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ABSTRACT 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Thermal Barrier Coatings (TBCs) are used to reduce the actual working temperature of 

the high pressure turbine blade surface. Knowing the temperature across a TBC and at 

the interface with the thermally grown oxide (TGO) under realistic conditions is highly 

desirable. As the major life-controlling factors for TBC systems are linked with 

temperature, this would provide useful data for a better understanding of these 

phenomena and to assess the remnant life-time of the TBC.  This would also enable the 

design of advanced cooling strategies in the most efficient way using a minimum 

amount of air. Further the integration of a sensor coating into an on-line temperature 

detection system will enable the full potential of TBCs to be realised due to improved 

precision in temperature measurement and early warning of degradation. This in turn 

will increase fuel efficiency and reduce CO2 emissions. 
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The concept of sensing TBCs was patented by Choy et al. [114] in 1998 and consists of 

locally modifying the composition of the TBC so that it acts as a thermographic 

phosphor. As a result, the temperature dependence of the lifetime of the laser induced 

phosphorescence process can be used for temperature measurements. 

 

The purpose of this work was to develop a multilayer sensing TBC deposited by 

electron beam physical vapour deposition (EB-PVD) which could be used to remotely 

measure the temperature at different depths in the coating. In this study, the reader is 

introduced to the theory of luminescence sensing and its TBC application. Several yttria 

partially stabilised zirconia TBCs, co-doped with rare earth oxides (YSZ:RE) 

phosphors, were studied and it was shown that dysprosia doped YSZ has the highest 

temperature sensitivity. The influence of dopant concentration, layering and high 

temperature aging on the phosphorescence process were also researched. During the 

project, a novel, non-destructive, method to monitor the high temperature degradation of 

the TBC using phosphorescence measurements was found. Alternative phosphor 

compositions, based on yttrium aluminium garnet (YAG) material, were successfully 

deposited by EB-PVD and it was shown that doped YAG TBC compositions could 

further improve the maximum temperature measurement capability of current sensing 

TBCs. A multilayer EB-PVD coating comprising of two different phosphor layers was 

deposited and tested in order to demonstrate that such systems could be used to 

remotely measure the temperature at two different depths in the TBC simultaneously 

and therefore to monitor the thermal gradient in the coating, permitting the direct 

measurement of heat flux under thermal gradient conditions, for example in service. 
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INTRODUCTION 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The gas turbine is a power plant which generates a considerable amount of energy for 

its size and weight. It produces energy from a flow of hot gas resulting from the 

combustion of a wide variety of fuels like natural gas, biomass gas, diesel fuel, naphtha 

and crude oil. Since its first successful application less than a century ago, the gas 

turbine has played an increasingly important role in the power generation and aerospace 

industries throughout the world. 

 

The increasing consumption of energy, airline traffic, environmental concerns and the 

expected shortage of fossil fuel have driven the need to develop highly efficient 

turbines. This “quest” is closely related to the gas temperature at the entrance of the 

turbine section: the higher the turbine entry temperature, the higher the thermal 
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efficiency and the lower the emission of pollutants. Therefore advances in high 

temperature materials and coating technology are crucial for future developments. 

 

In today’s engine, Thermal Barrier Coatings (TBCs) protect internally cooled turbine 

components by reducing the metal surface temperature and allow those parts to operate 

at temperatures above their melting point. A TBC system consists of a metallic bond 

coat, a thermally grown oxide (TGO) and a ceramic top coat which is typically applied 

by Air Plasma Spraying (APS) or Electron Beam Physical Vapour Deposition (EB-

PVD). A thermal gradient up to 150°C can be achieved with current TBC systems. It is 

believed that TBCs have not reached their full potential and their properties can be 

further improved for even better material protection. 

 

The principal objective of this work is to design a multilayer “sensing” EB-PVD TBC 

with sensing capabilities using the temperature dependence of the phosphorescence 

process. A detailed description of the concept of sensing TBCs will be given in the 

chapter entitled “Sensing TBCs”. The main idea is to deposit two phosphor layers, one 

at the TGO/ceramic interface and one at the top surface of the TBC, this will enable 

simultaneous remote temperature measurements at two different depths in the coating 

and the determination of the thermal gradient across the thickness of the TBC. 

 

The development of a sensing TBC is stimulated by numerous factors, as it has been 

said before, the improvement in the efficiency in a gas turbine is achieved by increasing 

turbine entry temperatures but also by reducing the amount of air used to cool the 

turbine blades. Thus knowing the surface metal temperature under realistic conditions 
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would enable the design of an advanced cooling strategy in the most efficient way using 

a minimum amount of air. This, in turn, will increase fuel efficiency and reduce CO2 

emissions of gas turbine engines. 

 

Moreover, the major life-controlling factor for TBC systems is believed to be linked 

with the temperature at the bond coat/top coat interface therefore it is desirable to 

monitor this temperature in-situ. Other failure mechanisms which are also temperature 

dependent like creep, ceramic sintering or phase transformation are of great importance 

in assessing the lifetime of a TBC. Therefore, accurate temperature measurement within 

a TBC would provide useful data to further the understanding of such damage 

mechanisms. Furthermore, since the temperature can be monitored at different depths in 

the coating, thermographic phosphors could enable accurate temperature gradient 

measurement within the TBC under realistic conditions. 

 

Failure, in the form of spallation or delamination of the coating or erosion, will cause a 

local reduction of the coating thickness, if a sensing TBC was used, the resulting 

increase in metal surface temperature could be monitored, hence, providing an excellent 

means to assess the “health” of the TBC. Finally, sensing TBCs could provide structural 

information because the wavelength, relative intensity and line width of the emission 

lines are sensitive to the material phase, therefore, it could give information about the 

degradation processes in the zirconia layer. Consequently, an accurate temperature 

measurement in the TBC would result in the development of better TBC systems with 

longer lifetime and it would also enable one to predict both the coating and the 

component lifetime. 



Introduction 

 

4 

The initial work of this thesis consisted of identifying possible phosphors with high 

temperature capabilities. Once high temperature phosphors were identified, their 

deposition by EB-PVD as a coating was assessed. The influence of the phosphor on 

other properties of the coating, such as its microstructure and its phase stability at high 

temperature, was also characterised. 

 

The correct percentage of dopant, such that the luminescence intensity was a maximum, 

was determined along with the effect of aging and phase transformations on 

phosphorescence. This study led to the development of two techniques to quantitatively 

determine the extent of monoclinic phase formation during heat treatment using 

phosphorescence. 

 

Once the correct systems had been developed, the next challenge was to develop a 

procedure to produce multilayer TBC systems using EB-PVD deposition techniques. 

The use of phosphors with different matrices was also investigated in order to extend 

the temperature sensitivity of sensing TBCs beyond 1500°C. Such compositions have 

never been deposited by EB-PVD and required the characterization of the deposition 

parameters and the manufacturing of the ingots to be evaporated. The last step was the 

deposition of a multilayer coating that would enable one to monitor the temperature at 

two different depths in the coating in the temperature range that would experience a 

TBC during service. 
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1. THERMAL BARRIER COATINGS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1.1. History 
 

In all types of gas turbine engines, aircraft or industrial high pressure turbines, first 

stage turbine blades operate under the most arduous conditions of temperature and 

stress, experiencing a wide range of thermal and mechanical loadings during service 

such as creep, fatigue, thermomechanical fatigue, erosion and also oxidation and hot 

corrosion. For more than 50 years there has been a need to improve engine combustion 

efficiency, reduce specific fuel consumption and emissions of pollutants like COx, SOx, 

NOx and unburned particles. This has been achieved by increasing the operating 

temperatures and pressures within the turbine section of gas turbine engines to get close 

to the combustion stoichiometry of the fuel (Figure 1) and, therefore, it has necessitated 

the development of improved material systems with higher temperature capabilities. 
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This chapter will give a short history of the main steps that led to the current TBC 

systems. It will end with a brief description of the two main processes used to deposit 

TBCs and the resulting coating microstructures. 

 

 

Figure 1: Improvement in efficiency with increasing operating temperature and pressure for a 

family of Rolls-Royce engines (SFC: Specific Fuel Consumption) [1]. 

 

1.1.1. Evolution of gas turbine materials 

 

In the early years, improved performance was achieved by novel material design and 

nowadays only high temperature nickel-based superalloys are used. These alloys have 

matured over the years from wrought to cast, then to directionally solidified alloys with 

the latest generation of turbine blades being single crystal material (Figure 2) [1;2]. 

These technical advances have resulted in an improvement in creep resistance of 80˚C 

to 120˚C [3]. Reduction in metal surface temperature has also been achieved with the 

development of complex internal cooling systems as represented in Figure 3. 
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Figure 2: Increase of operating temperature of turbine materials enabled by alloy development and 

manufacturing technology (IGT: Industrial Gas Turbine, DS: Directionally Solidified, SX: Single 
crystal) [4]. 

 
 

 

Figure 3: Turbine blade cooling [5]. 

 

Each step in the development of superalloys has led to materials with better mechanical 

properties such as creep or fatigue resistance. However, oxidation and corrosion 
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resistance are other factors that limit the increase in turbine entry temperature. Further 

gains in performance will require either a change in the family of turbine blade 

materials or coatings capable of supplying the necessary oxidation and corrosion 

protection. 

 

1.1.2. Development of surface coatings 

 

In the early 1960s, due to environmental degradation the blades failed prematurely and 

for the first time surface coating were considered. Diffusion aluminide coatings were 

the first environmental protection coatings introduced into service. They provided a 

cheap, cost effective solution and significantly extended component life. Such coatings 

could be applied using pack and slurry cementation or various kinds of chemical vapour 

deposition processes. The properties of aluminide coatings are strongly dependent on 

the substrate and the processing route, therefore, overlay coatings were introduced in the 

early 1970s [1;6]. 

 

The MCrAlY coatings, where M is Ni, Co or a mixture of Ni and Co, offer the 

capability of custom designing alloys, the composition of the MCrAl part of the system 

is selected to give a good balance between corrosion resistance and coating ductility 

while the active element additions (Y) in conjunction with aluminium and chromium are 

intended to enhance oxide-scale adhesion and decrease oxidation rates [1]. Many 

compositions have been developed adding singly or in combination tantalum, tungsten, 

titanium, hafnium, silicon, niobium, rhenium and zirconium, together with various 

precious metal additions, to adjust the properties of the coating for specific purposes [7].  
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The manufacture of these coatings is dominated by Electron Beam Physical Vapour 

Deposition (EB-PVD) and Low Pressure Plasma Spray (LPPS) [1;7]. Most recently, an 

alternative strategy which consists of designing a coating system that lowers the metal 

surface temperature has been introduced. 

 

1.1.3. Introduction of Thermal Barrier Coatings 

 

In today’s engine, the hot gas temperature exceeds the melting point of the Ni-base 

alloys by more than 250°C [2]. Internal and external cooling is used, but further 

increases in cooling may not be a viable option since it reduces the overall thermal 

efficiency of the engine. Consequently, the melting point of the alloys clearly marks the 

limit for future developments based on metallic alloy designs [2;8]. Thermal Barrier 

Coatings (TBCs) have been developed to lower the metal surface temperature and with 

recent TBC systems a temperature gradient of 150°C can be achieved on internally 

cooled turbine parts [1]. 

 

Figure 4 illustrates the potential benefits that can be offered by TBCs for turbine blade 

applications. Due to the thermal insulating properties of TBCs, for a given cooling air 

flow turbine blades can operate at higher temperature, this results in higher engine 

thrust, or the metal surface temperature can be lowered hence improving the lifetime of 

the component. Moreover, to achieve the same metal temperature less cooling is 

required when using TBCs and therefore the performance of the engine can be 

improved [2;8]. 
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The material used for the TBC, obviously, must have a low thermal conductivity but it 

must also withstand thermal shocks, hot corrosion, oxidation and erosion. It has to be 

stable at very high temperatures and have a density as low as possible to reduce the 

stresses due to the centrifugal loading. Ceramics are therefore the material of choice and 

in the 1970s TBCs based on partially stabilised zirconia were introduced [1;7]. 

 

 

Figure 4 : Potential benefits of TBCs [8]. 

 

Early TBCs were zirconia stabilised with magnesia or calcia, but at temperatures above 

1000°C there was significant diffusion of magnesium or calcium ions resulting in the 

formation of precipitates rich in MgO or CaO and this lead to an increase in thermal 

conductivity due to the formation of a monoclinic phase within the top coat [1;6;7]. 

Moreover, the phase transformation from monoclinic (the low temperature phase) to 

tetragonal (the high temperature phase) is associated with a volume increase between 4 

and 6% which builds up stresses in the coating and on thermal cycling microcracks are 

generated which can lead to early failure of the TBC system. 
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This problem of phase instability was solved in the late 1970s by stabilising zirconia 

with yttria [1], providing a material which was stable at temperatures up to 1500°C for 

long periods. Y2O3 forms a solid solution with ZrO2 thus enabling to lower the 

tetragonal to monoclinic transformation. The initial Yttria partially Stabilised Zirconia 

(YSZ) contained 12-20 wt.% of yttria to totally stabilise the cubic phase, but Stecura et 

al. [6] showed that better performance could be achieved by lowering the yttria content 

to 6-8 wt.% (Figure 5a) and nowadays 8 wt.% YSZ TBCs have become the industrial 

standard [6;9]. With 6-8 wt.% yttria, a t’ phase is obtained which is a metastable phase. 

This t’ phase has outstanding bend strength, high crack propagation energy, high 

thermal shock resistance and high fracture toughness, therefore, it is the most effective 

phase to provide durable TBCs. The t’ phase is remarkably stable at temperatures up to 

1200°C, therefore, the TBC remains single-phase over its useful life [10-12] (Figure 

5b).  

 

 
   (a)       (b) 

Figure 5: (a) Effect of Yttria content on the lifetime of TBCs [9], (b) phase diagram of the system 

ZrO2-Y2O3 [13] (c: cubic, t: tetragonal, t’: metastable t, m: monoclinic phase). 
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1.1.4. A multilayer coating 

 

Current TBCs consist of a two layer system, a 125-250 µm top coat which aims at 

reducing the heat transferred to the substrate and an oxidation-resistant metallic bond 

coat (Figure 6). The top coat is typically a layer of porous 6-8 wt.% YSZ applied by 

air-plasma spray (APS) or electron-beam physical vapour deposition (EB-PVD). 

 
 
 

 

Figure 6: Schematic representation of a thermal barrier system [14]. 

 

The first layer, a bond coat, is applied to ensure the protection of the substrate against 

oxidation and high temperature corrosion but also to provide a good adhesion of the top 

coat to the substrate. For EB-PVD TBCs it is generally, a single phase β-(Ni,Pt)Al often 

referred to as a platinum aluminide bond coat system, an MCrAlY overlay coating or a 

platinum diffused surface treatment. Platinum aluminide coatings are applied by 

electrodeposition of Pt and subsequent aluminizing by some form of chemical vapour 
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deposition. Finally heat treatment ensures the formation of the β-phase by inter-

diffusion. Depending on the process parameters their thickness ranges typically between 

50-60 µm with Al and Pt contents between 17-21 wt.% and 25-28 wt.% respectively 

[15]. The two phase overlay (γ’+β/γ) MCrAlY coating is usually applied by Low 

Pressure Plasma Spray (LPPS) or by EB-PVD. A typical composition would be (Ni, 

Co)-15-28 wt.% Cr, 4-18 wt.% Al, 0.5-0.8 wt.% Y for a bond coat thickness between 

75-125 µm [1;2;8]. 

 

During manufacture and subsequent service, a Thermally Grown Oxide (TGO) is 

formed, it is a layer of α-Al2O3 which grows by thermal oxidation of the underlying 

bond coat. This TGO plays an important role for the environmental protection and the 

adherence of the TBC [8]. So as shown in Figure 6, a typical modern TBC consists of a 

bond coat, a TGO and a thick ceramic layer. The effect of the bond coat composition on 

TGO and on the cyclic life of the coating will be discussed in a following chapter. 

 

1.1.5. Deposition processes 

 

Nowadays APS and EB-PVD are the two main competing processes to apply TBCs 

under industrial conditions. The EB-PVD process is mainly used for relatively small 

parts in aerospace turbines such as the blades and the vanes, however, for larger 

components like the combustion chamber or for blades and vanes for industrial gas 

turbine application, plasma spraying is the process of choice. 
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1.1.5.1. Plasma Spraying 

 

In atmospheric plasma spraying (APS) a high velocity plasma flame is generated with 

an electric arc and an inert gas, generally argon. The ceramic is fed into the high 

temperature flame as a powder, the particles become semi-molten and are propelled 

onto the substrate, then they impact the surface, forming splats and building up a 

coating with a “splat-type” morphology (Figure 7). The different splats which form the 

coating principally mechanically interlock together and variations in this interlocking 

and consequently the amount of porosity are important material properties. 

 

 

Figure 7: Micrograph of an APS TBC [17]. 

 

Plasma spray is a very versatile process and can be operated in various atmospheres and 

at different pressures. However, due to their poor surface finish, low corrosion 

resistance and poor mechanical compliance the use of plasma sprayed TBCs was not 

extended to high-pressure turbine blades for aero applications. This problem was 

overcome when the EB-PVD process emerged in the 1980s [1]. 
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1.1.5.2. Electron Beam Physical Vapour Deposition 

 

In this process a high energy electron beam is used to melt and transform the ceramic 

source ingot into a vapour phase. To ensure continuous TBC growth, ingots are bottom 

fed into the crucibles during evaporation. Substrates are preheated and then positioned 

in the vapour cloud. The vapour travels along the line of sight to the substrate surface 

where it condenses atom by atom at a deposition rate of 4-10 µm/min. This process is 

carried out under a low partial pressure of oxygen to preserve the stoichiometry of the 

zirconia. 

 

 

Figure 8: Micrograph of an EB-PVD TBC (Fractured sample, not polished) [2]. 

 

TBCs deposited by EB-PVD exhibit a unique columnar microstructure grown from the 

vapour phase (Figure 8). The microstructure of EB-PVD TBCs strongly depends on 

many parameters, including principally shadowing, surface diffusion, volume diffusion 

and desorption. The columnar microstructure will be also influenced by the surface 

roughness and the temperature of the substrate, the deposition rate, the gas pressure, the 

Equiaxed 

zone 
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degree of ionization of the vapour cloud, the chamber pressure, the vapour impact angle 

and the rotation of the substrate during deposition. The influence of each of these 

parameters will be discussed in a following section. 

 

As has been shown in this chapter, the microstructures of the coatings produced by EB-

PVD and APS are very different. The following chapter focuses on the unique 

properties of the EB-PVD coating, its particular microstructure, which leads to coatings 

with important variations in properties such as surface finish, erosion resistance and 

thermal conductivity, compared to APS TBCs. 

 

1.2. Properties of EB-PVD TBCs 
 

1.2.1. Microstructure 

 

TBCs deposited by EB-PVD possess two main microstructural features. The most 

obvious is their unique columnar microstructure, grown from the vapour phase. During 

the first rotation of the sample in the vapour cloud, a large number of nuclei start to 

grow forming a thin layer adjacent to the substrate of equiaxed grains of about 30 nm in 

diameter [18]. This layer is often referred as the equiaxed zone (Figure 8). The 

thickness of this zone varies from sample to sample and has no preferred orientation. 

Then grains that have a favoured growth direction will grow preferentially, the others 

being eliminated from the coating. This competitive growth results in the formation of 

columns with their diameter increasing and consequently their number decreasing as the 

top of the coating is approached. Contrary to the equiaxed zone, this part of the coating 



Thermal barrier coatings 

 

17 

has a preferred {100} crystallographic orientation [19]. The inter-columnar gaps 

separating the columnar grains are highlighted in Figure 9 (denoted type 1). 

 

The other characteristic feature of EB-PVD TBCs is their featherlike structure (type 3 in 

Figure 9). This is the result of shadowing by growth steps on the column tips near the 

centre of the column [20]. These feather arms are often aligned at 45˚ toward the 

column axis and are typically between 5-20 nm across and 200-250 nm long [20;21]. 

 

 

Figure 9: Morphology of a column of an EB-PVD TBC (Polished sample) [20]. 

 

Type 2 intra-columnar pores are mostly closed globular and elongated spheroids parallel 

to individual column tips. They are a consequence of rotation and generally range 

between 18 and 15 nm in diameter. 

 

As it has been said, the processing parameters of EB-PVD TBCs affect their 

microstructure and therefore their properties. The microstructure of the coating can be 

roughly predicted using the Thornton or the Movchan and Demchishin structure 
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diagrams represented in Figure 10. In these diagrams the coating texture is divided into 

different zones according to the processing temperatures (T) normalized to the melting 

point of the coating material in Kelvin (Tm). 

 

 
 

(a) 

 

 
 

(b) 

 

Figure 10: (a) Movchan and Demchishin [22] and (b) Thornton [23] structure diagrams (T: 

Processing temperature, Tm: Melting point of the coating material). 

 

Various studies reported that the crystallographic growth direction depends on the 

vapour incident angle (VIA), defined as the angle between the vapour flux and the 
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substrate surface. Consequently, it varies with the sample geometry or its position in the 

coating chamber [24-27]. Moreover, as the VIA increases, the intercolumnar pores 

become larger and therefore the porosity of the coating is raised [27]. It was also found 

that the density of the TBC increases as the pressure in the chamber is increased and 

that sample rotation influences the columns’ shape and diameter (Figure 11) and also 

the orientation of the coating and its density [24;26;28;29]. Finally, the crystal 

orientation, as well as the morphology of the columnar grains and the density of the 

TBC, change with chamber and substrate temperature [18;24;29]. This preheating 

temperature also influences the structure and orientation of the coating [30]. 

 

 

Figure 11:  Influence of substrate temperature and rotation speed on the microstructure of EB-

PVD TBCs (Tm: Melting point of the coating material) [26]. 

 

The performances of EB-PVD TBCs are linked to their microstructure therefore it is of 

primary importance to understand the effects of processing parameters on this structure, 

in order to control and improve TBC properties. 
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1.2.2. Surface finish 

 

The EB-PVD technology produces coatings with a better surface finish compared to the 

APS TBCs, therefore, the need for final polishing is eliminated. Furthermore, the EB-

PVD process does not block the cooling holes of the blade. Typically an EB-PVD TBC 

has a surface roughness of 1 µm compared to 10 µm for an APS TBC [31;32]. The 

smooth surface of EB-PVD TBCs is a clear advantage from the aerodynamics point of 

view, thus, it is a process of choice for turbine blades where the aerodynamics is of 

primarily importance. Moreover, if the surface does not have the required smoothness, 

the gas boundary layer becomes more turbulent causing increased mixing of turbine 

gases and this can result in an increase in the temperature of the TBC surface and 

therefore in the heat transferred to the substrate [8;33]. 

 

1.2.3. Thermal conductivity 

 

The thermal conductivity of the YSZ strongly depends on the microstructure of the 

coating and hence on the method of deposition. APS TBCs have the lowest thermal 

conductivity, typically 0.8-1.1 W/mK, compared to 1.5-1.9 W/mK for EB-PVD TBCs 

and 2.2-2.9 W/mK for bulk YSZ [14;31;34]. 

 

The low thermal conductivity of the APS TBCs is due to a two dimensional microcrack 

network. During deposition the different splats do not interlock altogether perfectly, 

leading to a microcrack network parallel to the coating surface. When the splats cool 

down microcracks are formed generating a second network of cracks row perpendicular 

to the coating surface. Cracks parallel to the coating are very efficient in reducing the 
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thermal conductivity as they form interfaces which are directly perpendicular to the 

primary heat flux [31]. It should also be noted that after a few hours of operation the 

thermal conductivity of APS TBCs increases to 1.5 W/mK due to sintering of these 

lamellar crack networks [34]. 

 

Such cracks are not present in EB-PVD coatings. The type 1 porosity, reported in a 

previous chapter, is aligned with the primary heat flux, thus, it is much less effective in 

lowering the thermal conductivity [31]. Consequently reduction in thermal conductivity 

relies principally on the type 2 and type 3 intra-columnar porosity. The porosity in EB-

PVD TBCs is strongly affected by the processing parameters, therefore, it is possible to 

tailor their microstructure in order to improve thermal properties and this will be 

discussed in a later chapter. It is worth noting that the thermal conductivity is not 

homogenous across the entire thickness of the EB-PVD TBC. In the equiaxed zone, 

where there is a large number of interfaces, microporosity, grain boundaries and 

randomly oriented grains which scatter the thermal waves, the thermal conductivity is 

lowered to around 1 W/mK [31;34]. With increasing thickness, the grains are less 

numerous and have a higher aspect ratio resulting in a more crystallographically perfect 

structure, therefore, the thermal conductivity increases to approach that of bulk zirconia 

(2.2 W/mK) [31;34]. 

 

1.2.4. Erosion resistance 

 

Another feature of EB-PVD TBCs that depends on the microstructure is erosion. The 

erosion mechanisms and properties will be fully reviewed in the following section. As 
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has been said previously, the unique columnar microstructure of EB-PVD TBCs offers 

improved mechanical properties, compared to their APS counterparts [35;36]. It is 

shown in Figure 12 that the erosion resistance of EB-PVD TBCs is up to 10 times 

better than APS TBCs, but this depends on orientation. 

 

 

Figure 12: Erosion rates of zirconia–8 wt.% yttria TBCs by 100 µm alumina, 90° impact, at room 
temperature and 910°C [36]. 

 

APS TBCs have a horizontal splat-like structure which contains a critical network of 

favourably aligned cracks, and particle boundaries, parallel to the coating surface which 

make this coating more susceptible to particle impact damage [35-37]. 

 

On the contrary, the ceramic columns of EB-PVD TBCs provide excellent strain 

tolerance as they can move relative to each other under mechanical load or thermal 

cycling. Moreover, as EB-PVD TBCs do not have a crack network parallel to the 

surface, a much higher energy is required to generate a crack across individual columns 

[8;36;38]. Furthermore, the surface finish of EB-PVD TBCs is not widely affected by 

erosion as the damages are limited to the near surface region. However, with polished 
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APS TBCs, erosion rapidly reverses the surface finish to the as deposited state reducing 

the aerodynamic efficiency [33]. 

 

Nowadays, TBCs are commonly deposited onto hot gas path components of aero-

engines and industrial gas turbines. The advantages provided by the EB-PVD technique 

enabled their use in more severe environments, like in the high pressure turbine section 

on high loaded turbine blades and vanes. 

 

Even though TBCs are well engineered materials and significantly increase the turbine 

efficiency as well as the lifetime of its components, it is believed that they have not 

reached their full potential. The various failure modes of TBCs are well known and 

numerous research studies are aimed at improving the TBCs’ properties. Bond coat 

optimization, progress in erosion resistance, resistance to chemical degradation, 

reduction in thermal conductivity are all areas where major improvements can be made 

to further increase the temperature capability and thus the lifetime of gas turbines. In the 

following section, the main TBC damage mechanisms will be briefly reviewed, mainly 

focussing on the possible loss of the ceramic top coat. 

 

1.3. Failure modes 
 

The type and cleanliness of the fuel, the cyclic loading, the maximum operating 

temperature and the times at temperature varies between industrial and aircraft gas 

turbines. Industrial gas turbines typically operate under continuous conditions at 

temperatures around 1100°C, with materials life requirement ranging between 25000 
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and 50000 hours. In aero-engine applications the temperature are generally higher, 

around 1500-1600°C, and the cycles significantly shorter. The different gas turbine 

applications lead to variations in the severity of the different degradation mechanisms. 

1.3.1. Oxidation 

 

Many failures in the TBC are linked with the oxidation of the bond coat, indeed, the 

growth of the TGO and the associated stresses and damage, often leads to the spallation 

of the ceramic top coat under thermal cycling [39;40]. The two main criterions for the 

failure of the TBC are the TGO critical thickness and the depletion of the aluminium 

reservoir used to grow the oxide layer [41]. A low concentration of aluminium at the 

bond coat surface results in the formation of spinels which are less effective in 

protecting the alloy compared to α-alumina [40]. 

 

Another mode of failure is associated with the buckling of the coating. The difference in 

thermal expansion between the coating and the underlying superalloy builds up 

compressive stresses in the bond coat upon cooling, leading to progressive interface 

separation at localized flaws and subsequent spallation [40;42-45]. These flaws come 

from the roughening of the bond coat during thermal cycling and it is only recently that 

two mechanisms have been proposed to explain the nucleation of such flaws. 

