SWP 8/97 HOW INNOVATIVE ARE UK MANUFACTURING COMPANIES?

DR.KEITH GOFFIN, MAREK SZWEJCEWSKI & PROFESSOR COLIN NEW
Operations Management
Cranfield School of Management
Cranfield University
Cranfield
Bedfordshire MK43 0AL
Tel: +44 (0)1234 751122
Fax: +44 (0)1234 751806

The Cranfield School of Management Working Papers Series has been running since 1987, with approximately 430 papers so far from the nine academic groups of the School: Economics; Enterprise; Finance and Accounting; Human Resources; Information Systems; Logistics and Transportation; Marketing; Operations Management; and Strategic Management. Since 1992, papers have been reviewed by senior members of faculty before acceptance into the Series. A list since 1992 is included at the back of this paper.

For copies of papers (up to three free, then £2 per copy, cheques to be made payable to the Cranfield University), please contact Wayne Bulbrook, Research Administrator, at the address on the back of this booklet.

© All Rights Reserved. Cranfield School of Management, Goffin Szwejczewski & New, 1997
ISBN 1 85905 102 2
HOW INNOVATIVE ARE UK MANUFACTURING COMPANIES?

Keith Goffin, Marek Szwejczewski and Colin New
Cranfield School of Management, UK

ABSTRACT
In many sectors of manufacturing industry, product innovation is an important way for companies to achieve competitive advantage. Regular introductions of new products can be essential, especially in fast-moving markets. But how often do companies introduce new products? A database of UK manufacturing plants was analysed to determine the innovation rates and typical product development times in specific industry sectors. The results show a wide spread in the development times and innovation rates even within closely defined sectors—this implies that some companies are particularly efficient at product innovation whereas others need to improve in this area. In addition, the research identifies a number of key areas of innovation which require further investigation, both within the UK and on an international basis.

INTRODUCTION
The speed and the frequency with which new products can be developed are fundamental issues and consequently they have become a focus for management attention over the last few years. Reflecting the importance of the business issues involved, there has been a substantial stream of research investigating the topic faster and more frequent product innovation. However, many questions remain to be answered. For instance, how often do companies typically introduce new products? How long does it typically take them? And, are there major differences between different industries? These were the background questions which initiated the exploratory research on product innovation described in this paper.

Without frequent new products, companies can quickly lose competitiveness and market share—"if you do not innovate, old products will be overtaken by new technology" [1]. A recent survey of European manufacturing managers identified that the ability to introduce new products was one of the key challenges now facing European companies [2]. Companies that have recognised this are responding; many are talking about the importance of innovation and several have launched major innovation initiatives. For example, an executive from the German company Siemens recently stated, "Any intelligent corporate strategy must have innovation at its very heart" [3]. Other companies which are also launching projects to promote more innovation include Renault, Philips, Ericson, BT and BASF [4], and 3M [5]. Innovation is a topical management issue: as one executive from 3M has said "today, the idea of innovation is widely accepted... in 1994 and 1995, around 275 [management] books published in the United States had the word innovation in their titles"[6].

The time required to develop and introduce a new product—variously referred to as time-to-market or cycle time—is a key performance measure which is often targeted by companies for improvement. This is because “time to market is widely viewed as a key source of competitive advantage, particularly in fast-cycle industries” [7]. Increased competition is forcing companies to concentrate on developing and
successfully introducing new products faster [8]. The importance of reducing cycle
time has been highly stressed: “in the highly competitive environment of the nineties,
time to market with new products can make or break companies” [9].

This article considers both cycle time and the rate of new product
introductions—as an indication of innovation—in British manufacturing industry.
Although fast new product development is recognised as crucial, comparatively little
data has been published which identifies the typical cycle times in various industries.
This information is potentially valuable, as it would give companies a benchmark, a
comparison against which they can measure their own performance. Similarly, data on
the numbers of new products introduced over time by companies in different sectors is
limited. To address this gap, this study measures cycle times and innovation rates. The
aims of the research were:
1) To investigate cycle times and innovation rates in various sectors of UK
manufacturing industry and determine whether the amount of variation within an
industrial sector.
2) To investigate how product complexity affects cycle time.
3) To investigate whether smaller companies appear to be more innovative than larger
ones.

INNOVATION AND NEW PRODUCT DEVELOPMENT
Innovation: Its Importance, Management and Measurement
“Innovation is the principal engine of economic growth” [10]. New products are the
fundamental part of innovation in manufacturing industry and are a key source of
competitive advantage [11]. As competition increases in many markets, companies
must relentlessly develop innovative new products if they are to be successful [4].
Recognising this, many companies are attempting to introduce more new products,
however, the success rate for new products is considered by observers to be very low
[12].

Managing innovation may prove difficult and the question has even been asked
“to what extent can product innovation be planned?” [13]. A key problem is the wide
range of factors which influence the success or failure of new products, including the
allocation of resources, the skill of key staff, the generation of ideas and the
organisation of development teams (ibid). Gobelli and Brown [14] identified the
typical problems that companies face with managing product innovation. Problems
exist at every stage of product innovation, from the creation of ideas, to the choice of
the best ideas, to product development, to the introduction of products onto the
market. Therefore, companies face a difficult task in trying to stimulate more efficient
innovation.

