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ABSTRACT

With the current development in computer technology and Computational
Fluid Dynamics techniques, the simulation within axial flow compressors becomes
more and more practical and beneficial to the compressor designs. Due to the
insufficient capability of today's computers for three-dimensional unsteady flow
modelling of multistage axial flow compressors, sophisticated models of steady
state flow and performance modelling of the compressors deserve to be thoroughly
investigated.

In multistage compressor simulations with steady state methods, frame of ref-
erence iz fixed on blades and the computational domains for rotors and stators
have relative rotation. One of the difficulties in such simulations is how to pass
information across the interfaces between blade rows without losing continuity.
Two major steadyv state modelling approaches, a mixing plane approach based
on Denton's circumferentially non-uniform mixing plane model and a determinis-
tic stress approach based on Adamczyk’s average passage model, are investigated
and compared with each other through the flow predictions of the third stage of
Cranfield Low Speed Research Compressor at peak efficiency operating condition.

In the deterministic stress approach, overlapped solution domains are intro-
duced to calculate deterministic stresses in order to “close” the time-averaged
governing equation system and the influence of the downstream blade row of the
blade row under investigation has to be imposed through the simulation of body-
force and blade blockage effect of the downstream blade row. An effective method
of simulating bodyforce and blade blockage effect has been developed and proven
to be simple in programming.

Conventionally, boundary conditions are specified in CFD calculations based
on experimental data or other empirical calculations. By taking advantage of the
special flow features in rear stages of multistage axial low compressors where each
rear stage behaves like a repeating stage of its neighbouring stages in terms of
flow pattern at the inlet and the exit of these stages, a repeating stage model has
been developed aiming at significantly simplifying the boundary conditions when
simulating rear stages of a multistage axial flow compressor with only mass flow
rate and stage exit average static pressure required as global input.

A computer simulation system M STurbo3D has been developed to investigate
and assess different steady state simulation models within multistage compressor
environment. [t has been proven that with the mixing plane model M.STurbo3D is
able to predict flows in multistage low speed axial flow compressors with acceptable
accuracy. Application of the repeating stage model to the third stage of LSRC
shows that the prediction with this model has equivalent accuracy to the predic-
tion with the conventional boundary setting, and proves that the repeating stage
model is an effective alternative to the expensive complete compressor simulation.
The deterministic stress model provides more information of rotor-stator interac-
tion and slightly better performance prediction than the mixing plane model, but
the benefits of the model is not significant when applied to low speed axial flow
COMPressors.
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P, Peclet number

P. Prandtl number

P static pressure

p pressure correction vector

Q transformation matrix; external heat transfer

q heat transfer vector

R specific gas constant

R residual matrix

R coordinate vector

R;; composite stress

r radial coordinate in cylindrical coordinates

F position vector

ho density (kg/m?)

S surface area of control volume (m?);



X
r.Y.z

Greek Svmbols
3

source term: total entropy (W/K)

coordinate vector

"mass source” vector in pressure correction equation
cross diffusion terms as part of source term
control volume surface

hight order source term from QUI('K" scheme
other source terms

pressure gradient term as part of source term
specific entropy (J/kgK)

generation rate of specific entropy (W /kgK)
temperature (A'); time (s)

time (s)

internal energy

velocity component in general coordinates (m/s)
upper triangular matrix

tangential blade velocity at midspan (m/s)
mean flow velocity (m/s)

velocity components in Cartesian coordinates (m/s);
coordinates in parametric plane

friction velocity in wall function (m/s);

velocity vector in absolute frame;

intermediate variable vector

volume of control volume (m?)

coordinate in parametric plane; specific volume
velocity vector in relative frame

work done by external bodyforces

coordinate vector in absolute frame

space length (m)

Cartesian coordinate components

acceleration parameter
diffusion coeflicient

ratio of specific heats
Kronecker delta function

dissipation rate of turbulence kinetic energy



Sijk alternating tensor

o dissipation term

Ne compressor stage efficiency

7 tangential coordinate in cylindrical coordinate system
K Von Karman's constant

A second viscosity coefficient

I molecular viscosity coefficient

1T turbulent eddy viscosity coefficient
o coordinates in computational space

P density

I1 stress tensor

Ok. O constants 1n the k-e turbulence model
T viscous shear stress tensor

() scalar variable; variable vector

o potential function

v stream function

0 angular velocity vector

< quantity in turbulence model; relaxation factor
Subscripts

a axial; area averaging

c circumferential

cal calculated

cell cell

dns downstream

ef f effective

erit exit

ext external

1,7. k coordinate indices

int internal

M neighbouring cell

m coordinate index; mass averaging
mid interpolated value at control volume surface
mix corresponding to mixing plane

n coordinate index

P cell centre



Superscripts

(n)

/

1

¢

coordinate index

radial

reference

space: static

turbulent

time; stagnation or total
upstream

in (‘artesian coordinate direction
circumferential

corresponding to variable ®

at the same initial and boundary condition

iteration number

random fluctuation;

correction value in pressure correction equation
non-dimensional quantity in wall function
average; ensemble average: distance

ensemble and time average

ensemble, time and passage-to-passage average
periodic fluctuation

aperiodic fluctuation

normalised variable

previous iteration value: provisional value



Abbreviation

AC3A
ADI
Comp.
CU
Ds)M
EULER

FD)
FEM
FV
HP
IGV
LDs
LSRC
MPM
MSIT
NVD
OG\
PISO
Py
QUICK

STP

SIMPLE
SIMPLER
SIMPLEC

SMART

Advanced ('ivil Core Compressor Aerodynamics
Alternating Direct Iteration
Sub-Computation

(ranfield University

Deterministic Stress Model

Exponential Upwinding or Linear
Exprapolation Refinement

Finite Difference Method

Finite Element Method

Finite Volume Method

High Pressure

Inlet Guide Vane

Lumped Deterministic Stresses

Low Speed Research C'ompressor

Mixing Plane Model

Modified Strongly Implicit procedure
Normalised Variable Diagram

Outlet Guide Vane

Pressure Implicit with Splitting of Operators
Parallel Vitual Machine

Quadratic ['pstream Interpolation

for C'onvection Kinetics

Strongly Implicit Procedure

Semi-Implicit Method for Pressure Linked Equations
SIMPLE-Revised

STMPLE-Consistent

Sharp and Monotonic Algorithm for

Realistic Transport by convection

XX



SOR Successive Over Relaxation

SOQUCOUP Second-Order Upwind Central differencing
first-Order UPwind
STOIC Second and Third Order Interpolation for (‘onvection

TDMA Tri-Diagonal-Matrix-Algorithm



Chapter 1

Introduction

1.1 Introduction

The flow field in turbomachinery is extremely complicated and this complexity
was well described by McNally et al.[123]. Turbomachinery flows can be described
as three-dimensional, transitional and turbulent. and also separated flows are fre-
quently encountered. The flow is dominated by vortical flows: secondary, leakage.
trailing. horseshoe vortices. In a multistage environment both the relative and
absolute flows are unsteady. Large axial. radial and centrifugal pressure gradients
exist within the flow passages due to the turning of the flow within blade rows.
This turning redistributes the incoming vorticity field and generates cross flows.
Strong shocks may exist within the blade passages. These can be complex and in-
teracting, and often cause separation and additional loss. Geometrical parameters
are also complex and many: camber. blade and blade-row spacing, varying thick-
ness from hub-to-tip and from leading-to-trailing edge, stagger and skew. lean,
twist. aspect ratio. hub/tip ratio, tip clearance, leading and trailing edge radii,
etc. Tvpical flow features are described schematically in Figure 1.1.

The application of numerical methods to turbomachinery dates back to 1950s,
even before the advent of the digital computers. Fully three-dimensional C'FD
methods first became available in the early 1980°s and made the predictions more
accurate as compared with previous methods. With the rapid development of com-
puter architecture and pre- and post-data processing during the last two decades.
computational techniques are able to provide efficient methods for the analysis and
design of turbomachinery. Nowadays Computational Fluid Dynamics (CFD) plays
a more and more important role in the aerodynamic design of turbomachinery. The

design of modern compressors and turbines has become unthinkable without the

1
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Figure 1.1: Flow features in an axial flow compressor (McNally et al.
[123])

help of CFD. Combined with measurements, CFD provides an efficient tool for
simulation. design. optimisation and, most importantly, analysis of complex three-
dimensional flows hitherto inaccessible to the engineer. In many cases, it is the
only simulation available. because the actual testing of turbomachinery, including
detailed measurement in rotating passages. is cumbersome and even impossible.

In the aeroengine industry of the 1980’s, a typical iterative design procedure
for a multistage axial flow compressor would take up to three years to develop
and cost as much as twenty million dollars (LeJambre et al. [109]). However. the
resulting designs were not optimum. No detailed understanding of the internal
fluid mechanics was gained; it was not then possible to break from a previous
design with any confidence.

In the 1990's. design methods based on solving the Navier-Stokes equations
became more accurate and practical for isolated cascades of airfoils such as fans.
As computers became more powerful, it became more practical to routinely solve

multiple rows of airfoils in order to evaluate new design concepts.
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More recently. efficient prediction methods for multistage turbomachinery have
been developed and have shown great potential in design application. Under these
circumstances. the research work in recent years has been aimed towards the de-
velopment and computational implementation of methods for internal flow and
performance simulation and the improvement of 3D design and prediction tools of

multistage turbomachinery. The proposed methods should be able:

e to predict the most significant flow phenomena and global aerodynamic per-

formance of multistage turbomachinery.

® to investigate the better setting of boundary conditions in the simulation of

multistage turbomachinery.

e to investigate and develop different models for passing information between

neighbouring blade rows.

e to make the code sufficiently flexible and robust for different turbomachinery

applications.

Right now. the capability of flow simulation for multistage turbomachinery is
still limited by the capability of today’s computers and therefore a direct solution
of Navier-Stokes equations or even an unsteady solution of Reynolds averaged
Navier-Stokes equations for three-dimensional flows in multistage turbomachinery
are very difficult or even impossible.

The general aim of this study is to investigate and improve a set of models and
a computer code in order to efficiently predict the global performance and detailed
internal flows of multistage axial flow compressors with defined geometries and
global aerodynamic boundary conditions. A thorough comparison of the predic-
tions against available in-house experimental data and analysis of flow phenomena

inside compressor flow passages are also required.

1.2 Brief Review on Turbomachinery CFD

The current review of CFD methods for turbomachinery flows is based on
Lakshminarayana [104], McNally et al. [123], Hirsch et al. [81], Denton and Dawes
[49], Adamczyk [6] and other recent publications, and only the major categories
are described here. The development of C'FD in turbomachinery may be classified

in six model groups based on the simplification of the Navier-Stokes equations.
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1.2.1 Mean-line Model

This is a model of one-dimensional calculation where the fluid properties and
velocities are estimated along the mean line by empirical corrections of experimen-
tal data. This model is also called quasi-one-dimensional model.

The accuracy of the mean-line model is one dimensional in space and relies
heavily on a large cmpirical database. This class of methods continues to be

developed and used for the preliminary estimation of performance, Howell and
Calvert [NY].

