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ABSTRACT 

The gas turbine which has found numerous applications in Air, Land and Sea 

applications, as a propulsion system, electricity generator and prime mover, is 

subject to deterioration of its individual components.  In the past, various 

methodologies have been developed to quantify this deterioration with varying 

degrees of success.  No single method addresses all issues pertaining to gas 

turbine diagnostics and thus, room for improvement exists.  The first part of this 

research investigates the feasibility of non-linear Weighted Least Squares as a 

gas turbine component deterioration quantification tool.  Two new weighting 

schemes have been developed to address measurement noise.  Four cases 

have been run to demonstrate the non-linear weighted least squares method, in 

conjunction with the new weighting schemes.  Results demonstrate that the 

non-linear weighted least squares method effectively addresses measurement 

noise and quantifies gas path component faults with improved accuracy over its 

linear counterpart and over methods that do not address measurement noise. 

Since Gas turbine diagnostics is based on analysis of engine performance at 

given ambient and power setting conditions; accurate and reliable engine 

performance modelling and simulation models are essential for meaningful gas 

turbine diagnostics.  The second part of this research therefore sought to 

develop a multi-fuel and multi-caloric simulation method with the view of 

improving simulation accuracy.  The method developed is based on non-linear 

interpolation of fuel tables.  Fuel tables for Jet-A, UK Natural gas, Kerosene and 

Diesel were produced.  Six case studies were carried out and the results 

demonstrate that the method has significantly improved accuracy over linear 

interpolation based methods and methods that assume thermal perfection. 
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1 BACKGROUND, AIMS AND OBJECTIVES 

In this chapter, a brief overview of gas turbine diagnostic schemes and 

performance simulation models developed in the past is presented.  Based on 

work done in the past, requirements for improved diagnostic schemes and 

performance simulation models are presented; these will form the framework of 

the aims and objectives of this project as presented in the following section. 

1.1 Background - Gas turbine diagnostic methods 

The gas turbine has proven to be an indispensable tool and has found use in 

Air, Land and Sea applications, as a Propulsion system, electricity generator 

and prime mover.  Gas turbine components inevitably deteriorate with use over 

time; this is normally accompanied by deterioration in performance (shaft 

power, thrust, etc).  The goal of gas turbine performance diagnostics is thus to 

accurately detect, isolate and assess the changes in engine module 

performance as a result of deterioration, engine system malfunctions and 

instrumentation problems from knowledge of measured parameters taken along 

the engines gas path.   

Engine related costs constitute a significant portion of an aircrafts‘ direct-

operating-costs; this is attributed to the required maintenance of the gas turbine.  

As such, engine diagnostics has been recognised as an important means for 

making more informed decisions related to engine usage and maintenance; in 

particular, overhaul schedules and/or component replacement.  Such improved 

monitoring and maintenance methods are employed to ensure cost-effective 

and safe operation of the gas turbine. 

The ever increasing need for condition based monitoring with a view to prioritize 

and optimize gas turbine maintenance resources has placed a demand for 

advanced gas turbine diagnostic techniques.  In the past, numerous diagnostic 

schemes have been designed, developed and employed with varying degrees 

of success, each scheme having its own merits and demerits.  Some of these 
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schemes include linear gas path diagnostic approaches that are based on the 

assumption that any changes in an engines‘ health parameters are relatively 

small and the engine performance variation due to engine gas path component 

degradation is approximately linear.  The errors due to this linearity assumption 

may however not be negligible; this inadequacy of linear models led to the 

development of non-linear counterparts which showed significant improvement 

over their linear counterparts.   

 No single technique developed so far meets all the requirements for an 

advanced diagnostic scheme. Such requirements include (and not limited to): 

based on a non-linear model, freedom from black box behaviour, able to deal 

with measurement noise, exemption from training and tuning, etc.  Discernible 

shifts in measured gas-path parameters such as temperatures, pressures, shaft 

speeds, fuel flow, etc, provide the necessary information for determining the 

shift in engine performance from a nominal (or ―clean‖) state.  However, such 

measurements are always subject to random noise and bias, the magnitude of 

which may often be comparable to the variations of measurements caused by 

engine degradation.  Thus, failure to address measurement noise and bias may 

significantly deteriorate the accuracy and precision of diagnostics results.  In the 

past, the methods employed to deal with measurement noise include 

exponential averaging of measurement samples or to weight individual 

measurements based on respective measurement variances (reciprocals of 

respective measurement variances).  Therefore, large measurement samples 

will be required; in the absence of such large measurement samples, the 

aforementioned methods of dealing with measurement noise fail.  In addition, 

measurement samples with both large variances and very small variances will 

produce (using the reciprocal-of-variance method) significantly small and 

significantly large weights, respectively.  Such significantly large values of 

weights may (mathematically) affect the diagnostic algorithm negatively, thus 

impeding any diagnostic effort. 
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1.2 Background-Performance simulation models 

Gas turbine diagnostics is based on analysis of engine performance at given 

ambient and power setting conditions; therefore, accurate and reliable engine 

performance modelling and simulation models are essential for meaningful gas 

turbine diagnostics.  Caloric properties e.g. Specific Heat Capacity, Enthalpy, 

Entropy etc, can be calculated for simulation purposes, at various levels of 

fidelity.  Selection of fidelity levels is dependent upon simulation objectives, time 

and computational constraints. 

Early technical models based on experimental setups and ambient temperature 

measurements were able to obtain isobaric heat capacity with high precision; 

however, the temperature range where such data could be available was 

restricted to the temperature range which can be covered with accurate 

experimental setups.  Thus, theoretical models that generally consider 

contributions to the heat capacity from molecular translation, rotation and 

vibration, were developed; with such methods, the temperature ranges were 

unrestricted. 

The perfect-gas hypothesis that is based on the assumption of constant values 

of Isobaric heat capacity, pC and ratio of heat capacities, 


 yields inaccuracies 

of more than a few Kelvin in temperature calculations.  To reduce this error, 

more accurate calculations would involve using constant values of pC and   but 

evaluated at mean component temperature.  Fully rigorous approaches involve 

the use of the fundamental definitions of entropy and specific enthalpy.  The 

inaccuracy of the results produced by these fully rigorous approaches is 

primarily dependent on the technical model used for calculation of caloric 

properties and uncertainty of the perfect-gas assumption.  This approach is 

commonly used in gas-turbine simulation codes and yields smaller errors as 

compared to methods based on the perfect-gas assumption (constant values of 

pC and  ). 
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―No dissociation‖ models are based on a constant gaseous composition of the 

fluid in question; composition is allowed to change only after combustion and/or 

mixing.  As a result, mole fractions remain the same at any temperature; this 

implies that the mean molecular weights of the combustion products remain 

constant regardless of the pressure or temperature.  However, at high 

temperatures (above 1200K) and/or low pressures dissociation effects start 

becoming noticeable and can induce increasingly significant deviations in pC

and   calculations for temperatures beyond 1500K.  Caloric properties are 

sensitive not only to temperature (and pressure) but also to H/C ratio; thus 

failure to consider the effects of fuel chemistry in the evaluation of these caloric 

properties for combustion products will lead to significant errors.  For fuels with 

similar H/C ratio, only minor deviations would be expected.  For instance, 

simulation models based on polynomials are suitable for combustion products 

for both Kerosene and Diesel since these fuels‘ H/C ratio are not significantly 

different.  However, these polynomial-based models are unsuitable for fuels 

with significantly different H/C ratios.  For fully rigorous thermodynamic 

calculations, appropriate tables or polynomials should be used. 

 

1.3 Project Aims and Objectives 

In light of the previously highlighted issues, accurate multi-fuel simulation 

models based on fully rigorous approaches in conjunction with advanced 

diagnostic algorithms are desirable in as far as accurate Gas turbine 

performance simulation and diagnostics are concerned.  Therefore, the aims of 

this research project are; 

 To investigate the fidelity of a non-linear weighted least squares 

diagnostics algorithm for fault quantification of gas path 

components. 

 To develop a multi fuel and multi-caloric property to improve the 

potential of gas turbine performance simulation accuracy. 
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To achieve this aims, the following are the key objectives: 

 Develop measurement weighting schemes that will work in conjunction 

with the non-linear weighted least squares (NLWLS) algorithm. 

 Formulate the mathematical basis of the NLWLS algorithm and further 

code it using a suitable programming language. 

 Compare diagnostics results of NLWLS algorithm with an available gas 

turbine diagnostics algorithm. 

 Identify parameters that affect caloric properties of fluids; four fuels will 

be considered: Kerosene gas (Jet-A), UK Natural gas, Diesel and 

Hydrogen fuel. 

 Identify a suitable technical model that will be used to obtain caloric 

properties of the aforementioned fuels.  Once identified, this model will 

be used to develop dedicated tables of caloric properties for the four 

stated fuels. 

 Develop a multi-dimensional non-linear interpolation algorithm for use 

with the dedicated caloric property tables. 
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2 LITERATURE REVIEW  

2.1 Gas Path Diagnostic Schemes 

During operation, gas turbine performance deterioration caused by component 

degradation is inevitable. A few of the principal faults that affect performance 

are fouling where the accumulation of deposits on blade surfaces results in an 

increase in surface roughness, changes in the aerofoil shape and a narrowing 

of the aerofoil-throat aperture, erosion where the aerofoil and seal surfaces are 

worn away by hard particles in the gas path, blade tip clearance damage that 

influences both efficiency and flow capacity, corrosion where the chemical 

reaction between component material and contaminants entering the gas 

turbine causes the loss of material from flow path components, foreign object 

damage that is the result of a foreign body striking the flow path components of 

the gas turbine engine, etc (AGARD-LS-183, 1992).  

Any performance degradation due to the above stated causes may be detected 

by gas path diagnostics; to that end, different linear and non-linear gas path 

diagnostic approaches have been developed to detect, isolate and quantify 

faults in any of the engine components.  Such actions are performed within the 

framework of condition based monitoring, with a view to optimise maintenance 

schedules and thus operate the engine safely and cost-effectively. 

In the past, various thermodynamic performance-based diagnostic schemes 

have been designed and applied with relative success.  Such techniques relate 

measureable engine parameters with the engine health parameters i.e. Flow 

capacity indexes and efficiency indexes.  The review of these methods now 

follows. 
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2.1.1 Linear Weighted Least Squares 

The weighted-least-squares method has been the predominant algorithm for 

gas turbine diagnostics for about a decade and has been utilised by a number 

of authors such as (Urban and Volponi, 1992; Barwell, 1987), amongst others.  

A linear weighted least squares approach was demonstrated by (Doel, 1994; 

Doel, 2003).  The method was implemented within a diagnostic tool, TEMPER.  

TEMPER uses weighted-least-squares to apportion observed measurement 

deviations between engine health parameter deviations and sensor errors.  

Such apportionment is based on expected variation of both engine health 

parameters and measurement errors.  Engine ―baselines‖ represent expected 

values of test-cell or on-wing measurements; these baselines are the ones that 

permit recognition of abnormal engine behaviour.  Development of such 

baselines is a time consuming effort that requires data assembly from as many 

engine runs as possible.  Further, each engine or test-cell requires a unique 

expected-value baseline.  Any changes to engine configurations or test-cells will 

subsequently require an update to respective baselines.  New engines provide 

even greater difficulty since there exists no data from which to generate 

baselines.  Users must either await gathering of sufficient data for the 

generation of the engine baseline or some other technique must be developed 

for providing the initial baselines. 

(Doel, 1994) also made it clear that user interpretation of results is an essential 

part of the algorithm; further, that the variance of user interpretation may be 

more significant than any faults being sought or than any problem with the 

algorithm.  As a solution, the author proposed a framework that allows 

incorporation of useful information such as maintenance history and borescope 

results in addition to the weighted-least-squares results.  Such frameworks may 

be based on technologies such as expert systems or neural networks. 
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2.1.2 Linear gas-path analysis with ICM inversion 

The relationship between measurements and performance parameters can be 

expressed analytically by Equation 2.1 

bvxhz


 )(  (2.1) 

Where 

 z


 is the vector of measurement parameters. 

 x


 is the vector of engine health parameters 

 v


 is the measurement noise vector. 

 b


 is the vector of sensor biases. 

  h is a vector valued non-linear function. 

This approach is based on the assumption that the changes in the engine 

health parameters are relatively small and the set of governing equations can 

be linearized around a given steady state operating point.  If measurement 

noise and sensor bias are neglected, then these linearized equations can be 

expressed in matrix form by Equation 2.2 

 xhz


   (2.2) 

 

Equation 2.2 may be written in terms of measurement and health parameter 

deviations, Equation 2.3. 

      

xHz


 .  (2.3) 

                                                    

The matrix H is referred to as the Influence co-efficient matrix (ICM).  The 

deviation of component performance parameters can then be calculated by 

inverting the ICM, Equation 2.4 
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zHx


  .1
 (2.4) 

 

The inverted matrix 1H  is referred to as the fault co-efficient matrix (FCM).  By 

inverting the ICM, several assumptions have been made, regarding the 

relationship between the measurement and engine health parameters: 

 A set of accurate measurement deviations are available i.e. there exists 

a method to faithfully reduce raw observed engine data to a 

measurement deviation level. 

 The fault co-efficients are an accurate engine model descriptor i.e. the 

faults occurring in the engine are among those being sought. 

 The fault co-efficients are invertible, i.e. that changes in the unknowns 

are adequately manifested in the observations. 

 Measurements are noise free. 

 

This method has found use in applications developed by several authors which 

include diagnostics (Escher, 1995), sensor fault identification (Escher, P.C. 

2002), design-point performance adaptation (Li et al, 2006), capabilities.  

(Staples and Saravanamuttoo, 1975) described a similar method which required 

minimal computational power, developed to sense the health of a helicopter 

power plant with a high degree of accuracy and sensitivity.  (Lazalier et al., 

1978) utilised the same method to design a diagnostic system designed for 

component diagnostics of the J75-P-17 engine.  (Simani, 2005) presented a 

model-based procedure for the detection and isolation of faults of a gas turbine 

system that was based on errors between estimated and measured variables. 

The proposed fault detection and isolation tool was tested on a single-shaft 

industrial gas turbine model. 

The direct matrix inverse approach shows potential due to the following 

capabilities: 
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 It is a relatively simple method as can be seen from the presented 

mathematical expressions. 

 Does not require iterative calculations and is therefore quick. 

 The severity of the fault is directly expressed by the changes of 

performance parameters. 

 The technique allows multiple fault diagnostics. 

However, any achievements to be obtained by the method would be hindered 

by the following limitations: 

 The method requires many pertinent measurements for the analysis; 

indeed, the inversion of the ICM requires that the number of engine 

health parameters be less than or equal to the number of measurements, 

that is, MN  . 

(Kyriazis, 2009) presented a method that involved the fusion of GPA with 

a probabilistic method, to solve this problem of insufficient measurement 

parameters.  This was achieved by means of ‗Engine partitioning‘, where 

the most probable candidates among a large set of unknown health 

parameters was selected; this reduces the number of unknown health 

parameters.  Since the number of health parameters for each part of the 

partition is smaller than the number of available measurements, then the 

ICM will always be invertible. Calculations are thus performed as many 

times as the different parts of each partition, estimating each time, the 

corresponding health parameters.   

 The method does not deal with sensor noise or bias. 

 Since the method relies on the assumption of linearity, it is only 

acceptable for very small deviations about the operating condition, of 

values of health parameters. 

(Kamboukos and Mathioudakis, 2005) stated that measurement deviations 

evaluated by Equation 2.3 differ from the actual ones by the magnitude of the 

higher order terms neglected in the linear approximation.  They stated that, ―the 

assumption of linearity becomes increasingly false when deteriorations cause 
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the engine to operate further away from the condition for which the matrix was 

calculated.‖  This consideration led to the development of non-linear GPA. 

 

2.1.3 Non-linear gas-path analysis with ICM inversion 

One method of improving the accuracy of Linear GPA is to try to solve the non-

linear relationship between the considered engine health-parameters and 

measurement parameters, using an iterative method, such as the Newton-

Raphson method.  The method is employed recursively and an improved 

solution is obtained.  Essentially, via this approach, an ICM is generated, taking 

into account a small deterioration in the engine-components‘ performance.  This 

ICM is then inverted to calculate the vector of change in the engine-

components‘ performance parameters.  From the results calculated, a new ICM 

is generated and this process is recursively repeated until the solution 

converges to a set limit.  One major benefit of this method is that the difference 

between the calculated changes in the independent parameters is much smaller 

for the non-linear approach than the linear approach.  

(Escher and Singh, 1995) described such a method that showed significant 

improvement over its linear counterpart in as far as fault quantification of 

degraded engine components is concerned.  The method is also capable of 

multiple fault detection, from various combinations of measured parameters. 

PYTHIA (Li, 2005) is an integrated gas turbine diagnostic system based on Gas 

path analysis techniques.  It provides the capability of gas turbine performance 

model generation and adaptation to real engine performance data, instrument 

selection, measurement data acquisition and simulation, sensor failure 

detection, measurement data correction against deviated ambient and operating 

conditions, measurement noise impact reduction and engine component fault 

diagnosis using the concept of GPA index (Mucino, 2005).   
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2.1.4 Kalman-filter based GPA 

The Kalman filter is a linear model-based estimator and is suitable in those 

instances where a linear model is available and is known to be a relatively 

accurate representation of the input-output relationship.  In addition the Kalman 

filter approach utilises all model information available (a priori estimate 

information, measurement noise information, etc) and can be easily configured 

to operate with different measurement suites and fault configurations i.e., single 

fault or multiple fault isolation systems (Volponi et al., 2003b) 

Kalman filters reduce any dependency from historical data and estimate current 

states from previous time steps and current measurements.  Deviation of 

engine component parameters is obtained by minimising a cost function, that is, 

a function of the difference between the actual measurements and predicted 

measurements from the model. 

Kalman filters were introduced as fault isolation and assessment techniques for 

engine diagnostics in the late 1970‘s and found use through the 1980‘s.  One 

such method is the one described by (Provost, 1988).  (Luppold et al., 1989) 

described an algorithm that estimated both the cause and level of off-nominal 

engine in-flight performance.  Five engine factors that fully characterised off-

nominal performance were estimated using a Kalman filter algorithm.  The 

algorithms‘ inputs comprised of measurements from a standard engine control 

instrumentation suite.   

The success enjoyed in these early programs promoted the use of these 

techniques in subsequent years, to become the central methodology utilised in 

many current engine performance analysis programs. (Kobayashi and Simon, 

2003) described a method that comprised of a bank of filters applied to aircraft 

engine sensor and actuator fault detection.  From this bank of Kalman filters, 

each was designed for specific sensor or fault detection.  The method was 

demonstrated to be reliable in sensor and/or actuator fault detection and 

isolation.  More recently, (Simona and Simonb, 2009) presented a method that 
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takes into account signal information that is normally ignored in Kalman filter 

applications; such information is normally ignored since it does not fit easily into 

the structure of the Kalman filter (state variable inequality constraints).  The 

authors noted that inclusion of state variable inequality constraints increases 

computational effort but at the same time improves diagnostic estimation 

accuracy.  The method was demonstrated via simulation results obtained from a 

turbofan model and it was confirmed that the method provides improved 

accuracy in diagnostic estimation of gas turbine components. 

The Kalman filter technique displays the following advantages: 

 Optimality, in the sense that the cost function is minimised. 

 Inclusion of prior knowledge; knowledge about the statistics of engine 

components deterioration can be introduced through the initial values of 

the state vector and its covariance matrix. 

 Accounts for measurement noise; the actual measurement noise can be 

assumed to be white and Gaussian, as the Kalman filter requires. 

 Sensor errors can be estimated through augmentation of the state vector 

to include the unknown sensor biases. 

 

Limitations in the use of the Kalman filter include: 

 Prior knowledge and tuning are needed: the choice of the covariance 

matrix (tuning) is often arbitrary. 

 The Kalman filter tends to ―smear‖ the fault over many components, i.e. 

―spreading out‖ any detected fault over other components apart from the 

one being analysed.  The problem is undetermined and the Kalman filter 

solution is a maximum likelihood one; as such, concentration on the 

actual faulty component(s) may be difficult.  (Provost, 1994) described 

and developed a modification to the basic Kalman Filter to solve this 

smearing effect. 
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 Non-linearity; the errors due to the assumed approximation to a linear 

model may not be negligible. 

 The Kalman filter produces an optimal solution provided the hypothesis 

about the system is correct.  In the case of gas turbine diagnostics, even 

though one might assume the measurement equation to be sufficiently 

precise, almost nothing is known of the system equation which describes 

the temporal evolution of the fault; therefore the system equation should 

be somehow estimated and this can impair the final diagnostic accuracy.  

In fact, the use of techniques to completely estimate the system equation 

introduces errors and as measurements are collected and used by the 

algorithm, the system ―learns the wrong state too well.‖  The 

consequence is divergence, i.e. the estimated solution becomes more 

and more distant from the actual solution. 

 

2.1.5 Non-Linear Model-based optimal estimation by using genetic 

algorithms  

In order to take into account the non-linearity of engine behaviour, a non-linear 

model based method combined with conventional optimisation was first 

introduced in 1990 by (STAMATIS et al., 1990) 

Unfortunately, conventional optimisation may stop at a local minimum point.  In 

recent years this disadvantage has been overcome by using genetic algorithms. 

The idea of gas turbine fault diagnosis with genetic algorithms involves initially 

guessing a component parameter; the engine model provides a predicted 

performance measurement vector.  An optimisation approach is applied to 

minimise the objective function (which is a measure of the difference between 

the real measurement vector and the predicted measurement vector).  A 

minimisation of the objective function is carried out iteratively until the best 

predicted engine component parameter vector is obtained. 
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(Zedda and Singh, 2002) described a diagnostic system for performance 

analysis of gas turbine components and sensors; the system estimates 

performance parameters in the presence of measurement noise and biases.  

Estimation is performed through optimisation of an objective function by means 

of genetic algorithms in conjunction with an accurate non-linear steady state 

performance model of the engine.  The technique was tested by the authors on 

a low by-pass ratio turbofan model and the results showed high level of 

accuracy. 

 

(Gulati et al., 2000) combined a GA approach with a multiple point diagnostic 

approach (Stamatis et al., 1991) to produce a GA-based multiple operating-

point analysis method for gas turbine diagnostics. The method was used for 

estimating the shift in the component performance parameters of a relatively 

poorly instrumented engine in the presence of measurement noise and bias.  

The technique was based on the use of multiple operating point analysis to 

overcome the lack of information due to an inadequate sensor set. The 

technique was demonstrated on a three-spool low bypass ratio turbofan engine, 

with nine measurements used to determine fourteen performance parameters 

and showed favourable results. 

 

The following are the advantages of the genetic algorithms method: 

 They search for the optimal solution from a population of points, not a 

single point; this makes it easier to escape from local minimum areas. 

 They use objective function information; no use of derivatives is required.  

This enlarges the area of applicability of genetic algorithms significantly. 

 

Genetic Algorithms do however suffer from the following limitations: 

 The method is more computationally burdensome than classic estimation 

techniques. 
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 Although multiple-faults can be detected, the technique is limited to four 

health parameters experiencing simultaneous deteriorations. 

 The method requires a trained person for its worthwhile operation.  This 

is because care must be taken when assigning the number of strings.  

Active awareness of these issues that are necessary for the correct 

utilization of the technique makes the method difficult to use and thus the 

requirement for a trained person for its worthwhile operation. 

 

2.1.6 Artificial Neural Networks 

Work on artificial neural networks was motivated from the recognition that the 

human brain computes in an entirely different way from the conventional digital 

computer.  A neural network can be defined as a massively distributed 

processor made of simple processing units which have a natural propensity for 

storing experimental knowledge and making it available for use. 

Artificial neural networks differ from conventional techniques in many respects.  

The main difference is that the latter rely on a mathematical model of the 

process to be analysed (hence they are referred to as ‗model-based‘), while the 

former learn from examples.  