 

The first one is attributed to “racheting” [40;46]. The growth of the TGO is associated 

with compressive stresses and, because of the constraints generated by the underlying 

bond coat, it can only release its strain energy by undulating via plastic deformation of 

the bond coat and the TGO itself. 



Thermal barrier coatings 

 

25 

The other mechanism is the result of the aluminium depletion of the bond coat. This 

depletion and the progressive enrichment of nickel that diffuses from the underlying 

superalloy, lead to the formation of γ’-Ni3Al and martensitic β-NiAl within the bond 

coat. The formation of these phases is associated with volumetric changes which cause 

roughening of the bond coat to occur [47;48]. 

 

1.3.2. Erosion 

 

During operating conditions, ingested erosive solid particles and also erodent resulting 

from the combustion process, can cause significant damage to the thermal barrier 

coating. This problem is of primary importance since even partial removal of the TBC 

results in an increase in surface temperature reducing the turbine component lifetime. 

 

A good amount of work has been published on the erosion of EB-PVD TBCs in the as-

received condition under various conditions of temperature, velocity, impact angles and 

with different types of erodent [35;36;38;49-52]. The erosion mechanisms of EB-PVD 

TBCs have also been well described by Nicholls, Wellman and Evans et al. [38;49;51]. 

The effect of heat treatments on the properties of TBCs is also well documented, 

Wellman et al. [53] have researched the erosion of aged samples at room temperature, as 

aged samples reflect the true erosion behaviour of EB-PVD TBCs in a gas turbine 

engine. 

 

The erosion of EB-PVD depends on the temperature, the velocity and the size of the 

impacting particles and three modes of material removal have been observed depending 
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on the interaction of these factors. More relevant than the size of the particles, is the 

relative size between the column diameter and the contact footprint of the impacting 

particle, which will affect the various mechanisms that lead to ceramic loss [51]. 

 

The first mode, erosion, occurs at room and high temperature with small impacting 

particles. It involves crack initiation at the elastic/plastic interface caused by the impact 

on individual columns. Mode II, called compaction damage, is a transition mechanism 

between erosion and Foreign Object Damage (FOD). It is characterised by the 

densification of the individual columns and the absence of near surface cracking or 

gross plastic deformation. This mode has been observed for larger particles at room and 

high temperature at intermediate velocities. FOD, the third mechanism, is caused by 

large particles at low velocity or smaller particles at higher velocity. Under these 

conditions, impacts cause significant cracking and gross plastic deformation of the 

columns. Two types of FOD have been identified, the type I, associated with gross 

plastic deformation of the coating with bending and shear cracking of the columns often 

down to the bond coat interface and type II, where buckling of the columns and plastic 

deformation without any significant degree of cracking have been observed [49-51]. 

 

1.3.3. Chemical degradation 

 

Miller et al. [54] reported that silica impurity in YSZ significantly reduces the thermal 

cyclic life of the TBC. They have shown that silica concentration as low as 1 wt.% can 

reduce, by more than a factor of five, the thermal cycle life of APS TBCs and that silica 

impurity can dramatically increase the sintering rate of the coating [54;55]. 
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Early studies on the effect of silicates on yttria stabilised zirconia revealed that 

aluminosilicate compounds form an amorphous phase that can dissolve YSZ at the grain 

boundaries, resulting in rounded ceramic grains. It has also been reported that such 

compounds can “extract” yttria from the coating material making the TBC more 

susceptible to transform to the monoclinic phase [56]. 

 

The same types of compounds, commonly referred as calcium-magnesium alumino 

silicate (CMAS), are found in the sand and debris ingested with the intake air by turbine 

engines. Early studies, available in the open literature, started after the Gulf War in 

1990-91 where the turbine engines of Black Hawk helicopters experienced significant 

damages due to erosion caused by ingested sand particles [57;58]. It was noticed that 

such particles can become molten during operation and an amorphous deposits were 

observed on the first stage turbine vanes. At that time, the main concern was the 

blockage of the cooling passage and the potential hot corrosion of aluminised airfoils. 

 

Stott et al. [59] was the first to discuss the effect of CMAS deposits on YSZ TBCs. He 

reported severe grain-boundary attack and yttria absorption by the CMAS melt leading 

to the early destabilisation of the coating. With the introduction of EB-PVD TBCs, and 

because of its columnar microstructure, the infiltration of CMAS deposits became more 

critical. The thermochemical interaction and the infiltration of CMAS deposits in EB-

PVD TBCs have been studied in detail by Kraemer et al. [60]. It was also reported that 

the infiltration of CMAS in EB-PVD TBCs can introduce large stresses in the coating 

during cooling which could cause the delamination of the TBC [61;62].  
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1.3.4. High temperature exposure 

 

The high temperature environment in which EB-PVD TBCs operate has a tremendous 

effect on their properties. Densification, sintering, cracking due to partial transformation 

of the metastable t’ phase to the monoclinic phase, increase in hardness, erosion rates 

and thermal conductivity all contribute to shorten the durability of the TBCs. 

 

1.3.4.1. Phase transformation 

 

As it has been said before, zirconia partially stabilised (6-8 wt.%) yttria coating 

deposited by EB-PVD has a metastable t’ phase after deposition. Subsequent high 

temperature annealing at temperatures above 1200˚C results in the rapid partitioning of 

the non equilibrium t’ phase into a mixture of a low yttria tetragonal phase (t) and a high 

yttria cubic phase (c). Then upon cooling the disruptive t→m phase transformation can 

take place, via the yttria depleted t phase. 

  

The ZrO2-Y2O3 phase diagram presents numerous metastable phases due to 

diffusionless phase transformations (represented by the dotted T0 lines in Figure 5b). T0 

is the temperature where the free energy of the parent and produced phase are equal. 

Therefore, during cooling, the high yttria phase transforms into a metastable phase often 

referred as t’’ or c’ when it intersects the T0(c/t) line. Likewise the low yttria phase 

transforms into monoclinic phase when the T0(t/m) line is crossed. It is worth noting that 

this monoclinic phase is also a metastable phase and will transform back to the 

tetragonal phase during heating. 
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Table 1: Phase composition of YSZ samples after heat treatment. 

Composition 
(mol% Y2O3) 

Sample preparation Heat Treatment 
Cooling 

rate 
Phase 

composition 
Ref. 

4.5 
Plasma sprayed 
coating on C263 

substrate removed by 
chemical etch 

Aged in a Pt crucible 

100h at 1200˚C 

Rapid air 
cooling 

(>50˚C/min) 

100% t’ 

[10] 

100h at 1300˚C t+t’’+c 

100h at 1400˚C t+c 

100h at 1500˚C 
45% t 

55% t’’ 

100h at 1600˚C 
27% t 

73% t’’ 

5.7 
100h at 1400˚C t+c 

100h at 1600˚C t’’ 

6.9 100h at 1600˚C t’’ 

4.5 
Free standing plasma 

sprayed coating 
1000h at 1150˚C Heating/cooli

ng: 10˚C/min 
t+c 

[63] 
100h at 1450˚C c+m 

3.9 

Plasma sprayed 
coating on superalloy 
with an MCrAlY bond 

coat 

500h at 1020˚C 
 

Cycled: 
heated 10-
12h then 

cooled for 
12-14h  down 

to 300°C 

26% m [64] 

3.9 
Powder in alumina 

crucible 
140h at 1400˚C <10˚C/min 32% m [65] 

3.9 

Plasma sprayed 
coating on steel 

substrate removed 
with an acid solution 

50h at 1200˚C 

NA 

t + c 

[66] 
50h at 1400˚C c + m 

4.5 
Acid stripped plasma 

sprayed coating 
100h at 1400˚C + 

24h at 1480˚C 
<10˚C/min 8.7% m [67] 

4.0 
Powder synthesized 

by pyrolysis of 
solution precursor, 

aged in alumina 
crucible 

24h aging cycles 
every 50˚C from 
1200 to 1400˚C 

Quenched in 
air 

37% m 
[13] 

6.0 
… from 1200 to 

1500˚C 
15% m 

4.2 
EB-PVD coatings on 
polycrystal alumina 

substrate 

989h at 1200˚C Air cooled 
300˚C/min 

18% t’ 
38% c+t’’ 

44% t 
[68] 

195h at 1450˚C 

3.9-4.5 
Milled free standing 

EB-PVD coating 

200h at 1200˚C Slow enough 
to allow the 

t→m 

transformatio
n 

1% m, 26% c, 
30% t’’, 43% t 

[69] 100h at 1300˚C 
11% m, 41% c, 

48% t’’ 

100h at 1400˚C 
21% m, 54% c, 

25% t’’ 

4 

Plasma sprayed 
coatings on SUS304 

substrate, acid 
stripped 

200h at 1400˚C NA No m phase [70] 

4.4 
EB-PVD YSZ on 

polycrystal alumina 
300h at 1500°C 

Quenched in 
air 

No m phase [71] 

4.5 
EB-PVD coating on 

alumina 96% substrate 
24h at 1500˚C NA 

Large amount 
of  m phase 

[53] 

3.9 
EB-PVD coating on 

alumina sapphire 
350h at 1400°C NA No m phase [11] 
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The t→m phase transformation is associated with a volume increase of between 4-5% 

introducing a significant amount of stress in the coating which can lead to the formation 

of cracks and the spallation of the TBC. It is also reported that the cubic phase has a 

shorter cyclic lifetime and poor erosion resistance, compared to coatings with t’ phase 

[9;29]. 

 

Depending on the heating and cooling conditions, the method of sample treatment, the 

type of substrate used, the presence of contaminants, or if the experiments are carried 

out on powders, ground or free standing TBCs, the time and temperature of 

destabilisation can vary significantly as illustrated in Table 1. 

 

1.3.4.2. Sintering 

 

High temperature causes the columns of EB-PVD TBCs to sinter together (Figure 13). 

During sintering the featherlike structure of the columns is smoothed out due to surface 

diffusion and undulations grow on the surface of the columns. Where the undulation of 

a column touches one of another column, a neck is formed and the columns sinter 

together [11]. These contact points between columns has the effect of increasing the 

young’s modulus of the coating [72]. Further, the loss of nano-porosity reduces the 

thermal conductivity. 

 

Sintering also leads to shrinkage of the coating and due to the constraint applied by the 

bond coat and the substrate, the gap between groups of sintered columns extends and 

“mud-cracks” are formed. This lateral shrinkage also has the effect of introducing 



Thermal barrier coatings 

 

31 

compressive stresses in the substrate which does not remain flat and tends to curve 

[11;53;71]. 

 

 

Figure 13: Sintered EB-PVD TBC. 

 

Aging at high temperature causes changes in the pore size and distribution. At 

temperatures as low as 900˚C, the EB-PVD TBC microstructure becomes more coarse. 

The fine featherlike structure of EB-PVD columns transforms into large globular pores. 

The intra-columnar surface porosity is also reduced due to the conversion of small pores 

into larger ones. Since porosity is considered to reduce the thermal conductivity of the 

coating, sintering reduces the effectiveness of thermal barriers [69;71]. 

 

Wellman et al. [53] have shown that aged EB-PVD TBCs have a lower erosion 

resistance when compared to as received TBCs. Sintering causes columns to join 

together enabling cracks to propagate to the neighbouring columns resulting in a higher 

material loss per impact. The changes in porosity and mechanical properties, such as 

hardness or fracture toughness, also contribute to lower the erosion resistance. 

Reduction of column microporosity, column sintering and phase transformation increase 
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the coating hardness making it less defect tolerant (more brittle) and therefore less 

resistant to impacting particles [21;73;74]. 

 

1.4. Lowering the thermal conductivity 
 

The theory of thermal conductivity in TBCs is well described in the literature [75;76]. 

In ceramic TBCs, heat can be transferred by lattice vibrations and radiation, their 

energies consist of quanta called phonons and photons respectively. A reduction of the 

thermal conductivity involves lowering the mean free paths and/or the velocity of these 

heat carriers or to lower the density of the material. This is achieved by introducing 

imperfections in the lattice such as vacancies, dislocations, grain boundaries, local strain 

fields in order to scatter phonons. The techniques to engineer low thermal conductivity 

TBCs can be divided into two groups: those which change the chemical composition of 

the coating and those which change the coating microstructure. 

 

1.4.1. Coating microstructure 

 

Tailored microstructures are generally obtained by varying the deposition parameters. 

For instance by lowering the substrate temperature an imperfect coating with low 

density is deposited and a reduction in thermal conductivity up to 15% can potentially 

be achieved with this technique [20]. 

 

Another way is to produce a coating with inclined columns. The deviation of the 

substrate from the normal vapour incidence by tilting the rotational axis, for example 

can produce a “zig-zag” microstructure (Figure 14). The increase in porosity at the 
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boundaries between the layers enables a reduction in thermal conductivity up to 40%. 

However the inclined columns suffer from poor erosion resistance compared to standard 

EB-PVD TBCs [20]. 

 

 

Figure 14: EB-PVD TBC with a “zig-zag” structure [20]. 

 

Nicholls et al. [76] highlight the fact that the equiaxed zone of the EB-PVD coating 

possesses a much lower thermal conductivity due to a large number of grain boundaries. 

Another effective way would be to maintain this microstructure in the entire coating. 

This can be achieved by sequentially inserting and removing the sample from the 

deposition chamber or by inserting a contaminant atmosphere in the deposition chamber 

to interrupt the growth and cause the re-nucleation of the coating [77]. This could lead 

to a maximum reduction of 30% in the thermal conductivity. 

 

1.4.2. Chemical composition 

 

The other approach is to use alternative coating compositions. This means the 

substitution of yttria by another stabiliser (mainly ions with different ionic radius and/or 

mass to increase the disorder in the crystalline lattice) or ternary additions of dopants.  
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For compositions where yttria is totally substituted by another dopant, Ceria-Stabilised 

Zirconia (CeSZ) offers promising improvements. Compositions of zirconia stabilised 

with yttria-ceria can provide thermal conductivity reduction up to 50% [20]. 

Improvement in the corrosion resistance, the phase stability and the thermocyclic 

resistance were reported however, the deposition of these compositions using standard 

EB-PVD process turned out to be difficult due to an important difference in vapour 

pressure between zirconia and ceria. They also have poor erosion resistance and an 

increase in the coating density [20;29;34;78;79]. 

 

Other rare earth oxides, like dysprosia, to substitute yttria seem to be a more successful 

alternative. Substitutions with 4 mol% of dopant result in a 14% reduction of thermal 

conductivity and with stabilisations with higher percentage of dysprosia, a 40% 

reduction can be achieved [3]. 

 

Ternary additions can be rare earth oxides like erbia, ytterbia, neodymia and gadolinia 

as studied by Nicholls and co-workers [31;76]. They provide effective phonon scattering 

centres. A thermal conductivity reduction of 42% was reported with gadolinia addition, 

lowering the thermal conductivity to 0.88 W/mK, that is to say close to the APS TBC 

which has a thermal conductivity of 0.8 W/mK [31]. Such additions have a great 

potential in improving the coating durability. Doped coatings have significantly better 

cyclic life and offers better sintering resistance resulting in a lower increase in thermal 

conductivity due to aging compared to standard YSZ [80;81]. Dopants produce highly 

distorted lattice structures and introduce defect clusters which are essentially immobile 

hence reducing the movements of atoms in the coating and therefore increasing the 
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sintering resistance. Rare earth additions were also found to improve the stability of the 

t’ phase of the coating providing better temperature phase stability at high temperature 

[13]. However the author has highlighted a reduction in erosion resistance of doped 

coatings at room temperature. This behaviour is balanced by an advantageous 

improvement of the erosion properties at high temperature compared to standard TBC 

[82] but this is thought to be dependent on the column diameter. 

 

Other material compositions where yttria is completely replaced by rare earth oxide 

stabilisers have been investigated. A review of such coatings can be found in [20]. Rare-

earth zirconates could also be seen as potential candidates for thermal barrier coatings. 

It has been found that such compositions can be deposited by EB-PVD and have a lower 

thermal conductivity compared to the standard YSZ coatings [83-85]. 

 

The importance of the interaction between the TBC and the high temperature 

environment, in which it operates, has been highlighted in the previous sections. It is 

clear that an accurate measurement of the temperatures that a TBC experiences would 

help to further the understanding of the failure mechanisms and would provide useful 

data for future development and to exploit the full potential of TBCs. 

 

1.5.  Techniques to determine the temperature of 
TBCs in service 

 

The main techniques to monitor the temperature in a gas turbine and their limitations are 

reviewed in this section. 
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1.5.1. Thermocouples 

 

Embedded wire thermocouples are a common contact technique for temperature 

measurements. Generally, they are bonded into grooves machined in the blade surface. 

The disadvantage of this technique is the need of interconnection between the sensor 

element and the surface of measurement making it difficult to use for rotating 

components. Moreover, temperature readings are limited to pre-installed points (one or 

two points per blade) and cannot be changed during operation. Finally, it is intrusive 

and perturbs the gas flow pattern inside the engine and thus distorts the heat path, 

making accurate, reliable temperature measurement difficult. Thermocouples with a 

proper design can be accurate to approximately ±1˚C however the installation cost 

makes it an expensive technique. 

 

Thin film thermocouples constitute an improvement in temperature measurement 

techniques. They offer a faster response time and, as they are only a few microns thick, 

they generate fewer perturbations and provide more accurate surface temperature 

measurements [86]. 

 

1.5.2. Pyrometry 

 

Optical pyrometry was first used in the late 1960’s for gas turbine research and 

development. The probe collects radiations from a target size typically ranging from 1 

to 10 mm in diameter. For turbine blade temperature measurement, the optic probe can 

be placed on the turbine casing. The radiations are then transmitted to pyrometer’s 
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detector via optical fibres. The intensity of emitted radiation is mathematically 

converted to temperature based on Planck’s law of black body radiation [87;88]: 
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Equation 1 

 

, where E is the spectral emissivity power, λ is the wavelength, T is the absolute 

temperature of the surface, ε is the spectral emissivity and C1 and C2 are radiation 

constants. Optical pyrometry is widely used for engine control and blade health 

monitoring in industrial gas turbines. 

 

Compared to thermocouples, pyrometry offers several advantages. It does not have 

inherent thermal inertia enabling fast response, it is non-intrusive and immune to 

electromagnetic interference in the surrounding environment. Limitations to this 

technique include, all the atmospheric effects that can mask the signal like reflected 

radiations from other surfaces, absorption by the medium between the pyrometer and 

the radiation source and emission from the hot combustion gas, making it very 

dependent on the environment in which it operates. Moreover, the changes of emissivity 

(ε in Equation 1) of the observed surface due to oxidation, contamination, erosion, 

which affects the roughness of the surface, and the deterioration of the cleanliness of the 

pyrometric system during operation of the engine reduce the accuracy of the 

measurements. For instance, when the reflected radiations represent more than 50% of 

the temperature signal the accuracy is dramatically reduced [89]. Finally, EB-PVD 

coatings are semi-transparent in the spectral range used for surface temperature 
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measurements therefore the pyrometer gives the temperature somewhere between the 

coating surface and the metal surface, hence, the temperature measurements are a 

function of coating thickness. A detailed overview of the errors measurement associated 

with pyrometer systems has been published by Kerr et al. [88]. 

 

1.5.3. Thermal Paints 

 

Thermal paints, or temperature sensitive paints, are the main technique used to obtain 

the temperature distribution of gas turbine components [90]. Thermal paints 

permanently change colour when exposed at a particular temperature. The paint 

colouration is then compared with calibration charts to obtain the surface temperature 

distribution of the component. The main advantages of this method are that it can be 

easily applied on complex shapes and it produces a temperature profile over the whole 

surface rather than just discrete points as with thermocouples or pyrometry. 

 

The principle limitation is that the colour change is also time dependent. This implies 

that the same colouration can be obtained with a longer exposure at a lower 

temperature. Therefore thermal paints must be carefully calibrated for a particular 

testing condition and the component must be brought to the operating condition as 

quickly as possible and kept constant for a fixed period of time [91]. 

 

Furthermore, it is a “one shot” test and the parts have to be dismantled and re-painted to 

make another measurement. The paint also acts as a thermal insulator and can influence 

the temperature measurements. 
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Thermal paints can be used to measure temperatures up to 1300°C [92]. However, the 

paint cannot survive long periods under such conditions. For example, a test on turbine 

blades or nozzles should not last more than five minutes to avoid paint removal [91]. 

 

1.5.4. Thermographic phosphors 

 

Thermographic phosphors for gas turbine applications have been studied for more than 

twenty years. They are usually applied as paints on the surface of interest but they can 

also be coated using more sophisticated methods. The theory behind temperature 

measurement using phosphorescence will be explained in detail in the next chapter. 

 

Many workers over the past several decades have investigated various phosphor-based 

thermometry systems. In 1937 Neubert et al. [93] patented a device using phosphors to 

measure temperature distribution of hot bodies. Laser-induced fluorescence was first 

employed as a mean to measure temperature in combustion research by Dyer and 

Crosley et al. [94] in 1982. A history of phosphor based thermometry has been 

assembled by Dowell [95], Baumann [96] and most recently by Allison [97]. The 

following paragraphs will concentrate on the development in the field of gas turbines. 

 

The first step of the research consisted in characterizing the luminescence of various 

phosphors in terms of intensity and temperature dependence to determine their possible 

use as thermographic phosphors. A list of rare earth based phosphors along with some 

of their characteristics is given in Table 2. The most comprehensive work was carried 

out by Noel [98-101], Goss [102], Alaruri [103-105], Allison [97;106-108], Feist [109-
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120], Gentleman [121-124] and Eldridge et al. [125-127] who, between them, have 

tested numerous phosphors for high temperature applications. 

 

The first approach in commercial instrumentation was to mix phosphor powders with a 

binder and paint it on the surface of interest. Another technique consists of a fibre optic 

probe in which the phosphor material is attached at the end of an optical fibre [103;128]. 

Other coating methods like electron beam deposition [89;110] and RF magnetron 

sputtering [129] have been investigated to overcome the poor durability of phosphor 

paints. Characterization of luminescent materials is generally done in a furnace using 

powders, with more realistic research carried out using rotating samples. In 1987, 

Mannik et al. [130] measured temperatures between 60-150˚C on a sample rotating at 

1725 rpm. Later Tobin et al. [89] monitored the temperature of turbine blades rotating in 

a jet fuel flame up to 1000˚C. In 1991 Noel et al. [98] realized tests on first-stage stator 

vanes in an operating turbine engine. Remote thermometry was also developed to 

enable two dimensional temperature measurements [104;109;131-135] and Alaruri et al. 

[104] made surface temperature mapping of a sample at temperature between 500-

750˚C. 

 

Most recently Choy, Feist and Heyes [114] introduced the notion of “sensing thermal 

barrier coatings” (sensing TBCs). Instead of applying a phosphor layer to the surface 

where the temperature needs to be measured, they proposed to locally modify the 

composition of the TBC so that it acts as a thermographic phosphor. This technique 

enables surface temperature measurement but also could provide a means to measure 

temperature within the TBC and at the metal/coating interface. They studied a powder 
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of standard YSZ doped with 1 mol% Eu2O3 (YSZ:Eu1%) over a temperature range from 

20 to 800˚C showing that YSZ:Eu can be successfully used in a TBC system to 

determine temperature. In further work, Feist et al. [110] produced a YSZ coating 

doped with 10% of dysprosium (YSZ:Dy), deposited by EB-PVD, and showed that 

temperatures between 260°C and 675°C can be measured with this technique using the 

intensity ratio method, to an accuracy of ±5°C. In a paper published in 2003, Eldridge et 

al. [126] addressed the problem of depth temperature measurement. They used a paint 

of Y2O3:Eu applied on plasma-sprayed 8 wt.% yttria-stabilised zirconia coating. They 

demonstrated that a temperature reading up to 830°C with a phosphor layer beneath a 

100 µm thick TBC is possible. Finally, Gentleman et al. [124] started working in the 

field of luminescence sensing using rare earth doped YSZ (YSZ:RE) and also Gd2Zr2O7 

as phosphorescent materials. Recent advances in the field of sensing TBCs will be 

described more in details in the chapter entitled “Sensing TBCs”. 
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2. INTRODUCTION TO 
PHOSPHORESCENCE 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In 1889 Wiedemann [139] was the first to introduce the term of luminescence to define 

many phenomena involving the emission of light under the influence of incident 

radiations. These radiations may be ultraviolet, X-rays, cathode rays, neutrons, gamma 

rays and in some applications visible light. Luminescence may also results from friction 

(triboluminescence) or chemical reaction (chemiluminescence), phenomena easy to 

differentiate with their prefixes, however the distinction between fluorescence and 

phosphorescence is much more arbitrary. It is generally admitted that in fluorescence 

the emission stops almost simultaneously once the exciting light ceased whereas 

phosphorescence is characterized by an afterglow which lasts at least 10-8 s [140].  
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Phosphors can be divided into two classes depending on their compositions: organic and 

inorganic and usually inorganic crystalline solids have a better phosphorescence in 

terms of duration [97;140]. In this study only inorganic phosphors were investigated. 

They can be defined as an inorganic host material which contains “impurities” or 

activators which act as phosphorescent centres. Figure 15 is a schematic representation 

of the luminescence process. It is assumed that the host material (H) does not absorb 

radiations. When excited, the atoms of the activator (A) move from a ground state to a 

higher electronic state, they will then return to a lower energetic state by releasing the 

energy absorbed to reach the excited state via a radiative way, that is to say the emission 

of light or via thermal dissipation. 

 

 

Figure 15: Schematic representation of the luminescence process. 

 

In this work the role of activator is played by one of the ions of the rare earth metals 

also known as lanthanides. In order to be able to understand the emission properties of 

rare earth phosphors it is necessary to have a clear understanding of their particular 

electronic configuration along with their energy levels. 
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2.1. The energy levels of rare earth ions 
 

Rare earths in solids can be either divalent or trivalent, the most common being the 

trivalent one. The latter have a 4f 
N
 5s

2
 5p

6 electronic configuration with N Є {0,14}. In 

1908, Becquerel [141] was the first to observe the optical spectrum of rare earth 

compounds and to highlight the sharpness of the lines generally characteristic of the 

spectra of free atoms. It was not until 1930 that Bethe [142], Kramers [143] and 

Becquerel [144] started to understand the characteristics of these lines and their link 

with optical transition within the 4f shell.  The sharpness of the lines is related to the 

fact that the electrons of the 4f shell are shielded by the filled 5s and 5p orbitals which 

have a larger radial extension [145;146]. Consequently the 4f electrons are weakly 

affected by the crystal lattice and play no part in the interaction with neighbouring ions. 

Hence they can be treated as free ions and the energy levels of free rare earth ions are 

very close to that of rare earth ions embedded in various hosts. The various transitions 

between the 4f energy levels and therefore their splitting and interactions are of primary 

importance in the phosphorescence process. 

 

If an isolated atom is considered, its electrons give rise to discrete energy levels 

separated by regions of forbidden energies. The allowed energy states are defined by 

Schrodinger’s equation. In a crystalline structure, these discrete states are disturbed due 

to the interactions between atoms and therefore form bands of allowed energy separated 

by forbidden energy bands. Immediately above the highest filled band which is 

occupied by the valence electrons of the crystal atom, lies an empty band which is 

known as the conduction band.  The addition of activating impurities provides 
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additional discrete energy levels, these levels may be situated between the valence and 

the conduction band and are called luminescent centres.  

 

Assuming that the 4f electrons are not perturbed by the charge distribution in the crystal 

or the other electronic shells, the energy levels of rare earth ions can be determined by 

only taking into account the interactions between the 4f electrons themselves. The 

Hamiltonian equation which describes these interactions can therefore be written as 

follows [145;147]: 
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Equation 2 

 

, where N is the number of 4f electrons ( ]14,1[∈N ), h is Planck’s constant, m the mass 

of the electron, e the charge of the electron, ri the distance relative to electron i, Z.e the 

screened charge of the nucleus, ζ(ri) the spin-orbit coupling function, s the spin vector 

and l the orbital vector of the electron i. 

 
The first two terms, which represents the kinetic energy of the 4f electrons and their 

Coulomb interaction with the nucleus respectively, can be neglected as they are 

spherically symmetric and do not remove any of the degeneracies in the 4f electron 

configuration. 

