
Bidirectional Branch and Bound for Controlled Variable Selection

Part III: Local Average Loss Minimization

Vinay Kariwala† and Yi Cao‡∗

† Division of Chemical & Biomolecular Engineering,

Nanyang Technological University, Singapore 637459

‡School of Engineering, Cranfield University, Cranfield, Bedford MK43 0AL, UK

Abstract

The selection of controlled variables (CV) from available measurements through exhaustive search

is computationally forbidding for large-scale problems. We have recently proposed novel bidirectional

branch and bound (B3) approaches for CV selection using the minimum singular value (MSV) rule and

the local worst-case loss criterion in the framework of self-optimizing control. However, the MSV rule is

approximate and worst-case scenario may not occur frequently in practice. Thus, CV selection through

minimization of local average loss can be deemed as most reliable. In this work, the B3 approach is

extended to CV selection based on the recently developed local average loss metric. Lower bounds on

local average loss and, fast pruning and branching algorithms are derived for the efficient B3 algorithm.

Random matrices and binary distillation column case study are used to demonstrate the computational

efficiency of the proposed method.

Keywords: Branch and bound, Control structure design, Controlled variables, Combinatorial opti-

mization, Self-optimizing control.

1 Introduction

Control structure design deals with the selection of controlled and manipulated variables, and the pairings

interconnecting these variables. Among these tasks, the selection of controlled variables (CVs) from

available measurements can be deemed to be most important. Traditionally, CVs have been selected
∗Corresponding Author: Tel: +44-1234-750111; Fax: +44-1234-754685; E-mail:y.cao@cranfield.ac.uk

1

lb01lzq
Text Box
IEEE Transactions On Industrial Informatics, Vol.6(1), 2010, p.54-61

based on intuition and process knowledge. To systematically select CVs, Skogestad [16] introduced the

concept of self-optimizing control. In this approach, CVs are selected such that in presence of disturbances,

the loss incurred in implementing the operational policy by holding the selected CVs at constant setpoints

is minimal, as compared to the use of an online optimizer.

The choice of CVs based on the general non-linear formulation of self-optimizing control requires solving

large-dimensional non-convex optimization problems [16]. To quickly pre-screen alternatives, local methods

have been proposed including the minimum singular value (MSV) rule [17] and exact local methods with

worst-case [7] and average loss minimization [13]. Though the local methods simplify loss evaluation for a

single alternative, every feasible alternative still needs to be evaluated to find the optimal solution. As the

number of alternatives grows rapidly with process dimensions, such an exhaustive search is computationally

intractable for large-scale processes. Thus, an efficient method is needed to find a subset of available

measurements, which can be used as CVs (Problem 1).

Instead of selecting CVs as a subset of available measurements, it is possible to obtain lower losses using

linear combinations of available measurements as CVs [7]. Recently, explicit solutions to the problem of

finding locally optimal measurement combinations have been proposed [1, 8, 11, 13]. It is, however, noted

in [1, 11, 13] that the use of combinations of a few measurements as CVs often provide similar loss as

the case where combinations of all available measurements are used. Though the former approach results

in control structures with lower complexity, it gives rise to another combinatorial optimization problem

involving the identification of the set of measurements, whose combinations can be used as CVs (Problem

2).

Both Problems 1 and 2 can be seen as subset selection problems, for which only exhaustive search and

branch and bound (BAB) method guarantee globally optimal solution [4]. A BAB approach divides the

problem into several sub-problems (nodes). For minimization problems, lower bounds are computed on

the selection criteria for all solutions with target subset size, which can be reached from the node under

consideration. Subsequently, the current node is pruned (eliminated without further evaluation), if the

computed lower bound is greater than an upper bound on the optimal solution (usually taken as the best

known solution). The pruning of nodes allows the BAB method to gain efficiency in comparison with

exhaustive search. The traditional BAB methods for subset selection use downwards approach, where

pruning is performed on nodes with gradually decreasing subset size [3, 4, 14, 18, 19]. Recently, a novel

bidirectional BAB (B3) approach [2] has been proposed for CV selection, where non-optimal nodes are

pruned in downwards as well as upwards (gradually increasing subset size) directions simultaneously, which

significantly reduces the solution time.

2

The bidirectional BAB (B3) approach has been applied to solve Problem 1 with MSV rule [2] and local

worst-case loss [12] as selection criteria. A partially bidirectional BAB (PB3) method has also been

proposed to solve Problem 2 through minimization of local worst-case loss [12]. The MSV rule, however,

is approximate and can lead to non-optimal set of CVs [9]. Selection of CVs based on local worst-case loss

minimization can also be conservative, as the worst-case may not occur frequently in practice [13]. Thus,

CV selection through minimization of local average loss, which represents the expected loss incurred over

the long-term operation of the plant, can be deemed as most reliable.

In this paper, a B3 method for solving Problem 1 through minimization of local average loss is proposed.

Upwards and downwards lower bounds on the local average loss and fast pruning algorithms are derived

to obtain an efficient B3 algorithm. The downwards lower bound derived for Problem 1 can also be used

for pruning non-optimal nodes for Problem 2 with local average loss minimization. The upwards lower

bound for Problem 2, however, only holds when the number of elements of the node under consideration

exceeds a certain number. To realize the advantages of bidirectional BAB method to some extent, we

develop a PB3 method for selection of measurements, whose combination can be used as CVs to minimize

local average loss. Random matrices and binary distillation column case study are used to demonstrate

the computational efficiency of the proposed method.

The rest of this paper is organized as follows: a tutorial overview of the unidirectional and bidirectional

BAB methods for subset selection problems is given in Section 2. The local method for self-optimizing

control is described and the CV selection problems through local average loss minimization are posed in

Section 3. The B3 methods for solving these CV selection problems are presented in Section 4 and their

numerical efficiency is demonstrated in Section 5. The work is concluded in Section 6.

