than B. 

Ramaprian and Tu (1983) and Sandborn (1979) considered the 
effect of turbulence upon the calibration when obtained in a turbulent 
flow. Equation (1.9) strictly relates the instantaneous heat flux 

to the instantaneous wall shear stress. Hence, they argue, using 

mean values of Pe(Tw) and Nu to fix the calibration may give rise 
to significant errors in determining the constants A and B owing to 
the nonlinear relation between heat transfer and shear stress. 

Bellhouse and Schultz (1968) showed that the dynamic calibration 
of a probe differed from the static calibration and was frequency 
dependent. Baines and Keffer (1976) using a probe consisting of a 

nickel film deposited on a quartz rod found, by suddenly exposing 
the hot filz to a shear stress, that the response was unacceptably 
slow (the time constant, Tc, being of order 0.2 seconds). 
(Application of a low amplitude square wave test signal in the 
electrical circuit containing the probe had suggested that 
Tc < 0.001 seconds. ) They suggested that the probable cause of the 

poor frequency response of the probe was due to the large thermal 
inertia of the substrate. 

In practice, it is found that the heat conducted into the 
substrate is significantly greater than that convected by the flow 

and thus only a small proportion of the measured value of Nu 
( possibly less than 10%) is flow dependent. Hence any small change 
in the heat conduction within the substrate could give rise to a 
large wall shear stress error. A similar point was made by Reichert 

and Azad (1977) who found that the calibration shifted when the 
probe was moved from one test location to another. They suggested 
that this was probably due to a small change in the amount of contact 
between the probe body and mounting which seemed to significantly 
alter the heat conduction through the substrate. 

A more fundamental discrepancy exists within the literature 
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concerned with the application of the heat transfer technique for 

measuring skin friction. There appears to be some uncertainty 
about the form of the basic relationship between the heat loss from 
the film and the wall shear stress. Calibrations involving the cube 
root of Tw have been extensively used, whereas, Kreplin, Meier and 
Maier (1978) used the fourth root of Tw. No theoretical justification 

was given for using TWI except that it seemed to fit their experimen- 
tal results better than TW/3 

Reviewing many of the published calibrations in terms of Tw/3, 
it is found that the experimental data are often curved, or 'bowed', 
indicating a 'rolling-off' of Nu with increasing TW/3, see figure 1.2 
for examples. (Pope (1971) noted this from his own experiments. ) 
The curvature of the published results is such that it implies a 
higher root of TW (i. e. w$ :n> 3) ought to have been used to 
achieve linearity. Any departure of the experimental results from 
the Nu ti pecalibration may lead to significant errors when the 
calibration is used to measure Two This is illustrated in figure 
1.4 where the % error in Tw due to fitting the best 1/3 rd power 
law calibration to Rubesin's results (see figure 1.2(d)) is plotted. 
Also shown is the % error in TW when a calibration curve involving 

Tw/6 is fitted to the results. 

The following disadvantages may be cited against the technique - 

(i) Requires calibration in a known Tw flow. 
(ii) Inherent inaccuracy due to ill conditioned calibration curve. 

(iii) Uncertainty of the actual form of the calibration. 
(iv) Calibration is very sensitive to changes in the fluid or 

substrate temperature. 
(v) The applicability of the calibration effected in a two- 

dimensional flow to three-dimensional flows is unproven. 
(vi) The effects of TW' fluctuations and the ability to measure 

them is unclear. 
(vii) The effects of substrate conduction upon the probe's 

response are uncertain. 
(viii) The repeatability of the calibration is suspect. 

(ix) The effects of not flush mounting the probe are unknown. 
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CHAPTER 2 

Survey of theoretical solutions 

This chapter examines the historical development of various 
theories used in the application of heated films for the measurement 
of skin friction. 

2.1 Basic Theories 

Fage and Falkner (1931) derived a relationship between skin 
friction and the heat convected from a hot surface element. They 

recognised that the heat convected from the surface depends not only 
upon the fluid skin friction but also upon the velocity profile in 

the neighbourhood of the wall. By considering the heat balance for an 

element in the flow field, and ignoring second order terms, they 
derived the linear, steady heat convection equation: 

a2T 
- ECa(va f ýaT) =0 ay2 k ay ax 

(2.1) 

A series solution was then obtained by restricting the problem to 

cases where 
(i) The surface temperature distribution could be expressed in 
the form Tw = T4* + ExP where E, T, and p are constants. 
(ii) The free-stream velocity is given by Um = Fxm (F, m constants) 
thus allowing the use of the Falkner-Skan similarity solution 
for the viscous boundary layer. 
(iii) A uniform velocity gradient (normal to the wall) may be 

assumed to exist over the region through which the heat transfer 
is taking place. 

In particular, they found that the relationship between the local 
heat flux q(x) and Tw(x) was given by 

3 
r(x) L 

1ý3 
j/ 

1/3 

(TW(x) - Tl, )al(-2a2) 
pv2 x (2.2) 

where al and a2 are constants for a given Pr. m and p and L is the 
length of the hot wall. 
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Implicit in the solution leading to equation (2.2) is the assump- 
tion that the viscous and thermal boundary layers start from the same 
origin. However, equation (2.2) may also be used for an isolated hot 

surface element if the skin friction is constant over the region for 

which Tw > T.. Thus, for example, if it is assumed that the heat 

transfer is from an isothermal surface element (i. e. p= 0) over which 
the skin friction is constant (which from the Falkner-Skan solution 
implies m= 1/3) then Fage and Falkner determined al = 0.45 and 
a2 = -0.378. Hence by integrating equation (2.2) over the heated 

surface length L the total heat flux Q is 

-WýA = 0.808 PrT'_wL2 
Pv 

(2.3) 

where AT = Tw - Ta,. 

To validate the theory an electrically heated nickel strip 
was embedded in the surface of an ebonite block carried in a metal 
casing within a hollow steel cylinder. Mounting the cylinder across 
the working section of a wind tunnel, the wall temperature distrib- 

ution Tw(x) was measured over a range of speeds for various angular 

positions of the strip. Their results suggested little variation of 
Tw(x) with speed or angular position. By fitting appropriate forms 

of Tw = To + Exp to the measured wall temperature distribution it 

was possible to estimate the relationship between the total heat flux 

to the flow and the mean skin friction over the heated segment. For 

example, assuming constant skin friction over the hot surface, they 

predicted that for the measured wall temperature distribution the 
heat flux to the flow was 

= 1.044 Prow J3 
(2.4) 

^"'e PV 

where Tw is the mean skin friction over the heated region and ATe 
is the estimated mean temperature rise of the nickel strip. 

Ludwieg (1950) appears to have been the first to suggest that 
the variation of heat transfer with skin friction could be used as 
the basis of a technique for measuring skin friction. He argued that 

since the velocity profile in the near wall region of a turbulent 

1/3 
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boundary layer is related to TW then the heat transferred from a 
hot surface film to the flow ought to be related to Tw. Assuming 
that the thermal layer generated by the heating element remains within 
the viscous sub-laver of the turbulent boundary layer then the energy 
equation (2.1) may be further simplified to 

T aT 
_v a2T 2.5 yM Pr jX2 () 

since u+ = y+ (i. e. u=T y) and v=0. (Assuming v= 0implies TW is 
constant over the heated surface. ) 

Introducing the parameters 

x- and n =y 
z Pr FiýPLV7 

pv 

the governing equation (2.5) becomes 

ý- ä2T 
n2 

(2.6) 

(2.7) 

The assumption of an isothermal film on an otherwise adiabatic wall 
determines the boundary conditions 

T=TW 0< E< L} forn=0 
(2.8) 

where 

pv2 

Ludwieg proposed that provided L+ was not too small then the 
boundary conditions may be simplified to 

T=TW for 0c&4- andn=0 

eT=O 
Co<E: 0 L+ forn =0 57 

ý} _ 

/TWL2 

än 
=0 for -ý 0 and n=0 

(2.9) 

Equations (2.7) and (2.9) were originally solved by Leveque (1928) 
giving the solution 
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Where 

T s Tw - CTW - Ta)F(Y) 

Y- (9)ý3 , 
Jp e Y3dY 

F(Y) s co 
e- Y3 1oeýdY 

Thus using Leveque's solution, Ludwieg obtained the relationship 

92/3 L2zWpr /3 

^D1 O0 32 
6(o e-Y dY pv 

or Nu = 0.801Pe93 

(2.10) 

(2.11) 

Defining the thermal boundary layer thickness, 8T, as the distance 
from the wall where the tangent to the temperature profile at the 

surface intersects with 
TwT -T7 =1 then at the downstream edge of the 

film 

6T=1.86L Pe1/3 . 
(2.12) 

Assuming the viscous sublayer thickness dL may be defined 6L 0 C--V- 

where C is a constant then the necessary condition 6T < 6L implies 
that 

Pe < (cý)6Pr3 (2.13) 

In 1954 Liepmann and Skinner also obtained the Nu ' Pe/3 

relationship using dimensional and similarity arguments. They 

examined the effect of pressure gradient upon the heat convected from 

an isothermal film by assuming a velocity profile of the form 

rdP+ u= 
ý 

y2 a 
(2.14) 

t The velocity profile near the wall may be approximated as 
Uy+p 4y2 

. At separation TW f0 (2-dimensional flow) SO 
the profile becomes uaI 7 -V dy2 

. 
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.. _. 
O dx)1/4 

. To justify the and showed that Nu is proportional to (Pr 
PV 

assumption 
= 

<< äy2 they imposed the condition that Nu ought to 

be large (Nu » 1). Using an order of magnitude analysis an upper 
limit for Nu was also obtained, Nu < 

Pto 
ensure that the thermal 

boundary layer remains within the viscous sub-layer. They proposed 
that under these conditions a unique calibration for both laminar 

and turbulent boundary layers would be obtained. 

Appendix B outlines a simple solution procedure for the energy 
equation assuming a uniform sheared flow with a prescribed wall 
temperature distribution. It is shown that if the effects of longi- 
tudinal diffusion are ignored then the solution is given by 

Nu = aPeý3 

where the constant a is a function of the wall temperature. 

(2.15) 

2.2 Heat convection to a quadratic velocity profile 

Bellhouse and Schultz (1966) considered the combined effects of 

pressure gradient and skin friction upon the heat convected from the 
film. They obtained a solution to the thermal energy integral equation 

co 
ý 

u(T - Tý, )dy = ý- 
n 

for a velocity profile of the form 

Tw 
yt1 

dP 
y2 u= p 71-1 W 

(2.16) 

(2., 7) 

The solution follows the method proposed by Curle (1962) who assumed 
that the temperature profiles are self similar i. e. 

== f(. & = f(n) 
T 

Using Fourier's conduction law q= -k aT , Curie evaluated the 
y=0 

integral in equation (2.16) and found 

(2.18) 



(2.19) 

where 
a=1 nf(n)f'(0)2dn w 0.2226 

b=- 
ln2f(n)f'(0)3dn=0.1046 

(2.20) 

Using the Falkner-Skan similarity solutions, Curle computed a and b 
and found that they were reasonably constant (variation less than 1%) 
over the whole range of pressure gradients from stagnation (m = 1) 
to separation (m =-0.0904) and Prandtl number range from order 1 to 
order 10. 

To evaluate equation (2.19) Bellhouse and Schultz made the 
following assumptions 

(i) Over the heated film Tw and dP/dx are constant. 

(ii) Tw(x) and q(x) are step functions, both constant along 
the film and zero everywhere else. 

Thus integrating equation (2.19) they obtained 

ak2TW(dTý3 +b dP (QTý`'k3 = p2 L 
q7 ax qp kFr 

or r Nu3=aPe+ýzWNü- 

(2.2, ) 

However, examination of equation (2.19) immediately reveals that eT 
and q cannot both be constant over the film as the differential on 
the left hand side would then be zero. Bellhouse (1965) showed 
that if AT and zw were both constant over the gauge the for dP/dx = 09 
q(x) varies like x1/3 over the film. Assuming q(x) ti x 

/3 
, equation 

(2.19) yields 

Nu3 =ý aPe + -8- «7 UX w NU (2.22) 
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Since the temperature field is dependent upon the velocity field, 
the assumption of a universal temperature profile independent of 
pressure gradient seems suspect and so the existence of single values 
for a and b is doubtful. Spence and Brown (1968) therefore sought a 
solution to the thermal energy equation (2.1) for a quadratic velocity 
profile, equation (2.17), assuming a 'top-hat' temperature distribution 

over the film. The solution consisted of two series relating the total 
convective heat loss from the isothermal film to the skin friction and 
pressure gradient for the limiting cases of 

(dP/ 2 
tending to zero 

and tending to infinity. dx) 

For 
iriCTW3 ý2 -º co i. e. 

äx 
-º 0 then 

(dP/dx)2 

Ld P/ Ld P/ 
Nu = 0.8072 Pe/3 + 0.1 

T. 
dx 

- 0.02869 Pet/3( 
T 

dx 
)2 ... .w 

T3 
whilst for 

(dP/ z -º 0 i. e. Tw -º 0 
dx) 

Nu = 0.6184(Pe LdP )j +0 3649(Pe L dP)i Tw 
dPdx Týx ' Twax L/ 

- 0.1457(Pe T ý)i ( 
dP 

2 

wL /d x 

W 
Ff (2.23) 

(2.24) 

Fortunately these series may be accurately represented by the single 
equation 

Nu 3= ý Pe + TTT äx Tw Pe (2.25) 

i. e. the leading term of each series. 
Clearly this is of the same form as the integral solution, 

equation (2.22). Brown(1967b) noted that the assumption that the 

thermal boundary layer thickness is negligible relative to the viscous 
boundary layer implies that the Prandtl number is very large. Thus 
Brown recomputed the values of a and b using Curle's method for Pr 



- 19 - 

and obtained 

b 64 1 
a a_6 

r/3) T Er (I )T C] 
(2.26) 

where r signifies the Gamma function (Abramowitz and Stegun, 1968). 

Hence putting dP/dx = 0, and therefore q(x) ti xl/3 , Brown 

showed that the integral solution, equation (2.22), became 

Nu = 0.8072 Peý3 (2.27) 

Similarly, assuming Tw =0 implies, from equation (2.19), that 

q(x) ti x"I and hence 

Nu = 0.6184 PrL3 01 (=- 12v ) (2.28) 

which corresponds to the limiting results of Spence and Brown. 

Spence and Brown (1968) point out that the assumption 

« ay is invalid at the leading and trailing edges of the film BX2 

with a'top-hat' temperature distribution. However, the error of the 

current solution will be negligible if the thermal boundary layer 
thickness is small compared to the length of the film. They therefore 

proposed the requirement that for Pe > 44 the effects. of longitudinal 
diffusion are negligible and thus Nu is proportional to TWý3 for 
äx 

= 0. They also derived an upper limit for Pe: 

Pe > 642Pr3 (2.29) 

supposedly to ensure a unique calibration in both laminar and turbulent 
flows. (This limit is based on the criterion that less than 1% of the 

surface heat flux crosses the plane y+ = 12. ) 

2.3, Effect of turbulence 

The previous analyses assume that if the thermal boundary layer 
is confined to the viscous sub-layer of a turbulent boundary layer 
then calibrations in laminar and turbulent flows ought to be identical 
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since heat transfer is taking place into identical velocity profiles. 
Owen (1969) recognised that even within the viscous sublayer the velocity 
is not steady. He proposed that, to the first order, the effect of 
the velocity fluctuations upon the heat convected from the hot wall 
element may be accounted for by using the concept of eddy viscosity. 
Using Detssler's formula (1955) 

Em = n2uy(1 - e-n2uy], j ) (2.30) 

where n=0.124 , Owen assumes that for Prandtl and Schmidt numbers 
of order unity a good approximation for the eddy viscosity close to 
the wall is 

Em = n2uy (2.31) 

Introducing an effective fluid viscosity, ue =u+ PEm, Owen suggests 
that the effect of eddying in the sub-layer may be accounted for by 

replacing the quadratic velocity profile, equation (2.17), by 

Tw 
y}1 dP 2 

ue eýy (2.32) 

To obtain the appropriate solution for turbulent flow, Owen 

simply replaces u by its effective value, ue, in the previous solutions. 
For example, assuming d %x = 0, then from Spence and Brown 

Nu3 = 0.526 PrL2 
TW 

becomes 
Nu3 = 0.526 PrL2 P2 TW 

'le 
(2.33) 

Thus, Owen suggests that equivalence between laminar and turbulent 
calibrations may be obtained by using the effective fluid viscosity 
in turbulent flow. Unfortunately he does not give details on how the 
effective value of ue is determined. 

This approach is highly suspect as Owen appears to have neglected 
the variation of ue with y by simply replacing u by ue in the final 
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result. Substituting Owen's proposed velocity profile into the thermal 
energy integral equation (2.16) gives 

äx m 
(T-T. ) 

ýWyf 
(T-T1 ýy2dyý- (2.34) 

eep 

Since ue is a function of y, see equation (2.30), it must be included 

within the integral. Furthermore, equation (2.31) is also suspect in 
that it does not satisfy the requirement that close to the wall em 
must be at least of order y3, see Reichardt (1951). It is noted that 

a simple expansion of Deissler's formula for y small gives Em ' y4. 

Pope (1971) also considered the effect of turbulence within the 

viscous sub-layer in an attempt to reduce the turbulent calibration to 
the laminar one. If it is assumed that the result for turbulent flow 

may be deduced from the laminar solution by replacing v and k by 

-their effective turbulent values then, for dP/dx = 0, the ratio of the 
turbulent to laminar calibration slopes would be 

Cal. slope) = (ke uIJ3 
a. s ope L ke 

Hence, assuming linear variations of the effective properties: 

lie =u(l +aY) 

ke = k(1 + ßY) 

gives 
Cal. slo e 26 -a- 
a. sopeýýl+'ý-d 

(2.35) 

(2.36) 

(2.37) 

where d is some relevant length scale in the y direction. Pope there- 
fore suggested that if the change in conductivity due to turbulence is 

neglected (g = 0) the turbulent slope would be less than the laminar 
slope. However, if a turbulent Prandtl number of 0.93 is assumed the 

opposite holds. The assumption of a linear variation ofp with y 
implies that for y -º 0 

ur y(1 - Yy) (2.38) 
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where y=0.5a. Pope was therefore able to use the solution of Spence 
and Brown (1968) to show that if the variation of viscosity and 
conductivity are small then, for a top-hat temperature distribution, 
the solution to the energy equation becomes 

Nu = 0.8072 PeZ3 + 0.10(2ß - a)L - 0.02869 Pe-1/3 [l(2ß - a)]2 
(2.39) 

Equation (2.39) may also be used to predict the convective heat 
transfer to a quadratic velocity profile by putting 6=0 and a= 2y. 
Reviewing measured mean velocity profiles in the near wall region of 
turbulent flows, Pope proposed that for y+ < 20 the profile could be 
accurately'represented by the quadratic equation 

u+ = y+(1 - 0: o2o8y+) (2.40) 

Recognising that this suggests a cm variation of 0.0416 yul 
, which 

does not satisfy Reichardt's requirements cm ti 0(y3), Pope defends 
equation (2.40) by pointing out that although the velocity profile at 
the wall fluctuates with time no eddies actually reach the wall 
itself. Hence the various eddy-viscosity theories must break down as 
the wall is approached. 

Using equations (2.38) and (2.39) Pope derived a procedure which 
appeared to shift the turbulent calibration (heat transferred to a 
quadratic profile) onto the laminar calibration (heat convected to 
essentially a linear sheared velocity profile). This method is out- 
lined in Appendix C. 

