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ABSTRACT

Modelling peace support operations is a growing area of research in the defence

sector. Extensive development has been done in the area of combat models but

they are not always sufficient when modelling operations other than war.

The DIAMOND model is a large scale peace support model capable of mod-

elling entire countries. Taking an agent-based approach, we have created a model

that has the potential to be used in conjunction with DIAMOND, providing the

detail the larger model lacks. Improvements need to be made before this is pos-

sible but our model provides a strong starting point.

Self-organised criticality is an area of complexity theory that is, in part, iden-

tified by a fractal frequency-size ‘avalanche’ distributions. Previous research has

shown a link between self-organised criticality and combat modelling. We looked

for power-law behaviour in a variety of peacekeeping scenarios.

Using our agent-based model we devised a set of scenarios, each one more

complex than the previous one. Taking the conflict between the peacekeepers

and local insurgents, we used two different measures of such to represent the

‘avalanches’. The results showed no real evidence of power law relationships but

more experimentation and analysis is needed.
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Chapter 1

INTRODUCTION

Recent developments have resulted in the emphasis of many armed forces switch-

ing to peace support operations rather than the traditional warfighting. The

current situations in Afghanistan and Iraq being two such examples.

There is an extensive array of models available for combat operations but the

modelling of operations other than war is a relatively new research area. Dstl have

developed a large scale model, DIAMOND, capable of modelling whole countries,

but they do not have a model to provide the detail at town and village level. The

first aim of our research is to develop a model that can complement DIAMOND

by providing a representation of events at a selected area of the larger model.

Research has shown that data related to combat can exhibit a type of complex

behaviour called self-organised criticality. The second aim of our research is to

investigate this possibility in a peacekeeping scenario. For this we use our own

agent-based model and design a range of scenarios.

The structure of the thesis is as follows. Chapter 2 provides a survey of

relevant literature. We introduce the concept of agent-based modelling and two

agent-based combat models are described in detail. Self-organised criticality is

explained and three agent-based models that exhibit such behaviour are given.

Finally we look at current methods of modelling peace support operations.
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Initial experiments are described in Chapter 3. Here we describe experiments

done with the models MANA and ISAAC in order to understand how these agent-

based combat models work. We replicate MANA experiments that show it is

unsuitable for modelling peacekeeping scenarios, hence the reason for developing

our own model. Away from the agent-based models, we developed a method for

calculating tension in the DIAMOND peace support model.

The development of our agent-based peacekeeping model is documented in

Chapter 4. A full description is given along with verification and initial validation.

We devised four major scenarios, each a development of the previous one.

The scenario details and results are given in Chapter 5 We look for evidence of

power laws and self-organised criticality in these results.

We summarise our research and main findings in Chapter 6 before suggesting

future directions for the project in Chapter 7.
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Chapter 2

LITERATURE REVIEW

There are two main topics involved in our research: first we have the military

modelling and then there is the self-organised criticality. The link between the

two is provided by agent-based models, and in particular cellular automata.

We start by defining agent-based models in Section 2.1 and illustrate the

concept with the example of Conway’s Game of Life. Next in Section 2.2 we

introduce the idea of self-organised criticality and give three examples of models

that exhibit this behaviour, all of which are agent-based models. We then describe

two more complex agent-based models that are used for military purposes, ISAAC

and MANA, in Section 2.3. Finally, in Section 2.4, we look at current models

used to represent peacekeeping operations.

2.1 Cellular Automata and Agent-Based Mod-

els

An agent-based model is a model such that the entities, or agents, are controlled

by a finite set of behavioural rules that are implemented at each step rather

than by pre-determined events. Cellular automata are a subclass of agent-based

models. These models consist of an n−dimensional grid of cells, each of which
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can take one of a number of states. The cells are the agents in the model and

the evolution of these cells is governed by a set of rules.

2.1.1 Game of Life

An example of a two-dimensional cellular automata is Conway’s Game of Life,

given in [43]. This is a widely studied model with many interesting behaviours

resulting from three very simple rules. The model is defined on a two-dimensional

square grid where each cell is defined to be either alive or dead. The cells evolve

according to the number of neighbouring alive and dead squares. For the purposes

of this model the neighbouring cells are defined to be the eight surrounding

squares. The following rules are followed:

1. If a live cell has less than two alive neighbours it becomes a dead cell at

the next step;

2. If a live cell has four or more alive neighbours it will become a dead cell at

the next step;

3. If a dead cell has exactly three alive neighbours it will become a live cell at

the next step.

If none of these situations are applicable the cell remains unchanged. An

example model evolution over four time steps is shown in Figure 2.1. Live cells

are shown as black, dead cells are white.

The Game of Life has been used to symbolise simple population dynamics.

Rule One represents populations dying out due to isolation or lack of food. Rule

Two represents overcrowding and therefore too much competition for food. Rule

Three gives ideal conditions for population growth. In our example in Figure 2.1

we can see an overall decline in the population.

When studying agent-based models we are looking for emergent behaviour.

Examples of emergent behaviour for the Game of Life are stable patterns, blinkers
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Figure 2.1: An Example Game of Life
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and gliders. Stable patterns, as the name suggests, are configurations that do

not change as the model evolves. An example would be a two-by-two square. A

blinker is a pattern that repeats after a number of time steps, an example of a

blinker of period two is shown in Figure 2.2 (a). Gliders are a special type of

blinker. As well as having a cyclic pattern, the shape is also displaced diagonally

by one square so it moves across the grid. An example glider of period four is

shown in Figure 2.2 (b).
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(a) Blinker (b) Glider

Figure 2.2: Example Game of Life Behaviours
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2.2 Self-Organised Criticality

Self-organised criticality is related to the wider topic of complexity theory. Com-

plexity theory is an evolving area of research concerned with finding simple be-

haviour in large systems with many rules. Related to this field is the study of

fractals. A fractal is a geometric object that appears to be the same no matter

how much it is magnified. The dimension of such an object is non-integer.

The idea of self-organised criticality was introduced by Bak, Tang and Wiesen-

feld in their 1987 paper [3] as an explanation for the behaviour of a sandpile model

they had developed; this model is described in Section 2.2.1. A general introduc-

tion to the subject is given in the key text by Bak [1], a more in depth analysis

is given in the book by Jensen [18].

In this section we shall first define three simple models that have been shown

to exhibit self-organised critical, (SOC), behaviour: the sandpile model, forest

fire model and invasion percolation. We then move on to discuss the common

features of SOC systems.

SOC may be used to explain the behaviour of naturally occurring systems.

One of the models we describe below is the forest fire model. In their paper [24],

Malamud, Morein and Turcotte compare results given by the model and data

from actual forest fires. They conclude that the statistics associated with the

computer model can be applied to real data. Barriere and Turcotte discuss the

application of SOC to earthquakes in the paper [5].

It is hoped that we will be able to link the ideas from this theory and apply

them in relation to military peace support operations. This has already been done

for general warfighting scenarios. For example, in their report [33] Rowland, Keys

and Stephens study irruption of forces. It is suggested in the paper [28] by Moffat

and Witty that we could look at the fractal dimension of the troop formation

and link this to the invasion percolation clustering. Invasion percolation is one

of the models detailed later that has been shown to exhibit SOC behaviour; a
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mathematical model is given in the paper [31] by Paczuski, Maslov and Bak. In

their paper [32], Turcotte and Roberts find a link between battle casualty data

and forest fire data. Both exhibit power law frequency size statistics that are a

characteristic of SOC systems. They then try to relate the SOC forest fire model,

described in Section 2.2.2, to the initial outbreak and spread of conflict.

2.2.1 Sandpile Models

The basic two-dimensional sandpile model works as follows. We start with an

empty square grid, at each step a grain of sand is added to a random site on

the grid. Once the count at a square is equal to four a toppling occurs, the

four grains are distributed to the four nearest neighbour sites. This in turn may

induce further topplings as some sites may now have grain counts of four. The

process continues until all sites have a count of less than four. At some stage in

the avalanche we may have a situation where the count at a site is greater than

four, in this case only four grains are redistributed, the remainder stay at the site.

If a site at the edge of the grid becomes unstable, four grains are lost from the site

and only one is added to each nearest neighbour even though there are less than

four nearest neighbours. The size of an avalanche is measured by the number

of sites that become unstable. For example, the diagram in Figure 2.3 shows an

avalanche of size three. At first one site is unstable, the resulting toppling leads

to a further two sites becoming unstable then finally all sites are stable and we

can resume the addition of sand grains.

It is also stated in the book by Turcotte [39] that instead of counting the

number of sites that become critical, we can count the number of grains that are

lost from the model. In that case Figure 2.3 shows an avalanche of size one. Both

variations of the model exhibit self-organised criticality.

Turcotte’s book [39] gives the method used to determine the presence of self-

organised criticality. We look at the frequency-size distribution for the avalanches.

9



1

0

3

2

1

2

4

1

2

1

3

0

1

0

1

1

1

0

4

2

1

3

0

2

2

1

4

0

1

0

1

1

1

1

0

3

1

3

2

2

2

2

0

1

1

0

2

1

Figure 2.3: An Example of the Two Dimensional Sandpile Model

After the model has run for a certain time we can count how many avalanches,

N(A), there were of a certain size A. If we plot log(N(A)) against log(A) and

obtain a straight line then the frequency-size statistics are fractal which suggests

that we have self-organised criticality.

2.2.2 Forest Fire Models

We give two alternative versions of the two-dimensional forest fire model, both

of which have been shown to exhibit self-organised criticality.

Version One: The first version of the forest fire model is given in Turcotte

and Roberts’ paper [32]. We start with an empty square grid. We are given a

sparking frequency fs, this defines the frequency at which a match is dropped

onto a randomly selected site. For example, if fs = 1
100

a match is dropped every

100 steps. For the remaining steps a tree is planted at a random site. Once a fire

has been started it spreads to nearest neighbour sites, and then to their nearest

neighbour sites, and so on. The number of trees set on fire is recorded then all

burning sites become empty sites. If a match is dropped onto an empty site,

nothing happens and the fire is recorded as being of size zero. If a site selected

randomly for planting is already occupied we do nothing, we do not assume there

are now two trees at that site. The diagram in Figure 2.4 shows an example of a

fire of size seven.
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Tree

Fire

Figure 2.4: An Example of the Two Dimensional Forest Fire Model

In their paper [32], Turcotte and Roberts found a power law distribution

for fire size. The model was run for NS timesteps and the size of each fire was

recorded. For each fire size AF , the number of fires of that size were counted, this

was denoted NF . Plotting log(NF /NS) against log(AF ) gave straight line graphs

for each of the three sparking frequencies used. This implied that

NF

NS

∼ A−α
F ,

where α was found to be 1.02, 1.09 and 1.16 for sparking frequencies of 1
125

, 1
500

and 1
2000

respectively. The model was run on a square grid of size 128 × 128.

We tried to reproduce the results from the paper but found that our program

would have to run for months in order to cope with the values for NS used by the

authors. Either our program was too inefficient or Turcotte and Roberts made

use of a supercomputer when conducting their experiments.

Version Two: The two-dimensional forest fire model can also be defined

slightly differently. We again have a square grid and sparking frequency fs but

this time we also have a planting frequency fp, this is the probability that a tree

will be planted at an empty site at each time step. We start with either an empty
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grid or a configuration of trees determined using a random number generator. At

each time step each grid square is assigned a random number rxy in the range

(0, 1). If the site (x, y) is empty and rxy < fp then a tree is planted at the site. If

there is a tree at site (x, y) and rxy < fs then the tree is set alight. If the site was

a burning tree at the previous time step then it changes to an empty site. If a

tree is planted at a site and a nearest neighbour site was burning at the previous

timestep, then the tree is set alight.

Much research has been conducted with both versions of the model as well

as adaptations. For example, Strocka, Duarte and Schreckenberg add bushes to

define a two level model of forest fires; this model is detailed in [36]. Instead of

having just a tree at a site, there can be a bush as well. The two levels add to the

behaviour rules. In addition to the planting probability for trees, there is also a

second, higher, probability that a bush will be planted. Both burning trees and

burning bushes disappear at the next timestep. A tree catches fire if it is at a

site with a burning bush, nearest neighbour to a burning tree or if it is ignited

according to its sparking frequency. A bush is set alight if it is at a site with a

burning tree or nearest neighbour to a burning bush.

In the paper [30], Moßner, Drossel and Schwabl looked at computer simula-

tions of the model in different dimensions. In her paper [11], Drossel concentrated

on mathematical analysis of the one dimensional model. Drossel, Clar and Schw-

abl find exact results for the one-dimensional model in their paper [12] which are

then confirmed by computer simulations.

2.2.3 Invasion Percolation

Another example of a model that can exhibit self-organised criticality is invasion

percolation. Details of this model are given in the paper [31]. We start with

a square grid with one invaded edge; all other sites on the grid are assigned a

random number. Consider all the nearest neighbours to the invaded sites. At
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each step the nearest neighbour site with the lowest associated random number

is invaded. As an example consider the diagram in Figure 2.5. We start with

a 4 × 4 grid with the top edge invaded. At each step all the relevant random

numbers are shown. We continue until we have a cluster that spans the grid from

top to bottom.
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Figure 2.5: An Example of the Invasion Percolation Model

We can find the fractal dimension of the invasion percolation using the box

counting method, detailed in [14]. Say we have a grid of size 2n × 2n. Then for

m = 1, 2, . . . , (n − 1) we split the grid into squares of side length 2m and count

how many of these squares the cluster is in, call this number B(m). We then plot

log(B(m)) against log(2m) and find the gradient of the best fit line, this is the

box counting dimension.
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2.2.4 Defining and Identifying a SOC System

As yet there is no formal mathematical definition of a SOC system, instead there

have been many descriptions of the general features of such a system. In his

lecture titled ‘Self-Organised Criticality: A Holistic View of Nature’, and written

up in the book [10], Bak gives the description

“ ‘Self-Organised Criticality’ (SOC) describes the tendency of large dynamical

systems to drive themselves to a critical state with a wide range of length and

time scales. ”

In their paper [5], Barriere and Turcotte provide further detail.

“The concept of self-organised criticality is defined to be a natural system in a

marginally stable state, evolving naturally back to the state of marginal stability

when perturbed from that state. The input to the system is continuous but the

loss is in a discrete set of events that satisfy fractal frequency-size statistics.”

In her paper [11], Drossel gives the final important feature.

“In the stationary state the size distribution of dissipative events obeys a

power law, irrespective of initial conditions and without the need to fine-tune

parameters.”

We now bring all these ideas together. We need a large dynamical system in

order to negate any finite size effects. The attractor for the system should be a

critical state, and if the system is driven away from this state it will naturally

evolve back to it. By the attractor we mean the subset of the space on which

the system is defined, to which the system will eventually evolve. The input to

the system is continuous, for example the grains of sand are added steadily to

the sandpile model. The output is discrete, for example the avalanches in the

sandpile model do not occur at every timestep. After the model has run we

can examine the frequency-size distribution, this should be a straight line when

plotted on a log-log scale. The model should be run for a wide range of initial

conditions and parameters, power law distributions should be found in each case.
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We encounter several problems if we want to say for sure whether or not

a model displays SOC behaviour. The definitions given in the papers only de-

scribe how to find out if the system is SOC after it has finished running and the

frequency-size distribution for the output ‘avalanches’ can be examined, there is

no way of determining whether a system exhibits SOC while it is running. An-

other problem is identifying the data that could be thought of as an ‘avalanche’.

By this we mean a measurable effect analogous to the avalanche of grains in the

sandpile model or the fire in the forest fire model. This is a particular problem

when looking at a complex model with a variety of parameters, such as a military

model.

The main problem with identifying SOC behaviour is the fact that we are

looking for a list of necessary, but not sufficient, conditions. The main analysis of

model output comes with the frequency-size distribution of the ’avalanche’ data.

We are looking for a power law distribution, but even if we find evidence to suggest

this is the case we cannot conclude for definite that the system is showing SOC

behaviour since other processes can show the same power law property. Therefore,

when we analysed our results we were looking for power law relationships rather

than SOC specifically.
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2.3 Agent-Based Combat Models

In this section we shall be looking at the two agent-based combat models ISAAC

and MANA. We describe how the models work and the parameters involved.

We pay particular attention to the laws governing the agents’ movement in the

models.

The acronym ISAAC stands for Irreducible Semi-Autonomous Adaptive Com-

bat. The model was developed by Andrew Ilachinski for the Centre for Naval

Analyses in the USA. MANA stands for Map Aware Non-uniform Automata and

was developed by Michael Lauren and Roger Stephen for the New Zealand De-

fence Technology Agency. In order to understand the two models we used the

userguides [17] and [22].

2.3.1 ISAAC

Model Parameters

The first parameters in ISAAC are the general battle parameters. These define

the size of the battlefield, initial distribution of troops, fratricide and reconstitu-

tion settings. The battlefield can only be a square, and we input the side length.

We define the initial positions of the agents giving the length, width and centre

of the box in which the agents are initially randomly distributed; this is done

for both sides. Then we state the position of each side’s flag which is usually

the goal location for the enemy. Finally there are options to define whether or

not we allow fratricide and reconstitution. Fratricide is where an agent can be

accidently shot by an agent from his own side. Reconstitution is where an agent

who has been injured can be restored back to the full ‘alive’ status if he is not

shot again in a user-defined period of time.

Each side has a set of defining parameters. First the number of agents is

given, then the number of squads per side is defined followed by the number of
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agents in each squad. ISAAC allows up to ten squads per side. The movement

range defines the maximum distance of the sites it can consider moving to. For

example if we set this to be one, the agents can only move to adjacent squares

or stay where they are. Next the personality weights are defined for each squad,

they are defined separately for alive and injured agents. These weights are for

movement towards alive Red, alive Blue, injured Red, injured Blue, Red goal and

Blue goal. All values are between zero and 100, with a higher value meaning the

agents are more attracted to that entity. Next sensor and fire ranges are given

as the number of squares over which enemy agents can be detected and weapons

can be fired respectively. An example of the cell covered by a sensor range of two

is given in Figure 2.6. The single shot kill probability is given as a percentage

value between zero and one.

Key:

Agent

Area covered by
sensor range

Figure 2.6: Example ISAAC Agent Sensor Range of Two

Next we have the movement constraints. Note that all parameters mentioned

here are defined for each squad, and all, apart from the threshold range, are

defined separately for alive and injured agents. The first parameter defines the

threshold range of the agent, this is the radius around the agent within which
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it can count the number of friendly and enemy agents. Note that this is not

the same as the sensor range. This is used with the advance threshold number,

cluster threshold number and combat threshold number. If the number of friendly

agents within the threshold range is greater than or equal to the advance threshold

number, the agents will continue to advance towards the goal. If the number of

friendly agents within the threshold range is greater than the cluster threshold

number, the agent will not move towards the other agents. If the advantage

over enemy forces within the threshold range is less than the combat threshold

number, the agent will retreat. We then have distance constraints, which are the

minimum distances to friendly agents, enemy agents and the goal. All are given

in terms of the number of squares, and hence must be a non-negative integer.

Finally we have terrain and statistics parameters. The terrain parameters can

be used to define objects on the battlefield. The statistics parameters are set in

order to define the data that is to be collected.

Movement of Agents

In order to determine where an agent should move, penalties are calculated for

each square the agent could move to. In our experiments we set the parameters

such that agents could only move to adjacent squares, so this is the scenario

we shall consider here. Note that the number of possible moves is nine: the

agent could move to any of the adjacent eight squares or stay where he is. It is

also possible to program the agents to move up to two squares away. This just

increases the number of calculations needed, the method stays the same.

We denote the personality weight vector W, where the components are defined

in Table 2.1. We denote the sensor ranges for Blue and Red by SB and SR

respectively. Consider the area within sensor range of, for example, a Blue agent

situated at position (x, y). In order to calculate the penalty for each possible

move we consider all agents within sensor range. Denote the alive friends by
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Weight Entity
W1 Alive friends
W2 Alive enemy
W3 Injured friends
W4 Injured enemy
W5 Own flag
W6 Enemy flag

Table 2.1: Personality Weights

B1, B2, . . . , Bp, and the alive enemies by R1, R2, . . . , Rq. Similarly, denote the

injured blues by Bp+1, Bp+2, . . . , Bn, and the injured reds by Rq+1, Rq+2, . . . , Rm.

We calculate the distances from the Blue agent to all those within sensor range

for each of the nine possible moves. We also calculate the distance to each of

the flags from both the current square and the proposed position. If we call the

square we are considering moving to (x1, y1), then we can calculate the penalty

for this move using Equation (2.1). The notation d[a, b] represents the distance

between the points a and b.

P (x1, y1) =
W1

p
√

2SB

p
∑

i=1

d[(x1, y1), Bi] +
W2

q
√

2SB

q
∑

i=1

d[(x1, y1), Ri] +

W3

(n − p)
√

2SB

n
∑

i=p+1

d[(x1, y1), Bi] +
W4

(m − q)
√

2SB

m
∑

i=q+1

d[(x1, y1), Ri] +

W5
d[(x1, y1), Bflag]

d[(x, y), Bflag]
+ W6

d[(x1, y1), Rflag]

d[(x, y), Rflag]
(2.1)

The movement constraints are taken into consideration by adapting the vector

W. If the cluster threshold number is used, and the number of friendly forces

within the threshold range is above this value then the weights W1 and W3 are

taken to be zero. This means that other friendly agents will not be attracted to

that cluster. If the number of friendly forces within the threshold range is less

than the advance threshold number then W6 is changed to −W6. This ensures

that the cluster does not move towards the enemy flag unless there is a sufficient
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number of friendly agents in the cluster. If the advantage over enemy forces

within the threshold range is less than the combat threshold number, then the

weights W2 and W4 are set to −W2 and −W4 respectively. This means that the

friendly agents will move away from enemy agents if they do not have enough

support in the surrounding area. If the distance to friendly agents is less than

the set minimum distance, the weight −W1 is used rather than W1. Similarly, if

the distance to enemy agents or own flag are less than the set parameters, then

−W2 and −W5 would be used respectively.

As an example we consider the configuration in Figure 2.7. Suppose that we

have a Blue agent at position (x, y) in the centre of the grid with a sensor range of

two. We want to calculate the penalty involved in moving to the square marked

∗. We assume that none of the movement constraints are in effect.

(x, y)

∗

B1

B2

R1 R2

R3

Figure 2.7: Example Agent Configuration

Of the agents within sensor range, B1, B2, R1 and R2 are alive, R3 is injured.

Let the personality vector be given by

W = (10, 20, 0, 15, 0, 0).

The distance between two squares is taken to be the distance between the cen-

20



tres of those squares. Then, using Equation (2.1), we can calculate the penalty

involved in moving to ∗,

P (∗) =
10

4
√

2
(2
√

2 +
√

2) +
20

4
√

2
(
√

10 +
√

13) +
15

2
√

2
(2)

+ W5
d[∗, Bflag]

d[(x, y), Bflag]
+ W6

d[∗, Rflag]

d[(x, y), Rflag]

= 42.0345 + W5
d[∗, Bflag]

d[(x, y), Bflag]
+ W6

d[∗, Rflag]

d[(x, y), Rflag]
.

We would calculate the penalty for the nine possible moves in this way, then the

agent would move to the square with the highest penalty value. This suggests that

the word ‘penalty’ is not really appropriate, it is more of an incentive function.

Cluster Analysis

In the papers [28] and [42], Moffat and Witty look at the clustering of agents in

an ISAAC scenario. The scenario under consideration involves a red force of 100

agents and a smaller blue force of 16 agents. The red force has to negotiate its

way around an obstacle before engaging in combat with the blue force. In all but

one of their model runs the red force was successful. In these cases, when the

largest cluster size for the red force was plotted, the three phases of the battle

were clear from the graph. These phases were movement around the obstacle,

combat and regroup. The equivalent graph for the blue force showed no pattern.

In the case where blue were successful, there are only two phases clear on the red

cluster size graph, this is because there is no regrouping of forces. The graph for

the largest blue cluster shows a general upward trend and much larger clusters

than in the other model runs. This work shows that the clustering of agents is

an indicator of troop behaviour in cellular automata models and is something we

could consider in our own research.
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2.3.2 MANA

Model Parameters

The general parameters in MANA are used to set the size of the battlefield, the

position of the flags and the size and initial location of the two sides. In order to

program the goal for each side we use waypoints. These are specific coordinates

that the agents aim towards in turn, giving them a route to their goal. We can

also set alternative waypoints so that the agents have a choice of route. The

exact initial positions of the agents varies with each run according to the random

seed.

We now move on to the personality parameters. These are used to determine

the movement of an agent. There are 13 parameters, each giving a weight towards

a specific entity. These are the other agents divided into the categories alive

friends, alive enemy, injured friends, distant friends and alive neutrals. There

are also weights towards the next waypoint, alternate waypoints, easy terrain,

cover, concealment and situational awareness threats one, two and three. The

situational awareness threat level of an enemy agent is explained later in this

section. These 13 values are set between -100 and 100. A positive value means

the agent is attracted towards the entity, a negative value indicates the agent

will move away from it. A value of zero means the agent is neither attracted nor

repelled. The values themselves are not what is important, it is the relative sizes

that matter. So, for example, if the weights for the agents all take the values

-100, zero or 50 then we could change them to -10, zero and five respectively and

still get the same results.

MANA also has range parameters. These put constraints on the movement of

an agent as well as determining his effectiveness in battle. The combat parame-

ters include the single shot kill probability, sensor range, firing range, shot radius

and armour thickness. The single shot kill probability is given as a percentage

value between zero and 100. The sensor range, firing range and shot radius have

22



integer values representing a number of squares. They give the distance at which

the enemy can be detected, the maximum range of the weapon and the kill ra-

dius of the weapon respectively. This is the same as in ISAAC, so the example

sensor range of two in Figure 2.6 holds for a MANA agent too. There are also

parameters governing how close the agent can get to certain entities. These are

minimum distance to friends, enemies, neutrals, next waypoint, enemy waypoint

and easy going terrain. There are three parameters called cluster constraint,

combat constraint and advance constraint. The cluster constraint gives the max-

imum cluster size, the combat constraint gives the numerical advantage needed

for a group of agents to advance towards an enemy group, and the advance con-

straint gives the minimum number of friendly agents within sensor range needed

to advance towards the goal. The final parameters are threat and stealth. The

value for stealth should be between zero and 100; this determines the visibility of

an agent when he is within sensor range of the opposition. The higher the value,

the less visible the agent. The threat parameter gives the level of threat posed by

the agent to the enemy; it can take the values one, two and three where a higher

value means a higher threat.

The personality and range parameters are defined for each side and for each

state the agents can be in. In our scenarios each side had only one default state,

but they could, for example, be programmed to have different behaviour if they

are injured.

Movement of Agents

As with ISAAC, MANA uses penalty calculations to determine where an agent

should move to. We use the same notation as that for the ISAAC penalty function

in Section 2.3.1. First, squares which are already occupied or include impassable

terrain are excluded. All entities within sensor range are considered. The current

distance to each entity is calculated as well as the distance from the proposed
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square. The penalty for each type of entity, for example alive Red agents, is then

calculated using the algorithm below.

• If the proposed move satisfies the distance constraints then set Direction = 1,

if not put Direction = −1.

• Calculate the penalty term

Direction ∗ d[(x1, y1), entity] + (100 − d[(x, y), entity])

100

• Sum the penalties for each of the entities of this type and divide by the

number of such entities.

For example, the penalties for alive agents are then given by Equations (2.2)

and (2.3).

PAliveBlue =
1

p

p
∑

i=1

Directioni

{

d[(x1, y1), Bi] + (100 − d[(x, y), Bi])

100

}

(2.2)

PAliveRed =
1

q

q
∑

i=1

Directioni

{

d[(x1, y1), Ri] + (100 − d[(x, y), Ri])

100

}

(2.3)

It is unclear in the manual [22] how these penalty calculations are used to

determine where the agent moves to. As they have not taken into account the

personality weights, we would suggest that the next step would be to multiply

these penalties by the appropriate weights before seeing which move has the least

penalty. Then other constraints, such as cluster size, would be considered to

make sure the proposed move would satisfy the parameters.

Calculating the Effective Fractal Dimension of the Battlefield in MANA

Michael Lauren suggests a method for calculating the ‘effective battlefield fractal

dimension’ in MANA in his paper [19]. To understand the method we tried to

reproduce his results. In the paper both infantry assault and mobile battle sce-

narios are considered. We shall only describe the infantry assault ones here as
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this will be sufficient to illustrate the method. We used the parameters given in

the paper as far as possible but some of the values used by Lauren were not made

clear, in particular no personality weights were stated. In these cases we used

values that seemed appropriate. Note that after conducting the experiments we

contacted Michael Lauren with our results. He confirmed that he had used differ-

ent personality weights when designing his scenario, which explains the difference

in results.

In these infantry assault scenarios the Blue defending force is stationary and

the Red attacking force is mobile. The Blue force consists of 30 agents who are

arranged in a line across the battlefield. The Red force varies in number, but is

situated 14 squares away from the Blue force. All agents have a sensor range of

nine, and a firing range of eight. The weapons have a single shot kill probability

of 0.05. The Red agents can move a maximum of one square per timestep. The

simulation is stopped when we have 50% Blue casualties or 100% Red casualties.

The initial Red force size is varied, the model is run 100 times in order to obtain

mean casualty figures.

The base case scenario includes a suppression effect on Red agents. When

an agent is shot at, if he is not killed he remains stationary for three timesteps.

While in this state the agents are still able to shoot. In this scenario we also have

beaten zones, (BZs), for the weapons from both sides. Any agent within three

squares from a target can be killed. The second scenario removes the suppression

effect, the final scenario reinstates suppression but removes the beaten zones.

Figure 2.8 shows the results for the three scenarios.

We found the lines of best fit for the graphs in Figure 2.8 and recorded the

gradient. The results are given in Table 2.2. The graph for our base case scenario

has a gradient of 0.882. In his report, Lauren compared his result of 0.63 to a

value of 0.685 obtained by Thornton and Hall, Wright and Young from historical

data, their reports [38] and [16] were cited by Lauren.

Lauren then considers fractional casualty levels in order to obtain graphs
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Figure 2.8: Red Casualties Incurred in Inflicting 50% Blue Casualties for Infantry

Assaults

Scenario Gradient of Graph
Base Case 0.882

No Suppression 0.325
No Beaten Zones -0.166

Table 2.2: Gradients of Best-Fit Lines for Infantry Assault Scenarios

that approximate to a straight line. The fractional Red casualty size was plotted

against initial force ratio. Using this analysis with our results gives the graphs

in Figure 2.9.

These graphs form a better line than those for casualty numbers. Lauren

found this to be the case in his analysis and suggested the equation

CR = ACB

(

r(0)

b(0)

)

−DB

, (2.4)

CR and CB represent the fractional Red and Blue casualty levels, r(0) and b(0)

represent initial Red and Blue force sizes. The two parameters to be determined
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Figure 2.9: Fractional Red Casualties Incurred in Inflicting 50% Blue Casualties

for Infantry Assaults

are the constant A and the ‘effective battlefield fractal dimension’ DB. To find

these values we draw the line of best fit on the fractional casualty level graph.

The parameter DB is the modulus of the gradient. The parameter A is calculated

using the intercept as follows

log(A) = intercept − log(0.5), (2.5)

this is since the Blue casualty level CB is always 0.5. After drawing the best fit

line through the graphs in Figure 2.9 we calculated A and DB and the results

are shown in Table 2.3. We also note the results from [19] in this table, they are

headed AL and DBL.
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Scenario A DB AL DBL

Base Case 2.070 0.118 1.8 0.37
No Suppression 2.142 0.675 1.8 0.60

No Beaten Zones 0.777 1.166 1.3 1.5

Table 2.3: Calculated Parameter Values for Infantry Assault Scenarios

2.4 Modelling OOTW

We have looked at two models for representing peacekeeping operations, DIA-

MOND and PAX. The two models are very different in scale: DIAMOND can be

used to model a whole country whereas PAX is used to model a basic local food

distribution operation. There has been a great deal of research conducted re-

garding modelling combat operations, but the area of modelling operations other

than war, OOTW, is relatively new.

2.4.1 DIAMOND

The acronym DIAMOND stands for DIplomatic And Military Operations in a

Non-warfighting Domain. The model is used to represent operations other than

war and usually involves scenarios that include military factions and civilian

populations along with peacekeeping forces. An overview of the model is given

in [37] and the functional specification is given in the reports [6], [7] and [8].

Whilst on placement in the Policy and Capability Studies department at Dstl

Farnborough I was asked to work with output data from DIAMOND to develop

a method to calculate tension away from civilians. The results appear later in

Chapter 3.

DIAMOND works on an arc and node network. The nodes represent signifi-

cant locations such as towns, villages or road junctions. The arcs are the routes

between the nodes. The military forces in the model are represented by entities

where one entity is of squadron to battlegroup size for ground troops, individual
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to group for maritime forces and individual to package for air forces. There can

be more than one military entity from each party present at a node. Civilian

entities are different, they consist of all the civilians from a party at the node

which means that they can vary greatly in size.

DIAMOND is mission based rather than agent based. This means that instead

of each agent having pre-determined behavioural rules, the entities are given a

mission and work towards completing it. Their mission can be changed by their

superiors and relayed to them through the communications network.

2.4.2 PAX

The model PAX was created in Germany by EADS Dornier GmbH. In their

paper [35], Schwarz and Bertsche describe the background to the model and how it

was developed. They wished to model a simple food distribution scenario using an

agent based model but found the combat model MANA to be inadequate. Since

MANA is a combat model the civilians could not be modelled satisfactorily, they

had to be defined as an opposing faction. It was also found that the escalation

and de-escalation of a situation could not be modelled properly. Since MANA’s

purpose is to model combat, only a situation of high tension and conflict could

be represented. We repeat these experiments in Chapter 3.

As a result a new model, PAX, was developed using the social science model

PECS as a basis. This works on the same scale as MANA. It therefore seems

that there is a large gap between the PAX and DIAMOND models in scale and it

would be useful to have a model that fits between them in size. This is where our

research fits in, we hoped to be able to model events at node level in DIAMOND

to provide the detail that this model lacks.
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Chapter 3

INITIAL EXPERIMENTS

In this chapter we will be describing the experiments we carried out to gain

greater understanding of the combat models MANA and ISAAC and the peace

support model DIAMOND. We carried out a basic investigation and comparison

of the agent-based models MANA and ISAAC by looking at the personality para-

meters. We also worked with output data from the DIAMOND model to develop

a measure for tension between civilians. Finally, we reproduced experiments car-

ried out by Schwarz and Bertsche to try to model a peacekeeping scenario using

the combat model MANA in order to find the areas in which the model is not

suitable for this purpose. All of these experiments helped with the development

of our own agent-based model for peace support operations.

3.1 A Comparison of the MANA and ISAAC

Models

The first experiments we did were aimed at comparing the combat models ISAAC

and MANA. By using the models we were able to gain an in-depth understanding

of them, which helped when we were developing our own agent-based model.

We developed a simple scenario which could be put into both models and then
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changed some of the agent parameters in order to determine their effect on the

behaviour of the model.

3.1.1 ISAAC Scenario

Our scenario consists of two opposing forces, red and blue, located at diagonally

opposite corners of a grid. The aim of both squads is to reach the opposition

flag. The battlefield is a 150 × 150 square grid. Each force is initially randomly

distributed in a 20 × 20 square, the flags are located at the centres of these

squares. Each squad consists of 30 ISAAC agents and we set up the scenario so

that the two forces are equal in terms of their parameters. This initial set-up

for the scenario is illustrated in Figure 3.1, note that the diagram is not drawn

to scale. In each experiment we considered ten initial configurations of troops;

these formations were the same for each experiment so we can directly compare

the results.

We tried five variations of this scenario, denoted exp1I to exp5I , and each

variation was a development of the previous one. In our original scenario, exp1I ,

we set the personality weights to be as follows: the weights towards friendly

and enemy agents were 20, the weight towards the enemy flag was 50 and the

minimum distance between friendly agents was two. The sensor range was 12 and

the firing range was eight. Remember that both squads have equal parameters.

In exp2I we set the three personality weights mentioned above to be equal with

value 50, then in exp3I the weight towards the enemy goal was reduced to 20.

We then changed the firing range so it was equal to the sensor range of 12, we

denote this exp4I . Finally in exp5I we reduced the minimum distance between

friendly agents to zero. A summary of these values is given in Table 3.1.

36



150

150

x

x

Blue Force

Red Force

Flag

Flag

Figure 3.1: Initial Positions in the ISAAC Scenario

3.1.2 Results and Observations

When we looked at exp1I , exp2I and exp3I we found very few casualties, in fact

there were no casualties in exp3I . In the first run of exp1I there was one Blue

agent injury and one Red agent injury, all other runs were casualty free. In the

second run of exp2I there was one Blue injury. The casualty numbers for exp4I

and exp5I were much higher and are shown in Tables 3.2 and 3.3 respectively.

We also recorded the time of the first casualty, either an injury or a death, and

the last casualty and then calculated the total combat time from these values.

The results are shown in Tables 3.4, 3.5 and 3.6 respectively. Note that the

scenario exp3I has not been included in the tables because no casualties were

incurred.

The agents start by moving towards their goal in a close approximation to
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Scenario Weight Weight Weight Sensor Firing Minimum
to Alive to Alive to Enemy Range Range Distance
Friends Enemy Flag to Friends

exp1I 20 20 50 12 8 2
exp2I 50 50 50 12 8 2
exp3I 50 50 20 12 8 2
exp4I 50 50 20 12 12 2
exp5I 50 50 20 12 12 0

Table 3.1: ISAAC Experiment Parameters

Run Number
Survivors 1 2 3 4 5 6 7 8 9 10
Red Alive 8 13 9 13 7 13 6 11 11 7

Red Injured 10 9 9 13 9 9 10 7 11 13
Blue Alive 4 9 9 4 5 12 10 7 14 0

Blue Injured 3 10 7 6 4 9 7 8 7 0

Table 3.2: Results for exp4I

their original formation. When the minimum distance between friendly agents

is greater then zero the agents may move apart to satisfy this condition before

moving towards the goal in formation. This suggests that if we were to con-

sider either a smaller or larger battlefield, with the agents in the same initial

configurations, we would see the same pattern of behaviour in the middle of

the battlefield, though we may get different results near the corners due to the

difference in distance travelled.

The formation of the troops changes when they detect the opposing force, in

other words when the enemy agents are within sensor range. The squads then

try to move around each other by, for example, forming lines and rotating so

they are then able to get to their goals. From our experiments we saw that when

the sensor range was greater than the firing range then there were very few, if

any, casualties no matter what personality weights we chose. However, when the

firing range was the same as the sensor range the amount of combat increased
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Run Number
Survivors 1 2 3 4 5 6 7 8 9 10
Red Alive 9 3 9 9 7 6 1 5 8 6

Red Injured 9 5 11 7 6 8 9 4 13 10
Blue Alive 5 6 2 0 4 7 1 12 7 15

Blue Injured 8 2 5 1 4 9 3 7 7 6

Table 3.3: Results for exp5I

Run Number
Scenario 1 2 3 4 5 6 7 8 9 10
exp1I 180 - - - - - - - - -
exp2I - 197 - - - - - - - -
exp4I 55 55 49 51 51 50 51 52 50 57
exp5I 55 51 49 51 51 50 48 53 50 57

Table 3.4: Time First Casualty Occurs

and there were more significant casualties.

Changing the three personality weights mentioned above leads to differing

levels of interaction in the middle of the battlefield when the agents first detect

each other. The time to get to the opposition flag increased when we set the

weights towards all other agents to be at the same level as that for the goal. Also,

when we made this change the behaviour of the agents became more complex and

we saw more elaborate formations.

The agents form three main types of configuration when they get within sensor

range: lines, L-shapes and step shapes. The L-shapes and step shapes occur when

part of the line pushes forward, forcing the opposition back. This usually happens

when the agents are not evenly distributed along the line. There are often splits in

the formations which happen when one side is stronger and exploits weak points

in the opposition’s formation. We also have situations where one side clusters

more, forming a shorter line, and forces the other side back towards their own

flag. When groups of agents are forced back they are often killed, assuming the

firing range is equal to the sensor range. This happens because they are usually

39



Run Number
Scenario 1 2 3 4 5 6 7 8 9 10
exp1I 183 - - - - - - - - -
exp2I - 197 - - - - - - - -
exp4I 192 148 115 186 165 146 200 154 192 209
exp5I 168 179 170 183 167 165 247 164 185 101

Table 3.5: Time Last Casualty Occurs

Run Number
Scenario 1 2 3 4 5 6 7 8 9 10
exp1I 4 0 0 0 0 0 0 0 0 0
exp2I 0 1 0 0 0 0 0 0 0 0
exp4I 138 94 67 136 115 97 150 153 143 153
exp5I 114 129 122 133 117 116 200 112 136 45

Table 3.6: Total Combat Time

forced back into the corner while the opposition reach their goal so they remain

within firing range.

We notice in Table 3.4 that there is very little variability in the time of the

first casualty for the scenarios exp4I and exp5I . We also notice that for seven of

the runs the values did not change between the two scenarios. This shows that

the agents headed straight for the opposition flag in both experiments and all

of the runs. We see more variation in the times from Tables 3.5 and 3.6. This

suggests that the combat in the middle of the battlefield does not follow the same

pattern each time.

We notice from Tables 3.2 and 3.3 that the Red force usually ended up in a

stronger position than the Blue. When casualties were incurred they were often

heavier on the Blue side, and the Red force usually got their remaining agents

to their goal before Blue. The situation was more balanced when the sensor

range was greater than the firing range. As we only looked at ten different initial

formations, these observations are most likely to be explained by coincidence and

it may well be that these configurations favoured Red.
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3.1.3 MANA Experimental Scenario

We tried to keep the scenarios in MANA as close to those we considered in ISAAC

as possible. We again considered a 150×150 battlefield with two opposing forces

of 30 agents at diagonally opposite corners. The first three MANA scenarios,

denoted exp1M , exp2M and exp3M , are equivalent in parameter choice to the

first three ISAAC scenarios. The remaining scenarios, exp4M and exp5M , differ

from the corresponding ISAAC scenarios. In exp4M we adapted the scenario

exp1M so that the sensor range was increased to 20, in exp5M we increased it

further to 30. This was done because we felt that increasing the firing range so

that it was equal to the sensor range, as we had done in exp4I , would not have

been as constructive a change in MANA since casualties occurred in the previous

scenarios. We reverted back to the personality weights from exp1M since they

had given the most movement of agents. A summary of the parameters is given

in Table 3.7. Note that unlike in ISAAC, the initial agent configurations given

by MANA are not the same for each scenario. For example, Run One in scenario

exp1M will not have the same initial distribution of agents as Run One in exp2M .

This is due to the different methods of random number generation used in the

models.

Scenario Weight to Weight to Weight to Sensor
Alive Friends Alive Enemy Enemy Flag Range

exp1M 20 20 50 12
exp2M 50 50 50 12
exp3M 50 50 20 12
exp4M 20 20 50 20
exp5M 20 20 50 30

Table 3.7: MANA Experiment Parameters
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3.1.4 Results and Observations

Table 3.8 shows the number of survivors in each scenario. Note that, unlike

ISAAC, MANA does not record the state of the remaining agents, it just gives

the number of deaths which we then use to calculate the number of survivors.

Run Number
Survivors 1 2 3 4 5 6 7 8 9 10

exp1M Red 20 20 25 18 28 24 18 24 7 26
Blue 5 23 29 13 23 21 23 25 18 28

exp2M Red 30 30 30 30 28 30 29 29 30 30
Blue 30 30 30 30 26 30 29 28 30 30

exp3M Red 30 30 30 30 30 30 30 30 30 30
Blue 30 30 30 26 30 30 30 30 30 30

exp4M Red 14 18 13 6 15 18 19 20 15 17
Blue 9 19 19 19 19 19 15 16 14 20

exp5M Red 13 18 16 12 19 19 15 17 21 22
Blue 18 16 13 21 19 7 27 14 17 16

Table 3.8: Survivors

As with ISAAC, we recorded the times at which the combat began and ended

and calculated the total combat time. These results are shown in Tables 3.9,

3.10 and 3.11. Note that we cannot compare these results with those for ISAAC

since we have a different definition of a ‘casualty’: in ISAAC it was an injury or

a death, in MANA it is a death.

Run Number
Scenario 1 2 3 4 5 6 7 8 9 10
exp1M 93 61 64 76 87 169 73 52 89 82
exp2M - - - - 140 - 338 194
exp3M - - - 755 - - - - - -
exp4M 58 51 55 54 54 56 55 53 53 55
exp5M 53 54 55 56 54 51 54 52 54 52

Table 3.9: Time First Casualty Occurs

In the first three scenarios the agents immediately form clusters before mov-
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Run Number
Scenario 1 2 3 4 5 6 7 8 9 10
exp1M 268 238 104 286 299 449 219 127 243 113
exp2M - - - - 275 - 344 195 - -
exp3M - - - 765 - - - - - -
exp4M 77 70 73 73 69 72 70 72 74 71
exp5M 69 71 73 71 69 69 69 70 69 67

Table 3.10: Time Last Casualty Occurs

Run Number
Scenario 1 2 3 4 5 6 7 8 9 10
exp1M 176 178 41 211 213 281 147 76 155 32
exp2M 0 0 0 0 136 0 7 2 0 0
exp3M 0 0 0 11 0 0 0 0 0 0
exp4M 20 20 19 20 16 17 16 20 22 17
exp5M 17 18 19 16 16 19 16 19 16 16

Table 3.11: Total Combat Time

ing towards the opposition flag. The movement towards the goal is very slow,

usually only one or two clusters advance, the rest stay near their own flag. In the

runs we considered none of the agents made it to their goal. All the agents who

advanced towards the enemy flag were either killed when they got within range of

the opposition, or stopped before they got to the flag. After the weight towards

all other agents was increased in exp2M the amount of movement decreased, the

agents usually formed clusters and then stayed close to their own flag. Occasion-

ally one group would advance but they would be killed. When, in exp3M , the

weight towards the goal was reduced, there was only one instance where a group

moved towards their goal. These results prompted us to change the parameters

back to the settings from exp1M for the next experiment exp4M .

The results for scenario exp4M show an earlier engagement time. This was

due to the increase in the sensor range that meant that the agents were able to

detect each other over a greater area and hence they did not cluster so much at

the start. We observed that the agents head towards their goal straight away
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and meet in the middle of the battlefield. This is shown in Table 3.9 where

there is little variation in the time of the first casualty for this scenario. Unlike

in ISAAC, there is no formation of agents and avoidance of the enemy, instead

they pass through each other with no apparent attempt to avoid contact. Most

of the surviving agents made it to the opposition flag, but some just stopped in

the middle of the battlefield. After increasing the sensor range again in exp5M

we observe the same behaviour, though in this case there was only one instance

where a group of agents did not move from the middle of the battlefield. We

notice from Table 3.11 that this further increase of sensor range led to an overall

slight decrease in the total combat time, though this could be a coincidence. Note

also that Table 3.11 shows a consistent battle time for exp4M and exp5M . This

suggests a similar pattern of combat in each run.

The graph in Figure 3.2 shows the loss ratios for the eighth run of exp4M .

The loss ratio at each time t is given by

30 − b(t)

30 − r(t)
,

where b(t) and r(t) are the number of alive Blue and Red agents at that time.

This graph shows a pattern typical of the other runs from this experiment, and

indeed to those from exp5M . At the start there are no points on the graph as no

casualties have been incurred, at this point the two forces are moving towards

each other. Then, for a short time, there are a lot of points with a change of

value at nearly every timestep. This portion of the graph relates to the period of

combat in the middle of the battlefield starting with the first Red casualty. After

this period the graph shows a constant value which is the final loss ratio. This

represents the time when the agents have either got to their goal or have stopped

in the middle of the battlefield. Note that the graph shown only shows the time

up to 100 timesteps. This was done so that the combat period of the graph was

clear; the graph stays constant at the final loss ratio for the remainder of the

run time of 1000 timesteps. We can now compare this graph to an example from
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Figure 3.2: A Graph of the Loss Ratios for Run Eight of exp4M

scenario exp1M .

If we now look at Figure 3.3 we can see that this particular run of exp1M

shows different behaviour from that in Figure 3.2. We notice that there is a

greater amount of time before any casualties are recorded. This was because the

agents formed clusters before advancing towards the goal and most of the agents

stayed near their own flag rather than moving. We then have a greater period

of combat than in exp4M . There are times when the loss ratio does not change

at each timestep showing that no casualties are incurred. This is due to the fact

that in this particular run there were two clusters advancing, one Red and one

Blue. They were moving quite slowly and hence it took longer for each agent to

get within firing range. We can see that there was a period of combat where there

were casualties at most timesteps, this occurred when the two forces were in close

contact and therefore within firing range of each other. We observe a levelling of

the graph after time 243, this shows the final loss ratio. For this particular run
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Figure 3.3: A Graph of the Loss Ratios for Run Nine of exp1M

the value is 0.522 showing that Red incurred more casualties than Blue.

3.1.5 Comparing the Models

We chose to use the same parameters as far as possible so that we could compare

the two combat models. Both models have features that are not included in the

other, we set these values either to zero or to a sensible level so that we could

focus on the effects of parameters that are common to both ISAAC and MANA.

