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Abstract

The cost effective benefits of process monitoring will never be over emphasised.

Amongst monitoring techniques, the Independent Component Analysis (ICA) is an

efficient tool to reveal hidden factors from process measurements, which follow non-

Gaussian distributions. Conventionally, most ICA algorithms adopt the Principal

Component Analysis (PCA) as a pre-processing tool for dimension reduction and

de-correlation before extracting the independent components (ICs). However, due

to the static nature of the PCA, such algorithms are not suitable for dynamic pro-

cess monitoring. The dynamic extension of the ICA (DICA), similar to the dynamic

PCA, is able to deal with dynamic processes, however unsatisfactorily. On the other

hand, the Canonical Variate Analysis (CVA) is an ideal tool for dynamic process

monitoring, however is not sufficient for nonlinear systems where most measurements

follow non-Gaussian distributions. To improve the performance of nonlinear dynamic

process monitoring, a state space based ICA (SSICA) approach is proposed in this

work. Unlike the conventional ICA, the proposed algorithm employs the CVA as a

dimension reduction tool to construct a state space, from where statistically inde-

∗To whom all correspondence should be addressed, E-Mail: y.cao@cranfield.ac.uk

1



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

pendent components are extracted for process monitoring. The proposed SSICA is

applied to the Tennessee Eastman Process Plant as a case study. It shows that the

new SSICA provides better monitoring performance and detect some faults earlier

than other approaches, such as the DICA and the CVA.

Keywords: Dynamic system, Nonlinearity, Principal component analysis, Canoni-

cal variate analysis, Independent component analysis, Probability density function,

Kernel density estimation, Process monitoring.

1 Introduction

Process monitoring techniques are employed to detect abnormal deviations of process

operation conditions and diagnose the causes for these deviations to maintain high

quality products and process safety. The Principal Component Analysis (PCA) is a

dimension reduction technique that summarises the variation in a set of correlated

variables to a set of de-correlated principal components (PCs), each of which is a linear

combination of the original variables. The PCA exploits the correlation amongst a

large number of measured variables and is popular for its simplicity. The PCA by

reducing the dimension of the process variables is able to eliminate noise and retain

only important process information. MacGregor and Kourti [1] established a PCA

model from the training data and judged the behaviour of online processes against the

PCA model to detect deviations from the normal operating process. Wang et al. [2]

also presented a PCA approach based on visualization using parallel co-ordinates

with the Manresa Waste Water Treatment Plant as a case study.

The widely applied PCA is a static approach that assumes that the observations are

in a steady-state, which is time independent. Furthermore, the PCA is normally

associated with the Hotelling’s T 2 statistic, which, in order to determine the upper

control limit, assumes that the principal components derived by the PCA follow a

Gaussian distribution. However, the assumption of time-independence may not be

valid for processes subject to dynamic disturbances. The assumption of normality

may also be invalid for most chemical processes where strong nonlinearity makes
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variables driven by noise and disturbances non-Gaussian. In these situations, the

PCA is not an appropriate tool for process monitoring.

A solution to address the limitation of Gaussian assumption associated with the PCA

is the Independent Component Analysis (ICA) [3–5]. The ICA technique recovers a

few statistically independent source signals from collected process measurements by

assuming that these independent signals are non-Gaussian. A set of variables are

said to be statistically independent from each other when the value of one vari-

able cannot be predicted by giving the value of another variable. Unfortunately in

process systems, such independent sources are in general not directly measurable,

but mixing each other in measurement variations. To identify the unmeasured ICs

from measurements, the ICA algorithm involves a pre-processing stage known as the

whitening stage to eliminate the cross correlation between the process variables before

extracting the independent components [3–10]. Although the ICA is sometimes con-

sidered as an extension of the PCA [3], the objectives of the ICA are clearly different

from those of the PCA. The ICA decomposes process measurements into statisti-

cally (high-order statistics) ICs of a lower dimension whereas the PCA decomposes

the process measurements into a set of de-correlated (second order statistics) PCs

of a lower dimension. Therefore, the ICA is able to extract more useful information

than the PCA [4, 5] and as a result performs better than the PCA based monitoring

techniques.