Generally, Neural Networks operate in two phases; a learning phase and an 

operating phase. The purpose of the learning phase is to determine the Neural 

Network parameters, which will enable the network to function properly in the 

operating phase. (Ogaji and Singh, 2003) presented an artificial neural network 

system that was trained to detect, isolate and assess faults in some of the 

components of a single spool gas turbine.  The method was tested with data not 

used for the training process. The authors compared the results with available 

diagnostic tools and the results showed that significant benefits can be derived 

from the actual application of the technique.  

 (Lu et al., 2001) described a back-propagation artificial network based method 

that was trained and tested using noisy data.  The results indicated that under 
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high noise levels, ANN fault diagnostics could achieve only a 50-60% success 

rate. 

(Yoon, et al, 2008) applied an artificial neural network to predict the deteriorated 

component characteristics of a micro gas turbine.  The neural network was 

trained with generated deterioration data.  Inputs to the system were 

measurable parameters and characteristic health parameters of each 

component were predicted.  The method was demonstrated to produce 

sufficiently accurate predictions; however, such accuracy was reduced when a 

smaller number of input parameters were used. 

 
(Fast, et al, 2009) presented an ANN that was trained to predict the 

performance parameters of a gas turbine for both on-line and off-line 

monitoring.  The presented method could extrapolate beyond the range of 

training data and was demonstrated with good diagnostic results. 

The multi-layer perceptron (MLP) with back-propagation training is the most 

common architecture used for gas path analysis purposes, also known as the 

feed-forward back-propagation neural-network.  Various researches have 

applied this method and they include, (Denney, 1965), (Eustace, 1993), 

(Kanelopoulos et al., 1997), (Tang et al., 1998) 

The following are the main advantages of neural networks as listed by 

(Bettocchi et al., July 2007) 

 They do not require knowledge of the physics of the problem to be 

modelled, since they allow the reproduction of a system once they are 

trained by using input-output data of the system itself.  This is especially 

useful when a system model is either unavailable or too complex to be 

analysed. 

 The capability to learn different typologies of information such as 

quantitative and qualitative rules derived from field experience. 

 High robustness in the presence of poor and incorrect input data. 
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 High computational speed, which allows real time calculation. 

 

On the other hand, the main limitation of Neural networks is high prediction 

error when they operate outside the field for which they were trained, i.e. they 

are not able to extrapolate; this implies that a massive amount of data from 

encountered and foreseeable fault conditions of operation would be required in 

each development phase of the neural network. 

Others limitations include: 

 Training times may be long, though this is dependent on network type, 

size and amount of training data.  In the event that machine operating 

conditions change, e.g. an overhaul, neural networks require retraining. 

 It is deficient in as far as providing descriptive results is concerned; 

besides inspecting predictions by the neural network, there is no way of 

accessing the neural networks ―reasoning‖. 

 It is sometimes difficult to provide the confidence level associated with 

the output result.  This is because neural networks attempt to replicate 

the behaviour of a system and thus lack the knowledge needed for true 

understanding of a physical process. (They are thus considered shallow). 

 As the number of engine operating points that need to be diagnosed 

increases, the diagnostics error is bound to increase unless an 

alternative means of data correction is devised. 

 

2.1.7 Bayesian-belief network based GPA 

Bayesian Belief Networks (BBN) are probabilistic expert systems that allow the 

estimation of the probability of discrete variables even in complicated systems 

with many variables (and strong relationships among them).  A Bayesian Belief 

Network consists of nodes representing discrete variables, as defined in 

probability theory.  All possible discrete values of a variable compose the set of 
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states of the corresponding node.  The interrelationships among the variables 

are expressed through the links of the network.  Diagnostic BBNs allow the 

disengagement of the BBN from hard-to-find statistical data and implementation 

into any type of engine; these two elements make BBN‘s interesting and 

promising. The heuristic way of building BBNs however puts some question on 

its reliability and generality. 

(Palmer, 1998) noted that in as much as Gas path analysis codes have been 

somewhat successful, they have nevertheless not been entirely satisfactory; 

improvements would therefore consist of the integration of information such as 

past maintainance records, in order to achieve better results.  To that end, the 

author developed a diagnostic system for the CF6 family of engines.  This 

system integrated test cell measurements and a gas path analysis program with 

information regarding engine operational history, build-up work-scope, and 

direct physical observations, in a Bayesian belief network.   A similar approach 

was presented by (Volponi et al., 2003a) who developed a data fusion system 

that utilised, in part, a BBN for data fusion.  The aim of the method was to 

integrate data from multiple sources that included maintainance histories and 

user manuals; such an approach was deemed by the authors to be more 

worthwhile than using information from a single sensor.  The underlying 

purpose of their method consisted of enhancing diagnostic visibility, reliability 

and reducing the number of diagnostic false alarms.  A general procedure of 

building a BBN for diagnostic reasons has been presented by (Romessis et al., 

2001).  (Romessis and Mathioudakis, 2006) presented an alternative BBN 

method.  In comparison with the BBN proposed by (Romessis et al., 2001), it 

was more efficient even in fault cases with smaller health parameters‘ 

deviations.  This improvement was due to the way the BBN was constructed; 

probabilistic relationships among variables were more accurately represented.   

Further, the following aspects made the BBN by (Romessis and Mathioudakis, 

2006) (and all other BBNs in general) more attractive for application: 
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 Since the diagnostic conclusions are derived through estimated 

probabilities, confidence levels of diagnostic conclusions are also 

provided with the diagnostic results. 

 The ability to embed BBNs into other diagnostic procedures thus 

providing a more robust and accurate diagnosis. 

 The convenience of inclusion of additional information, whenever 

available.   Additional information such as engine maintainance histories 

can be included either as independent knowledge by adding network 

nodes or as a-priori knowledge by modification of the a-priori probability 

of the network nodes. This inclusion is not a hard task since it does not 

require a rebuild of the network.  In this way, the method offers an 

alternative to the known problem of gas path diagnostics consisting of 

the determination of more health parameters, than the available 

measurements. The BBN solves this problem through the inclusion of 

this additional information, something that would be possible for GPA 

only by having additional gas path measurements. 

 

However, the use of BBN in gas path diagnostics experiences the following 

limitations: 

 BBN‘s in general do not deal with sensor bias.  However, recently, (Lee, 

et al, 2010) developed an off-line fault diagnosis method for industrial 

gas turbines that made use of multiple Bayesian models.  Sensor biases 

were explicitly included in the multiple models so that the magnitude of 

biases, if any, could be estimated in addition to component faults. 

 Substantial time and effort are required to gather the information needed 

for setting it up. 
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2.1.8 Fuzzy Logic based diagnostics 

Fuzzy Logic is a method that formalises the human capability of imprecise 

reasoning.  It is a rule-based approach, founded on the formulation of novel 

algebra, typically used in the analysis of complex systems and to enable 

decision making processes to be performed.(Ross, 2004)  The input and output 

are discretised and this enables complex mathematical problems to be 

simplified.  Fuzzy logic systems allow the incorporation of the knowledge base 

in a simpler manner than other artificial intelligence methods, specifically, neural 

networks.  In addition, they are cost effective for a wide range of applications 

compared to traditional mathematical model-based methods (and neural 

networks as well), (Bettocchi et al., 2007). 

Various gas turbine diagnostic methods based on Fuzzy logic theory have been 

developed with success.  (Siu, 1996) presented a system that consisted of 

Fuzzy logic in conjunction with an expert system, for diagnosis of vibration in 

turbo-machinery.  The fuzzy part was used to model uncertainty associated with 

vague knowledge whilst the expert system part was used to rank possible 

vibration causes.  The system also made use of past maintainance records.  

The system was tested and was demonstrated to be able to identify underlying 

causes of typical vibration problems.  (Tang et al., 1999) presented a jet engine 

condition monitoring and diagnosis system that was based on Fuzzy logic and 

neural network technology.  The method contained three diagnostic levels, 

health check, fault diagnosis and prognosis.  Fuzzy reasoning acted to classify 

faults into gas path components, sensor faults and rotor/subsystem faults, whilst 

the neural network element speculated the fault codes and computed their 

magnitudes.  The system was applied in an airline situation with data acquired 

from airborne recorders and was demonstrated to be successful in as far as 

condition monitoring and fault diagnosis are concerned.  (Applebaum and 

Ha‘Emek, 2001) presented a fuzzy expert classifier for fault identification that 

was based on expert reasoning and diagnosis of trend case residuals formed 

during an airplanes first ten seconds of flight.  The implementation of the system 
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allows an expert to modify the fuzzy rule base ‗on the fly‘ so that no further 

model recompilations are necessary. 

(Ganguli, 2003) developed a fuzzy logic system for gas turbine module fault 

isolation.  Inputs to this system were measurement deviations of gas path 

parameters (deviation from a baseline engine).  The system then used rules 

developed from performance influence coefficients, for fault isolation, whilst 

accounting for measurement uncertainty.  The method was tested with 

simulated data and showed that the fuzzy system isolated module faults with an 

accuracy above 95%, even with poor quality data. 

(Demirci, et al., 2008) developed an automated fuzzy-logic based method for 

engine health monitoring for use in commercial aircraft.  The inputs to the fuzzy 

logic system were engine performance parameters gathered from aircraft during 

cruise.  The system produced output values as either ‗faulty‘ or ‗not faulty‘.  The 

method was found to simplify Engine health monitoring procedures for a certain 

airline and in addition, minimised drawbacks such as human error, extra labour 

hours and the requirement for engineering expertise.  Limitations to this method 

include the fact that it does not provide long-term engine maintainance 

decisions such as scheduling overhaul times or predicting the remaining life of 

hot-end components. 

The use of fuzzy logic systems in gas path diagnostics experiences the 

following limitations: 

 The model free feature that allows data-fusion and computational time 

reductions comes with the restrictions that a fuzzy system does not admit 

model-based proofs of stability and robustness. 

 Like other artificial intelligence tools, fuzzy systems are unable to 

extrapolate/approximate credibly, outside their range of exposure; this 

implies the need to have massive amounts of data in their development, 

from both encountered and foreseeable fault conditions. 
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 Fuzzy systems face the problem that the number of rules increases 

according to the complexity of the process that is being approximated.   

 

2.1.9 Expert Systems 

An expert system is a computer program that represents and reasons with 

knowledge of some specialist subject with a view to solving problems or giving 

advice.  It is usually built by assembling a knowledge base which is then 

interpreted by an inference engine.  A number of expert systems for gas turbine 

diagnostics have been developed in the past, and include and not limited to, 

JET-X (Shah et al., 1988) a PC-based expert system, developed at General 

Electric for use on the United States Airforce A-10 aircraft.  It provided the 

capability to supplement engine fault detection systems by incorporating 

knowledge from existing troubleshooting manuals, augmented by engineers 

with a background in engine performance analysis.  The system proved quite 

useful where considerable amounts of information were required to be analysed 

for multiple interdependent root causes.  HELIX, (Hamilton, 1988) developed by 

United technologies research centre and Sikorsky aircraft, utilised a  Qualitative 

Reasoning System (QRS) that represented a set of constraints that defined the 

normal behaviour of the engines, flight controls, transmission and rotors of 

helicopter aircraft.  Aircraft health was assessed by determining whether 

observations (sensor readings and pilot control inputs) were consistent with the 

constraints of the model. If an inconsistency was detected, a process of 

systematic constraint suspension was used to test various failure hypotheses. 

TEXMAS, (Collinge and Schoff, 1987) was developed by Textron Lycoming for 

the Lycoming T53 engine for both engine condition monitoring and diagnosis. 

The monitoring of trends in measured parameters lead to prediction of 

component failures and subsequent deduction of the defective component or 

system  

(Torella and Torella, 1999) presented an expert system for the diagnostics and 

trouble-shooting of gas turbine apparatuses that constructed probabilistic 
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relations among symptoms and faults.  The authors noted that by using 

probabilistic expert systems, delicate maintenance actions may be carried out 

fast and effectively.  

(Afgan, et al, 2006) presented a method for diagnosis and monitoring of gas 

turbine combustion chambers.  The method made use of data obtained by 

means of numerical simulation of gas turbine chambers.  The method was 

meant to solve the problem of scarcity of high-level experts in the energy sector 

by providing decisions on engine health condition in the absence of the high-

level experts. 

 

(Kopytov et al., 2010) presented a hybrid expert system method that consisted 

of three models.  The first was a diagnostic model based on bayes‘ theorem.  

This model was built on the basis of prior statistics of respective components.  

The second model was based on an engine mathematical model that computes 

engine faults based on measurable parameters from both clean and degraded 

conditions.  The third model was a logical model that was used to determine the 

engines status condition based on information from the first two models.   

This mutual complementation allowed for optimal fault isolation and 

quantification. 

 

Expert systems have much to offer to integrated diagnostics for gas turbine 

engines.  (Doel and LaPierre, 1989) highlighted the following promising areas: 

 Integration of expert systems with Built-in control (BIT) controls; resident 

in the engine control, and integrated with the flight computer, an expert 

system will serve to provide interpretation of BIT information that can 

provide specific maintenance recommendations.  Further, the 

proliferation of information that accompanies BIT systems provides an 

opportunity for expert systems, as far as management and analysis of 

large amounts of data are concerned, since these will be beyond the 

capacity of most maintenance personnel. 
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 Analysis of acquired engine parameters, particularly from mechanical 

subsystems; data analysis can often be accompanied independent of 

expert systems.  However, interpretation of many complex symptoms is 

an appropriate function for expert system technology 

 The inclusion of qualitative and expert information (that is generally 

available to the analyst) in gas path analysis.  Kalman filter based tools 

are certainly effective but they fall short of the performance that can be 

achieved by a skilled analyst.  This short fall results from the inability to 

make use of qualitative information that includes: prior maintenance 

history, pilot reports, interpretation of error patterns generated by Kalman 

filters, impact of unavailable measurements on the analysis.  Further, 

(DePold and Gass, 1999) noted that a minimum of one week of intensive 

training is required to apply diagnostic knowledge but effective utilisation 

of current tools requires years of experience.  They further stated that the 

use of expert systems permits the emulation of the required judgment 

and experience (that takes a long time to acquire). 

 The integration of expert systems with the capability to store massive 

amounts of text and graphic information using CD-ROM or comparable 

media.  By combining these technologies, one can envision a system 

that assists the mechanic throughout engine diagnostic and maintenance 

tasks.  The expert system could contain the procedure(s) needed to 

diagnose engine problems 

 

However, there are significant obstacles to be overcome if expert systems (and 

indeed Artificial Intelligence systems) are to become a robust tool for jet engine 

diagnostics and they include: 

 Defining effective diagnostic procedures for new engines.  There are two 

factors that make this difficult; the first is anticipating the problems that 

the expert system will need to address.  It is not practical to have a 

system cope with every conceivable situation that could occur.  It is also 
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not unusual to have new engines exhibit one or two problems that were 

not expected and/or have not been seen before.   

 A second difficulty is anticipating the symptoms for some problems; this 

is difficult because of the limited instrumentation that is provided on jet 

engines. 

 

2.1.10 Rough-Sets based Diagnostics 

The Rough-set method was first introduced by Polish mathematician Zdislaw 

Pawlak, (Pawlak, 1984).  The method can be viewed as an extension to 

classical set theory and is founded on the assumption that with every object of 

the universe of discourse, one can associate some information (data, 

knowledge).  Therefore, objects characterized by the same information are 

indiscernible in view of the available information concerning them.  Such objects 

can be considered as belonging to sets with fuzzy boundaries, that is, sets that 

cannot be precisely characterised using the available set of attributes.  This 

leads to the definition of a set in terms of lower and upper approximations.  The 

lower approximation is a description of the objects which are known with 

certainty to belong to the subset of interest whereas the upper approximation is 

a description of the objects which possibly belong to the subset. 

Whilst faults in engine gas paths are multi-characteristic in nature, it is not 

always possible to set as many sensors as would be needed to correctly 

diagnose these faults.  In addition, noise and sensor faults will compromise the 

quality of sensed data.  As such, the situation is one where one needs to 

precisely diagnose faults with limited information (limited measurement 

parameters affected by measurement noise).  To address this issue, (Chen and 

Sun, 2005) developed a hybrid method that consisted of Rough-sets in 

conjunction with Neural Networks.  The rough-sets was used as the front end of 

the Neural networks, where the former served in the area of fault isolation and 

the latter served in the area of fault quantification.  This hybrid method served to 

improve engine fault diagnosis as opposed to the case where either method 
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was used on its own; this is because the rough-sets part of the system served 

to isolate the fault whilst the Neural networks part served to quantify the same 

fault, taking into account engine non-linearity. 

The main advantages of the rough set-theory include: 

 Representation of imprecise knowledge; in gas turbine diagnostics, a 

typical situation is the case of multiple fault diagnosis with limited 

measurements. 

 Ability to incorporate expert knowledge into a system. 

 Evaluation of the quality of the available information with respect to its 

consistency and the presence or absence of repetitive data patterns. 

Having mentioned that, it needs to be stated that similar to other artificial 

intelligence methods such as Fuzzy logic and Artificial Neural networks, rough-

sets are not accurate beyond the range of variability for which they were 

trained. 

 

2.1.11 Diagnostics using Transient measurements 

In most cases, gas turbine diagnostics is performed using steady state 

measurement data.  However in certain cases, such steady state data may be 

either difficult to obtain or altogether unavailable.  A good example is combat 

aircraft that spend 70% of their total mission time with their engines running in 

non-steady state conditions (Merrington, 1989).  In addition, some gas turbine 

fault phenomena appear only during transient phases; such faults contribute 

little to performance deviation at steady state operation conditions but are 

however significant during transient processes. Such phenomena could 

seriously degrade the operability of the engine during manoeuvres and following 

missile release, such as mis-scheduled nozzle and compressor blade 

movement due to control system faults (Merrington, 1988).  In such cases gas 
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turbine diagnostics may best be achieved using transient measurement data.  

(Meher-Homji and Bhargava, 1994) noted that there is significant diagnostic 

content in turbine start-up and shutdown data and in data obtained during 

power or speed changes and that these data can be captured if an automatic 

on-line system is employed.  They further provided an overview of the use of 

both performance and mechanical transient analysis as a means to detect gas 

turbine problems.  (Li, 2003) presented a method that utilised a non-linear 

model based diagnostic approach using typical gas turbine transient 

measurements, combined with genetic algorithms.  For this approach, a typical 

slam acceleration process from idle to maximum was chosen.  The method was 

applied to a model engine implanted with three typical single component faults 

and was proven to be very successful.  (Lunderstaedt and Junk, 1997) 

presented a method that suited non-stationary operations of jet engines 

especially in the military field.  The method utilised nonlinear parameter 

estimation algorithms and neural networks for the calculation of the non-

stationary reference base lines.  The authors further presented results from two 

jet engines, LARZAC and RB 199. 

(Ogaji, et al., 2003) presented a method that involves the use of Artificial Neural 

Networks with engine transient data for fault diagnosis of engine components.  

The approach involved classification and approximation type networks, where 

engine measurements are first assessed by a trained network and if a fault is 

diagnosed, it is classified into one of two groups, sensor faults or component 

faults.  Other trained networks proceed with quantification of the diagnosed 

fault.  The method took into account sensor noise and bias.  The authors 

compared fault signatures from a steady state and transient process and 

concluded that diagnosis with transient data can improve the accuracy of gas 

turbine fault diagnosis. 

(Sampath, et al., 2003) presented a method that compared model-based 

information with measured data obtained from an engine during a slam-

acceleration.  The measured transient data was compared with a set of 
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simulated data from an engine model under similar operating conditions and 

known faults through a cumulative deviation.  The cumulative deviations so 

obtained were minimised for best fit by means of a genetic algorithm.  The 

method was applied with success to a 2-spool turbofan engine. 

 

2.1.12 Summary of diagnostics methods and recommendations 

In as much as engine-fault diagnostics is a mature technology no technique 

provides a satisfactory and complete answer to all the issues; each method 

comes with its own limitations.  In summary:  

1. Some of the approaches such as linear GPA with ICM inversion are 

based on the assumption that the changes in the health-parameters 

are relatively small and the set of governing equations can be 

linearized. The inadequacy of this linearity assumption has led to the 

development of non-linear counterparts.  

2. Techniques, such as WLS and Fuzzy-logic approaches are well 

suited for dealing with measurement uncertainty. 

3. Algorithms based on ICM inversion are suitable only if the number of 

measurements is more than (or equal to) the number of health 

parameters; in addition, they are not able to deal with measurement 

uncertainty.  

4. Estimation techniques as well as AI-based methods, can deal with 

diagnostics with only a few measurements.  

5. Some techniques are better suited for estimating gradual 

deteriorations and others for rapid deteriorations.  Such methods may 

be referred to as MFI (multiple-fault isolation) and SFI (single-fault 

isolation) respectively. The former implies that all the engine-

components deteriorate (slowly) with time, whereas the latter implies 

a rapid trend shift, probably due to a single (or multiple) entity going 

awry. AI-based methods are more suitable for SFI problems, because 
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they approximate all the possible solutions with a limited number of 

cases used to train the system. 

The extension to all the possible combinations (even in a limited 

search-space) is theoretically possible, but time consuming and 

extremely burdensome computationally. 

6. AI-based techniques do not exhibit the ‗smearing' problem (i.e. the 

tendency to spread-out the faults over a large number of the engine's 

components and sensors) that estimation techniques suffer from, but 

on the contrary have good ‗concentration' capabilities. 

7. Estimation techniques require prior information and the solution can 

be dramatically affected by this choice.  Similarly AI-based methods 

require particular care during the set-up phase. Moreover AI-based 

algorithms can be excessively time-consuming, both in the actual 

calculation as in the case of a GA, or in the training phase as for an 

ANN.  

 As far as fuzzy systems are concerned, a large number of rules with 

many non-linearly-related inputs and outputs are needed.  

8. Expert systems, ANNs, BBNs and fuzzy logic systems are referred to 

as model-free systems. This model-free feature is responsible for 

data-fusion capability but comes with the limitation that no model-

based proofs of stability and robustness are possible.  Besides, they 

are not accurate out of the range of variability for which they have 

been trained or set-up.  Numerous tests are required to validate these 

techniques. ES, BBN and fuzzy logic approaches have the additional 

quality that they can be used to encompass expert knowledge in the 

system.   

The techniques are summarised in Table 2.1. 
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  Methodology                     

Strategy 

Linear GPA with ICM 

inversion 

Non-linear 

GPA with 
ICM 

inversion 

Linear 
Kalman 

filter Linear WLS 

Non-linear 

Kalman filter 

Non-linear 
model based 

with GA 

Artificial neural 

networks 

Bayesian 
belief 

networks 

Expert 

systems 

Fuzzy 

Logic 

Rough-

Sets 

Linear/non-linear model Linear Non-linear Linear Linear Non-linear Non-linear Non-linear Non-linear       

Small changes of health 

parameters X   X X               

Addresses Random noise     X X X X X X X     

Addresses Bias     X X X X X   X     

N Parameters, M 

Measurements M>=N M>=N M<N M<N M<N M<N M<N M<N M<N   M<N 

Singe/Multiple fault(s) MFI MFI MFI MFI MFI SFI/Limited MFI SFI/Limited MFI 

SFI/Limited 

MFI 

SFI/Limited 

MFI   MFI 

Smearing Vs concentration     Smearing Smearing Smearing Concentration Concentration Concentration       

Difficulty and dependence on 

training/tuning     

Prior 

knowledge 

Prior 

knowledge 

Prior 

knowledge 

Number of string 

assignment 

Long training 
and data 

selection 

Effort in 
gathering info 

for setting-up     

Need to 
generate 

rules 

Artificial intelligence based           X X X X X X 

Computational burden           X   X       

Model free     
 

      X X     X 

Data-fusion capability             X X       

"Black-box" (not observable)     

 

      X       X 

Good accuracy in pre-defined 
ranges only           X X X     X 

Expert knowledge capability               X X X X 

On-wing     X X X   X     X   

 

Table 2.1: Comparison and summary of Gas-path diagnostic methods. [ Marinai et al., 2004 ] 

‗X‘ means that the respective scheme possesses the respective capability contained in the ―strategy‖ column. 
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In conclusion, the critical review of the available literature recommends the 

following requirements for an advanced diagnostics process: 

1. It should be based on a non-linear model. 

2. Ability to detect with reasonable accuracy significant changes in 

performance. 