1.2.2 Axisymmetric Flow Models

The flow field in turbomachinery can be assumed to be axisymmetric when
the incoming and exiting flow is supposed to be axisymmetric and steady. This
axisymmetric flow representation is described by through flow models. If the blade
thickness is allowed to be ignored while the aerodynamic loading is maintained,
the blade row can be regarded as an “actuating disk™. Across the disk, there is
an aerodyvnamic force acting on the fluid and energy inputed in (for compressors)
or extracted from (for turbines) the fluid. The axisymmetric flow field is divided
into two kinds of regions: the core region and the endwall regions. The impact of
the endwall region is accounted for by means of a flow blockage and needs to be
estimated with empirical data. There are basically three types of axisymmetric
flow calculations normally used. They are through-flow, cascade flow and quasi-

three-dimensional flow calculations which are described as follows.

Through-flow and Cascade Flow Calculations

The ultimate equations to be solved in most internal flows are the Reynolds-
averaged Navier-Stokes equations. These equations are often reduced to a simpler
form. the Euler equations. by neglecting the viscous terms. The calculation meth-
ods for through-flows and cascade flows may be classified as follows based on

different simplification of governing equations:

1. Streamline Curvature Method.
This analysis method is based on the direct determination, through iterative
calculation. of the traces or projections of streamlines on a prescribed surface,
for example on a meridional section of a turbomachine. Velocities and fluid

properties are predicted at locations on the streamlines corresponding to

control surface intersections.
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The influence on the hub-to-shroud flow patterns due to the terms in the
radial component of the equation of motion representing streamline slope
(due to radial velocity) and curvature (due to radial velocity change) was
first described by Traupel [175], and later by Wu and Welfonstein [196] and
Hamrick. Ginsbury and Osborn [7-1]. Wu [191] provided the basis for a hub-
to-shroud flow field calculation including locations internal to blade rows
and some design procedures tracing streamlines through blade rows were
reported during the 1950s. Between 1960 and 1976 a substantial number of
computer codes for axial-flow turbomachinery analysis were developed using

streamline curvature methods.

The starting point of the methods is a family of pseudo streamlines deduced,
by similarity. from the profile geometry. The transverse pressure gradients
are connected to the curvature of these streamlines; a transverse velocity dis-
tribution is derived, and, by iteration on the continuity equation, the shape
of the streamline is changed until a convergence of the process is reached,
Wilkinson [189] and Bindon [16]. The main advantage of the method is the
rapidity of the computation, also for subsonic compressible flows. Difficulties
arise for transonic flow because of the discontinuity of the streamline curva-
ture at the shocks. Another drawback lies in the lack of accuracy in areas

with strong curvature (leading and trailing edges).

2. Stream Function Method
The continuity equation allows definition of a stream function which com-
bined with the condition of irrotationality provides a second order, non-linear
equation for compressible flow. This equation is generally discretised in an
orthogonal grid. by means of a scheme suitable for an elliptic type problem

(subsonic flow).

The stream function is defined by postulating that the mass flow components,

pu and pv. are obtained from a scalar function as follows:

9, dy
pu = 8—15, pU = _d_(; (1.1)

where v is the stream function.

The stream function equations for turbomachinery S1(blade-to-blade) and
52 (hub-to-tip) stream surfaces were firstly introduced by Wu [192]. Kat-
sanis [97] published a method for isentropic blade-to-blade flows applicable

to anv fixed or rotating axial, radial or mixed flow in turbomachinery blade
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vows. Marsh [120] developed a stream function analysis for hub-to-shroud
surfaces. Marsh's technique was also applied to axial. radial and mixed flow
turbomachinery. In 1970. Smith and Frost [158] applied these methods to

flow on general blade-to-blade stream surfaces.

The discretised finite difference equation was solved by relaxation techniques,

Natsanis [96] and Fenain [57]. or by a matrix technique, Calvert and Smith

25].

. Velocity Potential Method

Another approach to circumventing the problems inherent in the full Euler
equations 1s to assume that the velocity components u and v are derivatives
of a scalar function o

[0) 1820
= — ) = —— <)
ey t 3y (1.2)

u

Such a flow is automatically isentropic with constant total temperature and
zero vorticity (irrotational). Substitution of these relations into the continu-
1ty equation vields a second order equation in ¢. As with the stream function,
the potential equation can be solved by different relaxation techniques. Fur-
thermore. it permits the solution of 3D as well as 2D flows. The isentropic
assumption implies that shock waves captured in the transonic regime must

be limited in Mach number to a value less than 1.3.

The pioneering work on such methods was performed by Murman and Cole
[127] and Jameson [92]. Hafez et al.[68] later introduced a concept of artificial
compressibility to accomplish the same objective when the conservation form
of the full equation is used. Three major discretization methods. i.e., finite
differences. finite volumes and finite elements, are used to obtain a set of

algebraic equations for solution.

Potential methods are very useful for the flow analysis in the subsonic, fully
supersonic and low transonic (i.e. free of strong shocks) flow regimes during

the preliminary design stages of turbomachinery.

Solution to Steady State Euler Equations for Inviscid Flows

For inviscid flows, the viscous terms in Navier-Stokes equations are ignored
and the equations are simplified to the Euler equations. In this situation,
the problem raised by the mixed elliptic-hyperbolic nature of the Euler equa-
tions for steady transonic motion with intense shocks can be solved by non-
steady type of methods, Magnus and Yoshihara [117] [118]. Such methods
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offer the great advantage of being applicable to any transonic flow; how-
ever. they require very long computation time for the asymptotic condition
to be achieved. As the asyvmptotic solution is the only solution retained,
the intermediate states do not need to have a physical significance, and the
nou-steady terms can be modified in order to accelerate the achievement of

the final solution. Mcthods based on such an idea are called time marching

methods.

The time marching methods of the Euler equations can be classified into two

major categories: explicit and implicit.

The explicit method is the one in which all spatial derivatives are evaluated
using known conditions at the old time level. All such methods are limited
by the so-called C'ourant. Friedrichs, and Lewy (CFL) stability limit, which

states that the domain of independence of the numerical scheme must contain

the domain of dependence of the original equations.

MacCormack [116] introduced a two-step prediction-correction method. which
alternates between forward and backward differencing on the two steps. Mec-
Donald [122] used another method for 2D transonic flows in axial turbine
cascade. in which the conservation laws in an integral form are written and
applied to local control volumes surrounding each grid point. Denton [43]
[44] [30] has developed a somewhat simpler method for both 2D and 3D tur-
bomachinery flows. Bosman and Highton [18] have developed a method for
3D flows which employs two overlapping grids with density and internal en-
ergy evaluated at one set of nodes and velocities evaluated at the second set.
Ni [130] has developed another method that is equivalent to the second order
Lax-Wendroff procedures. A pseudo-unsteady method has been developed
by Viviand and Veuillet [182] [181].

In implicit methods the equations are backward differenced in time. and
the nonlinear terms at the new time are linearised about their values at
the previous time level. Introductions of difference gives a large system of
algebraic equations for the unknowns at the new time level. These equations

are solved by block alternating-direction-implicit (block ADI) techniques.
The first of these methods was introduced by Briley and McDonald [22, 23],

primarily for compressible Navier-Stokes equations. Beam and Warming [13]
independently developed a similar method for Euler equations. Steger [165]

[166] has developed a curvilinear coordinate version of the Beam-Warming
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algorithm for viscous as well as inviscid flows. Denton [45] has extended
his earlier Euler method by emploving a simpler more accurate differencing
scheme. Both Ecer and Akay [52] and Lacor and Hirsch [103] have developed
methods for solving the steady Euler equations. Another hybrid streamline
curvature-Euler solver developed by Giles & Drela [62] is now proving very
popular due to its ability to work with a coupled boundary layer calculation

and to work in both direct and inverse mode.

5. The Pressure-Based Methods for Viscous Flows

In the pressure-based techniques. usually the solution algorithm is based on a
semi-implicit scheme which utilises the continuity equation for the derivation
of a Poisson Type equation for the calculation of the pressure in order to
satisfy: a divergence free velocity field. In the first step a guessed pressure
field is the pre-condition for the solution of the momentum equation which
are decoupled and expressed in a linearised form and in the second step
an equation for the pressure or pressure correction is solved to update the
pressure field and promote the satisfaction of the continuity condition. The

density is then calculated using the perfect gas law.

This technique was originally suggested by Chorin [33, 34]. The semi-implicit
method for pressure-linked equations (SIMPLE) algorithm due to Patankar
and Spalding [136] provided a remarkably successful scheme and has dom-
inated the field of numerical simulation of incompressible flows. Patankar
[135] introduced the SINMPLER method, in which an extra equation was
solved for the evaluation of static pressure. The SIMPLEST procedure was
developed by Spalding [160]. who recommended an explicit treatment of the
convection and implicit treatment of diffusion in the momentum equations.
Another variant is the SIMPLEC' procedure described by Von Doormal and
Raithby [183] which uses a consistent under-relaxation of the momentum
and pressure corrections. Vanka [179] has used the multi-grid method with a
coupled solution. He proposed an explicit smoothing technique called Sym-
metrical C'oupled Gauss-Seidel (SCGS) and improved both convergence and
('PU time. Most earlier techniques utilised a staggered grid system in or-
der to remove unphysical pressure oscillation. Rhie and Chow [147] used a
pressure weighted method to suppress pressure oscillations and developed a
differencing scheme for a curvilinear coordinate system on a non-staggered
grid. Kirtley and Lakshminarayana [100] developed a coupled pressure-based

method in which all the equations were solved simultaneously. The pressure-
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based methods have been applied successfully to incompressible, compress-
ible. laminar. turbulent. low and high Revnolds number flows for a large class
of geometries. The grid system may be orthogonal or non-orthogonal. The
method is flexible: either the finite difference or finite volume formulation can
be employed. The pressure-based methods are efficient and have reached a
high level of sophistication: they are highly recommended for incompress-
ible and subsonic turbomachinery flows, Lakshminarayana [104]. One of
the successful applications of the pressure-based methods is the commercial
code T"ANC flow3D. which is capable of solving diverse and complex multi-
dimensional fluid flow problems and provides solutions for incompressible
or compressible. steady or transient, laminar or turbulent single-phase fluid

flow in complex geometries [171].

6. Time-Marching Methods.
In these techniques, the time derivative in the Navier-Stokes equations is
retained. Very efficient techniques have been developed to solve the equations
for external and internal flows. There are two classes of methods of solving

the time-dependent hyperbolic equations: explicit and implicit.

In the explicit scheme, the spatial derivatives are evaluated using known
conditions at the old time level. The explicit schemes used widely for the

computations of turbomachinery flows are as follows:

e The Lax-Wendroff scheme [108] is second-order accurate in time and

space.

o The predictor-corrector method due to MacCormack [116] is a modified
version of the Lax-Wendroff scheme and has been in use for external
aerodynamics for a long time. Many early turbomachinery computa-

tions were performed with this scheme.

e The Runge-Kutta type scheme (Jameson et al. [93]) has found wide

application in both the internal and external flows.

