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Abstract: This paper presents an inverse method for calculating the thermal residual stresses
in welded specimens via measured fatigue crack growth rates. Firstly, fracture-mechanics
superposition law has been used to extract the stress intensity factor due to residual stress
contribution from measured crack growth rate. Secondly, a so-caled B matrix has been
established by performing finite element analysis. Residua stress distribution is then
determined by solving linear algebraic equations relating the B matrix and residual stress
intensity factors obtained from crack growth test data. The inverse method has been validated
by awell-established residual stress distribution and corresponding stress intensity factor, and
then applied to an M(T) sample in 2024-T3 alloy with a longitudinal weld. Agreement with
the measured residual stresses is reasonably good and reasons for certain differences between
the calculated and measured are discussed.
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Nomenclature

a Hhalf crack length in middle-crack tension, M(T), specimen

B; B matrix component representing a stress intensity factor value for crack length a;
under an applied unit stress at location X

B inverse matrix of B

B' transpose matrix of B

E Y oung's modulus

Kapp, Kres, Kot Stressintensity factors (SIF) due to applied, residual and combined stress fields
Kappmax Kiotmax SIF due to applied and combined stress fields at the maximum applied stress
Kappmin: Kiotmin - SIF due to applied and combined stress fields at the minimum applied stress
AK app, AK ot SIF range due to applied and combined applied and residual stresses

Kresi SIF due to residual stresses at crack length g

Kerit apparent fracture toughness

R nominal stressintensity factor ratio (Knin/Kmax = Omin/ Omax)
R effective stress intensity factor ratio (Ko, min/Kot, max)
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Ses residual stress matrix
Sesi S es Matrix elements corresponding to location x;
C,npq materia constantsin the NASGRO fatigue crack growth rate law

1. Introduction

It is well known that welding induced thermal residual stresses affect fatigue crack growth
(FCQG) rates, especialy when crack growth path is perpendicular to the weld joint line. Apart
from the early research in the 1970-1980s on traditiona steel welds [1-2], this problem has
recently been investigated in the friction stir welds (FSW) [3-5] and fusion welds [6-8]; both
processes and the laser beam welding are now utilised in the joining of aluminium aircraft
structures. Efforts have been devoted to the prediction of residual stress effect on FCG rates
[3-10]. In these work residual stress effect is taken into account by incorporating the residual
stress intensity factor, K., into empirical crack growth rate laws. For a given residua stress
distribution, K. can be calculated by either the finite element method (FEM) [8, 11] or the
weight function method (WFM) [1, 9-11]. Therefore, accurate determination of residual
stresses is a key issue in the damage tolerance analysis of welded structures.

Current techniques for residual stress measurement include the diffraction methods and
mechanical methods. The diffraction methods are well established and usually non-
destructive. Synchrotron X-ray sources can be used to measure to a depth of a few
centimetres, whereas neutron sources can measure much deeper (several tens of centimetres)
and are suitable for very large engineering components [12-13]. However, both techniques are
only available at large scale facilities and the tests are relatively time consuming. The
laboratory based X-ray generators can only be used for surface measurement to a depth of a
few microns. For some kinds of aloys, difficulties may arise in using the diffraction methods
due to the relocation and/or preferred orientation of the grains in the heat affected zones
(HAZ). The mechanical methods are mostly semi-destructive. The most popular mechanical
methods are the hole-drilling and the cut-compliance method. The hole-drilling method is a
well established and widely accepted technique, which involves introducing a small hole into
the surface of a component, at the centre of a special strain gauge rosette, and measuring the
relieved strains. It provides limited spatia resolution [14]. For the cut-compliance method,
residual stress profiles are determined by successive extension of a slot and measurement of
the resulting strains or displacements [15]. This method requires more test samples for
separate tests of measuring residual stresses and FCG rates.

Donad and Lados [16] proposed an outstanding mechanical approach to determine Kies in
real-time during fatigue test, which is similar to the cut-compliance method and named as on-
line crack-compliance method. The basic idea of this method is that the |oad-displacement
relationships in the presence and absence of residua stresses are different. Kes can be
determined by measuring the change in displacement (or strain) at the maximum load for a
given increment of crack extension and comparing this to the corresponding change in
displacement (or strain) at zero load over the same increment of crack extension. Pasta and
Reynolds [17] has applied this method together with a technique developed by Schindler [18]
to evaluating the residual stressesin a FSW joint in Ti-6Al-4V. The on-line crack-compliance
method is straightforward for understanding and easy for carrying out. However, the practical
application of this method requires a high level of instrumentation precision, stability and
linearity [16], which is more difficult for conducting test of large complex structural
components. Furthermore, predominately elastic behaviour is assumed, the influence of the
crack-tip plastic zone could contribute to erroneous calculations of Kes [16].