We saw differences in our two initial scenarios exp1I and exp1M . The agents

in ISAAC immediately moved towards their goal in a close approximation of

their initial distribution, whereas those in MANA grouped together in clusters

and many of them did not advance towards their goal. We also saw a difference

in combat. When ISAAC agents were within sensor range of their opposition

they changed their formation and manoeuvred themselves around the enemy so

they could get to their goal. MANA agents did not try to avoid opposition agents
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once they were within sensor range, instead they kept moving towards their goal.

This was the reason why there were more casualties in the MANA scenario even

though there was less movement. We suggested in Section 3.1.2 that altering the

size of the battlefield in ISAAC may not change the behaviour since the agents

kept to a close approximation of their original formation until they came into

contact with the enemy. The only foreseeable change could occur if the agents

start within detection range of each other.

Changing the weights towards other agents in the second pair of scenarios,

exp2I and exp2M , led to less movement in MANA but more movement in ISAAC.

This was because the behaviour of the agents in ISAAC changed so that there

was more manoeuvring of troops once they came into contact with the enemy. In

MANA the priority for the agents seemed to be to cluster together rather than

move towards their goal.

We have seen how the two models produce different behaviour whilst having

similar parameters. This can be at least partly explained by the difference in

the movement algorithms. We also noticed behaviour in MANA that we could

not explain, namely why clusters of agents sometimes stop in the middle of the

battlefield when their path to the enemy flag is clear. This suggests that the

movement algorithm in MANA may not be adequate in some situations.

These experiments were used to discover types of behaviour that can be seen

in each scenario and to provide an overall understanding of the two agent-based

combat models rather than an in-depth analysis. If we had wished to obtain more

concrete results we would have to repeat the experiments more times.
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3.2 Using MANA to Model Peacekeeping

In Chapter 2 we mentioned that Schwarz and Bertshe had used MANA to model

a simple food distribution scenario but had found it inadequate. We decided to

replicate their experiments as far as possible using the details from their paper [6]

to see if we came to the same conclusions. After correspondence with the authors

we found that the scenario we experimented with was a simplified version of their

own, this was not an issue since our aim was not to directly compare results.

The scenario was set up as follows: there are 60 civilian agents split into

three groups of 20 and one group of 15 military agents. The civilian agents start

spread out over a relatively large area whereas the military agents are grouped

together. The agents were initially randomly distributed in the areas indicated

in Figure 3.4. The military agents move around the grid passing through the

centre of each civilian group in turn. The civilians move towards the military

agents when they arrive and then move away from them, this was to represent

the handover of food. We set the rules of engagement such that the civilians had

a low single shot kill probability (SSKP) and the military agents had a higher

SSKP but only engaged in combat if fired at.

After running this scenario we found that we had very high casualty numbers,

this led to some changes being implemented. Initially the military agents were

programmed to pause at the centre of each civilian group, but this resulted in

the majority of the agents being killed so it was decided that the military agents

should not stop. This reduced the casualty numbers but they were still very high.

Consequently we reduced the SSKP for both sets of agents. This succeeded in

reducing the casualty numbers further but was not ideal since there was still

the same amount of gunfire so the scenario was basically one of combat. This

observation confirmed one of the conclusions Schwarz and Bertsche came to: they

noted that they could either model situations with full combat or none at all, there

was no representation of a situation with rising, or falling, levels of conflict. We
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would suggest that this is in part because relationships between squads can only

be hostile, neutral or friendly and they cannot be changed; in comparison the

peace support model DIAMOND uses a set of five possible relationships which

can change during the model run. Another limitation of MANA identified in [6]

was the fact that civilians could only be modelled as a rival force. Parameters

designed to model military agents are not sufficient when modelling civilians.

Some are not relevant, such as the combat parameters, and the ones that are

cannot accurately model civilians on their own.

These experiments confirmed that we could not use the MANA model for our

research into the possible occurrence of self-organised criticality in peace support

operations. This meant that the focus of our work changed to the development

of a suitable model which is described later in Chapter 4.
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3.3 Tension Calculations in DIAMOND

The following work was completed whilst on placement at Dstl Farnborough. It is

not directly related to the power law research but was relevant to our work since

we were able to gain a greater understanding of the DIAMOND model and peace

support models in general. The task we were given was to model the tension

relating to civilian groups at each node using the output from the peace support

model DIAMOND. This would be useful in order to predict when any fighting

between civilians could occur, and when to send in police forces to prevent any

violence.

Civilian entities in DIAMOND are fairly benign. They are forced to move if

the threat from military parties becomes too great, or if their life expectancy due

to lack of food or shelter becomes too short. However they do not react to other

civilian entities at the node. This is not true to life as we would expect there to

be some civil unrest. For example, if there are two hostile civilian groups at a

node, one of which is considerably greater in size, we would expect the smaller

group to be targeted by the larger group and possibly forced out of the node.

3.3.1 Preprocessing the Data

We used the DIAMOND output files for Entity Status, Casualties, Mission and

Refugees. Unfortunately some of the data we require needed to be converted to

numeric form so that it could be used as input for a MATLAB program. The

data set we were given by Dstl is output from a Bosnia scenario and covers a time

period of 240 hours. There are seven parties involved, three military factions and

their associated civilian populations and an international peacekeeping force.

First the node labels were changed. Most were initially in the form ‘Node (x),’

where x was an identifying number between one and 109. The obvious way to

change these was to identify the node solely by the number x. The junction nodes

have no associated number, so we put them in alphabetical order and numbered
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them from 110 to 116. Some of the arcs also appear as location identifiers so we

number them 117 to 131 though we will not be calculating tension along them.

Table 3.12 shows how we changed the party and entity names into numeric

form. In the case of civilian entities, the final three digits of the entity ID number

Party Party ID Entity ID
BIH (MUSLIM) 10 1 ∗ ∗∗
HVO (CROATS) 20 2 ∗ ∗∗

VRS (SERB) 30 3 ∗ ∗∗
IFOR 40 4 ∗ ∗∗

Civilian-MUSLIM 11 5 ∗ ∗∗
Civilian-CROATS 21 6 ∗ ∗∗

Civilian-SERB 31 7 ∗ ∗∗

Table 3.12: Numeric Identifiers for Parties and Entities

come from the node the entity is originally at. The military entities cannot be

identified by this method because there is often more then one military entity

from a party present at a node. Instead we look at the Entity Status output and

number the entities from each military party according to the order they appear

in this data.

Looking at the Mission data, we changed the mission type according to iden-

tifiers in Table 3.13. We then changed the entire ‘Mission Name’ column to

Mission Type Mission ID
Defend Mission 1

Movement Mission 2
Presence Mission 3
Reserve Mission 4
Secure Mission 5

None 0

Table 3.13: Numeric Identifiers for Mission Types

represent the node the entity was moving to if it was on a movement mission.

To do this we used both the Mission data which stated the name of the town
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the entity was moving to, and the Entity Status data which gives the position

of the entities at 24 hour intervals. The Entity Status data was used if it was

unclear which was the target node. For example, if the Mission data stated the

entity was moving to Sarajevo it could be moving to either Node 84, Sarajevo

Centar, or Node 86, Novo Sarajevo; the Entity Status data gives us the full node

identifier. If the entity was not on a movement mission we set the value to be

that of the node it was stationary at.

All other text data in the four output files considered were removed from the

file as they were not needed.

The data set we considered does not include any changes in relationship; if

there had been any we would have had to use the Party Relationship Change

output as well. Instead we only needed to use the input data that specified the

relationships between the parties, specifically the civilian parties’ relationships to

the military parties. We specify a scale for representing relationships, the highest

value being given to hostile relations. This is given in Table 3.14. In this case

Relationship Weight
Hostile 10

Uncooperative 6
Neutral 3

Cooperative 1
Friendly 0

Table 3.14: Relationship Scale

all the civilian parties’ relationship to their corresponding military party were,

unsurprisingly, friendly, and their relationships to other military parties were

uncooperative. The relationships to the peacekeeping force were not specified.

3.3.2 Development of the Method

Intuitively we would expect the level of tension at a node to increase if the

situation at the node has degraded. Similarly, if the situation at the node has
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improved we would expect the tension to decrease. If there has been no change in

the situation the tension would be expected to remain approximately the same,

there may be a slight increase or decrease depending upon the trend of the tension.

We would also suggest that the tension would be higher if there is a noticeable

difference in size between two civilian groups at a node.

From the above we saw that we needed some measure of the situation at each

node. This should take into account both positive and negative factors such as

amount of food and civilian deaths. We suggested a weighted sum where the

values for the weights will depend on the number of military parties present at

the node. As tension is related to change in situation, we will, in some cases, be

considering changes in factors. For example, we will be considering the percentage

change in military personnel at a node rather than the actual number that are

there. In other cases, such as amount of food and friendly entities approaching

the node, we will be looking at the actual numbers. This is done so that if the

situation at the node remains the same we will see either no change or some

slight change in the tension. For example, if there is no food and no entity is

approaching the node there would be no change in the tension.

The Mission and Casualty data is recorded as events occur, the Entity Status

and Refugee data is recorded at 24 hour intervals. As the scenario we are consid-

ering was only run for 240 hours, we have decided to calculate tension at hourly

intervals rather than daily. This means that we will be relying on the Mission

and Casualty output more than the Entity Status data.

We decided to identify four main negative and four main positive factors to

include in the sum. If they did not give reasonable results we would increase the

number of elements. All the factors should be in the range [−1, 1]. We identified

the four most important negative factors as civilian deaths at the node, military

deaths at the node, civilian deaths in the network and civilians without shelter

at the node. The main positive factors were thought to be friendly military at

the node, civilian entities approaching the node, military entities approaching the
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node and food stored at the node.

We needed to ensure that the factors all fell into the range [−1, 1]. We give

party deaths at the node as a percentage of the total number of personnel from

that party at the node. Similarly civilian deaths in the network are given as a

percentage of the total number of civilians in that party at the previous timestep.

Change in military presence at the node is given as a percentage change from the

previous timestep. As this value has to be restricted to the range [−1, 1], if it is

less than minus one we define it to be minus one, similarly if it is greater than

one we define it to be one. This would be needed if, for example, a military entity

is entering the node after there was previously no presence, or alternatively if all

party entities left a node. The number of civilians without shelter is given as

a percentage of those at the node. The amount of food is given as the number

of weeks of food stored, but again restricted to [−1, 1]. This is calculated using

the Entity Status data which gives the number of rations available, one ration

can feed one person for a day. The decision to use weeks was taken because

changes in the amount of food available beyond one week would not affect the

tension to any great extent. The number of entities approaching the node is given

as a percentage of the total number of entities for that party. The decision to

use entity rather than personnel numbers was taken because civilian entities split

before moving and it does not seem possible to tell how many are in the travelling

part from the output data.

We define three sets of weights for the factors depending on the number of

military parties present at the node. If there are two or more military parties

present then there is the possibility of combat. If there is one military party

present then a rival civilian entity at that node may be intimidated which would

affect tension. If there are no military entities present then tension will mainly

be affected by non combat factors such as food and shelter. Table 3.15 shows the

weights we decided for each case, a higher value in modulus indicates a greater

influence on tension.
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Number of Military
Factor Parties Present

≥ 2 1 0
Civilian Deaths at Node (f1j) w1 = 4 w1 = 4 w1 = 4
Military Deaths at Node (f2j) w2 = 3 w2 = 1 w2 = 1
Civilians Without Shelter (f3j) w3 = 2 w3 = 3 w3 = 3

Civilian Deaths in Network (f4j) w4 = 1 w4 = 2 w4 = 2
Change in Military Presence (f5j) w5 = −4 w5 = −4 w5 = −1

Food Stored (f6j) w6 = −3 w6 = −2 w6 = −4
Military Entities Approaching (f7j) w7 = −2 w7 = −3 w7 = −3
Civilian Entities Approaching (f8j) w8 = −1 w8 = −1 w8 = −2

Table 3.15: Factor Weights wi

We can now calculate the weighted sum for each civilian party at a node. The

military factors refer to the military party friendly to the civilian party. To find a

measure for the overall situation at the node we average the sums for the civilian

parties present at the node, we call this value St where t denotes time. If there is

only one civilian party present we need not compute the weighted sum as there

will be no tension. As an example suppose there are Nt civilian parties present

at a node, then St is calculated using Equation (3.1).

St =
1

Nt

Nt
∑

j=1

8
∑

i=1

fijwi (3.1)

As mentioned before, the tension will also depend upon the relative sizes of

the civilian groups at the node and so we calculate the ratios between the civilian

parties at the node. We use the value greater then one, rather than that in the

unit interval, as we would expect the tension to increase as the difference between

the sizes gets larger. If there are two civilian parties present at the node we just

use this one ratio. If there are more than two parties present we use the average

of all the relevant ratios. We denote the resulting value Rt. For example, suppose

there are three civilian parties of sizes C1, C2 and C3 at a node at time t, where

C1 ≥ C2 ≥ C3.
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Then we calculate Rt using Equation (3.2).

Rt =
1

3

(

C1

C2

+
C2

C3

+
C1

C3

)

(3.2)

We now consider the degree of hostility between the civilian parties. In the

scenario we are using as an example all relationships between rival parties are

uncooperative. If we have a situation where there are more than two civilian

parties at a node, or if the relationships are asymmetric, we use the most hostile

relationship. We denote this value H0.

To calculate the tension we use the above values and the previous tension

value. We start with a tension value equal to the relationship factor. At each

subsequent timestep we add the product of the average weighted sum and the

average civilian ratio to the previous tension value. We denote the tension values

Tt, where T0 is the initial value. We calculate the tension separately for each node.

We call this Method One, the equation for this method is given in Equation (3.3).

Tt =











H0 if t = 0

Tt−1 + StRt if t > 0

(3.3)

We can see the ranges for the tension calculated using this method in Ta-

bles 3.16 and 3.17. Note that all values recorded are given to four significant

figures. Table 3.16 shows the nodes where significant tension was recorded, we

define this to be a tension range greater than 0.1. Table 3.17 shows the nodes at

which two or more civilian entities were present, but no significant amount of ten-

sion is registered. In this section we shall only look at the ranges for the tension

calculation. Further analysis using graphs will be given later in Section 3.3.6.

3.3.3 Method Two

To improve on this first model we adapted the method as follows. First of all we

decided to incorporate the relationship into the step-by-step calculation rather
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Node Min. Max. Node Min. Max.
Tension Tension Tension Tension

Velika - 6 7.916 Zenica (52) 6 105.2
Kladusa (1) Vares (54) -45.99 7883
Srbac (10) 6 296.5 Olovo (55) 6 69.70
Prnjavor (11) 6 6.155 Kladanj (56) 6 4154
Derventa (12) 6 2356 Vlasenica (58) -28.30 7.553
Odzak (14) -200.9 6 Kupres (62) 6 6.149
Orasje (16) 6 32.74 Vitez (66) 6 18.01
Gradacac (18) 6 45.15 Busovaca (67) 6 34.75
Brcko (19) -1.636 7.988 Fojnica (68) 6 6.420
Bijeljina (20) 6 3720 Kiseljak (69) 5.368 6
Bosanski - 6 6.413 Visoko (70) 6 468.5
Petrovac (21) Breza (71) 6 323.6
Banja - 6 1089 Ilijas (72) 6 7.597
Luca (23) Sokolac (73) 6 28.51
Celinac (24) 6 6.219 Han - 6 6085
Doboj (25) 6 545.1 Pijesak (74)
Tesanj (26) 6 219.9 Tomislavgrad (75) 6 479.1
Srebrenik (30) 5.889 6.003 Jablanica (77) 6 4221
Tuzla (31) 6 70.60 Konjic (78) 3.937 6.142
Lopare (32) 6 1135 Ilidza (81) 6 18.2
Ugljevik (33) 6 6.838 Vogosca (83) -5.348 7.910
Kljuc (35) 6 6.171 Sarajevo - 1.593 9.398
Mrkonjic - 6 139.9 Centar (84)
Grad (36) Novo - -2.355 9.976
Skender - 6 9.297 Sarajevo (86)
Vakuf (38) Rogatica (89) 6 334.2
Banovici (43) 6 523.1 Visegrad (90) 6 6987
Zinivice (44) 6 237.6 Posusje (91) 6 326.5
Bosanski - 6 6.157 Ljubuski (102) 6 6.204
Grahova (47) Capljina (104) 6 6.169
Sipovo (49) 6 6.412

Table 3.16: Maximum and Minimum Values for the Nodes with Significant Ten-
sion Using Method One
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Node Min. Max. Node Min. Max.
Tension Tension Tension Tension

Cazin (2) 6 6.024 Zavidovici (42) 6 6.019
Bihac (3) 6 6.010 Zvornik (46) 5.960 6.003
Bosanska - 6 6.001 Glamoc (48) 6 6.031
Krupa (4) Donji - 6 6.007
Bosanski - 6 6.056 Vakuf (50)
Novi (5) Travnik (51) 6 6.017
Bosanska - 6 6.052 Kakanj (53) 6 6.026
Dubica (6) Livno (61) 6 6.016
Prijedor (7) 6 6.005 Bugojno (63) 6 6.036
Laktaci (9) 6 6.015 Gornji - 6 6.001
Bosanski - 6 6.002 Vakuf (64)
Brod (13) Novi - 6 6.022
Sanski - 6 6.015 Travnik (65)
Most (22) Prozor (76) 6 6.090
Maglaj (27) 6 6.026 Novi - 6 6.004
Gracanica (28) 6 6.073 Grad (82)
Lukavac (29) 6 6.041 Stari - 6 6.016
Jajce (37) 6 6.018 Grad (85)
Kotor - 6 6.028 Mostar (94) 6 6.006
Varas (39) Stolac (106) 6 6.001
Zepce (41) 6 6.024

Table 3.17: Maximum and Minimum Values for the Nodes with Minimal Tension
Using Method One
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then just at the beginning. This was done for two reasons: firstly, in case the

relationships change throughout the scenario run and secondly, because the values

for the tension got so large that any difference between start values would be

negated by the increments, hence we could end up with two cooperative civilian

groups with higher tension levels than two hostile groups. Instead we decided

to start at the value zero and use the relationship factor as a multiplier to the

weighted sum and civilian ratio product at each time step. We use Ht to represent

the most hostile relationship at the node at time t. We then noticed that in many

cases the dominant factor in the increments was the force ratio, as some groups

are much larger than others. As a result of this we have decided to cap the

ratio at the value five. This is since at this point the smaller group is greatly

outnumbered, so any further opposition would not make a lot of difference. The

new formula for Rt is given in Equation (3.4). Note that we are again using our

example with three civilian parties at a node.

Rt = max

{

1

3

(

C1

C2

+
C2

C3

+
C1

C3

)

, 5

}

(3.4)

The tension formula for Method Two is given in Equation (3.5).

Tt =











0 if t = 0

Tt−1 + StRtHt if t > 0

(3.5)

The resultant tension ranges are shown in Table 3.18. Here we have decided

only to record those nodes with significant tension. We can see that some of the

nodes that had significant readings using Method One do not appear here. This

shows that the force ratio had been obscuring some of the results. For example,

Table 3.16 shows that the node Velika Kladusa (1) has a tension range [6, 7.916]

using Method One. The corresponding range using Method Two is [0, 0.02674]

which does not even appear in Table 3.18 since the range is so small.
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Node Min. Max. Node Min. Max.
Tension Tension Tension Tension

Srbac (10) 0 72.88 Kladanj (56) 0 392.4
Derventa (12) 0 563.9 Vlasenica (58) -0.3120 0.01412
Odzak (14) -122.5 0 Vitez (66) 0 20.79
Orasje (16) 0 160.5 Busovaca (67) 0 95.84
Gradacac (18) 0 36.29 Kiseljak (69) -3.345 0
Brcko (19) -45.82 11.93 Visoko (70) 0 222.7
Bijeljina (20) 0 263.4 Breza (71) 0 221.9
Banja - 0 448.1 Ilijas (72) 0 9.582
Luca (23) Sokolac (73) 0 135.1
Doboj (25) 0 173.1 Han - 0 932.9
Tesanj (26) 0 356.9 Pijesak (74)
Srebrenik (30) -0.2152 0.006710 Tomislavgrad (75) 0 228.9
Tuzla (31) 0 196.7 Jablanica (77) 0 797.6
Lopare (32) 0 38.35 Konjic (78) -3.014 0.02076
Ugljevik (33) 0 5.026 Ilidja (81) 0 73.19
Mrkonjic - 0 20.01 Vogosca (83) -43.85 7.376
Grad (36) Sarajevo - -26.44 20.39
Banovici (43) 0 428.1 Centar (84)
Zinivice (44) 0 371.2 Novo - -50.13 23.85
Zvornik (46) -0.2379 0.01538 Sarajevo (86)
Zenica (52) 0 183.8 Rogatica (89) 0 30.02
Vares (54) -0.7544 114.3 Visegrad (90) 0 131.4
Olovo (55) 0 15.25 Posusje (91) 0 52.74

Table 3.18: Maximum and Minimum Values for the Nodes with Significant Ten-
sion Using Method Two
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3.3.4 Methods 3.1 and 3.2

We then decided to change the way the ratio was used. We reasoned that as the

ratio between groups increased, the increase in the tension decreased. This would

suggest the use of a logarithm function. We then decided that instead of using

the ratio, or average, we would use the natural logarithm of the ratio and then

add one. We add the one because the logarithm of one is zero which would give

us a tension value of zero if the groups were of equal size. Initially we decided

to remove the cap on the ratio to see if the dominance of the civilian ratio was

negated by the logarithm function. Thus the ratio factor Rt would be calculated

as in Equation (3.6).

Rt = ln

[

1

3

(

C1

C2

+
C2

C3

+
C1

C3

)]

+ 1 (3.6)

We call this Method 3.1. The results are given in Table 3.19.

We then reinstated the cap on the ratio again at the value five. This was

Method 3.2. The formula for Rt is given in Equation (3.7).

Rt = ln

[

max

{

1

3

(

C1

C2

+
C2

C3

+
C1

C3

)

, 5

}]

+ 1 (3.7)

Note that the cap on the ratio is applied to the value before the logarithm trans-

form. The results are given in Table 3.20. For both Methods 3.1 and 3.2 the

formula for the tension calculations remains as in Equation (3.5).

3.3.5 Methods 4.1, 4.2 and 4.3

Next we decided to change the tension value used. Note that we are adapting

Method 3.2 so we are still using Equation (3.6) for Rt. Instead of just using

the previous value we used an average of previous values. This was because the

current tension would not just be influenced by the tension an hour ago. In

Method 4.1 we used an average of the previous five values. The formula for
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Node Min. Max. Node Min. Max.
Tension Tension Tension Tension

Srbac (10) 0 84.31 Kladanj (56) 0 530.5
Derventa (12) 0 657.4 Vlasenica (58) -0.5678 0.02570
Odzak (14) -120.7 0 Vitez (66) 0 16.02
Orasje (16) 0 87.48 Busovaca (67) 0 61.28
Gradacac (18) 0 32.49 Kiseljak (69) -1.829 0
Brcko (19) -41.75 10.87 Visoko (70) 0 228.6
Bijeljina (20) 0 370.6 Breza (71) 0 210.7
Banja - 0 473.5 Ilijas (72) 0 5.334
Luca (23) 0 Sokolac (73) 0 120.0
Doboj (25) 0 0 Han - 0 1044
Tesanj (26) 0 277.6 Pijesak (74)
Srebrenik (30) -0.1609 0.005016 Tomislavgrad (75) 0 234.8
Tuzla (31) 0 129.3 Jablanica (77) 0 967.7
Lopare (32) 0 59.70 Konjic (78) -2.424 0.167
Ugljevik (33) 0 4.255 Ilidja (81) 0 50.72
Mrkonjic - 0 25.22 Vogosca (83) -26.74 4.500
Grad (36) Sarajevo - -15.39 11.86
Banovici (43) 0 393.0 Centar (84)
Zinivice (44) 0 291.7 Novo - -35.19 16.77
Zvornik (46) -0.1459 0.009433 Sarajevo (86)
Zenica (52) 0 139.1 Rogatica (89) 0 40.78
Vares (54) -1.303 197.4 Visegrad (90) 0 218.0
Olovo (55) 0 17.78 Posusje (91) 0 65.46

Table 3.19: Maximum and Minimum Values for the Nodes with Significant Ten-
sion Using Method 3.1
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Node Min. Max. Node Min. Max.
Tension Tension Tension Tension

Srbac (10) 0 38.04 Kladanj (56) 0 204.8
Derventa (12) 0 294.3 Vlasenica (58) -0.1628 0.007369
Odzak (14) -63.95 0 Vitez (66) 0 10.85
Orasje (16) 0 87.48 Busovaca (67) 0 50.02
Gradacac (18) 0 18.94 Kiseljak (69) -1.746 0
Brcko (19) -41.75 10.87 Visoko (70) 0 116.2
Bijeljina (20) 0 137.5 Breza (71) 0 115.8
Banja - 0 233.8 Ilijas (72) 0 5.334
Luca (23) Sokolac (73) 0 120.0
Doboj (25) 0 90.32 Han - 0 486.9
Tesanj (26) 0 186.3 Pijesak (74)
Srebrenik (30) -0.1123 0.003502 Tomislavgrad (75) 0 119.5
Tuzla (31) 0 102.6 Jablanica (77) 0 416.3
Lopare (32) 0 20.01 Konjic (78) -1.573 0.1084
Ugljevik (33) 0 4.255 Ilidja (81) 0 50.72
Mrkonjic - 0 10.44 Vogosca (83) -22.88 3.849
Grad (36) Sarajevo - -15.39 11.86
Banovici (43) 0 223.4 Centar (84)
Zinivice (44) 0 193.7 Novo - -35.19 16.77
Zvornik (46) -0.1459 0.009433 Sarajevo (86)
Zenica (52) 0 95.91 Rogatica (89) 0 15.67
Vares (54) -0.3937 59.66 Visegrad (90) 0 68.57
Olovo (55) 0 7.958 Posusje (91) 0 27.53

Table 3.20: Maximum and Minimum Values for the Nodes with Significant Ten-
sion Using Method 3.2
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tension calculation now becomes Equation (3.8).

Tt =















































































































































0 if t = 0

T0 + S1R1H1 if t = 1

T1 + T0

2
+ S2R2H2 if t = 2

T2 + T1 + T0

3
+ S3R3H3 if t = 3

T3 + T2 + T1 + T0

4
+ S4R4H4 if t = 4

Tt−1 + Tt−2 + Tt−3 + Tt−4 + Tt−5

5
+ StRtHt if t ≥ 5

(3.8)

The tension ranges calculated are given in Table 3.21.

Next we reasoned that we should use a weighted average so that recent tension

values were more influential than older ones. For this we used the exponential

smoothing method. All previous tension values were included and the ratio be-

tween successive weights remains constant. For example, suppose we have four

previous values and the most recent is given a weighting of one. Then if we define

the ratio between the weights to be 0.5 say, the weights for the third, second and

first values will be a half, a quarter and an eighth respectively. To calculate the

averaged tension value we would calculate the weighted sum and divide by the

sum of the weights. In our work we begin by using a weight ratio of 0.5, this was
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Node Min. Max. Node Min. Max.
Tension Tension Tension Tension

Srbac (10) 0 11.14 Kladanj (56) 0 59.98
Derventa (12) 0 86.20 Vlasenica (58) -0.2486 0
Odzak (14) -42.19 0 Vitez (66) 0 10.84
Orasje (16) 0 49.08 Busovaca (67) 0 36.01
Gradacac (18) 0 15.59 Kiseljak (69) -1.638 0
Brcko (19) -21.52 11.43 Visoko (70) 0 47.51
Bijeljina (20) 0 39.04 Breza (71) 0 35.90
Banja - 0 67.85 Ilijas (72) 0 4.906
Luca (23) Sokolac (73) 0 41.49
Doboj (25) 0 26.45 Han - 0 142.6
Tesanj (26) 0 54.55 Pijesak (74)
Srebrenik (30) -0.1147 0.001228 Tomislavgrad (75) 0 34.99
Tuzla (31) 0 30.06 Jablanica (77) 0 121.9
Lopare (32) 0 14.95 Konjic (78) -1.419 0
Ugljevik (33) 0 4.251 Ilidja (81) 0 19.98
Mrkonjic - 0 10.44 Vogosca (83) -25.42 2.064
Grad (36) Sarajevo - -13.00 10.91
Banovici (43) 0 65.43 Centar (84)
Zinivice (44) 0 68.01 Novo - -38.20 16.72
Zvornik (46) -0.1522 0.003332 Sarajevo (86)
Zenica (52) 0 28.09 Rogatica (89) 0 15.66
Vares (54) -14.20 31.69 Visegrad (90) 0 31.82
Olovo (55) 0 5.116 Posusje (91) 0 8.059

Table 3.21: Maximum and Minimum Values for the Nodes with Significant Ten-
sion Using Method 4.1
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Method 4.2. The equation for the method is given as Equation (3.9).

Tt =



















































0 if t = 0

t
∑

i=1

(0.5)i−1Tt−i

t
∑

i=1

(0.5)i−1

+ StRtHt if t > 0

(3.9)

The ranges are given in Table 3.22

Node Min. Max. Node Min. Max.
Tension Tension Tension Tension

Srbac (10) 0 20.40 Kladanj (56) 0 109.9
Derventa (12) 0 157.9 Vlasenica (58) -0.1239 0.003702
Odzak (14) -42.41 0 Vitez (66) 0 10.84
Orasje (16) 0 59.75 Busovaca (67) 0 40.65
Gradacac (18) 0 16.43 Kiseljak (69) -1.638 0
Brcko (19) -26.86 11.41 Visoko (70) 0 69.71
Bijeljina (20) 0 70.33 Breza (71) 0 62.25
Banja - 0 124.3 Ilijas (72) 0 4.906
Luca (23) Sokolac (73) 0 67.49
Doboj (25) 0 48.45 Han - 0 261.2
Tesanj (26) 0 99.92 Pijesak (74)
Srebrenik (30) -0.1141 0.001824 Tomislavgrad (75) 0 64.10
Tuzla (31) 0 55.06 Jablanica (77) 0 223.3
Lopare (32) 0 16.22 Konjic (78) -0.9825 0.09832
Ugljevik (33) 0 4.252 Ilidja (81) 0 27.90
Mrkonjic - 0 10.44 Vogosca (83) -24.46 2.647
Grad (36) Sarajevo - -13.47 10.91
Banovici (43) 0 119.8 Centar (84)
Zinivice (44) 0 109.7 Novo - -34.32 16.72
Zvornik (46) -0.1506 0.004886 Sarajevo (86)
Zenica (52) 0 51.45 Rogatica (89) 0 15.66
Vares (54) -10.63 38.85 Visegrad (90) 0 44.00
Olovo (55) 0 5.118 Posusje (91) 0 14.76

Table 3.22: Maximum and Minimum Values for the Nodes with Significant Ten-
sion Using Method 4.2

We then changed the weight ratio to 0.75, this was Method 4.3. This method
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is given in Equation (3.10).

Tt =



















































0 if t = 0

t
∑

i=1

(0.75)i−1Tt−i

t
∑

i=1

(0.75)i−1

+ StRtHt if t > 0

(3.10)

It is the ratio between the weights that matters rather than the actual values so

it did not matter what initial value we chose, we used (0.75)0 which is equal to

one. This was our final method. We computed the ranges for the nodes with

minimal tension in addition to those with significant tension. The results are

given in Tables 3.24 and 3.23 respectively.
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Node Min. Max. Node Min. Max.
Tension Tension Tension Tension

Srbac (10) 0 12.35 Kladanj (56) 0 66.51
Derventa (12) 0 95.58 Vlasenica (58) -0.1045 0.001937
Odzak (14) -42.08 0 Vitez (66) 0 10.84
Orasje (16) 0 49.87 Busovaca (67) 0 36.36
Gradacac (18) 0 15.17 Kiseljak (69) -1.638 0
Brcko (19) -19.41 11.69 Visoko (70) 0 48.16
Bijeljina (20) 0 40.81 Breza (71) 0 37.39
Banja - 0 75.23 Ilijas (72) 0 4.906
Luca (23) Sokolac (73) 0 43.41
Doboj (25) 0 29.33 Han - 0 158.1
Tesanj (26) 0 60.49 Pijesak (74)
Srebrenik (30) -0.1150 0.0009846 Tomislavgrad (75) 0 38.80
Tuzla (31) 0 33.33 Jablanica (77) 0 135.2
Lopare (32) 0 14.32 Konjic (78) -0.6873 0.09643
Ugljevik (33) 0 4.251 Ilidja (81) 0 19.75
Mrkonjic - 0 10.44 Vogosca (83) -25.43 2.046
Grad (36) Sarajevo - -12.78 10.91
Banovici (43) 0 72.55 Centar (84)
Zinivice (44) 0 71.13 Novo - -33.89 16.72
Zvornik (46) -0.1530 0.002613 Sarajevo (86)
Zenica (52) 0 31.15 Rogatica (89) 0 15.66
Vares (54) -15.75 28.44 Visegrad (90) 0 32.72
Olovo (55) 0 5.115 Posusje (91) 0 8.935

Table 3.23: Maximum and Minimum Values for the Nodes with Significant Ten-
sion Using Method 4.3
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Node Min. Max. Node Min. Max.
Tension Tension Tension Tension

Velika - 0 0.003580 Zepce (41) 0 0.003581
Kladusa (1) Zavidovici (42) 0 0.003581
Cazin (2) 0 0.001727 Bosanski - 0 0.003874
Bihac (3) 0 0.001790 Grahova (47)
Bosanska - 0 0.001422 Glamoc (48) 0 0.003581
Krupa (4) Sipovo (49) 0 0.003581
Bosanski - 0 0.003580 Donji - 0 0.003581
Novi (5) Vakuf (50)
Bosanska - 0 0.003580 Travnik (51) 0 0.001790
Dubica (6) Kakanj (53) 0 0.003581
Prijedor (7) 0 0.001790 Livno (61) 0 0.001790
Laktaci (9) 0 0.003580 Kupres (62) 0 0.003454
Prnjavor (11) 0 0.003581 Bugojno (63) 0 0.003581
Bosanski - 0 0.002622 Gornji - 0 0.001135
Brod (13) Vakuf (64)
Bosanski - 0 0.003581 Novi - 0 0.001727
Petrovac (21) Travnik (65)
Sanski - 0 0.001790 Fojnica (68) 0 0.003581
Most (22) Prozor (76) 0 0.003454
Celinac (24) 0 0.003581 Novi - 0 0.003580
Maglaj (27) 0 0.001790 Grad (82)
Gracanica (28) 0 0.001790 Stari - 0 0.003581
Lukavac (29) 0 0.003581 Grad (85)
Kljuc (35) 0 0.001790 Mostar (94) 0 0.001790
Jajce (37) 0 0.001790 Ljubuski (102) 0 0.003581
Skender - 0 0.003874 Capljina (104) 0 0.001790
Vakuf (38) Stolac (106) 0 0.001372
Kotor - 0 0.003581
Varas (39)

Table 3.24: Maximum and Minimum Values for the Nodes with Minimal Tension
Using Method 4.3
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3.3.6 Comments on the Results

In this section we will be looking at the results of the tension calculations for

each method in greater detail. We shall be comparing the methods to see what

effect the changes have on the development of the tension. To do this we will be

concentrating on two nodes, Orasje (16) and Bijeljina (20), and using the graphs

from them to identify any changes. We will also be using values recorded in the

tables in Section 3.3.2. The graphs for the final method, Method 4.3, are given

in Appendix A for the additional nodes where the tension was significant.

Method One

Figure 3.5 shows the tension pattern for Orasje. To start with there is a steady

increase in tension before it reaches a constant level. At around 50 hours there

is a sharp increase followed by fluctuations. After approximately 125 hours the

tension remains constant.

Figure 3.6 shows the results for Bijeljina. We see a steady increase in tension

to start with before a period of constant tension. There is a change in situation

at approximately time 75 which leads to the tension moving to a higher level. At

around 100 hours there is an increase in tension until it levels out at the value

3720. Notice that the range for this node is much larger than that for Orasje.

Method Two

The graph in Figure 3.7 shows the tension calculated for Orasje using Method

Two. We can compare it to that calculated using Method One shown in Fig-

ure 3.5. We notice that the two graphs show the same overall pattern, but have

different ranges. As the range has increased we can assume that the civilian ratio

at the node is below five. Indeed, if we look at the input data for the scenario we

calculate the civilian ratio to initially be 4.655. Therefore the change has come

from the multiplication by the relationship value, although the ratio is close to
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Figure 3.5: Tension at Orasje (16) Using Method One

five so it is feasible that it could have increased to over five and there may be

some minimal effect from the capping of the ratio.

If we look at the initial number for the civilians at Bijeljina we calculate the

initial average ratio to be 399.2. As this is much larger than five we can predict

that the range will decrease as the cap in the ratio will affect the tension calcu-

lations. We can see that this is indeed the case from the results in Section 3.3.2.

The range of values for Method One is [6, 3720], whereas it is [0, 263.4] for Method

Two. The graph for Bijeljina is shown in Figure 3.8. We can see the reduction in

range, but again the pattern of the graph is very similar to that in Figure 3.6.

Method 3.1

When we changed from Method Two to Method 3.1 we changed the force ratio

factor again. We would therefore expect there to be a change in the ranges. This
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Figure 3.6: Tension at Bijeljina (20) Using Method One

was indeed the case as shown in Table 3.19. Recall that in Method 3.1 we use a

ratio factor

ln(AverageRatio) + 1

instead of the actual ratio but capped at a maximum of five used in Method

Two. This suggests that any civilian ratios less than exp(4) will have a lower

ratio factor in Method 3.1 than in Method Two. In which case we would expect

the range for the tension to decrease. Similarly, if the civilian ratio is above

exp(4) then

ln(AverageRatio) + 1 > 5,

and so the ratio factor will have increased. This would lead to an increase in the

range for the tension. As the only change in the method was the ratio factor we

would not expect to see any change in the overall shape of the graph, just in the

range.
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Figure 3.7: Tension at Orasje (16) Using Method Two

Our results show our predictions to be correct. Figure 3.9, showing the tension

for Orasje, has a range [0, 87.48] which is nearly half of that for Method Two.

This was expected since the initial civilian ratio of 4.655 is less than exp(4).

However, the initial civilian ratio for Bijeljina was 399.2 which is greater than

exp(4). Comparing Figure 3.10 to Figure 3.8 shows that, as predicted, the tension

range for this node has increased.

Method 3.2

The difference between Methods 3.1 and 3.2 is the reintroduction of the capping

of the ratio at value five. Recall that this cap is used on the actual ratio before the

ratio factor is calculated. This means that the only changes in tension calculated

with Methods 3.1 and 3.2 occur at the nodes where the civilian ratio is greater

than five. The graph for the tension at the Orasje node is identical to that for
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Figure 3.8: Tension at Bijeljina (20) Using Method Two

Method 3.1. This suggests that the civilian ratios at the node did not reach the

value five. However, at the Bijeljina node the civilian ratio is initially 399.2 so

the range for the tension will be affected. The results are shown in Figure 3.11.

We can see from the graph that the tension range has decreased significantly.

Method 4.1

So far we have seen that changing the method used to calculate tension produces

changes in the ranges of calculated values, but no real change in pattern. This is

because we have mainly been changing the ratio factor which is a multiplier in

the methods. We will now be looking at methods where we change the way we

use previous tension values in the calculation of current tension. This is a more

significant change as it should affect the overall shape of the graph as well as the

range of values.
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Figure 3.9: Tension at Orasje (16) Using Method 3.1

Figure 3.12 shows the tension calculations for Orasje using Method 4.1. Com-

paring the graph to Figure 3.9 we can see that we do indeed have a change in the

shape of the graph. The fluctuations have less structure than those in the graph

for Method 3.1. Instead of having points in obvious groupings there are a lot

more points on their own, and one point, the maximum, that appears to be an

outlier. Instead of jumping between levels there are more gradual increases and

decreases. This would seem to be a more feasible representation of what would

actually happen at the node. There is also a decrease in the range with most of

the points lying in the interval [0, 30].

The graph in Figure 3.13 shows the tension for Bijeljina. We see that for this

node there has been less of a change. This is because there were gradual increases

between some of the levels in the graph using previous methods. We do however

notice that there is a considerable decrease in the range for the tension values.
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Figure 3.10: Tension at Bijeljina (20) Using Method 3.1
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Figure 3.11: Tension at Bijeljina (20) Using Method 3.2
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Figure 3.12: Tension at Orasje (16) Using Method 4.1

Method 4.2

Recall that in Method 4.2 we introduced exponential smoothing. This meant that

all previous tension values were taken into account and were weighted according

to how far in the past they were. Figure 3.14 shows the graph for tension at Orasje

using this method. We can see that the levels of tension are now clear again. This

is because we are giving more weight to recent tension values rather than just

averaging the previous five values with equal weight. Though we would expect

to see gradual increases and decreases rather than distinct levels, it seems more

sensible to attach higher weights to more recent values. Therefore, although the

graph in Figure 3.12 for Method 4.1 would appear to be truer to life, Method 4.2

would seem to be intuitively better. Notice that there has also been an increase

in range.

The graph for the Bijeljina node is shown in Figure 3.15. Again this graph is
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Figure 3.13: Tension at Bijeljina (20) Using Method 4.1

smoother than that for Method 4.1. In fact it is very similar in shape to those

from Methods One, Two, 3.1 and 3.2.

Method 4.3

In order to try to reproduce plots with as much fluctuation as those from Method

4.1, but retaining the exponential smoothing from Method 4.2, we increased the

weighting ratio from 0.5 to 0.75. This was our final method. If we look at the

results for Orasje in Figure 3.16 we can see that this change has not made much

difference to the appearance of the graph. We notice that the maximal point

seems to be an outlier in both Figure 3.14 and Figure 3.16, but it is more obvious

in the graph for Method 4.3.

The graph in Figure 3.17 shows the results for the Bijeljina node. We see that

there is not as much fluctuation as in Figure 3.13 where we were using Method
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Figure 3.14: Tension at Orasje (16) Using Method 4.2

4.1, but we do see more than in Figure 3.15. We also notice that the range has

again been decreased.

We decided Method 4.3 should be our final method because it seems to be

the best intuitively. The exponential smoothing ensures that all previous tension

values are taken into account, and to a lesser degree as the time increases. It

also seems that increasing the weight ratio to 0.75 from 0.5 gives better results

because the ranges for the results decreased. This suggests that the tension had

a slower build up, which is what we would expect to happen at the nodes.

3.3.7 Conclusions and Suggested Improvements

The method detailed in this report is just one way of determining tension. It could

be further improved and justified if more time were available. Unfortunately we

do not know the details of the scenario we were testing the model on, therefore
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Figure 3.15: Tension at Bijeljina (20) Using Method 4.2

it is difficult for us to determine how viable our method is.

Our method does not take into account some of the factors that would affect

tension between civilian groups. For example, the peacekeeping forces are not

used in the model and we would expect their presence to affect the tension.

They were not included because we wished to keep the number of factors to a

minimum and we felt that the other variables included in the model were more

important. There is also the question of how the peacekeepers would have affected

the tension. We could argue that they would reduce it as they would discourage

any violent action, alternatively we could say that they would add to it as they

increase the military presence. We could also have distinguished between the

causes of the deaths for the civilians. In the scenario we were considering this

was not a problem as all deaths were due to combat attrition, but other scenarios

would have death due to lack of food, shelter and medical facilities.
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Figure 3.16: Tension at Orasje (16) Using Method 4.3

Other methods could have been used to approach the problem. For example,

the use of systems dynamics methods and software was considered during our

work. Instead we decided to use our current approach as we could incorporate

averaging and exponential smoothing to take account of previous values. We were

also familiar with the MATLAB application so it seemed better to use this rather

than learning new software. An alternative method could perhaps be developed

by someone who was more familiar with systems dynamics theory.

Our main problem with the work was determining the factors that would affect

tension, and the subsequent ordering according to the situation. We guessed

which factors would be the most important but someone with more knowledge

of sociology would be better informed and would be able to predict the reaction

of civilians to certain events.
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Figure 3.17: Tension at Bijeljina (20) Using Method 4.3

3.4 Conclusions

The work completed with the MANA and ISAAC models provided an excellent

introduction to agent-based combat models, and understanding how they worked

helped when we were developing our own agent-based model. The Schwarz and

Bertsche experiments identified the limitations of MANA when used for modelling

peacekeeping scenarios. We were able to address these limitations in the design

process for our peace support model.

The work we did with the DIAMOND model proved very useful when we came

to develop our own peace support model, described next in Chapter 4, since one

of the aims for our work is that it can potentially be used in conjunction with

the DIAMOND model. Also, our peace support model does not currently have

a tension calculation incorporated into it, but this was something we considered

during the design process and if time had allowed it would have been included.
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The method described here for DIAMOND could be the starting point for a

measure that could be used in a future development of our own model.
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Chapter 4

MODEL DESIGN

After we had looked at previous research and current agent-based combat models

we were able to use this knowledge to develop our own model. We had two main

objectives when developing the model: one was to produce a model that would be

a useful addition to the currently available peace support models. In particular,

we aimed to develop a model that could be used in conjunction with DIAMOND,

providing a low-level representation of events to complement the high-level view

given by DIAMOND. Secondly, we wished to use this model to look for evidence

of power law behaviour which may be indicative of self-organised criticality.

We have chosen to focus on scenarios where the Peacekeepers, and NGOs, are

aiming to repair any failures to the water or electricity supplies on the grid. Thus

one part of the analysis in Chapter 5 will be to look at how successful they were

at this. We shall also be looking at the number of casualties each squad suffered.

However, the main analysis will be looking for evidence of power-laws that may be

an indicator of self-organised criticality (SOC) so we needed to identify behaviour

that could be seen as analogous to the ‘avalanches’ described earlier in Chapter 2.

Here we provide a description of the agent-based model we have developed to

represent peace support operations, along with a discussion of the design process.

The structure of the chapter is as follows. Sections 4.1 and 4.2 describe the general
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model details and parameters. We describe the four different types of agent

objects in Section 4.3 before moving on to look at the cell objects in Section 4.4.

The way the whole model is put together is discussed in Section 4.5 and the

individual functions that are used throughout the program are described in more

detail in Section 4.6. Section 4.7 describes the data generated by the model before

Section 4.8 looks at how we can use some of this data to visualise the model runs

with the aid of a simple MATLAB program. Section 4.9 gives our definition of

two types of avalanche we can measure in the model. Finally we address the

verification and validation of the model in Sections 4.10 and 4.11 respectively.
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4.1 Overview

The basic structure of the model is a square grid that comprises a number of

cells and agents move around this grid in accordance with certain rules. We took

some of the concepts from the agent-based combat models MANA and ISAAC as

a basis then added our own ideas so that our model concentrates less on combat

and more on the needs of the civilians. For example, all the combat that occurs

is caused by local insurgents and we can alter the parameters in the model so

that they do not have to be included at all. Also, unlike in MANA and ISAAC,

the agents do not have a goal as such, all their moves are determined by what is

happening around them.

The ultimate aim for the scale of the model is such that it would be able to

represent a town or a group of villages in detail. This is so that there is the

potential for use in conjunction with the DIAMOND model. We have been able

to model grid sizes up to 200×200 cells. This may be useful for modelling a town

if we take an agent object to represent more than one person, but this would not

provide the detail hoped for. Therefore, in the experiments we have carried out

we decided to model one agent to be one person and have looked at a smaller

area. We hope that this development model can be expanded in future work so

that larger areas can be modelled. A full discussion of future model developments

is given later in Chapter 7.

The model has been written using the object-oriented programming language

C++. This seemed the obvious choice since this is the programming language

Dstl use for all of their models. This means that we have been able to create

agent and cell objects to store various parameters.

The C++ source code consists of ten separate files that combine to give

the model. There are files containing the constructors for the agents and cells,

function files for the combat, repair, initial positions and combat functions along

with the main file. In addition, there are header files for the agent and cell object
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definitions along with one for the main model. The full C++ code for the model

is given in Appendix B.
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4.2 General Parameters

The header file agent.h contains the NOOFSQUADS definition, as the name

suggests this set the number of squads that will be used in the model. A squad

is a group of agents of the same type with the same personality parameters.

Only the agent-specific parameters, such as location, will differ. At the mo-

ment it is only possible to have at most one squad per agent type so we have

NUMBEROFSQUADS ≤ 4. The squad sizes and capabilities are also defined

in this file. The squad size is the number of agents in the squad. The squad capa-

bility is a measure of the amount the squad can do relative to the other squads.

This should take into account relative movement speed and weapon specification.

For example, a squad of Peacekeepers travelling in a vehicle would have a higher

capability than Civilians moving on foot. This measure is used to determine

how many actions the agents should do at each timestep, and is described fur-

ther in Section 4.5. Finally, we have the two constants SHOTMEMORY and

BOMBMEMORY. These apply to all the agents and define how long the agents

remember that there has been a shot fired to or from a cell, and how long they

remember a bomb attack. Both are given as a number of timesteps and are used

to determine the cell combat indicator functions given later in Section 4.4.

The cell.h header file contains the definitions GRIDSIZE, SECTOR, WAT -

ERFAIL and ELECFAIL. The factor GRIDSIZE defines the side length of

the grid, for example GRIDSIZE with value 100 gives a 100×100 grid. Similarly

the SECTOR factor gives the number of sectors each side is divided into. For

example if we have a 100×100 grid with SECTOR value two, then the whole grid

is divided into four 50 × 50 sectors. There is a check included in the program to

ensure that the value given for GRIDSIZE is divisible by the SECTOR value.