2.4 Effect of longitudinal diffusion and compressibility 
Ling (1963) and Springer and Pedley (1973,1974) have examined 

the effect of retaining the term D2T in the solution of the linear, YX7 
steady, temperature convection equation for the problem of an iso- 
thermal film on an otherwise adiabatic wall with a uniform sheared 
flow. The effects of longitudinal diffusion (äX2) are shown to be 
significant at the leading and trailing edges of the film. Using a 
numerical technique. to solve the complete temperature equation, Ling 
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demonstrated that the thermal boundary layer has a finite thickness at 
the leading edge of the film. (Heat is conducted upstream in the fluid 
and finally convected downstream. ) His results suggest that the 
thermal boundary layer diffuses to about 

4.1L ahead of the film. In 
YT-e terms of the total heat flux to the flow, Ling proposed the more 

accurate solution 

Nu = 0.807 PP3 + 0.19 Pej76 (2.41) 

Clearly, the second term is only significant for small values of Pe. 

Diaconis (1954) examined the effect of compressibility upon the 
heat transferred from an isothermal film on an otherwise insulated plate. 
If the size of the heating element is sufficiently small so that the 
thermal boundary layer remains within the viscous sub-layer over the 
film, then the governing equation may be taken as the laminar, 
compressible, energy equation. Assuming Cp and Pr to be constant and 
the viscosity-temperature relation to be linear, Diaconis found that, 

although the temperature field is Mach number dependent, the total 
heat flux from the hot film is independent of Mach number. Thus he 

concluded that the Nu ' Pe relationship for compressible flow is 
identical to the incompressible form - providing the fluid properties 
are evaluated at the temperature of the film. 

2.5 Solutions with a specified heat flux distribution 

Tanner (1967) noted that there is a marked difference between 
the predicted convective heat transfer using adiabatic substrate 
theories and that measured in experiments. He suggested that a 
substantial increase in the heat transfer could occur by an increase 
in the effective area of the heating film due to the effects of 
substrate conduction. By specifying a heat flux over the film the 
steady state heat conduction equation in the substrate and the forced 
heat convection equation for a uniform sheared flow were solved. His 
three-dimensional analysis permitted the examination of anisotropic 
substrates although he assumed that the effects of spanwise and 
streamwise diffusion in the flow were negligible. His results 
confirmed an increase in heat transfer due to substrate conduction. 
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However, he did not suggest any modification to the Nu ' Pe relationship. 

Rotem (1967) also considered the problem of a film with a 

specified heating flux although he assumed an adiabatic substrate. 
For the case of a uniform sheared flow with constant skin friction 

over the film, he showed that the convective heat transfer was propor- 
tional to Pe "3 

. 

2.6 Conclusions 

The theoretical basis for relating the wall shear to the 

convective heat loss from a hot surface element has undergone little 
development over the years. All those relations derived for use with 
practical gauges assume that the substrate is a perfect insulator 

(i. e. adiabatic) and consequently lead to the basic result 

Nu=aPeý3 (2.42) 

where the constant a depends upon the prescribed form of the wall 
temperature distribution. In practice, however, substrate conduction 
does occur so it is implicitly suggested that the appropriate form of 
equation (2.42) is 

Nu=APeV3 +B 
or / 

Nu =a 
Pr AL2t 3+ B 

pv2 

where aL is the effective heating length of the film. 

Until now it has been assumed that the 'constants' A (or a) 
and B represent the necessary modification to equation (2.42) in 

order to account for the effects of substrate conduction. 
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CHAPTER 3 

The steady heat conduction/convection problem 

Chapter 2 outlined the development of theoretical work 
seeking to relate the heat lost from a hot surface element to 
the skin friction. To date, all the theoretical relationships 
used in determining the form of the calibration of a hot film gauge 
for the measurement of skin friction are based on the assumption of 
adiabatic substrates. In practice, however, it is found that the 
heat conduction within the substrate greatly exceeds the convective 
heat transfer. (In some cases less than 10% of the total heat loss 
from the probe is due to the flow. ) It is therefore considered 
that any realistic theoretical approach should include the effects 
of substrate conduction. This chapter presents such a theory which 
leads to a more physically realistic yet simple form of the Nu N Pe 

relationship. 

3.1 The heat conduction/convection equations. 

3.1.1 Statement of the two-dimensional problem. 
Consider a heating film on the interface between a constant 

property, semi-infinite solid and fluid as sketched in figure 3.1. 
For incompressible flow (y* > 0) the energy equation may be written 

*C* aT* + u*aT* + ý*aT*ý _ k*ra2T* + 32T* P ný 
1, at* a x* ay* ax*2 ay *2 

)=n 

where * denotes dimensional quantities. 

The heat conduction equation in the solid, y* <0 is 

a2T* a2T* p*C* aT* 
ax*2 

+ 
ay*2 

C 
k* 

,, 
at* 

(3.1) 

(3.2) 

(Note the effects of natural convection and radiation are ignored. ) 

For incompressible, constant property flow, the temperature and 
momentum equations in the flow are de-coupled and so the velocity 
field is independent of the temperature field. Since the typical 
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streamwise length of the film is of order 10-4m, the flow field is 
defined as 

ý* _W Tý, y* 

where T* is assumed to be constant over the heated wall region. 
Therefore from the continuity equation, 

since *=0 v* =0 

(3.3) 

i. e. Couette flow is assumed. Such a simple flow model will not be 

physically realistic in the region of a stagnation point or a 
separation point. 

Clearly the heat conduction/convection problem is time dependent. 
However, in order to simplify the solution the quasi-steady problem 
is solved by putting aT*/at* = 0. (The time dependence of the total 
heat loss from the heating film is examined in Chapter 4. ) 

The governing temperature differential equations for the proposed 
heat conduction/convection problem are therefore 

32T* a2T* PrTW aT*F 
Fluid y* >0: - y* =0 (3.4) 

ay*2 P*ý*2 ax* 

a2T* a2T* S=0 Solid y* <0; S+ (3.5) 
ax*2 ay *2 

where the subscripts F and S refer to the fluid and solid respectively. 

3.1.2 Boundary conditions. 
There would appear to be 2 alternative boundary conditions that 

may be specified along the interface y* = 0. 

(i) A specified temperature distribution. 
(ii) A specified heat flux distribution. 

Previous solutions (see Chapter 2) typically assume a constant 
temperature over the film on an adiabatic substrate. In reality, 
the substrate is not adiabatic and so the actual wall temperature 
distribution must be continuous and smooth. (In air flows, the 
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thermal conductivity of the substrate relative to the air may be very 
large. ) However, it does not appear to be possible to specify the 
wall temperature 'a priori'. 

Alternatively, a specified heat flux distribution over the 
film on a conducting substrate does lead to a smooth, realistic 
temperature distribution. Indeed, it may be argued that at a part- 
icular instant in time, the electric current flowing in the film 

generates a heating flux. (This point is discussed further in 

Section 3.9. ) Thus the solution to the quasi-steady problem with a 

specified heat flux distribution is sought for the following 
boundary conditions: 

On the interface, y* = 0, the temperature of the fluid must 
equal that of the solid, 

i. e. TF(x*, 0) = TS(x*, 0) (3.6) 

Furthermore, there must be a heat flux balance along the interface, 
i. e. 

k* aTS aTF 
Sý- kF -ý = q*(x*, O) = q*(x*) 

where q*(x*) is the specified heat flux distribution. 

Finally, it is assumed that at infinity, the temperature 
vanishes, i. e. 

T* +o as (r*I + co 9 

(3.7) 

r* = x*2 + y*2 (3.8) 

This condition implies that at infinity the solid and the fluid are 
at the same temperature T. Therefore, T* represents the temperature 
rise above T. 

3.1.3 Dimensionless parameters. 
The governing equations and boundary conditions are made 

dimensionless by introducing the following parameters. 
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A characteristic length scale may be defined 

P*v*2 

Thus x=y= 0 

(3.9) 

Let the total heat flux be Q* _! q*(x*)dx* (3.10a) 

Thus a dimensionless heat flux distribution may be defined 

q(x) =*x . L* (3. lOb) 

Also T= Tk 
and let K= (3.11) 

F 

Therefore, in dimensionless form, the temperature equations 

become 

y30 

y. o 

aTF azTF 
, 

32T F 
ax2 _-y =ý aye ax 

a2TS a2T 

W aye 

whilst the boundary conditions become 

TS(x, 0) = TF(x, 0) 

aTs aTF 
K l-y(x, 0)- ý(x, 0) _' q(x) 

r-ºý TO 

=0 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

Note that as T* f0 (i. e. stopping the flow) then L* f so 
x, y + 0. Thus the solution for the no flow case cannot be obtained 
using these equations. 

3.2 Solution procedure. 

Equations (3.12) and (3.13) describing the heat conduction/ 
convection problem subject to the boundary conditions (3.14) to (3.16) 
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may be solved by application of the theory of Fourier transforms. 

Let the Fourier transform of T(x, y) be T(a, y) which may be 
defined by 

T(a, y) =J T(x, y)e2niaxdx 
, ýp 

N. B. The vanishing of T at infinity is a necessary condition 
(although not sufficient) to ensure the existence of T(a, y). 

Thus taking Fourier transforms, equation (3.12) becomes 

(3.17) 

__ - 4a2a2TF + 2niayTF =0 (3.18) 
dy2 

Similarly equation (3.13) in the transformed plane becomes 

d2Tg 
- 4n2n2Ts =0 

dy2 
(3.19) 

3.3 Solution assuming 
a2 
2TF = 0. 
ax 

3.3.1 Solution in the transformed plane. 
In order to simplify the solution, we shall first assume that 

the effecttsToflongitudinal diffusion are small. Hence upon dropping 
the term in equation (3.12) the transformed equation (3.18) ax2 
becomes 

d? TE 
+ 2rriayTF =0 

dy2 
(3.20) 

Introducing the transformation s= (2na)"3y06i equation (3.20) may 
be rewritten 

d? TF 
- sTF =0 

ds2 
(3.21) 

which is Airy's Equation, see Abramowitz and Stegun (1968). The 

general solution to equation (3.20) is therefore, 
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TF(a, y) = a(a) Ai{s} + b(a)Bi{s} (3.22) 

where Ai{s} , Bi{s} are the Airy functions. 

If the argument of s is restricted to the range 

X13 < Arg {s}<ß - j3 

then, since TF must vanish at infinity (the Fourier transform of 
equation (3.16)), Bi{s)is not an admissible solution. However, since 
y is real 

Arg{s} = 
-jArg{a} 

- 

so it is necessary to place a cut along the negative imaginary 

axis of the a-plane, i. e. 

-2< Arg {a) < 
32 IT 

Thus the solution equation (3.22) becomes 

y, 0: TF(a, y) = a(a)Ai{e '16(2nayý) -4111 
11 

(3.23) 

The general solution to equation (3.19) is 

T5(aly) = C(a)@- 
4n2a2. y + d(a)e+4a2a2. y (3.24) 

Again, since Ts f0 as yf -ý , c(a) =0 

Hence equation (3.24) reduces to 

yF0: Ts(a, y) = d(a)e+ 4n2a2. y (3.25) 

The functions a(a) and d(a) are found by applying the Fourier 
transformation (3.17) to the boundary conditions, i. e. 

(3.26) 
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dTs dTF 
and y=0 K--ey _ __ay =`q(a) 

where q(a) is the Fourier transform of the specified heat flux 
distribution q(x). 
Thus from equations (3.23) and (3.25) it may be shown that 

2f"l-_ a(a) M, M1-' 

and 

+4K Ai{o} -(2, roc 3e 61 Af{o} 

d(a) = d(a). Ai{o} 

where Ai'{o} denotes the derivative of the Airy function. 

Putting y=0 in either equation (3.25) or (3.23), the surface 
temperature distribution in the transformed plane may be found 

T(a, p) = gia)cl 
+ n2a K C1 + (2 , ra) 3e 6ý C2 

where C1 = Ai{o} = 0.35503 
C2 =-Ai'{o} = +0.25882 

(3.27) 

(3.28) 

(3.29) 

(3.30) 

3.3.2 Determination of q(a). 
For the present a 'top-hat' heat flux distribution over the 

film may be assumed, i. e. 

q*(x*) = q*H(a* - jx*j} (dimensional quantities)(3.31) 

where a* is half the streamwise length of the film (see figure 3.1). 

From the definition of Q*, 

Q* = 2a*q* (3.32) 

Using the definition of L*, equation (3.9), it is clear that 

Pe = (? a** )2 (3.33) 
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Thus q(x) =1 H{ý - 1xI} 
Pe 

which upon application of the Fourier transform gives 

qua) = 
Sin n�Pea 
n ea 

Note: The temperature field is completely specified for a given 
K and Pe. 

(3.34) 

(3.35) 

" 3.3.3 Inversion 
The surface temperature for a'top-hat' heat flux distribution 

is therefore 

Sin 

_. .. ý _ 

tr�Pea 
' 71 n ea 1 

I VIM _ 

or 

+ n2a K Cl +e 6(2ira) 3 C2 

T(a, O) = TR(a) + iTI(a) 

(3.36) 

Application of the inverse theorem gives the temperature distribution 
in the real plane 

T(x, O) = 
J_°, 

"1 

--ýie _(a, 0). e-2Tiax da (3.37) 
e 

As shown in Appendix D, this may be converted to the sum of 2 real 
integrals 

T(x, 0) =2 se', 0 
TR(r)Cos2nrx f. TI(r)Sin2nrx dr (3.38) 

The mean temperature over the film may be calculated from equation 
(3.38) 

�Pe 
T TR(r)Cos2nrx + TI(r)Sin2, rrx dr dx 

mean ý2 
J00 

-º'pe o (3.39) 7_ 
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Inverting the order of integration gives 

0 c Sin nr�pýe Tmean = 2j TR(r) 
nr e 

dr 
o 

(3.40) 

3.4 Evaluation of the integrals. 

Except for the case K=0 (adiabatic substrate) numerical 
evaluation of the integrals is necessary. This was carried out on a 
VAX 11-750 digital computer using an integrating routine obtained 
from the Numerical Algorithms Group (Nag). The numerical technique 

used first transformed the infinite integration range to (0,1) 

using the identity 

J F(r)dr = F(d +) 
t dt (3.41) 

where 6 represents the lower finite limit of integration. In order 
to avoid the singularity of T(r) at r=0, d was assigned the value 
0.00001. An approximation of the integral value over the range 
(0,6) was determined by analytically integrating the expression for 
'T(r) as r-0. It may be shown that the contribution to either 
integral (3.38) or (3.40) due to integration over the range (0,6) 
is approximately 

1.28756dý3 + 4nK ln(8.08996Kdý3 + 1) 

or if K=0 the contribution is 

1.931346 ,3 

(3.42) 

The numerical evaluation of the transformed integral (3.41) 
was obtained using an adaptive procedure based on the Gauss 7-point 
and Kronrod 15-point rules. 
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3.5 Results 

3.5.1 Variation of Nu with Pe and K. 
Of particular interest is the variation of Tmean with Pe and K. 

From the definition of T*, see equation (3.11) 

i Q* mean Ck*T*ý 
F mean 

Since T* actually represents a temperature rise above T*., i. e. 
T* = AT* = (T* - T*) , then the reciprocal of the dimensionless 
mean film temperature is the mean Nusselt number, Nu. 

If K=0 (adiabatic wall), then from equation (3.36) 

TR(r) 2A ýIf3 (2, rr) 
' 13 

where H=- 765 T 0°} = 3Vr 1=0.7290 
re/) 

Thus 
T= �3 ( �Pe 1/3 °° Si n2 n�Pe r dr mean 'A" ýs o (n�Ppr) 

Let 6= n�Per , 

ZT= 
�3 1 

1/3 
Singe dr 

mean nH Pe J 0 

Now S e. 
7Y3 Sinede =j 

-b 

ýe_-,, ý3 Sin2ede 

which from Gradshteyn and Ryzhik (1980) gives the result 

p reýf3 Sinede = 
�-3. 

-n- J0 Z3 TN 

Thus 
Nu =1= 4Hr /3 Pjý3 

mean 

(3.43) 

or Nu a 0.868Pey3 (3.44) 



This result agrees in form with previous adiabatic substrate 
theories although the constant differs from the isothermal solution. 
The actual wall temperature distribution for the current problem 
is considered in section 3.5.2. 

For K>0 numerical evaluation of integral1 3.40) is necessary. 
Figure 3.3 shows the effect of K upon the Nu ti Pe 3 relationship. 

The theoretical results indicate that Nu is not directly 

proportional to Pe"3 for K>0, although for small values of K. the 
proposed relationship 

Nu =A Pe/3 +B 

may be adequate for a limited Pe range. The curvature or 'bow' of 
the results in figure 3.3 indicates that a higher root of Pe is 

required to achieve proportionality with Nu. Finding the best 
fitting curve, in the least square error sense, of the form 

Nu=APeVn fB 

to the theoretical results over the range 1, Pe . 100 gives the 
following values for A. 8 and n 

K n A B 1TflS 

error 
rf11S 

error n=3 

0 3.0 0.868 0 0 0 
5 3.9 1.759 2.259 0.005 0.054 

15 4.9 3.580 5.008 0.006 0.129 
45 6.2 8.344 11.527 0.008 0.277 

(3.45) 

The rms values (root mean square error in terms of Nu) clearly 
indicate that a considerable improvement in accuracy is obtained by 

using equation (3.45) with n>3. 

The result Pe =0 Nu =0 cannot be obtained directly from the 

present theory. Since Pe is proportional to (streamwise length of 
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the film)2, then Pe =0 may simply imply that the film length is 

zero so obviously Nu must be zero. Computations down to Pe = 10-9 
for various values of K do indicate that the curves pass through 
the origin. This result may be further confirmed by considering the 

simplified problem of a semi-infinite solid, initially at a uniform 
temperature, with a constant heat flux, qo, along the surface, 
(y* = 0). From Carslaw and Jaeger (1959) the solution for the rise 
in temperature AT* is 

a7*(Y*, t*) = 
2q6 {(cL*t*)e -ý4a*t* - 

4erfc(Y 
k* 2ý«ý 

where a* is the thermal diffusivity of the solid and t* is time. 

Putting y* =0 gives the surface temperature 

AT*(0, t) = k* 
at 
n 

A local Nusselt number may be defined Nu = kq*d 

Thus Nu =} 
131 

1 

Hence the steady state solution may be obtained by putting t* -º W 
i. e. Nu -º 0. The similarity between this simplified problem and 
that where the flow is stopped (T* = 0) confirms the result Pe = 0, 
Nu=0. 

3.5.2 Wall temperature distributions 
Using equations (3.36) and (3.38) the dimensionless wall 

temperature distribution has been computed. By factoring T(x, O) 
by the appropriate value of Nu then the product T. Nu may be considered 
as the ratio: 

T* - T* 
T. Nu =ý 

MF - 
(3.46) 

where TMF is the mean film temperature. Figures 3.4 and 3.5 show 
the effect of Pe and K for a'top-hae heat flux distribution upon 
the wall temperature normalised with respect to the mean film 
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temperature. The results clearly indicate that the wall temperature 
distribution is not symmetrical about the centre line of the film 
although increasing K or decreasing Pe reduces the asymmetry. The 
wall temperature distributions are discussed further in section 
3.8.2. 

For the particular case K=0 the appropriate integrals may be 

evaluated analytically. 

The results, derived in Appendix E, are: 

For -1 <ä <0 

For 0 << 1 
a! w 

For 

T* - T* 1/3 
ý-ý* = 1.0583 1-Iä AF 

ý 

T* - T* 
= 1.0583 + x* 

1ý3 

Mý-T* 
1ý (3.47) 

* T* - T* ä> Tý--ýý 
= 1.0583 ( äý + 1)1ý3 -( 

äý 
- 1)1/3 

MF «ý 

Note: The case K=0 was used as a check upon the routines used to 
evaluate the integrals. 