Process monitoring based on the ICA approach aims to extract the essential ICs, that

drive a process, for detecting underlying faults. Lee et al. [4] in their ICA approach

employed the Euclidean norm to determine the number of ICs to retain in the ICA

model. The ICs in the model space were described as the dominant ICs while the

ignored ICs were described as the excluded ICs. Three monitoring metrics; the I2
d for

the dominant ICs, the I2
e for the excluded ICs and the Q-metric for the residual space

were determined and then kernel density estimations (KDE) employed to derive the

control limit for all three statistics.

Albazzaz and Wang [8] in another way, employed all the extracted ICs for process

monitoring because it was argued that no single IC was more important than another.

In addition, a box-cox transformation was applied to change the non-Gaussian coor-
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dinates of the ICs to a Gaussian distribution in order to justify the use of the control

limits estimated based on the Gaussian assumption. Their technique was applied to

the Manresa Waste Water treatment plant in Spain to demonstrate its efficiency.

Conventionally, most published ICA studies have utilised the PCA for whitening and

dimension reduction in the pre-processing stage, allowing the ICs to be interpreted by

the simple geometry of the PCA [7]. However, the connection of the ICA with PCA

makes such ICA approaches not appropriate for dynamic process monitoring due to

the static nature of the PCA. For most industrial processes, variables driven by noise

and disturbances are strongly auto-correlated and time-varying making the PCA and

the ICA inappropriate for monitoring of such dynamic processes. This means that a

dynamic process would require a monitoring technique that will take the serial corre-

lations of the process data into account in order to achieve efficient dynamic process

monitoring. For this reason, Lee et al. [6] extended the ICA methods and proposed

the dynamic ICA (DICA) approach to improve the monitoring performance. In the

so called DICA approach, a dynamic extension of the PCA (DPCA) is applied to

an augmented data set in the pre-processing stage, where each observation vector is

augmented with the previous observations and stacked together to account for the

auto-correlations, then the ICs are extracted from the decomposed principal compo-

nents (PCs). However, the DICA, like the DPCA, is not the best approach to capture

the dynamic behaviour from process measurements [11]. As a result, the statistical

advantage of the ICA is not fully exploited by the DICA and the performance of the

DICA in dynamic process monitoring is still not satisfactory.

Nevertheless, the state-space models like the Canonical Variate Analysis (CVA) on

the other hand are reported to be efficient tools for dynamic process monitoring [11–

17]. The CVA is a dimension reduction technique that is based on state variables

and is well suited for auto-correlated and cross-correlated process measurements. This

makes the CVA based approaches a better choice than the PCA based approaches

for dynamic process monitoring. However, on the other hand, the states obtained

from the standard CVA, like the PCs are only de-correlated, but not statistically

independent, hence are not efficient enough for nonlinear process monitoring.

To derive an efficient tool for nonlinear dynamic process monitoring, in this paper,
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the CVA, rather than the PCA, is proposed as the pre-processing tool to associate

with the ICA resulting in a novel State Space ICA (SSICA) approach. In the ap-

proach, the CVA is adopted as a dimension reduction tool to construct a state space

and perform the dynamic whitening in the pre-processing stage. Then, the ICA is

applied to the constructed state space in order to identify the statistically indepen-

dent components. The SSICA approach is developed for nonlinear dynamic process

monitoring and applied to the Tennessee Eastman Process Plant as a case study.

It demonstrates that generally, the proposed SSICA is able to improve the process

monitoring performance over the existing DICA technique, which is reported to be an

improvement of the traditional ICA [6]. Also, the overall performance of the SSICA

is better than the CVA, which was reported to be an efficient dynamic monitoring

tool [11–17]. The performance improvements of the SSICA over the DICA and the

CVA include increases in detection reliability and decreases in both detection delay

and false alarms.

This paper is organised as follows: Section 2 describes the SSICA technique in details,

which include the CVA, SSICA and KDE algorithms. The SSICA is then applied to

the Tennessee Eastman Process Plant in section 3. Finally, this work is concluded in

section 4.