The explicit techniques are highly successful in predicting complex flow fields
in turbomachinery.
Implicit methods, where the unknown variables are derived from a simul-

taneous solution of a set of equations, on the other hand, usually allow for

larger time steps and faster convergence and are attractive for both steady

and unsteady flows.
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One of the widely used implicit techniques is the approximate factorisation
due to Briley and McDonald [23] and Beam and Warming [11]. This tech-

nique is widely used. with modifications, to predict viscous flow fields in

cascades, stators, and rotors. Another one is the upwind schemes developed

by Osher and Solomon [131] which are used to capture strong shocks without

requiring arbitrary smoothing parametoers (artificial dissipation), which may

alter the physics of the problems.

The calculation methods may also be categorised based on different numerical

discretization techniques used:

(a)

Finite Difference Methods

The method is based on the initial definition of a system of grid points
throughout the flow passage under study. Finite difference equations
are written for each grid point. Then the equations are solved to de-
termine the distributions of fluid properties and velocities at the nodal
points. Finite difference methods for turbomachinery analysis were first
suggested and utilised between 1950 and 1960. Wu [190] [191] [193] [194]
[195].

Finite Element Methods

The flow passage to be studied is subdivided by a network of lines into
elements. Nodal points are located on the lines forming the boundary
of each element. The physical laws and empirical input are formulated
so that the fluid properties and velocities may be determined at each
nodal point by iteration.

Finite element methods initially appeared as usable through-flow anal-
vsis techniques during the middle 1970s, Hirsch and Warzee [32], Adler
and Krimerman [3]. and also developed by Whitehead [187]. The finite
element mesh can be adapted readily to quite complex geometries and

also can be developed for three-dimensional analysis.

The methods are based on an approximation of dependent variables
in the form of polynomials, and on integral definition of the problem,
Krimerman and Adler [102] and Morice [125].

The benefits of this technique are as follows:
e Possibility of giving an optimum grid distribution, especially by
using curvilinear meshes;

e Automatic treatment of natural boundary conditions;
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e Preservation of symmetry in the discretization of differential oper-

ators.

(c) Finite Volume Methods

The flow passage is subdivided into a large number of small volume ele-
ments. fitted to the passage geometry. The physical laws and empirical
information governing the calculation are used to generate integral con-
servation equations for each small volume. The equations are solved.,
tyvpically by an iterative time-matching process or pressure based meth-
ods. to reach a converged distribution of velocities and properties for

the finite volume surfaces.

The application of finite volume methods to hub-to-tip flow fields and
their strong potential for extension to an effective three-dimensional
analysis have been reported by Denton and Singh [50]. Farn and Whirlow
55]. and Ivanov and Kimasov [91]. The finite volume regions can also

be generated to conform to complex passage geometries.

Quasi-Three-Dimensional Flow Model

With the development of digital computers, the through-flow models were
replaced by quasi-three dimensional flow models. The quasi-three-dimensional
model is the numerical coupling between an axisymmetric flow model and a cascade
flow model. The axisymmetric flow model provides the streamline surfaces on
which the cascades are defined and the cascade flow model provides the blade
force distribution required as input to the axisymmetric low model. This class of
methods was pioneered by Wu [191].

A major development paving the way for analysis of turbomachinery flows was
the series of early papers by Wu. particularly [192], which derived the stream
function equation for S1 (blade-to-blade) and S2 (hub-to-shroud) stream surfaces
of turbomachinery. Smith [159] described both the meridional and the blade-to-
blade analvsis, which was the first description of the meridional and blade-to-blade
methods used together.

In 1976 Bosman [17] presented an iterative approach to couple S1 and S2 anal-
ysis. A more elaborate iterative procedure was described by Adler and Krimerman
[7)-[9]. Hirsch [32] presented the first solution of the meridional stream function
equation based on the finite element method. Later, Hirsch [83] developed an iter-
ative analysis in which meridional and blade-to-blade finite element analysis were

combined for application to axial turbomachinery.
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Davis [37, 38] demonstrated a method for a single full stage machine. On the
other hand. the methods of Katsanis [98, 99], and Bosman [17] were applied to
a single blade row. Hafez [69] has extended the solution of the stream function
equation to transonic flow by using techniques developed for the potential equa-
tion. Two publications, Howard and Gallimore [87] and Gallimore [58], are the
representative of recent development of axisymmetric flow models.

Most of the computational methods which have evolved from Wu's theory de-
pend strongly on empiricism to account for viscous effects of flow deviation and

blockage and their predictive capability is limited in separated flow regions.

1.2.3 Three-Dimensional Single Blade Row Approaches

Initially the C'FD-based models which were introduced into turbomachinery
calculation ignored the impact of the unsteady, deterministic flow which exists
within actual multistage turbomachinery. Based on this assumption, the govern-
Ing equations are simplified to the Reynolds-Averaged steady-state Navier-Stokes
equations.

Many flow features in turbomachinery, such as the effects of blade lean and
sweep, of tip leakage and secondary flow, are fully three-dimensional and can
only be predicted by 3D methods. Three dimensional methods have evolved over
the past 20 vears and now are most commonly used as a final check on designs.
Inverse methods in 3D are relatively difficult. A few inverse 3D methods have been
reported, Demeulenaere et al. [42], but they are not yet widely used in industry.

Only a limited number of numerical schemes have been applied to 3D turbo-
machinery flow. The most common are time marching solutions of the Euler or
Navier-Stokes equations, Denton [46] and Dawes [39]. Another type is pressure
correction methods initially used by Moore and Moore [124], Hah [70] and more
recently in the commercial code TASC flow3D.

In a typical design system for multistage turbomachinery, preliminary blading
is defined using through-flow calculations with empirical corrections for 3D viscous
effects. 2D airfoil cross sections are defined and stacked to form 3D airfoils. Then
simple 2D viscous CFD calculations are performed to check blade loadings, flow
separation, etc. After that, a series of rig tests are undertaken to match the stages.
Finally, engine hardware is defined and built for a full scale engine test. The design
is assessed after each step and can be changed. This iterative procedure is very

expensive and time consuming, LeJambre [109].
Computational methods for a single blade row in turbomachinery are now
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highly developed and commonly used in industry. However, few turbomachines

operate as isolated blade rows. Generally, three-dimensional CFD based methods

for multistage turbomachinery, without taking into account the impact of unsteady,

deterministic variation generated by neighbouring blade rows, are categorised into

two types:

1.

o

Successive Analysis of Isolated Blade Rows

Given an analysis code for an isolated blade row, multistage turbomachinery
is simulated by analyvsing successive blade rows from inlet to exit, using
average flow properties from the exit of one blade row as inlet boundary
conditions for the next. This method is simple, but it introduces many
modelling issues. For example, the boundary conditions for a single blade
row working in a multistage environment are difficult to set, mass flow rate
and spanwise flow properties are difficult to match between the neighbouring
blade rows and the method ignores physical processes such as wake mixing
and migration. acoustic interaction, and other unsteady effects that may be
important in real turbomachinery. Because of the simplicity of this method,

it was used by several researchers such as Boyle et al. [20] and Politis et al.

[140].

Mixing-Plane Methods

Simple mixing-plane methods analyse multistage turbomachines by exchang-
ing spanwise distributions of averaged flow quantities at a common grid sur-
face between the blade rows, Denton [47] and Dawes [41]. These methods
have the advantage of maintaining spanwise consistency and preserving gen-
eral radial variation between blade rows although circumferential averaging

of flow properties are introduced.

More recently, an improved mixing-plane treatment has been developed,
Denton [47]. in which the circumferential variation of fluxes at the mixing
plane is obtained by extrapolation from the upstream and downstream planes
while adjusting the level of the fluxes to satisfy the overall conservation. Thus
the fluxes “seen” by the blade rows are circumferentially nonuniform at the
mixing plane with different circumferential variations, but the same average
values, being “seen” by the upstream and downstream rows. With this model
the mixing-plane is allowed to be located very close to the leading or trailing
edges of the blade rows and the flow calculations for multiple blade rows

and even for whole multistage compressors and turbines becomes possible.
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Chen et al.[31] derived another method from the Beam and Warming implicit
approximation factorisation (AF) finite difference scheme and used the mix-

ing plane model from Denton [17] to predict 3D multistage turbomachinery

flows.

1.2.4 Time Averaged Flow Model

This type of methods was developed by Adamczyk [2] [3] and Adamczyk et al.
[5] as a rigorous means of modelling unsteady blade row interaction using a steady
state analysis. This flow model describes the time averaged flow field within a
typical passage of a blade row embedded within a multistage configuration. The
unsteady deterministic stresses resulted from a time averaging on the governing
equations are the result of flow processes directly linked to shaft rotational speed
and are responsible for the recovery of wake mixing loss in compressors, flow block-
age. and the spanwise redistribution of momentum. Adamczyk [6]. The flow quan-
tities are split into a steady component, an unsteady deterministic (periodic) com-
ponent. and an unsteady random (turbulent) component. The flow equations are
integrated in time using procedures analogous to Reynolds-Averaging to produce
the average-passage equations. The average-passage approach has the advantage of
a rigorous foundation for modelling unsteady blade-row interaction, although lit-
tle data is available for modelling the deterministic stresses. The method requires
that the computational grids for each blade overlap one neighbouring blade row
on each side. adding to programming complexity and computational difficulties.
The solution methodology of this model was developed by Celestina et al. [29]
and Rhie et al. [118]. A computer code called NASTAR based on average passage
equations was applied by LeJambre et al. [109] to the design of a P&W's eleven
stage HP compressor. The application of the code was assessed to achieve 2%
higher efficiency at no overall stall margin loss and yield up to 50% reduction
in the compressor development time and cost, LeJambre et al. [109]. Sondak
et al. [161] demonstrated a “lumped” deterministic stress (LDS) model where
the unsteady flow effects are modelled with lower order (inviscid) time dependent
simulation as source terms in viscous steady flow equations. These source terms,
expressed with lumped deterministic stresses, are employed to drive steady flow
solution procedures to produce the time averaged solution of an unsteady flow
field. The LDS model was recently used by Busby et al. [24] and Orkwis et al.
[133] to investigate turbine hot streaks.

More recently. further efforts have been made to investigate the effects and
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modelling of deterministic stresses and closure approaches to the average passage
equations. In general, the passage equations for multistage turbomachinery ap-
plications require the pitchwise mesh lines with no variation in axial and radial
direction. Such a requirement is due to the original implication of the model for
the deterministic stresses which close the average passage equations. Kirtley et al.
[101] introduced a more general implementation of the closure model that permits
the use of general meshes with high distortion especially near blunt leading edges
or around highly staggered airfoils. This methodology was applied to the complete
turbine for the GE90 turbofan engine, Turner et al. [177]. In addition, the de-
terministic stresses were quantitatively analysed with a time-dependent CFD tool
for the Pennsylvania State University Research Compressor (PSRC), Hall [73] and
a combined strategy of mixing plane/deterministic stress modelling was proposed
by Hall [73]. An experimental study of velocity decomposition and unsteadiness
at downstream of an embedded stator was made by Prato et al. [144] and the
experimental analysis of deterministic stresses and heat flux distribution at the

downstream of the same compressor stator was studied by Suryavamshi [168].

1.2.5 Fully Unsteady Flow Simulation

Fully unsteady methods, pioneered by Rai [145] and Whitfield et al.[185],
involve direct solution of unsteady rotor-stator interaction. These methods pre-
sumably avoid all modelling questions except for turbulence but are very expensive
computationally and still require averaging at the end to produce useful results.
The practical application of this model in design processes must await the further
development of more powerful computers.