One widely publicised approach by the 3M company has been the use of strict
financial measures to highlight the importance of product innovation and stimulate the
development of more new products. One goal used by 3M is that 30% of revenues
must be generated by products less than four years old [15]. However, managing
innovation is difficult because it is not necessarily a logical process [16], and despite
the constant stream of publications on innovation, it is far from clear how companies
can best become more innovative. It is certainly not as clear cut as one author has
claimed, “there is no doubt that properly managed innovation can bring industry the
solutions which it needs and help it to achieve a competitive edge” [17].

Data on companies’ innovation rates is rarely published. Although companies
such as Hewlett-Packard and 3M publish the amount of revenue which has been
generated by new products in their annual reports, few other direct indications are available. Rare data on innovation rates can be found in economic research by Acs [11], who measured the innovations related to million employees in an industry and found that small companies are more innovative than large ones. In addition, “there are considerable differences in innovation rates across industries” (ibid). However, it should be noted that this investigation concentrated on the industry level and used data from 1982, as more recent data was not available.

Economists have long studied innovation because of the links to economic growth. However, they have normally studied it at a macro-level and this has acknowledged limitations; “when we look at technological change in the aggregate... we are obviously forced to simplify an enormously complicated set of activities” [18]. In addition, measuring innovative activity is difficult as has been pointed out by Geroski [19] who stated: “studies of the causes and consequences of innovative activity have often been stymied by the difficulty of measuring ‘innovation’”. Various measures of innovation have been used by economists such as R&D expenditures, or the number of major innovations generated in an industry over time but innovation at the product level has been largely ignored.

It appears that previous researchers have not looked in detail at innovation rates—measured as the percentage of product portfolios that are renewed per year—at individual companies within an industry and so this topic was chosen as for investigation.

The Importance of Fast New Product Development

Much has been published on the need for companies to develop new products faster than their competitors. It is becoming increasingly important for companies to focus on reducing cycle time [7]. Fast new product development (NPD) is one of the key themes of Time Based Competition, which was largely promoted through the work of Stalk [20] and has been a key focus in manufacturing industry since the end of the 1980s.

Fast cycle time is given credit in the business press with two main advantages. If the product which is introduced is a totally new concept, then being first-to-market enables a company to define key market requirements and establish itself before competitors enter the market. In established markets, introducing new products faster gives real competitive advantage, because products which reach the market sooner are credited with increased profit and market share [20]. One example of the advantages of faster NPD are figures from printer development projects at the Hewlett-Packard Company [21]. These show that high-technology products which come out six months late will earn 33% less profit over a five-year period. These figures have been widely quoted as evidence that faster cycle time leads to higher profits, without any real consideration of their (doubtful) external validity. It can be stated that, although the advantages of short cycle times appear clear in the business literature, they are not backed by clear, unequivocal evidence.

For instance, in a comprehensive study of the chemicals industry, Cooper and Kleinschmidt [22] found that the link between fast cycle time and profitability was weak. Similarly, Ellis and Curtis [23] showed that fast R&D in isolation does not lead to effective innovation. Faster NPD does not appear empirically to be directly correlated to higher sales either [24] and “it is futile to expect large profit gains from shortening cycle time” [23]. In fact it appears that cycle time reductions should only be pursued if the technical and organisational foundations of NPD are improved at the
same time [25]. However, other researchers found that faster cycle time (measured at the volume production stage) did affect market share positively, provided the lead over competitors was above a minimum threshold level [7].

Techniques for Faster NPD?

After faster NPD became recognised at the end of the 1980s as a pertinent goal for companies, there followed a wave of prescriptive articles on the ways in which it could be achieved (see, for example; [26],[27],[28]). Many of these were based on anecdotal evidence from specific development projects which have questionable external validity. The widespread acceptance of anecdotal evidence allowed claims to be made that certain techniques would reduce cycle time significantly. Unfortunately, “most prescriptions for cycle time reduction are based on little hard evidence” [29].

For example, one technique which was hailed as a major advance in reducing cycle time was Quality Function Deployment (QFD)—a Japanese method for ensuring that customer requirements are accurately captured. Griffin [30] has clearly shown this belief to be flawed. Another technique which has been prescribed as the way to accelerate new product development is concurrent engineering (CE), in which all functional areas commence work on NPD simultaneously. However, CE can be difficult to apply ([31],[32]), and may involve some trade-offs [33]. Another study showed “no significant relationship was found between the use of concurrent engineering and financial performance” [23].

Faster NPD cannot be achieved simply by applying specific techniques. Broader organisational aspects also need to be considered ([24],[34],[35],[36]). In addition the skills and motivation of the people working on innovation is crucial [37], as is their commitment to fast cycle time [38]. It is important not only to accelerate NPD; Cooper [39] has noted that choosing the right projects from the start and managing them appropriately is key [40].

In conclusion, it can be said that there is a wide range of techniques for faster NPD but that the use of any of these will not, in itself, guarantee reduced cycle times. Bringing products to market faster is just not that simple—the situation and the way techniques are implemented plays a key role ([41],[42]).

New Product Development Measures

Which measures are necessary to the understanding of NPD? Griffin [43], identified that a fundamental problem of research into techniques which reduce cycle times was “there were no baseline measures from which to form comparisons” and demonstrated the importance of establishing accurate and comprehensive NPD metrics. Ellis and Curtis [23], showed that few companies capture accurately the time from idea to market and this type of measurement is essential because, without it, valid comparisons are impossible.