2 State Space Independent Component Analysis

The development of process monitoring techniques is geared towards applying these

techniques to industrial processes in order to improve process performance monitor-

ing. It is well known that most real time processes to which the monitoring techniques

are applied are dynamic and nonlinear. The SSICA approach is developed to deal

with such processes. Firstly, from a general nonlinear dynamic system, a linearized

state space model can be constructed from normal operation data through the CVA.

The non-Gaussian collective modelling errors are then extracted as statistically in-

dependent components through the SSICA. The obtained state space independent

components together with the residuals are used for process monitoring by compar-

ing the upper control limits estimated through the KDE approach. These algorithms
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are described in details as follows.

2.1 Canonical Variate Analysis

Consider a nonlinear dynamic plant represented as:

xk+1 = f(xk) + wk

yk = g(xk) + vk (1)

where xk ∈ Rn and yk ∈ Rm are state and measurement vectors respectively, f(·)

and g(·) are unknown nonlinear functions, whereas wk and vk are plant disturbances

and measurement noise vectors respectively. Clearly, it is difficult to monitor such

unknown nonlinear dynamic systems directly. Fortunately, under normal operation

conditions, the plant in Equation (1) can be approximated by a linear stochastic state

space model as:

xk+1 = Axk + εk

yk = Cxk + ηk (2)

where A and C are unknown state and output matrices respectively, whereas εk and

ηk are collective modelling errors partially due to the underlying nonlinearity of the

plant, which has not been included in the linear model, and partially associated with

process disturbance and measurement noise, wk and vk respectively. Note, as a result

of the nonlinearity of the physical plant represented in Equation (1), the collective

modelling errors, εk and ηk in Equation (2) generally will be non-Gaussian although

wk and vk might be normally distributed.

To monitor the linear dynamic process represented in (2) without knowing matrices

A and C, the CVA is employed to extract the state variables xk from process mea-

surements, yk. The CVA is based on the so called subspace identification, where the

process measurements are stacked to form the past and future spaces through the

past, yp,k and future, yf,k observations defined as follows.
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yp,k =


yk−1

yk−2

...

yk−q

 ∈ Rmq, ỹp,k = yp,k − ȳp,k (3)

yf,k =


yk

yk+1

...

yk+q−1

 ∈ Rmq, ỹf,k = yf,k − ȳf,k (4)

where the first subscripts of yp,k and yf,k indicate the past (p) and the future (f) ob-

servations respectively, whilst the second subscripts stand for the reference sampling

point, where the past and future observations are defined. The sample means of the

past and future observations are represented as ȳp,k and ȳf,k respectively, whilst ỹp,k

and ỹf,k are the pre-processed past and future observations with zero means.

The past and future truncated Hankel matrices Yp and Yf are then defined in Equa-

tion (5) and Equation (6) respectively.

Yp =
[
ỹp,(q+1) ỹp,(q+2) · · · ỹp,(q+M)

]
∈ Rmq×M (5)

Yf =
[
ỹf,(q+1) ỹf,(q+2) · · · ỹf,(q+M)

]
∈ Rmq×M (6)

From the Hankel matrices defined above, the covariance of the past, future and cross-

covariance matrices are estimated as follows:

Σpp = E(ỹpkỹ
T
pk) = YpY

T
p (M − 1)−1 (7)

Σff = E(ỹfkỹ
T
fk) = YfY

T
f (M − 1)−1 (8)

Σfp = E(ỹfkỹ
T
pk) = YfY

T
p (M − 1)−1 (9)

The goal of the CVA is to find the best linear combinations, aT ỹfk and bT ỹpk of the

future and past observations so that the correlation between these combinations is

maximised. The correlation can be represented as:

ρfp(a,b) =
aTΣfpb

(aTΣffa)1/2(bTΣppb)1/2
(10)
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Let u = Σ
1/2
ff a and v = Σ

1/2
pp b. The optimization problem can be casted as:

maxu,v uT (Σ
−1/2
ff ΣfpΣ

−1/2
pp )v

s.t. uTu = 1 (11)

vTv = 1

The solution of this problem can be obtained through the singular value decomposi-

tion (SVD) on the scaled Hankel matrix, H as indicated in Equation (12).

