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Abstract Presented is a novel framework for performing flexible computational design studies at 
preliminary design stage. It incorporates a workflow management device (WMD) and a number of 
advanced numerical treatments, including multi-objective optimization, sensitivity analysis and 
uncertainty management with emphasis on design robustness. The WMD enables the designer to 
build, understand, manipulate and share complex processes and studies.  Results obtained after 
applying the WMD on various test cases, showed a significant reduction of the iterations required 
for the convergence of the computational system. The tests results also demonstrated the 
capabilities of the advanced treatments as follows: 

- The novel procedure for global multi-objective optimization has the unique ability to 
generate well-distributed Pareto points on both local and global Pareto fronts 
simultaneously.  

- The global sensitivity analysis procedure is able to identify input variables whose range of 
variation does not have significant effect on the objectives and constraints. It was 
demonstrated that fixing such variables can greatly reduce the computational time while 
retaining a satisfactory quality of the resulting Pareto front.  

- The novel derivative-free method for uncertainty propagation, which was proposed for 
enabling multi-objective robust optimization, delivers a higher accuracy compared to the 
one based on function linearization, without altering significantly the cost of the 
single optimization step.  

The work demonstrated for the first time that such capabilities can be used in a coordinated way to 
enhance the efficiency of the computational process and the effectiveness of the decision making 
at preliminary design stage. 
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1 Introduction 
 
Our initial research, as part of the EU FP6 VIVACE project, indicated that although involving a lot 
of talent and producing great results, the existing pre design processes can be significantly 
improved. For example, relevant process information is currently spread in tools, manuals, brains 
and sites and in many cases the procedural coding incorporates ‘hardwired’ assumptions from 
other disciplines (e.g., weight estimation procedure incorporating assumptions on aerodynamic 
loading). Thus, the result of a design study may depend on the way it was produced. On the other 
hand, innovation may be restrained by the confinement to known cases since the design starts from 
existing configurations, implicit in the computational code. Industrial need was therefore identified 
for a new approach, allowing to merge numeric and geometric design and to facilitate a 
component-driven modularisation of the disciplines. 
In this context, Cranfield University had the task to research and develop a prototype workflow 
management device (WMD) enabling a simple formalism and easily understandable description of 
the computational workflow which would allow to store not only the results, but also the way 
these were computed. This means that the computational workflow should be stored in an 
executable format and also be editable by the user in order to develop dynamic solutions. The 
WMD should be capable of dynamic assembly of hierarchical computational processes from other 
processes and/or from atomic models (i.e., equations or compiled codes referred to as black 
boxes). In addition, the WMD should enable the dynamic application of relevant treatments to the 
computational processes, such as multi-objective optimization, sensitivity analysis and uncertainty 
management. The realisation of these treatments includes distinct research contribution which is 
also summarised in this paper. 
The relation of this work to the classical notion of MDO, i.e., optimization of a system consisting 
of coupled disciplines, becomes apparent when considering the objective of pre design, which is to 
define the characteristics on an aircraft given its properties. That is, to determine the design 
parameters, given performance and operational parameters derived from stakeholders’ 
requirements, or to modify existing aircraft for the satisfaction of a different or a stretched 
requirement. In any case a workflow consisting of hundreds of models (black boxes) and 
thousands of variables needs to be assembled and “(re)wired” every time a variable is added to or 
removed from the input set. During this process subsets of models may become coupled through 
shared variables. These coupled or strongly connected components (SCCs) correspond to the 
‘disciplines’ in the classical MDO. The difference is that the pre-design MDO process has to be 
configured on the fly, with hundreds, albeit low fidelity models. 
These problems, as part of the WMD specification are outlined in the next section. The novel 
Calculation Engine for multi-objective optimization, and in particular, for finding local and global 
Pareto surfaces is described in section 3. Section 4 discusses sensitivity analysis and in particular, 
the possibility to identify design variables whose range of variation does not have significant effect 
on the objectives and constraints. This could significantly reduce the dimensionality of the design 
space and the computational effort, respectively. Uncertainty management is discussed in section 5 
with emphasis on robust multi-objective optimization. In each of these sections appropriate 
reference to stat of the art in the particular field is made for completeness. The results are 
presented in section 6. Finally conclusions are drawn and future work outlined. 
 