Griffin’s work recommends that metrics for NPD should be comprehensive and cover the characteristics of the project (inputs), the process of NPD itself, and the outcomes [43]. One of the metrics, cycle time, was identified as particularly prone to measurement error—because companies measure development times differently and often do not keep accurate records of the starting dates of projects. An approach is recommended which counteracts these problems. However, a limitation of this approach is that it requires extensive interviewing of managers to accurately determine all of the NPD metrics and this has limited the application of the ideas, to-date, to a sample to 21 divisions from 11 companies (across five industries). Griffin has also
analysed the relationships between cycle times, product complexity and other factors [44].

The majority of cycle times which have been published stem from individual projects and (probably) suffer from measurement accuracy problems. Griffin ([44] summarises previously published cycle times from 21 companies and then gives empirical data summarising 343 projects at eleven companies. Toepfer [26] lists 8 cycle times (four of which are from the same sources as [44]). Another estimate of cycle times comes from a survey (189 companies in the Product Development and Management Association) from which Page [45] concluded that “it takes the average company 2.95 years to develop more innovative types of new products” and “over a recent five-year period, the companies introduced an average of 37.5 new products, whereas the median was twelve”. A survey by the consultants Pittliglio Rabin Todd & McGrath (PRTM) [46] showed that automotive and industrial companies were setting themselves the goal of reducing cycle times by 14%, whereas electronics companies were aiming for a 23% reduction. However, the published version of this survey failed to identify the actual values of the cycle time in different sectors.

It can be seen that published data on cycle times is sparse and some of it is possibly unreliable. As Griffin concluded; “one unexplored research issue is how long product development actually takes” [44].

RESEARCH DESIGN

The principal aim of this research was to obtain values for innovation rates and NPD cycle times from a wide range of companies across different industrial sectors. Consequently, it was decided to include new product development and innovation as part of a wider, ongoing investigation of the performance of UK manufacturing industry. A research programme was initiated in 1992, based on a highly-publicised annual competition to identify and reward excellence in UK manufacturing industry—the Best Factory Awards (BFA).

The BFA programme is run by Management Today (a leading UK monthly management magazine) and Cranfield School of Management. The programme recognises manufacturing excellence and collects detailed information from industry for research and benchmarking purposes. The annual awards are open to any manufacturer with a UK-based plant which completes a detailed 14 page, confidential questionnaire covering performance data (e.g. delivery reliability), the products produced, management policies, etc. Questionnaires are analysed and this results in a short-list of manufacturing plants which have high performance relative to the “norms” of their industry. A panel of judges visits short-listed companies, verifies the performance data, probes managers on their manufacturing strategy and checks issues such as the active participation of employees in quality management. Each year seven categories of prizes are awarded; the selection process itself has been described elsewhere in more detail [47].

A key point to note about the BFA programme is that, over the last five years, over 1200 companies have entered the competition and so the questionnaire is well-tested. In addition, the quality of the data is believed to be very high—entrants know that they may receive a visit where the values they give in their answers will be checked. Therefore, there is strong indirect pressure to answer accurately and honestly. In addition since the programme was initiated, the judges have visited 74 plants (6% of the total) and verified data integrity for these plants. The BFA database has previously been used for a number of empirical studies, which typically have combined analysis of
the data with in-depth case studies of companies from the database. Examples include an investigation of factory performance [47] and new data on supplier management [48].

One of the sections of the BFA questionnaire looks directly at innovation—collecting information on NPD cycle time, plus current and (estimated) future innovation. The relevant questions from the BFA questionnaire are given in the Appendix. In designing the overall questionnaire, an appropriate compromise had to be made between the number and depth of questions being asked and the maximum time that respondents' companies are willing to invest to answer the questions. The result is a detailed questionnaire which captures comprehensive performance data but which requires significant resources and effort to be invested on the part of respondent companies. Many companies comment that much of the data required is not readily available within their companies (but that completing the questionnaire is a positive, if time consuming, learning experience for management). As the questionnaire was already long, the scope of the questions on innovation and NPD which could realistically be asked was limited and a strong focus was required. This led to the inclusion of three questions, which capture the following values:

- Cycle time (defined as "from start of detail design to market launch")
- The number of new products launched over the last five years (and the number of these which were product line extensions and which were totally new)
- The number of new products expected to be launched in the next five years

Each of the questions was carefully designed and extensively piloted before being included. As an introduction to the questions, text explains what is meant by significantly new products (refer to the Appendix).

The remainder of the questionnaire covers a wide range of manufacturing performance measures, from lead-times to inventory profile. Background information on products allows companies to be classified by Standard Industry Codes (SIC). The emphasis throughout the questionnaire is on collecting objective and unambiguous data. Several questions provide useful points on which to compare the data on innovation. These are the number of products manufactured by a plant (can be used to estimate the innovation rate, using the data on the number of product launches) and the product complexity.

RESULTS AND DISCUSSION

A total of 649 plants entered the BFA programme between 1993 and 1995, coming from a wide range of industries including the electronics, engineering, process and household products sectors. A range of plant sizes was represented; 163 (25%) manufacturing plants were small businesses and employed less than 500 employees. Ownership of the plants was as follows: UK owned (42%); UK owned small businesses (22%); UK joint owned (5%); US owned (14%); Japanese owned (2%); European owned (10%); and (other) foreign owned (5%). Although the sample cannot be claimed to be fully representative of UK manufacturing industry, because the companies are self-selecting, the quantity, quality and depth of data means that the database is still an important research tool.