The final two factors WATERFAIL and ELECFAIL are the probabilities the

water and electricity supplies will fail, these values are given as a number between

zero and one.
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In terms of the program structure, the cell and agent parameters are set in

the constructor functions. The four different agent constructors are in the file

agent.cpp. The cell constructor function is in the file cell.cpp. The cell parameters

are also set in the main program main.cpp due to a problem with this constructor

function.

As it stands the program has to be compiled every time any of the parameters

are changed. This is clearly not ideal and one future improvement should be that

the user will input the data rather than having to change the actual source code.
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4.3 Agent Objects

The agent objects are the personnel in the model. There are four different types

of agent: Peacekeeper, Non-Governmental Organisation (NGO), Insurgent and

Civilian. As the name suggests, the Peacekeepers are the outside military per-

sonnel who are there to keep the peace and protect the Civilians and NGOs. The

NGOs represent the mainly outside personnel who are there to help the local

population, for example this could be agencies such as the Red Cross. The In-

surgents are the members of the local population who maybe disagree with the

military presence and who have combat capability, both with guns and bombs.

Any combat that occurs in the model will have been started by an Insurgent

agent. Finally, the Civilians are the non-violent local population.

4.3.1 Parameters

Each of the four different types of agent object has a set of parameters. These

differ slightly but the general structure is the same. Despite the four different

types of agent having parameters in common, we decided that we would define

four completely separate object types. An overview of the agent object is given

here, a full list of the parameters is given for reference in Appendix C.

First we have the basic properties. There is the agent type which has an

integer value between one and four: one represents Peacekeeper, two is NGO,

three is Insurgent and finally four is Civilian. We then have the number of the

squad the agent belongs to. General parameters for the initial positions of the

squad are given too, these are the x and y coordinates of the home location,

and a radius which determines how spread out the agents are. These values are

used in the initial position function that is given later on in Section 4.6.1. The

current location of the agent is given by the coordinates xPos and yPos, the

previous location for the agent is also noted with the coordinates xPrev and

yPrev. Finally we have the alive indicator that is changed if an agent is killed,
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this could either be by gunfire or a bomb.

Next there are the ranges and constraints. The ranges define a distance away

from the agent in terms of the number of cells. This concept is illustrated in

Figure 4.1: the example shows cells that are one cell away, two cells away and

those that are three cells away from an agent. All the agents have a sensor range

which defines the square of cells an agent can detect. For example, if an agent

has a sensor range of one it can only see the eight cells that surround its current

location. In addition the Peacekeeper and Insurgent agents have ranges relating

to gunfire. There is the single shot kill probability, SSKP, and the firing range

which is the maximum number of cells away a target agent can be.

Key:

Agent

One cell away

Two cells away

Three cells away

Figure 4.1: Example Cell Distances for Ranges

So far we seem to have many of the parameter types from the combat models

MANA and ISAAC, but the next set of parameters differ from these models. The

Insurgent agents have a probability of unprovoked fire and a probability they will

set off a suicide bomb. There is also a radius of damage for the bombs, this

specifies how much damage a bomb will do if set off. For example, if there is a

bomb radius of two, all occupants of cells at most two cells away from the bomb
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site will be killed. The Peacekeepers and NGOs also have probabilities related to

their ability to fix the water and electricity supplies, these are used in the repair

functions detailed in Section 4.6.4.

Next there are the relationships, these affect the movement and combat in

the model. This idea is used in the DIAMOND model, as detailed in [1], and

as such it was appropriate to include it here since we wish to make the two

models compatible. Each squad has a relationship to each of the other squads,

these remain constant throughout the model run although it is hoped that in

the future the model can be developed such that they become dynamic. These

relationships can be either friendly, cooperative, neutral, uncooperative or hostile;

they have values one to five respectively.

Finally we have the personality weights, these are used to determine movement

as will be shown later in Section 4.6.2. This is an idea that is used in the MANA

and ISAAC models as shown in [2] and [3]. The ISAAC and MANA weights

would not have been sufficient for our use, since we are not producing a purely

combat model, therefore we had to modify the method. These weights are listed

in Table 4.1.

Weight Factor Weight Factor

W1 Friendly Peacekeepers W14 Uncooperative Insurgents
W2 Cooperative Peacekeepers W15 Hostile Insurgents
W3 Neutral Peacekeepers W16 Friendly Civilians
W4 Uncooperative Peacekeepers W17 Cooperative Civilians
W5 Hostile Peacekeepers W18 Neutral Civilians
W6 Friendly NGOs W19 Uncooperative Civilians
W7 Cooperative NGOs W20 Hostile Civilians
W8 Neutral NGOs W21 Tension
W9 Uncooperative NGOs W22 Civilians in need
W10 Hostile NGOs W23 No water
W11 Friendly Insurgents W24 No electricity
W12 Cooperative Insurgents W25 Combat
W13 Neutral Insurgents

Table 4.1: Personality Weights
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Each weight has an integer value between −100 and 100, the higher the value,

the more the agent wants to move towards that factor. The weights to the

different types of agent, W1 to W20, are defined for all four types of agent. We

have a set of weights covering all relationships to each agent type to allow for

changing relations; clearly this is not needed at present since the relationships

remain constant but it was best to leave it in to allow for further development.

The weights towards cells without electricity or water and the weight towards

civilians in need are only given for Peacekeepers and NGOs. The tension weight,

W21, is only given for the Civilians and Insurgents. The combat weight, W25, is

only defined for Insurgents and Peacekeepers.
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4.4 Cell Objects

Here we give an overview of the cell objects ; a full list of the parameters is given

in Appendix C.

The model is run on a square grid comprised of cells, each of which holds

a variety of data. There are three constant values that each cell has: x− and

y−coordinates and the sector the cell is located in. The coordinates are sequenced

such that x increases from left to right, and y increases from top to bottom, this

is illustrated below in Figure 4.2.

x

y

0 1 2

0

1

2

Figure 4.2: Coordinates

Next we have the occupant information. This comprises variables that give

the squad the occupying agent is from, and the squad the previous occupant

was from. Then there is the type of agent that is occupying the cell, and the

type of agent that previously occupied the cell. Next there is the action type

variable that gives the action the occupying agent will perform at the current

sub-timestep; a value of zero indicates no action, one is combat, two is bomb,

three is repairs to water or electricity supply and four is movement.

There are also general indicator variables for the water and electricity supply

at the cell. If the water or electricity has failed in the relevant sector then there
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are indicators that show this failure. If the supply does fail in a sector then a

cell is chosen to represent the source of the failure; this cell is where repairs are

needed and is flagged using the fixWater or fixElec indicator.

Next there are the combat parameters. First of these is the general combat

parameter combat; this is an indicator function that shows whether there have

been any shots fired to or from the cell in the past SHOTMEMORY timesteps,

or any bombs affecting the cell in the past BOMBMEMORY timesteps. The

bomb indicator bombBlast shows whether a bomb has affected the cell in the

previous BOMBMEMORY timesteps. The shot indicator shotInd is flagged

if there have been any shots fired to the cell in the previous SHOTMEMORY

timesteps. We also have a counter for the number of shots fired to the cell.

Finally there are the psychological factors related to the cells. First of these is

an indicator function, this indicates whether there are civilians in need at the cell.

This is flagged if the occupying agent is a civilian and at least one of the following

is true: the combat indicator is flagged, the water or electricity supply has failed

or there is no food. We had hoped to add a second factor relating to tension at

the cell, continuing on from the DIAMOND work detailed in Chapter 3, but we

decided against this in the first instance to keep the model as simple as possible.

This could be another possible future development. Of course this also means

that the tension weight W21 becomes void.
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4.5 Model Structure

Here we describe how we put the whole model together. To begin with all the

required agents are constructed with default values that have been specified by

the user. A square grid of cell objects is also constructed with default initial

values. This grid is split into a specified number of equally sized square sectors,

these are used to indicate the regions covered by a certain supply of water and

electricity. When either supply fails in a sector it fails at all the individual cells

in that region. The initial positions for the agents are then calculated using a

random number generator in conjunction with the relevant squad home position

and radius specified in the agent object.

We then move to the main part of the model, that is the timesteps. The

number of timesteps has been specified in the main program. We then split

these timesteps up into sub-steps according to the capabilities of the squads.

The maximum of all the squad capabilities is the total number of sub-steps per

timestep. The squad capabilities are then used to determine at which of these

sub-steps an agent can perform an action. For example, say that we have four

squads: a Peacekeeper squad with capability eight, an NGO squad with capability

five, an Insurgent squad with capability four and a Civilian squad with capability

three. Then each timestep would be split into eight sub-steps. The Peacekeepers

would perform actions at each sub-step, the NGOs at the first five sub-steps, the

Insurgent agents at every other sub-step and the Civilians also at every other sub-

step, but only until they had performed three actions. This example is illustrated

in Figure 4.3. If all the squad capabilities are equal there is no need for the sub-

steps.

At each timestep we go through the sub-steps in turn. At each sub-step we go

through the grid cell by cell and determine what action should be taken by the

occupying agent, if indeed there is one. If there is no agent at a cell the action is

clearly set to zero. If there is an agent at the cell we first determine whether or
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Peacekeeper

NGO

Insurgent

Civilian

Sub-step number 1 2 3 4 5 6 7 8

Figure 4.3: A Diagram to Indicate the Sub-Steps the Agents are in Action During

One Complete Timestep

not they should be performing an action according to their capability. If not, the

action is set to zero. If so, we determine what that action should be according

to a priority list, this varies with agent type.

Peacekeeper: The Peacekeepers’ first priority should be to protect them-

selves and so if they are under attack they should look to defend themselves.

First we check to see if there have been any shots fired to the cell in the last

timestep and if so we set the action to ‘combat’. Next, if there have been any

bomb blasts within sensor range in the last timestep we again set the action to

‘combat’. Their next priority is to help the Civilian population. If repairs to the

water or electricity supply are needed at the cell then set the action to ‘repair’, if

not then set the action to ‘move’ so the Peacekeeper can head to where he may

be needed. This process is illustrated in the flow diagram in Figure 4.4.

NGO: In the first instance the NGOs would want to move away from danger

since they are unarmed, so if there have been any shots fired to the cell in the last

timestep the action is set to ‘move’. Next, if repairs to the water or electricity

supply are needed at the cell then the action is set to ‘repair’. Otherwise the

agent is set to ‘move’ so he can best help the Civilians. This decision process is

100



Have there been any shots
fired to the cell in the last

SHOTMEMORY timesteps?

Have there been any bomb
blasts within sensor range

in the last BOMBMEMORY
timesteps

Is fixWater
or fixElec

one?

COMBAT

REPAIR

MOVE

No Yes

No

Yes

Yes

No

Figure 4.4: Peacekeeper Action Decision Process
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shown in Figure 4.5.

Have there been any shots
fired to the cell in the last

SHOTMEMORY timesteps?

Is fixWater
or fixElec

one?
MOVE

REPAIR

No Yes

No

Yes

Figure 4.5: NGO Action Decision Process

Insurgent: First the Insurgents would want to defend themselves against any

enemy fire so if there have been any shots fired to the cell in the last timestep then

set the action to ‘combat’. If they are not in immediate danger they would decide

whether or not to start conflict according to their bomb and shot probabilities.

Generate a random number to determine whether or not the agent will set off a

suicide bomb, if so set action to ‘bomb.’ Generate a random number to determine

whether the agent fires without provocation, if so set action to ‘combat’. If the

Insurgent is not involved in combat his action will be set to ‘move’. Figure 4.6

shows this process.

Civilian: Since the Civilians do not carry out repairs and are unarmed, their

action type is always set to ‘move’.

Once the actions of all the agents have been determined we go through the
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COMBAT
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No

No

Yes
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Figure 4.6: Insurgent Action Decision Process
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grid again to initiate all the combat and bombings that will take place at this

sub-step. When we go through the grid, if we find an agent who has an action

set to ‘combat’ or ‘bomb’ we call the appropriate combat function. This part of

the model is shown in the flow diagram in Figure 4.7. The individual combat

functions are explained in detail later in Section 4.6.3.

After all the combat has taken place, we go through the grid for a third time

in order to determine all the repairs and movements that occur at this timestep.

If an agent has been flagged to repair or move, the appropriate function will be

called. This part of the model is shown in Figure 4.8. The movement and repair

functions are described later in Sections 4.6.4 and 4.6.2 respectively.

At the end of each sub-step some of the cell parameters are updated. The

shotInd, bombBlast and combat indicators are revised. To do this we check

whether any shots have been fired to the cell in the last SHOTMEMORY

timesteps, this is used for the shotInd and combat indicators. We also see if any

shots have been fired from the cell in the previous SHOTMEMORY timesteps,

this is relevant to the combat indicator only. In addition we look for any bombs

affecting the cell in the last BOMBMEMORY timesteps, this is used for the

bombBlast and combat indicators. Next the civInNeed indicator is updated at

all the cells occupied by a Civilian; here we are looking for combat, no water, no

electricity or no food.

We also have to reset all the ‘previous’ parameters for both the cells and the

agents. These include the parameters for the previous occupying squad and agent

type at the cell and previous coordinates for the agents.

At the end of each full timestep we determine whether the water or electricity

supply in each sector will fail. To do this we use a random number generator and

the probabilities WATERFAIL and ELECFAIL.
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Figure 4.7: Calls to the Combat Functions
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Figure 4.8: Calls to Repair and Movement Functions
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4.6 Functions

4.6.1 Initial Positions

The initial positions for the agents are determined using four functions, one for

each type of agent. They use the squad parameters for the x and y coordinates of

the home location and the radius which determines a square of cells throughout

which the agents are distributed. A random number generator is used to deter-

mine each agent’s position in this square. As an example, suppose a squad has

a home location (xhome, yhome) and a radius of two. Then the initial positions

of the agents will all satisfy the conditions (xhome − 2) ≤ x ≤ (xhome + 2) and

(yhome − 2) ≤ y ≤ (yhome +2). This is shown in Figure 4.9 where the shaded cells

are the possible locations for the agents, of course this also includes the centre

home location itself.

(xhome, yhome)

2

2

Figure 4.9: An Example Initial Squad Distribution Area

There may be a situation where more than one agent gets allocated the same

starting location. To get around this we check that no agent is already at the
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relevant cell, and if it is already occupied then another set of coordinates is

generated. This means that priority is given to the first agents to be placed on

the grid. Since the functions are called squad by squad the order of these squads

should be considered before the model is run and changed accordingly.

4.6.2 Movement

We have used a method taken from the MANA and ISAAC combat models for

the movement. This involves the use of an incentive function. This function is

used on all the cells the agent can move to, including its current one, and then the

cell with the highest incentive is the one the agent moves to. The cells considered

are the eight surrounding cells and the current location. The incentive function

we initially used in the model is given below in Equation (4.1).

Inew =
a=20
∑

a=1

Wa ∗
(

Na
∑

b=1

Db,old − Db,new

Db,old

)

+ W21 ∗
tensionnew − tensionold

maxtension

+

W22 ∗ civInNeednew + W23 ∗ fixWaternew+

W24 ∗ fixElecnew + W25 ∗ combatnew (4.1)

Here Na is the number of agents of the type indicated by the weight Wa within

sensor range. The values Db,new and Db,old represent the distances to the specified

agent from the proposed and current locations respectively. These distances are

given as the distance between the centres of the relevant cells, where one cell is

defined to have a side length of one. For example, if we look at the situation in

Figure 4.10 the current distance to the other agent shown on the grid is

Dold =
√

42 + 42 = 4
√

2,

and the distance from the proposed cell is

Dnew =
√

52 + 32 =
√

34.

The factors tensionold and tensionnew give the tension values at the current and
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Key:

Current location

Proposed move

Other agent

Figure 4.10: Example Distance Calculations

proposed locations respectively and maxtension is the maximum value the tension

variable can take. The remaining factors, civInNeednew, f ixWaternew, f ixElecnew

and combatnew, give the values for the civilians in need, water failure, electricity

failure and combat indicator functions at the proposed cell respectively.

There are some exceptions to using the incentive function. If there is already

an agent occupying the relevant cell then the agent cannot move to it, hence a

value of −50000 is given for that cell. Civilian agents should not move to cells

where there is combat, no water, no food or no electricity. If any of these are the

case then the values −49000,−48000,−47000 and −46000 are given respectively.

NGOs should not move to cells with combat, therefore any cell with the combat

indicator flagged should be given the value −49000. Insurgent agents should not

move to a cell with no water supply, any cell with the noWater indicator flagged

should be given the value −49000. If none of these restrictions are applicable then

the incentive function is used. In the case of equal incentive one of the cells with

the highest value is chosen at random.
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After conducting some initial experiments with the model we found that this

movement algorithm did not give the behaviour we had hoped for the Peace-

keepers, we needed to incorporate a change in distance factor for cells in need of

repairs. Further explanation is given in Section 4.10.1 where we describe these

experiments. As a result the incentive function was changed to that in Equa-

tion (4.2). Note that the tension factor has been taken out of the function since

it does not now appear in the model. In Equation (4.2), ∆Di,j is the fractional

change in distance between the current agent cell to the cell (i, j) and the pro-

posed location to (i, j), so

∆D(i,j) =
D(i,j),old − D(i,j),new

D(i,j),old

.

The coordinates x and y refer to the current agent location, and s represents

the sensor range of the agent. The factors civInNeed(i,j) and combat(i,j) are

the civInNeed and combat values at the cell (i, j) respectively. The values

waterFailure[sector(i,j)] and elecFailure[sector(i,j)] give the values for the water

and electricity failure indicators in the sector that the cell (i, j) falls in.

Inew =
a=20
∑

a=1

Wa ∗
(

Na
∑

b=1

Db,old − Db,new

Db,old

)

+

W22 ∗
x+s
∑

i=x−s

y+s
∑

j=y−s

∆D(i,j) ∗ civInNeed(i,j)+

W23 ∗
(

FixWaternew +
x+s
∑

i=x−s

y+s
∑

j=y−s

∆D(i,j) ∗ waterFailure[sector(i,j)]

)

W24 ∗
(

FixElecnew +
x+s
∑

i=x−s

y+s
∑

j=y−s

∆D(i,j) ∗ elecFailure[sector(i,j)]

)

W25 ∗
x+s
∑

i=x−s

y+s
∑

j=y−s

∆D(i,j) ∗ combat(i,j) (4.2)
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4.6.3 Combat

There are three types of combat function: the firing functions for the Peacekeepers

and Insurgents, and the bomb function for the Insurgents.

Peacekeeper firing function: First we count the number of shots fired to

the Peacekeeper’s cell in the last timestep. If this count is zero then a bomb

must have been exploded by an Insurgent agent otherwise combat wouldn’t have

been initiated for the Peacekeeper. In this case valid Insurgent targets within

firing range are sought; if there are none then the agent’s action is changed to

‘move’. If there are valid targets one is chosen at random and fired at, and the

survival of the target agent is then determined by the SSKP of the Peacekeeper.

If the shot count is greater than zero then a cell from which a shot was fired is

chosen at random. If the occupying agent is a valid target then a shot is fired,

if not the Peacekeeper’s action will change to ‘move’. This is not ideal; one

future improvement to the model could be to choose another target rather than

automatically changing the action to movement. If a shot is fired then a random

number is generated to determine if the target is killed according to the SSKP of

the Peacekeeper.

Insurgent firing function: The number of shots fired to the cell in the last

timestep is counted. If the count is zero then the agent must have been chosen

to fire at a random enemy agent within firing range so valid targets are sought

and recorded. If there are no possible targets then the agent’s action is changed

to ‘move’, if there are enemy agents within firing range then a target is chosen

at random and fired at. The survival of this target agent is determined by the

SSKP of the Insurgent agent. If the shot count is greater than zero then a cell

from which a shot was fired is chosen at random; if the occupying agent is a

valid target then a shot is fired, if not the Insurgent agent’s action will change to

‘move’. Again this is not ideal and could be changed in future developments of

the model. If a shot has been fired then a random number and the SSKP for the
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Insurgent are used to determine whether the target agent is killed.

A flow diagram illustrating the firing function is given in Figure 4.11. This

applies to both Peacekeepers and Insurgents.

Count the number of shots to
the cell in the previous

SHOTMEMORY timesteps

Choose one
of these cells
at randomCount the number of

valid targets within
firing range Is the agent at

this cell a
valid target?

Choose one of
the targets
at random

Change the
agent’s action

to move

Fire at target
agent’s cell

> 1

0

1

0 > 1 1 No

Yes

Figure 4.11: Firing Function

Insurgent bomb function: First we count the number of valid target agents

within bomb range. If there are none then the agent’s action is changed to ‘move’,

otherwise a bomb is set off. The Insurgent agent is killed, as are all other agents

within the bomb range. A diagram of this function is given in Figure 4.12.
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Count the number of
valid targets within

bomb range

Change the
agent’s action

to move

Set off a bomb killing
all agents within bomb range

along with the Insurgent

0 > 0

Figure 4.12: Bomb Function

4.6.4 Repairs

The repair functions are used for Peacekeepers and NGOs when they are at a

cell at which the water or electricity, or both, have failed and the fault in the

supply is to be repaired at that location. If the repair function is called there is

no prior indicator to say whether it is the water or electricity that has failed, thus

we first check to see if the fixWater indicator at the cell has been flagged. We

do this first because if both supplies need fixing then water takes priority over

electricity. If fixWater is zero then we check that fixElec has been flagged to

make sure the repair function has not been called in error. In both cases we then

generate a random number and use the agent probability for fixing the relevant

service to determine whether or not the supply is restored. A diagram of the

repair function is shown in Figure 4.13.
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fixWater = 1?

Generate a random
number to determine
whether the water

supply is fixed

fixElec = 1?

Generate a random
number to determine
whether the electricity

supply is fixed

ERROR

Yes No

Yes
No

Figure 4.13: Repair Function
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4.7 Data Output

As the model is running we record some of the variables for analysis. The most

important output is the agent positions, the grid is written to file at the end of

each complete timestep. This file is called ‘gridoutput.txt’ and will be used in

the analysis detailed in Chapter 5. Since the model contains no graphics we also

use this file in conjunction with a MATLAB program to show the model run, this

is described further in Section 4.8.

Other variables recorded are the two indicators for Civilians in need and

combat, in the files ‘civinneed.txt’ and ‘combat.txt’ respectively. Again the values

for the entire grid are written to file at the end of every complete timestep. At

the end of a timestep we also record the vector of water and electricity failures

in the files ‘waterfailind.txt’ and ‘elecfailind.txt’. We do not need to record the

whole grid here, just the values for each sector.

Casualty details are recorded as they occur, this data is written to ‘casual-

ties.txt’. The agent, location and time are recorded. At the end of the model run

the two arrays containing the details of every shot fired and every suicide bomb

are written to the files ‘shotoutput.txt’ and ‘bomboutput.txt’. The shot array

contains the timestep, sub-time, agent location, agent type, agent squad, target

location, target agent type and target agent squad for each shot. The bomb array

contains the timestep, sub-time, Insurgent location, bomb radius and Insurgent

squad number for each suicide bomb attack. The two files ‘shotoutput.txt’ and

‘bomboutput.txt’ have also been used in much of the analysis we have conducted

that has been written up in Chapter 5. The remaining files have not been used

because of the limited time available but additional analysis could be carried out

on them.
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4.8 Visualisation of the Model

Instead of programming a graphics element into the model we decided instead to

use data output and a MATLAB script to show the agents’ progression after the

model had been run. We used the grid positions output, ‘gridoutput.txt’, and

produced a series of plots with a slight delay between each, showing the whole

grid at each timestep, which gives the impression of an animation of the moving

agents. An example screenshot of a model run is shown in Figure 4.14. Here

the Peacekeepers are shown in blue, the Insurgents are red, the NGOs are green

and the Civilians are black. This visualisation only shows the movement of the

agents, there is nothing to indicate shots fired or bomb blasts apart from the

agents disappearing from the grid if they are killed.

Time = 50

Figure 4.14: Screenshot of Model Visualisation
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4.9 Avalanches

The original aim of the research was to look at the possibility that peacekeeping

operations could show some form of self-organised criticality (SOC). Due to time

constraints we could not investigate this fully, but we were able to look at one

potential source of SOC behaviour.

We needed to find behaviour analogous to the avalanche in the sand pile model

or the fire in the forest fire model. The skirmishes started by the Insurgents seem

to fit the bill: they do not occur at all timesteps, they are started by a single

shot or bomb and can result in anything from no response to an exchange of fire

involving the whole Peacekeeper squad. The question then became, what aspect

of these skirmishes do we measure? There are several possibilities, including

casualty numbers or number of cells, but we decided to look at the number of

shots and bombs and then a second measure of the length of the conflict in

timesteps. These measures were chosen mainly because they were the easiest to

obtain from the data and time was an issue.

Later in Chapter 5 we describe the experiments that were carried out. We

ran each variation of each scenario 50 times so we pooled the data from the 50

runs together. We were able to do this since the skirmishes occur at random

throughout the model runs, they are not linked to a particular stage of the run so

they can be seen as independent from each other and from the particular model

run. Once we have determined the ‘avalanche’ sizes we can plot the frequency-

size distribution on a log-log scale. If this graph approximates a straight line we

have evidence of a power law which may in turn indicate self-organised criticality.

For reference the MATLAB programs used for the avalanche analysis are given

in Appendix E.2.
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4.10 Verification of the Model

The object of model verification is to make sure that it works as it is supposed to.

Here we concentrate on the movement of the agents. We need to check that not

only is the movement algorithm working as it should, but also that it produces

expected patterns of behaviour under certain situations.

First we take a very simple scenario to check that the equation is working

properly. Set up a 5 × 5 grid with one agent of each type: the Peacekeeper at

(1, 1), the NGO agent at (3, 1), the Insurgent at (1, 3) and the Civilian at (3, 3).

This is shown in the left-hand grid in Figure 4.15. Each agent has a weight of

−10 towards the other three types of agent and a sensor range of four. There is

no water or electricity failure or combat so the movement will only be dictated

by the other agents and the incentive function is simply,

Inew =
a=20
∑

a=1

Wa ∗
(

Na
∑

b=1

Db,old − Db,new

Db,old

)

.

Taking the Peacekeeper as an example we shall work through the nine possible

moves to find the incentive value for each one. The three current distances to the

agents are

DNGO,old = DIns,old = 2

and

DCiv,old =
√

22 + 22 = 2
√

2.

The incentive value for the current cell is going to be zero since the old and new

distances to the agents will be the same and there are no other factors involved.

The incentive for the cell (0, 0) is calculated as follows:

I(0,0) = −10 ∗
(

2 −
√

32 + 12

2

)

− 10 ∗
(

2 −
√

32 + 12

2

)

− 10 ∗
(

2
√

2 −
√

32 + 32

2
√

2

)

≃ 16.62
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The incentives for all the possible moves are,

I(0,0) ≃ 16.62 I(1,0) ≃ 8.93 I(2,0) ≃ 4.06

I(0,1) ≃ 8.93 I(1,1) = 0 I(2,1) ≃ −5.91

I(0,2) ≃ 4.06 I(1,2) ≃ −5.91 I(2,2) ≃ −10.86

From these results we see that the best move for the Peacekeeper will be to the

cell (0, 0). Similar calculations give the best move for the NGO agent to be to

(4, 0), the Insurgent to (0, 4) and the Civilian to (4, 4). This is the grid shown on

the right in Figure 4.15 and is indeed the result we got when we ran this model.

Key:

Peacekeeper

NGO

Insurgent

Civilian

0

1

2

3

4

0

1

2

3

4

0 1 2 3 4 0 1 2 3 4

Figure 4.15: Basic Movement Test

Next we use a slightly more complicated scenario to test patterns of behaviour.
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We use a 15×15 grid and four squads which each consist of ten agents. We set up

the scenario so that the agents are uniformly distributed over the whole grid to

start with, so we would expect them to be mixed together rather than in squad

clusters. The weights are set such that the agents are attracted towards their

own type with a weight of ten but all other weights are set to zero. All the agents

have a sensor range of ten. Intuitively we would expect the agents to cluster with

other agents of their type, we ran this scenario for 20 timesteps to give them a

chance to do this. After running the model ten times we found this to be the

case in each model run. An example of the start and finish grids is shown in

Figure 4.16. the results from the other nine runs are given in Appendix D.1 for

completeness.

Time = 0 Time = 20

Key:

Peacekeeper

NGO

Insurgent

Civilian

Figure 4.16: Model Verification A1

We then adapted this scenario so that in addition to the positive weight of
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ten towards their own type, the agents have a negative weight of −10 towards all

the other agent types. Here we would again expect the agents to cluster together

with their other squad member, but they would also be moving away from the

other types of agents. Again we ran the scenario ten times, each for 20 timesteps.

The example in Figure 4.17 confirms this behaviour. The results for the other

nine runs can be found in Appendix D.2.

Time = 0 Time = 20

Key:

Peacekeeper

NGO

Insurgent

Civilian

Figure 4.17: Model Verification AR1

4.10.1 Scenario One

When we planned the scenarios we would be running in the model, we started

with one where the Insurgents are spread amongst the Civilian population and the

Peacekeepers are together in a group in a corner of the 150× 150 grid. The grid

is split into nine 30 × 30 sectors. The probabilities for the water and electricity
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failing at a sector are both set to 0.01 and the probability an Insurgent will set

off a suicide bomb is also 0.01. The initial configuration is shown in Figure 4.18.

21 125

150

21

125 150

Key:

Peacekeepers

Insurgents and Civilians

Figure 4.18: Initial Grid for Scenario One

The aim of the scenario was to see the effect of varying the size of the Peace-

keeper squad; the Insurgent and Civilian squads were kept constant at 100 and

1000 agents respectively. There was no NGO squad. The Peacekeepers had a

positive weight of ten towards cells where the water or electricity needed fixing

and to cells where the civilian in need indicator was flagged.
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The model did not provide any meaningful results but did show up some

unforeseen problems with the movement algorithm. At this stage we were using

the first incentive function shown as Equation (4.1) in Section 4.6.2. We found

that the Peacekeepers were not moving towards the sectors where they were

needed, they were just moving away from the Insurgents. Despite the fact that

the Peacekeepers were able to ‘see’ cells where the water or electricity had failed

within sensor range, this did not affect their movement unless it was at one of

the neighbouring cells. This was because if we look at the incentive function we

have these factors,

· · · + W22 ∗ civInNeednew + W23 ∗ fixWaternew + W24 ∗ fixElecnew + . . .

Unlike the part of the equation dealing with the agents we do not take into

account any change in distance, just the situation at the proposed move location.

Clearly we need to add in a similar change in distance factor so that the water

and electricity failures they could detect but weren’t in their immediate vicinity

would also influence their movement. The factors

· · · + W23 ∗ fixWaternew + W24 ∗ fixElecnew + . . .

would also be kept in since they indicate the exact cell the repairs are needed at.

Thus we end up with the final incentive function

Inew =
a=20
∑

a=1

Wa ∗
(

Na
∑

b=1

Db,old − Db,new

Db,old

)

+

W22 ∗
x+s
∑

i=x−s

y+s
∑

j=y−s

∆Di,j ∗ civInNeedi,j+

W23 ∗
(

FixWaternew +
x+s
∑

i=x−s

y+s
∑

j=y−s

∆Di,j ∗ waterFailure[sectori,j]

)

W24 ∗
(

FixElecnew +
x+s
∑

i=x−s

y+s
∑

j=y−s

∆Di,j ∗ elecFailure[sectori,j]

)

W25 ∗
x+s
∑

i=x−s

y+s
∑

j=y−s

∆Di,j ∗ combati,j.
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4.11 Validation of the Model

Military models are generally validated using a combination of peer review by

experts and comparison of the results to historical data. In our timescale we were

only able to conduct an initial peer review; obtaining data related to peacekeeping

operations would have been very difficult.

A peer review was conducted by a team of experts from Dstl, [4]. Overall

they seemed satisfied with the work but suggested a range of improvements. I

have managed to incorporate some of these although further improvement is still

necessary. At the time we had a working model but memory issues were a problem

so we could only have very small grids and this was commented on. We have

since managed to improve the model so that it can handle a grid of size 200×200.

The suggested grid size to adequately model a DIAMOND node was 1000× 1000

but major changes to the model code would need to be made to achieve this.

It was also said that multiple squads of each agent type would be necessary to

model many peacekeeping scenarios. Although this feature could not be included

in the limited time available, it is discussed as one of the suggestions for future

improvements in Chapter 7.
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Chapter 5

EXPERIMENTS AND

RESULTS

Now we have a working agent-based model for peacekeeping operations we are

able to look at some more complex scenarios than those in Chapter 4 used for

model verification. We shall be starting with a basic scenario then adding more

factors in so that it becomes more complex. This makes sense since we are looking

for complex behaviour, the self-organised criticality, and if we do find it we would

want to know at what point the model becomes sufficiently complex to exhibit

this behaviour.

We ran four major scenarios, each of which had several variations. In this

chapter we display the results from these experiments and draw some conclu-

sions. We look at the two different types of ‘avalanche’ we described earlier in

Section 4.9: the avalanche that measures the number of shots and bombs per

skirmish, and the second time avalanche that measures the time of the conflict.

We also look at the effectiveness of the Peacekeepers and NGOs at fixing failures

in the water and electricity supplies along with the number of casualties suffered.

Final discussion and conclusions are provided later in Chapter 6.

For reference we reproduce a table of the relevant weights and the factor they
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refer to in Table 5.1.

Weight Factor Weight Factor

W1 Friendly Peacekeepers W13 Neutral Insurgents
W2 Cooperative Peacekeepers W14 Uncooperative Insurgents
W3 Neutral Peacekeepers W15 Hostile Insurgents
W4 Uncooperative Peacekeepers W16 Friendly Civilians
W5 Hostile Peacekeepers W17 Cooperative Civilians
W6 Friendly NGOs W18 Neutral Civilians
W7 Cooperative NGOs W19 Uncooperative Civilians
W8 Neutral NGOs W20 Hostile Civilians
W9 Uncooperative NGOs W22 Civilians in need
W10 Hostile NGOs W23 No water
W11 Friendly Insurgents W24 No electricity
W12 Cooperative Insurgents W25 Combat

Table 5.1: Personality Weights
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5.1 Scenario Two

Our first major scenario provides some structure for the Peacekeepers. We give

them an incentive to move by programming in a fault in the water supply at the

opposite end of the grid to their initial location. In order to reach this location

they have to travel through an area populated by Insurgents and Civilians. This

initial set up is illustrated in Figure 5.1. Note that the distances shown on this

diagram refer to the number of cells, the model is run on a 200 × 200 grid. We

have decided to leave out the NGOs; they will be introduced in later scenarios to

add complexity.

The general model parameters are given in Table 5.2. Note that we have

set the Civilian capability to zero so they are unable to move around the grid.

This was done so that we can concentrate on the Peacekeepers’ reaction to the

Insurgents. In later scenarios the Civilians will be able to move, which will

add complexity to the model. The size of the Peacekeeper squad will be varied

throughout the different model trials. There will be no suicide bombings in this

scenario, again this will be added in later scenarios to increase the complexity.

The water and electricity failure probabilities are also set to zero so that the

Peacekeepers have one clear goal, that being to fix the water supply in the final

sector.

The agent parameters for the scenario are shown in Table 5.3. Here the only

parameter that will change will be the weight to hostile Insurgents, W15, for the

Peacekeepers. Notice that we have set the Peacekeeper sensor range to 200, this

is so that they are able to see the whole grid and can therefore react to everything

that is happening. This reflects the fact that they would have intelligence relating

to the general situation, such as the fault with the water supply, and would be in

contact with other members of the squad. So in effect we are trying to compensate

for not directly modelling communications and command and control.

We ran this scenario in seven different configurations, changing both the num-
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No water supply

Figure 5.1: Initial Grid for Scenario Two
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Constant Value

RUNTIME 500
GRIDSIZE 200
SECTOR 5

NOOFSQUADS 3
PEACENO Varies

SUPPORTNO 0
LOCALNO 100

CIV NO 1500
PEACECAP 1

SUPPORTCAP 0
LOCALCAP 1

CIV CAP 0
BOMBMEMORY 20
SHOTMEMORY 10
LMBOMBPROB 0.00
LMFIREPROB 0.01
WATERFAIL 0.00
ELECFAIL 0.00

MAXSHOTS 5000
MAXBOMB 100

Table 5.2: Scenario Two: General Parameters
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Parameter Peace. NGO Ins. Civ.

squadNo 1 - 2 3
xHome 14 - 112 112
yHome 14 - 112 112

homeRadius 10 - 87 87
sensorRange 200 - 25 25
fireRange 20 - 15 -
bombRadius - - - -

sSKP 0.10 - 0.05 -
Relationship to Peacekeepers F - H C

Relationship to NGOs - - - -
Relationship to Insurgents H - F F
Relationship to Civilians F - F F

W1 0 - 0 0
W2 0 - 0 0
W3 0 - 0 0
W4 0 - 0 0
W5 0 - 0 0
W6 - - - -
W7 - - - -
W8 - - - -
W9 - - - -
W10 - - - -
W11 0 - 0 0
W12 0 - 0 0
W13 0 - 0 0
W14 0 - 0 0
W15 Varies - 0 0
W16 0 - 0 0
W17 0 - 0 0
W18 0 - 0 0
W19 0 - 0 0
W20 0 - 0 0
W22 10 - - -
W23 10 - - -
W24 10 - - -
W25 0 - 0 -

probF ixWater 1.00 - - -
probF ixElec 1.00 - - -

Table 5.3: Scenario Two: Agent Parameters
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ber of Peacekeepers and the weight towards hostile Insurgents for the Peacekeep-

ers. Each of these scenario trials was then run 50 times. The results are given in

Sections 5.1.1 to 5.1.7.
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5.1.1 Trial One

The additional parameters for this scenario are given in Table 5.4. For the first set

of runs we have 50 Peacekeepers with a weight of −50 towards hostile Insurgents.

Parameter Value

PEACENO 50
Peacekeeper W15 -50

Table 5.4: Scenario Two, Trial One: Parameters

Figures 5.2 and 5.3 show the avalanche and time avalanche distributions re-

spectively, both plotted on a log-log scale. Recall that the avalanche data mea-

sures the number of shots and bombs per conflict, the time avalanche data mea-

sures the time of each conflict. The best fit straight lines are also plotted and the

equations of the lines are shown on the graphs.
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Figure 5.2: Scenario Two, Trial One: Avalanche Frequency-Size Distribution

134



0 1 2 3 4 5
−1

0

1

2

3

4

5

6

log(X)

lo
g(

fr
eq

(X
))

 
y = − 0.69586*x + 3.4762

Figure 5.3: Scenario Two, Trial One: Time Avalanche Frequency-Size Distribu-

tion
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We can see from the plots that the points follow a general downward trend

but they are not close enough to the best fit line for us to conclude that we have

evidence of a power law.

We also note that the point corresponding to log(X) = 0 has a much higher

value than the subsequent points on both graphs. This point corresponds to an

avalanche or time avalanche of size one; this is a situation where an Insurgent

will have fired at an enemy, or set off a suicide bomb, without any response from

the Peacekeepers. This is a feature of all the avalanche and time avalanche plots

throughout this chapter.

The casualty numbers for the set of model runs are given in Table 5.5. The

three values recorded are the minimum number of deaths, the maximum number

and the mean number per model trial. Note that there are no Civilian casualties

since there are no bomb blasts and Civilians are not valid targets for either the

Insurgents or Peacekeepers so they cannot be shot at.

Minimum Maximum Mean
Peacekeeper 1 (2%) 19 (38%) 8.84 (17.68%)
Insurgent 11 (11%) 48 (48%) 32.38 (32.38%)

Table 5.5: Scenario Two, Trial One: Casualty Numbers

To see how effective the Peacekeepers were at fixing the water and electricity

supplies, we recorded the total number of sector failures and the number that

were fixed over the model trial, then calculated the mean values per run. For this

particular scenario there was only the initial water failure, so the total number

of failures and mean value are 50 and one respectively by definition. The values

are given in Table 5.6.

Full discussion of the results and comparison to the other scenario two varia-

tions will be given in Section 5.1.8.
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Total Mean per Run
Number of Failures 50 1
Number Fixed 9 0.18

Table 5.6: Scenario Two, Trial One: Utility Failure Numbers
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5.1.2 Trial Two

The parameters specific to this trial are shown in Table 5.7. We have increased

the negative weight towards the Insurgents for the Peacekeepers to −100 to see

if this affects their ability to fix the water supply and whether or not it results in

fewer casualties.

Parameter Value

PEACENO 50
Peacekeeper W15 -100

Table 5.7: Scenario Two, Trial Two: Parameters
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Figure 5.4: Scenario Two, Trial Two: Avalanche Frequency-Size Distribution
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Figure 5.5: Scenario Two, Trial Two: Time Avalanche Frequency-Size Distribu-

tion

Minimum Maximum Mean
Peacekeeper 0 (0%) 17 (34%) 5.58 (11.16%)
Insurgent 0 (0%) 40 (40%) 19.78 (19.78%)

Table 5.8: Scenario Two, Trial Two: Casualty Numbers

Total Mean per Run
Number of Failures 50 1
Number Fixed 8 0.16

Table 5.9: Scenario Two, Trial Two: Utility Failure Numbers
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5.1.3 Trial Three

For our next trial we reduce the number of Peacekeepers to see how squad size

affects their success rate regarding fixing the water supply. The parameters are

shown in Table 5.10.

Parameter Value

PEACENO 25
Peacekeeper W15 -100

Table 5.10: Scenario Two, Trial Three: Parameters
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Figure 5.6: Scenario Two, Trial Three: Avalanche Frequency-Size Distribution
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Figure 5.7: Scenario Two, Trial Three: Time Avalanche Frequency-Size Distrib-

ution

Minimum Maximum Mean
Peacekeeper 0 (0%) 16 (64%) 5.54 (22.16%)
Insurgent 0 (0%) 36 (36%) 17.40 (17.40%)

Table 5.11: Scenario Two, Trial Three: Casualty Numbers

Total Mean per Run
Number of Failures 50 1
Number Fixed 1 0.02

Table 5.12: Scenario Two, Trial Three: Utility Failure Numbers
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5.1.4 Trial Four

We now reduce the negative weight to the hostile Insurgents for the Peacekeepers

so it is back to its initial value. The parameters are given in Table 5.13.

Parameter Value

PEACENO 25
Peacekeeper W15 -50

Table 5.13: Scenario Two, Trial Four: Parameters
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Figure 5.8: Scenario Two, Trial Four: Avalanche Frequency-Size Distribution
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Figure 5.9: Scenario Two, Trial Four: Time Avalanche Frequency-Size Distribu-

tion

Minimum Maximum Mean
Peacekeeper 0 (0%) 20 (80%) 10.94 (43.76%)
Insurgent 5 (5%) 30 (30%) 18.52 (18.52%)

Table 5.14: Scenario Two, Trial Four: Casualty Numbers

Total Mean per Run
Number of Failures 50 1
Number Fixed 10 0.20

Table 5.15: Scenario Two, Trial Four: Utility Failure Numbers
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5.1.5 Trial Five

Next we change the Peacekeepers’ weight to hostile Insurgents so that it is halfway

between the two previous values of −50 and −100. The parameters for this set

of simulations are given in Table 5.16.

Parameter Value

PEACENO 25
Peacekeeper W15 -75

Table 5.16: Scenario Two, Trial Five: Parameters
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Figure 5.10: Scenario Two, Trial Five: Avalanche Frequency-Size Distribution
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Figure 5.11: Scenario Two, Trial Five: Time Avalanche Frequency-Size Distrib-

ution

Minimum Maximum Mean
Peacekeeper 1 (4%) 20 (80%) 9.84 (39.36%)
Insurgent 7 (7%) 38 (38%) 23.50 (23.50%)

Table 5.17: Scenario Two, Trial Five: Casualty Numbers

Total Mean per Run
Number of Failures 50 1
Number Fixed 5 0.10

Table 5.18: Scenario Two, Trial Five: Utility Failure Numbers
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5.1.6 Trial Six

The parameter values for this trial are given in Table 5.19. We try increasing

the number of Peacekeepers to see if this improves their ability to fix the water

supply or if adding agents just increases the casualty numbers. The weight to

hostile Insurgents is set back to −50.

Parameter Value

PEACENO 100
Peacekeeper W15 -50

Table 5.19: Scenario Two, Trial Six: Parameters
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Figure 5.12: Scenario Two, Trial Six: Avalanche Frequency-Size Distribution
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Figure 5.13: Scenario Two, Trial Six: Time Avalanche Frequency-Size Distribu-

tion

Minimum Maximum Mean
Peacekeeper 2 (2%) 15 (15%) 7.74 (7.74%)
Insurgent 10 (10%) 56 (56%) 38.22 (38.22%)

Table 5.20: Scenario Two, Trial Six: Casualty Numbers

Total Mean per Run
Number of Failures 50 1
Number Fixed 8 0.16

Table 5.21: Scenario Two, Trial Six: Utility Failure Numbers
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5.1.7 Trial Seven

Our final set of runs for this scenario takes the increased number of Peacekeep-

ers and increases the negative weight towards hostile Insurgents to −100. The

parameters are given in Table 5.22.

Parameter Value

PEACENO 100
Peacekeeper W15 -100

Table 5.22: Scenario Two, Trial Seven: Parameters
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Figure 5.14: Scenario Two, Trial Seven: Avalanche Frequency-Size Distribution
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Figure 5.15: Scenario Two, Trial Seven: Time Avalanche Frequency-Size Distri-

bution

Minimum Maximum Mean
Peacekeeper 1 (1%) 14 (14%) 6.22 (6.22%)
Insurgent 12 (12%) 54 (54%) 26.52 (26.52%)

Table 5.23: Scenario Two, Trial Seven: Casualty Numbers

Total Mean per Run
Number of Failures 50 1
Number Fixed 6 0.12

Table 5.24: Scenario Two, Trial Seven: Utility Failure Numbers
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5.1.8 Conclusions

There are two considerations for these experiments: first is the search for possi-

ble self-organised criticality, and secondly we have the general question of how

successful the Peacekeepers were at carrying out repairs. Looking first at the

question of whether we can find any evidence of SOC, our conclusion would have

to be no from the results shown here. All the avalanche and time avalanche

graphs show a general downward trend but none of them are close enough to

a straight line. We can also see from the graphs that there are a wider range

of sizes for the avalanches as opposed to the time avalanches, so the avalanche

plots appear to be more stepped; that is we have lines of points on the avalanche

graphs. More factors will be added in to the next scenario, Scenario Three, so

this added complexity may produce SOC behaviour.

We shall now focus on the effectiveness of the Peacekeepers. We can see

that in Trial Three we had a low Peacekeeper squad size, 25, and a high weight

to avoid the Insurgents, -100, and this resulted in only one occasion where the

water supply was fixed over the 50 model runs. When we increased the weight

towards the Insurgents in Trial Four this figure increased to ten sectors fixed out

of 50. Unfortunately this also came with an doubling of the mean casualties for

the Peacekeepers. The lowest casualties occurred in Trial Two where we had a

mean figure of 5.58 Peacekeeper deaths, this was from a squad size of 50 with the

maximum negative weight of -100 towards the Insurgents. In this set of runs we

also had eight instances of the water supply being fixed out of fifty so this seems

to be the optimum set-up for this particular scenario.
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5.2 Scenario Three

We now move on to Scenario Three. For this scenario we have added complexity

to the model by introducing a squad of NGOs and the possibility that the water

and electricity supply can fail at any sector on the grid. We still have the initial

water supply failure in the final sector but now we will have the two squads of

outside agents, the Peacekeepers and NGOs, who are aiming to get to the sector

to fix the supply. The initial set up for the scenario is shown in Figure 5.16.

The general parameters for this scenario are shown in Table 5.25. Notice that

many are the same as those in Scenario Two, in particular the Civilian agents

still have a capability of zero so they are unable to move around the grid.

Constant Value

RUNTIME 500
GRIDSIZE 200
SECTOR 5

NOOFSQUADS 4
PEACENO Varies

SUPPORTNO Varies
LOCALNO 100

CIV NO 1500
PEACECAP 1

SUPPORTCAP 1
LOCALCAP 1

CIV CAP 0
BOMBMEMORY 20
SHOTMEMORY 10
LMBOMBPROB 0.00
LMFIREPROB 0.01
WATERFAIL Varies
ELECFAIL Varies

MAXSHOTS 5000
MAXBOMB 100

Table 5.25: Scenario Three: General Parameters

The agent parameters for the scenario are given in Table 5.26. Notice that we
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Figure 5.16: Initial Grid for Scenario Three
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have set the NGOs’ weight to uncooperative Insurgents at −100 and the Peace-

keepers’ weight to hostile Insurgents at −50. This is since the NGOs are unarmed

and so they will be more likely to avoid the Insurgents than the Peacekeepers.

Note also that as with the Peacekeepers, the NGO sensor range has been set

to 200 to take account of intelligence and communications. All the parameters

shown in this table will stay constant throughout the different trials.