 

2 Computational workflow management 
 
The computational process modeller is presented in Fig. 1. A brief summary of the flow chart steps 
is given below while a detailed description of the associated techniques is presented in Guenov et 
al. [9], Balachandran et al.[1] and Balachandran [2]. 
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Fig. 1 The computational process modeller 

 

START 
Step 1:  Initially the designer needs to provide the system of models with a choice of independent 
(input) variables. 
Step 2: Variable flow modelling is performed using the incidence matrix method (IMM) in order 
to determine the information (data) flow between the models. All feasible variable flow models of 
the system are explored in this step. 
Step 3: Each variable flow model generated is separated into hierarchically decomposable and 
non-hierarchically decomposable systems of models. Non-hierarchically decomposable systems 
are also known as strongly connected components (SCC).  
Step 4: Given a SCC, its constituent models are rearranged by means of Genetic Algorithm (GA). 
Step 5: The selection of the optimal variable flow model is based on the value of objective 
function which combines criteria such as number of modified models and number and length of 
the feedback loops. 
Step 6: Each of the rearranged SCCs is regarded as a single model and is reintroduced into the 
DSM along with the remaining models.  
Step 7: If SCCs do not exist, then the models are populated directly into a DSM based on data flow 
obtained from the variable flow model. 
Step 8: The DSM is rearranged into a lower triangular matrix based on a graph theoretical 
algorithm. This rearrangement eliminates the feedback loops and thus the final computational plan 
of the system is obtained.  
END 
 
 

3 Multiobjective optimization - generating a well-distributed set of Pareto points 
 
A number of methods for obtaining an evenly distributed set of Pareto points have been developed 
in recent years. All of these are based on performing a subdivision of the criterion (objective) 
space in a set of domains. The optimization problem is then reformulated for each domain, for 
each of which a Pareto point is generated. 
Das and Dennis [5,6] were the first to provide a method for generating well-distributed Pareto 
points, the Normal-Boundary intersection (NBI) method. Another method is the PP-based method 
developed by Messac et al. [14] as an extension of the a priori articulation of preference method 
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known as the Physical Programming (PP) [17]. The new Normal Constraint (NC) method [15, 16] 
developed recently also looks very promising. 
All of the cited methods have a clear geometrical interpretation, they are all based on the well-
known fact that a Pareto frontier belongs to the boundary of the feasible space towards the minima 
of the objective functions [18]. 
The NBI, NC and PP-based methods all follow a similar approach for obtaining well-distributed 
Pareto points. Anchor points ai {i = 1,…, M} [13], which are the minima relative to each of the 
objective, are obtained first. Subsequently a number of evenly distributed points belonging to the 
criterion space, the utopia plane points p, are obtained as linear combinations of the M anchor 
points [15]. These are used as reference points allowing the reformulation of the optimization 
problem. Finally, for each utopia plane point p an optimization is executed in order to obtain a 
Pareto point. Each of these three steps is fundamental in order to obtain a complete representation 
of the Pareto frontier. 
When dealing with multiobjective optimization problems, for which the number of objectives is 
greater than two, a peripheral region exists. The peripheral region is that region of the criterion 
space, for which the orthogonal projection of the Pareto frontier on the utopia plane is external to 
the polygon spanned by the M anchor points ai [5, 16]. In their work Das and Dennis limit the 
importance of the peripheral region, stating that such region will be of no interest to the designer, 
while Messac and Mattson are interested in obtaining a complete representation of the Pareto 
frontier.  
Even though Das and Dennis believe that such points might be of no interest for the designer, it 
must be noted that the size of the peripheral region of the Pareto frontier is dependent on the 
positioning of the anchor points and can be significant. This was demonstrated by Fantini [7] who 
after analysing the existing methods defined of a set of requirements for an effective method for 
generating well-distributed Pareto. These requirements state that the reformulation should avoid 
the introduction of local minima while minimizing the possibility of the optimiser to fail. A unique 
optimization should be performed for each of the sub-problems in order to minimize the risk of 
failure. Furthermore, the method should be independent of the number of objectives. 
The attempt [7] at improving the reformulation of the optimization problems, in order to remove 
the limitations associated with the existing methods has followed three consecutive stages. The 
result of the first one is the modified PP-based method, developed through modification of the PP-
based method [27, 10]. The second one has taken advantage of the experience gained from the 
development of the first one and has led to the development of the Double Hyper-cone Boundary 
Intersection (DHCBI) method [7, 8]. The third and latest method developed is the NC+ method. 
The methods follow the tracks laid by the NBI, PP-based and NC methods, combining the various 
approaches and the knowledge gained from them. Its formulation is as follows:  