H = Σ
−1/2
ff ΣfpΣ

−1/2
pp = UΣVT (12)

where U =
[
u1 u2 · · · umq

]
∈ Rmq×mq, V =

[
v1 v2 · · · vmq

]
∈ Rmq×mq

Σ =


σ1 0 · · · 0

0 σ2 · · · 0
...

. . .
...

0 0 · · · σmq

 ∈ Rmq×mq

From Equation (12) above, the canonical variate, zk ∈ Rmq based on the past mea-

surements can be derived as in Equation (13).

zk =


b1
T

b2
T

...

bTmq

 ỹp,k =


v1
T

v2
T

...

vTmq

Σ−1/2
pp ỹp,k = VTΣ−1/2

pp ỹp,k = Jỹp,k (13)

where J = VTΣpp
−1/2 ∈ Rmq×mq is the transformation matrix, which transforms the

mq-dimensional past measurements to the mq-dimensional canonical variate space.

The canonical variate estimated in (13) can be separated into the state and residual

spaces based on the order of the system, n. According to the magnitude of the singular

values, the first n dominant singular values are determined and the corresponding n

elements of the canonical variate retained as the state variables where n < mq.

In addition, the remaining (mq − n) elements of the canonical variate are said to

be in the residual space. Equation (14) below shows the entire canonical variate

8



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

space (zk ∈ Rmq) is spanned by the state variables (xk ∈ Rn) and the residuals

(dk ∈ Rmq−n), both of which are subsets of the canonical variate, zk.

zk =
[
xk

T dk
T
]T

(14)

The previous work [17] showed that the state variables, xk obtained through CVA

provides a tool better than directly using the past or future observations to monitor

the dynamic systems in (1). However, as shown in (2), the states are combinations

of statistically independent non-Gaussian sources. To make process monitoring more

efficient, identifying these sources from the states is desired. The corresponding

algorithm is to be developed in the next section.

2.2 State Space Independent Component Analysis

According to (2), xk can be expressed as a linear combination of the initial state, x0

and the collective modelling errors, εj, for j = 0, 1, . . . , k − 1.

xk = Akx0 +
k−1∑
j=0

Ajεk−1−j (15)

Equation (15) indicates that if x0 and εj, j = 0, . . . , k − 1 are mixtures of m(≤ n)

unknown independent components, sj ∈ Rm, for j = 0, · · · , k − 1, then the states,

xk, for k = 1, . . .M are also linear combinations of these unknown independent

components. More specifically, the relationship can be expressed as follows.

X = BxSx (16)

where X =
[
x1 · · · xM

]
∈ Rn×M is the state matrix, Bx =

[
b1 · · · bm

]
∈ Rn×m

is an unknown mixing matrix, and Sx =
[
sx,0 . . . sx,M−1

]
∈ Rm×M is unknown

independent component matrix. The SSICA aims to estimate both mixing matrix, Bx

and independent component matrix, Sx, from the state matrix, X obtained through

the CVA as described above.

The problem can be solved through an existing ICA algorithm, such as the Fas-

tICA [18] to find a de-mixing matrix, W such that the rows of the estimated inde-

pendent component matrix,

Ŝx = WxX (17)
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are as independent of each other as possible. Based on the “non-Gaussian repre-

sents independence” principle [18], the de-mixing matrix as well as the independent

component matrix are obtained through iterative optimizations to maximize certain

non-Gaussian criteria.

The ICA can be applied to the residual space spanned by dk. The independent

component matrix in the residual space is obtained by applying the ICA algorithm

to the residual matrix, D as follows.

Ŝd = WdD (18)

where D =
[
d1 · · · dM

]
∈ R(mq−n)×M .

The ICA based process monitoring is frequently associated with the Mahalanobis

distance I2, also known as the D-statistic [4, 6, 10]. The I2 metric is the sum of the

squared independent components extracted from the ICA algorithm.

I2
x,k = ŝTx,kŝx,k (19)

I2
d,k = ŝTd,kŝd,k (20)

where ŝx,k and ŝd,k are the k-th columns of Ŝ and Ŝd, respectively. The M I2
x,k and I2

d,k

values for k = 1, . . . ,M are then used to derived the upper control limits, I2
x,UCL(α)

and I2
d,UCL(α) using the KDE algorithm described in the next section.

