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Abstract 

A good quantitative understanding of phosphorus (P) delivery is essential in the design of 

management strategies to prevent eutrophication of terrestrial freshwaters.   Most research to 

date has focussed on surface and near-surface hydrological pathways, under the common 

assumption that little P leaches to groundwater.  Here we present an analysis of national 

patterns of groundwater phosphate concentrations in England and Wales, Scotland, and the 
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Republic of Ireland, that shows many groundwater bodies have median P concentrations 

above ecologically significant thresholds for freshwaters.  The potential risk to receptor 

ecosystems of high observed groundwater P concentrations will depend on (1) whether the 

observed groundwater P concentrations are above the natural background; (2) the influence of 

local hydrogeological settings (pathways) on the likelihood of significant P transfers to the 

receptor; (3) the sensitivity of the receptor to P; and, (4) the relative magnitude of P transfers 

from groundwater compared to other P sources.  Our research suggests that, although there is 

often a high degree of uncertainty in many of these factors, groundwater has the potential to 

trigger and/or maintain eutrophication under certain scenarios:  the assumption of 

groundwater contribution to river flows as a ubiquitous source of dilution for P-rich surface 

runoff must therefore be questioned.  Given the regulatory importance of P concentrations in 

triggering ecological quality thresholds, there is an urgent need for detailed monitoring and 

research to characterise the extent and magnitude of different groundwater P sources, the 

likelihood for P transformation and/or storage along aquifer-hyporheic zone flowpaths and to 

identify the subsequent risk to receptor ecosystems. 
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Introduction 

High concentrations of biologically available phosphorus (P) in freshwater ecosystems are 

commonly associated with elevated rates of primary productivity and resultant changes in 

ecosystem composition (Mainstone and Parr, 2002; Withers and Lord, 2002).  Major research 

efforts have been made in attempting to quantify the principal P sources in different 

catchment systems in an effort to understand and manage eutrophication (Foy, 2005; Withers 

and Haygarth, 2007;  Weatherhead and Howden, 2009).   Most work, thus far, has made the 

distinction between point-sources, such as sewage treatment plants, and diffuse-sources, such 

as transfers from agricultural soils during storm events (Edwards and Withers, 2007; Howden 

et al., 2009).  The predominant research focus for diffuse-source transfers from land to water 

has been directed to surface (Heathwaite et al., 2006; Withers and Haygarth, 2007; Burt et al., 

2008) and near-surface (Heathwaite and Dils, 2000; Hodgkinson et al., 2002) hydrological 

pathways.  Transport of phosphorus to groundwater and potential P contributions to surface 

waters via baseflow are generally assumed to be negligible because of the high potential for 

mobile phosphorus to be retained in the upper soil horizons by adsorption (e.g. to calcite) or 

metal complex formation (commonly with iron, aluminium or manganese in acidic soils:  e.g. 

Addiscott and Thomas, 2000).  Nevertheless, relatively high concentrations of phosphorus 

have been reported for some groundwater bodies (Kilroy, 2001; Kilroy and Coxon, 2005; 

Holman et al., 2008) which suggest that groundwater has potential to act as a P source for 

surface waters, provided it is not removed along the groundwater-surface water pathway (e.g. 

Griffioen, 2006).  In the UK, monitored groundwater P concentrations have historically been 

compared with the EU drinking water standard (2200 µg P L
-1

) and have, therefore, not been 
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identified as a concern.  If ecologically-based surface water thresholds (Howden et al., 2009) 

are used as a reference point, however, measured groundwater P concentrations become more 

significant, particularly since groundwater contributions (as a proportion of total flow) are 

greatest during low (base-) flow conditions which are often coincident with optimum 

conditions for primary productivity in spring and summer (Mainstone and Parr, 2002).  In 

some freshwaters and groundwater-dependent wetlands, such as fens (particularly in the 

absence of point-source discharges), relatively low concentrations of groundwater-P could, 

therefore, exert a fundamental control on baseline ecosystem function (Neal et al., 2008).  

Hence, it is important to develop our understanding of groundwater-P source(s) (i.e. 

anthropogenic or natural) and the potential risks posed by groundwater-P to good ecological 

quality in surface waters. 

This paper presents an overview of groundwater-P concentrations in the UK and Republic of 

Ireland based on historical data from national routine monitoring.  It extends a preliminary 

overview presented by Holman et al. (2008) which focussed on phosphate in groundwater 

bodies in England and Wales. 

