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Abstract

Nanofluidics is an emerging and rapidly growing field that provides fertile ground for developing

innovative strategies and novel devices for a number of disciplines including medicine, biology, and

engineering. Here we draw attention to the implications of surface stiffness on the slip process

aiming to obtain a better insight of the momentum transfer at nano scales. The surface stiffness

is modelled through the stiffness κ of spring potentials that are employed for constructing the

thermal walls. It is shown that variations of stiffness κ influence the slip mechanism either towards

slip or stick conditions. Increasing the values of κ alters the oscillation frequency and the mean

displacement of the wall particles towards higher and lower values respectively. Our results suggest

that the amount of slip produced as a function of stiffness follows a common pattern that is modelled

through a fifth order polynomial function.

PACS numbers: 68.08.-p, 83.10.Rs, 83.50.Lh, 83.50.Rp, 68.35.Ct, 47.61.-k

∗Electronic address: d.drikakis@cranfield.ac.uk

1

e101466
TextBox
Physical Review E, Volume 81, Issue 6, 2010, 061503 [5 pages] 



I. INTRODUCTION

Over the past decade micro and nanofluidics have emerged as vital tools in the ongo-

ing drive towards the development of nano-scale analysis and manufacturing systems. As

the devices’ operational dimensions are downsized to micro and nano scales the surface-to-

volume ratio increases and the interfacial interactions dominate the flow phenomena. The

surface interactions effects are macroscopically formulated via appropriate boundary condi-

tions. In the majority of the macroscale flows the fluid is considered to be immobile near

the solid boundary; however as the scales shrink a number of experimental studies [1–3] re-

vealed the presence of slippage. In these cases, where the continuum no-slip approximation

breaks down, the slip’s magnitude is quantified through a parameter named as slip length

(Ls =
uslip

∂u/∂n
), which represents the extrapolated distance from the wall to the point with zero

tangential velocity component. Surface structure, wettability and, nanoscale roughness are

some of the factors that have been recognised to affect slippage phenomena [4, 5]. Generally,

the parameters that contribute to slip generation along with their implications to the slip’s

magnitude are not explicitly known and fully understood [6]. Therefore, identifying and

quantifying their impact poses a great challenge that will assist the development of micro

and nanofluidic devices.

High fidelity computational modelling has been embraced to compliment experiments

related to slippage effects, primarily due to accuracy and precision difficulties involved in

measuring physical quantities at nano scales. Specifically, molecular dynamics [7–10] (MD)

simulations, have been employed to study the slip’s mechanism and enlighten the impact of

parameters such as nanoroughness or surface wettability to the slip’s magnitude.

It is commonly recognised [6] that surface corrugation can greatly influence the interfacial

flow characteristics. However, it is still unclear whether it contributes towards slip or stick

conditions, since experimental evidence [3, 11, 12] suggests that both possibilities exist.

Numerically, although a number of studies [13, 14] have been performed, the slip’s decreased

or increased rate as a factor of roughness, has not been fully quantified. An important

component for the slip process, that may elucidate the variability of the experimental and

numerical outcomes, is surface stiffness. In the current study MD simulations are employed

to study the slip length’s dependency on the wall stiffness for a Lennard-Jones (LJ) fluid.
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II. SIMULATION METHOD

The computational domain considered for the current numerical experiments consists of

monoatomic fluid particles confined by two stationary thermal walls separated by distance

Ly along the y direction. The size of the computational domain is Lx = 16.97σ, Ly = 34.64σ

and Lz = 6.53σ, where σ is the molecular length scale; and periodic boundary conditions are

applied in the parallel to the walls directions x and z. The interatomic interactions among

the fluid molecules are modelled through a LJ potential which for a pair of molecules i, j

with distance rij is

νLJ
ij (rij) = 4ε

[
(σ/rij)

12 − (σ/rij)
6] (1)

where ε is the characteristic energy level. All the interatomic interactions are truncated at

a cut-off distance rc = 2.2σ. The fluid’s density is selected to be ρfluid = 0.81 mσ−3, where

m is the mass of a fluid’s molecule, and corresponds to the generation of 2880 particles. A

constant external force fx, along the x direction, is applied to each fluid molecule to drive

the flow. The simulations have been performed for a range of force’s values spanning from

fx = 0.005 εσ−1 to fx = 0.015 εσ−1 with step 0.0025 εσ−1. The velocity profile from a

continuum hydrodynamics perspective, assuming a slip velocity uslip at the solid boundary,

is

ux(y) = 0.5µ−1ρfx
[
(Ly/2)