Another, and more important, characteristic parameter in FCG tests is the crack growth rate
da/dN. In this paper, an approach is presented using the da/dN data to evaluate welding
residual stresses. This can be regarded as an inverse method. The work was motivated by
these facts. a) facilities for conducting FCG tests are available in most mechanical test
laboratories; b) it is possible to extract K e from measured da/dN test data; c) finite element
method (FEM) is a powerful tool for correlating residual stress with K, for both simple test
samples and complex structural configurations. The main advantage of this method is that the
residual stresses are calculated from the same test sample that was fatigue tested, which is
useful for establishing FCG rate and relating it to sample size and residua stress distribution.
The test sample numbers are a so reduced.

The present method is described in detail in the methodology section, which is followed by
validation using a well-established residual stress distribution and the corresponding Kes.
Anaysis examples are from a variable-polarity plasma-arc (VPPA) welded M(T) sample in
2024 dloy tested under constant amplitude loads and constant AK. Limitations are pointed out
at the end the discussion section.

2. Methodology

2.1 Concept

Based on the principle of linear elastic fracture mechanics (LEFM), FCG rates can be
correlated with the stress intensity factor K, which is the characteristic parameter of the crack
tip stress field and is correlated by crack length and crack tip stresses. Therefore, the
procedure of the proposed method to obtain residua stress distribution from the da/dN data
contains two steps which are shown in Fig.1. The first step is to determine the K. e from
measured da/dN; and then to evaluate the residual stresses from the derived K, ~ a relation.
These two steps will be presented in details in sections 2.2 and 2.3.

crack growth rate
of the welded component

obtained by tests

crack growth law superposition method

modified crack growth law

Kres dueto
weld residual stresses

: FE analysis of the structure
: |or by Weight function method

!

 |Kres due to unit residual stress

Residual stresses

Fig.1 The concept and flowchart of the proposed inverse method.

The two step strategy, i.e. obtaining K, firstly and then residual stresses, is similar to the cut-
compliance method and the on-line crack-compliance method. The main differences are
summarised in Table 1.



Table 1 Comparison of the solution steps in the cut-compliance, on-line crack-compliance and

inverse methods
Step 1: Step 2:
Approach determination of evaluation of residual
Kres from changesin stress by
Cut-compliance strain during cutting WFM
On-line crack- displacement during crack WEM
compliance propagation

Inverse method Fatigue crack growth rate FEM (or WM if

available)

The advantages of determining K;e from test da/dN data are: 1) factors, e.g. crack closure,
crack growth threshold, etc., can be taken into account by choosing an appropriate crack
growth rate law; 2) residua stresses will come from the same specimen tested for the crack
growth data; 3) there are no specia requirements for the test system comparing with the on-
line crack-compliance method. The reason for choosing the FEM in stead of the WFM in
evaluating residual stresses from K¢ is that the modern welding techniques are widely used
on manufacturing complex integral aircraft components for which weight functions are not
readily available.

2.2 Step 1: determination of K, from da/dN test data
There are many empirical FCG laws to describe the relationship of da/dN and AK [19]. The
generalized form of these laws can be expressed as:

da

N f(AK, R) (1)
In the presence of residual stresses, the superposition rule is often employed to describe the
stress field near crack tip due to the externally applied and residual stresses[1, 19]. Then,

AKtot = Ktotmax - Ktotmin = (Kappmax + Kres)_(Kappmin + Kr%): AKapp (2)
K omn + K
— appmin res 3
R Kappmex T Kres )
The generalized form of the modified crack growth laws in the presence of residual stressesis:
da
_N = f(AKapp’ Reﬁ ) (4)
or
98 _ (Ko Ko Ko) 5
m_g appmax ! Nappmin?® Nres ( )
K apormex @D K i @€ fixed parameters controlled by the applied cyclic loads during FCG

test, therefore, the relationship of da/dN and K, isunique and solvable.

In this study, the NASGRO equation [20], Eq. (6), is used. It takes account of the influences
of the mean stress, the critical and threshold SIF, and plasticity-induced crack closure on FCG
rates. It usually gives more accurate predictions provided that the material constants are
available.
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where, C, n, p, q are empirica material constants derived from base material FCG test data.
Coefficient Ay, A1, A2 and Ag are parameters associated with the stress state (sampl e thickness).
The thickness effect is also considered in Kit. a0 is the intrinsic crack length (0.0015 in. or
0.0381 mm).