3. Able to deal with measurement random noise and sensor bias. 

4. Competent to make a worthwhile diagnosis using only a few 

measurements. 

5. Designed specifically for Single Fault Isolation or Multiple Fault 

Isolation. 

6. Possess a ―concentration‖ capability on the actual fault.  

7. Exempt from tuning and training uncertainties and any difficulties and 

dependences related to the setting-up of parameters. 

8. Easily-satisfied computational requirements. 

9. Capable of data-fusion. 

10. Ability to incorporate expert knowledge.  

11. Fast in undertaking diagnosis for on-wing applications. 

12. Free from black-box behavior (lack of comprehensibility). 

 

There is no single technique that addresses all these issues; some of the 

techniques are complementary and each has its own advantages and 

limitations.  Hence it would be worthwhile to try and combine more than one 

technique to offset the limitations of one with the advantages of another within a 

combined scheme.  This task can be thought of in two ways; one is to use 

critically the results from different methods to work in concert with one another, 

exploiting a potential synergistic effect.  The second way is to design hybrid 

systems. On the other hand, industry is showing a major interest in engine-

health monitoring and prognostic schemes.  The future challenge is to design 

effective combined engine health monitoring and prognostic procedures, and in 

so doing, increasing the market value of these technologies. 
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2.2 Advanced thermo-fluid modelling for gas turbines 

Reliable and accurate fluid modelling of caloric properties for gas turbine 

performance simulation software is essential as it provides a robust foundation 

for building advanced multi-disciplinary modelling capabilities and improved 

confidence in simulation results.  Such caloric properties e.g. Specific Heat 

Capacity, Enthalpy, Entropy etc, can be calculated at various levels of fidelity 

which are dependent upon simulation objectives, time and computational 

constraints.  This section attempts to investigate the common assumptions in 

thermo-fluid modelling and their subsequent effects on caloric properties. In 

addition, the common technical models used for calculating caloric properties 

are reviewed and compared for mutual consistency. 

 

2.2.1 Experimental methods 

One method of determining the ideal gas isobaric heat capacity utilises the 

speed of sound in a perfect gas, (Trusler, 1991), Equation 2.5. 

RTu 2
 (2.5) 

Where, 

 
RC

C
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 R is the ideal gas constant, calculated as Equation 2.6. 
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 The temperature is determined by measurement and the speed of sound so 

obtained is used to obtain the isobaric heat capacity pC , Equation 2.7 
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R

Cp


1


 

(2.7) 

 
 

Typically, the isobaric heat capacity obtained in this manner will be obtained 

with a precision of 0.01 percent or better.  However, the temperature range 

where such data are available is restricted to the temperature range which can 

be covered with accurate experimental setups. Thus, an alternative and 

common method of determining the heat capacity of ideal gases uses 

theoretical models that depend on molecular constants measured by 

spectroscopy. These models generally consider contributions to the heat 

capacity from molecular translation, rotation and vibration and where necessary, 

from excited electronic states.  Each mode has its own distinguished energy 

scale, denoted by a characteristic temperature. For higher accuracy, especially 

at high temperatures, contributions from mutual interactions between different 

modes have to be considered.  With this method, the temperature ranges are 

unrestricted. 

Once the isobaric heat capacity and molecular weight of a species are known, 

then the rest of the caloric properties can be calculated for an ideal gas using 

Equations 2.8 to 2.10 
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Where, 

 pC is the isobaric heat capacity 

 P is the pressure 

 T is temperature 

 H is the enthalpy 

 R is the gas constant 

In addition to the equations above, the following equations are fundamental as 

far as flow continuity models are concerned. 

ss TRP    (2.11) 

VAW eff    (2.12) 
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sTR

V
Ma

..
  

(2.15) 

The equations presented so far are made without due attention to real-gas 

effects; however, neglecting real-gas effects poses limits which are discussed in 

the following section. 
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2.2.2 Perfect gas hypothesis and its limitations 

Gas turbine performance simulation tools employ simplifications depending on 

the intent of the simulation for which these simplifications are appropriate.  A 

perfect gas consists of the assumption of constant cold end gas properties, that 

is,   Kg.KJ/ 7.1004pC  and 4.1 (Walsh et al., 1998).  This assumption can 

yield inaccuracies of more than a few degrees Kelvin in temperature 

calculations (Konstantinos Kyprianidis et al., 2009).  Particularly at low 

temperatures and high pressures, intermolecular forces affect the 

thermodynamic properties of the system leading to considerable deviations from 

the assumed perfect gas behaviour, (Bücker et al., 2003).  For quick evaluation 

of thermodynamic cycles, especially hand calculations, this method is however 

useful.  (Kurzke, 2007) stated that simplified models are quite acceptable for 

ideal cycle analysis; however for real cycles and more so combustion models, 

these simplified models are unacceptable.  (Wilcock et al., 2002) noted that 

cycle performance simulations of future gas turbines may be limited if real gas 

properties at high temperatures and Fuel-to-air ratios are not taken into 

account. 

For dry air, reliable thermodynamic properties can be calculated using an 

accurate equation of state, (Jacobsen et al., 1990).  (Bücker et al., 2003) made 

comparisons of isobaric heat capacity and enthalpy for dry air and combustion 

of a natural gas at an equivalence ratio of 3 . 

Where 

tricstoichiomeFAR
FAR  (2.16) 

The aforementioned comparison was between thermodynamic properties 

obtained using an equation of state that considers real gas behaviour, 

(Jacobsen et al., 1990) and corresponding values obtained assuming a perfect 

gas mixture, Figure 2.1 to Figure 2.3.  
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Figure 2.1: Percentage deviations of isobaric heat capacities  

of dry air considering real gas behaviour versus a perfect gas mixture 

[Bücker et al., 2003] 

 

With reference to Figure 2.1, it is observed that neglecting real-gas effects 

results in significant inaccuracies of isobaric heat capacity values especially at 

high pressures and low temperatures. 

 

Figure 2.2: Absolute deviations of enthalpies of dry air considering real 

gas behaviour versus a perfect gas mixture [Bücker et al., 2003] 
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Figure 2.3: Absolute deviations of enthalpies of combustion of a natural 

gas in air, considering real gas behaviour versus a perfect gas mixture 

[Bücker et al., 2003)] 

 

With reference to Figure 2.2, it is observed that the deviations in enthalpy are 

small when absolute differences are considered; however, these small 

differences may have a major impact if enthalpy differences are calculated 

between two states at comparable temperatures and different pressures  

Real gas effects will rise considerably for moist air and combustion gases due 

to the presence of water and/or carbon dioxide, depending on the concentration 

of either (or both).  With reference to Figure 2.3, deviations in enthalpy are 

observed.  Though these absolute differences may be small, they may have a 

major impact when enthalpy differences are considered, between two states at 

comparable temperatures and different pressures. 

More accurate calculations can be obtained if the assumption of constant 

values of pC and  are maintained but evaluated at mean component 

temperatures. For illustration, Equation 2.17 represents compressor isentropic 

efficiency: 
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For a compression calculation, the aim would be to compute compressor exit 

temperature, Tout.  Using isentropic compression relations (Walsh et al., 1998), 

Equation 2.17 can be re-written as: 
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Therefore, Tout is obtained by substituting values of PR, T in, isc, and
mean
 .  This 

method yields less inaccuracy (just a few degrees Kelvin in temperature 

calculations) as compared to constant cold end gas properties. 

Fully rigorous calculations involve the use of the fundamental definitions of 

specific enthalpy and entropy; any inaccuracies obtained using this method are 

dependent on the technical model used for calculating caloric properties.   

(Walsh et al., 1998) state that typical uncertainty levels in calculations using the 

fully rigorous approach are on average approximately 0.25 %. 

The fundamental definition of isentropic efficiency is as given in Equation 2.19 

which is a modified version of Equation 2.17: 
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(2.19) 

For an adiabatic isentropic process, there is no change in entropy, thus for an 

ideal isentropic compression, 

)ln( .' PRRinout    (2.20) 
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Equations 2.19 and 2.20 form the foundation for fully rigorous calculations.  The 

following calculation procedure then follows: 

1. in  is obtained from the fluid model and is a function of 
inT  and fluid 

composition. 

2. The gas constant, R, is obtained from the fluid model and is a 

function of fluid composition. 

3. '

out  is obtained from )ln( .' PRRinout   by substituting in values 

of R, PR and in  

4. 
'

outT  is then obtained from the fluid model using an inverse fluid 

function and is a function of '

out  and fluid composition. 

5. inh  is obtained from the fluid model 

6. 
'

outh  is obtained from the fluid model and is a function of 
'

outT  and fluid 

composition. 

7. outh  is then obtained from Equation 2.19 by substituting inh , 
'

outh  and 

isn . 

8. Finally, outT  is obtained from the fluid model using an inverse fluid 

function and is a function of outh  and fluid composition. 

The procedure above is mandatory for rigorous calculations and involves 

iterations and interpolations. 

(Konstantinos Kyprianidis et al., 2009) carried out a compression case to 

illustrate the differences between the calculation methods; their results are 

presented in Table 2.2. 
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Calculation Method Error in Temperature 

[K] 

Error in compression 

Power [%] 

Constant Cold End Cp 

and   

-15.8 -0.61 

Cp and  at mean 

component 

temperature 

3.7 0.59 

Fully Rigorous 

approach 

Acted as reference Acted as reference 

Conditions: 

Tin = 351.2 K, Pin=110.135 [kPa], PR = 10.65, isc, = 0.863 

Assumptions: 

 outinoutin WARWARandFARFAR     

 No compressor bleeds. 

Table 2.2: Comparison of various calculation methods for a compression 

case [Konstantinos Kyprianidis et al., 2009] 

 

2.2.1 Chemical Equilibrium and No dissociation models 

Dissociation can be defined as, ‗A general process in which ionic compounds 

separate or split into smaller particles usually in a reversible manner.‘  In other 

words, the products of combustion of a fuel (hydrocarbon) are Carbon dioxide 

and water, assuming complete combustion.  At relatively high temperatures the 

otherwise stable products of combustion acquire sufficient energy to break 

down into intermediate atomic species such as , CO, H, OH and O.  In 
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addition, the Nitrogen content in air breaks down (after acquiring sufficient 

energy) into N atoms and combines with the O atoms to produce NO. 

The corresponding equations are presented in Equations 2.21 to 2.25. 

22 O
2

1
COCO   (2.21) 

222 O
2

1
HOH   (2.22) 

22 H
2

1
OHOH   (2.23) 

OO
2

1
2   (2.24) 

NOO
2

1
N

2

1
22   (2.25) 

The level of dissociation is highly influenced by both pressure and temperature.   

LeChateliers‘ principle states: 

If the external constraints under which an equilibrium is established are 

changed, the equilibrium will shift in such a way as to moderate the effect on the 

change. 

In each of the equations highlighted above and based on LeChateliers‘ 

principle, the following can be deduced: 

 The forward reactions are endothermic; that is, they absorb 

energy for bond breaking.  Therefore an increase in temperature 

of the products of combustion would favour the forward reaction 

and thereby yielding higher levels of dissociated species; 

therefore higher temperatures imply higher levels of dissociation. 

 The sum of moles in each species on the left is less than the sum 

of moles on the species on the right side of each respective 
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equation.  Pressure is proportional to the number of moles and as 

such, the pressure on the left side of each respective equation is 

also less than the pressure on the right side.  Therefore, an 

increase in pressure would favour the reverse reaction thereby 

yielding higher levels of non-dissociated species.  Therefore the 

lower the pressure, the higher the level of dissociation. 

Dissociation fluid models thus take into account products of combustion that are 

a result of dissociation. 

On the other hand, no-dissociation-fluid models assume constant gaseous 

composition of the products of combustion of a fuel or air.  In the case of 

combustion of a fuel (mixed with air), the products of combustion would thus be 

Carbon dioxide and water (assuming complete combustion); in the case of a 

fuel-lean mixture, Argon, Nitrogen and Oxygen are formed as well.  Since 

dissociation is not accounted for then there is no change in the composition of 

the products even with changes in temperature and/or pressure; thus the mean 

molecular weight of the products of combustion remains constant regardless of 

the temperature or pressure. 

(Bücker et al., 2003) developed a model for the prediction of caloric properties 

of moist air and combustion gases.  The model predicts ideal gas caloric 

properties of un-dissociated gas mixtures at temperatures from 200 K to 3300 

K.  In addition, the authors developed a simple model to account for dissociation 

at temperatures up to 2000 K.  The authors noted that although dissociation 

reactions considerably affect combustion gas properties at temperatures 

relevant to gas turbine processes, only two of the common models address this 

issue, (Gordon and McBride, 1994) and (Brandt, 1999).  (Konstantinos 

Kyprianidis et al., 2009) noted that if dissociation effects are ignored, then errors 

can be induced in the values of pC and  as much as 30% and 5 % respectively. 
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2.2.2 Polynomial functions and property tables 

Conventionally, there are two approaches for fluid model implementation in gas 

turbine simulations; empirical relations based on polynomial functions and 

dedicated caloric property tables. 

In the polynomial function method, the composition of combustion products is 

determined depending on the fuel and fuel-to-air ratio.  This provides the mass 

fraction of each constituent gas in the combustion product.  The properties of 

each constituent are then calculated at the prevalent temperature and combined 

to give the respective values for the mixture.  (Walsh et al., 1998) stated, ‗for 

performance calculations this method is now almost mandatory for computer 

library routines in large companies.‘  To that end, the authors express the 

specific heats of air and common gases in combustion products as eighth-order 

polynomials in temperature, Equation 2.26. 
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 (2.26) 

 

The authors have provided values of the coefficients, Ai, for various gases.  

These polynomials can be used in the range 200-2000 K. 

(Van Wylen et al., 1994) provide accurate relations for a number of gases, 

including O2, CO2, N2, and H2O.  Their relations employ fewer terms than those 

in Equation 2.26. 

(Guha, 2001) presented generic equations that are applicable for any fuel, fuel-

air ratio and temperature.  The devised equations are useful for both hand 

calculations as well as repetitive computer iterations for thermodynamic cycle 

analysis. 

 

In the property-tables method, respective caloric values are calculated a priori 

and presented as tabulated data sets.  Chemical equilibrium software such as 

NASAs CEA, (Gordon and McBride, 1994) may be used to generate these data 
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tables.  Required caloric properties are then obtained from these tables my 

means of interpolation routines.  The accuracy of this method depends on the 

size of the data table; in addition, respective fuels will require unique data 

tables.  Although generating such tables is far more laborious and time 

consuming than directly implementing polynomial functions, fluid tabulations 

offer several key advantages which include:(Sethi et al., 2008) 

 

1. Substitution of fluid models is numerically safer if only tabulations are 

changed. 

2. The introduction of alternative function calls for different fluid models may 

lead to convergence problems due to the internal iterations of the 

functions. 

3. The calculation speed is noticeably faster without these iterations. 

4. The constraints of polynomials, with respect to range limits and precision, 

can be overcome by using high resolution tabulations over a wide range. 

5. The required storage space for such dense tables is not a problem for 

modern computing systems. 

6. The use of proprietary fluid models is safer with tabulations because 

even if keyed tabulations are decoded they reveal nothing more than 

numbers and not the model itself.  This is especially important if 

developed models are used collaboratively by competitors. 

7. In cases where the effects of water to air ratio, unburned fuel to air ratio, 

dissociation and any other factors need to be considered, it may not be 

easy to find polynomial relationships which account for these effects in 

the open literature.  Thus, tabulated fluid model tables provide the ability 

to express any fluid property as a function of as many parameters as 

required. For modern computing systems, storage and handling of 

densely populated multi-dimensional tables is not a problem. 
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2.2.3 Effects of fuel chemistry on Caloric properties 

For gas turbine performance calculations, it is important to consider the effects 

of fuel chemistry in the evaluation of caloric properties for combustion products. 

The isobaric heat capacity will normally increase with H/C ratio.  As expected, 

the effect of H/C ratio is more important as the mixture gets richer. Moreover, 

when moving from a weak mixture to a stoichiometric one pC  will become more 

sensitive not only to H/C ratio but also to temperature. (Konstantinos Kyprianidis 

et al., 2009) 

 Since the isobaric heat capacity for combustion products is dependent on the 

H/C ratio of the fuel used, it is thus expected that for fuels with similar H/C ratio, 

minor deviations would be expected.  The Walsh and Fletcher polynomials 

(Walsh et al., 1998) are presented as being suitable for combustion products for 

both Kerosene and Diesel.  Some fuels, e.g. Hydrogen fuel, are not catered for. 

.  

 

Figure 2.4: deviations of isobaric heat capacities  

for various fuels [ Konstantinos Kyprianidis et al., 2009 ] 
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With reference to Figure 2.4; Jet A was used as the reference for comparison 

purposes.  It is observed that the deviations of isobaric heat capacity for Diesel, 

JP5 and JP4 fuel, for different FAR‘s are relatively small and perhaps 

acceptable.  However, as far as Natural gas is concerned, the deviations are 

unacceptably high compared to Jet A.  Therefore, for fuels with significantly 

different H/C ratios, appropriate tables or polynomials should be used in an 

attempt to reduce errors related to differences in fuel chemistry. 

 

2.2.4 Uncertainty analysis of common technical models 

Various technical models have been developed and accepted as technical 

standards in industry.  The models reviewed in this section comprise of the 

common ones currently used in industry.   

The ANSI/ASME performance test codes (ANSI/ASME, 1981) are widely used 

in gas turbine design.  Equations consisting of up to five terms are presented for 

the enthalpy of typical combustion gas components.  The range of validity of 

these equations is 300 K to 1350 K.  (Bücker et al., 2003) stated that these 

equations have poor consistency with other technical models, including one 

developed by the authors.  Maximum deviations of more than %5.0  for 

isobaric heat capacity have been observed, Figure 2.5. 
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Figure 2.5: Percentage deviations of values for the ideal gas isobaric heat 

capacity of a typical combustion gas calculated by commonly used 

technical models versus values calculated using (Bücker et al., 2003) 

method. [ Bücker et al., 2003] 

 

The SAE Aerospace Standard AS681 (Society of Automotive Engineers, 1999) 

contains thermodynamic properties of moist air and combustion gases 

applicable in gas turbine calculations. 

The Association of Steam Boiler, Pressure Vessel and Piping manufacturers 

(Brandt, 1999) model is used for calculation of combustion processes.  This 

model is based on a 1963 version of NASA polynomials for the calculation of 

caloric properties.  Another set of equations which is widely used in industry 

were published by (Baehr and Diederichsen, 1988).  These equations consist of 

twelve terms.  In the high temperature range above 1500K, these equations 

deviate systematically from data published by other authors. 

The NASA Glenn equilibrium computer program, Chemical Equilibrium with 

Applications (CEA), is the latest in a series of thermodynamics tools generated 

at NASA Glenn Research Center to apply equilibrium thermodynamics to 

practical problems (Gordon, 1994).  CEA uses a 9-constant representation of 
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thermodynamic data; this 9-constant form has been used since 1994.  NASA 

Glenn Research Center maintains a database with 9-constant empirical 

coefficients for over 2000 species and for a temperature range of 200 [K] to 

20,000 [K].  These coefficients were generated by least-squares fits to 

measured or calculated thermodynamic functions for condensed and gas-phase 

species (McBride, B.J. 1993).  The database is continually updated to reflect 

new species, improved measurements for current species, and newer physical 

constants. 

(Bücker et al., 2003) performed some comparative analysis for un-dissociated 

combustion gases and compared caloric properties with their method and CEA; 

they concluded that deviations of isobaric heat capacity were at most %05.0 .  

They further stated, ‗Among the technical models, CEA is the only one that 

describes the caloric properties of combustion gases with satisfactory accuracy 

over the entire temperature range.‘ 

 

2.2.5 Summary of advanced thermo-fluid modelling and conclusions 

Based on the critical review of the available literature, the following are the 

conclusions and recommendations: 

1. Although most models in industry are acceptable standards, their mutual 

consistency is rather poor.  This leads to contradictory results and to 

conflicts especially in acceptance tests on the relevant machinery. 

2. Perfect gas assumptions are not recommended for industry standard 

calculations; they are however acceptable for classroom instruction. 

3. Dissociation reactions and subsequent caloric properties, particularly for 

temperatures beyond 1200 K should not be ignored.  Despite this fact, 

only two of the common models, (Brandt, 1999)  and (Gordon and 

McBride, 1994; MCBRIDE et al., 1993) address this issue. 



50 

 

4. Among the existing technical models, CEA is the only one that describes 

the caloric properties of combustion gases with satisfactory accuracy 

over the temperature range of 200K to 3000 K. 

5. Changes in a fuels‘ H/C ratio will significantly affect the caloric properties; 

in particular, natural gases which may vary significantly depending on 

country of origin, require dedicated tables, for accurate caloric properties 

calculations. 
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3 NON-LINEAR WEIGHTED LEAST SQUARES DIAGNOSTICS 

METHODOLOGY 

This section provides detailed description of the non-weighted least squares 

gas turbine diagnostics methodology that was developed and used for this 

research project.  The description of the methods now follows. 

 

3.1 Non-Linear Weighted Least Squares 

Gas turbine component health parameters are not directly measurable; they are 

however thermodynamically correlated with measurable parameters.  

Consequently, gas-path faults have observable effects on measurable 

parameters.  Therefore, with the availability of an essential measurement set 

and a model function that relates the measurement set to the health 

parameters, it is possible to identify faulty components.  

Hence, consider the performance of a gas turbine engine represented by a 

model function, Equation 3.1. 

 xhz


  (3.1) 

Where 

 MRz


 is the vector of measurements and M is the number of 

measurements 

 NRx
  is the vector of component health parameters and N is the 

number of engine health parameters. 

 h is a vector-valued non-linear function that represents the performance 

behaviour of gas turbine engines. 
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The requirement then is to find the vector x

 of component performance 

parameters such that the model function fits best the given measurement data 

in the least squares sense.  That is, the sum of squares represented by 

Equation 3.2 is minimised. 
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 (3.2) 

 

The residual errors, ri are given by Equation 3.3. 

 

   ,1 xhzr imi
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  (3.3) 

  

The minimum value of S occurs when the gradient is Zero, that is, Equation 3.4. 
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In a non-linear system, the derivatives 
j

i

x

r




 are functions of both the 

independent variable (component health parameters) and the measurement 

parameters.  Therefore these gradient equations do not have a closed solution. 

Instead, initial values must be chosen and thereafter refined iteratively; that is, 

the values are obtained by successive approximation, Equation 3.5. 

j
k
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,1  (3.5) 

 

Where, 

 k is an iteration number 



53 

 

 jx , known as the shift vector is the vector of increments between 

iterations 

At each iteration, the model is linearized by approximation to a first-order Taylor 

series expansion about a specified condition denoted by subscript ‗0‘ (baseline 

condition) and is represented by Equation 3.6. 

 
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  HOTxx
x
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xhz 




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





 
(3.6) 

The higher order terms (HOT) can be neglected based on the assumption that 

the engine performance variation is approximately linear due to relatively small 

deviations of engine health parameters  0xx


 . Thus, the engine performance 

model can be represented in Equation 3.7. 

xHz


  (3.7) 

 
The matrix H is known as the ‗Influence co-efficient matrix‘ (ICM) and is defined 

in Equation 3.8. 
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The inverse of this matrix is known as the ‗Fault co-efficient matrix‘ (FCM).  The 

ICM changes from one iteration to the next and can be represented by Equation 

3.9. 
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 (3.9) 
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The residuals represented in Equation 3.3 can then be updated as Equation 

3.10 
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Substituting Equations 3.9 and 3.10 into Equation 3.4 produces Equation 3.11 
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Upon re-arrangement these become the normal equations, Equation 3.12 

 

11 1

i

m

i

ijsis

m

i

n

s

ij zHxHH  
 

 (3.12) 

 

In matrix notation, the normal equations can be re-written as Equation 3.13. 

  zHxHH TT   (3.13) 

 

Measurements are affected by noise; that is, in repeated measurements, there 

will be no exact agreement, that is, measurement uncertainty.  This 

measurement uncertainty can be measured by variance, Equation 3.14. 
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Where, 

 
2 is the variance 

 xi is an observation (measurement parameter) 

 x  is the mean of a set of observations 

 N is the number of observations 

In gas turbine diagnostics, measurement uncertainty is taken into account by 

weighting individual measurements using their respective sample variances, 

Equation 3.15. 
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Therefore, Equation 3.2 with weighting consideration now becomes Equation 

3.16 

 
1

2



m

i

iiirWS  

(3.16) 

 

The gradient equations for this sum of squares then become, 
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And, the modified normal equations become, 
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In matrix form, Equation 3.18 may be written as, 
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  zWHxWHH TT    

Therefore, 

(3.19) 

 

  zWHWHHx TT 
1

  (3.20) 

Equation 3.20 forms the basis for the Newton-Raphson iterative algorithm 

(Stroud, 2001) for a non-linear least squares problem. 