For online monitoring, the ICs of the state and residual spaces is calculated from the

new measurements, ỹnew
p,k using the transformation matrix, J =

[
JTx JTd

]T
and the

de-mixing matrices, Wx and Wd respectively.

ŝnew
x,k = WxJxỹ

new
p,k (21)

ŝnew
d,k = WdJdỹ

new
p,k (22)

The corresponding I2 metrics for the new measurements are then obtained as follows.

I2,new
x,k = (ŝnew

x,k )T ŝnew
x,k (23)

I2,new
d,k = (ŝnew

d,k )T ŝnew
d,k (24)

A fault condition is then detected if either I2 metric is larger than the corresponding

UCL.

10
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2.3 Control Limit Through Kernel Density Estimations

The ICs are not Gaussian. Therefore, the UCL for the I2 metric cannot be derived

analytically. The kernel density estimation (KDE) is a well established approach to

estimate the PDF of random processes [19–21]. Hence, it is a natural selection using

the KDE to determine the UCL [17]. Considering both I2 metrics are positive, a

KDE algorithm with lower bound support is adopted in this work to estimate the

UCL.

Let y > 0 be the random variable under consideration. Firstly, the bounded y is

converted into unbounded x by defining x = ln(y). Then, the density function p(x)

can be estimated by the normal KDE algorithm. Finally, the density function of y is

p(ln(y))/y as derived in (25).

P (y < b) = P (x < ln(b)) =

∫ ln(b)

−∞
p(x)dx =

∫ b

0

p(ln(y))
1

y
dy (25)

Therefore, by knowing p(x), an appropriate control limit can be determined for a

specific confidence bound, α using Equation (25). The estimation of the probability

density function p̂(x) at point x through the kernel function, K(·) is defined as follows

p̂(x) =
1

Mh

M∑
k=1

K

(
x− xk
h

)
. (26)

where xk, k = 1, 2, · · · ,M are samples of x and h is the bandwidth. The bandwidth

selection in KDE is an important issue because selecting a bandwidth too small will

result in the density estimator being too rough, a phenomenon known as under-

smoothed while selecting a bandwidth too big will result in the density estimator

being too flat. There is no single perfect way to determine the bandwidth. However,

a rough estimation of the optimal bandwidth hopt subject to minimising the approx-

imation of the mean integrated square error can be derived in Equation (27), where

σ is the standard deviation [22].

hopt = 1.06σN−1/5 (27)

To use both I2
x and I2

d metrics together, the joint distribution of these two metrics
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has to be considered. In general, the joint probability of two random variables, x and

y is defined as follows.

P (x < a, y < b) =

∫ a

−∞

∫ b

−∞
p(x, y)dxdy (28)

However, for the SSICA and the DICA, I2
x and I2

y are independent. Hence,

P (x < a, y < b) = P (x < a)P (y < b) (29)

Equation (29) can also be approximately applied to T 2 and Q metrics for the CVA

because x and d in (14) are uncorrelated [23]. This means the joint PDF estimation

can be simplified by two univariate PDF estimations.

By replacing xk in Equation (26) with I2
x,k and I2

d,k obtained in (19) and (20) respec-

tively, the above KDE approach is able to estimate the underlying PDFs of the I2
x

and I2
d metrics. The corresponding control limits, I2

x,UCL(α) and I2
d,UCL(α) can then

be obtained from the PDFs of the I2
x and I2

d metrics for a given confidence level, α

by solving the following equations respectively.

∫ I2x,UCL(α)

0

p(ln(I2
x))

I2
x

dI2
x

∫ I2d,UCL(α)

0

p(ln(I2
d))

I2
d

dI2
d = α (30)∫ I2x,UCL(α)

0

p(ln(I2
x))

I2
x

dI2
x =

√
α (31)∫ I2d,UCL(α)

0

p(ln(I2
d))

I2
d

dI2
d =

√
α (32)

In this work, a fault is then identified (Fk = 1) if either I2,new
x,k > I2

xUCL(α) or I2,new
x,d >

I2
dUCL(α) conditions are satisfied, i.e.