In the application of these methods, the publications of Gundy-Burlet et al.
[64] [65] [66] [67]). Chen et al. [30]. Dorney et al. [51], Giles [61], Hodson and Dawes
[84]. Rai and Dring [146]. Sharma et al. [157] and Davis et al. [36] have proven that
these models are very useful in numerical experiments to quantify the impact of
the unsteady deterministic flow on turbomachinery aerodynamic performance and
durability, Adamczyk [6]. More recently, unsteady three-dimensional viscous flow
simulation in a multistage turbomachinery application was carried out by several

researchers such as Chima [32], Nozaki et al. [132], Hall [72], He [76] and Bell and
He [15], etc..
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1.2.6 Direct Navier-Stokes Simulation

The advantage of this approach is that apart from the empirical information
required to model the physical and thermodvnamic properties of a fluid, no other
empirical information is required to solve the Navier-Stokes equations. The direct
solution of the Navicr-Stokes equations for Reynolds numbers typical of aero and
industrial turbomachinery configurations would produce a non-deterministic or
turbulent flow state. Theoretically, this model could provide the most accurate
flow information than any other models mentioned above. However, the computer
requirement of this model to solve the Navier-Stokes equations and support the
aerodynamic design far exceed the capability of today’s most advanced computers

in both CPU speed and memory size.

1.3 Contribution of the Present Study

As seen from the literature review, there are several types of methods for the
simulation of multistage turbomachinery. Unfortunately, because of the limitation
of computer capabilities, some of these methods are still under development and
are not sophisticated. It is the purpose of this study to develop and improve the
numerical models for this kind of prediction based on steady state methods, with
the main focus on multistage axial flow compressors.

The contribution of the present study is as follows:

e Implementation of the mixing plane models which are used to transfer in-
formation between neighbouring blade rows; analysis of the discontinuity at

mixing planes and the limitation of the mixing plane models.

¢ Development of repeating stage models applicable to the flow simulation in

rear stages of multistage axial flow compressors.

o Improvement of a deterministic stress model with focus on a practical way of
simulating the influence of a relatively rotating blade row on a flow field by
imposing the approximated bodyforce and blade blockage effect generated
by the blade row.

¢ Development of computer code MSTurbo3D which is applicable to the sim-
ulation of single or multiple blade rows of axial flow compressors with the

above models.
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o Assessment of different simulation approaches by comparing the predicted

results against experimental data.

e Understanding of detailed flow phenomena inside compressor flow passages.

interaction between flow and blade rows and losses resulted from various

stresses,

1.4 Structure of the Thesis

Chapter 2 describes a surface fitting method which is used in this project
to generate boundary grid points for the flow passage of a blade row using ex-
isting discrete networked points that define the blade surface. Then an algebraic

grid generation and grid clustering method is applied to create interior grid points.

In Chapter 3 general forms of governing equations for turbomachinery flows
and the transformed form of the governing equations in a non-orthogonal curvilin-
ear coordinate system and in different frames of reference are shown. Then three
averaging procedures — ensemble. time and passage-to-passage averagings — are

applied to the governing equations.

Chapter 1 presents the closure approaches to the system of governing equations
for multistage turbomachinery applications. The closure issues include turbulence
modelling. an overlapped solution approach and the modelling of deterministic
stresses. bodyvforce and blade blockage effect. A standard wall function is intro-
duced to simplify the treatment of near wall regions. In addition, repeating stage
models are developed aiming at simplifying the global aerodynamic boundary con-

ditions for the flow simulation of rear stages of multistage axial flow compressors.

Chapter 5 describes the spatial discretization process of the governing equa-
tions. Subsequently, different numerical schemes for the treatment of the con-
vective term of the momentum equations are described in detail. A pressure
correction method is described followed by the discussion of the application of

under-relaxation, the use of collocated grids and the remedies to pressure oscilla-

tions.

In Chapter 6 the developed numerical approaches and the corresponding com-

puter code are applied to the third stage and the complete 4 stages of the Cranfield
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1-stage Low Speed Research (‘ompressor (LS R(') on the peak efficiency operating
condition. Analvsis and comparison between the numerical results from different
simulation approaches and experimental data are carried out. Efforts are also
made to simulate the performance of the third stage working at off-design operat-
ing conditions and to analyse the losses of the flow by calculating the distribution

of entropy generation rate and entropy rise.

Finally in Chapter 7, conclusions from the present research project are drawn

and ideas for further work are suggested.



Chapter 2

Surface Modelling and Grid

(Generation

2.1 Introduction

Normally in turbomachinery applications, the three dimensional surfaces of
compressor blades are defined by sets of discrete networked points. In this chapter.
a three-dimensional surface fitting method. Weatherill [184] and Faux and Pratt
[56] is applied to generate surface grids on the blade surfaces to form the boundary
conditions for the interior grid generation. An algebraic grid generation technique

with grid point clustering capabilities are used to generate interior grids.

2.2 Surface Grid Generation

Surface grid generation is one of the most difficult and yet important aspects in
grid generation. The surface grid influences the field grid close to the configuration,
the region where flow gradients are important and need to be resolved accurately.
Surface grid lines have the same requirement for smoothness and continuity as the
field grid lines for which they act as boundary conditions, and in addition, they are
required to conform and describe accurately the configuration surfaces, including
lines of component intersection, and to model regions of high surface curvature.

Geometrical surface modelling is a means by which a continuous surface can be
defined from a discrete set of points. Such a definition of a surface is valuable for
the generation of surface grids which, in general, will not coincide with the original

geometry definition. The parametric representation of a surface which is described

19
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in detail in Appendix A, is straightforward to construct and therefore, a surface
in three-dimensional space can be defined in just two independent parametric
coordinates.

In this sense, surface grid generation can be viewed as a transformation from
two dimensional parametric space where the grid is generated and mapped to the

physical space R — X(l y.z) by the mapping
X(r.y.2) = F(u)QFT(v) (2.1)

where F is a blending function vector and @ a matrix, which are defined in Ap-
pendix A. Thus. three dimensional surface grid generation is simplified to grid
generation in two dimensions within the finite parametric domain. Such grids can

be defined by any grid generation method.

2.3 Interior Grid Generation

In order to numerically solve the governing equations of fluid mechanics, the
fluid domains firstly need to be divided into finite volumes where the governing
equations are going to be discretised and solved. Therefore, some techniques are
necessary to specify the grid points that define the finite volumes as well as the
boundaries of the domain.

Typically. the computational domain is chosen to be rectangular in shape where
the interior grid points are distributed along grid lines. Therefore, the grid points
can be identified easily with reference to the appropriate grid lines. This type of
grid is called the structured grid. Hoffmann and Chiang [85], and is used in the
present study. If the fluid domain is rectangular and the grid points are uniformly
spaced inside the domain. the generation of the grid is simple and the specification
of boundary conditions is not complicated. Unfortunately, the majority of the
physical domains of interest are not rectangular. So, applying a Cartesian grid on
an arbitrary physical domain requires some sort of interpolation for the implemen-
tation of the boundary conditions. This will cause serious numerical error near
boundaries because the boundary conditions can not be described accurately, and
create programming difficulties when grid points are not uniformly distributed.

To overcome these difficulties, a general coordinate system is introduced and
a transformation from the physical to the computational space is utilised. This
transformation is accomplished by specifying the general coordinate system which

will map a non-rectangular grid in the physical space to a rectangular uniform grid
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in the computational space. Such a transformation is defined with the following

eXPressions:
¢ =¢&(ry.2)
n =n(r.y, ) (2.2)
¢ =¢(r.y.2)

Accordingly, the governing equations expressed in the Cartesian coordinate sys-
tem also need to be transformed to the general non-orthogonal coordinate system.
which will be described in the next chapter. This mapping is schematically ex-
pressed in Figure 2.1, where the physical space is expressed with ('artesian coordi-
nates (r.y.:) and the computational space is expressed with general coordinates
(&-n.Q).

The purpose of the grid generation is to identify the location of the grid points
in the physical space and create the relationship between the coordinates in the
physical space and in the computational space. It is desirable that a grid system

has the following features:

o One-to-one correspondent mapping to ensure grid lines of the same family

do not cross with each other;
e Smoothness of the grid point distribution:
o Orthogonality or near orthogonality of the grid lines;
e Options for grid point clustering
In general, grid generation methods may be classified as:
e algebraic methods
e methods based on partial differential equations
e conformal mappings based on complex variables

(‘onformal mapping are limited to two-dimensional problems and the determi-
nation of the mapping function is sometimes a difficult task. Therefore, this type
of method is not used here.

(‘'ompared with algebraic methods. the methods based on partial differential
equations may provide grids with better smoothness and orthogonality. In the
case of interest where there is a requirement for the pitchwise grid lines to have
no variation in the axial and the radial directions, algebraic methods are more

suitable than others and are used in the present study.



Chapter 2. Surface Modelling and Grid Generation

1

| |
] |
| |
1 |
|

\ Downstream
\ | I
\ B1ads :
\ | e I
\
g B
S - . :
Q \ ® | ) |
‘ B .o W 1
1 - - N N
\ ’," &;,” \\ g N
\ //= \U‘Q \\
v _ - UQ N N
/“'\’/ m __._\— \\\
/, \\ G%’,”————
/// \\ ,Cb

Figure 2.2: Division of flow passage

The algebraic method is theoretically simple and has the advantage of fast speed
with which a grid can be generated. Different algebraic methods are selectable to
generate required interior grid points between specified boundaries.

Direct three-dimensional grid generation with algebraic methods can be com-
plicated for programming. Based on the features of the problems concerned which
will be discussed in the following chapters, the grid generation can be simplified
to a two-dimensional problem which will be described in detail below.

The flow passage between two neighbouring blades in an axial flow compressor
and the applied coordinate systems are schematically shown in Figure 2.2. This
passage is divided into three sub-domains: the upstream domain, the domain

between the blades and the downstream domain. The grids of these domains are
generated separately and connected together to a single domain.

For each of these three sub-domains, two-dimensional grid points on £ —( planes
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inside the tip region
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are generated separately when it is supposed that the grid points on each E—C
plane have the same radius. Then. two-dimensional grids are stacked radially from
blade hub to blade tip to form a three-dimensional grid.

In order to control the grid distribution to make it suitable for ('FD computa-
tion. grid clustering must be considered near boundaries or in the regions where
there are large gradients of aerodynamic variables. Many algebraic schemes, such

as those described by Hoffmann.K.A\. [85], can be introduced for this purpose.

2.4 Results and Discussion

The compressor used in this study is the Cranfield University 4-stage Low
Speed Research Compressor (LS RC') which is described in detail in Appendix B.
For this compressor. it is only necessary to generate grids for a rotor and a stator
passages because the compressor has the same geometry for every stage. The grid
generation procedure for both the boundary surface and the interior passage were
described in the previous sections.