 

Figure 3.1: Illustration of the non-linear weighted least squares 

diagnostics method 

 

With reference to Figure 3.1, 

1. The point erioratedxdet represents a shift in one or more of the health 

parameters, efficiency and/or flow capacity from the baseline 

performance (point ‗0‘ in Figure 3.1).  This shift in health parameters is 

accompanied by a shift in some or all of the measurement parameters, 

line 1 in Figure 3.1.   
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2. The change in measurement parameters from the baseline state to the 

deteriorated state forms the column matrix of measurement deviations, 

z .  In addition, an FCM is obtained from the baseline state data.  

Linear weighted least-squares method, Equation 3.20, is employed to 

obtain an initial solution, point A. 

3. To protect from divergence, the method of shift-cutting is employed.  This 

involves reducing the vector x  by a fraction; in this case, a value of 0.5 

was used.  This reduces the initial solution, A, to A’.  At this new baseline 

(line 3 in Figure 3.1) a new value of measurement deviations z  is 

calculated as the difference between the deteriorated state and the new 

baseline. In addition, a new ICM, hence FCM is calculated.  This new 

FCM and z  are then used to obtain a new solution (new set of 

component performance parameters), point B in Figure 3.1. 

4. Once again, shift cutting is performed to protect from divergence and the 

process is repeated continuously until convergence, point C.  With every 

iteration, the change in the health parameters becomes smaller and 

smaller and the process is stopped when the convergence criteria is met.  

A useful convergence criterion is Equation 3.21. 
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That is, when the change in health parameters between iterations is less 

than 0.1%, then the solution is sufficiently precise and the iterations are 

thus deemed converged.  

In computing the above non-linear diagnostics, the following assumptions have 

been made: 

1. That the number of measurements, M, is greater than or equal to the 

number of performance parameters, N.  This assumption is necessary, 
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as otherwise the matrix  WHH T
 is not invertible and the normal 

equations cannot be solved. 

2. The  WHH T
 matrix is non-singular, that is, invertible.  (In this second 

assumption, the non-singularity would be caused by factors other than 

those stated in assumption 1). 

The above two assumptions are made based on the premise of proper 

measurement selection.  In the event of improper measurement selection, the 

assumptions fail.  What follows is a detailed description of the measurement 

selection process used to ensure the non-singularity of the  WHH T
 matrix. 

 

3.1.1 Measurement Selection for diagnostics 

Improper measurement selection may lead to matrix singularity and hence 

failure of the diagnostic algorithm.  In addition, redundant measurements may 

be costly.  Therefore, proper measurement selection is critical to obtaining 

correct diagnostic results in a cost-effective manner.  In selecting an optimal set 

of measurements, the following factors were considered: 

1. The number of gas path measurements chosen was either equal to or 

greater than the number of component performance parameters.  In the 

case of the latter, this renders Equation 3.7 over-determined and thus, 

there are redundant equations.  A pseudo-inverse defined as Equation 

3.20 gives a solution that is best in a least-squares sense.  In the case of 

the former (M=N), a unique solution is obtained. 

2. The measurements chosen had a functional relationship to the 

component performance parameters being sought.  This was achieved 

by means of a sensitivity analysis that involved implanting 1 % drops in 

efficiency and flow capacity for the respective component, and thereafter 

analysing corresponding measurement deviations. 
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3. The chosen measurements had to be independent of each other. The 

mathematical significance of this is illustrated below. 

Consider a general linear system, Equation 3.22, 

bxA


  (3.22) 
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 x and b are column matrices 

The inverse of Matrix A in Equation 3.23 can be obtained using the direct 

inverse technique when M=N.  This method involves decomposing matrix 

A into two elements, the Determinant, Det(A) and the Adjugate, Adj(A), 

Equation 3.24. 
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(3.24) 

 

The determinant Det(A) is calculated as shown in Equation 3.25. 

 

  bcadADetA   (3.25) 

 
 

From Equation 3.24, it may be deduced that the determinant of matrix A, 

Det(A) should not be zero otherwise the matrix will be singular/non-

invertible.  In addition, as the determinant approaches Zero the integrity 

of the matrix deteriorates; the matrix approaches singularity and there 

may be numerical difficulties in calculating the inverse.   

From Equation 3.25, if the determinant of matrix A is Zero, then it implies, 
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If we re-write Equation 3.22 as, 
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Then, 
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From Equations 3.29 and 3.30 the following can be deduced: 

 If 
d

c

b

a
  and 

d

f

b

e
  then both equations have similar gradients and 

different y-intercepts, thus, parallel lines.  In diagnostics, this implies that 

there is no solution (since a solution would be the intersection of the two 

lines). 

 If 
d

c

b

a
  and 

d

f

b

e
  then both equations have similar gradients and y- 

intercepts.  In diagnostics, this implies that there are infinitely many 

solutions which all lie on these lines, thus, no unique solution. 
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The solution then is to choose measurements that give an ICM matrix 

that is full-column rank; that is, as many independent columns as there 

are component performance parameters being sought. This will ensure 

that no column is a linear combination of any other; as such, whatever 

solution will be produced will be a unique solution. 

It needs to be mentioned that the above analysis may be applied for non-

square matrices. In this case, the pseudo-inverse H#  is decomposed as, 
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As mentioned earlier, matrix integrity is compromised as values of determinants 

approach Zero. This integrity can be assessed using the matrix condition 

number (Kamboukos et al., 2001).  This condition number measures stability or 

sensitivity of a matrix to numerical operations, and more so after changes to the 

data (right hand-side of Equation 3.22) or changes to the co-efficient matrix A of 

Equation 3.22 (In the case of diagnostics, changes to the ICM).  The condition 

number gives a bound on how inaccurate the solution will be after approximate 

solution. Therefore, a system of equations is considered to be well-conditioned 

if a small change in the coefficient matrix or a small change in the data results in 

a small change in the solution vector, and ill-conditioned if a small change in the 

coefficient matrix or a small change in the data results in a large change in the 

solution vector.   

Matrix condition number for any nm   A matrix is calculated using the matrix 

row sum norm defined in Equation 3.32. 
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That is, once the sum of the absolute values of the elements of each row of the 

matrix is calculated, then the maximum of these values is the row sum norm. 

Then, the condition number  may be defined as, 

   

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1

 
-

AA  (3.33) 

 

If matrix A is well-conditioned then  A  is small (close to 1). 

If matrix A is ill-conditioned then  A  is large: 

( Kamboukos, et al., 2001) Utilised this method of matrix condition number as a 

criteria for optimal measurement selection. 

 

3.1.2 Measurement Uncertainty 

Measurements are affected by noise; the order of magnitude of the noise may 

often be comparable to the variations in the measurements caused by an actual 

component fault.  Neglecting this effect may completely impair diagnostics, 

hence the need to account for measurement noise. 

Bias is a constant or systematic error; in repeated measurements, each 

measurement has the same bias.  To determine the magnitude of bias in a 

given measurement, one must define the true value of the quantity being 

measured; this true value is usually unknown and unknowable.  Therefore bias 

is not easily determined; there is no statistic to estimate bias from data.   

Random/Precision error on the other hand is seen in repeated measurements.  

The measurements do not agree exactly; they exhibit a degree of scatter about 

a certain value, normally the mean.  Variance (Equation 3.14) is used as a 

measure of precision error; a smaller value of variance indicates relatively less 

measurement scatter and vice versa.  This scatter may however be more 

adequately expressed in terms of a probability density function (PDF) and is 

described below. 
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Gas turbine measurement and component health parameters are continuous 

variables. Since continuous probability functions are defined for an infinite 

number of points over a continuous interval, the probability at a single point is 

always zero.  Instead, probabilities (for continuous variables) are defined over 

intervals. 

We may then define the probability density function as, 

   dxxfdxxxxob  ' Pr  (3.34) 

 

 

That is, ‗The probability that the actual value yielded,
'x  will be contained in the 

small interval extending from x  to dxx   is equal to  dxxf  

Where, 

 
'x is the actual outcome. 

 x is one of the infinitely many values that could be the outcome. 

 dx is a small interval of values. 

  xf is the probability density function. 

 

Figure 3.2: Probability distribution of a continuous variable 
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From Figure 3.2 it can be deduced that quantities with greater uncertainty and 

hence more scatter, will produce PDF plots with longer tails and broader peaks.  

This increased degree of uncertainty is measured by the variance (which is the 

square of the standard deviation, SD).  From Equation 3.34 and Figure 3.2 it 

follows that the probability corresponding to a particular interval starting at x  

and of length dx  is measured by the area of the rectangle of height  xf  and 

base dx ; this is the shaded region in Figure 3.2.   

Various methods were employed in this work to account for measurement 

uncertainty.  What follows is a description of these methods  

 

3.1.2.1 Exponential Moving Average method 

To reduce the impact of measurement noise for diagnostic analysis, an 

exponential moving average method may be used; its mathematical expression 

is presented in Equation 3.35. 

  iii zzz    1. 1  (3.35) 

 Where 

 iz  is the exponential moving average of respective measurement values 

at time i 

   is the smoothing factor =
N1

2
 

 N is the number of days in the averaging interval 

 iz  is a measurement sample at time i. 

 

With this method, all previous data remains in the computation for every 

successive value, just to an exponentially decreasing amount (hence the 

name).  This gives the method an advantage over other moving average 
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methods that forsake old values for new ones.  In addition, this method 

responds more quickly to changing measurement trends compared to other 

moving average methods. 

 

3.1.2.2 Reciprocal of variance 

Given samples of respective measurements, weighting can be performed based 

on the variances of respective samples; the variance is as presented in 

Equation 3.14 and the formula of weighting in Equation 3.15.  Equation 3.15 

ensures that measurement samples with greater uncertainty and thus greater 

values of variance will have smaller weights, and therefore have less influence 

on the diagnostic calculation.  On the other hand, measurement samples with 

less uncertainty and thus smaller values of variance will have larger weights 

and thus more influence the diagnostic calculation. 

This method however suffers two setbacks: 

1. The method requires availability of samples of measurements (for the 

calculation of variance).  In the absence of such samples, the method 

fails. 

2. In the event that measurement samples have either significantly large 

values or significantly small values of variance, the resulting weights will 

be significantly small or significantly large, respectively.  Consequently, 

multiplying the ICM with the weight matrix may affect the integrity of the 

resulting matrix and therefore impede the diagnostic process.  This effect 

on the integrity of the ICM is quantified by Equation 3.33. 

To overcome these setbacks, two weighting schemes were developed and are 

described in the following sections. 
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3.1.2.3 Weighting Scheme 1 (WS1) 

Measurement noise is often assumed to be normally distributed.  The maximum 

measurement noise of a measurement sample is expected to be around two 

standard deviations from the mean, where standard deviation is the square root 

of variance, presented in Equation 3.14.  It is thus expected that the mean value 

of a measurement sample will fall within the bounds of two standard deviations, 

Equation 3.36. 

 2  (3.36) 

 Where, 

   is the mean value of measurement samples 

   is the standard deviation of measurement samples 

In formulation WS1, maximum noise values (2σ) are utilised to calculate 

respective measurement weights.  Such values would be provided by sensor 

manufacturers.  For this work, the maximum measurement noise for different 

gas path measurement parameters was based on the information provided by 

(Dyson and Doel, 1987) and is presented in Table 3.1 
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Measurement Range Typical Error 

PT Speed, N2 10-50% RPM 

50-125% RPM 

 0.2% 

 0.1% 

Pressure 3 – 45 psia 

8 – 460 psia 

 0.5% 

 0.5% or 0.125 psia whichever is greater 

Temperature -65 – 145 Co  

-65 – 290 Co  

290 – 1000 Co  

1000 – 1300 Co  

 

 2.6% Co  

 3.3% Co  

  22 0075.05.2 T
 

  22 0075.05.3 T  

Fuel flow Up to 250 Kg/hr 

Up to 450 Kg/hr 

Up to 900 Kg/hr 

Up to 1360 Kg/hr 

Up to 1815 Kg/hr 

Up to 2270 Kg/hr 

Up to 2725 Kg/hr 

Up to 3630 Kg/hr 

Up to 5450 Kg/hr 

Up to 12260 Kg/hr 

41.5 Kg/hr 

34.3 Kg/hr 

29.4 Kg/hr 

23.7 Kg/hr 

20.8 Kg/hr 

23.0 Kg/hr 

25.9 Kg/hr 

36.2 Kg/hr 

63.4 Kg/hr 

142.7 Kg/hr 

Table 3.1: Instrumentation non-repeatability (Dyson, 1987) 

 

With reference to Table 3.1 the following procedure was followed: 

1. The maximum-noise values for respective measurements were 

calculated based on the specifications given in the ―typical error‖ column.  
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For example, for a (arbitrary) value of temperature of 800 K, the 

maximum-noise value is thus: 

 25.6)8000075.0(25.6 2  K  

In the case of measurement samples, the value to be used is the sample 

average. 

2. The maximum-noise values so obtained were then normalized by 

dividing them with their respective ‗clean‘ measurement values.  This 

‗clean‘ value is a simulated noise-free measurement. The obtained value, 

termed ‗percentage-noise-value‘,  represents the maximum-noise (2σ) 

expressed as a percentage of relative to the noise-free measurement.  

Small values indicate precise measurements and vice versa.  This value 

is calculated as given in Equation 3.37. 

 

100
2

, 
clean

Z
z


  (3.37) 

 

The percentage- noise- values once obtained were then used to calculate the 

weights, Equation 3.38. 

i

iiz W


min, 
    

mi   to1  
(3.38) 

 

 

In Equation 3.38, weighting was hinged on the least noisy measurement; 

this guaranteed that the least noisy measurement obtained the largest 

weight of 1, since its percentage-noise-value would divide itself. On the 

other hand, the noisiest measurement got the smallest weight. 
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3.1.2.4 Weighting Scheme 2 (WS2)  

Given a measurement sample, Range is defined as the difference between the 

sample maximum and the sample minimum. 

WS2 utilises the Range of respective measurement samples.  The formulation 

is thus:  

1. The percentage- noise- value   was calculated as, 

100  minmax 



clean

z
z

zz


    

 (3.39) 

 

Where,  

 maxz  is the sample maximum. 

 minz  is the sample minimum. 

 cleanz
 
is the noise-free value for respective measurements. 

2. Thereafter, the weights were calculated using Equation 3.38. 

 

 

WS1 and WS2 were then used as the weighting schemes in the non-linear WLS 

diagnostic algorithm. 
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4 MULTI-FUEL PERFORMANCE SIMULATION 

METHODOLOGY 

This section provides detailed description of the multi-fuel performance 

simulation methodology that was developed and used for this research project.  

The description of the methods now follows. 

 

4.1 Fuel caloric properties and file organisation 

Tabulated fuel caloric properties were provided for four fuels: United Kingdom 

natural gas, Jet-A (Kerosene), Diesel and Hydrogen fuel. 

Table 4.1 presents the formulae of three of the considered fuels and Table 4.2 

presents the formulae and components of the fourth fuel, UK natural gas. 

Fuel Formula 

JetA C12H23 

Diesel C12.9 H23.22 

Hydrogen H2 

Table 4.1: formulae for 3 of the considered fuels 

 

Component Formula Mole 

Fraction 
Methane CH4 0.926 

Ethane C2H6 0.036 

Propane C3H8 0.009 

n-butane C4H10 0.004 

n-pentane C5H12 0.003 

Nitrogen N2 0.022 

Table 4.2: Composition of UK Natural Gas (Gesser, 2001) 
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Each tabulated fuel comprised of properties which are presented in Table 4.3. 

Caloric Property Symbol Units 

Density   Kg/m3 

Enthalpy h J/Kg 

Entropy s J/Kg K 

Isobaric Heat 

Capacity 

Cp J/Kg K 

Gas Constant R J/Kg K 

Gamma    

Viscosity   Kg/ms 

Table 4.3: Tabulated Fuel Caloric properties 

 

These fuel caloric properties were tabulated as functions of four variables, FAR, 

WAR, pressure and temperature. These four variables and their respective 

caloric properties were organised in such a way as to optimise file-size and 

accuracy without compromising either one.  The criterion for selection of points 

for FAR, WAR, Pressure and Temperature along with the interpolation points for 

FAR, WAR, Pressure and temperature are presented in the following chapter 

under analysis.  The description of these four variables now follows. 

 Fuel-to-air ratio (FAR) is the mass ratio of Fuel to air present during 

combustion.  If exactly enough air is provided to completely burn all of 

the fuel, the ratio is known as a stoichiometric mixture.  For this work, 

FARs ranged from a minimal value of Zero (air) to a maximum value of

tricstoichiomeFAR . 

Where  is the equivalence ratio =
tricstoichiomeFAR

FAR
 

This was done to accommodate rich-burn, quick-mix, lean-burn 

combustors (TACINA, 1990).  An equivalence ratio of 1.8 was selected 

based on literature (Peterson et al., 2002). Table 4.4 presents the 
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stoichiometric FARs and the maximum FARs based on the equivalence 

ratio, for the four fuels considered. 

 
UK 

Natural 

Gas 

Jet-A Hydrogen Diesel 

tricstoichiomeFAR  0.063 0.068 0.029 0.069 

Max FAR 0.113 0.123 0.052 0.124 

Table 4.4: Stoichiometric and maximum FARs for the 4 considered fuels 

 

 Water to air ratio (WAR), also known as mixing ratio is the ratio of the 

mass of water vapour in grams to a Kilogram of dry air.  For this work, 

WARs ranged from a minimum value of Zero (dry air) to a maximum 

value of 0.1.  Only values of WAR   0.10 are considered; this is 

because for values of WAR > 0.10 the mixture cannot be treated as a 

perfect gas. 

 Pressures were tabulated from a minimum value of 0.04 atmospheres to 

a maximum value of 200 atmospheres.  The minimum value of 0.04 

atmospheres was conceived with typical steam turbine exit pressures in 

mind, which are approximately 0.04 atmospheres.  The maximum value 

of 200 atmospheres was based on future/conceptual designs of high 

pressure ratio gas turbines in mind.   

 The initial temperature distribution was based on work by (Sethi V., 

2008) who developed gas property tables using NASAs‘ Chemical 

equilibrium program  (Gordon, 1994).  This model employed linear 

interpolation between values for FAR, WAR, temperature and a fixed 

pressure of 50 bars. In this model, the temperature distribution was 200 

[K] to 3000 [K] in steps of 50 [K].  This temperature distribution was 

sufficient since only one pressure was considered; that is, dissociation at 

low pressures was not an issue. However, in light of dissociation at high 

temperatures and low pressures and subsequent interpolation accuracy, 
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the temperature distribution was reviewed and the values are presented 

in the following chapter. 

Table 4.5 is a schematic presentation of the structure of the fuel tables.  As can 

be seen, temperature lines form one pressure table; pressure tables form one 

WAR and all WARs form one FAR.  Finally, all FARs form one fuel table. 

 

Temperatures Pressures WARs FARs 

w number of 

temperatures form 

1 pressure 

x number of 

pressures form 1 

WAR 

y number of 

WARS form 1 

FAR 

All FARS 

combined form 1 

Fuel-table 

 

 

 

  Increasing file-size                                                                                                 

Table 4.5: Layout of fuel tables 

 Where w, x, y and z in Table 4.5  are integers 

A section of a fuel-file is presented in Appendix 1.  This presented table 

represents the caloric properties at a given FAR, WAR and pressure, for 

respective temperatures.   

These tabulated caloric properties were then interpolated using the method 

described in the following section. 

 

4.2 Natural Cubic Spline Multi dimensional Interpolation 

The essential limitation of polynomial approximation is that if the function to be 

approximated is badly behaved anywhere in the interval of approximation, then 
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the approximation is poor everywhere (De Boor, 2001).  This global 

dependence on local properties can be avoided by using piece-wise cubic 

polynomial approximants also known as Cubic splines.  What follows is a 

description of cubic splines. 

Given an interpolant value, x, the aim is to approximate a function represented 

by four points,        332211 ,,,,,,,  nnnnnnnn yxyxyxyx
 

(xn, yn), (xn+1, yn+1) represent the two points before the interpolant and (xn+2, 

yn+2), (xn+3, yn+3) represent the two points after the interpolant. 

The task then is to determine the spacing between the points nh the slopes nm

and then through the solution of a system of equations, the second derivatives 

of the splines, ns  

nnn xxh  1  (4.1) 

  

nn

nn
n

xx

yy
m










1

1  (4.2) 

  

We may adopt a general cubic function for each spline as  

      nnnnnnn dxxcxxbxxay  23  (4.3) 

  

In Equation 4.3, the value of n is 2, that is, the point just before the interpolant 
value. 

Then, the first and second differentials can be expressed as: 

    nnnnn cxxbxxay  23 2'  (4.4) 

 

 

  nnn bxxay 26''   (4.5) 
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The next step involves imposing requirements that are key characteristics of 

spline interpolation. 

The first requirement is to enforce 
oC continuity; that is, each curve segment 

passes through its control points.  This can be represented as, 

   11,   nnnn xfyxfy  (4.6) 

 

 

 

With reference to Equation 4.3: at nxx  we obtain, 

nn yd   (4.7) 

 

 

 

And, at 1 nxx , we obtain, 

      nnnnnnnnnnn yxxcxxbaxxy   1

2

1

3

11
 (4.8) 

 
 

The next requirement is to enforce 
1C continuity; that is, the curve segments 

have the same slope where they join.  Therefore, for two joined splines, we can 

equate their first derivatives (Equation 4.4) to obtain, 

        11
2

11
2

1 2323   nnnnnnnnnnnnnn cxxbxxacxxbxxa

(4.9) 

Thus,  

    11

2

1 23   nnnnnnnn ccxxbxxa  (4.10) 

 
 

The next requirement is to enforce 
2C  continuity; that is, the curve segments 

have the same curvature where they join together.   
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This implies that 
''''

nyy   at nxx   and 
''

1

''

 nyy  at 1 nxx .  With respect 

to Equation 4.5, at nxx   

  nnnnn bxxay 26''   (4.11) 

 
 

Therefore, 

2

''

n

n

y
b 

 (4.12) 

  

And at 1 nxx  

  ''
1

''
1 626 nnnnnnnn yhabxxay    (4.13) 

  

Therefore, 

 
n

nn
n

h

yy
a

6

''''
1    (4.14) 

  

The co-efficients an (Equation 4.14), bn (Equation 4.12), dn (Equation 4.7) can 

be substituted into Equation 4.8 to get the co-efficient cn (Equation 4.15) 

 
3

 

6

 ''''
11 nnnn

n

nn
n

hyhy

h

yy
c 


   (4.15) 

  

And 

 

3

 

6

 1
''

11
''

2

1

12
1






 


 nnnn

n

nn
n

hyhy

h

yy
c  (4.16) 
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Having fulfilled the above requirements, then the co-efficients an, bn, cn can be 

substituted into Equation 4.10 to produce the following two general equations; 

these are the governing equations of spline interpolation  (for convenience 
''

ny  is 

now replaced by sn) 

   nnnnnnnnn mmshshshh   12111 62  (4.17) 

    123211221 62   nnnnnnnnn mmshshshh  
(4.18) 

  

There will be [n-1] of these equations when the spline interpolates [n+1] points. 