 

 min f(x) 
subject to K inequality constraints:   gk(x) £ 0, k = 1,2,…,K 
P equality constraints: hp(x) = 0, p = 1,2,…,P 
subject to the additional 1M −  constraints: vj (pi - f) £ 0, ∀j Î {1,2,…,M}, j ¹ l 

and subject to the additional constraints: vj (f - pi  - nc vl / ||vl||)£0, 
with: ,L U≤ ≤x x x   

     
 
 

(1) 

 
where vj = (lj / li) el – ej for j ¹ l, vl = m l el / ll – m, ej ∀j are the base vectors of the coordinate 
system, l is the unit vector orthogonal to the utopia plane, nc is a fraction of the Euclidean distance 
between two contiguous utopia plane points, m Î M is a vector such that mi = 1 ∀i and ml = 0 
and ,L Ux x  are the lower and upper bounds for the input variables, respectively. 
The formulation is similar to the NC method, where M - 1 constraints are used for building M - 1 
hyper-planes which confine the solution to a region of the criterion space. Although in the NC 
method these constraints are dependent on the anchor points, in the NC+ method they are build 
with respect to the coordinate system. 
For the solution to belong to the line orthogonal to the utopia plane, passing through a particular 
utopia plane point, all hyper-planes need to be orthogonal to the utopia plane and have to intersect 
in the utopia plane point. In the NC+ method, the hyper-planes are determined with respect to the 
coordinate system in such a way that the orthogonality condition is always enforced [7]. In order to 
minimize the possibility of obtaining solutions not belonging to the line orthogonal to the utopia 
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plane, passing through utopia plane point pi, an additional constraint is added. Constraint l is built 
in order to reduce the size of the feasible region, confining the solution in the proximity of the line 
passing through utopia plane point pi. As for the other M-1 constraints, constraint l defines a 
hyper-plane orthogonal to the utopia plane, but positioned at a distance nc in the direction of vector 
vl. Further details on the method can be found in Fantini [7]. 
 
 

4 Sensitivity analysis 
 
Sensitivity analysis (SA) is the study of how changes in the outputs of a complex model can be 
apportioned qualitatively or quantitatively to variations in the different inputs. Unfortunately, 
information on models used to describe a complex system cannot be obtained analytically because 
the internal mechanisms are not known. This is particularly true in MDO since complicated 
coupling between disciplines must be taken into account. In such a situation, only numerical 
results can be obtained. A way to get a better understanding of the model is to perform a sample-
based sensitivity analysis. In such a procedure, the model is executed repeatedly for a set of input 
values. Saltelli [22] describes in detail the steps necessary to perform a sample-based sensitivity 
analysis as summarised in Fig. 2.  
 
 

 
Fig. 2 Typical sensitivity analysis procedure 

 

4.1 Variance-based methods 
 
When implementation of sensitivity analysis is concerned, many different approaches can be 
followed. We have chosen Variance-based methods (VBM) since these are rigorous and 
theoretically sound approaches for global sensitivity calculation [23] exhibiting desirable 
properties for sensitivity analysis of complex models. 
VBM provide quantitative information on the influence of each input factor to help the designer 
identify the most influential variables, on which the computational effort can be concentrated, and 
the variables with negligible effects which can be discarded or frozen to a specific value. 
Variance-based approaches for sensitivity analysis decompose the output variance into partial 
variances of increasing dimensionality. 

 

1,2,3,...,( ) ...i ij k
i i j

V Y V V V
≠

= + + +∑ ∑  (2) 

In the decomposition of the variance, the term Vij is the interaction effect between xi  and xj. Vij 
represents the part of the output variation due to input parameters xi and xj which cannot be 
explained by the sum of the first order effects of parameter xi and xj. Similar considerations can be 
made for higher order terms. 
The two coefficients of main interest for sensitivity are: 

- The main effect index which gives the first-order contribution of Xi to the output response. 
- The total effect index which gives the total contribution of Xi to the output response. 