In the rotor passage, a two-block grid system is used in order to describe the
geometry of both the main blade passage and the blade tip clearance accurately,
Figure 2.3. The pair of grids are H-type grids ending at a common surface. which
corresponds to a notional blade-to-blade surface at the blade tip radius. The first
grid fills the main passage, defined by two successive blade surfaces. their upstream
and downstream extensions, the inner annular wall and the axisymmetric blade-
to-blade surface at the blade tip radius. The second grid fills the remaining part of
the flow domain. lving between the blade tip radius and the second annulus. This
grid covers the full length of the domain and provides the convenience of imposing
a periodic boundary condition along its side surface for the CFD computation.
The two dimensional blade-to-blade view. front view and side view of the rotor
passage grid are shown in Figures 2.5 and 2.6. The £ — ¢ 2-D grid layout of the
tip domain is made identical to that at the same locations in the main passage
domain in most area. In the remaining part, the grid line at boundary in the tip
domain moves from blade suction side to blade pressure side. More grid lines are
introduced in this part and they are linearly distributed in the ¢ direction. The
difference of the grid distribution of the two grids can be seen in Figure 2.7. Grid
clustering is applied to the regions near the walls, inlet, blade leading edge and
trailing edge for both grid domains.

In the case of the stator. a single grid block, Figure 2.4, is used as there is
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no hub clearance in the shrouded stator. The generated H-type grid is similar to
that of the main grid in the rotor passage. whose blade-to-blade and side views
are shown in Figure 2.8,

In the application of using a deterministic stress model which will be described
in Chapter 6. the grids need to be extended further downstream to cover the
following blade passage. Under these circumstances, each 2-D grid is extended
downstream before stacking. keeping the same radius and following the same (
grid line direction as that of the upstream blade extension. The three-dimensional
orid for the rotor and the stator are shown in Figures 2.9 and 2.10 respectively
and the grid distribution in the £ — ¢ planes for the rotor and the stator passages
in this situation are shown in Figures 2.11 and 2.12 respectively.

This set of grid generation tool is relatively simple, but quick and effective to
generate grids of computational domains for both rotors and stators of axial flow

COmMpressors.



Chapter 3

Governing Equations

3.1 Introduction

The theoretical foundation of Computational Fluid Dynamics (CFD) in tur-

bomachinery is the universal laws of conservation of fluid dynamics :
o Conservation of Mass — Mass Continuity Equation
o Conservation of Momentum (Newton's Second Law) — Momentum Equation
o Conservation of Energy (First Law of Thermodynamics) — Energy Equation

Additionally. the relationship between fluid properties, e.g. the equation of state,
which relates pressure (p). density (p) and temperature (1), is also necessary in
order to close the system of equations. The derivation of the governing equations
of fluid dynamics is described in many textbooks (such as Versteeg et al. [180],
Anderson [10]. Hirsch [79]. etc.) and will not be discussed here.

In turbomachinery applications, it is sometimes assumed that the fluid is steady
in the relative frame of reference, incompressible and therefore the governing equa-
tions can be simplified to be suitable for numerical simulations.

Three averaging operators are applied to the Navier-Stokes equations, Adam-
czvk [2]. The first averaging operator, referred to as the ensemble averaging
operator. is introduced to eliminate the need to resolve the structure of turbulent
flows and yields the Reynolds-Averaged form of these equations. The second is the
time averaging operator which is used to average the deterministic unsteady
equations in time at every point in space. This operator removes unsteady time

scales that are of the order of the period of shaft rotation. The third operator,

35
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called the passage-to-passage averaging operator, averages out the details of
the passage-to-passage variation in the flow field.

In order to treat the fluid flow in turbomachinery with complex geometries, the
equations are transformed to a semi-(‘artesian form in a generalised non-orthogonal
coordinate syvstem.

All the above treatments aim to simplify the description of the actual physi-
cal phenomena and the system of governing equations and make major phvsical
processes to be predicted easily. At the same time, they raise closure issues which

will be discussed in the next chapter.

3.2 Transformation of Coordinate Systems

To enhance the efficiency and accuracy of numerical schemes and to simplify
the implementation of boundary conditions. a general non-orthogonal curvilinear
coordinate svstem is introduced and a transformation from a physical space to a
computational space is performed. The computational domain has a rectangular
shape which is divided into an equally spaced grid system. In order to solve the
governing equations of flow mechanics in the physical space, a transformation of

the equations from the physical space into the computational space is required,
which is described in detail by Tourlidakis [173].

3.2.1 Relationship Between Two Spaces

A relationship exists between the physical space (r,y,z) and the computa-

tional space (£.7.¢) which is as follows:
§=¢(r.y,2) (3.1)

n=n(r,y.z) (3.2)
¢ =((z,y,7) (3.3)

Consider the following differential expressions:

dé = &dre + €,dy + €,d= (3.4)

dn = n.dz + n,dy + n.dz (3.5)
d¢ = (pdz + (dy + (. d= (3.6)
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These three equations can be expressed in a matrix form as:
d¢ & &, £ dr
dnp | =1\ n: n, - dy (3.7)
N GG ) L
or
Y = AX (3.8)
Similarly. the inverse relations between the coordinates of the two spaces are ob-
tained:
v = 2(€n.C) (3.9)
y = y(€.n.¢) (3.10)
:=z(£n,0) (3.11)
and
dr T Tp o X¢ d¢é
dy | =1 Y% Yo y¢ || dn (3.12)
d= e I, I dC
or
X = AY (3.13)

Therefore, comparing the above expressions,

& & & Te T, X
Ne My M= | = | Ye Yo Yc (3.14)
Cr Gy C: <€ <n  ~¢
or
A=A"" (3.15)
or
A-A=1 (3.16)

where I is the unit matrix. From the above relations, a series of relationships

between the coordinates in the two spaces are obtained:

YnZc — Y¢ < LTy — Tyl LpY¢ — L¢Y
51;:/0 CJ C’)’ é'y_ nJ ’)C, 6:: n J n (317)

_ Yeze — Ye=¢ — Tegz¢ — T¢2¢ — LeYe — TeYc 3.18
Ne = T T 5 (3.18)
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- yg:’) - y’):t~ - '1‘7):5 - ;1'5:77 - 'I'Eyn - Inyﬁ
G = . Cy = . .= 3.19

where J is the Jacobian of the transformation defined as:

. .l'g .l‘n .I'C
(e y. )
J = X = YUsg Y, 4 ;20
d(f. "\ Q) JC JI JC ( )
~E <y ZC

The Jacobian J expresses the ratio of the volume of an element in the physical space
to the volume of the element in the computational space. Hoffmann [85] and must

obtain non-zero positive values for the transformation without any singularities.

3.2.2 Chain Rule Expressions

The chain rule of partial differentiation provides the following relations be-
tween the Cartesian coordinate system and the curvilinear coordinate system for

a general scalar variable ®:

8(1) 8<I> 0P
= C— 3.21
0P 0d 0o oo 3
= — — 4+ (,— 3.22
8¢> 8<I> 8<I>
- 3.23

In order to transform the Navier-Stokes equatlons from the Cartesian coor-
dinate syvstem to the curvilinear coordinate system. another form of chain rule

expressions is necessary. In this case, Equation (3.21) may be rearranged to give:

90 0 d a o, On: 6@})
i — (72®) + =5 ((, D) — @ + S+ 3.24

However. it can be proved by a simple expansion that:

10J_0§+ n N C

_1oJ (3.25)
Jox 0 dn  0OC

Substituting Expression (3.25) into the previous Equation (3.24) leads to the al-

ternative chain rule expression:

0
a¢

0d 10

7~ 7 |oe (JC:®) (3.26)

(JE:®) + 5 (Jn.0) +
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Similarly
0o 1 [ 0 0 ) ~ 7
o 1[0 O 9 ]
—_— = = | — ]f_q) i n. e - 398
oz J _(‘)f( 0+ o (Jn:2) + PR (JUD)_ (3.28)

The above equations represent the fully conservative form of the chain rule, Lap-
worth [105].

3.2.3 Generalised Velocity Components

The scaled velocity components 7. 1", 11" in general coordinate system are

related to the Cartesian velocity components u. v. w by the following relationship:

U= J(&u+ &+ ) (3.29)
Vo=J(meu + nye + n.w) (3.30)
W= J(CGu+ Cu+¢.w) (3.31)
or in a compact form
("= Jg‘—iuj* (i=1,2.3) (3.32)

where index j means a summation for j = 1,2, 3.
The components [". 1" and 11" have an important physical meaning, Tourlidakis
(1992). In fact. L'/J\/gg +£2 + &2, \»'/J\/ng + 72 + 12 and I'I»'/J\/Qg + (2 + (2 are

the velocities normal to the constant £. n and ( planes respectively. In other words,

[". V" and W are the contravariant velocity components scaled by the Jacobian of

the transformation.

With the definitions, the Cartesian velocity components may be expressed by

the inverse relations:

u = % (el + 2,V + W) (3.33)
1 .

v =2 (el +ynV +ydh) (3.34)
1 .

W= (zeU + 2,V 4 zV) (3.35)

or
1 0z; ..
= ——U ' =1,2,3 3.36

where 7 means a summation for j = 1.2.3.
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3.3 Governing Equations in Cartesian Coordi-

nate System

The equations that govern the flow mechanics in turbomachinery are the con-
servation equations for mass. momentum and energy. They are also called the
Navier-Stokes equations. In order to simplify the solution process, these equa-
tions are transformed to a general non-orthogonal curvilinear coordinate system
in a relative frame of reference fixed on a rotating passage or in absolute frame of
reference on stationery passage and then are averaged with averaging operators,
which will be described later in this chapter. Different forms of Navier-Stokes

equations are described as follows.

3.3.1 The Conservation Equation for Mass

The conservation of mass expresses that the rate of increase of mass of a
fluid element equals the net rate of flow mass into the fluid element. In other
words. mass cannot disappear from nor be created in a fluid system. On the other
hand. we will not consider multiphase fluids and hence no sources due to chemical
reaction will have to be introduced.

The general conservation equation then becomes:

0 L.
= | pdvy+ 4V -dS=0 3.37
T /L PV +pp (3.37)
and in a differential form: p
8—’; +7-(pV) =0 (3.38)
In the C'artesian coordinate system, it may be written as:
dp J
Ty~ (pv;)=0 3.39

where p is the fluid density, V the fluid velocity. S the surface area and V), the
volume of the element. Equations (3.37) to (3.39) are the different forms of the

unsteady. three-dimensional mass conservation or continuity equation for a com-

pressible fluid.