According to the superposition rule, in the presence of residual stresses, Kmax and R are
different from the originally applied values, consequently f and AK,, are affected. Modified

NASGRO equation is given in eg. (9), in which R, isgiven by Eq. (3); f, can be obtained

(8)

by substituting Rin Eq. (7) by Ry ; similarly AK,, « isobtained by replacing Rand f in Eq.
(8) by Ry and f , respectively.
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In the experiments, da/dN vs. a data are obtained by differentiating the crack length vs. load
cycle relation that directly measured from FCG tests. Under constant amplitude loads, Kap, isa
function of crack length a and eqg. (9) can be generalised as:

da)
(mjl - G(a1 Krai) (10)

Knowing da/dN vs. a, K VsS. a relation can be calculated by solving the deterministic
function expressed by eg. (9) or (10) using a numerical method. In this study, the Newton-
Raphson iterative method [21] was employed. The solution process becomes much easier for
the constant AK case.

2.3 Step 2: evaluation of residual stresses from K,es - arelation

For specimens with weld line parallel to the applied load (as shown in Fig. 2), the longitudinal
residual stresses play a much more important role to the mode | crack growth rate compared
to the transverse residual stresses. For the FSW process, the distribution of longitudina
residual stresses often has a characteristic double-peak in the HAZ, whereas for the fusion
welds (e.g. VPPA and MIG) tensile residual stress part usually manifests multiple peaks as



shown in Fig. 3. Once aresidual stress distribution is given, corresponding K. eVs. a relation
can be calculated via the FEM or WFM. The problem now is an inverse one, i.e. to find the
distribution of residual stress from a given K ~ a data that are obtained from experimental
tests by the method described in Section 2.2.
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Fig. 2 Centre crack geometry with weld line parallel to the load direction.
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Fig. 3 Schematic of longitudinal residual stressfield in aVPPA weld.

According to the theory of LEFM, the total SIF in the vicinity of a crack tip due to two or
more different mode | loading systems can be found by an algebraic summation of the
respective SIFs. Therefore a given residua stress field can be treated as a set of a series of

discrete stresses (o,,0,,-+,0, ) acting at their respective locations (x, x,, -+, x;) & shown in

Fig. 4. Therefore, the sum SIF K, a crack length a due to these discrete stresses can be
calculated by eqg. (11):

Krai:i(Kj) (11)

=L



residual stress

= [— +> +.oc+>

Kies i (Kl)i (Kz)l (I{J)l (K™

Fig. 4 Summation of residual stress intensity factors due to discrete residual stresses.

If aunit residua stress is applied at location X;, then the SIF value for crack length & under
this unit stress is defined asB,

Ij'

which can be found by performing an FE analysis or WFM if

the corresponding WF is available. (K ] ), in eg. (11) represents the actual SIF value when the
residual stressat location X; is S, rather than aunit value, hence:

(K') =B, S, (12)
Furthermore, by adding the contributions of al discrete residua stresses for crack length a;,
i 1Sfound by:
e= 2 () = (BuBi . Br) (S S+ S (13)
j=1
Let (K Kyeepr resn) be the respective SIF value for each crack lengtha, (i =1,2,---,n),

Eq. (12) can be generallsed to be:

Bll BlZ “' B1m Sr%l Kres1
B:21 B:22 ’ B:Zm SreSZ _ Kr:$2 ( 1 4)
Bnl an "' Bnm SreSm Kresn

It can be imagined that a unit stress would have no contribution to the SIF value when it is
applied in front of the crack tip, such as stress o, in the example illustrated in Fig. 4.

Therefore, B; = 0, when x; >4a . Hence, if one choose x =g for B;, B will be a lower
triangular matrix. It is also understood that a unit stress that is applled behind but adjacent to
the crack tip will have the maximum influence on the B matrix diagona element B, , which is
in contrast with those unit stresses located much farther behind the crack tip that produce

the B, elements.
When m=n, we have:

S =B7K (15)

It means that the distribution of residual stress can be found once the (Km,ai) data is

available and the B matrix for discrete unit stresses is established. In this study, the linear
algebraic equations are solved by the Gauss-Jordan elimination method [21].