It would have been possible to calculate mean cycle times and innovation rates across the whole sample, similar to the approach taken by Page [45]. However, it was felt that this approach would be wrong—it would compare values across very different sectors and the resulting average values would be of little value. Therefore, the sample for the actual analysis was focused on five closely defined sectors where sufficient data
Cycle Time

Table 1 shows the results of the analysis of the cycle times for the sample companies, by industrial sector. It can be seen that the mean cycle time in the Intermediate and General Engineering sector is 16 months, for Electronics 16.8 months, etc. Analysis of variance was used to test whether the differences between cycle times in different sectors are significant. This analysis showed that only the Food, Drinks and Tobacco sector has cycle times that are significantly different from the other four sectors (F ratio = 6.1780; F probability = .0001).

Of particular interest are the large standard deviations, for instance, 10.7 months for engineering. Large standard deviations are seen in all five sectors, indicating a large spread of cycle times within sectors. This is an interesting result as it illustrates the danger of quoting only average values for a sector (i.e. the approach taken by Page [45] is probably best avoided). There are several possible explanations for the wide range of values. One is that the companies within any particular sector develop products of significantly different complexity (and this leads to different cycle times). This possibility was investigated by analysing the cycle time data versus the product complexity.

Table 1: Cycle Time - Performance by Sector for 340 Companies

<table>
<thead>
<tr>
<th>Sector</th>
<th>n</th>
<th>Mean Cycle Time (months)</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Intermediate & General Engineering</td>
<td>148</td>
<td>16.0</td>
<td>10.7</td>
</tr>
<tr>
<td>2 Electronics</td>
<td>63</td>
<td>16.8</td>
<td>10.5</td>
</tr>
<tr>
<td>3 Electronic Components</td>
<td>33</td>
<td>14.0</td>
<td>8.3</td>
</tr>
<tr>
<td>4 Chemicals</td>
<td>26</td>
<td>17.2</td>
<td>15.1</td>
</tr>
<tr>
<td>5 Food, Drink and Tobacco</td>
<td>70</td>
<td>9.4</td>
<td>7.8</td>
</tr>
<tr>
<td>Total</td>
<td>340</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cycle Time versus Product Complexity

It would seem intuitively clear that more complex products would take longer to develop. Therefore, a check was made to see if there was any correlation between the cycle time and product complexity. Defining product complexity is difficult—there is not a simple proxy measure for it. Griffin [44] used the number of product features but this approach could lead to problems of interpretation, especially within a survey format. Therefore, as a measure of complexity, the number of different components, purchased items or assemblies in the product with the largest output (at manufacturing cost) was taken; this was termed the “product part complexity”.

Table 2 shows the results of an analysis on the effect of product complexity on cycle time in each sector. It can be seen that the correlations are weak and not significant. Therefore, the differences in cycle times are not simply explained by differences in product parts complexity. More investigation is needed to establish the reasons for the widely varying cycle times within sectors.
Table 2: Correlations between Complexity and Cycle Times for 335 Companies

<table>
<thead>
<tr>
<th>Sector</th>
<th>n</th>
<th>Correlation</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Intern. & General engineering</td>
<td>145</td>
<td>.0739</td>
<td>.377</td>
</tr>
<tr>
<td>2. Electronics</td>
<td>63</td>
<td>.1618</td>
<td>.205</td>
</tr>
<tr>
<td>3. Electronic components</td>
<td>33</td>
<td>-.0155</td>
<td>.932</td>
</tr>
<tr>
<td>4. Chemicals</td>
<td>26</td>
<td>-.0646</td>
<td>.754</td>
</tr>
<tr>
<td>5. Food, drink and tobacco</td>
<td>68</td>
<td>.0609</td>
<td>.622</td>
</tr>
<tr>
<td>Total</td>
<td>335</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Innovation Rates by Sector

Innovation rate was operationalised by taking the number of new products introduced over the previous five years, expressed as a percentage of the total product range. Therefore, from Table 3 it can be seen that the median innovation rate for engineering was 1.8% but the top quartile of engineering companies had an innovation rate of 9.6%. It is interesting to note from Table 3 that the innovation rates for the top quartiles of companies in any of the five sectors are much higher than the median values. This indicates that some companies appear to be much more effective at introducing new products than other companies in the same sector; this indicates that “best practices” may play a role. (Note that the survey did not attempt to measure the success of new products.)

Table 3: Innovation Rate - Performance by Sector for 335 Companies

<table>
<thead>
<tr>
<th>Sector</th>
<th>n</th>
<th>Median Innovation Rate (%)</th>
<th>Top Quartile Innovation Rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. General engineering</td>
<td>149</td>
<td>1.8</td>
<td>9.6</td>
</tr>
<tr>
<td>2. Electronics</td>
<td>64</td>
<td>5.8</td>
<td>18.7</td>
</tr>
<tr>
<td>3. Electronic components</td>
<td>33</td>
<td>7.5</td>
<td>17.7</td>
</tr>
<tr>
<td>4. Chemicals</td>
<td>25</td>
<td>4.4</td>
<td>24.1</td>
</tr>
<tr>
<td>5. Food, drink and tobacco</td>
<td>71</td>
<td>6.9</td>
<td>22.5</td>
</tr>
<tr>
<td>Total</td>
<td>342</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Innovation Rate and Company Size

An investigation was also made of whether smaller companies were more innovative than larger ones. The BFA questionnaire identifies the size of respondent companies and this information was used to divide companies into those with more than 500 employees and those with less than 500 employees—small and medium enterprises (SMEs). Table 4 shows the comparison of median innovation rates between large and small companies, for each of the five industrial sectors. Firstly, it can be seen that there were 62 small companies (18%) in the sample of 342 companies from all five sectors. It can also be seen that there were 36 SMEs in the sample of engineering companies.

