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ABSTRACT 

 Silicon carbide square tiles of different areal geometries and manufactured via two 

different processing routes have been bonded to polycarbonate layers to evaluate their ballistic 

performance. Four ceramic tile sizes were tested: 85mm, 60mm, 50mm and 33mm. In each case 

the residual depth-of-penetration into a polycarbonate semi-infinite backing was recorded. To 

elucidate the penetration and failure mechanisms, a computational model using the JH-1 ceramic 

model [23] of the projectile used in the experimental study penetrating into a silicon carbide-

faced polycarbonate was implemented in the hydrocode AUTODYN-2D. This paper shows that 

there is a critical dimension of tile that should be used in a silicon carbide-based ceramic-faced 

mosaic armour system design to ensure optimum system performance when each tile is struck 

centrally. 
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INTRODUCTION 

The ballistic performance of ceramic materials using in armour applications is well 

known and has been extensively studied since the 1960s [1-10]. A ceramic-faced armour design 

usually consists of the hard disrupting face of the ceramic and some kind of absorbing element 

behind. The purpose of the ceramic is to induce fragmentation in the projectile or induce erosion 

thereby redirecting and dispersing the kinetic energy. The absorber on the other hand, acts to 

transfer the kinetic energy of the projectile to a lower form of energy – such as heat, through 

inelastic deformation (for example). Ceramics, are inherently brittle materials and consequently 

have fracture toughness (KIc) values in the 1-5 MPam½ range as opposed to the 5—170 MPam½ 

range for metals [11]. Consequently, when a projectile impacts and penetrates the ceramic face, 

brittle failure ensues leading to extensive fragmentation of the tile. If the fragments are not 

retained in place then the multi-hit capability of the armour is compromised. 

Many modern-day armours are regularly subjected to automatic weapons fire where 

multiple bullets are fired towards a single location. Accordingly for multi-hit protection, it is 

necessary to retain as much ceramic material intact as possible after each subsequent hit. One of 

the ways that this can be achieved is by reducing the tile-size such that that if one tile has been 

destroyed protecting against a single projectile, the exposed area to subsequent strikes is 

minimized. Reducing the tile size inevitably leads to an increase in the number of interfaces 

between tiles for a given area. Bless and Jurick [12] have conducted a probability-based analysis 

of such mosaics to determine how multi-hit protection varies with tile size. They concluded that 

the impact of interfaces is likely for most armour system designs of interest. De Rosset [13] has 

also studied such patterned armours to examine the probability of defeating automatic weapons 

fire and similarly shown the vulnerability of joins between individual cells. However, for these 
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types of analyses there is a requirement to know how the ballistic performance is affected by the 

proximity of the impact to the tile edge. Without this knowledge, only crude assumptions can be 

made. 

 There is little published work in the open literature on the effect of tile size on the 

ballistic performance of ceramic-faced armours. Researchers have however, studied the effect of 

applying radial confinement to ceramic targets on their behaviour under dynamic loading 

conditions. The effect of the radial confinement on the behaviour of a ceramic tile has been 

studied by Sherman [14] who impacted a confined ceramic tile by a 0.30” armour piercing 

projectile. He showed that the addition of a steel confinement frame reduces the damage to the 

tile significantly whereas using other supporting materials of lower acoustic impedance leads to 

greater ceramic tile damage. Others have shown that the effect of adding steel radial confinement 

to ceramics subjected to high velocity long rod penetration also results in the resistance to 

penetration increasing [15,16]. 

  The size of the tile is also important for ballistic testing of the ceramic. Good reviews of 

the various techniques are provided by James [17] and Normandia and Gooch [18]. There are 

clear advantages in using small tiles, not only in the cost of the ceramic but also the cost of the 

backing materials. Therefore it is advantageous to the design engineer to know the smallest tile-

size that will provide the most accurate data on the material’s ballistic resistance. 