2 − y2
]
+ uslip (2)

The parabolic velocity profile, described by Eq. 2, implies that the shear rate is proportional

to the applied force and consequently force’s variations corresponds to subsequent adjust-

ments of the shear rate. Previous computational studies [7, 9, 15] have indicated a non linear

relationship between the shear rate and the slip length. Therefore, aiming to minimise the

shear rate’s influences to the outcome’s variability, the impact of the wall stiffness to the slip

phenomena is studied for a broad range of shear rates. The magnitude of the applied force

should be cautiously selected, since high force values can drive the system out of the linear

response regime [16]. The excessive viscous heating of the system is dissipated through a

Langevin thermostat [7], applied only in the z direction to circumvent any possible influences

to the flow direction. The equations of motion along the z direction are

mz̈i +mΓżi = −
∑

i6=j

∂Vij

∂zi
+ ηi (3)
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where ηi is a Gaussian distributed random force with zero mean < ηi(t) >= 0 and variance

< ηi(0)ηj(t) >= 2mkBTΓδ(t)δij, where T = 1.1 εk−1
B is the fluid’s temperature. The

friction coefficient has been selected to be Γ = 1.0 τ−1 throughout the simulations, aiming

to minimise any undesirable effects to the self diffusion coefficient [9, 17]. The equations of

motion are integrated through a velocity-Verlet algorithm [18] with time step δt = 0.001τ .

A total number of 6 · 105 time steps have been performed for equilibration and afterwards

another 6 · 105 for averaging.

Each of the solid walls is modelled as two (111) fcc lattice planes with density ρwall =

4.0 mσ−3 corresponding to 528 particles with mass equal to the fluid ones. The wall particles

interact with the fluid through a LJ potential with energy and length scales εwf and σwf

respectively. Generally, slippage phenomena are sensitive to the wall-fluid interactions and,

particularly, as the wall’s surface energy decreases, the amount of momentum transferred

across the interface decreases leading to larger slip values [7]. Therefore, the effects of surface

stiffness are studied for two sets of interfacial parameters (i) εwf = 0.2ε, σwf = 0.75σ and

(ii) εwf = 0.4ε, σwf = 0.75σ. Every wall particle i is attached to its equilibrium lattice site

r0 with an elastic spring force

F = −κ (ri − r0) (4)

where κ is the wall’s stiffness. Stiffness is a pivotal parameter that provides a link between

the wall model and real materials and determines the wall’s physical properties. Its values

reveal the strength of particles’ bonds and larger rates are related to higher melting points

and Young’s modulus. Their selection should not allow (i) the mean square displacement

of the wall atoms to be larger than the Lidemann criterion of melting [9, 19] and (ii) the

movement of the wall’s atoms to be in a regime that cannot be entirely addressed in the

molecular simulation’s time step [9]. For the current study κ ranges from κ = 100 εσ−2 to

κ = 1200 εσ−2; this interval is consistent with typical κmagnitudes employed in previous MD

studies [9, 20, 21]. Although it is not straight forward to establish exact relations between

simplified models, such as the one employed here for the wall, and real physical substances,

the selected values of solid’s stiffness corresponds to a broad range of real materials including

silicon based structures, that are primarily used for microfluidic fabrications and typically

their Young modulus is lower compared to the metals one [22]. The wall temperature is

kept constant equal to Twall = 1.1 εk−1
B during the simulations through a velocity rescaling

thermostat [23].
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In the employed model the walls’ particles are allowed to vibrate around their crystalline

sites based on a spring potential. Consequently, due to the absence of inter-atomic inter-

actions, there is no solid elasticity in the wall and therefore, this model tends to neglect

the molecular diffusion. Despite the absence of solid elasticity the thermal vibrations of

the wall particles, that are frequently neglected in molecular studies [24, 25], are simulated

effectively. Although this type of thermal walls is expected to provide slightly overestimated

figures for the slip, due to the absence of solid elasticity, is widely adopted [24, 25] in the

literature. In more sophisticated models, where the wall particles are not anchored to their

lattice sites, the presence of inter-atomic interactions and molecular diffusion in the wall

alters the original structure of the lattice and therefore, additional nanoscale roughness is

introduced affecting the frictional coefficient. Outcomes from previous MD studies show

small variations between models with and without solid elasticity [9, 26, 27].