Specifically, four questions are considered: 

Are there spatial patterns in groundwater-P concentrations in England and Wales, Scotland, 

Northern Ireland and the Republic of Ireland? 

Are there potential links between groundwater-P concentrations and land use? 

What are the potential implications of groundwater P concentrations for surface-water quality 

and ecological management?  

What are the implications of the findings for future monitoring requirements in both ground 

and surface waters, specifically with regard to required limits of detection? 

 

Data and Methods 

National datasets 

Over 48,000 measurements of groundwater P concentrations were collated from national 

monitoring datasets for the UK and Ireland (see summary:  Table 1).  The data originated 

from almost 3600 groundwater monitoring sites (Figure 1) and were collected between 1968 

and 2007.  Differences in filtering, analytical methods, P determinands and Limits of 

Detection (LOD) were evident between countries (Table 1) as follows: 

England and Wales (Environment Agency monitoring), Scotland (Scottish Environment 

Protection Agency monitoring) and Republic of Ireland (Environmental Protection Agency 

monitoring):  Samples are not routinely filtered.  Colorimetric analysis is used to give total 
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reactive phosphorus, via the molybdate reaction.  This is, however, reported by the agencies 

as Orthophosphate as P because the majority of the total reactive phosphorus in groundwater 

samples is expected to be in the form of dissolved orthophosphate, given that concentrations 

of suspended solids and organic matter in groundwater are normally low. 

Northern Ireland (Environment and Heritage Service monitoring):  Samples are routinely 

filtered in the field and analysed using ICP-MS to give total dissolved phosphorus.   

The term phosphorus is used within the paper with respect to orthophosphate as P unless 

otherwise stated. 

 

Limits of detection 

In the context of assessing potential risks to surface water receptors from groundwater-P, the 

treatment of samples below LOD is important because surface water phosphate thresholds for 

eutrophication can be as low as 10 to 30 µg L
-1

 (Stevenson et al., 2008).  Detection limits 

were inconsistent between: countries; groundwater bodies within the same country; and also 

within individual datasets.  To assess the sensitivity of the analyses to the LOD, the LODs 

were initially considered by treating samples with concentrations below LOD in four different 

ways: (1) as zero; (2) as LOD; (3)  as half LOD; and (4) removing all samples below LOD.  

Temporal analysis of groundwater-P 

The groundwater-P data has been analysed with regard to the timing of sample collection, 

timing of observed high concentrations and national trends.  The distribution of samples by 

month of collection in England and Wales, Scotland and Ireland were examined to assess 

whether there are temporal biases in sampling.  The month of collection of samples with 

concentrations greater than 5, 10 or 20 times the median concentration for the given 

groundwater monitoring site were analysed for patterns in the timing of such peak 

concentrations.  Finally, national average median groundwater P concentrations were 

calculated from all samples collected within the given calendar year to identify any national 

trends in groundwater P concentration. 

Spatial distribution of groundwater-P 

National groundwater-P distribution was investigated at the groundwater body scale, by 

assigning data from groundwater monitoring sites to their respective regionally-defined 

groundwater bodies using a point-in-polygon procedure within a Geographical Information 

System.  Median groundwater body P-concentrations were calculated from the median 

concentration values at individual sites for which more than one measurement was available, 

and single sample concentration values for sites with only one measurement.  This normalised 

the sites for differing sample numbers and prevented sites with large numbers of samples 

from dominating the median concentration for the groundwater body.  The median 
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concentration was used (in preference to the mean) to prevent occasional peaks in 

concentration from skewing the results. 

Relationship with Land Cover 

Historically, samples are collected from a range of monitoring sites (monitoring boreholes, 

abstraction sites, private boreholes, springs etc), so borehole capture zones were not generally 

available.  Therefore, the predominant land cover for a 1 km radius around each monitoring 

site, derived from a simplified CORINE2000 (Co-ordination of Information on the 

Environment) land cover class, was used.  The CORINE classes were re-categorised into the 

following broad land cover groups - Urban/industrial; Arable; Managed grassland; Semi-

natural vegetation and Woodland.  Overall, the distribution of sites by predominant land cover 

class was 8% urban/industrial; 27% arable; 53% grassland; 3 % semi-natural vegetation and 

9% woodland.  The distribution of the median groundwater P-data tends to be log-normal so 

that the data were log-transformed.  The relationship between log-transformed median 

groundwater-P concentration at each site and the predominant local land cover was then 

assessed, in the four countries, using Analysis of Variance (ANOVA). 