 In most cost-effective mosaic armour designs, the sides of the tiles are unlikely to be 

ground flat and therefore there will be little or no intimate contact between each tile. Therefore to 

evaluate the worst case scenario it should be assumed that each tile is performing independently 

of its neighbour. In this work we have evaluated the effect of the proximity of a central impact 

point to a free surface on the ceramic armour’s ballistic performance. Both the type of ceramic 
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and the size of the tile were varied. This work is part of a wider study on the resistance of 

ceramic-faced armour to penetration by tungsten-carbide cored projectiles.  

 

EXPERIMENTAL SETUP 

       

The depth-of-penetration technique as described by Rozenberg and Yeshurun [19] was 

used to measure the ballistic performance of the ceramic tiles (see Figure 1). In this work, 

polycarbonate was chosen as the backing material instead of more commonly used materials 

such as RHA or aluminium. The use of polycarbonate, which is less resistant to ballistic 

penetration, has the advantage that any small differences in the ballistic performance of the tile 

will result in relatively large differences in depth-of-penetration. Polycarbonate is clear so that 

analysis of depth-of-penetration can be done instantly without the requirement of X-Ray. It also 

has a similar acoustic impedance to the fibre composite used in light armour systems which leads 

to a more realistic trial than using a semi-infinite steel or aluminium backing. In these trials 

multiple polycarbonate tiles were used; each 100mm × 100mm ×12mm clamped together to form 

a semi-infinite target. 

 

Materials and ammunition used 

 

Two silicon carbides of varying sizes were tested: a direct sintered silicon carbide 

(Morgan AM&T PS-5000) and a commercially available liquid-phase-sintered (LPS) silicon 

carbide. These will be referred to as sSiC and LPS SiC in this paper. Their measured properties 

are presented in Table 1 along with the properties of polycarbonate taken from [20]. The elastic 
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properties of the silicon carbides were very similar. The densities were measured using a gas 

pycnometer and the longitudinal wave velocities, Young’s modulus values and Poisson’s ratios 

were measured ultrasonically using Panametrics’ 5MHz longitudinal and shear-wave probes with 

the pulse-echo method. The true hardness values (HV0) were calculated from a series of micro-

hardness tests at different loads using an Indentec HWDM7. All ceramics tested were 7.5mm 

thick. The tiles were cut to 33×33mm, 51×51mm, 66×66mm and 85×85mm. A minimum of four 

tiles for each ceramic type and size were tested. Each ceramic tile was glued using Araldite 

AV4076-1 and HY4076 hardener mixed in the proportion of ten to four in weight. The surface of 

the polycarbonate was abraded in order to improve the gluing quality. A film of adhesive was 

applied on the ceramic surface which was then manually pressed against the polycarbonate and 

twisted until a continuous adhesive layer free of air bubbles was obtained. All the targets were 

glued and let to set at room temperature for at least 72 hours in an environment protected from 

light and moisture. 

 

Figure 1 NEAR HERE. 

 
Table 1 NEAR HERE. 

 

Figure 2 shows the 7.62mm AP “Sniper 9” round core that was used for the ballistic tests. 

This projectile consists of a WC-Co cermet core placed in an aluminium cup and encased in a 

Cu-Zn jacket. The projectile’s mass = 9.176g ±0.001g and measures 22.7mm in length and 

7.8mm in diameter. The WC-Co core’s mass = 5.556g ±0.001g and measures 22.3mm in length 

and 5.2mm in diameter with a 55° nose angle. The measured core hardness was 1292 ± 24 
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[HV2]. Chemical analysis of the core material revealed that it was of composition (weight 

percent) Co 11.6, C 5.4, Cu 0.1, balance W with no other element greater than 0.05 weight 

percent. The average muzzle velocity of this bullet was 838.0 m/s with a standard deviation of 

5.3 m/s. The ammunition from our experimental set-up had an average dispersion of 4.3mm from 

the aim-point with a standard deviation of 2.5mm. 

 

Figure 2 NEAR HERE. 

  

After the tests, the polycarbonate was cut and the residual depth-of-penetration of the 

projectile in the backing material was measured and recorded. The distance from the impact 

point to the borders of the ceramic tile were also measured and recorded. 