If m<n, i.e the unit stress locations (M) is less than the number of incremental crack length
(n), the solution of S, can be obtained by solving eq. (16):
S..=(B"B)'B'K . (16)

res =
However, for the circumstance of m>n, S cannot be determined.

In the determination of B matrix using FEM or WFM, residua stresses are dispersed
artificially in m locations; hence one can choose to set m = n, which makes it easier to solve

eg. (15).
Following examples and discussion are based on m = n, and the selection of the unit stress
location x, for B, to be the same as the location of crack lengtha, .

The most important task in this analysis is to determine the B matrix. Elements in the B
matrix are essentially SIF values corresponding to a specified location of unit stress and crack
length. The WFM method is suitable for ssimple and idealised configurations if appropriate
WFs are available. However, FEM is used in this work. Our intension is to develop a uniform
FEM-based approach for general geometries, including introducing residual stress into FE
models and calculating the B matrix elements. A comparison of the WFM and FEM in
calculating the B matrix is presented in section 5.

3. FE analysisto obtain B matrix

3.1 FE modd

Anayses were performed by a 2D FE model with higher order 8-node quadrilateral elements.
The ANSYS code was employed. Crack tip singularity elements transformed from the
conventional quadrilaterals by moving the mid-nodes to quarter point are used around the
crack tip. SIFs are calculated using the displacement method embedded in the ANSY S code
using the command “KCALC".

Since the elements in S obtained by eq. (15) have discrete values, Sesi 1S the average of the
residual stress between location x;.; and x.. The increment of x..; and x; depends on the finite
element size, which is set to be 1x1 mm in this study; therefore, residual stress value within
every 1 mm distance could be obtained. Elements near the crack tip are refined, see Fig. 5.

§0.1mm

crack tip elememts

LY

crack face Tmm
crack tip refined area near crack tip

Fig. 5 FE model and crack-tip elements.



Element size around the crack tip is 0.1 mm (insert of Fig. 5). However, in the crack tip
region, residual stresses within the 1x1 mm grid are assumed to have uniform values when
solving eg. (15).

3.2 Validation of FE model via calculating K, (forward method)
Firstly, K, ~ a relation is calculated for a given residual stress field using the forward

method. Several methods have been developed to input residual stresses into FE models, e.g.
inputting equivalent displacements or inputting measured residual stresses. In this study,
residual stresses are inputted directly into the FE model as an initial stress state using the
ANSY S command “INISTATE”. Since the longitudinal residual stresses are ailmost uniform
along the y-axis according to the measured data [6,7], measured residua stress filed is
modelled by applying a series of discrete values of (01, lo VRIS an) acting at their respective
x-axis locations (x1 Xp, e, xn) and keeping each individual stress value constant along the y-
axis.

A benchmark test was conducted to validate the FE model. The purpose was to calculate the
SIF for amode-1 crack located in a one-dimensional residua stress field as shown in Fig. 6. It
is a center crack tension geometry with infinite width. Residual stress field described by eq.
(17) and Fig. 6 was modelled as initia stresses in the FE model as previously described.
Numerically computed SIFs for ¢=10 mm and o,=1 MPa are compared with the
analytically derived, eg. (18) [22]. Since the stress intensity factor solution in eq. (18) and [22]
is for an infinite width condition, we choose the whole width W =600 mm and maximum
half crack length 40 mm in our FE model, which is close to the infinite width condition. The
comparison is shown in Fig. 7 indicating an excellent agreement.

c(X) =0, eﬁE(gj {1— (fﬂ (17)

C

K=o ma e70'42(%) {1_ l(ijz} (18)

T\ C

oo
a(x)
-C C

Fig. 6 One-dimensional residual stress field (longitudinal) [22].
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Fig. 7 Comparison of analytical and numerical K for mode-I crack subjected to one-
dimensional longitudinal residual stressfield.

3.3 Calculation and validation of B matrix (inver se method)

Since element B, in the B matrix isthe SIF corresponding to unit stress applied over distance
(xj_l,xj) at crack length a, B, can be determined by introducing unit tension stress to the
elements located within (xj_l,xj ), and then calculating SIFs of different a by the FEM. Here
weset X, =}, a =i (i, j=12--n).