 
The last two terms, which are the Coulomb interaction and the spin-orbit interaction of 

the 4f electrons respectively, mostly affect their energy structure and split up the energy 

levels. The energy splitting of the 4f shell due to Coulomb, spin-orbit and crystal 
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interactions is represented in Figure 16, it clearly shows their relative influences with 

Coulomb interaction>spin-orbit interaction>crystal field interaction. 

 

 
 

Figure 16: Energy splitting of the 4f shell of Eu3+ (Redrawn from [148]). 

 

Generally an atomic state is represented using “term” symbols also called  Russell-

Saunders symbols due to their first use by Russell and Saunders [149] in 1925. They 

describe the energy and the position of the optical electrons. The different states or 

energy levels constitute the energy diagram, an example of which is represented in 

Figure 17. As Dieke [150] was the first to give an overview of the energy levels of the 

4f shell for all trivalent lanthanides in the 1960s, this diagram is also called the Dieke 

diagram.  
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Figure 17: Dieke diagram. Energy levels of the 4f configurations of rare earth trivalent ions [146]. 
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A term symbol is represented as follows: 

 

2S+1
LJ 

 

Where L is the total orbital momentum and defines the energy state of the system of 

electrons. S is the total spin angular momentum and therefore is the result of the 

coupling of spin quantum numbers for the separate electrons. 2S+1 is the term 

multiplicity, it indicates the maximum number of values J can have and J is the resultant 

of the vectorial combination of L and S. 

 

The basic structure of the energy-level diagram of rare earth ions is now well defined 

and the various transitions between these levels should now be considered. In 

lanthanides it can be observed intraconfigurational 4f 

n
→4f 

n transitions and also 

interconfigurational transitions between the 4f shell and the 5d shell (4f 

n
 → 4f 

n-1
5d 

transition) or between the 4f shell and the valence band of the surrounding ions (Charge 

transfer transition) giving rise to additional levels. These interconfigurational transitions 

can be explained by the fact that a state is in a very stable configuration when the 

electron shell is completely or half-filled. Consequently in the case of Eu3+ which has a 

4f 

6 configuration (half-filled less one) one electron of the valence band can be 

favourably promoted to the 4f shell thus the charge-transfer state has a low energy. 

While in the case of Tb3+ which has a 4f 

8 configuration (half-filled plus one) one of the 

4f electrons can be raised to the 5d shell to gain stability therefore the 4f 
n
 → 4f 

n-1
5d 

transition takes place at low energy. It is worth noting that these energy levels depend to 

a great extent on the lattice 
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Having discussed the energy levels associated with trivalent rare earth ions, the next 

section reviews the optical transitions between the 4f levels. 

 

2.2. Optical transitions 
 

2.2.1. Between 4f levels 

 

According to Laporte’s selection rule for an electric-dipole transition to be allowed 

there must be ∆l=±1 therefore transitions between 4f levels are strictly forbidden. 

Moreover if an electric-dipole transition implies a change in the spin quantum number S 

the transition is also forbidden. Therefore if Eu3+ is considered, the ground state being 

7
F0 (S=3, L=3, J=0) and the excited state 5

D0 (S=2, L=2, J=0), transitions between these 

levels is strictly forbidden. Radiation is the combination of electric-dipole and 

magnetic-dipole transitions. The latter being ruled by ∆J=0 ± 1 (J=0 → J=0 is 

forbidden), magnetic-dipole radiations are possible but they obviously account for very 

few of the observed transitions and their intensity is about 103 less compared to electric-

dipole transitions. Hence in the case of Eu3+
 the only possible transition accompanied by 

the emission of radiation is 5
D0 → 

7
F1. As expected it can be seen on the emission 

spectrum of Eu3+ (Figure 18) that there are emission lines corresponding to the 5
D0 → 

7
F1 transition however there are also lines for the 5

D0 → 
7
F0, 

5
D0 → 

7
F2 and  5

D0 → 
7
F3 

transitions. 

 

In fact the spin and parity prohibition are not that strict and the transitions can be 

partially allowed. Due to the j-j coupling observed for heavy ions like rare earths, 5
D 
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and 7
F are not pure states, for instance, there is a mixture between 5

D0 and 5
D2 and 

between 7
F0 and 7

F2 lifting the spin prohibition. Concerning the parity, in 1937 van 

Vleck [151] suggested that it can be cancelled by the influence of the crystal lattice. If 

the rare earth ion occupies a crystallographic site where the parity is different, the odd 

crystal field term can mix with the 4f 
6 configuration hence lifting the parity prohibition. 

The influence of the crystal field is illustrated in Figure 18 by the multiple emission 

peaks corresponding to the 5D0 → 
7
F1  transition. 

 

 

Figure 18: Emission spectrum of YSZ:Eu Phosphor [105]. 

 

2.2.2. Configurational-coordinate diagram 

 

In the previous chapter it has been seen that luminescence comes from electron 

transitions between the various energy levels of the 4f shell. In order to determine 

5
D0→

7
F2 

5
D0→

7
F3 

5
D0→

7
F1 

5
D0→

7
F0 
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whether a transition gives luminescence or not, a model based on the configurational-

coordinate diagram has been proposed by Seitz [152] in 1939. It represents the potential 

energy of the normal and excited states of the luminescent centre as a function of the 

configurational coordinate (Figure 19). At the minimum of these parabolic curves the 

luminescent centre occupies the lowest vibrational level however if the temperature is 

increased for instance it can occupy higher levels which are represented by horizontal 

lines on the graph. 

 

By direct absorption of radiation the centre is raised to an excited state (AA’). After this 

transition the centre is not necessarily in its minimum energy configuration, it will 

therefore return to an equilibrium state by dissipating heat to the surrounding material 

(A’B). Finally the system does not remain excited, it returns to the ground state by 

emitting radiation (BB’) followed by heat dissipation to reach a stable state (B’A). It 

should be noted that, since the absorption and emission occur very rapidly compared to 

vibrational movements, the transition AA’ and BB’ are represented by straight lines 

(Franck-Condon principle [153]). It is also clear from the graph that the emitted light is 

of lower energy compared to the absorbed radiation and therefore has a longer 

wavelength (Stokes law). 

 

In the case of absence of emission (Figure 19b), after excitation the centre goes to the 

equilibrium configuration of the excited state (A’B) however it reaches first the 

intersection point of the ground state (C). Consequently it relaxes non-radiatively to the 

ground state by thermal dissipation. 
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(a)      (b) 

Figure 19: Configurational-coordinate diagram (Redrawn from [140]). 

 

2.2.3. Phosphorescence decay 

 

As has been said previously phosphorescence is characterized by an afterglow and in his 

work Becquerel found that after excitation the emission intensity decays exponentially 

with time. This delay in emission is due to the forbidden nature of the transition 

therefore if p is the optical transition probability, the time dependence of the intensity 

(I) can be expressed as follows [140]: 

 

pn
dt

dn
tI =−=)(  

Equation 3 

 
, where n is the number of excited centres. The integration of this equation gives: 
 



Introduction to phosphorescence 

 

56 

( )ptItI −= exp)( 0  

Equation 4 

 
, where I0 is the intensity at the beginning of the decay. Equation 4 can also be written 

as: 








−=
τ
t

ItI exp)( 0  

Equation 5 

, where τ is the phosphorescence lifetime. 

 

According to the latter equation, the luminescence decay rate is independent of the 

temperature, which is not true. Changes in temperature have a marked effect on the 

phosphorescence process. The previous model was used to describe a situation where 

the electrons occupy the lowest vibrational level of the ground state, however at higher 

temperature, higher vibrational levels can be occupied following a Boltzmann law, 

enabling different paths for relaxation. On top of that, the return to the ground state can 

not only be achieved by emission of photons (radiative process) but also by emission of 

phonons (non-radiative process) and the temperature dependence becomes very 

important when there is competition between radiative and non-radiative de-excitation. 

 

2.3. Temperature dependence of phosphorescence 
 

2.3.1. Temperature dependence of the emission intensity 

 

In general, the emission intensity of phosphors becomes weaker as the temperature of 

the material increases. The example of La2O2S:Eu is given in Figure 20. 
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Figure 20: Emission intensity as a  function of temperature for La2O2S:Eu [97]. 

 

It can be seen that there is a clear break in the curves, the intensity drops dramatically 

when a certain temperature is reached. This temperature is called the quenching 

temperature and can be explained using configurational diagrams. Due to thermal 

activation, electrons can occupy a higher vibrational levels situated closer or above the 

intersection point C (Figure 19). Electrons can therefore return non-radiatively to the 

ground state by dissipating heat. The population of the various energy levels is governed 

by the Boltzmann law: 

  








 ∆
−⋅=

kT

E
nn exp01  

Equation 6 

 
, where n0 and n1 are the electron populations of the ground and an excited state 

respectively, ∆E the energy gap between these two states, k the Boltzmann constant and 

T the temperature in Kelvin. 
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If the intensity of the phosphorescence is considered proportional to the electron 

population it can be written: 

 








 ∆
−=

kT

E
II exp01  

Equation 7 

 
, where I1 and I0 are the emission intensity from the excited and ground state 

respectively. 

 

It is clear that the ratio depends on the temperature but also on the energy difference 

between the two levels. Temperature measurement using the intensity ratio technique is 

based on this temperature sensitivity [102;109;110;113;119;135]. When two emitting 

levels are closely spaced (around 1000 cm-1), variations in temperature will change the 

relative electron population of these levels according to the Boltzmann law, resulting in 

a change of their phosphorescence intensity. Consequently by monitoring the variations 

of phosphorescence intensity of one level relative to the other, temperature can be 

determined. Dysprosium and samarium are the only lanthanides which are known to 

produce an intensity response at high temperature. 

 

A different process has been proposed by Struck and Fonger [154;155] to explain the 

temperature quenching of Eu3+ in oxysulfides. As it has been shown previously, Eu3+ 

has a low energy charge transfer state (CTS) because its 4f shell can favourably accept 

an electron from the valence band. In terms of configurational diagram, the charge 

transfer state can be represented as a parabola that intersects the excited and ground 

state curves (Figure 21). In the example of Eu3+, electrons can be thermally promoted 
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from the excited 5
D levels to the CTS which can directly feed lower 5

D or the ground 

states. This explains why 5
D emissions quench sequentially in the order 5

D3, 
5
D2, 

5
D1, 

5
D0 with increasing temperature as observed in Figure 20. CTS offers an additional path 

for non radiative relaxation, its position strongly depends on the host material and 

obviously the quenching temperature of the phosphorescence decreases for lower CTS 

energy. 

 

Figure 21: Configurational coordinate diagram of the 4f 7 and CTS of Eu3+ in La2O2S (CTS: 

Charge Transfer State) [155]. 

 

2.3.2. Temperature dependence of the luminescence lifetime 

 

Previously, the crystal of the host material has been considered static and its effect was 

called crystal field interaction. In fact, the ions of the crystal move around their 

equilibrium positions and this constitutes the lattice vibrations of the host material the 

quantum of which is called a phonon. As mentioned, relaxation from an excited state 
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can not only take place by direct transition to a lower state via the emission of photons 

but also by releasing energy in the form of phonons to the surrounding crystal. 

Consequently the total luminescence lifetime can be expressed as a function of the 

probability of the occurrence of these two processes: 

 

NRR PP +
=

1
τ  

Equation 8 

 
, where τ is the lifetime and PR and PNR the radiative and non-radiative components 

respectively. 

 

A simple relationship can be determined for Pnr using the theory of multiquantum 

emission [145;156-158]: 

 
n

phonon

NRNR
kT

E
TnPTnP

−

















−−== exp1)0,(),(  

Equation 9 

 
, where PNR(n,T=0) is the probability of the spontaneous emission of n phonons at 

T=0K, Ephonon the energy of the phonon under consideration. ωh=PhononE  where h is 

the Dirac constant and ω the angular frequency. 

 

The radiative rate PR does not depend on temperature and is usually small compared to 

PNR. The non-radiative component PNR increases with temperature, consequently, the 

lifetime decay τ becomes smaller as temperature is increased. This temperature 

dependence leads to the lifetime decay method for temperature measurement. The 

number of phonons n involved in the process can be determined from ωh/En ∆=  



Introduction to phosphorescence 

 

61 

where ∆E is the energy gap that has to be bridged [159]. The energy gap between two 

levels is typically 1000 cm-1. The maximum phonon energy is about 500 cm-1, therefore, 

non-radiative decay takes place by a multiphonon process. 

 

It is worth noting that the constant PNR(n,T=0) is highly dependent on the order n of the 

process. Weber [156;159] and Risenberg and Moos [145;159;160] calculated the values 

of PNR(n,T=0) for various levels of different trivalent rare earth ions in different host 

materials and they found that there is an exponential dependence on the energy gap to 

the next lowest level (∆E): 

 

( ))exp)0,( EATnPNR ∆−== α  

Equation 10 

 

Consequently, the bigger the energy gap that has to be bridged, the lower PNR(n,T=0). 

Therefore important light emissions are observed for transitions between energy levels 

that are separated by a large energy gap and one might expect that these transitions 

might have longer high temperature lifetimes. 

 

2.3.3. Temperature measurement using the lifetime decay 
method 

 

As mentioned, the lifetime of the phosphorescence decreases with increasing 

temperature. This temperature dependence of the phosphorescence process is preferred 

over the intensity ratio method and is the most commonly used to perform temperature 

measurements. The lifetime decay method involves the calibration of the phosphor 
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materials in order to determine its temperature sensitivity. The calibration process is 

generally performed under isothermal conditions in a furnace. The phosphorescence 

lifetime is recorded from room temperature until the complete temperature quenching of 

the phosphorescence signal is observed. From this experiment, a calibration curve, that 

is to say the lifetime of the phosphorescence as a function of temperature, can be plotted 

(Figure 22). A phosphor is characterized by a temperature range over which it is 

sensitive, which corresponds to the steep slope of the curves in Figure 22, and a 

maximum operating temperature. Obviously the maximum temperature capability of a 

phosphor depends on the minimum decay time that can be recorded by the measurement 

device. 

 

 

Figure 22: Calibration curves for various phosphors [100;138]. 
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In order to determine the temperature, the lifetime decay of the phosphorescence is 

recorded and the temperature is read from the calibration curve. It is worth noting that 

the steeper the slope of the calibration curve the more accurate will be the temperature 

measurements. 

 

2.4. Factors influencing the phosphorescence process 
 

2.4.1. Dopant concentration 

 

It is highly desirable to maximise the brightness of the phosphor and it would seem 

obvious that by increasing the concentration of the activating impurity higher emission 

intensity could be obtained. However this is not always the case, Figure 23 illustrates 

that there is a critical concentration above which luminescence intensity drops 

dramatically. As the concentration of phosphor dopant is increased, there is a greater 

interaction between activator ions increasing the probability of non-radiative energy 

transfer between dopant ions. This non-radiative de-excitation is also known as 

concentration quenching. Phosphorescence intensity, decay time, rise time and 

temperature response are all affected to some extend therefore dopant concentration is 

seen as an important factor in the design of sensing TBCs. 

 

2.4.2. Saturation effects 

 

High laser excitation energy could give rise to luminescence saturation effects. 

Generally increasing the energy beam results in a high luminescence intensity however 
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above a certain threshold the intensity starts to decrease [97]. It has been reported that a 

high laser flux could also decrease the phosphorescence decay time [161]. 

 

 

Figure 23: Fluorescence intensity in function of dopant concentration for Y2O3:Eu [97]. 

 

2.4.3. Impurities 

 

The presence of impurities can affect the phosphorescence by absorbing at wavelengths 

similar to those of the activators, hence decreasing the energy available to excite 

phosphorescent centres. Impurities can also absorb the emitted wavelength, reducing the 

intensity of the phosphorescence or shorten the lifetime decay due to energy transfer 

from the activator to the impurities [97]. 

 

2.4.4. Sensitizers 

 

It is also possible to indirectly excite the activator via a sensitizer. The processes 

involved are more complex since the excited sensitizer can return to the ground state by 
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luminescing, transferring its energy to another sensitizer or to the activator or 

dissipating heat to the lattice [146]. Sensitizer materials can be used to increase the 

luminescence intensity or, for example, in particular cases where for instance the 

wavelength required to excite the activator is not available. A suitable sensitizer must 

not absorb the emission wavelength that is to be monitored or provide a path to de-

excite luminescent centres non-radiatively. Weber [162] has found that erbium is a 

sensitizer for dysprosium and gadolinium for terbium. 

 

2.4.5. Rare earth energy level location 

 

The location of the energy levels of rare earth oxides in various host materials has 

mainly been studied by Dorenbos et al. [163]. The performance of a phosphor depends 

on the locations of these levels with respect to the valence and the conduction band. If 

an excited state is situated just below the conduction band the electrons excited to this 

state can be thermally ionized to the conduction band and hence can be considered as 

lost for the phosphorescence process. Consequently, electronic transitions from this 

state will be quenched at high temperatures. 

 

As it has been shown in a previous section, the position of the charge transfer state 

(CTS) will have an effect on the phosphorescence process. Its position depends on the 

host material and low energy CTS provides additional paths for non radiative relaxation 

leading to a decrease in the intensity of the phosphorescence with increasing 

temperature. 
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3. SENSING TBCS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Recently, the so-called sensing TBCs have been of particular interest for monitoring 

TBC performance in-situ. Most of the work in this research area has been published in 

the open literature over the past six years. The concept of a sensing TBCs was patented 

by Choy et al. [114] in 1998. Results on YSZ:Eu powders were published in 2000 

[111], while the first results on sensing EB-PVD TBCs were published in 2001 [110]. 

The coating tested was a monolayer coating of standard YSZ co-doped with dysprosia. 

In 2001, General Electric patented a means of measuring the extent of monoclinic phase 

formation in a TBC using the phosphorescence of YSZ:Eu material [164]. Later, Feist 

and co-workers showed that the degradation of the TBC due to hot corrosion could be 

monitored by phosphorescence [165]. In 2005, Gentleman et al. [123] reported the 

temperature sensitivity of YSZ:Eu phosphors as well as europia doped pyrochlore 

zirconates. The latter may be seen as a potential replacement for YSZ materials due to 
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its lower thermal conductivity. Gentleman et al. [122] also showed that the temperature 

at the TGO/TBC interface could be measured with thermographic phosphors, using a bi-

layer EB-PVD coating (a 150 µm YSZ layer on top of a 10 µm YSZ:Eu layer). Work on 

air plasma sprayed coatings was first published in 2005 [118]. Eldridge et al. [125;127] 

concentrated on the detection of damage in the TBC in the form of delamination and 

erosion using phosphorescence. In 2006, they reported an innovative way of detecting 

the delamination of TBCs based through the observation of the luminescence of a 

YSZ:Eu phosphor layer deposited at the TGO interface. They found the luminescence is 

greatly enhanced in the presence of underlying delamination cracks [127]. 

 

3.1.  Sensing concept 
 

The concept of sensing TBCs has been recently reviewed by Gentleman et al. [124]. 

The use of phosphors as sensors can be broadly divided into two main types: 

temperature measurement sensors and health measurement sensors. 

 

3.1.1. Temperature measurement sensor 

 

As mentioned before, it is very desirable to monitor the temperature at the bond coat/top 

coat interface but also at the surface of the TBC. By applying an inner layer adjacent to 

the bond coat and another layer at the surface of the TBC, using two different types of 

phosphors (that is to say phosphors with distinct luminescent lines) monitoring both 

temperatures should be possible. By simultaneously measuring the temperature at at 

least two different depths in the coating the temperature gradient in the TBC can be 
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determined. Therefore, a multilayer sensing coating could also be used as a heat flux 

gauge in order to monitor the thermal gradient and to determine the heat flux through 

the thickness of the TBC. More precise measurements can be achieved by incorporating 

another layer in the middle of the coating to provide a third temperature measurement 

using a third type of phosphor. Knowing that the thermal conductivity of YSZ TBC 

varies through its cross section [76;166], it is very difficult to predict the temperature 

within the coating without the use of a third phosphor, therefore, it would provide useful 

data for future development to include three or more phosphor layers. 

 

3.1.2. Health measurement sensor 

 

Degradation of the TBC will result in an increase in the metal surface temperature. This 

variation in temperature can be measured by a layer deposited adjacent to the bond coat 

and therefore the area where the coating is damaged can be monitored. 

 

In 1987, Amano et al. [167] patented a non-destructive way of determining the 

remaining thickness of a TBC by using a multilayer coating containing luminous 

activators. Indeed, in order to monitor the health of the TBC at various stages, several 

doped layers should be deposited. Each layer should have a different dopant that 

luminesces at a specific frequency so that under excitation, when the TBC is intact, the 

characteristic luminescence of each layer can be detected. As the coating starts to be 

eroded the first doped layer will be removed therefore the luminescence of this layer 

will no longer be collected and hence the remaining thickness can be determined. Such 

a coating was successfully tested by Eldridge et al. [125]. The multilayer coating 
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consisted of layers of YSZ:Eu, YSZ:Tb and undoped YSZ successively applied during a 

single deposition run using a six electron beam gun evaporator with three different 

ingots. Under UV illumination, only the phosphorescent layers exposed by erosion 

luminesced providing an immediate visual indication of where the coating is eroded and 

also an estimation of the remaining coating thickness. 

 

Another approach would consist in superposing several layers, the layer on the top, 

being opaque to the luminescence wavelength of the underneath layers, acts as a barrier. 

When the TBC is intact no signal is collected, but when the “barrier layer” is removed 

the luminescence of the underneath layer can be picked up and therefore the remaining 

thickness can be assessed.  

 

A similar system, based on the opacity of YSZ-based TBCs to ultraviolet excitation 

wavelength, could be used. By using a UV laser to excite the phosphor, the 

phosphorescent layer can only be excited when exposed due to erosion or spallation for 

example, hence providing a mean to determine the remaining thickness of the TBC and 

whether the coated component has to be replaced. 

 

Last but not least, alterations of the local atomic surrounding of the activator ion were 

found to affect the phosphorescence process. Therefore, phase transformations in the 

TBC due to high temperature aging [164] or chemical degradation caused by hot 

corrosion [165] for instance, could be monitored by phosphorescence. 
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3.2. Requirements 
 

3.2.1. Depth of penetration 

 

An important obstacle, related to in-depth temperature measurement, is the possible 

attenuation of the exciting wave or the absorption of the fluorescence emission by the 

TBC. EB-PVD TBCs are generally around a 125-200 µm thick, therefore, to measure 

the temperature at the bond coat/top coat interface the laser must be able to excite the 

phosphor layer at this depth and the emission must be able to be monitored. 

Consequently, it is of primary importance to select a phosphor that exhibits significant 

excitation and emission peaks that can be transmitted through the TBC. Moreover, due 

to cracks and defects present in TBCs, the light transmission will be further decreased 

and so will be the penetration depth. However, EB-PVD TBCs exhibit a columnar 

microstructure and therefore the major defects are vertically oriented resulting in less 

absorption. 

 

In 2003, Eldridge et al. [126] showed that it is possible to take temperature 

measurements through a 100 µm thick APS layer. Most recently, Gentleman et al. [122] 

managed to make lifetime decay measurements in an EB-PVD TBC, through a 140-170 

µm YSZ layer. 

 

3.2.2. Moving surfaces 

 

If the surface where the temperature that is to be measured is rotating at high speed, it 

should move by a non-negligible distance during the amount of time required to make a 
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temperature measurement. The fluorescing area that has been excited by the laser may 

move significantly with regard to the detector during the measurement period and 

consequently the amount of light reaching the detector will vary with time and therefore 

as a function of the rotation speed. To minimise this problem careful calibration must be 

made and phosphors with short decay time should be chosen preferentially so as to 

minimise the displacement during the measurement period. 

 

For the case of the turbine blades, the measurements have to be made before the blade 

rotates out of view therefore, the speed of laser excitation and data acquisition but also 

the phosphorescence decay time, are critical parameters. The maximum time allowed to 

do a single temperature measurement can be easily estimated. In the Rolls-Royce Trent 

900 engine, which has a single stage high pressure turbine with 70 blades, the rotor 

maximum speed is about 12500 rpm [168]. Hence, the time window for measurement 

would be about 70 µs. In reality, the measurement has to be made even faster since the 

excited area on the blade surface will move away from the detector during this period of 

time. This effect on displacement is illustrated in Table 3 for various decay times. 

 

Table 3: Displacement at the blade surface for various decay times. 

τ (µs) Displacement (mm) 

100 49-57 
50 25-28 
10 5-6 
1 0.5-06 

0.1 0.05-0.06 

 

This shows that temperature measurements on rotating parts are very challenging, 

however, this is an extreme case, for an industrial gas turbine the rotation speeds are 

much lower. 
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3.2.3. Selection of the phosphor dopant 

 

As it has been shown, the choice of phosphor is already limited by the “depth of 

penetration” and “moving surfaces” requirements. Other important parameters that will 

further shorten the list of possible candidate materials have also to be taken into 

account. If phosphors are used to monitor the health of the TBC, this may be done at 

room temperature as an inspection mode, therefore, the choice of rare earth is not very 

restricted. However, for temperature measurement the phosphor must have, over the 

temperature range of interest, a temperature sensitivity which can be monitored 

accurately. For industrial turbine blades the surface temperature will reach typically 

900˚C, whereas for aero blades it can be as high as 1200˚C and the challenge resides in 

selecting a phosphor which is sensitive at this temperature. 

 

Moreover, for in-situ measurements, the luminescence must be detectable from all the 

background radiations such as the blackbody radiations from the surrounding 

components, the hot gas or even the coating itself. Figure 24 represents the blackbody 

radiation curves calculated from Planck’s law. It indicates that for the luminescence to 

be detected above the blackbody background radiation the wavelength must be below 

600 nm. 

 

Further, if several layers constituted with different dopants are to be used to measure 

temperature at different depths, the phosphors must be chosen so that there is a 

minimum overlap between the luminescence lines of the different dopants. All of these 

factors make the choice of dopant much more restrictive for temperature measurement, 

than for room temperature TBC health monitoring. 
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Figure 24: Blackbody radiation curves at 1200°C, 1400°C and 1600°C. 

 

3.2.4. Dopant concentration 

 

The intensity, the relative spectral distribution, the decay time and the response to 

temperature will all be affected to some degree by the phosphor dopant concentration. 

For a certain concentration, depending on the phosphor but also on the host material, the 

luminescence will reach a maximum, therefore, it is important to establish its useful 

range of concentration. It is essential to determine, for a particular application, the right 

concentration that will give maximum luminescence intensity and the proper lifetime 

decay over the temperature range of interest. 

 

The phase stability of the TBC must also be taken into consideration. A TBC has the 

highest thermomechanical resistance when stabilised with between 6-9 wt.% of yttria 

(3.5-5 mole%). Rare earth oxides are also stabilisers, so the total concentration of 

stabiliser should be kept within this range to ensure good properties for the TBC. 
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Furthermore, as stated previously, rare earth oxides additions enable to further decrease 

the thermal conductivity of EB-PVD TBCs. Ternary addition of rare earth oxides up to 

8 mol% results in a significant drop in thermal conductivity with the most important 

drop observed for additions between 4 and 8 mol% for gadolinia, neodymia or ytterbia 

[31;166]. If those rare earths additions could be used in this kind of concentration range 

it could be also beneficial from the thermal conductivity point of view, although it could 

have a negative effect with respect to lifetime. 
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4. TEMPERATURE SENSITIVITY OF YSZ 
PHOSPHORS 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In the selection of high temperature phosphors the most straightforward approach is to 

co-dope standard YSZ material with rare earth oxides (YSZ:RE). Firstly, because 

YSZ:RE materials have been shown to luminesce at high temperatures (Table 2). At the 

beginning of this research, in October 2004, the only data available in the open literature 

regarding YSZ-based phosphors was the work conducted by Feist et al. [110-112]. They 

reported lifetime decay measurements up to 800°C using a YSZ:Eu powder and a 

YSZ:Eu coating deposited by electrostatic spray assisted vapour deposition. 

Additionally, the only results on EB-PVD TBCs were on YSZ:Dy and these indicated a 

temperature measurement capability up to 630°C using the intensity ratio technique 

[110]. However no work was published on lifetime decay measurements for this EB-

PVD TBC. 
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Secondly, small additions of dopants should not dramatically change the properties of 

the TBC. It was shown by Nicholls et al. [31] that a 4 mol% addition of rare earth 

dopant could significantly reduce the thermal conductivity of TBCs and that such 

compositions were easily deposited by EB-PVD. Further, Rebollo et al. [13] reported 

that, even though gadolinia is a less effective stabiliser than yttria, small ternary 

additions of gadolinia could improve the high temperature phase stability of the coating. 