 

NUMERICAL MODEL 

 

To elucidate the mechanisms of penetration and the effect of the tile edges on the penetrating 

projectile for the sSiC case we have conducted a series of computations. All computations were 

carried out using 2D axial symmetry using a Lagrangian mesh in the explicit non-linear transient 

dynamic numerical code - AUTODYN-2D. This software is explained in detail elsewhere [21] 

and a useful overview of these types of codes is provided by Anderson [22]. However in brief, 

this code solves the conservations laws of mass and momentum based on initial boundary 

conditions. The user is prompted for an equation of state that describes the pressure in terms of 

the internal energy and volume and a constitutive relationship that calculates the flow stress in 
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terms of a number of material and application-dependent parameters including strain, strain-rate 

and temperature. Failure models can be introduced to describe the failure. 

 

Material models 

 

To model the failure of the ceramic we used the Johnson-Holmquist strength and failure model – 

JH-1 [23]. The application of this material model in AUTODYN™ has been previously validated 

[24]. Data for this model has been acquired and successfully applied to simulate the dynamic 

response of glass [25], alumina [26,27], silicon carbide [23], and boron carbide [28,29]. A brief 

description of the model is given as follows: The schematic illustration of the JH-1 model from 

[23] is shown in Figure 2. The intact material strength is described as the linear segmented curve 

where the equivalent stress is a function of pressure. Any increase of strain rate under a given 

pressure increases the equivalent stress and therefore makes the material stronger. This is done 

according to 

 

)ln0.1(0 εσσ &C+=         (1) 

 

where ε&  is the strain rate, σ is the equivalent flow strength,  σ0 is the available strength at 

0.1=ε&  and C is the strain rate constant. When damage to the ceramic occurs, the equivalent 

stress for a given pressure reduces and consequently the material becomes weaker. Damage (D) 

is defined as the ratio of the total accumulated increment of plastic strain and the equivalent 

failure strain. The material fails when either pressure reaches the tensile limit T or damage D is 
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equal to 1.0. After material is failed, it cannot withstand any tensile loading but can still 

withstand a limited compressive loading. 

 

Figure 3 NEAR HERE 

 

Modelling brittle materials is particularly troublesome as there is no experimental data 

available for the strength of the failed silicon carbide. Previous work [23] has centred around the 

penetration of SiC B – a pressure-assisted-densified silicon carbide manufactured by Cercom 

Inc. for which there is a reasonable amount of data on its dynamic behaviour. However, there is a 

paucity of similar data available for sintered silicon carbides. Consequently, no attempt has been 

made to derive a material model for our specific sintered silicon carbides. 

Initial simulations with a ∅85 mm tile revealed that the current formulation of the JH-1  

based on the SiC-B ceramic yielded a residual depth-of-penetration into the polycarbonate of 28 

mm. This penetration depth was an over-prediction of the average experimental result of 15mm 

for the sSiC case.  Consequently, we changed two parameters that have been used in [23] to 

define the strength of the damaged material (α and Sf
max). These parameters were not directly 

measured from laboratory tests but rather derived through computation of the sSiC experimental 

results. We have increased these values by simulating our experimental results from the 

penetration of the 7.5 mm thick 85 mm × 85 mm sSiC tile. This yielded values of  α = 0.80 and 

Sf
max = 3.2 GPa respectively to achieve a depth-of-penetration of 21 mm. The latter value (Sf

max ) 

is particularly high however, given that we are simulating the failure of a different silicon carbide 

to the one reported in [23] and that the equivalent strength of damaged material can be higher 

than this value for other brittle materials [30,31] we feel justified in using this value in our 
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simulations. 

There exists very little data on the dynamic behaviour of tungsten carbide too and, in 

particular the dynamic fracture characteristics that would lead to an appropriate material model.  

Various attempts have been made in the past to model the failure of tungsten carbide 

materials that are subjected to shock loading. Both Aries et al [32] and Lopez Puente et al [33] 

have adopted the approach of Cortes et al [34]. In these works a model originally intended to 

model the failure of ceramics has been used. This involves the use of a pressure dependent yield 

surface and the evolution of damage that is associated with ceramic fragmentation through a 

calculated scalar damage parameter. In both cases they were modelling the penetration into a 

ceramic-faced composite armour using the LAPUA 7.62 mm armour piercing bullet. 