2 BAB Methods for Subset selection

Let Xm = {xi}, i = 1, 2, · · · ,m, be an m-element set. The subset selection problem with selection

criterion T involves finding an n-element subset Xn ⊂ Xm such that

T (X∗n) = min
Xn⊂Xm

T (Xn) (1)

For a subset selection problem, the total number of candidates is Cnm, which can be extremely large for

large m and n rendering exhaustive search unviable. Nevertheless, BAB approach can find the globally

optimal subset without exhaustive search.

3

1 2 3

4432 3 4

555

666666

554443

6655554 6

5

6

root search
direction

(a) downward search

root

1 2 3 4 5

665654654365432

search
direction

(b) upward search

Figure 1: Solution trees for selecting 2 out of 6 elements.

2.1 Unidirectional BAB approaches

Downwards BAB method. BAB search is traditionally conducted downwards (gradually decreasing

subset size) [3, 4, 14, 18, 19]. A downwards solution tree for selecting 2 out of 6 elements is shown in

Figure 1(a), where the root node is same as Xm. Other nodes represent subsets obtained by eliminating

one element from their parent sets. Labels at nodes denote the elements discarded there.

To describe the pruning principle, let B be an upper bound of the globally optimal criterion, i.e. B ≥

T (X∗n) and Tn(Xs) be a downwards lower bound over all n-element subsets of Xs, i.e.

Tn(Xs) ≤ T (Xn) ∀Xn ⊆ Xs (2)

If Tn(Xs) > B, it follows that

T (Xn) > T (X∗n) ∀Xn ⊆ Xs (3)

Hence, all n-element subsets of Xs cannot be optimal and can be pruned without further evaluation.

Upwards BAB method. Subset selection can also be performed upwards (gradually increasing subset

size) [12]. An upwards solution tree for selecting 2 out of 6 elements is shown in Figure 1(b), where the

root node is an empty set. Other nodes represent supersets obtained by adding one element to their parent

sets. Labels at nodes denote the elements added there.

To introduce the pruning principle, let the upwards lower bound of the selection criterion be defined as

Tn(Xt) ≤ T (Xn) ∀Xn ⊇ Xt (4)

Similar to downwards BAB, if Tn(Xt) > B,

T (Xn) > T (X∗n) ∀Xn ⊇ Xt (5)

4

Hence, all n-element supersets of Xt cannot be optimal and can be pruned without further evaluation.

Remark 1 (Monotonicity) When T is upwards (downwards) monotonic, T (Xs) with s < n (s > n), can

be used as the upwards (downwards) lower bound on T for pruning [2]. Although, monotonicity simplifies

lower bound estimation, it is not a prerequisite for the use of BAB methods and the availability of any

lower bound suffices.

2.2 Bidirectional BAB approach

The upwards and downwards BAB approaches can be combined to form a more efficient bidirectional BAB

(B3) approach. This approach is applicable to any subset selection problem, for which both upwards and

downwards lower bounds on the selection criterion are available [2].

Bidirectional pruning. In a B3 approach, the whole subset selection problem is divided into several

subproblems. A sub-problem is represented as the 2-tuple S = (Ff , Cc), where Ff is an f -element fixed

set and Cc is a c-element candidate set. Here, f ≤ n and n ≤ f + c ≤ m. The elements of Ff are included

in all n-element subsets that can be obtained by solving S, while elements of Cc can be freely chosen

to append Ff . In terms of fixed and candidate sets, downwards and upwards pruning can be performed

if Tn(Ff ∪ Cc) > B and Tn(Ff) > B, respectively. In B3 approach, these pruning conditions are used

together (bidirectional pruning), where the subproblem S is pruned, if either downwards or upwards

pruning condition is met.

The use of bidirectional pruning significantly improves the efficiency as non-optimal subproblems can be

pruned at an early stage of the search. Further gain in efficiency is achieved by carrying out pruning on

the sub-problems of S, instead of on S directly. For xi ∈ Cc, upward pruning is conducted by discarding xi

from Cc, if Tn(Ff ∪ xi) > B. Similarly, if Tn(Ff ∪ (Cc\xi)) > B, then downward pruning is performed by

moving xi from Cc to Ff . Here, an advantage of performing pruning on sub-problems is that the bounds

Tn(Ff ∪ xi) and Tn(Ff ∪ (Cc\xi)) can be computed from Tn(Ff) and Tn(Ff ∪ Cc), respectively, for all

xi ∈ Cc together, resulting in computational efficiency.

Bidirectional branching. In downwards and upwards BAB methods, branching is performed by remov-

ing elements from Cc and moving elements from Cc to Ff , respectively. These two branching approaches

can be combined into an efficient bidirectional approach by selecting a decision element and deciding upon

5

whether the decision element be eliminated from Cc or moved to Ff .

In B3 algorithm, the decision element is selected as the one with the smallest upwards or downwards

lower bound for upward or downward (best-first) search, respectively. To select the branching direction,

we note that downwards and upwards branching result in subproblems with Cn−fc−1 and Cn−f−1
c−1 terminal

nodes, respectively. In B3 algorithm, the simpler branch is evaluated first, i.e. downwards branching is

performed, if Cn−fc−1 > Cn−f−1
c−1 or 2(n− f) > c, otherwise upwards branching is selected.

3 Local method for Self-optimizing control

To present the local method for self-optimizing control, consider that the economics of the plant is charac-

terized by the scalar objective function J(u,d), where u ∈ Rnu and d ∈ Rnd denote the degrees of freedom

or inputs and disturbances, respectively. Let the linearized model of the process around the nominally

optimal operating point be given as

y = Gy u + Gy
d Wd d + We e (6)

where y ∈ Rny denotes the process measurements and e ∈ Rny denotes the implementation error, which

results due to measurement and control error. Here, the diagonal matrices Wd and We contain the mag-

nitudes of expected disturbances and implementation errors associated with the individual measurements,

respectively. The CVs c ∈ Rnu are given as

c = Hy = Gu + GdWd d + HWe e (7)

where

G = HGy and Gd = HGy
d (8)

It is assumed that G = HGy ∈ Rnu×nu is invertible. This assumption is necessary for integral control.

