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ABSTRACT 

This thesis describes the development and evaluation of a number of biosensors 

for food applications. 

The first part of this thesis deals with the development of Surface Plasmon Resonance 

(SPR) biosensor systems, coupled with Polymerase Chain Reaction (PCR) for the 

detection of GMO related amplified nucleic acids in foodstuffs. 

The first SPR Biosensor described, used streptavidin-biotin linkage chemistry to attach 

a P35S nucleic acid probe on dextran-coated SPR transducer chips. Methodologies 

were developed for both the PCR stage and post-PCR sample preparation for the 

sensitive, rapid and cost-effective detection of GMO-specific amplified DNA 

sequences. The final embodiment of the method was an asymmetric PCR 

amplification system with a simple sample processing step (0.3 M NaOH for 30 min in 

20 % v/v formamide). The developed PCR-SPR system was successfully applied to 

the screening of samples of GMO origin. 

The second SPR biosensor reported herein, is based on a SPR chip immobilised 

single-stranded thiolated DNA. The thiolated probe exhibited a hybridisation 

capacity of 95 RU (Resonance Units) for 100 nM of complementary DNA target 

and a detection limit of 5 nM. The potential of the current probe system for the 

detection of symmetrically amplified DNA sequences of short length was 

subsequently confirmed. 
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The second part of this thesis involved preliminary studies into the development 

of simple, disposable screen-printed electrodes for the electrochemical 

determination of glucose and L-amino acids in horticultural products. The 

dynamic range of the developed biosensors was up to 10 mM for glucose and up 

to 1 mM for L-leucine determination. The developed glucose biosensor exhibited 

encouraging analytical performance in fresh fruit samples. However, the L-amino 

acid oxidase electrodes consistently underestimated the amino acid content of the 

fruit samples. The latter observation was found to be primarily due to inhibitory 

components in the matrix. 
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Chapter 1: Biosensors as an Analytical Tool for Food Control 

CHAPTER I 

BIOSENSORS AS AN ANALYTICAL TOOL FOR FOOD CONTROL 

A biosensor (Figure 1.1) has been defined as an analytical device that associates a 

biological sensing element and a transducer (Coulet, 1991). Examples of 

biological elements specifically coupled to transducers are enzymes, antibodies, 

cell receptors, nucleic acids, and microbes. Transduction elements can be optical, 

electrochemical, calorimetric, magnetic, or mass sensitive (Tothill and Turner, 

2003). 

Analytes 

Figure 1.1: Schematic representation of the Biosensor. The biological recognition 
element is combined with a transducer and produces a signal (Tothill and Turner, 
2003). 
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Chapter 1: Biosensors as an Analytical Tool for Food Control 

The analyte reacts with the biological component and the transducer transforms 

the specific recognition signal of the analyte into an electronic, optical or similar 

signal, which may be readily quantified (Scott, 1998). Thus, both specificity and 

rapidity are achieved. 

Since Clark and Lyons first created a biosensor for glucose monitoring in 1962, 

biosensors have shown great potential in many areas, such as medicine, food 

analysis, biotechnology, and environmental monitoring. 

Food safety has a major effect in consumer health and well-being. Foodborne 

illnesses associated with microbial pathogens (e. g. Listeria, Salmonella), biotoxins 

(e. g. domoic acid in mussles), viruses (e. g. hepatitis A) and chemical 

contaminants could put at risk public health and considerably damage the profile 

of a food company. Although associated to some extent with consumer health, 

food quality has mainly an economical impact, since a food of poor quality has 

limited consumer acceptability. Food quality encompasses sensory properties 

(skin appearance, taste, flavour), nutritive values, mechanical and functional 

properties and defects (Abbott, 1999). Quality and safety assurance concerns a 

number of organisations, including the food industry and governmental agencies. 

The food industry needs to ensure the quality and safety of food products to 

comply with the legislation in force (additives, allergens, genetically modified 

organisms). On the other hand, governments need to use surveillance to ensure 

legislative requirements are met and that consumer safety is assured. Therefore, 
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Chapter 1: Biosensors as an Analytical Tool for Food Control 

food analysis is of primary importance as there is the need for accurate, sensitive 

and validated analytical methods. 

Food analysis is not an easy task, considering the complexity of the food matrices 

and the sensitivity requirements. Food analysis is also challenged by factors such 

as the form of the analyte, access to the analyte and the stability of the analyte 

during and after isolation (Scott, 1998). To have commercial interest, the 

biosensor must prove to be analogous to the standard analytical techniques 

offering, additionally, rapidity and cost-efficiency of measurement, without the 

need for time-consuming or expensive sample preparation. 

Developed biosensors implicated in food quality analysis have been mainly 

concerned with the enzyme catalysed detection of glucose, using glucose oxidase 

(Centonze et al., 1997; Mannino et al., 1997; Gavalas et al., 2000; Palmisano et 

al., 2000). In a lesser extent, detection of other carbohydrates, such as fructose 

(Kinnear and Monbouquette, 1997; Boujtita and Murr, 2000) and lactose 

(Amärita et al., 1997) has also been reported. From the naturally occurring L- 

amino acids, L-malic acid (Gajovic et al., 1997; Arif et al., 2002), L-glutamic acid 

(Matsumoto et al., 1998; Kwog et al., 2000) and L-lysine (Curulli, et al., 1998) 

have predominantly been studied with a few studies looking at the total L-amino 

acid content (Lee and Huh, 1999; Sarkar et al., 1999). 

Biosensor measurements of analytes associated with food safety include the 

detection of bacterial pathogens (Che et al., 2000; Hamid et al., 1998) and 
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chemical contaminants, like herbicides (Harris et al., 1999) and insecticides 

(Nunes et al., 1998). Biosensor-based methods for the detection of genetically 

modified organisms (Minunni et al., 2001, Mannelli et al., 2003; Mariotti et al., 

2002; Feriotto et al. 2002) and food allergens (Mohammed et al., 2001) could 

facilitate compliance with current legislations in force. 

To be regarded as a valid analytical method, the developed biosensor must face 

the challenge of real food matrices. In other words, the biosensor performance 

must be assessed in real food samples against standard analytical techniques. As 

this is not always demonstrated, there is a gap between the academic 

developments and potential of commercialisation. 

The current thesis attempts to develop biosensors for food applications. The 

developed biosensors presented in this study, are optimised in standard conditions 

and their performance is subsequently challenged in real food samples of raw 

materials and /or finished products. 
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Chapter 2: General Introduction-Part I 

CHAPTER 2 

GENERAL INTRODUCTION- PART 1: 

SPR BIOSENSOR DEVELOPMENT FOR THE DETECTION OF GMOS. 

2.1. GeneticaUy modified organisms 

Genetic change occurs continuously in nature. Micro-organisms have evolved 

adaptations of high diversity that represent an invaluable genetic resource. These 

changes may arise by mutations or other combination of genes created by fertilisation 

of eggs, pollen transfer or other naturally occurring DNA exchange. However, during 

the past decades, molecular techniques have been developed that allow direct 

modification of the genetic material of living organisms, such as micro-organisms 

and plants. All organisms that have a DNA sequence from another organism, are 

known as ̀ genetically modified'. Introduction of nucleic acid of a DNA segment into 

a plant gene is called transformation Such genetically modified organisms (GMOs) 

may contain genetic information and exhibit characteristics that have evolved in the 

context of completely unrelated species. 
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Chapter 2: General Introduction-Part 1 

2.1.1 Insect-pathogen, and herbicide-resistant plants 

The main goal of plant biotechnology is to develop new varieties of cultivated plants 

that exhibit improved propagation or nutritional/end product characteristics. The 

development of varieties that exhibit pest and disease resistance, increase yields and 

reduce the cost associated with the use of potentially hazardous pesticides. Other 

transgenic plants are resistant to herbicides, thus reducing the loss of crop production 

due to weed infestations (Glick and Pasternak, 2003). 

High levels of viral resistance can be achieved via expression of a viral coat protein, 

linked to a specific virus. Although the mechanism by which the plant acquires 

resistance is not understood, the ability of the specific virus to infect the plant and 

initiate a propagation cycle is greatly reduced. In this way, transgenic tobacco, potato 

and tomato plants have been ̀ engineered'. In an alternative embodiment ft=genic 

plants synthesise antisense RNA copies of virus coat protein genes. Transgenic 

plants of this type develop enhanced resistance against viral infections. 

For resistance against a broader range of viruses, other approaches have been sought 

These include the expression of the ribonuclease (RNAase) III (E. coil) in wheat that 

act by cleaving double-stranded RNA, the genetic material of most viruses (Glick 

and Pasternak, 2003). 

Biosensor Development for the Analysis of Food Quality 8 
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Other approaches have been investigated with respect to the development of 

transgenic plants conferring fungal and bacterial resistance. Many plants naturally 

respond to fungal or bacterial pathogens by the production of salicylic acid. Salicylic 

acid induces the synthesis of a group of proteins, known as pathogenesis-related (PR) 

proteins that include protease inhibitors and chitinases. Plants (e. g. tobacco) 

engineered to overproduce salicylic acid or constitutively express high levels of one 

or more PR proteins should prove more resistant against fungal pathogens. 

Approaches to the development of pathogenic bacteria resistant plants, include the 

expression of bacteriophage T4 lysozyme and antimicrobial peptides (Glick and 

Pastemak, 2003). 

Strategies to confer resistance against insect predators have involved a gene of an 

insecticidal protoxin, produced by one of the several subspecies of Bacillus 

thuringiensis. For example, B. thuringiensis subsp. kurstaki is toxic to lepidopteran 

larva, including those of moths and butterflies. B. thuringiensis subsp. israelensis 

kills diptera, such as mosquitoes and butterflies. Transgenic plants that express and 

synthesise a functional form of a Bt-protoxin at sufficient levels, are able to prevent 

damage from insect predators. Insecticidal proteins expressed in transgenic tobacco 

and cotton plants are the CrylAa, CrylAb, CrylAc. Each Bt protoxin is effective 

only to a narrow range of insect predators (Glick and Pasternak, 2003). 

Strategies for resistance over a broader range of potential predators include the over- 

expression of protease inhibitors. Protease inhibitors are naturally produced by some 

plants, such as cowpea. When digested, the protease inhibitors prevent the insect 
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Chapter 2: General Introduction Part I 

from hydrolysing plant proteins and the insect starves. Transgenic crop plants in 

which increased expression of these compounds has been achieved include rice and 

tobacco (Glick and Pasternak, 2003). 

The herbicide glyphosate acts as an inhibitor for the 5-enolpuryruvylshikimate-3- 

phosphate synthase (EPSPS), an enzyme involved in the synthesis of aromatic amino 

acids. Herbicide-resistant plants have been engineered to overproduce the herbicide- 

sensitive target enzyme, so that adequate amounts remain available for cellular 

functions, despite the action of the herbicide. Transgenic tomato, potato and cotton 

plants that produce resistant E. coli EPSPS are resistant to the effects of glyphosate 

(Glick and Pasternak, 2003). 

Another mode of herbicide resistance is due to herbicide inactivation. Resistant 

plants (e. g. tobacco, cotton) express the nitrilase gene from Klebsiella ozaenae that 

inactivates bromoxynil (3,5-dibromo-4-hybenzonitrile), a herbicide that acts by 

inhibiting photosynthesis. 

2.1.2 Stress- and senescence-tolerant plants 

Transgenic plants tolerant to adverse environmental conditions appear to offer the 

benefits of high production yield. On the other hand, reduction in premature fruit 

ripening and softening is beneficial to the fruit market. 
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Chapter 2: General Introduction-Part I 

High salt levels, freezing and drought all stimulate the formation of reactive oxygen 

species in plant cells. Membranes, proteins and nucleic acids, especially in 

mitochondria and chloroplasts can be damaged by oxygen radicals, such as the 

superoxide anion (02), which results in oxidative stress. One approach for enhancing 

oxidative stress tolerance is the modification of the enzyme superoxide dismutase. In 

normal plants, superoxide dismutase detoxifies the superoxide anion (02) to 

hydrogen peroxide (H202). Hydrogen peroxide is subsequently converted to H2O by 

various peroxidase or catalase reactions. Tobacco plants have been transformed to 

express a superoxide dismutase enzyme offering reduced oxygen radical damage 

under conditions of oxidative stress (Glick and Pasternak, 2003). 

The cellulase and polygalacturonase enzymes are induced during the senescence 

process in relation to fruit ripening. By inhibiting the expression of these enzymes, it 

has been possible to delay the fruit ripening process. For example, the expression of 

an anti-sense RNA gene introduced into tomatoes, has led to the reduction of 

polygalacturonase mRNA and enzymatic activity by 90 %. This genetically 

engineered tomato is known as ̀ FLAVR SAVR' and has been commercialised. 

More recently, genetic engineering has moved towards the development of transgenic 

plants with improved nutritional content Modification of the amino acid content, 

fatty acid composition and other taste compounds have already been investigated in 

the laboratory. 

As more genetically modified foods are commercialised, public concern upon the 

safety of GMOs has intensified. Toxicity and allergenicity, caused by the foreign 
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Chapter 2: General Introduction-Part I 

protein expression, has recently been evidenced in some oil-seed rape crops that use 

Bacillus amyloliquifaciens RNAase as part of a terminator approach (Hodgson, 

2001). 

Various methods have been employed to determine GMO markers in food products 

for consumer peace of mind. Immunological detection of the proteins derived from 

genetic engineering is usually based on the Enzyme-Linked ImmunoSorbent Assay 

(ELISA), a highly quantitative analytical method. A drawback of the system 

however, is that the modified protein may not be expressed or is only expressed in 

very low levels in a part of the plant that it is not used in food production. For 

example, the immunochemical detection of the Bt-toxin protein in the kernels of Bt - 

176 maize, is not immunologically possible, as the protein is expressed in very low 

amounts in the maize kernels compared to other parts of the plant (Popping, 2001). 

In addition, some introduced DNA sequences are not expressed as proteins, as in the 

case of transgenic tomato where only RNA is produced to inhibit the translation of a 

protein that influences the ripening process (Popping, 2001). Another disadvantage 

of the ELISA method is the possibility of denaturation of the trangenic protein as a 

result of processing (Hübner et at., 1999a). On the other hand, chemical detection of 

the transgenic protein using gas chromatography/mass spectrometry (GC-MS), fast 

protein liquid chromatography (FLPC), or capillary electrophoreis (CE) is reliable in 

certain cases (e. g the detection of chymosin by FLPC), but nevertheless, highly 

dependent on the protein expression levels. This eliminates its usefuleness, as many 

modified proteins in GM plants are present in very low concentrations (Popping, 

2001). DNA-based methods offer the advantage of high specificity and selectivity. 
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Studies using DNA to detect GMOs are mainly based on PCR amplification 

techniques. A suitable DNA based screening method able to detect 26/28 GMOs 

plants has been proposed by Pietsch et al. (1997) and is officially established on a 

European scale (Lipp et al., 1999). The method detects two regulatory sequences 

commonly found in transgenic plants. These sequences are contained in the 

promoter region (35s) of the CAMV (cauliflower mosaic virus) ribosomal RNA and 

the NOS terminator of the nopalin synthase gene originating from the soil bacterium 

Agrobacterium tumefasciens. 

Real-time monitoring of DNA hydridisation is also feasible by the use of 

technologically advanced PCR instruments, with signal generations based on a 

variety of fluorescence techniques. An example of real-time quantitative PCR 

detection of GMOs was provided by Hoehne et al. (2002). The method was able to 

detect and quantify the P35S content of GMO food materials by the use of the ABI 

prism 7700 sequence detection system. Competitive PCR is another detection 

method for GMOs that also provides a quantitative analysis of the target material 

(Hübner et al., 1999 a, b). 

In this thesis, the use of DNA biosensors is suggested as an alternative to the usual 

DNA based methods. Biosensors offer great sensitivity, easiness, specificity, low 

cost and amenability to field based usage. These characteristics make biosensors an 

attractive analytical method applied to various fields, from environmental monitoring 

to clinical analysis. 
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2.2 Objective of part 1: SPR biosensor development for the detection of 

GMOs 

In response to the increasing debate surrounding GMOs and their usage, the 

European Commission has adopted several proposals for the regulation on Novel 

Foods (1139/98,258/97). These mainly govern rules for authorisation and labelling 

of GMO derived products, as consumers wish to obtain complete information about 

what they consume. Another regulation (1139/98) covers the labelling of foodstuff 

derived from the GMO derived ̀Round Up Ready' and ̀ Novartis Bt-176' corn, as 

these products were commercialised before the Novel Foods Law went into effect. 

This law sets a one percent threshold for adventitious (accidental) contamination 

such as during cultivation, harvest, storage and processing 

(www. useu. be/agri/GMOs. html, 2002). 

An essential step in the labelling procedure of the GMO products is the availability of 

analytical methods, capable of reliably identifying evidence of GMO derived 

products in foodstuffs. 

This thesis focuses on the development of Surface Plasmon Resonance (SPR) DNA 

biosensor-based analytical methods for the detection of DNA-DNA hybridisation 

with respect to detection of GMO derived ingredients. 

The study focused on two key areas: i) the optimised coupling of an SPR DNA 

biosensor and Polymerase Chain Reaction (PCR) for the detection of PCR amplified 

nucleic acids (Chapter 3) and ii) the realisation of a functionalised thiolated DNA 

probe as a part of a mixed Self-Assembled Monolayer (SAM) system (Chapter 4). 
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In both developed biosensors, the hybridisation reaction was allowed to proceed 

between the target sequence (P35S) and a complementary sequence ('probe') 

immobilised on the sensor surface. 

2.3 Principles of DNA Biosensors 

DNA is composed by four repeating nucleotide bases: adenine, thymine, cytocine 

and guanine. DNA is usually in the form of a double helix that consists of two 

strands held together by hydrogen bonds. To fulfil its biological role (replication 

or expression), the DNA double helix has the ability to separate the two strands 

without disrupting the covalent bonds that hold each strand intact. This 

temporary separation of the DNA strands and the subsequent reformation occurs 

under physiological conditions at (rapid) rates needed for the maintenance of 

these genetic functions. The same features that allow DNA to perform its 

biological role in a cell make it possible to manipulate the nucleic acids in vitro. 

The noncovalent forces that stabilise the double-stranded DNA (dsDNA) structure 

may be disrupted by heat or exposure to low concentrations of salts. Dissociation 

of the hydrogen bonds between the bases results in the formation of entirely 

separated strands. The process of strand separation is called denaturation. The 

single-stranded DNA (ssDNA) product is relatively stable, but removal of the 

denaturing conditions allows the DNA to re-form (re-anneal) the double-stranded 

helix. Hybridisation is an extension of the re-annealing process, in which the 

annealing of complementary DNA strands from different sources is performed. 
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Complementarity is governed by the rules for base pairing between adenine- 

thymine and cytocine-guanine bases. The stability of hybridisation in a double- 

stranded DNA molecule depends on the percentage of complementarity. 

This basic property of DNA to hybridise has laid the foundation for DNA-based 

detection systems. Hybridisation can be performed in two ways: solution (liquid) 

hybridisation and filter (solid phase) hybridisation (Lewin, 1997). Hybridisation 

in solution involves the mixing of two solution preparations of single-stranded 

DNA. The drawback of solution hybridisation is the possibility of increased non- 

specific hybridisation when one or both of the two preparations used contain 

duplex DNA. In that case, the original complementary single strands can re- 

nature. This drawback is usually overcome by the solid phase hybridisation 

process, where one of the two complementary single strands is immobilised onto 

a solid support. DNA sensors also incorporate a suitable transducer, such as an 

electrode, crystal, or chips and thus are usually based on solid-phase 

hybridisation. 

The creation of biosensors based on single-stranded nucleic acids, involves 

several steps. First, a single-stranded DNA fragment containing the sequence of 

interest must be isolated from cells or synthesised. Single-stranded DNA 

molecules bearing complementarity to the ̀ target' sequence, and hence known as 

the ̀ probe' are then immobilised onto a solid support of a sensor. Immobilisation 

should be performed using an appropriate immobilisation chemistry that allows 

stability and high concentration of immobilised material. Recognition between 
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the 'probe' and the `target' sequence is achieved under specific conditions (such 

as appropriate ionic strength, pH, length of nucleic acid fragments), resulting in 

formation of the complementary complex (Yevdokimov et al., 1995). The 

complex formation between the `target' and the `probe' leads to a change in 

physicochemical parameters, such as mass, absorption or diffusion coefficients, 

and capacity of the layer formed on the transducer surface (Yevdokimov et al., 

1995). The most well-known example of ssDNA-based biosensors, in which mass 

changes resulting from complementary complex formation is detected is the 

piezoelectric biosensor (Thompson et al., 1991; Caruso et al., 1997; Storri et al., 

1998b). Another transduction methodology utilised for DNA-based biosensors is 

based on electrochemical signal generation. In this case, the hybridisation 

product can be detected by using redox-active metal/polypuridine complexes that 

associate selectively and reversibly with dsDNA. The presence of the 

immobilised double strand results in a higher DNA concentration near the 

transducer surface and thus higher voltammetric peaks are observed with respect 

to the single-stranded immobilised material alone (Millan et al., 1993 and 1994). 

Another type of DNA biosensor is that based on optical transduction, which will 

be discussed in the following section. 
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2.4 Affinity biosensors 

Optical techniques for chemical analysis are well established. Optical sensors detect 

changes in the properties of light, which are caused by interaction between 

electromagnetic waves and matter. Useful optical parameters includes amongst 

others: absorbance, fluorescence, phosphorescence, refractive index, evanescence 

wave, total internal reflection and surface plasmon resonance. It is in the scope of 

this thesis to deal with the optical affinity biosensing based on surface plasmon 

resonance (SPR) transduction and its application in DNA hybridisation studies. 

Other evanescent wave optical biosensors will be briefly described. 

According to Rogers, 1998: 

"'Affinity-based biosensors are analytical devices that use an antibody, sequence of 

DNA, or receptor protein interfaced to a signal transducer to measure a binding 

event ". 

Specific binding interactions between molecules form the basis of many 

biologically controlled processes. These molecular binding reactions are 

addressed in various biological systems with differing molecular complexity: 

from low molecular weight species like hormones, amino acids and sugars, to 

more complex structures such as peptides, proteins, cells and whole organisms. 

The chemical/biological implications of these reactions can be found in drug. 

receptor, enzyme-substrate and DNA-protein technology. The role of an affinity- 
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based biosensor is to probe these reactions, the kinetics governing the binding 

mechanisms and the concentration of the reactants. 

The first affinity-based bio-analytical assay, using antibodies as recognition 

elements, can be dated back in 1950s, when Yalow and Berson developed an 

radio-immunoassay for insulin measurement (Yalow and Berson, 1959). Since 

then, a wide variety of affinity-based biosensor configurations has been 

developed. 

For affinity biosensor devices to be realised, three important steps need to be 

performed: the fabrication of an appropriate transducer, the selection of a 

biomaterial able to probe the analyte of interest and the immobilisation of a 

suitable probe onto the surface of the transducer. Transducer mechanisms with 

bioaffinity recognition elements include optical, acoustic, electrochemical and 

thermal. Bioaffinity elements that have been used in the development of an 

affinity biosensor include antibodies, receptors, and nucleic acids. 

Due to their high affinity and versatility, antibodies are the most widely used in 

the development of affinity-based biosensors. The use of monoclonal antibodies 

is generally the most favoured due to the high density of binding sites that can be 

immobilised onto the sensor's surface (Rogers, 1998). unity biosensors based 

on monoclonal antibodies have been well reported in the literature (Quinn et at, 

1997; Shimomura et al., 2001). 

More limited with respect to antibodies is the use of receptors. Biologically 

derived receptors are generally more difficult to isolate and reconstruct in vitro, 
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requiring specialised techniques. As many receptors originate from biological 

membranes, they often require reconstitution into a lipid environment in order to 

express their physiological action (Rogers, 1998). One of the most studied 

receptor proteins is the nicotinic acetylcholine receptor (nAChR) (Changeux et 

al., 1984). 

The use of nucleic acids has shown considerable potential in hybridisation studies 

for the detection of complementary oligonucleotides (Watts et al., 1995; Peterlinz 

et al., 1997), and intercalation of compounds that may be detected optically 

(Pandey and Weetall, 1995). Peptide nucleic acid (PNA) has demonstrated 

remarkable hybridisation properties towards complementary oligonucleotides and 

thus its use within affinity biosensor probes is rapidly developing (Wang, 1998; 

Sawata et al., 1999). 

Most affinity biosensors rely on competitive formats for analyte detection. These 

formats are considered to be either direct or indirect. For the direct assay format 

the antibody or receptor needs to be immobilised onto the transducer surface, 

while detection follows the binding of a labelled traced analyte. Indirect assay 

format uses enzyme-labelled analyte wherein catalytic activity provides the 

analytical signal after removal of the unbound to the probe analyte. Another assay 

format in antibody-based biosensors relies on the use a labelled analyte tracer that 

competes with an unlabeled analyte for the antibody binding sites on the 

transducer surface (Rogers, 1998). 
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2.5 Evanescent wave optical DNA biosensors 

Optical sensors detect changes in the properties of light caused by an interaction 

between electromagnetic waves and matter. In the intrinsic mode, the 

electromagnetic wave propagates in a waveguide and interacts with the sample at 

a surface within the evanescent field. 

Waveguides are physical media through which light can be directed. The 

propagation wave (light ray) may be viewed as being quantized into discrete 

propagation states called modes. In optical waveguides, light propagation occurs 

through total internal reflection (TIR). To obtain this phenomenon in a 

waveguiding medium and thus a minimal leakage of the light to the surroundings, 

the refractive index of the guiding medium (n1 ) has to be higher with respect 

to the refractive index of the surroundings (n, ý",, ). TIR can occur at a boundary 

interface between two media having different refractive indices, provided that a 

critical angle of reflection is met, as defined by Snell's law (Earp and Dessy, 

1998). 

sing= n odium / nsummn 

Snell's law defines a minimum angle of incidence for a particular waveguide 

interface. In case that the angle of the incident light is less than the critical angle 

of reflection, the light ray undergoes refraction. Snell's law also suggests that the 

critical angle for a particular waveguiding system depends on the ratio of the 

refractive indices of the media involved. 
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There is another criterion for the light to be propagated and this refers to the 

phase shift that occurs when a wave is reflected at a dielectric boundary. To 

provide a constructive interference for the wave to travel through the waveguide, 

the phase shift must be a multiple of 2ir for every two wave reflections. If this 

criterion is not satisfied the wave will quickly be attenuated (Earp and Dessy, 

1998). 

When a beam of light is in the interface between two transparent media under 

conditions of total internal reflection, an electromagnetic field is produced and it 

propagates along the surface decaying exponentially perpendicular to it. The 

electromagnetic field generated is called evanescent energy wave and penetrates 

into the medium with low refractive index (ns�. �n) (Earp and Dessy, 1998). 

Emission and absorption of electromagnetic radiation are very useful phenomena 

for chemical analysis. Optical sensors have been used for this purpose for many 

years and they are among the oldest and best established techniques for direct 

sensing of biomolecular interactions. Several kinds of optical transducers may be 

exploited to form the basis of a DNA biosensor. These include resonance mirrors 

(RM), total internal reflection fluorescence (TIRF) and surface plasmon 

resonance (SPR). 
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2.5.1 Optical DNA biosensors based on fluorescence 

Total internal reflection fluorescence is the process whereby fluorophores that are 

either attached to, or in close proximity to, the surface of a waveguide are 

selectively excited via an evanescent wave (Sapsford et al., 2002). 

TIRF systems usually involve competitive assay formats where the unlabelled 

analyte competes with a fluorescently labelled analyte-analogue for binding to a 

immobilised material at the sensor surface (Earp and Dessy, 1998). The binding 

of the analyte to the immobilised substrate is measured via interaction of the 

fluorophore with the evanescent wave arising from TIR of a light beam (Earp and 

Dessy, 1998). In TURF sensors the waveguide may be an optical fiber, planar or a 

prism. The optical fiber has a cylindrical geometry, while planar and prism 

formats use TIR at their planar surfaces (Earp and Dessy, 1998). 

In fiber optic evanescent-based biosensors, fluorescent DNA-intercalating dyes, 

fluorophore-labelled target DNA or probe DNA (molecular beacon) have been 

reported. A commonly used fluorescent DNA stain is ethidium bromide. The 

fluorescent ethidium cation strongly associates with the dsDNA in the base 

stacking region and, in some cases the major groove of the double helix structure 

(Monaco and Hausheer, 1993). One of the first biosensors for direct analysis of 

DNA hybridisation by use of an optical fiber was developed by Piunno (Piunno et 

al., 1994). Hybridisation between the covalently immobilised oligomers with the 

available complementary ssDNA was detected by the use of ethidium bromide. 
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The first integrated fiber-optic DNA sensor array able to monitor multiple 

hybridisation events simultaneously was proposed by Healey (Healey et al., 

1997). The DNA sensor array involved the immobilisation of different 

oligonucleotide probes that hybridised with 5'-fluorescein isothiocyanate labelled 

target oligonucleotides. The system was able to detect point mutations in DNA. 

Another example of fluorophore-conjugated target DNA was provided by LO (Lü 

et al., 2000). Hybridisation of the immobilised probe sequence was achieved with 

fluorescein conjugated target sequence and studied in situ by the use of an optical 

fiber. An optical fiber-based Single Molecule Detection (SKID) method was used 

for the imaging of single molecular beacon DNA molecules (Fang and Tan, 

1999). 