Fk = (I2,new
x,k > I2

x,UCL(α))⊕ (I2,new
d,k > I2

d,UCL(α)) (33)

where ⊕ represents a logical “OR” operation.
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3 APPLICATION - Tennessee Eastman Process

Plant

The Tennessee Eastman Process (TEP) plant has 5 main units which are the reactor,

condenser, separator, stripper and compressor [13, 24, 25]. A graphical description

of the TEP plant is presented in Figure 1.
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Figure 1 Graphical Description of the TEP Plant

The TEP process is a large dimensional, nonlinear process with unknown mathemat-

ical representation as the simulation is intentionally distributed as an undocumented

FORTRAN program [24, 25]. The TEP data consists of two blocks; the training and

test data sets each of which has 22 continuous process measurements, 12 manipulated

variables and 19 composition measurements sampled with time delays. There are also

21 scenarios corresponding to Faults 0 − 20, with Fault 0 being the data simulated

at normal operating condition (no fault) and Faults 1 - 20 corresponding to data sets
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from the simulated fault processes, each with a specified fault as listed in Table 1.

Table 1 Brief Description of TEP Plant Faults

Fault Description Type

1 A/C Feed Ratio, B Composition Constant (Stream 4) Step

2 An increase in B while A/C Feed ratio is constant (stream 4) Step

3 D Feed Temperature (Stream 2) Step

4 Reactor Cooling Water Inlet Temperature Step

5 Condenser Cooling Water Inlet Temperature Step

6 A loss in Feed A (stream 1) Step

7 C Header Pressure Loss - Reader Availability (Stream 4) Step

8 A,B,C Feed Composition (Stream 4) Random variation

9 D Feed Temperature (Stream 2) Random variation

10 C Feed Temperature (Stream 4) Random variation

11 Reactor Cooling Water Inlet Temperature Random variation

12 Condenser Cooling Water Inlet Temperature Random variation

13 Reaction Kinetics Slow drift

14 Reaction Cooling Water Valve Sticking

15 Condenser Cooling Water Valve Sticking

16 Unknown Unknown

17 Unknown Unknown

18 Unknown Unknown

19 Unknown Unknown

20 Unknown Unknown

A total of 52 measurements are collected for each data set of length, N = 960

representing 48-hour operation with a sampling rate of 3 minutes. Among these mea-

surements, 19 analyzer measurements, 14 of which are sampled at 6 minute interval

whilst other 5 are sampled in every 15 minutes, have not been included in this study

due to the measurement time delay, while 11 manipulated variables are treated the

same as other measured variables because under feedback control, these variables are

not independent any more. The simulation time of each operation run in the test

data block is 48 hours and the various faults are introduced only after 8 hours. This

means that for each of the faults, the process is in normal operation condition for the

14



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

first 8 simulation hours before the process becomes abnormal after the introduction

of the fault. Furthermore, all twenty TEP faults have also been studied to investi-

gate the effectiveness of the proposed SSICA technique. The results are based on a

α = 99% confidence level (
√
α = 0.995 for individual metrics).

The TEP plant is under closed-loop control, which by its nature, tries to overcome

the abnormal deviations that occur as a result of the introduction of the various faults

to the simulated TEP process. Due to the closed loop nature of the plant, deviations

caused by some faults are relatively small such that these faults are difficult to be

detected by most monitoring approaches, such as principal component analysis and

partial least squares [17]. Different from these conventional methods, the SSICA

proposed in this work aims to address both dynamic and nonlinear issues effectively.

The monitoring performance in this study is assessed by the percentage reliability,

which is defined as the percentage of the samples outside the control limits [26].

Hence, a monitoring technique is said to have a better performance over another if

the percentage reliability of this technique is numerically higher than the percentage

reliability of another technique. Another criterion employed in this study to judge

the performance of the monitoring techniques is the detection delay, which is how

long it takes for a technique to identify a fault after the introduction of the fault.

A monitoring technique is said to be better than another if it is able to detect a

fault earlier than another technique. The false alarm rate, which is the percentage of

samplings classified as abnormal during the 8 hour normal operation period before

introducing a fault, is also considered for performance comparison.