When d and e are uniformly distributed over the set∥∥∥[dT eT
]∥∥∥T

2
≤ 1 (9)

the average loss is given as [13]

Laverage(H) =
1

6(ny + nd)

∥∥∥(HG̃)−1HY
∥∥∥2

F
(10)

6

where ‖ · ‖F denotes Frobenius norm and

G̃ = GyJ−1/2
uu (11)

Y =
[

(Gy J−1
uu Jud −Gy

d) Wd We

]
(12)

Here, Juu and Jud represent ∂2J
∂u2 and ∂2J

∂u ∂d , evaluated at the nominally optimal operating point, respectively.

When individual measurements are selected as CVs, the elements of H are restricted to be 0 or 1 and

HHT = I (13)

In words, selection of a subset of available measurements as CVs involves selecting nu among ny mea-

surements, where the number of available alternatives is Cnu
ny

. Using index notation, this problem can be

stated as

min
Xnu⊂Xny

L1(Xnu) =
∥∥∥G̃−1

Xnu
YXnu

∥∥∥2

F
(14)

In this work, we assume both ny and nd are given. Hence, the scalar 1/(6(ny + nd)) is constant and

is neglected in (14), as it does not depend on the selected CVs. Instead of 2-norm, as used in (9), if a

different norm is used to define the allowable set of d and e, the resulting expressions for average losses

only differ by scalar constants [13]. Thus, the formulation of optimization problem in (14) is independent

of the norm used to define the allowable set of d and e.

Instead of using individual measurements, it is possible to use linear combinations of measurements as

CVs. In this case, the integer constraint on H ∈ Rnu×ny is relaxed, but the condition rank(H) = nu is still

imposed to ensure invertibility of HGy. The minimal average loss over the set (9) using measurements

combinations as CVs is given as [13]

min
H

Laverage =
1

6 (ny + nd)

nu∑
i=1

λ−1
i

(
G̃T (Y YT)−1 G̃

)
(15)

Equation (15) can be used to calculate the minimum loss provided by the optimal combination of a given

set of measurements. However, the use of all measurements is often unnecessary and similar losses may

be obtained by combining only a few of the available measurements [1, 11, 13]. Then, the combinatorial

optimization problem involves finding the set of n among ny measurements (nu ≤ n ≤ ny) that can provide

the minimal loss for specified n. In index notation, the n measurements are selected by minimizing

min
Xn⊂Xny

L2(Xn) =
nu∑
i=1

λ−1
i

(
G̃T
Xn

(YXnY
T
Xn

)−1G̃Xn

)
(16)

where the scalar constant has been omitted as (14).

7

4 Bidirectional controlled variable selection

As shown in Section 3, the selection of CVs using exact local method can be seen as subset selection

problems. In this section, the BAB methods for solving these problems is presented. For simplicity of

notation, we define M(Xp) ∈ Rp×p and N(Xp) ∈ Rnu×nu as

M(Xp) = R−T G̃XpG̃
T
Xp

R−1 (17)

N(Xp) = G̃T
Xp

(YXpY
T
Xp

)−1G̃Xp (18)

where R is the Cholesky factor of YXpY
T
Xp

, i.e. RTR = YXpY
T
Xp

.

4.1 Lower bounds

Individual measurements. L1 in (14) requires inversion of GXnu
and thus L1(Xp) is well-defined only

when GXp is a square matrix, i.e. p = nu. On the other hand, BAB methods require evaluation of loss,

when the number of selected measurements differs from nu. Motivated by this drawback, an alternate

representation of L1 is derived in the following discussion. Since nu measurements are selected as CVs,

L1 can be represented as

L1(Xp) =
nu∑
i=1

σ2
i

(
G̃−1
Xnu

YXnu

)
(19)

=
nu∑
i=1

λi

(
G̃−1
Xp

YXpY
T
Xp

G̃−TXp

)
(20)

=
r∑
i=1

λ−1
i (N(Xp)) =

r∑
i=1

λ−1
i (M(Xp)) (21)

where r = rank(G̃Xp).

In practice, every measurement has a non-zero implementation error associated with it. Thus, based on

(12), [We]ii 6= 0 and Y has full row rank. This implies that the inverse of YXpY
T
Xp

is well defined for all

practical problems and the expression for L1 in (21) holds for any number of measurements. Using the

generalized expression for L1, the downwards and upwards lower bounds required for the application of

B3 algorithm are derived next.

Lemma 1 Let the matrix Â be defined as

Â =

 A b

bT a

 (22)

8

where A ∈ Rp×p is a Hermitian matrix, b ∈ Rp×1 and a ∈ R. Let the eigenvalues of A and Â be arranged

in descending order. Then [10, Th. 4.3.8]

λp+1(Â) ≤ λp(A) ≤ λp(Â) ≤ λp−1(A) ≤ · · · ≤ λ1(A) ≤ λ1(Â) (23)

Proposition 1 (Lower bounds for L1) Consider a node S = (Ff , Cc). For L1 defined in (21),

L1(Ff) ≤ min
Xnu⊃Ff

L1(Xnu); f < nu (24)

L1(Ff ∪ Cc) ≤ min
Xnu⊂(Ff∪Cc)

L1(Xnu); f + c > nu (25)

Proof : To prove (24), let G̃Ff∪i =
[
G̃T
Ff

G̃T
i

]T
and YFf∪i =

[
YT
Ff

YT
i

]T
. Further, let RTR = YFf

YT
Ff

and R̃T R̃ = YFf∪iY
T
Ff∪i (Cholesky factorization). Then, it follows that R and M(Ff) are principal

submatrices of R̃ and M(Ff ∪ i), respectively, obtained by deleting the last row and column of the

corresponding matrices. We note that r = rank(G̃Ff
) = f . Now, using (23), we have

λ−1
i (M(Ff)) ≤ λ−1

i+1(M(Ff ∪ i)); i = 1, 2, · · · , f ; f < nu (26)

Then,

L1(Ff ∪ i) =
f+1∑
i=1

λ−1
i (M(Ff ∪ i)) (27)

=

(
λ−1

1 (M(Ff ∪ i)) +
f+1∑
i=2

λ−1
i (M(Ff ∪ i))

)
(28)

≥

(
λ−1

1 (M(Ff ∪ i)) +
f∑
i=1

λ−1
i (M(Ff))

)
(29)

≥
f∑
i=1

λ−1
i (M(Ff)) = L1(Ff) (30)

Now, (24) follows by recursive use of the above expression.