3.3.2 The Conservation Equation for Momentum

The Newton’s second law of motion states that the rate of change of momen-

tum of a fluid particle equals the sum of the forces exerted on the particle. These
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forces consist of external volume forces fm and internal forces fj-,),. The former
are also called bodyforces such as gravitational force, magnetic force. centrifugal
force, etc. The latter are dependent on the nature of the fluid concerned and are
applied by the external stresses on the fluid element. The external stresses consist

of normal stresses and shear stresses and are expressed by
fint — v ' H (,))40)

where II is the stress tensor. The integral form of the momentum conservation

equation is

9
E/; PV +/ (pV x V) dv, / oEndV, +/ v-IdV,  (3.41)

which leads to the differential conservation form of the momentum equation:

dat (pv) A (P‘7 X ‘7) =7 - T+ pes (3.42)

It 1s assumed that the fluid is Newtonian. and therefore the stress tensor II is
taken to be:
II=—-pl+r (3.43)

where I is the unit tensor. Here the existence of the isotropic pressure component

—pl is introduced and 7 is the viscous shear stress tensor, equals to

T=U [grad\_} + (grad\_})T] — g,u (v : V) | (3.44)
or in the most general form:
T =4 [graN + (grad\_})T] + A (v : \7) | (3.45)

where y is the dynamic viscosity of the fluid and X the second viscosity coefficient.

p and A are related by the Stokes relation:
200432 =0 (3.46)
The stress tensor component II;; can also be expressed by
II;; = —pdi; + 75 (1,7 =1.2.3) (3.47)

where §;; is the Kronecker delta function:

1, ifi=y
dij = e
0, ift#y
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and

dv;  Je vy, .
-._ - (Sl ) .\ v = 2: './8
v [01J+()1,] ,1 Jdl (1.).k=1,2.3) (3.48)

Upon substituting Equations (3.47) and (3.18) into Equation (3.42) and expanding

Equation (3.42). the momentum equation in the /—direction becomes:

0 d 0 dv;  Odv 2 duy
o Pri) T g i) = 5 {/1[(3—11+()“i-§5ij0_.r;

(}/) .
} ()l ; pf ('3°49)

3.3.3 The Conservation Equation for Energy

The energy equation is derived from the first law of thermodynamics which
states that the rate of change of energy of a fluid particle is equal to the rate of
heat adding to the fluid particle plus the rate of work done on the particle. In a
fluid element the total energy to be considered in the conservation equation is the
sum of its internal energy e and its kinetic energy per unit mass V'2/2. Therefore,

the total energy per unit mass £ may be expressed as:
"'2

The energy conservation equation in an integral form is:

= / pEdV, + ]{ pEV - dS) =

o (3.51)
dv, }{ m-Vv)dsS
8t/QdV fqu+/wf /(- V)
and in a differential form is:
o : ’ _
~(pE)+ v (pVE) = -vV-qt+tws+v-(II-V) (3.52)

ot ot
The first term on the left-hand side of Equation (3.52) represents the rate of in-

crease of total energy per unit volume in the control volume while the second
term represents the rate of total energy lost through convection (per unit volume)
through the control volume surface. The first term on the right-hand side of the
Equation (3.52) is the rate of heat produced by external sources (i.e. radiation,
chemical reactions. etc.) while the second term is the rate of heat lost by con-
duction (per unit volume) through the control volume surface. Fourier’s law for

heat transfer by conduction will be assumed so that the heat transfer q can be

expressed as

=—kyT (3.53)



Chapter 3. Governing Equations 43

where k is the thermal conductivity coefficient and 7' is the absolute temperature.
The third term wy on the right-hand side of Equation (3.52) is the work done on

the control volume (per unit volume) by the body forces
u‘f = /)fekl‘[ . V (3.54)

while the fourth term represents the work done on the control volume (per unit
volume) by the surface forces. An extra relation is often used to determine the

coefficient of thermal conductivity & once p is known:

b= “Ij” (3.55)

where P, i1s the Prandtl number. p the viscosity and ¢, the specific heat at constant
pressure.

Substituting Equations (3.43). (3.53) and (3.51) into Equation (3.52) produces:
: L 0Q T .
S PE)+ 7 (0VE) = S2 4 G (kg T) 4 plle V47 (1) (3.56)
Clarifying the term /- (H\_}) in Equation (3.52) and introducing the enthalpy

h of the fluid leads to the following alternative expression in a differential form:

d(pH) L\ 0Q .o -
TV (pVH) = StV k)t ple Vb o247 (r-V) (357)
where the stagnation. or total. enthalpy H is introduced:
‘/,'2 ‘2
H:e+3+—.—=h+_—=E+B (3.58)
p 2 2 p

3.3.4 Equation of State

In aerodynamics. it is generally reasonable to assume that the fluid is a perfect
gas (which assumes that intermolecular forces are negligible). For a perfect gas,

the equation of state is

p = pRT (3.59)

where R is the specific gas constant. Additionally for a perfect gas the following

relationships are defined:

¢=C,T (3.60)
h=C,T (3.61)
c, = & (3.62)
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X )

R

¢, = 77_ 1 (3.63)
C

=2 (3.64)

where C), is the specific heat at constant volume, ', is the specific heat at constant

pressure and ~ is the ratio of specific heats.
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3.4 Governing Equations in Rotating Frame of

Reference

In turbomachinery applications we have to deal with rotating systems. It is
necessary to be able to describe the flow behaviour relative to a rotating frame
of reference. Figure 3.1 represents a schematic relation between a stationary and
a rotating syvstem. It 1s assumed that the coordinates : and Z are aligned (so
R = 0) and the noving system (. y.z) is rotating steadily in the absolute frame
of reference (X. Y. Z) with a constant angular velocity € around the axis = (or Z).
Figure 3.1. Defining r as the position vector of a particle relative to the rotating
frame of reference and X as the position vector of the particle relative to the

absolute frame of reference. We have

X=r (3.65)
Defining W as the velocity vector of the particle relative to the rotating system,
V as the velocity vector of the particle relative to the absolute frame of reference

and ((2 X T') as the entrainment velocity . the composition law holds
V=W4+QxT (3.66)

e Continuity Equation
Since the entrainment velocity does not contribute to the mass balance. the
continuity equation remains the same form and can be written in the relative

svstem as: p
a—’t) 47 (pW) =0 (3.67)

¢ Momentum Equation

The acceleration of the particle relative to the absolute frame of reference is

d -
_ LA e 3.68
7= o T (3.68)

Eventually
a=a +20xW+Qx (2 xT) (3.69)

where & is the acceleration of the particle relative to the rotating frame of
reference. 2§ x W is the Coriolis acceleration due to the motion of the particle

within the moving frame and Q x (ﬁ x T) is the centrifugal acceleration due

to rotation of the moving frame of reference.
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Then the differential form of the conservation law for momentum in the

relative frame of reference can be derived according to Newton’s Second Law

of motion:
a X X g —
5t PW) 47 (oW x W) = =7 p+ 77+ pf (3.70)

The extra two external forces. the Coriolis and centrifugal forces acting on
a fluid particle in the rotating system. play a very important role in rotat-
ing flows. especially when the velocity vector W has large components in
the direction perpendicular to € and other external forces, such as gravity,

magnetic force. are neglected. The external forces can then be expressed by

— —

foor =fc +£.= =22 x W) — @ x (@ x F) (3.71)

and their components are
fe= Q% 4200 (3.72)
fy = Q% — 2Qu (3.73)

f.=0 (3.74)

e Energy Equation
The energy conservation equation in a relative system with a steady rotation
is obtained by adding the work of the centrifugal force, since the Coriolis

forces do not contribute to the energy balance of the work.

The differential conservative form of the equation (Hirsch [79]) is

W2 V2 . W2 V2
= (6+T——)+V' PW(“ 2 2 )| ”

ot 2

EIC%+V'(kVT)+pFext'W'*'V'(T'W)

(3.75)

3.5 Averaged Forms of Navier-Stokes Equations

The flow field in multistage turbomachinery is extremely complex in terms
of vast range of time and length scales, which make the direct numerical simula-
tion practically impossible. The original form of the governing equations which
describes the flow mechanics in turbomachinery is also too complicated for prac-
tical application. In order to simplify the equation system based on the problems

concerned, it is assumed that the flow is incompressible and adiabatic.
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One of the practical ways of simplifving the governing equations is to use some
kind of approximately averaged set of equations which can be obtained with the
following three averaging operators, Adamczyk [2]. The first averaging operator.
refered to as the ensemble averaging or Reynolds averaging, is introduced
to eliminate the need to resolve the structure of turbulent flows and yields the
Reynolds-averaged form of these equations. The second is the time-averaging
operator which is used to average the deterministic unsteady equations in time at
every point in space. This operator removes unsteady time scales that are of the
order of the period of shaft rotation. The third operator. called the passage-to-

passage averaging operator. averages out the details of the passage-to-passage

variation in the flow field.

3.5.1 Original Form of Navier-Stokes Equations

For the problem concerned in the simulation of internal flows in multistage
axial flow compressors. the governing equations in general form can be simplified
by using a relative frame of reference for rotor blade rows and an absolute frame of
reference for stator blade rows. It is supposed that the flows are incompressible and
adiabatic for low speed, low pressure ratio axial flow compressors, so the density
p is constant and the energy equation is not applied in the application.

Under these circumstances, the continuity and the momentum equations in
the Cartesian coordinate system are rewritten in a relative frame of reference as

follows:

¢ Continuity Equation

dp | O(pv;)
ot o,

where j is a summation for 7 =1,2,3.

~0 (3.76)

¢ .—Momentum Equation

9 9 _ op, 0 dv; dvi} 2 (5%)] -
5 (PUi) + oz, (po300) = =5 - * 50 [“ (&m T oz,) " 3"\ "oz, ol
(3.77)

where

fi = ‘—25ijkﬂj U — (Qn;l'n) Qi + (Qmﬂm) Z; (378)
¢ij% 1s the alternating tensor, which is equal to 1 if 17k is cyclic (123,231, 312),
is —1 if 17k is anti-cyclic (321,213,132) and is 0 otherwise; i= 1,2, 3. corre-
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sponding to .y, = directions; j, k. m and n are summations for each index

varving from 1 to 3.

e General Scalar Equation

The continuity and momentum equations all can be expressed in a general

form of scalar equation:

8 0 0 8(1)
®) + —(pr;®) = y -

where @ is a scalar quantity, I'g is a diffusion coefficient and S is a source
term and has specific meanings for different ®. It can also be expressed by

the following form:
[ nsteady N ("onvection
term terms B

3.5.2 Ensemble-Averaging Procedure

terms terms

Dif fusion J N [ Source }

Turbulent fluid motion is defined as an irregular condition of flow in which
the various quantities show a random variation with time and space coordinates,
so that statistically distinct average values can be discerned, Hinze [78].

If the value of a variable ® can be considered as the ensembled mean value ®

plus a fluctuating component about the average @', we get
®=7+ 9 (3.80)
where the overbar denotes the average value, then by definition
% =0 (3.81)

The variable ® is the function of time and space. If it is averaged with time at a

certain location then:
+T

®,(19) = llm ﬁ O (2o, t)dt (3.82)

In the case of a homogeneous turbulence flow field, averaging with respect to space

/ 0 to)d (3.83)

can be considered:

(I)( X—)oo 2N
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If the flow field is neither steady nor homogeneous, we then speak of an ensemble
mean value. In other words, an average is taken over a large number of experiments
that have the same initial and boundary conditions.

N
(I)n(-l'oa to)
n=1

®(.ro,to) = N (3.84)
A

where .\ is the sample number. The expression (3.84) is suitable for incompress-

ible turbulent flows. For the analysis of a compressible turbulent flow, it is recom-
mended to use a density-weighted average.

Actually. turbulent flow in reality is neither stationary nor homogeneous. So
in the application of turbomachinery calculations ensemble averaging is used as
the first averaging operator.