 

Results 

Limits of detection 

Figure 2 shows the effect of these four LOD treatments on median P concentration for 

groundwater bodies in England and Wales.  The calculated median groundwater concentration 

changes markedly in a number of groundwater bodies depending on the treatment of samples 

below LOD.  It is apparent, therefore, that the utility of datasets which have a large proportion 

of samples below LOD will be limited, particularly when the LOD itself is above an 

ecologically relevant threshold.  Since a very high fraction (94%) of the data from Northern 

Ireland is below LOD, these data have been largely excluded from further analysis.  For all 

subsequent analyses and reporting, samples below LOD were treated as being half the LOD, 

in line with assumptions made by other workers for statistical analyses (Shand et al., 2007; 

Reimann et al., 2005). 

 

Data coverage 

Significant areas of the countries studied here have no historical groundwater P data.  In 

England and Wales 14% of groundwater bodies by area (or 112 out of 357 groundwater 

bodies) have no groundwater P observations.  In the Republic of Ireland this figure is 37% (or 

567 of the country‘s 746 groundwater bodies) and in Scotland it is 49% (or 241 out of 343 

groundwater bodies). 
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Figure 3 shows the cumulative frequency distribution of groundwater monitoring sites within 

those groundwater bodies with some groundwater P data.  It is apparent that the number of 

sites in each groundwater body is generally limited, and a significant proportion of 

groundwater bodies in all countries have fewer than 3 monitoring sites with groundwater P 

data. 

 

Temporal results 

The sampling times in England and Wales and Scotland are evenly distributed through the 

year, but there are biases in the sampling in the Republic of Ireland (Figure 4), where less 

than 2% of samples were collected between April and July, inclusive, which coincides with 

the period of greatest in-stream biological demand for P.  However, taking all of the samples 

from England and Wales, Scotland and Ireland, there appears to be a uniform distribution in 

the timing of peak observed concentration (Figure 5) with no evidence, for example, of high 

observed concentrations at the onset of the recharge period.   

The national time series of annual median groundwater-P concentration (Figure 6) show no 

significant trend for Ireland and Scotland, but the data for England and Wales show an 

apparent increase in annual median groundwater-P concentration up until 1987 followed by a 

progressive decrease.  However, this reflects the smaller number of samples within the first 

half of the period (average number of samples per year up to 1987 was 277 compared to 1848 

per year after 1987, a significant increase as shown by Students t=7.2, p<0.001) and the 

progressively reducing LOD (from usually around 50 to 20 μg P L
-1

). 

 

Spatial results 

Figure 7 shows the spatial distribution of median groundwater P concentration within the 

sampled groundwater bodies of the four countries (excluding Northern Ireland).   

Republic of Ireland 

In the Republic of Ireland, the majority of groundwater bodies have median P < 20 μg P L
-1

 

(the national background level), which is consistent with the usual extremely low (< 10 μg P 

L
-1

 SRP) surface water P concentrations due to the widespread dominance of limestone 

geology and associated co-precipitation of P with calcite.   However, in 51 groundwater 

bodies (covering 22% of the Republic of Ireland - or 36 % of the area of groundwater bodies 

with data) the median concentration exceeded 20 μg P L
-1

, suggesting potential anthropogenic 

impact in these systems.  Thirty two groundwater bodies (28 % of the area) in the mid-west, 

together with more localised groundwater bodies in the east and south (Figure 7) have median 

concentrations above the national eutrophication threshold of 30 µg P L
-1

.  These results are 

broadly consistent with the analysis of Kilroy (2001) who reported, using national data from 

1995-97, that groundwater P levels were generally low with a national median value of 17 µg 
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P L
-1

 of unfiltered molybdate reactive P, but that one quarter of the data were higher than 30 

µg P L
-1

.  However, Kilroy (2001) suggested that sites with elevated groundwater P 

concentrations were generally located in the eastern half of the country.  This is not apparent 

in Figure 7.   

England and Wales 

In England and Wales, median groundwater P concentrations tend to be relatively high 

compared with the other countries, although large areas have median P concentrations of less 

than 30 µg P L
-1

.  A number of groundwater bodies have median concentrations > 50 µg P L
-1

 

– mainly in the south eastern half of England, but with a notable cluster of high 

concentrations in the English northwest.  Around 9 %, 5% and 1% of area of groundwater 

bodies with data exceed the three good ecological status river thresholds (UKTAG, 2007) of 

40, 50 and 120 μg P L
-1

, respectively.   