 

4.1. Sample production 
 

4.1.1. Selection of rare earth dopant and concentration 

 

As mentioned in Section 2.3.2 trivalent rare earth oxides with a high energy gap should 

be quenched at a higher temperature, therefore, according to the Dieke diagram in 

Figure 25, Sm2O3, Eu2O3, Gd2O3, Tb2O3 and Dy2O3 are potentially the best candidates 

to dope YSZ from the luminescence point of view. Unpublished work carried out at 

Southside Thermal Science, London (STS) showed that the temperature sensitivity of 

YSZ:Tb and YSZ:Sm do not exceed that of YSZ:Eu, consequently this study will 

concentrate on YSZ:Eu, YSZ:Gd and YSZ:Dy phosphors. Recently Chambers et al. 

[137] showed that Tb2O3 was not a viable dopant for YSZ because Tb3+ could easily be 

oxidised into Tb4+.  

 

First of all, the dopant concentration was chosen so that the total amount of stabiliser 

(rare earth oxide plus yttria) remained in a range that guaranteed the formation of the 

metastable t’ phase after deposition (see phase diagram in Figure 5b - page 11). The 

coating compositions used for this study are listed in Table 4. Three different 
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concentrations of dysprosia, 0.3, 1 and 2 mol%, were chosen in order to determine the 

influence of dopant concentration on the phosphorescence. Compositions with 2 mol% 

of Eu2O3 and Gd2O3 were also investigated to compare the temperature capabilities of 

these three phosphors at the same dopant concentration level. Finally concentrations of 

4 mol% were studied since such a level of dopant would give a significant reduction in 

the thermal conductivity of the TBC [31]. 

 

 

Figure 25: Dieke diagram for rare earth trivalent ions with high energy gaps. 

 

Table 4: Ingot compositions used for coating deposition. 

Designation Composition Total Stabiliser 

concentration (R2O3) 

7YSZ ZrO2 + 7 wt.% Y2O3 3.9 mol% 
YSZ:Dy0.3% ZrO2 + 7 wt.% Y2O3 + 0.3 mol% Dy2O3 4.3 mol% 
YSZ:Dy1% ZrO2 + 7 wt.% Y2O3 + 1 mol% Dy2O3 5 mol% 
YSZ:Dy2% ZrO2 + 7 wt.% Y2O3 + 2 mol% Dy2O3 6.1 mol% 
YSZ:Eu2% ZrO2 + 7 wt.% Y2O3 + 2 mol% Eu2O3 6.1 mol% 
YSZ:Eu4% ZrO2 + 7 wt.% Y2O3 + 4 mol% Eu2O3 8.3 mol% 
YSZ:Gd2% ZrO2 + 7 wt.% Y2O3 + 2 mol% Gd2O3 6.1 mol% 
YSZ:Gd4% ZrO2 + 7 wt.% Y2O3 + 4 mol% Gd2O3 8.3 mol% 
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4.1.2. Coating deposition 

 

All the coatings were deposited at Cranfield University on alumina substrates using the 

single source EB-PVD evaporator represented in Figure 26. High purity single crystal 

alumina substrates♦ were used rather than a nickel based superalloy, in order not to be 

limited by the melting point of the superalloy during the phosphorescence furnace 

calibration. 

 

Prior to deposition the substrates were polished with a 1200 grit SiC paper and cleaned 

with acetone. Then, they were placed on NIMONIC 75 holders which were fixed on the 

substrate rotators of the deposition chamber. The substrate holders rotated at 10 rpm 

during the deposition and they were heated to about 900°C, prior to the start of 

deposition. The pressure inside the chamber was kept between 1 and 5x10-2 mbar and a 

10% oxygen / 90% argon gas mixture was introduced to preserve the stoichiometry of 

the zirconia deposit. The electron beam gun which is located in the lower chamber at 

around 3.10-4 mbar, is bent through 270° magnetically and focussed onto a 33 mm 

diameter ingot● (The ingots had the compositions listed in Table 4). The ingot is 

evaporated, with the deposition lasting typically 60 minutes to achieve a coating 

thickness of about 100-120 µm. During deposition the temperature increases to circa 

1000°C. After deposition the samples were left to cool down in the coater. Each coating 

was characterised by X-ray diffraction (XRD) and scanning electron microscopy (SEM) 

in order to determine the microstructure and the crystallography of the doped coatings 

and compare these with the standard 7YSZ. 

                                                 
♦  Single crystal alumina, random orientation, 99.99% purity supplied by PI-KEM, UK. 
●  Ingots supplied by Phoenix Coating Resources, USA. 
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Figure 26: Single source EB-PVD coater. 

 

4.2. Coating characterisation 
 

4.2.1. Coating crystallography 

 

XRD analysis was carried out on the as deposited TBCs and on powdered coatings 

removed from the holders in order to determine the phase composition and the 

crystallographic orientation of the EB-PVD TBCs. The diffractometer used was a 

Siemens D5000 with a CuKα radiation. The powders were analysed using a glass slide 

and clear double-sided tape. Broad spectra were recorded between 20° and 90° with a 
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step size of 0.04° and a time per step of one second. Finer scans with a step size of 

0.002° and a time per step of two seconds were used to calculate the lattice parameters. 

As it can be seen from the diffraction patterns in Figure 27, the powdered coatings have 

all the characteristic peaks of the metastable t’ phase (only the graphs for the coatings 

with 2 mol% of dopant are represented for clarity). From this study, it can be stated that 

for all the compositions, only the t’ phase was present in the coating after deposition. 

 

The graphs in Figure 28 compare the XRD patterns of two standard 7YSZ coatings and 

a powdered one. It highlights the characteristic textured microstructure of EB-PVD 

TBCs. All the EB-PVD coatings studied had a preferential (200) or (311) orientation. 

Whether the coating was mostly (200) or (311) orientated depended on the position of 

the substrate on the holder and was caused by the shadowing by the wing nuts used to 

assemble the holder. The same characteristic was found for all the coatings. 

 
 

 

Figure 27: XRD graphs of 7YSZ and YSZ:RE2% powders. 
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Figure 28: Comparison of the XRD pattern of 7YSZ powder and 7YSZ coatings. 

 

The (002) and (200) diffraction peaks of the XRD patterns of the powders shows that 

ternary additions of rare earth oxides affects the crystallography of the coating. Indeed, 

it can be seen from Figure 29 that the (200) and (002) peaks move towards lower and 

higher 2θ values respectively with increasing concentrations of dopant. The same 

behaviour is observed for the (311) and (113) peaks. 

 

 

Figure 29: XRD pattern of the (002) and (200) reflections. 
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This clearly reflects some changes in the lattice parameters due to rare earth oxide 

additions. In a tetragonal structure the (200) and (002) plains are distinguishable, hence 

the two peaks on the XRD pattern. However, in a more symmetrical lattice like the 

cubic one, these two plains are identical and only the peak corresponding to the (200) 

reflections appear on the XRD graph. Consequently, it can be said that the coating 

becomes more cubic as the concentration of dopant is increased, highlighting the 

“stabiliser” effect of gadolinia, dysprosia and europia on zirconia. This result was 

confirmed by the calculation of the lattice parameters. The lattice parameters for each 

composition were calculated using the equation of the d spacing for a tetragonal cell: 
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Equation 11 

 
, where d is the distance between the atomic planes in a crystal, (hkl) the Miller indices, 

c and a the lattice parameters. The c and a values in Table 5 were calculated from the 

(111) and (200) reflections. 

 

Table 5: Lattice parameters of 7YSZ and YSZ:RE samples. 

Composition a (nm) c (nm) c/a 

7YSZ 5.100 5.163 1.012 
YSZ:Dy0.3% 5.105 5.16 1.011 
YSZ:Dy1% 5.112 5.165 1.01 
YSZ:Dy2% 5.117 5.151 1.007 
YSZ:Eu2% 5.114 5.166 1.01 
YSZ:Eu4% 5.119 5.169 1.01 
YSZ:Gd2% 5.119 5.145 1.005 
YSZ:Gd4% 5.130 5.131 1 

 

The tetragonality of the coating is characterised by the c/a ratio and this ratio is equal to 

one for a cubic cell. The results in Table 5 show that the tetragonality decreases due to 
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dopant additions which confirms that a more “cubic-like” microstructure is obtained. 

The influence of stabilisers on the tetragonal zirconia cell is illustrated in Figure 30. 

 

 

Figure 30: Zirconia cell distortions caused by dopant additions. 

 
It is worth noting that the various dopants do not produce the same degree of 

“stabilisation”. If the compositions with 2 mol% dopant are compared the following 

trend for stability is observed: Eu2O3<Dy2O3<Gd2O3. A concentration of 4 mol% of 

gadolinia seems to completely stabilise the cubic phase. On the other hand an increase 

from 2 to 4 mol% of europia does not appear to affect the c/a ratio. 

 

4.2.2. Coating microstructure 

 

4.2.2.1. Sample preparation for SEM analysis 

 

The samples were cut in half for cross section analysis using a diamond wheel٭ rotating 

at 1200 rpm with a feeding rate of 1 mm/min. One half was ground manually with a 220 

grit SiC paper prior to mounting, in order to flatten the irregularities caused by the 

                                                 
 .High concentration diamond wheel supplied by Metprep, UK ٭
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cutting. The samples were mounted in black phenolic resin¥ in a Buehler Simplemet 

2000 mounting press. For some specimens, the 200 bar pressure applied during 

mounting, caused cracking of the alumina substrate. Nevertheless, this type of mounting 

was preferred to the epoxy cold mounting because the phenolic resin is harder and 

facilitates the polishing of hard materials like alumina. Moreover, contrary to the epoxy, 

the phenolic resin is conductive and reduces the charging during the SEM examination 

of non conductive samples like zirconia. The samples were polished down to a surface 

finish of 3 µm with a final stage using colloidal silica (0.5 µm). Microscopic analysis 

was carried out with a Philips XL30 Environmental-SEM (E-SEM) or with a Philips 

XL30 SFEG, coupled with an Energy Dispersive X-ray (EDX) for compositional 

analysis. Alumina and zirconia are non-conductive therefore the samples were coated 

with carbon or gold/palladium when using the SFEG. 

 

4.2.2.2. SEM analysis 

 

It can be seen from the SEM micrographs of the top surface and the cross-section 

presented in Figure 31 and Figure 32 that all the TBCs have the characteristic 

columnar microstructure of EB-PVD coatings. However, even though all the coatings 

were deposited on the same alumina substrates, under the same conditions and for the 

same length of time, there were important variations in the column diameters and the 

coating thicknesses between the various compositions, two extremes being 

YSZ:Dy0.3% and YSZ:Gd4%. 

 

                                                 
¥ Conducto-Mount, phenolic resin supplied by Metprep, UK. 
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Standard 7YSZ YSZ + 0.3 mol% Dy2O3 

  
YSZ + 2 mol% Dy2O3 YSZ + 1 mol% Dy2O3 

  
YSZ + 2 mol% Gd2O3 YSZ + 4 mol% Gd2O3 

  
YSZ + 2 mol% Eu2O3 YSZ + 4 mol% Eu2O3 

  
 

Figure 31: Top view micrograph of the TBCs. 
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Standard 7YSZ YSZ + 0.3 mol% Dy2O3 

  
YSZ + 2 mol% Dy2O3 YSZ + 1 mol% Dy2O3 

  
YSZ + 2 mol% Gd2O3 YSZ + 4 mol% Gd2O3 

  
YSZ + 2 mol% Eu2O3 YSZ + 4 mol% Eu2O3 

  
 

Figure 32: Cross-section micrographs of the TBCs. 
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YSZ:Dy0.3% is a thick coating with very coarse columns, whereas, YSZ:Gd4% is about 

half as thick with very fine columns closely entangled. In the 7YSZ and the 

YSZ:Dy0.3% coating there is frequent branching and the columns grow in a cone-like 

manner with a large aspect ratio from foot to top. As the percentage of dopant is 

increased there is less branching, the columns are finer and more regular. They are 

closely spaced and grow very parallel to each other. 

 

The column tips of the 7YSZ and YSZ:Dy0.3% TBCs do not have any particular shape, 

they look very sharp and angular and for YSZ:Dy0.3% it is very difficult to distinguish 

individual columns. As the concentration of dysprosia is increased from 0.3 to 1 and 2 

mol%, the morphology of the coatings becomes more regular and the tips have a more 

geometrical shape. The coatings with 2 mol% of dopants seem to have a more open 

microstructure with a clear intercolumnar porosity. The column tips also look more 

facetted, especially for the YSZ:Gd2% TBC. The YSZ:Gd4% coating clearly has two 

different types of columns with almost perfect pyramidal tips or with a “roof-top” 

shape, whereas, the composition with 4 mol% of europia has a very regular morphology 

with mostly “roof-top” column tips. 

 

The typical grain size, or the column diameter, at the top surface of the coating was 

determined using the lineal intercept technique [169]. Two perpendicular lines were 

drawn in an area where the grain size was to be evaluated and the number of grain 

boundaries crossed by one line (or intercept) was counted. The grain size for each 

direction is given by: 
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MN

C
D 56.1=  

Equation 12 

 
, where C is the total length of the test line, N the number of intercepts and M the 

magnification of the micrograph. The measurements were repeated four times on two 

different samples. 

 

For an EB-PVD TBC, the diameter of the columns increases towards the top the coating 

due to the competitive growth of the grains, therefore, the ratio between the column 

diameter and the coating thickness (D/t) is a more appropriate measure to compare the 

various compositions. The column diameter, the coating thickness and the D/t ratio for 

each coating are reported in Table 6. 

 

Table 6: Thickness (t), column diameter (D) and D/t ratio of the TBCs. 

Composition 
Coating 

thickness (µm) 

Column 

diameter (µm) 

D/t 

7YSZ 80-100 12.8-13.0 0.128-0.163 
YSZ:Dy0.3% 140-150 18.4-18.4 0.123-0.131 
YSZ:Dy1% 100-120 10-11.1 0.083-0.111 
YSZ:Dy2% 110-140 10.8-11.7 0.077-0.106 
YSZ:Eu2% 115-125 10.5-12.7 0.085-0.11 
YSZ:Eu4% 85-88 5.7-6.4 0.065-0.094 
YSZ:Gd2% 110-140 8.5-8.6 0.061-0.078 
YSZ:Gd4% 80-95 4.3-7.5 0.045-0.094 

 

It can be seen from Table 6 that, due to rare earth oxide additions, the coating thickness 

increases by up to 90% and the columns can be three times thinner compared to the 

standard 7YSZ. Moreover, the graph in Figure 33, presenting the D/t ratio as a function 

of the total concentration of stabiliser (yttria plus rare earth oxide), shows that ternary 
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additions of dopants tend to produce coatings with finer columns and that the column 

diameter seems to decrease with increasing dopant concentration. 
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Figure 33: Ratio between the column diameter and the coating thickness (D/t) as a function of the 

total stabiliser concentration. 

 

4.3. Discussion 
 

The values of the c/a ratio calculated from the XRD patterns are compared with 

predictions from equations proposed by Miller [10], Brandon [10] and Kim [170] for the 

ZrO2/Y2O3 system in Figure 34. For the YSZ:RE compositions the c/a ratio is plotted 

as a function of the total concentration in stabilisers, that is to say Y2O3 plus RE2O3. For 

the 7YSZ and the YSZ:Dy compositions there is a very good agreement between the 

values obtained and those predicted using these equations. However, the YSZ:Gd and 

YSZ:Eu compositions show large discrepancies from those predicted. Those differences 

are probably due to the fact that these equations were established for yttria additions and 

therefore do not take into account the variations in the ionic radius between yttria and 

the rare earth oxides. Indeed, the ionic radii are 0.1019 nm for Y3+, 0.1027 nm for Dy3+, 



Temperature sensitivity of YSZ phosphors 

 

90 

0.1053 nm for Gd3+ and 0.1066 nm for Eu3+ [171] leading to differences between Y3+ 

and rare earth ions of 0.8%, 3.3% and 4.6% respectively. However, Yoshimura [172] 

and Sheu [173] have shown that, even though the lattice parameters are dependent on 

the ionic radii of the dopants, the tetragonality of the unit cell is almost independent of 

the R2O3 dopant (for R=Nd, Sm, Y, Er, Yb). As can be seen in Figure 34, the c/a ratio 

of zirconia stabilised with gadolinia is very similar to that of YSZ. These data were 

obtained for a TBC completely stabilised with Gd2O3, i.e. with a complete substitution 

of yttria by gadolinia, thereby a different behaviour might be expected than when 

gadolinia is used as a ternary dopant. 
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Figure 34: Variation of the c/a ratio with Y2O3 or Y2O3 + RE2O3 or Gd2O3 content. 

 
This study shows that ternary additions of gadolinia further decrease the tetragonality of 

the t’ phase compared to the YSZ composition with the same concentration of dopant. 

This suggests that the zirconium ions are not randomly and isotropically substituted by 

gadolinium in the tetragonal lattice. Such behaviour is not observed when YSZ is co-

doped with dysprosia. Since the size of Dy3+ is very close to that of Y3+ it can be 
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assumed that the decrease in the c/a ratio is related to the oversize of Gd3+ ions. The 

misfit between Zr4+, Y3+ and Gd3+ could lead to the substitution of Zr4+ by Gd3+ at 

preferential sites in the zirconia cell. 

 

The author is not aware of any work published on the effect of ternary additions of rare 

earth oxides on the lattice parameters of YSZ, however, these results can be related the 

work done by Rebollo et al. [13] on the phase stability of Y+Gd co-doped zirconia. 

Indeed, the improved phase stability of the t’ phase due to small additions of gadolinia 

can be explained by the fact that such additions further decrease the tetragonality of t’ 

leading to a more “cubic-like” microstructure which would be less susceptible to 

partition and form the monoclinic phase. They also reported that they observed the 

formation of the monoclinic phase after they had heat treated the zirconia powder, 

doped with 4 mol% of yttria and 4 mol% of gadolinia, for 24 hours at 1350°C (the 

system had been previously heat treated for three 24 hour cycles at 1200, 1250 and 

1300°C). In the present study, coatings with a similar composition were fully stabilised 

and no monoclinic phase formation was detected after aging 200 hours at 1500°C, 

followed by 200°C for 200 hours (A low temperature aging was performed in order to 

allow any tetragonal phase to fully transform into the monoclinic phase [56;174]). 

 

Because the atomic radius of Eu3+ is bigger than that of Gd3+, it was expected that the 

tetragonality of the YSZ:Eu powder would be further reduced. However this is not the 

case and the c/a ratio of the YSZ:Eu samples are even higher than the predicted one for 

zirconia with an equivalent concentration in yttria (Figure 34). More surprisingly, no 

decrease in the tetragonality is observed when the europia content is increased from 2 to 
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4 mol%. As expected, the lattice parameter a increases due to europia additions, 

however, c is also found to be higher, compared to the 7YSZ sample, leading to only a 

small or no reduction in the c/a ratio (Table 5). 

 

The XRD graphs of the YSZ:Eu4% powders in Figure 29 show that the (002) and (200) 

diffraction peaks are shifted towards higher and lower 2θ values respectively. 

According to Equation 11 this should reflect a decrease in the lattice parameter c and 

an increase in a. Moreover, it can be observed that, contrary to the other compositions, 

the (002) peak has a higher intensity than the (200) peak for the YSZ:Eu4% powder. 

The reason why these changes appeared only when YSZ is doped with europia remains 

unknown. There is clearly a concentration effect, since the intensity of the (002) peak of 

the YSZ:Eu2% sample is unusually high, but it is still lower than the (200) one. It is 

believed that due to its large ionic radius (4.8% larger than Y3+), Eu3+ is abnormally 

incorporated into the zirconia lattice. A possible explanation is the partial reduction of 

Eu3+ to Eu2+ during deposition. Several cases of valence change from RE3+ to RE2+ in 

various compounds have been reported when the samples were prepared at high 

temperature. The explanation given is that, due to the substitution by RE3+, defects are 

created in order to preserve the charge balance hence favouring the transfer of electrons 

from the defect to the RE3+ ions. In this particular case Zr4+ is substituted by Eu3+ 

creating oxygen vacancies [175;176]. 

 

The XRD and SEM results show that ternary additions of rare earth oxides not only 

decrease the tetragonality of the coating but also produce TBCs with a finer 

microstructure. According to the Movchan diagram Figure 10 (Page 18), finer columns 
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could be obtained by decreasing the ratio between the deposition temperature and the 

melting point of the coating material (T/Tm). Since the deposition temperature was the 

same for all the depositions the refining of the columns could be caused by an increase 

in the melting point of the ingot material due to dopant additions. 

 

Rouanet [177] reported an increase in the melting temperature of zirconia with increase 

in the concentration of yttria or dysprosia (Figure 35). Consequently it is reasonable to 

assume that ternary additions of dysprosia will also result in an increase in the melting 

point of YSZ and could account for the observed reduction in the column diameter. As 

it can be seen in Figure 35, gadolinia additions tend to reduce the melting temperature 

of zirconia, however, the column diameter is further decreased in the YSZ:Gd2% 

coating compared to the YSZ:Dy2% TBC. An even finer microstructure is observed 

when the gadolinia concentration is increased from 2 to 4 mol%. 

 

 

Figure 35: Melting temperature of zirconia as a function of secondary additions of yttria and rare 

earth oxides [177]. 
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Rouanet noticed that the increase in the melting point of zirconia was less pronounced 

for trivalent rare earth ions with a large ionic radius. Since the ionic radius of Eu3+ is 

larger than the one of Gd3+, it was expected that europia additions would not result in an 

increase in the melting point. Nevertheless the YSZ:Eu samples also have a finer 

microstructure compared to the YSZ coating therefore it is rather unlikely that the 

reduction in the column diameter observed for YSZ:Dy samples is caused by an 

increase in the melting temperature of the ingot material due to ternary additions of rare 

earth oxides. 

 

Another explanation refers to the variations in tetragonality between the various 

compositions. Depending on the ionic arrangements the surface energy of the condensed 

coating will vary and therefore the crystal growth conditions will be different for the 

cubic and the t’ phase [178]. Figure 36 presents the ratio between the grain size and the 

coating thickness as a function of the tetragonality. This shows a refinement of the 

microstructure of the TBC with decrease in c/a ratio. 

 

It is believed that because the tetragonal cell is distorted compared to the cubic one, the 

columns can have slightly different growth directions. Only the one with a favourable 

orientation will grow preferentially and reach the top of the coating hence the coarse 

microstructure observed for 7YSZ and YSZ:Dy0.3%. On the contrary, the more 

symmetrical cubic cell will produce a very “ordered” TBC with finer and more parallel 

columns. Indeed, since the grains are more likely to have the same orientation, there 

will be less competitive growth, thus, more grains will be “allowed” to grow at the same 

speed and parallel to each other. 
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Figure 36: Ratio between the grain size and the coating thickness as a function of the tetragonality 

for the various compositions. 

 

Figure 37 is an SEM micrograph of a ZrO2-4.8mol% Y2O3 TBC. According to the 

phase diagram in Figure 5b such a composition has a more cubic microstructure 

compared to the standard 7YSZ. It can be seen that this TBC also has a finer and more 

“ordered” columnar microstructure. Consequently the refinement of the TBC 

microstructure seems to be predominantly governed by the tetragonality and therefore 

should be independent of the type of stabiliser. 

 

 

Figure 37: SEM micrograph of a ZrO2-4.8mol% Y2O3 TBC (Fractured sample). 
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As mentioned at the beginning of this chapter, ternary additions of rare earth oxides not 

only decrease the thermal conductivity [31], but could also improve the phase stability 

of the TBC [13]. However, it has been reported that the impact and erosion resistance of 

a TBC is also related to the zirconia lattice parameters. It has been predicted that the 

erosion and impact resistance should decrease with decreasing c/a ratio [179]. 

Therefore, since rare earth additions reduce the tetragonality of the TBC, a decrease in 

the erosion and impact resistance could be expected for doped coatings. This is 

consistent with the results published by the author on the erosion of YSZ:Gd2% EB-

PVD TBCs [82]. It was found that such coatings have a lower erosion resistance at 

room temperature compared to the standard 7YSZ, however, these results are balanced 

by an observed reduction of the erosion rate at high temperature (825°C). It is believed 

that these changes in mechanical properties with decreasing c/a ratio are also related to 

changes in the coating microstructure, rather than the c/a ratio and can be associated 

with the tetragonality through the influence the c/a ratio has on the growth 

microstructure. 

 

4.4. Phosphorescence 

 

4.4.1. Experimental set-up for phosphorescence 
measurements 

 

All the phosphorescence measurements were done at Southside Thermal Sciences 

Limited (STS) at Imperial College, London. The calibration curves of the EB-PVD 

coatings, that is to say the decay time of the phosphorescence as a function of 

temperature, were determined using the experimental set-up shown in Figure 38. 
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Figure 38: Experimental set-up for lifetime decay measurements. The phosphorescence spectrum is 

observed by replacing the photomultiplier by a linear CCD array. 

 

A pulsed YAG:Nd laser with an output energy of about 20 mJ per pulse was used to 

excite the phosphorescent coating. The laser was operated at 266 nm or 355 nm 

depending on the phosphor sample at a pulse rate of 16 Hz. A light leakage with a 

wavelength of 532 nm coming from the harmonic crystal assembly of the laser was 

prevented from hitting the sample using an external beam dump. The beam was steered 

through the furnace window and the resulting luminescence was focussed on the 
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entrance slit of the spectrometer by a 50 mm lens. The lifetime decay of the 

phosphorescent signal was measured using a photomultiplier placed at the exit slit of the 

spectrometer.  The recording of the phosphorescence was triggered by the laser Q-

switch. The exponential decay was fitted to the average of 15 recorded pulses using 

commercial software and was recorded as a function of temperature. The recorded 

phosphorescence decay was evaluated using a single exponential Levenburg/Marquart 

optimisation (curve fitting algorithm). The temperature was determined with a 

thermocouple placed at the back of the sample. For each temperature five lifetime decay 

measurements were taken and averaged. In order to record the phosphorescence 

spectrum, the photomultiplier is replaced by a CCD linear array (Alton LS2000). 

 

4.4.2. Lifetime decay measurements of YSZ phosphors 

 

Only the results for the coatings doped with 2 mol% of rare earth oxide are presented in 

this chapter in order to compare the temperature capabilities of various dopants. 

 

4.4.2.1. Dysprosia doped YSZ phosphor 

 

The author is not aware of any results published in the open literature concerning 

lifetime decay measurements of YSZ:Dy phosphors. The phosphorescence spectrum 

was recorded between 470 and 610 nm when excited at 355 nm (Figure 39). All the 

emission peaks correspond to f-f transitions and the multiple structure of the spectrum is 

attributed to the splitting of the dysprosium 4f shell due to the t’ YSZ crystal field. The 

emission at around 585 nm which corresponds to 4
F9/2→

6
H15/2 transitions, is the most 

intense and was used for the lifetime decay measurements. 
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Figure 39: Luminescence spectrum of YSZ:Dy2% phosphor excited at 355 nm and energy levels of 

Dy3+. 

 

After excitation at 355 nm, the electrons decay from the close spaced high energy levels 

down to the 4F9/2 level via non-radiative processes. Since the average phonon energy for 

a YSZ crystal is about 520 cm-1, 15 phonons are required to bridge the 7300 cm-1 energy 

gap between the 4
F9/2 and 6

F1/2 levels and therefore the probability of multiphonon 

relaxation is very low, especially at room temperature (Equation 9). Consequently the 

electrons return to the ground state by emitting radiation at 585 or 485 nm. 

 

As shown in Figure 40, as the temperature increases the lifetime of the 

phosphorescence (τ) decreases. τ was determined by fitting these curves with a single 

exponential decay for the different temperatures (Equation 5) in order to obtain the 

calibration curve represented in Figure 41. 
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Figure 40: Phosphorescence decay curves at 500°C and 600°C of the YSZ:Dy2% EB-PVD TBC. 