Since there are [n+1] second derivatives ( ns ‘s) there is the need to apply end 

conditions of the splines to determine s1 and s4 at the end points.  The option 

used for this research project was the ‗Natural Spline‘ option, where second 

derivatives at the ends are set to zero.  Hence, for a 4 point cubic spline 

interpolation,  

 

   
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mmshshhsh

s

  

 

In matrix format, 
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(4.19) 

 

 

For simplicity, we may write Equation 4.19 as, 
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mHs   (4.20) 

 
Where, 

 H is the matrix of spacings, h 

 s is the matrix of second derivatives 

 m is the matrix of gradients (Right hand side of Equation 4.19) 

 

Therefore 

 

mHs 1  (4.21) 

 
 

Having obtained the actual values of the second derivatives, the co-efficients, 

an, bn, cn can then be computed and substituted into Equation 4.3 along with the 

interpolant (x) to obtain an interpolation result. 

The multi-dimensional interpolation may be illustrated as, 

 TPWARFARfGP ,,,  (4.22) 

 
Where, 

 GP (Gas property) is the respective caloric property presented in Table 

4.3 

 FAR is the Fuel-to-air ratio 

 WAR is the Water-to-air ratio 

 P is the Pressure in atmospheres 

 T is the temperature in degrees Kelvin 

We may therefore define an interpolation function  4321 ,,, uuuuINTx  
as the 

value of the unique cubic polynomial with     41 4......1 ufuf  evaluated at an 

interpolant value x. 

Where,  
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  4321 ,,, uuuuINTx is essentially Equation 4.3 

 x is the interpolant value; in this context, it could be FAR, WAR, pressure 

or temperature. 

 u1 to u4 are the corresponding functional values (caloric properties) of the 

points  x1 to x4  ; x1 and x2 are the two points before the interpolant value 

and x3 and x4 are the two points after the interpolant value. 

 

By considering a 4 dimensional grid composed of four points per dimension, 

then we end up with 256 co-efficients (44).  The function to be evaluated is fitted 

to the 256 points on the corners of this 4 dimensional grid (since the interpolant 

is considered to be in the middle of the grid). 

 

The procedure then is to set, 

          4,,, ,3,,, ,2,,, ,1,,,,, WARPTWARPTWARPTWARPTINTWARPTA FAR

  (4.23) 

          4,,A ,3,,A ,2,,A ,1,,, PTPTPTPTAINTPTB WAR  
(4.24) 

   

          4, B,3, B,2, B,1, TTTTBINTTC P  (4.25) 

   

        4C ,3C ,2C ,1CINTGP T  
(4.26) 

   

The function  WARPTA ,,  is determined at the grid points.  Thereafter, 

subsequent evaluations use (as functional values) interpolation results from 

previous dimensions as demonstrated in Equations 4.24 to 4.26. 

This procedure requires 85 calls in total, to xINT
 

as opposed to the 

multiplication of a 256 by 256 matrix by a column vector with 256 functional 

values, which a direct solution would entail. 
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The next section presents the pseudo-code of the interpolation process. 

 

4.3 Gas property interpolation Pseudo-code 

If FAR  0 and WAR0 

FAR Dimension 

Make 16 calls to A= INTfar (T, P, n), n=1 to 4, to obtain 64 functional 
values of respective caloric property from fuel table 

Calculate co-efficients an, bn, cn, dn 

Substitute co-efficients and given interpolant value (FAR) into Equation 
4.3 to obtain 16 values of respective caloric property 

    Pressure Dimension               

Use 16 values obtained from previous dimension,  
A= INTfar (T, P, n) as functional values in this dimension. 
 

Make 4 calls to C=INTP (A (T, n)) n = 1 to 4  

           Calculate co-efficients an, bn, cn, dn 

            Substitute co-efficients and given interpolant value (P) into 

Equation 4.3 to obtain 4 values of respective caloric property 
 
      Temperature Dimension 

     
Use 4 values obtained from previous dimension, 
C=INTP (A (T, n)) as functional values in this dimension. 

 
Make 1 final call to GP=INTTC(n), n = 1 to 4 
 

Calculate co-efficients an, bn, cn, dn 

 

Substitute co-efficients and given interpolant value (T) into 

Equation 4.3 to obtain final single value of respective caloric 
property 
 

Else If FAR 0 and WAR 0 
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  WAR Dimension 

Make 16 calls to B= INTwar (T, P, n), n=1 to 4, to obtain 64 functional 
values of respective caloric property from fuel table 

Calculate co-efficients an, bn, cn, dn 

Substitute co-efficients and given interpolant value (WAR) into Equation 

4.3 to obtain 16 values of respective caloric property 
        
             Pressure Dimension          

           
Use 16 values obtained from previous dimension,  
B= INTwar (T, P, n) as functional values in this dimension. 

 
Make 4 calls to C=INTP (A (T, n)) n = 1 to 4  

           Calculate co-efficients an, bn, cn, dn 

           Substitute co-efficients and given interpolant value (P) into 
Equation 4.3 to obtain 4 values of respective caloric property 

 

      Temperature Dimension 
     

Use 4 values obtained from previous dimension,  

C=INTP (A (T, n)) as functional values in this dimension. 
 
Make 1 final call to GP=INTTB(n), n = 1 to 4 

 
Calculate co-efficients an, bn, cn, dn 

 

Substitute co-efficients and given interpolant value (T) into 

Equation 4.3 to obtain final single value of respective caloric 
property 

 

Else if FAR and WAR   0 
 

             Pressure Dimension          

           

Make 4 calls to C= INTP (T, n), n=1 to 4, to obtain 16 functional                                                            
values of respective caloric property from fuel table. 

            Calculate co-efficients an, bn, cn, dn 

            Substitute co-efficients and given interpolant value (P) into 
Equation 4.3 to obtain 4 values of respective caloric property 
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      Temperature Dimension 

     
 Use 4 values obtained from previous dimension,  
C=INTP (T, n)) as functional values in this dimension. 

 
Make 1 final call to GP=INTTC (n), n = 1 to 4 
 

Calculate co-efficients an, bn, cn, dn 

 

Substitute co-efficients and given interpolant value (T) into 

Equation 4.3 to obtain final single value of respective caloric 
property 

 

 
Else if FAR and WAR  0 

 
 

FAR Dimension 

Make 64 calls to A=INTfar (T, P, WAR, n), n=1 to 4, to obtain 256 
functional values of respective caloric property from fuel table 

Calculate co-efficients an, bn, cn, dn 

Substitute co-efficients and given interpolant value (FAR) into Equation 
4.3 to obtain 64 values of respective caloric property 

 
 
        
  WAR Dimension 

 
           Use 64 values obtained from previous dimension, 
            A= INTfar (T, P, WAR, n) as functional values in this dimension. 

 
Make 16 calls to B=INTwar (A (T, P, n)) n = 1 to 4  

          

            Calculate co-efficients an, bn, cn, dn 

 

Substitute co-efficients and given interpolant value (WAR) into 

Equation 4.3 to obtain 16 values of respective caloric property 

 
             

              
  Pressure Dimension          
           

Use 16 values obtained from previous dimension,  
B= INTwar (A (T, P, n)) as functional values in this dimension. 
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Make 4 calls to C=INTP (A (T, n)) n = 1 to 4  

            Calculate co-efficients an, bn, cn, dn 

           Substitute co-efficients and given interpolant value (P) into 

Equation 4.3 to obtain 4 values of respective caloric property 
 
      Temperature Dimension 

     
 Use 4 values obtained from previous dimension,  
C=INTP (A (T, n)) as functional values in this dimension. 

 
Make 1 final call to GP=INTTC(n), n = 1 to 4 
 

Calculate co-efficients an, bn, cn, dn 

 

Substitute co-efficients and given interpolant value (T) into 

Equation 4.3 to obtain final single value of respective caloric 
property 
 

 
End 
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5 NON-LINEAR WEIGHTED LEAST SQUARES RESULTS AND 

ANALYSIS 

The methods that pertain to non-linear WLS diagnostics that were described in 

previous sections were applied and demonstrated by means of case studies.  

These case studies were run to demonstrate the effectiveness of the non-linear 

WLS method in conjunction with WS1 and WS2.  Some of the test cases 

compare the non-linear WLS results with those of non-linear GPA (Escher, 

1995).  What follows is a presentation of the results obtained. 

 

5.1 Non-linear Weighted Least Squares diagnostics 

The non-linear Weighted-Least-Squares diagnostics method was applied to the 

diagnostic analysis of various component degradations of a model turbo-shaft 

gas turbine engine that consists of one compressor, one burner, one 

compressor turbine and one power turbine, Figure 5.1 (Hereafter referred to as 

‗the engine model‘) 

 

 

 

 

 

 

Figure 5.1: Model turbo-shaft gas turbine 

Four test cases are described in Table 5.1 where different component 

degradations were implanted into the model engine.   

 

Compressor 

Combustor 

Compressor 

turbine 

Power turbine 

 1             2                               3                                11       12   16    17 
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CASE DESCRIPTION 

1 Comparison of Linear and non-linear WLS using WS1 and 

WS2 weighting methods 

2 Effect of significantly large or significantly small weights on 

matrix integrity 

3 Compressor turbine diagnostics using multiple 

measurement samples, WS1, WS2 and reciprocal of 

variance weighting methods 

4 Use of a single measurement sample and WS1 weighting 

method 

Table 5.1: Description of test cases 

 

5.1.1 Case Study 1: Comparing Linear WLS with Non-linear WLS 

Non-linear diagnostic methods are developed on the premise that engine non-

linearity needs to be accounted for.  To compare Linear with non-linear WLS, 

compressor and compressor turbine degradations were implanted into the 

model engine.  Compressor degradation was implanted as follows: 

Deviation of Flow capacity index, : -3 %; 

Deviation of Efficiency index,      : -1% 

1000 samples of the measurements presented in Table 5.2 were simulated at a 

noise level of 22  
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MEASUREMENT 

PARAMETERS 

SYMBOL UNITS 

Compressor outlet 

temperature 

T3 Kelvin 

Compressor outlet 

pressure 

P3
 

Atmospheres 

Fuel flow 
fw  Kg/s 

Compressor non-

dimensional rotational 

speed 

PCN 
Non-

dimensional 

Power turbine exit 

temperature 

T17 Kelvin 

Power turbine outlet 

pressure 

P17 Atmospheres 

Table 5.2: Compressor diagnostic measurement parameter set 

 

The respective weights for the chosen measurement set are presented in Table 

5.3 

WEIGHTING SCHEME AND 

WEIGHTS 
MEASUREMENT 

PARAMETER 

WS1 WS2 

T3 0.118 0.152 

P3 0.2 0.2002 

fw  0.869 0.925 

PCN 1.0 1.0 

T17 0.122 0.196 

P17 0.2 0.212 

Table 5.3: Compressor diagnostics measurement set weights 
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Linear and non-linear weighted least squares were run for these 1000 

measurement samples using the presented measurement weights.  The 

averages of the results produced from these samples are presented in Figure 

5.2 and Figure 5.3 for both flow capacity and efficiency indices. 

 

Figure 5.2: Average values of Flow capacity index, Compressor 

diagnostics 
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Figure 5.3: Average values of Efficiency index, Compressor diagnostics 

 

With reference to Figure 5.2 and Figure 5.3 it is observed that the non-linear 

WLS algorithm produces more accurate results when compared to linear WLS.  

That is, the mean values produced by the non-linear WLS algorithm are closer 

to the actual (implanted) value than those produced by linear WLS, for both flow 

capacity and efficiency indices.   

For further demonstration compressor turbine diagnostics was carried out by 

implanting compressor turbine degradation in the engine model as follows: 

Deviation of Flow capacity index, : 2 %; 

Deviation of Efficiency index,    : -1% 

1000 samples of the measurements presented in Table 5.4 were simulated at a 

noise level of 22  
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MEASUREMENT 

PARAMETERS 

SYMBOL UNITS 

Compressor non-

dimensional rotational 

speed 

PCN Non-dimensional 

Fuel flow 
fw  Kg/s 

Compressor exit pressure P3 Atmospheres 

Compressor turbine exit 

pressure 

P12 Atmospheres 

Table 5.4: Measurement parameter set, compressor-turbine diagnostics 

 

The respective weights for the chosen measurement set are presented in Table 

5.5. 

WEIGHTING SCHEME AND 

WEIGHTS 
MEASUREMENT 

PARAMETER 

WS1 WS2 

PCN 1.0 1.0 

fw  0.868 0.923 

P3 0.2 0.225 

P12 0.2 0.206 

Table 5.5: Compressor-turbine diagnostics, measurement set weights 

 

Linear and non-linear weighted least squares were run for the 1000 

measurement samples using the presented measurement weights.  The 

averages of these samples are presented in Figure 5.4 and Figure 5.5 for both 

flow capacity and efficiency indices. 
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Figure 5.4: Average values of Flow capacity index, Compressor-turbine 

diagnostics 

 

Figure 5.5: Average values of Efficiency index, Compressor-turbine 

diagnostics 
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With reference to Figure 5.4 and Figure 5.5 it is observed that, once again, the 

non-linear WLS algorithm produces more accurate results when compared to its 

linear counter-part, linear WLS.  The mean values produced by the non-linear 

WLS algorithm are closer to the actual (implanted) value than those produced 

by linear WLS, for both flow capacity and efficiency indices.   

In both cases (Compressor and compressor turbine diagnostics) results 

produced by linear WLS are not useful for diagnostic purposes; this is because 

the results are very inaccurate.  On the other hand, non-linear WLS produces 

much more accurate results.  We may define the root mean square (RMS) as 

Equation 5.1: 

    
2

22

predictedimplantedpredictedimplantedRMS
 

  

 

(5.1) 

 

 

Therefore, a RMS value close to Zero implies improved accuracy and vice 

versa.  Then, we may compare respective RMS values, Figure 5.6 and Figure 

5.7. 
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Figure 5.6: Root mean square values, Flow capacity index 

 

Figure 5.7: Root mean square values, Efficiency index 
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Figure 5.6 and Figure 5.7 further confirm the improved accuracy of non-linear 

WLS over linear WLS. 

Therefore, it can be concluded that non-linear WLS should be the preferred 

choice over linear WLS for gas turbine diagnostics. 

 

5.1.2 Case Study 2: Effect of significantly large and/or small weights on 

matrix integrity 

The effect that significantly large and/or significantly small weights on matrix 

condition number (and hence matrix integrity) was investigated in this case 

study.  This was achieved by means of compressor turbine degradation which 

was implanted into the engine model as follows: 

 

Deviation of Flow capacity index:  2 %; 

Deviation of Efficiency index:   -1% 

1000 samples of the measurements presented in Table 5.4 were simulated at 3 

noise levels: 21 , 22 and 23 . 

Where, 

 2  is the maximum measurement noise 

 1, 2 and 3 are multipliers (of measurement noise) 

Table 5.6 to Table 5.8 are the presented measurements and their respective 

measurement weights for all three weighting methods (reciprocal of variance, 

WS1 and WS2) and for all three measurement noise levels. 
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 WEIGHTING SCHEME AND WEIGHTS 

MEASUREMENT 

PARAMETER 

RECIPROCAL 

OF VARIANCE 

WS1 WS2 

PCN 4006909.008 1.0 1.0 

fw  453720121.688 0.868 0.9403 

P3 1403.163 0.2 0.193 

P12 22985.374 0.2 0.201 

Table 5.6: measurement weights, 1x2σ 

 

WEIGHTING SCHEME AND WEIGHTS 

MEASUREMENT 

PARAMETER 

RECIPROCAL 

OF VARIANCE 

WS1 WS2 

PCN 1000963.562 1.0 1.0 

fw  106079634.597 0.868 0.923 

P3 354.885 0.2 0.225 

P12 5537.23 0.2 0.206 

Table 5.7: Measurement weights, 2x2σ 

 

WEIGHTING SCHEME AND WEIGHTS 

MEASUREMENT 

PARAMETER 

RECIPROCAL 

OF VARIANCE 

WS1 WS2 

PCN 445492.09 1.0 1.0 

fw  50413915.62 0.868 0.889 

P3 154.046 0.2 0.1903 

P12       2489.65 0.2 0.224 

Table 5.8: Measurement weights, 3x2σ 
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The condition numbers of the matrix   1
WHH T were calculated for each 

weighting method presented in Table 5.6, Table 5.7 and Table 5.8 and the 

results are presented in Figure 5.8. 



 

Figure 5.8: condition numbers of the matrix (HTWH)-1 

 

With reference to Figure 5.8, it is observed that the reciprocal-of-variance 

method produces large condition numbers (in this case) whilst the other two 

weighting methods produce relatively small condition numbers.  Further, these 

condition numbers increase with an increase in noise; this is because the large 

weighting values serve to amplify the measurement noise present in 

measurement parameters.  It is expected that these large condition numbers 

will have an impeding effect on the diagnostic effort.  It needs to be mentioned 

at this point that with the reciprocal-of-variance weighting method, large 
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condition numbers are not always to be expected; it has been observed that the 

method may or may not produce large condition numbers. 

1000 measurement samples of the measurements presented in Table 5.7 (at a 

noise level of 2x2σ) were simulated and used for compressor turbine 

diagnostics.  The non-linear WLS results were compared with those of non-

linear GPA, (Escher, 1995) a diagnostic algorithm that does not account for 

measurement noise. 

Figure 5.9 and Figure 5.10 are plots of the mean values of the diagnostic results 

obtained from the 1000 samples, for both flow capacity and efficiency. 

 

Figure 5.9: Flow capacity mean values, compressor turbine diagnostics 
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Figure 5.10: Efficiency mean values, compressor turbine diagnostics 

 

From Figure 5.9 and Figure 5.10 it is observed that the results are reasonably 
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large condition numbers of the   1
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diagnostic effort.  We may further observe the trend of the 1000 results by 

looking at their standard deviations.  Smaller values of standard deviation imply 

that the results are closer to the mean value while larger values of standard 

deviation imply that the results are more scattered from the mean value.  Figure 

5.11 and Figure 5.12 are plots of standard deviation; it is observed that the 

reciprocal of variance method has the largest standard deviations for both flow 
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and WS2 produced the most accurate results, demonstrated by the smaller 
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Figure 5.11: Flow capacity index standard deviation, compressor turbine 

diagnostics 

 

Figure 5.12: Efficiency index standard deviation, compressor turbine 

diagnostics 
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Figure 5.13 and Figure 5.14 are the normal distribution/probability density 

function plots for both flow capacity and efficiency.  The reciprocal of variance 

plots are observed to have long tails, lower and wide peaks as opposed to the 

other diagnostic schemes that have shorter tails, higher and narrow peaks.  

This implies that the values (reciprocal of variance method) are far spread about 

the mean (long tails).  Therefore, the probability that the diagnostic result would 

be close to the mean value is low.  It can therefore be concluded at this point 

that due to the high condition number of the   1
WHH T matrix occasioned by the 

large absolute values of the weight matrix, the reciprocal of variance method 

does not produce any useful diagnostic results.  Non-linear GPA results are 

both less accurate and less precise when compared to non-linear WLS in 

conjunction with WS1 or WS2; this can be attributed to the fact that non-linear 

GPA does not account for measurement noise.  Figure 5.15 and Figure 5.16 are 

presented without the reciprocal of variance method so that the improved 

accuracy of non-linear WLS over non-linear GPA is clearer. 

 

Figure 5.13: Probability density function, flow capacity index, compressor 

turbine diagnostics 
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Figure 5.14: probability density function, efficiency index, compressor 

turbine diagnostics. 

 

 

Figure 5.15: Probability density function, flow capacity index, compressor 

turbine diagnostics 
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Figure 5.16: probability density function, efficiency index, compressor 

turbine diagnostics. 
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Table 5.9 is a presentation of the selected measurement set for compressor 

diagnostics and respective weights.  1000 samples of these measurements 

were simulated at a noise level of 22  

 

WEIGHTING SCHEME AND 

WEIGHTS 
MEASUREMENT 

PARAMETER 

RECIPROCAL 

OF VARIANCE 

method 

WS1 WS2 

T3 0.07 0.118 0.152 

P3 382.837 0.2 0.2002 

fw  114,617,977 0.869 0.925 

PCN 1031554.561 1.0 1.0 

T17 0.0372 0.122 0.196 

P17 39195.8895 0.2 0.212 

Table 5.9: Compressor diagnostics measurement parameter set weights 

 

Figure 5.17 and Figure 5.18 are plots of accuracy; that is, the means of the 

1000 diagnostic results obtained from the 1000 measurement samples.  It is 

observed that each diagnostic scheme produces reasonably accurate results, 

that is, a mean value close to the implanted value.  The non-linear WLS method 

in conjunction with WS1 and WS2 produces the most accurate results 

compared to non-linear GPA and the reciprocal of variance weighting method. 
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Figure 5.17: Flow capacity index mean values, compressor diagnostics 

 

Figure 5.18: Efficiency index mean values, compressor diagnostics 
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Figure 5.19 and Figure 5.20 are plots of precision; that is, standard deviations of 

the 1000 diagnostic results for flow capacity and efficiency indices respectively.  

It is observed that non-linear GPA produces the least precise results, 

demonstrated by the largest values of standard deviation for both flow capacity 

and efficiency indices.  For flow capacity index, non-linear WLS in conjunction 

with WS1 produces the most precise results whist for efficiency index, the 

reciprocal of variance method produces the most precise results. 

 

Figure 5.19: Flow capacity index standard deviation, compressor 

diagnostics 

0.157

0.084
0.081 0.079

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Non-linear GPA WS2 Reciprocal of Variance WS1

Diagnostic Scheme

S
ta

n
d

a
rd

 D
e

v
ia

ti
o

n
, 

%



105 

 

 

Figure 5.20: Efficiency index standard deviation, compressor diagnostics 
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Figure 5.21: Flow capacity index probability density function, compressor 

diagnostics 

 

Figure 5.22: Efficiency index probability density function, compressor 

diagnostics 
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5.1.4 Case Study 4: Use of a Single sample and WS1 

In all cases presented so far, measurement samples were available (1000 

simulated samples).  In the event that only a single sample of measurement 

data is available for diagnostic analysis of component faults, then calculation of 

variance is impossible.  In such a case, measurement weighting is possible only 

with method WS1, since this scheme can weight individual measurements 

without the need for multiple measurement samples.  To demonstrate this, 

compressor degradation was implanted into the model engine as follows: 

Deviation of Flow capacity index, : -3 %; 

Deviation of Efficiency index,      : -1% 

A single sample of the measurements in Table 5.9  was simulated at a noise 

level of 22  .  Using WS1, respective measurement weights were calculated 

and are presented in Table 5.10.  The simulated measurement sample was 

then used by the non-linear Weighted-Least-Squares diagnostic approach to 

predict the engine degradation in order to test the effectiveness of the 

approach.  

 

MEASUREMENT 

PARAMETER 

WS1 

WEIGHTS 

T3 0.118 

P3 0.2 

fw  0.869 

PCN 1.0 

T17 0.122 

P17 0.2 

Table 5.10: WS1 weights, compressor diagnostics using a single sample 
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The non-linear WLS diagnostics approach was run and the predicted 

degradation was compared with those of non-linear GPA, Figure 5.23 and 

Figure 5.24. 

 

Figure 5.23: Comparison of diagnostic schemes, compressor flow 

capacity index 

 

Figure 5.24: Comparison of diagnostic schemes, Compressor efficiency 

index 
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With reference to Figure 5.23 and Figure 5.24, it is observed that the non-linear 

WLS algorithm in conjunction with WS1 predicts the implanted degradation with 

greater accuracy than non-linear GPA for both flow capacity and efficiency 

indices.  This reduced accuracy of non-linear GPA can be attributed to 

measurement noise, whilst the non-linear WLS algorithm took account of the 

measurement noise (by weighting using WS1) thus producing improved results.  

 

5.2 Non-linear WLS discussion of results 

This section aims to discuss the findings of the nonlinear WLS method and 

further reconcile them with the insights gained from the literature review. 