For each input, the difference between its total effect and its main effect gives an indication of the 
importance the contribution to the output due to interactions with other inputs. Therefore, both the 
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main effect indices and total effect indices are necessary to obtain information about the non-
additivity of the model and on the relative importance of variable interactions.  
Two main methods, Fourier Amplitude Sensitivity Test (FAST) [4, 24, 25, 26], have been 
developed to compute the different terms of the variance decomposition and both main and total 
effect indices. 
 

4.2 Reducing the dimensionality of the optimization problem 
 
In the context of MDO, we assume that the model, which evaluates the objectives and constraints 
of the optimization problem, can be represented as a black-box. This stands for the fact that the 
designer is unaware of the complex internal mechanisms of the model, which relate objectives and 
constraints to the input variables. The methodology developed in this general case can then be 
readily implemented for a more specific purpose. In the context of deterministic optimization, it is 
also assumed that all variables have uniform distribution over their ranges [ , ]L Ux x . In this 
approach, it is proposed to use VBM to evaluate the global sensitivity indices of each input with 
respect to all outputs. This allows to quantify the effect of the variations of the inputs on the 
outputs variance. Both main and total sensitivity indices are calculated. The main and total effects 
represent the minimum and maximum expected reduction of the output variance if the input is 
fixed to a specific value. Therefore, freezing an input variable with a negligible total sensitivity 
index will not affect the output variance.  
It is proposed to remove from the original optimization formulation a variable with a negligible 
effect on all objectives and constraints. When more than one variable is non-significant, the 
designer should consider these as a group of variables and see whether the sensitivity of the group 
is still below the significance threshold [11, 12]. Typically, this would imply performing another 
sensitivity analysis and re-sampling the design space. Such procedure could be very expensive. 
Instead, it is recommended to make sure that the sum of the group’s total indices remains below a 
particular threshold value. Without loss of generality, let us assume that the first R variables are 
non-significant to all objectives and constraints. The problem can be reformulated as follows: 

 

 min f (xred) 
subject to K inequality constraints:  gk (xred) £ 0, k = 1,2,…,K 
and P equality constraints: hp (xred) = 0, p = 1,2,…,P 
with: ,

L Ured red red≤ ≤x x x   

(3) 

 

where xred = (xR+1,…,xN). All variables with negligible effect are fixed to a value xm = xm
*  for m = 

1,…, R. 
The approach is presented in the case of a multi-criteria optimization (see section 6.3), but the 
same considerations can be made when a single objective is optimised. 

 
 

5 Design robustness 
 
A constrained robust optimization (RO) strategy can be thought of as made up of three main parts. 
The first stage consists of identifying, qualifying and quantifying the sources of uncertainty 
associated with the design input and the analysis modules. This is usually done by means of 
stochastic models. The second phase consists of propagating the uncertainty through the analysis 
system, to adequately model the probabilistic behaviour of the objective functions and constraints. 
The obtained probabilistic quantities are hence used in the third stage of the process, during which 
the optimization is performed. 
In RO, the probabilistic state can be defined in terms of expectation and variance of the 
deterministic objectives and constraints. A single-objective deterministic optimization problem 
turns then into a multi-objective robust problem if the two statistical moments are thought of as 
representing, two conflicting objectives such as a suitable average of the system performance and 
its sensitivity to unforeseen variations, respectively [3]. Several approaches have been developed 
to adequately accommodate this issue, ranging from the weighted sum method to physical 
programming [21]. When the considered deterministic problem is multi-objective, multiple system 
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performance metrics have to be traded-off [19]. In our case, the hypothesis of independence of the 
deterministic objectives is adopted. This leads to formulating the original bi-objective problem as a 
four objective one in which robustness is sought for by minimizing the objectives’ variances, 
while expectations of the performance measures are optimized according to their physical 
meanings. To maintain design feasibility with a specific level of confidence, given the prescribed 
input uncertainty, inequality constraints of the form ( ) 0kg ≤x  take the following form: 
 
 ( ) ( ) 0g g gk k k

tµ σ+ ≤x x . (4) 

 
The coefficient ( )1 ( 0)

kg kt P g−= Φ ≤  guarantees a prescribed level of probability P of constraint 
satisfaction, where Φ-1 is the inverse of the normal cumulative distribution function. It is to be 
noted that this formulation is only approximate for non-normal constraint functions.  Eq. (3) can 
thus be extended as follows:  
 

 min  ( ), ( )= f fμx
Fμ x σ x  

subject to the inequality constraints: ( ) ( ) 0,
k k kk g g gG tµ σ= + ≤x x             1, 2,...,k K=  

 L Ut t+ ≤ ≤ −x x x x xxσ μ x σ .  