Holmquist et al  [35] adopted the approach of using both Johnson Cook fracture model 

[36] and a simple principal stress failure model for modelling the penetration of a tungsten 

carbide –cored projectile  through a range of target materials. They concluded that the Johnson 

Cook fracture model represented the failure of the core. Their results showed good correlation of 

a 14.5 mm BS41 surrogate projectile penetrating monolithic and layered targets – including a 

ceramic- faced armour. Their material model for the tungsten carbide was based on a material 

with a 5.7% Co content that possessed a uniaxial compressive strength of 5.9 GPa [37]. 

However, tungsten carbide can demonstrate a range of strength properties depending on the Co 

content and the grain size [38]. Generally speaking, increasing the Co content affects the 

compressive strength. Consequently, we have not adopted Holmquist et al’s model for our core 

material as we have sought to choose from the literature data for a tungsten carbide that has a 

similar Co content. Early work by Johnson [39] presents data on a range of tungsten carbide 

materials with varying Co binder content and it was from this work that we drew our the material 
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model for the core. Under uniaxial compression, a tungsten carbide with a 10% wt Co content 

behaved according to: 

 

n
pBA εσ +=          (2) 

 

where  A  is the yield strength at zero plastic strain, B is the strain hardening parameter 

and n is the strain hardening exponent. From [39], the values were A = 1.55 GPa, B = 22 and n  = 

0.45. In this work we have assumed that the strain-rate hardening effects of the tungsten carbide 

are small in comparison to the strain hardening effects and consequently they have been ignored. 

The tensile failure stress of the core material was also taken from [39] and was set to 1 GPa. 

The gilding metal jacket was modelled assuming a flow stress of 575 MPa; this is 

consistent with the hardness measurements of the jacket before firing. Due to the face-centred 

cubic structure of this material and because it was heavily cold-worked during the bullet’s 

manufacture, strain-rate effects were assumed to be zero. Further, we assumed an elastic-

perfectly plastic behaviour. The strain-to-failure values for this type of cold-worked alloy are 

typically less than 5 % [40] and therefore a principle strain failure criteria was used that was set 

to this value.  

The polycarbonate data was extracted from the AUTODYN™ material library [41]. This 

data was derived from [42]. The behaviour of the polycarbonate was modelled using a piecewise 

Johnson-Cook model and assumed to follow the stress-strain behaviour as defined by Table 2. 

The strain-rate strengthening behaviour was calculated according to Equation 1 with C = 0.040. 

Failure occurred when the effective plastic strain reached 200%. 
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The equation of state for the gilding metal and polycarbonate was of Mie-Grüneisen form 

[43] derived from a linear shock-particle Hugoniot thus: 

 

ps SUcU += 0          (3) 

 

where Us and Up are the shock and particle velocities respectively, c0  is the bulk sound speed and 

S is the slope in the Us versus Up diagram. For the tungsten carbide core, no equation of state 

data was available for our particular alloy and therefore we adopted the equation of state from 

Holmquist et al [35]. 

For the silicon carbide, a polynomial equation of state was used when D<1.0 to define 

the pressure according to [23] 

 

3
3

2
21 μμμ KKKP ++=         (4) 

 

where K1 is the bulk modulus and K2 and K3 are material constants and μ is the material 

compression given by ρ/ρ0 -1. When D=1.0, a bulking factor is added to Equation 4 to take into 

account the increase in local pressure due to material failure [23]. 

Material data for the gilding metal and polycarbonate was available in the AUTODYN 

material libraries and is presented in Table 3. Material model data for the silicon carbide is 

provided in Table 4. 

 

Table 2 NEAR HERE. 
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Table 3 NEAR HERE. 

 

Table 4 NEAR HERE. 

 

Finally, cells were eroded according to a predetermined geometric strain value for each of the 

materials. These values were 250% for the silicon carbide and nominally 200% for the gilding 

metal, tungsten carbide and polycarbonate. A parametric investigation revealed that increasing 

the values in the core and the polycarbonate had  little effect on the recorded depth-of-

penetration into the polycarbonate or the penetration mechanism. 