From the literature review, a number of requirements were highlighted as 

necessary components for an advanced diagnostic scheme.  The developed 

non-linear WLS method met a few of those requirements which are discussed 

below. 

1. The method is non-linear based.  This was in line with findings from 

literature that made it clear than non-linear methods are more accurate 

than linear methods.  One such finding is (Kamboukos, P. 2005) who 

carried out comparisons of linear and non-linear diagnostic methods and 

concluded that the use of linear methods may lead to substantial 

inaccuracies in the estimation of degradation.   This has been 

demonstrated by results from case study 1 where the non-linear WLS 

algorithm detected compressor and compressor turbine components with 

greater accuracy than linear WLS.  In addition, it has been demonstrated 

that the linear WLS results may not be useful in as far as detection of 

component faults are concerned.  However, the linear results can serve 

as a starting point for the non-linear algorithm for further iterations and 

thereby obtaining improved results. 
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2. The method is able to deal with random measurement noise.  This was 

achieved by means of two weighting schemes, WS1 and WS2 which 

replaced the traditional method of the reciprocal of variance.  Results 

from case studies 2, 3 and 4 have demonstrated that these methods are 

able to deal with measurement noise and produce useful diagnostic 

results.  Case study 2 in particular presented a scenario where the 

reciprocal of variance method failed as a result of large matrix condition 

numbers which were in turn a result of significantly large or significantly 

small measurement weights.  However, both WS1 and WS2 methods 

sufficed.  This can be attributed to the fact that WS1 and WS2 are 

designed to produce weights with values no greater than 1.  As such, the 

probability of producing significantly large values of weights which have 

the capacity to degrade the ICM, H, is eliminated.  WS1 proved further 

useful in that in the absence of large samples of measurement data, 

weighting was still possible by means of sensor maximum noise 

specifications as has been demonstrated in case study 4.  This is quite 

helpful in real cases where only a single measurement sample of data is 

available for diagnostics.  In all case studies, the method has shown 

significant improvements over non-linear GPA that does not account for 

measurement noise.   

3. The method is model-based as opposed to non-model based (Artificial 

intelligence).  (Marinai et al., 2004) highlighted the advantage of model-

based methods over non-model based methods, that is, model-based 

proofs of stability and robustness.  The mathematical foundation behind 

the non-linear WLS model has been clearly presented; therefore, the 

method is comprehensible.  In addition, the method is robust in the sense 

that, it was not generated from experimental data that may be subjective 

to a particular case; any other user may thus use the same mathematical 

foundation to re-produce the method, for diagnostic purposes.  In 

addition, the non-linear WLS method is free from tuning and training 



111 

 

uncertainties and therefore free from any difficulties related to setting-up 

parameters.   

4. Based on experience with testing the method, the author can 

conclusively state that the non-linear WLS algorithm is not 

computationally expensive.  That is, the method does not require more 

processing power than can be provided for by modern days‘ computer 

systems.  This ensures that diagnostic results can be obtained without 

unnecessary delays. 
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6 MULTI-FUEL PERFORMANCE SIMULATION RESULTS AND 

ANALYSIS 

The methods that pertain to multi-fuel performance simulation that were 

described in previous sections were validated, applied and demonstrated.  This 

demonstration was by means of case studies in order to demonstrate the 

effectiveness of these methods.  What follows is a presentation of the results 

obtained. 

 

6.1 Validation of tabulated data 

The tabulated data for the four fuels was validated using values obtained from 

literature.  The purpose of this validation was to ascertain that the tabulated 

values agree, within reasonable limits, to published data and can therefore be 

used with confidence. 

 

6.1.1 Dry Air 

 (Keenan, 1980)  presents thermodynamic properties of air, based on 

examination of data from spectroscopic sources.  The properties are provided at 

selected temperatures and for a pressure of 1 atmosphere.  These values were 

compared to those presented in the fuel tables (herein referred to as tabulated 

data) produced for this work.  

A % difference was defined as Equation 6.1, 

100


ref

tablesref

GP

GPGP  (6.1) 

 
Where, 

 GPref is the reference caloric property, obtained from literature 
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 GPtables is the caloric property that is being validated, obtained from the 

produced fuel tables 

Figure 6.1 and Figure 6.2 are figures of change in enthalpy ΔH and change in 

entropy, ΔS respectively, for dry air at 1 atmosphere. 

 

Figure 6.1: Comparison of ΔH, dry air at 1 atmosphere 

 

Figure 6.2: Comparison of ΔS, dry air at 1 atmosphere 
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From Figure 6.1 and Figure 6.2 it is observed that the tabulated data for dry air 

agrees closely with values from literature until temperatures of 1000 [K] where 

effects of dissociation begin to become prominent.  The model used as the 

reference for this comparison did not take dissociation effects into account, 

hence the increase in % difference.  Prior to 1000 [K], values of % difference 

are below 0.5 %. 

Figure 6.3 is a comparison of viscosity; this comparison was made between 

tabulated values and two published sources, (Keenan, 1980) and Sutherlands 

formula, (Crane, 1988).  The latter source is a formula that is valid in the 

temperature range between 0 [K] and 810 [K] whilst the former has values 

presented for temperatures between 200 [K] and 1400 [K]. 

 

Figure 6.3: Comparison of Viscosity, dry air at 1 atmosphere 
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maximum error of 1 % is observed whilst a maximum error of 7 % is observed 

0

1

2

3

4

5

6

7

8

200 400 600 800 1000 1200 1400

Temperature [K]

 %
 D

if
fe

re
n

c
e

s

Keenan J.H (1980)

Sutherlands Formula



115 

 

for values produced by (Keenan, 1980).  Above 1000 [K], dissociation is 

responsible for the significant rise in % difference since (Keenan, 1980) does 

not account for dissociation. 

Figure 6.4, Figure 6.5 and Figure 6.6, are comparisons of the ratio of heat 

capacities, Gamma,   Gas constant R and Isobaric heat capacity Cp 

respectively.  This comparison was made between tabulated air values and 

values obtained from (Poferl et al., 1969) who utilised a chemical equilibrium 

program (Svehla, 1964).   The values were obtained at a pressure of 10 

atmospheres and for a temperature range of 300 [K] to 2500 [K]. 

 

 

Figure 6.4: Comparison of Gamma, dry air at 10 atmospheres 
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Figure 6.5: Comparison of Gas Constant, R, dry air at 10 atmospheres 

 

Figure 6.6: Comparison of isobaric heat capacity, dry air at 10 

atmospheres 
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%.  Gas constant values agreed with greater accuracy as seen by the maximum 

error value slight above 0.006 %. 

 

6.1.2 JetA Fuel 

(Jones et al., 1984) presents the properties of combustion products of JetA fuel 

and dry air.  The computations presented were performed using the NASA 

Lewis chemical equilibrium program documented in (Gordon, 1976).  The 

molecular Hydrogen-Carbon ratio of JetA presented in (Jones et al., 1984) was 

1.907 whilst that used for this work was 1.917. 

Combustion properties were compared with tabulated JetA data for a FAR of 

0.01, temperatures of 300[K], 1000[K], 2000[K], 2800[K], for 1 atmosphere and 

50 atmospheres. 

Figure 6.7, Figure 6.8 and Figure 6.9 are graphs of comparison of Gas 

constant, R, Isobaric heat capacity, Cp and ratio of heat capacities,  for both 1 

atmosphere and 50 atmospheres. 

 

Figure 6.7: Comparison of Gas constant R, JetA fuel, FAR 0.01 
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Figure 6.8: Comparison of Isobaric heat capacity, JetA Fuel, FAR 0.01 

 

Figure 6.9: Comparison of ratio of heat capacities, JetA Fuel, FAR 0.01 
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From Figure 6.7, Figure 6.8 and Figure 6.9 it is observed that the maximum 

errors are 0.07%, 0.18% and 0.05% for Gas constant R, isobaric heat capacity 

Cp and ratio of heat capacities   respectively.  Such small values of maximum 

error indicate close agreement between values in literature and tabulated data. 

 

6.1.3 Hydrogen Fuel 

(Wear, 1985) presents properties of combustion of Hydrogen fuel and dry air.  

The computations were performed using the NASA Chemical equilibrium 

program documented in (Gordon, 1976). 

Combustion properties were compared with tabulated Hydrogen fuel data for a 

FAR of 0.01, temperatures of 400[K], 1000[K], 2000[K], 2800[K], for 1 

atmosphere and 50 atmospheres. 

Figure 6.10, Figure 6.11 and Figure 6.12 are graphs of comparison of Gas 

constant, R, Isobaric heat capacity, Cp and ratio of heat capacities,  for both 1 

atmosphere and 50 atmospheres. 

 

Figure 6.10: Comparison of Gas constant R, H2 fuel, FAR 0.01 
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Figure 6.11: Comparison of Isobaric heat capacity, H2 Fuel, FAR 0.01 

 

Figure 6.12: Comparison of ratio of heat capacities, H2 Fuel, FAR 0.01 
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From Figure 6.10, Figure 6.11 and Figure 6.12, it is observed that the maximum 

errors are 0.07%, 0.5% and 0.07% for Gas constant R, isobaric heat capacity 

Cp and ratio of heat capacities   respectively.  Such small values of maximum 

error indicate close agreement between values in literature and tabulated data. 

 

6.1.4 UK Natural Gas Fuel 

Obtaining combustion properties of a specific natural gas may be a daunting 

task.  This is because natural gases from different sources (even from the same 

country) will in most cases not be identical in as far as composition is 

concerned.  However, it is possible to obtain natural gases with fairly 

similar/comparable compositions.  Therefore, to validate the tabulated values of 

UK natural gas, the same were compared with the combustion properties of a 

natural gas presented by (Poferl et al., 1973).  The compositions of the two 

natural gases composition are presented in Table 6.1.  It is observed that apart 

from Methane, Ethane and Carbon dioxide, the other components compare 

fairly well.  It needs to be re-stated that the purpose is not to check how well 

values of one natural gas compare to another but rather, if the tabulated values 

of UK natural gas are reasonable (and therefore dependable), even when 

compared to a natural gas with similar composition. 

  Mole Fractions 

 

Component 

( Poferl  et al.,               

1973) UK Natural Gas 

Methane 0.875 0.926 

Ethane 0.063 0.036 

Propane 0.016 0.009 

Butane 0.006 0.004 

Pentane 0.002 0.003 

Nitrogen 0.026 0.022 

Carbon 
dioxide 0.012   

Table 6.1: Mole fractions of Natural gases 
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Comparisons were performed at a FAR of 0.01, a pressure of 20 atmospheres 

and temperatures ranging from 300[K] to 2800[K] in steps of 100 [K].  Figure 

6.13, Figure 6.14, Figure 6.15 and Figure 6.16 are comparisons of the ratio of 

heat capacities  , Gas constant R, isobaric heat capacity Cp and change in 

enthalpy, Δh, made between tabulated UK natural gas values and those 

obtained from (Poferl et al., 1973). 

 

Figure 6.13: Comparison of ratio of heat capacities, UK Natural Gas Fuel, 

FAR 0.01, Pressure 20 Atm 
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Figure 6.14: Comparison of Gas constant R, UK Natural Gas Fuel, FAR 

0.01, Pressure 20 Atm 

 

Figure 6.15: Comparison of isobaric heat capacity Cp, UK Natural Gas 

Fuel, FAR 0.01, Pressure 20 Atm 
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Figure 6.16: Comparison of ΔH, UK Natural Gas Fuel, FAR 0.01, Pressure 

20 Atm 

 

From Figure 6.13, Figure 6.14, Figure 6.15 and Figure 6.16, it is observed that 
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tabulated diesel-fuel data, for a FAR of 0.01 and pressure of 1 atmosphere and 

for temperature values of 500[K], 1000[K] and 1500[K]. 

Figure 6.17, Figure 6.18 and Figure 6.19 are the presentations of the 

percentage differences between tabulated diesel-fuel data and data obtained 

from (Gülder, 1988) 

 

Figure 6.17: Comparison of Isobaric heat capacity Cp, diesel-fuel, FAR 

0.01, Pressure 1 Atm 
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Figure 6.18: Comparison of Gas constant R, diesel-fuel, FAR 0.01, 

Pressure 1 Atm 

 

 

Figure 6.19: Comparison of ratio of heat capacities, diesel-fuel, FAR 0.01, 

Pressure 1 Atm 
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From Figure 6.17, Figure 6.18 and Figure 6.19, it is observed that maximum 

percentage differences are 1.3%, 0.05 % and 0.5 % for Cp, R and 

respectively. 

 

6.1.6 Discussion of Fuel Data validation 

It needs to be stated that the model used for this work will differ from the 

referenced models whose data was used for comparison; such differences will 

inevitably lead to percentage differences when combustion products are 

compared.  One difference would be dissociation; if the referenced models did 

not consider dissociation (model used for this work considered dissociation), 

then the percentage differences between compared combustion properties will 

be large, for example, the dry air comparisons.  Another difference would be the 

chemical composition of fuels considered; this would include Hydrogen-Carbon 

ratio of JetA and Diesel fuels and chemical composition and molar values of 

components of UK natural gas.  Values used for JetA and Diesel in literature 

may not be identical to those used in this work, though any differences will be 

slight  except in the case of UK natural gas.   

Based on all the comparisons made in the previous section and considering all 

possible sources of percentage difference that have been mentioned, it can be 

concluded at this juncture that all the data presented in the fuel tables is 

dependable.  Percentage differences between the same and values obtained 

from literature indicate that tabulated values are reasonable, that is, do not 

deviate significantly from data obtained from published sources.  Therefore, the 

data can be used with confidence for further work.  The selection of data points 

to be used with the interpolation routine now follows. 
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6.2 Data points selection criteria 

Optimal data point selection was performed with the aim of optimising file-size 

and interpolation accuracy without compromising either one.  File-size was an 

important consideration since large file sizes compromise computational speed.  

From experience, file sizes less than 30MB are not computationally 

burdensome; therefore, the aim was to keep file sizes below 30MB.  To achieve 

this, optimal point selection was performed for each caloric property.  The 

advantage of this method is that each caloric property will have just the right 

number of FARs, WARs, pressures and temperatures required to keep 

interpolation errors within 0.03 %. 

The selection of points was done a dimension at a time, beginning with the 

temperature dimension (the four dimensions being Temperature, pressure, 

WAR and FAR).   

 

6.2.1 Temperature 

The initial temperature distribution was based on work by (Sethi V., 2008) who 

developed gas property tables using NASAs‘ Chemical equilibrium program ( 

Gordon, 1994).  This model employed linear interpolation between values for 

FAR, WAR, temperature and a fixed pressure of 50 bars. In this model, the 

temperature distribution was 200 [K] to 3000 [K] in steps of 50 [K].  This 

temperature distribution was deemed by (Sethi V., 2008) to be sufficient since 

only one pressure was considered; that is, dissociation at low pressures was 

not an issue. However, in light of dissociation at high temperatures and low 

pressures and subsequent interpolation accuracy, the temperature distribution 

was reviewed. 

Figure 6.20 is a graph of comparisons of the dissociation and no-dissociation 

models for the Enthalpy, h of dry air.   
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From Figure 6.20  it can be observed that: 

1. In the no-dissociation model, pressure makes no difference; the 1 Atm 

and 0.1 Atm lines are super-imposed upon each other;  

2. Effects of dissociation are pronounced at high temperatures and low 

pressures; this is observed in the non-linearity of the 0.1 Atm pressure 

line.  The reasons for this were discussed in an earlier chapter.  It would 

be expected that at even lower pressures such as steam turbine exit 

pressures of 0.04 Atm, the effects of dissociation would be even more 

pronounced. 

Therefore, in the interest of interpolation accuracy at high temperatures and low 

pressures, the temperature distribution above was reviewed; at temperatures 

above 2000 [K] the intervals were reduced to 25 [K].  This was sufficient to 

address non-linearity due to dissociation. 

 

Figure 6.20: Comparing dissociation and no-dissociation models, 

Enthalpy of dry air 

-1000

0

1000

2000

3000

4000

5000

200 700 1200 1700 2200 2700 3200

Temperature [K]

E
n

th
a

lp
y

, 
[K

J
/K

g
 K

]

Dry Air, P 1 atm, No-dissociation model

Dry Air, P 1 atm, Dissociation model

Dry Air, P 0.1 atm, No-dissociation model

Dry Air, P 0.1 atm, Dissociation model



130 

 

Figure 6.21 and Figure 6.22 are graphs of density and entropy of dry air, 

respectively, and at pressures of 1, 5 and 50 atmospheres.  It is observed that 

for both properties, there exists a non-linearity at the initial temperature points, 

which then progresses into linearity.  For density, this non-linearity becomes 

pronounced with increasing pressure.  Therefore, to account for this non-

linearity, the temperature distribution between 200 [K] and 400[K] was reviewed; 

the intervals between this temperatures were reduced to 25 [K], to account for 

the non-linearity of density and entropy properties.   

To further improve interpolation accuracy, the interpolation algorithm utilised the 

Logarithm [base 10] of temperature as opposed to the actual value of 

temperature.  Figure 6.23 and Figure 6.24 are plots of density and entropy 

respectively, for dry air, plotted against the logarithm of temperature as opposed 

to the actual temperature values.  Compared to the plots of the actual values of 

temperature, (Figure 6.21 and Figure 6.22) it is observed that using the 

logarithm of temperature decreases non-linearity.  This significantly improves 

interpolation accuracy. 

 

Figure 6.21: Density of dry air at various pressures 
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Figure 6.22: Entropy of dry air at various pressures 

 

Figure 6.23: Plot of density against Logarithm of temperature, dry air 
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Figure 6.24: Plot of Entropy against logarithm of temperature, dry air 

 

It needs to be stated that adding this extra temperatures did not reduce 
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Temperatures Pressures WARs FARs 

w number of 

temperatures form 

1 pressure 

x number of 

pressures form 1 

WAR 

y number of 

WARS form 1 

FAR 

All FARS 

combined form 1 

Fuel-table 

 

 

 

  Increasing file-size                                                                                                 

Table 6.2: Structure of fuel tables 

Where, 

 w, x, y and z are integers 

The total number of temperatures (per table) was 75.  Table 6.3 presents the 

summary of temperature distribution points. 
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Temperature Range, [K] Explanation 

198 – 199 Boundary points for the interpolation 

of temperatures   225 [K] 

200 – 400, in steps of 25K Takes care of the non-linearity of 

Density and Entropy caloric 

properties 

400-1500 in steps of 100 K Most properties exhibit linear 

properties at this range, hence, no 

need for concentrated temperature 

points. 

1500-2000 in steps of 50K Effects of dissociation begin to 

become pronounced, hence a 

reduction in temperature intervals to 

account for this. 

2000-3000 in steps of 25 K Takes care of pronounced effects of 

dissociation, that is, non-linearity. 

3025-3050 Boundary points for the interpolation 

of temperatures  2975 K 

Table 6.3: Distribution of temperature points for fuel tables 

 

6.2.2 Pressure 

As discussed in earlier sections, pressure plays a role in dissociation.  Lower 

pressures favour dissociation than higher pressures.  This can be observed in 

Figure 6.25 which is a plot of enthalpy of dry air at various pressures.  The 50 

atmosphere pressure line is close to the 200 atmosphere pressure line; both 

lines maintain some degree of linearity throughout the 200[K] to 3000 [K] 
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temperature range.  Below 1 atmosphere, non-linearity that is caused by 

dissociation becomes pronounced. 

 

Figure 6.25: Influence of pressure on Enthalpy of dry air 
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and entropy, s, the % error value was defined as relative error, 

presented in Equation 6.2 

100 %
actual

actualedinterpolat





GP

GPGP
error  

(6.2) 

 

 

For entropy s, and enthalpy h: with reference to Figure 6.22 and Figure 

6.25, it is observed that the pressure lines at some point cross the x 

axis.  At this point on the x axis, the corresponding value on the y axis 

(enthalpy or entropy) would be zero (or a very small value).  In such a 

situation, Equation 6.2 would fail since it would be a case of division by 

zero.  In addition, if the value of GPactual is significantly small, then the % 

error defined in Equation 6.2 will be large and in most cases greater than 

0.03%.  This is notwithstanding the fact that the absolute error, 

(GPinterpolated - Gpactual) may be reasonably small   Consider the case in 

Table 6.4 where the entropy of dry air was interpolated for the given 

temperatures and a pressure of 0.35 atmospheres. 

It is observed that for 212.5 [K], even though the absolute error is slightly 

less than that of the value at 2512.5 [K], the relative error is however 

much larger and even unacceptable.    

 

 

 T, 212.5 [K] T, 2512.5 [K] 

Gpactual [J/Kg.K] 41.98 2767.9 

GPinterpolated [J/Kg.K] 42.2 2767.65 

Absolute error, % 0.213 0.25 

Relative error, % 0.504 0.009 

Table 6.4: Relative and absolute errors of dry air at 0.35 atmospheres 
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Therefore, for enthalpy and entropy, a different definition of relative error 

was used and is presented in Equation 6.3. 

100 %
max

actualedinterpolat





GP

GPGP
error  

(6.3) 

 

Where, 

 GPmax is the maximum value of enthalpy or entropy, that is, the 

value of enthalpy (or entropy) at the highest temperature, for a 

particular FAR, WAR and pressure. 

4. If the interpolation error was found to be larger than 0.03%, then 

pressure values were added in between the two pressure points that 

demonstrated large interpolation errors.  For example, between 2 and 20 

atmospheres is 11 atmospheres.  If interpolating for 11 atmospheres 

(and all in-between temperatures) produces interpolation errors greater 

than 0.03%, then a pressure of 11 atmospheres is added.  The test then 

will be for pressures of 6.5 (between 2 and 11) and 15.5 (between 20 

and 11) atmospheres.  This was carried on until all caloric properties 

were within the 0.03 % interpolation error threshold. 

 

The advantage of the aforementioned method is that each caloric property will 

have just the right number of pressures required for accurate interpolation, 

without redundancy.  Any extra pressures may serve to reduce the interpolation 

error but at the cost of reduced computational speed.  Therefore, the method 

presented produces computationally efficient file sizes.   

 

Appendix 2 provides figures of interpolation errors of dry air for all caloric 

properties.  From this plots, it is clear that interpolation error of mid-way 

temperature and pressure points are all below 0.03 %.   

 

At this juncture, the specific pressures are not provided since it was anticipated 

that more may be added, to reduce interpolation errors during selection of WAR 

and FAR points.  Therefore, all pressure points will be provided for each caloric 
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property after selection of WAR and FAR points has been presented (along with 

FAR and WAR points).  The following section provides the selection criteria of 

WAR and FAR points. 

 

6.2.3 FAR and WAR 

WAR points were added onto the dry air points to produce moist air files.  The 

method used was as follows: 

1. Starting with five points, 0, 0.001, 0.025, 0.05, 0.075, 1, where the points 

0, 0.001 and 1 are boundary points and 0.025, 0.05 and 0.075 are points 

at 25%, 50 % and 75%, respectively. 

2. Interpolation was then performed in between each WAR, pressure and 

temperature for respective caloric properties and interpolation errors 

noted.  If the interpolation error was greater than 0.03 %, then either a 

WAR or pressure was added, depending on which was more 

computationally efficient.  That is, 

Ptotal,p = nWAR  Padded 

 

   (6.4) 

 
And, 

Ptotal,war = nWARadded  P 

 

 (6.5) 

 
 

Where, 

 Ptotal,p is the total number of pressures after adding pressures to improve 

interpolation accuracy (as opposed to adding water-to-air ratios). 

 nWAR are the number of Water to air ratios. 

 Padded is the number of pressures that would need to be added to 

improve interpolation accuracy. 
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 Ptotal,war is the total number of pressures after adding water-to-air ratios to 

improve interpolation accuracy (as opposed to adding pressures). 

 nWARadded is the number of water-to-air ratios that would need to be 

added to improve interpolation accuracy. 

 P is the number of pressures per water-to-air ratio. 

Then, if Ptotal,p  Ptotal,war then adding pressures is preferable to adding water- 

-to-air Ratios.  Else, adding water-to-air ratios would be preferable (file size 

being the issue of interest) to adding pressures. 