3.5.3 Heat transfer to the fluid. 
Using equations (3.23) and (3.28) it may be shown that 

n -qa 2na113e_i ý6C 

ayI 
-7q(a) 

+14-77-32r Cl + (2ira) 3 e-i n 
Y=O 2 

-TR+iTI 

(3.48) 

As in section 3.3.3 application of the inverse transformation 
gives the result 

Co 
a_t 
y (x, 0) =2 ITR Cos2nrx + TI Sin2nrx dr 

0 

(3.49) 
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Factoring by Nu. �ýgives y 

äy. Nu�ýe=ZäTýäy (3.50) 
AF 

Figures 3.6 and 3.7 show the effect of Pe and K upon heat flux into 

the fluid: 
2a* q* 

ATMF k* F 

The trends observed are discussed in section 3.8.3. 

3.6 Effect of longitudinal diffusion 

The Fourier transform of the complete conduction/convection 

equation (3.12) is (from equation (3.18)) 

d2TF 

dy2 - 4n2a2TF + 2niayTF =0 (3.51) 

Introducing the transformation 

1 
S= e-/6 

i (27ra)/3 (y + 27ria) 

reduces equation (3.51) to Airy's equation - 

d2TF 
_T _ý ds2 

- siF=u 

(3.52) 

with the-general solution as indicated in equation (3.22). 

As before, restricting the argument of s to 1/3< Arg(s) <n/3 
and thus requiring a cut along the negative imaginary axis of the 

a plane, disqualifies the function Bi{s). Hence the appropriate 
solution to equation (3.41) is 

-7/ i 11 

Y: 0 TF(atY) = a(a)Ai{e 16 '(21ray3 (y + 2nia)) 

The solution for the region y<0 is as before i. e. 

(3.53) 

ºýýä's: y yý0 Ts(city) = d(a)e+ 
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Enforcing the transformed boundary conditions (equations 3.26 and 
3.27) gives 

ýý_ý _- 
q(a) 

a%u/ -' 

ý 4n2a2 K Aiig} -e 
I Z, ra 33 Ai } 

(3.54) 

d(a) = a(a). Ai{g} (3.55) 

4 
where g= eI3' (2, ra)V3 

Thus the surface temperature distribution in the transformed plane is 

T(a, 0) = 
q(a) Ai( q) 

+ 4n-2a2 K Ai {g}-e'7/61 (27ra) 3 Ai' {g} 

= TR + iTI 

As outlined in Appendix D, application of Fourier's inverse 
theorem gives 

00 

(3.56) 

T(x, 0) = 2f TR(r)Cos(2nrx) + TI(r)Sin(2nrx)dr . (3.57) 

0 

and as before the mean film temperature is 

(ý T Sin nr�Pe MF -2J ýR(r) 
, rr e 

dr (3.58) 

0 

The heat flux to the fluid along the interface y=0 may also be 
determined using the relation 

aT ,-r, % _ q(aý 21rcx)%ef/6 Ai' {q} 
°y ý +v44 K Al g} - e-776 (2na)''3 Ai' {g} 
ý. -, luty/ (3.59) 



- 40 - 

3.7 Evaluation of the integrals. 

For all values of K numerical evaluation of the appropriate 
integrals is necessary. As outlined in Section 3.2 use was made of 

a 'Nag' integrating routine. The contribution due to the integral 

over the limit (0,6) where 6«1 was found to be identical to the 

previous results, i. e. equation (3.42). As an independent check, 
the integrals were estimated using Simpson's rule and Weddle's rule 
over a finite interval (6,0). The residual due to the integral 

over the range (n, o) was estimated by analytically integrating the 

appropriate asymptotic expansion of the integrand. (A suitable 

value of a was found to be 4. ) The agreement between the 2 methods 

was very good (difference < 2%). Due to the oscillatory behaviour 

of the integrand a very large number of intervals were required when 
using Simpson's rule. The Nag routine returned the integral value 
to within a specified accuracy in typically l/loth of the CPU time 

required when using Simpson's rule. 

The values of the Aiig} and Ai'Ig} were computed using the 
ascending series definitions for Ai and Al' when jgj < 4.1. For 
Igo > 4.1 the asymptotic expansions for Ai and Al' were used 
(see Abramowitz and Stegun, 1968). In each case the relevant series 
was truncated after 10 terms, (see Appendix F for details). All 

computer calculations were conducted using Double Precision. 
Using the results 

and 

Ai{rý 3} rJ iýs (ý%3ryý) - e'y3i Jý3( ?! 3 
rY2 )} (3.60) 

Ai'{rei7Y3}= - 
ý{J. 

3 3rý2) - e2ni/Jý (3.61) 
3 

(derived in Appendix F) it was possible to check the computed values 
of Ai{g} and Ai'{g} using the series definitions. The values of the 
Bessel functions J j/3 ,J !3, J, and J 2, were obtained from 

-3 13 U. S. N. B. S. tables (1948). Agreement was demonstrated to at least 6 

significant figures. 



3.8 Results 

3.8.1 Variation of Nu with Pe and K. 

The value of Nu, for a given Pe and K may be determined from the 

mean temperature over the film. Figure 3.8 shows the effect of K 

upon the Nu ti Pe/3 relationship assuming a 'top-hat' heat flux 

distribution over the film. The curves are clearly 'bowed' 

indicating that Nu is not porportional to Peý3 . 
Fitting the curve 

Nu = APeý +B 

the best values of A, B and n were determined over the range 
1 <Pe<100. 

K n A B rms 
error 

rms 
error n=3 

0 2.6 0.594 0.627 0.003 0.024 

5 3.8 1.646 2.526 0.005 0.048 
15 4.9 3.545 5.138 0.006 0.122 
45 6.2 8.310 11.625 0.008 0.274 

Comparing these values to those obtained previously, it is clear 
that the effect of longitudinal diffusion is to increase Band decrease 
A with little effect upon the value of n, except at small values of 
K. The changes in A and B appear to be only significant at small 

values of K. A direct comparison between the current results and 
those obtained with a-äx. =0 is shown in figure 3.9. Clearly the 

effects of longitudinal diffusion are only significant for small 
values of K and Pp. 

3.8.2 Wall temperature distributions. 
Figures 3.10 and 3.11 show the effect of Pe and K upon the 

wall temperature T.. = -- assuming atop-hat heat flux distribution. 
MF °° 



Clearly the temperature field is not symmetrical about the centre 

of the film. The results for K=0 clearly show the diffusion of 
heat upstream from the film. Increasing K from 0 to 45 dramatically 

alters the wall temperature distribution. Conversely, the wall 
temperature seems to be comparatively insensitive to changes in 

Pe (i. e. Tw). This is in agreement with the measurements of Fage and 
Falkner (1931) and Pope (1971). Increasing K decreases the 
skewness but increases the flatness of the distribution. Similarly. 
it may be observed that increasing Pe increases the skewness but 
decreases the flatness of the distribution. Such trends seem to be 

intuitively correct. 

3.8.3 Heat transfer to the fluid. 
Applying the inverse theorem to equation (3.59) and factoring 

the results by Nu. Pe, the heat transfer rate to the fluid maybe 

computed. Figures 3.12 and 3.13 show the variation of o-* MF kF 

with Pe and K for the 'top-hat' heat flux over the film. 

The results clearly show that as K -º 0 the'top-hat' heating 
distribution is approached. The maximum rate seems to occur in 
the leading edge region of the film. A rather interesting result 
is that the heat flow seems always to be in the direction from the 

solid to the fluid. This, however, would appear to be contradictory 
to Pope's assertion (1971) that downstream of the film the hot 
fluid would heat the wall. He therefore suggested that the increase 

in the effective heating length of the film is solely due to 

substrate conduction occuring upstream of the film. 

3.9 The effect of varying the heat flux distribution 

In section 3.1.2 it was suggested that the consequence of 
electrical dissipation in the film would be the generation of a 
heating flux. Assuming the electrical power dissipated is i*2r*, 
(where i* is the local electric current and r* is the local electr- 
ical resistance) then the variation of i*2r* across the film would 
give the heat flux distribution. If it is assumed that the current 
density is constant and the electrical resistance varies inversely 
proportional to the local film 'thickness', theni*2r*(or the heat 



- 43 - 

flux distribution) will be directly proportional to the film thickness 
distribution. Hence, a 'top-hat' q*(x*) corresponds to a film of 
constant thickness. The fact that the electrical resistance of the 
film material (usually an alloy of nickel or platinum) is temperature 
dependent suggests that the actual heat flux distribution cannot be 
known 'a priori'. However, the results show that for K>0 
the variation of temperature over the film is not very large and since 
the rate of change of resistance with temperature of the film alloy 
is usually small (0.035n/°C) then the heat flux-temperature dependence 

will be small. 

To investigate the effect of varying the heat flux distribution 

upon the results, a cosine distribution was assumed. 

i. e. q*(x*) = gmaxCos(") H{a* - ýx*ý} (3.62) 

or in dimensionless form 

q(x) = 27F- Cos( ) H{4. - I'I} (3.63) 
e -7e- 

Applying the Fourier transformation, equation (3.17), gives 

qýa) = 
Cos ira�Pe 

1- 4a2Pe 
(3.64) 

Hence substituting for q(a) in equation (3.56) the wall temperature 

may be computed as previously outlined. 

A comparison between the 'top-hat' and cosine heat flux 

solutions upon the Nu, Pe"3 relationship is shown in figure 3.14, where 
the effects of longitudinal diffusion are included in the solution. 
Clearly, the-trends are very similar. Determining the best power law 
fit of the form 

Nu=AFeý +B 

to the results it was found that the values of n agreed with those 
obtained previously. 

Note: If the effects of longitudinal diffusion are ignored and K=0 



- 44 - 

then it may be shown that 

Nu =Q 842Peý3 (3.65) 

i. e. the Nu ' Pe"-3 law is recovered. 

An investigation by Busing (1965) into platinum films baked on 
to glass, suggested that the thickness distribution of such films is 

parabolic. However, since the results between the 'top-hat' and 
cosine heat flux distributions are sufficiently similar it would seem 
that the general relationship 

Nu = APefi +B 

where n(>3) increases with K ought to apply for a wide range of film 

geometries. 

3.10 Temperature profiles in the fluid. 

If the effects of longitudinal diffusion are included, then 
from equation (3.53) the temperature profiles in the fluid may be 

computed if the Airy function Ai(z), where 

1 "n 
Z= e_i, 

y6 (2na)/3 (y + 2naeý 
/2) 

is known. Clearly as y increases the argument of z (in the complex 
sense) will vary from 'ff/3(at y= 0) to ' -1/6. The computation of 
At{z} where the argument of z is varying may present difficulties. 
However, if the effects of longitudinal diffusion are ignored, then 
from equations (3.23) and (3.28) 

T(a, y) =- 
1a Ai{e-i"ý6 21ra 

1ý3} 

+ 4' KC 1+( 2 1ra 3 eý 6 C2 

or 
T(a, y) = TR(a, y) + iT(a, y) 

(3.66) 

As shown previously, application of the Fourier inverse transformation 
gives 
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T(x, y) =2J TR(r, y)Cos2, rrx + TI(r, y)Sin2, rrx dr 

0 

where r is real. 
Thus the calculation of T(x, y) requires Ai{z), where 

n 
z= y(21rr)1/3 a-i 

/6 

Note: z now has constant argument (-n/6) for all y. 

Using the ascending series definition and the asymptotic 

expansion Ai(z) was computed. (See Appendix V) In order to check 
the complex arithmetic operations (in the imaginary sense! ) used for 

evaluating the Airy function it is shown in Appendix V that 
Ai(z) (arg(z) _ -"/6) may be expressed in terms of Kelvin functions 

with real arguments i. e. 

Aire-iný6) = 
n, --% e-i"/4 

{kerb 
(%r )-i kei), 

3ý(ý3rv2 
)} 
(3.67) 

Using the asymptotic expansions for the modulus and phase of 
the Kelvin functions the calculation of Ai{re-i1'6}was checked for 
both the'ascending series and asymptotic expansion of the Airy function. 

Figure 3.15 shows the typical streamwise variation of the temp- 

erature profile = vs where a* is the semi-streamwise 
length of the film. These results indicate that the wall temperature 
is greater than the fluid temperature and thus the heat flow is from 
the wall to the fluid. 

Figures 3.16 and 3.17 show the effect of Pe and K upon the wall 
temperature profile at the trailing edge of the film. Increasing K 
increases the thickness of the thermal boundary layer whilst increas- 
ing Pe has the opposite effect. Figure 3.18 shows the effect of K and 
Pe upon the thermal boundary layer thickness aT at the trailing edge 
of the film where aT is defined: 

4_ä 
when 

T=0.05 (3.68) 
MF °° 
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The results suggest that 6T/a* is proportional to A and . 
These results may be used to estimate under what conditions 

the current theory may be applicable in turbulent flow. The 
assumption of a uniform sheared flow is only realistic in the immediate 

vicinity of the wall for turbulent boundary layer flow. Clearly if 
K is large or Pie small then the thermal boundary layer may interact 

with a higher order velocity profile. From the definition of Pe 

2 
Pe = 

L* FrTW 

p*v *2 

Let 

Thus 

or 

UT ý'ße 

... w = 
L*ý ý 

d*u* 

dTT T =77- 
a+=aT 

ý 
T ý* �Pr` 

5+VPP = T 

A carpet plot of 4/with K and Pe is shown in figure 3.19. 
The variation of öT with Pe is small (assuming the effects of longi- 
tudinal diffusion are negligible) and for practical purposes may be 
ignored. The requirement for 6T to remain within the viscous sub- 
layer may therefore be expressed as an upper limit of K. Hence, 
assuming the outer limit of the viscous sub-layer is given by 

= 12 then for Pr = 0.71 implies 4/Pr < 10 which from figure 3.19 
suggests K must be less than 30. For K> 30 the previous results 
may still be applicable as the interaction of the outer edge of the 
thermal layer with a higher order velocity profile may be reasonably 
expected to have little effect upon the heat transfer at the wall. 

The requirement K< 30 does not necessarily imply the existence 
of a unique calibration in laminar and turbulent flows. Since the 
flow within the viscous sublayer is unsteady and three-dimensional, 
(see Smith and Metzler, 1983) the assumption of a single calibration 
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for both laminar and turbulent flows, provided the thermal layer 

remains within the viscous sublayer, is unwarranted. 

3.11 Conclusions 

The effect of substrate conduction upon the heat loss from a 
surface film with a specified heat flux distribution has been examined 
theoretically. Using the linear, steady, two-dimensional heat 

conduction and forced convection equations it has been shown that for 
a uniform sheared flow the adiabatic Nu ti Pe relationship is altered. 
The results may be represented approximately by the relation 

Nu = APe/n +B 

where n(>3) increases with the substrate-to-fluid thermal conductivity 
ratio. Therefore, the non-linearity of Nu with Peý3 observed in 

many of the published hot film calibrations (see figure 1.2) appears 
to be primarily due to substrate conduction. 



- 48 - 

CHAPTER 4 

Further consequences of substrate conduction 

4.1 Introduction 

This chapter considers further effects of substrate conduction 

upon the modified Nusselt number ti Peclet number relationship - 

Nu = APeý +B (a. l) 

as derived from the quasi-steady heat conduction/convection problem. 

As noted in chapter 3 the heat conduction/convection problem is, 

in general, time dependent. In order to obtain a 'first-order' 

estimate of the dependence of Nu upon time, the variation of B (or 

more precisely the measured value of Nu when Pe = 0, Nuo) with time 
is considered. This is justified on the grounds that the term APe' 
is normally smaller than B and B is approximately equal to Nuo. 

4.2 The one-dimensional heat conduction model 

To examine the consequences of heat conduction within the substrate 
consider the one-dimensional heat conduction equation for a semi- 
infinite solid initially at a uniform temperature 

a2T1 aT 
_ _0 

axe a at 
(4.2) 

where a=k PC 

Since the film is normally operated at a constant temperature it 

would seem reasonable to assume that the appropriate boundary condition 
for equation (4.2) is a constant temperature along the surface of the 

solid. This problem has the well known solution (see Carslaw and 
Jaeger, 1959) 

eT(x, t) = eTo(1 - erf =) (4.3) 
2 �af 

where erf signifies the error function, OTo is the temperature rise of 
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the surface (x=0) and AT is the temperature increase from the initial 

temperature. The heat flux at any point is therefore 
2 

Ot4 4.4) q(x, t) =TOk e-(2ý 

In particular, the heat flux at the surface, x=0, is 

q(O, t) _ ATOk 
. A-r a- It 

(4.5) 

For a probe with a substrate consisting of 2 or more layers of 
different materials the heat conduction process will be dependent 

upon the thermal properties of the various strata. (e. g. For 
the glue-on probe, see section 4.3, the solid heat conduction will 
be governed by the thermal properties of the foil onto which the 
heating film is deposited and also the properties of the wall onto 

which the probe is attached. ) Appendix G outlines the solution to 

the one-dimensional heat conduction equation for a semi-infinite 

solid consisting of 2 layers. Assuming a constant temperature along 
the surface of the solid, the solution for the heat flux at the 

surface is 

q(O, t) = AT0k1 (, k2a2c2 )i "(4.6) 1K PiC1 

where the subscript i refers to the layer of finite thickness. 

Thus from equations (4.5) and (4.6) it is clear that 

(i) q decays with time like t" 
(ii) q is proportional to &Too 

Therefore, the above analysis implies that B, or Nuo, will be - 

(i) time dependent, possibly decaying like 0 

(ii) independent of AT, where AT is the mean temperature 
rise of the film. 
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4.3 Experimental investigation into the effects of substrate 
conduction for the glue-on probe 

4.3.1 Probe details 
There are basically two types of hot film probes commercially 

available -a glue-on probe or a flush mounting probe, see figure 4.1. 
The flush mounting type typically consists of a nickel film deposited 

on the end of a cylindrical quartz rod. The glue-on probe consists of 
a heating element, usually nickel, deposited on a plastic foil which 
is then glued directly onto the wall. In the subsequent experiments 
the glue-on probe was used because of its better thermally insulative 

substrate and lower cost relative to the quartz based flush mounting 
probe. 

The glue-on probe, manufactured by DISA (Probe number 55R47), 
is sketched in detail in figure 4.1. The nickel heating film 

(0.9mm x 0.1mm x 0.001mm) is deposited on a kaDton foil (8mm x 16mm x 
0.05mm). A thin layer of silicon dioxide is deposited over the film 
to provide a protective coating. The film is connected to two 
nickel/silver plates onto which the copper wires (0. lmm diameter, 
55mm long) are soldered. The kapton foil is glued directly onto the 
wall at the required measuring point. 

Before a probe can be used, it is necessary to know the variation 
of the probe's electrical resistance with temperature. Initially 
this was determined by placing a probe in an oven and measuring the 

probe's resistance over a range of temperatures (15°C to 50°C). It 

was later found that a more accurate resistance-temperature calibration 
could be obtained. by placing the probe in a container of water due to 

the improved temperature control of the fluid. A typical resistance- 
temperature calibration is shown in figure 4.2 indicating the 

adequacy of the linear relationship 

R=Ro+dT . aT (4.7) 

where R° is the probe's resistance at a given datum temperature, AT is 

the change in temperature relative to the datum and dR/dT is a constant. 
dR/dT was typically found to be = 0.03 n/°C. The measured value of 
dR/dT for each probe tested agreed to within 5% of the manufacturer's 
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4.3.2 Suspended probe 
Two DISA glue-on probes (55R47) were taken and their resistance- 

temperature relationship determined as outlined in section 4.3.1. 
Both probes were suspended in a Torr"Plan pressure vessel in which the 

absolute pressure was reduced to less than 5mn of mercury. One 

probe was connected to a DISA constant temperature anemometer unit 
(type 55D01) whilst the second probe, used as a resistance thermometer, 

was connected to a Thurbly multimeter set in the resistance measuring 
mode. Setting the required resistance on the anemometer (and thus 
the mean film temperature), the anemometer output voltage (which may 
be related to the current flowing through the probe) was monitored 
for typically 60 minutes after switching the_probe into the heating 

circuit. The experiment was repeated on successive days with the 

probe at different operating temperatures (resistances). 