 

RESULTS AND DISCUSSION 

 

Experimental 

 

Below in Figure 5 are the recorded depth-of-penetration data for each of the ceramic-

faced armour targets tested. Each reported data point refers to the average of the number of shots 

per tile and the error bars represent the spread in the data. Note that for the LPS SiC the depth-of-

penetration is significantly higher than the sSiC and consequently represents a lower ballistic 

performance. It has been previously noted by Ray et al [44] that the ballistic efficiency of liquid-

phase-sintered SiC against WC-Co projectiles is significantly less than for SiC made through 

alternative routes such as hot processing. Consequently, a thicker sample is required to shatter 

the projectile core. It has also been pointed out by Ray et al [44] that the measured depth of 

penetration using the DOP technique strongly correlates with the hardness of the ceramic. Given 
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that the LPS SiC has a lower hardness than the sSiC, our results are consistent with their results.  

It is also worth noting the spread of the data denoted by the error bars. For the sSiC targets the 

smaller targets exhibit more scatter in the results. However for the LPS SiC targets the scatter 

was fairly consistent from shot-to-shot. This pattern is also consistent with the core fragments 

that were recovered after each firing. Where the scatter was relatively large the fragments of the 

core could be recovered; where the scatter was small, the core had been mostly particulated (see 

Figure 4). 

 

Figure 4 NEAR HERE. 

 

Figure 5 NEAR HERE. 

 

There appears to be little effect on the impact’s proximity to the border for the LPS SiC 

material. Re-plotting Figure 5 in terms of the proximity of the impact to the sSiC ceramic tile’s 

edge shows the border-effect more prominently. Here the data is presented as individual 

penetration depths. 

 

Figure 6 NEAR HERE. 

 

From the depth-of-penetration results presented in Figure 6 it can be seen that the sSiC 

ballistic performance was dependent of the distance from the impact point to the tile border. The 

performance increases as the impact occurs further from the border. The depth-of-penetration 
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into the polycarbonate rear layers after impacting the ceramic tile at 12 mm from the border was 

43 mm. This was almost three-times the depth-of-penetration when the penetration was 42 mm 

from the closest border. For the sSiC beyond a critical distance, somewhere between 30 and 35 

mm, the depth-of-penetration reached a consistent value (allowing for experimental scatter). At 

this location, the material’s intrinsic ballistic performance was measured due to the absence of 

border effects. 

With the sSiC tiles, fragments of the projectile could be recovered when the projectile 

completely penetrated a small tile of ceramic, but it was completely comminuted when the 

projectile completely penetrated an 85 mm tile. This explains the drop-off in depth-of-

penetration with this ceramic as seen in Figure 6. The same does not occur with the liquid-phase-

sintered tiles because there was little difference in the projectile’s morphology during penetration 

regardless of the proximity of impact to a border. In this case, the recovered projectile was 

fragmented (see Figure 7 below). 

 

Figure 7 NEAR HERE 

 

Computational Model 

 

The numerical study also demonstrated that a smaller tile resulted in less resistance to 

penetration. Figure 8 below shows a series of computational results from the penetration into the 

ceramic-faced polycarbonate target. There are a few observations to note from this 

computational model. Firstly, by 10 µs after impact the both the core and the jacket have failed 

resulting in the jacket flowing radially along the surface of the ceramic. By this time, stress 
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waves have been reflected from the ceramic / polycarbonate interface contributing to the 

damage. A coniod of damaged material has been formed below the penetrating core. The 33mm 

target possessed a slightly different form than that of the 85 mm target showing a two-step area 

of damaged had occurred at c. 1.5 mm from the rear surface. This is indicative of a stress wave 

reflecting off the periphery of the tile contributing to further damage. However, by 20 µs the 33 

mm target exhibits a large amount of damage and radial displacement of the damaged material 

whereas the 85 mm target is largely retained intact. Between 10µs and 20µs the ∅33 mm target 

accrued damage at a faster rate than the ∅85mm target. The extent of the damage in the 33 mm 