There are nine variations of this scenario, the results for these trials are given

in Sections 5.2.1 to 5.2.9.
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Parameter Peace. NGO Ins. Civ.

squadNo 1 2 3 4
xHome 99 14 112 112
yHome 14 99 112 112

homeRadius 10 10 87 87
sensorRange 200 200 25 25
fireRange 20 - 15 -
bombRadius - - - -

sSKP 0.10 - 0.05 -
Relationship to Peacekeepers F F H C

Relationship to NGOs F F F F
Relationship to Insurgents H U F F
Relationship to Civilians F F F F

W1 0 0 0 0
W2 0 0 0 0
W3 0 0 0 0
W4 0 0 0 0
W5 0 0 0 0
W6 0 0 0 0
W7 0 0 0 0
W8 0 0 0 0
W9 0 0 0 0
W10 0 0 0 0
W11 0 0 0 0
W12 0 0 0 0
W13 0 0 0 0
W14 0 -100 0 0
W15 -50 0 0 0
W16 0 0 0 0
W17 0 0 0 0
W18 0 0 0 0
W19 0 0 0 0
W20 0 0 0 0
W22 10 10 - -
W23 10 10 - -
W24 10 10 - -
W25 0 - 0 -

probF ixWater 1.00 1.00 - -
probF ixElec 1.00 1.00 - -

Table 5.26: Scenario Three: Agent Parameters
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5.2.1 Trial One

We start with a basic scenario with no possibility of water and electricity failures

other than the initial fault with the water supply. The Peacekeeper and NGO

squads are of equal size, both consisting of 25 agents, hence there are 50 agents

who will be attempting to repair the water supply. The parameters are given in

Table 5.27.

Parameter Value

PEACENO 25
SUPPORTNO 25
WATERFAIL 0.00
ELECFAIL 0.00

Table 5.27: Scenario Three, Trial One: Parameters
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Figure 5.17: Scenario Three, Trial One: Avalanche Frequency-Size Distribution
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Figure 5.18: Scenario Three, Trial One: Time Avalanche Frequency-Size Distri-

bution

Minimum Maximum Mean
Peacekeeper 0 (0%) 18 (72%) 6.12 (24.48%)
Insurgent 2 (2%) 30 (30%) 18.88 (18.88%)

Table 5.28: Scenario Three, Trial One: Casualty Numbers

Total Mean per Run
Number of Failures 50 1
Number Fixed 8 0.16

Table 5.29: Scenario Three, Trial One: Utility Failure Numbers
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5.2.2 Trial Two

For this trial we increase the number of Peacekeepers and NGOs so there are now

50 agents in each squad. The parameters are shown in Table 5.30.

Parameter Value

PEACENO 50
SUPPORTNO 50
WATERFAIL 0.00
ELECFAIL 0.00

Table 5.30: Scenario Three, Trial Two: Parameters
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Figure 5.19: Scenario Three, Trial Two: Avalanche Frequency-Size Distribution
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Figure 5.20: Scenario Three, Trial Two: Time Avalanche Frequency-Size Distri-

bution

Minimum Maximum Mean
Peacekeeper 2 (4%) 15 (30%) 6.46 (12.92%)
Insurgent 4 (4%) 46 (46%) 24.80 (24.80%)

Table 5.31: Scenario Three, Trial Two: Casualty Numbers

Total Mean per Run
Number of Failures 50 1
Number Fixed 9 0.18

Table 5.32: Scenario Three, Trial Two: Utility Failure Numbers
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5.2.3 Trial Three

The parameters for this variation on Scenario Three are shown in Table 5.33. We

now introduce the possibility that the water and electricity supply can fail at any

sector on the grid as the model is running. We set this probability at 0.01, so for

every sector at every timestep this is the chance that each utility will fail. The

number of Peacekeepers and NGOs is put back to 25 per squad.

Parameter Value

PEACENO 25
SUPPORTNO 25
WATERFAIL 0.01
ELECFAIL 0.01

Table 5.33: Scenario Three, Trial Three: Parameters
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Figure 5.21: Scenario Three, Trial Three: Avalanche Frequency-Size Distribution
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Figure 5.22: Scenario Three, Trial Three: Time Avalanche Frequency-Size Dis-

tribution

Minimum Maximum Mean
Peacekeeper 0 (0%) 14 (56%) 4.80 (19.20%)
Insurgent 4 (4%) 33 (33%) 17.78 (17.78%)

Table 5.34: Scenario Three, Trial Three: Casualty Numbers

Total Mean per Run
Number of Failures 2581 51.62
Number Fixed 100 2

Table 5.35: Scenario Three, Trial Three: Utility Failure Numbers
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5.2.4 Trial Four

Since we found that the probabilities for the utility failures had been set too high

we reduce them to 0.001 for this set of model runs. The parameters for this trial

are given in Table 5.36.

Parameter Value

PEACENO 25
SUPPORTNO 25
WATERFAIL 0.001
ELECFAIL 0.001

Table 5.36: Scenario Three, Trial Four: Parameters
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Figure 5.23: Scenario Three, Trial Four: Avalanche Frequency-Size Distribution
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Figure 5.24: Scenario Three, Trial Four: Time Avalanche Frequency-Size Distri-

bution

Minimum Maximum Mean
Peacekeeper 0 (0%) 14 (56%) 5.98 (23.92%)
Insurgent 4 (4%) 39 (39%) 20.40 (20.40%)

Table 5.37: Scenario Three, Trial Four: Casualty Numbers

Total Mean per Run
Number of Failures 1008 20.16
Number Fixed 46 0.92

Table 5.38: Scenario Three, Trial Four: Utility Failure Numbers
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5.2.5 Trial Five

The parameters for Scenario Three, Trial Five are shown in Table 5.39. Again

we reduce the probabilities for water and electricity failure, this time to 0.0001.

Parameter Value

PEACENO 25
SUPPORTNO 25
WATERFAIL 0.0001
ELECFAIL 0.0001

Table 5.39: Scenario Three, Trial Five: Parameters
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Figure 5.25: Scenario Three, Trial Five: Avalanche Frequency-Size Distribution
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Figure 5.26: Scenario Three, Trial Five: Time Avalanche Frequency-Size Distri-

bution

Minimum Maximum Mean
Peacekeeper 0 (0%) 14 (56%) 5.98 (23.92%)
Insurgent 3 (3%) 39 (39%) 19.52 (19.52%)

Table 5.40: Scenario Three, Trial Five: Casualty Numbers

Total Mean per Run
Number of Failures 202 4.04
Number Fixed 6 0.12

Table 5.41: Scenario Three, Trial Five: Utility Failure Numbers
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5.2.6 Trial Six

Now the utility failure probabilities have been set to a sensible level we can vary

the squad sizes to see what effect this has. We double the Peacekeeper and NGO

squads so that they each contain 50 agents. The scenario parameters are shown

in Table 5.42.

Parameter Value

PEACENO 50
SUPPORTNO 50
WATERFAIL 0.0001
ELECFAIL 0.0001

Table 5.42: Scenario Three, Trial Six: Parameters
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Figure 5.27: Scenario Three, Trial Six: Avalanche Frequency-Size Distribution
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Figure 5.28: Scenario Three, Trial Six: Time Avalanche Frequency-Size Distrib-

ution

Minimum Maximum Mean
Peacekeeper 0 (0%) 20 (40%) 6.08 (12.16%)
Insurgent 2 (2%) 53 (53%) 23.02 (23.02%)

Table 5.43: Scenario Three, Trial Six: Casualty Numbers

Total Mean per Run
Number of Failures 201 4.02
Number Fixed 18 0.36

Table 5.44: Scenario Three, Trial Six: Utility Failure Numbers
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5.2.7 Trial Seven

For this trial we increase the water and electricity failure probabilities to 0.0002

and reduce the NGO and Peacekeeper squads to 25 agents. The parameters are

recorded in Table 5.45.

Parameter Value

PEACENO 25
SUPPORTNO 25
WATERFAIL 0.0002
ELECFAIL 0.0002

Table 5.45: Scenario Three, Trial Seven: Parameters
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Figure 5.29: Scenario Three, Trial Seven: Avalanche Frequency-Size Distribution
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Figure 5.30: Scenario Three, Trial Seven: Time Avalanche Frequency-Size Dis-

tribution

Minimum Maximum Mean
Peacekeeper 0 (0%) 21 (84%) 6.30 (25.20%)
Insurgent 0 (0%) 37 (37%) 18.70 (18.70%)

Table 5.46: Scenario Three, Trial Seven: Casualty Numbers

Total Mean per Run
Number of Failures 296 5.92
Number Fixed 10 0.20

Table 5.47: Scenario Three, Trial Seven: Utility Failure Numbers
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5.2.8 Trial Eight

The parameters for this trial are given in Table 5.48. We have increased the

Peacekeeper and NGO squad sizes to 50.

Parameter Value

PEACENO 50
SUPPORTNO 50
WATERFAIL 0.0002
ELECFAIL 0.0002

Table 5.48: Scenario Three, Trial Eight: Parameters
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Figure 5.31: Scenario Three, Trial Eight: Avalanche Frequency-Size Distribution
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Figure 5.32: Scenario Three, Trial Eight: Time Avalanche Frequency-Size Dis-

tribution

Minimum Maximum Mean
Peacekeeper 0 (0%) 17 (34%) 6.24 (12.48%)
Insurgent 4 (4%) 51 (51%) 24.70 (24.70%)

Table 5.49: Scenario Three, Trial Eight: Casualty Numbers

Total Mean per Run
Number of Failures 304 6.08
Number Fixed 19 0.38

Table 5.50: Scenario Three, Trial Eight: Utility Failure Numbers
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5.2.9 Trial Nine

For our final variation of Scenario Three we again increase the number of agents

in the Peacekeeper and NGO squads. This time they are each of size 75. The

parameters are shown in Table 5.51.

Parameter Value

PEACENO 75
SUPPORTNO 75
WATERFAIL 0.0002
ELECFAIL 0.0002

Table 5.51: Scenario Three, Trial Nine: Parameters
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Figure 5.33: Scenario Three, Trial Nine: Avalanche Frequency-Size Distribution
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Figure 5.34: Scenario Three, Trial Nine: Time Avalanche Frequency-Size Distri-

bution

Minimum Maximum Mean
Peacekeeper 0 (0%) 18 (24%) 7.30 (9.73%)
Insurgent 3 (3%) 59 (59%) 27.80 (27.80%)

Table 5.52: Scenario Three, Trial Nine: Casualty Numbers

Total Mean per Run
Number of Failures 311 6.22
Number Fixed 23 0.46

Table 5.53: Scenario Three, Trial Nine: Utility Failure Numbers
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5.2.10 Conclusions

Looking at the plots for the time avalanche distributions, it appears that the

points are even more spread out around the line of best fit than those for Scenario

Two, despite the added complexity of Scenario Three. We definitely could not

say that these plots show evidence of self-organised criticality. The avalanche

plots seem similar on general shape to those for Scenario Two so again we cannot

say they show evidence of SOC.

In this scenario we have two squads of agents looking to help the local pop-

ulation, but we also have added the probability of multiple supply failures. In

Trial Three and Trial Four we set the water and electricity failure probabilities

too high so these results are not particularly meaningful. Doubling the number

of Peacekeepers and NGOs to 50 of each from Trial One to Trial Two did not

seem to have much effect. These two trials had similar mean Peacekeeper casu-

alty numbers and number of sectors fixed. However when we had multiple sector

supply failures in Trials Five and Six, doubling the number of Peacekeepers and

NGOs to 50 agents per squad tripled the number of fixed sectors whereas the

mean Peacekeeper casualty figures stayed fairly constant. Similarly, doubling the

squad sizes from Trial Seven to Trial Eight nearly doubled the number of sectors

fixed but the casualty figures for the Peacekeepers did not change significantly.

Increasing the squad sizes again to 75 agents for Trial Nine again increased the

number of sectors fixed but not by a significant amount, there was also an increase

in the mean casualty figure for the Peacekeepers.
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5.3 Scenario Four

Scenario Four has the same initial layout as Scenario Three in terms of the squad

distributions and the initial failure of the water supply in the final sector. This

set-up is shown again in Figure 5.35.

The general model parameters are shown in Table 5.54. Our main aim for

this scenario is to show what happens when Insurgents use suicide bombs as their

initial method of attack, hence the probability that they will fire at random is

zero and their bomb probability is varied throughout the different model runs.

We also give the Civilians the ability to move around the grid since they have a

non-zero capability for all but one of the scenario variations. Notice that we also

reduced the number of Civilians and Insurgents in the model to make the grid

less crowded and to reduce the time taken for each simulation. The number of

Peacekeepers and NGOs is also fixed at 25 agents per squad.

The agent parameters for the scenario are given in Table 5.55. These values

all stay the same throughout the different variations of the scenario.

When we were running this scenario we decided that it would not be useful

when looking for SOC behaviour since there are relatively few avalanches. There-

fore we only ran each set of runs 15 times, or 16 in the case of Run One, to get

a general idea of what was happening so we could adapt the scenario further as

Scenario Five.
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Constant Value

RUNTIME Varies
GRIDSIZE 200
SECTOR 5

NOOFSQUADS 4
PEACENO 25

SUPPORTNO 25
LOCALNO 50

CIV NO 1000
PEACECAP 1

SUPPORTCAP 1
LOCALCAP 1

CIV CAP Varies
BOMBMEMORY 20
SHOTMEMORY 10
LMBOMBPROB Varies
LMFIREPROB 0.00
WATERFAIL Varies
ELECFAIL Varies

MAXSHOTS 5000
MAXBOMB 100

Table 5.54: Scenario Four: General Parameters
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Parameter Peace. NGO Ins. Civ.

squadNo 1 2 3 4
xHome 99 14 112 112
yHome 14 99 112 112

homeRadius 10 10 87 87
sensorRange 200 200 50 50
fireRange 20 - 15 -
bombRadius - - 5 -

sSKP 0.10 - 0.05 -
Relationship to Peacekeepers F F H C

Relationship to NGOs F F U F
Relationship to Insurgents H U F U
Relationship to Civilians F F F F

W1 0 0 0 0
W2 0 0 0 0
W3 0 0 0 0
W4 0 0 0 0
W5 0 0 0 0
W6 0 0 0 0
W7 0 0 0 0
W8 0 0 0 0
W9 0 0 0 0
W10 0 0 0 0
W11 0 0 0 0
W12 0 0 0 0
W13 0 0 0 0
W14 0 -100 0 0
W15 -50 0 0 0
W16 0 0 0 0
W17 0 0 0 0
W18 0 0 0 0
W19 0 0 0 0
W20 0 0 0 0
W22 10 10 - -
W23 10 10 - -
W24 10 10 - -
W25 0 - 0 -

probF ixWater 1.00 1.00 - -
probF ixElec 1.00 1.00 - -

Table 5.55: Scenario Four: Agent Parameters
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5.3.1 Trial One

We start with a bomb probability of 0.001 and to keep the scenario simple we set

the water and electricity failure probabilities to be zero. The Civilian capability

is one so the agents are able to move. The list of parameter values is shown in

Table 5.56.

Parameter Value

RUNTIME 500
CIV CAP 1

LMBOMBPROB 0.001
WATERFAIL 0.00
ELECFAIL 0.00

Table 5.56: Scenario Four, Trial One: Parameters

Minimum Maximum Mean
Peacekeeper 0 (0%) 14 (56%) 1.25 (5%)

NGO 0 (0%) 23 (92%) 3.56 (14.25%)
Insurgent 0 (0%) 3 (6%) 0.56 (1.13%)
Civilian 0 (0%) 8 (0.80%) 0.94 (0.09%)

Table 5.57: Scenario Four, Trial One: Casualty Numbers

Total Mean per Run
Number of Failures 16 1
Number Fixed 1 0.06

Table 5.58: Scenario Four, Trial One: Utility Failure Numbers
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5.3.2 Trial Two

The parameter values for this scenario are shown in Table 5.59. Here we intro-

duce more complexity to the model by setting the water and electricity failure

probabilities to be 0.0001.

Parameter Value

RUNTIME 500
CIV CAP 1

LMBOMBPROB 0.001
WATERFAIL 0.0001
ELECFAIL 0.0001

Table 5.59: Scenario Four, Trial Two: Parameters

Minimum Maximum Mean
Peacekeeper 0 (0%) 0 (0%) 0 (0%)

NGO 0 (0%) 7 (28%) 1.40 (5.60%)
Insurgent 0 (0%) 2 (4%) 0.40 (0.80%)
Civilian 0 (0%) 6 (0.60%) 1.33 (0.13%)

Table 5.60: Scenario Four, Trial Two: Casualty Numbers

Total Mean per Run
Number of Failures 67 4.47
Number Fixed 3 0.20

Table 5.61: Scenario Four, Trial Two: Utility Failure Numbers
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5.3.3 Trial Three

Now we increase the water and electricity failure probabilities to 0.0002. We also

set the Civilian capability back to zero to see what effect the Civilians being able

to move had on the model. The parameters are given in Table 5.62.

Parameter Value

RUNTIME 500
CIV CAP 0

LMBOMBPROB 0.001
WATERFAIL 0.0002
ELECFAIL 0.0002

Table 5.62: Scenario Four, Trial Three: Parameters

Minimum Maximum Mean
Peacekeeper 0 (0%) 14 (56%) 1.73 (6.93%)

NGO 0 (0%) 10 (40%) 0.73 (2.93%)
Insurgent 0 (0%) 5 (10%) 0.80 (1.60%)
Civilian 0 (0%) 5 (0.50%) 0.80 (0.08%)

Table 5.63: Scenario Four, Trial Three: Casualty Numbers

Total Mean per Run
Number of Failures 91 6.07
Number Fixed 4 0.27

Table 5.64: Scenario Four, Trial Three: Utility Failure Numbers
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5.3.4 Trial Four

The additional parameter values for this scenario are shown in Table 5.65. For

this set of runs we set the Civilian capability back to one, the water and electricity

failure probabilities back to 0.0001 and increase the Insurgent bomb probability

to 0.002.

Parameter Value

RUNTIME 500
CIV CAP 1

LMBOMBPROB 0.002
WATERFAIL 0.0001
ELECFAIL 0.0001

Table 5.65: Scenario Four, Trial Four: Parameters

Minimum Maximum Mean
Peacekeeper 0 (0%) 11 (44%) 1.67 (6.67%)

NGO 0 (0%) 8 (32%) 1.73 (6.93%)
Insurgent 0 (0%) 6 (12%) 1.07 (2.13%)
Civilian 0 (0%) 7 (0.70%) 1.87 (0.19%)

Table 5.66: Scenario Four, Trial Four: Casualty Numbers

Total Mean per Run
Number of Failures 53 3.53
Number Fixed 3 0.20

Table 5.67: Scenario Four, Trial Four: Utility Failure Numbers
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5.3.5 Trial Five

For this trial we increase the Insurgent bomb probability to 0.005. The parameters

are shown in Table 5.68.

Parameter Value

RUNTIME 500
CIV CAP 1

LMBOMBPROB 0.005
WATERFAIL 0.0001
ELECFAIL 0.0001

Table 5.68: Scenario Four, Trial Five: Parameters

Minimum Maximum Mean
Peacekeeper 0 (0%) 14 (56%) 5.20 (20.80%)

NGO 0 (0%) 25 (100%) 5 (20%)
Insurgent 0 (0%) 10 (20%) 4.33 (8.67%)
Civilian 0 (0%) 18 (1.80%) 6 (0.60%)

Table 5.69: Scenario Four, Trial Five: Casualty Numbers

Total Mean per Run
Number of Failures 50 3.33
Number Fixed 7 0.47

Table 5.70: Scenario Four, Trial Five: Utility Failure Numbers
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5.3.6 Trial Six

This variation of Scenario Four is the same as the previous trial but we run the

model for 1000 timesteps instead of 500. The parameters are given in Table 5.71.

Parameter Value

RUNTIME 1000
CIV CAP 1

LMBOMBPROB 0.005
WATERFAIL 0.0001
ELECFAIL 0.0001

Table 5.71: Scenario Four, Trial Six: Parameters

Minimum Maximum Mean
Peacekeeper 0 (0%) 24 (96%) 7.13 (28.53%)

NGO 0 (0%) 19 (76%) 5.73 (22.93%)
Insurgent 0 (0%) 12 (24%) 5.80 (11.60%)
Civilian 0 (0%) 16 (1.60%) 7.67 (0.77%)

Table 5.72: Scenario Four, Trial Six: Casualty Numbers

Total Mean per Run
Number of Failures 242 16.13
Number Fixed 12 0.80

Table 5.73: Scenario Four, Trial Six: Utility Failure Numbers

5.3.7 Conclusions

We have not conducted any avalanche analysis for this scenario, there were so few

data points that it would have been meaningless. Since the only combat comes

as a result of suicide bomb attack, which we set to be fairly rare, we would either

have to run the model for a very long time, or repeat the experiment a large

number of times to get significant data. The model runs took a few hours each
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so we did not have time to do this, instead we decided to abandon these scenario

experiments and add random firing by the Insurgents. This became Scenario

Five.

Looking at casualty numbers and the success the Peacekeepers and NGOs had

repairing water and electricity supplies, again we cannot draw any meaningful

conclusions since there is not a large enough sample size, but the results are

given for completeness.
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5.4 Scenario Five

Finally we have Scenario Five. For this set of trials we again have the same initial

set-up as we had for Scenarios Three and Four, this is illustrated in Figure 5.36.

The general parameters for the model are given in Table 5.74. With this

being the most complex set of simulations it follows that we would have the most

variation of parameters, hence at various stages we change the agent numbers

and capabilities as well as the probabilities related to the water and electricity

failure. The Insurgents still use suicide bombs as a method of attack but here

the bomb probability is fixed at 0.002 and firing at random targets is also used

as an initial attack method with varying probability.

Constant Value

RUNTIME Varies
GRIDSIZE 200
SECTOR 5

NOOFSQUADS 4
PEACENO Varies

SUPPORTNO Varies
LOCALNO 50

CIV NO 1000
PEACECAP Varies

SUPPORTCAP Varies
LOCALCAP Varies

CIV CAP 1
BOMBMEMORY 20
SHOTMEMORY 10
LMBOMBPROB 0.002
LMFIREPROB Varies
WATERFAIL Varies
ELECFAIL Varies

MAXSHOTS 5000
MAXBOMB 100

Table 5.74: Scenario Five: General Parameters

The agent parameters stay constant throughout the different scenario varia-
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tions, they are shown in Table 5.75.
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Parameter Peace. NGO Ins. Civ.

squadNo 1 2 3 4
xHome 99 14 112 112
yHome 14 99 112 112

homeRadius 10 10 87 87
sensorRange 200 200 50 50
fireRange 20 - 15 -
bombRadius - - 5 -

sSKP 0.10 - 0.05 -
Relationship to Peacekeepers F F H C

Relationship to NGOs F F U F
Relationship to Insurgents H U F U
Relationship to Civilians F F F F

W1 0 0 0 0
W2 0 0 0 0
W3 0 0 0 0
W4 0 0 0 0
W5 0 0 0 0
W6 0 0 0 0
W7 0 0 0 0
W8 0 0 0 0
W9 0 0 0 0
W10 0 0 0 0
W11 0 0 0 0
W12 0 0 0 0
W13 0 0 0 0
W14 0 -100 0 0
W15 -50 0 0 0
W16 0 0 0 0
W17 0 0 0 0
W18 0 0 0 0
W19 0 0 0 0
W20 0 0 0 0
W22 10 10 - -
W23 10 10 - -
W24 10 10 - -
W25 0 - 0 -

probF ixWater 1.00 1.00 - -
probF ixElec 1.00 1.00 - -

Table 5.75: Scenario Five: Agent Parameters
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5.4.1 Trial One

We start with a squad size of 25 for both the Peacekeepers and the NGOs and

all the agents have the same capability of one. We set the Insurgents’ firing

probability at 0.01. Since this is higher than their bomb probability we would

expect that most skirmishes would be started by a shot rather than a bomb.

Since we are starting with a basic scenario there will be no water or electricity

failures apart from the initial problem with the water supply in the final sector.

The list of parameter values is given in Table 5.76.

Parameter Value

RUNTIME 500
PEACENO 25

SUPPORTNO 25
PEACECAP 1

SUPPORTCAP 1
LOCALCAP 1

LMFIREPROB 0.01
WATERFAIL 0.00
ELECFAIL 0.00

Table 5.76: Scenario Five, Trial One: Parameters

Minimum Maximum Mean
Peacekeeper 0 (0%) 16 (64%) 3.12 (12.48%)

NGO 0 (0%) 11 (44%) 1.42 (5.68%)
Insurgent 0 (0%) 19 (38%) 7.56 (15.12%)
Civilian 0 (0%) 11 (1.10%) 2.40 (0.24%)

Table 5.77: Scenario Five, Trial One: Casualty Numbers

Total Mean per Run
Number of Failures 50 1
Number Fixed 10 0.20

Table 5.78: Scenario Five, Trial One: Utility Failure Numbers
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Figure 5.37: Scenario Five, Trial One: Avalanche Frequency-Size Distribution
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Figure 5.38: Scenario Five, Trial One: Time Avalanche Frequency-Size Distribu-

tion
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5.4.2 Trial Two

We now add some extra complexity to the previous set of simulations by intro-

ducing the possibility of the water and electricity failing in each of the sectors.

All the other parameters remain as they were for Scenario Five, Trial One and

are given in Table 5.79.

Parameter Value

RUNTIME 500
PEACENO 25

SUPPORTNO 25
PEACECAP 1

SUPPORTCAP 1
LOCALCAP 1

LMFIREPROB 0.01
WATERFAIL 0.0001
ELECFAIL 0.0001

Table 5.79: Scenario Five, Trial Two: Parameters

Minimum Maximum Mean
Peacekeeper 0 (0%) 14 (56%) 2.86 (11.44%)

NGO 0 (0%) 13 (52%) 1.98 (7.92%)
Insurgent 0 (0%) 19 (38%) 8.96 (17.92%)
Civilian 0 (0%) 14 (1.40%) 2.44 (0.24%)

Table 5.80: Scenario Five, Trial Two: Casualty Numbers

Total Mean per Run
Number of Failures 187 3.74
Number Fixed 14 0.28

Table 5.81: Scenario Five, Trial Two: Utility Failure Numbers
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Figure 5.39: Scenario Five, Trial Two: Avalanche Frequency-Size Distribution
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Figure 5.40: Scenario Five, Trial Two: Time Avalanche Frequency-Size Distrib-

ution
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5.4.3 Trial Three

We now increase the level of conflict by increasing the shooting probability for

the Insurgents. The other parameters remain as they were in the previous trial

and are shown in Table 5.82.

Parameter Value

RUNTIME 500
PEACENO 25

SUPPORTNO 25
PEACECAP 1

SUPPORTCAP 1
LOCALCAP 1

LMFIREPROB 0.02
WATERFAIL 0.0001
ELECFAIL 0.0001

Table 5.82: Scenario Five, Trial Three: Parameters

Minimum Maximum Mean
Peacekeeper 0 (0%) 15 (60%) 4.30 (17.20%)

NGO 0 (0%) 14 (56%) 2.66 (10.64%)
Insurgent 1 (2%) 19 (38%) 8.56 (17.12%)
Civilian 0 (0%) 13 (1.30%) 2.74 (0.27%)

Table 5.83: Scenario Five, Trial Three: Casualty Numbers

Total Mean per Run
Number of Failures 172 3.44
Number Fixed 9 0.18

Table 5.84: Scenario Five, Trial Three: Utility Failure Numbers
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Figure 5.41: Scenario Five, Trial Three: Avalanche Frequency-Size Distribution
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Figure 5.42: Scenario Five, Trial Three: Time Avalanche Frequency-Size Distri-

bution
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5.4.4 Trial Four

We now change the squad size for the Peacekeepers to see if having more Peace-

keepers than NGOs keeps the casualty numbers down or increases the level of

conflict and number of deaths. The parameters are given in Table 5.85.

Parameter Value

RUNTIME 500
PEACENO 50

SUPPORTNO 25
PEACECAP 1

SUPPORTCAP 1
LOCALCAP 1

LMFIREPROB 0.02
WATERFAIL 0.0001
ELECFAIL 0.0001

Table 5.85: Scenario Five, Trial Four: Parameters

Minimum Maximum Mean
Peacekeeper 0 (0%) 17 (38%) 4.84 (9.68%)

NGO 0 (0%) 25 (100%) 1.96 (7.84%)
Insurgent 0 (0%) 28 (56%) 12.84 (25.68%)
Civilian 0 (0%) 15 (0.15%) 2.18 (0.22%)

Table 5.86: Scenario Five, Trial Four: Casualty Numbers

Total Mean per Run
Number of Failures 189 3.78
Number Fixed 23 0.46

Table 5.87: Scenario Five, Trial Four: Utility Failure Numbers
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Figure 5.43: Scenario Five, Trial Four: Avalanche Frequency-Size Distribution
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Figure 5.44: Scenario Five, Trial Four: Time Avalanche Frequency-Size Distrib-

ution
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5.4.5 Trial Five

For this scenario variation we increase the number of NGOs so that the Peace-

keeper and NGO squads are back to being of equal, but now increased, size.

Again we are looking to see whether increasing the number of outside agents is a

help or hindrance. The parameters are listed in Table 5.88.

Parameter Value

RUNTIME 500
PEACENO 50

SUPPORTNO 50
PEACECAP 1

SUPPORTCAP 1
LOCALCAP 1

LMFIREPROB 0.02
WATERFAIL 0.0001
ELECFAIL 0.0001

Table 5.88: Scenario Five, Trial Five: Parameters

Minimum Maximum Mean
Peacekeeper 0 (0%) 24 (48%) 5.96 (11.92%)

NGO 0 (0%) 25 (50%) 4.40 (8.80%)
Insurgent 4 (8%) 26 (52%) 12.08 (24.16%)
Civilian 0 (0%) 13 (1.30%) 3.20 (0.32%)

Table 5.89: Scenario Five, Trial Five: Casualty Numbers

Total Mean per Run
Number of Failures 189 3.78
Number Fixed 16 0.32

Table 5.90: Scenario Five, Trial Five: Utility Failure Numbers
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Figure 5.45: Scenario Five, Trial Five: Avalanche Frequency-Size Distribution
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Figure 5.46: Scenario Five, Trial Five: Time Avalanche Frequency-Size Distrib-

ution
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5.4.6 Trial Six

The parameter values for this trial are listed in Table 5.91. For this set of sim-

ulations we try another increase in the Peacekeeper force so that there are now

more Peacekeepers than Insurgents in the model.

Parameter Value

RUNTIME 500
PEACENO 100

SUPPORTNO 50
PEACECAP 1

SUPPORTCAP 1
LOCALCAP 1

LMFIREPROB 0.02
WATERFAIL 0.0001
ELECFAIL 0.0001

Table 5.91: Scenario Five, Trial Six: Parameters

Minimum Maximum Mean
Peacekeeper 0 (0%) 31 (31%) 5.52 (5.52%)

NGO 0 (0%) 25 (50%) 2.96 (5.92%)
Insurgent 5 (10%) 25 (50%) 14.66 (29.32%)
Civilian 0 (0%) 12 (1.20%) 1.94 (0.19%)

Table 5.92: Scenario Five, Trial Six: Casualty Numbers

Total Mean per Run
Number of Failures 204 4.08
Number Fixed 17 0.34

Table 5.93: Scenario Five, Trial Six: Utility Failure Numbers
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Figure 5.47: Scenario Five, Trial Six: Avalanche Frequency-Size Distribution
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Figure 5.48: Scenario Five, Trial Six: Time Avalanche Frequency-Size Distribu-

tion
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5.4.7 Trial Seven

Trial Seven is the same as Trial Five but we have increased the model run time

to 1000 timesteps. This is to see if we are missing any crucial behaviour by

only running the model for 500 timesteps for the majority of the scenarios. The

parameters are shown in Table 5.94.

Parameter Value

RUNTIME 1000
PEACENO 50

SUPPORTNO 50
PEACECAP 1

SUPPORTCAP 1
LOCALCAP 1

LMFIREPROB 0.02
WATERFAIL 0.0001
ELECFAIL 0.0001

Table 5.94: Scenario Five, Trial Seven: Parameters

Minimum Maximum Mean
Peacekeeper 0 (0%) 21 (42%) 6.92 (13.84%)

NGO 0 (0%) 29 (58%) 4.40 (8.80%)
Insurgent 4 (8%) 32 (64%) 14.08 (28.16%)
Civilian 0 (0%) 13 (1.30%) 2.88 (0.29%)

Table 5.95: Scenario Five, Trial Seven: Casualty Numbers

Total Mean per Run
Number of Failures 324 6.48
Number Fixed 20 0.40

Table 5.96: Scenario Five, Trial Seven: Utility Failure Numbers
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Figure 5.49: Scenario Five, Trial Seven: Avalanche Frequency-Size Distribution
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Figure 5.50: Scenario Five, Trial Seven: Time Avalanche Frequency-Size Distri-

bution
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5.4.8 Trial Eight

The parameters for this batch of runs are shown in Table 5.97. Again we take

a previous trial, this time Trial Three, and increase the model run time to 1000

timesteps to see if our usual run time of 500 timesteps is adequate.

Parameter Value

RUNTIME 1000
PEACENO 25

SUPPORTNO 25
PEACECAP 1

SUPPORTCAP 1
LOCALCAP 1

LMFIREPROB 0.02
WATERFAIL 0.0001
ELECFAIL 0.0001

Table 5.97: Scenario Five, Trial Eight: Parameters

Minimum Maximum Mean
Peacekeeper 0 (0%) 14 (56%) 4.72 (18.88%)

NGO 0 (0%) 17 (68%) 3.60 (14.40%)
Insurgent 3 (6%) 25 (50%) 12.20 (24.40%)
Civilian 0 (0%) 21 (2.10%) 2.84 (0.28%)

Table 5.98: Scenario Five, Trial Eight: Casualty Numbers

Total Mean per Run
Number of Failures 315 6.30
Number Fixed 16 0.32

Table 5.99: Scenario Five, Trial Eight: Utility Failure Numbers
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Figure 5.51: Scenario Five, Trial Eight: Avalanche Frequency-Size Distribution
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Figure 5.52: Scenario Five, Trial Eight: Time Avalanche Frequency-Size Distri-
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5.4.9 Trial Nine

Now we look at what happens when we alter the agent capabilities. For this trial

we give the Peacekeepers a capability of two with all the other agents remaining

at capability one. We go back to our usual model run time of 500 timesteps

and also set the NGO and Peacekeeper squads back to having 25 agents. The

parameters are listed in Table 5.100.

Parameter Value

RUNTIME 500
PEACENO 25

SUPPORTNO 25
PEACECAP 2

SUPPORTCAP 1
LOCALCAP 1

LMFIREPROB 0.02
WATERFAIL 0.0001
ELECFAIL 0.0001

Table 5.100: Scenario Five, Trial Nine: Parameters

Minimum Maximum Mean
Peacekeeper 0 (0%) 9 (36%) 2.20 (8.80%)

NGO 0 (0%) 13 (52%) 2.34 (9.36%)
Insurgent 0 (0%) 19 (38%) 7.62 (15.24%)
Civilian 0 (0%) 13 (1.30%) 2.30 (0.23%)

Table 5.101: Scenario Five, Trial Nine: Casualty Numbers

Total Mean per Run
Number of Failures 185 3.70
Number Fixed 7 0.14

Table 5.102: Scenario Five, Trial Nine: Utility Failure Numbers
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Figure 5.53: Scenario Five, Trial Nine: Avalanche Frequency-Size Distribution
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Figure 5.54: Scenario Five, Trial Nine: Time Avalanche Frequency-Size Distrib-
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5.4.10 Trial Ten

We now stay with the increased Peacekeeper capability and increase the squad

size so that we have 50 agents. The parameters are shown in Table 5.103.

Parameter Value

RUNTIME 500
PEACENO 50

SUPPORTNO 25
PEACECAP 2

SUPPORTCAP 1
LOCALCAP 1

LMFIREPROB 0.02
WATERFAIL 0.0001
ELECFAIL 0.0001

Table 5.103: Scenario Five, Trial Ten: Parameters

Minimum Maximum Mean
Peacekeeper 0 (0%) 35 (70%) 4.68 (9.36%)

NGO 0 (0%) 10 (40%) 1.76 (7.04%)
Insurgent 1 (2%) 21 (42%) 10.62 (21.24%)
Civilian 0 (0%) 7 (0.70%) 0.96 (0.10%)

Table 5.104: Scenario Five, Trial Ten: Casualty Numbers

Total Mean per Run
Number of Failures 214 4.28
Number Fixed 19 0.38

Table 5.105: Scenario Five, Trial Ten: Utility Failure Numbers

207



0 1 2 3 4 5 6
−1

0

1

2

3

4

5

6

7

log(X)

lo
g(

fr
eq

(X
))

 
y = − 0.6403*x + 3.0347

Figure 5.55: Scenario Five, Trial Ten: Avalanche Frequency-Size Distribution
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Figure 5.56: Scenario Five, Trial Ten: Time Avalanche Frequency-Size Distribu-

tion
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5.4.11 Trial Eleven

For our final set of simulations we alter the Peacekeeper capability to four, the

Insurgent and NGO capability to two and leave the Civilian capability at one.

The parameters are given in Table 5.106.

Parameter Value

RUNTIME 500
PEACENO 50

SUPPORTNO 25
PEACECAP 4

SUPPORTCAP 2
LOCALCAP 2

LMFIREPROB 0.02
WATERFAIL 0.0001
ELECFAIL 0.0001

Table 5.106: Scenario Five, Trial Eleven: Parameters

Minimum Maximum Mean
Peacekeeper 0 (0%) 17 (34%) 3.72 (7.44%)

NGO 0 (0%) 11 (44%) 1.56 (6.24%)
Insurgent 1 (2%) 17 (34%) 8.58 (17.16%)
Civilian 0 (0%) 15 (1.50%) 2.08 (0.21%)

Table 5.107: Scenario Five, Trial Eleven: Casualty Numbers

Total Mean per Run
Number of Failures 198 3.96
Number Fixed 8 0.16

Table 5.108: Scenario Five, Trial Eleven: Utility Failure Numbers
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Figure 5.57: Scenario Five, Trial Eleven: Avalanche Frequency-Size Distribution

0 0.5 1 1.5 2 2.5 3 3.5
0

1

2

3

4

5

6

7

log(X)

lo
g(

fr
eq

(X
))

 
y = − 1.469*x + 5.1781

Figure 5.58: Scenario Five, Trial Eleven: Time Avalanche Frequency-Size Distri-

bution
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5.4.12 Conclusions

First we look at the graphs for the avalanche and time avalanche distributions.

With this set of scenarios being the most complicated it gives the greatest oppor-

tunity to find evidence of SOC. In general, the plots do appear to be closer to the

best fit line than those for Scenarios Two and Three but they still cannot be said

for sure to approximate a line. It also appears that the most complicated scenar-

ios, Trials Nine, Ten and Eleven where we changed the squad capabilities, have

some of the worst fit avalanche plots. This suggests that varying agent capability

further would not help if we want to find SOC using this particular measure; we

would have to add more complexity to the actual scenario, for example by adding

in additional Insurgent squads. In contrast, when we look at the time avalanche

plots for Trials Nine, Ten and Eleven we see a much better fit to the straight line.

In particular, Figure 5.58 shows a fair approximation to the line. This suggests

that this measure may be more appropriate than the avalanche one when looking

for SOC behaviour. In Section 5.5 we explore this further by looking at ANOVA

analysis of the time avalanche plots for Trials Nine, Ten and Eleven.

We now look at how successful the Peacekeepers and NGOs were at fixing any

faults with the water and electricity supply. Comparing Trial Three and Trial

Four we can see that simply doubling the Peacekeeper squad size, and leaving the

NGO squad constant, leads to the number of sectors fixed more than doubling.

The mean casualty figure for the Peacekeeper squad stays fairly constant. How-

ever, when we then doubled the NGO squad in Trial Five so that it was equal to

the Peacekeeper one, we ended up with fewer repairs and higher casualty numbers

for both the NGOs and the Peacekeepers. Doubling the Peacekeeper squad again

in Trial Six reduced the mean NGO casualty number, it did not significantly af-

fect the mean Peacekeeper casualty figure or the number of repairs. Doubling the

run time for the model in Trials Seven and Eight does not seem to significantly

affect the number of repairs made or the casualty numbers. This suggests that
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the shorter run time was adequate to examine the full behaviour of the model.

Altering the various squad capabilities does not seem to have much effect in Trial

Ten, with similar repair and casualty numbers to previous runs, but reduces both

the number of repairs and the casualty numbers in Trials Nine and Eleven. This

seems strange since we would expect the Peacekeepers to be able to conduct more

repairs with a higher capability.
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5.5 ANOVA Analysis

Throughout this chapter we have plotted the avalanche and time avalanche data

along with a straight line of best fit, and for the majority of cases it was obvious

that the data did not approximate a straight line. After completing this analysis

we looked at ANOVA results, for powers up to cubic, in those graphs that showed

a possibility of power law behaviour. We used a spreadsheet polynomial regression

model that used orthogonal polynomials for our analysis; this had been given to

us by Professor Russell Cheng from Southampton University. The results we

were looking at were those for time avalanches from Scenario Five Trials Nine,

Ten and Eleven. The results obtained are given below.

5.5.1 Scenario Five, Trial Nine

Table 5.109 gives the ANOVA results. The R square value for the model was

calculated to be 0.93, this along with the low p−value shows that the model is

significant.

Sum of Squares Degrees of Freedom Mean Square F p
Mean 72.16 1 72.16 235.38 7.45x10−15

Regression 38.53 3 12.84 41.89 2.71x10−10

Residual 8.28 27 0.31
Total 118.67 31

Table 5.109: ANOVA Table for Scenario Five, Trial Nine

Table 5.110 gives the regression results that show the significant terms in the

model. Here X0 relates to the constant term, X1 the linear, X2 the quadratic

and X3 the cubic.

We can see from the low p−value for the cubic coefficient that we cannot

dismiss this term. We therefore cannot say that the data approximates a straight

line.
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Coefficient β Standard Error of β t p
X0 8.49 0.55 15.34 7.45x10−15

X1 -5.69 0.55 -10.27 8.01x10−11

X2 0.61 0.55 1.10 0.28
X3 -2.42 0.55 -4.36 1.69x10−4

Table 5.110: Regression Coefficients for Scenario Five, Trial Nine

5.5.2 Scenario Five, Trial Ten

The ANOVA and regression results for Trial Ten are given in Tables 5.111

and 5.112 respectively.

Sum of Squares Degrees of Freedom Mean Square F p
Mean 98.48 1 98.48 372.28 4.34x10−18

Regression 38.90 3 12.97 49.01 1.78x10−11

Residual 7.67 29 0.26
Total 145.05 33

Table 5.111: ANOVA Table for Scenario Five, Trial Ten

Coefficient β Standard Error of β t p
X0 9.92 0.51 19.29 4.34x10−18

X1 -5.66 0.51 -11.01 7.11x10−12

X2 -0.06 0.51 -0.11 0.92
X3 -2.61 0.51 -5.07 2.04x10−5

Table 5.112: Regression Coefficients for Scenario Five, Trial Ten

The R square value for the ANOVA was 0.95. Since the p−value was very small

this indicates that the model is significant. Looking at the regression results we

again see that we have a low p−values for the cubic term so we cannot discount

this factor.
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5.5.3 Scenario Five, Trial Eleven

The ANOVA results are given in Table 5.113. The R square value was calculated

to be 0.95. Since the p−value is low we can conclude that the model is significant.

Sum of Squares Degrees of Freedom Mean Square F p
Mean 81.94 1 81.94 230.41 1.06x10−11

Regression 37.44 3 12.48 35.09 9.90x10−8

Residual 6.40 18 0.36
Total 125.78 22

Table 5.113: ANOVA Table for Scenario Five, Trial Eleven

The regression results are given in Table 5.114. As with the previous two

Trials, the results show that we cannot dismiss the cubic factor and therefore

cannot say that the data fits a straight line.

Coefficient β Standard Error of β t p
X0 9.05 0.60 15.18 1.06x10−11

X1 -5.60 0.60 -9.39 2.35x10−8

X2 -0.11 0.60 -0.19 0.86
X3 -2.47 0.60 -4.14 6.13x10−4

Table 5.114: Regression Coefficients for Scenario Five, Trial Eleven

5.5.4 Conclusions

In all three cases we have found that we cannot say the data approximates a

straight line since regression results show that we cannot discount the cubic fac-

tor. This means that we cannot say that we have any evidence of a power law

relationship. Since this is a necessary condition for self-organised criticality, the

time avalanche data cannot be said to exhibit this behaviour.

Further discussion of all the results from the experiments is given in Chapter 6.
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Chapter 6

CONCLUSIONS

We have successfully developed a working agent-based model for the representa-

tion of peace support operations. We have devised scenarios to show the effects

of failing water and electricity supplies and the escalating violence resulting from

attacks by Insurgents. The aim for the model is that it can be developed further

so that it can be used in conjunction with the DIAMOND model and can pro-

vide the detail that DIAMOND lacks. Suggested improvements to help achieve

this aim are given in Chapter 7 along with further analysis and experiments that

could be undertaken.

There is insufficient evidence to say for sure whether or not the model is

capable of exhibiting power law behaviour, and further to that self-organised

criticality, (SOC). For the majority of the ‘avalanche’ and ‘time avalanche’ plots

we can conclude that there is no evidence of a power law relationship, and hence

no SOC. The ‘time avalanche’ plot for Scenario Five, Trial Eleven, reproduced

here in Figure 6.1, was the closest approximation to a straight line but ANOVA

results showed we could not discount a cubic model.

It may be that the scenarios we used were not complex enough to show SOC

behaviour. We started in Scenario Two with a simple set-up then increased the

complexity as we progressed through the different experiments. In Scenario Three
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Figure 6.1: Scenario Five, Trial Eleven: Time Avalanche Frequency-Size Distri-

bution
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we introduced NGOs, which had not been present in Scenario Two. Scenario Four

saw the introduction of Civilian movement and Insurgent bomb attacks. Finally

in Scenario Five we reinstated Insurgent attacks by gunfire as well as suicide

bomb attacks, in the final runs of this scenario we also altered agent capabilities

so they were not necessarily equal. The ‘avalanche’ plots became more spread

out once we introduced the change in agent capabilities so this may not be the

best way to find SOC using this factor. In contrast, the ‘time avalanche’ plot in

Figure 6.1 resulted from the most complex scenario in terms of agent capability,

Scenario Five, Trial Eleven, so altering this further could lead to evidence of

power law behaviour and SOC.

If the model could indeed show SOC behaviour it would suggest that the

Peacekeepers do not have control of the grid. Self-organised criticality represents

a situation where, in effect, anything could happen at a given timestep. If we

relate this to our ‘time avalanches’ this means that the next skirmish started by

an Insurgent could be anything from just one shot to a conflict that lasts until

the end of the model run.

Aside from the question of SOC, we also looked at how the squad sizes for

the Peacekeepers and NGOs affected their ability to fix water and electricity

supplies,a long with casualty numbers. Surprisingly, it was not always better to

have a larger squad size. For example, in Scenario Three when there was only

the initial water failure, doubling the squad sizes to a size of 50 had little effect.

However, this changed when there were multiple failures. Here increasing the

squad sizes from 25 to 50 significantly increased the fix rate without having much

affect on the casualty numbers. Further increase to a squad size of 75 did not

have so much effect on the fix rate, but the casualty numbers did rise. This

suggests that there is an optimum squad size after which any squad increases do

not increase the effectiveness of the Peacekeepers and NGOs.
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Chapter 7

FURTHER WORK

In this final chapter we shall be suggesting future directions for the research.

There are two main strands to this: further developments to the model and

additional experiments and analysis.

7.1 Suggested Model Improvements

When describing the design process for our agent-based model in Chapter 4, we

noted some factors we were unable to include due to the limited time available,

or in one case due to memory limitations. These possible developments are listed

here along with the reasons why they would improve the model.

• The most important improvement would be to increase the possible grid

size. At the moment we are limited to around 200×200 cells. If we wish to

use the model in conjunction with DIAMOND we would want a grid size

of at least 1000 × 1000 cell to model events at one node adequately. An

experienced programmer should be able to carry out this improvement by

identifying and correcting parts of the code that are inefficient.

• The Insurgents in the model are easily identified by the Peacekeepers and

NGOs as such. It would be more realistic to assume that the Insurgents

221



would blend in with the Civilians until they identified themselves by en-

gaging in combat. This could be programmed into the model so that the

Insurgents appeared as Civilians until they fired at enemy agents. Their

parameters would remain unchanged throughout the model run but the way

the other agents react to them should change.

• At present the model can only be programmed to include one squad of each

agent type. In many peacekeeping scenarios we would expect there to be

rival sets of local militia and civilians. This is another possible source of

conflict and could add extra complexity to the scenarios.

• We mentioned psychological factors in Chapter 4. We had planned to in-

clude a cell measure for tension, a squad measure for acceptance of the

peacekeeping force by the local agents, and an agent measure of fear for the

Civilians. Acceptance of the peacekeeping force could take into account,

for example, the amount of violence, the effectiveness of the Peacekeepers

and NGOs regarding the fixing of essential supplies and the availability of

food. This factor could then influence the relationships between the Peace-

keepers and the Insurgent and Civilian squads, and would therefore affect

the amount of conflict in the model. The method we developed to measure

tension at a DIAMOND node could be adapted to fit this model and then

modified as appropriate. The Civilian fear factor could be, for example,

affected by the violence within their sensor range, weighted by how long

ago it occurred, along with the overall number of Civilian casualties. The

tension and fear factors can be recorded as the model run progresses and

analysed to discover how well the Peacekeepers are controlling the area.

• At present the relationships between the squads are set at the beginning

of the model run and remain constant throughout. This is fine for small

timescale scenarios, such as the ones we experimented with, but if we wish
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to model a long period of time we would expect there to be some changes

in relationship.