Molecular beacons comprise a new class of single-stranded oligonucleotide 

probe, bearing a stem and loop configuration (Tyagi and Kramer, 1996). The 

loop region is complementary to the target sequence and the two ends are labelled 

with either a fluorophore (5' prime end) or a quencher (3' prime end). When the 

stem and loop structure is conserved, fluorescence emission is quenched. In the 

presence of a target sequence however, hybridisation reaction with the loop 

sequence, causes the structure to open up. The increased distance between the 

two ends prevents the efficient quenching of the fluorophore, and thus a 

fluorescent emission is observed. The study suggested the feasibility of detecting 

single molecules in solution. 
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Planar waveguide TIRF has also been used for the study of DNA hybridisation. 

Peter et al., (2001) used the system to measure hybridisation events using Cy5- 

labeled target DNA. In this case, the oligonucleotides complementary to the 

target were immobilised onto the surface of a disposable sensor chip. 

2.5.2 Resonant mirror 

The resonant mirror comprises a glass prism, the top surface of which is coated 

with a low refractive index silica spacer layer, which in turn is coated with a 

thinner high refractive index waveguide of metal oxide. This film is then coated 

with the desired bioselective layer. A laser light (7= 670nm) is directed at the 

prism and polarised to produce equal intensities of components of light. At a 

certain angle of incidence, termed the resonant angle, light passes from the prism 

through the low refractive index coupling layer and propagates in the high 

refractive index waveguide layer at the same angle. The bioselective film 

overlaying this arrangement is a low refractive index layer, Thus, propagating 

light in the high refractive index waveguide layer will generate an evanescent 

field extending into the bioselective layer. Refractive index changes within this 

field cause changes in the resonant angle at which light couples into the resonant 

structure. Only the light that has travelled within the resonant structure passes 

through a phase polariser and is eventually collected by the detector. Light not 

undergoing a phase change is coupled via the low refractive index layer into the 
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high refractive index layer, where it undergoes multiple total internal reflections 

at the top interface (Kinning and Edwards, 2002). 

This technology has been applied to the direct and rapid detection of ssDNA- 

ssDNA hybridisation. Oligonucleotide probes have been immobilised onto the 

surface of the sensor and hybridisation of a target label free oligonucleotide (40- 

mer) was monitored in real time (Watts et al., 1995). 

2.53 Surface plasmon resonance 

Surface Plasmon Resonance (SPR) is a surface sensing technique that can be used 

to probe refractive index changes occurring within the vicinity of a sensor surface 

(Earp and Dessy, 1998). 

A surface plasma wave (SPW) or a surface plasmon-polariton is an 

electromagnetic wave which propagates along the boundary between a dielectric 

and a metal (Boardman, 1982). Optical excitation of a surface plasmon can be 

accomplished if a light beam is totally internally reflected at the surface of a glass 

substrate onto which a thin metal is deposited (Nylander, 1987). 

Wavevectors are mathematical expressions that describe the propagation of light 

and other electromagnetic phenomena (Earp and Dessy, 1998). The wavevector 

of the evanescent field (Kev) is given by: 
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where wo is the frequency of the incident light , il,, the refractive index of the 

dense medium (glass), 0 the angle of incidence of the light and c the speed of 

light in a vacuum. The wavevector of a surface plasmon (SP) can be 

approximated to: 
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where em is the dielectric constant of the metal film and il, the refractive index of 

the dielectric medium (Matsubara et al., 1988). 

When the wavevector of the light is made to match the wavevector of the surface 

plasmon, the surface plasmon is resonantly excited, resulting in energy loss from 

the reflected intensity. Excitation of the surface - plasmon occurs under a 

combination of a specific wavelength, the resonance wavelength of light, and a 

specific angle of incidence, the surface plasmon resonance angle (SPR angle) 

(Melendez et al., 1997). 

The surface plasmon resonance angle (SPR angle) is very sensitive to variations 

of the refractive index of the medium extending about 100nm outside the surface 
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of the metal (Nylander, 1987). Any changes occurring within the plasmon's 

electric field can therefore be detected as change of the SPR angle. 

The most common method for setting up a surface plasmon is the Kretschmann 

configuration (Figure 2.1) (Kretschmann and Raether, 1968). The Kretschmann 

prism arrangement is a structure where a light beam is coupled into a surface 

plasmon mode that can exist at the surface of a solid metal film (Figure 2. I). 

Light which is p-polarised with respect to the metal surface is launched onto the 

metal's surface and coupled into the surface plasmons (Earp and Dessy, 1998). 

Metallic films are typically fabricated from gold and silver. Gold is used due to 

its stability and silver because it provides a sharp SPR peak (De Bruijn et at., 

1992). The Otto configuration used in SPR devices has a high degree of 

similarity with that of the Kretschmann configuration, the difference being that 

excitation of light occurs in the outer metal boundary through a dielectric layer 

(Homola et al., 2002). 
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Figure 2.1: The Kretschmann configuration of SPR. Electromagnetic radiation is 
introduced into the prism and coupled into the SP mode on the metal film. 
Resonance of the SP mode occurs when the angle of incidence of the incident 
light is such that the evanescent component of its wave vector (Kev) is equal to 
the wave vector of the propagating light (Ksp). 

To obtain wavevector matching, the wavevector of the light, which is normally 

smaller than that of the surface plasmons, requires magnification by the use of 

prisms or gratings. 

The first commercial SPR biosensor was launched by BlAcore International AB 

in 1990 (Pharmacia, Uppsala, Sweden). BlAcore SPR sensors based on the 

Kretschmann geometry and angular modulation have found many applications, 

such as biornolecular interaction kinetic analysis, concentration assays and 
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affinity measurements. Figure 2.2, provides an illustration of the SPR principle 

used in BlAcore AB sensors. 

Polarised 
Light 

Iv 

1p 

Iý'00ý 
1 

Sensorgram 

Figure 2.2: SPR principle used in BlAcoreTM sensors (Pharmacia, Uppsala, 
Sweden). Binding of the interactants change the refractive index of the 
environment close to the SP and alter SPR angle, where maximum absorbance of 
light occurs. SPR changes are continuously measured and reported in the 
sensorgram. 

To perform an analysis, a biological component is immobilised at the sensor 

surface that also comprises the wall of the flow cell (Figure 2.2). Antibodies, 

DNA probes or enzymes are usually chosen as they offer high specificity and 

selectivity. Fixed wavelength light is then directed over the gold film. The 
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analyte solution flows over the sensor surface at a specifically controlled flow rate 

and hence interacts with the immobilised substrate. This interaction leads to 

molecular binding between the `receptor' and the `target' components, thus 

changing the mass concentration of the material attached to the sensor. This 

change in the refractive index of the environment close to the surface plasmon 

causes a shift in the SPR angle, where maximum absorbance of light occurs. A 

linear relationship exists between the magnitude of this shift and the magnitude of 

the chemical change. During a binding process, SPR changes are continuously 

measured to form a sensorgram that provides a complete record of the association 

or dissociation events between the interacting species (Figure 2.2). 

The SPR assay provides a convenient and effective method for the investigation 

of ssDNA-ssDNA interactions. DNA hybridisation studies based on SPR are 

relatively few and have been mainly applied in the analysis of clinical samples. 

Differences in the hybridisation levels between PCR amplified fragments carrying 

mismatches and fully matched sequences, allow the screening of mutations and 

pathologically significant DNA (Nilsson et al., 1997; Sawata et al., 1999; Kai et 

al., 2000; Feriotto et al., 2001). In 2001, Nakatani et al., developed a novel SPR- 

based system to detect guanine-guanine mismatches, one of the four types of 

single-nucleotide polymorphism. The novelty of their work, lays within the 

synthesis and use of ligands able to bind specifically and with high affinity to the 

G-G mismatches. Experiments with PCR amplified fragments containing a G-G 

mismatch gave a marked SPR response in comparison to perfectly matched 

sequences (Nakatani et al., 2001). 
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2.6 Immobilisation of biomolecules on gold surfaces for SPR sensing 

An essential requirement for SPR biosensors is that one of the interacting species 

must be immobilised onto the sensor surface. Many types of nucleic acid 

immobilisation on solid support may be applied to the development of an SPR 

biosensor. Particular aspects of immobilisation that have received significant 

attention include the efficiency of DNA coupling, the stability of attachment, the 

accessibility of oligonucleotides for hybridisation and the minimisation of non- 

specific binding. The focus of this chapter will be the examination of alternative 

techniques for the immobilisation of DNA molecules onto gold surfaces for SPR 

sensing. 

2.6.1 Physical adsorption of biomolecules 

Immobilisation of self-assembled monolayers through physical adsorption is an 

attractive method, owing to its versatility and simplicity. Physical adsorption of 

proteins onto unmodified solid surfaces may be accomplished through 

hydrophobic or electrostatic interactions. However, the technique suffers from 

serious disadvantages. The method does not ensure the appropriate orientation of 

material coating the sensor. Poorly defined strand orientation, low packing 

density and limited mobility often arise due to the passive adsorption process. In 

certain cases, the subject protein can undergo conformational changes, which 

affect its functional activity. Protein denaturation and subsequent inactivation 
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upon direct contact with the metal surface has also been noted (Butler et al., 

1992). 

2.6.2 Covalent immobilisation based on Self-Assembled Monolayers 

Self-Assembled Monolayers (SAMs) are monomolecular layers that exhibit high 

organisation and are spontaneously formed as a consequence of immersing a solid 

surface into a solution consisting of amphifunctional molecules. The defining 

feature of the SAM is the "pair" of the chemisorbing headgroup of the molecule 

and the substrate (Schreiber, 2000). Many systems are able to undergo self 

assembly: long chain carboxylic acids at metal oxide substrates, organosilane 

species (RSiX3, R2SiX2, R3SiX, where R is an alkyl chain and Xa chloro or 

alkoxy group) at hydroxylated substrates, exemplified by silicon and 

organosulphur-based species at noble metal surfaces. The latter system has been 

the most widely studied to date and thus is the best characterised in terms of 

stability and physicochemical properties. Alkanethiols (R-SH), disulphides (R-S- 

S-R) and sulphides (R-S-R) have the ability to strongly absorb on a metal surface 

(Nuzzo and Allara, 1983). Sulphur compounds co-ordinate very strongly to gold, 

silver, platinum and copper. The alkyl chains are found to be orientated away 

from the perpendicular plane with respect to the gold surface and the angle (a) is 

typically between 26° and 28° (Figure 2.3) (Bain et al., 1989; Ferretti et al., 

2000). 
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Figure 2.3: Schematic representation of a self-assembled alkanethiol (R-HS) 
molecule on gold. The tilt of the alkyl chain is at a well defined angle a from the 
perpendicular with respect to the gold surface (a is approximately 26-28(). 

While adsorption is due to the affinity of the head group to the surface, the driving 

force for organisation originates from the hydrophobic Van der Waals interactions 

of the long alkyl chains attached to the head group (Mandler and Turyan, 1996). 

Van der Waals forces orient and stabilise the monolayer. It has been observed 

that long chain alkanethiols (number of methylene groups n>10) assemble in a 

crystalline-like way. The key reasons that contribute to the success of the 

sulphur-containing compounds include amongst others: simplicity and reliability 

of the method of preparation; flexibility of generating a wide range of surfaces via 

the incorporation of different groups into the alkyl chain and chain termini of a 
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SAM; and possibility of applying a wide variety of techniques to the 

characterisation of the SAM surface (Ferretti et al., 2000). 

Sulphur atoms coordinate strongly on a gold substrate. Immobilisation of the 

sensing layer on the gold chip surface may be accomplished by a number of 

different approaches. A straightforward method for immobilising SAMs onto 

solid supports may be provided by physical adsorption (Löfas et al., 1995). 

However, the limitations of this method make it a non-favourable immobilisation 

technique. On the other hand, membrane entrapment may preserve the protein 

structure to a greater extent than the experienced in simple adsorption process, but 

protein detachment is feasible and probable (LÖfas et al., 1995). 

An interesting feature of SAM, is the capability of covalent bonding between the 

molecule to be immobilised and the substrate surface. Various chemical 

modification procedures permit such coupling by the use of specific molecular 

tags, containing functional moieties with high affinity for the chosen substrate. 

Self-assembly of molecules by chemical modification offers a number of 

advantages, such as reproducibility and stability of the monolayer, controlled 

density and environment of the immobilised species and reduction of possible 

random orientations (Ferretti et at., 2000). The strong affinity of sulphur- 

containing compounds for gold and other noble metals make them an attractive 

linking structure between the molecule of interest and the substrate surface. 

Linking of molecules, such as proteins, with sulphur-containing compounds is 

achieved via functional groups present within the tagging molecule structure able 
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to react with exposed groups at the surface of the molecule thus providing the 

immobilisation mechanism. 

The formation of SAMs by sulphur-containing compounds is performed either by 

chemical modification of the molecule to be immobilised or by chemical 

modification of the substrate where this molecule will be attached. In the first 

case, the molecule is tagged with the sulphur-containing compound via reaction 

with specific reactive groups present on the biomolecule surface (in the case of 

proteins, these could be the e amino group of exposed lysine residues). The 

modified molecule is then attached to the metal surface by the sulphur moiety. 

The substrate modification involves the self assembling of the sulphur-containing 

compound onto the substrate surface. The chemically modified surface is 

subsequently linked with the protein biomolecule again via specific moieties 

present within the biomolecular surface (Ferretti et al., 2000). 

Bilayers composed of two separate monolayers have also been documented in the 

literature. Supported hybrid bilayer membranes composed of a monolayer of 

alkanethiol and a monolayer of phospholipid attached onto the gold surface, 

provide a typical example of such structures applied in SPR studies. Plant et al., 

(1995) demonstrated the development of a lipid hybrid bilayer membrane (HBM) 

model by firstly coating the gold plasmon resonance surface with a hydrophobic 

SAM of octadecanethiol, to which phospholipid vesicles containing lipophilic 

agents of interest were allowed to unfold and fuse. Hydrophobic interactions 

between the alkyl chains of the alkanethiols and the phospholipid molecules 
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provide a strong stabilising force in the HBM. The system proved to be 

reproducible with high specific binding, whereas the presence of the phospholipid 

vesicles effectively eliminated the non-specific adsorption events, normally 

observed on the gold surface or the sulphur-containing SAM alone. 

Another model of bilayer formation is established by the adsorption of a 

monolayer of the polypeprtide poly(L-lysine) (PL) onto gold surfaces via 

formation of multiple ammonium -carboxylate ion pairs via a self-assembled 

monolayer of the alkanethiol 11-mercaptoundecanoic acid (MUA) (Jordan et at., 

1994, Frey et at., 1995). Using chemical modification, a variety of specific 

adsorption sites (e. g. biotin moieties) can be incorporated into the PL chain. The 

bilayer was proving to be beneficial in controlling the surface coverage of the 

specifically adsorbed proteins. The latter was demonstrated by modification of 

the PL monolayer with varying amounts of biotin that subsequently provided 

varying numbers of specific adsorption sites for avidin. The PL monolayer was 

successful in preventing the non-specific adsorption of proteins with relatively 

high isoelectric points (Frey et al., 1995). 

A general method for the immobilisation of proteins for applications on SPR 

biosensor studies, relies on the use of a carboxy-methyldextran matrix bound to 

gold surfaces to which recognition bioelements can be attached, thus enabling 

receptor-ligand or antibody-antigen or DNA DNA interactions (Figure 2.4). 

Dextrans are hydrophilic and non-charged natural polymeric carbohydrates which 

are highly water soluble and form highly hydrated hydrogel compounds. Due to 

the high concentration of hydroxyl groups in the dextran molecule, chemical 
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modification is feasible without significantly altering their hydrophilicity. 

Dextrans possess non-branched polymer chains, which are highly flexible and 

ligands immobilised in dextran matrices are well accessible (Frazier et al., 2000). 

The hydrophilic layer of dextran increases the SPR sensitivity and protects the 

gold surface from non-specific adsorption of proteins, while the reversible 

binding chemistry of the recognition element to the dextran matrix allows the 

surface to be regenerated and reused. (Kretschinann, 1968; Liedberg et al., 1993). 

A range of synthetic thiolated dextrans of varying molecular weights and degrees 

of thiol substitution have gained acceptability as well-defined monolayers. For 

affinity detection, covalently attached dextran layers have become a standard 

modification for various transducer systems (Löfäs et al., 1995; Storri et al., 

1998a). 
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Figure 2.4: Immobilisation of a biotinylated probe on a gold surface modified with 
thiols and carboxylated dextran. A fraction of the carboxyl groups on the matrix is 
transformed into reactive N-hydroxysuccinimide (NHS) esters by NHS and N-ethyl- 
N'-(dimethylaminopropyl) carbodiimide hydrochloride (EDC) treatment. These esters 
react with streptavidin to form covalent links. Immobilisation of the biotinylated 
probe is eventually achieved via biotin-streptavidin bonding (Johnsson et al., 1991). 

2.6.3 Immobilisation of DNA molecules via self-assembly mechanisms 

Self-assembled monolayers of functionalised alkanethiols on gold surfaces have 

also been applied in the development of DNA sensors. The self-assembly is 
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governed by the strong interaction and bond formation between the gold and the 

thiolated DNA molecule. It should be noted that single-stranded DNA will 

naturally adsorb strongly on a gold surface through interaction with the N- 

containing bases (purines and pyrimidines). The addition of a thiol moiety 

however, leads in the re-organisation of the DNA molecule on the gold surface, 

with the thiol group becoming the primary point of attachment. The covalent 

immobilisation of DNA onto self-assembled monolayers has been mainly studied 

and characterised by systems other than SPR transduction. These include 

between others quartz crystal microbalance and X-ray photoelectron spectroscopy 

systems. 

Herne and Tarlov (1997) developed a mixed monolayer of a thiol derivatised 

probe and a spacer thiol6-mercapto-l-hexanol (MCH) and extensively examined 

the effect of surface coverage on hybridisation reactions. Their work postulated 

that the thiol-gold interaction results in the adsorption of HS-ssDNA to higher 

coverages, compared to non-thiolated DNA. The HS-ssDNA monolayer was 

found not to be a tightly packed monolayer and thus the DNA chains are not 

mainly oriented perpendicular to the surface. Buffer concentration, in which the 

probe was suspended, played a critical role in the adsorption of DNA. To 

minimise intermolecular electrostatic repulsion between neighbouring DNA 

strands, conditions of high ionic strength were required. The data suggested that 

maximum surface coverage is obtained in KH2PO4 buffer concentrations greater 

than 0.45 M. It was also proved that dense packing of HS-ssDNA strands inhibits 

hybridisation with complementary molecules primary due to inaccessibility of 
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binding sites, but also due to inherent electrostatic inhibition and binding of the 

similarly charged complementing compounds. 

The use of mercaptohexanol (MCH) has proved to be particularly advantageous as 

it resulted in the removal of the non-specifically adsorbed ssDNA and in the 

verification of the probe surface to allow less dense packing between the HS- 

ssDNA molecules (Herne and Tarlov, 1997). The latter inhibited the interaction 

of nitrogen containing bases with the surface and contributed to a favourable 

conformation of the HS-ssDNA, thus facilitating successful hybridisation. The 

length of the MCH molecules (identical to the methylene group spacer in HS- 

ssDNA) was not of sufficient chain length to interfere with the hybridisation 

reactions of surface bound DNA (Herne and Tarlov, 1997). 

The model of mixed SAMs has been further developed to allow attachment of 

unmodified double or single-stranded DNA onto gold chips. Two species of thiol, 

either DNA-terminated or triethylene glycol-terminated, were incorporated into 

the SAM (Bamdad, 1998). The system was able to detect dsDNA having a 

single-stranded tail, complementary to the DNA incorporated into the SAM. 

Further modification involved the enzymatic production of a covalent bond 

between the 5' end of the incoming dsDNA with the 3' end of the ssDNA 

immobilised on the SAM. The non covalently bound anti-sense strand can be 

easily removed by thermal or chemical means, leaving ssDNA presented on the 

surface for subsequent hybridisation studies. 
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Covalent immobilisation of double-stranded DNA onto gold surfaces through 

layer-by-layer self-assembly has been studied with X-ray spectroscopy and by 

electrochemical methods (Zhao et al., 1999). These methods have involved the 

formation of the SAMs onto gold electrodes and the subsequent condensation 

reaction occuring between the 5'-phosphate end or 3'-hydroxy end of the DNA to 

be immobilised and the terminal group of the SAMs. The influence of different 

terminal groups of SAMs on the covalent immobilisation of DNA onto the gold 

surface was investigated, with the candidate terminals of SAM being the 

hydroxyl, the amino and the carboxyl groups. The hydroxyl terminated SAM, 

yielded better DNA attachment on the gold surface, through the formation of 

phosphate ester linkages, with the best being the hydroxyl-terminated SAM. 

2.6.4 The biotin-avidin complex 

The molecular recognition of biotin by the bacterial protein streptavidin is a well 

documented example of a high-affinity, protein-ligand interaction. Streptavidin, 

is a tetrameric protein isolated from the actinobacterium Streptomyces avidinii. 

Streptavidin and the homologous protein avidin are remarkable for their ability to 

form very strong, non-covalent bonds with biotin. The biotin-streptavidin bond is 

amongst the strongest noncovalent biosepecific interactions known, and it is 

kinetically irreversible (Asanov et at, 1998). The high affinity of biotin- 

streptavidin bonding, results from several -factors, including the formation of 

multiple hydrogen bonds and Van der Waals interactions between the biotin and 
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the streptavidin entities, and the ordering of surface polypeptide loops that bury 

the protein interior. Strong binding and high activation energy of dissociation are 

also produced as a result of the quaternary structural changes of the streptavidin 

tetramer that take place at the biotin binding site (Weber et al., 1989). Being 

tetrameric, avidin and steptavidin possess four binding sites per molecule. This is 

a very useful property that makes possible the formation of mixtures consisting of 

avidin/streptavidin and polymers bearing several biotinylated moieties 

(polybiotinylated enzymes). These polymers may still possess some free binding 

sites for biotin, thus becoming more sensitive detection reagents (Diamandis et 

al., 1991). Steptavidin-biotin bonding has been extensively used for the 

immobilisation of DNA molecules on SPR sensors (Bianchi et al., 1997; Sawata 

et al., 1999; Kai et al., 2000; Mariotti et al., 2002). 

A different appoarch on the use of streptavidin on SPR sensors has been reported 

by Jordan et at. (1994). Initially, thiol-terminated ssDNA was attached on a MUA 

monolayer via a linker molecule (sulfosuccinimidy-1-4-(N-maleimidomethyl) 

cyclohexane-l-carboxylate) and electrostatically bound poly(L-lysine). Then, 

biotinylated oligonucleotides were hybridised to the complementary thiol- 

terminated DNA. This allowed the attachment of streptavidin, which enhanced 

the SPR signal up to 4-fold. The signal was further amplified by the formation of 

streptavidin/DNA multilayers. The latter were formed by the subsequent binding 

of two strands of biotinylated linker oligonucleotides on the streptavidin coated 

surface followed by a second layer of streptavidin. In this way, up to six layers of 

streptavidin were formed. 
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CHAPTER 3: 

ANALYSIS OF AMPLIFIED NUCLEIC ACIDS BY SURFACE PLASMON 

RESONANCE: APPLICATION TO GENETICALLY MODIFIED 

ORGANISM DETECTION 

3.1 Introduction 

Since its first publication in 1985 (Sand et al., 1985) the Polymerase Chain 

Reaction (PCR) has opened new bio-analytical avenues in forensic, medical, 

environmental and food sciences. Post-PCR nucleic acid analysis is routinely 

performed by gel electrophoresis. This method however, fails to provide any 

sequence information of the amplified DNA. Problems may arise from the 

amplification of a non-specific sequence having nearly the same length with the 

desired fragment. Southern blotting satisfies the requirement for sequence 

information, but it is not recommended for routine analysis, as it involves several 

steps. 

Surface Plasmon Resonance (SPR) detection of PCR products offers a rapid and 

sequence specific alternative to the usual analytical methods (Bianchi et al., 1997; 

Nilsson et al., 1997; Kai et a!, 1999; Sawata et al., 1999; Kai et al., 2000). In the 

ordinary PCR amplification, the amplified fragments are double-stranded and 

require denaturation steps of long duration which lack practicality (Sawata et a!., 
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1999). This sample pre-treatment is necessary to obtain single-stranded DNA 

fragment for the hybridisation with the probe immobilised on the sensor surface. 

A previous work (Mariotti et al., 2002) on SPR-based DNA-sensing, revealed that 

heat denaturation alone (95°C for 5 min and 1 min in ice) of the PCR products is 

not efficient for strand separation, as it leads to partial re-annealing of the 

denatured strands. On this basis, more complex sample treatments had to be 

employed. Magnetic particle separation solved the problem, but it was considered 

to be an expensive and time-consuming method, unsuitable for routine analysis of 

a large number of samples. 

Several research groups have applied the SPR technology to detect DNA 

hybridisation with peptide nucleic acid (PNA) (Sawata et al., 1999; Kai et al., 

2000; Burgener et al., 2000; Feriotto et al., 2001). Although successful, the 

system was not cost-effective due to the use of the expensive PNA. Moreover, a 

heat denaturation step was usually required prior to SPR testing (Sawata et al., 

1999; Kai et al., 2000, ). 

Further development of the detection system employed an optimised PCR 

procedure that predominantly produces single-stranded DNA fragments 

(Eggerding et al., 1991; Bianchi et al., 1997, Innis et al., 1998). In the case of Kai 

et al. (1999), two different asymmetrically amplified fragments were produced, 

differing in length. Following a heat denaturation step, the asymmetrically 

amplified products were hybridised to produce a unilateral protruding DNA 
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(UPD) fragment. Despite the sensitivity and reproducibility that the system 

provides, generation of UPD fragments makes the detection system more 

complicated. Feriotto et al. (2002) applied asymmetric PCR and SPR technology, 

in particular to the detection of Genetically Modified Organisms (GMOs). The 

best Biosensor performance was achieved upon immobilisation of a PCR 

biotinylated product on the sensor chip surface and the subsequent hybridisation 

with its complementary asymmetrically amplified counterpart present in solution. 

Moreover, detection of asymmetrically amplified products without a pre-treatment 

step, has been reported for the diagnosis of human immunodeficiency virus type I 

(HIV-1) (Bianchi et at., 1997). 

Biotechnology is rapidly developing to deliver highly specific, reproducible and 

cost-effective screening methods for the detection of desired analytes. Moving 

towards a more straight forward and rapid detection of PCR products, we 

investigated some amplification and post-amplification strategies for the detection 

of PCR products based on SPR transduction (BlAcore XTM). 

The system relies on DNA sensing, based on hybridisation of a DNA `probe' 

immobilised on the sensor surface and the complementary DNA sequence 

('target') present in solution. A simple DNA sample processing step makes 

feasible the direct detection of asymmetric PCR products, The objective and 

novelty of the presented work, lies on the validation of different strategies to 

obtain sufficient and specific DNA-DNA hybridisation shifts for the detection of 

specific amplified DNA sequences. Strategies on DNA treatment prior to SPR 
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testing, included lambda exonuclease digestion of PCR products and optimisation 

of the denaturation procedure. The different approaches followed, were applied to 

the analysis of specific DNA sequences characteristic of GMO. These sequences 

are contained in the promoter region (P35S) of the CAMV (cauliflower mosaic 

virus) ribosomal RNA. 

3.2 Materials and Methods 

3.2.1 Apparatus and reagents 

For all the experiments the SPR device Biacore X and a dextran modified 

sensor chip (CM5) were used (Bi4core AB Uppsala, Sweden). All experiments 

were conducted at a flow rate of 5 µl mii-' and 25 °C. 

N-hydroxysuccinimide (NHS), 1-Ethyl-3-(Dimethylaminopropyl) carbodiimide 

(EDAC) and streptavidin were all purchased from Sigma Aldrich (Milan, Italy). 

Synthetic oligonucleotides were purchased from Sigma Genosys (Cambridge, 

UK). 

List of buffers and composition: 

(TE) Tris-EDTA buffer (10 mM Tris, 1 mM EDTA, pH 8.0); 

Immobilization buffer (NaC1300 mM, Na2BPO4 20 MM, EDTA 0.1 mM, pH 

7.4); 
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Acetate buffer (50 niM) for streptavidin suspension; 

Hybridisation buffer: (NaC1150 mM, Na2HPO4 20 mM, EDTA 0.1 rnK pH 

7.4). 

The buffer reagents and ethanol were all of analytical grade and purchased from 

Merck (Rome, Italy). All the other reagents were purchased from Sigma Aldrich 

(Milan, Italy). 

The sensor chip has two independent flow cells, thus providing the opportunity to 

immobilise separately two different probe sequences. Probe P35S is 

complementary to the selected target sequence. A second probe (TNOS) of the 

same length, non-complementary to the P35S target was used as a control surface, 

to monitor any possible non-specific binding. 

The base sequences of the 5'-biotinylated probes (25-mer) are described below: 

Target specific probe (P35S): 

5'-biotin-GCCATCGTTGAAGATGCCTCTGCC-3'. 

Non-specific probe (TNOS): 

5'-biotin-AATGATTAATTGCGGGACTCTAATC-3'. 

3.2.2 DNA testing material 

25-mer Synthetic Oligonucleotides: 

Target sequence (P35S): 

5'GGCAGAGGCATCTTCAACGATGGCC 3' 
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(sequence of interest, complementary to the immobilised probe P35S); 

Sequence THOS specific: 

5'TTACTAATTAACG000TGAGATTAG 3' 

(sequence for negative control on the P35S probe) 

Non- specific sequence for P35S and TNOS: 

5'GATTAGAGT000GCAATTAATCATT3' 

(sequence for negative control on both cells). 

25-mer Double-stranded oligonucleotide DNA 

A dsDNA helix was constructed by co-incubating equimolar amounts (0.1 µM) of 

probe and target P35S sequences. Incubation involved 1 hour at 25 °C. The 

resulted dsDNA oligonucleotide helices were treated as a model type of 

symmetrically amplified samples (double-stranded PCR products). 