     
 

(5) 

 
The way in which mean and variance of each objective and constraint function are obtained 
starting from the knowledge of the uncertainty affecting x turns out to be crucial both for the 
efficiency and the accuracy of the whole RO approach. If all the variables are continuous, the first 
two moments of ( )y f= x  are:  
 

 ( ) ( ) ( )f f p dµ
+∞

−∞

= ∫ Xxξ ξ ξ , (6) 

 { }22 ( ) ( )( ) ( )f ff p dσ µ
+∞

−∞

= −∫ Xξx xξ ξ , (7) 

 
where pX is the joint probability density function corresponding to the distributions modelling the 
uncertainty of the input variables, and is supposed not to depend on the design point x. Since a 
closed-form solution of these integrals can be obtained only in a few cases of practical interest, 
uncertainty propagation is usually performed in an approximate fashion. As pointed out in Padulo 
et al. [20], an attractive compromise between cost and accuracy of the propagation phase is offered 
by reduced quadrature methods, such as the Sigma-Point (SP) approach. This method gives mean 
and variance as follows:  
 

 0 0
1

,( ) ( ) ( )
n

f p p p
p

W f W f fµ + −
=

= +  + ∑x x x  (8) 

 ( ){ }2 22 2
0

1

1 ( ) ( ) 2 ( ) ( ) 2 ( ) .
2

n
f p p p p p p p

p
W f f W W f f fσ + − + −

=
   = − + − + −∑    x x x x x  (9) 

 
The weights are chosen as follows: 
 

 
2

0 2
sp

sp

h n
W

h

−
= , (10) 

 2
1

2p
sp

W
h

= , for 1 p n≤ ≤ . (11) 

 
The sampling points are: 
 

 0 ,µ= xx  (12) 

 ,
pp p phµ σ± = ±x xx e  (13) 
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where ep is the pth column of the identity matrix of size n and hp is equal to the square root of the 
kurtosis of the pth design variable distribution. The accuracy of the SP method, in particular for the 
mean estimate, is higher with respect to the largely adopted first order Taylor based method of 
moments (MM). However, it requires only 2n + 1 function evaluations for each analysis, which is 
equal to the cost of linearization if function gradients are approximated by centered finite 
differences. When the function performing the system analysis is differentiable, this technique can 
be efficiently used in gradient-based optimization; the computational cost of a single optimization 
step in terms of function evaluations is ∝  n2 by using either the SP method or MM for the 
propagation phase, if the derivatives are obtained by finite differencing. If the source code of the 
analysis system is available and AD can be deployed, this cost decreases to ∝ n in both cases. 
 
 

6 Results 
 
The results of the tests on the workflow manager and the coordinated application of the above 
described treatments are presented in this section. The adopted test case is an Ultra Simplified 
Model of Aircraft (USMAC), which was provided by a major airframe manufacturer, in the 
context of the European project VIVACE. USMAC can determine performance and sizing at 
conceptual design level for a short-to-medium range commercial passenger aircraft.  The test case 
contains 97 models and 125 variables. 
 

6.1 Computational Process Modeller Results 
 
Synthesis of an optimal computational plan has to be performed before any treatment is applied to 
the test case. To test the capability of the computational process modeller to generate optimal 
computational plans for a system with suitably chosen inputs, 23 variables were chosen randomly 
as independent from the 125 variables set (Twenty three variables are required in this test case to 
ensure that the system is determined). The computational process modeller generated optimal 
computational plans.  The computational cost of each optimal computational plan was then 
compared with the cost of its corresponding non-optimal plans.  The computational cost 
comparison was based on the number of calls made to the models of the SCC during solving. The 
SCCs were solved by applying a fixed point iteration method while the modified models were 
resolved by applying Gauss-Newton method. 
After decomposing the system, thirteen out of the 97 models were identified as strongly connected. 
There were twelve variable flow models generated for the SCC. However, only four of these 
produced a converged solution. The non-converged ones were those variable flow models which 
had a higher number of modified models and feedback numbers. Fig. 3 shows an example of a 
(converged) final computational sequence. 