Scotland 

In Scotland, data on groundwater P concentrations are available for relatively few 

groundwater bodies.  Most of the monitored groundwater bodies have median P 

concentrations of less than 20 µg P L
-1

, but a small number have concentrations above 30 µg 

P L
-1

.  These are generally found in the east of the country, which is drier and has more 

intensive agriculture than the west and north, although there are clusters in Caithness (in the 

north east) and in Dumfries and Galloway (in the south west).   

 

Relationships with CORINE2000 Land Cover 

The relationship between the predominant CORINE2000 land cover surrounding monitoring 

sites and mean groundwater-P concentration is shown in Table 2 for England and Wales, 

Scotland and the Republic of Ireland.  There are many more groundwater-P measurements 

available for England and Wales than for the other monitored areas.   

Land-use classes account for only around 15% of the observed variability in groundwater-P 

concentration across the 4 countries.  The ANOVA and Fisher LSD tests showed that: 

The observed groundwater-P concentrations are significantly higher in England and Wales, 

than those in the Republic of Ireland and Scotland, within each of the land-use classes.(Table 

2). 

Measured groundwater-P concentrations are significantly lower where the predominant land-

use class surrounding monitoring boreholes is semi-natural vegetation than those with urban, 

arable and grassland surrounding the boreholes, for England and Wales and Scotland but not 

the Republic of Ireland (Table 2 and 3). 
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Discussion 

The quantity and quality of groundwater monitoring data for P is variable both within, and 

between, countries.  The constraints of poorly-designed monitoring schedules, at least for the 

purposes of evaluating groundwater P levels, inappropriate and variable LODs, and a lack of 

information about borehole capture zones hinder a more detailed interpretation of the data.  

Nevertheless, many of the results generated are interesting and challenge previous 

perceptions.  In particular, the data suggest that phosphorus concentrations in many 

groundwater bodies in Scotland, the Republic of Ireland and, particularly, in England and 

Wales are relatively high (often > LOD and sometimes > ecological thresholds for surface 

waters).  Further investigation is therefore warranted to answer three key questions: 

What is the nature and contribution of anthropogenic sources to high observed groundwater P 

concentrations? 

What pathway and receptor factors influence the eutrophication risks from groundwater P to 

associated freshwaters and groundwater-dependent terrestrial ecosystems? 

How can the sources, behaviour and impacts of groundwater P be better characterised, 

understood and, if necessary, managed? 

Nature and contribution of anthropogenic sources 

For the purpose of designing appropriate policy responses, it is necessary to ascertain whether 

groundwater P concentrations are elevated above natural background levels (i.e. the 

concentrations which would be expected given undisturbed conditions).  However, defining a 

baseline concentration at any scale (groundwater body, aquifer, or nationally) is not 

straightforward.  One approach is to use a particular percentile concentration from 

groundwater monitoring data, based on the assumption that only a small fraction of sites will 

be strongly influenced by anthropogenic activity (Shand et al., 2007).  For example, the 

Natural Background Level for orthophosphate in all Irish groundwaters was set at 20 µg P L
-1

 

based on the 90
th

 percentile concentration within confined portions of Irish aquifers, thus 

excluding samples representative of shallow bedrock flow and ―to minimise the risk of 

influence from anthropogenic inputs‖ (O‘Callaghan Moran & Associates, 2007).  In contrast, 

the 95
th

 percentile concentration was used by Edmunds et al. (1997) and is still used to set 

background levels for individual groundwater bodies or aquifers in England and Wales (Rob 

Ward, pers. comm).   

Although pragmatic, the main problem with such approaches is that they do not identify a 

natural background concentration if a high proportion of the aquifers being assessed are 

already polluted by anthropogenic sources.  In any case, account should be taken of the 

number and quality of the monitoring data used, including the consistency of successive 

measurements, the LODs used, number of samples above and below LODs, and the 

distribution of concentrations above the LOD.  In addition, account should be taken of the 
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hydrogeological context of systems under consideration, including the potential evolution of 

geochemistry along hydrogeological flow paths.   

Our ANOVA showed that there were significant differences between P concentrations under 

different land uses, suggesting some role for local land use in controlling groundwater P 

concentrations.  The data presented in Tables 2 and 3 suggest that higher concentrations are 

generally found under urban, arable and managed grassland areas, particularly in England and 

Wales.  This implies some anthropogenic influence, although interpretation is hampered by 

the design of the sampling network, the timing of sampling, the length of the data series and 

by the fact that we only assessed land use in an arbitrary area with a 1 km radius around each 

monitoring site, in the absence of information on the extent of source protection zones or 

abstraction rates.   