The significance of the differences between the innovation rates of large and small companies were tested using a Mann-Whitney non-parametric test. This test was necessary, as the more usual t-test is not suitable for data which is not normally distributed—as discussed earlier, the distribution of innovation rates was, by no means, normal. As can be seen from Table 4, the differences in innovation rates between the large companies and SMEs are not significant in any sector—a direct contradiction to the findings of Acs [11].
CONCLUSIONS
The research gave a rare insight into the cycle times and innovation rates at a relatively large number of companies in five sectors of UK manufacturing industry. The results were interesting because, despite being obtained from narrowly defined sectors, they exhibited surprisingly large variations, in both cycle times and innovation rates. This suggests that there are large differences in innovation performance between companies operating in very similar markets and that using average values for a sector gives very limited insight into performance. The weak correlations between product complexity and cycle time may indicate that some companies are efficient at developing complex products faster than their competitors. However, as the proxy measure for complexity had its limitations, more investigation is needed before a conclusion can be reached on this. Since no significant differences were found in the innovation rates between large and small companies, the assumption of previous researchers that SMEs are more innovative is questionable and this topic warrants further study.

The survey approach used in this investigation was exploratory and had limitations. Firstly, only a few questions could be asked and, secondly, the questions may not have been, for some respondents, totally unambiguous. However, it collected data points from more companies than has previously been the case. The next stage of the research will need to look closer at the reasons behind the differences in innovation performance. The unit of analysis for this investigation will need to be the individual plant. As part of the BFA programme, the researchers can normally obtain access to respondent companies for in-depth further investigations and therefore the opportunity exists to study the companies in a sector or sectors further. The areas on which this type of research needs to focus are:

- Collecting further empirical data on cycle times and innovation rates in companies in different sectors. Verifying the survey data through follow-up interviews.
- Investigating the relationship between high innovation rates and market performance. Are the companies which regularly introduce new products achieving market growth and higher profit levels?
- How is innovation managed at the companies which develop new products faster? Can best practices be identified and how do these compare to the techniques for faster NPD that have received wide acclaim in the business press?

Table 4: Innovation Rate - Performance by Size of Company for 335 Companies

<table>
<thead>
<tr>
<th>Sector</th>
<th>n_large : n_small</th>
<th>Median Innovation Rate - Large Companies (%)</th>
<th>Median Innovation Rate - Small Companies (%)</th>
<th>Significance Level (Mann-Whitney Test)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 General engineering</td>
<td>113 : 36</td>
<td>1.9</td>
<td>1.6</td>
<td>0.7029</td>
</tr>
<tr>
<td>2 Electronics</td>
<td>56 : 8</td>
<td>5.8</td>
<td>4.9</td>
<td>0.6699</td>
</tr>
<tr>
<td>3 Electronic components</td>
<td>30 : 3</td>
<td>7.6</td>
<td>0.7</td>
<td>0.2730</td>
</tr>
<tr>
<td>4 Chemicals</td>
<td>21 : 4</td>
<td>4.4</td>
<td>18.2</td>
<td>0.6038</td>
</tr>
<tr>
<td>5 Food, drink and tobacco</td>
<td>60 : 11</td>
<td>4.9</td>
<td>22.9</td>
<td>0.2008</td>
</tr>
<tr>
<td>Totals</td>
<td>280 : 62</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
• Developing an appropriate methodology to accurately investigate the way companies manage their product innovation.

Just as innovation is a challenge for managers in industry, it offers many key challenges to management researchers—particularly in trying to identify best practices which have wider relevance and apply not only in the context of one project.

APPENDIX

Section F of the Best Factory Awards questionnaire includes the questions on innovation and product development given below.

F: PRODUCT INNOVATION

A significantly new product is one which the plant has not made previously and which represents more than a simple change of material, colour or design variant. For example, in garment manufacturing a pair of trousers made in a new material for the new season would not be regarded as significant. However, if the trouser manufacturer started making overcoats this would be regarded as significant for the plant.

F1 How long does it typically take to bring a significant product innovation to market (from start of detail design to market launch)?

F2. (a) How many significantly new products (not including material or minor model changes) have you launched in the last five years?

F2.(b) Of these new products how many would you regard as:

<table>
<thead>
<tr>
<th>Extensions to existing product range(s)</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Totally new (to plant) product range(s)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other (please specify)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

F2.(c) How many significantly new products (not including material or minor model changes) do you expect to launch in the next five years?

F3 For those products made to a unique customer specific design
What is the typical level of (please circle one of the numbers on the scale for each item):

<table>
<thead>
<tr>
<th>Low</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technological novelty</td>
<td>1</td>
</tr>
<tr>
<td>Specific Applications Engineering</td>
<td>1</td>
</tr>
<tr>
<td>Number of drawing changes required</td>
<td>1</td>
</tr>
<tr>
<td>Use of new materials</td>
<td>1</td>
</tr>
</tbody>
</table>
REFERENCES

1993, pp90-111.

CRANFIELD SCHOOL OF MANAGEMENT
WORKING PAPER SERIES
List No 6, 1992

SWP 1/92 Mike Sweeney
"How to Perform Simultaneous Process Engineering"

SWP 2/92 Paul Burns
"The Management of General Practice"

SWP 3/92 Paul Burns
"Management in General Practice: A Selection of Articles"

SWP 4/92 Simon Knox & David Walker
"Consumer Involvement with Grocery Brands"

SWP 5/92 Deborah Helman & Adrian Payne
"Internal Marketing: Myth versus Reality?"