• Another consideration we would have to make if we wished to model larger

timescales is representing civilian routines. That is, in a peacekeeping sce-

nario we would expect the civilians to be able to carry on with their normal

daily lives, so they would be travelling to work in the morning then back

home in the evening.

• The agents can only be killed by gun fire or suicide bombs. If long time

periods are to be modelled we would expect the availability of food and

water to become a more important factor, and if the Civilians were without

either for a set time then they could die of starvation.

• We would expect the combat functions, and possibly the movement func-

tions, to be developed further. We noted in Chapter 4 that improvements

could be made to the firing functions. If the Peacekeeper or Insurgent finds

that the target cell they have chosen at random does not contain a valid

target agent, then they should go back to the possible cells and pick an-

other one at random rather than changing their action to ‘move’. If none

of the possible target cells contain a valid target agent then they should

change their action to ‘move’. This change is illustrated in the adapted

firing function in Figure 7.1.

• At present, the agents in the model have only two states: alive or dead.

An injured state could also be introduced which could lead to modified

behaviour for the agents.

• For ease of use, it would be helpful if the user could input all the data

to file which could then be read into the model. This would be better

than the current situation where the source files have to be edited and the
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whole program re-compiled when any changes are made to the scenario

parameters.

• The graphics could be improved so that they were programmed within the

model and could show the model run as it happens. The simple MATLAB

script we programmed only shows the agent positions. It would be helpful

if the shots and bomb attacks were shown along with an indicator for when

the water or electricity fails or for when the food runs out.

• The final improvement would be to link the model to DIAMOND when it is

capable of modelling events at a node, data could then be shared between

the two models. This was the ultimate aim of our research and it is hoped

that we have provided a good initial development model.
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Figure 7.1: Adapted Firing Function
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7.2 Additional Experiments and Analysis

Here we describe some additional analysis that could be done using the data we

have already generated, along with some suggested further experiments.

A large amount of data is generated by the model, we did not have time

to fully analyse all the output from our experiments. In particular, we did not

use the civilians in need and combat indicator outputs at all. If more time had

been available we would have analysed these files to see how the portion of the

grid where these indicators were flagged developed as the model runs progressed.

In a peace support scenario we would want the grid to be under control by

the Peacekeepers. If the percentages had stayed constant, or decreased, this

objective would have been met. An increase in the percentages would suggest

the peacekeepers are unable to control the Insurgents, and that the Peacekeepers

and NGOs are unable to help the Civilians adequately.

The clustering of agents has been shown to be an important indicator of

complex behaviour. We wrote a MATLAB script to calculate the box-counting

dimension of the cluster of Peacekeeper agents at each timestep using the grid

positions output giving a time series of length RUNTIME + 1 for each model

run. The box-counting dimension is an approximation to fractal dimension. This

MATLAB program is given in Appendix E.3. Due to the limited time available,

and the large number of model runs that were completed, we were unable to

analyse the results.

The ‘avalanches’ we looked at in the model were related to the spread of

conflict, this seemed the obvious choice. It would be useful to identify other

factors that could be thought of as ‘avalanches’ that are not related to combat

and could be applied in a non-violent scenario. This could be, for example,

Civilians that are displaced due to lack of water.

The scenarios we looked at featured a fairly high level of conflict, although the

aim for the Peacekeepers and NGOs was to fix the water and electricity supplies.
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Further experiments could focus more on the peacekeeping aspects of the mode

by setting lower probabilities for Insurgent violence.
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Appendix A

TENSION CALCULATIONS IN

DIAMOND: FINAL METHOD
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Figure A.1: Tension at Srbac (10) Using Method 4.3

229



0 50 100 150 200 250
0

10

20

30

40

50

60

70

80

90

100

Time (Hours)

T
en

si
on

Figure A.2: Tension at Derventa (12) Using Method 4.3
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Figure A.3: Tension at Odzak (14) Using Method 4.3
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Figure A.4: Tension at Gradacac (18) Using Method 4.3
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Figure A.5: Tension at Brcko (19) Using Method 4.3
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Figure A.6: Tension at Banja Luca (23) Using Method 4.3
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Figure A.7: Tension at Doboj (25) Using Method 4.3
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Figure A.8: Tension at Tesanj (26) Using Method 4.3
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Figure A.9: Tension at Srebrenik (30) Using Method 4.3
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Figure A.10: Tension at Tuzla (31) Using Method 4.3
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Figure A.11: Tension at Lopare (32) Using Method 4.3
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Figure A.12: Tension at Ugljevik (33) Using Method 4.3
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Figure A.13: Tension at Mrkonjic Grad (36) Using Method 4.3
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Figure A.14: Tension at Banovici (43) Using Method 4.3
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Figure A.15: Tension at Zinivice (44) Using Method 4.3
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Figure A.16: Tension at Zvornik (46) Using Method 4.3
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Figure A.17: Tension at Zenica (52) Using Method 4.3
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Figure A.18: Tension at Vares (54) Using Method 4.3
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Figure A.19: Tension at Olovo (55) Using Method 4.3
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Figure A.20: Tension at Kladanj (56) Using Method 4.3
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Figure A.21: Tension at Vlasenica (58) Using Method 4.3
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Figure A.22: Tension at Vitez (66) Using Method 4.3
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Figure A.23: Tension at Busovaca (67) Using Method 4.3
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Figure A.24: Tension at Kiseljak (69) Using Method 4.3
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Figure A.25: Tension at Visoko (70) Using Method 4.3
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Figure A.26: Tension at Breza (71) Using Method 4.3
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Figure A.27: Tension at Ilijas (72) Using Method 4.3
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Figure A.28: Tension at Sokolac (73) Using Method 4.3
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Figure A.29: Tension at Han Pijesak (74) Using Method 4.3
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Figure A.30: Tension at Tomislavgrad (75) Using Method 4.3
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Figure A.31: Tension at Jablanica (77) Using Method 4.3

0 50 100 150 200 250
−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

Time (Hours)

T
en

si
on

Figure A.32: Tension at Konjic (78) Using Method 4.3
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Figure A.33: Tension at Ilidja (81) Using Method 4.3
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Figure A.34: Tension at Vogosca (83) Using Method 4.3
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Figure A.35: Tension at Sarajevo Centar (84) Using Method 4.3
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Figure A.36: Tension at Novo Sarajevo (86) Using Method 4.3
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Figure A.37: Tension at Rogatica (89) Using Method 4.3
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Figure A.38: Tension at Visegrad (90) Using Method 4.3
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Figure A.39: Tension at Posusje (91) Using Method 4.3

249



250



Appendix B

MODEL CODE

This source code comes from Scenario Five, Run One. Changing the parameters

in the code as appropriate gives the other scenarios.

B.1 main.cpp

// main.cpp

// Main program for model

#include<cstdio>

#include<cstdlib>

#include<iostream>

#include<fstream>

#include<cmath>

#include<ctime>

#include "cell.h" // Include the header file for the Cell class

#include "agent.h" // Include agent classes header file

#include "model.h" // Include general header file

using namespace std;

int main(int nNumberofArgs, char* pszArgs[])

{

// CONSTANTS AND INITIALISATIONS

int i, j, k, m, n; // Declare counters

// Initialise the random number generator - Method taken from ’A Complete

// Guide To Programming In C++’
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// - Kirch-Prinz & Prinz

long sec;

time(&sec);

srand((unsigned)sec);

// Output random number generator seed so can reproduce a run if we need to

cout << "Random number generator seed = " << sec << "\n";

// SET GRID DETAILS

// Initialise grid

Cell grid[GRIDSIZE][GRIDSIZE];

// Declare array of pointers to grid array

Cell *pointGrid[GRIDSIZE][GRIDSIZE];

// Set each pointer to point at relevant cell

for (i = 0; i < GRIDSIZE; i++)

{

for (j = 0; j < GRIDSIZE; j++)

{

pointGrid[j][i] = &(grid[j][i]);

}

} // End of grid pointer initialisation loop

const int sectorNumber = SECTOR*SECTOR; // Calculate the total number

// of sectors

// Set sectorNo in the cell properties

int sectorSize; // Declare variable to hold sector side-length

// Check that the grid can be split into equal sectors, if not give an

// error message and exit the program

if (fmod((float)(GRIDSIZE), (float)(SECTOR)) != 0)

{

cout << "Error in main.cpp, line 69. \n"

<< "Error in SECTOR! Make sure GRIDSIZE is divisible by SECTOR.\n";

system("PAUSE");

exit(1);

}

else

{

sectorSize = GRIDSIZE/SECTOR;

} // End of if/else loop

for (m = 0; m < SECTOR; m++)

{

for (n = 0; n < SECTOR; n++)

{

// Go through all the cells in the sector and set sectorNo

for (i = 0; i < sectorSize; i++)
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{

for (j = 0; j < sectorSize; j++)

{

pointGrid[m*sectorSize + j][n*sectorSize + i]->sectorNo =

m*SECTOR + n;

}

} // End of initialisation of sector (m*SECTOR + n)

}

} // End of sector initialisations loop

// Change the rest of the Cell properties that haven’t worked properly in

// the constructor

for (i = 0; i < GRIDSIZE; i++)

{

for (j = 0; j < GRIDSIZE; j++)

{

pointGrid[j][i]->occSquad = 0;

pointGrid[j][i]->prevSquad = 0;

pointGrid[j][i]->agentType = 0;

pointGrid[j][i]->prevType = 0;

pointGrid[j][i]->foodAmount = 1000;

pointGrid[j][i]->actionType = 0;

pointGrid[j][i]->moveInd = 0;

pointGrid[j][i]->fixWater = 0;

pointGrid[j][i]->fixElec = 0;

pointGrid[j][i]->combat = 0;

pointGrid[j][i]->shotToNo = 0;

pointGrid[j][i]->shotInd = 0;

pointGrid[j][i]->bombBlast = 0;

pointGrid[j][i]->civInNeed = 0;

}

} // End of grid parameter initialisations loop

// SET SQUAD DETAILS

int squadType[NOOFSQUADS]; // Agent type of each squad,

squadType[0] = 1; // this gives the squad

squadType[1] = 2; // priority order for

squadType[2] = 3; // calculating initial

squadType[3] = 4; // positions. Only one squad

// per agent type is allowed

int squadSize[NOOFSQUADS]; // Declare array for squad

// sizes

int capability[NOOFSQUADS]; // Declare array for squad

// capabilities

int frequency[NOOFSQUADS]; // Declare array for squad

// action frequencies

// Set squad size and capability values according to ’#define’s in file

// agent.h

for (n = 0; n < NOOFSQUADS; n++)

253



{

switch (squadType[n])

{

case 1:

squadSize[n] = PEACENO;

capability[n] = PEACECAP;

break;

case 2:

squadSize[n] = SUPPORTNO;

capability[n] = SUPPORTCAP;

break;

case 3:

squadSize[n] = LOCALNO;

capability[n] = LOCALCAP;

break;

case 4:

squadSize[n] = CIVNO;

capability[n] = CIVCAP;

break;

default:

cout << "Error in main.cpp, line 160. \n"

<< "Error in squadType[], check values.\n";

system("PAUSE");

exit(1);

} // End of squadType switch loop

} // End of squad for loop

// Calculate and set maximum capability maxCap

int maxCap = 0;

for (n = 0; n < NOOFSQUADS; n++)

{

if (capability[n] > maxCap)

{

maxCap = capability[n];

}

} // End of squad for loop

// Set frequency values using capability[] and maxCap

for (n = 0; n < NOOFSQUADS; n++)

{

switch (squadType[n])

{

case 1:

frequency[n] = (int)(maxCap/PEACECAP);

break;

case 2:

frequency[n] = (int)(maxCap/SUPPORTCAP);

break;

case 3:

frequency[n] = (int)(maxCap/LOCALCAP);

break;
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case 4:

frequency[n] = (int)(maxCap/CIVCAP);

break;

default:

cout << "Error in main.cpp, line 195. \n"

<< "Error in squadType[], check values.\n";

system("PAUSE");

exit(1);

} // End of squadType switch loop

} // End of for loop

// Construct agents

Peacekeeper peace[PEACENO];

SupportAgent support[SUPPORTNO];

LocalMilitia local[LOCALNO];

Civilian civilian[CIVNO];

// Set pointers to the agents

// Declare array of pointers to Peacekeeper array

Peacekeeper *pointPeace[PEACENO];

// Set each pointer to point at relevant agent

for (i = 0; i < PEACENO; i++)

{

pointPeace[i] = &(peace[i]);

}

// Declare array of pointers to NGO array

SupportAgent *pointSupport[SUPPORTNO];

// Set each pointer to point at relevant agent

for (i = 0; i < SUPPORTNO; i++)

{

pointSupport[i] = &(support[i]);

}

// Declare array of pointers to Insurgent array

LocalMilitia *pointLocal[LOCALNO];

// Set each pointer to point at relevant agent

for (i = 0; i < LOCALNO; i++)

{

pointLocal[i] = &(local[i]);

}

// Declare array of pointers to Civilian array

Civilian *pointCivilian[CIVNO];

// Set each pointer to point at relevant agent

for (i = 0; i < CIVNO; i++)

{

pointCivilian[i] = &(civilian[i]);

}

short int iniGrid[GRIDSIZE][GRIDSIZE] = {0}; // Declare and initialise

// array for initial agent

// positions
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// CALCULATE INITIAL POSITIONS FOR THE AGENTS

for (n = 0; n < NOOFSQUADS; n++)

{

for (m = 0; m < squadSize[n]; m++)

{

switch (squadType[n])

{

case 1:

// Peacekeeper

// Initialise position

peaceInitPos(iniGrid, pointPeace[m]);

// Amend Cell definition

pointGrid[(peace[m].yPos)][(peace[m].xPos)]->occSquad = 1;

pointGrid[(peace[m].yPos)][(peace[m].xPos)]->prevSquad = 1;

pointGrid[(peace[m].yPos)][(peace[m].xPos)]->agentType = 1;

pointGrid[(peace[m].yPos)][(peace[m].xPos)]->prevType = 1;

break;

case 2:

// NGO

suppInitPos(iniGrid, pointSupport[m]);

// Amend Cell definition

pointGrid[(support[m].yPos)][(support[m].xPos)]->occSquad

= 2;

pointGrid[(support[m].yPos)][(support[m].xPos)]->prevSquad

= 2;

pointGrid[(support[m].yPos)][(support[m].xPos)]->agentType

= 2;

pointGrid[(support[m].yPos)][(support[m].xPos)]->prevType

= 2;

break;

case 3:

// Insurgent

locInitPos(iniGrid, pointLocal[m]);

// Amend Cell definition

pointGrid[(local[m].yPos)][(local[m].xPos)]->occSquad = 3;

pointGrid[(local[m].yPos)][(local[m].xPos)]->prevSquad = 3;

pointGrid[(local[m].yPos)][(local[m].xPos)]->agentType = 3;

pointGrid[(local[m].yPos)][(local[m].xPos)]->prevType = 3;

break;

case 4:

// Civilian

civInitPos(iniGrid, pointCivilian[m]);

// Amend Cell definition

pointGrid[(civilian[m].yPos)][(civilian[m].xPos)]->occSquad

= 4;

pointGrid[(civilian[m].yPos)][(civilian[m].xPos)]->prevSquad

= 4;

pointGrid[(civilian[m].yPos)][(civilian[m].xPos)]->agentType

= 4;

256



pointGrid[(civilian[m].yPos)][(civilian[m].xPos)]->prevType

= 4;

break;

default:

cout << "Error in main.cpp, line 305. \n"

<< "Error in squadType[], check values.\n";

system("PAUSE");

exit(1);

} // End of squadType switch loop

} // End of agent for loop

} // End of squad for loop

// Write initial grid to file

ofstream gridoutput; // Declare file to write output to

gridoutput.open("gridoutput.txt", ios::app);

for (j = 0; j < GRIDSIZE; j++)

{

for (i = 0; i < GRIDSIZE; i++)

{

gridoutput << grid[j][i].agentType << " ";

}

gridoutput << "\n";

} // End of grid loop

gridoutput << "\n";

gridoutput.close();

// DECLARE VARIABLES

int currentT; // Declare counter for timesteps

int subT; // Declare counter for sub-timesteps

float x; // Declare variables for random numbers

int y, z;

int xFail, yFail; // Declare variables to hold coordinates for

// failed water or electricity supply

int actionInd; // Declare variable for action type

int *aInd; // Declare pointer to actionInd

aInd = &actionInd;

// Initialise shot and bomb counters

int shotCount = 0;

int bombCount = 0;

// Declare pointers to shotCount and bombCount

int *pShotCount;

pShotCount = &shotCount;

int *pBombCount;

pBombCount = &bombCount;

short shotArray[MAXSHOTS][10]; // Declare array to hold details of

// shots fired
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short bombArray[MAXBOMB][6]; // Declare array to hold details of bomb

// attacks

// Declare array of pointers to shotArray

short *pointShot[MAXSHOTS][10];

// Set each pointer to point at relevant array entry

for (j = 0; j < MAXSHOTS; j++)

{

for (i = 0; i < 10; i++)

{

pointShot[j][i] = &(shotArray[j][i]);

}

} // End of shotArray pointer initialisation loop

// Declare array of pointers to bombArray

short *pointBomb[MAXBOMB][6];

// Set each pointer to point at relevant array entry

for (j = 0; j < MAXBOMB; j++)

{

for (i = 0; i < 6; i++)

{

pointBomb[j][i] = &(bombArray[j][i]);

}

} // End of bombArray pointer initialisation loop

// Initialise the waterFailure and elecFailure arrays to zero

int waterFailure[sectorNumber] = {0}; // Water supply failure

// indicator for the sectors

int elecFailure[sectorNumber] = {0}; // Electricity supply failure

// indicator for the sectors

// ****** ADDED IN FOR THIS SCENARIO: SET FINAL SECTOR WATER TO FAIL ******

waterFailure[sectorNumber - 1] = 1;

y = (int)(rand()*sectorSize/32768);

z = (int)(rand()*sectorSize/32768);

// Compute the cell coordinates relating to these random integers

xFail = (SECTOR - 1)*sectorSize + y;

yFail = (SECTOR - 1)*sectorSize + z;

// Check (xFail, yFail) is within the array bounds

if ((xFail >= GRIDSIZE) || (yFail >= GRIDSIZE) || (xFail < 0)

|| (yFail < 0))

{

cout << "Error in repair location in main.cpp line 395"

<< " (" << xFail << "," << yFail << "). \n";

system("PAUSE");

exit(1);

} // End of error check if loop
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pointGrid[yFail][xFail]->fixWater = 1;

cout << "Water failure at (" << xFail << "," << yFail << "). \n";

// *************************************************************************

// Record other initial data

ofstream combatind; // Declare file to write combat indicator output to

combatind.open("combatind.txt", ios::app);

for (j = 0; j < GRIDSIZE; j++)

{

for (i = 0; i < GRIDSIZE; i++)

{

combatind << grid[j][i].combat << " ";

}

combatind << "\n";

} // End of grid loop

combatind << "\n";

combatind.close();

ofstream civinneedind; // Declare file to write Civilian in need

// indicator output to

civinneedind.open("civinneedind.txt", ios::app);

for (j = 0; j < GRIDSIZE; j++)

{

for (i = 0; i < GRIDSIZE; i++)

{

civinneedind << grid[j][i].civInNeed << " ";

}

civinneedind << "\n";

} // End of grid loop

civinneedind << "\n";

civinneedind.close();

ofstream waterfailind; // Declare file to write water failure indicator

// to

waterfailind.open("waterfailind.txt", ios::app);

for (k = 0; k < sectorNumber; k++)

{

waterfailind << waterFailure[k] << " ";

} // End of array loop

waterfailind << "\n";

waterfailind.close();

ofstream elecfailind; // Declare file to write water failure indicator to

elecfailind.open("elecfailind.txt", ios::app);

for (k = 0; k < sectorNumber; k++)

{

elecfailind << elecFailure[k] << " ";

} // End of array loop
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elecfailind << "\n";

elecfailind.close();

// TIMESTEPS

for (currentT = 1; currentT <= RUNTIME; currentT++)

{

// Go through all the sub-timesteps for this timestep

for (subT = 1; subT <= maxCap; subT++)

{

// Go through the entire grid once to determine actions for the

// agents for this sub-timestep.

for (i = 0; i < GRIDSIZE; i++)

{

for (j = 0; j < GRIDSIZE; j++)

{

// Determine the type of agent at the cell, if any, and then

// determine the course of action for that agent.

switch (grid[j][i].prevType)

{

case 0:

// No agent, no action

pointGrid[j][i]->actionType = 0;

break;

case 1:

// Peacekeeper at cell.

// First determine whether the agent should take any

// action at this sub-timestep.

*aInd = actionIndicator(subT,

frequency[(grid[j][i].prevSquad) - 1],

capability[(grid[j][i].prevSquad) - 1]);

// If there is no action to be taken set the

// actionType cell variable to 0;

if (actionInd == 0)

{

pointGrid[j][i]->actionType = 0;

}

// Check to see if there have been any shots fired

// to the cell in the last timestep, if so set the

// actionType cell variable to 1 (combat)

else if (grid[j][i].shotInd == 1)

{

pointGrid[j][i]->actionType = 1;

}

// Check to see if there have been any bomb blasts

// affecting the cell, if so set the actionType

// cell variable to 1 (combat)

else if (grid[j][i].bombBlast == 1)

{
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pointGrid[j][i]->actionType = 1;

}

// Check whether repairs to water or electricity

// supply are needed at the cell, if so set the

// actionType cell indicator to 3 (repair)

else if ((grid[j][i].fixWater == 1) ||

(grid[j][i].fixElec == 1))

{

pointGrid[j][i]->actionType = 3;

}

// Otherwise set the actionType cell indicator to 4

// (move)

else

{

pointGrid[j][i]->actionType = 4;

} // End of if/else if/else loop

break;

case 2:

// NGO at cell

// First determine whether the agent should take any

// action at this sub-timestep.

*aInd = actionIndicator(subT,

frequency[(grid[j][i].prevSquad) - 1],

capability[(grid[j][i].prevSquad) - 1]);

// If there is no action to be taken set the

// actionType cell variable to 0.

if (actionInd == 0)

{

pointGrid[j][i]->actionType = 0;

}

// Check to see if there have been any shots fired

// at the cell in the last timestep, if so set the

// actionType cell variable to 4 (move)

else if (grid[j][i].shotInd == 1)

{

pointGrid[j][i]->actionType = 4;

}

// Check whether repairs to water or electricity

// supply are needed at the cell, if so set the

// actionType cell indicator to 3 (repair)

else if ((grid[j][i].fixWater == 1) ||

(grid[j][i].fixElec == 1))

{

pointGrid[j][i]->actionType = 3;

}

// Otherwise set the actionType cell indicator to 4

// (move)

else

{
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pointGrid[j][i]->actionType = 4;

} // End of if/else if/else loop

break;

case 3:

// Insurgent agent at the cell

// First determine whether the agent should take any

// action at this sub-timestep.

*aInd = actionIndicator(subT,

frequency[(grid[j][i].prevSquad) - 1],

capability[(grid[j][i].prevSquad) - 1]);

// If there is no action to be taken set the

// actionType cell variable to 0 (no action)

if (actionInd == 0)

{

pointGrid[j][i]->actionType = 0;

}

// Check to see if there have been any shots fired

// at the cell since the agent last performed an

// action, if so set the actionType cell variable to

// 1 (combat)

else if (grid[j][i].shotInd == 1)

{

pointGrid[j][i]->actionType = 1;

}

// Determine whether or not the insurgent agent

// will attack any hostile agents. Note that we do

// not check whether or not there are any valid

// targets within range at this point, this is done

// later and if there are no valid targets within

// range the actionType is changed to move.

else

{

// Generate random number to determine whether

// or not to set off bomb, if so set actionType

// cell indicator to 2 (bomb)

x = (float)rand()/32767;

if ((LMBOMBPROB != 0.00000) &&

(x <= LMBOMBPROB))

{

pointGrid[j][i]->actionType = 2;

}

// If no bomb is to be set off determine whether

// or not to fire, if so set actionType cell

// indicator to 1 (combat), if not set

// actionType cell indicator to 4 (move)

else

{

x = (float)rand()/32767;

if ((LMFIREPROB != 0.00000) &&

(x <= LMFIREPROB))
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{

pointGrid[j][i]->actionType = 1;

}

else

{

pointGrid[j][i]->actionType = 4;

} // End of if/else loop

} // End of if/else loop

} // End of if/else if/else loop

break;

case 4:

// Civilian agent at cell

// First determine whether the agent should take any

// action at this sub-timestep.

*aInd = actionIndicator(subT,

frequency[(grid[j][i].prevSquad) - 1],

capability[(grid[j][i].prevSquad) - 1]);

// If there is no action to be taken set the

// actionType cell variable to 0.

if (actionInd == 0)

{

pointGrid[j][i]->actionType = 0;

}

// Otherwise set the actionType cell variable to 4

// (move)

else

{

pointGrid[j][i]->actionType = 4;

}

// End of if/else loop

break;

default:

// Error message

cout << "Error in main.cpp, line 515. \n"

<< "Unknown agent type!\n";

system("PAUSE");

exit(1);

} // End of prevType switch loop

}

} // End of grid loop to determine action type

// Go through the entire grid to determine all the combat that will

// take place at this sub-timestep. Combat includes both firing and

// bombs so any agent at a cell with actionType 1 or 2 will be

// involved. If there are no valid targets for an agent the

// actionType indicator is changed to 4 (move).

for (i = 0; i < GRIDSIZE; i++)

{
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for (j = 0; j < GRIDSIZE; j++)

{

// Check the actionType indicator for each cell, if it is

// not 1 or 2 no action is taken at this stage

switch (grid[j][i].actionType)

{

case 0:

// No action needed

break;

case 1:

// Call relevant combat function depending on what

// type of agent is at the cell

if (grid[j][i].prevType == 1)

{

// Go through whole squad to find the

// Peacekeeper at (i, j)

for (k = 0; k < PEACENO; k++)

{

if ((peace[k].xPrev == i) &&

(peace[k].yPrev == j))

{

peaceCombat(pointGrid, pointPeace[k],

pointPeace, pointSupport,

pointLocal, pointCivilian,

pointShot, pShotCount,

currentT, subT);

arrayCheck(grid, 4);

} // End of if loop

} // End of Peacekeeper agent for loop

}

else if (grid[j][i].prevType == 3)

{

// Go through the whole squad to find the Local

// Militia agent at (i, j)

for (k = 0; k < LOCALNO; k++)

{

if ((local[k].xPrev == i) &&

(local[k].yPrev == j))

{

locCombat(pointGrid, pointLocal[k],

pointPeace, pointSupport,

pointLocal, pointCivilian,

pointShot, pShotCount,

currentT, subT);

arrayCheck(grid, 4);

} // End of if loop

} // End of Insurgent agent for loop

}

else
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{

// Error message

cout << "Error in main.cpp, line 598. \n"

<< "Combat called for agentType "

<< grid[j][i].agentType << " at (" << i

<< "," << j << ") \n";

system("PAUSE");

exit(1);

} // End of if/else if/else loop

break;

case 2:

// Insurgent agent sets off bomb if there are

// valid targets within range

// Go through the whole squad to find the Local

// Militia agent at (i, j)

for (k = 0; k < LOCALNO; k++)

{

if ((local[k].xPrev == i) &&

(local[k].yPrev == j))

{

locBomb(pointGrid, pointLocal[k],

pointPeace, pointSupport,

pointLocal, pointCivilian,

pointBomb, pBombCount, currentT,

subT);

} // End of if loop

} // End of Insurgent agent for loop

break;

case 3:

// No action needed

break;

case 4:

// No action needed

break;

default:

// Error message

cout << "Error in main.cpp, line 629. \n"

<< "Unknown agent type!\n";

system("PAUSE");

exit(1);

} // End of actionType switch loop

}

} // End of grid loop for determining combat

// Go through the entire grid in order to change the ’dead’ agents’

// former location actionType to 0

for (i = 0; i < GRIDSIZE; i++)

{

for (j = 0; j < GRIDSIZE; j++)

{
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if (grid[j][i].agentType == 0)

{

pointGrid[j][i]->actionType == 0;

} // End of if loop

}

} // End of grid loop

// Update cell and agent parameters so the ’dead’ agents are not

// considered when the movement function are called. This should

// not affect cells without casualties.

// Set cell prevType and prevSquad values

for (i = 0; i < GRIDSIZE; i++)

{

for (j = 0; j < GRIDSIZE; j++)

{

pointGrid[j][i]->prevSquad = grid[j][i].occSquad;

pointGrid[j][i]->prevType = grid[j][i].agentType;

}

} // End of grid loop

// Set xPrev and yPrev values for all the agents so that ’dead’

// agents are not on the grid

for (n = 0; n < PEACENO; n++)

{

pointPeace[n]->xPrev = peace[n].xPos;

pointPeace[n]->yPrev = peace[n].yPos;

}

for (n = 0; n < SUPPORTNO; n++)

{

pointSupport[n]->xPrev = support[n].xPos;

pointSupport[n]->yPrev = support[n].yPos;

}

for (n = 0; n < LOCALNO; n++)

{

pointLocal[n]->xPrev = local[n].xPos;

pointLocal[n]->yPrev = local[n].yPos;

}

for (n = 0; n < CIVNO; n++)

{

pointCivilian[n]->xPrev = civilian[n].xPos;

pointCivilian[n]->yPrev = civilian[n].yPos;

}

// Call movement functions for all agents at a cell with actionType

// value 4, and repair functions for all agents with actionType

// value 3

for (i = 0; i < GRIDSIZE; i++)

{

for (j = 0; j < GRIDSIZE; j++)

{

266



if (grid[j][i].actionType == 3)

{

switch (grid[j][i].prevType)

{

case 0:

// Do nothing

break;

case 1:

// Call Peacekeeper repair function

// Go through the whole squad to find the

// Peacekeeper at (i, j)

for (k = 0; k < PEACENO; k++)

{

if ((peace[k].xPrev == i) &&

(peace[k].yPrev == j))

{

peaceRepair(pointPeace[k],

pointGrid[j][i]);

}

}

break;

case 2:

// Call NGO repair function

// Go through the whole squad to find the

// NGO at (i, j)

for (k = 0; k < SUPPORTNO; k++)

{

if ((support[k].xPrev == i) &&

(support[k].yPrev == j))

{

supportRepair(pointSupport[k],

pointGrid[j][i]);

}

}

break;

default:

// Error in agent type

cout << "Error in main.cpp, line 713. \n"

<< "Unknown agent type!\n";

system("PAUSE");

exit(1);

}

}

else if (grid[j][i].actionType == 4)

{

switch (grid[j][i].prevType)

{

case 0:

// Do nothing

break;

case 1:
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// Peacekeeper

for (k = 0; k < PEACENO; k++)

{

if ((peace[k].xPrev == i) &&

(peace[k].yPrev == j))

{

peaceMovement(pointGrid, pointPeace[k],

waterFailure, elecFailure);

}

}

break;

case 2:

// NGO

for (k = 0; k < SUPPORTNO; k++)

{

if ((support[k].xPrev == i) &&

(support[k].yPrev == j))

{

suppMovement(pointGrid, pointSupport[k],

waterFailure, elecFailure);

}

}

break;

case 3:

// Insurgent

for (k = 0; k < LOCALNO; k++)

{

if ((local[k].xPrev == i) &&

(local[k].yPrev == j))

{

locMovement(pointGrid, pointLocal[k],

waterFailure, elecFailure);

}

}

break;

case 4:

// Civilian

for (k = 0; k < CIVNO; k++)

{

if ((civilian[k].xPrev == i) &&

(civilian[k].yPrev == j))

{

civMovement(pointGrid, pointCivilian[k],

waterFailure, elecFailure);

}

}

break;

default:

// Error

cout << "Error in main.cpp, line 776. \n"

<< "Unknown agent type!\n";
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system("PAUSE");

exit(1);

} // End of prevType

} // End of if/else if loop for actionType

}

} // End of grid loop for repairs and movement

// Set cell prevType and prevSquad values and reset moveInd

for (i = 0; i < GRIDSIZE; i++)

{

for (j = 0; j < GRIDSIZE; j++)

{

pointGrid[j][i]->prevSquad = grid[j][i].occSquad;

pointGrid[j][i]->prevType = grid[j][i].agentType;

pointGrid[j][i]->moveInd = 0;

}

} // End of grid loop

// Set xPrev and yPrev values for all the agents in preparation for

// the next sub-timestep

for (n = 0; n < PEACENO; n++)

{

pointPeace[n]->xPrev = peace[n].xPos;

pointPeace[n]->yPrev = peace[n].yPos;

}

for (n = 0; n < SUPPORTNO; n++)

{

pointSupport[n]->xPrev = support[n].xPos;

pointSupport[n]->yPrev = support[n].yPos;

}

for (n = 0; n < LOCALNO; n++)

{

pointLocal[n]->xPrev = local[n].xPos;

pointLocal[n]->yPrev = local[n].yPos;

}

for (n = 0; n < CIVNO; n++)

{

pointCivilian[n]->xPrev = civilian[n].xPos;

pointCivilian[n]->yPrev = civilian[n].yPos;

}

// Go through entire grid and reset combat, bombBlast and shotInd

// indicators to zero

for (i = 0; i < GRIDSIZE; i++)

{

for (j = 0; j < GRIDSIZE; j++)

{

pointGrid[j][i]->combat = 0;

pointGrid[j][i]->bombBlast = 0;

pointGrid[j][i]->shotInd = 0;
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}

} // End of grid loop for resetting combat parameters

// Now set the combat, bombBlast and shotInd indicators using the

// arrays shotArray[][] and bombArray[][]

// First look at shotArray[][]

if (shotCount > 0)

{

// Set counter

m = shotCount - 1;

// Go through appropriate rows of shotArray to set shotInd and

// combat indicators

while (shotArray[m][0] >= (currentT - SHOTMEMORY))

{

// Break out of while loop if the time gets to more than

// SHOTMEMORY timesteps previous

if ((shotArray[m][0] == (currentT - SHOTMEMORY)) &&

(shotArray[m][1] < subT))

{

break;

}

// Otherwise set shotInd indicator at target cell and combat

// indicator at target and origin cells

else

{

pointGrid[(shotArray[m][7])][(shotArray[m][6])]->shotInd

= 1;

pointGrid[(shotArray[m][7])][(shotArray[m][6])]->combat

= 1;

pointGrid[(shotArray[m][3])][(shotArray[m][2])]->combat

= 1;

} // End of if/else loop

// Increment counter

m--;

// Check m >= 0, if not break out of while loop

if (m < 0)

{

break;

} // End of if loop

} // End of while loop

} // End of if loop

// Now look at bombArray[][]

if (bombCount > 0)

{
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// Set counter

m = bombCount - 1;

// Go through appropriate rows of bombArray to set bombBlast and

// combat indicators

while (bombArray[m][0] >= (currentT - BOMBMEMORY))

{

// Break out of while loop if the time gets to more than

// BOMBMEMORY timesteps previous

if ((bombArray[m][0] == (currentT - BOMBMEMORY)) &&

(bombArray[m][1] < subT))

{

break;

}

// Otherwise set bombBlast and combat indicators at affected

// cells

else

{

// Look through all cells affected by the bomb

for (i = (bombArray[m][2] - bombArray[m][4]);

i <= (bombArray[m][2] + bombArray[m][4]); i++)

{

for (j = (bombArray[m][3] - bombArray[m][4]);

j <= (bombArray[m][3] + bombArray[m][4]); j++)

{

// Check this cell is within the grid

if ((i >= 0) && (i < GRIDSIZE) && (j >= 0) &&

(j < GRIDSIZE))

{

pointGrid[j][i]->bombBlast = 1;

pointGrid[j][i]->combat = 1;

} // End of coordinate check if loop

}

} // End of target grid loop

} // End of if/else loop

// Increment counter

m--;

// Check m >= 0, if not break out of while loop

if (m < 0)

{

break;

} // End of if loop

} // End of while loop

} // End of if loop
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// Go through entire grid and adjust food amount at the cells

// that are occupied by Insurgent or Civilians

for (i = 0; i < GRIDSIZE; i++)

{

for (j = 0; j < GRIDSIZE; j++)

{

if ((grid[j][i].agentType == 3) ||

(grid[j][i].agentType == 4))

{

// Decrease amount by one unless there’s no food

if (grid[j][i].foodAmount > 0)

{

(pointGrid[j][i]->foodAmount)--;

} // End of food amount alteration loop

} // End of agent check loop

}

} // End of grid loop

// Go through entire grid and update water and electricity supply

// parameters if they have been fixed

for (i = 0; i < GRIDSIZE; i++)

{

for (j = 0; j < GRIDSIZE; j++)

{

if (grid[j][i].fixedW > 0)

{

waterFailure[(grid[j][i].sectorNo)] = 0;

pointGrid[j][i]->fixWater = 0;

pointGrid[j][i]->fixedW = 0;

} // End of if loop

if (grid[j][i].fixedE > 0)

{

elecFailure[(grid[j][i].sectorNo)] = 0;

pointGrid[j][i]->fixElec = 0;

pointGrid[j][i]->fixedE = 0;

} // End of if loop

}

} // End of grid loop

// Update civInNeed indicator for the entire grid

for (i = 0; i < GRIDSIZE; i++)

{

for (j = 0; j < GRIDSIZE; j++)

{

if (grid[j][i].agentType == 4)

{

if (grid[j][i].combat == 1)

{

pointGrid[j][i]->civInNeed = 1;

}

else if (waterFailure[grid[j][i].sectorNo] == 1)
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{

pointGrid[j][i]->civInNeed = 1;

}

else if (elecFailure[grid[j][i].sectorNo] == 1)

{

pointGrid[j][i]->civInNeed = 1;

}

else if (grid[j][i].foodAmount == 0)

{

pointGrid[j][i]->civInNeed = 1;

}

else

{

pointGrid[j][i]->civInNeed = 0;

} // End of parameter check if/else if/else loop

} // End of (agentType = 4)

else

{

pointGrid[j][i]->civInNeed = 0;

} // End of agentType if/else loop

}

} // End of grid loop

} // End of sub-timestep for loop

// Determine whether or not the power or water supply to any of the

// sectors will fail

for (k = 0; k < sectorNumber; k++)

{

// If the water supply is currently working, generate a random

// number to determine whether or not it will fail

if (waterFailure[k] == 0)

{

x = (float)rand()/32767;

if ((WATERFAIL != 0) && (x <= WATERFAIL))

{

// Change the indicator in the array and randomly select a

// cell in the sector where the fault is located

waterFailure[k] = 1;

// Generate two random integers between 0 and

// (sectorSize - 1)

y = (int)(rand()*sectorSize/32768);

z = (int)(rand()*sectorSize/32768);

// Compute the cell coordinates relating to these random

// integers

xFail = (int)(fmod((float)k, (float)SECTOR))*sectorSize + y;

yFail = (int)(floor((float)(k/SECTOR)))*sectorSize + z;

// Check (xFail, yFail) is within the array bounds

if ((xFail >= GRIDSIZE) || (yFail >= GRIDSIZE) ||
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(xFail < 0) || (yFail < 0))

{

cout << "Error in repair location in main.cpp line 1007"

<< " (" << xFail << "," << yFail << "). \n";

system("PAUSE");

exit(1);

} // End of error check if loop

pointGrid[yFail][xFail]->fixWater = 1;

cout << "Water failure at (" << xFail << "," << yFail

<< ") in sector " << k << " \n";

} // End of waterFailure if loop

} // End of water supply if loop

// If the electricity supply is currently working, generate a random

// number to determine whether or not it will fail

if (elecFailure[k] == 0)

{

x = (float)rand()/32767;

if ((ELECFAIL != 0) && (x <= ELECFAIL))

{

// Change the indicator in the array and randomly select a

// cell in the sector where the fault is located

elecFailure[k] = 1;

// Generate two random integers between 0 and

// (sectorSize - 1)

y = (int)(rand()*sectorSize/32768);

z = (int)(rand()*sectorSize/32768);

// Compute the cell coordinates relating to these random

// integers

xFail = (int)(fmod((float)k, (float)SECTOR))*sectorSize + y;

yFail = (int)(floor((float)(k/SECTOR)))*sectorSize + z;

// Check (xFail, yFail) is within the array bounds

if ((xFail >= GRIDSIZE) || (yFail >= GRIDSIZE) ||

(xFail < 0) || (yFail < 0))

{

cout << "Error in repair location in main.cpp line 1037"

<< " (" << xFail << "," << yFail << "). \n";

system("PAUSE");

exit(1);

} // End of error check if loop

pointGrid[yFail][xFail]->fixElec = 1;

cout << "Electricity failure at (" << xFail << "," << yFail

<< ") in sector " << k << " \n";

} // End of elecFailure if loop

} // End of electricity supply if loop

} // End of sector for loop

// Write data to file

gridoutput.open("gridoutput.txt", ios::app);
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for (j = 0; j < GRIDSIZE; j++)

{

for (i = 0; i < GRIDSIZE; i++)

{

gridoutput << grid[j][i].agentType << " ";

}

gridoutput << "\n";

} // End of grid loop

gridoutput << "\n";

gridoutput.close();

combatind.open("combatind.txt", ios::app);

for (j = 0; j < GRIDSIZE; j++)

{

for (i = 0; i < GRIDSIZE; i++)

{

combatind << grid[j][i].combat << " ";

}

combatind << "\n";

} // End of grid loop

combatind << "\n";

combatind.close();

civinneedind.open("civinneedind.txt", ios::app);

for (j = 0; j < GRIDSIZE; j++)

{

for (i = 0; i < GRIDSIZE; i++)

{

civinneedind << grid[j][i].civInNeed << " ";

}

civinneedind << "\n";

} // End of grid loop

civinneedind << "\n";

civinneedind.close();

waterfailind.open("waterfailind.txt", ios::app);

for (k = 0; k < sectorNumber; k++)

{

waterfailind << waterFailure[k] << " ";

} // End of array loop

waterfailind << "\n";

waterfailind.close();

elecfailind.open("elecfailind.txt", ios::app);

for (k = 0; k < sectorNumber; k++)

{

elecfailind << elecFailure[k] << " ";

} // End of array loop

elecfailind << "\n";

elecfailind.close();
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} // end of timestep for loop

// Write shotArray and bombArray to file (if they exist)

if (shotCount > 0)

{

ofstream shotoutput;

shotoutput.open("shotoutput.txt", ios::app);

for (k = 0; k < shotCount; k++)

{

shotoutput << shotArray[k][0] << " " << shotArray[k][1] << " "

<< shotArray[k][2] << " " << shotArray[k][3] << " "

<< shotArray[k][4] << " " << shotArray[k][5] << " "

<< shotArray[k][6] << " " << shotArray[k][7] << " "

<< shotArray[k][8] << " " << shotArray[k][9] << "\n";

}

shotoutput.close();

}

if (bombCount > 0)

{

ofstream bomboutput;

bomboutput.open("bomboutput.txt", ios::app);

for (k = 0; k < bombCount; k++)

{

bomboutput << bombArray[k][0] << " " << bombArray[k][1] << " "

<< bombArray[k][2] << " " << bombArray[k][3] << " "

<< bombArray[k][4] << " " << bombArray[k][5] << "\n";

}

bomboutput.close();

}

// Close output files

gridoutput.close();

combatind.close();

civinneedind.close();

waterfailind.close();

elecfailind.close();

// Wait until user is ready before terminating program to allow the user to

// see the program results

system("PAUSE");

return 0;

} // End of main

// FUNCTIONS

// Action indicator function, determines whether or not an agent performs an

// action at a given sub-timestep.
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int actionIndicator(int subTimestep, int subStep, int squadCapability)

{

int action;

double frac;

frac = (double)subTimestep/(double)subStep;

if ((fmod((double)subTimestep, (double)subStep) == 0) &&

(frac <= squadCapability))

{

action = 1;

}

else

{

action = 0;

}

return action;

} // End of actionIndicator function

// Array checker function, determines whether there are any agent types or

// previous agent types that are not valid

void arrayCheck(Cell gridArray[GRIDSIZE][GRIDSIZE], int maxValue)

{

int i, j; // Declare counters

for (i = 0; i < GRIDSIZE; i++)

{

for (j = 0; j < GRIDSIZE; j++)

{

if ((gridArray[j][i].prevType) > maxValue)

{

cout << "prevType value " << gridArray[j][i].prevType << " at ("

<< i << "," << j << ") \n";

} // End of if loop

if ((gridArray[j][i].agentType) > maxValue)

{

cout << "agentType value " << gridArray[j][i].agentType

<< " at (" << i << "," << j << ") \n";

} // End of if loop

}

} // End of grid loop

} // End of arrayCheck function

B.2 model.h

// model.h - contains all function prototypes and #defines

#ifndef _MODEL_ // Check if header file has already been called to

#define _MODEL_ // avoid multiple definitions

#define RUNTIME 500 // Number of timesteps the model will run for
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#define MAXSHOTS 5000 // Maximum number of shots that can be fired

// over the model run

#define MAXBOMB 100 // Maximum number of bomb attacks per model

// run

// Function prototypes

// Prototype for action indicator function - determines whether or not

// an agent is to perform an action at a given sub-timestep

int actionIndicator(int, int, int);

// Prototype for array checking function - determines whether the grid

// contains any agent types that are not valid

void arrayCheck(Cell[GRIDSIZE][GRIDSIZE], int);

// Prototypes for initial.cpp

void peaceInitPos(short[GRIDSIZE][GRIDSIZE], Peacekeeper*);

void suppInitPos(short[GRIDSIZE][GRIDSIZE], SupportAgent*);

void locInitPos(short[GRIDSIZE][GRIDSIZE], LocalMilitia*);

void civInitPos(short[GRIDSIZE][GRIDSIZE], Civilian*);

// Prototypes for move.cpp

double perChange(double, double);

void civMovement(Cell*[GRIDSIZE][GRIDSIZE], Civilian*,

int[SECTOR*SECTOR], int[SECTOR*SECTOR]);

void suppMovement(Cell*[GRIDSIZE][GRIDSIZE], SupportAgent*,

int[SECTOR*SECTOR], int[SECTOR*SECTOR]);

void locMovement(Cell*[GRIDSIZE][GRIDSIZE], LocalMilitia*,

int[SECTOR*SECTOR], int[SECTOR*SECTOR]);

void peaceMovement(Cell*[GRIDSIZE][GRIDSIZE], Peacekeeper*,

int[SECTOR*SECTOR], int [SECTOR*SECTOR]);

// Prototypes for combat.cpp

void peaceCombat(Cell*[GRIDSIZE][GRIDSIZE], Peacekeeper*,

Peacekeeper*[PEACENO], SupportAgent*[SUPPORTNO],

LocalMilitia*[LOCALNO], Civilian*[CIVNO],

short*[MAXSHOTS][10], int*, int, int);

void locCombat(Cell*[GRIDSIZE][GRIDSIZE], LocalMilitia*,

Peacekeeper*[PEACENO], SupportAgent*[SUPPORTNO],

LocalMilitia*[LOCALNO], Civilian*[CIVNO],

short*[MAXSHOTS][10], int*, int, int);

void locBomb(Cell*[GRIDSIZE][GRIDSIZE], LocalMilitia*,

Peacekeeper*[PEACENO], SupportAgent*[SUPPORTNO],

LocalMilitia*[LOCALNO], Civilian*[CIVNO],

short*[MAXBOMB][6], int*, int, int);

// Prototypes for repair.cpp

void peaceRepair(Peacekeeper*, Cell*);

void supportRepair(SupportAgent*, Cell*);
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#endif

B.3 agent.cpp

// agent.cpp

// Gives the member functions for the agent classes

#include<cstdio>

#include<cstdlib>

#include<iostream>

#include<fstream>

#include<cmath>

#include<ctime>

#include "cell.h" // Include the header file for the Cell class

#include "agent.h" // Include agent classes header file

#include "model.h" // Include general header file

using namespace std;

// Peacekeeper constructor

Peacekeeper::Peacekeeper()

{

squadNo = 1;

agentType = 1;

xHome = 99;

yHome = 14;

homeRadius = 10;

xPos = 0;

xPrev = 0;

yPos = 0;

yPrev = 0;

alive = 1;

peaceWeight[0] = 0;

peaceWeight[1] = 0;

peaceWeight[2] = 0;

peaceWeight[3] = 0;

peaceWeight[4] = 0;

suppWeight[0] = 0;

suppWeight[1] = 0;

suppWeight[2] = 0;

suppWeight[3] = 0;

suppWeight[4] = 0;

locWeight[0] = 0;

locWeight[1] = 0;

locWeight[2] = 0;

locWeight[3] = 0;

locWeight[4] = -50;

civWeight[0] = 0;
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civWeight[1] = 0;

civWeight[2] = 0;

civWeight[3] = 0;

civWeight[4] = 0;

sensorRange = 200;

relation[0] = 1;

relation[1] = 1;

relation[2] = 5;

relation[3] = 1;

civInNeedWeight = 10;

noWaterWeight = 10;

noElecWeight = 10;

combatWeight = 0;

sSKP = 0.10;

fireRange = 20;

shotRadius = 0;

probFixWater = 1.00;

probFixElec = 1.00;

} // End of Peacekeeper constructor

// Peacekeeper destructor

Peacekeeper::~Peacekeeper()

{

} // End of Peacekeeper destructor

// NGO constructor

SupportAgent::SupportAgent()

{

squadNo = 2;

agentType = 2;

xHome = 14;

yHome = 99;

homeRadius = 10;

xPos = 0;

xPrev = 0;

yPos = 0;

yPrev = 0;

alive = 1;

peaceWeight[0] = 0;

peaceWeight[1] = 0;

peaceWeight[2] = 0;

peaceWeight[3] = 0;

peaceWeight[4] = 0;

suppWeight[0] = 0;

suppWeight[1] = 0;

suppWeight[2] = 0;

suppWeight[3] = 0;

suppWeight[4] = 0;
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locWeight[0] = 0;

locWeight[1] = 0;

locWeight[2] = 0;

locWeight[3] = -100;

locWeight[4] = 0;

civWeight[0] = 0;

civWeight[1] = 0;

civWeight[2] = 0;

civWeight[3] = 0;

civWeight[4] = 0;

sensorRange = 200;

relation[0] = 1;

relation[1] = 1;

relation[2] = 4;

relation[3] = 1;

civInNeedWeight = 10;

noWaterWeight = 10;

noElecWeight = 10;

probFixWater = 1.00;

probFixElec = 1.00;

} // End of NGO constructor

// NGO destructor

SupportAgent::~SupportAgent()

{

} // End of NGO destructor

// Insurgent constructor

LocalMilitia::LocalMilitia()

{

squadNo = 3;

agentType = 3;

xHome = 112;

yHome = 112;

homeRadius = 87;

xPos = 0;

xPrev = 0;

yPos = 0;

yPrev = 0;

alive = 1;

peaceWeight[0] = 0;

peaceWeight[1] = 0;

peaceWeight[2] = 0;

peaceWeight[3] = 0;

peaceWeight[4] = 0;

suppWeight[0] = 0;

suppWeight[1] = 0;

suppWeight[2] = 0;
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suppWeight[3] = 0;

suppWeight[4] = 0;

locWeight[0] = 0;

locWeight[1] = 0;

locWeight[2] = 0;

locWeight[3] = 0;

locWeight[4] = 0;

civWeight[0] = 0;

civWeight[1] = 0;

civWeight[2] = 0;

civWeight[3] = 0;

civWeight[4] = 0;

sensorRange = 50;

relation[0] = 5;

relation[1] = 4;

relation[2] = 1;

relation[3] = 1;

combatWeight = 0;

sSKP = 0.05;

fireRange = 15;

shotRadius = 0;

bombRadius = 5;

accOccForce = 0.0;

} // End of Insurgent constructor

// Insurgent destructor

LocalMilitia::~LocalMilitia()

{

} // End of Insurgent destructor

// Civilian constructor

Civilian::Civilian()

{

squadNo = 4;

agentType = 4;

xHome = 112;

yHome = 112;

homeRadius = 87;

xPos = 0;

xPrev = 0;

yPos = 0;

yPrev = 0;

alive = 1;

peaceWeight[0] = 0;

peaceWeight[1] = 0;

peaceWeight[2] = 0;

peaceWeight[3] = 0;

peaceWeight[4] = 0;

suppWeight[0] = 0;
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suppWeight[1] = 0;

suppWeight[2] = 0;

suppWeight[3] = 0;

suppWeight[4] = 0;

locWeight[0] = 0;

locWeight[1] = 0;

locWeight[2] = 0;

locWeight[3] = 0;

locWeight[4] = 0;

civWeight[0] = 0;

civWeight[1] = 0;

civWeight[2] = 0;

civWeight[3] = 0;

civWeight[4] = 0;

sensorRange = 50;

relation[0] = 2;

relation[1] = 1;

relation[2] = 4;

relation[3] = 1;

accOccForce = 0.0;

fear = 0.0;

} // End of Civilian constructor

// Civilian destructor

Civilian::~Civilian()

{

} // End of Civilian destructor

B.4 agent.h

// agent.h

// Defines the class Agent

#define NOOFSQUADS 4

// Since at present we can only have one squad per agent type we can

// also define the squad sizes and capabilities

// Squad sizes

#define PEACENO 25

#define SUPPORTNO 25

#define LOCALNO 50

#define CIVNO 1000

// Squad capabilities.