For (25), it can be similarly shown that M((Ff ∪ Cc) \ i) is a principal submatrix of M(Ff ∪ Cc). Based

on (23),

λ−1
i (M(Ff ∪ Cc)) ≤ λ−1

i (M((Ff ∪ Cc) \ i)); i = 1, 2, · · · , nu (31)

We have rank(G̃Ff∪Cc) = rank(G̃(Ff∪Cc)\i) = nu. Now,

L1((Ff ∪ Cc) \ i) =
nu∑
i=1

λ−1
i (M((Ff ∪ Cc) \ i)) (32)

≥
nu∑
i=1

λ−1
i (M(Ff ∪ Cc)) = L1(Ff ∪ Cc) (33)

9

Now, (25) can be shown to be true through recursive use of the above expression.

To illustrate the implications of Proposition 1, let B represent the best available upper bound on L1(X∗nu
).

Then (24) implies that, if L1(Ff) > B, the optimal solution cannot be a superset of Ff and hence all

supersets of Ff need not be evaluated. Similarly, if L1(Ff ∪ Cc) > B, (25) implies that the optimal

solution cannot be a subset of Ff ∪ Cc and hence all subsets of Ff ∪ Cc need not be evaluated. Thus,

upwards and downwards pruning can be conduced using (24) and (25) and the optimal solution can be

found without complete enumeration.

Measurements combinations. The expression for L2 in (16) is the same as the expression for L1 in

(21). Thus, similar to Proposition 1, it can be shown that

L2(Ff ∪ Cc) ≤ min
Xn⊂(Ff∪Cc)

L2(Xn); f + c > n (34)

For selecting measurements, whose combinations can be used as CVs, the result in (34) is useful for

downwards pruning. Equation (25), however, also implies that when nu ≤ f < n, L2(Ff) decreases as the

subset size increases. Thus, unlike L1, the expression for L2 cannot be directly used for upwards pruning.

In the following proposition, a lower bound on L2 is derived, which can instead be used for upwards

pruning, whenever n− nu < f < n.

Proposition 2 (Upwards lower bound for L2) For the node S = (Ff , Cc), let

L2(Ff) =
f+nu−n∑
i=1

λ−1
i (N(Ff)) ; f > n− nu (35)

Then,

L2(Ff) ≤ min
Xn⊃Ff

Xn⊂(Ff∪Cc)

L2(Xn) (36)

Proof : Consider the index set Xn ⊂ (Ff ∪ Cc). For j ∈ Xn with j /∈ Ff , similar to the proof of

Proposition 1, M(Xn \ j) is a principal submatrix of M(Xn). Based on Lemma 1, we have

λ−1
i (M(Xn \ j)) ≤ λ−1

i+1(M(Xn)); i = 1, 2 · · ·nu − 1 (37)

10

Then,

L2(Xn) =
nu∑
i=1

λ−1
i (M(Xn)) (38)

=

(
λ−1

1 (M(Xn)) +
nu∑
i=2

λ−1
i (M(Xn))

)
(39)

≥

(
λ−1

1 (M(Xn)) +
nu−1∑
i=1

λ−1
i (M(Xn \ j))

)
(40)

≥
nu−1∑
i=1

λ−1
i (M(Xn \ j)) (41)

Through repeated application of (23), for Xp ∈ Xn, Xp /∈ Ff

L2(Xn) ≥
nu−p∑
i=1

λ−1
i (M(Xn \Xp)) (42)

Without loss of generality, we can select Xp such that Ff = Xn \Xp. Then, p = n− f and

L2(Xn) ≥
nu−n+f∑
i=1

λ−1
i (M(Ff)) (43)

which implies (36).

Proposition 2 implies that L2(Ff) in (35) is a lower bound on the loss corresponding to combinations of

any n measurements obtained by appending indices to Ff and hence can be used for upwards pruning.

In this case, upwards pruning can only be applied to a node with f > n− nu. Thus, the BAB algorithm

based on L2 in (35) is referred to as partial bidirectional BAB (PB3) algorithm. Development of fully

bidirectional BAB algorithm for selection of measurement combination as CVs is an open problem.

4.2 Fast pruning and branching

Propositions 1 and 2 can be used to prune the non-optimal nodes quickly. Thus, the optimal solution can

be found with evaluation of fewer nodes, but the solution time can still be large, as direct evaluation of

L1 in (21) and L2 in (35) is computationally expensive.

Individual measurements. We note that when f < nu, M(Ff) in (17) is invertible. Similarly for

s = f + c > nu, N(Ss) in (18) is invertible. Thus, based on (21),

L1(Ff) =
f∑
i=1

λi(M−1(Ff)) = trace(M−1(Ff)) (44)

L1(Ss) =
nu∑
i=1

λi(N−1(Ss)) = trace(N−1(Ss)) (45)

11

The use of (44) and (45) for evaluation of lower bounds on L1 avoids computation of eigenvalues. The next

two propositions relate the bounds of a node with the bounds of sub-nodes allowing pruning on sub-nodes

directly and thus improving efficiency of the B3 algorithm further.