It should be mentioned that Bj; is the SIF derived from the unit tension stress only. However,
if only a unit tension stress is introduced to the FE model, there will be compressive stresses
in the adjacent elements to where the unit tension stress is applied to satisfy the self
equilibrium requirement. A way to balance the unit tension stress is to apply a unit
compression stress in front of and away from the crack tip. As previously mentioned (section
2.3), a compressive unit stress applied in front of the crack tip will not contribute to the
calculated SIF value, however, it will change the redistributed stress field to ensure that the
SIF is entirely caused by the unit tension stress. Fig. 8a and b illustrate the comparison of
redistributed stresses in the FE model (with no crack) after the self equilibrium steep between
the balanced and unbalanced unit stress. Fig. 8c shows the resultant nodal solution of oy, along
the x-axis, which indicates clearly the existence of distributed compressive stresses in the case
of introducing only the unit tension stress. The presence of these compressive stresses will

affect the B;; value. For the two cases in Fig. 8a and b, the SIF value at two crack lengths are
given in Table 2 to demonstrate the influence of unit compressive stress on Bj;.

Table 2 Comparison of the calculated SIF due to balanced and unbalanced initial unit stress
(unit tension stress acts at 5-6 mm; unit compression stressis at 35-36 mm)

Crack length @; (mm) 6 10
unbalanced unit stress
SF (Fig. 83) 0.04996 0.01186
(MPavm) |  balanced unit stress
(Fig. 8b) 0.05120 0.01347
Error of SIF (%) -2.42 -11.89

10
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Fig. 8 Redistributed initial stressfieldsin the FE model (W= 600 mm) after self equilibrium:
(@) introducing only unit tension stress (unbalanced), (b) introducing self-balanced initial
stresses, (€) comparison of the nodal stress oy, along x-axis of the FE model for the two cases

In order to validate the calculated B matrix, the benchmark example used in the forward
analysis (from given o, to find K, ) was used again for an inverse analysis. The geometry

and residua stress field and K are given in Fig. 6 and egs. (17) and (18). Elements B; for
this geometry (W = 600 mm) corresponding to various crack length a, under unit stress acting
on different locations x; , ~ x; arelisted in Appendix 1. Calculated residua stress distribution

Is shown in Fig. 9 showing excellent agreement with the theoretical solution, Eq. (17) [22].
This exact agreement validates the inverse method and the B matrix for the M(T) geometry.

11



1.0

O inverse method
Eq. (17) [22]

0.6 -

0.2 |-

Residual stress (MPa)

-0.2 +

06 PR IV RN S S SR SR S S S S

X (mm)

Fig. 9 Comparison of the residual stresses obtained by the inverse method and the given
distribution by Eq. (17)

4. Case study: evaluating residual stresses of VPPA welded 2024 joint

Test sample in [7,8] is used in this study that is an M(T) geometry, W =80 mm, made of
aluminium alloy 2024-T351. The sample contains a longitudina weld by single pass
autogenous VPPA welding process. Base material properties are E =73 GPa, yield and
ultimate tensile strengths 372 and 470 MPa, respectively. Crack growth rate test results were
reported in [7,8]. Materiad constants C, n, p, g used in the NASGRO crack growth rate
equation, i.e. eg. (3), are available in [20] and aso listed here, C = 1.707E-10, n = 3.353, p =
05,9g=1.

Measured da/dN vs. a data from four test cases are used here, i.e. constant applied AK

(AK=4,6, 11 MPa/m, R= 0.1) and constant amplitude applied stress (Ao = 42.6 MPa,
R=0.6) , which istaken from [7,8] and shown in Fig. 10. First, K, are obtained by solving
eg. (9) by anumerical iterative method using the software MATHCAD, and the results for the
four cases are shown in Fig. 11. Since, K, is actually a crack tip parameter derived from an
existing and unique residual stress field, its value should not be affected by the loading
conditions adopted in the FCG tests. Therefore, K, values obtained from the aforementioned
four different loading condition tests are averaged to reduce the influence of the scatters in
testing. Second, calculated average K, is substituted to eg. (15) to find the corresponding

residual stress distribution S, . The calculated residual stress distribution and the measured

[7-8] are shown in Fig. 12. The trend and magnitude of the residua stress distribution are
modelled correctly, but there are differences in the magnitude with the measured data. The
differences arise partially from the possible scatter in the da/dN vs. a test data and partialy
from using the base material constantsin eg. (9) (rather than weld metal constants) to describe
crack growth in welds, which will be discussed in section 5.2. A scatter band of about 20 MPa
in the measure residua stress data [23] could also contribute to the discrepancy.