 

The temperature sensitivity range of YSZ:Dy2% phosphor was between around 500 and 

950°C. The calibration curve was fitted by combining Equation 8 and Equation 9 for 

an energy gap of 7300 cm-1 and phonon energy of 385 cm-1 which means that 18 

phonons are involved in the process. 
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Figure 41: Calibration curve of the YSZ:Dy2% EB-PVD TBC. 
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The maximum temperature capability was found to be 950°C, for a lifetime of around 

0.3 µs. The detection limit of the system is governed by the response time of the 

photomultiplier which was estimated to be between 0.3 and 0.4 µs [116], therefore, by 

using a photomultiplier with a faster response time temperatures in excess of 1000°C 

should be measurable with a YSZ:Dy phosphor, which is typically the temperatures 

observed at the interface between the thermally grown oxide (TGO) and the ceramic top 

coat, consequently YSZ:Dy could be used as an inner layer to determine the temperature 

at this interface in an operating gas turbine. 

 

4.4.2.2. Europia doped YSZ phosphor 

 

Feist et al. [111;114;120] studied the YSZ:Eu phosphor powder and reported 

temperature capabilities up to 800˚C, however, most recently Gentleman et al. 

[121;122] reported temperature measurements up to 1100˚C using the same phosphor, 

but in the latter study as part of a TBC system. 

 

In the current work, the YSZ:Eu phosphor was exited using a 266 nm radiation and the 

luminescent transitions which could be observed between 570 and 670 nm are 

represented in the energy level diagram in Figure 42. The strongest lines observed are 

generally 5
D0→

7
F1,2 since the 5

D1,2,3 levels can be depopulated by non-radiative 

multiphonon processes because of the small energy gap within the 5
D0 level. The 

5
D0→

7
F1 emission line is a magnetic dipole allowed transition and is almost 

independent of the host material. The strongest peak at around 606 nm corresponds to 

the 5
D0→

7
F2 electric dipole transition. It is said to be “hypersensitive” and is more 

affected by the environment than normal f→f transitions. It is this particular sensitivity 
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to the phosphor host material that is used for the monoclinic phase detection in YSZ:Eu 

coatings [164]. 

 

 

Figure 42: Luminescence spectrum of YSZ:Eu excited at 266 nm and energy levels of Eu3+ [116]. 

 

The lifetime decay (LTD) was calculated from the emission line with the highest 

intensity at around 606 nm, which corresponds to energy transitions from 5
D0→

7
F2. As 

can be seen in Figure 43, the YSZ:Eu phosphor can be used to measure temperatures 

from 500°C up to around 800˚C. The detection limit of 0.3 µs of the system at STS Ltd 

was not reached because the YSZ:Eu phosphorescence was quenched at 800°C and 

consequently  the luminescence could not be recorded and the decay time calculated 

above this temperature. 
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Figure 43: Calibration curve of the YSZ:Eu2% EB-PVD TBC. 

 

Contrary to YSZ:Dy phosphor, the lifetime of the YSZ:Eu luminescence does not 

decrease exponentially with the temperature, there is a curvature in the slope at around 

600°C. This was found to be due to a notable decrease in the intensity of the 

luminescence which made the phosphorescence signal very “noisy” and difficult to fit. 

Consequently the decay time fitting for an energy gap of 12300 cm-1 gives a phonon 

energy ranging from 437 to 505 cm-1 and therefore 24-28 phonons are involved in the 

non-radiative process. If the fitted curves are extrapolated for a detection limit of 0.1 µs, 

then YSZ:Eu would show maximum temperature capability between 800°C and 950°C. 

 

The temperatures that have to be measured for aero-gas turbine service range from 

900˚C to 1500˚C, therefore, YSZ:Eu cannot be used for this application, but it is still a 

potential candidate for use in industrial gas turbine applications when operating at lower 

temperatures. 
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4.4.2.3. Gadolinia doped YSZ phosphor 

 

Gadolinia was studied as a potential phosphor because it was shown from previous 

studies carried out at Cranfield University that ternary additions of gadolinia can also 

significantly reduce the thermal conductivity of the TBC and because it has the biggest 

energy gap of all the trivalent rare earth ions (Figure 17). The YSZ:Gd2% EB-PVD 

coatings were excited at 274 nm using a dye laser and the luminescence line at 315 nm 

was observed to determine the lifetime decay as a function of temperature. This 

emission line comes from the transition between the 6
P7/2 excited state to the 8

S ground 

state. The energy levels of Gd3+ are located at exceptionally high energies owing to the 

extreme stability of its half-filled f-shell (f  
7). The results are presented in Figure 44. 
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Figure 44: Calibration curve of the YSZ:Gd2% EB-PVD TBC and energy levels of Gd3+. 
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Contrary to YSZ:Eu and YSZ:Dy coatings, where the lifetime decay remains relatively 

constant up to around 400˚C, rapid quenching is observed as soon as the temperature 

starts to increase. The YSZ:Gd calibration could not be fitted with Equation 9 

suggesting that different quenching mechanisms are involved in the rapid decrease of 

the YSZ:Gd phosphorescence lifetime. Lifetime decays at temperatures up to just in 

excess of 200˚C were measured, meaning that the temperature capabilities of YSZ:Gd 

phosphor are rather poor, although it could be used as a low temperature thermographic 

phosphor. 

 

4.5. Discussion 
 

Gentleman et al. [123] from the University of California, Santa Barbara (UCSB) 

reported temperature measurements up to 1100˚C with a YSZ:Eu phosphor, whereas in 

this study the maximum temperature capability of such a phosphor was found to be 

around 800°C. Both calibration curves are presented in Figure 45. 

 

With their laboratory set-up, they can measure lifetimes as short as 20 ns compared to 

300-400 ns for the set-up used for these experiments. However, as can be seen in 

Figure 45, at the highest temperature (800°C) the phosphorescence lifetime is still 

around 1.5 µs, well above the measurement limitations of either system. One of the 

main differences between the two systems is the fact that Gentleman et al. use a 

sapphire fibre to collect the phosphorescent signal very close to the sample [121]. While 

in the set-up used at STS, the spectrometer was situated at around 30 cm from the 

sample and at above 800˚C the intensity of the phosphorescent signal was so low that 
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the decay time could not be evaluated. These thermographic phosphors are being 

developed as coatings for high pressure turbine blades, for in-situ temperature 

measurements, therefore, the use of a fibre array that almost touches the rotating turbine 

blade is not a viable option. Although, experimentally, the YSZ:Eu phosphor could  

have a sensitivity up to 1100˚C, the low intensity of the returned signal prevents remote 

temperature measurement much above 800˚C. 
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Figure 45: Comparison of the YSZ:Eu calibration curves measured at STS and UCSB (UCSB data 

redrawn from [180]). 

 

It is believed that the extinction of the YSZ:Eu phosphorescence is caused by the 

depopulation of the 5D0 emission level via charge transfer state at high temperature. The 

mechanisms involved in the emptying of the 5
D energy levels by charge transfer state 

has been described in Chapter 2.3.1. Because Eu3+ has a 4f 

6 configuration (electron 

shell half-filled less one) an electron from the YSZ valence band can be favourably 

promoted to the 4f shell. Consequently the charge transfer state of YSZ:Eu should have 

a low energy (lower than Dy3+ which has a 4f 
9 configuration) providing a non-radiative 

path for electron relaxation at high temperatures. 
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However, if the quenching of the phosphorescence is not taken into account, allowing 

the curves in Figure 45 to be extrapolated to a detection limit of 0.02 µs, it would 

appear that the calibration curve of Gentleman et al. would be able to measure higher 

temperatures (1100°C compared to 875-1000°C for the sample measured at STS). A 

YSZ:Dy2% EB-PVD sample deposited at Cranfield University was tested on the 

experimental set-up at UCSB in order to investigate the differences obtained between 

the UCSB system and the STS system. The calibrations curves of YSZ:Eu and YSZ:Dy 

phosphors are represented in Figure 46. 
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Figure 46: Comparison of the YSZ:Eu and YSZ:Dy calibration curves measured at STS and UCSB. 

 

Firstly, these results show that higher temperature capabilities were also obtained for 

YSZ:Dy using the UCSB set-up. Secondly, it confirms that YSZ:Dy has higher 

temperature sensitivity, when compared to YSZ:Eu. It is believed that the way the 

phosphorescence signal is collected is not the only source of the discrepancies. The 
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differences could also come from the luminescence decay fitting routine used to 

determine the lifetime at the various temperatures. 

 

In the STS set-up the luminescence decay was automatically fitted with a single 

exponential decay function for every phosphor tested, whereas, Gentleman et al. used a 

second order exponential decay function to model the lifetime of the YSZ:Eu 

luminescence [122]: 
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Equation 13 

 
and from the longer lifetime (τ2) the calibration curves were plotted. 

 

The decay curves presented in Figure 47 indicates that the phosphorescence decay of 

YSZ:Eu is not modelled very accurately by a simple exponential decay. The second 

order exponential decay (Equation 13) better fits the data. 
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Figure 47: YSZ:Eu phosphorescence decay fitted with a first and second order exponential decay 

function. 
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STS has tested a YSZ:Eu10% powder, such a high dopant concentration gave a very 

intense phosphorescence signal and the extinction of the luminescence was not observed 

at 800°C. The decay curves were fitted with Equation 13 using a commercial software♦ 

and τ1 and τ2 are plotted in Figure 48. 
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Figure 48: Calibration curves of YSZ:Eu phosphor when fitted with a second order exponential 

decay function (τ1 and τ2). 

 

The temperature sensitivity of YSZ:Eu is increased up to 1075°C using the longer decay 

(τ2), showing the importance of choosing the correct fitting routine in the determination 

of the lifetime. However, the UCSB calibration curve still permits prediction to higher 

temperatures. The fact that they use a fibre optic almost in contact with the sample 

makes their measurements less susceptible to background radiations, the signal-to-noise 

ratio is improved, the phosphorescence decay will be “clearer” and consequently the 

fitting more accurate. Their calibration curves represent the “ideal” conditions, 

however, such a set-up cannot be used for in-situ measurements in service on rotating 

components. In an open flame environment the measurements will be influenced by 

                                                 
♦ Origin 7.0, OriginLabTM. 
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background radiations. Consequently it is believed that the calibration curves obtained 

with the STS set-up are more conservative and more representative of the phosphor 

temperature dependence under service conditions. 

 

The measurements carried out on equipment at STS and UCSB showed that YSZ:Dy has 

higher temperature measurement capabilities, compared to YSZ:Eu. Further, the origin 

of the differences between YSZ:Gd, YSZ:Eu and YSZ:Dy are not fully understood, 

indeed  PNR(n,T=0) in Equation 9 is highly dependent on the order of the process (n) 

therefore, the larger the energy gap the more important the radiative decay compared to 

the non-radiative one. Consequently, it was to be expected that doping with rare earth 

oxides with large energy gaps would give phosphors with high temperature capabilities, 

however, lifetime decay measurements have shown the exact opposite trend:  

 
YSZ:Gd<YSZ:Eu<YSZ:Dy. 

 

The lifetime of the phosphorescence of YSZ:Gd2% started to decrease at around 80°C 

and above 200°C the intensity of the luminescence was so low that the lifetime could 

not be measured. Such behaviour was not to be expected, since the energy gap between 

the 6P7/2 and the 8S level is about 32500 cm-1 and would require 65 phonons each of 500 

cm-1 to be bridged. The phosphorescence of YSZ:Dy and YSZ:Eu is not quenched 

significantly below 400°C and the energy gaps of these phosphors are much smaller 

than the one of YSZ:Gd, therefore, it is not believed that the 6
P7/2 is depopulated by 

multiphonon relaxation. Robbins et al. [181] reported similar performances on a 

YAG:Gd phosphor. They noticed that the intensity of the cathodoluminescence 
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(luminescence occurring after electron bombardment) decreases rapidly above -150°C. 

The quenching was attributed to a decrease in the excitation efficiency of the 6P7/2 state. 

 

If it is assumed that, for YSZ, the maximum optical frequency of phonons is about 500 

cm-1, then, 65, 25 and 15 phonons are required to depopulate the emitting energy levels 

of YSZ:Gd, YSZ:Eu and YSZ:Dy respectively by non-radiative decay. At room 

temperature this process is too slow to contribute to the lifetime, and for this reason τ 

remains relatively constant between room temperature and about 400°C for YSZ:Eu and 

YSZ:Dy. As the temperature increases, more phonons are available and the non-

radiative contribution increases. Figure 49 is a plot of PNR(n.T) without taking into 

account the constant PNR(n,T=0) for a phonon energy of 500 cm-1 using three different 

decay modes. The temperature dependences are quite distinct for the various modes. 
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 for three different decay modes. 

 

Obviously at the same temperature a 65 phonon mode is a lot less probable than a 15 

phonon mode and this will be reflected in the PNR(n,T=0) value, however, it seems that 

low phonon modes are less dependent on temperature. 
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The quenching parts of the calibration curves of Yttrium Aluminium Garnet (YAG) 

phosphors are represented in Figure 50a and they are normalised in Figure 50b in order 

to compare the temperature dependence of the quenching process for different rare 

earths in a YAG host material. The phosphors are arranged from the slowest to the 

fastest temperature quenching: 

 

YAG:Tb<YAG:Eu<YAG:Dy<YAG:Tm 

 
The results for YAG based phosphors show that faster quenching is observed for larger 

energy gaps and therefore for higher multiphonon relaxation modes, which confirms the 

theoretical behaviour seen in Figure 49. Because for YSZ:Eu a higher phonon mode is 

involved, it was expected that YSZ:Eu would start to quench at higher temperatures 

compared to YSZ:Dy however this was not the case and for both phosphors the 

quenching process started at around 400°C. Since YSZ:Eu quenches faster, it has a 

lower temperature capability compared to YSZ:Dy. It is worth noting that the steeper 

slope of the YSZ:Eu calibration curve would give temperature measurements with a 

better accuracy, but shorter dynamic range. 
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(a)      (b) 

Figure 50: (a) Quenching parts of the calibration curves of various YAG  phosphors, (b) normalised 

[115;138]. 
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Even if they are traditionally called “rare earths” and dysprosium comes from the Greek 

word dysprositos which means “hard to obtain” lanthanides are relatively abundant in 

the earth’s crust. Nevertheless, their prices remain very high compared to that of 

zirconia and yttria and varies a lot from one rare earth to another. Europia is eight times 

more expensive than dysprosia and therefore YSZ:Dy sensor coatings would be cheaper 

to produce, whilst offering an increased dynamic temperature measurement range, albeit 

at a slightly reduced precision. 

 

Table 7: YSZ and rare earth prices in 2005 [182;183]. 

Material Price ($/kg) Material Price ($/kg) 

Ceria 19.2 Praseodymia 36.8 
Dysprosia 120 Samaria 360 

Erbia 155 Scandia 6,000.00 
Europia 990 Terbia 535 

Gadolinia 130 Thulia 2,300.00 
Holmia 440 Ytterbia 340 

Lanthana 23 Yttria 88 
Lutetia 3,500.00 YSZ (3 mol%) 22.1 

Neodymia 28.5 YSZ (8 mol%) 24.1 

 

It has been shown that YSZ:Dy phosphor offers the best potential in terms of price, 

temperature sensitivity and luminescence intensity at high temperatures. Such a system 

could be used to measure temperatures between 500 and at least 1000°C which makes it 

a good candidate to be used as an inner sensing layer in the TBC to monitor the 

temperature at the TGO/ceramic interface. In the following section the YSZ:Dy 

phosphor is further investigated. The influence of dopant concentration, aging and 

multilayering will be discussed. 

 



 

 

 
 
 
 
 
 

5. STUDY OF DYSPROSIA DOPED YSZ 
PHOSPHOR TBCS 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.1. Influence of dopant concentration 
 

As highlighted previously, it is very desirable to maximise the brightness of the 

phosphorescence. The surface of the TBC will get dirty during service and this will 

further reduce the intensity of the phosphorescence that could be detected. The emission 

spectra of as deposited coatings co-doped with 0.3, 1 and 2 mol% of dysprosia for a 

laser excitation of 20 mV♦ are reproduced in Figure 51. As shown in Figure 52 the 

intensity of the emission peak at 585 nm used for the lifetime decay measurements and 

the one at 592 nm (same electronic transition) decreases linearly with increasing 

dysprosia concentration. This is not the case for the emissions coming from the 

4
F9/2→

6
H15/2 transitions (485, 500 nm). As the concentration of dysprosia is increased 

                                                 
♦ The laser power was observed with a power meter and the output was given in mV instead of mJ. 
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from 0.3 to 2 mol% the luminescence intensity of the 585 nm emission line is almost 6 

times lower. 
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Figure 51: Effect of dysprosia concentration on the luminescence intensity of YSZ:Dy TBCs at 
room temperature. 
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Figure 52: Intensity of the emission lines at 485, 500, 585 and 592 nm as a function of dysprosia 

concentration. 

 

The influence of dysprosia concentration on the lifetime is presented in Figure 53. At 

temperatures below 500˚C lower dopant concentrations give longer decay times 

however at higher temperatures, the temperature measurement capabilities are very 

similar for the different concentrations. Lowering the concentration of dysprosia also 
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shifts the onset of thermal quenching to lower temperatures extending slightly the range 

of the temperature sensitivity of the phosphor. 
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Figure 53: Effect of dysprosia concentration on the luminescence lifetime of YSZ:Dy TBCs. 

 

5.2. Influence of aging 
 

During aging the coating undergoes phase transformations from the as deposited 

metastable t’ phase to a mixture of tetragonal and cubic phases and upon cooling the 

tetragonal phase can transform to monoclinic. A YSZ:Dy2% coating was tested in the as 

deposited condition and after a heat treatment of 300 hours at 1500˚C, followed by a 

slow cooling in the furnace to ensure the formation of the monoclinic phase, in order to 

determine whether the transformations in the crystal structure would affect the lifetime 

of the luminescence. The detection and the collection of the luminescence was not 

affected by the heat treatment and the calibration curves for the aged and as deposited 

TBCs are closely similar as shown in Figure 54. 
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Figure 54: Effect of aging on the phosphorescence lifetime of YSZ:Dy2% TBCs. 

 

At low temperatures the lifetime of the phosphorescence from the aged sample is 

somewhat longer than for the as deposited sample and the onset of thermal quenching is 

shifted towards lower temperatures. However it can be seen that, in the temperature 

range of interest, there are very small differences in lifetime decay due to the heat 

treatment. 

 

5.3. Using different emission lines 
 

As presented in Figure 55 YSZ:Dy has several emission lines corresponding to 

different transitions which could be used to build a calibration curve. Lifetime 

measurements were carried out using the emissions at 458 nm, 485 nm and 585 nm. The 

corresponding electronic transitions are represented on the energy level diagram in 

Figure 55. 
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Figure 55: Emission spectrum of YSZ:Dy phosphor at room temperature and energy levels of Dy3+. 

 

The emission peak at 458 nm corresponding to 4
I15/2→

6
H15/2 transitions is not visible in 

the room temperature luminescence spectrum. Indeed, after excitation at low 

temperatures the electrons relax non-radiatively down to the 7
F9/2 energy level, 

therefore, only emissions coming from this state are visible. Because the 7
F9/2 and 4

I15/2 

states are closely spaced (around 930 cm-1) the 4I15/2 energy level is thermally populated 

at elevated temperatures and consequently the relative intensity of the 458 nm emission 

line increases with increasing temperature. Hence at temperatures below 400˚C it was 

not possible to detect the decay of the luminescence at 458 nm and therefore 

phosphorescence lifetime measurements could not be made using this emission line. 

The intensity ratio between the peaks at 485 and 585 nm can be used for temperature 

measurements (intensity ratio technique [110]). 

 

Figure 56 shows the excellent agreement of the values obtained with the three different 

wavelengths. Emissions at 485 nm and 585 nm both come from transitions from the 
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4
F9/2 state however this is not the case for the emission at 458 nm, yet the same 

temperature sensitivity was still obtained. 

0 200 400 600 800 1000
0.1

1

10

100

1000
L
if
e
ti
m
e
 (

µ
s
)

Temperature (oC)

 585 nm

 484 nm

 458 nm

 

Figure 56: Lifetime decay measurements using three different wavelengths. 

 

At around 900°C, the phosphorescence intensities at 458 and 485 nm were very weak 

and obviously the fitting was strongly influenced by the background radiations which 

explains the small variations in lifetime at the high temperature end of the calibration 

curves. 

 

5.4. Multilayer coating 
 

The temperature sensitivity of YSZ:Dy phosphor was shown to be suitable for such a 

phosphor to be used as an inner layer in a TBC. The next step in the development of a 

sensing TBC was to deposit and test a multilayer EB-PVD TBC. 
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A dysprosia concentration of 2 mol% was chosen for the doped layer as it represents the 

worst case scenario in terms of luminescence intensity compared to the other 

concentrations available (0.3 and 1 mol%). This multilayer coating could only be 

deposited using a single source evaporator. Thus for this purpose, a multistage ingot 

was manufactured to allow the various changes in source material composition during 

the deposition. The multistage rod is shown in Figure 57 and was machined according 

to the drawing in Appendix 1. The thicknesses of the different stages of the rod were 

estimated from the evaporation rates of the previous depositions, in order to have a total 

coating thickness of 145 µm with 15, 30, 100 µm layers of 7YSZ, YSZ:Dy2% and 

7YSZ respectively. 

 

 

 

Figure 57: Multistage rod used for the multilayer coating deposition. 

 

There was no problem during the deposition and the ingot melt was stable during the 

whole process. An SEM micrograph of a fractured sample (not polished) is shown in 

Figure 58(a). First of all, the coating microstructure is not affected by the incorporation 
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of the phosphor layer. The growth of the columns is continuous, there is no interruption 

at the interface between the layers and so it is not possible to actually see the doped 

layer as a change in the microstructure. Further, the dysprosia concentration in the 

doped layer was not sufficient to be seen in the backscatter micrograph and the only 

way to determine its position in the coating was by using EDX analysis (Figure 58 (b)). 

A fractured sample was preferred for the EDX analysis to avoid any “spreading” of 

materials that could occur during the polishing in order to determine the precise location 

of the doped layer. The layer thicknesses obtained are very close to the predicted ones 

(30-36 µm for the YSZ:Dy layer) and the position of the doped layer is highly localised, 

there is no gradient in the concentration of dysprosia at the interfaces with the 7YSZ 

layers. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a)                                                                         (b) 

Figure 58: SEM micrograph of the multilayer coating (fractured sample) and EDX analysis. 

  

Concerning the lifetime decay measurements, there was no problem either with the 

phosphor excitation or with the detection of luminescence through the 100 µm undoped 

layer. At low temperatures, the multilayer coating has longer phosphorescence lifetimes. 
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However, at 500°C, the onset of temperature quenching, the lifetimes are very similar 

for the single and the multilayer coatings (Figure 59). 
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Figure 59: Effect of layering on lifetime decay. 

 

5.5. Discussion 
 

These results show that the precision of the temperature measurement using 

phosphorescence will not be affected for dysprosia concentration ranges from 0.3 to 2 

mol%. However, low dysprosia contents are to be preferred as they give higher 

luminescence intensities. A brighter signal is easier to detect (especially when the 

measurement surface gets dirty during service) and, therefore, the lifetime decay fitting 

is more accurate and the temperature reading more precise. It is believed that the 

decrease in phosphorescence intensity, and lifetime, at low temperatures with increase 

in dysprosia concentration is caused by concentration quenching. Indeed, at high dopant 

concentrations there is a greater interaction between activator atoms and this increases 
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the probability of non-radiative energy transfers between dopant atoms. As the 

temperature increases, temperature quenching becomes the dominant mechanism, thus 

above 500°C, the calibration curves for the different compositions are very similar. 

 

Additionally, as shown in the previous chapter, small dysprosia additions do not change 

the morphology of the coating and YSZ:Dy0.3% TBC has almost the same tetragonality 

as the standard 7YSZ coating. Consequently, the mechanical properties such as the 

erosion and the impact resistance should not be significantly affected by very small 

dysprosia additions. 

 

Temperature measurements using the dysprosia phosphor are also insensitive to high 

temperature aging and any associated phase transformations, even though the formation 

of the monoclinic phase will change the crystal field surrounding the activator atoms. A 

similar alteration is expected for large dysprosia additions since, as shown in the 

previous chapter, this would affect the crystallography of the coating by reducing its 

tetragonality; however, these variations in the crystal field do not seem to have a 

noticeable effect on the lifetime of the 4
F9/2→

6
H13/2 electronic transitions. This 

highlights the benefit that aging during service will not change the temperature 

measurement capabilities of the coating. Chambers et al. [180] reported a similar 

behaviour following high temperature aging for YSZ:Eu phosphor. 

 

The lifetime of emission lines at 458, 485 and 585 nm have been all successfully 

monitored for calibration purposes. This gives the possibility of using three different 

wavelengths, offering more flexibility if there is any overlapping with emissions from 
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the burning fuel or from another phosphor layer in the TBC. In this case, another 

wavelength could be used to measure the temperature. These results imply that the three 

transitions have the same quenching mechanisms. The fact that the lifetimes of the 

emissions coming from 4
I15/2→

6
H15/2 and 4

F9/2→
6
H13/2-15/2 transitions have the same 

temperature dependence suggests that the thermal population of higher energy levels at 

high temperature do not account for the decrease in lifetime. Decay as a result of energy 

transfers to other activator ions is also negligible at high temperature, since, for the 

dysprosia concentrations investigated the temperature quenching was identical. 

 

A multilayer EB-PVD TBC comprising a YSZ:Dy2% inner phosphor layer was 

successfully deposited and tested. At high temperatures, its calibration curve was 

identical to a non-layered coating. The differences at low temperature are believed to be 

caused by “saturation effects”. As shown in Figure 60, the lifetime of the 

phosphorescence decreases with increase in laser intensity. Since, in the case of the 

multilayer TBC, the laser has to penetrate through the 100 µm 7YSZ layer before the 

YSZ:Dy phosphor is excited, it loses intensity and hence longer lifetimes are observed. 

 

0 20 40 60 80 100

410

415

420

425

430

435

440

445

L
if
e
ti
m
e
 (

µ
s
)

Laser Intensity (mV)

 

Figure 60: Lifetime against laser intensity at room temperature for YSZ:Dy1% TBC. 
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Studies conducted at STS have shown that, with the same type of multilayer coating, but 

deposited by air plasma spraying (APS), the intensity of the phosphorescence was very 

weak. Consequently, even with only a 50 µm YSZ top layer, the lifetime of the 

phosphorescence could not be measured above 800°C, whereas, with the EB-PVD 

multilayer coating with a top layer twice as thick, lifetime decay measurements were 

performed up to the detection limit of the measurement system, 950°C (Figure 61). 

There was good agreement between the response curves of the layered, doped, APS and 

EB-PVD coatings. 
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Figure 61: Comparison of the calibration curves of APS and EB-PVD TBCs (redrawn from [184]). 

 

This loss in intensity for the APS coating reflects the microstructure. In EB-PVD TBCs, 

the porosity is mainly perpendicular to the surface (intercolumnar porosity) and 

therefore does not scatter the luminescence as much as for the APS TBCs, which have a 

highly scattering microcrack network parallel to the coating surface. Figure 62 shows 

that the EB-PVD TBC has a significantly greater transmittance, for the excitation and 
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emission wavelengths at room temperature, compared to the APS coating. It is worth 

noting that even after aging, when the columns of the EB-PVD coating start to sinter 

together, the same temperature measurements were achieved. 

 

 

Figure 62: Comparison of the transmittance of freestanding EB-PVD and APS TBCs at room 

temperature [127]. 

 

The results obtained from these multilayer coating studies suggest that YSZ:Dy is a 

suitable phosphor to be used as an inner layer in a TBC in order to measure the 

temperature at the interface between the bond coat and the top coat. It is of primary 

importance that ternary additions of dysprosia do not degrade other properties of the 

TBC, such as the thermal conductivity, thermal stability and erosion resistance. As this 

phosphor is to be used as an inner layer, its erosion properties are less crucial. 