Figure 4.3 shows the variation of V2 ' where V is the 

anemometer output voltage and t is seconds from switch on. The base 
t=0 is uncertain as the probe requires a gradual build-up of electric 
current till the probe's resistance balances that demanded by the 

anemometer. (The warming up period is typically less than 10 seconds. ) 
Clearly V2 is time dependent and, to the first order, decays like 
t -i. Figure 4.3 also shows the increase in V2 due to conduction and 
natural convection to the surrounding air when the pressure in the 
vessel is at atmospheric pressure. The increment in V2 appeared to be 
independent of probe attitude indicating that the effects of natural 
convection are small. 

The corresponding variation of i2R with eT is shown in figure 
4.4. (On the scale of figure 4.4 the decay of i2R with time is not 
observable. ) The current flowing through the probe is related to the 
anemometer output voltage by the relation 

4- V 
I- 50 fL+ (4.8) 

1-11, 

where RL and R are the electrical resistances of the cables and the 
2 

probe respectively. The variation of i2R with eT is such that 
T 
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2 
is not constant. Over the range AT = 40 to 120OC, T decreases 

approximately 8%. This contradicts conclusion (ii) in section 4.2. 
A plausible theoretical explanation to the observed nonlinear variation 
of i2R with AT is given in section 4.4. 

4.3.3 Effect of backing material 
Two DISA glue-on probes were stuckt to the under surface of a 

tufnol plate which was mounted horizontally across the working section 

of a low speed wind tunnel. (For a description of the plate and wind 
tunnel see chapter 5, section 5.1. ) The probes were placed approxi- 

mately 0.2m laterally apart so as to ensure that the thermal field 

generated by the hot probe would not affect the cold probe which was 

used as a resistance thermometer. The time variation of the voltage 

supplied by the anemometer to maintain the hot probe at a constant 
temperature (resistance) was recorded (wind off). The experiment was 

repeated with the probe operating at various resistances (AT's). A 

period of at least 24 hours elapsed between each run (with both 

probes unheated) to allow the heat to dissipate out of the probe and 

plate. The variation of V2 with t for each run (i. e. AT) is 

shown in figure 4.5. 

The results clearly show that the electrical power supplied to 
the probe decays with time in a manner like t-. Comparing these 

results with those for the suspended probe (figure 4.3), it is clear 
that the effects of heat conduction within the tufnol plate are 

(i) Approximately double the electrical power supplied to 
the probe for the same AT 

(ii) Increase the V2 ti t-1 gradient. 

These trends are consistent with the theoretical solution, equation 
(4.6), as the thermal properties of tufnol are greater than those of 
kapton. 

Using the results of figure 4.5 the variation of 12R with AT 

at a constant time may be deduced. Figure 4.6 shows the predicted 
variation of 12R with AT at two constant values of t. In actual 

Durafix glue was used as this is soluble in Acetone thus permitting 
the probe to be removed from the wall. 
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operation the variation of AT-is not likely to be more than 200C. 
Over such a range the relationship between i2R and AT may be reasonably 
approximated by the expression (see figure 4.6) 

i2R = bsAT + bi (4.9) 

where bi # 0. Clearly iT is not a constant. Fitting a straight line 

over the range 80 < QT < 1000C for each time level in figure 4.6 it 

appears that bs, the slope, decreases with time although b1, the 
intercept, remains constant. Thus from equation (4.9) 

i2R 
=b (t) + 

bi (4.10) 
AT s AT 

i. e. B= BS(t) + 
BI/AT 

4.4 Theoretical explanation for the non-linear variation of i2R 
with AT 

Appendix H presents a solution for the generation of heat in 
a wire conducting an electric current i. The solution is applied to 
the nickel film giving the results: 

i2R = 0.0538i tan65i (4.11) 

AT = 
tan65i - 651 (4.12) 

The theoretical variation of 12R with AT is shown in figure 4.7. 
These results indicate the same trends as shown in figures 4.4 and 
4.6. For example, fitting a straight line over the range 80 < AT 
< 100°C, as shown in figure 4.7, clearly gives an intercept which is 
greater than zero so is not a constant. 

It is also demonstrated in appendix R that the heat conducted into 
the nickel/silver plates is small relative to that conducted into the 
substrate. 

4.5 Further experiments 

Using the 2 probes glued on to the tufnol plate the effect 
of air flow over the plate upon the power loss-time dependence was 
examined. A series of wind-on and wind-off experiments were carried 
out on consecutive days. Before heating the probe the wind tunnel 
was started and run at a constant speed (17m/s) for about 40 minutes. 



This was to allow a condition of thermal equilibrium to be established. 
The cold probe, being used as a resistance-thermometer indicates a 
temperature which is related to the temperature of the air flow and 

also that of the tufnol plate. It was found that shortly after 

starting the tunnel this reference temperature changed by about 20C. 

For both cases (wind-on and wind-off), the variation of V with time 

was recorded for several runs with the period between each run varying 
from 10 minutes to 60 minutes. aT was maintained at a constant value 
throughout the experiments. The variation of Nu with time is shown in 

figure 4.8 where Nu is defined: 

Nu = i2R 
wk o 

The results show that in both cases the rate at which Nu (i. e. 
12R) decreases is most rapid for the first run. Furthermore, the 

rate at which Nu decreases is greater with the flow off than in the 

flow on case. In both cases the first run is significantly above 

subsequent runs (even when the period between successive runs is 

greater than 60 minutes). The variation of Nu with time appears to be 

reasonably repeatable for the second and subsequent runs. 

For the first run of the day it would seem reasonable to assume 
that the substrate of the nickel film is at a uniform temperature. 
Upon turning the probe on, clearly a large temperature difference 

will exist between the nickel film (very large thermal conductivity) 
and the substrate (kapton, which has a very low thermal conductivity). 
After turning the probe off, it is observed that the original resis- 
tance of the film is obtained after a brief period of time 
indicating that the film has returned to its original temperature. 
(The residual heat in the nickel film will be quickly removed by 

conduction into the relatively large nickel/silver plates and copper 
wires. ) The heat conducted into the substrate however requires many 
hours to dissipate due to the small temperature gradients and low 
thermal conductivity of the substrate material. Upon reheating the 

probe, since the substrate has not returned to its original thermal 

equilibrium state, the heat conduction process will be different 
from the first occasion where the system was initially at a uniform 
temperature. 



In order to increase the ratio of heat convected by the flow to 

that conducted into the substrate (and therefore increase the sensiti- 

vity of the probe) it is necessary to use substrates that are insulat- 

ive. As shown in figure 4.6 and equations (4.5) and (4.6) this will 

also reduce the time dependence of the total heat transferred from the 

probe. However, because of the insulative properties of the substrate, 
the time taken to dissipate the heat when the probe is turned off 

will be very long. This may result in the probe's Nu ti Pei 

calibration being unrepeatable. (For calibrations to be repeatable 
it is necessary for the substrate at the start of each calibration 
to be at the same thermal equilibrium state. ) 

4.6 Conclusions 

From the simple theoretical models and experiments it has been 

established that 

(i) a2TR is time dependent 

(ii) aTR 
varies with &T. 

Thus, in order to account for these effects, it is necessary to 
further modify the calibration relationship. Using equation (4.10) 

the following relationship is proposed 

B 
+ BS(t) (4.13) Nu = APefi + 

AT 
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CHAPTER 5 

Flat plate laminar flow experiments 

In order to provide further evidence for the theory proposed in 

chapters 3'and 4a detailed experimental study of the calibration for 

the glue-on probe was conducted in laminar, flat plate, boundary 

layer flow. 

5.1 Plate design and wind tunnel 

The plate was manufactured from a tufnol sheet (Carp brand) 

lOmn thick. Tufnol was selected for its machinability and good thermal 
insulating properties. In order to minimise the likelihood of local 

flow separation at the leading edge of the plate an elliptical nose 

profile was selected. The higher the axis ratio of the elliptical 

nose the smaller is the resulting adverse pressure gradient. However, 

increasing the axis ratio increases the distance along the surface 

over which the pressure gradient is non zero. Using Davis' results 
(1980) an axis ratio of 5 was selected as this represented a reason- 

able compromise between the conflicting requirements of a small 

adverse pressure gradient and short region over which the pressure 

gradient acts. 

Holes were drilled (0.5 rm diameter) along the longitudinal 

axis of the plate. Over the elliptical nose section 3 static 
pressure tappings were located at corresponding positions from the 
leading edge on both the upper and lower surfaces. A hinged flap 

was attached along the trailing edge of the plate. By careful 
adjustment of the flap angle, the static pressures over the upper 
and lower surfaces at the nose could be matched thus ensuring the 
locating of the stagnation line at the leading edge and zero pressure 
gradient along the main length of the plate. At lm downstream from 
the leading edge an adjustable rectangular block (16mn x 8mm) was 
located. The block, also made from tufnol, could be traversed up 
and down relative to the surface of the plate. (Minimum stepping 
distance was 0.0025mm. ) Details of the plate and block are shown in 
figure 5.1. 
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The plate was mounted horizontally along the centre line of a 
low turbulence, low speed, wind tunnel. The leading edge of the plate 
was positioned 0.16m downstream from the start of the tunnel's 

working section as experiments by Latiff (1981) indicated a slight 

pressure gradient existed downstream of the nozzle exit. Previous 

measurements in the wind tunnel indicated that the turbulence level of 
the free-stream was approximately 

N 0.1ý 
U2 
Co 

where u'2 is the mean squared fluctuating velocity component. The 

general arrangement of the wind tunnel is shown in figure 5.2. 

The tunnel free-stream velocity was measured using an ellip- 
soidal head N. P. L. standard Pitot-static probe (see Salter et al, 
1965). The static pressure in the tunnel was measured by a Betz 

manometer. A mercury in glass thermometer mounted inside the wind 
tunnel was used to determine the air temperature. Traversing probes 
(a hot wire or Pitot tube) could be mounted on the floor of the 
tunnel with access to the flow through sealable ports. The development 
of the boundary layer along the lower surface of the plate could be 

examined at 0.3m intervals. 

5.2 Measurement of the laminar boundary layer properties 

5.2.1 Hot-wire measured velocity profiles 
Mean boundary layer velocity profiles were measured with a 

DISA 55D01 constant temperature anemometer and linearizer. The hot- 

wire was mounted in a DISA traversing mechanism under the floor of the 

wind tunnel. The minimum stepping distance of the traversing 

mechanism was O. Olmm over a range of 10mm. The wire was traversed 
from the free-stream towards the surface of the tufnol plate in steps 
of 0. lnm till the measured velocity ratio u/i p ti 0.4. (This was to 

avoid damaging the hot wire by accidental contact with the plate. ) 

All the experimental results were recorded using the digital 
data acquisition system as sketched in figure 5.3. The gains on the 
D. C. voltage amplifier and linearizer were adjusted so that the full 
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range of the 12 bit analogue-to-digital converter (A/D) could be used. 

5.2.1.1 Data selection 
Four mean values were read alternatively from the traversing 

probe (u) and the free-stream (Um) channels of the A/D. Each mean 

value was the average of typically 5 consecutive samples. Using the 
4 mean pairs, the variation of the velocity ratio ulU. was examined. 
Determining the average velocity ratio, the r. m. s. error of the 4 
u/Uk values was computed and if this was greater than some limiting 

value (typically 0.0015) the readings were discarded and a new set 
taken. When suitable values were obtained the mean values of u and 
U. along with the reading on the traversing mechanism were stored. 

This technique was used in an attempt to filter out any 
spurious non-steady results such as the passage of a burst of 
turbulence across the hot wire in transitional flow. Although this 

method cannot be assumed to be a completely reliable technique for 

the measurement of laminar velocity profiles in transitional flows, 

the results at high Reynolds number did appear to be of full laminar 

quality. During the experiment, the time taken to obtain results by 

this method increased dramatically as the Reynolds number increased. 

5.2.2 Analysis of the velocity profiles 
Assuming two-dimensional flow, the velocity profiles may be 

compared with the theoretical solution for the laminar boundary layer 

equations with zero pressure gradient as given by Blasius, (see 
Schlichting, 1979). Blasius' solution may be written as 

(5.1) 

where n vv 
Z and f satisfies the differential equation 

2V II + ff" = 0. Since the absolute value of y cannot be measured 
then let 

yyym'yo (5.2) 

where ym is the reading on the traversing gear and yo is the value of 
ym for which the measured velocity would be zero. Thus to compare the 
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measured velocity profiles with the Blasius solution yo is required. 
There would appear to be 2 techniques for estimating yo: 

(i) Using Maclaurin's series, the velocity profile may be 

expressed as 

or 

j. 
-. (n) = f' (o) + nf" (o) +ý f"' (o) +,, 
CO 

u 
U- (n) = 0.33206n - 0.0023n`' +.. 

. 
0 

0 

(5.3) 

hence for n<1.0, u is approximately proportional to y 
(error < 1%). Thus if the measured velocity data close to the wall 
are assumed to lie inside the region corresponding to n<1.0 
then by simple extrapolation to u-0, yo may be found. 

(ii) From the measured values of u/U. the corresponding values 
of n may be deduced. If the flow has Blasius profile, then a plot of 
ym ti n will be a straight line, the intercept (n = 0) of which 
equals yo. i. e. 

(ym y0) 
ý/ VX 

ý ym=n Üx +yo 
ý 

(5.4) 

The first method is generally unreliable as the extrapolation to 
u=0 is based on a few points. Furthermore, since the points used 
must be close to the wall, they most probably will contain errors due 
to wall proximity effects on the measuring probe. The second 
technique however does not suffer from these drawbacks and therefore 
is believed to be more accurate. 

Using the tabulated Blasius solution appearing in Schlichting 
(1979) (n vs u/U.: n in steps of 0.2) the value of n was determined 
from the measured u/U. by application of the three-point Lagrange 
interpolation formulat. A typical plot of ym tin at various Reynolds 

t The three-point formula effectively fits a quadratic equation, n 
=a+b u/U, + c(u/U. )2, through three neighbouring points. The 
results were checked graphically. 



numbers is shown in figure 5.4. These results clearly show that over 
the main body of the profile ym varies linearly with n indicating the 

general agreement with Blasius' solution. (Near the outer edge of the 
boundary layer, n varies rapidly with u/U., hence any small error in 

the measurement of u/u, will lead to a greatly magnified error in n. 
Also, near the wall the measurement of u/Um is unreliable and there- 
fore n may be in error. ) Ignoring the points at the inner and outer 
extremities of the profile, the best straight line (in the least 

square error sense) was fitted to the ym, n results typically over the 

range 1.3 <n<3.8. (i. e. 0.4 < u/U,. < 0.9). The intercept (n 0) 

therefore gave yo - see equation (5.4). 

From equation (5.4) the slope of the line ought to be. /U- 
Knowing v and Ua, it is therefore possible to calculate x. The results 
suggest that the calculated value of x is greater than the measured 
length from the leading edge, xm. Defining x= xm + ex, figure 5.5 

shows the variation of ex with unit Reynolds number as calculated from 
the velocity profiles measured over a range of xm. The fact that the 

computed Blasius value of x is greater than the measured length is 

not surprising as the flat plate boundary layer solution is not 
applicable near the leading edge of the plate due to the low Reynolds 

number and pressure gradientt. However, the experimental results show 
that downstream of the nose section the boundary layer relaxes to 
Blasius flow. 

5.2.3 Traversing Pitot tube measurements 
As an independent check upon the hot wire profile measurements, 

the experiment was repeated using a traversing Pitot tube. The Pitot 
tube was made from circular steel tubing 1.07mm diameter. The mouth 
of the tube was flattened to form, approximately, a rectangular opening, 

t Using a laminar boundary layer computer programme, based on Beasley's 
work (1973), the flow over the plate was predicted. The results 
confirmed that as the pressure gradient tends to zero downstream of 
the nose region the boundary layer relaxes to Blasius' flow with a 
virtual origin ahead of the leading edge of the plate. 
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0.7mm high by 1.3mm wide. The profiles were analysed using the same 
technique as that used for the hot wire profiles. No corrections 

were applied to the Pitot tube readings and thus the reliability of 
the velocity data near the wall must be suspectt. Figure 5.6 shows 

typical plots of ym ti n. These results show that in the near wall 

region the deduced value of n appears to be less than expected, i. e. 

u is under-read. The variation of ex as calculated from the Pitot 

tube profile measurements is shown in figure 5.7. Using the results 
in figures 5.5 and 5.7 the mean value of ax is approximately 0.06m. 

5.3 Calculation of the integral properties of the boundary layer 

It may be shown that a significant contribution to the displace- 

ment thickness, d*, is due to the flow near the wall. Hence any error 
in the measurement of u/O. close to the wall may lead to a significant 

error in 6*. For example, the contribution to 6* from the wall out 
to u/O. = 0.4 is about 56% and the contribution to a is approximately 
27%. Appendix I outlines the procedure used to calculate the 

values of e and 6* from the measured profiles. (Initial attempts 

using simple trapezoidal integration from the wall to the outer edge 

of the boundary layer gave values of H significantly greater than the 

Blasius value of 2.59. ) 

Figure 5.8 shows the variation of H with Rxm. Over the measured 
Reynolds number range 0.3 x 106 to 1.7 x 106$H remains sensibly 
constant and agrees very closely with the Blasius value of 2.59. The 

variation of Re (= HVe) 
with RxB where 

Rxe = 
vý (xm + 0.06) (5.5) 

is shown in figure 5.9, xm being the measured distance from the 
leading edge. The agreement with the Blasius solution 

Re=0.6641 ýB 

is very good. 

(5.6) 

t MacMillan (1957) suggests 3 corrections for Pitot tubes in wall 
proximity -a displacement effect (the effective centre of the tube does 

not correspond to the geometric centre), a viscous correction and a 
velocity correction. 



5.4 Prediction of skin friction 

The detailed experimental study has indicated that the flow is 
accurately described by Blasius' solution provided x is defined as 

x= xm + 0.06 m 

Therefore, it is concluded that the skin friction may be estimated 
using the modified Blasius formula 

TW = 0.332111 Uý 
vx +ý . m 

or 
Cf = 0.6641 RxBas 

(5.7) 

(5.8) 

An estimation of the accuracy with which Tw may be predicted 
using equation (5.7) can be obtained from the plots of ex vs 

U"/v. 

The observed uncertainty in ex leads to an uncertainty in Two The 

scatter of ex is such that the error in Tw is probably less than 4%. 

5.5 Hot Film Experiments - Laminar Flow 

5.5.1 Experimental procedure 
The DISA glue-on probe was operated in the constant temperature 

mode using a DISA 55D01 anemometer. The mean temperature of the hot 
probe may be related to the selected operating resistance of the probe. 
As pointed out by Poll and Watson (1984), a small change in AT if not 
correctly accounted for, may lead to large errors in the prediction of 
skin friction (see section 1.3). Defining AT as: 

AT = Thot Tcold 

(Rhot ý Rcold) 
(5.9) 

/dT 

implies that the measurement of AT requires measurement of (Rhot - Rcold) 
assuming 

äT is known. Since the anemometer bridge holds Rhot constant, 
any change in AT may be considered as a change in Rcold which is 
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dependent on both the fluid temperature and the substrate temperature. 
In all of the following experiments, Rcold was estimated by monitoring 
the resistance of a second probe glued onto the surface of the plate. 
This method for calculating AT ought to be more accurate than methods 
based upon changes in the fluid temperature alone (or substrate 
temperature). 

To maximise the resolution of the data acquisition system the 

anemometer output voltage, which is related to the current flowing 

through the probe, was off-set by approximately the no-flow reading 

using a high precision constant voltage supply. The remaining 

voltage was then amplified (x 40) and the resulting voltage read by 

the computer via the analogue-to-digital converter. 

In order to minimise the time dependence of the heat loss, the 

probe was switched on at least 30 minutes prior to any run. 