Proposition 3 (Upwards pruning for L1) Consider a node S = (Ff , Cc) and index i ∈ Cc. Then

L1(Ff ∪ i) = L1(Ff) +
‖zTi YFf

−Yi‖22
ηi

(46)

where zi = (G̃Ff
G̃T
Ff

)−1G̃Ff
G̃T
i and ηi = G̃i(I−GT

Ff
(G̃Ff

G̃T
Ff

)−1G̃Ff
)G̃T

i .

Proof : Based on (44),

L1(Ff ∪ i) = trace(Q(GFf∪iG
T
Ff∪i)

−1QT) (47)

where Q is the Cholesky factor of YFf∪iY
T
Ff∪i, i.e. QTQ = YFf∪iY

T
Ff∪i. Since GFf∪i =

[
G̃T
Ff

G̃T
i

]T
,

using the matrix inversion formula for partitioned matrices [10]

(GFf∪iG
T
Ff∪i)

−1 =

G̃Ff
G̃T
Ff

G̃Ff
G̃T
i

G̃iG̃T
Ff

G̃iG̃T
i

−1

(48)

=

(G̃Ff
G̃T
Ff

)−1 + zizTi /ηi −zi/ηi

zTi ηi 1/ηi

 (49)

=

(G̃Ff
G̃T
Ff

)−1 0

0 0

+ 1/ηi

 zi

−1

[zTi −1
]

(50)

Through simple algebraic manipulations, it can be shown that

Q =

R pi

0 δi

 (51)

where R is the Cholesky factor of YFf
YT
Ff

, pi = R−TYFf
YT
i and δi =

√
YiYT

i − pTi pi. Thus,

Q(GFf∪iG
T
Ff∪i)

−1QT =

R(GFf
GT
Ff

)−1RT 0

0 0

+ 1/ηi

Rzi − pi

−δi

[zTi RT − pTi −δi
]

(52)

and

trace(Q(GFf∪iG
T
Ff∪i)

−1QT) = trace(R(GFf
GT
Ff

)−1RT) +
trace((Rzi − pi)(Rzi − pi)T) + δ2i

ηi
(53)

12

Since trace((Rzi − pi)(Rzi − pi)T) = (Rzi − pi)T (Rzi − pi),

trace((Rzi − pi)(Rzi − pi)T) + δ2i = zTi R
TRzi − zTi R

Tpi − pTi Rzi + YiYT
i (54)

= zTi YFf
YT
Ff

zi − zTi YFf
YT
i −YiYFf

zi + YiYT
i (55)

= (zTi YFf
−Yi)(zTi YFf

−Yi)T (56)

and the result follows.

The main computation load in using (46) is in Cholesky factorization and the inversion of the matrix

G̃Ff
G̃T
Ff

, which need to be calculated only once for all i ∈ Cc. Hence, the calculation is more efficient

than direct calculation of L1 using (44).

Proposition 4 (Downward pruning for L1) For a node S = (Ff , Cc), let Ss = Ff∪Cc, where s = f+c.

For i ∈ Cc,

L1(Ss \ i) = L1(Ss) +
‖xiN−1(Ss)‖22

ζi − xiN−1(Ss)xTi
(57)

where xi = YiYT
Ss\i(YSs\iY

T
Ss\i)

−1GSs\i −GT
i and ζi = Yi(I−YT

Ss\i(YSs\iY
T
Ss\i)

−1YSs\i)Y
T
i .

Proof : For simplicity of notation, define Q = YSs\iY
T
Ss\i. Then,

(YSsY
T
Ss

)−1 =

 Q YSs\iY
T
i

YiYT
Ss\i YiYT

i

−1

(58)

=

Q−1 + Q−1YSs\iY
T
i YiYT

Ss\iQ
−1/ζi −Q−1YSs\iY

T
i /ζi

−YiYT
Ss\iQ

−1/ζi 1/ζi

 (59)

=

Q−1 0

0 0

+ 1/ζi

Q−1YSs\iY
T
i

−1

[YiYT
Ss\iQ

−1 −1
]

(60)

where (59) is obtained using the matrix inversion formula for partitioned matrices [10]. Since G̃T
Ss

=[
G̃T
Ss\i G̃T

i

]
, we have

N(Ss) = G̃T
Ss

(YSsY
T
Ss

)−1G̃Ss = G̃T
Ss\iQ

−1G̃Ss\i + xixTi /ζi (61)

= N(Ss \ i) + xixTi /ζi (62)

Using matrix inversion lemma [10], we have

N−1(Ss \ i) = N−1(Ss) +
1

ζi − xTi N−1(Ss)xi
N−1(Ss)xixTi N

−1(Ss) (63)

13

which implies that,

trace(N−1(Ss \ i)) = trace(N−1(Ss)) +
trace(N−1(Ss)xixTi N

−1(Ss))
ζi − xTi N−1(Ss)xi

(64)

The result follows by using (45) and noting that trace(N−1(Ss)xixTi N
−1(Ss)) = xTi N

−1(Ss)N−1(Ss)xi =

‖xTi N−1(Ss)‖22.

Using (59), it can be shown that 1/ζi is the ith diagonal element of (YSsY
T
Ss

)−1 and xTi /ζi is the ith row

of the matrix (YSsY
T
Ss

)−1G̃Ss . Therefore, the use of condition in (57) requires inversion of two matrices,

(YSsY
T
Ss

) and N(Ss), which need to be calculated only once for all i ∈ Cc. Hence, the calculation is more

efficient than direct calculation of L1 using (45).

The bidirectional branching approach mentioned in Section 2.2 requires selecting a decision element, which

can be done directly based on the loss calculated for the super-nodes, L1(Ff ∪ i) and for the sub-nodes,

L1(Ss \ i). More specifically, according to the “best-first” rule, for upwards-first branching, element i is

selected as the decision element if L1(Ff ∪ i) = minj∈Cc L1(Ff ∪ j) or if L1(Sc \ i) = maxj∈Cc L1(Ss \ j).