Concerning the thermal conductivity, Nicholls et al. [31] have shown that, as a member 

of the lanthanide family, dysprosia should be beneficial by further reducing the thermal 

conductivity of the TBC. However the influence of co-doping YSZ with dysprosia on 

the phase stability of the TBC needs further investigation. 
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5.6. Influence of Dy2O3 additions on the phase 
stability of a YSZ TBC 

 

During heat treatment, the as deposited metastable t’ phase may transform into a 

mixture of tetragonal phase (t) with a low concentration of stabiliser and a cubic phase 

(c) with a high concentration of stabiliser. If the aging is long enough the stabiliser 

content of the t phase will decrease so as to be low enough to transform into monoclinic 

upon cooling. Likewise, the content of yttria in the cubic phase may not be high enough 

to stabilise it at room temperature such that it will transform into the so called t’’ phase, 

with a high concentration of yttria which has a tetragonality close to unity. In the 

following discussion the distinction between the c and t’’ phase will not be explicitly 

made and both will be referred as cubic.  The t→m phase transformation is associated 

with a volume increase of between 4-6% and can lead to severe cracking in the TBC 

and therefore must be avoided. 

 

Wellman et al. [53] reported extensive monoclinic phase formation in EB-PVD coatings 

deposited on low purity polycrystal alumina substrate aged for only 24 hours at 1500°C, 

whereas, Lughi et al. [11] showed that EB-PVD TBCs on high purity alumina sapphire 

remain principally t’ after 350 hours at 1400°C. Similarly, in their study Azzopardi et al. 

[71] did not report any monoclinic phase formation for an EB-PVD TBCs heat treated 

300 hours at 1500°C. It is believed that the differences in phase stability observed are 

mainly due to the purity of the substrates used for annealing experiments at high 

temperature due to the fact that contaminants contained in alumina substrates can 

migrate into the coating and thus cause the early formation of the monoclinic phase. 
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Prior to studying the influence of ternary additions of dysprosia on the high temperature 

phase stability of the coating, the effect of the purity of the substrate was investigated, 

in order to rule out any side effects coming from the substrate. 

 

5.6.1. Influence of substrate purity on the phase stability 

 

5.6.1.1. Test procedure 

 

Standard 7YSZ coatings were deposited on three different alumina substrates with 

different purities. These substrates were polycrystal alumina 96% and 99.5% purity 

(PX96 and PX99 respectively) and single crystal alumina 99.99% purity (SX99). Such 

substrates are commonly used for high temperature isothermal aging when the melting 

point of nickel based superalloys is exceeded. 

 

The samples were isothermally heat treated in a box furnace at 1500˚C for 0.5, 1, 2, 5 

and 8 hours to study the t’→ t + c phase separation. A different sample was used for 

each heat treatment. Longer agings were performed until the monoclinic phase was 

formed using a single sample of each substrate. Such a high temperature was chosen to 

minimise the time of thermal exposure before the appearance of the monoclinic phase. 

The samples were rapidly cooled and immediately examined by XRD to determine the 

phase composition of the aged coating. The experiments were done on the coating rather 

than powder or powdered coatings to provide more realistic results on the influence of 

minor coating contamination. In this way not only the internal constraints of the coating 
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but also those generated by the substrate, sintering and the tetragonal to monoclinic 

phase transformation could be taken into account. 

 

The t’ → t +c phase separation is commonly studied using the (400) type reflections 

(2θ=72.5˚-75.5˚ region) [10;12]. The (200) reflections (2θ=34˚-35.5˚ region) can also be 

used, however, due to peak overlap, quantitative analysis using (200) reflections 

becomes less accurate as the monoclinic phase starts to form [185]. Quantitative 

analysis of the monoclinic phase in zirconia powder samples has been attempted by a 

number of methods using the (111) tetragonal/cubic and (111) and )111(
−

 monoclinic 

reflections (2θ=27˚-32˚ region) [10;12;174;186-188], however, as seen in the previous 

chapter, the EB-PVD coatings produced are highly textured and have mainly a (200), 

(311) and (400) orientation. The main monoclinic peaks appear at 2θ values of around 

34˚ and 55˚ and overlap with tetragonal and cubic reflections in this position, making 

the deconvolution even more difficult. Furthermore, XRD is not very sensitive to the 

monoclinic phase and the peaks are rather broad when they first appear so, even if the 

XRD pattern does not show  clear monoclinic peaks,  there might already be some 

monoclinic  phase formed in the coating. The phase composition of the various coatings 

was calculated using the integrated intensity of the (400) reflection peak, which was 

determined by fitting the diffraction peaks with a Pseudo-Voigt function using a 

commercial software♦. During annealing t’ will separate into a mixture of tetragonal and 

cubic phase and according to the ZrO2/Y2O3 phase diagram (Figure 5) and the XRD 

analysis. It was found that, when the partitioning is complete, there is about 55% of t 

and 45% of c phase. Eventually, the percentage of the t phase starts to decrease; this 

                                                 
♦ Origin 7.0, OriginLabTM. 
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decrease can be associated with the t → m phase transformation and was used to 

calculate the percentage of monoclinic phase in the EB-PVD coatings. The reader 

should refer to Figure 75 in order to understand the evolution of the XRD pattern of the 

EB-PVD TBC with aging time. Using the integrated intensity may not give a precise 

measurement of the phase composition of the coating, as has been explained in [185], 

but it still provides a consistent criterion to compare the phase stability of the various 

coatings. The presence of the monoclinic phase was also checked using Raman 

spectroscopy. 

 

Finally, each sample was examined under SEM and analysed with EDX to see the 

evolution of sintering with aging time and to determine the chemical composition of the 

coating. 

 

5.6.1.2. Results and discussion 

 

The phase compositions of the coatings on the three different substrates for each heat 

treatment are summarized in Figure 63. It clearly shows that the t’ → t + c phase 

separation is much faster for the coatings deposited on the low purity alumina substrates 

PX96. It is almost complete after a 5 hour aging at 1500˚C, whereas the coatings on 

high purity alumina (PX99 and SX99) still contain a high percentage of t’ phase even 

after 8 hours at 1500˚C (14% and 24% respectively). On top of that, a significant 

amount of monoclinic phase is already formed after 8 hours at 1500˚C for the coating 

on PX96 (confirmed by Raman spectroscopy in Figure 64). With longer aging the t’ 

phase is completely partitioned after 10 and 16 hours at 1500°C for coatings on PX99 

and SX99 respectively. Monoclinic phase is formed after 64 hours for coatings on PX99 
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and 500 hours on SX99. The difference of phase stability between these two substrates 

was confirmed by Raman spectroscopy (Figure 64). The Raman spectrum of the 

coating on PX99 heat treated for 128 hours at 1500˚C shows the characteristic 

monoclinic doublet at 182 and 191 cm-1 [189-191] and the content of monoclinic phase 

determined by XRD is about 20%. To the contrary, all the peaks for the Raman 

spectrum of the coating deposited on SX99 correspond to the tetragonal phase, even 

after annealing for 300 hours at 1500°C. It is worth noting that the peaks become 

sharper and more symmetric after aging, this has been reported to be associated with the 

formation of the cubic phase [191]. 
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Figure 63: Maps of phase evolution at 1500°C of 7YSZ EB-PVD TBCs on alumina substrates with 3 

different purities. 
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Figure 64: Raman spectra of 7YSZ EB-PVD TBCs, on SX99 in the as deposited condition and after 

300h at 1500°C, on PX96 after 8h at 1500°C and on PX99 after 128h at 1500°C. 

 

The phase composition calculated from the XRD results on coatings on SX99 gave 57% 

and 43% of tetragonal and cubic phase respectively after 300 hours at 1500˚C and only 

7% of monoclinic phase was formed after 500 hours. Even if the partitioning of the t’ 

phase is complete after 16 hours, it requires longer aging for the monoclinic phase to 

form. The percentage of tetragonal and cubic phase remains unchanged until 500 hours 

at 1500˚C, however, both XRD peaks are slowly moving towards higher and lower 2θ 

angles respectively indicating that t is becoming gradually poorer in yttria and c richer 

in yttria until the t phase reaches a critical yttria content and cannot remain non-

transformable upon cooling (Figure 65). 
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The only difference between the various coatings was the substrate purity and structure. 

It is believed that the early destabilisation highlighted above is caused by the impurities 

present in the substrate material. Even a small difference in substrate purity can have a 

tremendous effect on the monoclinic phase formation. The substrate compositions were 

determined by X-Ray Fluorescence♦ (XRF), the results are presented in Table 8. 
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Figure 65: XRD patterns of 7YSZ EB-PVD TBC on SX99 aged at 1500°C between 2 and 500 hours. 

 

 

Table 8: Chemical composition of alumina substrates in mol%. 

 AlO1.5 SiO2 MgO CaO 

PX96 97.6 1.4 0.6 0.4 
PX99 99.0 1.0 0 0 
SX99 99.8 0.2 0 0 

 

                                                 
♦ XRF, Bruker AXS. 
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The main impurities are SiO2, MgO and CaO. The chemical composition of the TBC 

was determined by EDX before and after heat treatment. The oxide contents were 

calculated from the values of the elements, assuming a stoichiometric formula. The 

composition of the as deposited TBC was 7.5 mol% of YO1.5 and 1 mol% HfO2 

however the graphs in Figure 66 show that substrate impurities as well as alumina are 

also present in the coatings deposited on PX96 after annealing. The percentage of CaO 

is not plotted on this graph since its content varies only from 0.2 to 0.5 mol%.  

 

Even after a 30 minute heat treatment the impurities rapidly migrate from the substrate 

into the coating and after 8 hours there are already at 5.8, 3.8 and 3 mol% of AlO1.5, 

SiO2 and MgO respectively at the top of the coating. Such impurities were not present or 

were under the detection limit of the EDX for coatings deposited on SX99 and for this 

substrate even alumina does not seem to diffuse from the substrate to the coating. For 

the coatings on PX99, a small amount of SiO2 and MgO was detected in the substrate 

but after 8 hours at 1500˚C they do not seem to diffuse, even the amount of Al2O3 in the 

coating remains under one mol%. The fact that alumina is found after heat treatment in  

the coatings on PX96 and not on those deposited on PX99 could mean that the 

impurities migrate as a Al-Si-Mg-Ca compound with a low melting point rather than 

single elements. 

 
It is well known that Calcium Magnesium Alumino Silicate (CMAS) deposits have a 

detrimental effect on the lifetime of the TBC. They generate cracking, promote sintering 

and destabilisation of EB-PVD coatings [60-62;192]. 
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Figure 66: Concentration of AlO1.5, SiO2 and MgO impurities at 3 different depths in 7YSZ EB-

PVD TBC (B: bottom, M: middle, T: top) aged 0.5, 2 and 8h at 1500°C. 

 

Figure 67 represents the XRD graph of a 7YSZ coating deposited on SX99 with CMAS 

powder on the top surface aged 5 hours at 1500˚C. The CMAS powder had a 

composition of 35% CaO, 10% MgO, 7% Al2O3 and 48% SiO2 in mole percent. It 

shows that after a short heat treatment a large amount of monoclinic phase is already 

formed highlighting the destabilisation effect of CMAS deposits. 

 

It is believed that just like in a CMAS or aluminosilicate attack, the substrate impurities 

form a glassy phase which “extracts” yttria from zirconia making the coating more 

susceptible to transform to the monoclinic phase [56;192].  
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Figure 67: XRD pattern of 7YSZ EB-PVD TBC on SX99 aged 5h at 1500°C with CMAS powder. 

 

This is confirmed by the EDX map of the sample on PX96 aged 8 hours at 1500°C 

(Figure 68). The darker areas were initially thought to be intercolumnar porosity 

however elemental mapping shows that these regions are in fact AlO1.5 and SiO2 rich. 

This phase also contains ZrO2 and YO1.5 and has the following composition: 38.7 mol% 

SiO2, 35 mol% AlO1.5, 11 mol% MgO, 6.8 mol% ZrO2, 6 mol% YO1.5 and 2.5 mol% 

CaO. The coating appears to be depleted in yttria and contains only 5 mol% of YO1.5 

compared to about 7.5 mol% in the as deposited condition. Even though Zr is also 

incorporated in the CMAS phase, the Y/Zr ratio is about 0.9 compared to 0.08 for the as 

deposited t’ coating and hence the depletion of yttria in the heat treated coating (Y/Zr ≈ 

0.05). As a result, when the concentration of yttria in the TBC is sufficiently low, the 

coating cannot remain non-transformable and the monoclinic phase can be formed. It is 

worth noting that the coating itself is free from SiO2, AlO1.5, MgO and CaO. An attempt 

to explain the thermochemical interactions between CMAS and the TBC has been given 

by Kraemer et al. [60]. 
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Figure 68: Elemental map of 7YSZ EB-PVD TBC on PX96 aged 8h at 1500°C. 

 

A coating deposited on SX99 was aged at 1500˚C for 64 hours with the top of the TBC 

in contact with a PX96 substrate (Figure 69). XRD showed that the coating contains 

10% of the monoclinic phase after aging. This shows that, if during annealing the 

samples are in contact with such contaminants or if powders are aged in low purity 

alumina crucibles, these impurities could still diffuse and promote the early formation 

of the monoclinic phase. 
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Figure 69: XRD graph of 7YSZ EB-PVD TBC on SX99 aged 64 hours at 1500°C in contact with a 

PX96 substrate. 
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Figure 70: SEM micrographs of 7YSZ EB-PVD TBCs on SX99, PX99 and PX96 substrates aged 5h 

at 1500°C. 

 
Not only do substrate impurities strongly reduce the phase stability of the coating but it 

also affects the sintering of the TBC. Figure 70 shows cross-section micrographs of 

coatings deposited on SX99, PX99 and PX96 substrates after a heat treatment of 5 hours 

at 1500°C. TBCs on SX99 and PX99 show “normal” sintering behaviour, the 

characteristic featherlike structure of the columns is smoothed out, the columns sinter 

together but it is still possible to distinguish individual columns. This is not the case for 

the TBC on PX96 substrate, the columns completely lose their identity and the equiaxed 

zone of the TBC at the interface with the substrate is replaced by small spherical 

particles. Such sintering is very similar to the liquid phase sintering observed by Lin et 

al. [56], where aluminosilicate glass segregates to the grain boundary resulting in 
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rounded zirconia grains. The intercolumnar porosity is filled with CMAS melt coming 

from impurities from the substrate resulting in destabilisation and the formation of a 

monolithic structure. The result is the loss of the strain compliance of the EB-PVD TBC 

that could also influence erosion and FOD behaviour as shown by the author in [82]. 

 

As shown in Figure 66 the migration of substrate impurities in the TBC was already 

observed after only 30 minutes at 1500°C. The “attack” of the columns was clearly 

evident, even after such a short heat treatment, and the coating was highly sintered, 

almost half way through its thickness (Figure 71). 

 

 

Figure 71: SEM micrograph of a YSZ TBC on PX96 substrate aged 30 minutes at 1500°C. 

 

This study has shown that substrate impurities such as SiO2, AlO1.5, MgO and CaO can 

have a significant influence on TBC properties as a result of enhanced sintering and 

associated destabilisation. It is believed that the additions form a liquid phase that 

migrates into the TBC during annealing at 1500°C and extracts yttria from the coating 

leading to the early formation of the monoclinic phase. Consequently, it was decided 

that high purity alumina substrates should be used to study the effect of dysprosia on the 

TBC properties at very high temperatures. 

Limit of 
sintered TBC 

material 
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5.6.2. Influence of dysprosia on the phase stability 

 

7YSZ, YSZ:Dy0.3%, YSZ:Dy1% and YSZ:Dy2% samples were deposited by EB-PVD 

on high purity single crystal alumina. In order to determine whether dysprosia is a better 

stabiliser than yttria, a YSZ coating with the same content of stabiliser has also been 

tested. So for instance YSZ:Dy1% (3.9 mol% Y2O3 + 1 mol% Dy2O3) must be 

compared with a composition of zirconia partially stabilise with 4.9 mol% (3.9+1) of 

yttria. To deposit such a coating a composite rod was used, made from zirconia + 7wt.% 

(3.9 mol%) yttria and zirconia + 20wt.% (12 mol%) yttria ingots (Figure 72). The 

drawings used to machine the rod and the calculations to estimate the dimensions of the 

two parts of the rod in order to achieve an yttria concentration of 4.9 mol% can be found 

in Appendix 2. 

 

 

Figure 72: Composite rod used to deposit the YSZ 4.9 mol% TBC. 

 

The compositions of the coatings were determined by EDX, four different areas of the 

coating were analysed and the average values are listed in Table 9. Hafnia is typically 

found in YSZ TBCs since it is a naturally-occurring impurity in zirconium oxide. 
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Table 9: Chemical composition of the TBCs. 

(mol%) ZrO2 HfO2 Y2O3 Dy2O3 

3.9YSZ (7YSZ) 95 1.1 3.9 0 
YSZ:Dy0.3% 94.7 1.1 3.9 0.3 
4.9YSZ 94.4 1 4.6 0 
YSZ:Dy1% 93.9 1 3.9 1.1 
YSZ:Dy2% 93.1 0.9 3.7 2.2 

 

The samples were aged in air at 1500˚C for up to 1100 hours. For each composition a 

sample was heat treated 1, 2, 4, 8, 16, 32, 64, 128, 256 hours (9 cycles) and a second 

one 350, 500, 800, 900, 1100 hours (5 cycles) at 1500°C. During heat treatment the 

samples were only in contact with high purity alumina to avoid any contamination. The 

samples were placed on high purity alumina tubes (99.5%) to avoid contact with the 

firebrick∗ (75% Al2O3 / 25% SiO2) (Figure 73). 

 

 

Figure 73: Samples on the furnace holder after heat treatment. 

 

The same experimental procedure as for the study of the influence of substrate purity on 

the phase stability was used to determine the phase composition of the various coatings 

after heat treatment. The maps that were obtained of phase evolution during heat 

treatments are presented in Figure 74. 

                                                 
∗ JM30 Firebrick, Thermal Ceramics UK Limited. 
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Figure 74: Maps of phase evolution of 7YSZ, YSZ:Dy0.3%, YSZ:Dy1% and YSZ:Dy2% TBCs at 

1500˚C. 

 

The partitioning of t’ into the low and high stabiliser phases was very rapid for the 

YSZ:Dy2% sample and it was complete after around 30 minutes at 1500˚C, compared 

with around 10 hours for the standard 7YSZ coating. After this, the phase composition 

remained relatively constant. This means that the t’ phase does not shift its composition 

abruptly to the equilibrium formation of low and high stabiliser phases, but that the 

depletion in stabiliser in t and the enrichment in t’’ is a progressive process. When the t 

phase cannot retain sufficient supersaturation to remain non-transformable the m phase 

is formed and thereafter the percentage of the t phase drops. The evolution of the XRD 

pattern with aging time for the YSZ:Dy1% sample is represented in Figure 75. 
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Figure 75: XRD graphs of YSZ:Dy1% TBC in the as deposited condition and after 8, 64 and 900 
hours at 1500°C. 

 

On the cycled samples the monoclinic phase started to form after 250 hours at 1500°C 

however only very low percentages of monoclinic phase were found for the 7YSZ and 

YSZ:Dy0.3% samples that were heat treated directly for 350 hours at 1500°C. This 

suggests that, for 7YSZ and YSZ:Dy0.3%, the onset of monoclinic phase formation 

takes place at around 350 hours for an aging temperature of 1500°C. The monoclinic 

phase was only found in YSZ:Dy1% and YSZ:Dy2% after 500 hours at 1500°C. Early 

formation of the monoclinic phase was certainly caused by the heating and cooling 

cycles. Due to a furnace break down, only the results after 350 hour aging are available 

for the coating with 4.6 mol% of yttria (Figure 76). The monoclinic content for the 

various coatings after 800 hours of aging is compared in Table 10. 
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Figure 76: Map of phase evolution of zirconia + 4.6% yttria coating at 1500˚C. 

 
It can be seen that the percentage of monoclinic phase decreases as the concentration in 

dysprosia increases highlighting the stabilisation effect of dysprosia. Unfortunately the 

coating deposited with the composite rod has only 4.6 mol% of yttria (instead of 4.9 

mol% that was intended) and consequently none of the YSZ coatings have exactly the 

same stabiliser content as the YSZ:Dy TBCs therefore it is not possible to ascertain 

whether dysprosia is a better stabiliser than yttria. Nevertheless this study shows that 

dysprosia additions are not detrimental to the phase stability of the coating and further 

reduce the extent of the monoclinic phase formation. 

 

Table 10: Percentage of monoclinic phase in the TBCs after 800h at 1500˚C. 

Coating composition % monoclinic phase 

7YSZ 41.8 
YSZ:Dy0.3% 39.8 

ZrO2 + 4.6% Y2O3 20.7 
YSZ:Dy1% 15.8 
YSZ:Dy2% 5.3 

 

It is worth further mentioning that the standard YSZ sample and the one with 4.6 mol% 

of yttria spalled after 800 hours and 900 hours respectively, however no spallation was 

observed for the dysprosia doped coatings not even after 1100 hours. 
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Figure 77: Tetragonal (400) XRD peak displacement against aging time at 1500°C for 7YSZ and 
YSZ:Dy1% TBCs. 

 

Figure 77 presents the displacement of the XRD peak of the tetragonal phase with 

aging time at 1500°C for the 7YSZ and the YSZ:Dy1% TBC. Up to 330 hours the t 

peak is shifted to higher 2θ values as the tetragonal phase becomes poorer in yttria (the 

c/a ratio increases). Between 500 and 600 hours the XRD peak position drops suddenly 

and these changes cannot be attributed to a yttria enrichment of the t phase. The 

decrease in the c/a ratio is more likely to be caused by the volume expansion associated 

with the tetragonal to monoclinic phase transformation. This peak displacement clearly 

highlights the stresses in the TBC generated by the formation of the monoclinic phase. 

Further transformation seems to be well accommodated by the YSZ:Dy1% coating, 

however, spallation of the 7YSZ coating is observed after 800 hours at 1500°C. As a 

consequence the stresses in the TBC are released and the t phase peak returns to the 

position it had before the large formation of monoclinic phase. The YSZ:Dy0.3% 

coating contained 43% of m phase after a 1100 hours at 1500°C and yet the TBC was 

still intact. 
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It has been shown that YSZ:Dy offers temperature measurement capabilities above 

900˚C and also that ternary additions of dysprosia further improve the phase stability of 

the coating, therefore it is seen as a promising phosphor to be used in a TBC. 

 

5.7. Influence of aging on the phosphorescence and 

lifetime decay behaviour of the phosphor 

 

5.7.1. Influence on the phosphorescence 

 

It was shown that high temperature aging, and therefore phase transformations within 

the TBC, has affected the temperature measurement capabilities of the sensing coating. 

However, the comparison of the phosphorescence spectra revealed that the pattern of 

the aged sample has some characteristic features; such as new emission peaks and a 

shift in the wavelength of certain peaks. In order to investigate if these characteristic 

properties are sensitive to the duration of the heat treatment and thus the extent of phase 

transformations, a series of YSZ:Dy0.3%, YSZ:Dy1% and YSZ:Dy2% samples were 

aged 100, 300, 500 and 700 hours at 1500°C. The luminescence spectra of the samples 

aged 1100 hours, used to study the influence of dysprosia additions on the phase 

stability, were also recorded. The graphs in Figure 78 are normalised to the peaks with 

the highest intensity (485 and 585 nm) in order to compare the relative intensities of the 

various emissions after heat treatment. 
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Figure 78: Effect of aging on the phosphorescence spectrum of YSZ:Dy (normalised graphs). 

As deposited 

100h at 1500°C 

300h at 1500°C 

500h at 1500°C 
700h at 1500°C 

1100h at 1500°C 



Study of dysprosia doped YSZ phosphor 

 

148 

The aged coatings have a new emission peak (or set of peaks) at around 580 nm which 

grows with increasing aging time. The peak at 494.5 nm has a similar behaviour but it is 

also shifted towards lower wavelengths (up to 492.3 nm after long heat treatments). The 

growth of these characteristic peaks is less pronounced for high dysprosia 

concentrations. The intensity and the position of all other peaks remain relatively 

constant even after 1100 hours at 1500°C. 

 

The phase composition of the TBCs was determined by XRD using the same method as 

in the study on the influence of substrate purity on phase stability. In the graphs in 

Figure 79, the ratio between the height of the peak at 585 and 580 nm and at 485 and 

493 nm are plotted against the percentage of monoclinic phase in the coating. The TBCs 

aged for only 100 hours at 1500°C contained some monoclinic phase because they were 

tested more than two months after being heat treated and, even at room temperature, the 

yttria poor tetragonal phase slowly transforms to the monoclinic phase [56]. The XRD 

analysis was carried out two days after the phosphorescence spectra were recorded. 

 

The 585/580nm and 485/493nm ratios both decrease with the percentage of m phase for 

the three compositions tested. The 485/493nm ratio was calculated taking into account 

the shifting of the 493 nm emission peak. These results suggest that the formation of the 

monoclinic phase is responsible for the appearance of the new emission peaks and that 

their intensity could be used to determine quantitatively the extent of the coating 

destabilisation. 
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Figure 79: Height ratio between the 580nm and 585nm peaks and between the 485nm and 493nm 

peaks as a function of monoclinic percentage in the coating. 

 

5.7.2. Influence on lifetime decay at room temperature 

 

As seen in Figure 54 there are some differences in the calibration curves of the as 

deposited and aged samples at low temperatures. In order to determine precisely how 

the phase transformations observed influence the luminescence spectrum as reported in 

the previous chapter, the lifetime of the series of aged YSZ:Dy1% samples were 

measured at room temperature. For each sample the measurements were repeated five 

times under the exact same conditions and the results are plotted in Figure 80 against 

the percentage of monoclinic phase. 
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Figure 80: Effect of aging on the luminescence lifetime of YSZ:Dy1% TBC. 

 

First, when the coating transforms from 100% t’ to cubic and tetragonal phases, plus a 

small percentage of monoclinic phase, the luminescence lifetime increases and then it 

decreases non-linearly as the monoclinic phase content increases. 

 

5.8. Discussion 
 

The energy levels of the 4f configuration of Dy2O3 represented in Figure 55 shows only 

the energy splitting caused by the coulomb and spin-orbit interaction however the 

crystal field of the host material also gives energy state splitting (or Stark components). 

Even if the effect of the crystal field is small with respect to the spin-orbit, because the 

4f electrons are well screened from the environment, it could give rise to new emission 

lines (Figure 16). As shown in Figure 81 an electronic transition between Dy3+ energy 

levels in YSZ does not give a single emission line. At room temperature at least eight 
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and twelve peaks for the 4
F9/2→

6
H13/2 and 4

F9/2→
6
H15/2 transitions respectively can be 

observed.  
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Figure 81: Phosphorescence spectrum of YSZ:Dy1% TBC. 

 

If Dy3+ ions occupy a site with a tetragonal symmetry the 6H13/2 and 6H15/2 energy levels 

are split in to seven and eight Stark components respectively therefore at least seven and 

eight emissions lines arising from transitions to these levels should be observed. More 

peaks are observed on the YSZ:Dy spectrum because the high energy 4
F9/2 level also 

splits into five components. At room temperature all the Stark components will be 

occupied therefore, in theory, there should be 35 and 40 lines for 4
F9/2→

6
H13/2 and 

4
F9/2→

6
H15/2 transitions respectively. The extra peaks on the luminescence spectrum of 

the as deposited sample could also mean that Dy3+ occupies non-equivalent sites in the 

YSZ matrix. A detailed analysis of the YSZ:Dy spectrum at such a temperature is 

difficult due to the large overlap of the various emission lines. The number of sub-levels 

created by the crystal field for Dy3+ occupying sites with different symmetries is listed 

in Table 11. It can be seen that, for lower symmetry than tetragonal, such as 

monoclinic, the spectrum can become very complicated. 
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Table 11: Number of Stark levels of Dy3+ in sites of cubic, tetragonal and monoclinic symmetry 

[193-196]. 

Symmetry 
4
F9/2 

6
H13/2 

6
H15/2 

Cubic 3 5 5 

Tetragonal 5 7 8 

Monoclinic 10 14 16 

 

Since aging causes phase transformations and therefore modifies the crystal field around 

the phosphor dopants it is believed that the appearance of new luminescence peaks is 

directly linked to phase transformations in the coating. It is expected that the separation 

of the as deposited t’ phase into tetragonal and t’’ phase will not have a great influence 

since these phases have the same symmetry. However, when the tetragonal phase 

transforms into the low symmetry monoclinic phase, Dy3+ is more likely to sit in a site 

with lower symmetry hence the new emission peaks observed in the spectrum from the 

aged samples. 