12



It should be pointed out that the B matrix is associated with the geometrical configuration of a
specimen, hence the B matrix used in this example, which islisted in Appendix 2, is different
dightly from the one presented in Section 3.3 (Appendix 1) due to the finite width of this
specimen. The relationship between B;; and panel width Wwill be mentioned in section 5.1.
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Fig. 10 da/dN test data[7, §]
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Fig. 11 Calculated K, by solving eqg. (9).
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Fig. 12 Calculated average residual stress by the inverse method and comparison with
the test measured.

5. Discussion

5.1 About the B matrix

It has been previously mentioned that the elements in the B matrix are essentially the SIF
values corresponding to a crack length under a unit stress applied at a specified location. The
SIF at crack length a due to an arbitrary set of residual stresses Sies Can be obtained by a
summation of the product of these stresses and Bj;, eq. (19). Since B is a lower triangular
matrix, i.e. B = 0 when j > i, the summation only needs to be made for j = 1 —i (i being the
crack tip location index).

Kres(ai): Zé: Eﬁj' S;resj (1Sn

AlthoughB; and S, are discrete values corresponding to g and x;, it could be argued that

i

B, and S; can aso be described by continuous functions expressed by egs. (20) and (21).
B=glax), B =gla.x) (20)
Sres:U(X)’ Sesi :U(Xj) (21)
Then, eg. (19) can be rewritten as:
K= _[ :a(x)g(a, X Jolx (22)

Eq. (22) is consistent with the weight function in form [24]. It has been pointed out in [25]
that g(a, x)is numerically equal to the K due to a couple of unit forces applied in the x

position for a crack of length a, which suggested a way to obtain weight functions
numerically with a series of FE calculations. Therefore, for ssmple geometries for which
weight function are avail able, the B matrix can also be calculated by WFM.

14



A comparison of the B matrixes for a M(T) geometry determined by WFM and FEM are
given below. Wu and Carlsson’s weight function [26] is used here that is for a centre crack in
a finite width plate subjected to two linearly distributed stress segments symmetrically acting

on the crack faces in the interval x| <|x|<|x;|. The SIF for this configuration [26] can be
expressed by eg. (23) and (24).
o(X)/o,=Kx|+b, |x|<[x|<|xX)| (23)
K = fo,JmaW, f =Kf, +bf, (24)

where, o, is a nomina stress, a’ and X" are non-dimensional crack length and coordinate,
respectively, defined by a' = 2a/W, X' =2x/W, and:

1k
= LY R | P
fl_ﬂ_ izl:zi_1|:1 o , fc_ﬂ_ ;ﬂl(a)Ql a y (25)
Ql(x’/a')zsin‘lz(x’/a'), i=1 (26)
Qlx/a)= 1 a{l (a” c@-3La)t, iz2 @

B(@)=2, p,(a)= %tan(%j Bs(@)=0 for H/W>20 (28)

For the M(T) sample under unit stress, let k=0, b=1, (x’J —X’H)-Wzl, then B, can be
calculated by eg. (24) and the result is expressed as:

K (@[ o[ X))
B = "V x {;ﬂ.(m(dﬂ (29)

Xiq

This function also shows the relationship of B
investigated.

The WFM determined B;; values are plotted in Fig. 13 against the FE results for the M(T)
specimen used in Section 4. The agreement is exact; hence the proposed FE method to find
the B matrix is validated by a well-established weigh function method; the FE based inverse
method can be used for complex geometries where corresponding weight functions may not
be available.

with the width of the M(T) specimen

i
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Fig. 13 Comparison of B; values determined by FEM and WFM (W=80 mm).

5.2 Limitation and applicability of the inver se method

The discrepancy between the calculated and measured residual stresses shown in Fig. 12 arise
partialy from the scatters in the da/dN test data and partially from using eg. (9) to describe
fatigue crack growth rates in the weld metal. For the latter, following observations are made.
In the NASGRO equation, material constants C, n, p and q are obtained from testing samples
made of the base material. For welded test samples, changes in the weld microstructures and
hardness could affect the crack growth rates; hence the values of these material constants.
This comment also applies to the use of any other empirical crack growth laws. Crack growth
rates have been found to be noticeably slower in softer zones (reduce hardness) within the
HAZ under constant AK loads [7-8]. Pouget and Reynolds have investigated fatigue crack
growth in FSW AA2050 C(T) specimens with the crack propagating perpendicular to the
weld under constant AK [27]. They have found that residual stresses have a mgjor effect on
the FCG rates, although changes in the microstructure and hardness also influence FCG rates,
and that using the nugget da/dN data gives better prediction than using the base material data.