SWP 6/92 Leslie de Chematony & Simon Knox
"Brand Price Recall and the Implications for Pricing Research"

SWP 7/92 Shai Vyakarnam
"Social Responsibility in the UK Top 100 Companies"

SWP 8/92 Susan Baker, Simon Knox & Leslie de Chematony
"Product Attributes and Personal Values: A Review of Means-End Theory and Consumer Behaviour"

SWP 9/92 Mark Jenkins
"Making Sense of Markets: A Proposed Research Agenda"

SWP 10/92 Mike Sweeney & Ian Oram
"Information Technology for Management Education: The Benefits and Barriers"

SWP 11/92 Keith Thompson (Silsoe College)
"International Competitiveness and British Industry post-1992. With Special Reference to the Food Industry"

SWP 12/92 Keith Thompson (Silsoe College)
"The Response of British Supermarket Companies to the Internationalisation of the Retail Grocery Industry"

SWP 13/92 Richard Kay
"The Metaphors of the Voluntary/Non-Profit Sector Organising"

SWP 14/92 Robert Brown & Philip Poh
"Aniko Jewellers Private Limited - Case Study and Teaching Notes"

SWP 15/92 Mark Jenkins & Gerry Johnson
"Representing Managerial Cognition: The Case for an Integrated Approach"

SWP 16/92 Paul Burns
"Training across Europe. A Survey of Small and Medium-Sized Companies in Five European Countries"

SWP 17/92 Chris Brewster & Henrik Holt Larsen
"Human Resource Management in Europe - Evidence from Ten Countries"

SWP 18/92 Lawrence Cummings
"Customer Demand for 'Total Logistics Management' - Myth or Reality?"

SWP 19/92 Ariane Hegewisch & Irene Bruegel
"Flexibilisation and Part-time Work in Europe"

SWP 20/92 Kevin Daniels & Andrew Guppy
"Control, Information Seeking Preference, Occupational Stressors and Psychological Well-being"

SWP 21/92 Kevin Daniels & Andrew Guppy
"Stress and Well-Being in British University Staff"

SWP 22/92 Colin Armistead & Graham Clark
"The Value Chain in Service Operations Strategy"

SWP 23/92 David Parker
"Nationalisation, Privatisation, and Agency Status within Government: Testing for the Importance of Ownership"

SWP 24/92 John Ward
"Assessing and Managing the Risks of IS/IT Investments"

SWP 25/92 Robert Brown
"Stapleford Park: Case Study and Teaching Notes"

SWP 26/92 Paul Burns & Jean Harrison
"Management in General Practice - 2"

SWP 27/92 Paul Burns & Jean Harrison
"Management in General Practice - 3"
SWP 28/92 Kevin Daniels, Leslie de Chernatony & Gerry Johnson
"Theoretical and Methodological Issues concerning Managers' Mental Models of Competitive Industry Structures"

SWP 29/92 Malcolm Harper & Alison Rieple
"Ex-Offenders and Enterprise"

SWP 30/92 Colin Armistead & Graham Clark
"Service Quality: The Role of Capacity Management"

SWP 31/92 Kevin Daniels & Andrew Guppy
"Stress, Social Support and Psychological Well-Being in British Chartered Accountants"

SWP 32/92 Kevin Daniels & Andrew Guppy
"The Dimensionality and Well-Being Correlates of Work Locus of Control"

SWP 33/92 David Ballantyne, Martin Christopher, Adrian Payne and Moira Clark
"The Changing Face of Service Quality Management"

SWP 34/92 Chris Brewster
"Choosing to Adjust: UK and Swedish Expatriates in Sweden and the UK"

SWP 35/92 Robert Brown
"Goldsmiths Fine Foods - Case Study and Teaching Notes"

SWP 36/92 Mike Sweeney
"Strategic Manufacturing Management: Restructuring Wasteful Production to World Class"

SWP 37/92 Andy Bailey & Gerry Johnson
"An Integrated Exploration of Strategic Decision-Making"

SWP 38/92 Chris Brewster
"European Human Resource Management: Reflection of, or Challenge to, the American Concept"

SWP 39/92 Ute Hanel, Kurt Volker, Ariane Hegewisch & Chris Brewster
"Personnel Management in East Germany"

SWP 40/92 Lawrence Cummings
"Logistics goes Global - The Role of Providers and Users"

SWP 41/92 Roger Seaton & Martin Cordey-Hayes
"Interactive Models of Industrial Technology Transfer: A Process Approach"

SWP 42/92 Susan Segal-Horn
"The Logic of International Growth for Service Firms"

SWP 43/92 Mike Sweeney
"Benchmarking for Strategic Manufacturing Management"

SWP 44/92 Paul Burns
"Financing SMEs in Europe: A Five Country Study"

SWP 45/92 Robert Brown
"The Graduate Enterprise Programme - Has it been Worthwhile?"