DNA samples of higher complexity 

A. Commercially available Certified Reference Material (CRM) from soybean 

powder (2% Roundup Ready, Fluka, Italy); 

B. PB1121 plasmid (13kbp) was purchased from BD Biosciences Clontech 

(Oxford, UK) and it contains a 814bp fragment of promoter P35S. The 

plasmid was extracted from genetically modified E. coli, previously 

transformed with the plasmid; 

C. P35S containing maize samples from animal feed were provided by an 

authorised organisation (243 bp and 498 bp). 
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D. Non- transgenic genomic DNA of Nicotiana glauca (0.02 µg µl'', 0.5 µg per 

injection) was digested using the enzymes BamHI and Hind III. 

E. Non-P35S containing GMO maize event, provided by an authorised 

organisation. 

Following extraction, all the samples A, B, C, and E were PCR amplified and 

readily provided by the department of Animal Biology and Genetics, University 

of Florence (Italy). The amplicon of sample B was 243 bp. The amplified sample 

C was amplified to produce fragments of 243 bp and 498 bp. Sample E was 

amplified to produce fragments of 540 bp. 

The control solution (PCR blank) consisted of all the PCR reagents except the 

DNA template. 

3.2.2.1 DNA extraction and isolation 

PBI121 DNA was isolated from E. coli cells, using the QIAGEN Plasmid Mini Kit 

(Qiagen, Milan Italy). Following extraction, the PBI121 DNA samples were 

suspended in double distilled (dd) H2O. 

Total DNA extraction from axenic plants followed the protocol of Doyle (Doyle 

et al., 1989), with slight modifications as described in Bogani et at (1995). 

Biosensor Development for the Analysis of Food Quality $1 



Chapter 3: SPR Detection ofAmplified Nucleic Acids 

DNA extraction from the sources A, C, and E followed the instructions of the 

Nucleospin Plant kit (Macherey-Nagel, Duren, Germany) and the Wizard® 

Magnetic DNA Purification System for Food (Promega, Milan, Italy). The extracted 

and purified DNA samples were suspended in the Elution-Buffer provided in the DNA 

extraction kit. 

The concentration of the extracted DNA material was determined by measuring the 

fluorescence of the Hoechst 33258-DNA complex, according to the method of 

Labarca and Paigen (1980). Fluorescence was measured by the use of a Hoefer TKO- 

100 minifluorometer (Amersham- Biotech, Milan, Italy). 

3.2.2.2 Symmetric and asymmetric PCR amplification 

The functionalised sense (forward) (5'GCTCCTACAAATGCCATCATT 3') and 

antisense (reverse) (5' CTCCAAATGAAATGAAC 3') primers (MWG-BIOTECH, 

Florence, Italy) amplified a 243 bp DNA fragment, containing the target sequence 

P35S (25-mer). Both primers were designed using the OLIGOO Primer Analysis 

software. 

The PCR reaction mixture contained 100-300 ng of isolated DNA from sources A, C 

and E or 10 ng from B, 2 units of Taq polymerase (Amersham--Biotech, Upsala, 

Sweden) and 100 mM of each desoxy-ribonucleotide-triphosphate (dNTP) 

(Amersham-Biotech, Upsala, Sweden). 

Symmetric PCR: The 50 µl PCR mixture for symmetric PCR contained equal 
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amounts of sense and antisense primer solutions (200 nmol). The PCR conditions 

were: 94 °C for 4 min, 50 °C for 1 min and 72 °C for 2 min (35 cycles). 

Asymmetric PCR: The 100 µl PCR mixture contained a sense/antisense ratio of either 

1/50 pmol or 2/200 nM. This type of PCR is necessarily performed using one primer 

in excess. When the limiting primer is depleted, PCR starts to amplify one of the two 

strands linearly. The PCR conditions were: 94 °C for 4 min, 50 °C for I min and 

72 °C for 2 min (50 cycles). 

All PCR experiments were conducted by a Perkin Elmer Thermal cycler (model 9600) 

(Perkin Elmer, Shelton, USA). 

Following amplification, the PCR products were ethanol precipitated (1 volume of 

sample per 2.5 volumes of ethanol) and dissolved in sterile ddH2O or TE buffer. The 

DNA concentration of the amplified products was determined spectrophotometrically 

at 260nm. Screening of the PCR products was performed by gel electrophoresis 

(Campbell, 1996) and visualised through a U. V. transilluminator. 

3.2.2.3 Lambda (7, ) exonuclease digestion of PCR products 

Lambda exonuclease digestion employed a specific set of PCR primers, the one of 

which was selectively phosphorylated The StrandaseTM kit (Novagen, Madison, 

USA) is designed for the production of single-stranded PCR products. Lambda 

exonuclease is an enzyme that preferentially degrades one strand of duplex DNA from 

a 5' phosphorylated end, releasing 5' phosphomononucleotides (Little et al., 1967). 
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Only templates that contain the phosphorylated primer are selectively degraded by the 

enzyme. 

3.2.3 Immobilisation of oligonucleotide probes 

The presence of a second flow cell on the sensor chip, allows the immobilisation 

of two different probe sequences. The P35S probe provides the complementary 

counterpart for the target of interest. The non-specific probe was only used as a 

control surface. Both probe sequences were immobilised using the same protocol. 

The sensor chip was docked in the BIAcore instrument and immobilisation buffer 

was used as the running buffer. The sensor chip is readily modified by the 

supplier (BlAcore, Uppsala) with carboxylated dextran. For the activation of the 

carboxylic groups, the sensor surface was treated with a solution of NHS (35 111 of 

5.8 mg ml-1) and EDAC (35 gl of 38.5 mg ml-1) in double distilled water 

(dd)H2O. The dextran sensor chip was further modified with streptavidin (200 µg 

m1' in acetate buffer 10 mM, pH: 5.0) (LÖfas and Johnsson, 1990). Then, the 

biotinylated oligonucleotide probe (1 µM in immobilisation buffer) was 

immobilised, as previously reported (Tombelli et al. 2000 a, b). 

Considering that 1000 RU correspond to approximately ing/mm2 (BIAcore 

Manual), the immobilisation of the probe P35S led to approximately 0.63 ng/mm2 

surface coverage. Other authors (Nilsson et al., 1997) also use this estimation for 

Biosensor Development for the Analysis of Food Quality 54 



Chapter 3: SPR Detection ofAmpl/ed Nucleic Acids 

oligonucleotides, but it should be noted that it has been originally used for 

proteins. 

3.2.4 Denaturation of DNA samples 

Prior to SPR testing, the PCR samples were subject to a denaturation step to 

obtain ssDNA fragments. As a part of our system optimisation strategies, 

different denaturation methods were employed and their efficacy to obtain 

adequate amounts of ssDNA for hybridisation was examined. 

3.2.4.1 High Temperature denaturation 

High temperature denaturation (95°C) was conducted as a reference procedure 

with or without the addition of formamide (20% v/v). The followed protocol is 

well documented in many previous studies on DNA-based biosensors (Tombelli et 

al., 2000a, b; Marrazza et al., 2001; Minunni et al., 2001; Mariotti et al., 2002). It 

involved a5 min incubation step at 95°C followed by 1 min in ice. 

3.2.4.2 Denaturation in alkaline conditions 

The second method employed a combination of alkaline and thermal conditions 

along with a formamide treatment (Harwood, 1996). Formamide was used in 
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different concentrations and all in accordance with BlAcore operating instructions 

(only pulse formamide treatment is allowed by the BlAcore instruction manual). 

The DNA containing denaturation mixtures were consisted of 0.3 M NaOH, 

formamide (0%, 10% or 20% v/v) and hybridisation buffer to adjust close to the 

final volume. The mixture tubes were then incubated at 42 °C for 30 min. 

Following the incubation step, all reaction tubes were inoculated with highly 

concentrated HCI solution to obtain a final concentration of 0.3 M HCI and a 

volume of 60 µl. 25 tit of denaturation mix was then immediately injected in the 

BIAcore flow system. 

3.2.5 Hybridisation with synthetic oligonucleotides 

P35S oligonucleotide sequences (25-mer) fully complementary to the immobilised 

probe, were initially used to characterise the developed biosensor. The effect of 

denaturation on the hybridisation behaviour of the 25-mer P35S sequences, was 

investigated by the analysis of denatured (alkaline conditions and 20% formamide 

v/v) and non -denatured DNA sequences. 

Hybridisation reactions of the immobilised P35S probe with the complementary 

sequence were allowed to proceed by injecting the testing solution in the SPR 

flow cell. The reaction was monitored for 5 min and the sensor chip was 

subsequently washed with hybridisation buffer to remove the unbound DNA 

material. The analytical signal, reported as Resonance Units (RU), was derived 
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by the difference between the value after the hybridization value and the value 

recorded before the hybridisation (baseline). Both values were taken when the 

sensor chip was in contact with the same buffer solution (hybridisation buffer) so 

that the shift was related only to compounds fixed on the sensor chip during the 

reaction. Following the completion of hybridisation reaction, any positive RU 

signal obtained from the control cell was subtracted from the RU shift of the P35S 

cell. 

3.2.6 Regeneration of the probe surface 

In all experiments, the single stranded probe was regenerated by an one-minute 

treatment with 1 mM HCI, which allows the multiuse of the sensor. After each 

regeneration cycle a successive hybridisation reaction could be monitored. Such 

treatment could be performed up to 100 times without affecting the hybridisation 

efficiency of the immobilised probe (Mariotti et al., 2002). 

3.3 Results 

3.3.1 Baseline stability 

The effect of continuous buffer flow conditions on the probe surface may be 

viewed from the stability of the baseline signal over different days. A stable 

baseline signal throughout a day of measurements is also indicative of a 
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successful regeneration procedure, which is applied to the probe surface after a 

hybridisation reaction. 

The stability of the baseline signal recorded at a sensor chip throughout different 

measurement days and over a number of overnight flow conditions is shown in 

Figure 3.1. 

Figure 3.1: The effect of continuous buffer flow conditions and regeneration 
procedures on the stability of the SPR baseline signal. Baseline signal was 
recorded after regeneration of the probe surface, when the sensor chip was in 
contact with the same buffer solution (hybridisation buffer). Data were collected 
from both flow cells, over a number of overnight flows (indicated by the vertical 
arrows) and hybridisation cycles. 
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3.3.2 SPR analysis of DNA samples 

The immobilised (25-mer) P35S probe was initially characterised by the use of 

complementary synthetic oligonucleotides in solution. Following characterisation 

with the complementary oligonucleotides, DNA samples of higher complexity 

were analysed. 

3.3.2.1 P35S synthetic oligonucleotides 

The DNA detection system was optimised using synthetic oligonucleotides, 

complementary and of the same length (25-mer) with the immobilised probe. The 

concentration range was between 0 and 150 nM. The curve shows a linear region 

(0-50nM) followed by a plateau (Figure 3.2). 

To check the specificity of the immobilised probes P35S and TNOS, a DNA 

sequence non-complementary to the immobilised fragments was analysed in 

concentrations 10 and 100 nM. Traces of hybridisation shifts (<6 RU) were 

produced in both flow cells (FCs), thus confirming the specificity of the P35S 

detection system. A target THOS sequence generated <6 RU in flow cell 2 (FC2) 

(P35S specific), while an average shift of 452RU (CV= 11 %) was produced in 

flow cell 1 (FC1) (TNOS specific). Any positive shift produced by P35S target 

sequence on the control cell (FC1), was subtracted from the shift of FC2. The 
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analytical signal for the P35S target sequences was produced by the subtraction of 

the shifts generated in FC2 and FCI, in a manner that ARU= RUFC2-RUFC1. Table 

3.1 summarises the hybridisation shifts (ARU) corresponding to the standard 

curve, produced by different P35S target concentrations. 
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Figure 3.2: Calibration curve for the optical SPR Biosensor by the use of 
synthetic oligonucleotides, complementary to the immobilised P35S sequence. 
The analytical signal (ORU) was produced after subtraction of the observed shifts 
in flow cell I (FCI) and flow cell 2 (FC2), in a way that ORU= RUFC2-RUFCI. 
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Table 3.1: Hybridisation shifts of target P35S oligonucleotides complementary to 
the immobilised probe. The analytical signal (l1RU) was produced after 
subtraction of the observed shifts in flow cell I (FCI) and flow cell 2 (FC2), in a 
way that ARU= RUFC2-RUFC I. 

P3SS target (25-mer) oligonucleotides 

P35S (nM) I MeanARU(FC2 FCI) StdevdRU(pc2. Fcl) CV% 

5I 34 2.1 6.3 

25 1 125 7.3 5.8 

50 1 269 1.3 0.5 

100 1 386 9.8 2.5 

150 1 398 0.1 0.0 

The reproducibility of the analytical signal over different measurement days, was 

checked by monitoring the hybridisation shift for 100 nM of target 

oligonucleotide (P35S) in a number of successive measurement days (Figure 3.3). 

Investigation was carried out onto three different sensor chips, where identical 

immobilisation and hybridisation conditions were applied. Depending on the 

sensor chip, different profiles were observed regarding the reproducibility of the 

hybridisation shift. In specific, a decrease of 150 RU was monitored after 7 

overnight flow treatments and 91 measurement cycles in sensor chip 1. Sensor 

chip 2, encountered a decrease of -140 RU after 9 overnight flows and 98 

measurement cycles. On the other hand, a lower decrease in the hybridisation 

efficiency was observed in sensor chip 3. After 5 overnight flows and 84 
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measurement cycles, a maximum decrease of 40 RU was observed in the 

hybridisation shift for the same target concentration. 
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Figure 3.3: The graph shows the reproducibility of the generated analytical signal 
(ARU= RUFC2-RUFCI) for 100 nM of oligonucleotide target P35S, over a number 
of hybridisation cycles. Investigation was carried out using three different sensor 
chips (marked by the different colours). Vertical arrows correspond to overnight 
continuous flow conditions. 

Worthnoting, is the inconsistent hybridisation performance between different 

sensor chips for the same target concentration (Figure 3.3). The average (n= 3) 

hybridisation shift for 100 nM of target exhibited a CV equal to 38.1 % over the 

three sensor chips. Considering that the comparative experiment was carried out 

under identical immobilisation and hybridisation conditions, this difference may 
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suggest a non-reproducible dextran modification by the supplier (BlAcore, 

Uppsala). 

3.3.3.2 DNA samples of higher complexity 

Following sensor characterisation with synthetic 25-mer oligonucleotides, the 

DNA samples of higher complexity were analysed, in this case PCR amplified 

samples of 243 bp and 498 bp in length. 

PCR symmetrically amplified products were denatured using the high temperature 

treatment (95°C for 5 min and 1 min in ice). This denaturation method has been 

well documented in DNA biosensor studies (Tombelli et al., 2000a, b; Marrazza 

et al., 2001; Minunni et al., 2001; Mariotti et al., 2002). SPR testing showed non- 

detectable or questionable traces of hybridisation shifts (<10 RU). This was 

attributed to the re-annealing of the denatured DNA strands before coming in 

contact with the sensor surface, as also demonstrated by Mariotti et al. (2002). 

Different strategies were then employed to overcome this problem and to obtain 

greater amounts of the ssDNA target. These are classified in approaches directly 

made during the amplification step (PCR level) and in improvements of the 

denaturing conditions prior to SPR testing. 
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3.3.4 Modifications at the PCR level 

These aimed to eliminate one strand of the dsDNA helix prior to SPR testing, so 

that only the single-stranded DNA that contains our P35S target is available for 

hybridisation. 

3.3.4.1 Lambda (. %) exonuclease digestion 

Five different amplified samples were subject to lambda exonuclease digestion 

and subsequently denatured using high temperature (95 °C) and 20% v/v of 

formamide. The DNA concentration of the amplified samples varied between 180 

nM and 230 nM. SPR testing showed irreproducible and often non-detectable 

hybridisation shifts (data not shown). 

3.3.4.2 Asymmetric PCR amplification 

Asymmetrically amplified samples were denatured using high temperature 

(95 °C) and 20 % of formamide. Subsequent SPR testing monitored non- 

detectable hybridisation shifts when 2.5 and 5 EtM of asymmetrically amplified 

DNA was tested. The low analytical signals were attributed to the H-bonding in 
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the intra- and possibly in the inter- strand region of the amplified fragments, due 

to the lack of adequate and prolonged denaturation. Secondary structures within a 

ssDNA fragment can be formed in the presence of repetitive sequences. 

Figure 3.4, shows a potential configuration of secondary structures in the 

asymmetrically amplified 243 bp sequence. 

Biosensor Development for the Analysis of Food Quality 65 



Chapter 3: SPR Detection of Amplified Nucleic Acids 

Figure 3.4: One of the potential secondary structures formed by the amplified 
243bp PCR product. The 25-mer P35S target is located within the 5' end of the 
amplified fragment between base numbers 186 and 210. A number of intra-strand 
hydrogen bonds is evident within the target 25-mer sequence. 

Denaturing conditions were optimised by the use of alkaline conditions and an 

extended duration of formamide treatment prior to SPR testing. 
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3.3.5 Improvement of denaturing conditions 

The denaturation step prior to SPR testing was modified to establish a strong 

alkaline environment as described in the experimental section. Investigation was 

first carried out with synthetic oligonucleotide hybrids, which represent a model 

type of dsDNA. 

3.3.5.1 Synthetic oligonucleotide hybrids 

The constructed dsDNA hybrids were considered to be a model type of 

symmetrically amplified DNA and were treated as real samples. Denaturation 

involved alkaline conditions and different amounts of formamide (0 %, 10 %, and 

20 % v/v). In the presence of 20 % v/v formamide, the hybridisation shifts were 

approximately two times greater with respect to those obtained in the absence of 

fonnamide (Table 3.2). Reproducibility was also improved with a CV= 4 %. 

This confirms the importance of formamide in the denaturing conditions. The 

optimised alkaline conditions (0.3 M NaOH, 20 % v/v formamide) were 

compared with the high temperature denaturation method. In an attempt to 

enhance the denaturing effect of the high temperature method, experiments were 

performed in the presence and absence of 20 % v/v of formamide. The results 

clearly suggest the superior efficiency of the optimised alkaline conditions over 

the high temperature denaturation treatment (Figure 3.5). The addition of 
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formamide in the high temperature denaturation protocol resulted in insignificant 

improvement. 

Table 3.2: The effect of formamide in the hybridisation process, when alkaline 
conditions are employed. The dsDNA oligonucleotide molecules were tested in 
100nM of concentration. 

Ds DNA oligonucleotide hybrid molecules (25-mer) 

Formamide % v/v I Mean&RU(FC2_FCI) StdevdRU pc2. Fcl) CV% 

01 61 23.0 37.9 

10 1 113 7.9 7.0 

20 1138 6.0 4.3 
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Figure 3.5: Comparison of two denaturation protocols on double-stranded 
oligonucleotide hybrid molecules (100 nM). Column 1: No denaturation CV= 8.6 
%; Column 2: High temperature denaturation (95 °C for 5 min, cooling in ice) 
CV= 15.9 %; Column 3: High temperature denaturation and 20 % v/v formamide 
(95°C for 5 min, cooling in ice) CV= 11.5 %; Column 4: Alkaline denaturation 
and 20 % v/v formamide (0.3 M NaOH for 30 min, neutralisation with HCl) CV = 
3.1 %; 
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3.3.5.2 P35S synthetic oligonucleotides 

Figure 3.6, shows the calibration curves obtained with the denatured (0.3 M 

NaOH, 20% v/v formamide for 30 min at 42 °C) and non-denatured P35S target 

sequences. By denaturing the target sequence in the above conditions, the linear 

range was up to 25 nM and higher sensitivity and reproducibility were observed. 

The reproducibility of the system in terms of CV was :55%. 

Measurements with TNOS target DNA sequences led to non detectable shifts on 

P35S specific flow cell, thus confirming the specificity of the system. Small ARU 

shifts (: 510 % of the total P35S ARU signal), occasionally recorded on the non- 

specific cell, were always subtracted from the P35S signal. 
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Figure 3.6: Calibration curves for the optical SPR sensor with the immobilised 
P35S probe sequence. The analytical signal (ARU) was produced after subtraction 
of the observed shifts in flow cell I (FCI) and flow cell 2 (FC2), in a way that 
ARU= RUI, C2-RUj. cj. Denatured (0.3 M NaOH, 20% v/v formamide at 42°C for 
30 min) and non-denatured complementary oligonucleotides were tested. 
Denaturation improved the system sensitivity, reaching a LOD of 2.5 nM. 

3.3.5.3 Symmetrically PCR amplified samples 

Table 3.3, shows the hybridisation shifts produced from the testing of 

symmetrically amplified samples using 0,10 and 20% v/v of formamide. In the 
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absence of formamide, non-detectable hybridisation shifts were obtained. Using 

20 % v/v of formamide positive hybridisation shifts were measured but they were 

considered to be low and unreliable due to irreproducibility (e. g. sample C 

(243 bp): CV= 33 %). 

3.3.5.4 Lambda (X) exonuclease digested DNA samples 

The hybridisation shifts generated by the ) exonuclease treated DNA samples 

were very irreproducible. When three different samples of the same concentration 

were alkaline denatured in the absence of formamide, the CV between the 

individual samples was found to be up to 132 %. Considering the low 

reproducibility of the system, no further tests were performed using this particular 

treatment. 

3.3.5.5 Asymmetric PCR amplified samples 

The hybridisation shifts obtained from the testing of asymmetrically amplified 

products are shown in Table 3.3. When 20 % v/v of formamide was used, high 

reproducibility was detected in both sample B (CV= 5 %, n= 3) and C (CV= 4 %, 

n= 3), while the high hybridisation shifts (MeanbRUa= 112, MeanARUc= 66) 
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indicate the suitability of the technique to identify the presence of GM content. In 

this case, the system identified the real maize sample (C) as transgenic. 

The blank PCR solution was treated under the same conditions as the real 

samples. No response was obtained in all cases. The cell containing the non- 

complementary probe, generated a low non-specific response (<10 % of the total 

P35S specific signal), which was subsequently subtracted from the ERU value 

recorded on P35S cell. 
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Table 3.3: Hybridisation shifts (ARUM RUFC2-RUFCI) obtained from 
symmetrically and asymmetrically amplified. samples. Sample A: CRM 2 %; 
Sample B: PBI121; Sample C: P35S containing GM Maize. SPR testing was 
performed following the alkaline-thermal denaturation method combined with 
different percentages of formamide (0%, 10% and 20% v/v). The samples were 
diluted in hybridisation buffer up to a final concentration of 0.2 µM (the exception 
being sample E (0.02µM) and the symmetrically amplified sample A, denatured in 
10% v/v formamide, whose concentration was not known) 

Sample % ARUav SD CV% 

Formamide (n=3) 

SYMMETRICALLY AMPLIFIED SAMPLES 

PCR blank 00 

B 00 

C (243bp) 00 

PCR blank 10 0 

A 10 27 

PCR blank 20 0 

B 20 14 1 5 

C(243bp) 20 11 4 33 

ASYMMETRICALLY AMPLIFIED SAMPLES 

PCR blank 00 
B 00 

C (243bp) 00 

PCR blank 10 0 

B 10 20 

PCR blank 20 0 

B 20 112 5 5 

C (243bp) 20 66 3 4 

E 20 000 
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3.3.6 Recovery experiments on the matrix effect 

Non-transgenic genomic DNA of Nicotiana glauca (0.02 pg µ1'', 0.5 µg per 

injection) was digested using the enzymes BamIU and Hind III. Different 

amounts (50 nM and 2nM) of 25-mer ssDNA P35S target were then inoculated 

into the digested solution of genomic DNA. The hybridisation shifts shown in 

Figure 3.7 and 3.8 were obtained after denaturing the samples using the optimised 

technique (alkaline conditions and 20 % v/v formamide), as well as in the absence 

of denaturation. The hybridisation shifts between the denatured spiked standard 

solution (i) and the spiked sample of genomic DNA (ii) were comparable, even in 

low concentrations of P35S 25-mer target. The accuracy between the 

hybridisation shifts obtained by (i) and (ii) was 0.45 % and -5.7 % in the case of 

50 nM and 2 nM spiking, respectively. Non-denatured samples spiked with 2 nM 

generated very low or not detectable hybridisation shifts and high 

irreproducibility. This is due to the fact that the concentration of 2 nM P35S 

target is close to the detection limit of the system. 
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Figure 3.7: The matrix effect of genomic DNA (0.5 µg per injection) on the 
hybridisation of the P35S target with the immobilised probe. 

Column 1: Genomic DNA spiked with 50 nM P35S target, denatured. (n= 3, CV= 
1.7%) 

Column 2: 50 nM of P35S target suspended in hybridisation buffer and denatured 
as real samples (n= 3, CV= 1.7 %) 

Column 3: Genomic DNA spiked with 50nM P35S target, non-denatured. (n= 3, 
CV=2.0%) 

Column 4: 50nM of P35S target suspended in hybridisation buffer, non-denatured 
(n= 3, CV= 1.3 %) 
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Figure 3.8: The matrix effect of genomic DNA (0.5 µg per injection) on the 
hybridisation of the P35S target with the immobilised probe. 
Column 1: Genomic DNA spiked with 2 nM P35S target, denatured. (n= 3, CV= 
13.6%) 

Column 2: 2 nM of P35S target suspended in hybridisation buffer and denatured 
as real samples (n= 3, CV= 5.4 %) 

Column 3: Genomic DNA spiked with 2 nM P35S target, non-denatured. (n= 3, 
CV= 141 %) 

Column 4: 2nM of P35S target suspended in hybridisation buffer, non-denatured 
(n= 3, CV= 103 %) 
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3.4 Discussion 

This chapter demonstrated an optimised coupling of Polymerase Chain Reaction 

(PCR) and Surface Plasmon Resonance (SPR) for the detection of DNA-DNA 

hybridisation. The biological part of the DNA biosensor incorporated a 25-mer 

oligonucleotide DNA, complementary to the target DNA in solution. 

The sensor baseline was relatively stable during a day of measurements (max. 30 

measurements) with a decrease up to 30 RU. This decrease in the baseline signal 

throughout a day of measurements indicates the effect of HCl regeneration 

treatments on the probe surface. The modified sensor surface was found 

relatively stable after overnight flow conditions were applied, showing a decrease 

of maximum 30 RU (Figure 3.1). 

A P35S calibration curve produced by the complementary 25-mer target in 

solution, showed linearity up to 50 nM (Figure 3.2). The empirically established 

detection limit was 5 W. 

The hybridisation efficiency of the probe surface decreased after successive days 

of measurement and overnight flows (Figure 3.3). A CV up to 42 % was 

observed in the hybridisation shift for 100 nM of target after 7 overnight flow 

treatments and 91 measurement cycles. 

Despite the good performance in the detection of single-stranded oligonucleotide 

target, the biosensor failed to detect PCR amplified samples when heat 

denaturation (95 °C for 5 min) was applied prior to SPR testing. This was 

attributed to the re-annealing of the complementary strands before reaching the 
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sensor surface (Mariotti et al., 2002). The present work evaluated a series of 

approaches to optimise detection of PCR amplified DNA samples, both at the 

PCR level and the sample denaturation stage. 

At the PCR level, one approach concerned the lambda exonuclease digestion of PCR 

products by the use of a commercially available kit (StrandaseTM -Novagen, Madison, 

USA). Lambda exonuclease digestion employed a specific set of PCR primers, the 

one of which was selectively phosphorylated. After the completion of the PCR 

reaction, the enzyme was used to preferentially degrade one strand of the duplex DNA 

from a 5' phosphorylated end, releasing 5' phosphomononucleotides (Little et at., 

1967). SPR testing of thermally denatured exonuclease-treated PCR products, showed 

irreproducible and often non-detectable hybridisation shifts. 

Another approach at the PCR level involved an asymmetric PCR scheme for the 

selective amplification of one DNA strand, the one containing the target P35S capable 

of hybridisation with the immobilised complementary probe. Denatured at high 

temperature, the asymmetrically amplified PCR products produced non-detectable 

hybridisation shifts. This was attributed to H -bonding in the intra- and possibly in the 

inter-strand region of the amplified fragments, due to the lack of adequate and 

prolonged denaturation. Secondary structures within a ssDNA fragment can be 

formed in the presence of repetitive sequences, especially in the case of polynucleotide 

sequences, as the ones analysed in the current experiment (Figure 3.4). 

The other strategy focused on the post-PCR amplification stage. The adopted 

denaturation protocol consisted of strong alkaline conditions (0.3 M NaOH} and 

20 % v/v formamide. The, effect of formamide was substantial for the efficiency 
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of the specific denaturation protocol. Experiments with double-stranded 

oligonucleotides showed that in the presence of 20 % formamide, the 

hybridisation shifts were more than two times greater with respect to those 

obtained in the absence of formamide (Table 3.2). Alkaline conditions coupled 

with 20 % formamide, obtained 1.5 times greater hybridisation shifts with respect 

to the high temperature denaturation (Figure 3.5). The high temperature treatment 

was also found inefficient when 20 % formamide was used, resulting again in 

non-detectable hybridisation shifts. This could be due to the short duration of the 

formamide treatment. Studies on the thermal denaturation profile of DNA, 

showed that the denaturation behaviour depends on the duration of formamide 

treatment (Rauch et ad., 2000). Nevertheless, in our case, a longer exposure of the 

DNA samples to 95 °C would increase the probability of DNA conformational 

changes. 

The improved biosensor performance in the case of denatured ssDNA (25-mer) target 

(Figure 3.6), was attributed to the elimination of intra-strand H-bonding possible even 

within the 25-mer target sequence. 