target leads to a reduction in the erosion observed in the projectile and consequently more intact 

projectile is able to penetrate. Ultimately, the depth-of-penetration into the polycarbonate 

backing was 38 mm after completely penetrating the 7.5 mm thick ∅33 mm tile. The depth-of-

penetration after completely penetrating a 7.5 mm thick ∅85 mm tile was 21 mm. Given that the 

simulations were calibrated by changing the strength characteristics of the damaged silicon 

carbide for a ∅85 mm tile, the depth of penetration for the ∅33 mm case is in good agreement 

with the sSiC experimental results shown in Figure 6 above. 

 

Figure 8 NEAR HERE. 

 

The ∅85 mm target appears to show considerable dwell in the initial 10-20 µs. This is consistent 

with results from other researchers that have studied the penetration into similar thicknesses of 

silicon carbide by small arms projectiles [23]. Whereas the degree of dwell induced by the 33 

mm tile is significantly less by virtue of the earlier onset of damage. Our simulations of the 

penetration into a 7.5 mm thick ∅33 mm tile showed that by 20 µs, the strength of the material 
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towards the periphery of the tile reduced to zero. This was due to the release of pressure due to 

the proximity of the free surface. Towards the centre of the tile, the pressure was c. 0.2-0.4 GPa 

due to the penetrating projectile. Whereas with the 7.5 mm ∅85 mm tile the strength measured at 

16.5 mm from the axis of penetration was c. 2-3 GPa; pressure along the axis of penetration was 

considerably higher than with the 33 mm tile and was computed to be 4-8 GPa close to the 

contact interface between the projectile and the target. Consequently, retaining the comminuted 

ceramic in place by virtue of the inertial confinement offered by the larger tile resulted in an 

increased computed pressure and consequently an increased computed strength of the damaged 

material.  

 

CONCLUSIONS 

 

Experiments have been carried out on two differently made silicon carbides to evaluate the 

effect of border proximity on each material’s ballistic performance. Further, a series of 

computations have been carried out using a commercial hydrocode to elucidate the penetration 

mechanism in two different areal sizes of tile. 

• The measured depth-of-penetration after completely penetrating 7.5-mm thick sSiC was 

dependent on the tile size. For this ceramic, the effect of the border was insignificant at a 

proximity of impact of approximately 30-35mm. Consequently, the minimum square tile-

size that should be used so that the intrinsic ballistic properties of this material can be 

tested is 70mm × 70mm. For a central impact on a ceramic tile used in a mosaic armour 

design, this was assumed to be the worst case scenario where each tile was assumed to be 

performing independently of its neighbour.  
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• The sSiC out-performed the LPS SiC ballistically in the depth-of-penetration-test 

configuration.  

• The LPS SiC tile showed little variation of ballistic performance with tile size. We 

believe that this was because the 85 mm ceramic was not able to damage the projectile’s 

core to any great extent.    

• The computational model was able to predict the depth-of-penetration into the 

polycarbonate after completely penetrating a 7.5 mm thick, 33 mm × 33 mm tile. It 

showed that the ∅33 mm tile accrued damage at a higher rate than the ∅85 mm tile. 

Further, it showed that the strength of the failed damage material was considerably 

reduced by virtue of the relatively close proximity of the radial boundary. 
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Figure 1: The depth-of-penetration technique; tc = tile thickness, Pr = depth-of-penetration. 

Figure 2: The 7.62mm AP Sniper 9 ammunition showing the WC-Co core and the aluminium 

cup. 

Figure 3: The JH-1 constitutive model from [23]. 

Figure 4: Crater formed in the polycarbonate after completely penetrating an 85 mm sSiC tile. 

Here the core was mostly particulated during the penetration of the ceramic. 

Figure 5: Depth-of-penetration results for the sSiC and LPS SiC ceramic-faced targets. 

Figure 6: Depth–of-penetration results for the sSiC-faced target (left) and the LPS SiC (right). 

Figure 7: Recovered fragments of core after completely penetrating an 85 mm LPS SiC tile 

(middle) and a 33 mm LPS SiC tile (right). An intact projectile core is added for comparison 

(left). 