A number of potential anthropogenic point- and diffuse-sources exist, which could lead to 

enhanced groundwater P loading and explain, in part, the apparent elevation of concentrations 

under urban and agricultural areas.  These include: 

Agricultural soils:  Phosphorus has been routinely applied to soils for many years, either as 

mineral fertilizer or as animal feed supplements, in excess of crop requirements in England 

(e.g. Withers et al., 2001), Northern Ireland (e.g. Foy et al., 1995) and in the Republic of 

Ireland (e.g. Tunney, 1990).  This has led to the accumulation of P in soils and an increased 

risk of leaching loss (e.g. Foy et al., 1995; Tunney, 1990; Heckrath et al., 1995; Sharpley, 

1995). 

Septic tanks:  Many rural domestic dwellings are served by on-site wastewater treatment 

systems, such as septic tanks.  In Ireland, for example, the domestic wastewater of over 

400,000 dwellings (>one-third of the population) is treated by on-site systems (Department of 

the Environment, 2004).  Dissolved P concentrations in septic effluents can be as high as 12 

mg P L
-1

 (Weiskel and Howes, 1992; Gill et al., 2007).   

Leaking sewers:  Raw sewage can have total phosphorus concentrations of 9 to 15 mg P L
-1

, 

of which two-thirds is in inorganic forms (Metcalf and Eddy. 2003).  If sewers leak, they can 

generate P-rich plumes which could pollute local groundwater. 

Leaking mains water pipes:  Around 95% of the UK‘s public water supplies are dosed with 

orthophosphate, to reduce plumbosolvency, at concentrations of 0.5 to 1.5 mg P L
-1

, 

depending on alkalinity (CIWEM, 2005; Hayes et al., 2008), hence plumes of P-rich water 

may also originate from leaking water mains.   

Slurry lagoons:  Studies have shown clear evidence of P leaching and groundwater 

contamination beneath animal slurry lagoons that lack impervious linings (e.g. Gooddy et al., 

1998; Withers et al., 1998).  Furness et al. (1991) have estimated that there were an estimated 

6150 slurry lagoons on dairy, beef and pig farms in the late 1980s.  Nicholson and Brewer 
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(1997) estimated a total surface area of 7.0 x 10
6
 m

2
 of livestock slurry and farm yard dirty 

water stored in such lagoons. 

Agricultural manure heaps:  Nicholson and Brewer (1997) estimated that the exposed 

surface area of stored animal manures was 11.9 x 10
6
 m

2
, whilst Gooddy (2002) reported P 

leaching from a turkey litter site down to a depth of at least 5 m. 

 

Influence of pathway and receptor type on eutrophication risks in associated freshwater and 

groundwater-dependent terrestrial ecosystems  

The eutrophication risk to receptor systems due to elevated groundwater P concentrations will 

vary with hydrogeological setting (pathways) and the sensitivity of the receptor system to P.  

Even if groundwater P concentrations are elevated above natural background levels, adverse 

impacts will not necessarily be observed in receptor systems because a number of attenuating 

reactions may occur along the flowpath between monitoring site and receptor.  In addition, if 

groundwater contamination is limited in extent, some dilution would be expected from 

uncontaminated baseflow.  Factors affecting the likelihood of groundwater P transport to 

receptor systems include: 

The sorption potential of the aquifer matrix for P.  This will be related to the combined 

Fe(OH)3 and CaCO3 content.  There are a number of potential P sorption and immobilisation 

processes including relatively rapid adsorption at high-affinity mineral surface sites (Parfitt, 

1978, 1989), slower precipitation of metal phosphate complexes (Van Riemsdijk et al., 1984) 

and slow diffusion into micropores or aggregates (Torrent et al., 1992; Mikutta et al., 2006; 

Lijklema, 1980; Stollenwerk, 1996).  Some of these processes are reversible and some are 

dependent on redox conditions (e.g. Griffioen, 2006; Loeb et al., 2008); 

The degree of contact between groundwater and the aquifer matrix as indicated by the 

flow type.  This is likely to be relatively low in karstic/highly fissured, fissure / fracture and 

dual porosity systems, where the matrix may be bypassed by most of the flow and higher 

where a significant fraction of flow is intergranular.  Studies considering P movement through 

groundwater in which P sorption has been shown to be important (e.g Stollenwerk, 1996; 