 

 

 

 

 

 

 

 

 

 
Fig. 3 (a) DSM of the USMAC final computational plan. (b)Design Structure Matrix of the SCC 

with the shortest feedback length 

 

Table 1 provides details of four converged models and a non-converged solution for comparison. 
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Variable 
flow model nFdb nMm Optimal flow 

model  
Number of calls to the 

models in SCC 
% additional 

computational 
 1 3 6  117 95% more 

2 5 11  158 163% more 
3 6 3 ■ 60 Base 
4 5 9  198 230% more 
5 8 11  Not converged - 

Table 1 Details of computational process modelling and solving of SCC 

 

Variable flow model 3 was chosen by the computational process modeller as the optimal one, 
since it has the smallest number of modified models. It is shown in the table that the selected 
optimal flow model has the lowest computational cost for the SCC. From Table 1 it is also clear 
that when the number of modified models increases the computational cost for the SCC also 
increases. However, for variable flow model 4, even though the number of modified models is less 
than the one for the flow model 2, it has taken more calls to obtain a converged solution. This 
discrepancy was observed because the convergence of the SCC was not only depending on the 
number of modified models and the number of feedback loops, but also on other factors such as 
the starting (iteration) point for the unknown variables, mutual sensitivity of the switched (input 
with output) variables of the modified models and possible other factors which are yet to be 
discovered. Nevertheless, these and many more extensive tests conducted on the process modeller 
demonstrated that the selections which it made were always amongst the best in terms of SCCs’ 
convergence. 
 

6.2 Multi-objective optimization results 
 
The computational process modeller generated an optimal computational plan onto which the NC+ 
method was executed with the settings presented in Table 2.  Five starting points were used in 
order to determine the multiple local minima. Forty utopia plane points were generated in order to 
determine the Pareto front. The results obtained are shown in Fig. 4. In addition, an interactive 
visualization interface has been developed to take into account the traditional aircraft conceptual 
design approach, which relies heavily on matrix and carpet plots. The proposed visualization tool 
shows graphically whether a design point meets a set of performance constraints (such as cruise 
speed, second segment climb rate, direct climb, take-off and landing field lengths), derived from 
the original constraint set. By clicking on a design point, the corresponding carpet plot is 
automatically generated. An example of this visualization is shown in Fig. 5. The example also 
demonstrates that it is possible to find out in which direction the design point under consideration 
should be moved on the plot to obtain the desired improvements. 
 

Nomenclature 
Npax number of passengers altcrz  cruise altitude [ft] 
NpaxFront number of passengers per row Machcrz  cruise mach 
Naisle number of aisles altto takeoff altitude [ft] 
FNslst sea-level static engine thrust [decaN] altapp approach altitude [ft] 
BPR engine bypass ratio MTOW  maximum take-off weight [kg] 
ne number of engines RA  range [NM] 
Awing  wing area [m2] RAtime  flight time [h] 
span  wing span [m] tofl  takeoff field length [m] 
phi  wing sweep angle [deg] vapp  approach speed [kts] 
tuc  wing thickness to chord ratio vzclb climb rate [ft/min] 
MTOW maximum take-off weight [kg] kfncth cruise thrust coefficient 
Fuel fuel weight [kg] Kff  wing fuselage fuel ratio 
Constant 

 

Independent Variables Constraints Objectives 
Npax = 150 FNslst = [12500,13000] 

 

  

tofl ≤ 2000 m RA [NM] 
to be maximized NpaxFront = 6 Awing = [152,158] m2 vapp ≤ 120 kts 

Naisle = 1 span = [30,38] m vzclb≥500 ft/min MTOW [kg] 
 to be minimized ne = 2 phi = [28,32] deg kfncth ≤ 1 

altcrz = 35000 ft tuc = [0.07,0.1] Kff ≥ 0.75  
Machcrz = 0.82 Fuel = [17000,18000] kg   
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altto = 0 ft BPR = [6 , 7]   
altapp = 0 ft    

Table 2 Set up of the multi-objective optimization problem 

 

Finally, to illustrate how integrating design computation, parametric geometry and configuration 
can aid the designer in choosing a particular (Pareto) solution, a prototype tool, presented in Fig. 6, 
was developed. The tool allows for browsing each of the Pareto points while showing the changes 
to the geometry and indicating (in different colour) which constrains are activate for the particular 
point. 