5.5.2 Effect of surface misalignment 
Since the glue-on probe is simply stuck to the plate surface 

the exposed surface of the probe will not be flush with the wall. 
To examine what effect this surface misalignment has upon the convective 
heat transfer, a probe was glued onto the rectangular block located 

at xm = 1.0m. The rectangular block, which has the same surface 
dimensions as the probe, was traversed up and down relative to the 

surface of the plate over a range of free-stream velocities. Figure 
5.10 shows the variation of Nu with step height where Nu is defined 

Nu = 

where 
4 

i2R 
Fk .A. w 

V 
,- 50 +Lf 

(5.10) 

(5.11) 

and w is the spanwise width of the heating film. 

In an attempt to normalise the results the following series of 
experiments were conducted: 

First, a calibration of Nu ti Pe (i. e. Tw) was performed with the 

probe flush. (For the kapton substrate in air Ka7 so from chapter 3, 
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n 21 4). Then, at a series of constant speeds, the probe was traversed 

and the variation of Nu with h recorded. At periodic intervals the 

calibration was repeated with the probe set flush with the wall. 

Figure 5.11 shows the calibrations obtained with the probe 
flush with the wall. Clearly significant shifts have occurred 
between some of the calibrations although the slope, A, seems to be 

reasonably repeatable. (The anemometer output was observed on an 

oscilloscope to ensure that laminar flow was maintained at the higher 

speeds. ) The shifts in the calibration appear to be a 'time effect' 

as the changes in QT between the runs were very small (see chapter 4). 

It would seem reasonable to assume that the change in Nu 

caused by traversing the probe is due to a change in the heat convected 
into the flow. The effect of using the flush calibration when the 

probe is not flush with the wall may be estimated in the following 

manner. 

Assume the flush calibration is 

NuF=APei+B 

and when the probe is not flush 

NuM=APeý+B 

(5.12) 

Hence NuM - NuF = A(PeA - Pei) 

Therefore Pe M= 
(NUM 

- NuF 
+ Pew (5.13) 

A 

From the traversing experiments NuF, Pei are known (i. e. conditions at 
h= 0) and A is obtained from figure 5.11. Thus peM/pew= TM/Tw) may 
be calculated. Figure 5.12 shows the variation of TM/Tw with h+ where 

h+ = 
huT 

, uT =R, for a range of u.,, A reasonable collapse of 
the results has been obtained with the mean trends given by 

0<h+<15 L 
=l+0.075h+ 

w 

-8<h+<0 
M 

=1+0.085h+ 
w 

(5.14) 

(5.15) 
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In view of the sensitivity of the laminar calibration upon 
surface misalignment the suggestion that the calibration of a probe 
determined in one apparatus may be used to measure TW in another 
seems ill-founded. 

5.5.3 Calibrations 
The calibrations shown in figure 5.11 were obtained at xm - 1.0m 

with a maximum wall shear stress = 0.08 N/m2. (The Reynolds number at 
the start of transition was about 106. ) In order to examine the 
Nu ti Pe calibration in more detail over a larger Pe(Tw) range, a probe 
was glued onto the plate at xm = 0.243m. A typical calibration is 

shown in figure 5.13. plotted as Nu ti TW/3 , where the film is not flush 

with the surface. Except at very low speedst, Nu initially appears to 
be proportional to Tw . From the theoretical study of chapter 3, 

one would have expected these results to have been 'bowed', however 
it would appear that the rate of increase of Nu does not'roll off' 
with increasing TW/3 

Equation (5.14) indicates that as h+ (i. e. Tw) increases then 
Nu will be increasingly over estimated. Thus the fact that the probe 
is glued onto the wall (i. e. not flush mounted) will tend to mask 
any roll off in Nu. Using equation (5.14), the results in figure 
5.13 may he corrected to estimate the calibration for the probe flush 

with the wall. For the probe glued onto the plate the step height 
was estimated to be about 0.09mm. Over the range 0.4 < TW/3, < 0.9 the 
calibration shown in figure 5.13 may be approximated by 

Nu = 3.12T 1/3+ 15.50 (5.16) 

With h=0.09mm, then for the conditions of the experiment, equation 
(5.14) becomes 

TM 

, -ý- =1+0.4 w 
w 

(5.17) 

For a given Tw, Nu and TM may be computed which then may be used to 

see section 5.5.4. 
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predict the form of the calibration with the probe flush. The 
computed variation of Nu with TM is also shown in figure 5.13. 
Performing a least square error analysis on the deduced data the best 

power law fit was found to be 

Nu = 3.0307 TM/ + 15.2958 rms20.0007 (5.18) 

Fitting the best 1/3 power law gave 

Nu = 2.6913 TM 
/3 

+ 15.6505 rmsM0.011 (5.19) 

Note the large reduction in the ms error using TM' as opposed to 
T 

/3 
M 

5.5.4 Note on the form of the calibration at very low Tw 
In all the calibrations obtained for the glue-on probe the 

measured value of Nu at Tw =0 was greater than the intercept (B) of 
the calibration curve. Therefore, a single calibration relationship 
of the general form 

Nu=APeY, n +6 (5.20) 

will not be adequate for relating Nu to Tw for all Tw. From figure 
5.13 the lower limit for which the calibration equation (5.18) 

applies is approximately Tw, = 0.06 N/m2. 

To determine the form of the calibration for Tw < 0.06 N/m2 a 
second series of experiments were performed using the probe glued onto 
the rectangular block at xm = 1.0. Setting the probe flush with the 
wall several calibrations were performed. Fitting a curve of the 
general form, equation (5.20), to the results, suggested that the most 
appropriate value of n was approximately 2. A typical calibration 
is shown in figure 5.14. Within the scatter of the results the value 
of 9 now agrees with the measured no-flow value of Nu. 
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CHAPTER 6, 

Flat Plate turbulent flow experiments 

6.1 Introduction 

From mean velocity profile measurements, there are basically 2 
independent techniques that may be used to estimate Cf. The first 

method, based on the momentum integral equation, requires complete 
mean velocity profiles to be measured over a range of Reynolds 

number. The second technique is based upon the observation that the 
velocity profile adjacent to. the wall (see figure 6.1) may be expressed 
as 

ü- f(ý) 
T 

or u} =f (Y} ) (6.1) 

where f is very similar for a wide range of flows with modest nressure 
gradients. For example, within the viscous sublayer equation (6.1) 
takes the form 

for y+; ý 8: u+=y+ (6.2) 

whilst further out from the wall but still in close proximity to it 

for y+ ti 30, y ti 0.26 : u+ lny+ +C (6.3) 

where K and C appear to be universal constants. 
Between these regions a buffer zone exists. 
Clearly, if the functional form of f is known, then ut may be estimated 
given u and y. 

Of the several methods, based on equation (6.1), that have been 
developed for estimating skin friction in turbulent flow, the follow- 
ing techniques are applied in the subsequent experiments. 
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(i) Preston tube -a one point measurement applicable within 
the viscous sub-layer, buffer zone or 
semi-logarithmic layer. 

(ii) The Clauser chart -a multi-point technique based on 
equation (6.3). 

(iii) Bradshaw's method - essentially based on one point within 
the semi-logarithmic layer. 

6.2 Experimental set-up 

The flat plate model described in Chapter 5 was used for the 
turbulent boundary layer experiments. To ensure fully turbulent flow, 

a wire of diameter 0.5mm was taped to the lower surface of the plate 
about 30mm downstream from the leading edge. The location of the wire 
was selected so as to be in a region of adverse pressure gradient. 
Gibbings (1959) has reviewed various criteria for determining the 

minimum wire diameter to ensure that transition occurs at the wire and 
suggests that for low turbulence, incompressible flow over a flat 

plate, transition occurs at the wire when 

I Umk 
; 826 

This criterion therefore implies that for the trip wire used (k - 0.5mn) 

transition would only occur at the wire when U,. > 25 m/s. However, in 

practice the coupled effects of adverse pressure gradient and the trip 

wire seemed to be adequate in fixing transition as the integral 

properties of the boundary layer displayed fully turbulent charact- 
eristics. 

The data acquisition system as described previously was again 
used in all the following experiments. Each point recorded was the 
mean of 40 samples. 

6.3 Preston tube results 

Possibly one of the most convenient means of estimating the 
local skin friction. in two-dimensional turbulent boundary layer flow 
is by the use of Preston tubes. Two circular steel tubes of outside 
diameters d=1.47mm and 0.89mm were fixed to the plate surface at the 



point of measurement. Care was taken to ensure that the open mouth of 
each tube was in contact with the wall and that the axes of the tubes 

were aligned with the sides of the wind tunnel. The tubes were placed 
30mm apart, slightly offset from the centre line of the plate. (In 

regions close to the centre line of the plate the spanwise variation of 

Tw across the plate was found to be negligible. ) The static pressure was 
taken from the mean of two neighbouring upstream wall pressure tappings. 

6.3.1 Choice of calibration 
The use of Preston tubes to estimate skin friction is based upon 

the assumption of universality of the velocity profile in the near 

wall region of a turbulent boundary layer. McAllister, Pierce and 
Tennant (1982) have reviewed various calibrations for relating Tw to 
d and Ap, where op is the total pressure read by the Preston tube less 

the wall static pressure. Using a floating element balance in a two- 

dimensional turbulent boundary layer along with a range of Preston 

tubes (0.46 4dj2.11mm) they concluded that Patel's calibration 

seemed to give best agreement between the predicted wall shear and 
that measured directly. Patel's. original calibration (1965) consisted 

of 3 algebraic expressions in terms of the parameters 

T d2 
y* = lo9io(4--ý) 9 x* = loglo(4p ) 

These expressions are 

(6.4) 

For x* < 2.9 y*=0.5x* + 0.037 (6.5) 

For 2.9 E x* < 5.6 y* = 0.8287 - 0.1381x* + 0.1437x*2- 0.006x*3 
(6.6) 

For 5.6 , x* < 7.6 x* = y* + 2loglo(1.95y* + 4.10) (6.7) 

Head and Vasanta Ram (1971) found that Patel's expressions gave 
values of y* that did not match at the points where a change over is 

made from one equation to another. They found that the discontinuity 
at the higher change over point gave an error in Tw of approximately 
3%. Fitting a smooth curve through the change over regions, they 

presented a tabulated form of Patel's calibration equations. Poll 
(1983, a) derived polynomials in terms of x* that effectively bridged 
Patel's change over points. He proposed the following algebraic 
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expressions 

For x* , 2.86 y* = 0.5x* + 0.037 (6.8) 

For 2.86 < x* S 2.9165 y*= 0.57387x* - 0.1743 (6.9) 

For 2.9165 < x* ( 5.00 y*= 0.8287 - 0.1381x* + 0.1437x*2 - 0.006x*3 
(6.10) 

For 5.00 < x* ( 6.00 y* = -534.7713 + 495.5094x* - 182.8383x*2 

+ 33.6758x*3 - 3.0908x*4 + 0.1131x*S (6.11) 

For 6.00 < x* < 7.95 x* = y* + 2loglp(l. 95y* + 4.10) (6.12) 

For d=0.89mm it was found that x* varied between 3.2 to 5.6, 

whilst for d=1.47mm ; 4.1 < x* < 6.1 thus indicating the use of the 

smoothing polynomial (equation (6.11)) for both tube sizes. 

Skin friction measurements were made at four different locations 

xm = 0.178,0.397,0.702 and 1.007m. The results for both Preston 

tubes are shown in figure 6.2. There would appear to be a slight 
difference (about 3%) between the Tw predictions for the 2 tubes at 
the higher Reynolds number range. However, this is within the overall 

accuracy of the method. 

6.3.2 Use of a universal velocity profile (surface Pitot tube) 
An equivalent method for estimating Tw from the Preston tube 

results is to convert (op, d) to (u, y). If a universal velocity 

profile is assumed, than Tw may be deduced from (u, y). 

Since circular Pitot tubes are used, various corrections may 
be applied in converting (ep, d) to (u, y). MacMillan (1957) has 

examined the effects of wall proximity, viscosity and sheared flow 

across the mouth of a circular Pitot tube. Poll (1983, b) suggests that 
for a Pitot tube in contact with the wall M. acMillan's corrections may 
be summarised - 

u= um 1.015 ýý)Z 
v 

(6., 3) 

at an effective height y-= 0.65d, where um is the measured velocity. 

Adopting these corrections, the surface Pitot tube (Preston tube) 

results were analysed to give (u, y). 



Of the various laws of the wall that describe the flow from the wall 
to the outer edge of the semi-logarithmic region (equation 6.3), one 
of the most recent formulations is that due to Pfeil and Sticksel 
(1981) (see appendix J): 

u+ =K ln(1 + aly+) + Ca El 
- e-aý(1 + a3y+)] (6.14) 

where the 'constants' al, a2, a3 and C1 are related to K and C for 
flat plate flow. 

By definition 

U+ y+ Dy 
v 

Hence, combining equations (6.14) and (6.15) 

(6.15) 

Z! ln(1 + aiy+) + cly+ 
[- 

e-a2Y+(1 + a3y+ 
]_ ý- 

.ý (6.16) 

This implicit equation was solved for y+ given (u/U«, YUco/v) using 
the Newton-Raphson method, Knowing y+, Cf follows: 

Cf =22 
zt--I (6.17) 

and hence Tw. Assuming K=0.41 and C=5.0 (thus fixing al, a2, a3, 
CI - appendix J) the values of Tw were computed. These results are 
compared with those derived using Poll's modification to Patel's 
calibration equations for both Preston tubes on figures 6.3 and 6.4. 
The results clearly show a consistent discrepancy between the values 
of Tw estimated using the two techniques. The values of Tw deduced 
using Pa tel's calibration are typically 3- 4% less than those obtained 
directly by assuming Pfeil and Sticksel's universal law of the wall 
with K=0.41 and C=5.0. 

Patel showed that the calibration equation (6.7) could be 
used to derive the value of the constants K and C appearing in the 
logarithmic law of the wall. Using MacMillan's correction for the 

01 
displacement of the effective centre of the Pitot tube from its 
geometric centre, he obtained the values K=0.42, C=5.45. 
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However, as shown by Poll, Mathews and Stewart (1985, b) if both MacMillan's 

velocity and displacement corrections are assumed then equation (6.7) 
implies K=0.41, C=5.25. Using these values, the constants 
appearing in Pfiel and Sticksel's law of the wall were estimated as 

outlined in Appendix J. Equation (6.16) was then re-solved for the 

Preston tube readings (u, y). The comparison between Patel's predicted 

Tw and that deduced using Pfeil and Sticksel's law of the wall based 

on K=0.41 and C=5.25 is shown in figures 6.5 and 6.6. The 

agreement in the predicted Tw between the two methods is considerably 
improved. 

6.4 Mean velocity profile measurements 
Using the flattened Pitot tube, mean velocity profiles were 

measured over a range of Reynolds number. The Pitot tube was initially 

placed firmly against the plate surface and slowly retracted from 

the wall. The point at which the Pitot tube was just touching the 

wall (Ywall) was estimated from the response of the Pitot tube. 
No corrections were applied to the deduced velocity from the traversing 
Pitot. It was assumed that the effective centre of the Pitot tube 

coincided with the tube's geometric centre. 

6.4.1 Calculation of the boundary layer integral properties. 
The combined effects of viscosity and wall proximity may be 

expected to distort the flow around the Pitot tube and therefore 

cause errors in the measured velocity profile near the wall. This in 

turn will introduce errors in the estimation of a and P. In order 
to overcome this difficulty, the computation of a and d* was completed 
as outlined in Appendix K. 

The shape parameter, H, seems to be the most suitable quantitative 
criterion for characterising the boundary layer. The variation of H 

with Re is shown in figure 6.7. For comparison the results of Purtell, 
Klebanoff and Buckley (1981) are shown. These results suggest that 
H is solely dependent upon Re. The agreement between the current 
results and those from Purtel et al is particularly good, thus implying 
the effectiveness of the tripping wire at low Reynolds number. 



6.4.2 Mean velocity profiles 
Figure 6.8 shows typical mean velocity profiles in terms of 

u/U ti Y/6* over the full range of Reynolds number for the experiment. 
The variation of u/U. v Y/g* appears to be reasonably independent of 
Reynolds number, except at the lower extreme (Rx = 0.34 x 106) 

where the wake region of the profile appears to be slightly under- 
developed. 

6.4.3 Application of the momentum integral equation 
The incompressible, zero pressure gradient form of the momentum 

integral equation may be written as 

Cf de 
_r -ax 

or 

x 

(6.18) 

(6.19) 

Thus if the Re ti Rx relationship is known, then Cf may be estimated. 
It was decided that the most reliable way to differentiate the exper- 
imental results was to determine the best power law relationship 
between Re and Rxm (where Rxm is the Reynolds number based on the 

measured length from the leading edge, xm). Assuming the general form 

Re = c(RXm + Ro)n (6.20) 

the best values of c, n and Ro were determined using a least square 
error criterion for the Re, Rxm values. The best fitting curve of 
the form (6.20) was found to be 

t The concept of a virtual origin, independent of Reynolds number, 
would imply that a more suitable power law relationship between R8 
and Rxm ought to be 

R0 = c( 
v°°)xm 

+ Ax) n 

: -, c RXm (1 +rý) assuming Xx «1. 
m 

However, since transition is Reynolds number dependent it does 

not seem reasonable to assume ex is constant. 



Re = 0.02689(RXm + 74100)0.81694 

Hence using equation (6.14) 

Cf = 0.04394(RXm + 74100)"0.18306 

or Cf = 0.01954 880.22408 

(6,21) 

(6.22) 

(6.23) 

Figure 6.9 shows the variation of Re with RXm along with equation (6.21). 

Putting Ro =0 the best power fit was found to be 

Re = 0.06859RX"7s388 

Hence by differentiation 

Cf = 0.10342 RX-0.246 

or Cf = 0.04314 Re0"3263 

(6.24) 

(6.25) 

(6.26) 

Equations (6.23) and (6.26) are shown in figure 6.10. These results 
are compared with the following 

(1) Schlichting (1979) Cf = 0.0256 Rgo. 24 (6.27) 

(ii) Ludweig-Tillman law(1949) Cf = 0.246 10-0.678H Re0'2ý9.28) 
where H' Re is determined from figure 6.7. 

(iii) Squire and Young (1938) Cf - 2[5.89 logio(4.075Re) -2 
6.29) 

(iv) Data from Purtell, Klebanoff and Buckly (1981) 

(v) Karmon-Schoenherr (see Bertram, 1961) 

_ 
0.0586 (6.30) Cf 

Dog10(2Re)] 2+0.8686 1og10(2R8) 
Equation (6.23) gives the best overall comparison with the above 
formulations. It is noted that the Ludweig-Tillman law and Schlichting's 
formula appear to deviate from equation (6.23) at low Re. 



6.5 Velocity profiles near the wall 

In order to obtain more detailed velocity profiles, the gear 
ratio of the traversing mechanism was adjusted to give a minimum 
stepping displacement of 0.01mm over a maximum traversing length of 
10mm. At this setting, complete velocity profile traverses could not 
be performed as d was typically greater than 10nm. Using the flattened 
Pitot tube, the probe was traversed in steps of 0. lmm away from the wall. 
(The tube was initially set in firm contact with the wall. ) No 
corrections were applied to the measured velocity distribution. 

6.5.1 Estimation of Cf based on Clauser's method 
Clauser (1954) suggested a simple graphical technique whereby 

a measured velocity profile could be used to estimate Cf. 

The semi-logarithmic law of the wall is written as 

u =1 in Yuz +C 
T 

for some range of 
Yul 

Replacing UT by . UQ, 
CID 

(6.31) 

Ü'ü=K ln ý 
41 ý+C (6.32) 

T 

: Do ý-=ýZK ln+ý C+K In U. 
(6.33) 

A'ln ý+ C' (6.34) 

Thus if equation (6.31) holds, then a plot of ý-- vs ln(! ) ought to 
have a straight line segment, the slope of which is: 

slope =17 
K (6.35) 

and intercept =t 
f1C c+1 Ins =� ?"c+ ln(4) (6.36) 

U. ZK 

For a specified range of points that conform to equation (6.31), 
there would appear to be 2 methods by which the above analysis may be 



applied: 

(1) specify both K and C and hence determine Cf using equation 
(6.35). (Clauser's original method) 

(ii) specify Kand from the slope of the straight line determine 

Cf. 