Harman et al., 1996; Ptacek, 1998; Corbett et al., 2002) have mostly examined alluvial or 

intergranular aquifers, whereas groundwater P contamination has more commonly been 

associated with fractured aquifers (e.g. Withers et al., 1998; Bishop et al., 1998);  

The time available for sorption.  This will depend upon the likely groundwater residence 

time, which will depend on aquifer type, transmissivity, hydraulic gradients and typical length 

of groundwater flow path to the receptor; 

The role of the hyporheic zone: Steep gradients in redox potential can exist in the transition 

zone between groundwater and surface water, with consequences for P mobility (e.g. 

Griffioen, 2006; Surridge et al., 2006). Under low redox potential iron-associated P may be 

mobilised, as Fe
3+

 is reduced to Fe
2+

.  When redox potential increases (for example in the 
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hyporheic zone), P may be immobilised.  However, the significance of these processes for 

providing natural attenuation (or otherwise) of nutrients is highly uncertain. 

 

Receptor sensitivity 

The sensitivity of a river or wetland receptor to groundwater P inputs will depend on a 

number of factors associated with the receptor, and the timing and mode of P delivery.  These 

are summarised in Figure 8 and include: 

Scale:  The variety of potential P sources for surface waters increases as the upstream 

contributing area increases, as will hydrological damping and the role of in-stream retention 

(Prairie and Kalff, 1986), hindering the establishment of causal relationships between specific 

P sources and biological impacts (Edwards and Withers, 2007); 

Receptor residence time: The impact of different P inputs on the receptor ecosystem will 

differ considerably between lentic and lotic systems, because of their differing sensitivity to 

concentration and load (Edwards et al., 2000).  The longer residence times of lentic systems 

(Johnes et al., 2007), compared with lotic systems, means that a significant fraction of 

diffuse-source P inputs from winter and spring runoff events will remain (augmented by 

internal nutrient cycling), thereby contributing to biological P demand in spring and summer 

and a reduced sensitivity to groundwater P.  By contrast, rivers and streams have much 

shorter residence times (Jarvie et al., 2006) so that baseflow P delivery in spring and summer 

is likely to be more important, whilst high episodic loads of soil-derived P in the winter are 

likely to have less direct local significance for the ecosystem; 

Flow regime and climate: Groundwater flow is largely independent of individual 

precipitation events (Edwards and Withers, 2007) and makes its most significant relative 

contribution during periods of low flow, in both upland and lowland areas.  A river with a 

very high base flow index (such as in a chalk catchment) in a relatively dry climate is likely to 

have less sediment-derived P inputs because of the fewer runoff and erosion events and a 

higher groundwater contribution to flow.  Depending on the N:P ratio of the groundwater 

compared with that in the receiving surface water, groundwater discharge can also lead to a 

shift in the limiting nutrient for primary production, if it constitutes a significant fraction of 

the total flow (Slomp and Van Cappellen, 2004).   

Synchronicity between delivery and biological demand: Groundwater is most important 

for supporting surface water flows during low-flow periods.  These periods (i.e. late spring 

and summer) are often contemporaneous with high in-stream biological demand for P (Flynn 

et al., 2002; Foy, 2005).  For example, most lowland river macrophytes have committed their 

biomass by June, having completed their growth and flowered, and generally seek to maintain 

biomass during the rest of the growing season; 
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Sensitivity of species:  Increases in P supply from groundwater could promote adverse 

ecological impacts such as the loss of low growing, stress tolerant sedges and herbs in 

groundwater discharge fens (e.g. in calcareous spring fens) which are highly sensitive to 

prolonged periods of higher nutrient availability which favour more competitive and 

productive species.  Currently, enhanced P supply is considered to be a far greater risk to the 

maintenance of endangered plant species in European fens than nitrogen enrichment (Wassen 

et al., 2005).  In rivers, elevated P supply is often associated with increased filamentous algal 

growth and associated changes in the structure and cover of aquatic vegetation (Hilton et al., 

2006).  Since rooted macrophytes derive their nutrient supply from both the water column and 

sediment interstices (Clarke and Wharton, 2001) they may be more sensitive to groundwater 

P inputs than might be deduced from surface water P concentrations alone, especially in 

baseflow-dominated systems, such as chalk streams. It is also feasible that, in some situations, 

high groundwater P concentrations will frustrate attempts to promote ecological recovery in 

rivers via point-source control, even when these succeed in greatly reducing surface water P 

loading. 