To demonstrate the efficiency of the proposed SSICA, the monitoring performance

of the proposed SSICA is compared with the monitoring performance of the DICA

technique, an existing dynamic extension of the ICA. The SSICA is also compared

with the CVA to demonstrate the improvement by performing ICA on the state space

obtained by the CVA. For the pre-processing CVA described above, the number of

state variables to retain in the dominant space is normally determined by the dom-

inant singular values from the scaled Hankel matrix H in Equation (32). However,

applying the CVA to the TEP case study showed that using the dominant singular

values left an unrealistically large number of state variables in the dominant space.
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Hence a more realistic number of state variables 28 were retained in the dominant

space so that 28 state variables were retained from the pre-processing stage of CVA.

To make a fair comparison with the proposed SSICA, in the DICA, equal number

of latent variables were retained in the dominant spaces while the rest of the latent

variables spanned the excluded spaces. The percentage reliability and the detection

delay of all twenty TEP faults for the proposed SSICA technique is compared with

that of the CVA and DICA techniques and presented in Table 2. The corresponding

false alarm rate of all faults is 0.6849% for the DICA and 0% for both the CVA and

the SSICA.

Table 2 Performance Comparison

Fault Reliability (%) Detection Delay (minute)

SSICA CVA DICA SSICA CVA DICA

1 99.75 99.75 99.75 9 9 9

2 99.63 99.63 99.50 12 12 15

3 73.03 70.04 19.48 15 21 21

4 99.88 99.88 99.88 6 6 6

5 99.88 99.88 99.88 6 6 6

6 99.88 99.88 99.88 6 6 6

7 99.88 99.88 99.88 6 6 6

8 99.00 98.88 98.75 18 30 33

9 91.64 90.01 46.82 18 39 48

10 96.75 96.38 96.13 18 90 96

11 99.38 99.38 99.38 18 18 18

12 99.50 99.50 99.50 15 15 15

13 96.25 96.13 96.13 18 96 96

14 99.88 99.88 99.88 6 6 6

15 99.63 99.63 99.50 12 12 15

16 99.38 99.38 99.25 18 18 21

17 98.38 98.25 98.13 18 45 48

18 99.25 99.25 99.25 21 21 21

19 99.88 99.88 99.88 6 6 6

20 97.63 97.50 97.13 18 63 72
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The superiority of the SSICA over the CVA and DICA techniques is demonstrated

in Table 2. For 10 of the 20 faults (2,3,8,9,10,13,15,16,17 and 20), the SSICA is able

to improve the monitoring performance over the existing DICA technique in both

reliability and detection delay, while for the rest 10 faults, the SSICA maintains the

same performance as the DICA does. This is achieved by the SSICA with a reduced

false alarm rate for all faults. In the reliability, the improvement of the SSICA over

the DICA is significant (> 0.5%) for 4 of the faults (3,9,10 and 20). Particularly,

for faults 3 and 9, the improvement is extremely significant, over 40%. Meanwhile,

the SSICA is able to reduce the detection delay significantly (> 10 minutes) for 6

faults (8, 9, 10, 13, 17 and 20). The over one hour reduction in detection delay

is achieved by using the SSICA on faults 10 and 13. In comparison between the

SSICA and CVA, the performance of the SSICA is better than that of the CVA for

7 faults (3, 8, 9 10, 13, 17 and 20) in both the reliability and the detection delay,

whilst these performance criteria of the remaining 13 faults are the same for both

methods. In the reliability, the improvement on 2 faults (3 and 9) are significant (over

1%). Meanwhile, significant improvements in the detection delay (> 10 minutes) are

observed for 6 faults (8, 9, 10, 13, 17 and 20), for two of which (10 and 13), the

improvements are over one hour.

To appreciate the capability of the SSICA, fault detection by these three methods

along with fault propagation is further analysed for Faults 3 and 9. As shown in

Table 1, both Faults 3 and 9 relate to the temperature of D feed (stream 2), one

for step change (Fault 3) and another for random variations (Fault 9). These faults

directly result in small deviations in the reactor cooling water outlet temperature,

which can be easily corrected by the closed-loop control system by manipulating the

cooling water flow. Therefore, both faults are generally difficult to be detected by

most monitoring approaches.