#define PEACECAP 1
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#define SUPPORTCAP 1

#define LOCALCAP 1

#define CIVCAP 1

// We define the length of time (in timesteps) a bomb blast and shot

// are "remembered", ie the time the bomb and shot indicators are

// flagged for

#define BOMBMEMORY 20

#define SHOTMEMORY 10

// Also since we only have one Insurgent squad we can define their

// probability of bombing and probability of firing (without

// provocation)

#define LMBOMBPROB 0.002

#define LMFIREPROB 0.01

// First we define the peacekeepers

#ifndef _PEACE_ // Check to see if already defined

#define _PEACE_

class Peacekeeper

{

public:

// CONSTANTS

// Basic agent properties

short squadNo; // Squad number

short agentType; // Type of agent: 1 = Peacekeeper,

// 2 = NGO, 3 = Insurgent,

// 4 = Civilian

short xHome; // x coordinate for home location

short yHome; // y coordinate for home location

short homeRadius; // Radius for initial agent

// locations

short xPos; // x coordinate of current location

short xPrev; // x coordinate of location at

// previous (sub-)timestep

short yPos; // y coordinate of current location

short yPrev; // y coordinate of location at

// previous (sub-)timestep

short alive; // Indicates when an agent gets

// killed, a value of 1 indicates

// the agent is alive, this changes

// to 0 if the agent is killed

// Define the personality weights

short peaceWeight[5]; // Weights towards Peacekeepers:

// first entry is for friendly,

// second for cooperative, third

// for neutral, fourth for
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// uncooperative, fifth for hostile

short suppWeight[5]; // Weights towards NGOs

short locWeight[5]; // Weights towards Insurgents

short civWeight[5]; // Weights towards Civilians

// Ranges and constraints

short sensorRange; // Sensor range

// Psychological factors

short relation[NOOFSQUADS]; // Relationships to all the

// other squads

// Additional personality weights

short civInNeedWeight; // Weight towards civilians in need

short noWaterWeight; // Weight towards cells with no

// water

short noElecWeight; // Weight towards cells with no

// electricity

short combatWeight; // Weight towards cells with combat

// Additional ranges and constraints

float sSKP; // Single shot kill probability

short fireRange; // Firing range

short shotRadius; // Radius of fire, > 0 allows for

// friendly fire

float probFixWater; // Probability the agent can fix

// the water supply if at relevant

// cell, value between 0 and 1

float probFixElec; // Probability the agent can fix

// the water supply if at relevant

// cell, value between 0 and 1

// FUNCTION PROTOTYPES

Peacekeeper(); // Constructor

~Peacekeeper(); // Destructor

};

#endif

// Next we have the NGOs

#ifndef _SUPPORT_ // Check to see if already defined

#define _SUPPORT_

class SupportAgent

{

public:
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// CONSTANTS

// Basic agent properties

short squadNo; // Squad number

short agentType; // Type of agent: 1 = Peacekeeper,

// 2 = NGO, 3 = Insurgent,

// 4 = Civilian

short xHome; // x coordinate for home location

short yHome; // y coordinate for home location

short homeRadius; // Radius for initial agent

// locations

short xPos; // x coordinate of current location

short xPrev; // x coordinate of location at

// previous (sub-)timestep

short yPos; // y coordinate of current location

short yPrev; // y coordinate of location at

// previous (sub-)timestep

short alive; // Indicates when an agent gets

// killed, a value of 1 indicates

// the agent is alive, this changes

// to 0 if the agent is killed

// Define the personality weights

short peaceWeight[5]; // Weights towards Peacekeepers:

// first entry is for friendly,

// second for cooperative, third

// for neutral, fourth for

// uncooperative, fifth for hostile

short suppWeight[5]; // Weights towards NGOs

short locWeight[5]; // Weights towards Insurgents

short civWeight[5]; // Weights towards Civilians

// Ranges and constraints

short sensorRange; // Sensor range

// Psychological factors

short relation[NOOFSQUADS]; // Relationships to all the

// other squads

// Additional personality weights

short civInNeedWeight; // Weight towards civilians in need

short noWaterWeight; // Weight towards cells with no

// water

short noElecWeight; // Weight towards cells with no

// electricity

// Additional ranges and constraints
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float probFixWater; // Probability the agent can fix

// the water supply if at relevant

// cell, value between 0 and 1

float probFixElec; // Probability the agent can fix

// the water supply if at relevant

// cell, value between 0 and 1

// FUNCTION PROTOTYPES

SupportAgent(); // Constructor

~SupportAgent(); // Destructor

};

#endif

// Insurgent agents

#ifndef _LOCAL_ // Check to see if already defined

#define _LOCAL_

class LocalMilitia

{

public:

// CONSTANTS

// Basic agent properties

short squadNo; // Squad number

short agentType; // Type of agent: 1 = Peacekeeper,

// 2 = NGO, 3 = Insurgent,

// 4 = Civilian

short xHome; // x coordinate for home location

short yHome; // y coordinate for home location

short homeRadius; // Radius for initial agent

// locations

short xPos; // x coordinate of current location

short xPrev; // x coordinate of location at

// previous (sub-)timestep

short yPos; // y coordinate of current location

short yPrev; // y coordinate of location at

// previous (sub-)timestep

short alive; // Indicates when an agent gets

// killed, a value of 1 indicates

// the agent is alive, this changes

// to 0 if the agent is killed

// Define the personality weights

short peaceWeight[5]; // Weights towards Peacekeepers:

// first entry is for friendly,

// second for cooperative, third

// for neutral, fourth for
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// uncooperative, fifth for hostile

short suppWeight[5]; // Weights towards NGOs

short locWeight[5]; // Weights towards Insurgents

short civWeight[5]; // Weights towards Civilians

// Ranges and constraints

short sensorRange; // Sensor range

// Psychological factors

short relation[NOOFSQUADS]; // Relationships to all the

// other squads

// Additional personality weights

short combatWeight; // Weight towards cells with combat

// Additional ranges and constraints

float sSKP; // Single shot kill probability

short fireRange; // Firing range

short shotRadius; // Radius of fire, > 0 allows for

// friendly fire

short bombRadius; // Radius of effect for bomb blasts

// VARIABLES

// Psychological factors

float accOccForce; // Acceptance of occupying force

// FUNCTION PROTOTYPES

LocalMilitia(); // Constructor

~LocalMilitia(); // Destructor

};

#endif

// Finally we have the civilian agents

#ifndef _CIVILIAN_ // Check to see if already defined

#define _CIVILIAN_

class Civilian

{

public:

// CONSTANTS

// Basic agent properties
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short squadNo; // Squad number

short agentType; // Type of agent: 1 = Peacekeeper,

// 2 = NGO, 3 = Insurgent,

// 4 = Civilian

short xHome; // x coordinate for home location

short yHome; // y coordinate for home location

short homeRadius; // Radius for initial agent

// locations

short xPos; // x coordinate of current location

short xPrev; // x coordinate of location at

// previous (sub-)timestep

short yPos; // y coordinate of current location

short yPrev; // y coordinate of location at

// previous (sub-)timestep

short alive; // Indicates when an agent gets

// killed, a value of 1 indicates

// the agent is alive, this changes

// to 0 if the agent is killed

// Define the personality weights

short peaceWeight[5]; // Weights towards Peacekeepers:

// first entry is for friendly,

// second for cooperative, third

// for neutral, fourth for

// uncooperative, fifth for hostile

short suppWeight[5]; // Weights towards NGOs

short locWeight[5]; // Weights towards Insurgents

short civWeight[5]; // Weights towards Civilians

// Ranges and constraints

short sensorRange; // Sensor range

// Psychological factors

short relation[NOOFSQUADS]; // Relationships to all the

// other squads (constant in

// first prototype but will be

// variable in future models)

// Psychological factors

float accOccForce; // Acceptance of occupying force

float fear; // Fear

// FUNCTION PROTOTYPES

Civilian(); // Constructor

~Civilian(); // Destructor
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};

#endif

B.5 cell.cpp

// cell.cpp

// Gives the member functions for the Cell class

#include<cstdio>

#include<cstdlib>

#include<iostream>

#include<fstream>

#include<cmath>

#include<ctime>

#include "cell.h" // Include the header file for the Cell class

#include "agent.h" // Include agent classes header file

#include "model.h" // Include general header file

using namespace std;

// Constructor

Cell::Cell()

{

sectorNo = 0;

// Note that the grid is initialised before the agents so the

// initial occupant settings will be zero

occSquad = 0;

prevSquad = 0;

agentType = 0;

prevType = 0;

foodAmount = 1000;

actionType = 0;

moveInd = 0;

fixWater = 0;

fixedW = 0;

fixElec = 0;

fixedE = 0;

combat = 0;

shotToNo = 0;

shotInd = 0;

bombBlast = 0;

civInNeed = 0;

} // End of Cell constructor

// Destructor

Cell::~Cell()

{
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} // End of Cell destructor

B.6 cell.h

// cell.h

// Defines the Cell class

#ifndef _CELL_ // Avoid multiple definitions

#define _CELL_

#define GRIDSIZE 200 // Side-length of grid

#define SECTOR 5 // Number of sectors each side is divided

// into (i.e. square root of total number

// of sectors) Make sure GRIDSIZE is

// divisible by SECTOR so we have equal

// sector sizes.

#define WATERFAIL 0.000

#define ELECFAIL 0.000

// Define the cell class which gives all the properties a cell will

// have

class Cell

{

public:

// CONSTANTS

// Basic properties

short sectorNo; // Which sector the cell is

// situated in

// VARIABLES

// General variables

short occSquad; // Squad the occupant belongs to,

// 0 if there is no agent at the

// cell

short prevSquad; // Squad the occupant at the last

// (sub-)timestep belonged to

short agentType; // Type of agent the occupant is,

// 0 if there is no agent at the

// cell

short prevType; // Type of agent that was occupying

// the cell at the last

// (sub-)timestep

short foodAmount; // Number of rations at cell (one

// ration feeds one local agent for
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// one sub-timestep)

short actionType; // Indicates the action to be taken

// by the occupying agent at the

// current sub-timestep

short moveInd; // Indicates whether or not an

// agent has moved to the cell in

// that (sub-)timestep

// General indicator functions

short fixWater; // Repairs needed to water supply

// indicator (0 or 1, where 1

// represents repairs needed at the

// cell)

short fixedW; // Indicates if the water supply

// has been fixed at a sub-timestep

short fixElec; // Repairs needed to electricity

// supply indicator (0 or 1, where

// 1 represents repairs needed at

// cell)

short fixedE; // Indicates if the electricity

// supply has been fixed at a

// sub-timestep

// Combat variables

short combat; // Combat indicator (0 or 1, where

// 1 indicates combat at the cell)

short shotToNo; // Number of shots fired to the

// cell

short shotInd; // Indicates whether or not there

// have been any shots fired to the

// cell over the course of the last

// timestep

short bombBlast; // Bomb detonation indicator (0

// or 1, where 1 indicates a bomb

// has been exploded at the cell)

// Psychological factors

short civInNeed; // Civilians in need indicator (0

// or 1, where 1 indicates that

// there are civilians in need at

// the cell

// FUNCTION PROTOTYPES

// Constructor and destructor

Cell(); // Constructor

~Cell(); // Destructor

};
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#endif

B.7 combat.cpp

// combat.cpp gives the combat functions for the peacekeepers and

// insurgent agents. This is called in the main program whenever an

// agent’s action is set to combat. The functions pick out a target,

// and if there is none within sensor range the action is changed to

// movement.

#include<cstdio>

#include<cstdlib>

#include<iostream>

#include<fstream>

#include<cmath>

#include<ctime>

#include "cell.h" // Include the header file for the Cell class

#include "agent.h" // Include agent classes header file

#include "model.h" // Include general header file

using namespace std;

// Peacekeeping agents’ combat function

void peaceCombat(Cell *pGrid[GRIDSIZE][GRIDSIZE], Peacekeeper *pPeace,

Peacekeeper *pPeaceArray[PEACENO],

SupportAgent *pSupportArray[SUPPORTNO],

LocalMilitia *pLocalArray[LOCALNO],

Civilian *pCivilianArray[CIVNO],

short *pShotArray[MAXSHOTS][10], int *pShotCount,

int timestep, int subTime)

{

short x = pPeace->xPrev; // Set x and y variables to

short y = pPeace->yPrev; // represent the agent’s x and y

// positions respectively

// First check the shots fired to the current cell to see where

// they’re coming from

// Count the number of shots fired at the cell in the last

// timestep

int i, j, k, n; // Declare counters

int target[500][2]; // Declare array to hold valid target

// locations

int tar = 0; // Initialise counter for number of

// valid targets

int tarNo;

short xTar; // Variables to hold target coordinates

short yTar;

short rel; // Variables to hold details of possible

short squad; // target agents
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short aType;

short shotAtArray[500][4]; // Declare array to hold details of shots

// fired to the cell

int count = 0; // Initialise variable to count number of

// shots

float randNo;

// Check to see if any shots have been fired to the cell and if so count

// them

if (pGrid[y][x]->shotToNo > 0)

{

n = (*pShotCount) - 1; // Initialise loop counter

while (*pShotArray[n][0] >= (timestep - 1))

{

if ((*pShotArray[n][0] == timestep) &&

(*pShotArray[n][1] != subTime) && (*pShotArray[n][6] == x) &&

(*pShotArray[n][7] == y))

{

shotAtArray[count][0] = *pShotArray[n][2];

shotAtArray[count][1] = *pShotArray[n][3];

shotAtArray[count][2] = *pShotArray[n][4];

shotAtArray[count][3] = *pShotArray[n][5];

count++;

}

else if ((*pShotArray[n][0] == (timestep - 1)) &&

(*pShotArray[n][1] >= subTime) && (*pShotArray[n][6] == x)

&& (*pShotArray[n][7] == y))

{

shotAtArray[count][0] = *pShotArray[n][2];

shotAtArray[count][1] = *pShotArray[n][3];

shotAtArray[count][2] = *pShotArray[n][4];

shotAtArray[count][3] = *pShotArray[n][5];

count++;

} // End of if/else if loop

n--; // Increment loop counter

// Check to make sure n >= 0, if not break out of while loop

if (n < 0)

{

break;

} // End of if loop

} // End of while loop

} // End of if loop

// If there have been no shots fired then the peacekeeper should look for

// valid insurgent targets within firing range, for the count to be zero

// and combat initiated means a bomb must have been detonated within sensor

// range
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if (count == 0)

{

// Count the number of valid targets

for (i = (x - pPeace->fireRange); i <= (x + pPeace->fireRange); i++)

{

for (j = (y - pPeace->fireRange); j <= (y + pPeace->fireRange); j++)

{

// Check this cell is within the grid

if ((i >= 0) && (i < GRIDSIZE) && (j >= 0) && (j < GRIDSIZE))

{

// Check to see if there is an insurgent agent at the

// cell

if (pGrid[j][i]->prevType == 3)

{

// Record the relationship to the insurgent agent

// at this cell

rel = pPeace->relation[(pGrid[j][i]->prevSquad) - 1];

// If the insurgent agent is hostile or

// uncooperative then record it as a valid target

if ((rel == 5) || (rel == 4))

{

target[tar][0] = i;

target[tar][1] = j;

tar++;

} // End of relationship if loop

} // End of prevType if loop

} // End of coordinate check if loop

}

} // End of grid loop

// If there are no valid targets within range change the action to move

if (tar == 0)

{

pGrid[y][x]->actionType = 4;

} // End of no target loop

// Else choose a target to fire at

else

{

// Generate a random integer between 0 and (tar - 1)

tarNo = (int)(rand()*tar/32768);

// Set target location

xTar = target[tarNo][0];

yTar = target[tarNo][1];

// Change shotArray

// Check there haven’t already been MAXSHOTS shots fired (array can

// only hold MAXSHOTS rows)

if (*pShotCount < MAXSHOTS)

{

*pShotArray[*pShotCount][0] = timestep;
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*pShotArray[*pShotCount][1] = subTime;

*pShotArray[*pShotCount][2] = x;

*pShotArray[*pShotCount][3] = y;

*pShotArray[*pShotCount][4] = 1;

*pShotArray[*pShotCount][5] = pPeace->squadNo;

*pShotArray[*pShotCount][6] = xTar;

*pShotArray[*pShotCount][7] = yTar;

*pShotArray[*pShotCount][8] = 3;

*pShotArray[*pShotCount][9] = pGrid[yTar][xTar]->prevSquad;

(*pShotCount)++;

(pGrid[yTar][xTar]->shotToNo)++;

}

else

{

// Exit program

cout << "Error: Too many shots fired, array bounds exceeded.";

system("PAUSE");

exit(1);

} // End of if/else loop

// Now determine whether or not the target agent is killed

randNo = (float)rand()/32767; // Generate a random number

// between 0 and 1

// If they are killed then change the target agent’s status

if ((pPeace->sSKP != 0) && (randNo <= (pPeace->sSKP)))

{

switch (pGrid[yTar][xTar]->prevType)

{

case 0:

// No agent at cell - has either moved or been killed -

// therefore the shot will have no effect

break;

case 1:

// Go through Peacekeeper array to find the relevant

// agent and then change agent status and cell values

for (k = 0; k < PEACENO; k++)

{

if ((pPeaceArray[k]->xPrev == xTar) &&

(pPeaceArray[k]->yPrev == yTar))

{

pPeaceArray[k]->alive = 0;

pPeaceArray[k]->xPos = GRIDSIZE;

pPeaceArray[k]->yPos = GRIDSIZE;

pGrid[yTar][xTar]->occSquad = 0;

pGrid[yTar][xTar]->agentType = 0;

// Write details to file

ofstream casualties; // Declare file to write

// output to

casualties.open("casualties.txt", ios::app);

casualties << "peace[" << k << "] killed at ("

<< xTar << "," << yTar
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<< ") at timestep " << timestep

<< ", subtime " << subTime << "\n";

casualties.close();

// Write details to screen

cout << "peace[" << k << "] killed at (" << xTar

<< "," << yTar << ") \n";

} // End of Peacekeeper coordinates if loop

} // End of Peacekeeper for loop

break;

case 2:

// Go through NGO array to find the relevant

// agent and then change agent status

for (k = 0; k < SUPPORTNO; k++)

{

if ((pSupportArray[k]->xPrev == xTar) &&

(pSupportArray[k]->yPrev == yTar))

{

pSupportArray[k]->alive = 0;

pSupportArray[k]->xPos = GRIDSIZE;

pSupportArray[k]->yPos = GRIDSIZE;

pGrid[yTar][xTar]->occSquad = 0;

pGrid[yTar][xTar]->agentType = 0;

// Write details to file

ofstream casualties; // Declare file to write

// output to

casualties.open("casualties.txt", ios::app);

casualties << "support[" << k << "] killed at ("

<< xTar << "," << yTar

<< ") at timestep " << timestep

<< ", subtime " << subTime << "\n";

casualties.close();

// Write details to screen

cout << "support[" << k << "] killed at ("

<< xTar << "," << yTar << ") \n";

} // End of NGO coordinates if loop

} // End of NGO for loop

break;

case 3:

// Go through insurgent array to find the relevant

// agent and then change agent status

for (k = 0; k < LOCALNO; k++)

{

if ((pLocalArray[k]->xPrev == xTar) &&

(pLocalArray[k]->yPrev == yTar))

{

pLocalArray[k]->alive = 0;

pLocalArray[k]->xPos = GRIDSIZE;

pLocalArray[k]->yPos = GRIDSIZE;

pGrid[yTar][xTar]->occSquad = 0;

pGrid[yTar][xTar]->agentType = 0;

// Write details to file
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ofstream casualties; // Declare file to write

// output to

casualties.open("casualties.txt", ios::app);

casualties << "local[" << k << "] killed at ("

<< xTar << "," << yTar

<< ") at timestep " << timestep

<< ", subtime " << subTime << "\n";

casualties.close();

// Write details to screen

cout << "local[" << k << "] killed at (" << xTar

<< "," << yTar << ") \n";

} // End of insurgent coordinates if loop

} // End of insurgent for loop

break;

case 4:

// Go through Civilian array to find the relevant

// agent and then change agent status

for (k = 0; k < CIVNO; k++)

{

if ((pCivilianArray[k]->xPrev == xTar) &&

(pCivilianArray[k]->yPrev == yTar))

{

pCivilianArray[k]->alive = 0;

pCivilianArray[k]->xPos = GRIDSIZE;

pCivilianArray[k]->yPos = GRIDSIZE;

pGrid[yTar][xTar]->occSquad = 0;

pGrid[yTar][xTar]->agentType = 0;

// Write details to file

ofstream casualties; // Declare file to write

// output to

casualties.open("casualties.txt", ios::app);

casualties << "civilian[" << k << "] killed at ("

<< xTar << "," << yTar

<< ") at timestep " << timestep

<< ", subtime " << subTime << "\n";

casualties.close();

// Write details to screen

cout << "civilian[" << k << "] killed at ("

<< xTar << "," << yTar << ") \n";

} // End if Civilian coordinates if loop

} // End of Civilian for loop

break;

default:

// Error message

cout << "Unknown agent type "

<< pGrid[yTar][xTar]->prevType

<< " in combat.cpp line 377!\n";

system("PAUSE");

exit(1);

} // End of prevType switch loop

} // End of target killed if loop
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} // End of target loop. End of if/else loop

} // End of (count == 0) loop

// If there’s only one agent firing at the peacekeeper check that it’s a

// valid target, and if so fire at that cell

else if (count == 1)

{

// Check pGrid[y][x]->shotToNo > 0

if ((pGrid[y][x]->shotToNo) <= 0)

{

cout << "Error in counting targets in combat.cpp line 422. \n";

system("PAUSE");

exit(1);

} // End of error check if loop

// Check the relationship to the occupying agent of that cell

squad = shotAtArray[0][3];

rel = pPeace->relation[squad - 1];

aType = shotAtArray[0][2];

// If the relationship is hostile or uncooperative, and the agent is

// insurgent, shoot at that cell

if ((aType == 3) && ((rel == 4) || (rel == 5)))

{

xTar = shotAtArray[0][0];

yTar = shotAtArray[0][1];

// Check xTar and yTar are within array bounds

if ((xTar < 0) || (xTar >= GRIDSIZE) || (yTar < 0) ||

(yTar >= GRIDSIZE))

{

cout << "Error in target coordinates in combat.cpp line 433, "

<< "values outside array bounds. \n";

system("PAUSE");

exit(1);

} // End of error check if loop

// Change shotArray

// Check there haven’t already been MAXSHOTS shots fired (array can

// only hold MAXSHOTS rows)

if (*pShotCount < MAXSHOTS)

{

*pShotArray[*pShotCount][0] = timestep;

*pShotArray[*pShotCount][1] = subTime;

*pShotArray[*pShotCount][2] = x;

*pShotArray[*pShotCount][3] = y;

*pShotArray[*pShotCount][4] = 1;

*pShotArray[*pShotCount][5] = pPeace->squadNo;

*pShotArray[*pShotCount][6] = xTar;

*pShotArray[*pShotCount][7] = yTar;

*pShotArray[*pShotCount][8] = 3;

*pShotArray[*pShotCount][9] = pGrid[yTar][xTar]->prevSquad;

(*pShotCount)++;
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(pGrid[yTar][xTar]->shotToNo)++;

}

else

{

// Exit program

cout << "Error: Too many shots fired, array bounds exceeded.";

system("PAUSE");

exit(1);

} // End of if/else loop

// Now determine whether or not the target agent is killed

randNo = (float)rand()/32767; // Generate a random number

// between 0 and 1

// If they are killed then change target agent status

if ((pPeace->sSKP != 0) && (randNo <= (pPeace->sSKP)))

{

switch (pGrid[yTar][xTar]->prevType)

{

case 0:

// No agent at cell - has either moved or been killed -

// therefore the shot will have no effect

break;

case 1:

// Go through Peacekeeper array to find the relevant

// agent and then change agent status

for (k = 0; k < PEACENO; k++)

{

if ((pPeaceArray[k]->xPrev == xTar) &&

(pPeaceArray[k]->yPrev == yTar))

{

pPeaceArray[k]->alive = 0;

pPeaceArray[k]->xPos = GRIDSIZE;

pPeaceArray[k]->yPos = GRIDSIZE;

pGrid[yTar][xTar]->occSquad = 0;

pGrid[yTar][xTar]->agentType = 0;

// Write details to file

ofstream casualties; // Declare file to write

// output to

casualties.open("casualties.txt", ios::app);

casualties << "peace[" << k << "] killed at ("

<< xTar << "," << yTar

<< ") at timestep " << timestep

<< ", subtime " << subTime << "\n";

casualties.close();

// Write details to screen

cout << "peace[" << k << "] killed at (" << xTar

<< "," << yTar << ") \n";

} // End of Peacekeeper coordinates if loop

} // End of Peacekeeper for loop

break;

case 2:
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// Go through NGO array to find the relevant

// agent and then change agent status

for (k = 0; k < SUPPORTNO; k++)

{

if ((pSupportArray[k]->xPrev == xTar) &&

(pSupportArray[k]->yPrev == yTar))

{

pSupportArray[k]->alive = 0;

pSupportArray[k]->xPos = GRIDSIZE;

pSupportArray[k]->yPos = GRIDSIZE;

pGrid[yTar][xTar]->occSquad = 0;

pGrid[yTar][xTar]->agentType = 0;

// Write details to file

ofstream casualties; // Declare file to write

// output to

casualties.open("casualties.txt", ios::app);

casualties << "support[" << k << "] killed at ("

<< xTar << "," << yTar

<< ") at timestep " << timestep

<< ", subtime " << subTime << "\n";

casualties.close();

// Write details to screen

cout << "support[" << k << "] killed at ("

<< xTar << "," << yTar << ") \n";

} // End of NGO coordinates if loop

} // End of NGO for loop

break;

case 3:

// Go through insurgent array to find the relevant

// agent and then change agent status

for (k = 0; k < LOCALNO; k++)

{

if ((pLocalArray[k]->xPrev == xTar) &&

(pLocalArray[k]->yPrev == yTar))

{

pLocalArray[k]->alive = 0;

pLocalArray[k]->xPos = GRIDSIZE;

pLocalArray[k]->yPos = GRIDSIZE;

pGrid[yTar][xTar]->occSquad = 0;

pGrid[yTar][xTar]->agentType = 0;

// Write details to file

ofstream casualties; // Declare file to write

// output to

casualties.open("casualties.txt", ios::app);

casualties << "local[" << k << "] killed at ("

<< xTar << "," << yTar

<< ") at timestep " << timestep

<< ", subtime " << subTime << "\n";

casualties.close();

// Write details to screen

cout << "local[" << k << "] killed at (" << xTar
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<< "," << yTar << ") \n";

} // End of insurgent coordinates if loop

} // End of insurgent for loop

break;

case 4:

// Go through Civilian array to find the relevant

// agent and then change agent status

for (k = 0; k < CIVNO; k++)

{

if ((pCivilianArray[k]->xPrev == xTar) &&

(pCivilianArray[k]->yPrev == yTar))

{

pCivilianArray[k]->alive = 0;

pCivilianArray[k]->xPos = GRIDSIZE;

pCivilianArray[k]->yPos = GRIDSIZE;

pGrid[yTar][xTar]->occSquad = 0;

pGrid[yTar][xTar]->agentType = 0;

// Write details to file

ofstream casualties; // Declare file to write

// output to

casualties.open("casualties.txt", ios::app);

casualties << "civilian[" << k << "] killed at ("

<< xTar << "," << yTar

<< ") at timestep " << timestep

<< ", subtime " << subTime << "\n";

casualties.close();

// Write details to screen

cout << "civilian[" << k << "] killed at ("

<< xTar << "," << yTar << ") \n";

} // End of Civilian coordinates if loop

} // End of Civilian for loop

break;

default:

// Error message

cout << "Unknown agent type "

<< pGrid[yTar][xTar]->prevType

<< " in combat.cpp line 569!\n";

system("PAUSE");

exit(1);

} // End of prevType switch loop

} // End of target killed if loop

} // End of target choice loop

// If the agent is not insurgent and/or the relationship is not

// uncooperative or hostile then change the peacekeepers action to move

else

{

pGrid[y][x]->actionType = 4;

} // End of no target loop. End of if/else loop

} // End of (count == 1) loop

302



// If there was more than one shot fired at the cell, choose a target at

// random from them

else if (count > 1)

{

// Generate a random integer between 0 and (count - 1) to determine

// which target to aim for

tarNo = (int)(rand()*count/32768);

// Check 0 <= tarNo <= (count - 1)

if ((tarNo < 0) || (tarNo >= count))

{

cout << "Error in calculating target in combat.cpp line 456. \n";

system ("PAUSE");

exit(1);

}

// Check tarNo < shotToNo

else if (tarNo >= (pGrid[y][x]->shotToNo))

{

cout << "tarNo = " << tarNo << ", count = " << count

<< ", shotToNo = " << pGrid[y][x]->shotToNo

<< ", currentT = " << timestep << ", x = " << x << ", y = "

<< y << "\n";

cout << "Error in counting targets in combat.cpp line 463. \n";

// Output shotArray to file

ofstream shotoutput;

shotoutput.open("shotoutput.txt", ios::app);

for (k = 0; k < *pShotCount; k++)

{

shotoutput << *pShotArray[k][0] << " " << *pShotArray[k][1] << " "

<< *pShotArray[k][2] << " " << *pShotArray[k][3] << " "

<< *pShotArray[k][4] << " " << *pShotArray[k][5] << " "

<< *pShotArray[k][6] << " " << *pShotArray[k][7] << " "

<< *pShotArray[k][8] << " " << *pShotArray[k][9] << "\n";

}

shotoutput.close();

system("PAUSE");

exit(1);

} // End of error check if/else if loop

// Check the relationship to the occupying agent of that cell

squad = shotAtArray[tarNo][3];

rel = pPeace->relation[squad - 1];

aType = shotAtArray[tarNo][2];

// If the relationship is hostile or uncooperative, and the agent is

// insurgent, shoot at that cell

if ((aType == 3) && ((rel == 4) || (rel == 5)))

{

xTar = shotAtArray[tarNo][0];

yTar = shotAtArray[tarNo][1];

// Check xTar and yTar are within array bounds

if ((xTar < 0) || (xTar >= GRIDSIZE) || (yTar < 0) ||

(yTar >= GRIDSIZE))

{
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cout << "Error in target coordinates in combat.cpp line 483, "

<< "values outside array bounds. \n";

system("PAUSE");

exit(1);

} // End of error check if loop

// Change shotArray

// Check there haven’t already been MAXSHOTS shots fired (array can

// only hold MAXSHOTS rows)

if (*pShotCount < MAXSHOTS)

{

*pShotArray[*pShotCount][0] = timestep;

*pShotArray[*pShotCount][1] = subTime;

*pShotArray[*pShotCount][2] = x;

*pShotArray[*pShotCount][3] = y;

*pShotArray[*pShotCount][4] = 1;

*pShotArray[*pShotCount][5] = pPeace->squadNo;

*pShotArray[*pShotCount][6] = xTar;

*pShotArray[*pShotCount][7] = yTar;

*pShotArray[*pShotCount][8] = 3;

*pShotArray[*pShotCount][9] = pGrid[yTar][xTar]->prevSquad;

(*pShotCount)++;

(pGrid[yTar][xTar]->shotToNo)++;

}

else

{

// Exit program

cout << "Error: Too many shots fired, array bounds exceeded.";

system("PAUSE");

exit(1);

} // End of if/else loop

// Now determine whether or not the target agent is killed

randNo = (float)rand()/32767; // Generate a random number

// between 0 and 1

// If they are killed then change the target agent’s status

if ((pPeace->sSKP != 0) && (randNo <= (pPeace->sSKP)))

{

switch (pGrid[yTar][xTar]->prevType)

{

case 0:

// No agent at cell - has either moved or been killed -

// therefore the shot will have no effect

break;

case 1:

// Go through Peacekeeper array to find the relevant

// agent and then change agent status

for (k = 0; k < PEACENO; k++)

{

if ((pPeaceArray[k]->xPrev == xTar) &&

(pPeaceArray[k]->yPrev == yTar))

{
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pPeaceArray[k]->alive = 0;

pPeaceArray[k]->xPos = GRIDSIZE;

pPeaceArray[k]->yPos = GRIDSIZE;

pGrid[yTar][xTar]->occSquad = 0;

pGrid[yTar][xTar]->agentType = 0;

// Write details to file

ofstream casualties; // Declare file to write

// output to

casualties.open("casualties.txt", ios::app);

casualties << "peace[" << k << "] killed at ("

<< xTar << "," << yTar

<< ") at timestep " << timestep

<< ", subtime " << subTime << "\n";

casualties.close();

// Write details to screen

cout << "peace[" << k << "] killed at (" << xTar

<< "," << yTar << ") \n";

} // End of Peacekeeper coordinates if loop

} // End of Peacekeeper for loop

break;

case 2:

// Go through NGO array to find the relevant

// agent and then change agent status

for (k = 0; k < SUPPORTNO; k++)

{

if ((pSupportArray[k]->xPrev == xTar) &&

(pSupportArray[k]->yPrev == yTar))

{

pSupportArray[k]->alive = 0;

pSupportArray[k]->xPos = GRIDSIZE;

pSupportArray[k]->yPos = GRIDSIZE;

pGrid[yTar][xTar]->occSquad = 0;

pGrid[yTar][xTar]->agentType = 0;

// Write details to file

ofstream casualties; // Declare file to write

// output to

casualties.open("casualties.txt", ios::app);

casualties << "support[" << k << "] killed at ("

<< xTar << "," << yTar

<< ") at timestep " << timestep

<< ", subtime " << subTime << "\n";

casualties.close();

// Write details to screen

cout << "support[" << k << "] killed at ("

<< xTar << "," << yTar << ") \n";

} // End of NGO coordinates if loop

} // End of NGO for loop

break;

case 3:

// Go through insurgent array to find the relevant

// agent and then change agent status
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for (k = 0; k < LOCALNO; k++)

{

if ((pLocalArray[k]->xPrev == xTar) &&

(pLocalArray[k]->yPrev == yTar))

{

pLocalArray[k]->alive = 0;

pLocalArray[k]->xPos = GRIDSIZE;

pLocalArray[k]->yPos = GRIDSIZE;

pGrid[yTar][xTar]->occSquad = 0;

pGrid[yTar][xTar]->agentType = 0;

// Write details to file

ofstream casualties; // Declare file to write

// output to

casualties.open("casualties.txt", ios::app);

casualties << "local[" << k << "] killed at ("

<< xTar << "," << yTar

<< ") at timestep " << timestep

<< ", subtime " << subTime << "\n";

casualties.close();

// Write details to screen

cout << "local[" << k << "] killed at (" << xTar

<< "," << yTar << ") \n";

} // End of insurgent coordinates if loop

} // End of insurgent for loop

break;

case 4:

// Go through Civilian array to find the relevant

// agent and then change agent status

for (k = 0; k < CIVNO; k++)

{

if ((pCivilianArray[k]->xPrev == xTar) &&

(pCivilianArray[k]->yPrev == yTar))

{

pCivilianArray[k]->alive = 0;

pCivilianArray[k]->xPos = GRIDSIZE;

pCivilianArray[k]->yPos = GRIDSIZE;

pGrid[yTar][xTar]->occSquad = 0;

pGrid[yTar][xTar]->agentType = 0;

// Write details to file

ofstream casualties; // Declare file to write

// output to

casualties.open("casualties.txt", ios::app);

casualties << "civilian[" << k << "] killed at ("

<< xTar << "," << yTar

<< ") at timestep " << timestep

<< ", subtime " << subTime << "\n";

casualties.close();

// Write details to screen

cout << "civilian[" << k << "] killed at ("

<< xTar << "," << yTar << ") \n";

} // End of Civilian coordinates if loop
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} // End of Civilian for loop

break;

default:

// Error message

cout << "Unknown agent type "

<< pGrid[yTar][xTar]->prevType

<< "in combat.cpp line 624!\n";

system("PAUSE");

exit(1);

}

}

} // End of target choice loop

// If the agent is not insurgent and/or the relationship is not

// uncooperative or hostile then change the peacekeepers action to move

else

{

pGrid[y][x]->actionType = 4;

} // End of no target loop. End of if/else loop

} // End of (count > 1) loop. End of if/else if loop

} // End of peaceCombat function

// Local milita agents’ combat function

void locCombat(Cell *pGrid[GRIDSIZE][GRIDSIZE], LocalMilitia *pLoc,

Peacekeeper *pPeaceArray[PEACENO],

SupportAgent *pSupportArray[SUPPORTNO],

LocalMilitia *pLocalArray[LOCALNO],

Civilian *pCivilianArray[CIVNO],

short *pShotArray[MAXSHOTS][10], int *pShotCount,

int timestep, int subTime)

{

short x = pLoc->xPrev; // Set x and y variables to represent the

short y = pLoc->yPrev; // agent’s x and y positions respectively

// First check the shots fired to the current cell to see where they’re

// coming from

// Count the number of shots fired at the cell in the last timestep

int i, j, k, n; // Declare counters

int target[500][2]; // Declare array to hold valid target

// locations

int tar = 0; // Initialise counter for number of valid

// targets

int tarNo;

short xTar; // Variables to hold target coordinates

short yTar;

short rel; // Variables will hold details of possible

short squad; // target agents

short aType;

short shotAtArray[500][4]; // Declare array to hold details of shots
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// fired to the cell

int count = 0; // Initialise variable to count number of

// shots

float randNo;

// Check to see if any shots have been fired to the cell and if so count

// them

if (pGrid[y][x]->shotToNo > 0)

{

n = *pShotCount - 1; // Initialise loop counter

while (*pShotArray[n][0] >= (timestep - 1))

{

if ((*pShotArray[n][0] == timestep) &&

(*pShotArray[n][1] != subTime) && (*pShotArray[n][6] == x) &&

(*pShotArray[n][7] == y))

{

shotAtArray[count][0] = *pShotArray[n][2];

shotAtArray[count][1] = *pShotArray[n][3];

shotAtArray[count][2] = *pShotArray[n][4];

shotAtArray[count][3] = *pShotArray[n][5];

count++;

}

else if ((*pShotArray[n][0] == (timestep - 1)) &&

(*pShotArray[n][1] >= subTime) && (*pShotArray[n][6] == x)

&& (*pShotArray[n][7] == y))

{

shotAtArray[count][0] = *pShotArray[n][2];

shotAtArray[count][1] = *pShotArray[n][3];

shotAtArray[count][2] = *pShotArray[n][4];

shotAtArray[count][3] = *pShotArray[n][5];

count++;

} // End of if/else if loop

n--; // Increment loop counter

// Check to make sure n >= 0, if not break out of while loop

if (n < 0)

{

break;

} // End of if loop

} // End of while loop

} // End of if loop

// If there have been no shots fired at the cell then the agent must have

// been chosen to fire at a random target within firing range.

if (count == 0)

{

// Check to see if there is a valid target within firing range
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for (i = (x - pLoc->fireRange); i <= (x + pLoc->fireRange); i++)

{

for (j = (y - pLoc->fireRange); j < (y + pLoc->fireRange); j++)

{

// Check this cell is within the grid

if ((i >= 0) && (i < GRIDSIZE) && (j >= 0) && (j < GRIDSIZE))

{

// Check to see if there is an agent at the cell

if (pGrid[j][i]->prevType != 0)

{

// Record the relationship to the agent at this cell

rel = pLoc->relation[(pGrid[j][i]->prevSquad) - 1];

// If the agent is hostile or uncooperative then record it

// as a valid target

if ((rel == 5) || (rel == 4))

{

target[tar][0] = i;

target[tar][1] = j;

tar++;

} // End of relationship check if loop

} // End of occupying agent check if loop

} // End of coordinate check if loop

}

} // End of firing range target search loop

// If there are no valid targets within range change the action to move

if (tar == 0)

{

pGrid[y][x]->actionType = 4;

} // End of no target loop

// Else choose a target to fire at

else

{

// Generate a random integer between 0 and (tar - 1)

tarNo = (int)(rand()*tar/32768);

// Set target location

xTar = target[tarNo][0];

yTar = target[tarNo][1];

// Change shotArray

// Check there haven’t already been MAXSHOTS shots fired (array can

// only hold MAXSHOTS rows)

if (*pShotCount < MAXSHOTS)

{

*pShotArray[*pShotCount][0] = timestep;

*pShotArray[*pShotCount][1] = subTime;

*pShotArray[*pShotCount][2] = x;

*pShotArray[*pShotCount][3] = y;

*pShotArray[*pShotCount][4] = 3;

*pShotArray[*pShotCount][5] = pLoc->squadNo;

*pShotArray[*pShotCount][6] = xTar;

*pShotArray[*pShotCount][7] = yTar;
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*pShotArray[*pShotCount][8] = pGrid[yTar][xTar]->prevType;

*pShotArray[*pShotCount][9] = pGrid[yTar][xTar]->prevSquad;

(*pShotCount)++;

(pGrid[yTar][xTar]->shotToNo)++;

}

else

{

// Exit program

cout << "Error: Too many shots fired, array bounds exceeded.";

system("PAUSE");

exit(1);

} // End of if/else loop

// Now determine whether or not the target agent is killed

randNo = (float)rand()/32767; // Generate a random number

// between 0 and 1

// If they are killed then change the target agent’s status

if ((pLoc->sSKP != 0) && (randNo <= (pLoc->sSKP)))

{

switch (pGrid[yTar][xTar]->prevType)

{

case 0:

// No agent at cell - has either moved or been killed -

// therefore the shot will have no effect

break;

case 1:

// Go through Peacekeeper array to find the relevant

// agent and then change agent status

for (k = 0; k < PEACENO; k++)

{

if ((pPeaceArray[k]->xPrev == xTar) &&

(pPeaceArray[k]->yPrev == yTar))

{

pPeaceArray[k]->alive = 0;

pPeaceArray[k]->xPos = GRIDSIZE;

pPeaceArray[k]->yPos = GRIDSIZE;

pGrid[yTar][xTar]->occSquad = 0;

pGrid[yTar][xTar]->agentType = 0;

// Write details to file

ofstream casualties; // Declare file to write

// output to

casualties.open("casualties.txt", ios::app);

casualties << "peace[" << k << "] killed at ("

<< xTar << "," << yTar

<< ") at timestep " << timestep

<< ", subtime " << subTime << "\n";

casualties.close();

// Write details to screen

cout << "peace[" << k << "] killed at (" << xTar

<< "," << yTar << ") \n";

} // End of Peacekeeper coordinates if loop
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} // End of Peacekeeper for loop

break;

case 2:

// Go through NGO array to find the relevant

// agent and then change agent status

for (k = 0; k < SUPPORTNO; k++)

{

if ((pSupportArray[k]->xPrev == xTar) &&

(pSupportArray[k]->yPrev == yTar))

{

pSupportArray[k]->alive = 0;

pSupportArray[k]->xPos = GRIDSIZE;

pSupportArray[k]->yPos = GRIDSIZE;

pGrid[yTar][xTar]->occSquad = 0;

pGrid[yTar][xTar]->agentType = 0;

// Write details to file

ofstream casualties; // Declare file to write

// output to

casualties.open("casualties.txt", ios::app);

casualties << "support[" << k << "] killed at ("

<< xTar << "," << yTar

<< ") at timestep " << timestep

<< ", subtime " << subTime << "\n";

casualties.close();

// Write details to screen

cout << "support[" << k << "] killed at ("

<< xTar << "," << yTar << ") \n";

} // End of NGO coordinates if loop

} // End of NGO for loop

break;

case 3:

// Go through insurgent array to find the relevant

// agent and then change agent status

for (k = 0; k < LOCALNO; k++)

{

if ((pLocalArray[k]->xPrev == xTar) &&

(pLocalArray[k]->yPrev == yTar))

{

pLocalArray[k]->alive = 0;

pLocalArray[k]->xPos = GRIDSIZE;

pLocalArray[k]->yPos = GRIDSIZE;

pGrid[yTar][xTar]->occSquad = 0;

pGrid[yTar][xTar]->agentType = 0;

// Write details to file

ofstream casualties; // Declare file to write

// output to

casualties.open("casualties.txt", ios::app);

casualties << "local[" << k << "] killed at ("

<< xTar << "," << yTar

<< ") at timestep " << timestep

<< ", subtime " << subTime << "\n";
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casualties.close();

// Write details to screen

cout << "local[" << k << "] killed at (" << xTar

<< "," << yTar << ") \n";

} // End of insurgent coordinates if loop

} // End of insurgent for loop

break;

case 4:

// Go through Civilian array to find the relevant

// agent and then change agent status

for (k = 0; k < CIVNO; k++)

{

if ((pCivilianArray[k]->xPrev == xTar) &&

(pCivilianArray[k]->yPrev == yTar))

{

pCivilianArray[k]->alive = 0;

pCivilianArray[k]->xPos = GRIDSIZE;

pCivilianArray[k]->yPos = GRIDSIZE;

pGrid[yTar][xTar]->occSquad = 0;

pGrid[yTar][xTar]->agentType = 0;

// Write details to file

ofstream casualties; // Declare file to write

// output to

casualties.open("casualties.txt", ios::app);

casualties << "civilian[" << k << "] killed at ("

<< xTar << "," << yTar

<< ") at timestep " << timestep

<< ", subtime " << subTime << "\n";

casualties.close();

// Write details to screen

cout << "civilian[" << k << "] killed at ("

<< xTar << "," << yTar << ") \n";

} // End of Civilian coordinates if loop

} // End of Civilian for loop

break;

default:

// Error message

cout << "Unknown agent type "