For better understanding this points, considering that (da/dN) and (da/dN), are the crack
growth rates of the weld metal and base material, respectively, then:

(da/dN), =(da/dN), +A, +A, (30)
where A, and A, are the changes in crack growth rate due to residual stresses and
microstructure change, respectively. It isobviousthat (da/dN) = (da/dN), +A,,if A,#0.
When calculating K, using Eq. (9), it is assumed that

p
[e)
1-f AK
(Ej :(ﬁj +A, =C|| " |AK,, 2L @Y
dN w dN b 1_Reff (1 Kappmax+Kr$J
K

crit
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It can be deduced that if (da/dN)_ >(da/dN) +A,, then K . will be overestimated,
otherwise, if (da/dN) <(da/dN) +A,, K will be underestimated. Assume the error in
K. 1S a, then the resultant error in S is of the same order asthat in K, according to Eq.
(15) and Eq. (32).

B™(aK,s)=aB7K,, =aS, (32)

These also explain why the estimated residua stress in Fig. 12 is lower than the measured
valuein HAZ.

An example is given in Fig. 14 to illustrate the error in K, and S obtained from the
difference between (da/dN) ~and (da/dN) +A, . In this example, considering

AK , =4MPay/m , R=0.1, (da/dN), is assumed to be [ (da/dN), +A, [x110%, then the
error of K, and S iswithin 10% to 20%.

50

—— difference of (da/dN), and (da/dN),+,

—eo— resultant error in K
40 L res

30 -

err (%)

00 0-0-¢_
20 + .,,.,,.——.". ® A ."'——.,7.;.
.o
o o
S
o
@

10 -

0 L 1 L 1 L 1 L 1 L 1 L 1
0 5 10 15 20 25 30

K_  (MPam™

res

Fig. 14 Error in K, resulting from the crack growth estimation model

A way to solve this problem is to measure fatigue crack growth rates using welded samples
with residual stresses being totally released. Therefore measured material constants in FCG
laws reflect weld microstructure properties. Effect of residual stresses can then be considered
in the calculation of stress intensity factors.

This problem, i.e. change in material propertiesin weld zone, also exists in other mechanical
methods including the cut compliance and the on-line crack-compliance method that are used

to determine the K, , because the compliance relationships between measured
strain/displacement and stress are based on the base material.

However, for the M(T) specimen used in this study, an initial crack was made at the weld
centre. When the crack propagated from the weld to base material, micro-structural effect
should have less influence on crack growth rates compared to the C(T) sample in [27] where
crack propagated from the base materia region towards the weld. Therefore, the method can
provide reasonably good prediction of the residual stress.

5.3 Crack closure effect

The modified NASGRO equation, eg. (9), has been employed in this work that takes into
account of plasticity-induced crack closure by the parameter f, which is expressed eqg. (7).
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Since f is a function of the effective stress ratio R (eg. 3), the contribution of weld residual
stresses to crack closure is considered through the calculation of residua stress intensity
factors.

6. Conclusions

An inverse method is presented for evaluating thermal residual stresses in welded structures
viameasured fatigue crack growth rates. The method is based on the fracture mechanics crack
growth law and superposition law for extracting the residual stress intensity factor from
measured crack growth rate data and on the establishment of a set of linear algebraic
equations representing the relationship between the residua stresses and residual stress
intensity factors.

The method isfirstly validated by an assumed analytically residual stress distribution and well
established corresponding stress intensity factor, for which the agreement is exact. The
method is then applied to an M(T) sample made of 2024-T3 alloy with a longitudinal weld
and tested under constant amplitude load and constant stress intensity factor ranges.
Agreement with measured residual stresses is reasonably good. Causes for small discrepancy
from the measured data are identified and discussed.

In terms of numerical modeling techniques, inputting initial residual stressesinto an FE model
and calculation of the unit stress SIF (the B matrix) are presented in detail. The FE evaluated
B matrix for the M(T) geometry is validated by a weight function solution. Therefore, the
proposed numerical procedure for determining weld residual stresses can be employed for
complex geometries, for which FEM is more versatile and robust.