Similarly, for downwards-first branching, element i is selected as the decision element if L1(Ff ∪ i) =

maxj∈Cc L1(Ff ∪ j) or if L1(Sc \ i) = minj∈Cc L1(Ss \ j). Between these two criteria for upwards and

downwards branching, the one with the larger value is less conservative and hence is adopted for the

selection of decision element. Overall, no extra calculation is required for fast branching. The flowchart

for recursive implementation of the proposed B3 algorithm is available in [12].

Measurements combinations. As the downwards pruning criteria for minimization of L1 and L2 are

the same, Proposition 4 can be used for fast downwards pruning for selection of a subset of measurements,

whose combinations can be used as CVs. The fast upwards pruning criteria for minimization of L2 is

presented in the next proposition.

Proposition 5 (Upwards pruning for L2) Consider a node S = (Ff , Cc) and index i ∈ Cc. Let q =

f + nu − n+ 1. Then

L2(Ff ∪ i) ≥
q2∑q

j=1 λj(N(Ff)) + ‖si‖22/βi
(65)

where si = YiYT
Ff

(YFf
YT
Ff

)−1GFf
−GT

i and βi = Yi(I−YT
Ff

(YFf
YT
Ff

)−1YFf
)YT

i .

Proof : Similar to the proof of Proposition 4, it can be shown that N(Ff ∪i) = N(Ff)+sisTi /βi. According

to [6, Th. 8.1.8], λj(N(Ff ∪ i)) = λj(N(Ff)) + tj ; j = 1, 2, · · · , nu and
∑nu

j=1 tj = ‖si‖22/βi; tj ≥ 0.

14

Therefore, a lower bound on N(Ff ∪ i) can be obtained by solving the following minimization problem:

min
t1,...,tnu

q∑
j=1

1
λj(N(Ff)) + tj

(66)

s.t.
nu∑
j=1

tj = ‖si‖22/βi; tj ≥ 0, j = 1, . . . , nu (67)

Let the Lagrangian function be defined as

L =
q∑
j=1

1
λj(N(Ff)) + tj

+ ν

 nu∑
j=1

tj − ‖si‖22/βi

+
nu∑
j=1

µjtj

The optimality conditions for minimizing L are (see e.g. [5]):

∂L
∂tj

= ν − 1
(λj(N(Ff)) + tj)

2 + µj = 0, j = 1, . . . , q (68)

∂L
∂tk

= ν + µk = 0, k = q + 1, . . . , nu (69)

µjtj = 0, j = 1, . . . , nu (70)
nu∑
j=1

tj = ‖si‖22/βi (71)

Since ν 6= 0, we have µk 6= 0 and thus tk = 0 for k = q + 1, . . . , nu. Also, since tj 6= 0, we have µj = 0 for

j = 1, . . . , q. Therefore,

λj(N(Ff)) + tj =
1√
ν

; j = 1, . . . , q (72)

which leads to the following dual problem

D : max
ν

2q
√
ν − ν

 q∑
j=1

λj(N(Ff)) + ‖si‖22/βi

 (73)

The solution of the dual problem is obtained as follows

√
ν =

q∑q
j=1 λj(N(Ff)) + ‖si‖22/βi

(74)

Now, (65) follows by substituting for ν in (73).

The direct computation of L2(Ff ∪ i) requires finding the eigenvalues of N(Ff ∪ i) for all i ∈ Cc. In

comparison, Proposition 5 only requires computing eigenvalues of N(Ff) and is thus much faster than

direct computation of L2(Ff ∪ i). Note that the relationship in (65) is an inequality, which can be

conservative. As a BAB method spends most of its time in evaluating nodes that cannot lead to the

optimal solution, we use the computationally cheaper albeit weaker pruning criteria in this paper. For the

PB3 algorithm for minimization of L2, the decision element for fast branching is chosen using a similar

approach as taken for minimization of L1.

15

5 Numerical Examples

To examine the efficiency of the proposed BAB algorithms, numerical tests are conducted using randomly

generated matrices and binary distillation column case study. Programs used for loss minimization are

listed in Table 1. All tests are conducted on a Windows XP SP2 notebook with an Intelr CoreTM Duo

Processor T2500 (2.0 GHz, 2MB L2 Cache, 667 MHz FSB) using MATLABr R2008a.

Table 1: BAB programs for comparison

program description

UP upwards pruning using (46)

DOWN downwards pruning using (57)

B3 bidirectional BAB by combining (46) and (57)

PB3 partially B3 by combining (57) and (65)

5.1 Random tests

Four sets of random tests are conducted to evaluate the efficiency of different BAB algorithms mentioned in

Table 1 for selection of a subset of available measurements as CVs through minimization of the local average

loss. For each test, six random matrices are generated: three full matrices, Gy ∈ Rny×nu , Gy
d ∈ Rny×nd

and Jud ∈ Rnu×nd , and three diagonal matrices, We ∈ Rny×ny , Wd ∈ Rnd×nd and Juu ∈ Rnu×nu . All the

elements of Gy, Gy
d and Jud, and the diagonal elements of We and Wd are uniformly distributed between

0 − 1. To avoid ill-conditioning, the diagonal elements of Juu are uniformly distributed between 1 − 10.

For all tests, we use nd = 5, while nu and ny are varied. For each selection problem, 100 random cases are

tested and the average computation time and number of nodes evaluated over the 100 random cases are

summarized in Figure 2 for Tests 1 and 2 and Figure 3 for Tests 3 and 4, respectively.

The first and second tests are designed to select nu = 5 and nu = ny − 5 out of ny measurements,

respectively. From Figure 2, it can be seen that algorithm UP is more suitable for problems involving

selection of a few variables from a large candidate set, whilst algorithm DOWN is more efficient for

problems, where a few among many candidate variables need to be discarded to find the optimal solution.