III. RESULTS AND DISCUSSION

Figure 1 shows examples of averaged fluid density profiles under different values of surface

stiffness. These simulations have been carried out with interaction parameters εwf = 0.2ε,

σwf = 0.75σ and an external driving force fx = 0.0075 εσ−1. A common element observed

in the density distributions is their profound oscillations near the solid wall. Despite the

changes in the surface stiffness, the density follows the same pattern, since the locations

of its local maxima and minima remain almost constant, and rests to its bulk value after

(5 − 7) σ. The variation of the spring stiffness primarily influences the density’s absolute

maximum value and for the simulations considered in Fig. 1 this value increases, with a non

linear manner, as κ increases from κ = 100 εσ−2 to κ = 600 εσ−2. Furthermore, deviations

between the outcomes are reduced as higher surface stiffness rates are employed in the

numerical simulations (see Fig. 1). Smaller κ implies that the wall particles oscillate around

their equilibrium positions with higher amplitude and lower frequency and therefore the fluid

molecules can potentially travel closer to the solid wall [9]. As a consequence, a broader

density profile is observed near the first peak. However, as the spring stiffness κ increases its

influence on the wall particles oscillations is primarily related to oscillation frequency rather

than oscillation amplitude, which is mainly determined by the wall temperature [23]. Thus,

its impact on the in-plane fluid’s layering and hence on the density’s profile is less apparent.

5



y/Ly

ρ
(m

σ-3
)

0.05 0.1 0.15 0.2
0

0.5

1

1.5

2

2.5

κ= 600 εσ-2

κ= 300 εσ-2

κ= 100 εσ-2

FIG. 1: Density profiles near the lower wall for various values of the spring stiffness κ with

fx = 0.0075 εσ−1, εwf = 0.2ε.

Figure 2 shows the variation of the slip length for a certain value of stiffness κ = 900 εσ−2

as a function of the driving force fx. Previous MD studies [7, 9] report that the slip length’s

variations are well described by a power law function

Ls(fx) = L0
s (1− fx/fc)

−0.5 (5)

where L0
s represents a asymptotical value of the slip length as the shear rate tends to zero

and fc corresponds a critical driving force value. As the driving force approaches this critical

value fc, the slip length appears to diverge[7]. In Fig. 2 the computational uncertainty in the

slip length calculations is approximately 3%. The simulation data were fitted through Eq. 5

and the obtained parameters for εwf = 0.2ε and εwf = 0.4ε are L0
s = 11.33σ, fc = 0.0174εσ−1,

and L0
s = 6.88σ, fc = 0.021εσ−1 respectively. In Fig. 2 it is noticed that the calculated slip

lengths are in good agreement with analytical descriptions derived by previous studies [7, 9]

and it is shown that the change rate of the slip length increases as the driving force moves

towards to its critical value.

6



0.004 0.008 0.012 0.016
fx (εσ-1)

L
s
(σ

)

0.004 0.008 0.012 0.016

10

15

20

25

30

εwf=0.2ε
εwf=0.4ε

FIG. 2: Slip length variations with length Ls as a function of the driving force fx for wall

particles with stiffness κ = 900 εσ−2; the dashed curves are the best fitting to

Ls(fx) = L0
s (1− fx/fc)

−0.5.

Figure 3 shows an example of the slip length as a function of surface stiffness. In the

performed molecular simulations the interaction parameters are εwf = 0.4ε, σwf = 0.75σ

and the external driving force is fx = 0.01 εσ−1. In Fig. 3 the slip length has been scaled

over the parameter L0, which represents the slip length when a fixed lattice wall is employed.