<< pGrid[yTar][xTar]->prevType

<< "in combat.cpp line 1117!\n";

system("PAUSE");

exit(1);

} // End of prevType switch loop

} // End of target killed if loop

} // End of target loop. End of if/else loop

} // End of (count == 0) loop

// If there was one shot fired at the cell, fire back unless the

// relationship to the occupant agent is not hostile or uncooperative

else if (count == 1)

{
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// Check pGrid[y][x]->shotToNo > 0

if ((pGrid[y][x]->shotToNo) <= 0)

{

cout << "Error in counting targets in combat.cpp line 1213. \n";

system("PAUSE");

exit(1);

} // End of error check if loop

// Check the relationship to the occupying agent of that cell

squad = shotAtArray[0][3];

rel = pLoc->relation[squad - 1];

aType = shotAtArray[0][2];

// If the relationship is hostile or uncooperative shoot at that cell

if ((rel == 4) || (rel == 5))

{

xTar = shotAtArray[0][0];

yTar = shotAtArray[0][1];

// Check xTar and yTar are within array bounds

if ((xTar < 0) || (xTar >= GRIDSIZE) || (yTar < 0) ||

(yTar >= GRIDSIZE))

{

cout << "Error in target coordinates in combat.cpp line 1216, "

<< "values outside array bounds. \n";

system("PAUSE");

exit(1);

} // End of error check if loop

// Change shotArray

// Check there haven’t already been MAXSHOTS shots fired (array can

// only hold MAXSHOTS rows)

if (*pShotCount < MAXSHOTS)

{

*pShotArray[*pShotCount][0] = timestep;

*pShotArray[*pShotCount][1] = subTime;

*pShotArray[*pShotCount][2] = x;

*pShotArray[*pShotCount][3] = y;

*pShotArray[*pShotCount][4] = 3;

*pShotArray[*pShotCount][5] = pLoc->squadNo;

*pShotArray[*pShotCount][6] = xTar;

*pShotArray[*pShotCount][7] = yTar;

*pShotArray[*pShotCount][8] = pGrid[yTar][xTar]->prevType;

*pShotArray[*pShotCount][9] = pGrid[yTar][xTar]->prevSquad;

(*pShotCount)++;

(pGrid[yTar][xTar]->shotToNo)++;

}

else

{

// Exit program

cout << "Error: Too many shots fired, array bounds exceeded.";

system("PAUSE");

exit(1);

} // End of if/else loop
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// Now determine whether or not the target agent is killed

randNo = (float)rand()/32767; // Generate a random number

// between 0 and 1

// If they are killed then change the target agent’s status

if ((pLoc->sSKP != 0) && (randNo <= (pLoc->sSKP)))

{

switch (pGrid[yTar][xTar]->prevType)

{

case 0:

// No agent at cell - has either moved or been killed -

// therefore the shot will have no effect

break;

case 1:

// Go through Peacekeeper array to find the relevant

// agent and then change agent status

for (k = 0; k < PEACENO; k++)

{

if ((pPeaceArray[k]->xPrev == xTar) &&

(pPeaceArray[k]->yPrev == yTar))

{

pPeaceArray[k]->alive = 0;

pPeaceArray[k]->xPos = GRIDSIZE;

pPeaceArray[k]->yPos = GRIDSIZE;

pGrid[yTar][xTar]->occSquad = 0;

pGrid[yTar][xTar]->agentType = 0;

// Write details to file

ofstream casualties; // Declare file to write

// output to

casualties.open("casualties.txt", ios::app);

casualties << "peace[" << k << "] killed at ("

<< xTar << "," << yTar

<< ") at timestep " << timestep

<< ", subtime " << subTime << "\n";

casualties.close();

// Write details to screen

cout << "peace[" << k << "] killed at (" << xTar

<< "," << yTar << ") \n";

} // End of Peacekeeper coordinates if loop

} // End of Peacekeeper for loop

break;

case 2:

// Go through NGO array to find the relevant

// agent and then change agent status

for (k = 0; k < SUPPORTNO; k++)

{

if ((pSupportArray[k]->xPrev == xTar) &&

(pSupportArray[k]->yPrev == yTar))

{

pSupportArray[k]->alive = 0;

pSupportArray[k]->xPos = GRIDSIZE;

pSupportArray[k]->yPos = GRIDSIZE;
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pGrid[yTar][xTar]->occSquad = 0;

pGrid[yTar][xTar]->agentType = 0;

// Write details to file

ofstream casualties; // Declare file to write

// output to

casualties.open("casualties.txt", ios::app);

casualties << "support[" << k << "] killed at ("

<< xTar << "," << yTar

<< ") at timestep " << timestep

<< ", subtime " << subTime << "\n";

casualties.close();

// Write details to screen

cout << "support[" << k << "] killed at ("

<< xTar << "," << yTar << ") \n";

} // End of NGO coordinates if loop

} // End of NGO for loop

break;

case 3:

// Go through insurgent array to find the relevant

// agent and then change agent status

for (k = 0; k < LOCALNO; k++)

{

if ((pLocalArray[k]->xPrev == xTar) &&

(pLocalArray[k]->yPrev == yTar))

{

pLocalArray[k]->alive = 0;

pLocalArray[k]->xPos = GRIDSIZE;

pLocalArray[k]->yPos = GRIDSIZE;

pGrid[yTar][xTar]->occSquad = 0;

pGrid[yTar][xTar]->agentType = 0;

// Write details to file

ofstream casualties; // Declare file to write

// output to

casualties.open("casualties.txt", ios::app);

casualties << "local[" << k << "] killed at ("

<< xTar << "," << yTar

<< ") at timestep " << timestep

<< ", subtime " << subTime << "\n";

casualties.close();

// Write details to screen

cout << "local[" << k << "] killed at (" << xTar

<< "," << yTar << ") \n";

} // End of insurgent coordinates if loop

} // End of insurgent for loop

break;

case 4:

// Go through Civilian array to find the relevant

// agent and then change agent status

for (k = 0; k < CIVNO; k++)

{

if ((pCivilianArray[k]->xPrev == xTar) &&
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(pCivilianArray[k]->yPrev == yTar))

{

pCivilianArray[k]->alive = 0;

pCivilianArray[k]->xPos = GRIDSIZE;

pCivilianArray[k]->yPos = GRIDSIZE;

pGrid[yTar][xTar]->occSquad = 0;

pGrid[yTar][xTar]->agentType = 0;

// Write details to file

ofstream casualties; // Declare file to write

// output to

casualties.open("casualties.txt", ios::app);

casualties << "civilian[" << k << "] killed at ("

<< xTar << "," << yTar

<< ") at timestep " << timestep

<< ", subtime " << subTime << "\n";

casualties.close();

// Write details to screen

cout << "civilian[" << k << "] killed at ("

<< xTar << "," << yTar << ") \n";

} // End of Civilian coordinates if loop

} // End of Civilian for loop

break;

default:

// Error message

cout << "Unknown agent type "

<< pGrid[yTar][xTar]->prevType

<< " in combat.cpp line 1319!\n";

system("PAUSE");

exit(1);

} // End of prevType switch loop

} // End of target killed loop

} // End of relationship check loop

// If the relationship is not uncooperative or hostile then change the

// action to move

else

{

pGrid[y][x]->actionType = 4;

} // End of no shooting loop. End of if/else loop

} // End of (count == 1) loop

// If there were more than one shots fired at the cell, choose a target at

// random from them

else if (count > 1)

{

// Generate a random integer between 0 and (count - 1) to determine

// which target to aim for

tarNo = (int)(rand()*count/32768);

// Check 0 <= tarNo <= (count - 1)

if ((tarNo < 0) || (tarNo >= count))

{

cout << "Error in calculating target in combat.cpp line 1400. \n";

system ("PAUSE");
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exit(1);

}

// Check tarNo < shotToNo

else if (tarNo >= (pGrid[y][x]->shotToNo))

{

cout << "Error in counting targets in combat.cpp line 1407. \n";

system("PAUSE");

exit(1);

} // End of error check if/else if loop

// Check the relationship to the occupying agent of that cell

squad = shotAtArray[tarNo][3];

rel = pLoc->relation[squad - 1];

aType = shotAtArray[tarNo][2];

// If the relationship is hostile or uncooperative shoot at that cell

if ((rel == 4) || (rel == 5))

{

xTar = shotAtArray[tarNo][0];

yTar = shotAtArray[tarNo][1];

// Check xTar and yTar are within array bounds

if ((xTar < 0) || (xTar >= GRIDSIZE) || (yTar < 0) ||

(yTar >= GRIDSIZE))

{

cout << "Error in target coordinates in combat.cpp line 1410, "

<< "values outside array bounds. \n";

system("PAUSE");

exit(1);

} // End of error check if loop

// Change shotArray

// Check there haven’t already been MAXSHOTS shots fired (array can

// only hold MAXSHOTS rows)

if (*pShotCount < MAXSHOTS)

{

*pShotArray[*pShotCount][0] = timestep;

*pShotArray[*pShotCount][1] = subTime;

*pShotArray[*pShotCount][2] = x;

*pShotArray[*pShotCount][3] = y;

*pShotArray[*pShotCount][4] = 3;

*pShotArray[*pShotCount][5] = pLoc->squadNo;

*pShotArray[*pShotCount][6] = xTar;

*pShotArray[*pShotCount][7] = yTar;

*pShotArray[*pShotCount][8] = pGrid[yTar][xTar]->prevType;

*pShotArray[*pShotCount][9] = pGrid[yTar][xTar]->prevSquad;

(*pShotCount++);

(pGrid[yTar][xTar]->shotToNo)++;

}

else

{

// Exit program

cout << "Error: Too many shots fired, array bounds exceeded.";

system("PAUSE");

exit(1);

317



} // End of if/else loop

// Now determine whether or not the target agent is killed

randNo = (float)rand()/32767; // Generate a random number

// between 0 and 1

// If they are killed then change the target agent’s status

if ((pLoc->sSKP != 0) && (randNo <= (pLoc->sSKP)))

{

switch (pGrid[yTar][xTar]->prevType)

{

case 0:

// No agent at cell - has either moved or been killed -

// therefore the shot will have no effect

break;

case 1:

// Go through Peacekeeper array to find the relevant

// agent and then change agent status

for (k = 0; k < PEACENO; k++)

{

if ((pPeaceArray[k]->xPrev == xTar) &&

(pPeaceArray[k]->yPrev == yTar))

{

pPeaceArray[k]->alive = 0;

pPeaceArray[k]->xPos = GRIDSIZE;

pPeaceArray[k]->yPos = GRIDSIZE;

pGrid[yTar][xTar]->occSquad = 0;

pGrid[yTar][xTar]->agentType = 0;

// Write details to file

ofstream casualties; // Declare file to write

// output to

casualties.open("casualties.txt", ios::app);

casualties << "peace[" << k << "] killed at ("

<< xTar << "," << yTar

<< ") at timestep " << timestep

<< ", subtime " << subTime << "\n";

casualties.close();

// Write details to screen

cout << "peace[" << k << "] killed at (" << xTar

<< "," << yTar << ") \n";

} // End of Peacekeeper coordinates if loop

} // End of Peacekeeper if loop

break;

case 2:

// Go through NGO array to find the relevant

// agent and then change agent status

for (k = 0; k < SUPPORTNO; k++)

{

if ((pSupportArray[k]->xPrev == xTar) &&

(pSupportArray[k]->yPrev == yTar))

{

pSupportArray[k]->alive = 0;
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pSupportArray[k]->xPos = GRIDSIZE;

pSupportArray[k]->yPos = GRIDSIZE;

pGrid[yTar][xTar]->occSquad = 0;

pGrid[yTar][xTar]->agentType = 0;

// Write details to file

ofstream casualties; // Declare file to write

// output to

casualties.open("casualties.txt", ios::app);

casualties << "support[" << k << "] killed at ("

<< xTar << "," << yTar

<< ") at timestep " << timestep

<< ", subtime " << subTime << "\n";

casualties.close();

// Write details to screen

cout << "support[" << k << "] killed at ("

<< xTar << "," << yTar << ") \n";

} // End of NGO coordinates if loop

} // End of NGO for loop

break;

case 3:

// Go through insurgent array to find the relevant

// agent and then change agent status

for (k = 0; k < LOCALNO; k++)

{

if ((pLocalArray[k]->xPrev == xTar) &&

(pLocalArray[k]->yPrev == yTar))

{

pLocalArray[k]->alive = 0;

pLocalArray[k]->xPos = GRIDSIZE;

pLocalArray[k]->yPos = GRIDSIZE;

pGrid[yTar][xTar]->occSquad = 0;

pGrid[yTar][xTar]->agentType = 0;

// Write details to file

ofstream casualties; // Declare file to write

// output to

casualties.open("casualties.txt", ios::app);

casualties << "local[" << k << "] killed at ("

<< xTar << "," << yTar

<< ") at timestep " << timestep

<< ", subtime " << subTime << "\n";

casualties.close();

// Write details to screen

cout << "local[" << k << "] killed at (" << xTar

<< "," << yTar << ") \n";

} // End of Insurgent coordinates if loop

} // End of Insurgent for loop

break;

case 4:

// Go through Civilian array to find the relevant

// agent and then change agent status

for (k = 0; k < CIVNO; k++)
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{

if ((pCivilianArray[k]->xPrev == xTar) &&

(pCivilianArray[k]->yPrev == yTar))

{

pCivilianArray[k]->alive = 0;

pCivilianArray[k]->xPos = GRIDSIZE;

pCivilianArray[k]->yPos = GRIDSIZE;

pGrid[yTar][xTar]->occSquad = 0;

pGrid[yTar][xTar]->agentType = 0;

// Write details to file

ofstream casualties; // Declare file to write

// output to

casualties.open("casualties.txt", ios::app);

casualties << "civilian[" << k << "] killed at ("

<< xTar << "," << yTar

<< ") at timestep " << timestep

<< ", subtime " << subTime << "\n";

casualties.close();

// Write details to screen

cout << "civilian[" << k << "] killed at ("

<< xTar << "," << yTar << ") \n";

} // End of Civilian coordinates if loop

} // End of Civilian for loop

break;

default:

// Error message

cout << "Unknown agent type "

<< pGrid[yTar][xTar]->prevType

<< " in combat.cpp line 1481!\n";

system("PAUSE");

exit(1);

} // End of prevType switch loop

} // End of target killed if loop

} // End of target selection loop

// If the relationship is not uncooperative or hostile then change the

// action to move

else

{

pGrid[y][x]->actionType = 4;

} // End of no target loop. End of if/else loop

} // End of (count > 1) loop. End of if/else if loop

} // End of locCombat function

// Insurgent bomb function

void locBomb(Cell *pGrid[GRIDSIZE][GRIDSIZE], LocalMilitia *pLoc,

Peacekeeper *pPeaceArray[PEACENO],

SupportAgent *pSupportArray[SUPPORTNO],

LocalMilitia *pLocalArray[LOCALNO],

Civilian *pCivilianArray[CIVNO], short *pBombArray[MAXBOMB][6],

int *pBombCount, int timestep, int subTime)
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{

short x = pLoc->xPrev; // Set x and y variables to represent the

short y = pLoc->yPrev; // agent’s x and y positions respectively

// Check there are hostile or uncooperative agents within bomb range

int tar = 0; // Initialise counter

short rel;

int i, j; // Declare grid counters

int n; // Declare array counter

// Count the number of valid targets

for (i = (x - pLoc->bombRadius); i <= (x + pLoc->bombRadius); i++)

{

for (j = (y - pLoc->bombRadius); j <= (y + pLoc->bombRadius); j++)

{

// Check this cell is within the grid

if ((i >= 0) && (i < GRIDSIZE) && (j >= 0) && (j < GRIDSIZE))

{

// Check there is an agent at the cell

if (pGrid[j][i]->prevSquad != 0)

{

// Record the relationship to the agent at this cell

rel = pLoc->relation[(pGrid[j][i]->prevSquad) - 1];

// If the agent is hostile or uncooperative then record it

// as a valid target

if ((rel == 5) || (rel == 4))

{

tar++;

} // End of relationship check if loop

} // End of occupying agent check if loop

} // End of coordinate check if loop

}

} // End of bomb radius grid loop

// If there are no valid targets within bomb range then change the agent’s

// action to move

if (tar == 0)

{

pGrid[y][x]->actionType = 4;

}

// Else set off the bomb

else

{

cout << "Bomb set off at (" << x << "," << y << ") \n";

// Update bombArray

// Check there haven’t already been MAXBOMB bombs (array can

// only hold MAXBOMB rows)

if (*pBombCount < MAXBOMB)

{

*pBombArray[*pBombCount][0] = timestep;

*pBombArray[*pBombCount][1] = subTime;

*pBombArray[*pBombCount][2] = x;

*pBombArray[*pBombCount][3] = y;

*pBombArray[*pBombCount][4] = pLoc->bombRadius;
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*pBombArray[*pBombCount][5] = pLoc->squadNo;

(*pBombCount)++;

}

else

{

// Exit program

cout << "Error: Too many bombs, array bounds exceeded.";

system("PAUSE");

exit(1);

} // End of if/else loop

// Go through the cells affected by the bomb

for (i = (x - pLoc->bombRadius); i <= (x + pLoc->bombRadius); i++)

{

for (j = (y - pLoc->bombRadius); j <= (y + pLoc->bombRadius); j++)

{

// Check this cell is within the grid

if ((i >= 0) && (i < GRIDSIZE) && (j >= 0) && (j < GRIDSIZE))

{

// If there’s an agent at the cell then change its alive

// status to 0

switch (pGrid[j][i]->prevType)

{

case 0:

// No agent so do nothing

break;

case 1:

// Go through Peacekeeper array to find the agent at

// the cell

for (n = 0; n < PEACENO; n++)

{

if ((pPeaceArray[n]->xPrev == i) &&

(pPeaceArray[n]->yPrev == j))

{

pPeaceArray[n]->alive = 0;

pPeaceArray[n]->xPos = GRIDSIZE;

pPeaceArray[n]->yPos = GRIDSIZE;

pGrid[j][i]->occSquad = 0;

pGrid[j][i]->agentType = 0;

// Write details to file

ofstream casualties; // Declare file to

// write output to

casualties.open("casualties.txt", ios::app);

casualties << "peace[" << n

<< "] killed by a bomb at (" << i

<< "," << j << ") at timestep "

<< timestep << ", subtime "

<< subTime << "\n";

casualties.close();

// Write details to screen

cout << "peace[" << n << "] killed at ("
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<< i << "," << j << ") \n";

}

}

break;

case 2:

// Go through NGO array to find agent at

// cell

for (n = 0; n < SUPPORTNO; n++)

{

if ((pSupportArray[n]->xPrev == i) &&

(pSupportArray[n]->yPrev == j))

{

pSupportArray[n]->alive = 0;

pSupportArray[n]->xPos = GRIDSIZE;

pSupportArray[n]->yPos = GRIDSIZE;

pGrid[j][i]->occSquad = 0;

pGrid[j][i]->agentType = 0;

// Write details to file

ofstream casualties; // Declare file to

// write output to

casualties.open("casualties.txt", ios::app);

casualties << "support[" << n

<< "] killed by a bomb at (" << i

<< "," << j << ") at timestep "

<< timestep << ", subtime "

<< subTime << "\n";

casualties.close();

// Write details to screen

cout << "support[" << n << "] killed at ("

<< i << "," << j << ") \n";

}

}

break;

case 3:

// Go through insurgent array to find agent at

// cell

for (n = 0; n < LOCALNO; n++)

{

if ((pLocalArray[n]->xPrev == i) &&

(pLocalArray[n]->yPrev == j))

{

pLocalArray[n]->alive = 0;

pLocalArray[n]->xPos = GRIDSIZE;

pLocalArray[n]->yPos = GRIDSIZE;

pGrid[j][i]->occSquad = 0;

pGrid[j][i]->agentType = 0;

// Write details to file

ofstream casualties; // Declare file to

// write output to

casualties.open("casualties.txt", ios::app);

casualties << "local[" << n
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<< "] killed by a bomb at (" << i

<< "," << j << ") at timestep "

<< timestep << ", subtime "

<< subTime << "\n";

casualties.close();

// Write details to screen

cout << "local[" << n << "] killed at ("

<< i << "," << j << ") \n";

}

}

break;

case 4:

// Go through Civilian array to find agent at cell

for (n = 0; n < CIVNO; n++)

{

if ((pCivilianArray[n]->xPrev == i) &&

(pCivilianArray[n]->yPrev == j))

{

pCivilianArray[n]->alive = 0;

pCivilianArray[n]->xPos = GRIDSIZE;

pCivilianArray[n]->yPos = GRIDSIZE;

pGrid[j][i]->occSquad = 0;

pGrid[j][i]->agentType = 0;

// Write details to file

ofstream casualties; // Declare file to

// write output to

casualties.open("casualties.txt", ios::app);

casualties << "civilian[" << n

<< "] killed by a bomb at (" << i

<< "," << j << ") at timestep "

<< timestep << ", subtime "

<< subTime << "\n";

casualties.close();

// Write details to screen

cout << "civilian[" << n << "] killed at ("

<< i << "," << j << ") \n";

}

}

break;

default:

// Error message

cout << "Unknown agent type in Insurgent bomb "

<< "function. \n";

cout << "grid[" << j << "][" << i << "].prevType = "

<< pGrid[j][i]->prevType << "\n";

system("PAUSE");

exit(1);

} // End of prevType switch loop

} // End of coordinate check if loop

}

} // End of bomb radius grid loop
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} // End of if/else loop

} // End of locBomb function

B.8 initial.cpp

// initial.cpp

// Contains the functions for calculating initial positions

#include<cstdio>

#include<cstdlib>

#include<iostream>

#include<fstream>

#include<cmath>

#include<ctime>

#include "cell.h" // Include the header file for the Cell class

#include "agent.h" // Include agent classes header file

#include "model.h" // Include general header file

using namespace std;

// Peacekeeper initial position function

void peaceInitPos(short iniGrid[GRIDSIZE][GRIDSIZE], Peacekeeper *pPeace)

{

short x, y, length, occupied; // Initialise variables

occupied = 0;

length = (2*(pPeace->homeRadius)) + 1;

while (occupied == 0)

{

x = (short)(rand()*length/32768) + pPeace->xHome - pPeace->homeRadius;

y = (short)(rand()*length/32768) + pPeace->yHome - pPeace->homeRadius;

// Check to see if this cell is occupied, if not set the agent’s initial

// position at grid[y][x] and change the value of occupied so we break

// out of the while loop

if (iniGrid[y][x] == 0)

{

occupied++;

pPeace->xPos = x;

pPeace->xPrev = x;

pPeace->yPos = y;

pPeace->yPrev = y;

iniGrid[y][x]++;

} // End of if loop

} // End of while loop
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return;

} // End of peaceInitPos function

// NGO initial position function

void suppInitPos(short iniGrid[GRIDSIZE][GRIDSIZE], SupportAgent *pSupp)

{

short x, y, length, occupied; // Initialise variables

occupied = 0;

length = (2*(pSupp->homeRadius)) + 1;

while (occupied == 0)

{

x = (short)(rand()*length/32768) + pSupp->xHome - pSupp->homeRadius;

y = (short)(rand()*length/32768) + pSupp->yHome - pSupp->homeRadius;

// Check to see if this cell is occupied, if not set the agent’s initial

// position at grid[y][x] and change the value of occupied so we break

// out of the while loop

if (iniGrid[y][x] == 0)

{

occupied++;

pSupp->xPos = x;

pSupp->xPrev = x;

pSupp->yPos = y;

pSupp->yPrev = y;

iniGrid[y][x]++;

} // End of if loop

} // End of while loop

return;

} // End of suppInitPos function

// Insurgent initial position function

void locInitPos(short iniGrid[GRIDSIZE][GRIDSIZE], LocalMilitia *pLoc)

{

short x, y, length, occupied; // Initialise variables

occupied = 0;

length = (2*(pLoc->homeRadius)) + 1;

while (occupied == 0)

{

x = (short)(rand()*length/32768) + pLoc->xHome - pLoc->homeRadius;

y = (short)(rand()*length/32768) + pLoc->yHome - pLoc->homeRadius;

// Check to see if this cell is occupied, if not set the agent’s initial

// position at grid[y][x] and change the value of occupied so we break

// out of the while loop

if (iniGrid[y][x] == 0)

{

occupied++;
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pLoc->xPos = x;

pLoc->xPrev = x;

pLoc->yPos = y;

pLoc->yPrev = y;

iniGrid[y][x]++;

} // End of if loop

} // End of while loop

return;

} // End of locInitPos function

// Civilian initial position function

void civInitPos(short iniGrid[GRIDSIZE][GRIDSIZE], Civilian *pCiv)

{

short x, y, length, occupied; // Initialise variables

occupied = 0;

length = (2*(pCiv->homeRadius)) + 1;

while (occupied == 0)

{

x = (short)(rand()*length/32768) + pCiv->xHome - pCiv->homeRadius;

y = (short)(rand()*length/32768) + pCiv->yHome - pCiv->homeRadius;

// Check to see if this cell is occupied, if not set the agent’s initial

// position at grid[y][x] and change the value of occupied so we break

// out of the while loop

if (iniGrid[y][x] == 0)

{

occupied++;

pCiv->xPos = x;

pCiv->xPrev = x;

pCiv->yPos = y;

pCiv->yPrev = y;

iniGrid[y][x]++;

} // End of if loop

} // End of while loop

return;

} // End of civInitPos function

B.9 move.cpp

// move.cpp

// Gives the movement functions for the different types of agent

#include<cstdio>

#include<cstdlib>

#include<iostream>

#include<fstream>

#include<cmath>
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#include<ctime>

#include "cell.h" // Include the header file for the Cell class

#include "agent.h" // Include agent classes header file

#include "model.h" // Include general header file

using namespace std;

// Function for calculating percentage change used for distance changes in the

// incentive function

double perChange(double oldValue, double newValue)

{

double change;

change = (oldValue - newValue)/oldValue;

return change;

} // End of perChange function

// Movement functions

// Civilian movement function

void civMovement(Cell *pGrid[GRIDSIZE][GRIDSIZE], Civilian *pCiv,

int waterFailure[SECTOR*SECTOR],

int elecFailure[SECTOR*SECTOR])

{

// Declare variables

int i, j, a, b; // Counters for loops

int m = 0; // Counters for incentive function array,

int n = 0; // initialised to be zero

int weightNo; // Variable to indicate which array entry should

// be used for the weight

double dx; // Variables to hold x and y distances

double dy;

double newDistance; // Variables to hold new and old distances to

double oldDistance; // agents, to be used in incentive calculation

double changeInDistance; // Variable to store percentage change in

// distance between proposed move and current

// cell

double sum[3][3]; // Array to hold incentive calculations

sum[0][0] = 0.0;

sum[0][1] = 0.0;

sum[0][2] = 0.0;

sum[1][0] = 0.0;

sum[1][1] = 0.0;

sum[1][2] = 0.0;

sum[2][0] = 0.0;

sum[2][1] = 0.0;

sum[2][2] = 0.0;

double *ptr; // Declare pointer
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// Look at each possible move grid[j][i] and store the incentive

// calculations in the array sum[][]

for (i = ((pCiv->xPrev) - 1); i <= ((pCiv->xPrev) + 1); i++)

{

for (j = ((pCiv->yPrev) - 1); j <= ((pCiv->yPrev) + 1); j++)

{

ptr = &(sum[n][m]); // ptr points to sum[n][m]

// Check that i and j are within range, this identifies corner and

// edge cells and stops referrals to non-existant cells. If

// grid[j][i] does not exist then set the incentive to -50000, so

// the agent cannot choose that square to move to.

if ((i < 0) || (i >= GRIDSIZE) || (j < 0) || (j >= GRIDSIZE))

{

*ptr = -50000.0;

}

// Check that grid[j][i] is a valid move. If not set the incentive

// to be -50000.

// First check to see whether the cell was occupied at the previous

// timestep. Only do this for cells other than the current position

else if (((i != pCiv->xPrev) || (j != pCiv->yPrev)) &&

(pGrid[j][i]->prevType != 0))

{

*ptr = -50000.0;

}

// Check the following for all possible moves, including the current

// cell

// Check to see if any agent has already moved to the cell in this

// timestep

else if (pGrid[j][i]->moveInd == 1)

{

*ptr = -50000.0;

}

// Check whether there is combat at the cell

else if ((pGrid[j][i]->combat) == 1)

{

*ptr = -49000.0;

}

// Check whether there is water at the cell

else if (waterFailure[(pGrid[j][i]->sectorNo)] == 1)

{

*ptr = -48000.0;

}

// Check whether there is food at the cell

else if ((pGrid[j][i]->foodAmount) == 0)

{

*ptr = -47000.0;

}
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// Check whether there is electricity at the cell

else if (elecFailure[(pGrid[j][i]->sectorNo)] == 1)

{

*ptr = -46000.0;

}

// Now see if the proposed move is the agent’s current location, if

// so the incentive value is automatically zero

else if ((i == pCiv->xPrev) && (j == pCiv->yPrev))

{

*ptr = 0.0;

}

// Now calculate the incentive for all the valid moves grid[j][i]

// that are not the agent’s current location

else

{

// Look at all the agents within sensor range

for (a = ((pCiv->xPrev) - (pCiv->sensorRange));

a <= ((pCiv->xPrev) + (pCiv->sensorRange)); a++)

{

for (b = ((pCiv->yPrev) - (pCiv->sensorRange));

b <= ((pCiv->yPrev) + (pCiv->sensorRange)); b++)

{

// Check that grid[b][a] is a valid grid point by

// checking that 0 <= a, b < gridSize and also that the

// cell is not the agent’s current location

if ((a >= 0) && (a < GRIDSIZE) && (b >= 0) &&

(b < GRIDSIZE) && ((a != pCiv->xPrev) ||

(b != pCiv->yPrev)))

{

// Calculate (Old dist - New dist)/Old dist,

// where the distance is that to the Cell (a,b)

dx = i - a; // Calculate x difference

dy = j - b; // Calculate y difference

newDistance = sqrt((double)(dx*dx + dy*dy));

dx = pCiv->xPrev - a; // Calculate x difference

dy = pCiv->yPrev - b; // Calculate y difference

oldDistance = sqrt((double)(dx*dx + dy*dy));

changeInDistance = perChange(oldDistance,

newDistance);

// Check which agent type is at the cell grid[b][a].

// Calculate the percentage change in distance then

// multiply by the appropriate weight and add this

// value to sum[n][m]. If there is no agent at the

// cell then sum[n][m] remains unchanged

switch (pGrid[b][a]->prevType)

{

// No agent at the cell

case 0:

break;

// Peacekeeper at the cell
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case 1:

// Calculate array entry number for

// relationship, remembering that arrays

// start from zero, but relationships and

// squads are numbered from one

weightNo =

(pCiv->relation[(pGrid[b][a]->prevSquad)

- 1]) - 1;

// Multiply the percentage change in

// distance by the appropriate weight and

// add to sum[n][m]

*ptr = sum[n][m] +

(pCiv->peaceWeight[weightNo])*changeInDistance;

break;

// NGO at the cell

case 2:

// Calculate array entry number for

// relationship, remembering that arrays

// start from zero, but relationships and

// squads are numbered from one

weightNo =

(pCiv->relation[(pGrid[b][a]->prevSquad)

- 1]) - 1;

// Multiply the percentage change in

// distance by the appropriate weight and

// add to sum[n][m]

*ptr = sum[n][m] +

(pCiv->suppWeight[weightNo])*changeInDistance;

break;

// Insurgent at the cell

case 3:

// Calculate array entry number for

// relationship, remembering that arrays

// start from zero, but relationships and

// squads are numbered from one

weightNo =

(pCiv->relation[(pGrid[b][a]->prevSquad)

- 1]) - 1;

// Multiply the percentage change in

// distance by the appropriate weight and

// add to sum[n][m]

*ptr = sum[n][m] +

(pCiv->locWeight[weightNo])*changeInDistance;

break;

// Civilian at the cell

case 4:

// Calculate array entry number for

// relationship, remembering that arrays

// start from zero, but relationships and

// squads are numbered from one

weightNo =
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(pCiv->relation[(pGrid[b][a]->prevSquad)

- 1]) - 1;

// Multiply the percentage change in

// distance by the appropriate weight and

// add to sum[n][m]

*ptr = sum[n][m] +

(pCiv->civWeight[weightNo])*changeInDistance;

break;

default:

cout << "Invalid agent type in move.cpp "

<< "line 261!\n";

system("PAUSE");

exit(1);

} // End of prevType switch loop

} // End of coordinate check if loop

}

} // End of sensor range grid loop

} // End of incentive calculation if/else if/else loop

// Increment n

n++;

}

// Reset n

n = 0;

// Increment m

m++;

} // End of possible moves grid loop

// Look at the array sum[][] and determine the best move

int x, y; // Counters

short xNew, yNew; // Store best move coordinates

short max[2] = { 0 }; // Stores sum[][] array coordinates for

// highest incentive location

short eqPen[9][2]; // Stores sum[][] array coordinates in case

// of equal penalties

int equalNo = 0; // Counts how many cells have the max

// incentive

int randNum; // Declare integer to hold random number in

// case of equal penalties

short *mx, *my; // Declare pointers

mx = &(max[0]); // Set to point at max[0] and max[1]

my = &(max[1]);

// Look at all the incentive values in the sum[][] array and compare values

// to the highest currently found

for (x = 0; x < 3; x++)

{

for (y = 0; y < 3; y++)

{

// Check to see if sum[y][x] is greater than the current highest

// value, if so max[] becomes {x, y}
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if (sum[y][x] > sum[max[1]][max[0]])

{

*mx = x;

*my = y;

// Reset eqPen[][] and equalNo

equalNo = 1;

eqPen[0][0] = x;

eqPen[0][1] = y;

}

// If sum[y][x] is equal to the current highest values then update

// eqPen[][] and equalNo

else if (sum[y][x] == sum[max[1]][max[0]])

{

eqPen[equalNo][0] = x;

eqPen[equalNo][1] = y;

equalNo++;

} // End of if/else if loop

}

} // End of sum[][] array loop

// If more than one cell has the same incentive then choose one at random

if (equalNo > 1)

{

// Generate a random integer between 0 and (equalNo - 1)

randNum = (int)(rand()*equalNo/32768);

*mx = eqPen[randNum][0];

*my = eqPen[randNum][1];

} // End of if loop

// Calculate grid coordinates of max[]

xNew = (pCiv->xPrev) - 1 + max[0];

yNew = (pCiv->yPrev) - 1 + max[1];

// Change the cell occupancy information for the current cell

pGrid[pCiv->yPos][pCiv->xPos]->occSquad = 0;

pGrid[pCiv->yPos][pCiv->xPos]->agentType = 0;

// Change agent position to (xNew, yNew)

pCiv->xPos = xNew;

pCiv->yPos = yNew;

// Change the cell occupancy information for the cell the agent is moving to

pGrid[yNew][xNew]->occSquad = pCiv->squadNo;

pGrid[yNew][xNew]->agentType = 4;

pGrid[yNew][xNew]->moveInd = 1;

return;

} // End of civMovement function

// NGO movement function
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void suppMovement(Cell *pGrid[GRIDSIZE][GRIDSIZE], SupportAgent *pSupp,

int waterFailure[SECTOR*SECTOR],

int elecFailure[SECTOR*SECTOR])

{

// Declare variables

int i, j, a, b; // Counters for loops

int m = 0; // Counters for incentive function array,

int n = 0; // initialised to be zero

int weightNo; // Variable to indicate which array entry should be

// used for the weight

double dx; // Variables to hold x and y distances

double dy;

double newDistance; // Variables to hold new and old distances to

double oldDistance; // agents, to be used in incentive calculation

double changeInDistance; // Variable to store percentage change in distance

// between proposed move and current cell

double sum[3][3]; // Array to hold incentive calculations

sum[0][0] = 0.0;

sum[0][1] = 0.0;

sum[0][2] = 0.0;

sum[1][0] = 0.0;

sum[1][1] = 0.0;

sum[1][2] = 0.0;

sum[2][0] = 0.0;

sum[2][1] = 0.0;

sum[2][2] = 0.0;

double *ptr; // Declare pointer

// Look at each possible move grid[j][i] and store the incentive

// calculations in the array sum[][]

for (i = ((pSupp->xPrev) - 1); i <= ((pSupp->xPrev) + 1); i++)

{

for (j = ((pSupp->yPrev) - 1); j <= ((pSupp->yPrev) + 1); j++)

{

ptr = &(sum[n][m]); // ptr points to sum[n][m]

// Check that i and j are within range, this identifies corner and

// edge cells and stops referrals to non-existant cells. If

// grid[j][i] does not exist then set the incentive to -50000, so

// the agent cannot choose that square to move to.

if ((i < 0) || (i >= GRIDSIZE) || (j < 0) || (j >= GRIDSIZE))

{

*ptr = -50000.0;

}

// Check that grid[j][i] is a valid move. If not set the incentive

// to be -50000.

// First check to see whether the cell was occupied at the previous

// timestep. Only do this for cells other than the current position
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else if (((i != pSupp->xPrev) || (j != pSupp->yPrev))

&& (pGrid[j][i]->prevType != 0))

{

*ptr = -50000.0;

}

// Check the following for all possible moves, including the current

// cell

// Check to see if any agent has already moved to the cell in this

// timestep

else if (pGrid[j][i]->moveInd == 1)

{

*ptr = -50000.0;

}

// Check whether there is combat at the cell

else if ((pGrid[j][i]->combat) == 1)

{

*ptr = -49000.0;

}

// Now check if the proposed move is the current cell

else if ((i == pSupp->xPrev) && (j == pSupp->yPrev))

{

// Calculate the incentive using factors relating to civilians

// in need, no water and no electricity

*ptr = (pSupp->civInNeedWeight)*(pGrid[j][i]->civInNeed) +

(pSupp->noWaterWeight)*(waterFailure[(pGrid[j][i]->sectorNo)]) +

(pSupp->noElecWeight)*(elecFailure[(pGrid[j][i]->sectorNo)]);

}

// Now calculate the incentive for all the valid moves grid[j][i]

else

{

// Look at all the agents within sensor range

for (a = ((pSupp->xPrev) - (pSupp->sensorRange));

a <= ((pSupp->xPrev) + (pSupp->sensorRange)); a++)

{

for (b = ((pSupp->yPrev) - (pSupp->sensorRange));

b <= ((pSupp->yPrev) + (pSupp->sensorRange)); b++)

{

// Check that grid[b][a] is a valid grid point by

// checking that 0 <= a, b < gridSize also check that

// the cell is not the agent’s current location

if ((a >= 0) && (a < GRIDSIZE) && (b >= 0) &&

(b < GRIDSIZE) && ((a != pSupp->xPrev) ||

(b != pSupp->yPrev)))

{

// Calculate (Old dist - New dist)/Old dist,

// where the distance is that to the Cell (a,b)

dx = i - a; // Calculate x difference

dy = j - b; // Calculate y difference

newDistance = sqrt((double)(dx*dx + dy*dy));

dx = pSupp->xPrev - a; // Calculate x difference

dy = pSupp->yPrev - b; // Calculate y difference
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oldDistance = sqrt((double)(dx*dx + dy*dy));

changeInDistance = perChange(oldDistance,

newDistance);

// Check which agent type is at the cell grid[b][a].

// Calculate the percentage change in distance then

// multiply by the appropriate weight and add this

// value to sum[n][m]. If there is no agent at the

// cell then sum[n][m] remains unchanged

switch (pGrid[b][a]->prevType)

{

// No agent at the cell

case 0:

break;

// Peacekeeper at the cell

case 1:

// Calculate array entry number for

// relationship, remembering that arrays

// start from zero, but relationships and

// squads are numbered from one

weightNo =

(pSupp->relation[(pGrid[b][a]->prevSquad)

- 1]) - 1;

// Multiply the percentage change in

// distance by the appropriate weight and

// add to sum[n][m]

*ptr = sum[n][m] +

(pSupp->peaceWeight[weightNo])*changeInDistance;

break;

// NGO at the cell

case 2:

// Calculate array entry number for

// relationship, remembering that arrays

// start from zero, but relationships and

// squads are numbered from one

weightNo =

(pSupp->relation[(pGrid[b][a]->prevSquad)

- 1]) - 1;

// Multiply the percentage change in

// distance by the appropriate weight and

// add to sum[n][m]

*ptr = sum[n][m] +

(pSupp->suppWeight[weightNo])*changeInDistance;

break;

// Insurgent at the cell

case 3:

// Calculate array entry number for

// relationship, remembering that arrays

// start from zero, but relationships and

// squads are numbered from one

weightNo =
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(pSupp->relation[(pGrid[b][a]->prevSquad)

- 1]) - 1;

// Multiply the percentage change in

// distance by the appropriate weight and

// add to sum[n][m]

*ptr = sum[n][m] +

(pSupp->locWeight[weightNo])*changeInDistance;

break;

// Civilian at the cell

case 4:

// Calculate array entry number for

// relationship, remembering that arrays

// start from zero, but relationships and

// squads are numbered from one

weightNo =

(pSupp->relation[(pGrid[b][a]->prevSquad)

- 1]) - 1;

// Multiply the percentage change in

// distance by the appropriate weight and

// add to sum[n][m], also add in the

// Civilians in need factor

*ptr = sum[n][m] +

(pSupp->civWeight[weightNo])*changeInDistance +

(pSupp->civInNeedWeight)*(pGrid[b][a]->civInNeed)*changeInDistance;

break;

default:

cout << "Invalid agent type in move.cpp "

<< "line 576!\n";

system("PAUSE");

exit(1);

} // End of prevType switch loop

// Add in no water and no electricity factors

*ptr = sum[n][m] +

(pSupp->noWaterWeight)*(waterFailure[(pGrid[b][a]->sectorNo)])*changeInDistance

+ (pSupp->noElecWeight)*(elecFailure[(pGrid[b][a]->sectorNo)])*changeInDistance;

} // End of coordinate check loop

}

} // End of sensor range grid loop

// Now add in the final factors relating to the need to fix the

// water or electricity supply in the proposed move Cell

*ptr = sum[n][m] +

(pSupp->noWaterWeight)*(pGrid[j][i]->fixWater) +

(pSupp->noElecWeight)*(pGrid[j][i]->fixElec);

} // End of if/else if/else loop

// Increment n

n++;
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}

// Reset n

n = 0;

// Increment m

m++;

} // End of possible moves grid loop

// Look at the array sum[][] and determine the best move

int x, y; // Counters

short xNew, yNew; // Store best move coordinates

short max[2] = { 0 }; // Stores sum[][] array coordinates for

// highest incentive location

short eqPen[9][2]; // Stores sum[][] array coordinates in case

// of equal penalties

int equalNo = 0; // Counts how many cells have the max

// incentive

int randNum; // Declare integer to hold random number in

// case of equal penalties

short *mx, *my; // Declare pointers

mx = &(max[0]); // Set to point at max[0] and max[1]

my = &(max[1]);

// Look at all the incentive values in the sum[][] array and compare values

// to the highest currently found

for (x = 0; x < 3; x++)

{

for (y = 0; y < 3; y++)

{

// Check to see if sum[y][x] is greater than the current highest

// value, if so max[] becomes {x, y}

if (sum[y][x] > sum[max[1]][max[0]])

{

*mx = x;

*my = y;

// Reset eqPen[][] and equalNo

equalNo = 1;

eqPen[0][0] = x;

eqPen[0][1] = y;

}

// If sum[y][x] is equal to the current highest values then update

// eqPen[][] and equalNo

else if (sum[y][x] == sum[max[1]][max[0]])

{

eqPen[equalNo][0] = x;

eqPen[equalNo][1] = y;

equalNo++;

} // End of incentive calculation if/else if loop

}

} // End of sum[][] array loop

// If more than one cell has the same incentive then choose one at random

if (equalNo > 1)

{
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// Generate a random integer between 0 and (equalNo - 1)

randNum = (int)(rand()*equalNo/32768);

*mx = eqPen[randNum][0];

*my = eqPen[randNum][1];

} // End of if loop

// Calculate grid coordinates of max[]

xNew = (pSupp->xPrev) - 1 + max[0];

yNew = (pSupp->yPrev) - 1 + max[1];

// Change the cell occupancy information for the current cell

pGrid[pSupp->yPos][pSupp->xPos]->occSquad = 0;

pGrid[pSupp->yPos][pSupp->xPos]->agentType = 0;

// Change agent position to (xNew, yNew)

pSupp->xPos = xNew;

pSupp->yPos = yNew;

// Change the cell occupancy information for the cell the agent is moving to

pGrid[yNew][xNew]->occSquad = pSupp->squadNo;

pGrid[yNew][xNew]->agentType = 2;

pGrid[yNew][xNew]->moveInd = 1;

return;

} // End of suppMovement function

// Insurgent movement function

void locMovement(Cell *pGrid[GRIDSIZE][GRIDSIZE], LocalMilitia *pLoc,

int waterFailure[SECTOR*SECTOR],

int elecFailure[SECTOR*SECTOR])

{

// Declare variables

int i, j, a, b; // Counters for loops

int m = 0; // Counters for incentive function array,

int n = 0; // initialised to be zero

int weightNo; // Variable to indicate which array entry

// should be used for the weight

//short changeInTension; // Variable to hold change in tension

double dx; // Variables to hold x and y distances

double dy;

double newDistance; // Variables to hold new and old distances to

double oldDistance; // agents, to be used in incentive

// calculation

double changeInDistance; // Variable to store percentage change in

// distance between proposed move and current

// cell

double sum[3][3]; // Array to hold incentive calculations

sum[0][0] = 0.0;

sum[0][1] = 0.0;
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sum[0][2] = 0.0;

sum[1][0] = 0.0;

sum[1][1] = 0.0;

sum[1][2] = 0.0;

sum[2][0] = 0.0;

sum[2][1] = 0.0;

sum[2][2] = 0.0;

double *ptr; // Declare pointer

// Look at each possible move grid[j][i] and store the incentive

// calculations in the array sum[][]

for (i = ((pLoc->xPrev) - 1); i <= ((pLoc->xPrev) + 1); i++)

{

for (j = ((pLoc->yPrev) - 1); j <= ((pLoc->yPrev) + 1); j++)

{

ptr = &(sum[n][m]); // ptr points to sum[n][m]

// Check that i and j are within range, this identifies corner and

// edge cells and stops referrals to non-existant cells. If

// grid[j][i] does not exist then set the incentive to -50000, so

// the agent cannot choose that square to move to.

if ((i < 0) || (i >= GRIDSIZE) || (j < 0) || (j >= GRIDSIZE))

{

*ptr = -50000.0;

}

// Check that grid[j][i] is a valid move. If not set the incentive

// to be -50000 and break out of the loop to use the incentive

// function.

// First check to see whether the cell was occupied at the previous

// timestep. Only do this for cells other than the current position

else if (((i != pLoc->xPrev) || (j != pLoc->yPrev)) &&

(pGrid[j][i]->prevType != 0))

{

*ptr = -50000.0;

}

// Check the following for all possible moves, including the current

// cell

// Check to see if any agent has already moved to the cell in this

// timestep

else if (pGrid[j][i]->moveInd == 1)

{

*ptr = -50000.0;

}

// Check whether there is water at the cell

else if (waterFailure[(pGrid[j][i]->sectorNo)] == 1)

{

*ptr = -48000.0;

}
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// Now check if the proposed move is the current cell, if so the

// only possible nonzero factor will be combat

else if ((i == pLoc->xPrev) && (j == pLoc->yPrev))

{

*ptr = (pLoc->combatWeight)*(pGrid[j][i]->combat);

}

// Now calculate the incentive for all the valid moves grid[j][i]

else

{

// Look at all the agents within sensor range

for (a = ((pLoc->xPrev) - (pLoc->sensorRange));

a <= ((pLoc->xPrev) + (pLoc->sensorRange)); a++)

{

for (b = ((pLoc->yPrev) - (pLoc->sensorRange));

b <= ((pLoc->yPrev) + (pLoc->sensorRange)); b++)

{

// Check that grid[b][a] is a valid grid point by

// checking that 0 <= a, b < gridSize

if ((a >= 0) && (a < GRIDSIZE) && (b >= 0) &&

(b < GRIDSIZE) && ((a != pLoc->xPrev) ||

(b != pLoc->yPrev)))

{

// Calculate (Old dist - New dist)/Old dist,

// where the distance is that to the Cell (a,b)

dx = i - a; // Calculate x difference

dy = j - b; // Calculate y difference

newDistance = sqrt((double)(dx*dx + dy*dy));

dx = pLoc->xPrev - a; // Calculate x difference

dy = pLoc->yPrev - b; // Calculate y difference

oldDistance = sqrt((double)(dx*dx + dy*dy));

changeInDistance = perChange(oldDistance,

newDistance);

// Check which agent type is at the cell grid[b][a].