The solution times for UP and DOWN algorithms increase only modestly with problem size, when nu <<

ny and nu ≈ ny, respectively. The solution times for the B3 algorithm is similar to the better of UP and

DOWN algorithms, however, its efficiency is insensitive to the kind of selection problem.

The third test consists of selecting nu out of ny = 2nu measurements with nu increasing from 5 to 18,

16

10
−2

10
0

10
2

cp
u

tim
e,

 s

(a)

10 100 200 300 400 500
10

0

10
4

10
8

10
12

n
y

ev
al

ua
tio

ns

(b)

10
−2

10
0

10
2

cp
u

tim
e,

 s

(c)

30 60 90 120 150 180
10

0

10
4

10
8

10
12

n
y

ev
al

ua
tio

ns

(d)

DOWN UP B3 BRUTE

Figure 2: Random test 1: (a) computation time and (b) number of nodes evaluated against ny; Random

test 2: (c) computation time and (d) number of nodes evaluated against ny.

17

10
−2

10
0

10
2

cp
u

tim
e,

 s

(a)

5 10 15 18
10

0

10
4

10
8

10
12

n
u

ev
al

ua
tio

ns

(b)

10
−2

10
0

10
2

cp
u

tim
e,

 s

(c)

1 9 18 27 36
10

0

10
4

10
8

10
12

n
u

ev
al

ua
tio

ns

(d)

DOWN UP B3 BRUTE

Figure 3: Random test 3: (a) computation time and (b) number of nodes evaluated against nu; Random

test 4: (c) computation time and (d) number of nodes evaluated against nu.

while the fourth test involves selecting nu out of ny = 36 variables with nu ranging from 1 to 35. Figure 3

indicates that while the UP and DOWN algorithms show reasonable performance for small nu, their

performance degrades, when nu ≈ ny/2. Within 1000 seconds, both UP and DOWN algorithms can only

handle problems with nu < 9 or ny − nu < 9. For all cases, however, the B3 algorithm exhibits superior

efficiency and is able to solve problems up to nu = 18 within 200 seconds.

In summary, for selection of individual measurements as CVs by minimizing the average loss, all the

developed algorithms (UP, DOWN and B3) show much superior performance than the currently used

brute force method. In comparison with the UP and DOWN algorithms, the B3 algorithm shows superior

performance and similar efficiency for different problem dimensions including problems with nu << ny,

nu ≈ ny and nu ≈ ny/2.

18

5.2 Distillation column case study

To demonstrate the efficiency of the developed PB3 algorithm, we consider self-optimizing control of a

binary distillation column [15]. The objective is to minimize the relative steady-state deviations of the

distillate (zLtop) and bottoms (zHbtm) compositions from their nominal values, i.e.

J =

(
zLtop − zLtop,s

zLtop,s

)2

+

(
zHbtm − zHbtm,s

zLbtm,s

)2

(75)

where the superscripts L and H refer to the light and heavy components and the nominal steady-state

values are zLtop,s = zHbtm,s = 0.01 (99% purity). Two manipulated variables, namely reflux (u1) and vapor

boilup rates (u2), are available for minimizing J in (75). The main disturbances are in feed flow rate

(d1), feed composition (d2) and vapor fraction of feed (d3), which can vary between 1 ± 0.2, 0.5 ± 0.1

and 1 ± 0.1, respectively. The top and bottom compositions are not measured online and thus two CVs

needs to be identified for indirect control of the compositions. It is considered that the temperatures on

41 trays (y1, · · · , y41) are measured with an accuracy of ±0.5o C, whose combinations can be used as CVs

for implementation of self-optimizing control strategy.

For local analysis, the following linear model is derived:zLtop

zHbtm

 =

1.083 1.097

0.877 −0.863

u +

0.586 1.117 1.091

0.394 0.883 0.869

d

Using the linear model and (75), the Hessian matrices required for local analysis are calculated to be

Juu =

 38832.119 −38888.107

−38888.107 38951.438

Jud =

 19600.452 39679.404 38863.870

−19652.356 −39742.991 −38924.023

while Wd = diag(0.2, 0.1, 0.1) and We = 0.5I41. The reader is referred to [9] for further details of this

case study.

The PB3 algorithm is used to select the 10 best measurement combinations for 2 ≤ n ≤ 41. The trade-off

between the losses of the 10 best selections and n is shown in Figure 4(a). It can be seen that when n ≥ 14,

the loss is less than 0.075, which is close to the minimum loss (0.052) obtained by using a combination

of all 41 measurements. Furthermore, the reduction in loss is negligible, when combinations of more than

20 measurements are used. Figure 4(a) also shows that the 10 best selections have similar self-optimizing

19

5 10 15 20 25 30 35 40
0

0.02

0.04

Lo
ss

(a)

5 10 15 20 25 30 35 40
0

200

400

600

800

C
P

U
 ti

m
e,

 s

(b)

PB3

DOWN

5 10 15 20 25 30 35 40
10

0

10
5

10
10

N
um

be
r

of
 e

va
lu

at
io

ns

(c)

PB3

DOWN
BRUTE

5 10 15 20 25 30 35 40
0

2

4

Number of measurments seleted

D
O

W
N

 :
B

P
3

(d)

time ratio
evaluation number ratio

Figure 4: (a) Average losses of 10-best measurement combinations against the number of measurements,

(b) Comparison of computation time, (c) Comparison of number of node evaluations, and (d) Ratios of

computation time and number of node evaluations required by PB3 over DOWN algorithms

20

capabilities. Thus, the designer can choose the subset of measurements among these 10 best alternatives

based on some other important criteria, such as dynamic controllability [17].

Figure 4(b) and (c) show the computation time and number of node evaluations for PB3 and DOWN

algorithms. To facilitate the comparison further, the ratios of number of node evaluations and computation

times are also shown in Figure 4(d). Due to the conservativeness of the pruning condition (65), the PB3

algorithm is only able to reduce the number of node evaluations and hence computation time up to a

factor of 4 for selection problems involving selection of a few measurements from a large candidate set. It

is expected that a less conservative or fully upwards pruning rule would improve the efficiency, but the

derivation of such a rule is currently an open problem.