CRANFIELD WORKING PAPERS
List No 7, 1993

SWP 1/93 John Mapes
"The Effect of Limited Production Capacity on Safety Stock Requirements for Periodic Review Inventory Systems"

SWP 2/93 Shai Vyakarnam & Alison Rieple
"Corporate Entrepreneurship: A Review"

SWP 3/93 Cliff Bowman & David Faulkner
"Pushing on a String: Uncertain Outcomes from Intended Competitive Strategies"

SWP 4/93 Susan Baker & Mark Jenkins
"The Role of Values in the Design and Conduct of Management Research: Perspectives on Managerial and Consumer Cognition"

SWP 5/93 Kevin Daniels, Leslie de Chernatony & Gerry Johnson
"Validating a Method for Mapping Managers' Mental Models of Competitive Industry Structures"

SWP 6/93 Kevin Daniels & Andrew Guppy
"Occupational Stress, Social Support, Job Control and Psychological Well-Being"

SWP 7/93 Colin Fletcher, Ruth Higginbotham & Peter Norris
"The Inter-Relationships of Managers' Work Time and Personal Time"

SWP 8/93 Mike Sweeney
"A Framework for the Strategic Management of both Service and Manufacturing Operations"
SWP 9/93 Colin Armistead & Graham Clark
"The 'Coping' Capacity Management Strategy in Services and the Influence on Quality Performance"

SWP 10/93 Ariane Hegewisch
"Equal Opportunities Policies and Developments in Human Resource Management: A Comparative European Analysis"

SWP 11/93 Paula Stanley
"Service to the Courts: The Offender's Perspective"

SWP 12/93 Mark Jenkins
"Thinking about Growth: A Cognitive Mapping Approach to Understanding Small Business Development"

SWP 13/93 Mike Clarke
"Metro-Freight: The Automation of Freight Transportation"

SWP 14/93 John Hailey
"Growing Competitiveness of Corporations from the Developing World: Evidence from the South"

SWP 15/93 Noeleen Doherty, Shaun Tyson & Claire Viney
"A Positive Policy? Corporate Perspectives on Redundancy and Outplacement"

SWP 16/93 Shai Vyakarnam
"Business Plans or Plans for Business"

SWP 17/93 Mark Jenkins, Eric le Cerf & Thomas Cole
"Defining the Market: An Exploration of Marketing Managers' Cognitive Frameworks"

SWP 18/93 John Hailey
"Localisation and Expatriation: The Continuing Role of Expatriates in Developing Countries"

SWP 19/93 Kevin Daniels & Andrew Guppy
"Reversing the Occupational Stress Process: Some Consequences of Employee Psychological Well-Being"

SWP 20/93 Paul Burns, Andrew Myers & Andy Bailey
"Cultural Stereotypes and Barriers to the Single Market"

SWP 21/93 Terry Lockhart & Andrew Myers
"The Social Charter: Implications for Personnel Managers"

SWP 22/93 Kevin Daniels, Gerry Johnson & Leslie de Chernatony
"Differences in Cognitive Models of Buyers and Sellers"

SWP 23/93 Peter Boey & Richard Saw
"Evaluation of Automated Warehousing Policies: Total Systems Approach"

SWP 24/93 John Hailey
"Training for Entrepreneurs: International Perspectives on the Design of Enterprise Development Programmes"

SWP 25/93 Tim Denison & Simon Knox
"Pocketing the Change from Loyal Shoppers: The Double Indemnity Effect"

SWP 26/93 Simon Knox
"Consumers and Grocery Brands: Searching for Attitudes - Behaviour Correspondence at the Category Level"

SWP 27/93 Simon Knox
"Processing Ideas for Innovation: The Benefits of a Market-Facing Approach"

SWP 28/93 Joe Nellis
"The Changing Structure and Role of Building Societies in the UK Financial Services Sector"

SWP 29/93 Kevin Daniels, Gerry Johnson & Leslie de Chernatony
"Similarity or Understanding: Differences in the Cognitive Models of Buyers and Sellers. A Paper outlining Issues in Mapping and Homogeneity"

SWP 30/93 Habte Selassie & Roy Hill
"The Joint Venture Formation Environment in a Sub-Saharan African Country: A Case Study of Government Policy and Host Partner Capability"

SWP 31/93 Colin Armistead, Graham Clark and Paula Stanley
"Managing Service Recovery"

SWP 32/93 Mike Sweeney
"The Strategic Management of International Manufacturing and Sourcing"

SWP 33/93 Julia Newton
"An Integrated Perspective on Strategic Change"

SWP 34/93 Robert Brown
"The Graduate Enterprise Programme: Attempting to Measure the Effectiveness of Small Business Training"
CRANFIELD WORKING PAPERS
List No 8, 1994

SWP 1/94 Keith Goffin
"Repertory Grids in Market Research: An Example"

SWP 2/94 Mark Jenkins
"A Methodology for Creating and Comparing Strategic Causal Maps"

SWP 3/94 Simon Knox
"Re-engineering the Brand"

SWP 4/94 Robert Brown
Encouraging Rural Enterprise in Great Britain - Britain's "Venturecash" Competition

SWP 5/94 Andy Bytheway, Bernard Dyer & Ashley Braganza
"Beyond the Value Chain: A New Framework for Business Modelling"

SWP 6/94 Joe Nellis
"Challenges and Prospects for the European Financial Services Industry"

SWP 7/94 Keith Thompson, Panagiotis Alekos & Nikolaos Haziris
"Reasoned Action Theory applied to the Prediction of Olive Oil Usage"

SWP 8/94 Sanjoy Mukherjee & Ashley Braganza
"Core Process Redesign in the Public Sector"

SWP 9/94 Mike Sweeney
"A Methodology for the Strategic Management of International Manufacturing and Sourcing"

SWP 10/94 Ariane Hegewisch & Henrik Holt Larsen
"European Developments in Public Sector Human Resource Management"

SWP 11/94 Valerie Bence
"Telepoint: Lessons in High Technology Product Marketing"