// Calculate the percentage change in distance then

// multiply by the appropriate weight and add this

// value to sum[n][m]. If there is no agent at the

// cell then sum[n][m] remains unchanged

switch (pGrid[b][a]->prevType)

{

// No agent at the cell

case 0:

break;

// Peacekeeper at the cell

case 1:

// Calculate (Old dist - New dist)/Old dist,

// where the distance is that to the

// appropriate agent

dx = i - a; // Calculate x difference

dy = j - b; // Calculate y difference

newDistance = sqrt((double)(dx*dx + dy*dy));
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dx = pLoc->xPrev - a; // Calculate x

// difference

dy = pLoc->yPrev - b; // Calculate y

// difference

oldDistance = sqrt((double)(dx*dx + dy*dy));

changeInDistance = perChange(oldDistance,

newDistance);

// Calculate array entry number for

// relationship, remembering that arrays

// start from zero, but relationships and

// squads are numbered from one

weightNo =

(pLoc->relation[(pGrid[b][a]->prevSquad)

- 1]) - 1;

// Multiply the percentage change in

// distance by the appropriate weight and

// add to sum[n][m]

*ptr = sum[n][m] +

(pLoc->peaceWeight[weightNo])*changeInDistance;

break;

// NGO at the cell

case 2:

// Calculate (Old dist - New dist)/Old dist,

// where the distance is that to the

// appropriate agent

dx = i - a; // Calculate x difference

dy = j - b; // Calculate y difference

newDistance = sqrt((double)(dx*dx + dy*dy));

dx = pLoc->xPrev - a; // Calculate x

// difference

dy = pLoc->yPrev - b; // Calculate y

// difference

oldDistance = sqrt((double)(dx*dx + dy*dy));

changeInDistance = perChange(oldDistance,

newDistance);

// Calculate array entry number for

// relationship, remembering that arrays

// start from zero, but relationships and

// squads are numbered from one

weightNo =

(pLoc->relation[(pGrid[b][a]->prevSquad)

- 1]) - 1;

// Multiply the percentage change in

// distance by the appropriate weight and

// add to sum[n][m]

*ptr = sum[n][m] +

(pLoc->suppWeight[weightNo])*changeInDistance;

break;

// Insurgent at the cell

case 3:

// Calculate (Old dist - New dist)/Old dist,
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// where the distance is that to the

// appropriate agent

dx = i - a; // Calculate x difference

dy = j - b; // Calculate y difference

newDistance = sqrt((double)(dx*dx + dy*dy));

dx = pLoc->xPrev - a; // Calculate x

// difference

dy = pLoc->yPrev - b; // Calculate y

// difference

oldDistance = sqrt((double)(dx*dx + dy*dy));

changeInDistance = perChange(oldDistance,

newDistance);

// Calculate array entry number for

// relationship, remembering that arrays

// start from zero, but relationships and

// squads are numbered from one

weightNo =

(pLoc->relation[(pGrid[b][a]->prevSquad)

- 1]) - 1;

// Multiply the percentage change in

// distance by the appropriate weight and

// add to sum[n][m]

*ptr = sum[n][m] +

(pLoc->locWeight[weightNo])*changeInDistance;

break;

// Civilian at the cell

case 4:

// Calculate (Old dist - New dist)/Old dist,

// where the distance is that to the

// appropriate agent

dx = i - a; // Calculate x difference

dy = j - b; // Calculate y difference

newDistance = sqrt((double)(dx*dx + dy*dy));

dx = pLoc->xPrev - a; // Calculate x

// difference

dy = pLoc->yPrev - b; // Calculate y

// difference

oldDistance = sqrt((double)(dx*dx + dy*dy));

changeInDistance = perChange(oldDistance,

newDistance);

// Calculate array entry number for

// relationship, remembering that arrays

// start from zero, but relationships and

// squads are numbered from one

weightNo =

(pLoc->relation[(pGrid[b][a]->prevSquad)

- 1]) - 1;

// Multiply the percentage change in

// distance by the appropriate weight and

// add to sum[n][m]

*ptr = sum[n][m] +
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(pLoc->civWeight[weightNo])*changeInDistance;

break;

default:

cout << "Invalid agent type in move.cpp "

<< "line 891!\n";

system("PAUSE");

exit(1);

} // End of prevType switch loop

// Add in combat factor

*ptr = sum[n][m] +

(pLoc->combatWeight)*(pGrid[b][a]->combat)*changeInDistance;

} // End of coordinate check loop

}

} // End of sensor range grid loop

} // End of incentive calculation if/else if/else loop

// Increment n

n++;

}

// Reset n

n = 0;

// Increment m

m++;

} // End of possible moves loop

// Look at the array sum[][] and determine the best move

int x, y; // Counters

short xNew, yNew; // Store best move coordinates

short max[2] = { 0 }; // Stores sum[][] array coordinates for

// highest incentive location

short eqPen[9][2]; // Stores sum[][] array coordinates in case

// of equal penalties

int equalNo = 0; // Counts how many cells have the max

// incentive

int randNum; // Declare integer to hold random number in

// case of equal penalties

short *mx, *my; // Declare pointers

mx = &(max[0]); // Set to point at max[0] and max[1]

my = &(max[1]);

// Look at all the incentive values in the sum[][] array and compare values

// to the highest currently found

for (x = 0; x < 3; x++)

{

for (y = 0; y < 3; y++)

{

// Check to see if sum[y][x] is greater than the current highest

// value, if so max[] becomes {x, y}

if (sum[y][x] > sum[max[1]][max[0]])

{
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*mx = x;

*my = y;

// Reset eqPen[][] and equalNo

equalNo = 1;

eqPen[0][0] = x;

eqPen[0][1] = y;

}

// If sum[y][x] is equal to the current highest values then update

// eqPen[][] and equalNo

else if (sum[y][x] == sum[max[1]][max[0]])

{

eqPen[equalNo][0] = x;

eqPen[equalNo][1] = y;

equalNo++;

} // End if if/else if loop

}

} // End of sum[][] array loop

// If more than one cell has the same incentive then choose one at random

if (equalNo > 1)

{

// Generate a random integer between 0 and (equalNo - 1)

randNum = (int)(rand()*equalNo/32768);

*mx = eqPen[randNum][0];

*my = eqPen[randNum][1];

} // End of if loop

// Calculate grid coordinates of max[]

xNew = (pLoc->xPrev) - 1 + max[0];

yNew = (pLoc->yPrev) - 1 + max[1];

// Change the cell occupancy information for the current cell

pGrid[pLoc->yPos][pLoc->xPos]->occSquad = 0;

pGrid[pLoc->yPos][pLoc->xPos]->agentType = 0;

// Change agent position to (xNew, yNew)

pLoc->xPos = xNew;

pLoc->yPos = yNew;

// Change the cell occupancy information for the cell the agent is moving to

pGrid[yNew][xNew]->occSquad = pLoc->squadNo;

pGrid[yNew][xNew]->agentType = 3;

pGrid[yNew][xNew]->moveInd = 1;

return;

} // End of locMovement function

// Peacekeeper movement function

void peaceMovement(Cell *pGrid[GRIDSIZE][GRIDSIZE], Peacekeeper *pPeace,

int waterFailure[SECTOR*SECTOR],

int elecFailure[SECTOR*SECTOR])

{
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// Declare variables

int i, j, a, b; // Counters for loops

int m = 0; // Counters for incentive function array,

int n = 0; // initialised to be zero

int weightNo; // Variable to indicate which array entry should be

// used for the weight

double dx; // Variables to hold x and y distances

double dy;

double newDistance; // Variables to hold new and old distances to

double oldDistance; // agents, to be used in incentive calculation

double changeInDistance; // Variable to store percentage change in distance

// between proposed move and current cell

double sum[3][3]; // Array to hold incentive calculations

sum[0][0] = 0.0;

sum[0][1] = 0.0;

sum[0][2] = 0.0;

sum[1][0] = 0.0;

sum[1][1] = 0.0;

sum[1][2] = 0.0;

sum[2][0] = 0.0;

sum[2][1] = 0.0;

sum[2][2] = 0.0;

double *ptr; // Declare pointer

// Look at each possible move pGrid[j][i] and store the incentive

// calculations in the array sum[][]

for (i = ((pPeace->xPrev) - 1); i <= ((pPeace->xPrev) + 1); i++)

{

for (j = ((pPeace->yPrev) - 1); j <= ((pPeace->yPrev) + 1); j++)

{

ptr = &(sum[n][m]); // ptr points to sum[n][m]

// Check that i and j are within range, this identifies corner and

// edge cells and stops referrals to non-existant cells. If

// grid[j][i] does not exist then set the incentive to -50000, so

// the agent cannot choose that square to move to.

if ((i < 0) || (i >= GRIDSIZE) || (j < 0) || (j >= GRIDSIZE))

{

*ptr = -50000.0;

}

// Check that grid[j][i] is a valid move. If not set the incentive

// to be -50000 and break out of the loop to use the incentive

// function.

// First check to see whether the cell was occupied at the previous

// timestep. Only do this for cells other than the current position

else if (((i != pPeace->xPrev) || (j != pPeace->yPrev)) &&

(pGrid[j][i]->prevType != 0))

{
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*ptr = -50000.0;

}

// Check the following for all possible moves, including the current

// cell

// Check to see if any agent has already moved to the cell in this

// timestep

else if (pGrid[j][i]->moveInd == 1)

{

*ptr = -50000.0;

}

// Now check if the proposed move is the current cell and if so

// calculate the incentive

else if ((i == pPeace->xPrev) && (j == pPeace->yPrev))

{

// Now add the civilians in need, no water, no electricity and

// combat factors

*ptr = (pPeace->civInNeedWeight)*(pGrid[j][i]->civInNeed) +

(pPeace->noWaterWeight)*(waterFailure[(pGrid[j][i]->sectorNo)]) +

(pPeace->noElecWeight)*(elecFailure[(pGrid[j][i]->sectorNo)]) +

(pPeace->combatWeight)*(pGrid[j][i]->combat);

}

// Now calculate the incentive for all the valid moves grid[j][i]

else

{

// Look at all the agents within sensor range

for (a = ((pPeace->xPrev) - (pPeace->sensorRange));

a <= ((pPeace->xPrev) + (pPeace->sensorRange)); a++)

{

for (b = ((pPeace->yPrev) - (pPeace->sensorRange));

b <= ((pPeace->yPrev) + (pPeace->sensorRange)); b++)

{

// Check that grid[b][a] is a valid grid point by

// checking that 0 <= a, b < gridSize

if ((a >= 0) && (a < GRIDSIZE) && (b >= 0) &&

(b < GRIDSIZE) && ((a != pPeace->xPrev) ||

(b != pPeace->yPrev)))

{

// Calculate (Old dist - New dist)/Old dist,

// where the distance is that to the Cell (a,b)

dx = i - a; // Calculate x difference

dy = j - b; // Calculate y difference

newDistance = sqrt((double)(dx*dx + dy*dy));

dx = pPeace->xPrev - a; // Calculate x difference

dy = pPeace->yPrev - b; // Calculate y difference

oldDistance = sqrt((double)(dx*dx + dy*dy));

changeInDistance = perChange(oldDistance,

newDistance);

// Check which agent type is at the cell grid[b][a].

// Calculate the percentage change in distance then

// multiply by the appropriate weight and add this
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// value to sum[n][m]. If there is no agent at the

// cell then sum[n][m] remains unchanged

switch (pGrid[b][a]->prevType)

{

// No agent at the cell

case 0:

break;

// Peacekeeper at the cell

case 1:

// Calculate (Old dist - New dist)/Old dist,

// where the distance is that to the

// appropriate agent

dx = i - a; // Calculate x difference

dy = j - b; // Calculate y difference

newDistance = sqrt((double)(dx*dx + dy*dy));

dx = pPeace->xPrev - a; // Calculate x

// difference

dy = pPeace->yPrev - b; // Calculate y

// difference

oldDistance = sqrt((double)(dx*dx + dy*dy));

changeInDistance = perChange(oldDistance,

newDistance);

// Calculate array entry number for

// relationship, remembering that arrays

// start from zero, but relationships and

// squads are numbered from one

weightNo =

(pPeace->relation[(pGrid[b][a]->prevSquad)

- 1]) - 1;

// Multiply the percentage change in

// distance by the appropriate weight and

// add to sum[n][m]

*ptr = sum[n][m] +

(pPeace->peaceWeight[weightNo])*changeInDistance;

break;

// NGO at the cell

case 2:

// Calculate array entry number for

// relationship, remembering that arrays

// start from zero, but relationships and

// squads are numbered from one

weightNo =

(pPeace->relation[(pGrid[b][a]->prevSquad)

- 1]) - 1;

// Multiply the percentage change in

// distance by the appropriate weight and

// add to sum[n][m]

*ptr = sum[n][m] +

(pPeace->suppWeight[weightNo])*changeInDistance;

break;

// Insurgent at the cell
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case 3:

// Calculate array entry number for

// relationship, remembering that arrays

// start from zero, but relationships and

// squads are numbered from one

weightNo =

(pPeace->relation[(pGrid[b][a]->prevSquad)

- 1]) - 1;

// Multiply the percentage change in

// distance by the appropriate weight and

// add to sum[n][m]

*ptr = sum[n][m] +

(pPeace->locWeight[weightNo])*changeInDistance;

break;

// Civilian at the cell

case 4:

// Calculate array entry number for

// relationship, remembering that arrays

// start from zero, but relationships and

// squads are numbered from one

weightNo =

(pPeace->relation[(pGrid[b][a]->prevSquad)

- 1]) - 1;

// Multiply the percentage change in

// distance by the appropriate weight and

// add to sum[n][m], also add in the

// Civilian in need factor

*ptr = sum[n][m] +

(pPeace->civWeight[weightNo])*changeInDistance +

(pPeace->civInNeedWeight)*(pGrid[b][a]->civInNeed)*changeInDistance;

break;

default:

cout << "Invalid agent type in move.cpp "

<< "line 1202!\n";

system("PAUSE");

exit(1);

} // End of prevType switch loop

*ptr = sum[n][m] +

(pPeace->noWaterWeight)*(waterFailure[(pGrid[b][a]->sectorNo)])*changeInDistance

+ (pPeace->noElecWeight)*(elecFailure[(pGrid[b][a]->sectorNo)])*changeInDistance

+ (pPeace->combatWeight)*(pGrid[b][a]->combat)*changeInDistance;

} // End of coordinate check if loop

}

} // End of sensor range grid loop

// Now add in the final factors relating to the need to fix the

// water or electricity supply in the proposed move Cell

*ptr = sum[n][m] +

(pPeace->noWaterWeight)*(pGrid[j][i]->fixWater) +
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(pPeace->noElecWeight)*(pGrid[j][i]->fixElec);

} // End of incentive calculation if/else if/else loop

// Increment n

n++;

}

// Reset n

n = 0;

// Increment m

m++;

} // End of possible moves grid loop

// Look at the array sum[][] and determine the best move

int x, y; // Counters

short xNew, yNew; // Store best move coordinates

short max[2] = { 0 }; // Stores sum[][] array coordinates for

// highest incentive location

short eqPen[9][2]; // Stores sum[][] array coordinates in case

// of equal penalties

int equalNo = 0; // Counts how many cells have the max

// incentive

int randNum; // Declare integer to hold random number in

// case of equal penalties

short *mx, *my; // Declare pointers

mx = &(max[0]); // Set to point at max[0] and max[1]

my = &(max[1]);

// Look at all the incentive values in the sum[][] array and compare values

// to the highest currently found

for (x = 0; x < 3; x++)

{

for (y = 0; y < 3; y++)

{

// Check to see if sum[y][x] is greater than the current highest

// value, if so max[] becomes {x, y}

if (sum[y][x] > sum[max[1]][max[0]])

{

*mx = x;

*my = y;

// Reset eqPen[][] and equalNo

equalNo = 1;

eqPen[0][0] = x;

eqPen[0][1] = y;

}

// If sum[y][x] is equal to the current highest values then update

// eqPen[][] and equalNo

else if (sum[y][x] == sum[max[1]][max[0]])

{

eqPen[equalNo][0] = x;

eqPen[equalNo][1] = y;

equalNo++;
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} // End of if/else if loop

}

} // End of sum[][] array loop

// If more than one cell has the same incentive then choose one at random

if (equalNo > 1)

{

// Generate a random integer between 0 and (equalNo - 1)

randNum = (int)(rand()*equalNo/32768);

*mx = eqPen[randNum][0];

*my = eqPen[randNum][1];

} // End of if loop

// Calculate grid coordinates of max[]

xNew = (pPeace->xPrev) - 1 + max[0];

yNew = (pPeace->yPrev) - 1 + max[1];

// Change the cell occupancy information for the current cell

pGrid[pPeace->yPos][pPeace->xPos]->occSquad = 0;

pGrid[pPeace->yPos][pPeace->xPos]->agentType = 0;

// Change agent position to (xNew, yNew)

pPeace->xPos = xNew;

pPeace->yPos = yNew;

// Change the cell occupancy information for the cell the agent is moving to

pGrid[yNew][xNew]->occSquad = pPeace->squadNo;

pGrid[yNew][xNew]->agentType = 1;

pGrid[yNew][xNew]->moveInd = 1;

return;

} // End of peaceMovement function

B.10 repair.cpp

// repair.cpp

// Contains the repair functions for the Peacekeepers and NGOs

#include<cstdio>

#include<cstdlib>

#include<iostream>

#include<fstream>

#include<cmath>

#include<ctime>

#include "cell.h" // Include the header file for the Cell class

#include "agent.h" // Include agent classes header file

#include "model.h" // Include general header file
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using namespace std;

// Peacekeeper repair function

void peaceRepair(Peacekeeper *pPeace, Cell *pCell)

{

float randNumber; // Declare variable to hold random numbers

// First check to see if the water supply needs fixing

if (pCell->fixWater == 1)

{

// Generate a random number between 0 and 1 to see if the agent is able

// to fix the fault

randNumber = (float)rand()/32767;

if ((pPeace->probFixWater != 0) &&

(randNumber <= (pPeace->probFixWater)))

{

(pCell->fixedW)++;

cout << "Water supply fixed in sector " << pCell->sectorNo << "\n";

} // End of if loop

}

// If not, then check the electricity supply needs fixing

else if (pCell->fixElec == 1)

{

// Generate a random number between 0 and 1 to see if the agent is able

// to fix the fault

randNumber = (float)rand()/32767;

if ((pPeace->probFixElec != 0) && (randNumber <= (pPeace->probFixElec)))

{

(pCell->fixedE)++;

cout << "Electricity supply fixed in sector " << pCell->sectorNo

<< "\n";

} // End of if loop

}

// In the case of neither the function must have been called in error

else

{

cout << "Repair function called in error. \n";

system("PAUSE");

exit(1);

} // End of if/else if/else loop

return;

} // End of peaceRepair function

// NGO repair function

void supportRepair(SupportAgent *pSupport, Cell *pCell)

{
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float randNumber; // Declare variable to hold random numbers

// First check to see if the water supply needs fixing

if (pCell->fixWater == 1)

{

// Generate a random number between 0 and 1 to see if the agent is able

// to fix the fault

randNumber = (float)rand()/32767;

if ((pSupport->probFixWater != 0) &&

(randNumber <= (pSupport->probFixWater)))

{

(pCell->fixedW)++;

cout << "Water supply fixed in sector " << pCell->sectorNo << "\n";

} // End of if loop

}

// If not, then check the electricity supply needs fixing

else if (pCell->fixElec == 1)

{

// Generate a random number between 0 and 1 to see if the agent is able

// to fix the fault

randNumber = (float)rand()/32767;

if ((pSupport->probFixElec != 0) &&

(randNumber <= (pSupport->probFixElec)))

{

(pCell->fixedE)++;

cout << "Electricity supply fixed in sector " << pCell->sectorNo

<< "\n";

} // End of if loop

}

// In the case of neither the function must have been called in error

else

{

cout << "Repair function called in error. \n";

system("PAUSE");

exit(1);

} // End of if/else if/else loop

return;

} // End of supportRepair function
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Appendix C

FULL LIST OF MODEL
PARAMETERS

RUNTIME Defines the number of timesteps the model will run for.

MAXSHOTS Defines the maximum total number of shots that can

be fired during the model run.

MAXBOMB Defines the maximum total number of bombs that can

be set off during the model run.

GRIDSIZE Defines the side length of the grid.

SECTOR Defines the number of sectors each side of the grid is

divided into, and thus gives the square root of the

total number of sectors. Note that SECTOR must be

a divisor of GRIDSIZE.

WATERFAIL Defines the probability that the water supply in a

sector will fail at a timestep, 0 ≤ WATERFAIL ≤ 1.

ELECFAIL Defines the probability that the electricity supply in a

sector will fail at a timestep, 0 ≤ ELECFAIL ≤ 1.

NOOFSQUADS Defines the total number of squads in the model. As it

stands we can only have one squad per agent type so

we must have 1 ≤ NOOFSQUADS ≤ 4.
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PEACENO Total number of agents in the Peacekeeper squad.

SUPPORTNO Total number of agents in the NGO squad.

LOCALNO Total number of agents in the Insurgent squad.

CIV NO Total number of agents in the Civilian squad.

PEACECAP Defines the Peacekeeper agent capability.

SUPPORTCAP Defines the NGO agent capability.

LOCALCAP Defines the Insurgent agent capability.

CIV CAP Defines the Civilian agent capability.

BOMBMEMORY Number of timesteps over which the agents can

‘remember’ that a bomb has affected a cell.

SHOTMEMORY Number of timesteps over which the agents can

‘remember’ that a shot has been fired to the cell.

LMBOMBPROB Defines the probability that an Insurgent will set off a

bomb at a sub-timestep.

LMFIREPROB Defines the probability that an Insurgent will fire at an

enemy agent without provocation at a sub-timestep.
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C.1 Cells

sectorNo Identifies the sector in which the cell is located,

0 ≤ sectorNo ≤ SECTOR2.

occSquad Identifies the squad the occupying agent belongs to, this

value is zero if there is no agent at the cell,

1 ≤ occSquad ≤ NOOFSQUADS.

prevSquad Identifies the squad the occupying agent at the last

sub-timestep belonged to, this value is zero if there was no

agent at the cell, 1 ≤ prevSquad ≤ NOOFSQUADS.

agentType Identifies the type of agent at the cell: one signifies a

Peacekeeper, two is an NGO, three is an insurgent, four a

Civilian and zero shows the cell is empty.

prevType Identifies the type of agent at the cell at the last

sub-timestep: one signifies a Peacekeeper, two is an NGO,

three is an Insurgent, four a Civilian and zero shows the

cell is empty.

foodAmount Gives the number of food rations available at the cell, one

ration gives enough food for one Insurgent or Civilian

for one sub-timestep.

actionType Indicates the action to be taken by the occupying agent at

the current sub-timestep: one indicates combat, two is set

off a suicide bomb, three is repair water or electricity, four

is move and zero means no action is to be taken.

moveInd Indicates whether or not an agent has moved to the cell in

the current sub-timestep, where one is yes and zero is no.

fixWater Indicates whether or not repairs to the water supply are

needed at the cell where one means yes and zero means no.
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fixedW Indicates whether or not the water supply has been fixed

during the current sub-timestep where one means yes and

zero means no.

fixElec Indicates whether or not repairs to the electricity supply are

needed at the cell where one is yes and zero is no.

fixedElec Indicates whether or not the electricity supply has been fixed

during the current sub-timestep where one means yes and zero

means no.

combat Indicates whether or not there have been any shots fired to or

from the cell in the previous SHOTMEMORY timesteps or

any bombs affecting the cell in the previous BOMBMEMORY

timesteps, where one means yes and zero means no.

shotToNo Counter for the number of shots fired to the cell,

0 ≤ shotToNo ≤ MAXSHOTS.

shotInd Indicates whether or not there have been any shots fired to the

cell in the previous SHOTMEMORY timesteps where one

means yes and zero means no.

bombBlast Indicates whether or not the cell has been affected by a bomb

during the previous BOMBMEMORY timesteps where one

means yes and zero means no.

civInNeed Indicates whether or not there is a Civilian at the cell requiring

assistance, this could be because there is either no water, no

electricity or no food or if there is combat. A value of one

indicates there is such a situation, zero that there is not.
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C.2 Agents

squadNo Identifies the squad the agent belongs to,

1 ≤ squadNo ≤ NOOFSQUADS.

agentType Identifies the type of agent: one signifies a Peacekeeper,

two is an NGO, three is an Insurgent and four a Civilian.

xHome Gives the x−coordinate for the centre of the initial

distribution of the squad’s agents,

0 ≤ xHome ≤ GRIDSIZE.

yHome Gives the y−coordinate for the centre of the initial

distribution of the squad’s agents,

0 ≤ yHome ≤ GRIDSIZE.

homeRadius Radius of the squad’s initial distribution. Along with

xHome and yHome this defines the square in which the

squad is initially distributed.

xPos Gives the x−coordinate of the agent’s current location,

0 ≤ xPos ≤ GRIDSIZE.

xPrev Gives the x−coordinate of the agent’s position at the

previous timestep,

0 ≤ xPrev ≤ GRIDSIZE.

yPos Gives the y−coordinate of the agent’s current location,

0 ≤ yPos ≤ GRIDSIZE.

yPrev Gives the y−coordinate of the agent’s position at the

previous timestep,

0 ≤ yPrev ≤ GRIDSIZE.

alive Indicates whether an agent has been killed, a value of one

signals that the agent is still alive and zero that he has

been killed.
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peaceWeight[5] Array to hold the weights towards the

Peacekeepers, that is W1 to W5.

suppWeight[5] Array to hold the weights towards the NGOs,

that is W6 to W10.

locWeight[5] Array to hold the weights towards the

Insurgents, that is W11 to W15.

civWeight[5] Array to hold the weights towards the Civilians,

that is W16 to W20.

sensorRange Defines the area over which the agent can detect

other agents and situations. Taking the agent’s

current location as the centre, the agent can

‘see’ over a square with side length

2 ∗ sensorRange + 1.

relation[NOOFSQUADS] Defines an array of the relationships to the other

squads, given in numerical order, where a value

of one is friendly, two is cooperative, three is

neutral, four is uncooperative and five is hostile.
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C.2.1 Additional Peacekeeper Parameters

civInNeedWeight Gives the weight towards cells with Civilians in need.

noWaterWeight Gives the weight towards cells with no water supply.

noElecWeight Gives the weight towards cells with no electricity

supply.

combatWeight Gives the weight towards cells with conflict.

sSKP Gives the single shot kill probability for the agent,

0 ≤ sSKP ≤ 1.

f ireRange Gives the maximum number of cells over which the

agent can fire.

probF ixWater Gives the probability that the agent will fix the water

supply at a sub-timestep if they are situated at the

cell with the fault, 0 ≤ probF ixWater ≤ 1.

probF ixElec Gives the probability that the agent will fix the

electricity supply at a sub-timestep if they are

situated at the cell with the fault,

0 ≤ probF ixElec ≤ 1.
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C.2.2 Additional NGO Parameters

civInNeedWeight Gives the weight towards cells with Civilians in need.

noWaterWeight Gives the weight towards cells with no water supply.

noElecWeight Gives the weight towards cells with no electricity

supply.

probF ixWater Gives the probability that the agent will fix the water

supply at a sub-timestep if they are situated at the

cell with the fault, 0 ≤ probF ixWater ≤ 1.

probF ixElec Gives the probability that the agent will fix the

electricity supply at a sub-timestep if they are

situated at the cell with the fault,

0 ≤ probF ixElec ≤ 1.

C.2.3 Additional Insurgent Parameters

combatWeight Gives the weight towards cells with conflict.

sSKP Gives the single shot kill probability for the agent,

0 ≤ sSKP ≤ 1.

f ireRange Gives the maximum number of cells over which the agent

can fire.

bombRadius Defines the area that is affected by a bomb blast. Taking

the agent’s current location as the centre, the bomb affects

the square of cells with side length 2 ∗ bombRadius + 1.
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Appendix D

MODEL VERIFICATION
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Figure D.1: Model Verification A2
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Figure D.2: Model Verification A3
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Figure D.3: Model Verification A4
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Figure D.4: Model Verification A5
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Figure D.5: Model Verification A6
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Figure D.6: Model Verification A7
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Figure D.7: Model Verification A8
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Figure D.8: Model Verification A9
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Figure D.9: Model Verification A10

371



D.2 Attract and Repel
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Figure D.10: Model Verification AR2
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Figure D.11: Model Verification AR3
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Figure D.12: Model Verification AR4
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Figure D.13: Model Verification AR5
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Figure D.14: Model Verification AR6
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Figure D.15: Model Verification AR7
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Figure D.16: Model Verification AR8
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Figure D.17: Model Verification AR9
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Figure D.18: Model Verification AR10
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Appendix E

MATLAB PROGRAMS

E.1 Model Visualisation

function gridPositions(GridArray, sidelength, time)

% Function gridPositions(GridArray, sidelength, time).

% Function gridPositions takes the ’GridArray’ output matrix from the PSO

% ABM and creates a series of plots that show how the agents move around

% the grid. The agents are given as coloured squares on the plots, the

% peacekeepers are blue, the insurgents red, civilians green and NGOs

% yellow. The input values ’sidelength’ and ’time’ are the grid side

% length and the model run time respectively.

pause on

% First plot the initial grid, this corresponds to the first ’sidelength’

% rows of the GridArray matrix.

Initial = GridArray(1:sidelength,:);

% Find the peacekeepers and plot them as blue squares

[a,b] = find(Initial==1);

figure(gcf)

plot(b,-a,’bs’,’MarkerFaceColor’,’b’,’MarkerSize’,2);

axis([0 (sidelength+1) -(sidelength+1) 0])

axis square

set(gca,’XTickLabel’,[],’YTickLabel’,[]);

hold on

% Find the insurgents and plot them as red squares

[c,d] = find(Initial==3);

figure(gcf)

plot(d,-c,’rs’,’MarkerFaceColor’,’r’,’MarkerSize’,2);

axis([0 (sidelength+1) -(sidelength+1) 0])
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axis square

set(gca,’XTickLabel’,[],’YTickLabel’,[]);

hold on

% Find the NGOs and plot them as green squares

[e,f] = find(Initial==2);

figure(gcf)

plot(f,-e,’gs’,’MarkerFaceColor’,’g’,’MarkerSize’,2);

axis([0 (sidelength+1) -(sidelength+1) 0])

axis square

set(gca,’XTickLabel’,[],’YTickLabel’,[]);

hold on

% Find the civilians and plot them as black squares

[g,h] = find(Initial==4);

figure(gcf)

plot(h,-g,’ks’,’MarkerFaceColor’,’k’,’MarkerSize’,2);

axis([0 (sidelength+1) -(sidelength+1) 0])

axis square

set(gca,’XTickLabel’,[],’YTickLabel’,[]);

title([’Time = 0’]);

hold off

% Now move on to plot the positions as the model is run over ’time’

% timesteps

for t = 1:time

% Isolate the relevant part of the ’GridArray’ matrix

Grid = GridArray((t*sidelength+1):(t+1)*sidelength,:);

% Find the peacekeepers and plot them as blue squares

[i,j] = find(Grid==1);

figure(gcf)

plot(j,-i,’bs’,’MarkerFaceColor’,’b’,’MarkerSize’,2);

axis([0 (sidelength+1) -(sidelength+1) 0])

axis square

set(gca,’XTickLabel’,[],’YTickLabel’,[]);

hold on

% Find the insurgents and plot them as red squares

[i,j] = find(Grid==3);

figure(gcf)

plot(j,-i,’rs’,’MarkerFaceColor’,’r’,’MarkerSize’,2);

axis([0 (sidelength+1) -(sidelength+1) 0])

axis square
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set(gca,’XTickLabel’,[],’YTickLabel’,[]);

hold on

% Find the NGOs and plot them as green squares

[i,j] = find(Grid==2);

figure(gcf)

plot(j,-i,’gs’,’MarkerFaceColor’,’g’,’MarkerSize’,2);

axis([0 (sidelength+1) -(sidelength+1) 0])

axis square

set(gca,’XTickLabel’,[],’YTickLabel’,[]);

hold on

% Find the civilians and plot them as black squares

[i,j] = find(Grid==4);

figure(gcf)

plot(j,-i,’ks’,’MarkerFaceColor’,’k’,’MarkerSize’,2);

axis([0 (sidelength+1) -(sidelength+1) 0])

axis square

set(gca,’XTickLabel’,[],’YTickLabel’,[]);

title([’Time = ’,int2str(t)]);

hold off

pause(0.1)

end

E.2 Avalanche Analysis

E.2.1 Avalanches (Firing Only)

function ConflictSize = avalanche(ShotArray, shotmemory)

% Function ConflictSize = avalanche(ShotArray, shotmemory).

% Function avalanche uses the ’ShotArray’ output and the shotmemory

% constant from the PSO ABM and uses it to calculate the number of shots

% fired as a result of an Insurgent firing an unprovoked shot. The results

% are given in the array ConflictSize where the first entry is the size of

% the first attack, the second is the size of the second attack and so on.

% Find the number of shots by using the ’size’ function to give the number

% of rows in ShotArray

Dim = size(ShotArray);

numberofshots = Dim(1);

% If there’s only one row in ShotArray then there is only one conflict of

% size one. Record this and exit the program.

if numberofshots==1
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ConflictSize = 1;

return

end

% If there’s more than one shot then there may be more than one conflict,

% we go through the ShotArray matrix to determine the conflict each entry

% belongs to and store this in the ConflictNumber array.

% Initialise the ConflictNumber array to zero.

ConflictNumber = zeros(numberofshots,1);

% The first entry in the matrix must be part of the first conflict, store

% this as the first entry of the ConflictNumber array.

ConflictNumber(1) = 1;

% Initialise the counter for the number of conflicts.

count = 1;

% Go through the rest of the shots and determine which conflict they belong

% to and record this number in the array ConflictNumber

for i = 2:numberofshots

for j = 1:(i-1)

% Check to see if the location matches a previous target or shot

% source

if (((ShotArray(j,7)==ShotArray(i,3)) & ...

(ShotArray(j,8)==ShotArray(i,4))) | ...

((ShotArray(j,3)==ShotArray(i,3)) & ...

(ShotArray(j,4)==ShotArray(i,4))))

% Then check to see if the shot was fired within the previous

% ’shotmemory’ timesteps, if so then the shot was part of this

% conflict.

if ((ShotArray(j,1)>(ShotArray(i,1)-shotmemory)) | ...

((ShotArray(j,1)==(ShotArray(i,1)-shotmemory)) ...

& (ShotArray(j,2)>=ShotArray(i,2))))

ConflictNumber(i) = ConflictNumber(j);

end

end

end

% If ConflictNumber(i) is still zero then the shot must be part of a

% new conflict. If so, increment ’count’ and set ConflictNumber(i) to

% this new value.

if ConflictNumber(i)==0

count = count + 1;
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ConflictNumber(i) = count;

end

end

% Should now have ’count’ conflicts, initialise an array ConflictSize to

% hold the size of each of these.

ConflictSize = zeros(count,1);

% Go through the ConflictNumber array to calculate the values for the

% ConflictArray matrix.

for k = 1:numberofshots

ConflictSize(ConflictNumber(k)) = ConflictSize(ConflictNumber(k)) + 1;

end

E.2.2 Avalanches (Bombs and Firing)

function ConflictSize = mixedAvalanche(ShotArray, shotmemory, BombArray, ...

bombmemory)

% Function ConflictSize = mixedAvalanche(ShotArray, shotmemory,

% BombArray, bombmemory).

% Function mixedAvalanche uses the ’ShotArray’ and ’BombArray’ output and

% the shotmemory and bombmemory constants from the PSO ABM and uses it to

% calculate the sizes of the conflicts resulting from either a suicide bomb

% attack or an unprovoked shot being fired by an Insurgent. The results

% are given in the array ConflictSize where the first entry is the size of

% the first attack, the second is the size of the second attack and so on.

% Find the number of shots and number of bombs by using the ’size’ function

% to give the number of rows in ShotArray and BombArray respectively.

Dim = size(ShotArray);

numberofshots = Dim(1);

Dim = size(BombArray);

numberofbombs = Dim(1);

% We go through the BombArray and ShotArray matrices to determine the

% conflict each entry belongs to and store this in the ConflictNumber

% array. The first ’numberofbombs’ entries refer to the bomb attacks, the

% next ’numberofshots’ entries refer to the shots.

% Initialise the ConflictNumber array to zero.

ConflictNumber = zeros((numberofbombs+numberofshots),1);

% The bomb attacks must be at the start of a conflict so label them as

% conflict numbers one to ’numberofbombs’

for i = 1:numberofbombs

ConflictNumber(i) = i;
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end

% Go through the ShotArray matrix for each bomb attack to determine which,

% if any, shots are a direct result of this bomb.

for i = 1:numberofbombs

for j = 1:numberofshots

% Check if the location of the shooter is within bomb range.

if ((abs(ShotArray(j,3)-BombArray(i,3))<=BombArray(i,5)) & ...

(abs(ShotArray(j,4)-BombArray(i,4))<=BombArray(i,5)))

% Then check to see if the time is within ’bombmemory’

% timesteps of the bomb. If so then the shot was part of

% this conflict.

if ((BombArray(i,1)>=(ShotArray(j,1)-bombmemory)) | ...

((BombArray(i,1)==(ShotArray(j,1)-bombmemory)) ...

& (BombArray(i,2)>=ShotArray(j,2))))

ConflictNumber(j+numberofbombs) = i;

end

end

end

end

% Initialise the counter for the number of conflicts, we already know we

% have at least ’numberofbombs’ conflicts.

count = numberofbombs;

% Go through ShotArray again and determine which conflict the shots that

% haven’t been accounted for yet belong to, record this number in the array

% ConflictNumber

for j = 1:numberofshots

% If ConflictNumber(j+numberofbombs) is zero then search through the

% previous shots to find which conflict it belongs to. If it does not

% belong to a previous conflict then it must be the start of a new one.

if ConflictNumber(j+numberofbombs)==0

% Search through the previous shots

for i = 1:(j-1)

% Check to see if the location matches a previous target or

% shot source

if (((ShotArray(i,7)==ShotArray(j,3)) & ...
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(ShotArray(i,8)==ShotArray(j,4))) | ...

((ShotArray(i,3)==ShotArray(j,3)) & ...

(ShotArray(i,4)==ShotArray(j,4))))

% Then check to see if the shot was fired within the

% previous ’shotmemory’ timesteps, if so then the shot was

% part of this conflict.

if ((ShotArray(i,1)>(ShotArray(j,1)-shotmemory)) | ...

((ShotArray(i,1)==(ShotArray(j,1)-shotmemory)) ...

& (ShotArray(i,2)>=ShotArray(j,2))))

ConflictNumber(j+numberofbombs) = ...

ConflictNumber(i+numberofbombs);

end

end

end

% If ConflictNumber(j+numberofbombs) is still zero then the shot

% must be part of a new conflict. If so, increment ’count’ and set

% ConflictNumber(j+numberofbombs) to this new value.

if ConflictNumber(j+numberofbombs)==0

count = count + 1;

ConflictNumber(j+numberofbombs) = count;

end

end

end

% Should now have ’count’ conflicts, initialise an array ConflictSize to

% hold the size of each of these.

ConflictSize = zeros(count,1);

% *******NB: This version gives a value for conflict size where a bomb has

% the same value as a shot ***********************************************

% Go through the ConflictNumber array to calculate the values for the

% ConflictArray matrix.

for k = 1:(numberofbombs+numberofshots)

ConflictSize(ConflictNumber(k)) = ConflictSize(ConflictNumber(k)) + 1;

end
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E.2.3 Time Avalanches (Firing Only)

function ConflictSize = time_avalanche(ShotArray, shotmemory)

% Function ConflictSize = time_avalanche(ShotArray, shotmemory).

% Function avalanche uses the ’ShotArray’ output and the shotmemory

% constant from the PSO ABM and uses it to calculate the number of

% timesteps each period of conflict covers. The results are given in the

% array ConflictSize where the first entry is the size of the first attack,

% the second is the size of the second attack and so on.

% The first part of the program is the same as avalanche.m where we

% determine which conflict each shot belongs to.

% Find the number of shots by using the ’size’ function to give the number

% of rows in ShotArray

Dim = size(ShotArray);

numberofshots = Dim(1);

% If there’s only one row in ShotArray then there is only one conflict of

% size one. Record this and exit the program.

if numberofshots==1

ConflictSize = 1;

return

end

% If there’s more than one shot then there may be more than one conflict,

% we go through the ShotArray matrix to determine the conflict each entry

% belongs to and store this in the ConflictNumber array.

% Initialise the ConflictNumber array to zero.

ConflictNumber = zeros(numberofshots,1);

% The first entry in the matrix must be part of the first conflict, store

% this as the first entry of the ConflictNumber array.

ConflictNumber(1) = 1;

% Initialise the counter for the number of conflicts.

count = 1;

% Go through the rest of the shots and determine which conflict they belong

% to and record this number in the array ConflictNumber

for i = 2:numberofshots

for j = 1:(i-1)

% Check to see if the location matches a previous target or shot

% source

if (((ShotArray(j,7)==ShotArray(i,3)) & ...

(ShotArray(j,8)==ShotArray(i,4))) | ...

((ShotArray(j,3)==ShotArray(i,3)) & ...

(ShotArray(j,4)==ShotArray(i,4))))

% Then check to see if the shot was fired within the previous
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% ’shotmemory’ timesteps, if so then the shot was part of this

% conflict.

if ((ShotArray(j,1)>(ShotArray(i,1)-shotmemory)) | ...

((ShotArray(j,1)==(ShotArray(i,1)-shotmemory)) ...

& (ShotArray(j,2)>=ShotArray(i,2))))

ConflictNumber(i) = ConflictNumber(j);

end

end

end

% If ConflictNumber(i) is still zero then the shot must be part of a

% new conflict. If so, increment ’count’ and set ConflictNumber(i) to

% this new value.

if ConflictNumber(i)==0

count = count + 1;

ConflictNumber(i) = count;

end

end

% Now instead of counting the number of shots, we calculate the number of

% timesteps that include some part of the conflict.

% Go through each conflict in turn.

for k = 1:count

% Find the first shot from this conflict and record its position in the

% ConflictNumber array.

firstattack = find(ConflictNumber == k, 1, ’first’);

% Find the last shot from this conflict and record its position in the

% ConflictNumber array.

lastattack = find(ConflictNumber == k, 1, ’last’);

% Now calculate the number of timesteps the conflict affects and record

% this in the ConflictSize array.

ConflictSize(k) = ShotArray(lastattack, 1) - ...

ShotArray(firstattack, 1) + 1;

end

E.2.4 Time Avalanches (Bombs and Firing)

function ConflictSize = time_mixedAvalanche(ShotArray, shotmemory, ...
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BombArray, bombmemory)

% Function ConflictSize = time_mixedAvalanche(ShotArray, shotmemory,

% BombArray, bombmemory).

% Function mixedAvalanche uses the ’ShotArray’ and ’BombArray’ output and

% the shotmemory and bombmemory constants from the PSO ABM and uses it to

% calculate the sizes of the conflicts resulting from either a suicide bomb

% attack or an unprovoked shot being fired by an Insurgent. Here the size

% refers to the number of timesteps affected by a conflict. The results

% are given in the array ConflictSize where the first entry is the size of

% the first attack, the second is the size of the second attack and so on.

% The first part of the program is the same as mixedAvalanche.m where we

% determine which conflict each shot belongs to.

% Find the number of shots and number of bombs by using the ’size’ function

% to give the number of rows in ShotArray and BombArray respectively.

Dim = size(ShotArray);

numberofshots = Dim(1);

Dim = size(BombArray);

numberofbombs = Dim(1);

% We go through the BombArray and ShotArray matrices to determine the

% conflict each entry belongs to and store this in the ConflictNumber

% array. The first ’numberofbombs’ entries refer to the bomb attacks, the

% next ’numberofshots’ entries refer to the shots.

% Initialise the ConflictNumber array to zero.

ConflictNumber = zeros((numberofbombs+numberofshots),1);

% The bomb attacks must be at the start of a conflict so label them as

% conflict numbers one to ’numberofbombs’

for i = 1:numberofbombs

ConflictNumber(i) = i;

end

% Go through the ShotArray matrix for each bomb attack to determine which,

% if any, shots are a direct result of this bomb.

for i = 1:numberofbombs

for j = 1:numberofshots

% Check if the location of the shooter is within bomb range.

if ((abs(ShotArray(j,3)-BombArray(i,3))<=BombArray(i,5)) & ...

(abs(ShotArray(j,4)-BombArray(i,4))<=BombArray(i,5)))

% Then check to see if the time is within ’bombmemory’

% timesteps of the bomb. If so then the shot was part of

% this conflict.

if ((BombArray(i,1)>=(ShotArray(j,1)-bombmemory)) | ...

((BombArray(i,1)==(ShotArray(j,1)-bombmemory)) ...
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& (BombArray(i,2)>=ShotArray(j,2))))

ConflictNumber(j+numberofbombs) = i;

end

end

end

end

% Initialise the counter for the number of conflicts, we already know we

% have at least ’numberofbombs’ conflicts.

count = numberofbombs;

% Go through ShotArray again and determine which conflict the shots that

% haven’t been accounted for yet belong to, record this number in the array

% ConflictNumber

for j = 1:numberofshots

% If ConflictNumber(j+numberofbombs) is zero then search through the

% previous shots to find which conflict it belongs to. If it does not

% belong to a previous conflict then it must be the start of a new one.

if ConflictNumber(j+numberofbombs)==0

% Search through the previous shots

for i = 1:(j-1)

% Check to see if the location matches a previous target or

% shot source

if (((ShotArray(i,7)==ShotArray(j,3)) & ...

(ShotArray(i,8)==ShotArray(j,4))) | ...

((ShotArray(i,3)==ShotArray(j,3)) & ...

(ShotArray(i,4)==ShotArray(j,4))))

% Then check to see if the shot was fired within the

% previous ’shotmemory’ timesteps, if so then the shot was

% part of this conflict.

if ((ShotArray(i,1)>(ShotArray(j,1)-shotmemory)) | ...

((ShotArray(i,1)==(ShotArray(j,1)-shotmemory)) ...

& (ShotArray(i,2)>=ShotArray(j,2))))

ConflictNumber(j+numberofbombs) = ...

ConflictNumber(i+numberofbombs);

end

end
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end

% If ConflictNumber(j+numberofbombs) is still zero then the shot

% must be part of a new conflict. If so, increment ’count’ and set

% ConflictNumber(j+numberofbombs) to this new value.

if ConflictNumber(j+numberofbombs)==0

count = count + 1;

ConflictNumber(j+numberofbombs) = count;

end

end

end

% Now instead of counting the number of bombs and shots, we calculate the

% number of timesteps that include some part of the conflict.

% Go through each conflict in turn.

for k = 1:count

% Find the first bomb/shot from this conflict and record its position

% in the ConflictNumber array.

firstattack = find(ConflictNumber == k, 1, ’first’);

% Find the timestep at which this bomb/shot occured. We can tell from

% the position in the ConflictNumber array whether this was a bomb or

% shot: if first <= numberofbombs then it is a bomb, else it is a shot.

if (firstattack <= numberofbombs)

time_1 = BombArray(firstattack, 1);

else

time_1 = ShotArray((firstattack-numberofbombs), 1);

end

% Find the last bomb/shot from this conflict and record its position in

% the ConflictNumber array.

lastattack = find(ConflictNumber == k, 1, ’last’);

% Find the timestep at which this bomb/shot occured. We can tell from

% the position in the ConflictNumber array whether this was a bomb or

% shot: if last <= numberofbombs then it is a bomb, else it is a shot.

if (lastattack <= numberofbombs)

time_2 = BombArray(lastattack, 1);

else

time_2 = ShotArray((lastattack-numberofbombs), 1);

end

% Now calculate the number of timesteps the conflict affects and record

% this in the ConflictSize array.

ConflictSize(k) = time_2 - time_1 + 1;
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end

E.3 Peacekeeper Box-Counting Dimension

function Count = boxCount_200(GridArray, time)

% function Count = boxCount_200(GridArray, time)

% Function boxCount_200 takes the array of grid positions on a 200x200 grid

% for ’time’ timesteps and calculates the box-counting dimension of the

% cluster of Peacekeepers at each timestep, these results are recorded in

% the ’Count’ vector. The box-counting dimension is an estimation of the

% fractal dimension of a cluster.

% First define a vector of sidelengths for the ’boxes’. For this we use

% the divisors of 200 for simplicity.

Sidelength = [1 2 4 5 8 10 20 25 40 50 100 200];

% Also calculate the logarithm of the vector for use in calculating the

% box-counting dimension.

L_Sidelength = log(Sidelength);

% Go through each timestep in turn and calculate the box-counting

% dimension.

for t = 0:time

% Find the coordinates of the Peacekeepers for this timestep.

[a, b] = find(GridArray((t*200 + 1):((t+1)*200), :));

% Reset the vector X to hold the count for each sidelength.

X = zeros(1, 12);

% The count for box size 200 will clearly be one and the count for size

% one will be the number of agents.

X(12) = 1;

X(1) = size(a, 1);

% Go through the remaining box sizes in turn.

for s = 2:11

% Go through each box in turn and search through the Peacekeeper

% coordinates until we either find a cell in the box or get the

% the end of the array.

for i = 0:(200/Sidelength(s) - 1)

for j = 0:(200/Sidelength(s) - 1)

% Go through each coordinate pair and see if they are in

% this ’box’, if so increment X(s) and break out of the for

% loop.

for k = 1:(size(a, 1))
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if ((a(k) > i*Sidelength(s)) & ...

(a(k) <= (i+1)*Sidelength(s)) &...

(b(k) > j*Sidelength(s)) ...

& (b(k) <= (j+1)*Sidelength(s)))

X(s) = X(s) + 1;

break;

end

end

end

end

end

% Calculate the logarithm of the vector X.

L_X = log(X);

% Estimate the box-counting dimension using a least-squares line of best

% fit for the log-log plot of (Sidelength, X).

linedef = polyfit(L_Sidelength, L_X, 1);

Count(t+1) = -linedef(1);

end
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