Overall, both algorithms are very efficient and are able to reduce the number of node evaluations by

5 to 6 orders of magnitude, as compared to the brute force search method. For example, to select 20

measurements from 41 candidates, evaluation of a single alternative requires about 0.15 ms on the specified

notebook computer. Thus, a brute force search methods would take more than one year to evaluate all

possible alternatives. However, both PB3 and DOWN algorithms are able to solve this problem within

100 seconds. Hence, without the algorithms developed here, it would be practically impossible to generate

of the trade-off curve shown in Figure 4(a).

6 Conclusions

Self-optimizing control is a promising method for systematic selection of controlled variables (CVs) from

available measurements. In this paper, efficient bidirectional branch and bound (BAB) algorithms have

been developed for selection of controlled variables (CVs) using the local average loss minimization criterion

for self-optimizing control. The numerical tests using randomly generated matrices and binary distillation

column case study show that the number of evaluations required by the proposed algorithms are 4 to 5

orders of magnitude lower than the current practice of CV selection using brute force search. This algorithm

would allow the practicing engineer to select CVs for large-dimensional problems in a computationally

tractable manner.

The proposed algorithm for selection of subset of measurements, whose combinations can be used as CVs,

is only partially bidirectional. For this problem, the development of a fully bidirectional branch and bound

algorithm is currently open and is an issue for future research. It is noted in [13] that for CV selection,

the problems involving minimization of local worst-case and average losses can be conflicting in nature.

21

To overcome this difficulty, an extension of the bidirectional BAB algorithm to select CVs based on the

bi-objective minimization of local worst-case and average losses for self-optimizing control is currently

under consideration.

Acknowledgements

The first author gratefully acknowledges the financial support from Nanyang Technological University,

Singapore through grant no. RG42/06.

References

[1] V. Alstad, S. Skogestad, and E. S. Hori. Optimal measurement combinations as controlled variables.

J. Proc. Control, 19(1):138–148, 2009.

[2] Y. Cao and V. Kariwala. Bidirectional branch and bound for controlled variable selection: Part I.

Principles and minimum singular value criterion. Comput. Chem. Engng., 32(10):2306–2319, 2008.

[3] Y. Cao and P. Saha. Improved branch and bound method for control structure screening. Chem.

Engg. Sci., 60(6):1555–1564, 2005.

[4] X.-W. Chen. An improved branch and bound algorithm for feature selection. Pattern Recognition

Letters, 24:1925–1933, 2003.

[5] C. A. Floudas. Nonlinear and Mixed-Integer Optimization. Oxford University Press, Newyork, NY,

USA, 1995.

[6] G. H. Golub and C. F. van Loan. Matrix Computations. The Johns Hopkins University Press,

Baltimore, MD, 3rd edition, 1993.

[7] I. J. Halvorsen, S. Skogestad, J. C. Morud, and V. Alstad. Optimal selection of controlled variables.

Ind. Eng. Chem. Res., 42(14):3273–3284, 2003.

[8] S. Heldt. On a new approach for self-optimizing control structure design. In Proc. 7th Intl. Symposium

on ADCHEM, Istanbul, Turkey, 2009.

[9] E. S. Hori and S. Skogestad. Selection of controlled variables: Maximum gain rule and combination

of measurements. Ind. Eng. Chem. Res., 47(23):9465–9471, 2008.

22

[10] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press, Cambridge, UK, 1985.

[11] V. Kariwala. Optimal measurement combination for local self-optimizing control. Ind. Eng. Chem.

Res., 46(11):3629–3634, 2007.

[12] V. Kariwala and Y. Cao. Bidirectional branch and bound for controlled variable selection: Part II.

Exact local method for self-optimizing control. Comput. Chem. Eng., 33(8):1402–1412, 2009.

[13] V. Kariwala, Y. Cao, and S. Janardhanan. Local self-optimizing control with average loss minimiza-

tion. Ind. Eng. Chem. Res., 47(4):1150–1158, 2008.

[14] P. Narendra and K. Fukunaga. A branch and bound algorithm for feature subset selection. IEEE

Trans. Comput., C-26:917–922, 1977.

[15] S. Skogestad. Dynamics and control of distillation columns - A tutorial introduction. Trans. IChemE

Part A, 75:539–562, 1997.

[16] S. Skogestad. Plantwide control: The search for the self-optimizing control structure. J. Proc. Control,

10(5):487–507, 2000.

[17] S. Skogestad and I. Postlethwaite. Multivariable Feedback Control: Analysis and Design. John Wiley

& Sons, Chichester, UK, 2nd edition, 2005.

[18] P. Somol, P. Pudil, and J. Kittler. Fast branch & bound algorithms for optimal feature selection.

IEEE Transactions on Pattern Analysis and Machine Intelligence, pages 900–912, 2004.

[19] B. Yu and B. Yuan. A more efficient branch and bound algorithm for feature selection. Pattern

Recognition, 26:883–889, 1993.

List of Figures

1 Solution trees for selecting 2 out of 6 elements. 4

2 Random test 1: (a) computation time and (b) number of nodes evaluated against ny;

Random test 2: (c) computation time and (d) number of nodes evaluated against ny. 17

3 Random test 3: (a) computation time and (b) number of nodes evaluated against nu;

Random test 4: (c) computation time and (d) number of nodes evaluated against nu. 18

23

4 (a) Average losses of 10-best measurement combinations against the number of measure-

ments, (b) Comparison of computation time, (c) Comparison of number of node evaluations,

and (d) Ratios of computation time and number of node evaluations required by PB3 over

DOWN algorithms . 20

List of Tables

1 BAB programs for comparison . 16

24