The optimised denaturing conditions were applied in both symmetrically and 

asymmetrically amplified fragments. In the case of symmetrically amplified 

samples, low analytical signals were detected. When 0.2 µM of symmetrically 

amplified sample B and C were analysed (n= 3), the generated hybridisation shifts 

were 14 RU and 11 RU, respectively (Table 3.3). By using the new denaturation 

protocol, a partial inhibition of the re-annealing process could be observed, 
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However, the low levels of hybridisation combined with the low reproducibility, 

put considerable constraints in the potential use of the system as an analytical tool. 

Using the alkaline denaturation protocol, X exonuclease digested PCR products 

generated irreproducible hybridisation shifts. More specific, when three different 

samples of the same concentration were alkaline-denatured in the absence of 

fonmmide, the CV between the individual samples was found to be up to 132 %. The 

incapability of the method to produce consistent amounts of ssDNA fragments was 

attributed to the quality of the kit reagents as provided by the supplier, considering that 

storage and handling requirements were met in the laboratory. 

Asymmetrically amplified PCR products denatured in the optimised alkaline 

conditions generated reliable and reproducible hybridisation shifts. 

Asymmetrically amplified sample B generated an average hybridisation shift (n7-- 

3) of 112 RU with a CV= 5%. SPR analysis of 0.2 µM of sample C (243 bp) 

produced an average (n= 3) hybridisation shift of 66 RU and CV= 4% (Table 

3.3). When a longer amplicon of sample C (498 bp) was analysed, the system was 

found able to detect the target sequence even at a low PCR product concentration 

(25 nM). The results suggest the use of a longer amplicon target, when a limited 

amount of DNA starting material or DNA of poor quality is available. The target 

of higher molecular weight has a greater effect on the refractive index of the 

system, thus improving the detection limit. 
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Recovery experiments with non-transgenic DNA (0.5 pg per injection) of 

Nicotiana glauca clearly suggested the absence of matrix effect with an accuracy 

of +0.45 % and -5.7 % in the case of 50 nM and 2 nM of P3SS spiking (Figures 

3.7 and 3.8). Worthnoting is also the absence of diffusion constraints expected to 

arise from the presence of genomic DNA. 

3.5 Conclusions 

To obtain single-stranded target DNA available for hybridisation in SPR biosensors, is 

a difficult task. Even in the case of asymmetrically amplified fragments, the presence 

of secondary structures puts considerable constrains in hybridisation reactions between 

the immobilised probe and the target DNA in solution. The presented work evaluated 

different approaches to obtain single-stranded DNA target sequences prior to SPR 

testing. Eventually, the system combined an asymmetric PCR amplification system 

with a simple DNA denaturation step for rapid and efficient detection of DNA 

hybridisation. Asymmetric PCR amplification led to the selective amplification of the 

desired DNA strand. The optimised denaturing conditions, eliminated intra-strand 

complexes within the asymmetrically amplified DNA fragments. When applied to 

genetically modified organism detection, the system proved to be sensitive, 

reproducible and rapid, with a strong potential in routine analysis. The system could be 

used to detect a wide variety of GM crops. 

Biosensor Development for the Analysis of Food Quality 82 



Chapter 4: SPR Affinity Biosensor based on a Thiol Functionalised DNA Probe 

CHAPTER 4 

DEVELOPMENT OF AN SPR AFFINITY BIOSENSOR BASED 
ON A TiOL-EUNCTIONALISED PROBE: APPLICATION 
TO GENETICALLY MODIFIED ORGANISM ANALYSIS 
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CIIAPTER 4 

DEVELOPMENT OF AN SPR AFFINITY BIOSENSOR BASED ON A 

THIOL-FUNCTIONALISED PROBE: APPLICATION TO 

GENETICALLY MODIFIED ORGANISM ANALYSIS 

4.1 Introduction 

The biological component of a biosensor can be immobilised on a solid support in 

various ways, including adsorption, entrapment, covalent bonding and cross- 

linking. Desirable characteristics of an immobilisation method are retainmnent of 

stability and maximum activity of the biological component on the surface of the 

transducer. 

DNA nucleotides can adsorb to gold via multiple moieties, as amines are known 

to chemisorb weakly to gold surfaces (Xu et al., 1993). At an adsorption state, the 

hybridisation efficiency of immobilised ssDNA can only reach 36-50% for the 

first hybridisation cycle (Peterlinz et al., 1997). A model system to study 

interaction between DNA-functionalised surfaces and free oligonucleotides, 

consists of thiol-containing probes that are immobilised through self-assembly to 

gold surfaces. Typically, ssDNA probes are attached to the gold surface through 

sulphur-gold linkages. Neutron reflectivity studies have indicated that adsorbed 

layers of HS-ssDNA form compact films, suggesting the presence of multiple 

contacts between each DNA strand with the surface (Levicky et a1., 1998). 
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The accessibility of the immobilised probe to complementary target in solution 

and thus the hybridisation efficiency of the probe, can be enhanced by treating the 

surface with small molecules, acting as blocking agents. MCH (6-mercapto-l- 

hexanol) effectively displaces adsorbed ssDNA from the gold surface, leaving 

ssDNA primarily tethered through the thiol end group (Herne and Tarlov, 1997; 

Levicky et al., 1998). This end-tethered geometry of DNA exhibits nearly 100% 

hybridisation efficiency (Levicky et al., 1998). 

Advantages of the above model include cost efficiency and less time consuming 

steps for sensor fabrication. Using the above model, preliminary hybridisation 

studies have been conducted by means of SPR, neutron reflectivity, cyclic 

voltammetry and chronocoulometry (Levicky et al., 1998; Georgiadis et al., 2000; 

Steel et al., 2000). Application of the mixed Self-Assembled Monolayers (SAMs) 

model for diagnostic purposes has been recently reported by Marinelli and co- 

workers (2002). The QCM study compared the hybridisation efficiency of 

ssDNA probes immobilised on gold by biotin-streptavidin linkage with the ones 

immobilised by the HS-ssDNA and blocking thiol procedure. The linear profile 

in the concentration/frequency curve was found comparable (0 to -0.1 µM) in 

both cases. The probe immobilised with the HS-ssDNA and blocking thiol model, 

successfully detected PCR amplified DNA sequences and it was applied for the 

detection of GMO food material. 

The aim of the current study is to investigate the hybridisation efficiency of the 

HS-ssDNA (25-mer) and blocking thiol model, by means of BIAcore technology. 
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The stability of the thiolated probe has been studied under conditions of 

continuous buffer flow. The hybridisation efficiency has been examined by the 

use of 25-mer target oligonucleotides, complementary to the immobilised probe. 

Moreover, the analytical performance of the HS-ssDNA and blocking thiol model 

has been compared to the thiol-dextran scheme. Finally, the applicability of the 

specific immobilisation model for the detection of more complex DNA target has 

been preliminary examined. 

4.2 Materials and Methods 

4.2.1 Apparatus and reagents 

For all the experiments the SPR device BiacoreX and a dextran modified sensor 

chip (CM5) were used (Biacore AB Uppsala, Sweden). All experiments were 

conducted at a flow rate of 5 µ1 min 1 and 25 °C. 

List of buffers and composition: 

(TE) Tris-EDTA buffer: 10 mM Tris, 1 mM EDTA, pH 8.0; 

Immobilisation buffer : NaCI 300 mM, Na2HPO4 20 mM, EDTA 0.1 mM, pH 7.4; 

Hybridisation buffer: NaC1 150 mM, Na2HPO4 20 mM, EDTA 0.1 mM, pH 7.4, 

Tween 0.005% v/v (polyoxyethylenesorbitan monolaurate); 

Immobilisation solution: KH2PO41 M, pH 3.8; 
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The buffer reagents and ethanol were all of analytical grade and purchased from 

Merck (Rome, Italy). 6-mercapto-l-hexanol (MCH) was purchased from Sigma- 

Aldrich. All the other reagents were purchased from Sigma Aldrich (Milan, 

Italy). 

Synthetic oligonucleotides (25-mer) functionalised with a group of C6-SH at the 

5'-end were purchased from Sigma Genosys (Cambridge, UK). The base 

sequences of the 5'-biotinylated probe (25-mer) is described below: 

Thiolated Probe (35S): 

5' -C6-SH- GGCCATCGTTGAAGATGCCTCTGCC 3'. 

4.2.2 DNA testing material 

The DNA testing material consisted of synthetic oligonucleotides 25-mer in 

length and PCR amplified DNA sequences of GMO origin. 

2Smer- Synthetic Oligonucleotides: 

Target (35S): 

5' GGCAGAGGCATCTTCAACGATGGCC 3' 

(sequence of interest, complementary to the immobilised 35S probe); 

Non-complementary strand: 

5' GATTAGAGTCCCGCAATTAATCATT 3' 

(sequence for negative control on the 35S- thiolated probe). 

Biosensor . Development for the Analysis of Food Quality 87 



Chapter 4: SPR Affinity Biosensor based on a Thiol Functionalised DNA Probe 

A dsDNA helix was also constructed by co-incubating equimolar amounts (0.1 

µM) of probe and target 35S sequences (Mariotti et at, 2002). Incubation was 

conducted for 1h at 25 °C. The resulted dsDNA oligonucleotide helices were 

treated as a model type of symmetrically amplified samples. 

DNA samples of higher complexity: 

" PCR amplified polynucleotide DNA target (243 bp) containing DNA 

fragment complementary to the immobilised probe. The starting PCR 

material was maize sample from animal feed. Amplification of the DNA 

starting material followed an asymmetric scheme, which selectively 

amplified one DNA strand. That was accomplished by the use of one 

primer in excess. Once the limiting primer is depleted, the other DNA 

strand is amplified linearly (Eggerding et al., 1991). Details on the PCR 

amplification, are described in chapter 3 (paragraph 3.2.2.2). 

" Restriction digested DNA material was extracted from a non-transgenic 

Nicotiana glauca plant (0.02 µg µl'1,0.5 µg per injection). 

In addition, a control solution (PCR blank), consisting of all the PCR reagents 

except the DNA template, was tested. 

The samples of higher complexity, along with the PCR blank were kindly 

provided from Prof. Buiatti (Laboratory of Genetics, University of Florence, 

Italy). 
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4.2.3 Denaturation of DNA samples 

To facilitate hybridisation with the immobilised probe, the PCR amplified DNA 

sequences were exposed to a treatment step to obtain ssDNA fragments. The 

treatment step consisted of denaturing conditions, as detailed in section 3.2.4.2 of 

Chapter 3. The denaturation step employed a combination of alkaline and thermal 

conditions along with a formamide treatment (Harwood, 1996). Formamide was 

used in different concentrations and all in accordance with BIAcore operating 

instructions. The DNA containing denaturation mixtures, were all of 60 µl final 

volume and consisted of 0.3 M NaOH, 10 % or 20 % v/v formamide and 

hybridisation buffer to adjust close to the final volume. The mixture tubes were 

then incubated at 42 °C for 30 min. Following the incubation step, all reaction 

tubes were inoculated with highly concentrated HCl solution to obtain a final 

concentration of 0.3 M HCI. A 25 µl volume of denaturation mix was then 

injected in the BIAcore flow system. 

4.2.4 Immobilisation of oligonucleotide probes 

The immobilisation procedure was performed outside of BlAcore instrument, 

according to the protocol described in Herne and Tarlov (1997). Initially, the gold 

sensor surface was removed from the plastic cover of the chip and was cleaned in 

a boiling solution, consisting of H202 (30 % v/v), NH3 (30 % v/v) and milliQ H2O 

(mQH2O) in a 1: 1: 5 ratios. The gold sensor surface was dipped in the above 
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solution for 10 min. Thereafter, the sensor surface was thoroughly washed with 

mQH2O. 

The cleansed gold surface was then modified by the C6-SH-oligonucleotide 

probe. To achieve this, the sensor surface was treated with the thiolated probe (1 

µM) in immobilisation solution for 2 It After washing with immobilisation 

solution, the modified sensor surface was treated, for a further hour, with 1 mM of 

MCH (blocking thiol) suspended in immobilisation solution. Following a final 

milliQH2O washing-step, the gold sensor was mounted in the plastic cover of the 

chip and docked into the BlAcore instrument, readily available for hybridisation 

reactions. 

4.2.5 Hybridisation with synthetic oligonucleotides/PCR amplified DNA 

sequences 

Hybridisation reactions of the immobilised 35S probe with the complementary 

sequence were achieved by injecting the testing solution into the SPR flow cell. 

An injection volume of 25 µl was selected, due to the restricted use of formamide 

in the BlAcore system. The reaction was monitored for 5 min and subsequently 

the sensor chip was washed with hybridisation buffer to remove the unbound 

DNA material. Due to the restricted use of formamide in the BIAcore system, no 

higher injection volume was permitted (a pulse formamide treatment is allowed, 

as instructed by the BIAcore user manual). The analytical signal, reported as 

Resonance Units (RU), is derived by the difference between the value before 
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(baseline) and after the hybridisation. Both values are taken when the sensor chip 

is in contact with the same buffer solution (hybridisation buffer), so that the shift 

is related only to compounds bound to the sensor chip. In all experiments, the 

single-stranded probe was regenerated by a one-minute treatment with I mM HCI, 

which allows the multi-use of the sensor. After each regeneration cycle a 

successive hybridisation reaction could be monitored. 

4.3 Results 

4.3.1 Probe characterisation with 25-mer target DNA 

The probe surface was characterised by the use of synthetic oligonucleotides (25- 

mer) of the same length and complementarity to that of the immobilised DNA 

molecules. 

4.3.1.1 Baseline stability 

It is important to examine the stability of the baseline signal, as it is directly 

related to the stability of the probe surface. 

Following the immobilisation procedure, the sensor chips were transferred in the 

BlAcore instrument, where hybridisation buffer flow conditions (5 pl miri 1) were 
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applied. Running buffer flow over freshly immobilised sensor surface led to a 

decrease in the observed baseline signal as shown in Figure 4.1. 
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Figure 4.1: Observed decrease in the baseline signal of the freshly immobilised 
SPR sensor surface, after rinsing with hybridisation buffer. The curves 
correspond to the baseline signal recorded in flowcells I and 2, both immobilised 

with the thiol-functionalised probe P35S. 

Upon achieving an initial stable baseline, the effect of successive hybridisation 

and regeneration cycles on the probe surface was investigated. It is clear that 

failure to regenerate the probe surface adequately, would lead to an increase of the 

baseline signal. This would be due to the retention of target ssDNA molecules in 
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the form of a double helix with the immobilised complementary strands, which 

increases the amount of molecules bound to the sensor surface. Moreover, the 

partial preservation of the double-stranded form makes some of the probe 

unavailable for subsequent hybridisation reactions. 

For the purpose of this investigation, the baseline signal was monitored after 

hybridisation with 25-mer untreated DNA target. It was observed that 24 

successive hybridisation cycles under 5 µl min 1 conditions of running buffer flow 

resulted in an increase of the baseline signal equal to 32 RU in flow cell 1 (FC1), 

while a decrease of 5 RU was recorded in flow cell 2 (FC2) (Figure 4.2). The 

effect of overnight continuous flows (5 µl min 1) on the probe surface was also 

examined by monitoring the difference of the baseline signal before and after 

overnight flows. After each overnight flow the baseline signal was decreased <90 

RU for both flow cells (Figure 4.2). 
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Figure 4.2: The effect of continuous buffer flow conditions and regeneration 
treatments on the stability of the SPR baseline signal. Baseline sigmal was 
recorded on regenerated probe surface, when the sensor chip was in contact with 
the same buffer solution (hybridisation buffer). Data were collected from flow 
cells I and 2, both immobilised with the thiol-functionalised probe P35S. 
Overnight flows are symbolised with vertical arrows. 

The above results indicate that the stability of the baseline was more vulnerable to 

overnight flow conditions in comparison to the large number of successive 

hybridisation/regeneration cycles. 
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4.3.1.2 Hybridisation capacity for 25-mer target oligonucleotides 

Initial hybridisation experiments were conducted without the addition of Tween 

20. In the absence of Tween 20, some of the produced hybridisation shift 

remained on the probe surface after I or 2 regeneration cycles. More specifically, 

hybridisation with 50 nM of oligonucleotide target and subsequent regeneration, 

increased the baseline signal up to <15 RU (12.35 % of the observed hybridisation 

shift). With 100 nM of target oligonucleotide, the effect was more pronounced 

leading to a baseline increase up to 83 RU (35.5 % of the observed hybridisation 

shift). This is an indication of non-specific binding events, difficult to recover 

with one regeneration cycle. Accumulation of material bound on the probe 

surface increases the baseline signal and eventually reduces the hybridisation 

efficiency of the probe with respect to repeatability. The probe surface recovers 

after successive regeneration cycles and continuous flow of running buffer. 

Improvement of the hybridisation conditions was accomplished by the addition of 

Tween 20. Tween 20, is a non-ionic surfactant used in hybridisation studies to 

reduce non-specificity. Spiking of the hybridisation buffer with 0.005 % v/v of 

Tween 20, effectively eliminated non-specificity, but also reduced the observed 

hybridisation shift by 23 % in FC1 and 42 % in FC2. Nevertheless, it led to well 

regenerated surfaces, thus indicating the specificity of the observed hybridisation 

shift. 

Reduction of non-specific binding effects is probably due to the blocking effect of 

Tween 20. By being non-ionic in nature, no interaction with the charged DNA 
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molecules is expected. Both running buffer and hybridisation solutions were 

spiked with 0.005 % v/v of Tween 20. All the presented data was produced using 

these conditions. 

Figure 4.3, shows the calibration curve of P35S target oligonucleotides (25-mer), 

complementary to the thiolated immobilised probe, using 0.005 % v/v of Tween 

20. 
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Figure 4.3: Calibration curve for P35S synthetic oligonucleotides (25-mer), using 
a complementary thiol-functionalised sequence immobilised onto the gold surface 
of the sensor chip, as a part of a thiolated mixed SAM. Flow cells 1 and 2, are 
replicates of the same immobilisation treatment. 
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The precision in terms of CV was lower in concentrations at the lower end of the 

calibration curve (<11 %). Higher concentrations of target analyte (>25 nM) 

resulted in improved precision that did not exceed the 2.2 %. Non-target (TNOS) 

oligonucleotides produced <8 RU, thus confirming the specificity of the probe. 

Considering the RU shifts generated by non-target sequences, only shifts >10 RU 

in the case of target P35S were considered as reliable. 

Using this criterion, the experimental limit of detection for the 25-mer P35S target 

sequence, empirically established, was found to be 5 nM (RUFCI=12, RUFC2=13). 

Comparison of the hybridisation shifts obtained from FC1 and FC2, showed a 

variation less than 10 %, which suggests a fairly homogenous active probe along 

the sensor surface (Table 4.1). 

To check the reproducibility of the generated response, the hybridisation shifts for 

100 nM of target oligonucleotide (P35S) were monitored on each day of 

measurement over the course of three successive days. The average hybridisation 

shift (n=3) for 100 nM over 2 overnight continuous flows and 28 hybridisation 

cycles showed a CV<9 % for both flow cells. This suggests that the hybridisation 

capacity of the thiolated probe is quite stable and stress-resistant, with regard to 

the number of hybridisation reactions and continuous flow treatments. The 

repeatability of the hybridisation shifts (n=3) for 100 nM of untreated target DNA, 

recorded over a day of measurements did not exceed 5% in terms of CV. 
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Table 4.1: Hybridisation shifts obtained from flowcells (FC) I and 2. The 
concentrations in nM refer to target P35S oligonucleotides (25mer), 
complementary to the immobilised probe sequence. A 25-mer oligonucleotides 
sequence, non-complementary to the immobilised probe (TNOS) was used as a 
negative control. 

P35S target (25mer) oligonucleotides 

nM Mean RUFc I Mean RUFC2 StdeV FC 1 StdeV FC2 CV%FCI CV%Fc 

5 12 13 1.3 0.9 10.6 7.0 

10 21 23 2.2 2.5 10.3 10.8 

25 41 45 0.9 0.8 2.2 1.7 

50 65 71 0.5 0.2 0.8 0.3 

75 80 88 0.8 0.1 1.1 0.1 

100 90 99 1.0 1.1 1.1 1.1 

THOS (25mer) oligonucleotides (Negative Control) 

100 2 3 2.6 3.9 131 124 

Keeping the inlet velocity (5 µl min 1) and concentration constant, the effect of 

injection volume on assay performance was studied. Variation in the injection 

volume provides information regarding the diffusivity of the mobile species under 

the specific conditions of flow. Table 4.2, summarises the hybridisation shifts 

obtained in FC1 and FC2, using different injection volumes of the target 

oligonucleotide solution (100 nM P35S). 
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Table 4.2: Hybridisation shifts for l00nM of oligonucleotide target P35S, using 
different injection volumes of target solution. 

Injection volume (µl) MeanRUFci MeanRUFc2 CV%FC3 CV%FC2 

50 108 118 2.0 1.6 

25 93 100 5.2 4.3 

15 70 75 1.4 0.9 

4.3.1.3 Regeneration of the probe 

Each hybridisation cycle was followed by a1 min regeneration step, which was 

aimed at removing the H-bonded target molecules and leave the probe free for 

new hybridisation cycles. The regeneration agents used, were NaOH and HCl in 

different concentrations. 1 mM HCI or 7.5 mM NaOH were sufficient to 

regenerate the probe when low concentrations of P35S target (<25 nM) were 

tested. For higher concentrations of target, 5 mM HCl or 10 mM NaOH were 

successfully applied. 

After 24 hybridisation cycles, the baseline signal was increased by 32RU in FC 1 

and decreased only by 5 RU in FC2. This decrease can be regarded as relatively 

small, if the number of hybridisation cycles is considerecl. 
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4.3.1.4 Reproducibility of the ARU signal over different chips 

The hybridisation performance between two sensor chips was compared using 100 

nM of target P35S oligonucleotide. Measurements were taken from fresh and 

stabilised probe surfaces. The average (n=3) hybridisation shift for 100 nM of 

target, was found to be in the range of 100-140 RU over two individually 

immobilised sensor chips. Considering that the immobilisation conditions (flow 

rate, concentration of probe sequences, probe aliquots, temperature, time 

allowance for immobilisation) were kept constant in both cases, this small 

difference indicates that the hybridisation capacity of the thiolated mixed SAM 

varied only slightly in each case. 

4.3.1.5 Probe characterisation with pre-treated 25-mer target DNA 

To examine if a sample pre-treatment step could increase the hybridisation 

efficiency of the probe for the target DNA, hybridisation experiments were 

performed using the sample pre-treatment step optimised with the biotinylated 

probe (chapter 3, section 3.3.5). The use of a sample pre-treatment step was 

aimed at the denaturation of polynucleotide amplified sequences prior to SPR 

testing, in order to facilitate hybridisation with the immobilised probe. The 

optimised denaturation step employed in chapter 3, consisted of 0.3 M NaOH and 

20 % v/v formamide and it was found to be able to eliminate the secondary 

structures within the target DNA sequence. 
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To test the hybridisation efficiency of the probe surface with denatured DNA 

samples and the effect of these conditions on the probe surface, initial 

experiments were carried out using P35S oligonucleotides of 25-mer. Table 4.3, 

provides data regarding the hybridisation shifts for 5 nM and 100 nM P35S in 

denaturing conditions. A comparison with the hybridisation shifts obtained in the 

absence of denaturing conditions is provided at the same table. Application of the 

optimised denaturation method improves the detection limit of the system, leading 

to approximately a four-fold greater hybridisation shift at the 5 nM level. 

The results below suggest the importance of a sample pre-treatment step to 

improve the detection limit. The pre-treated 100 nM target DNA produced an 

average hybridisation shift of 161 RU in FC 1 and 173 RU in FC2, exhibiting a 

1.7-fold higher analytical signal to that of untreated target. A5 nM concentration 

of non target solution (TNOS) was tested under the same conditions, to provide 

information regarding the specificity of the RU shifts, generated by target 

concentrations on the detection limit, as shown in Table 4.3. 
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Table 4.3: Hybridisation shifts (RU) for P35S oligonucleotides (25-mer), 
produced in the presence and absence of a sample pre-treatment step. 
Hybridisation shifts recorded from flowcells 1 and 2. Specificity of the generated 
hybridisation shifts was confirmed by a non-target 25-mer sequence (TNOS). 
Mean values (n=3). 

Denatured (25mer) P35S oligonucleotides 

MeanRUFcI MeanRUFc2 StevRUFCI StevRUFc2 CV%FCl CV%FC2 

5 nM 42 49 5.8 0.9 13.7 1.9 

P35S 

100 nM 161 173 22.9 18.6 14.2 10.8 

P35S 

5 nM 6 11 5.6 5.8 87.4 50.4 

THOS 

Non-denatured (25mer) P35S oligonucleotides 

5nM 12 13 1.3 0.9 10.6 7.0 

P35S 

100nM 90 99 1.0 1.1 1.1 1.1 

P35S 

5nM 112.3 2.1 >100 >100 

TNOS 

When the denaturing treatment was employed, the generated hybridisation shifts 

were described as less repeatable in comparison to the ones produced by untreated 
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samples (Table 4.3). In addition, difficulties were encountered in regenerating the 

probe surface after hybridisation with pre-treated samples. Up to 10 % of the 

observed hybridisation shift for a 100 nM concentration of target sequence 

remained on the probe surface after a regeneration cycle. For 5 nM of target, 

<34 % of the observed hybridisation shift remained on the probe surface after a 

regeneration cycle. Complete regeneration of the probe was usually accomplished 

by successive washing steps (1000 µ1 min I) or overnight buffer flow treatment. 

Injection of 5,10 and 20 % v/v of formamide alone in hybridisation solution did 

not produce any RU shift. However, injection of the denaturing reaction mixture 

in the absence of target sequence led to a 39 RU shift, which proved resistant to 

removal by regeneration cycles. 

Further investigations on the effect of formamide were carried out on a newly 

immobilised probe surface. Smaller amounts of formamide (5 and 10% v/v) in 

the reaction mixture, generally led to more easily regenerated surfaces, while 

repeatability of the observed hybridisation shift was not improved. 

4.3.1.6 Sensor lifetime 

One criterion for defining sensor lifetime was the number of hybridisation cycles 

and overnight washes that led to specific hybridisation events with untreated 

oligonucleotide solutions. Detachment of the mixed SAM from the sensor 

surface, as a result of the continuous flow conditions, would be expected to result 
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in patches of bare gold. These sites could be vulnerable to adsorption of DNA 

that would be more difficult to recover under the regenerating conditions used. 

Moreover, probe detachment could eventually decrease the hybridisation capacity 

of the probe. Considering the non-specific events associated with the use of 

formamide, the regenerating behaviour of the probe surface was monitored after 

hybridisation with untreated oligonucleotide solutions. After a period of 4 

overnight washes and 74 hybridisation cycles, at least 8% of the generated 

hybridisation shift for 100 nM of target was not removed from the probe surface 

by the use of a5 mM HCl regenerating solution. It is postulated that the 8% of 

RU shift corresponds to DNA material adsorbed on the gold surface. 

The hybridisation capacity of the probe is also indicative of sensor lifetime. The 

study was conducted on a single sensor chip, by monitoring the sensor response to 

100 nM of target DNA, over 3 overnight washes and 50 hybridisation cycles. The 

hybridisation shift for 100 nM of target was reduced from 90 RU to 74 RU in FC1 

(18% decrease) and from 99 RU to 77 RU (22 % decrease) in FC2. 

4.3.2 Matrix effect of genomic DNA 

To investigate whether the presence of genomic DNA could have an effect on the 

hybridisation efficiency of the probe for a known target concentration, non- 

transgenic genomic DNA was inoculated with 50 nM of target DNA. The non- 

transgenic genomic DNA was extracted from Nicotiana glauca (0.02 pg gl"1,0.5 
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µg per injection) and was digested using the enzymes BamHI and Hind III. A 

final concentration of 50 nM of P35S target was then inoculated into a digested 

solution. Due to the non-specific events generated by the use of 20 % v/v 

formamide, the use of formamide was reduced to 10 %. The hybridisation shifts 

shown in Figure 4.4, were obtained after denaturing the samples using 0.3 M 

NaOH and 10 % v/v formamide, as well as in the absence of denaturation. In the 

absence of denaturing conditions, comparable hybridisation shifts were obtained 

using 25-mer target in hybridisation solution and in genomic DNA. Intra-strand 

interactions between the 25-mer target and the digested genomic DNA were, in 

principle, not expected due to the double stranded nature of the genomic DNA. 

Interestingly however, the reaction under the current conditions (hybridisation 

time, flow rate etc) was found to be independent on the presence of genomic 

DNA, that could cause diffusion constrains. 

When denaturing conditions were applied (10% v/v formamide, 0.3 M NaOH), 

the system generated slightly higher hybridisation response in the presence of the 

genomic matrix (<17 RU). The small RU difference observed between the spiked 

genomic sample and the standard target solution was attributed to sample 

preparation. 
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Figure 4.4: The matrix effect of genomic DNA (0.02 µg pl"', 0.5 gg per 
injection) on the hybridisation of the P35S target with the immobilised probe. 
Sample 1: 50 nM target P35S in hybridisation buffer (NaCl 300 mM, Na2PO4 20 
mM, EDTA 0.1 M, pH: 7.4). Denatured in 0.3 M NaOH and 10 % v/v formamide 
Sample 2: 50 nM target P35S in genomic DNA of Nicotiana glauca. Denatured 
in 0.3 M NaOH and 10 % v/v formamide. 
Sample 3: 50 nM target P35S in hybridisation buffer (NaCl 300 mM, Na2PO4 20 
mM, EDTA 0.1 M, pH: 7.4). No denaturation was applied. 
Sample 4: 50 nM target P35S in genomic DNA of Nicotiana glauca. No 
denaturation was applied. 
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4.3.3 Double-stranded oligonucleotide DNA 

The hybridisation performance of the immobilised probe was initially assessed 

using double stranded oligonucleotide hybrids. These were regarded as a model 

type of symmetrically amplified DNA and were treated as real samples. Double- 

stranded oligonucleotide hybrids were denatured using 20 % v/v formamide and 

0.3 M NaOH. SPR analysis showed an average of 58 RU (n=3) and CV<20 %. 

Denatured under identical conditions, ssDNA produced a mean hybridisation 

shifts of 96 RU (CV<5.5 % 

The results suggest that the system is capable of hybridisation with double - 

stranded oligonucleotide DNA, under the present denaturing conditions. 