Figure 8: Computational results showing the initial stages of penetration into the ceramic-faced 

polycarbonate. The left hand side of the images shows the results from the 85 mm tile whereas 

the right hand side of the images shows the results from 33mm tile. The depth of the 

polycarbonate has been truncated for clarity. 
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Table 1: Measured properties of the silicon carbides used in this trial; the data for the 

polycarbonate is taken from [20]. 

Ceramic ρ0 (kg/m3) cL  (m/s) E (GPa) ν HV0 

sSiC 3147 12021 427.0 0.16 2400 

LPS SiC 3252 12111 446.0 0.17 2089 

Polycarbonate 1190 2130 2.6 0.40 - 
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Table 2: Plastic flow data for polycarbonate taken from the AUTODYN™ material library. 

 

Effective plastic strain 
Corresponding equivalent 

stress (MPa) 

0.0 80.6 

0.1 88.0 

0.5 142.5 

0.6 168.0 

0.7 187.0 
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Table 3: Hydrodynamic data for the tungsten carbide, gilding metal and the polycarbonate. 

 

 Notation 
Tungsten 

carbide 

Gilding metal 

(Copper) 
Polycarbonate 

Reference density 

(kg/m3) 
ρ0 14770 8930 1190 

Bulk sound speed 

(m/s) 
c0 - 3940 1933 

Slope in Us versus 

Up diagram 
S - 1.489 2.65 

Grüneisen 

coefficient 
Γ 1.0 2.02 0.61 

Bulk modulus 

(GPa) 
K1 362 - - 

Pressure 

coefficient (GPa) 
K2 694 - - 

Pressure 

coefficient (GPa) 
K3 0 - - 
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Table 4: Johnson-Holmquist parameters used to model the behaviour of the silicon carbide. 

 
Property Notation Value 

Reference density (kg/m3) Ρ0 3215 

Bulk modulus (GPa) K1 220 

Shear modulus  (GPa) G 193 

Hugoniot elastic limit (GPa) HEL 11.7 

Tensile strength (GPa) T 0.75 

Intact strength coefficient (GPa) S1 7.1 

Intact strength coefficient (GPa) P1 2.5 

Intact strength coefficient (GPa) S2 12.2 

Intact strength coefficient (GPa) P2 10.0 

Strain rate coefficient C 0.009 

Failed strength coefficient (GPa) Sf
max 3.2 

Failed strength coefficient α 0.80 

Pressure coefficient (GPa) K2 361 

Pressure coefficient (GPa) K3 0 

Damage coefficient φ 0.012 

Damage coefficient f
MAXε  1.2 

Damage coefficient (GPa) P3 99.75 
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Figure 1: The depth-of-penetration technique; tc = tile thickness, Pr = depth-of-penetration. 

 
 



 

 

Figure 2: The 7.62mm AP Sniper 9 ammunition showing the WC-Co core and the aluminium cup. 
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Figure 3: The JH-1 constitutive model from [23]. 

 



 

 

Figure 4: Crater formed in the polycarbonate after completely penetrating an 85 mm  sSiC tile . Here 
the core was mostly particulated during the penetration of the ceramic. 
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Figure 5: Depth-of-penetration results for the sSiC and LPS SiC ceramic-faced targets. 

 
   



0

10

20

30

40

50

60

0 20 40 60
Proximity to the border [mm]

D
ep

th
-o

f-p
en

et
ra

tio
n 

[m
m

]

 

Figure 6: Depth–of-penetration results for the sSiC-faced target (left) and the LPS SiC (right). 
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Figure 7: Recovered fragments of core after completely penetrating an 85 mm LPS SiC tile (middle) 
and a 33 mm LPS SiC tile (right). An intact projectile core is added for comparison (left). 

 



 

 

Figure 8: Computational results showing the initial stages of penetration into the ceramic-faced 
polycarbonate. The left hand side of the images shows the results from the 85 mm tile whereas the 
right hand side of the images shows the results from 33mm tile. The depth of the polycarbonate has 
been truncated for clarity. 
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