This methodology was adopted for all caloric properties.  In the case where 

pressures were added to reduce interpolation error (as opposed to adding a 

WAR), then that would lead to reduced interpolation errors of dry air (since 

there are now more pressures available than previously). 

WAR, values were considered up to 0.95 with an additional value of 0.1 for 

interpolation. Any interpolation performed for values between 0.95 and 0.1 

would have errors greater than 0.03% since the interpolation routine would be 

using 3 points prior to the interpolant and 1 point after the interpolant, as 

opposed to the method used to define the method, that is, two points before and 

two points after the interpolant.  The assumption was made that for gas turbine 

calculations, most WAR values would be less than 0.95.  In addition, a lack of a 

WAR point beyond 0.1 served to keep file sizes small.  

The same methodology of selection of WAR points was adopted for selection of 

FAR points.  That is, starting with 5 FAR points, 0, 0.001, 0.025, 0.05 and 

Stoichiometric; in-between values were then added where interpolation errors 

were greater than 0.03%. (Interpolation being performed midway between FAR, 

WAR, pressure and temperature points).  These points were added onto the 

now selected temperature, pressure and WAR points 



140 

 

 In addition, for FAR, only values up to stoichiometric were considered, with an 

additional FAR point of [1.8 Stoichiometric], for rich-burn, quick-mix, lean-burn 

combustors (Tacina, 1990). Therefore, any interpolation performed for values 

between stoichiometric values and [1.8 Stoichiometric], may have errors 

greater than 0.03%.  The assumption that was made was that for gas turbine 

calculations, there will be no need to interpolate within this region, that is, 

between stoichiometric and [1.8 Stoichiometric] since most applications will be 

either lean-burn (below stoichiometric), stoichiometric or at [1.8 

Stoichiometric].  The exclusion of values in this region served to keep file sizes 

minimal and thus computationally efficient. 

As a reminder, the values of stoichiometric and [1.8 Stoichiometric] for 

respective FARs are presented in Table 6.5.  The ‗Max FAR‘ values are the 

same as [1.8 Stoichiometric]. 

 
UK 

Natural 

Gas 

Jet-A Hydrogen Diesel 

tricstoichiomeFAR  0.063 0.068 0.029 0.069 

Max FAR 0.113 0.123 0.052 0.124 

Table 6.5: Stoichiometric and maximum FARs for the 4 considered fuels 

 

Appendices 3, 4, 5 and 6 are the plots of interpolation error for moist and fuelled 

air for mid-points of FAR, WAR, Pressure and temperature; from this plots, it is 

clear that all errors are within 0.03 %.  Due to space limitations, only selected 

graphs (of interpolation error) are presented. 

 Having completed selection of all temperature, pressure, WAR and FAR points, 

they may now be presented.  The temperature points are the same for all 

caloric properties and for all fuels and are already presented in Table 6.3. Table 

6.6 to Table 6.12 present the FARs, WARs and Pressure points for each caloric 

property.  These were the final points used to build respective fuel tables for 
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interpolation.  From these tables, the advantages of optimal point selection are 

oberved.  

1. For instance, density requires only 5 WARs as opposed to Cp which 

requires 15, for interpolation accuracy   0.03%.  This is because density 

is not as sensitive to moisture as isobaric heat capacity, Cp.  Therefore, 

using the same number of WARs for both properties would have served 

to reduce the accuracy of Cp and in addition, would have provided 

redundant points for density.  This redundancy is what contributes to 

large file sizes which are computationally burdensome.    

2. Gas-constant, R and Viscosity  require less pressure points than all 

other caloric properties. Therefore, using the same number of pressure 

points for all properties would have served to place redundant points for 

R and  ; this would have served to further improve interpolation 

accuracy for R and  but at the expense of computational efficiency 

(larger file sizes than necessary). 
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FAR WAR 

5 points 

Pressure, 
Atm 

30 points 

Jet-A  

12 points 

UK Natural 
Gas           

12 points 

 

 

 

Hydrogen 
Fuel           

8 points 

Diesel 

14 points 

0 

0.001 

0.013 

0.025 

0.0375 

0.05 

0.06 

0.062 

0.064 

0.066 

0.068 

0.123 

 

0 

0.001 

0.007 

0.013 

0.025 

0.0375 

0.05 

0.06 

0.061 

0.062 

0.063 

0.113 

 

0 

0.001 

0.007 

0.005 

0.013 

0.025 

0.029 

0.052 

0 

0.001 

0.007 

0.013 

0.025 

0.0375 

0.05 

0.055 

0.06 

0.062 

0.064 

0.066 

0.069 

0.124 

 

0 

0.001 

0.05 

0.095 

0.1 

0.021 

0.022 

0.036 

0.05 

0.1 

0.2 

0.5 

0.625 

1 

1.5 

2 

2.75 

3.5 

5 

6.25 

7.5 

10 

12.5 

15 

17.5 

30 

50 

80 

112.5 

137.5 

167.5 

187.5 

200 

201 

202 

 

 

Table 6.6: FAR, WAR and Pressure points for interpolation, density 
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FAR WAR 

11 points 

Pressure, 
Atm 

31 points 

Jet-A 

12 

points 

UK Natural 
Gas            

11 points 

 

 

 

Hydrogen 
Fuel          

7 points 

Diesel   

12 

points 
0 

0.001 

0.013 

0.025 

0.0375 

0.05 

0.06 

0.062 

0.064 

0.066 

0.068 

0.123 

 

0 

0.001 

0.013 

0.025 

0.0375 

0.05 

0.06 

0.061 

0.062 

0.063 

0.113 

 

0 

0.001 

0.005 

0.013 

0.025 

0.029 

0.052 

0 

0.001 

0.013 

0.025 

0.05 

0.055 

0.06 

0.062 

0.064 

0.066 

0.069 

0.124 

 

0 

0.001 

0.00325 

0.0055 

0.01 

0.025 

0.05 

0.075 

0.0875 

0.095 

0.1 

0.021 

0.022 

0.036 

0.05 

0.0635 

0.075 

0.0875 

0.1 

0.125 

0.15 

0.175 

0.2 

0.275 

0.35 

0.425 

0.5 

0.625 

0.75 

1 

1.5 

2 

3.5 

5 

7.5 

10 

20 

100 

150 

200 

201 

202 

 

 

Table 6.7: FAR, WAR and Pressure points for interpolation, Enthalpy 
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FAR WAR 

11 points 

Pressure, 

Atm 

40 points 

Jet-A 

12 points 

UK Natural 
Gas                

11 points 

 

 

 

Hydrogen 
Fuel             

7 points 

Diesel 

13 points 

0 

0.001 

0.013 

0.025 

0.0375 

0.05 

0.06 

0.062 

0.064 

0.066 

0.068 

0.123 

 

0 

0.001 

0.013 

0.025 

0.0375 

0.05 

0.06 

0.061 

0.062 

0.063 

0.113 

 

0 

0.001 

0.005 

0.013 

0.025 

0.029 

0.052 

0 

0.001 

0.013 

0.025 

0.0375 

0.05 

0.055 

0.06 

0.062 

0.064 

0.066 

0.069 

0.124 

 

0.0 

0.001 

0.002125 

0.0055 

0.01 

0.025 

0.05 

0.075 

0.0875 

0.095 

0.1 

0.021 

0.022 

0.026 

0.03 

0.0325 

0.035 

0.04 

0.045 

0.05 

0.0625 

0.075 

0.1 

0.125 

0.15 

0.2 

0.275 

0.35 

0.425 

0.5 

0.625 

0.75 

1 

1.25 

1.5 

2 

2.75 

3.5 

5 

7.5 

10 

15 

20 

40 

60 

100 

150 

175 

200 

201 

202 

 

 

Table 6.8: FAR, WAR and Pressure points for interpolation, Entropy 
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FAR WAR 

15 points 

Pressure, 
Atm 

40 points 

Jet-A 

12 points 

UK Natural 
Gas               

13 points 

 

 

 

Hydrogen 
Fuel            

10 points 

Diesel     

  14 points 

0 

0.001 

0.013 

0.025 

0.0375 

0.05 

0.06 

0.062 

0.064 

0.066 

0.068 

0.123 

 

0 

0.001 

0.007 

0.013 

0.025 

0.0375 

0.05 

0.055 

0.06 

0.061 

0.062 

0.063 

0.113 

 

0 

0.001 

0.0025 

0.004 

0.0055 

0.007 

0.013 

0.025 

0.029 

0.052 

0 

0.001 

0.013 

0.025 

0.0375 

0.05 

0.055 

0.06 

0.062 

0.064 

0.066 

0.069 

0.124 

 

0.0 

0.001 

0.0015 

0.002 

0.003 

0.005 

0.01 

0.025 

0.0375 

0.05 

0.0625 

0.075 

0.0875 

0.095 

0.1 

0.021 

0.022 

0.026 

0.03 

0.0325 

0.035 

0.04 

0.045 

0.05 

0.0625 

0.075 

0.1 

0.125 

0.15 

0.2 

0.275 

0.35 

0.425 

0.5 

0.625 

0.75 

1 

1.25 

1.5 

2 

2.75 

3.5 

5 

7.5 

10 

15 

20 

40 

60 

100 

150 

175 

200 

201 

202 

 

Table 6.9: FAR, WAR and Pressure points for interpolation, Cp 



146 

 

FAR WAR 

11 

points 

Pressure, 
Atm 

19 points 

Jet-A 

9 points 

UK Natural 
Gas             

9 points 

 

 

 

Hydrogen 
Fuel          

7 points 

Diesel   

 11 points 

0 

0.001 

0.025 

0.05 

0.06 

0.062 

0.064 

0.068 

0.123 

 

0 

0.001 

0.025 

0.05 

0.06 

0.061 

0.062 

0.063 

0.113 

 

0 

0.001 

0.005 

0.013 

0.025 

0.029 

0.052 

0 

0.001 

0.013 

0.025 

0.055 

0.06 

0.062 

0.064 

0.066 

0.069 

0.124 

 

0.0 

0.001 

0.00325 

0.0055 

0.01 

0.025 

0.05 

0.075 

0.0875 

0.095 

0.1 

0.021 

0.022 

0.0415 

0.061 

0.0805 

0.1 

0.2 

0.5 

1 

2 

10 

20 

100 

150 

175 

185 

200 

201 

202 

 

 

Table 6.10: FAR, WAR and Pressure points for interpolation, ratio of heat 

capacities 
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FAR WAR 

8 points 

Pressure, 
Atm 

15 points 

Jet-A 

8 points 

UK Natural 
Gas             

9 points 

 

 

 

Hydrogen 
Fuel          

7 points 

Diesel      

9 points 

0 

0.001 

0.013 

0.025 

0.05 

0.06 

0.068 

0.123 

 

0 

0.001 

0.013 

0.025 

0.05 

0.06 

0.062 

0.063 

0.113 

 

0 

0.001 

0.005 

0.013 

0.025 

0.029 

0.052 

0 

0.001 

0.013 

0.025 

0.05 

0.06 

0.064 

0.069 

0.124 

 

0.0 

0.001 

0.01 

0.025 

0.05 

0.075 

0.0875 

0.1 

 

0.021 

0.022 

0.05 

0.1 

0.2 

0.6 

1 

2 

10 

20 

100 

150 

200 

201 

202 

 

 

Table 6.11: FAR, WAR and Pressure points for interpolation, Gas constant 

R 
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FAR WAR 

8 points 

Pressure, 
Atm 

15 points 

Jet-A 

8 points 

UK Natural 
Gas             

9 points 

 

 

 

Hydrogen 
Fuel          

7 points 

Diesel      

9 points 

0 

0.001 

0.013 

0.025 

0.05 

0.06 

0.068 

0.123 

 

0 

0.001 

0.013 

0.025 

0.05 

0.06 

0.062 

0.063 

0.113 

 

0 

0.001 

0.005 

0.013 

0.025 

0.029 

0.052 

0 

0.001 

0.013 

0.025 

0.05 

0.06 

0.064 

0.069 

0.124 

 

0.0 

0.001 

0.01 

0.025 

0.05 

0.075 

0.0875 

0.1 

 

0.021 

0.022 

0.05 

0.1 

0.2 

0.6 

1 

2 

10 

20 

100 

150 

200 

201 

202 

 

 

Table 6.12: FAR, WAR and Pressure points for interpolation, Viscosity  

 

Having validated the respective fuel data by comparing to published data and 

having chosen computationally efficient and accurate points for FAR, WAR, 

Pressure and temperature, the fuel tables could then be used together with the 

non-linear Spline interpolation algorithm, to run gas turbine simulation case 

studies.  These are presented in the following section. 
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6.3 Case studies 

In this section, the validated fuel data tables are used for case studies in an 

attempt to demonstrate their accuracy in gas turbine performance simulation.  

The non-linear interpolation routine in conjunction with the fuel data were used 

to run compression (dry and moist air) and expansion cases for three fuels, 

JET-A, Diesel and Hydrogen.  The results obtained were compared with those 

obtained from a gas property model developed by  (Mucino, 2007) based on 

polynomials developed by  (Bücker, 2003).  In addition, the non-linear 

interpolation results were compared to a model that employed a linear 

interpolation model, using the same fuel tables.  NASAs‘ CEA software (Gordon 

and McBride, 1994) was used to calculate the baseline values, against which 

the performance calculations were compared.  The performance parameters 

that were used for comparison are Compressor exit temperature and 

Compressor work for dry and moist air, Turbine exit temperature and Turbine 

work for Jet-A, Hydrogen and Diesel.  The presentation of results now follows. 

 

6.3.1 Case study 1: Compressor calculation, dry air 

To demonstrate the effectiveness of the developed multi-fuel performance 

model, a compressor case was run for dry air.  The compressor calculation is 

based on entropy change.  The pressure rise is calculated as: 

Pout = Pin PR 

 

 (6.6) 

 
Where, 

 Pout is the compressor exit pressure 

 Pin is the compressor inlet pressure 

 PR is the pressure ratio 
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Ideal conditions (ideal compressor exit temperature) were calculated from the 

entropy function,   

PRR
inidealout

.ln.
,

  (6.7) 

 

 

 

Where, 

 R is the gas constant 

   is the entropy function. 

Based on the ideal conditions, ideal enthalpies were interpolated for from the 

fuel tables.  Then based on the definition of isentropic efficiency presented in 

Equation 6.8, the temperature at compressor exit is calculated. 

inletexit

inletidealexit

inletexit

inletidealexit
is

TT

TT

hh

hh











,,  (6.8) 

 

 

 

Where, 

 T is the temperature 

 h is the enthalpy 

Therefore, compressor work, CW is given by, 

 inletexit hhwCW   (6.9) 

 

 

Where, 

 w is the mass flow rate, Kg/s 

 

Table 6.13 presents the parameters for the dry-air compressor calculation. 
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Tinlet [K] 288.15 

Pinlet [Atm] 0.979 

PR 10.459 

FAR 0 

WAR 0 

compressor  0.78 

W [Kg/s] 4.05 

Table 6.13: Case parameters, compressor calculation, dry air 

 

Table 6.14 and Figure 6.26 are the presentation of results for the dry air 

compressor calculation case.  From these tables, it is observed that the non-

linear interpolation method provides the best results for compressor exit 

temperature, T2 and compressor work.  The model by (Mucino, 2007) provides 

the least accurate results.  The results provided by the linear interpolation 

method are close to those provided by the model by (Mucino, 2007) for both 

compressor exit temperature and compressor work. 

 Texit [K] 
Compressor 

Work, [KW] 

Actual Value 633.147 1415.4  

Linear 

interpolation 

638.9 1449.1 

Non-linear 

interpolation 

632.912 1415.259 

( Mucino, 

2007) 

639.288 1450.083 

Table 6.14: Comparison of Dry Air Compression simulation results  
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Figure 6.26: Comparison of simulation % errors for Tcompressor exit and 

Compressor work, dry air. 

 

6.3.2 Case study 2: Compressor calculation, moist air 

Case study 2 involves including moisture into the compression calculation.  The 

case parameters are presented in Table 6.15. 

Tinlet [K] 288.15 

Pinlet [Atm] 0.979 

PR 10.459 

FAR 0 

WAR 0.00618 

compressor  0.78 

W [Kg/s] 4.05 

Table 6.15: Case parameters, compressor calculation, moist air 
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Table 6.16 and Figure 6.27 are the presentation of the moist air compressor 

calculations; from these, it is observed that the non-linear interpolation method 

gives the best results in terms of simulation error, when compared with linear 

interpolation and (Mucino, 2007) model.  In addition, the errors provided by 

(Mucino, 2007) model have increased (when compared to dry air).  However, 

the non-linear interpolation method remains consistent. 

 Texit,compressor [K] Compressor 

Work, [KW] 

Actual Value 632.306 1419.53 

Linear 

interpolation 

629.594 1436.08   

Non-linear 

interpolation 

632.41 1419.67 

(Mucino, 2007) 639.27 1457.98 

Table 6.16: Comparison of moist air compression simulation results. 

 

Figure 6.27: Comparison of simulation % errors for Tcompressor exit and 

Compressor work, moist air. 
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6.3.3  Case study 3: Compressor turbine calculation, Jet-A Fuel 

The multi-fuel simulation method was also applied to compressor turbine 

calculation, using Jet-A as the fuel.  Equation 6.8 can be modified for turbine 

calculation (expansion) as, 

idealinlet

exitinlet

idealoutletinlet

outletinlet
is

TT

TT

hh

hh











,

  (6.10) 

 

 

 

The turbine TW, work can then be obtained as, 

 exitinlet hhwTW   (6.11) 

 

 

Table 6.17 presents the parameters for the turbine calculation case with Jet-A 

as the fuel. 

TET  [K] 1397.02 

Pinlet [Atm] 30.57 

PR 0.261 

FAR 0.0217 

WAR 0.00618 

turbine  0.865 

W [Kg/s] 4.07 

Table 6.17: Case parameters, compressor turbine calculation, Jet-A 

 

The results obtained after running the turbine calculations are presented in 

Table 6.19 and Figure 6.28 for both turbine exit temperature and turbine work.  

It is observed that once again, the non-linear interpolation method gives the 

most accurate results.  In addition, the results provided by the model by 

(Mucino, 2007) seem to be increasing in error, with increase in FAR (that is, the 

errors for Jet-A are greater than those of dry and moist air).  This is further 
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confirmed by running another case for Jet–A fuel with parameters provided in 

Table 6.18, where FAR, WAR and TET have been increased to 0.0615, 0.053 

and 1547.5 [K] respectively.  The results of this are provided in Table 6.20 and 

Figure 6.29 where it is observed that results provided by the model by (Mucino, 

2007) are unacceptably large.  The author is of the inclination that at such high 

FAR and temperatures, dissociation could be playing a role in this large error; 

this model (Mucino, 2007) does not take dissociation into account.  In addition, 

the linear results are also larger at higher FAR, WAR and temperature.  The 

non-linear model however consistently provides accurate results. 

TET  [K] 1547.5 

Pinlet [Atm] 30.57 

PR 0.261 

FAR 0.0615 

WAR 0.053 

turbine  0.865 

W [Kg/s] 4.07 

Table 6.18: Case parameters, compressor turbine calculation, Jet-A 

 

 Texit,turbine [K] Turbine Work, 

[KW] 

Actual Value 1072.483 1605.128 

Linear 

interpolation 

1071.57 1604.7  

Non-linear 

interpolation 

1072.49 1605.035 

(Mucino, 2007) 1013.93 1868.5 

Table 6.19: Comparison of turbine simulation results, Jet-A fuel 
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Figure 6.28: Comparison of simulation % errors, Jet-A 

 

 Texit,turbine [K] Turbine Work, 

[KW] 

Actual Value 1209.452 1866.323 

Linear 

interpolation 

1215.032 1845.954 

Non-linear 

interpolation 

1209.04 1866.215 

( Mucino, 

2007) 

1123.42 2315.79 

Table 6.20: Comparison of turbine simulation results, FAR 0.0615 and 

WAR 0.053, Jet-A fuel 
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Figure 6.29: Comparison of simulation % errors, Jet-A, FAR 0.0615, WAR 

0.053 

 

6.3.4  Case study 4: Compressor turbine calculation, Hydrogen fuel 

The multi-fuel simulation method was also applied to compressor turbine 

calculation, using Hydrogen as a fuel.  The case parameters for this are 

presented in Table 6.21 

TET  [K] 1397.02 

Pinlet [Atm] 30.57 

PR 0.261 

FAR 0.0217 

WAR 0.00618 

turbine  0.865 

W [Kg/s] 4.07 

Table 6.21: Case parameters, compressor turbine calculation, Hydrogen 

fuel 

FAR 0.0615. WAR 0.053

0.462 0.007

7.113

1.092
0.012

24.083

0

5

10

15

20

25

30

CEA Linear

interpolation

CEA Non-linear

interpolation

Mucino

Simulation model

S
im

u
la

ti
o

n
 E

rr
o

r,
 %

Turbine exit temperature

Turbine work



158 

 

The results for this Hydrogen fuel simulation are presented in Table 6.22 and 

Figure 6.30.  Once again, the non-linear interpolation method gives the most 

accurate results of the three methods.   

 

 Texit,turbine [K] Turbine Work, 

[KW] 

Actual Value 1011.88 2159.99 

Linear 

interpolation 

1013.068 2153.3 

Non-linear 

interpolation 

1011.95 2159.6 

( Mucino, 2007) 1013.993 2327.79 

Table 6.22: Comparison of turbine simulation results, Hydrogen fuel 

 

Figure 6.30: Comparison of simulation % errors, Hydrogen fuel 
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6.3.5  Case study 5: Compressor turbine calculation, Diesel fuel 

The multi-fuel simulation method was also applied to compressor turbine 

calculation, using Diesel as a fuel.  The case parameters for this are presented 

in Table 6.23 

TET  [K] 1397.02 

Pinlet [Atm] 30.57 

PR 0.261 

FAR 0.0217 

WAR 0.00618 

turbine  0.865 

W [Kg/s] 4.07 

Table 6.23: Case parameters, compressor turbine calculation, Diesel fuel 

 

The results for this Diesel fuel simulation are presented in Table 6.24 and 

Figure 6.31.  Once again, the non-linear interpolation method gives the most 

accurate results of the three methods.  The errors of the linear interpolation 

method have increased, compared to Jet-A and Hydrogen fuel.  The same case 

applies to (Mucino, 2007) model 

 

 Texit,turbine [K] Turbine Work, 

[KW] 

Actual Value 1166.46 1390.59 

Linear 

interpolation 

1071.609 1862.3 

Non-linear 

interpolation 

1166.98 1387.912 

(Mucino, 2007) 1013.923 2149.216 

Table 6.24: Comparison of turbine simulation results, Diesel fuel 
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Figure 6.31: Comparison of simulation errors, Diesel fuel 

 

6.4 Multi-fuel performance simulation discussion of results 

This section aims to discuss the findings of the non-linear multi-fuel interpolation 

method and further reconcile them with the insights gained from the literature 

review. 

From the literature review, the issues of real-gas effects (dissociation) and fuel 

chemistry were highlighted and it was concluded that they both need to be 

taken into account fully, if errors due to them are to be reduced.  The Bücker 

polynomials (Bücker, 2003)  polynomials are of order 10 and can be utilised to 

calculate enthalpy, h, entropy, s and isobaric heat capacity, Cp as a function of 

temperature for eight molecular gases: Nitrogen, Oxygen, Neon, Argon, Carbon 

monoxide, Water, Carbon dioxide and Sulphur dioxide.  The gas properties for 

dry air are gained by adding the results according to their molar fractions and 

masses specified for air.  Fuel-to-air ratio, FAR and Water-to-air ratio WAR are 

introduced by adapting molar fractions and masses accordingly.  Other gas 
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properties like the ratio of heat capacities  , gas constant R, can be calculated 

from the available molar fractions, mass fractions and gas properties.  This 

method is relatively easy to implement and is not computationally expensive.  