 

Fig. 4 USMAC test case Pareto front 

 

Fig. 5 Example of the carpet plot of a design point 
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Fig. 6 Visualization of the Pareto set, including geometry and constraint activation 

 
6.3 Sensitivity analysis results 
 
For this particular test case and the specific range of variations, it appears that the contributions to 
the outputs variance due to interactions between inputs are very small. Therefore, one can 
conclude that contributions to the outputs are entirely due to direct effects. It is appears that 
FNslst, Span, Wing, tuc and Fuel are the most significant variables to the problem. Variable phi 
has a smaller effect but cannot be neglected as it affects tofl and vapp. The global indices for BPR 
for all optimization outputs are almost equal to zero and therefore BPR appears to be negligible for 
this particular problem. The reduced optimization problem is derived by keeping all variables and 
fixing BPR to the mean value of its range of variation, i.e. BPR = 6.5.  
The original Pareto set and the one obtained with the reduced optimization problem are shown in 
Fig. 7. The two Pareto fronts are very similar in the criterion space which indicates that a similar 
level of performance can be obtained by only considering variables with a real effect. Freezing 
BPR to a value resulted in a significant reduction of the computational effort: 16627 function 
evaluations were needed to obtain the Pareto front compared to 65332 when all variables are 
considered.  

 
Fig. 7 USMAC Pareto front for full and reduced optimization problem 
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6.4 Robust optimization results 
 
The robust counterpart of the deterministic optimization problem in Section 0 considers separately, 
without any a priori assumption on relative weights, mean and variance for the two physical 
objectives. The problem to be solved is then a 4 objective optimization. The deterministic 
constraints are transformed into their robust counterpart by adopting tg= tx = 1 as weighting 
coefficients in Eq. (3), to impose the robust feasibility with a probability of approximately 84%. 
The assumed uncertainties of input variables, in terms of standard deviation, are shown in Table 3. 

 

Input variable FNslst BPR Awing span phi tuc Fuel 
Standard deviation 100 decaN 0.2 5 m2 0.5 m 1 deg 0.02 50 kg 

Table 3 Uncertainties of input variables 

 

It is useful to compare the deterministic with the obtained robust Pareto front, by performing an a 
posteriori uncertainty analysis on the deterministic results in order to obtain mean and variance for 
each Pareto point. The mean of the objectives for the robust optimization is then superimposed on 
the same plot (see Fig. 8). The adopted representation is a bidimensional projection of a four 
dimensional Pareto hypersurface. It has been judged to be appropriate for the problem at hand 
since the variation of standard deviation for both objectives is negligible with respect to their mean 
values. This is mainly due to the small input uncertainty considered. Thus the robust optimal 
solutions turn out to be dominated by the deterministic ones in terms of mean values mainly as a 
result of the imposed stricter constraints. 

 

 
Fig. 8 Comparison of deterministic and robust Pareto fronts 

 

7 Conclusions 
 
Presented is a novel computational framework providing the capability for performing flexible 
design studies at preliminary design stage. It incorporates a workflow management device (WMD) 
and a number of advanced treatments, including multi-objective optimization, sensitivity analysis 
and uncertainty management. The WMD enables the designer to build, understand, manipulate and 
share complex processes and studies.  Results obtained after applying the WMD on various test 
cases, showed a significant reduction of the iterations required for the convergence of the 
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computational system. The tests also demonstrated the capabilities of the advanced treatments as 
follows: 
 

- The novel procedure for global multi-objective optimization has the unique ability to 
generate well-distributed Pareto points on both local and global Pareto fronts 
simultaneously; 

- The global sensitivity analysis procedure is able to identify input variables whose range of 
variation does not have significant effect on the objectives and constraints. It was 
demonstrated that fixing such variables can greatly reduce the computational time while 
retaining a satisfactory quality of the resulting Pareto front; 

- The novel derivative-free method for uncertainty propagation, which was proposed for 
enabling multi-objective robust optimization, delivers a higher accuracy compared to the 
one based on function linearization, without altering significantly the cost of the 
single optimization step.  

 

This work demonstrated for the first time that such capabilities can be used in a coordinated way to 
enhance the efficiency of the computational process and the effectiveness of the decision making. 
Future work will be concentrate on further integration of the treatments which will allow their 
dynamic application as dictated by the computational process. Also, further integration with 
parametric geometry and configuration tools is planned in order to achieve the ultimate goal of this 
work, that is, to study unconventional new configurations with a higher level of detail and better 
risk assessment before proceeding to the next stages of the product development process. 
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