The proposed inverse method can be employed for cases where crack growth path is
perpendicular to the welds and the influence of longitudinal residual stresses is more
significant than changes in the weld microstructure.
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APPENDIX

1. B matrix for the M(T) geometry of whole width W= 600 mm used in section 3.3 (unit: MPaVm)

"y
a; 0~2 2~3 3~4 4~5 5~6 6~7 6~8 6~9 9~10 | 10~11| 11~12| 12~13| 13~14| 14~15 29~30
(mm)

2 0.0792

3 0.0450 | 0.052

4 0.0372 | 0.023 | 0.0515

5 0.0327 | 0.0184 | 0.0225 | 0.0513

6 0.0296 | 0.0159 | 0.0179 | 0.0222 | 0.0511

7 0.0272 | 0.0143 | 0.0155 | 0.0175 | 0.0219 | 0.051

38 0.0253 | 0.0132 | 0.0139 | 0.0151 | 0.0173 | 0.0217 | 0.0509

9 0.0239 | 0.0123 | 0.0128 | 0.0136 | 0.0149 | 0.0171 | 0.0216 | 0.0508

10 0.0226 | 0.0116 | 0.0119 | 0.0125 | 0.0134 | 0.0147 | 0.0169 | 0.0215 | 0.0507

11 0.0216 | 0.011 | 0.0112 | 0.0117 | 0.0123 | 0.0132 | 0.0145 | 0.0168 | 0.0214 | 0.0506

12 0.0206 | 0.0105 | 0.0107 | 0.011 | 0.0115 | 0.0121 | 0.013 | 0.0144 | 0.0167 | 0.0213 | 0.0506

13 0.0198 | 0.01 | 0.0102 | 0.0104 | 0.0108 | 0.0113 | 0.0119 | 0.0129 | 0.0143 | 0.0166 | 0.0212 | 0.0505

14 0.0192 | 0.0096 | 0.0098 | 0.01 | 0.0103 | 0.0106 | 0.0111 | 0.0118 | 0.0128 | 0.0142 | 0.0165 | 0.0211 | 0.0505

15 0.0184 | 0.0093 | 0.0094 | 0.0096 | 0.0098 | 0.0101 | 0.0105 | 0.011 | 0.0117 | 0.0127 | 0.0141 | 0.0164 | 0.0211 | 0.0504

30 0.0134 | 0.0067 | 0.0068 | 0.0068 | 0.0068 | 0.0068 | 0.0069 | 0.0069 | 0.0070 | 0.0071 | 0.0071 | 0.0072 | 0.0074 | 0.0075 0.0503




2. B matrix for the M(T) geometry of whole width W= 80 mm used in section 4 (unit: MPavVm)

X-17 X
- (mm) 0~2 2~3 3~4 4~5 5~6 6~7 6~8 6~9 9~10 | 10~11| 11~12| 12~13| 13~14| 14~15 29~30
(mm)

2 0.0795

3 0.0454 | 0.0522

4 0.0379 | 0.0233 | 0.0518

5 0.0335 | 0.0188 | 0.0229 | 0.0516

6 0.0305 | 0.0164 | 0.0184 | 0.0226 | 0.0514

7 0.0284 | 0.0149 | 0.0161 | 0.0181 | 0.0224 | 0.0514

8 0.0268 | 0.0139 | 0.0146 | 0.0158 | 0.0179 | 0.0223 | 0.0513

9 0.0255 | 0.0131 | 0.0136 | 0.0144 | 0.0157 | 0.0178 | 0.0222 | 0.0513

10 0.0245 | 0.0125 | 0.0129 | 0.0135 | 0.0143 | 0.0156 | 0.0177 | 0.0222 | 0.0513

11 0.0237 | 0.0121 | 0.0123 | 0.0128 | 0.0133 | 0.0142 | 0.0155 | 0.0177 | 0.0222 | 0.0513

12 0.0231 | 0.0117 | 0.0119 | 0.0122 | 0.0127 | 0.0133 | 0.0142 | 0.0155 | 0.0177 | 0.0222 | 0.0512

13 0.0226 | 0.0114 | 0.0116 | 0.0118 | 0.0122 | 0.0126 | 0.0133 | 0.0141 | 0.0155 | 0.0177 | 0.0222 | 0.0513

14 0.0222 | 0.0112 | 0.0114 | 0.0115 | 0.0118 | 0.0122 | 0.0126 | 0.0133 | 0.0142 | 0.0155 | 0.0177 | 0.0222 | 0.0513

15 0.0220 | 0.0111 | 0.0112 | 0.0113 | 0.0115 | 0.0118 | 0.0122 | 0.0126 | 0.0133 | 0.0142 | 0.0155 | 0.0177 | 0.0222 | 0.0513

30 0.0286 | 0.0143 | 0.0143 | 0.0143 | 0.0143 | 0.0143 | 0.0143 | 0.0144 | 0.0144 | 0.0144 | 0.0144 | 0.0145 | 0.0145 | 0.0146 0.0523