Clauser's originally proposed method requires plotting the profile 
vs ln' on a chart based on equation (6.33) with lines of constant 

Cf drawn. In the current work, it was felt that the accuracy of this 

graphical technique could be improved upon by a numerical analysis of 

the results. Appendix L outlines the numerical technique used to 

find the best value of Cf for a specified K and C from a set of data 

points selected from the profile. 

Application of (ii) is based upon the best fitting straight line 

through selected data points u/U., In . This approach has the 

advantage that the value of C need not be specified to determine Cf. 

(Using the intercept, C may be calculated for a given K and Cf. ) 

For both methods, the deduced value of Cf will be dependent upon 
the assumed value of K. Simpson (1970) suggested that for Re < 6000, 

von Kaman's constant K ought to be replaced by the function 

n= 
RK } 

(6.37) 

(a) 
Thus over the range of the current experiments 1000 < Re< 6000, 

Simpson's criterion therefore implies that K varies from 0.51 to 0.41. 
However, more recently, Purtell et al (1981) found K and C to be 

constant (to within the accuracy of their experiments) down to Re = 1340. 

The work of Andrepoules et al (1984) also confirmed the constancy of 

K, although they found a slight decrease in C (5.0 to 4.5) with increa- 

sing Re over the range 3600 f 15400. 

One might reasonably expect the accuracy and reliability in the 
predicted value of Cf to increase as the number of points used in 
defining the line increases. However, the range of points is 
restricted in that both techniques may only be applied to points that 
lie within the semi-logarithmic region. It seems to be generally 
accepted that the lower limit of this region corresponds to yf of 
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approximately 30. However, since the accuracy of the measurements 
very close to the wall is dubious, it would seem prudent to select as 
the lower limit a point corresponding to a higher value of y+. 
The upper limit of the semi-logarithmic region is dependent upon Cf 

and also (although not applicable in this case) pressure gradient. 
(Purtell et al suggest that for flat plate flow, the thickness of the 

semi-logarithmic region is approximately 0.15 of the total boundary 
layer thickness. ) 

As an aid for the selection of the widest possible range of 
applicable data points, the profile was plotted as u/U. vs In 

V 
with equation (6.33) drawn assuming K=0.41, C=5.0 and Cf deter- 

mined using equation (6.22). Examples are shown on figure 6.11. Upon 

examining the fit of the line to the data, it was then possible to 

select as wide a range of points that seemed to lie on a straight 
line. Using these points, Cf was then estimated using both techniques 

as outlined. The results are given in table 3 in the following 

section. 

6.5.2 Estimation of Cf using Bradshaw's method 
Bradshaw (1959) also proposed a procedure for estimating Cf 

using velocity profile measurements inside the semi-logarithmic 
region. Replacing u+ by the log-law relation, equation (6.15) 
becomes 

u y+(ý 1ny+ + C) 
U; ., Um 

y 
(6.38) 

V 
Bradshaw suggests that if y+ is assigned some value that would be 

expected to lie within the log-law region, then, assuming K and C are 
known, the intersection of a mean curve through the experimental 
points (u/U,, yU 

V 

-) with equation (6.38) gives a predicted value of 
VR for the particular value of y+. Hence, since by definition, 

2 

Cf2Y- 

v 
Cf may be calculated. 

(6.39) 
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Bradshaw's method was applied using the following numerical procedure: 

Using the Cf ti Rxm relationship (equation (6.22)) an initial 

estimate of Cf was used to select a number of data points 
(typically 6) which bridged the predicted intersection with 
equation (6.38) for an assumed y+ value (e. g. y+ = 100). The 
best fitting quadratic equation through the points was determined 
i. e. 

z u=atb c(ý) vv Ü-m 

Combining with equation (6.38) gives 

(6.40) 

+ lny+ Y+ C) 2 
a+b 

E& 
+ c() (6.41) 

yV 
This equation was then solved for LA (using the Newton-Raphson 

method) and hence Cf using equation (6.39). 

The method is graphically shown in figure 6.12. The results are 
compared with the previous Cf estimates in Table 3. 

Predicted Cf (x103) 
C 

K=0.41, C=5.0 K=0.41 
106 R 

Momentum Integral 
d d ' Full Best 1 xm. metho Bra shaw s Cl auser Straight ) K=0.4 

see equation 6.22 Method Line Line 
(a) (b) (c) (d) (e) 

2.697 2.91 2.88 2.90 3.04 4.54 
1.344 3.29 3.30 3.31 3.20 5.32 
0.942 3.49 3.55 3.57 3.56 5.00 
0.656 3.71 3.71 3.74 3.89 4.64 
0.439 3.96 4.07 4.09 4.05 5.10 

. 0.303 4.19 4.48 4.50 4.40 5.20 

Table 3. Comparison in Cf predictions using the various techniques 
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As expected, the full Clauser method and Bradshaw's method give 
essentially the same estimated Cf. The agreement with the momentum 
integral solution is very good except at the lowest Reynolds number 
where the error is about 5%. The values of Cf predicted by method 
(ii) of section 6.5.1 (column (d) in table 3) agree well with the 

other predictions. Using equation (6.36), the corresponding values of 
Care shown in column (e) using the values of Cf as given in column 
(d) and K=0.41. Overall, the results do not show any consistant 
trend between C and Reynolds number. (The mean value of C from 

column (e) is approximately 5.0. ) 

6.5.3 Sensitivity of Cf upon K. C and y+ 
The advantage of the non-graphical approach in the application 

of Clauser's or Bradshaw's method is that the consequence of assuming 
various values of K. C or y+ upon the predicted Cf may be readily 
examined. 

In Bradshaw's method, the value of y+ was varied over the range 
60 to 240 and the corresponding predictions for Cf examined. The 
results indicated that over a certain range of y+ the deduced value 
of Cf remained essentially constant, however as y+ increases beyond the 

outer limit of the semi-logarithmic region then the estimated value of 
Cf appeared to monotonically increase. i. e. If the assigned value of 
y+ is greater than the outer limit of the log region then Cf will be 

over estimated. (A y+ of 100 is too large for Cf t 4.2. ) 

The effect of assuming various values for K and C upon the predi- 
cted Cf was also examined. The results suggested the following 
conclusions: 

(i) The % error in Cf due to an error in K is of the same 
order and sign. 

(ii) The % error in Cf due to an error in C is approximately 
half the magnitude but opposite sign. 

(iii) For an error in K and C the error in Cf may be deduced by 
considering separately the consequences of the error due 
to K and that due to C. 

i. e. Assuming K=0.41 and C=5.25 (as implied by Patel's upper 
calibration for the Preston tube) would give a Cf prediction about 3% 
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less than that derived assuming K=0.41, C=5.0. This agrees well 

with the conclusions from section 6.3.2. 

The consequence of an error in the measurement of y was also 

examined. The results suggest that the ratio: % error AY/e to % 

error in Cf was approximately 5 to 1 where Ay is the error in y. 
Thus Cf appears to be relatively insensitive to the estimation of 

yWALL' 

6.6 Comparison of Cf predictions 

Figure 6.13 compares the Cf predictions obtained from the Preston 

tube results (using Poll's modification to Patel's calibration), the 

momentum integral equation, and application of Clauser's or Bradshaw's 

method (K = 0.41, C=5.0). The agreement between the 3 methods 

would suggest that Cf (hence zw) may be predicted with an error of 

about 5% at low Reynolds number but at higher Reynolds number the 

error is probably less. 

6.7 Hot Film Experiments - Turbulent Flow 

6.7.1 Effect of surface misalignment. 
Following the same experimental procedure as described in sections 

5.5.1 and 5.5.2, the effect of the step height of the film upon the 

convective heat transfer was studied for a turbulent boundary layer 
flow. Figure 6.14 shows the effect of traversing the film, glued 

onto the rectangular block, vertically relative to the plate surface 
over a range of free-stream speeds. These results clearly show that 

recessing the film has the effect of increasing Nu. This is opposite 
to the trend observed in laminar boundary layer flow - see figure 5.10. 

With the film set flush with the plate surface, a calibration 
was performed where zw was estimated using a Preston tube (d = 1.47mm). 
The response of Nu with h was then recorded for a range of free-stream 
velocities. At various intervals during the experiment the calibra- 
tion was repeated with the probe set flush with the plate surface. 
For some of the experiments the trip wire was removed so transition 
was not fixed. Typical calibrations obtained with the probe flush are 
shown in figure 6.15 in terms of Nu vs Pei. As previously noted, the 
calibration slope is repeatable although the intercept is not always 



reproducible. Note also that calibrations I and III were obtained with 
the trip wire removed. (The anemometer output was monitored on an 
oscilloscope to ensure that the flow was fully turbulent. ) 

Using equations (5.12) and (5.13) the variation of w with h+ 

was computed. The results are shown in figure 6.16 along with the 

mean trends obtained for laminar flow. For 0.9 < Tm < 1.1 (i. e. Tw 
}10% error in Tw) then in turbulent flow -25 ti h+ iC 30 whilst for 
laminar flow -1.2 ti h+ . 1.4. Figure 6.16 clearly indicates the 

sensitivity of Nu upon surface misalignment for laminar flow and its 

relative insensitivity for turbulent flow. For the current experiments 
in turbulent flow h+ < 12 and so the effects of surface misalignment 
are negligible. 

These results confirm the suggestion by Poll and Watson (1984) 

that after encountering a small forward facing step, the wall shear 

stress relaxes to its undisturbed value very rapidly. It appears 
that after the surface discontinuity the viscous sublayer is quickly 
re-established, however the semi-logarithmic and wake regions of the 

profile remain perturbed for a distance typically 256 downstream of 
the step. 

6.7.2 Response due to a change in flow 
Further calibration experiments were conducted using probes 

fixed nearer the leading edge. Figure 6.17 shows a typical calibra- 
tion obtained, with the trip wire on, at xm - 0.243m in terms of Nu vs 
TW39 The experiment was performed by increasing the tunnel speed in 

small increments till the maximum speed was reached and then the speed 
was gradually reduced. At each constant speed, mean values of V and U.. 

were recorded, each mean being the ensembled average of 40 samples. 
The wall shear stress was estimated using equation (6.22). The results 
for the ascending and descending speed runs are clearly shown. Over 
the middle speed range the calibrations appear to be distinct, however, 
there is some evidence that the difference is due to a time effect. 
Experiments indicate that as the settling period at a new speed 
increases during the descending speed run, the calibration line 

approaches the ascending speed curve. 
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To examine this time effect further, the consequence of a step 

change in Pe (U )upon Nu was examined. Figure 6.18 shows the variation 
of free-stream velocity with time and the corresponding Nu history. 
(Performing the experiment in turbulent flow gives a more severe 
change in Tw than would be obtained in laminar flow. ) The probe was 
operated in the constant temperature mode, at a constant U., for 
typically 60 minutes prior to the step change in U.,. Following a 
sudden increase in U., Nu initially over-shoots its final 'steady' 

value. Similarly, a sudden decrease in U., causes Nu to under-shoot 
followed by a gradual'build up to its'equilibriunt value. 

This phenomenon would appear to be due to a time dependence in 

the heat conduction within the substrate. (Relative to the time scale 
of figure 6.18, it is reasonable to assume that the anemometer responds 
instantaneously to any changes in the cooling conditions thus maintain- 
ing the film at a constant mean temperature. ) From figures 3.10 and 
3.12 (the steady state solution) the effect of increasing Pe increases 
the heat flux from the wall to the fluid and lowers the wall tempera- 
ture upstream and downstream of the film. Assume steady state cond- 
itions exist at the lower Pe. Suddenly increasing the flow to a higher 
Pe will increase the heat flux from the wall to the fluid (see figure 
3.12). However, because the wall temperature is higher than the final 

steady state value (see figure 3.10) there will be an additional heat 
flux to the fluid, which will obviously decrease with time as the new 
'equilibrium' conditions are approached. By similar arguments the 

observed behaviour for suddenly decreasing Pe may be explained. 

The behaviour of the probe for the particular case of suddenly 
turning the flow on or off cannot be deduced using figures 3.10 or 
3.12 as the substrate conduction process in the no-flow case (Pe = 0) 
is different. For example, the measured Nu history due to suddenly 
stopping the flow is shown in figure 6.19 which clearly is different 
from. that observed for a sudden decrease in Pe. Clearly the power 
supplied to the probe does not reach a 'steady' value for some time. 

6.7.3 Detailed calibrations 
Various calibrations were performed with a longer settling time 

at each speed condition prior to recording V and Ua. A typical 
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calibration in terms of Nu vs Pe13is shown in figure 6.20. A mean 
curve through the data is clearly 'bowed' indicating that a higher root 
of Pe is necessary to ensure proportionality. Using the least square 

error criterion, a general power law relationship of the form 

Nu = APeý +B (6.42) 

was fitted to the data excluding the point Pe = 0. The rms error was 

minimised with n=3.8. The same trend was observed in calibrations 

performed using a Preston tube to estimate Tw. The values of n deter- 

mined from various calibrations varied from 3.6 to 4.0 with a mean 

value " 3.8. This value of n agrees well with that predicted by the 

steady state, two-dimensional theory discussed in chapter 3. However, 
it is noted that the measured value of Nu is significantly greater than 

the theoretical prediction for the corresponding value of K and Pe. 

This discrepancy may be due to the fact that the measured Nu is based on 
the total hot resistance of the probe and not that of the nickel film 

alone. Other departures from the theoretical model of chapter 3 are 

(i) Lack of two-dimensionality (Geometrically, the aspect ratio 
of the nickel film is approximately 9. However, in terms 

of the effective heating dimensions of the film the aspect 
ratio may be considerably less) 

(ii) Composite substrate. 

6.8 Laminar and turbulent flow calibrations 

A series of consecutive laminar and turbulent calibration 
experiments were conducted. Prior to the first calibration, the probe 
was turned on at the selected operating resistance for 30 minutes after 
which the probe was turned off. After a further 30 minutes the probe 
was re-heated. The first calibration was then performed about 30 

minutes later. Subsequent calibrations were repeated at roughly half 
hourly intervals with the probe remaining on throughout the series of 
calibrations. 

The calibration results are shown in figure 6.21(a). The value 
of Nu at Pe -0 has remained constant throughout the experiment so a 
direct comparison between the calibrations may be made. As plotted, 
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the laminar and turbulent calibrations overlap suggesting the poss- 
ibility of a unique calibration. However, correcting the laminar 

results for the effects of surface misalignment (see section 5.5.3) it 
is clear that the two calibrations are distinct, see figure 6.21(b). 
At the upper limit of the laminar results the calibrations differ by 
30% in terms of Pe. (Note that Pope's criterion fora unique calibra- 
tion in laminar and turbulent flow, error < 5%, is satisfied (see 
Appendix C) - even when the effective heating lengtht is used in 

calculating Pe. ) 

6.9 Effect of wall material (Copper plate model) 

A cylindrical copper block, diameter 50mm, was mounted flush 

with the surface of the tufnol plate at a distance 0.2m from the 
leading edge. Two glue-on probes, whose resistance-temperature varia- 
tion was known, were stuck onto the copper block. (One probe was used 
as a resistance thermometer. ) A typical turbulent calibration is 

shown in figure 6.22 where Tw was deduced using a Preston tube. 

Fitting the general power law relationship, equation (6.42), to 
the results suggested that the most appropriate value of n was 3.7. 
This is sufficiently similar to the value obtained for the probe 
glued onto the tufnol plate as to suggest that n is constant for the 
probe in a given fluid. i. e. The thermal properties of the material 
onto which the probe is attached does not seem to alter the value of 
n. However, comparing figures 6.20 and 6.22 it is clear that increa- 
sing the thermal conductivity of the wall material increases the value 
of Nu for Tw = 0. It is interesting to note that the slope of the 
calibration for the copper backed probe is very similar to that for 
the tufnol backed probe. 

6.10 Effect of oT upon the calibration 

Figure 6.23 shows a series of turbulent calibrations performed 
with the probe operated at various temperatures. A period of 24 hours 
elapsed between each run so as to ensure near thermal equilibrium 

Using equation (12) in Appendix C the effective heating length of 
the film was found to be approximately 20% greater than the geometric 
length. 
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conditions. The probe was turned on typically 60 minutes prior to 
the start of the calibration. 

Clearly, the calibration is dependent upon AT. The fluid 

properties p, u and k involved in the definitions of Nu and Pe have 

been computed at the free-stream fluid temperature, T.. It may be 

shown that evaluating the fluid properties at a temperature T, 0 + mT 

where m is any positive constant, has the effect of shifting the 

calibration curves further apart. Therefore no average temperature 

exists which will collapse the data. Thus the variation of the 
Nu ti Pe relationship with AT is not primarily due to a variation of 
the fluid properties with temperature. (This is in agreement with 
Chapter 4. ) 

Determining the best fitting power law relationship of the form 

equation (6.42), the best value of n was found to be approximately 
3.8 for each calibration. (The no-flow reading was not used in 
determining the coefficients A, B and n. ) As is clear from figure 
6.23 the measured value of Nu at Pe =0 decreases with increasing AT. 
For all the calibration curves the intercept, B. was found to be 
typically 4% less than the measured no flow value. The results also 
indicate that the calibration slope, A. decreases slightly with 
increasing AT. (' 3% from AT = 70°C to 130°C. ) 

From the analysis of Chapter 4 it was suggested that, for a 
limited range of AT, the variation of 12R with AT could be reasonably 
approximated by the expression 

i2R = bSOT + bI 

where bI # 0. Figure 6.24 shows the variation of the no-flow value of 
12R, as measured before the start of the calibration, with AT. 
Fitting the best straight line through the points gave bI a 0.00342. 
The calibrations in figure 6.23 are replotted in figure 6.25 in terms 
of Nub vs Peý3 where 

12R - 0.00342 NUb k Q. w 

Clearly the variation of Nub with AT at a given Pe is significantly 
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less than that indicated in figure 6.23. Increasing bI to 0.004 

minimised the scatter of the results. 

To further examine the effect of AT upon the calibration, various 
laminar calibrations were performed using the probe glued onto the cop- 

per block. Between each calibration the probe was turned off for 

approximately 40 minutes after which the new operating resistance was 

selected and the probe turned on. Each laminar calibration was per- 
formed approximately 30 minutes after switching the probe on. Prior 

to the first calibration, a 'dummy' run was performed with the probe 

operating at the resistance selected for the first calibration. The 

results, uncorrected for the effect of surface misalignment, are shown 
in figure 6.26. The results are very similar to those of figure 6.23. 
As previously noted, the calibration slope decreases slightly with 
increasing AT. 

Figure 6.27 shows the variation of ill 

_ 
with T. Fitting 

Tw=0 
a straight line through the data gives the intercept bI = 264t Using 
this value of bf, figure 6.28 shows the variation of 1<WR - b'I with 

Y3 AT 
Pe for each calibration. Comparing figures 6.26 and 6.28, the variation 
between the calibrations at differing AT is considerably reduced 
although the scatter of the data is still unacceptably large. 

In view of the uncertainty concerning the effect of changes in 

AT upon the calibration, it would appear that the probe should be 

operated at a constant value of AT. This could be simply achieved 
by adjusting the hot resistance, as set on the constant temperature 
anemometer, by the appropriate amount corresponding to the resistance 
change of a cold probe being used as a resistance thermometer. 

It is noted that during several of the calibration experiments 
the temperature, inferred by the resistance change of a cold probe, 
gradually increased as the speed of the wind tunnel was raised. (The 

maximum temperature change was approximately 30C. ) Thus during 
calibration AT decreased slightly being least at the high speed (high 
Pe) setting. From figures 6.23 and 6.26 is is clear that this will 
have the effect of increasing Nu which in turn will tend to mask the 
'roll-off' of Nu with increasing Peý3 . 