 

The 585/580nm ratio should be preferred to monitor the phase changes in the TBC 

using phosphorescence because the intensity of the emission line at 585 nm is 2.7 times 

higher than the one at 485 nm. Furthermore the peak at 494 nm which is sensitive to the 

phase transformations, is shifted towards lower wavelengths with increasing percentage 

of monoclinic phase hence making the determination of its intensity more difficult. An 

alteration of the crystal field felt by Dy3+ ions could be responsible for the shift in the 

494 nm emission peak. As shown in Figure 77 the volume expansion associated with 

the formation of the monoclinic phase, both introduces stresses in the coating and 

changes its crystallography and therefore must affect the crystal field. 
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In Figure 82, the 585/580nm intensity ratio for the different dysprosia concentrations 

are plotted on the same graph as a function of the percentage of monoclinic phase. The 

errors bars on the percentage of monoclinic phase come from the uncertainty in the 

fitting of the XRD graphs.  
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Figure 82: 585/580nm intensity ratio against the percentage of monoclinic phase in YSZ:Dy TBCs. 

 

The experimental points were fitted with the following first order exponential decay 

function: 

 

22.115.2
)

98.8

%
(

+×=
−

m

eIR  

Equation 14 

 

, where IR is the intensity ratio between the strongest emission line and the peak 

characteristic of the monoclinic phase and %m is the percentage of monoclinic phase. 
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It would appear that the 580 nm emission is only related to the content of monoclinic 

phase in the coating and is independent of the concentration of dysprosia. These results 

show that phosphorescence could be used to determine quantitatively the extent of 

monoclinic phase formation in the coating by monitoring the intensity ratio of two 

specific emission lines and utilising a calibration curve such as the one produced for 

YSZ:Dy phosphor (Equation 14). 

 

Srivastava [164] and Chambers [180] et al. also reported the appearance of a new 

emission peak at 615 nm in the luminescence spectrum of YSZ:Eu phosphor containing 

monoclinic phase. Srisvastava et al. showed that the intensity ratio of the 615 nm peak 

to the 605 nm peak increases linearly with the percentage of monoclinic phase (based on 

four measurements). However based on the spectra presented in [180] there would 

appear to be only a small decrease in the same intensity ratio even when the monoclinic 

phase content increase from 0% to 50% (IR≈0.5→0.4). 

 

The analysis of the lifetime of the luminescence of the aged dysprosia doped TBC 

samples, at room temperature, revealed an innovative way of monitoring the phase 

transformations in a TBC. As the as deposited t’ phase partitions into t and c phase the 

lifetime at room temperature increases, then as the percentage of m phase in the coating 

increases it decreases exponentially. Consequently the increase in the phosphorescence 

lifetime could be attributed to the t’→ t + c phase transformation and the decrease to the 

t → m phase transformation. The data were found to fit a first order exponential decay 

function: 
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5.3185.274 4.8

%

+×=
−

t

m

RT eLTD  

Equation 15 

 

, where LTDRT is the lifetime of the phosphorescence measured at room temperature and 

%m the percentage of monoclinic phase in the TBC. 

 

This model can be linked to the results reported earlier on the influence of dopant 

concentration on LTD (Section 5.1, page 114). It was found that as the percentage of 

dysprosia increases the LTD at room temperature decreases (Figure 51). This was 

attributed to concentration quenching, however, the crystal structure of the host material 

could also play a part, indeed dysprosia additions change the lattice structure and tend to 

form a coating with a more “cubic-like” microstructure. The changes of LTD at room 

temperature, induced by phase transformation, are of the order of a 100 µs compared to 

several hundreds of microseconds for dopant concentration quenching, therefore even 

though this could have an effect, concentration quenching is still the main factor. 

 

The reasons for the observed variations in the phosphorescence lifetime at room 

temperature are not fully understood. As explained in the literature review, the atoms of 

the crystal host move around their equilibrium positions and this constitutes the lattice 

vibrations of the host material, the quantum of which is called a phonon. Relaxation 

from an excited state can take place, not only by direct transition to a lower state via the 

emission of photons, but also by releasing energy in the form of phonons to the 

surrounding crystal. Clearly, the type and crystal structure of the host material will 

influence the lifetime decay of the phosphorescence. During aging, there is not only the 

appearance of new phases, but also stresses coming from the volume expansion cause 
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by the t→m phase transformation. Further, the XRD analysis highlighted the various 

changes in crystal structure caused by the high temperature aging. Consequently, the 

crystal field felt by Dy3+ ions will vary with increase in heat treatment time and, as a 

result, so will the phosphorescence lifetime. 

 

Thermal barrier coatings need to be inspected on a regular basis for any sign of 

deterioration. A common inspection methodology may require taking the engine 

component out of service and visually assessing the extent of spallation of the coating. 

Such a method, does not give any information concerning the degree of deterioration of 

an intact coating, its past service conditions and its remaining life. For high pressure 

turbine blades, it is usual to perform destructive tests at each inspection interval to 

decide whether repair or replacement is necessary. Such an inspection is time-

consuming, requires specialized equipment, cannot be conducted on site and 

extrapolates the results obtained for one part to other similarly used parts and therefore 

may not provide an accurate condition of those parts. Inspection for phases changes in 

the TBC, that occurs with exposure at high temperature, using a non-destructive 

examination method, could be a way to determine the health of the coating as well as its 

past service condition. In this study, it has been shown that such phase transformations 

could be monitored using phosphorescence, by measuring the luminescence lifetime at 

room temperature or by determining the intensity ratio between two characteristic 

luminescence lines. Both techniques provide a simple, fast, non destructive way of 

determining the past service condition of the TBC and its degree of deterioration. 
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In summary, YSZ:Dy is a promising phosphor to be used as an inner layer in a TBC, it 

permits the ceramic/bondcoat interface temperature to be accurately measured, ±5°C. 

Dysprosia further stabilises the t’ phase, YSZ:Dy phosphor presents no problem of 

deposition by EB-PVD, it can be used to measure temperatures up to at least 950˚C and 

also to monitor the health of the TBC. However phosphors based on YSZ matrix and a 

rare earth activator have not been found to have a temperature sensitivity above 1200˚C. 

Therefore, they cannot be used as a top layer to measure the surface temperature of the 

TBC under aero-engine applications. Consequently, a different phosphor based on a 

different matrix, with temperature capabilities up to at least 1200˚C, must be used as a 

top layer. 

 

  

Figure 83: Calibration curves for various phosphors [100;138]. 

 

As shown in Figure 83, Yttrium Aluminium Garnet (YAG) compositions would be 

potential candidates from the phosphorescence point of view, and phosphors like 

YSZ:RE temperature range 
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YAG:Dy have been reported to luminesce up to at least 1500°C [115;138]. However, 

they have never been used as TBC material and they have never been deposited by EB-

PVD before. 

 

 



 

 

 
 
 
 
 
 
 

6. YAG PHOSPHORESCENT COATING 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6.1.  YAG properties 
 

Yttrium Aluminium Garnet (YAG) has been chosen, firstly, because of its temperature 

sensitivity as a host for suitable phosphors, and secondly, because of such properties as 

maximum temperature capability, hardness, elastic modulus, density, thermal expansion 

and thermal conductivity, all of which are beneficial in TBCs. Thus, based on these 

properties, YAG offers great potential as a material for TBC applications [75;197]. The 

essential properties for a good TBC material are compared in Table 12 for zirconia, 

yttria, alumina and YAG. The thermal conductivity of YAG is somewhat higher than 

that of zirconia however it will only be used as a thin layer on top of the TBC therefore 

it is believed that it will not have a significant influence on the overall thermal 

conductivity of the coating. Moreover the low thermal conductivity of an EB-PVD TBC 
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is mainly attributed to the inner equiaxed zone which is very effective in scattering 

phonons due to the large number of defects and grain boundaries [76]. One should 

consider that, just like ternary additions of rare earth oxides are used to reduce the 

thermal conductivity of YSZ TBCs, a similar alloying addition could have the same 

effect on YAG material. Oxygen diffusivity is also an important property for TBC 

application since a low diffusivity will retard the oxidation of the bond coat or the 

superalloy and the oxygen diffusivity of YAG is 1010 times lower than that of zirconia 

at 1000°C. The low density of YAG is also considered beneficial as it will reduce the 

stresses due to the centrifugal load. 

 

Table 12: Comparison of the properties of zirconia, yttria, alumina and YAG [197]. 

 Thermal 

conductivity 

at 1127°C 

(W/mK) 

O2 

diffusivity 

at 1000°C 

(m
2
/s) 

Thermal 

expansion 

coefficient 

at 1000°C 

(x10
-6

/K) 

Maximum 

temperature 

capability 

(°C) 

Hardness 

(GPa) 

Density 

(g/cm
3
) 

Zirconia 2.7 10-10 10 1425 14 6.4 

Yttria 2.7 10-12 7.9 2400 NA 5 

Alumina 5.5 10-19 9.5 2050 20 4 

YAG 3.2 10-20 9.1 1970 17 4.5 

 

However, for the present application, the most critical properties are the maximum 

temperature capability, the hardness and the thermal expansion coefficient. The 

maximum use temperature of YAG is almost 40% higher than that of zirconia and YAG 

is 20% harder than zirconia which is very desirable for good erosion resistance 

properties since it will be used at a top layer in the TBC. The last parameter of interest 

is the coefficient of thermal expansion. Because the YAG top layer will be in contact 

with the YSZ ceramic TBC, matching of the coefficient of thermal expansion between 

YAG and zirconia is of primary importance in order to reduce the stresses generated 
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between the two layers. The thermal expansion for the two materials should be close 

enough to prevent the spallation of the YAG phosphor layer during thermal cycling. 

 

YAG/YSZ multiplayer TBCs have been successfully deposited by air plasma spraying 

[198]. However, the author is not aware of any work published in the open literature on 

YAG deposited by EB-PVD. The following chapters develop a method to deposit a 

YAG phosphorescent layer by EB-PVD, using a single source evaporator, and the 

measurement of the performance of the YAG based phosphor deposited by EB-PVD. 

 

6.2. Deposition of a YAG coating 
 

6.2.1. From an yttria/alumina rod 

 

The first deposition was made by evaporating an ingot∗ of yttria and alumina in the right 

stoichiometry (62.5 mol% alumina and 37.5 mol% yttria). The ingot was made by 

physically blending the powders followed by an isostatic pressing and then a firing step. 

The composition of the rod was checked by XRD (Figure 84). The ingot was in fact a 

complex mixture of yttria, alumina and yttria/alumina compounds. The XRD analysis 

revealed that, during the manufacturing of the rod, Yttrium Aluminium Perovskite 

(YAP - YAlO3) and Yttrium Aluminium Monoclinic (YAM - Y4Al2O9) were formed 

however, the rod did not contain any YAG (Yttrium Aluminium Garnet) phase. 

                                                 
∗ Ingot supplied by Phoenix Coating Resources, USA. 
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Figure 84: XRD graph of the yttria/alumina ingot. 

 
As for YSZ, where the rod is made of zirconia and yttria that react during evaporation 

and condense as an yttria partially stabilised zirconia coating, it was expected that yttria 

would react with alumina to form a YAG coating. To start, the same deposition 

parameters as for a YSZ deposition were used. During the deposition, the top of the rod 

exploded, as soon as the electron beam hit the ingot, (Figure 85) and the melt was very 

unstable before it started to evaporate, so the beam intensity had to be lowered to 0.3-

0.4 A. At a higher intensity (0.5 A) the melt could no longer be contained within the rod 

and it poured out of the melt pool, like wax from a candle, and jammed the rotation of 

the ingot so the deposition had to be stopped. For the next depositions, only a small 

piece of rod (3-5 cm) was placed in a water cooled hearth in order to prevent problems 

caused by the uncontrolled and excessive melting of the ingot. 
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Figure 85: Picture of the rod that blew apart during deposition. 

 

It is believed that the cracking of the ingot cap was due to a thermal shock problem due 

to the high density of the partially fused ingot. However, it was noted that when the top 

of the ingot was completely molten prior to deposition, the thermal shock was reduced 

and the evaporation became quite stable. The EB gun could be run at normal intensity 

(0.5 A). Following this attempted deposition run, the molten part of the ingot was 

powdered and analysed by XRD. The XRD pattern shows that, once the rod had melted, 

yttria and alumina have completely reacted and YAG is the main phase present in the 

spectrum (Figure 86). A deposition was carried out by evaporating a pre-molten ingot 

(5 minutes at low power) during 60 minutes under the same conditions of pressure and 

substrate temperature as for a standard YSZ deposition. The coatings, from this 

evaporation trial, were deposited directly on high purity single crystal alumina 

substrates and on a standard YSZ coating produced in a previous deposition. The as 

deposited coatings were observed to be pearlescent (Figure 87) and the substrate could 

be seen through the coating. It is believed that the as deposited samples were amorphous 

or partially amorphous. 
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Figure 86: XRD graph of a pre-molten ingot. 

 

The samples were aged two hours at 1100˚C so they could recrystallise and XRD was 

carried out on the as deposited and aged samples (Figure 88). All the peaks in the XRD 

pattern of the as deposited coating could not be identified, however, after the short heat 

treatment the spectrum had the characteristic diffraction peaks of the Y4Al2O9 (YAM) 

and YAlO3 (YAP) phases. The YAG phase was still not detected in the coating, before 

or after the heat treatment, using XRD. 

 

 

Figure 87: Pearlescent sample after deposition from an yttria/alumina ingot. 
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Figure 88: XRD graphs of the as deposited and aged samples deposited from an yttria/alumina 

ingot. 

 

 

A sample was then cut, mounted and polished for SEM analysis as described in Section 

4.2.2.1. A cross section micrograph, as well as an EDX analysis, are presented in 

Figure 89. The coating is clearly not homogenous over its thickness and it is very 

difficult to distinguish the substrate from the beginning of the coating. In the backscatter 

image the yttria rich regions appear lighter and the alumina rich darker. The coating 

consists of layers with different concentrations of yttria and alumina and it seems to be 

divided in two parts, first a thick layer with a relatively homogenous composition (the 

first 15 µm) and then successive graded layers which become richer in yttria towards 

the outer coating surface.  
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(a)       (b) 

Figure 89: (a) SEM cross section and (b) EDX analysis of an aged coating. 

 

The coating is mostly monolithic, however, large columns or “blocks” which seem to 

originate at the interface with the first yttria rich layer can be seen (pointed to by the 

arrows in the SEM picture in Figure 89). Furthermore, the columnar microstructure is 

maintained for the coating deposited on top of a standard 7YSZ TBC. The newly 

deposited material grew from the YSZ column tips and the intercolumnar porosity was 

not sealed by the top layer. However, the morphology of the top of the columns was 

somewhat different to that expected from the evaporation of YSZ; they look very 

fibrous and had a rounded top (Figure 90). 

 

 

Figure 90: SEM micrograph of a “YAG” coating deposited on top of an 7YSZ EB-PVD TBC. 
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It is worth noting that, due to the limited penetration of the X-rays, the XRD pattern 

represented in Figure 88 characterizes only the first five microns of the coating.  The 

EDX analysis (Figure 89) and the phase diagram in Figure 91 suggest that the top five 

microns of the coating should be a mixture of YAP and YAM which is in good 

agreement with the XRD results (Figure 88). Consequently, as the Y/Al plot in Figure 

89 crosses twice the YAG composition line, the YAG phase might still be present in 

some of the layers in equilibrium with alumina or YAP (see phase diagram in Figure 

91). 

 

 

Figure 91: Equilibrium phase diagram of the alumina/yttria system [199]. 

 

Another deposition was made under the exact same conditions as the previous one but it 

was stopped at half time (after 30 minutes) in order to be in the composition range 

where YAG is in equilibrium with alumina (as predicted from Figure 89). The coating 

was only a 25 µm thick layer (Figure 92) with a relatively homogenous composition 

comparable to the one observed following the previous deposition. 
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Figure 92: SEM cross section of the aged coating from the “short” deposition. 

 

These samples were also pearlescent and the XRD analysis showed that the as deposited 

coating was completely amorphous (Figure 93). A similar observation was reported 

when the YAG phase was prepared by solid-state reaction [200;201], precipitation 

[202], spray-pyrolysis [201] and magnetron sputtering [203]. Subsequent annealing was 

performed at temperatures between 900 and 1000°C in order to obtain crystalline YAG. 

Published studies using a DSC analysis showed that the crystallisation of YAG occurs 

between 930 and 1075°C [204;205]. The XRD pattern of a heat treated sample has the 

characteristic spectrum for YAG, plus an alumina phase, which confirms that some of 

the layers in the first coatings contained the YAG phase. 

  

6.2.2. Deposition from a YAG rod 

 

A deposition from a pure YAG ingot◊ was carried out (the composition of the rod was 

verified with an XRD analysis of powder taken from the ingot). Depositing directly 

from a YAG material, rather than a mixture of yttria and alumina, could change the 

evaporation process. There was little chance the rod would evaporate as YAG, it was 

                                                 
◊ Ingot supplied by Phoenix Coating Resources, USA. 
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expected that the evaporant would rather break down into individual atom components. 

It could also affect the relative evaporation rates of yttrium and aluminium atoms. Due 

to the very small size of the rod it was placed in a water cooled hearth and the 

deposition lasted only 20 minutes. 

 

 

Figure 93: XRD graph of an as deposited and aged coating from the “short” deposition. 
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Figure 94: Y/Al molar ratio as a function of coating thickness obtained from EDX analysis of a 

coating deposited from a YAG (����) and yttria/alumina ingot (����). 
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As expected, a graded structure was obtained. The composition of the first five microns 

of the coating was very similar to that of the coating deposited from an yttria/alumina 

ingot. The yttria concentration in the coating increased rapidly afterwards since, due to 

the limited size of the rod, the molten pool was rapidly saturated in yttria. Evaporating 

from a YAG ingot, or a mixture of alumina and yttria with the stoichiometry of YAG, 

produces a multilayer coating which is thought to reflect the difference in the vapour 

pressures between alumina and yttria.  

 

6.2.3. Deposition analysis 

 

The evaporation rate of the rod material can be calculated using the Hertz-Knudsen 

equation: 

 

( )*

2

1
PP

TmkSdt

dn
v

B

v −=
π

α  

Equation 16 

 

, where Pv is the vapour pressure of the evaporant at a temperature T (in K), P* is the 

ambient hydrostatic pressure acting upon the evaporant in the condensed phase, αv the 

sticking coefficient for vapour molecules onto the surface, m the mass of a molecule, kB 

the Boltzmann constant, S the evaporation surface area and dn/dt the atomic rate of 

evaporation per unit of time and unit of surface area. 

 

The maximum evaporation rate is attained when αv=1 and for a pressure in the 

deposition chamber lower than 0.1 mbar the evaporation rate is independent of the 
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residual gas pressure due to the negligible resistance offered. As the deposition takes 

place between 1 and 5x10-2 mbar P*=0. Therefore the maximum mass evaporation rate 

is given by: 

 

Tk

m
P

Sdt

dn
m

B

v π2
==Γ  

Equation 17 

 
The evaporation rates of yttria and alumina were calculated for three different 

evaporation temperatures using the vapour pressures for the evaporant found in the 

literature [206]: 

 

Table 13: Vapour pressure and evaporation rates of alumina and yttria at 2100, 2200 and 2300°C. 

Temperature 

(°C) 

Vapour Pressure 

(mbar) 

Evaporation Rates 

(g.cm
-2

.s
-1

) (mol.cm
-2

.s
-1

) 

Alumina Yttria Alumina Yttria Alumina Yttria 

2100 1 0.1 9.07x10-3 1.34x10-3 8.90x10-5 5.93x10-6 

2200 3.5 0.35 2.84x10-2 4.63x10-3 2.79x10-4 2.05x10-5 

2300 10 1 8.71x10-2 1.30x10-2 8.54x10-4 5.76x10-5 

 

These calculations show that, because alumina has a much higher vapour pressure than 

yttria, it evaporates about 15 times faster than yttria (mol.cm-1.s-1). 

  

The bits of rod left after deposition were analysed by EDX. For the deposition stopped 

after 30 minutes the rod was not completely molten and it had a uniform composition. It 

was composed of two phases, both yttria rich, as represented in Figure 95. The global 

composition was around 87% yttria and 13% alumina compared to 37.5% yttria and 
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62.5% alumina for the original composition highlighting the faster evaporation of 

alumina compared to yttria. During the first minutes of the deposition the composition 

of the molten pool becomes gradually richer in yttria, however, it is constantly fed by 

the newly molten material and the alumina seems to be channelled from the bottom to 

the top of the pool. Consequently the composition of the vapour cloud remains 

relatively constant therefore the first 15 microns of the coating does not contain large 

variations in composition (Stage 1 in Figure 94). 

 

 
 % Yttria % Alumina Y/Al 

Phase 1 80 20 4 

Phase 2 88.5 11.5 7.7 

Global composition 87 13 6.7 

Figure 95: SEM micrograph and composition of the molten ingot after the “short” deposition. 

 

The rod from the first analysis (60 minute deposition) was completely molten. It shows 

that the molten pool was gradually enriched in yttria from the bottom to the evaporation 

surface at the top (table in Figure 96). In the second stage, the molten pool is so 

saturated with yttria that it prevents the evaporation of alumina, therefore the vapour 

cloud has a very high concentration in yttria, hence clear layers rich in yttria are 

observed in Figure 89. Finally, since the rod has a finite length, when the bottom of the 
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rod is reached the reservoir of alumina becomes depleted so the top of the molten pool 

becomes richer and richer in yttria and the concentration in yttria in the coating 

increases rapidly (Stage 3 in Figure 94). 

 

 
 %Yttria %Alumina Y/Al 

a 94 6 15.7 

b 87 13 6.7 

c 80 20 4 

d 60 40 1.5 

e 55 45 0.8 

Figure 96: SEM micrograph and composition of the molten ingot after the “long” deposition. 

 

As shown previously, the alumina and yttria concentrations in the molten pool highly 

influence the evaporation rates of these materials however it is not reflected in 

Equation 16 or Equation 17. A correction factor β is introduced to take the 

concentration of each constituent in the molten pool into account. Since yttria and 

alumina evaporate at different rates β changes with time. β is taken as the molar 

percentage of each constituent in the molten pool. The number of moles of yttrium and 

aluminium in the vapour cloud at an instant t can be estimated by: 
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Stttn YOYyv
)(2)(

32
∆−Γ= β  

Stttn AlOAlAlv
)(2)(

32
∆−Γ= β  

Equation 18 

 
The coating compositions calculated from Equation 18 are compared with the EDX 

results found for the short and long depositions using an yttria/alumina ingot. The 

values of β were determined by EDX analysis of the molten rods after deposition (Table 

14). 

 

Table 14: Comparison between the experimental and theoretical coating compositions. 

 
βY βAl 

Yttrium/Aluminium (atomic ratio) 

 EDX coating Calculated 

t=0 min  Short deposition 
0.375 0.625 

0.06 
0.04 

t=0 min  Long deposition 0.03 

t=30 min  Short deposition 0.87 0.13 0.47-0.51 0.45 

t=60 min  Long deposition 0.94 0.06 1.08 1.05 

 
The coating compositions were calculated using the maximum evaporation rates for 

each constituent at 2300°C (αv=1), under the assumption that aluminium and yttrium 

atoms travel from the ingot to the substrate and condense onto the deposition surface in 

a similar manner. The theoretical results, presented in Table 14, are in good agreement 

with what has been observed experimentally. 

 

These experiments showed that, due to the large difference in vapour pressure between 

alumina and yttria, it is not possible to deposit a pure YAG coating using a single source 

evaporator. According to the phase diagram in Figure 91, if the yttria concentration in 

the coating remains under 37.5%, the YAG phase will be in equilibrium with alumina. 

Obviously it is highly desirable to get as close as possible to the YAG composition in 

order to limit the alumina content in the coating. It is also very important not to exceed 
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37.5% of yttria otherwise the YAP phase will be present in the coating. Feist et al. [184] 

showed that YAP is also a good phosphor host and, therefore, the YAG:RE and 

YAP:RE luminescence might overlap making the temperature measurements more 

difficult to interpret. 

 

Equation 18 suggests that the yttrium and aluminium concentration in the vapour cloud 

could be adjusted by changing the yttria/alumina stoichiometry in the ingot so the 

condensed material would have a composition close to that of YAG (Y/Al=0.6). In other 

words, the evaporation rate of yttria could be increased relatively to the one of alumina 

by increasing its concentration in the rod. The composition of the first 10 µm of the 

coating was calculated from Equation 18 assuming an evaporation temperature of 

2100°C, for three different rod compositions: Y/Al=0.6, 2 and 4. The coating thicknesses 

were determined from the depositions made from the yttria/alumina ingot (≈1 µm/min). 

The calculations also take into account the variations in the pool composition due to 

newly molten ingot material, estimated from the length of rod consumed, during a 

deposition. 

 

The results found for a rod with a YAG stoichiometry (Y/Al=0.6) are in good agreement 

with the experiments for the first 15 µm, before the molten pool is completely saturated 

with yttria. The calculations were made assuming a homogenous composition of the 

molten pool, however, as shown in Figure 96, yttria concentrates at the surface of the 

pool as alumina evaporates preferentially. Once yttria reaches a critical concentration it 

evaporates quickly hence the peak observed at 20 µm (Figure 97). Since the Y/Al=2 and 

4 ingots have a higher yttria content it is expected that the molten pool will be saturated 
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much more rapidly limiting the coating thickness that could be deposited (the Y/Al=0.6 

limit must not be exceeded to prevent the formation of the YAP phase). From this 

theory, an ingot composition of 33.3 mol% alumina and 66.6 mol% yttria (Y/Al=2), a 

“YAG” layer with a maximum thickness of about 10 µm could be deposited with a 

limited concentration of alumina compared to a coating deposited from a rod with a 

YAG stoichiometry. A deposition using a customised rod was carried out in order to 

confirm these theoretical results and the following paragraph deals with the 

manufacturing of this special rod. 
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Figure 97: Composition of the first 20 µm of the coating (individual points ●) and calculated data 

for three different rod compositions (Y/Al=0.6, 2 and 4). 

 

6.2.4. Rod manufacturing 

 

To increase the yttria concentration in the ingot a hole with the right diameter was 

drilled into an yttria/alumina rod and filled with yttria powder in order to achieve a 33.3 

mol% alumina and 66.6 mol% yttria composition. However a trial run showed that, 
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during the deposition, yttria was blown away, as soon as the electron beam hit the 

powder. This suggests the material to be evaporated has to be in the compact form in 

order to be deposited by EB-PVD. A rod was manufactured from powder pressed at 

room temperature using a cold isostatic press (CIP). Alumina∗ and yttria• powders in the 

right proportion in order to achieve a Y/Al molar ratio of 2 were mixed in an automatic 

shaker for 30 minutes. The powder was then poured into a rubber tube with two rubber 

bungs at each end and sealed with metallic wires (Figure 98). The tube was pressed at 

50000 psi (≈3450 bar). The CIPped rod was dense enough to be handled and cut in half 

and no cavities were seen in the cross sections (Figure 98). 

 

 

Figure 98: Yttria/alumina rod after cold isostatic pressing. 

 

One half of the ingot was placed in a water cooled hearth in the EB-PVD chamber and 

evaporated. The melt was very unstable and the rod evaporated poorly, constantly 

spitting and erupting. After ten minutes the deposition had to be aborted. A picture of 

                                                 
∗ Alumina powder, 99.9% purity supplied by PI-Kem LTD, UK. 
• Yttria powder, 99.9% purity supplied by Alfa Aesar, USA. 
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the molten ingot in Figure 99 clearly shows a solidified bubble of material that formed 

at the surface of the rod. As these gas bubbles burst during the deposition, large droplets 

of fused material are ejected onto the alumina substrate as can be seen on the samples in 

Figure 99. Bruce et al. [207] suggested that “spitting” comes from gas and water 

vapour entrapped in the porosity of the rod and impurities that can react to form gaseous 

compounds at high temperature. As 99.9% powders were used it is not believed that 

impurities were the main source of “spitting”. 

 

 

Figure 99: Samples and CIPped ingot after deposition. 

 

The other half of the ingot was therefore heat treated two hours at 1500°C in a box 

furnace in order to remove any traces of water and to increase its density through 

sintering. The rod was heated and cooled slowly (15°C/min) in order to avoid thermal 

shocks and it was bagged after treatment to prevent the re-absorption of water vapour. 