In this wall model the solid particles are immobilised in their lattice sites and, therefore,

are not allowed to vibrate [7, 23]. Figure 3 shows that the slip varies along with the surface

stiffness indicating its importance to the slip process. It is visible that for the less stiff

surfaces, such as κ = 100 εσ−2 for the example of Fig. 3, the degree of slip is smaller

compared to the one calculated when a fixed lattice wall is employed. Smaller values of κ

imply larger displacements of the wall particles resulting to an increased surface roughness.

In this case the interactions between the wall’s and fluid’s particles are enhanced leading
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to improved momentum transfer and consequently to less slippage. As κ increases the

wall’s surface becomes effectively smoother and higher slip is produced. However, it can

be observed in Fig. 3 that the slip length, instead of increasing monotonically with the

wall’s stiffness, it obtains a maximum value Ls,max and then starts to decline. Although

stiffer walls are employed the impact of bonding stiffness to the oscillation amplitude of

the walls’ particles is continuously decreasing. The amplitude, as already mentioned, is

primarily dictated from walls’ temperature and therefore κ is no longer a dominant factor

for the surface smoothness or roughness. In these cases, increasing the values of κ alters

the oscillation frequency towards higher values that contribute to a more efficient interfacial

momentum transfer and consequently to a reduction in the slip length. This is justified for

values of stiffness κ that lead to oscillating periods Toscill higher than the mean molecular

collision time (τcoll); for the current study this is valid for κ < 2000 εσ−2.

The relative growth and decay of the mean frequency and amplitude respectively, as a

function of κ are shown in Fig. 4. These variations are calculated as (fκ − fκ=100)/fκ=100

and (dκ=100 − dκ)/dκ=100, where f corresponds to the mean oscillating frequency and d

to the mean vibrating amplitude of the wall particles. The values for κ = 100 εσ−2 are

fκ=100 = 1.672 1/τ , corresponding to a mean oscillation time Toscill,κ=100 = 0.598 τ , and

dκ=100 = 5.3 · 10−4 σ. Figure 4 shows that for higher stiffness values there is almost a

linear increase for the frequency and concurrently the decay rate of the mean displacement

approaches to zero.

Similar behaviour has been observed in all the performed simulations regardless the vari-

ous wall-fluid interactions or shear rates employed. The results of the numerical experiments

are summarised in Fig. 5. Here, the slip length has been scaled over the Ls,max, which rep-

resents its maximum value in a series of simulations with the same interaction parameters,

driving force and variable κ. The stiffness has been scaled over the κmax, which represents

the value of κ that maximises the slip. It is apparent that the parameters Ls,max and κmax

depend upon the various simulations conditions such as shear rate or surface attraction en-

ergy. Figure 5 shows that the effect of the wall’s stiffness to the slip process can be well

quantified by a master curve, which in our case is a fifth order polynomial

LS

LS,max

= a+ b · κ

κmax

+ · · ·+ f ·
(

κ

κmax

)5

(6)

where a = 0.01,b = 2.59, c = −1.68, d = −0.77, e = 1.16 and f = −0.32. In addition, Fig.
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FIG. 3: Variation of the slip length as a function of surface stiffness for a flow with

fx = 0.01εσ−1, εwf = 0.4ε.

5 suggests that the selection of the wall’s stiffness during the molecular simulations should

be made cautiously since it can lead to various slip scenarios. Potentially the master curve

can be extended to accommodate the variation of Ls,max and κmax as functions of other

parameters that are important to the slip process, like for example the shear rate.

IV. CONCLUDING OVERVIEW

In summary, this study has investigated the relationship between the wall stiffness and

the slip produced. For the first time we show that the slip length variations as a function of

surface stiffness can be approximated and well described through a master curve. Quantify-

ing the dependence of Ls on κ provides a mechanism for obtaining a better insight in the slip

phenomena and reducing the variability regarding the values of surface stiffness employed

in molecular simulations. Generally, the stiffness factor influences not only the slip process
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FIG. 4: Relative variations of the mean oscillation amplitude and frequency (with respect

to mean amplitude and frequency for κ = 100) as a function of stiffness κ.

but also the thermal equilibrium at the solid liquid interface [23]. Further studies towards a

better understanding of the stiffness effects on the slip and thermal transfer phenomena are

also currently being pursued. Specifically, the combined effects of wall particles’ mass with

the surface stiffness are studied along with more realistic models for the thermal walls.
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