_ý bI -ý 
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CHAPTER 7 

Suggested operating procedure for the use of hot film probes for the 

measurement of skin friction 

The following operating guide lines, based on the experimental 
work conducted using the glue-on probe, are proposed to enable hot 
film probes to be used for the measurementt of skin friction. 

(i) Two similar probes, whose resistance-temperature characteristics 
are known, are required. The first probe, heated by a constant 
temperature anemometer, is operated at a constant value of AT. 
The change in resistance of the hot probe required to maintain 
AT constant may be determined from the resistance change of the 

second probe which is used as a resistance thermometer. (The 

cold probe ought to be mounted close to, but preferably not down- 

stream of, the heated probe. ) To maximise the heat flux to the 
flow AT ought to be as large as possible. 

(ii) The model onto which the probes are mounted ought to have good 
thermal insulating properties. For metallic models, probes 
should be mounted on a suitable insulating insert. 

(iii) The decay of the anemometer output voltage with time may be 

reduced to a tolerable level (less than 1% error in rW) by 
turning the probe on at least 15 minutes prior to measurement. 

(iv) In laminar flows, the calibration is very sensitive to surface 
misalignment so glue-on probes should only be used with 
caution. In turbulent flow the calibration is relatively 
insensitive to surface misalignment (for a 10% error in iw -25 
< h+ < 30). 

(v) It has been established that for a probe operating at a constant 
AT the calibration may be accurately represented by the 
relationship 

t The accuracy of the technique is severely limited by the extremely 
weak dependence of the total heat loss from the film upon the wall 
shear stress. An error band of ± 10% in terms of Tw seems to be 

physically realistic. 
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i 2R a ATw + B(t) 

where n(> 3) increases with the substrate-to-fluid conductivity 
ratio. For kapton substrate in air n is approximately 3.7. At 

very low values of Tw (e. g. Tw < 0.06 NJm2) a different form 

of the above calibration may be necessary. 

(vi) The calibration is best performed by slowly changing the value of 
Tw in one direction only, allowing several minutes to pass at 

each new Tw setting before recording i2R. 

(vii) For the DISA glue-on probe the measured value of 12R at Tw r0 
prior to a calibration is greater than the value of B deduced 
by extrapolation of the calibration results to Tyr = 0. When the 
flow is stopped the anemometer output voltage initially decays 

rapidly with time. 

(viii) Due to the time and history dependence of the heat conduction 
within the substrate (see figure 4.8) the calibration in general 
is not repeatable. However, it appears that these effects 
only alter the value of B. Thus the calibration may be fixed 
(i. e. B determined) by making a measurement at a known, non- 
zero, value of Tw (assuming A and n are known). If this cannot 
be done, then by measuring 12R at Tw = 0, prior to the start of 
a run and sufficiently long after the end of a previous run, 
the change in B may be assumed to equal the change in i2RJTw=0 

between the current value and that measured during the initial 
calibration. 
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PRINCIPAL CONCLUSIONS 

(1) Adiabatic substrate theories suggest that Nu is proportional to 
Pe3 However, examination of many of the published calibrations 
(particularly those performed in air) suggest that a higher root 
of Pe is necessary to achieve proportionality with Nu. 

(2) It has been demonstrated theoretically that when substrate 
conduction is accounted for, Nu is approximately proportional to 
Peen where n(> 3) increases with the substrate-to-fluid thermal 

conductivity ratio. Experiments performed in air flow suggest 

that for Kapton substrate Nu is approximately proportional 
to Pe% 

(3) The calibration for hot film probes is time and history dependent. 
i. e. 

ý Nu = APe + B(t) . 

(4) The calibration is temperature dependent. (This problem may be 

avoided by operating the probe at a constant AT. ) 

(5) The effect of surface misalignment of the hot film significantly 
alters the convective heat transfer. This effect is more 
pronounced in laminar flow than in turbulent flow. 

(6) The calibration for the glue-on probe appears to be dependent 
upon the nature of the flow, i. e. the calibration in laminar 
flow is different from the turbulent calibration. 
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APPFNDIX A 

Effect of compressibility upon the calibration 

Assume the calibration may be written as 

Nu = APeV3 +B 

where A and B are constants. 

The effect of compressibility upon the calibration may be examined by 

considering the temperature dependence of the fluid properties P. u 
and k appearing in the definitions of Nu and Pe i. e. 

I 
Q 

ti 
1.2zWPr /3 

oTk 
I 

Pv2 

: D, 
Q Iý 2 

oul2 
1%3 

o ti _R__ Pr 
TW 

Thus the effect of compressibility is essentially confined to the term 
Bellhouse and Schultz (1965) showed that over the ranne 0°C 

to 1000C (pu)"3 varies only by 2% and so the effect of compressibility 
is negligible. (This result also confirms that the presence of the hot 

wall has hegligible effect upon the wall shear stress. ) 
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APPENDIX B 

Solution for a specified wall temperature distribution neglecting 
longitudinal diffusion and substrate conduction 

Consider the problem as sketched below. 

V=O, u' Y ty 

-'ý 1 l* % 
Film X 

Adiabatic substrate 

Neglecting longitudinal diffusion, the energy equation for the constant 

property flow may be written: 

Tw aT _k a2T 
u yax-p7p ay2 (1) 

The solution to the temperature field T(x, y) is sought for a specified 
wall temperature distribution Tw(x). 

Defining the Fourier transformation as 

Tia"Y) = T(x, Y)e27liaxdx 

0o 

_CO 

then in the transformed plane equation (1) becomes 

d2T it 
MY2 + 2,,,, PrT2 

ei72 yT =0 
pv 

For convenience let 

Using the substitution 

ye-6 Z= m'3 (2naI 
ý3 

m= 
PrTw 

pv2 

(2) 

(3) 

(4) 

reduces equation (3) to Airy's equation - see Abramowitz and Stegun 
(1968). 
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d 2T 
u-z2- - zT =0 (5) 

The general solution to equation (5) may be expressed in terms of the 
Airy functions Ai, 6i. 

T(a, Y) = a(a)Aiiz} + b(a)Biiz) (6) 

Restricting the argument of z to the range -r/3 to W/3 then Bi{z) is 

not a valid solution since T(a, y) must vanish at infinity. (Thus T 

represents the temperature rise above T,. ) 

From the definition of z, equation (4) 

Arg{z} =- ný + 1/3Argia} 

Arg{a} =+ 3Arg{z} 

Therefore - n/3 < Arg{z} < 716 _ ný < Arg(a) <3 T/ 

i. e. a cut is placed along the negative imaginary axis of the a-plane. 

Hence T(a, y) = a(a) Ai{m3 (21ra)1/3 ye- 
T4 ) 

The function a(a) may be found from the boundary condition 

T(x, O) = Tw(x) 
i. e. T(a, 0) = TW(a) 

(7) 

(8) 

where T(a) is the Fourier transform of the specified wall temperature 
distribution. 

Putting y=0 in equation (7) gives 

a(a) =Ta 
1 

where C1 = Ai {01 

Thus T(a, Y) = 
MCI Ai {mV3 (2na)/3 Ye 

iý 

(9) 

(1o) 
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Of particular interest is the heat flux into the fluid - 

q(x) = -kf 
ay (x"0) 

ý 

-kf 
ay (a, 0) 

Thus differentiating equation (10) and putting y-0 gives 

(11) 

Z(a) = -kf m, 
1/3 

(2na)1/3 e-'76 
CZ Tw(a) (12) 

where C2 = Ai'{0} . 

Assume a'top-hat'distribution for TW(x) 

TW(x) = T0H {-2 Ixi} 

where To represents the temperature rise above Tp. 

Hence 
TW(a) = To SinnaL 

na 

and 
-kf 

ý3 

Cl To e-#ý/6 (2na)/3 Sin 1raL 
na 

The Fourier inverse transformation is defined 

T(x"Y)= T(a, y) e-2niaxda 

Q. +ie 

(13) 

(14) 

(15) 

(16) 

Thus application of the inverse transformation leads to the result 
40 

q(x) _ -k f i" T0mý3 2 , /3 Sin nr 3 Cos(2nrx) 
0 (2nr 

m+iE 

Sin nrL Sin(2rrx) dr 
(2wr 

(1 7) 



Let Q be the total heat flux over the film - i. e. 

Q=J2 q(x)dx 
-y2 

(18) 

Substituting for q(x) using equation (17) and inverting the order of 
integration gives 

Sin2 �rL Q= kT m% q, 13 dr - fo 
o (2, rr 3 

Putting 0= nrL then 

2 ýa 'l/ ý3 C2 Sin2o 
r2- de Q= -k fTo(mL ) 

fo 

From Gradshteyn and Ryzhik (1980) 
Co 

I 

I /3 Sin2ede =4r 
iý 

3 
0 

and from Abramowitz and Stegun (1968) 

ý2- 
-J3 

rý ) 

Thus 

-- -J 

cl r(v3) 
113 

Q= +k fTo(mL2 )ý3.3 3.3 
r 

ý) 

2 
ý- or ý=0.807549 Pr- 

-ý 

P 

fo p" 

Nu = 0.8075 Peý3 

It a Cosine wall temperature distribution is assumed i. e. 

(19) 

(20) 

(21) 

Ta = Toý Hiý - Ix 1), Cos(=) (22) 
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then 
TW(a) = 

Tmean L1- 

4a2L2 
Cos(naL) (23) 

Substituting for TW(a) in equation (12) and application of the Fourier 
inverse transformation leads to the result 

Nu = 0.7233 PeV3 (24) 

From the form of equation (12), and as illustrated by these 2 examples, 
the solution will always be of the form 

Nu = aPe: 
V3 

where the constant a is dependent upon the specified wall temperature 
distribution. 



- 107 - 

APPENDIX C 

Pope's method for relating the turbulent calibration to the laminar 

calibration 

In his thesis Pope proposed a procedure that appeared to collapse 
the calibration effected in turbulent flow onto the laminar calibration. 
In his original work several numerical errors were made and so his 

method is repeated here in its correct form. 

From equation (2.39) 

Nu = 0.8072 Pe/3 + 0.10(2ß - a)L - 0.02869 Pe1/3 [L(2ß - a)] 
2 

= 0.8072 Pe 1/3 
(1) 

where Pem is the value of Pe deduced using the laminar calibtation. 

Defining 

ý_0.1(2ß-a)L F. 

then 

0.8072 P, 3 

Pem)/3 
=1+e-2.316E2 Fe 

From equations (2.40) and (2.38) 

= 
0.0416 p_0.0416 Pel 

aV LPr 

Putting 0 gives 

1 
c= -0.00515 

Pe LvJr 

Assuming the calibration in laminar flow is 

Nu - Nu0 = 0.8072 Pe'3 

then the turbulent calibration is 

c2i 

(3) 

(4) 

(5) 

(6) 
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hence 

Num - Nu0 = 0.8072 Pem/3 

Nu - Num = 0.8072 ( Peý3 - Pemý3) 

(7) 

(8) 

From equation (3) 

Pe )f3 -1= -c + 2.316e2 
Ne-) 1+c-2.316e2 

= g(c) 
Thus 

Nu = Num + (Num - Nuo)g(E) 

and 
- -0.00574 (Num - Nuo)1 (1 + 9(E)) 

i 

Pr 

(9) 

(1o) 

(11) 

Thus knowing (Num - Nu0) a may be computed and hence the corrected 
value of Nu estimated using equation (10). (The corrected value of Nu 
is the value that would have been measured if a uniform sheared profile 

were present. ) 

Using equations (3) and (5) it is possible to derive a criterion 
in terms of Pe/Pr3 for the maximum error allowed in the interpreted 

value of Pe. Assuming a maximum error of 5% then 

Pe < 1024 Pr3 

(Pope had suggested Pe < 900 Pr3). 

In practical terms, it must be noted that for equation (6) to 
hold then the effective heating length should be used, i. e. the value 
of L used in the definition of Pe should be the effective heating length 

of the film Leff which may be estimated from the slope of the calibra- 
tion: Nu = Nu0 + MTV 3 

L= m3pv2 
ý 

eff 

[(. 

8072)3Prj (1z) 
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APPENDIX D 

Application of the Fourier Inverse Transformation 

From Nobel (1958) the Fourier inverse transformation, 
T(a, y) T(x, y), may be performed along any line within a horizontal 

strip in the a-plane where T(a, y) is analytic. A branch point exists 
at the origin, a=0, and the a-plane has been cut along the negative 
imaginary axis. Therefore, inversion cannot be simply performed along 
the real axis of a-plane due to the singularity of T(a, y) at the origin. 

To demonstrate the application of the inverse transformation in 

terms of real integrals only one case will be considered here as the 

principles may be readily applied to all other results. 

From section 3.6 it is shown that for a 'top-hat' heat flux 
distribution the surface temperature in the transformed plane is 

T(a, 0 

Sin n�Pea 
. 

Ai{g} 
7r, /Pea 

n 
+ 4n2a2 KAi {g} -e 

ý6(21ra)ý3 Ai' {g} 

n4 

where g= e''3 (2na)' 

Application of the Fourier inverse theorem therefore gives: 

(1) 

Si n n�Pea 
T(x, O) =n ea 

ý . e-2niax da. (2) 

-ý+i e+ 
4n2a2 K- e-ýýý(2na)ý3 Ai 

This integral is evaluated by considering the contour of integration 
as shown in figure 3.2. 

It may be shown that the integrand in equation (2) is analytic 
at all points within the contour. (Ai{z} and Ai'{z} have zeros on the 
negative real axis of the z-plane. Thus Ai(g) and Ai'{g} will only 
have zeros along the positive imaginary axis of the a-plane. ) 

Thus 
-2aiax T(a, 0)e da -- 0 
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Therefore 
T(x, O) +Al+A2+A3+A4+A5=0 

where A2 and A4 represent integration along the real axis, A3 represents 
integration around the semi-circle at the origin with jal d and 
A1, As signify integration along the curves jal =R as Rfp. 

Consider integration along the arc A1. 

On Al a= Reie 

da = ieieRde. 

From Abramowitz and Stegun (1968) 

AS 2-ºW 
Ai'{z} 

f -zj iz 

Thus the inversion integral around Al becomes 

I 
el Sin , r�PeReie 

A1 ti - ieieR n�PeRel e-2, rixReiede 
0 ý0 

27rR(Kei/2 + ee13 

As Rfw, el i c' -0 (c « l: ) so clearly Al f 0. 

Similarly for A5. 

Consider integration along A$ 

a= 6eie 

da = ie18dde . 

As 6 -º0 then Ai'{ } 
-º - .,, 2, 

9 ý1 

and 
Sin, ryl5Fct f1. 

?r VFea 

Assuming + 4, r2a2 K« e'76i (21ra)1ý3 Fl 

Thus as d -º 0: T(a, 0) -º eff/6 (21ra)3 
2 

'. AS ti ieied ý1 
ef/6 (2, rd)J/3 e 

e'3i 
e"2, rixdeie . de 

2 
0 



which tends to zero as 6 tends to zero. 

Therefore T(x, O) _ -A2 - A4 . 
On A2 a=rein :.. da=dr 

Thus along the +ve real axis A2 

0 Sinn�Per 
A2 er e-2nirxdr It V4 2nrK - ei76 (2nr)3{(2nr)ý3 eiý3 

Let T(a = reie, 0) = TR + iTI 

Then i 
co 

-A2 = J0 (TR + iTI)(Cos(2nrx) - iSin(2nrx))dr 

Now consider integration along A4 

rel ý 

Since 

and 

da = e"dr . 
S 

". 

Sin n �Per Sin -, r�Per 
-n, /Per -n er 

Ai, { (21rr)"3 e-"} = 
Ate- { (27rr)ý3 eiý3 } 

where the bar denotes the complex conjugate, then it can be shown that 

T(a = rei7r) = T(a = re °) 

Thus 

0 
m 

_ (TR - iTI){Cos(2nrx) + iSin(2nrx)}dr 
0 

Co 
p 

-A4 = (TR - if, ) e2nirx dr . Jý 

. 
reo 

'. T(x, 0) -c -A2 - A4 =2J TR Cos(2trrx) + TI Sin(2, rrx)dr 
0 
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APPENDIX E 

Solution for the wall temperature distribution for K=0, neglecting 
longitudinal diffusion 

Putting K=0 in equation (3.36), the surface temperature in 

the transformed plane for a'top-hat' heat flux distribution is 

Sin(Tr�Pea C 
T a, 0= Tr ea '1 () 

(2Tra)1/3 e- 
f/6 C2 

Hence 

TR(a) + TI(a) (1) 

�Peý3 , r�Pea 
. Fr) T (a) _ 

�3 Cý 
(n 
Sin�Pe) 

RT C2 
a 

W3 

I- 
TI(a) =ý TR(a) 

Application of the Fourier inverse transformation gives 
00 00 

(2) 

T(x, O) =2 
jo 

TR(r)Cos(2nrx)dr +2 TISin(2nrx)dr (3) 

Consider the first integral: 

2T (r)Cos(2nrx)dr = �3 C (-�Pe 
13 '"Sin 

n�Per Cos 2nrx r (4) JR 2 2- (n�Per) 3 
00 

00 

(5) 

From Gradshteyn and Ryzhik (1980) 
Go 

je4'3Sin(1Pee)Cos(2xe)de 
= jSin(. Y/6) r(J/3) C(�Pe + 2x)ý3 

+I �Pe - 2xj1/3 sign(�Pe - 2x)] 
forx>0. 