Correlation with symmetrically amplified samples may be performed, provided 

that the amplicons are of oligonucleotide length (-25mer). 

4.3.4 SPR analysis of asymmetrically PCR amplified DNA 

Asymmetrically amplified SF210 maize (200 nM, 243bp) was denatured using 10 

% v/v formamide and 0.3 M NaOH. SPR testing showed an average hybridisation 

shift of 24 RU (n=3) in both flow cells. Reproducibility in terms of CV was 

found to be <10 %. Considering that the present denaturing conditions could give 

rise to non-specific binding effects, this hybridisation shift was considered too 
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small to support the argument that the system is able to specifically hybridise with 

PCR amplified sequences (243 bp). 

Higher amount of formamide (20 % viv) resulted in slightly higher resonance 

shifts (31 RU), thus indicating the low capacity of the system to generate high 

hybridisation signals regardless of the formamide concentration. SPR testing with 

non-denatured asymmetrically amplified samples resulted in non-detectable 

hybridisation shifts. 

4.3.5 Comparison of the thiol-functionalised DNA and blocking thiol 

model with the scheme based on biotin-streptavidin linkage on dextran 

matrix. 

The HS -ssDNA and blocking thiol model was compared with the well optimised 

on biotin-streptavidin based immobilisation scheme. The immobilisation 

procedure of the biotin-streptavidin scheme was based on the protocol of Löfas 

and Johnsson, (1990), as previously reported (Tombelli et al., 2000 a, b; Mariotti 

et al., 2002). 

Calibration curves (RU response vs target concentration) produced by both 

immobilisation schemes are shown in Figure 4.5. 
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Figure 4.5: Comparison of response calibration curves generated by identical 
probe molecules, attached on the gold SPR sensor by two alternative 
immobilisation schemes. The triangular data points correspond to the calibration 
curve produced by the scheme based on biotin-streptavidin linkage on dextran 
matrix (ARU (Fcz_Fc I)). The square and diamond data points relate to the 
calibration curves produced by the HS-ssDNA and blocking thiol model 
(flowcells I and 2). 

The reproducibility of the generated resonance shifts between the different sensor 

chips was studied by both immobilisation schemes. Investigations were 

performed on two sensor chips for each immobilisation method studied. As 

previously described in section 4.3.1.4, hybridisation reactions with the HS- 

ssDNA probe system in two sensor chips, generated shifts in the range of 100-140 

RU for 100 nM of target P35S. It is worth noting, that two different experiments 

Biosensor Development for the Analysis of Food Quality 109 

0 20 40 60 



Chapter 4: SPR Affinity Biosensor based on a Thiol Functionalised DNA Probe 

with the dextran-biotin-streptavidin method, when conducted under the same 

immobilisation and hybridisation conditions, produced hybridisation shifts in the 

range of 150-390RU for IOOnM of target P35S. 

Comparison of the generated shifts obtained for the reference sample analysis 

(100 nM of untreated target P35S) on different days, provided an indication of 

probe stability and sensor lifetime. Figure 4.6, shows a comparison of the two 

immobilisation schemes in terms of reproducibility of hybridisation shifts 

between different days of measurement. After 28 hybridisation cycles and 1 

overnight wash, the hybridisation shift produced by the biotinylated probe was 

reduced by 17 %. Nevertheless, using the thiolated probe, the resonance unit 

response for the same concentration of target remained relatively constant (FC1= 

95±5 RU, FC2= 103± 4 RU) over 30 cycles and 2 overnight washes. A 27% loss 

of hybridisation response was eventually observed after 82 hybridisation cycles 

and 3 overnight flow treatments (5 gl miri 1). 
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Figure 4.6: Comparison between two alternative immobilisation schemes, in 
terms of reproducibility of SPR analytical signal for 100 nM of 25-mer P35S 
target, in a course of different days of measurement. Indicative arrows correspond 
to overnight flow treatments. 
Series 1(diamonds): Hybridisation shifts produced by the biotinylated probe 
attached to a dextran matrix by biotin-streptavidin linkage. Error bars correspond 
to CV% for the mean DRU response (n=3). 
Series 2 and 3 (squares and triangles): Hybridisation shifts produced by the HS - 
ssDNA probe in flow cells I and 2, respectively. Error bars correspond to CV% 
for the mean RU response (n=3). 

350 

300 

250 

- Biotinylated Probe 

-ý- Thiolated Probe (FC1) 

Thiolated Probe (FC2) 

0 20 40 60 80 100 

Biosensor Development for the Analysis of Food Quality 111 



Chapter 4: SPR Affinity Biosensor based on a Thiol-Functionalised DNA Probe 

4.4. Discussion 

The Biosensor developed herein, is based on a thiolated probe, part of a mixed 

SAM immobilised on a gold SPR sensor surface. The current study investigated 

the stability and hybridisation capacity of the thiolated probe by means of 

BIAcore SPR technology. 

Following immobilisation of the thiolated mixed SAM, the sensor surface was 

exposed to running buffer flow conditions (5 µl min 1). This initial exposure of 

the immobilised probe surface to running buffer flow conditions, led to a decrease 

in the baseline signal. This decrease is considered to be as a result of detachment 

of material from the sensor surface. With regard to this issue, immobilisation 

studies on cantilever sensors, using thiol-modified DNA oligonucleotide 

sequences, suggested a three phase immobilisation process (Marie et at., 2002). 

During a first phase, the thiol-modified DNA oligonucleotides self-assemble on 

the gold-coated cantilever via thiol-gold binding. Once this layer is completed, or 

nearly completed, DNA oligonucleotides continue to adsorb, forming a multilayer 

structure held together by hydrogen bonding, essentially a low-energy interaction. 

When the system is rinsed with milliQ water those oligonucleotides, which are not 

strongly bound to the surface by thiol-gold bond are desorbed and the cantilever 

signal decreases. The cantilever stabilisation value was interpreted as the surface 

stress in a single layer of strongly bound DNA oligonucleotides. 

Biosensor Development for the Analysis of Food Quality 112 



Chapter 4: SPR Affinity Biosensor based on a Thiol"Functionalised DNA Probe 

Even in the case of mixed SAM, loss of material is attributed to the displacement 

of the thiolated probe rather than the loss of the mercaptohexanol. Control SPR 

experiments (Georgiadis et al., 2000) showed that the maximum coverage of 

mercaptohexanol onto bare gold (1.8 x 101¢ molecules/cm2) is much greater than 

the HS-C6-ssDNA (7.6 x 1012 molecules/cm2). Therefore, loss of large amounts 

of mercaptohexanol would leave much of the gold surface bare. Such a surface is 

vulnerable to non-specific binding of DNA. In the case of non-specific binding 

events, the target DNA molecules are considered to be at an adsorption state 

through substrate/backbone contacts. In control experiments, no non-specific 

adsorption of ssDNA was observed on this surface (Peterlinz et al., 1997). 

The current study also confirms the specificity of the generated hybridisation 

shifts on freshly immobilised sensor surfaces. SPR testing of DNA sequences 

non-complementary to the immobilised probe yielded very low (<8 RU) or non- 

detectable shifts. Therefore, adsorption related events onto freshly immobilised 

sensor surface, is an argument not supported. Further decrease of the baseline 

signal was found to be dependent on the number of hybridisation/regeneration 

cycles and overnight washes. Overnight flow conditions appeared to have a 

greater effect on the baseline, by decreasing the baseline signal up to 90 RU per 

operation. 

Characterisation of the probe surface was conducted by the use of 

oligonucleotides (25-mer) bearing the same length and complementarity to the 

immobilised probe. The experimental limit of detection for the 25-mer 
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oligonucleotide was found to be 5 nM (FClpu= 12, FC2RU= 13). Non-target 

sequence (TNOS) produced a <8 RU shift, thus confirming the specificity of the 

probe. 

Sikavitsas et al. 2002, described the parameters governing transport processes in 

the BlAcore biosensor. Evolution of the concentration profile of the mobile 

species in the flow channel is controlled by conditions, such as the inlet velocity 

of the buffer, the inlet concentration and also the diffusivity of the mobile species 

in the buffer. In the current work, the diffusivity of the DNA oligonucleotides in 

solution (100 nM) was investigated, by keeping the other parameters (inlet 

concentration, velocity) constant. An injection volume of 15 µl produced a 

decrease of <25 % in hybridisation shifts, in comparison to the 25 [d injection 

volume. The use of 50 µl sample volume, increased the resultant hybridisation 

shift by <15 %, leading to a less pronounced difference in response. These results 

are indicative of the reaction kinetics, under the present conditions of buffer flow 

and DNA target concentration. 

Comparison of the thiolated probe-based immobilisation method with the 

alternative of biotinylated probe to dextran by a streptavidin linkage revealed the 

superiority of the latter in terms of hybridisation shifts. Working in the plateau 

region of the P35S standard curve in both immobilisation schemes, showed that 

the thiolated probe had the hybridisation capacity to produce average shift of 

around 120 RU, whereas the biotinylated probe generated shifts values of at least 

200 RU. Although the method failed to generate high hybridisation shifts with 

Biosensor Development for the Analysis of Food Quality 114 



Chapter 4: SPR Affinity Biosensor based on a Thiol-Functionalised DNA Probe 

respect to the optimised immobilisation scheme, the thiolated probe yielded an 

encouraging good detection limit of 5 nM for target DNA. 

The superiority of the dextran-based immobilisation protocol in terms of 

hybridisation shifts is not surprising considering that the method has formed the 

immobilisation platform for various transducer systems (LÖfäs et at., 1995; Storri 

et al., 1998a) and has been used as a standard method for SPR BlAcore 

applications (Uppsala, Sweden). On the contrary, the thiolated DNA-based 

immobilisation protocol was only preliminary investigated under continuous 

buffer flow conditions in the present study. 

Despite the loss of probe material from the sensor surface as a result of the 

continuous flow conditions (Figure 4.1), the hybridisation capacity of the HS - 

ssDNA probe was highly reproducible over different days of measurement. The 

thiolated probe proved to be more stable in terms of hybridisation capacity than 

the biotinylated probe, generating relatively constant hybridisation shifts for 100 

nM of target (FCIRU= 95± 5, FC2RU= 103± 4) over 30 cycles and 2 overnight 

flows. 

Examination of the variation in the hybridisation efficiency between different 

sensor chips was found to be more pronounced in the case of the biotinylated 

probe attached to a dextran matrix by streptavidin linkage. Two different sensor 

chips treated with identical immobilisation and hybridisation conditions, produced 

hybridisation shifts in the range of 150-390 RU for lOOnM of target P35S using 

the streptavidin/biotin immobilisation approach. Correspondingly, the HS- 
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ssDNA generated shifts in the range of 100-140 RU for 100 nM of target P35S. 

This considerable variation in the case of the dextran modified surface, observed 

under reproducible conditions, may be due to the several steps involved in the 

immobilisation procedure. It may be suggested that, in the case of the mixed 

SAM, the limited numbers of steps for sensor-surface modification reduce the 

introduction of variability into the procedure, hence producing more reproducible 

results. 

To extend the analytical applications of the system for PCR amplified DNA 

target, a pre-treatment step was employed. The sample pre-treatment step was 

aimed at the denaturation of the amplified DNA target, under strong alkaline 

conditions (0.3 M NaOH) and formamide (10 or 20 % v/v), in order to facilitate 

hybridisation with the immobilised probe. The specific pre-treatment step has 

been successfully applied in hybridisation studies of biotinylated probe 

immobilised on dextran modified gold surface (chapter 3, section 3.3.5). Upon 

implementation of the selected sample pre-treatment conditions, the probe 

exhibited poor repeatability and regeneration problems. Specifically, the 

hybridisation shifts generated when using a target concentration of 100 nM, 

produced a CV value of at least 10 %, in both flow cells. Moreover, upon 

regeneration of the probe surface, up to 10 % of the observed hybridisation shift 

was still apparent on the probe surface. 

Formamide is a highly polar solvent, capable of hydrogen bonding. Sur and 

Lakshminarayanan (2001), reported the effect of formamide to SAMs based on 

the barrier properties of the latter to formamide. The study investigated whether 
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ferrocene electron transfer through the monolayer was facilitated by the ability of 

the solvent molecules to interact with the thiol molecules and hence disorganise 

the monolayer. The study revealed excellent monolayer blocking properties to 

ferrocene, which was attributed to the two dimensional (layered) hydrogen 

bonded structure of the formamide molecules. Due to the association of 

formamide molecules by strong hydrogen bonding, formamide did not solvate the 

alkyl tails of alkanethiol molecules and therefore, no disorganisation took place 

which would permit passage of the ferrocene molecules to the sensor surface. In 

the current study, injection of 5,10, and 20 % v/v of formamide alone in the 

reaction mix did not produce any change in the refractive index, thus confirming 

the absence of interaction between the formamide molecules and the mixed SAM. 

The presence of strong alkaline conditions in the formamide reaction mixture 

gave rise to non-specific binding effects, recognised by regeneration problems and 

reduced repeatability in the generated hybridisation shifts. When oligonucleotide 

and polynucleotide target DNA molecules were analysed, regeneration problems 

were encountered. Identical sample treatment was successfully applied in the case 

of dextran modified sensor surface, where no refractive index artefacts were 

observed on the negative control probe surface. It is postulated that this 

phenomenon may result from interaction of the OH-terminated thiol molecules 

with the amide salt, produced by the following reaction (Rodriguez et al., 2000): 

NaOH +HCONH2 --01 CHCONH(Na)H +H20 
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SPR analysis of denatured dsDNA of oligonucleotide length (25-mer), showed an 

average hybridisation shift of 58 RU (n--3). This result suggests the capability of 

the probe system to detect dsDNA, in the presence of adequate denaturing 

conditions. Correlation to symmetrically PCR amplified target is possible, as far 

as the amplicons are of short length. Nevertheless, hybridisation studies with 

polynucleotide target were less promising. SPR testing of PCR amplified 

polynucleotide target, produced an average hybridisation shift of 24 RU (n=3). 

Considering the non-specific events observed with the use of denaturing mix, this 

hybridisation shift is insignificant to support the argument that the probe system is 

able to hybridise with PCR polynucleotide target. Although the poor quality of 

the DNA starting material may have contributed to this low hybridisation shift, it 

should be considered that a probe able to generate an average (n=3) of 120 RU for 

25-mer target sequences is difficult to generate high hybridisation shifts with 

DNA sequences of 243 bp. The current results come into agreement with the 

work of Huang et al who studied the hybridisation efficiency of mixed SAMs for 

polynucleotide target, using QCM crystals (Huang et al., 2001). His study 

suggested that even if there is adequate space for the PCR amplified sequences to 

approach the immobilised probe, the flexibility of such long DNA sequences in 

the vicinity of the surface might not be as high as that of DNA in the bulk 

solution. As a result, the short portion in the amplified sequence which is 

complementary to the immobilised target might not have the suitable alignment 

for hybridisation. 
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4.5 Conclusions 

The current work characterised a thiol-derivatised DNA (HS-C6-ssDNA) probe 

immobilised on gold, by means of BlAcore technology. The thiolated probe was 

found capable of hybridisation with complementary oligonucleotide molecules of 

the same length, with a detection limit of 5 nM. A stable hybridisation capacity 

was observed over a course of 50 hybridisation cycles and a period of two 

overnight continuous flow treatments. The hybridisation efficiency of the probe 

was not affected by the presence of a genomic matrix. The potential of the current 

probe system to detect symmetrically PCR amplified DNA of short length, was 

confirmed by the use ds-hybrids (25-mer). However, insignificant hybridisation 

efficiency was observed towards polynucleotide target molecules. This is not 

unexpected, when the low hybridisation capacity (-95 RU for 100 nM of target) 

of the probe and the disorganisation and steric hindrance of the bulky 

polynucleotide is considered. 
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CHAPTER 5 

GENERAL INTRODUCTION-PART 2: 
BIOSENSOR DEVELOPMENT FOR THE MEASUREMENT OF 

GLUCOSE AND L-AMINO ACIDS IN HORTICULTURAL 

PRODUCE 
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CHAPTER 5 

GENERAL INTRODUCTION-PART 2: 

BIOSENSOR DEVELOPMENT FOR THE MEASUREMENT OF GLUCOSE 

AND L-AMINO ACIDS IN HORTICULTURAL PRODUCE 

5.1. Horticultural produce quality in terms of sugars and amino acids 

Fructose, glucose and sucrose are the predominant sugars found in fresh fruits and are 

responsible for the sweetness. Acidity and flavour rely upon the total concentration of 

organic acids and amino acids. Distinct flavours may be due to single amino acids or 

the combination of these, but the role of amino acids in contributing to flavour is not 

clear. It has been suggested that certain amino acids are precursors of volatile aroma 

constituents (Hobson and Davies, 1971). 

In apples, as in any other fruit, amino acid levels usually decline during fruit 

maturation. This is probably related to the processes of protein synthesis and 

degradation during maturation (Ackermann et al., 1992). Principal amino acids in 

apples are asparagine and aspartic acid. Sucrose is the major sugar in apples, and it is 

steadily increased during development. Fructose and glucose fluctuate during 

development around the same values until just before harvest when they suddenly 

increase in concentration (Ackermann et al., 1992). 

The sugar content of tomatoes increases rapidly during ripening, reaching a level with 

little subsequent changes (Davies et al., 1969). Experiments showed that acidity also 
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tends to increase around mid-July and decreases rapidly afterwards (Davies et at, 

1969). Premature picking of the fruit seems to decrease the total sugar content, 

whereas no significant variation in the fruits' content of reducing sugars is observed 

during the postharvest up to seven days (Auerswald et al., 1999). The principal 

amino acid in tomatoes is glutamic acid, followed by aspartic acid (Kader et al., 

1978) 

The excessive darkening of potatoes after frying is an important quality defect, 

unacceptable in the potato industry. The colour development after frying is primarily 

due to the high reducing sugar content (Pritchard and Adam, 1994). Consequently, 

industry uses the levels of reducing sugars (glucose, fructose), as an indicator for 

colour development (Roe et al., 1990). However, the content of reducing sugars fails 

to explain colour development in cultivars with reducing sugar content <60 mg 100 

g"i (Rodriguez-Saona and Wrolstad, 1997a). A minor effect to chroma development 

has been attributed to increased levels of the amino acid glutamine, which appears to 

be the major amino acid in the development of colour intensity (Rodriguez-Saona et 

al., 1997b). Levels of reducing sugars and amino acids explained most of the 

variations (75-88 %) in the chip colour (Rodriguez-Saona et at., 1997b). In the 

Russet Burbank potatoes, fry colour was most closely associated with glucose during 

8°C storage (Pritchard et al., 1994). For example, glucose concentration >1.6 mg g'' 

results in undesirably dark fries (Pritchard et al., 1994). 

Sugars, carboxylic and amino acids are naturally abundant in numerous crude foods 

such as fruit, vegetable, milk and honey. The determination of amino acids and 

sugars is thus of great significance in nutritional and biotechnological fields and many 
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efforts have been devoted to analytical chemical methods. Chromatography is the 

most widely used analytical chemical procedure for amino acid and sugar 

measurement in food. 

The chromatographic methods currently in use to determine sugars and amino acids 

are high-performance liquid chromatography (HPLC), gas chromatography (GC) and 

capillary electrophoresis (CE). Nevertheless, chromatography of sugars often suffers 

from low sensitivity and time-consuming processes. The necessity of other detection 

methods, such as mass spectrometry is necessary especially in cases where natural 

matrices are present (Molnar-Perl, 2000). HPLC is a successful approach for amino 

acid detection. Amino acid detection by chromatographic techniques is however, 

hindered by the absence of a strong chromophore, and formation of derivatives is 

often required to enhance the absorbivity (Casella et al., 2000). Photometric detection 

of amino acids by the ninhydrin assay (Hamilton, 1963) is a widely used method, but 

lacks practicality. 

Electrochemical detection has proved to be superior to chromatography in terms of 

selectivity, sensitivity and rapidity. The challenge of providing a rapid, sensitive and 

cost-effective measurement of commercially important analytes has been met by the 

development of biosensors. Enzyme electrodes, in particular amperometric sensors, 

have increasingly been used in food analysis. 
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5.2 Objective of part 2: Biosensor development for the measurement of 

glucose and L-amino acids in horticultural produce 

Glucose and free L-amino acids play a critical role in the maturation stages of the 

fruit, thus affecting shelf life, ripeness and quality. Specific varieties of tomatoes, 

potatoes and apples were tested. Comparison of the biosensor method to standard 

spectophotometric assay methods (test kit, ninhydrin) was one of the major concerns 

of this part of the project. In this manner, the quality of the electrochemical 

measurements and thus the applicability of the biosensor for measurement in real fruit 

samples was assessed against commercialised and commonly accepted monitoring 

methods. 

5.3 Principles of electrochemical biosensors 

Electrochemistry is the science of the interaction of phases containing electrons and 

phases containing ions (Hibbert, 1993). Electron transfer occurs at interfaces (or 

phase boundaries) between a metallic conductor (an electrode) and an ionic conductor 

(an electrolyte). 

Several parameters are known to influence the rate of electron transfer reactions 

(Fisher, 1996): 

" The electrode potential; 

" The reactivity of electroactive species; 

" The nature of the electrode surface; 

" The structure of the metal electrode-electrolyte solution interface. 
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5.3.1 The electrode potential 

The difference in potential J §b between two phases in contact, determines the 

electrochemical processes occurring at the interface (Bard and Faulkner, 1980). 

Indeed, dß can control the direction of the chemical reaction. The quantity 

representing the half-cell potential relative to the potential value at equilibrium, is 

known as overpotential or activation overpotential (r7) (Hibbert, 1993): 

q= M) - A4)e 

where Ocpe is the potential of the half-cell at equilibrium. 

The direction of the electrochemical reaction is determined by i in the context that 

oxidation occurs under a positive rI and reduction under a negative 1. 

5.3.2 Reactivity of electroactive species 

For the general reaction of charge transfer: 

0 +ne-º R 

the balance of reactants and product concentration at a potential is at equilibrium 

with their formal potential, according to the Nernst equation. 

Ee E°+ (RT/nF)ln[O]/[R] 
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The equilibrium potential (Ed, ) depends on the standard electrode potential (E) of the 

reaction and the concentrations of 0 and R at the electrode surface. Also, R= gas 

constant, F= faraday constant, n= total number of charges on an ion and T= 

temperature in Kelvins. 

5.3.3 Nature of the electrode/solution interface 

The currently accepted model of the electrical double layer is shown in Figure 5.1. 

Electrode 

0 

Diffuse Layer 

0 
0 (: D 

X1 
x2 
x3 

0 
Figure 5.1: Grahame's model of the electrode-solution interface, showing the Inner 
Helmhotz Plane (IHP) at a distance xi, the Outer Helmhotz Plane (OHP) at a distance 
x2 and the diffuse layer that extends in a distance x3, from the OHP into the bulk of 
the solution. 
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At a given potential the electrode-solution interface is characterised by an array of 

charged species and oriented dipoles, known as electrical double layer (Bard and 

Faulkner, 1980). This consists of different layers that spread out in the solution 

phase. At a minimum distance from the metal electrode (xl), extends the inner 

Helmholtz plane (IHP), which is occupied by specifically adsorbed species. Solvated 

ions are electrostatically attracted to the metal electrode and approach the metal to a 

minimum distance x2, a function of the solvation shell dimensions. This layer 

corresponds to the outer Helmholtz plane (OHP). These solvated ions are known to 

be non-specifically adsorbed and are distributed in the diffuse layer, the thickness of 

which depends on the total ionic strength of the solution. The metal electrode- 

electrolyte interface acts like a capacitor. A charging current equalises the charge 

between the metal electrode surface and the diffuse layer, resulting in an equilibrium 

state. In other words, the total charge density d' (µC/cm2) of the solution becomes 

equal and opposite to the charge density of the metal electrode a: 

e="e 

The structure of the metal electrode-electrolyte interface can influence the rate of 

electron transfer. The structure of the double layer is dependent on the applied 

potential and the ionic strength of the solution. Therefore, non-specifically adsorbed 

species approaching the metal electrode experience different potentials. On the other 

hand, in electrochemical reactions that involve electroactive species of low 

concentration, the charging current may be higher than the Faradaic one (Bard and 

Faulkner, 1980). Therefore, the effects of the double layer should be taken into 

account in electrochemical experiments. 
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5.4.4' Transport processes at an electrode 

In a chemical reaction, the reactant species need to be transported to the metal surface 

and the products transported back into the bulk solution. Therefore, the rate of 

transport contributes to the overall kinetics of a chemical reaction. The mechanisms 

that govern the movement of ions through a solution are: diffusion, migration and 

convection. 

Diffusion arises from uneven concentration distribution and acts to maximise 

entropy (Fisher, 1996). The diffusion process has been described by Fick's law, in 

which the quantity of a species diffusing through a unit area per unit time, the 

`diffusional flux J' (mol sec 1 cm 2), is equal to the concentration gradient of the 

species (B) at that location. In one dimension x, 

. r=-na[B] /& 

where o(B]/c c is the concentration gradient in direction x and the D is the 

proportionality coefficient known as the diffusion coefficient (cm2/s). In an electrode 

process, the formation of a concentration gradient may be due to the consumption of 

an electroactive species at the electrode surface. 

Migration, by definition, is the movement of a charged body under the influence of 

an electric field (Bard and Faulkner, 1980). The electrostatically driven movement of 

charged species at the electrode/solution interface, as a result of an applied potential, 

is a migration effect. 
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Finally, convection is the movement that occurs when mechanical force acts on a 

solution (Fisher, 1996). Apart from the natural convection, which is due to thermal or 

density gradients within a solution, another type of convection is identified. The 

forced convection is due to external forces, such as heat application and/or stirring. 

The height of the diffusion layer at the electrode surface can be modified by the rate 

of the forced convection at the electrode surface. As the rate of the convection 

increases, the diffusion layer becomes smaller. 

5.4.5 The electrochemical cell 

An electrochemical cell may contain three electrodes. The electrode where the 

electrochemistry of interest takes place, is known as the working or indicator 

electrode. The potential of this electrode is controlled with respect to the reference 

electrode, which operates in a potentiometric mode. The current in the 

electrochemical cell passes between the working electrode and a third electrode, 

termed the auxilliary electrode. 

The working electrode is where the electrochemical reaction of interest takes place. 

Electrode materials must be good electron conductors. The range of electrode 

materials includes metals and other solids with metallic conductivity and good 

semiconductors. Carbon is a widely used chemically inert electrode. The presence of 

n-electron clouds in the graphite atoms, increases its absorbance affinity for a variety 
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of atoms (Hibbert, 1993). Carbon is used in the form of glassy carbon, graphite and 

carbon paste. 

The role of a reference electrode is to provide an accurate and stable potential value 

as a reference potential. 

The silver/silver chloride electrode often consists of a silver wire, coated with a film 

of insoluble silver chloride as a result of an oxidation process. When immersed in a 

solution of chloride ions, a potential is established with the half-cell reaction: 

AgC1 + e() <_> Ag +Cl' E° _ +0.2224V 

The concentration of free silver ions is determined by the solubility of the silver 

electrode. If the Cl' activity is kept constant, the electrode potential is steady. The 

AgIAgC1 electrode is often used as a reference electrode or "inner electrode" in 

membrane electrodes. 

The calomel electrode is similar, with mercury (I) replacing silver. The half-cell 

reaction is: 

HgzC12(s) +2e(") > 2Hg(I) +2C1" E°= +0.2681 V 

By keeping the activity of chloride constant the potential of the half-cell is fixed. 

Finally, the auxiliary or counter electrode is used for the completion of the 

electrical circuit. The counter electrode may be a separate third electrode, but when 

the current flow is minimal it may also be substituted by the reference electrode. 
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5.5 Electroanalytical methods 

Conductimetry, potentiometry and voltammetry (including amperometry) are amongst 

the three types of electroanalytical methods. 

A very large number of electrochemical devices based on these methods have been 

developed to determine the concentration of electroactive species involved in 

biological systems. 

In brief, Conductimetry measures solution resistance as a means of determining 

charge concentration. It is not ion-selective, but it can determine the total ion 

concentration against a maximum or minimum value. 

Po tent i om etry is the measurement of the electrical potential difference between 

two electrodes in the electrochemical cell. An electrochemical cell consists of two 

electrodes that are connected by an electrolyte solution (ion conductor). The 

maximum difference in potential obtained when no current flow exists in the cell, is 

called an electromotive force. The absence of a current flow in the cell is a necessary 

requirement for an accurate potential measurement. 

Voltammetry measures the current as a function of the applied potential and 

comprises a group of electroanalytical techniques, related to different types of 

potential waveforms. In potential sweep techniques, the potential of the working 

electrode is swept along a chosen region of potential at a fixed rate of potential 

change with time. The current response produced from the electrochemical reaction 

is measured. 
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Am perom etry is a specific kind of voltammetry, where the potential remains 

constant with time. Thus, amperometry is the measurement of the current passing 

through the working electrode, when a constant potential is applied between the 

working and counter electrodes. 

The oxidation or reduction of an electroactive species takes place at the working 

electrode and gives rise to an electrical current. The steady-state electrical current (1) 

may be related to the concentration of an electroactive analyte (B) in solution, which 

undergoes chemical transformation due to the applied potential, such that: 

i=nFAD[B] /a 

where n the number of electrons transferred per mole, and F the Faraday's constant: 

9.64846 * 104 Coulombs, A the area of the electrode surface, D the diffusion 

coefficient and 8 is the diffusion layer thickness. 