During the deposition, as soon as the electron beam hit the heat treated rod, it did not 

melt but cracked and exploded. Even though the aging was only for two hours it seems 

that such a high temperature excessively sintered the ingot and therefore it could not 

withstand the thermal shock caused by the E-beam’s rapid heating. 
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More rods with the same composition were manufactured following the process 

described above. The heat treated rod was calculated to be about 75% dense compared 

to 60% dense after CIPping, therefore, the aging temperature was decreased to 1200°C 

in order to reduce the amount of sintering. After this treatment, the ingot was still about 

70% dense and it also exploded at the beginning of the deposition. With a heat treatment 

of two hours at 1050°C the rod was about 63-65% dense. During the deposition, the 

ingot melted at low power like the rods supplied by Phoenix LTD. The melt was stable 

and there was almost no evidence of spitting, only 1-2 small spits were found on the 

surface of the samples after deposition. The samples were analysed by EDX and XRD 

in order to determine the influence of the increase in yttria concentration in the rod on 

the coating composition. 
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Figure 100: EDX analysis of the coating deposited from a Y/Al=2 ingot. 

 

The EDX results are in good agreement with the calculated concentrations for the first 

eight microns (Figure 100). As it was expected, yttria saturation occurred much faster 

since the rod had a higher yttria concentration as manufactured (after 8 µm compared to 
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15 µm for a coating deposited with a rod with a Y/Al ratio of 0.6). The concentration of 

yttria and alumina in the first 11 µm of the coating remained under the stoichiometric 

YAG composition (Y/Al=0.6). Therefore it should be possible to deposit a 10 µm 

coating which does not contain the YAP phase and with a surface composition very 

close to the YAG phase. 

 

 

Figure 101: XRD analysis of the coating deposited from a Y/Al=2 ingot. 

 

The EDX results were confirmed by XRD analysis (Figure 101). The YAG 

composition was exceeded in the last 2-3 µm of the coating consequently the XRD 

pattern shows the characteristic YAP and YAM peaks however YAG remains the 

dominant phase. The next step was to add rare earth oxides into the rod composition in 

order to deposit a YAG:RE phosphorescent coating. 

 



YAG phosphorescent coating 

 

181 

6.3. YAG:Dy phosphorescent coating 
 

6.3.1. Coating deposition 

 

YAG powder, containing one mol% of dysprosia♦, was mixed with yttria powder in 

order to achieve a Y/Al molar ratio of two. The powders were pressed in a rubber tube 

with a larger diameter in order to obtain a rod with the same dimensions as those 

supplied by Phoenix. The ingot was cut in half, faced off and machined to the correct 

diameter (33.3 mm). In order to further improve the stability of the melt during the 

deposition the rod was heat treated in a vacuum furnace with the following sequence: 

 

20°C–(10°C/min)→40°C–(4°C/min)→400°C–(10 min)→400°C–(4°C/min)→1000°C–(2h)→1000°C–(-4°C/min)→ 20°C 

 

The resulting ingot had a very good surface finish and it was difficult to distinguish 

from a rod supplied by Phoenix. The ingot was placed on top of a long 7YSZ rod so it 

could be evaporated without using the water cooled hearth (Figure 102). During the 

deposition the melt was very stable, without spitting and it was contained on top of the 

7YSZ ingot. One half of the rod was evaporated for 15 minutes and the other half 

during 25 minutes and in both cases the deposition was stopped before the 7YSZ ingot 

started to melt. The longer deposition was carried out to determine how the presence of 

the YAP or YAM phases in the coating would influence the phosphorescence. 

 

                                                 
♦ YAG:Dy powder supplied by STS, UK. 
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Figure 102: “Home made” yttria/YAG:Dy rod after machining. 

 

Both coatings were heat treated for two hours at 1100°C before XRD analysis. For the 

longer deposition the top layers were found to be a mixture of YAP, YAM and yttria, 

whereas, for the shorter deposition the coating was only composed of YAG and alumina 

(Figure 103). 
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Figure 103: XRD spectra of the coatings deposited from a “home made” YAG:Dy/yttria ingot after 

heat treatment. 



YAG phosphorescent coating 

 

183 

6.3.2. YAG:Dy phosphorescence 

 

The phosphorescence spectra of both coatings were recorded between 470 and 610 nm 

when excited at 355 nm as described in Section 4.4.1. The normalised graphs in Figure 

104 show that all the peaks of the YAG/alumina coating spectrum correspond to 

YAG:Dy emission lines. However, as expected, the spectrum of the coating containing 

the YAP and YAM phases had characteristic emission peaks between 560 and 580 nm 

including a very intense line at around 572 nm. The phosphorescence spectrum was 

compared to the YAP:Dy spectrum found in the literature [184]  and the extra emission 

peaks do not seem to correspond to the YAP:Dy luminescence. Therefore, it is very 

likely that these peaks are characteristic emissions of the YAM:Dy phosphor. 
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Figure 104: Luminescence spectra of the coatings deposited from an yttria/YAG:Dy ingot and 
YAG:Dy powder. 

 

The calibration curve of the alumina/YAG:Dy coating was determined for an excitation 

at 355 nm, recording the lifetime of the 585 nm emission line (Figure 105). It was 
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found that YAG:Dy has a temperature sensitivity ranging from 1080°C to at least 

1500°C. Indeed the lifetime decay measurements were limited by the maximum 

temperature capabilities of the furnace (1500°C). Extrapolation of the lifetime results to 

the detection limit of the measurement set-up (0.3-0.4 µs) shows that the YAG:Dy 

coating could be used to measure temperatures up to around 1700°C compared to 

1000°C for the YSZ:Dy phosphor. The calibration curve was fitted to Equation 8 for an 

energy gap of 7300 cm-1 and phonon energy of 315 cm-1. From this modelling it is 

calculated that 23 phonons are required to bridge the energy gap. Figure 105 illustrates 

the importance of the host material in the high temperature quenching process. For the 

same rare earth dopant in two different host materials the maximum temperature 

measurement capability of the phosphor could be increased by more than 700°C. 
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Figure 105: Calibration curves of YSZ:Dy and alumina/YAG:Dy EB-PVD coatings. 

 

The YAG:Dy coating calibration curve was compared with the results obtained by 

Allison et al. [138] at Oak Ridge National Laboratory on powder material in Figure 
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106. The plots are very similar, especially the slope of the thermal quenching part of the 

curve. The excitation wavelength was not specified, but the lifetimes correspond to the 

emission lines at 480 and 575 nm compared favourably to 585 nm for this study. The 

XRD results in Figure 103 showed that a coating containing the YAG phase was 

successfully deposited by EB-PVD. Furthermore, the graphs in Figure 104 revealed 

that, even though the YAG phase is in equilibrium with alumina, all the peaks in the 

phosphorescence spectrum of the coating correspond to YAG:Dy emissions and have 

the same position. Most importantly, the EB-PVD YAG:Dy coating was found to have a 

maximum temperature capability of at least 1500°C, and potentially up to 1700°C. 

Further, because the slope of the YAG:Dy calibration curve is less steep than that of 

YSZ:Dy (Figure 105), it can be used to measure a broader range of temperatures: 

• YSZ:Dy: 500°C → 950°C (450°C) 

• YAG:Dy: 1080°C → 1700°C (620°C) 
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Figure 106: Comparison of the YAG:Dy calibration curves obtained at STS on the EB-PVD 
deposited coating and powder data measured at Oak Ridge National Laboratory (redrawn from 

[138]). 
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Because the phosphorescence spectra of YSZ:Dy and YAG:Dy overlap, YAG:Dy 

cannot be used to measure the temperature at the surface of the TBC if the coating 

already contains a YSZ:Dy inner layer. YAG:Eu and YAG:Tb phosphors also have a 

temperature sensitivity above 1300°C and therefore are potential candidates to be used 

as a top layer. However, as shown in Table 15 if one of these phosphors were to be 

used, two different laser sources would be required in order to excite the top and inner 

phosphor layers. 

 

Table 15: Phosphors and their excitation wavelengths. 

Phosphor Excitation wavelength 
YSZ:Dy 355 nm 
YAG:Dy 355 nm 
YAG:Tb 266 nm 
YAG:Eu 532 nm 

 

Research on powder materials conducted at STS showed that the lifetime of YAG doped 

with thulium oxide (YAG:Tm) can be measured up to at least 1300°C, when excited at 

355 nm (same wavelength as for YSZ:Dy). Consequently, in order to test a multilayer 

sensing EB-PVD coating and to be able to measure the temperature at two different 

depths in the TBC using one excitation wavelength and the STS set-up, the aim was to 

deposit a multilayer coating comprising a YSZ:Dy (inner layer), a standard 7YSZ and a 

YAG:Tm layer (top layer). 
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6.4. Multilayer sensing EB-PVD TBC 
 

6.4.1. Coating deposition and characterisation 

 

The multilayer coating was deposited by evaporating a multistage rod similar to the one 

represented in Figure 57 with a YSZ:Dy2%, 7YSZ and yttria/YAG:Tm ingot 

successively (from top to bottom). A dysprosia concentration of 2 mol% was chosen for 

the YSZ:Dy layer because it represents the worst case scenario in term of luminescence 

intensity, compared to 0.3 and 1 mol% (Figure 51). Moreover, a high dysprosia content 

makes the positioning of the doped layer using EDX easier to identify. It also facilitates 

the study of the possible diffusion of dysprosia from the YSZ:Dy to the standard YSZ 

layer due to high temperature exposure (see Section 6.4.3.2). However, for real 

applications low dysprosia concentration may be preferred, as they give higher 

luminescence intensities, and the doped layer should be as thin as possible for a more 

localised temperature measurement. 

 

The yttria/YAG:Tm♦ rod was manufactured in exactly the same way as the 

yttria/YAG:Dy ingot in the previous section. As expected, the evaporation of the first 

two stages (YSZ:Dy2% and 7YSZ) took place without problems. However, since the 

yttria/YAG:Tm ingot melts at low power and the e-beam is not entirely focused on the 

top of the rod and has a certain width, the sides of the yttria/YAG:Tm ingot started to 

melt before the 7YSZ stage was completely evaporated (Figure 107). 

 

                                                 
♦ YAG:Tm powder supplied by STS LTD, UK. 
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Figure 107: Schematic of the evaporation of the multistage ingot. 

 

Consequently, the boundary between the 7YSZ and the YAG:Tm layers is not very 

localised (Figure 108). EDX analysis showed that the 7YSZ layer contains alumina 

“stripes” and that there was a gradient of zirconia in what was supposed to be the 

YAG:Tm layer. The coating has a columnar microstructure with “fibrous” rounded 

column tips similar to those observed previously in Figure 90 for YAG:Dy. 

 

 

Figure 108: SEM micrograph of the coating deposited from the multistage ingot. 
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This deposition showed that a multilayer coating comprising a YAG:Tm layer cannot be 

deposited using a multistage rod due to the low melting point of the yttria/YAG:Tm 

ingot. Therefore, a repeat deposition was undertaken in two steps. In the first run, the 

YSZ:Dy2% and YSZ layers were deposited then the chamber was vented, the samples 

left to cool down and the ingot replaced by the yttria/YAG:Tm ingot which was 

evaporated during 20 minutes in a second run. The remaining size of the ingot after the 

deposition was surprisingly large. The evaporation rate was much lower, when 

compared to the previous depositions, and therefore the coating should be thinner than 

expected. 

 

 

Figure 109: XRD graphs of the multilayer coating before and after heat treatment. 

 

The as deposited YAG:Tm top layer was found to be amorphous however after aging 

the YAG phase crystallised as shown in the XRD graphs in Figure 109. Contrary to the 

YAG:Dy coating (Figure 103), alumina could not be detected in the TBC by XRD 
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analysis. Intense diffraction peaks characteristic of the t’ YSZ phase can be observed in 

the XRD pattern of the multilayer TBC, which confirms that the YAG:Tm top layer 

must be thin. It was found to be around 4-6 µm thick and, as observed in the SEM 

micrograph in Figure 110, the YAG layer deposited in the second run nucleated and 

grew from the YSZ column tips hence maintaining the columnar microstructure of the 

coating.  

 

 

Figure 110: SEM micrograph of the multilayer sensing TBC. 

 

6.4.2. Phosphorescence 

 

The multilayer sensing EB-PVD TBC was isothermally tested in a furnace in order to 

obtain the luminescence calibration curves of YSZ:Dy and YAG:Tm. For both 

phosphors the data were recorded during the same experiment using 355nm excitation 

(Figure 111) and switching from the YAG:Tm to the YSZ:Dy emission wavelengths, 

using the wavelength drive on the spectrometer (Figure 38 – page 97). The results, 

Figure 111, show that the inner YSZ:Dy phosphorescent layer has a temperature 
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sensitivity ranging from about 400°C to 950°C and the YAG:Tm top layer from 1000°C 

to 1300°C. As highlighted in Chapter 5.3, the YSZ:Dy phosphor has an emission line 

at 458 nm which can also be used for temperature measurements (Figure 52). This 

luminescence peak overlaps with the 455 nm emission of the YAG:Tm phosphor hence 

the irregular shape of the calibration curve between 400°C and 950°C). However, the 

decay of the YSZ:Dy 458nm line is very fast at 900°C, and quenches at about 950°C, 

therefore will not affect the surface temperature measurements at higher temperatures. 
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Figure 111: Calibration curves of YSZ:Dy2% and YAG:Tm phosphors and SEM micrograph of 

the multilayer sensing TBC with the excitation and emission wavelengths. 

 

In Figure 112, the lifetime data obtained for the multilayer coating is compared with the 

calibration curve of the YSZ:Dy2% single layer TBC (Figure 41) and the YAG:Tm 

results found by Allison et al. [138] at Oak Ridge National Laboratory. First of all, it 

was found that the lifetime decay measurements using the YSZ:Dy phosphor were not 

affected by the YAG:Tm top layer and above 400°C both calibration curves are 

identical. At lower temperatures, the layered coating has slightly longer lifetimes due to 

the “saturation effect” as shown in Figure 60 (Page 124). Secondly, the lifetime 

measurements of the YAG:Tm phosphor made at STS, and deposited in this work as an 

35µm 

100µm 
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EB-PVD topcoat, are in very good agreement with those found at Oak Ridge National 

Laboratory. This confirms that a YAG:Tm top layer was successfully deposited by EB-

PVD evaporation from a customised ingot. Moreover, Figure 112 shows that, by using 

a detector with a higher sensitivity (0.1 µs), the YAG:Tm phosphor could potentially be 

used to measure temperatures up to 1400°C. 
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Figure 112: Comparison of the calibration curves obtained with the multilayer coating and the 
results found at Oak Ridge National laboratory [138]. 

 

6.4.3. High temperature aging 

 

The multilayer sample was heat treated for 1000 hours at 1200°C and analysed with 

XRD and EDX in order to determine the high temperature stability of the TBC and, 

more particularly, how each layer would behave when aged for a long period of time. 

The top surface of the heat treated samples were impregnated with transparent epoxy 

resin (cured for two hours at 100°C) prior to sample preparation, in order to prevent any 

damage to the thin YAG:Tm top layer during the cutting and mounting process. The 

SEM micrographs are presented in Figure 113. The sintering behaviour of the 

multilayer coating is comparable to that for a standard TBC (Figure 13 – page 31). The 
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top 30 µm of the coating, aged 300 hours at 1200°C, are bent to the left which is 

probably due to the resin impregnation rather than the heat treatment. 

 

 

As Deposited     Aged 300h at 1200°C 

 
Aged 1000h at 1200°C 

 

Figure 113: Cross section micrographs of the multilayer sensing TBC, as deposited and after aging. 

 

6.4.3.1. YAG:Tm layer 

 

As shown in Figure 109, the as deposited top layer recrystallised when heat treated  for 

three hours at 1100°C. After 300 hours at 1200°C the XRD peaks corresponding to the 

YAG phase become sharper and have a higher intensity (Figure 114). Moreover, the 

XRD pattern shows that the coating contains alumina. It is believed that the YAG phase 

in the coating aged three hours at 1100°C was not completely crystalline and the 
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YAG:Tm layer did not reach its equilibrium phase composition. More importantly, 

longer heat treatments do not seem to cause any phase transformations in the top layer. 

The YAG and alumina phases are still in equilibrium after 1000 hours at 1200°C and 

the corresponding XRD peaks have the same positions and intensities. 

 

 

Figure 114: XRD spectra of the multilayer coating aged 3h at 1100°C and 300h, 750h and 1000h at 
1200°C. 

 

The intensity and the width of the XRD peaks of the YAG phase do not change 

significantly after a heat treatment of 1000 hours at 1200°C. Moreover, the relative 

intensity of the alumina, YSZ and YAG diffraction peaks remains constant between 300 

and 1000 hours at 1200°C which suggests a good stability of the various phases present 

in the multilayer coating. 

 

As shown in the EDX maps in Figure 115, there is no significant diffusion of zirconia 

into the YAG:Tm layer or alumina into the rest of the coating. The EDX analysis also 
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revealed that the yttria concentration under the YAG:Tm layer remained constant after 

aging. Moreover, the XRD spectra presented in Figure 116 showed that the underlying 

t’ YSZ still separates into the low yttria t phase and the high yttria c phase during heat 

treatment. After 1000 hours at 1200°C the phase composition was found to be 50% t, 

35% c and 15% t’. Therefore, it is believed that there was no significant diffusion of 

yttria from the YAG:Tm layer, which could have further stabilised the underlying t’ 

YSZ phase. 

 

 

Figure 115: EDX maps of the as deposited multilayer TBC and after aging 1000h at 1200°C. 

 

Because alumina has a higher vapour pressure, compared to yttria, it evaporates faster 

therefore the very first microns of the YAG:Tm layer should be almost pure alumina. 

Consequently it is believed that this thin alumina layer acts as a diffusion barrier 

preventing any diffusion of elements from one layer to another hence the remarkable 

phase stability. 
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Figure 116: XRD graphs of the YSZ layer (under the YAG:Tm layer) before and after heat 

treatment. 

 

6.4.3.2. YSZ:Dy layer 

 

The thickness of the YSZ:Dy layer was analysed by EDX in order to determine if 

dysprosia diffuses into the standard YSZ layer when heat treated (Figure 117). 
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Figure 117: Diffusion of dysprosia after heat treatment. 
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Contrary to the results presented in Figure 58 where there was no clear gradient of 

concentration, the concentration of dysprosia in the sample aged only three hours at 

1200°C varies from about 3.2 mol% to 0.4 mol% over 36 µm. The highest 

concentrations were found at the interface with the alumina substrate. However, it 

seems that an equilibrium concentration gradient is reached very rapidly. Indeed longer 

heat treatments (up to 1000 hours at 1200°C) do not seem to further affect the 

composition profile through the YSZ:Dy layer. More importantly EDX results show 

that there is no significant diffusion of dysprosia from the YSZ:Dy to the standard YSZ 

layer over this extended high temperature exposure. Consequently, it seems that the 

depth where the temperature is measured in the coating will not vary due to high 

temperature exposure. Furthermore, as shown in Section 5.1, the variations in dysprosia 

concentration within the YSZ:Dy layer should not affect the temperature measurement 

capability. 

 

6.5. General conclusion on multilayer sensing EB-PVD 

TBCs 

 

This study successfully illustrates the concept of multilayer sensor coatings. It has been 

shown that YSZ:RE phosphors can be used to remotely measure the temperature inside 

a TBC, with YSZ:Dy offering the highest temperature sensitivity. Because of the high 

temperature that the top surface of the TBC experiences it is believed that YSZ:RE 

phosphors cannot be used to measure such temperatures. However, for industrial gas 

turbine where the operating temperatures are lower, these phosphors are still a viable 
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option. For this type of application YSZ:Dy, YSZ:Eu, YSZ:Sm and YSZ:Tm phosphors 

could be used in a multilayer system, as they all have a temperature sensitivity of at 

least 800°C. Such coatings can be easily deposited by EB-PVD using a multistage ingot. 

 

Developing a similar coating for aero gas turbine application requires more effort in 

terms of phosphor materials and deposition techniques. To further extend the maximum 

temperature detection limit of sensing TBCs YAG:RE phosphors were investigated. 

This material is known to have excellent luminescence properties but it dissociates 

when deposited by EB-PVD, making the deposition of YAG coatings very challenging. 

A way that has been investigated in this work to overcome the evaporation problems 

consisted in changing the stoichiometry of the ingot. This technique was only used to 

demonstrate that temperatures could be measured at two different depths in the coating, 

simultaneously, using phosphorescence, in the temperature ranges that a TBC would 

experience during service. The melting and the evaporation of the rods manufactured 

for this study were not perfectly stable. Consequently, it was difficult to control the 

evaporation rates and therefore the coating thickness and composition. Moreover, such 

an ingot cannot be evaporated continuously as the molten pool becomes rapidly 

saturated with yttria. An alternative would be to use a multisource evaporator with a 

“jumping” electron beam like the one recently acquired at Cranfield University in the 

National High Temperature Surface Engineering Centre (Figure 118), where three 

different ingots can be evaporated. With such deposition equipment an alumina and an 

yttria rod can be evaporated at different rates using the appropriate beam pattern in 

order to achieve the desired YAG stoichiometry. 
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It is not believed that multilayer EB-PVD sensing TBCs will be used in service for 

online monitoring, as the costs involved in the development and the deposition of such 

coatings are too high. However, it is seen as a very promising development tool in order 

to optimise current TBC systems. Sensing coatings would enable one to determine very 

accurately the temperatures that a TBC experiences during service at different depths in 

the coating. This would in turn provide useful data for a better understanding of the 

TBC failure mechanisms, cooling optimisation and therefore the ability to use TBCs at 

their full potential. Sensing coatings offer many advantages over the techniques 

currently used to determine TBCs temperature in service. Mainly, it is fast, non 

intrusive and the temperature readings are not limited to pre-installed points, nor to the 

top surface of the TBC. 

 

 

Figure 118: Multi-source EB-PVD evaporator. 
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Reliable temperature detection in an operating gas turbine has not yet been achieved 

therefore, due to uncertainties in current temperature measurement systems [88], 

engines are not run at their maximum potential for safety reasons. Current safety 

margins are believed to be as high as 200°C giving great potential for an increase in 

operating temperatures [208]. Sensing TBCs could be used to reduce the safety margins 

by 50°C or even more and a rule of thumb says a 50°C increase in firing temperature 

corresponds to 1% efficiency gain [209] which is considerable considering the size of 

the market. For example, GE claimed that a 1% improvement in engine efficiency can 

save $20 million in fuel over the life of a typical, gas-fired, 400-500 MWatt combined-

cycle plant [210], not mentioning the environmental benefits due to the reduction of 

NOX and CO2 emissions. 

 

Finally it was found that the luminescence of YSZ:Dy phosphor is sensitive to phase 

transformations and can be used to quantitatively determine the extent of monoclinic 

phase formation in the TBC. Such a technique can be easily implemented in order to 

monitor the TBC degradation due to high temperature exposure, as it only involves co-

doping standard YSZ material with dysprosia. It has been shown that such compositions 

are easily deposited by EB-PVD, do not deteriorate the high temperature phase stability 

of the coating and it has already been shown in the literature that dysprosia additions 

can further reduce the thermal conductivity of the EB-PVD thermal barrier coating 

[166]. 

 
 



 

 

 
 
 
 
 
 
 

CONCLUSIONS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

• YSZ based phosphors, for example YSZ co-doped with europium or dysprosium 

oxide, present no problem to be deposited by EB-PVD. YSZ:Dy, YSZ:Eu and 

YSZ:Gd coatings were successfully deposited by EB-PVD in this study. 

• Ternary additions of dysprosia, europia and gadolinia change the crystallography 

of the coating and tend to produce a TBC with a more “cubic like” 

microstructure. It was also found that doped coatings have finer, closely packed, 

columns. 

• The importance of substrate purity on the phase stability of the coating was 

highlighted. Impurities such as silica, magnesia or calcia can diffuse from the 

substrate into the TBC and cause the early formation of the monoclinic phase. 

These compounds also affect the sintering behaviour of the coating and give rise 
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to liquid phase sintering, leading to a rapid loss of the TBC columnar 

microstructure. 

• Ternary addition of dysprosia further stabilises the t’ YSZ phase, hence, limiting 

the formation of the monoclinic phase, compared to a standard 7YSZ TBC. 

• Phosphorescence measurement showed that YSZ:Dy, YSZ:Eu and YSZ:Gd 

phosphors can be used to measure temperatures up to 950°C, 800°C and 250°C 

respectively. It was noted that these temperature sensitivities could be further 

improved by using a detection system with a higher sensitivity and a better 

fitting routine. With such improved instrumentation, YSZ:Dy phosphor could be 

used to measure temperatures up to at least 1100°C. 

• YSZ:Dy was found to be a good phosphor to be used as an inner layer in a TBC 

in order to measure the temperature at the TGO/ceramic interface. 

• For sensing purposes, low concentrations of dysprosia are preferred as they give 

higher luminescence intensities. However, the temperature measurements will 

not be affected when the concentration of dysprosia ranges from 0.3 to 2 mol%. 

• Temperature measurements are insensitive to high temperature aging and the 

associated phase transformations that could occur during service. 

• Different emission lines from the YSZ:Dy phosphorescence spectrum can be 

used for temperature measurements. 

• A multilayer EB-PVD TBC, comprising a YSZ:Dy inner layer was successfully 

deposited and tested. There was no problem to excite and detect the inner layer 

phosphorescence through a 100µm thick YSZ layer. 
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• The formation of the monoclinic phase during aging results in the appearance of 

new YSZ:Dy luminescence peaks. The intensity of those lines varies with the 

percentage of monoclinic phase in the coating. 

• The lifetime of the YSZ:Dy phosphorescence at room temperature is also 

sensitive to the formation of the monoclinic phase in the TBC. 

• Both techniques can be used to quantitatively determine the percentage of the 

monoclinic phase in the coating providing a non-destructive way of assessing 

the degradation of the TBC due to high temperature exposure. 

• YSZ:RE phosphors were found unsuitable to measure the surface temperature of 

the TBC, because of their limited sensitivity above 1100°C. Other compositions 

such as YAG-based phosphors were investigated for that purpose. 

• Due to the difference in vapour pressure between alumina and yttria a pure YAG 

coating cannot be deposited using single source EB-PVD evaporation. 

• EB-PVD rods were successfully manufactured from yttria/alumina and 

yttria/YAG powders and evaporated, but produced gradient structures. 

• A luminescent YAG:Dy/alumina coating was deposited by increasing the yttria 

concentration in the rod material. Such a coating has a temperature sensitivity of 

at least 1500°C, potentially 1700°C. 

• A multilayer phosphorescent TBC comprising an outer YAG:Tm and an inner 

YSZ:Dy layer was deposited by EB-PVD. The coating was successfully tested 

and showed that temperature measurements could be performed at two different 

depths in the TBC with such system. 

• The YAG:Tm layer had a temperature sensitivity of at least 1300°C and the 

luminescence of YSZ:Dy was not affected by the YAG top layer. 
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• The high temperature stability of the multilayer sensing TBC was investigated. It 

showed that there was no significant diffusion of elements between the various 

layers and that the YAG phase remained stable, even when heat treated up to 

1000 hours at 1200°C. 

 

 



 

 

 
 
 
 
 
 
 

FUTURE WORK 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The following recommendations for further work are suggested: 

 

• The determination of the minimum dysprosia concentration in YSZ for 

thermometry applications. 

• The determination of the minimum thickness of the inner phosphorescent layer 

that could be deposited and used for precise temperature measurements. 

• Customise the fitting routine for each YSZ:RE phosphors in order to further 

improve their temperature sensitivity. 

• Improve the YAG deposition by EB-PVD for a better control of the coating 

thickness and composition. 

• Deposition of a YAG coating using a multi source EB-PVD evaporation. 
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• Determine the phase stability of the YAG top layer at higher temperatures 

(typically at around 1500°C). 

• Perform erosion testing of the multilayer sensing coating in order to determine if 

a layered structure significantly affects the erosion mechanisms of the TBC and to 

determine the erosion resistance of the YAG top layer. 

• Investigate alternative phosphors with different matrixes which could be used 

for TBC applications at ultra high temperatures or in severe combustion environments. 

 

 

 



 

 

 
 
 
 
 
 
 

APPENDIXES 
 
 
 
 
 
 
 
 
 
 

Appendix 1: Drawing used to machine the multistage rod. 
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Appendix 2: Drawing used to machine the composite rod for 

the YSZ 4.9 mol% TBC deposition. 
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