SWP 12/94 Andy Bytheway
"Seeking Business Improvement: A Systematic Approach"

SWP 13/94 Chris Edwards & Ashley Braganza
"Classifying and Planning BPR Initiatives: The BPR Web"

SWP 14/94 Mark Jenkins & Malcolm McDonald
"Defining and Segmenting Markets: Archetypes and Research Agendas"

SWP 15/94 Chris Edwards & Joe Peppard
"Forging a Link between Business Strategy and Business Re-engineering"

SWP 16/94 Andrew Myers, Andrew Kakabadse, Colin Gordon & Stobbhan Alderson
"Effectiveness of French Management: Analysis of the Behaviour, Attitudes and Business Impact of Top Managers"

SWP 17/94 Malcolm Harper
Micro-Credit - The Benign Paradox

CRANFIELD WORKING PAPERS
List No 9, 1995

SWP 1/95 Andy Bytheway
"Information in the Supply Chain: Measuring Supply Chain Performance"

SWP 2/95 John Ward & Joe Peppard
"Reconciling the IT/Business Relationship: A Troubled Marriage in Need of Guidance"

SWP 3/95 Kevin Daniels, Gerry Johnson, & Leslie de Chernatony
"Collective Frames of Reference, Recognition, and Managers' Mental Models of Competition: A Test of Two Industries"

SWP 4/95 Alison Rieple
"Staffing as a Lever of Strategic Change - The Influence of Managerial Experience, Behaviour and Values"

SWP 5/95 Grafton Whyte & Andy Bytheway
"Factors Affecting Information Systems Success"

SWP 6/95 Andy Bailey & Gerry Johnson
"The Processes of Strategy Development"

SWP 7/95 Valerie Bence

SWP 8/95 Valerie Bence
"The Evolution of a Distribution Brand: The Case of Exel Logistics"

SWP 9/95 Andy Bytheway
"A Review of EDI Research"

SWP 10/95 Andy Bytheway
"A Review of Current Logistics Practice"

SWP 11/95 Joe Peppard
"Broadening Visions of BPR: The Imperative of Strategic Integration"
SWP 12/95 Simon Knox & David Walker
“Empirical Developments in the Measurement of Involvement, Brand Loyalty and their Structural Relationships in Grocery Markets”

SWP 13/95 Ashley Braganza & Andrew Myers
“Issues and Dilemmas Facing Public and Private Sector Organisations in the Effective Implementation of BPR”

SWP 14/95 John Mapes
“Compatibility and Trade-Off Between Performance: An Alternative View”

SWP 15/95 Mike Sweeney & Marek Szwejczewski
“Manufacturing Standards of Performance for Success”

SWP 16/95 Keith Thompson, Nicholas Thompson & Roy Hill
“The Role of Attitudinal, Normative and Control Beliefs in Drink Choice Behaviour”

SWP 17/95 Andy Bytheway
“Information Modelling for Management”

SWP 18/95 Mike Sweeney & Marek Szwejczewski
“Manufacturing Strategy and Performance: A Study of the UK Engineering Industry”

SWP 19/95 Valerie Bence
“St. James’s Hospital and Lucas Engineering Systems Ltd - A Public/Private Sector Collaboration in BPR Project A - Elective Admissions”

SWP 20/95 Valerie Bence
“St. James’s Hospital and Lucas Engineering Systems Ltd - A Public/Private Sector Collaboration in BPR Project B - The Re-Organisation of Purchasing and Supplies”

SWP 21/95 Simon Knox & David Walker
“New Empirical Perspectives on Brand Loyalty: Implications for Segmentation Strategy and Equity”

SWP 3/96 Kim James, Michael Jarrett & Donna Lucas
“Psychological Dynamics and Organisational Learning: from the Dysfunctional Organisation to the Healthy Organisation”

SWP 4/96 Mike Sweeney & Marek Szwejczewski
“The Search for Generic Manufacturing Strategies in the UK Engineering Industry”

SWP 5/96 John Baker
“Agility and Flexibility: What’s the Difference”

SWP 6/96 Stephen Adamson, Noeleen Doherty & Claire Viney
“30 Years On - What Have We Learned About Careers?”

SWP 7/96 Keith Goffin, Marek Szwejczewski & Colin New
“Supplier Base Management: An Empirical Investigation”

SWP 8/96 Keith Goffin
“Operations Management Teaching on European MBA Programmes”

SWP 9/96 Janet Price, Ashley Braganza & Oscar Weiss
“The Change Initiative Diamond: A Framework to Balance Business Process Redesign with other Change Initiatives”

CRANFIELD WORKING PAPERS
List No 11, 1997

SWP 1/97 Helen Peck
“Towards A Framework of Relationship Marketing: A Research Methodology”

SWP 2/97 Helen Peck
“Towards A Framework of Relationship Marketing: An Initial Case Study”

SWP 3/97 Chris Edwards & Joe Peppard

SWP 4/97 Joe Peppard and Don Fitzgerald
“The Transfer of Culturally-Grounded Management Techniques: The Case of Business Re-Engineering in Germany”

SWP 5/97 Claire Viney & Shaun Tyson
“Aligning HRM with Service Delivery”

SWP 6/97 Andy Bailey & Gerry Johnson
“Logical or Processual? Defining Incrementalism”
SWP 7/97 Keith Goffin
“Evaluating Customer Support Requirements
at the Product Design Stage”

SWP 8/97 Keith Goffin, Colin New & Marek Szweczyewski
“How Innovative are UK Manufacturing
Companies?”