5.6 Amperometric enzyme biosensors 

According to Mulchandani (1998): 

"An enzyme amperometric biosensor is an analytical device that combines an enzyme 

with an amperometric transducer to produce a signal proportional to target analyte 

concentration". 
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The enzymatic reaction generates a current, resulting from oxidation/reduction of 

electroactive species at the surface of the working electrode. The amperometric 

transducer measures the current flow across the working electrode at a steady 

potential, controlled with respect to a reference electrode. 

To improve biosensor response, the charge transfer between the working electrode 

and the molecules in solution must be facilitated. Some important biosensor elements 

that influence the redox response are briefly described in the following paragraphs. 

5.6.1 Oxidoreductases 

Oxidoreductases have been widely used in the development of biosensors. They form 

a large group of enzymes that catalyze a wide variety of oxidation/reduction reactions. 

In this study, glucose oxidase and L-amino acid oxidase were used for the 

construction of the biosensors under development. 

Glucose 1- oxidase (GOD, EC: 1.1.3.4) oxidises glucose as a main substrate to 

produce gluconic acid, according to the reaction: 

GOD 
C6H1206 +02 10 C6HI006 +H202 

A schematic presentation of glucose oxidation is provided in Figure 5.2. Other types 

of enzymes that oxidise glucose as their main substrate are the glucose 

dehydrogenases, quinoprotein glucose dehydrogenases and glucose 2-oxidases 
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(Wilson and Turner, 1992). Although the former two enzymes are both specific for ß- 

D glucose, glucose dehydrogenase requires a soluble cofactor whilst the quinoprotein 

dehydrogenase is relatively unstable. On the other hand, glucose 2-oxidase suffers 

from low substrate specificity, as it may also oxidise other carbohydrates such as 

xylose and gluconolactone (Wilson and Turner, 1992). These drawbacks have 

eliminated their widespread use. 

n Glucose n gluconic acid 

n Enzyme-FAD n Enzyme-FADHI 

n U202 n U2 

Figure 5.2: Enzymatic reaction process for the electrochemical reaction of glucose 
oxidation at the sensor surface. The hydrogen peroxide product is subsequently 
oxidised and quantified amperometrically at a +350 mV poised working electrode. 

Glucose 1-oxidase (GOD) was discovered by Muller in 1928 (Bentley, 1963). It has 

been isolated from various sources, including bacteria (Dowling and Levine, 1956) 

and insects (Schepartz and Subers, 1964). GOD has been described as a branched 

glycoprotein (O'Malley and Weaver, 1972), whose carbohydrate component partly 

surrounds a protein core (Degani and Heller, 1988). This shell appears to act as a 

barrier for electron transfer between GOD and the working electrode in amperometric 

biosensors (Degani and Heller, 1988). 

Biosensor Development for the Analysis of Food Quality 134 



Chapter 5: General Introduction Part 2 

The amino acid oxi da se group of enzymes comprises two different types of 

enzymes: L- and D- amino acid oxidases. Both enzymes catalyse the oxidation of 

amino acids to a-keto acids and ammonia, according to the general scheme: 

AAO 
RCHNH2COOH + 02 + H2O º RCOCOOH +NH3 +H202 

n Amino acid 

n Enzyme-FAD 

n H2O= 

n 2-ozoacid + N1I 

n Enzyme-FADH= 

n O2 

Figure 5.3: Enzymatic reaction process for the electrochemical reaction of amino 
acid oxidation at the sensor surface. The hydrogen peroxide product is subsequently 
oxidised and quantified amperometrically at a +350 mV poised working electrode. 

Immobilised L-amino acid oxidase (L-AAO) degrades L-amino acids to 2-oxo-acid, 

ammonia and hydrogen peroxide. The enzyme L-amino acid oxidase (L-AAO) (EC: 

1.4.3.2) may be purified from the venom of several kinds of snakes. These include 

the species Agkistrodon blomhofi (Sun et al., 1999), Agkistrodon acutus (Xu et al., 

2000), Crotalus atrox (Torii et al., 1997) and Crotalus adamanteus (Varadi et al., 

1998). L-AAO is a cytotoxic glycoprotein, acting primarily on the membrane lipid 

bilayer (Dufton and Hider, 1988). The enzyme also showed cytotoxic activity against 

cancer cells, probably due to inhibition of thymidine incorporation and interaction 

with DNA (Ahn et al., 1997). Characterisation of L-AAO from the venom of king 

cobra, Ophiophagus Hannah, revealed a dimer composition (Ahn et al., 1997). 
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Effective enzyme immobilisation is a crucial part for the construction of a biosensor, 

as it is directly correlated with the preservation of enzyme activity and stability. 

5.6.2 Enzyme immobilisation procedures 

Adsorption of enzymes on insoluble supports is a result of polar, ionic, hydrogen 

bonding or hydrophobic interactions (Bardeletti et al., 1991). Simplicity and 

appropriate enzyme treatment, in order to minimise denaturation effects, are the main 

advantages of the method. The weak nature of the enzyme linkages makes them 

susceptible to pH changes, temperature and ionic strength (Mulchandani et al., 1998). 

Entrapment or retaimmnent of an enzyme within a gel matrix dates back in 1967, 

when Updike and Hicks (1967) immobilised glucose oxidase in a polyacrylamide gel 

at the surface of an oxygen electrode. Apart from polyacrylamide, enzymes can be 

entrapped in agar, agarose and chitosan polymer (Mulchandani et at., 1998). The 

method involves a non-denaturing procedure, but suffers mainly from diffusional 

limitations for the substrates and products as well as loss of enzyme by leakage. A 

good alternative is the negatively charged perfluorinated sulphonate polymer 

NafionTM (DuPont-NEN, Boston, MA, USA). The polymer combines enzyme 

preservation and suppression of anionic-interferences (such as ascorbic acid) due to 

charge repulsion. Using the latter polymer, membrane casting can be done directly at 

the surface and the thickness of the formed layer can be smaller (Gorton et at, 1991). 

More recently, pectin has been used as a novel immobilisation matrix for biosensor 

construction (Jawaheer et al., 2003). Pectin can be reconstituted into a thin gel, while 
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its high sugar content stabilises the enzyme in an environment compatible to a 

prolonged operating lifetime. Moreover, pectin can form a paste with the metalised 

carbon of screen-printable consistency, which could find potential in mass production 

of readily immobilised screen-printed electrodes. 

Another immobilisation method for biosensor applications involves the use of 

electrochemically deposited matrices. The method involves enzyme entrapment 

during electrogeneration of the organic polymer at the electrode surface (Cosnier, 

1999). 

Polypyrrole and polyaniline are amongst the conducting electrochemically deposited 

polymers (Foulds and Lowe, 1986; Shinohara et al., 1988). The main advantages of 

the method are the one-step procedure and the exact control of the polymer thickness 

(Cosner, 1999). Entrapment of GOD into conducting polypyrroles has been 

documented (Foulds and Lowe, 1986; Barlett and Whitaker, 1987). Non-conductive 

polymers, like polyphenols, (Centonze et al., 1992) are used to prevent interferences 

from fouling the biosensor signal. 

Immobilisation via covalent bonding provides strong binding links between an 

enzyme and a support. Polytyramine bears free amine groups on the polymer 

backbone, where enzymes can attach via peptide bonds (Situmorang et at, 1999). 

Covalent attachment of GOD at the surface of Polytyramine involves a sequential 

procedure, due to the harsh conditions under which polymerisation is conducted, that 

is 0.3M NaOH in methanol solution (Situmorang et al., 1998). Covalent attachment 

of the enzyme is then accomplished by carbodiimide coupling. Dissolvement of 

tyramine with a mixed methanol-water solvent, allowed polymerisation under 

conditions that retained enzyme activity, thus making electropolymerisation and 
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enzyme immobilisation a one step procedure (Situmorang et al., 1999). A drawback 

of covalent bonding is that it may involve toxic chemicals, although the strong 

binding forces make it a popular option. 

Coupling of enzymes to amino-containing supports can be achieved by crosslinking 

agents, like glutaraldehyde. L-AAO has been immobilised to polytyramine, with 

glutaraldehyde offering a crosslinkage between the enzyme and the polymer (Cooper 

and Schubert, 1994). 

Simple immobilisation is achieved by the use of commercially available pre-activated 

membranes, where the enzyme can be covalently attached or crosslinked. An 

example of commercially available membrane is the Immobilon (Millipore, Bedford, 

MA). Following enzyme immobilisation, the membrane is placed on the surface of 

the working electrode. 

5.6.3 Biosensor stability 

A desirable characteristic of biosensors is to maintain activity for an extended period 

of time. Many studies have focused on the elevation of the operational stability and 

the shelf-stability of biosensors. The production of reproducible, stable biosensors 

mainly relies on enzyme stability. A few methods employed to enhance enzyme 

stability are described in this section. 
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Naturally thermostable enzymes, isolated from archaebacteria, appear to have 

enhanced stability characteristics and provide an alternative method in the 

construction of stable biosensors (Raia, 1995). 

The use of dilute solutions of polyelectrolytes in buffer has proved to partially protect 

the enzyme against thermal inactivation, when stressed at a temperature of 75 °C in 

aqueous environment (Gibson et at., 1996). The formation of protein-polyelectrolyte 

complexes has improved the stability characteristics of biosensors. The use of a 

combination of polyelectrolytes, such as diethylaminoethyl (DEA) dextran and 

dextran sulphate has shown that a high level of stability may be conferred to enzymes 

in the dehydrated state (Gibson and Woodward, 1992). Enzymically active enzyme- 

polyelectrolyte complexes were first reported by Gibson (1996) and provided another 

mechanism of stabilisation. The immobilisation of malate dehydrogenase and lactate 

oxidase led to the production of shelf-stable biosensors for malate and lactate (Gibson 

et al., 1996). 

Transglutaminase from a variant of Streptoverticillium mobaraense (MTGase), was 

applied for the immobilization of biomolecules on electrode surfaces. This enzyme 

catalyses the acyl-transfer between gamma-carboxyamide groups and various primary 

amines. Suitable polypeptides (poly-L-lysine, poly-L-glutamine) or other proteins, 

such as casein, which served as substrates for MTGase, were added to generate 

networks by the entrapped and/or covalently attached sensing enzymes. It was 

demonstrated that MTGase catalyzed enzyme layers on disposable screen printed 

lactate enzyme electrodes exhibited high operational and storage stability, combined 

with high sensitivity (Josten et al., 1999). 
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Another approach to increase stability is the use of biosensors with solid binding 

matrix (SBM)-based composite transducers. SBM-based composite transducers have 

been used for development of series of multibiosensor systems applicable in various 

fields, including food processing and safety (Miertus et al., 1998). Katrlik et al., 

recently reported a Biosensor for the selective determination of L-lactate and L-malate 

in wine, based on robust solid composite transducers. Transducers comprised a solid 

binding matrix having hydrophobic skeleton, e. g. 2-hexadecanone, graphite and 

NAD(+). The biosensor showed an excellent long-term stability, after five months 

storage at room temperature. The L-malate sensor exhibited almost 100 % and L- 

lactate 90 % of the initial sensitivity (Katrlik et al., 1999). 

Application of polyturamine as an immobilisation matrix for GOD, resulted in a 

stable device that showed no loss in electrode response after four months of storage, 

while exhibited minor loss after 20 days of repeated use (Situmorang et al., 1998). 

5.6.4 Increasing sensitivity against interferences 

Hydrogen peroxide is present in many biological reactions. It is a substrate for 

peroxidases and a product of several oxidation reactions, such as the oxidation of 

glucose that yields gluconic acid and hydrogen peroxide. Its detection forms the basis 

for the operation of many oxidoreductase based biosensors. 

The amperometric detection of hydrogen peroxide may suffer from the presence of 

other electroactive species, which act as interferents. Due to the positive applied 
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potential required for the oxidation of hydrogen peroxide, other substance present 

capable of being oxidised at these potentials may cause interference. The interference 

species are oxidised at the electrode to give an additive positive current response. 

Common interference species in biological and food samples, include ascorbic acid, 

uric acid, cysteine and acetaminophen (Higson et al., 1994; Garjonyte and 

Malinauskas, 1999). 

A variety of polymer membranes has been employed to discriminate between 

hydrogen peroxide and other oxidisable compounds. The first polymer perm- 

selective membrane for hydrogen peroxide was reported by Malitests et al., in 1990. 

That was a poly(o-phenylenediamine) membrane capable of immobilising glucose 

oxidase during electropolymerisation and of rejecting ascorbic acid. 

Centenze and Palmisano (Centonze et al., 1992; Palmisano et al., 1993; Palmisano et 

al., 1995) reported that overoxidised polypyrrole exhibits high selectivity for 

hydrogen peroxide. Both the poly(o-phenylene diamine) and the overoxidised 

polypyrrole polymers show perm-selective properties based on hydrophobic- 

hydrophilic and/or charge interaction between solutes and the membrane (Palmisano 

et al., 1995). The poly(o-phenylene diamine)-based biosensor was modified by the 

addition of another electroactive layer, that was placed between the substrate 

electrode and the poly(o-phenylene diamine) film. In a lactate sensitive biosensor, 

described by Palmisano et al. (1995), the enzyme lactate oxidase was immobilised in 

a poly(o-phenylene diamine) film grown on polypyrrole-modified platinum electrode. 
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Size-exclusion coatings have been employed for the construction of hydrogen 

peroxide transducers. Membranes evaluated for use in the biosensors include the 

PVC, polysulphone (PS), suiphonated polyether-ether sulphone-polyether sulphone 

(SPEES-PES) (Benmakroha et at., 1995). In cellulose acetate membranes, molecular 

size exclusion and anion rejection are effectively combined to minimise the 

interference from ascorbate and urate and to a lesser extent from acetaminophen 

(Benmakroha et a!., 1995). 

Another approach to avoid interference is the use of selective electrocatalysts to allow 

the electrochemical oxidation and detection of hydrogen peroxide at reduced 

operating potentials. Examples of electrocatalysts are mainly metal 

hexacyanoferrates, such as Prussian blue. Garjonyte and Malinauskas, recently 

reported hydrogen peroxide sensing biosensors based on Cu2O or CuO modified 

carbon paste electrodes, as well as carbon paste electrodes, modified by some metal 

hexacyanoferrates, such as ferrous (Garjonyte and Malinauskas, 1998 a, b). The 

electrocatalytic rhodinised carbon (MCA 4a) has proved to have a good response to 

hydrogen peroxide, with reduced interference effects (White et al., 1994). Although 

bare carbon failed to generate any measurable signal for 0.1 mM H202 at potentials 

<+600 mV, a response of 3 gA was recorded at the HEC / MCA 4a working electrode 

at +300 mV (Kröger et al., 1998). This indicates the ability of MCA 4a catalyst to 

amplify the signal and offers a degree of specificity in the system, due to the selection 

of lower working potentials. 

Diffusional electron mediators are often used to establish adequate electrical 

communication between the redox enzymes and the electrode interfaces as well as to 
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minimise interferences. The presence of mediators facilitates the electron transfer 

between the redox-enzymes and the electrode surface, at lower voltages, thus 

reducing the possibility of other interfering species being oxidised. Ferrocenes are the 

most extensively studied of all mediators. The use of ferrocene as a mediator dates 

from 1984, when Cass et at. described a mediated glucose enzyme electrode, using 

electrochemically regenerated ferrocene to re-oxidise the reduced flavine adenine 

dinucleotide prosthetic group of reduced glucose oxidase (Cass et al., 1984). 

Ferrocene typically allows electron transfer from glucose oxidase at +240 mV. vs 

AgIAgCI (Maines et al., 1996). Other mediators include the ferricyanide and 

Meldola's Blue (Maines et al., 1996). The ExacTechT"" disposable glucose sensor, 

used by diabetics, uses a mediated glucose enzyme electrode. 

Another practical method, applied to minimise interference from ascorbate, is the use 

of the enzyme ascorbate oxidase. However, this method is only effective against 

ascorbate and does not affect other interfering species. Currently, another method is 

under investigation. Signal subtraction refers to the use of a second working electrode 

('compensator' electrode) with no enzyme to register the sample background signal. 

In this way, the total interfering signal can be determined and removed. 

Biosensor Development for the Analysis of Food Quality 143 



Chapter 6: Electrochemical Biosensor for Glucose and L-amino acids 

CHAPTER 6 

DEVELOPMENT OF AN ELECTROCHEMICAL BIOSENSOR 

FOR THE DETECTION OF GLUCOSE AND L-AMINO ACIDS 

IN HORTICULTURAL PRODUCE 
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CHAPTER 6 

DEVELOPMENT OF AN ELECTROCHEMICAL BIOSENSOR FOR THE 

DETECTION OF GLUCOSE AND L-AMINO ACIDS IN 

HORTICULTURAL PRODUCE 

6.1 Introduction 

The development of simple, field-based devices for rapid quality control is of 

growing interest for both consumer and food industries. Glucose and free L- 

amino acids play a critical role in fruit maturation thus affecting shelf-life and 

quality. A simple biosensor device for glucose and L-amino acids, could provide 

a useful, rapid and field-based tool for the analysis of the mayor fruit maturity and 

potato colour development indicators. 

Simplicity, selectivity and cost efficiency were all considered important assay 

criteria in this project, due to the intended field-based usage of the developed 

biosensors. Rhodinised carbon has proved to be more sensitive and selective than 

the platinised carbon (White et al., 1994) for the direct detection of hydrogen 

peroxide at reduced operating potentials. The latter benefit reduces the likelihood 

of high levels of oxidation of other potential interfering species present in the fruit 

matrix, such as ascorbic acid and malic acid. Moreover, the previously reported 

non-mediated oxidation of peroxide at rhodinised carbon electrodes (Dröger et 

al., 1998; Sarkar et at., 1999; Arif et al., 2002; Jawaheer et at., 2003) suggests 

that such sensors may be simply manufactured at low cost. Consequently, the 
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current study used the approach of electrocatalytic rhodinised carbon for the non- 

mediated oxidation of peroxide in both biosensors under development. 

6.1.1 Latest advances on glucose biosensor 

The electrochemical detection of glucose has been mainly based on immobilised 

glucose oxidase (GOD). GOD is the most widely used oxidoreductase for the 

construction of enzyme electrodes and is based on either 02 depletion or H202 

detection. Desirable features of the enzyme include high specificity, high stability 

and high turnover. There are numerous applications regarding the use of GOD in 

the development of biosensors used in food analysis (Maines et al., 1996; 

Mannino et al., 1997; Loechel et al., 1998; Volotovsky and Kim, 1998). 

Recently, a fabrication approach for individual enzyme biosensors has been 

demonstrated for ß-D-glucose, sucrose, total D-glucose and ascorbic acid, aiming 

at the development of an integrated single-device biosensor (Jawaheer et al., 

2003). The work showed that the use of a cellulose acetate membrane (1 %-2 % 

w/v) was able to extend the dynamic range of the sensor about five-fold compared 

to sensor array lacking membranes. 
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6.1.2 Latest advances on L-amino acid biosensor 

Immobilised L-amino acid oxidase (L-AAO) degrades L-amino acids to 2-oxo- 

acid, ammonia and hydrogen peroxide. Enzyme electrodes for amino acids have 

been developed by coupling L-A. AO to a membrane (Simonian et al., 1991). The 

levels of amino acids are determined by potentiometric measurement of ammonia 

or hydrogen peroxide (Puchades et al., 1989; Guibault et al., 1987). An L-amino 

acid biosensor has been developed to detect ammonia, by immobilising L-AAO to 

nylon membrane (Lee and Huh, 1998). L-amino acids were degraded and a 

potentiometric electrode measured the ammonia produced. The sensor showed 

high relative activities for L-amino acids, with a linear response to phenylalanine 

and isoleucine up to 10 mM (Lee and Huh, 1998). A biosensor specific for L- 

lysine was developed with immobilised L-lysine a-oxidase on a rhuthenium and 

rhodium modified surface. The metallised electrode allowed peroxide detection at 

+100 mV vs Ag/AgCI. The selectivity of the enzyme against interferences 

(ascorbic acid and L-cysteine) was optimised through the selection of the 

temperature (30 °C) and flow rate (0.5 ml mini). The dynamic range of the 

sensor was determined to be from 2 µM to 125 µM (Kelly et al., 2000). 

Although both GOD and L-AAO-based screen-printed electrodes have been 

documented, data upon the analytical performance of the developed biosensors in 

real horticultural samples has rarely been reported. 

This preliminary work aims at the development of cheap, disposable screen- 

printed electrodes for the electrochemical measurement of glucose and L-amino 
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acids in horticultural products. The screen-printing fabrication offers simplicity 

and mass-reproducibility, thus making sensor manufacture easy and of low cost. 

The analytical performance of the GOD and L-AAO-based biosensors in real 

fresh fruit samples is examined against standard photometric assays. 

6.2 Materials and Methods 

6.2.1 Apparatus and reagents 

The electrochemical measurements were performed at room temperature using an 

Autolab Electrochemical Analyser with the General Purpose Electrochemical 

Software (GPES 3) operating system (Ecochemie, Ultrecht, Netherlands). 

All chemicals and reagents were supplied by Sigma (Poole, Dorset, UK), unless 

otherwise stated 

Hydroxyethylcellulose (HEC) was purchased from Fluka (Buchs, Switzerland). 

The screen-printer meshes were cleaned using 2-butoxyethyl acetate (BEA 99 %, 

Aldrich, Gillingham, Dorset, UK). 

Glucose oxidase (GOD, EC 1.1.3.4, from Aspergillus niger, specific activity 8156 

U ml*') and L-amino acid oxidase (L-AAO, from Crotalus adamanteus type VI, 

specific activity 380 U ml") were purchased from Biozyme (Gwent, UK) and 

Sigma (Gillingham, Dorset, UK), respectively. 
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All solutions were prepared in deionised reverse osmosis water (The Elgastat 

System, Elga, High Wycombe, UK). 

Phosphate Buffer (PB): pH: 7.4, NaH2P04 Na2HP04 (l M, 0.1 M). 

Phosphate Buffer (PB)-electrolyte: pH: 7.4, NaH2PO4-Na2HPO4 0.1 M, 100 

mM (KC1). 

6.2.2 Fabrication of screen-printed sensors 

Screen-printing is a form of graphic reproduction where a quantity of ink or other 

viscous compound is forced through a mesh incorporating a stencil design and 

hence is deposited as a film in a controlled manner to form a repeatable pattern of 

certain thickness (Goldberg et al., 1994). 

Three-electrode devices (Figure 6.1) were manufactured in-house by a multi-stage 

screen-printing process using a DEK 248 machine (DEKTM, Weymouth, UK) and 

screens with appropriate stencil design (60 per screen) were fabricated by DEK 

Presicion Screen Division. The stainless-steel screen mesh was mounted at 45° to 

the print stroke with 77 wires`'-' and emulsion thickness of 13 and 18 µm for the 

solvent and water-resistant screens, respectively. 
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Figure 6.1: Biosensor comprised by a three-electrode system. From the left: 
Counter electrode, Working electrode, Reference electrode (Tothill and Turner, 
2003). 

Devices were printed onto 250 µm thick polyester sheet (Cadillac Plastic, 

Swindon, UK). The circular electrocatalytic working electrode (planar area 0.16 

cm2) was fabricated from MC4 4a electrocatalyst (MCA Services Ltd., 

Cambridge, UK), a commercially available carbon powder containing 5% 

rhodium plus promoters, made into a screen-printable paste by mixing 1: 4 in 2.5 

% w/v HEC in buffer-electrolyte. The reference electrode ink contained 15 % 

silver chloride in silver-paste (MCA Services Ltd. ). The counter electrode and 

basal tracks were fabricated from 145R carbon ink (MCA Services Ltd. ). The 

basal tracks were insulated from the measurement solution using 242-SB epoxy- 

based protective coating ink (Agmet ESL, Reading, UK). The electrodes were 

then heated at 125 °C for 2 h, for the epoxy resin to be cured and the 

electrocatalytic pad to be stabilised, thus allowing prolonged use of the device in 

aqueous solutions. The screens were cleaned using of 2-butoxyethyl acetate. 
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6.2.3 Enzyme immobilisation 

The enzymes were immobilised on the surface of the working electrode, via 

physical adsorption, for it shows simplicity and rapidity of preparation. Aliquots 

(10 µl) containing various amounts of GOD or L-AAO in buffer-electrolyte (pH: 

7.4,10 mM PB, 0.1 M KCl) were pipetted onto the working electrode and left to 

dry for >90 min at 25 °C. The dried electrodes were stored wrapped in foil at 4 

°C until required. 

6.2.4 Electrochemical test procedure 

A 1.1 cm diameter Whatman 114 filter disc (Whatman, Maidstone, UK) was 

placed over the three-electrode assembly which completed the electrochemical 

circuit, when wetted with the sample. 

Glucose, amino acids and fruit sample solutions were all prepared in buffer- 

electrolyte PB (phosphate buffer). The working electrode was poised at a 

potential of +350 mV vs the Ag/AgCI reference electrode. Following sample 

addition to the filter disc, amperometric measurement was initiated and allowed to 

proceed for 240 sec. 
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The 'background' electrochemical response of the buffer-electrolyte PB on the 

enzyme electrodes, was subtracted from the analyte specific response in a way 

such that: 

4Rs= Analyte specific Response (,,,, p, ) - Buffer-electrolyte Response (PB) (p,,, ps) 

where dRs, the analytical signal. When fruit samples were tested, the equation 

was modified to include the non-specific response produced by readily 

electroactive interfering species (e. g. ascorbic acid, malic acid etc). To do so, the 

non-specific response of each sample was determined using enzyme-free 

electrodes and was subtracted from the equivalent enzyme electrode response, i. e.: 

dRs= Analyte specific Response (m�ps) - Buffer-electrolyte Response (Q,,, Pcý- Non- 

specific Response(,,,,, p�) 

where ARs, the analytical signal of the electrochemical measurement. 

6.2.5 Test kit method 

Sensor performance has been validated against a commercially available method 

for the detection of glucose. This method used the protocol and reagents included 

in the D-glucose Test Kit (Cat. No. 716 251, Boehringer Mannheim, GmbH, 

Mannheim, Germany). The experiment was carried out at room temperature and 

the absorbance was read at 340 nm. 
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The principle of D-Glucose measurement is as follows: D-Glucose is 

phosphorylated to D-glucose-6-phospate (G-6-P) in the presence of the enzyme 

hexokinase (HK) and adenosine-5'-triphosphate (ATP) with the simultaneous 

formation of adenosine-5'-diphosphate (ADP): 

HK 

D-GLUCOSE +ATP --10 G-6-P +ADP 

In the presence of the enzyme glucose-6-phosphate dehydrogenase (G6P-DH), G- 

6-P is oxidised by nicotinamide-adenine dinucleotide phosphate (NADP) to D- 

gluconate-6-phosphate with the formation of reduced nicotinamide-adenine 

dinucleotide phosphate (NADPH): 

G6P-DH 
G-6-P + NADP+ ----º D-gluconate-6-phosphate +NADPH +H+ 

Therefore, the amount of NADH formed in this reaction is stoichiometrically 

related to the amount of D-glucose consumed. The increase in NADH is 

measured by means of its light absorbance at 340 nm. 

6.2.6 Ninhydrin test method 

Determination of free amino acids was also carried out, using the ninhydrin assay 

(Figure 6.2) (Moore and Stein, 1948). The test reagent was prepared using 150 ml. 
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of glycerol, 0.625 g of ninhydrin, 18.387 g of citric acid and 133.3 µl of 150 mM 

MnSO4, made up to 250 ml in water. The test reagent (2 ml) was added to 0.1 ml 

of sample or standard solution in a test tube. After vortexing, the mixture was 

heated at 100°C for 12 min, and diluted two-fold in water. The absorbance was 

recorded at 750nm. The ninhydrin method works for all amino acids, except 

proline. 

1. Q 
C=C-HPO + R-CHNHrCOCH 

0 

HCOH +R-CHO +NH3 +CDe 

2, 

HCOH + 
0C 

\/ 0 

C=0 +2NH3 

C 
0 

, GNH4 0.. 
cr: 

C-N=C 
\(+ 

2Hr0 

00 

Figure 6.2: Ninhydrnn reaction with amino groups proceeds in two steps and 
eventually produces an intensely coloured product, which can be measured 
spectophotometrically. 
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6.2.7 Real fruit samples 

The fruit samples were prepared by grating the fruit and pressing the resultant 

material through a fine food-grade cotton filter (Boots company, Nottingham, 

UK). The use of cotton filters eliminated the presence of large solid particles in 

the extracted juice. For glucose testing, samples were diluted in buffer-electrolyte 

as follows: Jonagold apples x40, Mini-plum tomatoes x40, Russel Burbank 

potatoes x10. For L-amino acid determination, a different dilution pattern was 

employed due to concentration dissimilarities and the lower linear range of the 

corresponding L-AAO biosensor: Bramley apples x10, Mini-plum tomatoes x100 

and King Edward potatoes x100. The extracted fruit juices were kept at 4 °C until 

required. Prior testing, the samples were suitably diluted in buffer-electrolyte PB, 

containing 100 mM of KCI and tested for glucose and L-amino acid content 

within 48 h. 

6.3 Results 

6.3.1 Optimisation of sensor analytical performance 

L-leucine was chosen as the standard amino acid substrate for L-AAO, since 

Crotalus adamanteus L-AAO exhibits high K. value for this substance (Albery et 

al., 1996). L-Phenylalaline was selected as an additional standard substrate for L- 

AAO, as previous L-AAO biosensor studies showed a high current response 
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(0.272 µA) towards for the specific analyte compared to L-leucine (Sarkar et al., 

1999). 