When averaging procedures are carried out on products of quantities, the over-
bars have the following properties:

Let a =a+a and b =5+ b. Thus

'=0 b =10 (3.85)
a=a+ad (3.86)

ab = ab (3.87)

ab = ab=0 (3.88)
ab=(a+a)(b+¥)=ab+aV (3.89)
gg = % (3.90)

where a. b and r are independent variables. These properties are often taken for
granted in deriving the following averaged Navier-Stokes equations.
When the first averaging operator is applied on the Navier-Stokes equations,

the derived ensemble averaged equations are as follows:

¢ Continuity Equation
P () =0 (3.91)

e /—Momentum Equation

) 9, _ Jp d (— =\, =
D v O mmy P L O (r 5o + B 3.92
ot (Po:) + ox; (P0i0;) dr; i dr;j (T i Py UJ) Pf ( )
where o . E ) 25_8_02
Tig = K Jz; + dr; 3 Y0z
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o General Scalar Equation
_ 9] o®  __\ _
= (p®) + — (pr;@) = — [ Tog—— — p0'D’ S 3.9:
dt (P ) 0.1‘1- (/) I ) ()IJ (I)().I'j PLi T ¢ (393)
The new turbulent quantities. —pviv) produced from the ensemble averaging
process, are Reynolds stresses due to the transport of momentum by turbulent
fluctuation. In order to close the equation system, an approximate turbulence
modelling is required. which will be discussed in Cthapter 4.
In some cases, the Equations (3.91) to (3.93) are simplified by ignoring the
unsteady terms on the left-hand side of the equations when it is assumed that
the unsteady. deterministic flow produced by neighbouring blade rows is not taken

into account.

3.5.3 Time-Averaging Procedure

The second operator for averaging in the turbomachinery flow field is the time-
averaging operator. This operator is used to average the deterministic unsteady
equations in time at every point in space and removes the periodic unsteadiness
in the flow field. The definition of this averaging operator is given by the integral:

1 a+T _

D= — B dt 3.94
7). (3.94)

So the ensemble-averaged mean value ® can be considered as the time-averaged

value plus a primary time resolved periodic fluctuation ®:

d=0+

>

(3.95)

With this definition. the time-averaged unsteady term in ensemble averaged gov-

erning equations in relative frame of reference becomes zero:

o(p®) _ 1 T 1ome) | (3.96)
ot T Ji, ot

Introducing the decomposition Equations (3.94) to (3.96) into Equations (3.91)
to (3.93). upon time averaging, results in the following time-averaged form of the

Navier-Stokes equations in the relative frame of reference:

e Continuity Equation

=—(pv;) =0 (3.97)
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o /—Nomentum Equation

0 ——.  Op J /—
d‘lJ(P v )—_Tu+51_'j<rij

where

o General Scalar Equation

0 = d Rr) — _—r
d—‘(P i®) = d—(rcbalj pu;®’ — o, )-I—Sq, (3.99)

We can sce from Equations (3.97) to (3.99) that the unsteady terms on the
left-hand side of the equations have disappeared and instead extra terms, the
deterministic unsteady terms, appear on the right-hand side of Equations (3.98)
and (3.99). The importance of this change means that a complex unsteady problem
now 1s converted into a relatively simple steady state problem by introducing

deterministic unsteady terms into the governing equations.

3.5.4 Passage-to-Passage Averaging Procedure

For a multistage machine in which the number of blades varies from row to
row. the steady flow will not. in general. be identical from blade passage to blade
passage. In this case. a third averaging operator is introduced and the passage-to-
passage average of a variable will in general be different for each blade row. The
decomposition of the time averaged variableAg into a passage-to-passage averaged

component ® and an aperiodic component ® is as follows:

Sl
Il
gl
()

+ (3.100)

When the above decomposition is introduced into Equations (3.97) to (3.99), the

resultant continuity. momentum and scalar equations become:

¢ Continuity Equation

585 (p7,) =0 (3.101)
J

¢ .—Momentum Equation

rw

_ o 0 (= — == ==\ . _
8?:: (_U ) =—- Lo (Tu — pujv; — pUiv; — Pvz‘vj) +pfi  (3.102)
J

dr; 81']
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Jo.dT; 2. doy
- — _51. N
: (().z' SO T 3% 0.”.)

o General Scalar Equation

where

Sl
Il

(91'- (W]¢) dl (I‘ dl — /—)‘Ul/.(l)/_Tl_(I) —WZQ) e
o J J

We can see from Equations (3.102) to (3.103) that extra aperiodic unsteady

Al

'® (3.103)

terms appear on the right-hand side of the equations. In order to model the
aperiodic flow features. further techniques need to be investigated to close the

equation system. which will not be discussed in this study.

3.6 Governing Equations in General Coordinate

System

In general. the Navier-Stokes equations consist of four basic terms: the un-
steady term. the convection terms. the diffusion terms and the source terms and
their general form of Equation (3.79) is rewritten here for convenience.

d 0 0 (Fq> oo

— (pv;®) = Selr.y, 2 3.104
% (p¢)+a$j (pv;®) = P 01])+ o(x,y,z2) ( )

When the governing equations are transformed into a general coordinate system,
the unsteady term keeps the same form and the source terms can be transformed
with chain rules described in Section 3.2. The transformation of the convection
terms and the diffusion terms is more complicated and they are derived in more
detail in the following two sections. Subsequently, the governing equations in a

general coordinate system are derived.

3.6.1 Convection Terms

The convection terms in Equation (3.104) may be expressed as:

d(pr;P) 0 J 7,
_ —(pr® o 3.105
on 5 (Pu®) + 5 (pe®) + o (pwd) (3-105)
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Using the conservative form of chain rule, the expression for the convection terms

in a general coordinate svstem is obtained as:

0 1 0
5 —(pv;®) = 5 )C [Jp®(&u 4 €ye + Ew)] +
J
1
J() [Jpq)(m1 w40 =+ np.w)] + (3.106)
1 d
Jd [Jp®(Cru + Gyt + )]

or 1t can be expressed in a compact form as:

0 1 0

—(pv;® [ ) = 1.2.: 3.107
al_j(pu) Jdgj(p ) (1 =1.2,3) (3.107)
where p
lJ—Jivk 5. k=1,2.3
dl‘A

3.6.2 Diffusion Terms

The diffusion terms in Equation (3.104) may be expressed as:

Jd od 0 0P 0 od 0 8L, ,
9, (Fa@) or (Fa—z) Dy (Fa—y) 9- (Fz) (3.108)

In a similar wayv. the conservative form of chain rule are used in the diffusion terms

and gives:
8 8<I) 1 0 <I> 8<I>
1 0 8@ ao 0P
—_ il - 4+ p.— 3.109
Jon | JT e +77yay+'7~a:) ( )
1 0 BCD 8@ 8@

If the C'artesian derivatives of ® are replaced by non conservative chain rule, the

resultant diffusion terms may be written as:

o (.00 o 96 90 .00\
- _ JF 11 127~ 137~
(Faxj) Joe |7 \9 29 T 5]
19 ,, 90 228(1) 200\
Jon |7\ 9 T, T ).
19 L, 00 320<1> ")
Jac "M\ % T, 975

dx;
+ (3.110)
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or in a compact form:

J 0P 1 0 Ob
11 — Ik g, _ 9 - ’
a;l.'j ( al'j) J df_} (JF(I dél\) (‘]-, A 17 27 3) (3.111)

Jk

where the metric components ¢’% are defined as:

R S N N (3.112)
g% =z +n, +n? (3.113)
g7 =G+ G+ (3.114)

9"t =g = + Eymy + £y (3.115)
97 = ¢ = &G+ E¢ + E:C (3.116)
9% = % = G + MGy 4 n:C- (3.117)

3.6.3 Governing Equations in General Coordinate System

In a more general case, the Navier-Stokes equations in Cartesian coordinate
svstem (3.101) to (3.103) can be transfered to those in a general coordinate system
by using the relations (3.107) and (3.111) and the chain rules described in Section

3.2. Thev may be expressed in the following form:

¢ Continuity Equation

= (JEV ) =0 (3.118)

e .—Momentum Equation

1 0 =i\ 1dJ Qg_ﬁ)
73 (]”V ) - Ja@-( O,

o General Scalar Equation
With the transformation relations mentioned above, the transformed general

transport equation in the curvilinear coordinate system may be written as:

1 0 == 19 ]ka% |
J O¢; (PV ) ~ J Ot (JF<I> 8&) + Se(€,7, ) (3.120)
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where S¢(€.7,(¢) are the transformed form of the source terms S¢(z,y, 2).

Expression (3.120) may also be expressed as:
1 0 (==
T 9€; (” Y q’)
= = 3.121)
1o 0% 19 08 (
JTeg"? — S. ——

where the non-orthogonal “cross diffusion” terms have been lumped into the
source terms. This transformation allows fluid dynamics problems involving

complex geometries to be handled in a general and precise manner.



Chapter 4

Closure Modelling Issues

4.1 Introduction

The averaged forms of governing equations derived in Chapter 3 can not be
solved directly without further information. In order to close the equation system
different numerical models are introduced to provide sufficient information for the
total mixing stresses which consist of the Reynolds stresses. stresses generated by
an unsteady velocity field linked to the rotational speed and stresses due to the

steady. aperiodic velocity field:
Rij = pol] +pr; + oo, (1,5 = 1,2,3) (4.1)

Their evaluation, along with the application of overlapped solution domains and
mixing planes and the simulation of bodyforce and blade blockage effect, consti-
tutes the closure problems for the equation system in a multistage environment.

In this chapter. different steady state simulation approaches are discussed.
When only the turbulent fluctuation is taken into account by ignoring the deter-
ministic and the aperiodic unsteady fluctuations, the flow is assumed to be steady
in a relative frame of reference and mixing plane models are introduced to pass
information between blade rows to make the multistage simulation of axial flow
compressors practicable.

When deterministic unsteady fluctuation is accounted, a deterministic stress
model is applied based on the idea of Adamczyk [2]. This approach is more rigorous
and also more complicated.

A more rigorous description of the flow in multistage axial flow compressors
with a steady state approach should account for the aperiodic unsteady flow. The

aperiodic unsteady effect is ignored in the current study because it is much smaller

56
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than other unsteady effects and therefore this simplification will not produce ob-
vious error to the predictions.

In addition. repeating stage models are developed in this study and described
afterwards.  lThese models effectively simplify the global aerodynamic boundary
conditions required for the flow simulation of rear stages of multistage axial flow

COMPressors.

4.2 Turbulence Modelling

The determination of the Reynolds stress term, —puv;v;. is carried out through
turbulence models.

The most commonly used turbulence models can be classified in terms of the

number of differential equations solved in addition to the mean flow Navier-Stokes

equations. Nallasamy [12¥].

1. Zero equation models

(8]

. One equation models
3. Two equation models
4. Revnolds stress equation models

Most of the models. (1) to (3), use the Boussinesq eddy viscosity model whose
concept is based on the assumption that the Reynolds stresses follow the same
type of stress-strain relation as in the laminar flow:
Ik

Y al‘k

Jv; OFJ' 2 5

—priv; = M(ﬁ 0. 3 pko;; (4.2)
j Ly

Sa—

l=—

k — ;Ukl‘k
where 7 is a turbulent eddy viscosity coefficient and & the turbulent kinetic energy.
The advantage of this assumption is that the turbulent flow equations have the

same form as the laminar flow equations with the molecular viscosity u replaced
by an effective viscosity

Heff = 1+ pr

P4

Thus, the effects of turbulence are completely simulated by the turbulent viscosity

and the system of ensemble averaged Navier-Stokes equations becomes:
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o Continuity Equation

2 () =0
e :—Momentum Equation
) (5t oP N 9, _ 44
Pt = — = A iy l
A J Ax; O;I'jT" +7 (4.4)
where p p )
U v, 2 vy
T = e —(S,'
p= et llT)(@ ;0 Ox; 3 ]()lk)

_ 2
P =7+ =%k
p+3p

This is the easiest closure approach to the ensemble averaged Navier-Stokes
equations. \arious turbulence models in this group are distinguished from one
another by the wayv the quantities & and p; are estimated. The models most

frequently used in turbomachinery applications are described below in detail.