Saturation thresholds: It is often considered that calcareous systems are protected against 

the effects of enhanced P concentrations as the co-precipitation of P is an important process 

for controlling P concentrations.  However, a receptor that exceeds or is close to the saturation 

threshold will be sensitive to additional inputs of P through groundwater.  This may be 

particularly important in chalk systems in which groundwater P enters the surface water body 

through discrete entry points (e.g. Howden and Burt, 2008, 2009) rather than diffuse inflow. 

Requirements to better characterise, understand and manage groundwater P 

Despite the many uncertainties, our analysis of existing available data from five countries 

suggests that more attention should be paid to the potential role of groundwater as a source of 

P-delivery to surface water ecosystems and that it should not automatically be viewed as a 

source of dilution.  Given the potential significance of elevated groundwater P for the 

achievement of Good Ecological Status required under the European Water Framework 

Directive (WFD: 2000/60/EC) in many surface water and wetland receptors, we propose the 

following: 

1. Standardised sampling and analytical techniques to allow comparisons, particularly 

for transnational water bodies:  Present data holdings across the five countries are inconsistent 

in several ways.  The particular form of P determined by water sample analyses differs 

between countries, regions and, in some cases, sampling events.  It is imperative that 

sampling strategies are applied consistently, such that comparisons may be made robustly;  

2. Standardised LODs, at least at a national scale, which are below ecologically-

important thresholds:  This is a key observation from our analyses.  Historically, the LODs for 

groundwater-P were thought to be unimportant, as samples were being analysed for 

comparison with drinking water standards and were often relatively high.  The progressive 

changes in LOD in England and Wales over time have also rendered the data unsuitable for 

trend analyses (Fig. 6); 
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3. Better-defined and robust sampling strategies (e.g. Burt et al., 2009) which capture the 

spatial and temporal variability in groundwater P concentration:  Past and present sampling 

strategies are somewhat piece-meal, have limited spatial coverage at the national scale (Fig. 

7), and have low sampling frequency in space (Fig. 3) and time; 

4. Sampling of the many groundwater bodies with no historical measurements of P 

concentration is required.  This should be prioritised according to estimated risk in associated 

receptors:  Historically, sampling has been focused on aquifers where groundwater was 

abstracted for public water supply.  There are few data from other aquifer systems; 

5. An improved knowledge of the locations of point-sources such as slurry lagoons, 

septic tanks and leaking water and waste water pipes is needed, along with a regulatory means 

of managing the risks that they may pose to groundwater P concentrations:  Source 

management is key to reducing potential anthropogenic inputs of P to groundwater.  The 

present lack of information about locations of sources should be addressed as a matter of 

urgency;    

6. Further monitoring and research to better characterise the extent and magnitude of 

anthropogenic influences (relative to potential geological sources of phosphorus) on 

groundwater P concentrations, the transformation and/or storage of P along the aquifer-

hyporheic zone flow path and the subsequent risk to receptors.  A more comprehensive 

understanding of phosphorus attenuation mechanisms along groundwater and hyporheic zone 

flow pathways is needed.   

 

Conclusions 

An analysis of phosphate concentration in groundwater has been presented, based on over 

49,000 groundwater samples collected from almost 3600 monitoring sites by the national 

regulatory agencies for England and Wales, Scotland, Northern Ireland and the Republic of 

Ireland over the period 1968 to 2007.  Notwithstanding the overall size of the dataset, the 

significance of the interpretations must be viewed in the context of the number of monitoring 

sites within each groundwater body (often <=3) and the large number of samples (over 

24,000) below LOD (which were variable and often at or above ecologically-relevant 

thresholds).  Many groundwater bodies covering extensive areas, especially in the Republic of 

Ireland and Scotland, have no data on P concentrations.  Others have few sampling sites 

and/or small numbers of samples.   That said, significant numbers of groundwater bodies have 

median groundwater P concentrations which are above ecologically significant thresholds for 

receiving freshwaters.   