6.3.1.1 Optimisation of enzyme loading activity 

The enzyme loading activity was optimised in both detection systems, by the 

determination of the minimum enzyme loading capable of generating the highest 

current response from the system. Experiments were carried out on screen- 

printed electrodes, containing a rhodinised carbon working electrode with glucose 

oxidase (GOD) or L-amino acid oxidase (L-AAO) immobilised via direct physical 

adsorption. The amperometric response generated at different enzyme loadings 

was monitored and a calibration curve was constructed, as shown in Figures 6.3 

and 6.4. GOD loadings were tested in amounts from 5 to 250 mU, using substrate 

of glucose (10 mM) in PB (Figure 6.3). 
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Figure 6.3: Current (VA) versus glucose oxidase (GOD) loading on rhodinised 
carbon screen-printed electrodes. Experiments were carried out using 10 mM of 
glucose in phosphate buffer (pH: 7.4,100 mM NaH2PO4-Na 2HP04,100 mM 
KC1). The selected potential was +350 mV against the Ag/AgCI reference. 

Figure 6.4, shows the response of L-AAO, tested across the range from 5 to 70 

mU, using L-leucine (1 mM) as substrate. 
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Figure 6.4: Current (VA) versus amino acid oxidase (AAO) loading amount on 
MCA 4a rhodinised carbon screen-printed electrodes. Experiments were carried 
out using 1 mM of leucine in phosphate buffer (pH: 7.4,100 mM NaH2PO4- 
Na2HP04,100 mM KCI. The selected potential was 400 mV against the Ag/AgC1 
reference. 

The optimum enzyme loading activity was observed at >_150 mU of glucose 

oxidase and 2: 30 mU of amino acid oxidase per electrode. Accordingly, these 

optimised enzyme loadings, (150 mU and 30 mU for GOD and L-AAO, 

respectively) were used for subsequent experiments. 
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6.3.1.2 Optimisation of operational detection potential 

Step-amperometry was used to define the optimised working detection potential 

of the electrochemical systems under investigation. The experiments were carried 

out under stirred conditions and changing potential status (from +150 to +450 mV 

in 25 or 50 mV steps). The choice for the working detection potential was based 

on the signal to noise ratio (S/N) of H202 on bare MCA 4a carbon electrodes 

(Table 6.1). The 'noise', corresponds to the background charging effects inherent 

in the PB buffer. 

Table 6.1: Signal to noise ratio (SIN) versus potential (mV) profile for 100 µM of 
H202 in PB (pH: 7.4,100 mM NaH2PO4-Na 2HP04). MCA 4a rhodinised carbon 
screen-printed electrodes. Tests carried out in triplicate (n-3). 

H202 (100 µM) in PB Vs PB 

Potential (mVolts) Signal lnoice (s/n) 

200 79.22 

250 85.57 

300 100.01 

350 109.52 

375 109.25 

400 86.55 

450 58.11 

The higher S/N value was recorded at +350 mV. This detection potential was 

therefore used in subsequent experiments. 
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6.3.2 Analytical performance of the amperometric GOD- and L-AAO- 

based biosensors in standard solutions 

The analytical performance of the developed amperometric biosensors was 

examined, using GOD or L-AAO modified screen-printed electrodes, according to 

the method described in 6.2.4. The corresponding substrate solutions were 

prepared using buffer-electrolyte PB (100 mM NaH2PO4-Na 2BP04,100 mM 

KC1). 

6.3.2.1 Glucose oxidase-based amperometric biosensor 

The linear range of the glucose detection system was determined by the use of 

glucose solutions (0-18 mNi) in PB buffer. A linear relationship between glucose 

concentration and current response is observed up to 10 mM of glucose (Figure 

6.5). Higher glucose concentrations (>10 mM) produced current responses that 

correspond to a plateau, an enzyme saturation status. 

The limit of detection (LOD) for glucose, calculated as 3x the standard deviation 

of the zero analyte response, was 0.162 mM. The experimentally established 

linear range of the glucose biosensor was 3-10 mM. 

Table 6.2, summarises the current responses corresponding to the glucose 

calibration curve (Figure 6.5), produced by different glucose concentrations in 

phosphate buffer. 
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Figure 6.5: Calibration curve for the amperometric glucose oxidase (GOD) 
modified screen-printed electrodes. The substrate glucose solution (0-18 mM) 
was prepared in phosphate buffer PB. Background response values have been 
subtracted. Tests were carried out in triplicate (n=3). 
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Table 6.2: Summary of current responses (µA) of GOD modified screen-printed 
electrodes to glucose substrate solutions of different concentrations. Background 
(PB) response values have been subtracted. 

Glucose in phosphate buffer (100 mM NaH2PO4-Na 2HP04, 100 mM KCI) 

Concentration (mM) Mean (�=3) response in µA Stdev CV% 

0 0.00 0.007 'h-. 9'6--, -- 

! 0.090 6.21 

2.31 0,181 7.84 

7 2.99 0.170 5.69 

8 3.36 0.419 12.47 

9 3.74 0.310 8.29 

10 4.14 0.260 6.21 

I2 4.35 0.045 1.04 

18 4.34 0.179 ; 4.12 

The glucose sensor was compared against a commercially available D-glucose 

photometric test-kit, the results being in Figure 6.6. 

Biosensor Development for the Analysis of Food Quality 162 



Chapter 6. Electrochemical Biosensor for Glucose and L-amino acids 

Figure 6.6: Correlation between amperometrical and photometric response for 
glucose concentrations (2-5 mM). Background response values have been 
subtracted. Tests were carried out in triplicate (n=3). 

The amperometrically and photometrically determined measurements for glucose, 

showed a very good correlation, with a linear relationship of R2 = 0.9966. The 

concentration range over which both methods can be directly compared is up to 1 

mm. 
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6.3.2.2 L-amino acid oxidase -based amperometric biosensor 

The L-amino acid biosensor was realised by the direct physical immobilisation of 

L-amino acid oxidase (L-AAO) onto screen-printed electrodes, modified with 

rhodinised carbon. For both L-amino acid substrates tested, the current versus 

concentration profile shows a linear region, followed by a tendency towards a 

plataeu. 

A linear relationship between L-leucine concentration and current response is 

observed up to 1.2 mM, with a correlation coefficient value (? ) of 0.9989 (Figure 

6.7). 

The limit of detection (LOD) for leucine, calculated as 3x the standard deviation 

of the zero analyte response, was 0.07 mM. The experiments showed a linear 

range for leucine between 0.2-1.2 mM. Analytical data of current (µA) versus 

concentration (mM) for leucine is given in Table 6.3. 
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Figure 6.7: Calibration curve for L-leucine with rhodinised carbon screen-printed 
electrodes, containing immobilised L-AAO. Background response values have 
been subtracted. Error bars= SD; (n=3). 
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Table 6.3: Summary of current responses (µA) of L-AAO modified screen- 
printed electrodes to L-leucine solution of different concentrations. Background 
response values have been subtracted. 

L-leucine in PB(100 mM NaH2P04 Na 2HPO4, 100 mM KCI) 

Concentration (mM) Mean (n=3) response in µA Stdev CV% 

------ -----o---. --- ö. _.. .. __.. _. 0.42.... 

0.2 0.38 0.06 14.81 

0.4 0.71 0.06 8.52 

0.8 1.38 0.17 12.31 

1.2 2.00 0.14 6.97 

---ý- --------1.4 2.20 0.11 .. ___, I ..... _ ._4.87..... _. _ 

1.8 2.40 0.14 5.79 

The limit of detection for L-phenylalanine was calculated 0.08 mM (3x the 

standard deviation of the zero analyte response). The linear range of detection 

was from 0.2 mM to 0.8 mM, with a correlation coefficient value (r2) of 0.9973 % 

(Figure 6.8). Analytical data of current (µA) versus concentration (mM) is given 

in Table 6.4. 
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Table 6.4:. Summary of current responses (tA) of L-AAO modified screen- 
printed electrodes to L-phenylalanine solution of different concentrations. 
Background (PB) response values have been subtracted. 

L-phenylalanine in PB (100 mM NaH2PO4-Na 2HPO4,100 mM KC1) 

Concentration (mM) Mean (n=3) response in µA Stdev CV% 

0 0 0.03 

0.2 0.37 0.03 9.18 

-----------. ----"-. --- . _______. _.. _ 0. 4 ... _. __. __.. __ý.... _. _. _.... _. _ý_... ___.. _ . t. __... 0.67 .... ___. _. 0.12 17.39. _. __ 

0.6 1.11 0.11 9.55 

0.8 1.43 0.13 9.32 

1 1.45 ý 0.13 r 9.27 

The L-amino acid biosensor was compared against the standard ninhydrin 

photometric test (Figure 6.9 and 6.10). 

A linear relationship was observed for both L-amino acid substrates, indicative of 

a good correlation between the standard photometric assay and the biosensor 

measurements. The concentration range over which both methods were directly 

comparable was 0.2-1.0 mM for leucine and 0.2-0.8 mM for phenylalanine, as 

dictated by the linear range of the biosensor method. 
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Figure 6.8: Calibration curve for L-phenylalanine with rhodinised carbon screen- 
printed electrodes, containing immobilised L-AAO. Background response values 
have been subtracted. Error bars= SD; (n=3). 
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Figure 6.9: Correlation between L-AAO electrode and standard photometric 
assay response for the measurement of 0-1 mM of leucine. The background 
responses from both analytical methods have been subtracted. Error bars= SD; 
(n=3). 
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Figure 6.10: Correlation between L-AAO electrode and standard photometric 
assay response for the measurement of 0-0.8 mM of phenylalanine samples. The 
background responses from both analytical methods have been subtracted. Error 
bars= SD; (n=3). 

6.3.3 Selection of sample processing step 

The effect of sample preparation on the electrochemical and spectophotometric 

glucose measurement has been investigated on tomato samples (TI and T2). The 

effect of filtration (section 6.2.7), centrifugation (13000 rpm for 15 min) and lack 

of sample processing on the electrochemical and spectophotometric detection of 

glucose levels is shown in Figure 6.11. 
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Figure 6.11: Chart shows sensor and test kit measurements of glucose in two 
tomato samples (T1 and T2), differentially processed prior testing [no processing 
(N), filtrated (F) and centrifugated (C)]. Error bars= SD; (n=3) 

The centrifugated samples exhibited slightly greater comparability between the 

sensor and the test kit response. However, centrifugation may be considered as 

less-convenient and inappropriate due to the intended field-based usage of the 

device. Therefore, filtration was proposed as an alternative sample preparation 

method to minimise the presence of large particulates in the juice extracts. 
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6.3.4 Sensor performance in real fruit samples 

The potential of the screen-printed electrodes as monitoring tools of glucose and 

L-amino acids in real samples was investigated. Experiments were carried out 

with fresh apples, potatoes and tomatoes. The selection of the specific 

horticultural products was based on their popularity. The reliability of the 

enzyme-based biosensors was assessed against the standard photometric assays, as 

already described and the accuracy value was determined: 

Accuracy = [(SR-PAR)l PAR] x 100%, 

where SR is the sensor response and PAR is the response of the standard 

photometric assay). 

The current response due to the direct electro-oxidation of interfering species was 

determined in triplicate (n=3) on enzyme-free rhodinised carbon electrodes. The 

interference response varied among the fruit varieties, therefore indicating a 

different compositional profile. The Jonagold variety produced a non-specific 

response of <6.25 µA, more than 2 times higher to the one generated by Bramley 

apples (<2.56 µA). In potatoes, the non-specific response was <3.45 pA in Russel 

Burbank and <1.49 µA in King Edwards samples. Mini-plum tomatoes produced 

a significantly higher interference response, that was determined to be <25.80 µA. 

The background (non-specific) response of each fruit sample using enzyme-free 

(or blank) electrodes was subtracted from the equivalent enzyme electrode 

response, in such a way that: 

ARs= Enzyme electrode (a psi - Blank electrode (., p: ), 

where 4Rs, the electrochemical analytical signal. 
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6.3.4.1 Glucose measurement in real samples 

The performance of the GOD-based biosensor in measuring glucose levels in 

fresh fruits was determined and the results were compared against the test-kit 

response (Table 6.5). Jonagold apples, Russel Burbank potatoes and Mini-plum 

tomatoes were tested, following the preparation step detailed in 6.2.7. 

Table 6.5: Comparison of GOD-based amperometric glucose biosensor with the 
standard photometric test kit assay for analysis of glucose in real fruit samples. 
Values shown are in mM with n=3. 

GOD-based Sensor versus Test-Kit results for Glucose 

Test Kit 

(mm) 

StdevTg CV% Sensor 

(mm) 

StdevSR CV°%osR Accuracy 

% 

Apples -Jonagold 
1 100.10 0.35 0.39 101.96 6.58 5.60 +1.8 

2 118.34 1.25 1.09 125.19 6.83 4.94 +5.8 

3 116.60 0.60 0.54 117.21 5.70 4.60 -0.5 
4 117.89 0.43 0.39 108.16 3.07 2.33 +9.0 

5 140.94 0.62 0.46 163.56 14.82 8.62 -13.8 
Potatoes-Russel Burbank 

1 9.62 0.66 3.83 8.91 2.46 17.96 -7.4 
2 6.99 0.35 0.73 5.28 0.11 6.22 -24.5 
3 8.09 0.35 0.63 4.13 0.97 12.77 -48.9 
4 10.96 0.32 0.23 8.82 0.78 8.91 -19.5 
5 8.03 0.38 1.10 7.65 0.59 8.57 -4.7 
Tomatoes-Mini Plum 

1 88.54 0.08 0.12 61.16 3.83 4.39 -30.9 
91.55 0.62 0.71 50.07 13.00 12.96 -45.3 

3 89.74 0.33 0,40 74.28 2.33 3.59 -17.2 
4 79.08 0.83 0.97 99.26 3.92 4.34 +25.5 

5 78.14 0.42 0.46 103.06 12.96 13.06 +31.9 
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6.3.4.2 L-amino acid measurement in real samples 

Samples of extracted juice were prepared from Bramley apples, King Edward 

potatoes and Mini-plum tomatoes, as described in 6.2.7. The analysed were 

analysed using the L-AAO-based biosensor and the results were compared with 

the response of the ninhydrin assay (Table 6.6). 

Table 6.6: Comparison of L-AAO-based amperometric amino acid biosensor with 
the standard photometric ninhydrin assay for analysis of amino acids in real fruit 
samples. Values shown are in mM with n=3. 

L-AAO-based Sensor versus Ninhydrin results for L-amino acids 

Ninhydrin 
(MM) 

StdevNH CV% Sensor 
(MM) 

StdevsR CV%sR Accuracy 

% 
Apples -Bramleys 
1 1.20 0.24 4.25 1.32 0.30 12.14 10.0 

2 0.87 0.40 6.00 0.82 0.09 4.81 -5.7 
3 1.01 0.11 1.55 0.58 0.15 7.85 -42.6 
4 1.51 0.21 3.15 1.01 0.05 2.59 -33.1 
5 1.65 0.46 6.58 0.47 0.00 0.12 -71.5 
Potatoes-King Edwards 

1 109.25 0.32 0.28 55.24 1.90 3.41 -49.4 
2 98.04 2.30 2.34 49.76 3.19 6.26 -49.2 
3 101.63 10.56 10.38 64.25 5.15 7.80 -36.8 
4 79.91 1.48 1.83 62.63 2,12 3.35 -21.6 
5 110.31 15.40 13,95 63.96 4.85 7.46 -42.0 
Tomatoes-Mini Plum 

1 51.82 2.09 4.02 13.23 0.45 3.03 -74.5 
2 23.82 0.55 2.24 9.28 0.65 5.76 -61.0 
3 54.15 0.36 0.64 12.50 1.13 7.68 -76.9 
4 25.28 0.83 3.24 9.90 0.13 1.18 -60.8 
5 49.91 2.48 4.94 14.24 0.13 0.89 -71.5 
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6.3.5 Inhibition effects on the screen-printed electrodes 

A number of electroactive species found in horticultural samples can produce an 

electrochemical response and therefore interfere with the enzyme specific signal. 

In addition, the viscocity and proteinaceous nature of the fruit extracts may cause 

diffusion constraints for the analyte of interest, thereby interfering with its ability 

to diffuse through the electrode surface. Inhibitory effects were determined by 

preparing solutions containing tomato sample extracts containing different 

concentrations of the analytes of interest and monitoring the consequent biosensor 

response. Tomato samples were selected as they exhibited the lowest accuracy 

values between the biosensor and the standard photometric assay response. The 

amperometric response of the spiked samples was compared with the unspiked 

counterparts and with solutions in buffer-electrolyte PB (Figure 6.12 and 6.13). 
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Figure 6.12: The effect of tomato matrix on GOD-based screen-printed 
electrodes. 
Concentration (mM) of glucose measured in two tomato samples. Samples were 
tested: Unspiked (columns I and 2); Spiked in 2 mM of glucose (columns 4 and 
5); and Spiked with 4 mM of glucose (columns 7 and 8). 
Glucose in PB in concentrations of 2 mM and 4 mM is shown in columns 3 and 6, 
respectively. All samples were diluted accordingly to contain 100 mM NaH2PO4- 
Na 2HPO4,100 mM KCI. Background values from electrodes lacking GOD were 
subtracted. Error bars= SD; (n=3). 

Accordingly, inhibitory effects on the L-AAO were determined with solutions 

containing 0.3 mM or 0.6 mM of leucine in tomato samples. 
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Figure 6.13: The effect of tomato matrix on L-AAO-based screen-printed 
electrodes. 
Concentration (mM) of L-amino acids measured in two tomato samples. Samples 
were tested: Unspiked (columns I and 2); Spiked in 0.3 mM of leucine (columns 4 
and 5); and Spiked with 0.6 mM of leucine (columns 7 and 8). 
Leucine in PB in concentrations of 0.3 mM and 0.6 mM is shown in columns 3 
and 6, respectively. All samples were diluted accordingly to contain 100 mM 
NaH2PO4-Na 2HP04,100 mM KCI. Background values from electrodes lacking L- 
AAO were subtracted. Error bars= SD; (n=3). 

6.4 Discussion 

The present study involves a preliminary investigation on the biosensor 

performance in glucose and L-amino acid detection in real horticultural produce. 

Initially, the glucose and L-amino acid biosensors were characterised using 
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standard solutions of glucose and L-amino acids (L-leucine, L-phenylalanine) 

substrates. Following oprimisation in standard solutions, the biosensor 

performance was examined in real horticultural produce samples. The selected 

sample preparation method was filtration, for ease of performance in the field. 

Optimisation experiments on enzyme loading activity (Figure 6.3 and 6.4) showed 

a maximum sensor response at >_150 mU of glucose oxidase and ? 30 mU of 

amino acid oxidase per electrode. Previous studies, confirmed the optimised L- 

AAO activity at 30 mU (Sarkar et al., 1999), but suggested a much lower 

optimised GOD activity at 7.8 mU (Kröger, 1998). Chronoamperometric 

experiments showed an increasing current response upon an increasing potential 

status, in all cases of enzymically modified electrodes investigated. The highest 

signal-to-noise (S/N) ratio (-109: 1) obtained for 100 µM of H202 on bare MCA 

4a carbon electrodes was at +350 mV vs Ag/AgCI reference electrode (Table 6.1). 

This potential value was selected as the working detection potential for 

subsequent experiments. Higher potential values would increase the likelihood of 

the oxidation of other interfering electroactive species. Previous studies have 

selected +400 mV vs Ag/AgCI as the operational potential for an amino acid 

biosensor (Sarkar, 1998) and 300 mV for a glucose biosensor (Kröger et al., 

1998). 

The analytical range of the developed glucose biosensor extended to 10 mM with 

a correlation factor (r2) of 0.9960 (Figure 6.5). Comparison of the biosensor to 

the test kit showed a correlation factor (r2) 0.9966 (Figure 6.6). The L-amino acid 
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biosensor was tested on leucine and phenylalanine standard solutions, Both 

amino acids were shown to exhibit linearity up to 1 mM with correlation factors 

(r2) 0.9989 and 0.9972, respectively (Figures 6.7 and 6.8). A correlation of (r) 

0.9951 and 0.9906 was calculated by comparing the ninhydrin method to L-amino 

acid sensor in standard leucine and phenylalanine solutions, respectively (Figure 

6.9 and 6.10). Despite the excellent biosensor performance in standard solutions, 

testing in real fruit samples yielded poorer accuracy values. 

No published Km data was found for L-AAO (Crotalus adamanteus), however 

data was found for L-AAO Agkistrodon piscivorus piscivorus, isolated from the 

snake venom from cottonmouth moccasin, in which a Km value of 1 mM for L- 

leucine has been recorded (Tris buffer, pH 7.2,38°C). Barman (1969) stated that 

enzyme snake venom from either A. p. piscivorus or C. adamanteus attacks L- 

monoamino monocarboxylic acids with the greatest facility, the most rapidly 

attacked being: leucine, methionine, phenylalanine, norvaline, norleucine, 

cysteine, tyrosine and tryptophan. Histidine, arginine and ornithine are slowly 

oxidised and glycine, alanine, serine, threonine and valine exhibit very little or no 

activities. Given that both types of L-AAO are isolated from snake venom and 

exhibit a similar amino acid reactivity series, a Km value of around 1 mm would 

be realistic for L-AAO isolated from C. adamanteus, with a slightly lower value 

for L-phenylalanine. 

Test kit and biosensor measurements of glucose in Jonagold apples yielded an 

accuracy of -13.8 to +9.0 %, indicating a good agreement between the two 
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methods (Table 6.5). A poorer correlation between the standard method and the 

sensor measurement was observed in L-amino acid detection (Table 6.6). The 

accuracy values for L-amino acid detection in Bramleys apples were in the range 

of -71.5 to +10.0 %. Repeatability in both developed sensors was evident with a 

precision (n=3) of 2.33 to 8.62 % for glucose and 0.12 to 12.4 % for L-amino 

acids. The direct electroactivity of sample elements on enzyme-free electrodes 

generated a non-specific response <6.25 µA in Jonagold and <2.56 pA in Bramley 

fruits. 

Glucose data for Russel Burbank potatoes showed an acceptable accuracy of 

-48.9 to -4.7 % (Table 6.5). The accuracy values for L-amino acids in King 

Edwards potatoes, were between -49.4 and -21.6 % (Table 6.6). Biosensor 

precision (n=3) for glucose was between 6.22 to 17.96 % and for L-amino acids 

between 3.35 to 7.80 %. The interference response on enzyme-free electrodes 

was <3.45 µA in Russel Burbank and <1.49 µA in King Edwards potatoes. 

Glucose biosensor data for the Mini-plum tomatoes yielded acceptable accuracy 

(-45.3 to +31.9 %) and a precision (n=3) of 3.59 to 13.06 % (Table 6.5). 

Accuracy for L-amino acid measurement was, low and of the range of -76.9 to 

-60.8 %, thus indicating a particular poor biosensor performance (Table 6.6). 

Precision (n=3) values for L-amino acid measurement was between 0,89 to 7.68 

%. The presence of readily oxidisable species generated interference response 

<5.80 µA. This particularly high interference response indicates the presence of 

fruit elements in high amounts, readily oxidised at the poised potential. Davies 
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and Winsor (1969) found that smaller tomato fruited varieties, such is Mini-plum, 

had higher acidity. Acidity in tomatoes is mainly attributed to citric acid and 

malic acid, which could interfere with the electrochemical detection of the desired 

analyte at the selected working potential (Arif et al., 2002). 

In overall, the performance of the GOD-based Biosensor was good, indicating a 

satisfactory degree of correlation with the standard test-kit method. No matrix 

component was observed to inhibit the function of the GOD enzyme, as shown in 

Figure 6.12. The best agreement between the two methods was observed in the 

case of apples, where the potential of the electrochemical sensor as a reliable rapid 

(<6 min) analytical method for glucose measurement is evident. 

The poorer biosensor performance in the case of potatoes may be due to the 

fouling on the surface of the working electrode, caused by proteinaceous or 

polysaccharide materials present in the potato matrix. Presence of solid particles, 

adsorpted in the MCA 4a layer would dramatically decrease the diffusion of the 

desired analyte and its subsequent electrochemical detection. 

In tomatoes, the high non-specific response from readily electroactive interfering 

species may be the reason for the low accuracy values. The reduction of the 

operational potential may be a suggestion in certain cases, although good 

responses to glucose at potentials lower than +300 mV is normally obtained by 

the use of more complicated methods than the simple adsorption of GOD onto the 

working electrode. High sensitivity to HIO2 and glucose at low potentials 
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(+200 mV) was obtained by the immobilisation of GOD on platinum covered by a 

polymerised heteropolypyrrole film (Li et at., 1999). 

Interaction and possible inhibition of the L-AAO enzyme by fruit components 

was observed in Figure 6.13, thus explaining the broad agreement between the 

biosensor and the ninhydrin measurement. Some variation between the sensor 

and the ninhydrin test is anyway expected, as these methods measure different 

analytes. The quantitative method of ninhydrin test permits the determination of 

all free amino acids, the exception being proline, and possibly other compounds 

bearing amino groups. Nevertheless, L-amino acid biosensor detects exclusively 

free L-amino acids, due to the nature of the recognition element. Additionally, it 

should be remembered that L-AAO has a wide number of L-amino acid 

substrates, each of which exhibits different affinity for the enzyme. The sensor 

sensitivity varies according to the amino acid type, the differences being a 

function of the amino acid side chain and the Km of the enzyme for each amino 

acid. An excess of low affinity amino acids would result in a low amperometric 

response. The L-AAO sensor was calibrated against L-leucine for which the 

enzyme has a moderate affinity. Asparagine and aspartic acid seem to be the 

principal amino acids in apples, arginine in potatoes, glutamic acid and aspartic 

acid in tomatoes (Kader et al., 1978). Despite the fact that the latter amino acids 

exhibit higher or same affinity to L-AAO, according to Sarkar et al. (1999), 

underestimation of L-amino acid levels was observed in all the samples tested. 
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6.5 Conclusions 

This preliminary study demonstrated the potential of biosensors for horticultural 

produce quality monitoring. The developed glucose biosensor exhibited 

encouraging analytical performance in the real fruit samples tested (apples, 

tomatoes, potatoes). The L-AAO electrodes consistently underestimated the 

amino acid content of the fruit samples. The latter was found to be primarily due 

to inhibition effect of the matrix components, but the different affinity of the 

amino acid substrates to the enzyme may have contributed as well. 
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CHAPTER 7 

SUMMARY OF CONCLUSIONS AND FUTURE CONSIDERATIONS 

This chapter outlines the main conclusions of the present work and states some 

future considerations for each study. 

PART 1 

GMOs are subject to legislative regulations, rendering the need for their screening 

particular important. Based on SPR technology, the proposed optical biosensor 

allows monitoring of DNA hybridisation reactions between DNA molecules in 

solution ('target) and immobilised counterparts ('probe') on the surface of a gold 

chip. 

Study 1: 

Analysis of amplified nucleic acids by surface plasmon resonance (SPR): 

application to genetically modified organism detection. 

The surface of the gold chip is readily modified by a thiol-dextran matrix. The 

probe, a complementary fragment to the target P35S, was immobilised via a 

biotin-streptavidin linkage. 
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Motivation for the study: 

The use of complicated and expensive sample post-PCR treatment for the 

detection of DNA-DNA hybridization using SPR technology. 

Aim of the study: 

Optimised coupling of Polymerase Chain Reaction (PCR) and Surface Plasmon 

Resonance (SPR) for rapid and cost-effective DNA hybridization monitoring with 

application to GMO analysis. The performance of different strategies was 

assessed. 

Main outcomes and future considerations: 

¢ Both P35S and TNOS probes were highly target specific, generating 

maximum interference response of <6 RU. 

¢ The sensor baseline showed acceptable stability over a day of 

measurements (12 h period-30 measurements maximum) with a decrease 

of up to 30 RU, as a result of the effect of HCl and the running buffer flow 

conditions on the probe surface. 

¢ Hybridisation efficiency decreased over successive days of measurement, 

due to the overnight flows and the hybridization reactions, A CV of 42 % 

was observed in the hybridization shift of target DNA (100 nM) after 7 

overnight flow treatments and 91 hybridisation cycles. 

> The detection limit, experimentally established was <5 nM. Therefore, the 

dynamic range of the sensor for the target P35S (25-mer) was 5-50 nM. 
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A Optimisation at the PCR amplification stage was achieved by the selective 

amplification of the target strand, using an asymmetric amplification 

scheme. The target strand contained the 25-mer P35S sequence of 

interest, complementary to the immobilised probe. 

> Optimisation of the post-PCR amplification stage was accomplished by 

the use of strong denaturing conditions, consisting of 0.3 M NaOH and 

20 % v/v formamide. The adopted denaturing conditions eliminated the 

possible intra-strand secondary structures within the asymmetrically 

amplified target strand (243 bp). 

> Using the optimised conditions, the SPR system successfully detected 

PCR amplified samples of GMO origin. Screening of PCR amplified 

samples is simple and rapid, with 30 min of sample treatment and 5 min of 

measurement. 

This work has demonstrated the potential use of the optimised SPR sensing for 

routine GMO screening analysis. Most laboratories in the food industry use 

conventional PCR to which SPR technology can be successfully coupled for 

GMO analysis. The usefulness of SPR technology in routine analysis is the 

elimination of the gel electrophoresis post-amplification control, which is time 

consuming and does not provide any sequence information for the amplified 

samples. Based on DNA DNA hybridisation reaction monitoring, the proposed 

optimised system offers sequence specificity and rapidity of measurement. 