(6) 
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Similarly the second integral of equation (3) may be written: 
Co 00 

2T (r)Sin(2nrx)dr =1 
ý1 (1)1ý3 1 Sin �Pee Sin 2xeý do (7) I nC2 ý ýe 

o3 
00 

where 
Je'3 Sin(�Pee)Sin(2xe)de = }Cos(V6) r(-1/3) 3) 

[12x 
- �Pel3 -(2x + �Pe)"] 

o (8) 
for x>0 and 2x i �Pe 

. 
1 

Using = r( ) 
and r(-113) _ -3r(ß'3) then adding 

2 ny3 ) 
equations (7) and (8) gives 

-0.60961 I I#%.. /n_11114 nin_. . M_ 
1II 

1 M_ n.. ilý'; - 1__i /n.. 
_9.. 

11 

forx>Oandxj VPe 

krrr -cAl 

(9) 

Using equation (3.33) the dimensionless parameter x may be replaced by 
fwhere a* is half the length of the film, i. e. 

x* -0.60961 x* 
1l3 

x 
1z3 

x* 
1/3 

x* T(, 0) = --ýT-- 
I-aw 

- 11 - 2(iw + 1) -1- -a-iI sign(1 - ý) 
Pe 

(10) 

#1. for ä>0, 
-iT 

For 0< X* 
v <1 then 

1a 
-iv 

11 
"ä 

I= (ý ä) 

sign (1 -ä)=+1 

Thus for 0<ä<1 equation (10) becomes 

T(, 0) = 
0.60961 2(x* f 1)13 ä* O a* (11) 
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For X* >1 then 
I 

- 1) -F -1I=( al-7 
** 

1-äl=fä -1) 

* 
sign(1 -ä)= -1 

so for *>1 T(ä *, 0) - 
0.60961 2(ä *+1) 

1%3 

- 2(* -1) 
1/3 

(12) 
Pe 3 

The solution for ä<0 can also be deduced using equations (6) and 
(8). Let xp = (xI. Hence equation (3) becomes 

Go co 

T(x, O) =2 TR(r)Cos(27rrxP)dr -2 jTI(r)Sin(2TrrxP)dr (13) 

00 

Using the integral solutions equations (6) and (8) 

T(x, 0) = -0.60961 f-. 12x - �Pe11/3 - ý�Pe - 2x I ll%ign(�Pe 
-2x P)} Pe pP 

(14) 
for xp > 0, xp # �Pe/t 

, 

or 11 
x* 0.60961 x* 

_ 

1/3 
x* /3 x 7(iw, 0)_ 4a 

Feý 
1+1- : 

a4 sign(1 - -a) (15) 

Thus for -1 < X* <0 

i. e. 0 <ý c1 then 
IX'a-ý 

- 1I = (1 - 
ý) 

-ý) 
I 

sign(1 - : 
a4) _ +1. 

so for -1 <ý<0 

T(. 0) = 
0.60961 X* 2(1 - )I3 (16) 

ä3 
la I 

ý 

x* For ý 
<_1 i. e. >1 then ý-1I= (ý - 1) 

I1"ýI=(ý-1) * 
sign(1 -)_ -1 
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ý 

Therefore, for ä< 
-1 , T(ä , 0) =0 

Thus factoring the results by Nu (= 0.868Peý3) gives 

For < -1 a 

For -1 < x* 
ý <0 

For 0 <ä <1 

T* - T* 
w °° _0 
TMF-T. * 

T* - T* * 
ý/3 

w 1.0583 1- iä I 

TMF - Tý 

T* - T* 

Tw 
T+ = 1.0583ý1 + xw 

'MF - 'a* ` 

* 
1/3 

ý 

(17) 

For xý >1 
TW T`° 

= 1.0583 (ý + 1)/3 - (x - 1) 3 

- T* aa a T*c 
M m 
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APPENDIX F 

Notes on the Airy function, Ai, and its derivative 

A Representation in terms of ascending series and asymptotic expansion 

In order to compute the surface temperature distribution when 
the effects of longitudinal diffusion are included it is necessary to 

evaluate the Airy functions Ai{rei73} and Ai'{re'TY3) . As outlined 
in section (3.7) this is achieved using the ascending series and 
asymptotic series definitions of the Airy function. From Abramowitz 

and Stegun (1968) these are 

Ascendinq series Ai(z) = Clf(z) - C2g(z) 

where f(z)=1 +ýz3+1z6+19Tý z9+ 

nnrnrn 

000 

9(z) =z+C-. z4+`. 7. 
rz7 +`-ý; -°zlo+, . *0 

11 CZ 
= 

3/ý 2I ) 
Cl =3 C2 = Cl 

r(/3) r(/3) r(/3) 

The derivative of the Airy function may be calculated by differentiation 

of the ascending series. 

Asymptotic Expansion 

or 

Ai(z) ti -1 z-le-Z kEO (-1)kCký-k 
2�n 

co 

Ai'(z) ti -1 zle-ýkEo (-1)kdkz-k 
2 , /n 

where c=1, C= (3k + ;1 
ok 54 ýk: r (k + 

< n) (larg zj 

Oarg 2) < n) 

k=1,2,3 . ... 

d0 =1 
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It 

For the particular case of section 3.6 where z= re3 it was 
found that using the first 10 terms of each series the ascending and 
asymptotic expansions agreed to at least 5 significant figures where 
r=4.1. 

R Representation of the Airy function in terms of Bessel functions 

In order to check the comDUted values of the Airy functions it 
is possible to represent the functions in terms of Pessel functions 

with real arguments. 

From Abramowitz and Stegen (1968) 

Ai(z) =1z [I,,, (z) - Iý3(c)] 

and Ai'(z) = I2/(c)1 C ). 
J 

where = 
3zý2 

With z= rei73 C=2 
/2 

eiý2 i. e. is purely imaginary. 

Vn 

Using the result Iv; z) =e2i Jv(zei ý for -f < arg z ý< ý 

Tr _�r 
i76 iý76 i, r -iý/6 in 

Thus Ai{rei/3} - "ý ee 43 (ae )-e Jý, 
3(ae 

) 

. 

3 
, rý and Ai' {rei/2} reý 3 [e'3 

J (aei, rý _ e- 3ý3 (aei ý- 'ý 

3 
where a=3r'2. 

By analytic continuation Jv(zem") = emvni Jv(z) :m an integer. 

n_ �r 23 /3i 2 
Hence Ai{rei/3} " "ý' 

['3 
(3ýý _e ý/3 (ýr 2) 

Ai' {reiýý3} _-rJ ? rýý 
- e2i (3 

3 

3 43 3 '1213 3 

i. e. the Airy function and its derivative have been expressed in terms 
of Bessel functions with real arguments. 
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C Representation of Ai{re-iý6} in terms of Kelvin functions with 

real arguments. 

From Abramowitz and Stegun (1968) the Airy function may be 

expressed in terms of the Bessel function K: 

3 
Ai{z} = 

1-ýý Ký3 (3 zýý 

, r/- =1 
rr 

e-iý/ý K (2 r%2 
e-iý4 ) Thus Aifre °} Y3 

2t For convenience let a=32 

Using the definition of the Kelvin functions 

e-}" Kin 
v(ae74) = kerVa + ikeiva 

Thus Ký3 (aeiý4) 
= e"6' (kery a+ ikei1 a) 

Since 

then 

Hence 

Kv (z) =j where the bar denotes the complex 

conjugate 

Ký3 (ae-ýý4)= e 
ý16i 

(kerý, 3 - ikeiý3 a) 

Ai{re-i76} - , -ýýe-iý4 kerý, 
3 

(3 rrý) - ikeiy3 (3 rý2) 

D Calculation of ker1(a) and keij, (a) 

The asymptotic expansions (a large) for the modulus and phase 
may be used to estimate ker1,3 and kei31,3. From Abramowitz and Stegun 
(1968) these are 

kerva = NvCosýv 9 keiva = NvSinov 
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where 
1nN =-a+1 1n +u-11+ (u - 1)(u - 25) 1 

v F2 ý ýýý 
8�2 a 384�2 a3 

- 
(u - 1) (u - 13) 1+ 0( 1) 

128 a4 a5 

ýV a -(ý+ 
1+ u- 11 
- �2 8 8�2 a 16 a2 

+ 
fu-7 1)(u- 25) 13 

+ 0(1 ) 
384/2 a as 

where u= 4v2 . 

These expansions appear to beaccurate (error less than 1%) for a>2 
(i. e. r ti 2.1). 
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APPENDIX G 

Solution to the one-dimensional heat conduction equation for a semi- 
infinite composite solid 

Consider the conduction of heat within the composite solid, 
initially at a uniform temperature, as sketched below. 

The linear heat conduction equations are 

For 0<x<I a2TI _ 
äl a= 0 

ax 
(1) 

where al = 
k1 

P1C1 

For i<x<d a2T2 1 aT2 
aX2 a2 8L 

Equations (1) and (2) are solved subject to the following boundary 
conditions 

(1) Since the heating film of a probe is normally maintained 
at a constant temperature (i. e. resistance), a constant 
temperature is specified along the surface - 

T(o, t) = To (3) 

(ii) It is assumed that the media are in perfect thermal contact 
along. the interface x=I. i. e. 



TI(t, t) = T24, t) 

(iii) In general I << d so d may be treated as semi-infinite. 
It is assumed that initially the media are at the same 
temperature, so T effectively denotes the increase in 
temperature. Thus as xf- T2 f 0. (6) 

The solution for T(x, t) may be readily obtained by means of 
the Laplace transformation defined as 

T(x, p) = 
jT(x, 

t)et dt (7) 
0 

Hence, the governing equations and boundary conditions become 

d2T 0<x<ý j --ý-T0 dx2 al 1 

x>ý 
d2T2-. P. T20 

dx2 a2 

X=O 

ki ý.. TX1 (ý, t) = k2 ý (R, t) 

T T1 =P 

(4) 

(5) 

(8) 

(9) 

(10) 

xTl a fi2 kl aýT 
= k2 DT (11 ý Iii iZX 

X-ºý T2-º0 (12) 

The solution to equations (8) to (12) may be shown to be 

0< x< R 71(x, P) a 
T11 Cosh[rl(x - R]+ Qsinh Ü"i(x -t)1 
p cosh r1t + asinh r1t 

. (13) 

and x>R T2(x. p) _ 
?n e-r2(x-1) (14) p 1cos rlt + osin rlk 

where rl =ý , r2 =ý, c=ki (15) 

The electrical power supplied to the hot film must balance the 
rate at which heat is conducted into the solid. Therefore, of 
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particular interest is the heat flux at the plane xa0, i. e. 

q(O, t) ki aL (O"t) 

or q(Opp) =- kl ý (OOp) 

Thus differentiating equation (13) gives 
ft 

qiO"pi = -kLO [(1 
- v)rle-r1R - (1 + Q)rlerit 

Zp Cosh r1l + os n r1l 
(16) 

From the definition of the hyperbolic functions, then 

2cosh rlt + 2csinh r1t r(o + 1)eril(1 - ae-2r1t ) 

where a=a+T 

Thus equation (16) may be rewritten 

k T0r1 1+ ae-2r1L q(OsP) =p 
ae-2rIL 

Since jai < 1, then from the Binomial theorem 

410 
(1 - ae-2r12)-1 =E ane-2nr1L 

n=0 

Hence 

(17) 

q(O, p) = 
kLPý1 

E ane-2nr1t +az ane-2riR(n+l) (18) 

n-0 n-0 

The Laplace inverse transformation may now be performed - see Carslaw 

and Jaeger (1959) 
n2R2 

(ly) q(O, t) = 
kiTo 00 

1+ 2E ane al 
n n=1 

40 
Since jai <1 then an =a n-1 -a 

If 
at 

is small then equation (19) may be approximated to 
1 
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or 

q(Dst) 
k, TG + 2a 
ga alt 

q(O, t) 
! LT. _ (kk pc 

Trap lp1C1 
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APPENDIX H 

Generation of heat in a wire conducting an electric current 

Consider the conduction of heat in a wire, length 2R and cross 
sectional area a*which is carrying an electric current i. Assuming 

the electrical resistance of the wire varies linearly with temperature, 
then the steady, linear, heat conduction equation may be written 
(see Carslaw and Jaeger, 1959) 

d2T+a i2R T=-_i2R 
t 

dx2 Ztka Ztka (1) 

where k is the thermal conductivity of the wire, a is the temperature 
coefficient of resistance at To and Ro is the resistance of the wire 
at temperature To. Assuming the ends of the wire are maintained at a 
constant temperature To, the solution to equation (1) is 

. 

T- To =ä CCos osRpt 
x_ (2) 

J 

where p2 =a 
12R 

. 

The total resistance of the wire is 

U 
R= Ro + 

; at fo 
a(T - To)dx 

J 

Thus integrating equation (2) gives 

R-R tan pt 
ý° Pt 

Hence the power dissipated in the wire, 12R, is 

-" 12R = i2R to" 
0 pt 

The mean temperature rise of the wire may also be obtained from 

(3) 

(4) 

t The Thomson effect and heat loss through radiation are ignored. 
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equation (2) - 

tan pt - pt 
mean p. 

(5) 

Equations (4) and (5) may be used to examine the theoretical 

variation of i2R with AT för the nickel film of the glue-on probe. 
(Relative to the film the 2 nickel/silver plates are massive so it is 
reasonable to assume that the ends of the film are kept at a constant 
temperature. ) From figure 4.2,2t a1x 10-3m, a ff 2x 10-11m2. 
Assuming the resistivity of nickel at 200C is 7x 10-8nm then the 

resistance of the film = 3.5n (20°C). Finally, assuming the temperature 

coefficient of resistance at 20°C a 0.0054/°C gives pt a 651. Thus 
for the nickel film, equations (4) and (5) become 

12R = 0.05381 tan65i , (6) 

oT = 
tan65i - 651 

0.351i 0 (7) 

These results may also be used to estimate how much heat is 

conducted laterally out of the film into the nickel/silver elates. 
(In the above nrohlem this renresents the only conductive heat loss 

path as it is assumed that the film is embedded in a perfect insulator. ) 
From figure 4.7 at AT = 100°C, i2R = 1.2 x 10-3 watts. However, in 
figure 4.6 the measured value of i2R at AT = 100°C is approximately 
40 x 10"3 watts. Clearly the heat conducted into the end plates is 

small relative to that conducted into the substrate. A similar 
conclusion may also be obtained by simply considering the thermal 
conductivities of nickel and kapton and the geometry of the film. 
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APPENDIX 

Estimation of the integral properties from the laminar boundary 
layer velocity profiles 

For two-dimensional, incompressible flow, the displacement 
thickness of the boundary layer may be defined as - 

00 

d* =1 -ý-dy 

and the momentum thickness - 

e= J'. L(1 u 
0 _r, dy. 

(1) 

(2) 

The following procedure was adopted for determining 6* and e 
from the laminar velocity profiles. 

Consider the momentum thickness. Equation (2) may be rewritten 

In "max f9 
v(1 - v)dn + v(1 - v)dn + v(1 - v)d" (3) rwu- 

o in "max x 

where v= uw- V and n=y vz 

The first and last integrals in equation (3) were estimated by numer- 
ically integrating (using Simpson's rule) the tabulated Blasius 
solution. (nmin and nmax may be replaced by vmin and vmax') The 

middle integral was estimated (using trapezoidal integration) from 
the main 'body' of the measured velocity profile. (y 

0 
is not required. ) 

The contribution to 0 due to the first integral for 0.25 < vmin 
< 0.6 was then approximated by the best fitting quadratic (in terms of 
vmin 

min 
v(1 - v)dn - 0.05656 + 0.4428vmin + o. 3766vmin (4) 

0 

For the range of vmin' the contribution to the displacement thickness 
was estimated as 

Go 
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min 

0 

1- v dn & 0.0232 + 2.8446vmin 1'172vmin (5) 

For vmax > 0.95 the contribution to 0 due to third integral in equation 
(3) was approximated by the expression 

fI Vmax 
v(1 - v)dn w 2.3846 - 4.2513vmax + 1.8663vmax (6) 

Equation (6) was also found to be adequate for estimating the corres- 
ponding contribution to d*. 

The contribution to a and ö* estimated by equations (4), (5) and 
(6) must be factored by From figures 5.5 and 5.7 the value of 
x may be approximated by the expression 

x= xm + 0.06 (7) 

where xm is the measured length from the leading edge (in metres). 
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APPENDIX J 

Outline of Pfeil and Sticksel's law of the wall 

By examining the influence of pressure gradient upon the velocity 
profile near the wall of a turbulent boundary layer, Pfeil and Sticksel 
(1982) introduce a single explicit algebraic relationship describing 
the velocity profile from the wall to the outer edge of the semi- 
logarithmic region. By considering fully developed turbulent channel 
flow they show that the velocity profile is not only a function of yf 
but also of pressure gradient. At the wall, and in the immediate 

vicinity of the wall, they suggest that the pressure forces must 
balance the viscous forces. 

If the changes in longitudinal and transverse velocity fluctuations 
in the streamwise direction (x) for fully developed channel flow may be 

neglected then 

dP dt 
ax - ay 

. Assume T= Ti - pu'v' and let P+ _ý 
dP 
'a -x 

where Ti is the viscous shear stress 
Then dividing equation (1) by Tw gives 

P+ a au 
_ pu'v' = 

ay+ 
(ay+ _ý w 

(1) 

(2) 

Upon integrating (the constant of integration = -1) and rearranging 

pTIve =1+p 
y+ 

_ 
au+ 

w aY 
(3) 

Pfeil and Sticksel propose that the velocity profile from the wall to 
the outer edge of the semi-logarithmic layer may be described by the 
following expression 

u+ =K ln(1 + aly+) + C1[i - e-a2Y+(-1 + a3Y+ )] (4) 

Differentiating equation (4) with respect to y+ and inserting into 
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equation (3) gives 

- pU'V' =1+ P+y+ -K1+- Cle a2Y+(a2 
- a3 + a2a3Y+) (5) 

w1+ aly 

Expanding (1 + aly )1 and a-a2Y and using Reichardt's criterion that 
the Reynolds stress in the immediate vicinity of the wall must be at 
least proportional to y3 gives the following relations 

1- iL - Ci(az - a3) a0 (6) 

2 
P+ + ý. + Cla2(a2 - 2a3) 

Kl3 + ; Cla2(a2 - 3a3) =o 

(7) 

(8) 

A fourth relationship is obtained by ensuring that at large y+ the 

new law, equation (5), merges with the semi-logarithmic law. This 

gives the condition 

C- C1 -K lnal =0 (9 ) 

For the current experiments P} =0 so the constants a1, a2, a3, Cl 

appearing in equation (5) depend solely upon the constants appearing 
in the semi-logarithmic law -K and C. 

Solution 
1 

From equation (9) C1 may be expressed in terms of al, K and C 

and equations (6), (7) and (8) used to find al, a2 and a3. The 

resulting non-linear equations are solved using the Newton-Raphson 
technique - i. e. 

3 
k-i k-1 +f af 

. (a3 - ak-i) 1,2,3. 
i äai' k-i ai 



Resul ts 

K C a1 a2 a3 Cl 

0.40 5.5 0.2251 0.1739 0.1266 9.2217 
0.41 5.0 0.2385 0.1862 0.1369 8.4966 
0.42 5.45 0.2354 0.1809 0.1314 8.8944 

0.41 5.25 0.2342 0.1814 0.1327 8.7905 
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APPENDIX K 

Estimation of the integral properties from the turbulent boundary 
layer velocity profiles 

The following procedure was used for the calculation of d* 

and 0 from the turbulent boundary layer profile measurements. 

Consider the momentum thickness: 

00 

M 'UM 

The integral may be considered in 2 parts: 
'max 

e= ri jfYmin u+(1 - u+) dy+ + u(1 - L)dy. R Do 0 ymin 

(1) 

(2) 

where Y min ymin = min T' 'min is a measured point in the profile corresp- 
onding to y+ ti 70 and ymax was judged to correspond with the mean 
boundary layer thickness defined as y=d at ý- = 0.995. 

Similarly, the displacement thickness may be written as 

V 
-- 

miTrIf- ymax 
d *= 

ý- u+dy+ +1- Üý dy . (3) 
° ymin 

The integrals over the range 0 -º ymin in equations (2) and (3) 

were evaluated using the universal velocity profile, u+ = f(++), of 
Pfeil and Sticksel (1982). The integrals SYminÜ+dY+ 

and 
Sominu+2dy+ 

were evaluated and the results approximated by the following: 

1 
yminu+dy+ 

_ -107.155 + 12.391 +0 + 208 +2 (4) Y min 
ly 

o min min 

to + 
minn+2dy+ 

a -1891.32 + 149.128y+ + 0.61546y+2 (5) 
o min min 

for 15 < Ymin < 120. 
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The integrals over the range Ymin to Ymax in equations (2) and 
(3) were estimated using trapezoidal integration on the measured 
velocity profile. The value of Cf (and hence uT) was estimated using 
the Preston tube results. The deduced values of 6* and 0 were found 
to be relatively insensitive to the assumed value of Cf. 

At Ymin 2,70 the contribution to 6* was approximately 20% 

whilst the contribution to 0= 12%. 
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APPENDIX L 

Numerical application of Clauser's technique 

Assuming the semi-logarithmic law of the wall, then from equation 
(6.33) we have 

TT -K1n XzUm + 
lqý C+K ln/ . (1) 

For convenience let v= , 
u- 

,r= In --/ -f n-- 91- III Výu�ý 

Then v= ar + aC + lna KK (2) 
Assuming values for K and C, then, given a data set of (vi, ri)i-l, n 
the best value of a may be determined based on the least square error 
criterion: 
The total squared error for a given value of a will be 

n 
E2 =E2 (ui - aAri - aB - aAlna) i=1 

Minimising this with respect to a 

Z> 

i. e. 3E2 
=0 

aa2 
nnn 

AE ur + (A + B)Eu + A1naEu = a{A2E y2r + (A2 + 2AB) Er 
111 

+ n(AB + B2)) 

+ alna{n(A2 + 2AB) + 2A2Er + nA21na) I 

This equation may be solved for a 
F4) 

using the Newton-Raphson 
method. 
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