However, its accuracy is restricted to very ideal cases in which the gas under 

consideration consists only of the eight gases mentioned.  This has been 

demonstrated in the combustion case studies where, the errors obtained 

increase with addition of FAR.  Real gas effects (specifically, dissociation) will 

rise considerably for moist air and combustion gases due to the presence of 

water and/or carbon dioxide, depending on the concentration of either (or both).  

For instance, for dry air (case study 1), the error in predicting compressor exit 

temperature was 0.97% and for moist air (case study 2), the error increased to 

1.1%.  The same was observed when FAR was increase from 0.02172 to 

0.0615 and WAR from 0.00618 to WAR 0.053 (case study 3); the errors 

increase with increase in FAR.   

In light of advancements in gas turbine technology that require temperatures 

above 2000 [K], or, conceptual design work for future technologies that require 

gas turbine temperatures above 2000 [K] and keeping the aforementioned issue 

of dissociation at high temperatures in mind, then an improved approach has 

been desirable. 

Linear interpolation depends on approximating a function between two points.  

The accuracy of this method depends on the distance between these two 

points; if the points are sufficiently close, then the accuracy will be reasonably 

good.  However, having sufficiently close points (of FAR, WAR, Pressure and 

temperature) comes with the penalty of large file sizes (in the case of fuel-tables 

method) and is thus computationally expensive.  Non-linear interpolation (for 

this work, cubic-spline interpolation) acts as a solution to this problem since 

non-linear interpolation can better approximate any function, given four points.  

The improved accuracy of non-linear interpolation has been clearly 

demonstrated in all the case studies.  In case study 5, the errors of the linear 

method increase significantly from other cases; this can be attributed to the 
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increased non-linearity of diesel caloric properties.  However, the non-linear 

interpolation method produced errors below 0.2% (Case study 5).  The non-

linear interpolation method has also been demonstrated to consistently provide 

improved accuracy results in all cases. 

The provided fuel tables have been produced using NASA‘s CEA program 

(Gordon and McBride, 1994) which is accepted as an industry standard.  

Therefore, the fuel tables in conjunction with the non-linear interpolation 

algorithm can be used as a tool that can provide mutual acceptance of results 

across engineering teams.  The caloric properties provided in the fuel tables for 

FAR, WAR, Pressure and temperature exceed the typical values for gas turbine 

calculations; as such, the method can be used for conceptual work that covers 

parameters outside the typical ranges of current gas turbine calculations. These 

caloric properties were calculated with dissociation in mind; therefore any errors 

due to the same would be eliminated (as opposed to assuming no-dissociation). 

Finally, the provided caloric properties are unique to each fuel; therefore, any 

errors due to assuming similar fuel chemistry across two different fuels would 

be eliminated. 
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7 CONCLUSIONS AND FURTHER WORK 

At the onset of this project, two aims were clearly stated.  This section aims to 

make conclusions based on these aims and further highlight any limitations that 

may require further work to be carried out in the future. 

7.1 Non-linear WLS conclusions and further work 

For the non-linear WLS part of the project, the aim was stated thus: 

 To investigate the fidelity of a non-linear weighted least squares 

diagnostics algorithm for fault quantification of gas path 

components. 

To fulfil this aim, a number of objectives were set out which included the review 

of diagnostic methods developed in the past with the aim of identifying key 

requirements for an advanced diagnostic method.  Key requirements for an 

advanced diagnostic scheme were identified and which served as the frame-

work for the development of the non-linear WLS algorithm. These included 

amongst others, based on non-linearity, ability to address measurement noise, 

based on a mathematical model and easily satisfied computational 

requirements.  To work in conjunction with the non-linear WLS algorithm, two 

new weighting schemes were developed, WS1 and WS2.  The non-linear WLS 

algorithm in conjunction with these two weighting methods was tested with 

application to four case studies, which involved the diagnostics of various gas 

path components using noisy simulated data.  Three of the four studies involved 

the use of multiple measurement samples and one case study involved the use 

of a single measurement sample.  The weighting methods were compared with 

the traditional weighting method of the reciprocal of variance and the non-linear 

WLS was compared to non-linear GPA.  From the work that has been carried 

out, the following can therefore be concluded: 

1. WS1 and WS2 produce reasonably small weights; this in turn reduces 

the probability of degradation of the influence co-efficient matrix 
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(measured by high matrix condition numbers) and will thus produce 

useful diagnostic results at all times.  In comparison, the traditional 

method of using the reciprocal of variance is not stable in the sense that, 

it may or may not degrade the influence co-efficient matrix.  In the case 

where it does, any produced diagnostic results will not be useful.   

2. The non-linear weighted least squares method provides improved results 

over its linear counterpart and is therefore recommended over its linear 

counterpart.  In addition, the method provides results that are improved 

in precision and accuracy over methods that do not account for 

measurement noise.   

3. The non-linear WLS method in conjunction with WS1 and WS2 weighting 

methods can therefore be applied to the diagnostics of various gas path 

components, using noisy measurements and the results produced would 

be useful even for decision making in the context of engine maintainance 

schedules. 

From this part of the project, two contributions to knowledge have been made: 

1. The first is in the form of two new weighting methods WS1 and WS2 

that have demonstrated improvements over the existing reciprocal-of-

variance method.  Both weighting methods produce weights that do not 

degrade influence co-efficient matrices and can thus be deemed stable.  

WS1 is further useful in weighting measurements in the absence of a 

sample of data.  This stability is of real value to gas turbine users since 

it guarantees diagnostic results at all times.  Such diagnostic results can 

then be used to make informed decisions.  The ability (of WS1) to 

weight measurements using a single sample is of real value as well, 

since it means that in the absence of samples of data, one can still 

perform diagnostics and thereafter make informed decisions.   

2. The second contribution is in the form of the non-linear WLS algorithm 

which works in conjunction with WS1 and WS2 weighting methods and 



165 

 

has been demonstrated to be a significant improvement over its linear 

counterpart.  This diagnostic method would be of value to any gas 

turbine diagnostics department, in quantifying gas turbine component 

degradations even in the presence of measurement noise. 

However, the method has its limitations which need to be addressed as further 

work.   

 The developed method did not include a covariance matrix to address 

measurement errors.  Therefore, any detected fault will be attributed to 

component deterioration even if the fault may actually be a measurement 

fault.  Therefore, the current method can be improved to cover 

measurement faults by including a measurement error covariance matrix, 

in addition to the matrix of influence co-efficients. 

 The developed method quantifies gas turbine faults but does not possess 

any fault isolation capability.  That is, the method does not provide any 

means of predicting and/or isolating the degraded component.  Work 

needs to be done in developing such a capability so that the method will 

be a fault isolation and quantification method.  

 Other areas that desire some attention would include all other 

requirements for an advanced diagnostic scheme that were highlighted 

as findings from the literature review.  For instance, the method could be 

used as part of a hybrid method with any other diagnostic scheme, where 

each component of the hybrid system benefits from mutual interaction.  

In addition, any weaknesses from any component would be 

complemented by the strengths of the other.  Another example would be 

the inclusion of a component which allows the inclusion of past 

maintainance histories and records (e.g., Bayesian belief network or an 

expert system); such information would be used to further improve 

diagnostic results. This sort of hybrid method deserves some 

investigation with the aim of improving the non-linear WLS algorithm. 
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7.2 Multi-fuel performance simulation conclusion and further work 

For the multi-fuel performance simulation part of the project, the following aim 

was stated: 

 To develop a multi-fuel and multi-caloric property to improve the 

potential of gas turbine performance simulation accuracy. 

 

To fulfil this aim, a number of objectives were laid out which began with a 

review of literature of simulation methods developed in the past.  The ideal gas 

assumption was reviewed and it was concluded that apart from class-room 

instruction, the method is not accurate enough for gas turbine simulation.  

Dissociation as a phenomenon was reviewed and any errors due to the same 

were highlighted and discussed.  It was concluded that dissociation should not 

be ignored and where possible, its effect should be modelled, for improved 

simulation accuracy and more so at high temperatures and low pressures.  

Models that fail to take fuel chemistry into account were also reviewed and it 

was concluded that, unless two different fuels are not significantly dissimilar in 

terms of their chemical composition, then for improved accuracy, they would 

need to be modelled separately. This conclusion applies more so to natural 

gases whose chemical compositions will vary based on their countries of origin.   

A suitable technical model was identified as NASAs‘ CEA software based on 

the fact that it was the only one (compared to most models used in industry as 

acceptable standards today) that described the caloric properties of combustion 

gases with satisfactory accuracy over the temperature range of 200[K] to 

3000[K].  This software was then used to produce fuel tables for four fuels, Jet-

A, Diesel, Hydrogen and Natural gas from the United Kingdom.   The fuel tables 

consisted of caloric properties density, enthalpy, entropy, isobaric heat capacity, 

ratio of heat capacities, the gas constant and viscosity.  For each of these 

caloric properties, data points were selected for Fuel-to-air ratio, Water-to-air 

ratio, pressure and temperature with the aim of optimising file sizes.  A non-
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linear cubic-spline interpolation method was developed to work in conjunction 

with these fuel files. 

Case studies for compressor and turbine simulation were carried out and from 

this work, the following conclusions can be made. 

1. The cubic spline non-linear method provides improved accuracy as 

compared to the linear interpolation method.  This is especially significant 

for caloric properties that exhibit significant non-linearity, e.g. density.  

This is also significant at high FARs and WARs.  As such, the non-linear 

method is recommended over the linear interpolation method. 

2. Polynomial based methods may be reasonably accurate for dry and 

moist air; however, when considering Fuel-to-air ratios, this accuracy 

reduces and more so at high Fuel-to-air ratios, high temperatures, where 

dissociation effects may be prevalent.  The developed fuel tables unique 

to each fuel eliminate any errors that are a result of assuming similar fuel 

chemistry across fuels.   

From this part of the project, a contribution to knowledge has been made in the 

form of a comprehensive and improved-accuracy simulation tool that can be 

used for gas turbine simulation and for multiple fuels.  This is of value especially 

when it is part of a simulation and diagnostic suite where accurate simulation 

data is required for accurate detection of component degradation.  In addition, 

since the fuel tables cover parameters of FAR, WAR Pressure and temperature 

that are beyond current gas turbine limits, the tool can as well be used for 

conceptual design purposes of future gas turbine technologies.  In addition, the 

method is a frame-work for further development of more fuel tables by other 

users.  Such additional fuels will use the same cubic-spline interpolation routine 

and as such, there is no limitation to the number of fuels that can be added.  

The method can also be used for classroom instruction where accurate caloric 

properties for different fuels can easily be obtained by running the non-linear 

interpolation. 
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The method does however have limitations that need to be addressed as further 

work.   

 An improved interpolation method needs to be explored with the aim of 

reducing interpolation points and hence improving computational 

efficiency.  This would also afford users the chance to add FAR points 

between stoichiometric values and rich burn quick quench values without 

stiff computational penalties. 
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APPENDIX 1: Typical Fuel data table 

FAR 0.000 WAR 0.00000 P   0.020 
# t           h_abs       s_abs       R_spec      cp          gam         vis 

2.0000E+02 -9.8466E+04  7.1860E+02  2.8705E+02  1.0024E+03  1.4013E+00  1.3625E-05 
2.5000E+02 -4.8333E+04  9.4240E+02  2.8705E+02  1.0031E+03  1.4009E+00  1.6302E-05 

3.0000E+02  1.8588E+03  1.1254E+03  2.8705E+02  1.0048E+03  1.3999E+00  1.8746E-05 
3.5000E+02  5.2176E+04  1.2805E+03  2.8705E+02  1.0082E+03  1.3981E+00  2.1020E-05 

4.0000E+02  1.0271E+05  1.4155E+03  2.8705E+02  1.0135E+03  1.3952E+00  2.3163E-05 

4.5000E+02  1.5355E+05  1.5352E+03  2.8705E+02  1.0206E+03  1.3913E+00  2.5199E-05 
5.0000E+02  2.0480E+05  1.6432E+03  2.8705E+02  1.0295E+03  1.3866E+00  2.7148E-05 

5.5000E+02  2.5653E+05  1.7418E+03  2.8705E+02  1.0398E+03  1.3814E+00  2.9023E-05 
6.0000E+02  3.0879E+05  1.8328E+03  2.8705E+02  1.0510E+03  1.3757E+00  3.0832E-05 

6.5000E+02  3.6164E+05  1.9173E+03  2.8705E+02  1.0628E+03  1.3700E+00  3.2585E-05 
7.0000E+02  4.1508E+05  1.9965E+03  2.8705E+02  1.0749E+03  1.3643E+00  3.4288E-05 

7.5000E+02  4.6913E+05  2.0711E+03  2.8705E+02  1.0870E+03  1.3588E+00  3.5946E-05 
8.0000E+02  5.2378E+05  2.1417E+03  2.8705E+02  1.0988E+03  1.3536E+00  3.7563E-05 

8.5000E+02  5.7901E+05  2.2086E+03  2.8705E+02  1.1103E+03  1.3487E+00  3.9142E-05 

9.0000E+02  6.3480E+05  2.2724E+03  2.8705E+02  1.1213E+03  1.3441E+00  4.0688E-05 
9.5000E+02  6.9113E+05  2.3333E+03  2.8705E+02  1.1319E+03  1.3398E+00  4.2202E-05 

1.0000E+03  7.4798E+05  2.3916E+03  2.8705E+02  1.1421E+03  1.3357E+00  4.3688E-05 
1.0500E+03  8.0533E+05  2.4476E+03  2.8705E+02  1.1520E+03  1.3319E+00  4.5144E-05 

1.1000E+03  8.6317E+05  2.5014E+03  2.8705E+02  1.1614E+03  1.3283E+00  4.6572E-05 
1.1500E+03  9.2147E+05  2.5532E+03  2.8705E+02  1.1705E+03  1.3249E+00  4.7975E-05 

1.2000E+03  9.8022E+05  2.6032E+03  2.8705E+02  1.1793E+03  1.3217E+00  4.9355E-05 
1.2500E+03  1.0394E+06  2.6515E+03  2.8705E+02  1.1879E+03  1.3186E+00  5.0716E-05 

1.3000E+03  1.0990E+06  2.6983E+03  2.8705E+02  1.1965E+03  1.3157E+00  5.2059E-05 
1.3500E+03  1.1590E+06  2.7436E+03  2.8705E+02  1.2049E+03  1.3127E+00  5.3385E-05 

1.4000E+03  1.2195E+06  2.7876E+03  2.8705E+02  1.2135E+03  1.3099E+00  5.4697E-05 

1.4500E+03  1.2804E+06  2.8303E+03  2.8705E+02  1.2222E+03  1.3070E+00  5.5994E-05 
1.5000E+03  1.3417E+06  2.8719E+03  2.8705E+02  1.2313E+03  1.3041E+00  5.7279E-05 

1.5500E+03  1.4035E+06  2.9124E+03  2.8705E+02  1.2409E+03  1.3011E+00  5.8553E-05 
1.6000E+03  1.4658E+06  2.9520E+03  2.8706E+02  1.2514E+03  1.2980E+00  5.9815E-05 

1.6500E+03  1.5287E+06  2.9907E+03  2.8706E+02  1.2632E+03  1.2946E+00  6.1066E-05 
1.7000E+03  1.5922E+06  3.0286E+03  2.8707E+02  1.2768E+03  1.2910E+00  6.2309E-05 

1.7500E+03  1.6564E+06  3.0658E+03  2.8708E+02  1.2931E+03  1.2868E+00  6.3542E-05 
1.8000E+03  1.7215E+06  3.1025E+03  2.8711E+02  1.3130E+03  1.2821E+00  6.4767E-05 

1.8500E+03  1.7878E+06  3.1388E+03  2.8714E+02  1.3377E+03  1.2766E+00  6.5985E-05 

1.9000E+03  1.8554E+06  3.1748E+03  2.8719E+02  1.3688E+03  1.2703E+00  6.7196E-05 
1.9500E+03  1.9248E+06  3.2108E+03  2.8726E+02  1.4082E+03  1.2630E+00  6.8401E-05 

2.0000E+03  1.9964E+06  3.2468E+03  2.8736E+02  1.4580E+03  1.2547E+00  6.9602E-05 
2.0500E+03  2.0708E+06  3.2838E+03  2.8750E+02  1.5208E+03  1.2454E+00  7.0800E-05 

2.1000E+03  2.1487E+06  3.3218E+03  2.8769E+02  1.5994E+03  1.2352E+00  7.1997E-05 
2.1500E+03  2.2311E+06  3.3598E+03  2.8794E+02  1.6969E+03  1.2244E+00  7.3195E-05 

2.2000E+03  2.3188E+06  3.4008E+03  2.8828E+02  1.8167E+03  1.2131E+00  7.4395E-05 
2.2500E+03  2.4132E+06  3.4428E+03  2.8871E+02  1.9619E+03  1.2018E+00  7.5601E-05 

2.3000E+03  2.5155E+06  3.4878E+03  2.8927E+02  2.1358E+03  1.1908E+00  7.6816E-05 

2.3500E+03  2.6273E+06  3.5358E+03  2.8999E+02  2.3410E+03  1.1804E+00  7.8044E-05 
2.4000E+03  2.7501E+06  3.5878E+03  2.9087E+02  2.5796E+03  1.1709E+00  7.9288E-05 

2.4500E+03  2.8858E+06  3.6438E+03  2.9196E+02  2.8521E+03  1.1625E+00  8.0552E-05 
2.5000E+03  3.0359E+06  3.7048E+03  2.9329E+02  3.1575E+03  1.1552E+00  8.1841E-05 

2.5500E+03  3.2020E+06  3.7698E+03  2.9487E+02  3.4922E+03  1.1491E+00  8.3158E-05 
2.6000E+03  3.3855E+06  3.8418E+03  2.9673E+02  3.8493E+03  1.1441E+00  8.4508E-05 

2.6500E+03  3.5872E+06  3.9178E+03  2.9890E+02  4.2183E+03  1.1403E+00  8.5891E-05 
2.7000E+03  3.8073E+06  4.0008E+03  3.0136E+02  4.5842E+03  1.1376E+00  8.7310E-05 

2.7500E+03  4.0452E+06  4.0878E+03  3.0412E+02  4.9276E+03  1.1360E+00  8.8763E-05 

2.8000E+03  4.2993E+06  4.1798E+03  3.0715E+02  5.2256E+03  1.1353E+00  9.0248E-05 
2.8500E+03  4.5666E+06  4.2738E+03  3.1040E+02  5.4534E+03  1.1356E+00  9.1759E-05 

2.9000E+03  4.8431E+06  4.3698E+03  3.1382E+02  5.5879E+03  1.1368E+00  9.3288E-05 
2.9500E+03  5.1235E+06  4.4658E+03  3.1731E+02  5.6112E+03  1.1391E+00  9.4825E-05 

3.0000E+03  5.4022E+06  4.5598E+03  3.2077E+02  5.5158E+03  1.1423E+00  9.6362E-05 
3.1500E+03  6.1724E+06  4.8108E+03  3.3019E+02  4.6336E+03  1.1593E+00  1.0087E-04 

3.3000E+03  6.7773E+06  4.9978E+03  3.3695E+02  3.4477E+03  1.1874E+00  1.0511E-04 

Figure A1.1: Typical fuel data table 
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APPENDIX 2: DRY AIR INTERPOLATION ERRORS 

 

Figure A2.1: interpolation errors, dry air, density 

 

Figure A2.2: Interpolation errors, dry air, Enthalpy 
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Figure A2.3: Interpolation error, dry air, entropy 

 

Figure A2. 4: Interpolation errors, dry air, Isobaric heat Capacity 
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Figure A2. 5: Interpolation errors, dry air, ratio of heat capacities 

 

 

Figure A2.6: Interpolation errors, dry air, Gas constant, R 
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Figure A2. 7: Interpolation errors, dry air, Viscosity 
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APPENDIX 3: MOIST AIR INTERPOLATION ERRORS 

 

Figure A3.1: Interpolation errors, moist air, WAR 0.0255, density 

 

Figure A3.2: Interpolation errors, moist air, WAR 0.0725, density 
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Figure A3.3: Interpolation error, moist air, WAR 0.002125, enthalpy 

 

 

Figure A3.4: Interpolation error, moist air, WAR 0.09125, enthalpy 
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Figure A3.5: Interpolation error, moist air, WAR 0.015, Entropy 

 

 

Figure A3. 6: Interpolation error, moist air, WAR 0.09125, Entropy 
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Figure A3.7: Interpolation error, moist air, WAR 0.0013, Cp 

 

Figure A3.8: Interpolation error, moist air, WAR 0.09125, Cp 
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Figure A3.9: Interpolation error, moist air, WAR 0.0015625 ratio of heat 

capacities 

 

 

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

0.020

0 500 1000 1500 2000 2500 3000

In
te

rp
o

la
ti

o
n

 e
rr

o
r,

 %

Temperature, [K]

0.026 Atm
0.0325 Atm
0.0375 Atm
0.045 Atm
0.05625 Atm
0.06875 Atm
0.0875 Atm
0.1125 Atm
0.1375 Atm
0.175 Atm
0.2375 Atm
0.3125 Atm
0.3875 Atm
0.4625 Atm
0.5625 Atm
0.6875 Atm
0.875 Atm
1.25 Atm
1.75 Atm
2.375 Atm
3.125 Atm
4.25 Atm
6.25 Atm
8.75 Atm
15 Atm
60 Atm
125 Atm
162.5 Atm
187.5 Atm



191 

 

 

Figure A3.10: Interpolation error, moist air, WAR 0.09125, ratio of heat 

capacities 

 

 

Figure A3.11: Interpolation error, moist air, WAR 0.00325, Gas constant, R 
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Figure A3.12: Interpolation error, moist air, WAR 0.09125, Gas constant, R 

 

 

Figure A3.13: Interpolation error, moist air, WAR 0.00325, viscosity 
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Figure A3.14: Interpolation error, moist air, WAR 0.09125, Viscosity 
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APPENDIX 4: JET A FUEL INTERPOLATION ERRORS 

 

Figure A4.1: Interpolation errors, JetA FAR 0.007, WAR 0.00775, Enthalpy 

 

 

Figure A4.2: Interpolation errors, JetA FAR 0.007, WAR 0.09125, Enthalpy 
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Figure A4.3: Interpolation errors, JetA FAR 0.0525, WAR 0.00775, Enthalpy 

 

 

Figure A4.4: Interpolation errors, JetA FAR 0.0525, WAR 0.09125, Enthalpy 
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Figure A4.5: Interpolation errors, JetA FAR 0.007, WAR 0.00775, Gas 

constant, R 

 

 

0.000

0.010

0.020

0.030

0.040

0.050

0.060

0 500 1000 1500 2000 2500 3000 3500

In
te

rp
o

la
ti

o
n

 e
rr

o
r,

 %

Temperature, [K]

FAR 0.007, WAR 0.00775
0.036 Atm

0.075 Atm

0.15 Atm

0.4 Atm

0.8 Atm

1.5 Atm

6.0 Atm

15.0 Atm

60.0 Atm

125.0 Atm

175.0 Atm



197 

 

 

Figure A4.6: Interpolation errors, JetA FAR 0.007, WAR 0.09125, Gas 

constant, R 
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Figure A4.7: Interpolation errors, JetA FAR 0.066 WAR 0.00775, Gas 

constant, R 

 

 

Figure A4.8: Interpolation errors, JetA FAR 0.066 WAR 0.09125, Gas 

constant, R 
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APPENDIX 5: DIESEL FUEL INTERPOLATION ERRORS 

 

Figure A5.1: Interpolation errors, Diesel fuel FAR 0.01 WAR 0.008875, 

Enthalpy 

 

Figure A5.2: Interpolation errors, Diesel fuel FAR 0.01 WAR 0.03125, 

Enthalpy 
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APPENDIX 6: HYDROGEN FUEL INTERPOLATION ERRORS 

 

Figure A6.1: Interpolation errors, Hydrogen fuel FAR 0.01 WAR 0.008875, 

Gas constant, R 

 

Figure A6.2: Interpolation errors, Hydrogen fuel FAR 0.01 WAR 0.008875, 

ratio of heat capacities 
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