Improvements on the PCR-SPR coupling can include further optimisation of the 

PCR conditions. Modification of the PCR conditions may include fewer cycles 
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that could still produce amplified products beyond the detection limit of the SPR 

system. This would further increase the rapidity of sample screening. To provide 

estimation for the GMO content, further optimisation of the PCR cycles may be 

useful. Within the linear range of the amplification curve, the PCR products may 

be directly correlated with the quantity of the DNA starting material. Therefore, 

choosing the cycle number that corresponds to the linear range of amplification 

and leads to PCR products beyond the SPR detection limit would provide an 

approximation of the GMO content, if an appropriate calibration curve is prepared 

and the DNA starting material is not denatured. 

Study 2: 

Analysis of amplified nucleic acids by surface plasmon resonance (SPR): 

application to genetically modified organism detection. 

A thiol-functionalised probe was immobilised on the surface of a gold chip, as 

described by Herne et al., 1997. Immobilisation was carried out outside the 

BlAcore instument. The DNA part of the thiolated probe (25-mer) was 

complementary to the target P35S DNA in solution. 

Motivation of the study: 

To investigate an alternative to the thiol-dextran based immobilisation method for 

cost-effectiveness and simplicity. 
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Aim of the study: 

Preliminary investigation on the characterisation and application of a thiol- 

functionalised probe for SPR BlAcore applications. 

Main outcomes and future considerations: 

> Optimisation of the hybridisation conditions was accomplished by the 

addition of Tween 20 (0.005 % v/v), which minimised non-specific events. 

> The probe system based on the thiol-derivatised probe was highly specific 

for the target sequence, generating minimum interference shifts for non- 

complementary sequences (<8 RU). 

> The experimentally established detection limit was 5 nM of untreated 

target P35S (25-mer). 

> The thiol-functionalised probe showed significant stability and stress- 

resistance against the overnight flow treatments and the successive 

hybridisation reactions. A CV<9 % in the average (n=3) shift for 100 nM 

of target P35S was produced, over 2 overnight flows and 28 hybridisation 

cycles. The repeatability of the generated signal in one day of 

measurement expressed in CV, was 5% for 100 nM of untreated target 

P35S. 

> Reproducibility of hybridisation efficiency between different sensor chips 

(100-140 RU hybridisation shifts for 100nM of P3SS target over two 

different chips). 
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¢ The mixed SAM-modified gold chip showed good lifetime. Reduction of 

18-22 % of the hybridisation shift of untreated P35S (100 nM) was 

recorded after 3 overnight flows and 50 hybridisation cycles. 

¢ In comparison to the thiol-dextran immobilisation method, the HS- 

functionalised probe exhibited higher reproducibility and repeatability of 

the generated signal, but lower hybridisation capacity. 

> No matrix effects were observed in the presence of large amounts of 

genomic DNA. 

> The denaturing conditions consisted of 0.3M NaOH and 20 % v/v 

formamide led to regeneration problems indicating non-specific events. 

Up to 10 % of the generated hybridisation shift for 100 nM of treated P3SS 

target, was found to remain on the probe surface after one regeneration 

cycle. It was postulated that this phenomenon was due to the interaction 

of the OH-terminated blocking thiol molecules with the amide salt. 

¢ SPR analysis of denatured oligo-dsDNA using 0.3M NaOH and 20 % 

formamide (v/v) led to an average (n7-3) hybridisation shift of 58 RU and a 

CV< 20 %, suggesting the capability of the system to detect dsDNA of 

short length (25-mer). 

> Less promising were the results with polynucleotide DNA sequences, 

indicating the need of optimised denaturing conditions and improvements 

in the immobilisation protocol. 

Optimisation of the SPR system should be considered at the probe level, PCR 

level and the sample pre-treatment stage. At the probe level, optimisation is 
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needed for the system to be capable of hybridisation with polynucleotide target, 

such as PCR amplified DNA fragments. This may be achieved by a controlled 

spatial distribution of the thiolated probe molecules on the gold surface. 

Optimisation at the PCR level may include the amplification of shorter amplicons 

to aid hybridisation with the oligonucleotide probe. Optimisation at the level of 

sample treatment is also essential. Strategies at the sample pre-treatment level 

may include more sophisticated procedures, such as the use of paramagnetic 

particles, since the low cost of the sensor can compromise the cost of a more 

expensive sample treatment. 

PART 2 

Glucose and L-amino acids may be used as indicators for fruit maturation and 

colour development in potatoes, and therefore their determination is important in 

food analysis. Based on electrochemical detection of H202, the screen-printed 

electrodes are of particular interest due to their potential field-based use. 

Study 3: 
Development of an electrochemical biosensor for the detection of glucose and 
L-amino acids in horticultural produce. 

Amperometric detection of glucose and L-amino acids was based on immobilised 

glucose oxidase and L-amino acid oxidase on the surface of rhodinised carbon 

electrodes. The analytical performance of the developed biosensors was assessed 

against standard methods of detection. 
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Motivation for the study: 

The lack of validated biosensors for field-based use for glucose and L-amino acid 

measurement in horticultural produce. 

Aim of the study: 

To produce and optimise screen-printed glucose oxidase (GOD) and L-amino acid 

oxidase (L-AAO) electrodes. The analytical performance of the developed 

screen-printed electrodes was investigated in fresh fruit sample testing. 

Main outcomes and future considerations: 

> Comparison of the screen-printed electrodes to standard or commercially 

avalaible techniques, revealed a correlation factor of 0.9966 (R2) for 

glucose and 0.9951/0.9906 for L-leucine/L-phenylalanine. 

> The experimentally established analytical range of the developed 

biosensors was 3-10 mM for glucose detection, 0.2.1.0 mM for L-leucine 

and 0.2-0.8 mM for L-phenylalanine. 

> Filtration was selected as the sample preparation method, prior to testing, 

for ease of performance in the field. 

> The glucose oxidase-based biosensor showed encouraging performance in 

real horticultural sample analysis. No enzyme-inhibition effects were 

observed. In Russel Burbank potatoes an acceptable accuracy of -48.9 

to -4.7 % was observed. Similar accuracy values were yielded in Mini- 

plum tomatoes analysis with an accuracy of -45,3 to +31.9 %. The best 
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biosensor performance was monitored in Jonagold apples with an accuracy 

of +1.8 to -13.8 %. 

> The L-amino acid oxidase-based biosensor showed poorer analytical 

performance in real horticultural sample analysis. The accuracy values in 

Bramleys apples were in the range of -71.5 to 10.0 %. Analysis of Mini- 

plum tomatoes led to accuracy values of -76.9 to -60.8 %, whereas the best 

biosensor performance was observed in King Edwards potatoes with 

accuracy values between -49.4 and -21.6 %. This broad agreement 

between the sensor and the ninhydrin measurements was attributed to 

enzyme inhibition effects. 

Further optimisation is needed to improve sensor selectivity, compatibility and to 

eliminate interference response of the developed L-AAO and GOD biosensors. 

The use of polymeric membranes is an option that could be taken into 

consideration. Enhanced sensitivity and interference free response in glucose 

detection was achieved by the covalent immobilisation of GOD and further 

covering with a non-conductive heteropolypyrrole film (Li et at., 1998). 
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Abstract 

The work evaluated a series of approaches to optimise detection of polymerase chain reaction (PCR) amplified DNA samples by 
an optical sensor based on surface plasmon resonance (SPR) (BiacoreX). The optimised procedure was based on an asymmetric 
PCR amplification system to amplify predominantly one DNA strand, containing the sequence complementary to a specific probe. 
The study moved into two directions, aiming to improve the analytical performance of SPR detection in PCR. amplified products. 
One approach concerned the application of new strategies at the level of PCR, i. e. asymmetric PCR to obtain ssDNA amplified 
fragments containing the target capable of hybridisation with the immobilised complementary probe. The other strategy focused on 
the post-PCR amplification stage. Optimised denaturing conditions were applied to both symmetrically and asymmetrically 
amplified fragments. The effective combination of the two strategies allowed a rapid and specific hybridisation reaction. The 
developed method was successfully applied in the detection of genetically modified organisms. 
© 2003 Elsevier B. V. All rights reserved. 

Keywords: Surface plasmon resonance; DNA sensing; PCR; Denaturation; GMO 

1. Introduction 

Since its first publication in 1985 (Saiki et al., 1985) 
polymerase chain reaction (PCR) has opened new bio- 
analytical avenues in forensic, medical, environmental 
and food sciences. Post-PCR nucleic acid analysis is 
routinely performed by gel electrophoresis. This method 
however, fails to provide any sequence information of 
the amplified DNA. Problems may arise from the 
amplification of a non-specific sequence having nearly 
the same length with the desired fragment. Southern 
blotting satisfies the requirement for sequence informa- 
tion, but it is not recommended for routine analysis, as it 
involves several steps, Surface plasmon resonance (SPR) 
detection of PCR products offers a rapid and sequence 
specific alternative to the usual analytical methods (Kai 

Corresponding author. Tel.: +39-55-457-3314; fax: +39-55-4576- 3384. 
E-mail address: minunni@unifi. it (M. Minunni). 
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et al., 1999,2000; Sawata et al., 1999; Bianchi et al., 
1997; Nilsson et al., 1997). Prior to SPR testing, DNA 
fragments which, amplified by ordinary PCR, are 
double-stranded, require denaturation steps of long 
duration which lack practicality (Sawata et al., 1999). 
This sample pre-treatment is necessary to obtain single 
stranded DNA fragments capable of hybridisation with 
the probe immobilised on the sensor surface. A previous 
work from our group (Mariotti et al., 2002) on SPR 
based DNA sensing, revealed that heat denaturation 
alone (95 °C for 5 and I min in ice) of the PCR products 
is not efficient for strand separation, as it leads to re- 
annealing of the denatured strands. On this basis, more 
complex sample treatments had to be employed. Mag- 
netic particle separation solved the problem but it was 
considered to be an expensive and time-consuming 
method, unsuitable for routine analysis of a large 
number of samples. 

Several research groups have applied the SPR tech- 
nology to detect DNA hybridisation with peptide 
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nucleic acids (PNA) (Kai et al., 2000; Sawata et al., 
1999; Burgener et al., 2000; Feriotto et al., 2001). 
Although successful, the system was not cost-effective 
due to the use of expensive PNA. Moreover, a heat 
denaturation step was usually required prior to SPR 
testing (Kai et al., 2000; Sawata et al., 1999). 

Further development of the detection system em- 
ployed an optimised PCR procedure that predominantly 
produces single-stranded DNA fragments (Bianchi et 
at., 1997; Innis et at., 1998; Eggerding et al., 1991). In 
the case of Kai et al. (1999), two different asymmetri- 
cally amplified fragments were produced, differing in 
length. Following a heat denaturation step, the asym- 
metrically amplified products were hybridised to pro- 
duce a unilateral protruding DNA (UPD) fragment. 
Despite the sensitivity and reproducibility that the 
system provides, generation of UPD fragments makes 
the detection system more complicated. 

Feriotto et al. (2002) also applied asymmetric PCR 
and SPR technology, in the detection of genetically 
modified organisms (GMOs). The best biosensor per- 
formance was achieved upon immobilisation of a PCR 
biotinylated product on the sensor chip surface and the 
subsequent hybridisation with its complementary asym- 
metrically amplified counterpart present in solution. 

Moreover, detection of asymmetrically amplified 
products without a pre-treatment step has been reported 
for the diagnosis of human immunodeficiency virus type 
I (HIV-1) (Bianchi et al., 1997). 

Biotechnology is rapidly developing to deliver highly 
specific, reproducible and cost-effective screening meth- 
ods for the detection of desired analytes. Moving 
towards a more straight forward and rapid detection 
of PCR products, we investigated some amplification 
and post-amplification strategies for the detection of 
PCR products based on SPR transduction (Biacor- 
eXTM). 

In this work, several approaches were examined to 
obtain significant and specific DNA-DNA hybridisa- 
tion. The different approaches were applied in the 
analysis of specific DNA sequences present in various 
GMOs. These sequences are contained in the promoter 
region (35S) of the cauliflower mosaic virus (CAMV) 
ribosomal RNA. 

To improve the analytical performance of SPR 
detection in PCR amplified products, different strategies 
both at the PCR and post-PCR level were evaluated. At 
the level of PCR, an optimised scheme was applied to 
obtain ssDNA amplified fragments containing the target 
35S capable of hybridisation with the immobilised 
complementary probe. At the post-PCR amplification 
stage, optimised denaturing conditions were applied to both symmetrically and asymmetrically amplified frag- 
ments. 

Improvement of the denaturing conditions was per- formed by the combination of a strong alkaline envir- 

onment and a formamide treatment at 42 °C. 
Denaturation of dsDNA in strong alkaline conditions 
is well established. At a pH Z 13 the charge of the DNA 
bases changes, thus preventing H-bond formation 
(Alberts et al., 1994). On the other hand, the influence 
of organic compounds such as formamide, urea and 
formaldehyde on the thermal DNA denaturation pro- 
cess has been well documented (Sambrook et al., 1989). 
Formamide is a helix destabiliser that replaces the native 
DNA bases for inter-strand hydrogen bonds, thus 
inducing the denaturation of dsDNA (Bhattacharyya 
and Feingold, 2001). High temperature denaturation 
(95 °C for 5 min followed by I min in ice) was here used 
as a reference method. 

2. Materials and methods 

2.1. Apparatus and reagents 

For all the experiments the SPR device BiacoreXTM 
and a dextran modified sensor chip (CM5) were used 
(Biacore AB Uppsala, Sweden). All experiments were 
conducted at a flow rate of 5 µl/min and 25 T. 

N-hydroxysuccinimide, l-ethyl-3-(diinethylaminopro- 
pyl) carbodümide (EDAC) and streptavidin were all 
purchased from Sigma Aldrich (Milan, Italy). Synthetic 
oligonucleotides were purchased from Sigma Genosys 
(Cambridge, UK). The buffer reagents and ethanol were 
purchased from Merck (Rome, Italy). All the other 
reagents were purchased from Sigma Aldrich (Milan, 
Italy). 

The base sequences of the 5'-biotinylated 'probes (25- 
mer) were: probe 35S (5' biotin-GGCCATCGTTGAA- 
GATGCCTCTGCC 3') and non-specific probe (5' 
biotin-AATGATTAATTGCGGGACTCTAATC 3). 

2.2. DNA samples 

DNA samples consisted in synthetic oligonucleotides 
and PCR amplified products of DNA extracted from 
different sources. 

2.2.1.25mer-Synthetic oligonucleotides 
The sequence of interest, complementary to the 

immobilised 35S probe was: target 35S (GGCAGAGG- 
CATCTTCAACGATGGCC). A sequence for negative 
control was also used (non-complementary strand: 
GATTAGAGTCCCGCAATTAATCATT). 

A dsDNA helix was also constructed by co-incuba- 
tion of equimolar amounts (0.1 µM) of probe and target 
35S. Incubation was conducted for 1h at 25 °C. The 
resulted dsDNA oligonucleotide helices were treated as 
a model type of symmetrically amplified samples (see 
below). 



Giakounwki et aL I Biosensors and Bioelectronics 19 (2003) 337-344 

2.2.2. DNA samples of higher complexity 

A) Commercially available Certified Reference Mate- 
rial (CRM) from soybean powder (2% Roundup 
ReadyTM, Fluka, Italy); 

B) PBI121 plasmid (13 kbp) was purchased from BD 
Biosciences Clontech (Oxford, UK) and it contains 
a 814 bp fragment of promoter 35S. The plasmid 
was extracted from genetically modified E. coli, 
previously transformed with the plasmid; 

C) Maize samples from animal feed. 

Following extraction, all the samples A, B, C were 
PCR amplified. 

The control solution (PCR blank) consisted of all the 
PCR reagents except the DNA template. 

2.3. DNA extraction and isolation 

PBI121 DNA was isolated from E. coil cells, using the 
QIAGEN Plasmid Mini Kit (Qiagen, Milan Italy). 
Following extraction, the PBI121 DNA samples were 
suspended in ddH2O. 

DNA extraction from the sources A and C, followed 
the instructions of the Nucleospin Plant kit (Macherey- 
Nagel, Duren, Germany) and the Wizards Magnetic 
DNA Purification System for Food (Promega, Milan, 
Italy). The extracted and purified DNA samples were 
suspended in the elution buffer provided in the DNA 
extraction kit. 

The concentration of the extracted DNA material was 
determined by measuring the fluorescence of the 
Hoechst 33258-DNA complex, by the use of a Hoefer 
TKO-100 minifluorometer (Amersham-Biotech, Milan, 
Italy). 

2.4. Symmetric and asymmetric PCR amplification 

The sense (5' GCTCCTACAAATGCCATCATT 3') 
and antisense (5' CTCCAAATGAAATGAAC 3') pri- 
mers (MWG-BIOTECH, Florence, Italy) amplified a 
243 bp DNA fragment, containing the target sequence 
35S (25-mer). Both primers were designed using the 
ouoo® Primer Analysis software. 

The PCR reaction mixture contained 100-300 ng of 
isolated DNA from sources A and C or 10 ng from B, 2 
units of Taq polymerase (Amersham-Biotech, Upsala, 
Sweden) and 100 mM of each desoxy-ribonucleotide- 
triphosphate (dNTP) (Amersham-Biotech, Uppsala, 
Sweden). 

The 50 µl PCR mixture for symmetric PCR contained 
equal amounts of sense and antisense primer solutions (200 nmol). The PCR conditions were: 94 °C for 4 min, 50 °C for 1 min and 72 °C for 2 min (35 cycles). The 
asymmetric PCR was performed in the same conditions 
for 50 cycles but with a sense/antisense primer ratio of 1/ 
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50 pmol. All PCR experiments were conducted by a 
Perkin Elmer Thermal cycler (model 9600) (Perkin 
Elmer, Shelton, USA). 

Following amplification, the PCR products were 
ethanol precipitated (1 volume of sample per 2.5 
volumes of ethanol) and dissolved in TE buffer (10 
mM Tris, 1 mM EDTA, pH 8.0). The DNA concentra- 
tion of the amplified products was determined spectro- 
photometrically at 260 nm. Screening of the PCR 
products was performed by gel electrophoresis (Sam- 
brook et al., 1989) and visualised through a UV 
transilluminator. 

2.5. Denaturation of DNA samples 

Prior to SPR testing, the PCR samples were subjected 
to a denaturation step in order to obtain ssDNA 
fragments. As a part of our optimisation strategies, 
different denaturation methods were employed and their 
efficiency to obtain adequate amounts of ssDNA for 
hybridisation was examined. 

2.5.1. High temperature denaturation 
High temperature denaturation (95 °C) was con- 

ducted as a reference procedure with or without the 
addition of formamide (20%). The followed protocol is 
well documented in many previous studies on DNA- 
based biosensors (Mariotti et al., 2002; Tombelli et al., 
2000a, b; Minunni et al., 2001). It involves a5 min 
incubation at 95 °C followed by 1 min in ice. 

2.5.2. Denaturation in alkaline conditions 
The second method employed a combination of 

alkaline and thermal conditions along with a formamide 
treatment (Harwood, 1996). Formamide was used in 
different concentrations and all in accordance with 
Biacore operating instructions. The DNA containing 
denaturation mixtures, were all of 60 Id final volume 
and consisted of; 0.3 M NaOH, 0 or 10 or 20% 
formamide and hybridisation buffer (NaCl 150 mM, 
Na2HPO4 20 mM, EDTA 0.1 mM, pH 7.4) to adjust 
close to the final volume. The mixture tubes were then 
incubated at 42 °C for 30 min. Following the incubation 
step, all reaction tubes were inoculated with highly 
concentrated HCI solution to obtain a final concentra- 
tion of 0.3 M HCI. Twenty-five microlitre of denatura- 
tion mix was then injected in the Biacore flow system. 

2.6. Immobilisation of oligonucleotide probes 

The presence of a second flow-cell on the sensor chip, 
allows the immobilisation of two different probe 
sequences. The 35S probe provides the complementary 
counterpart for the target of interest. The non-specific 
probe was only used as a control surface. Both probe 
sequences were immobilised using the same protocol. 
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The dextran sensor chip was further modified with 
streptavidin (200 µg/m1 in acetate buffer 100 mM, pH 
5.0) (Ldfäs and Johnsson, 1990). Then, the biotinylated 
oligonucleotide probe (1 gM in immobilisation buffer 
(NaCl ISO mM, Na2HP04 20 mM, EDTA 0.1 mM, pH 
7.4)) was immobilised, as previously reported (Tombelli 
et at., 2000a, b). 

2.7. Hybridisation with synthetic oligonucleotides 

Hybridisation reactions of the immobilised 35S probe 
with the complementary sequence, were achieved by 
injecting the testing solution in the SPR flow-cell. The 
reaction was monitored for 5 min and subsequently the 
sensor chip was washed with hybridisation buffer to 
remove the unbound DNA material. The analytical 
signal, reported as resonance units (RU), derives from 
the difference between the value before (baseline) and 
after the hybridisation. 

In all the experiments, the single stranded probe was 
regenerated by an 1-min treatment with 1 mM HC1, 
which allows the multi-use of the sensor. 

3. Results and discussion 

3.1. Synthetic oligonucleotides 

25-mer 35S oligonucleotide sequences fully comple- 
mentary to the immobilised probe, were initially used to 
characterise the developed biosensor. The calibration 
curve is reported in Fig. 1 (curve a). Measurements with 
non-complementary DNA sequences led to non detect- 
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able results, thus confirming the specificity of the system 
(data not shown). 

3.2. DNA samples of higher complexity 

Following sensor optimisation using synthetic 25-mer 
oligonucleotides, the sensor performance was examined 
by testing DNA samples of higher complexity. These 
samples were obtained by symmetric and asymmetric 
PCR amplification. To aid hybridisation with the 
immobilised probe, the samples were denatured in order 
to obtain a single stranded form of the target fragment. 
The denaturing treatment was performed at high 
temperature with or without formamide and in alkaline 
conditions (low temperature) with different percentages 
of formamide. 

3.2.1. High temperature denaturation 

3.2.1.1. Symmetric PCR amplified samples. DNA PCR 
symmetrically amplified products were denatured using 
the high temperature treatment (95 °C for 5 min and I 

min in ice). SPR testing showed non-detectable or 
questionable traces of hybridisation shifts. This was 
attributed to the re-annealing of the denatured DNA 
strands before coming in contact with the sensor 
surface, as also demonstrated by Mariotti et al. (2002). 
The high temperature denaturation was also found 
inefficient when 20% formamide was used, resulting in 
non-detectable hybridisation shifts. This demonstrated 
that high temperature denaturation was not sufficient to 
keep the two strands separated in solution, even after 
the addition of formamide. A new PCR amplification 
scheme was then approached to minimise the chances of 

r -9- Non-denatured 
Denatured 

  

50 100 150 200 250 
[Target 35SjlnM 

Fig. 1. Calibration curves with the immobilised 35S probe sequence. (a) Curve obtained with synthetic 35S target; (b) curve obtained with denatured 
synthetic 35S target; denatured with 0.3 M NaOH, 201/6 formamide at 42 °C for 30 min. 
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strand re-annealing by the synthesis of single-stranded 
PCR fragments. 

3.2.1.2. Asymmetric PCR amplified samples. Asymme- 
trically amplified samples were denatured using high 
temperature (95 °C) and 20% of formamide. Subsequent 
SPR testing monitored non-detectable hybridisation 
shifts when 2.5 and 5 µM of asymmetrically amplified 
DNA was tested. The low analytical signals were 
attributed to the H-bonding in the intra- and possibly 
in the inter-strand region of the amplified fragments, 
due to the lack of adequate and prolonged denaturation. 
A contributing factor to the insufficient denaturing 
conditions could also be the short duration of the 
formamide treatment. Nevertheless, a longer exposure 
of the DNA samples to 95 °C would increase the 
probability of DNA conformational changes. 

Secondary structures within a ssDNA fragment can 
be formed in the presence of repetitive sequences. 

Fig. 2 shows a potential configuration of secondary 
structure in the asymmetrically amplified 243 bp se- 
quence (Zuker, 2002). 

To overcome this additional problem in the hybridi- 
sation reaction, denaturing conditions were optimised 

Fig. 2. One of the potential secondary structures formed by the 243 
bases asymmetric PCR product. The 25-mer 35S target is located 
within the 5' end of the amplified fragment between base numbers 186 
and 210. A number of intra-strand hydrogen bonds are evident within 
the target 25-met sequence. 
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by the use of alkaline conditions and an extended 
duration of formaniide treatment prior to SPR testing. 

2.2.2. Improvement of denaturing conditions 
The denaturation step prior to SPR testing was 

modified to establish a strong alkaline environment as 
described in the experimental section. 

3.2.2.1. Synthetic oligonucleotides. To study the effect of 
denaturing conditions on the hybridisation behaviour of 
the synthetic 25-mer 35S sequences, denatured (alkaline 
conditions and 20% formamide) and non-denatured 
synthetic DNA sequences were tested. 

Fig. I shows the calibration curves obtained with the 
denatured (curve b) (0.3 M NaOH, 20% formamide for 
30 min at 42 °C) and non-denatured 35S target se- 
quences (curve a). By denaturing the target sequence in 
the above conditions, the linear range was up to 25 nM 
and higher sensitivity and reproducibility were observed. 
More specifically, the detection limit was improved, 
reaching a value of 2.5 nM. The reproducibility of the 
system in terms of CV% was S 5%. 

The improved biosensor performance in the case of 
the denatured 35S oligonucleotide target, was attributed 
to the elimination of intra-strand H-bonding possible 
even within the 25-mer target sequence. 

dsDNA hybrids, were constructed to mimic symme- 
trically amplified DNA and were treated as real samples. 
Denaturation involved alkaline conditions and different 
amounts of formamide (0,10,2(`Yo). In the presence of 
20% formamide, the hybridisation shifts (ARU =138± 
6RU) were approximately two times greater with respect 
to those obtained in the absence of formamide (ARU = 
61 ±23RU). Reproducibility was also improved with a 
CV% = 4%. This confirms the importance of formamide 
in the denaturing conditions. 

Based on the findings obtained with "synthetic" 
dsDNA, the optimised denaturing treatment was ap- 
plied to symmetrically and asymmetrically amplified 
samples. 

3.2.2.2. Symmetric PCR amplified samples. Fig. 3(a) 
shows the hybridisation shifts produced with symme- 
trically amplified samples using 0.10 and 20% of 
formamide. In the absence of formamide, non-detect- 
able hybridisation shifts were obtained. Using 20% of 
formamide positive hybridisation shifts were measured 
but they were considered to be low and unreliable due to 
irreproducibility (e. g. sample C: CV% - 33%). By using 
the new denaturation protocol, a partial inhibition of 
the re-annealing process could be observed. 

3.2.2.3. Asymmetric PCR amplified samples. The hybri- 
disation shifts obtained with asymmetrically amplified 
products are shown in Fig. 3(b). When 20"/0 of for- 
marnide was used, high reproducibility was obtained in 
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Fig. 3. Hybridisation shifts obtained from symmetrically (a) and asymmetrically (b) amplified samples. Sample A: CRM 2%; Sample 8: PB)121; 
Sample C: GM Maize. SPR testing was performed following different denaturing conditions: high thermal denaturation, high thermal denaturation 

with 20% formamide, alkaline-thermal denaturation combined with different percentages of formamide (0,10 and 20%). The samples were diluted in 
hybridisation buffer up to a final concentration of 0.2 NM. The reported shifts provide the mean value calculated over 3 measurements for each 
sample (n = 3). 

sample B (CV% = 5%, n= 3) and C (CV(Y,, = 4%, n= 3), 
while the high hybridisation shifts (DRUB = 112RU, 
ARUc = 66RU) indicate the suitability of the technique 
to identify the target sequence. 

All the reported results are summarised and compared 
in Fig. 3. High temperature denaturation led to en- 
couraging results only when synthetic oligonucleotides 
were tested. However, thermal treatment with or with- 
out formamide, was found to be insufficient to generate 
reproducible and significant SPR signals when PCR 

fragments of hundreds of base pairs were tested. In the 
latter case, the formation of secondary structures needs 
to be eliminated for the hybridisation reaction to be 
favoured. The strategies used to obtain single-stranded 
DNA in solution, focused on the improvement of the 
denaturing conditions by the use of a strong alkaline 
environment (in the presence of formamide) and by an 
asymmetric PCR amplification scheme. 

The optimised alkaline denaturing conditions resulted 
in low and irreproducible signals when applied to 
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symmetrically amplified fragments, while better results 
in terms of reproducibility and recorded signals were 
achieved using asymmetrically amplified samples in the 
presence of 20% formamide. 

When using samples from source A (CRM), higher 
irreproducibility was observed, both in symmetrically 
and asymmetrically amplified fragments. This can be 
attributed to degradation of the extracted DNA (Alan 
et at., 2002) which significantly influences the PCR 
amplification. 

The blank PCR solution was treated under the same 
conditions as the real samples. No response was 
obtained in all cases. When testing the sample comple- 
mentary to 35S probe, the cell containing the non- 
complementary probe generated a low non-specific 
response (< 10% of the total 35S specific signal), which 
was subsequently subtracted from the ARU value 
recorded on 35S cell. 

4. Conclusions 

To obtain single-stranded target DNA available for 
hybridisation in SPR biosensors, is a difficult task. Even 
in the case of asymmetrically amplified fragments, the 
presence of secondary structures puts considerable 
constrains in hybridisation reactions between the im- 
mobilised probe and the target DNA in solution. The 
presented work evaluated different approaches to obtain 
single stranded DNA target sequences prior to SPR 
testing. Eventually, the system combined an asymmetric 
PCR amplification system with a simple DNA dena- 
turation step for rapid and specific detection of DNA 
hybridisation. Asymmetric PCR amplification led to the 
selective amplification of the desired DNA strand. The 
optimised denaturing conditions, eliminated intra- 

strand complexes within the asymmetrically amplified 
DNA fragments. The resulting system provides an 
alternative method for DNA detection. In our case, 
the potential use of this system in the detection of 
various GMOs, is demonstrated. 
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