Figure 2 shows a comparison of the fault detection along with the propagation of

Fault 3 for the SSICA (a), CVA (b) and DICA (c) techniques, using Fk derived from

Equation (33), whilst Figure 3 shows the fault detection along with the propagated

Fault 9 process for these three techniques.
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(a) SSICA 73.0337 % Relability, 15 minute detection delay
F

k

8 16 24 32 40 48
0

0.5

1

(b) CVA 70.0375 % Relability, 21 minute detection delay

F
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(c) DICA 19.4757 % Relability, 21 minute detection delay

F
k

time, hour

Figure 2 Comparison of fault detection along with the propagation of Fault

3
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(a) SSICA 91.6355 % Relability, 18 minute detection delay
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(b) CVA 90.0125 % Relability, 39 minute detection delay

F
k

8 16 24 32 40 48
0
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(c) DICA 46.8165 % Relability, 48 minute detection delay

F
k

time, hour

Figure 3 Comparison of fault detection along with the propagation of Fault

9

It is for such faults as Faults 3 and 9 that the superiority of the proposed SSICA

technique over the CVA and particularly the DICA techniques is most outstanding

as illustrated in Figure 2 and Figure 3. The performance of the SSICA is better

than that of the CVA and DICA techniques for both Faults 3 and 9. Particularly,

it is clear that for both faults the SSICA is able to show a significant improvement

of fault detection over the DICA technique within a few hours of the early stage of

fault propagation. The improvement in the early fault propagation stage is important

since it will give more time for operators to deal with the detected fault.

Although the DICA, also referred to as the ICA with delays is reported to be a more

efficient dynamic monitoring tool than the traditional ICA [6], the proposed SSICA

technique is able to significantly improve the monitoring performance over the DICA

technique for most of the faults considered in this work. This is because the pre-

processing stage of the SSICA is based on the CVA, which is a more appropriate
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dynamic monitoring tool than the DPCA on which the DICA technique is firstly based

on. Furthermore, the efficiency of the SSICA over the CVA is owed to the fact that the

SSICA is more suited than the CVA to deal with non-Gaussian process measurement,

separating the original sources to a greater degree than the CVA technique. The

results illustrated above demonstrate that there were no faults for which either the

CVA or DICA techniques outperformed the proposed SSICA technique.

It is worth to note that the CVA approach adopted in this work is able to cope with

certain level of nonlinearities due to the use of the KDE to determine the UCL [17].

Moreover, the superiority of the CVA over the DICA indicates that the dynamic issue

has more impact on the fault detection performance than the nonlinearity for the TE

process. This might be due to the feedback control, which widely propagates the

transient response caused by a fault, as well as restricts the variations caused by a

fault to relatively small level. This restriction on variation causes some faults to be

difficult to detect without taking into account the correlations in time. Meanwhile,

the effect of nonlinearity on fault responses is also restricted so that the CVA with

KDE approach is able to detect most faults adequately. This may also be the reason

for most faults the performance of the SSICA and the CVA is very close.

4 Conclusion

In this study, an ICA model was developed based first on CVA in the pre-processing

stage before applying the ICA algorithm and then control limits derived based on

kernel density estimations with 99% joint confidence intervals. The proposed ap-

proach is applied to the Tennessee Eastman Process. The monitoring performance

of the proposed SSICA is assessed and compared with those of the CVA and DICA

techniques also considered in this study. The percentage reliability, detection delays

as well as the false alarm rates were adopted to assess and compare the monitoring

performance of the proposed approach with those of the CVA and DICA techniques.

The percentage reliability of the SSICA was significantly higher than both of the

DICA and the CVA for some of the faults although the significance of improvement

over the CVA was not as high as that over the DICA. Moreover, the SSICA is also
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able to dramatically reduce the detection delay over both the CVA and the DICA

for certain faults. In particular, the remarkable superiority of the SSICA is demon-

strated in the faults that are more difficult to detect, emphasizing the efficiency of

the proposed SSICA over the existing CVA and DICA techniques.
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