The potential ecological risk of high observed groundwater P concentrations for receptor 

systems will depend on whether concentrations are above the natural background level, the 

potential for removal along flow pathways, the sensitivity of the receptor to P and the 
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importance of other P sources.  Given the important role of phosphorus for achieving Good 

Ecological Status in surface waters under the WFD, this research suggests that groundwater 

should not automatically be viewed as a source of dilution, but rather as having the potential 

to trigger and/or maintain eutrophication.   Further research is needed to better characterise 

the extent and magnitude of anthropogenic P sources (relative to potential geological sources) 

and the transformation and/or retention of P along the aquifer-hyporheic zone flowpath, in 

order to quantify any risks posed to receptors. 
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Table 1: Numbers and statistics of groundwater-P samples in England and Wales, Northern Ireland, Scotland and Ireland and details 

of limits of detection (LOD) 

Country Time period 

 

Number of samples Detection limits  

(µg l
-1

) 
taken 

below 

LOD‘s 

below LOD of 

>=60 µg l
-1

) 

Above LOD and  

>= 30 µg l
-1

 

England and Wales  1968 – 2006* 39 010 20671 0** 13991 1 to 50** 

Northern Ireland  2000 - 2006 513 480 322 35 28 to 100 

Scotland  1997 – 2007*** 3856 1078 0 947 1 to 20 

Ireland 1995 - 2006 5057 1692 0 1253 1 to 20 

* There are only 12 samples from before 1974 

**  All data with a LOD > 0.05mg/L were removed by the Environment Agency. 

***  There is only 1 sample from before 2000 

 

Country For all samples with positive detections of P 

Minimum 

concentration  

(µg P l
-1

) 

Maximum 

concentration 

(µg P l
-1

) 

Mean concentration 

(µg P l
-1

) 
Median concentration 

(µg P l
-1

) 

Standard 

deviation 

(µg P l
-1

) 

England and Wales  2 124 000 145.9 280 1404.9 

Northern Ireland  29 1520 268.8 88 408.6 

Scotland 2.9 5700 41.1 19 135.2 

Ireland  1 10 420 44.4 20 246.6 

 

 



 

 

 

Table 2  Results of the ANOVA between mean groundwater-P concentrations and predominant surrounding CORINE2000 land cover class 

 

Effect 

 

Sum of 

Squares 

Degr. of 

Freedom 

Mean 

Square 

F-value probabil

ity 

Country 630.07 2 315.04 226.13 <0.001 

Land cover 67.31 4 16.83 12.08 <0.001 

Country*Land cover 48.46 8 6.06 4.35 <0.001 

Error 13846.3

7 

9939 1.39   

 



 

 

Table 3 Fisher LSD tests to show significant differences in mean groundwater P between land cover classes, within countries and 

between countries within the same land cover class 

Country Land cover Mean P  

(µg l
-1

) 

Number of sites  Significant differences
2
 

Significant differences
1
 

Arable Grassland Semi-natural vegetation Woodland Scotland England 

Republic of Ireland  Urban 30.4 385 ** NS NS NS * *** 

Arable 21.1 822  ** NS *** *** *** 

Grassland 28.9 3370   NS ** *** *** 

Semi-natural  23.4 130    NS *** * 

Woodland 27.7 342     *** *** 

Scotland Urban 37.8 172 * NS *** **  *** 

Arable 26.9 1479  *** *** NS  *** 

Grassland 34.6 1533   *** ***  *** 

Semi-natural  20.1 151    NS  *** 

Woodland 16.4 520      *** 

England and Wales Urban 103.2 229 ** NS *** *   

Arable 74.2 374  NS ** NS   

Grassland 98.9 333   *** NS   

Semi-natural  47.9 49    *   

Woodland 57.8 65       
1  Relative to land cover class in the same country 

2 Relative to country in same land cover class 

NS Not significant; * p<0.05; ** p<0.01 and *** p<0.001 

 



 

 

 

Figure 1  Distribution of groundwater monitoring sites with P data 

 



 

 

Figure 2  Effects of the treatment of samples below LOD on median groundwater P 

concentration (μg P l-1) in the groundwater bodies of England and Wales 

 



 

 

Figure 3  Cumulative frequency distribution of number of national groundwater monitoring 

sites in all groundwater bodies 

 

Figure 4  National distributions of samples by month of collection  

 



 

 

 

Figure 5  Distribution in the timing of elevated groundwater-P observations (expressed as 

multiples of the median concentration at a given monitoring site)  

 

Figure 6  National time series of annual median groundwater-P concentrations 



 

 

 

Figure 7  Median groundwater-P concentrations in the groundwater bodies of England, 

Wales, Scotland and the Republic of Ireland 



 

 

 

Figure 8  Factors affecting receptor sensitivity to groundwater P. 

 