4.2.1 Zero Equation Models

Zero equation models are mostly based on the eddy viscosity concept. The
first turbulence model proposed is the Prandtl’s mixing length hypothesis, Prandtl
[142]. which employs the eddy viscosity concept to relate the turbulent transport
terms to the local gradient of mean flow quantities. With this model. the distri-

bution of the eddy viscosity is calculated with the mean velocity gradient:

or (4.5)

r = CLpl?
/'LI ﬂpm ay

where (', is a constant. The mixing length [,, whose distribution over the flow
field has to be given with the aid of empirical information. The main drawback
of this model is the difficulty of the evaluation of [,, for complex flows. such as
recirculating flows and 3-D flows. The incorporation of the effects of curvature,
buoyancy or rotation in the model is entirely empirical and the transport and
history effects of turbulence are not accounted.

The most popular algebraic turbulence model in turbomachinery applications is
the Baldwin-Lomax model, Baldwin and Lomax [11]. Application of the Baldwin-
Lomax model to turbomachinery flow problems were reported and summarized by
Hirsch [80] and Dawes [40]. This model split the boundary layer into an inner
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region and an outer region. and the mixing length /,, and the eddy viscosity u, are
calculated in each region with corresponding empirical relations.

Although the models are simple and computationally economical, theoretical
and practical difficultics appear when implementing these models in the flow simu-
lations where corner flows exist. It can be considered that algebraic models provide

acceptable accuracy for predictions of well-behaved. attached shear lavers.

4.2.2 One Equation Models

In one equation turbulence models. the turbulent kinetic energy & is the solu-
tion of an equation which can be derived from the Navier-Stokes equations. The
earliest One-Equation Model was described by Prandtl [143]. Emmons [53] and

Glushko [63] and may be expressed as follows:

Ok Ok O . K L0 s b Ok
RS U;—— = /—i — — —_ )
P Bt Pt 0.1‘1- d &1']- Dp [ Brj a O Brj

(1.6)
where 7; is the Reynolds stress tensor and p7 the eddy viscosity modelled by
pr = Cupk=l (4.7)

Before the model can be used in applications, the length scale, {. and the closure
coefficients o, and C'p must be specified.

Bradshaw. Ferriss and Atwell [21] formulated a one equation model that avoids
introducing a gradient-diffusion approximation. The model’s skin friction for
boundary lavers in adverse pressure gradient was closest of the various modes
tested in the 1968 Conference to measured values. Wilcox [188].

One equation models were also formulated that based on somthing like the
kinetic eddy viscosity other than the turbulence kinetic energy, such as a model
developed by Nee and Kovasznay [129]. In early 1990’s, Baldwin and Barth [12]
and Spalart and Allmaras [163] derived more elaborate model equations for the
eddy viscosity. The Baldwin-Barth model includes seven closure coeflicients, two
empirical function and a function describing the turbulence length scale. The
Spalart-Allmaras model is also written in terms of the eddy viscosity and includes
eight closure coefficients and three functions.

The early one equation model only performs slightly better than the zero equa-
tion models. While the improved models by Baldwin and Barth [12] and Spalart
and Allmaras [163] show better predictive capability and have achieved closer

agreement with measurement than is possible with zero equation models.
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4.2.3 Two Equation Models

The two equation models are widely used in engineering applications. The
first attemp to apply the two-equation A — € model to turbomachinery flows was
pioneered by llah [71]. Application of the & — ¢ model to various turbomachinery
flows. such as subsonic turbine blade and a transonic compressor. were performed
by Matuso [121]. and Jennions and Turner [94]. The idea of the models is to
introduce another differential equation for the calculation of the turbulence length
scale in addition to the transport equation for the turbulent kinetic energy.

The length scale equation can. in principle. be derived from the Navier-Stokes
equations. Basically. three kinds of two equation models were proposed: &k — kl,
k—. and k— ¢ models, Launder and Spalding [106]. Here [ is a length representing
the macroscale of turbulence which may be defined in terms of k. ¢ and a constant
Cp through

| = Cphi/e (4.8)

where ¢ is the dissipation rate of the turbulence kinetic energy defined as

o Ovp O]
- P al‘j a‘l?j

(4.9)

€

~ is a quantity having the dimension of (time)~2 and can be defined in terms of
k. e and C'p:
w = €e2/(Cpk)? (1.10)

The above definitions imply that:

dkl) _ 5dk_ de (4.11)
kl 2 k €

do _ _ydk de (4.12)
o €

With these equations, the three models are closely related to one another and it
is possible to transform one pair of equations into another. However, the k — ¢
model becomes the most popular because of the advantage that the e-equation
requires no extra terms near walls. In addition, ¢ itself appears in the k-equation
and the e-equation requires no secondary source term. Hence, only the k—¢ model
is described in detail here.

The standard k — € model. Launder and Spalding [106]. employs eddy viscosity
and relates it to k and e:

k2
pr = Cup— (4.13)
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The two model equations at high Revnolds numbers. one for turbulent kinetic

energy and the other for its dissipation rate are given below:

e Kinetic energy equation

dpr;k)y O pr Ok v |
O.z'j B 0.1'J~( Ty ().I'j) + Gk - pe + Gc (414)

o Kinetic energy dissipation rate equation

d(prie) O ur Oe € |
or, = o0 o o) T EOGk = Capet G (115)

where G is the generation rate of turbulence obtained by

JT; 07‘—]' Jv;
— + )
dx;  dx;’ dx;

Gk = ,UT( (4'1.16)

The constants in these equations have been found to take the following values:
C, = 0.09. 'y =1.14. ¢, =1.92, or = 1.0, oo =13

However. these constants need to be changed in order to accommodate effects such

as curvature. low Reynolds number. near wall. etc.

4.2.4 Other Models

The two equation models which have been used extensively have their own
limitations. The major limitation is the assumption of isotropic eddy viscosity.
The same value of u7 are taken for different ﬁm terms. In order to account for
the different development of the individual stresses and additional effects, such as
curvature and rotation. more advanced turbulence models such as Reynolds Stress
Iransport Equation models (RSTE) and the Large Eddy Simulation (LES) have
been introduced. One of the successful Reynolds stress models is due to Rodi
[149]. who provided an algebraic equation for the Reynolds stresses. The algebraic
Reynolds stress model in conjection with the A — e turbulence model captured
rotation and curvature effects, Lakshminarayana [104]. More recently, a turbulent
potential model was developed by Tsuei et al. [176] based on the ealier work of
Perot et al.[137] and Perot [138]. and was implemented into a turbomachinery CFD
solver and indicated more benefits than the two widely used turbulence models,
the Baldwin-Lomax model and the two equation k — € model, in their calculations.

Unfortunately, the advanced turbulence models still lack universal validity and
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are in the academic development stage. They suffer from many limitations and
lead to a significant increasc in computer time. Even so. their application for
turbomachinery flows might provide more reliable turbulence modelling in the
future. Hirsch [R0].

4.3 Wall Function

In a turbulent flow, the flow close to a wall is dominated by viscous effects and
the flow properties in boundary lavers change steeply. This makes the treatment of
wall boundaries more complicated. A detailed description of turbulent boundary
lavers would require prohibitively large number of grid points. Normally, the ~wall
function™ 1z emploved to represent the effect of the wall boundaries and link the
solution in the interior of the domain to the near wall region and avoid the use of
a fine grid.

According to Versteeg et al. [180] and Tourlidakis [173], a turbulent boundary
laver adjacent to a solid surface is composed of two regions: the inner region which
occupies 10% to 20%( of the total thickness of the wall layer and the outer region
or law-of-the-wake layer occupying the rest of the wall layer which is an inertia-
dominated core flow far from the wall. Normally. only the flow behaviour in the
inner region is simulated with the “wall function” approach as the control volumes
closest to the wall are chosen to be within that region. In the inner region, it is
supposed that the mean flow velocity ', only depends on the distance from the

wall y. fluid density p, viscosity g and the wall shear stress 7,:

Uy = fly.poitema) (4.17)

Dimensional analysis show that

ut = -2 = f(y*) (4.18)

where

yt = Y (4.19)
v
and u, is called friction velocity and defined as

W = (4.20)
p

Expression (4.18) is called the law of the wall.

Within the inner region there are three zones (Figure 4.1):
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Figure 1.1: Typical turbulent boundary-layer velocity profile [162]

e The Linear Sub-layer

At the solid surface the fluid is stationary. In the absence of a turbulent
shear stress effect the fluid closest to the wall is dominated by viscous shear.
This laver is in practice extremely thin (y* < 3) and we may assume that
the shear stress is approximately constant and equal to the wall shear stress
7w throughout the layer. The following relationship is used to describe the
layer:

ut = y* (4.21)

e Log-Law Layer
This region (50 < y* < 500) is fully turbulent and dominated by turbulent
(Reynolds) stresses. A functional relationship between u* and yT is used to

describe the layer:
1
ut = ~In(Ey") (4.22)
K

where & is Von Karman’s constant and equals to 0.41, E is a function of the

wall roughness and found to be 9.0 for smooth walls.
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e The buffer Layer
This region exists between the linear sub-layer and the Log-law layer, where
viscous and turbulent stresses ave of similar magnitude. There is a smooth
change of the velocity profile in the region. In an engineering application.
this layer is ignored and a transition point is found to be at yt ~ 11.5 to

join the linear sub-layver and the Log-law laver.

So in the near wall region. the How is taken to be laminar if y* < 11.5 and the
wall shear stress 1s assumed to be entirely viscous in origin. If y* > 11.5 the flow
is turbulent and the wall function is used. The relationship between ut and y7 is

re-written as follows

-

‘lt+ =

yt if yt < 11.5
(4.23)

In(Ey*) if y* > 11.:

Ut

1
K
The wall force 1s extended into the discretised momentum equations as sources.

The detailed description is stated below.

e Laminar Flow/Linear Sub-layer

In the near wall region when y* < 11.5 the near wall flow is taken to be

laminar. The definition of the friction velocity u, yields
Tw = pUu’ (4.24)
With the definition of u™ (4.18) and y* (4.19) and Expression (4.21) we get

Y

The shear force F is now given by

U
Fy = —TwAcen = —‘/-l_pflcell (426)
Yy

where A, is the wall surface area of the control volume.

e Turbulent Flow
If the value of y* is greater than 11.5 the flow is considered to be turbulent.

In the & — ¢ model. it is assumed that the generation of turbulence kinetic
energy k is in equilibrium with the dissipation of turbulence kinetic energy

¢ and the expression of the friction velocity is given through the following

u? = ky/C, (4.27)

expression:
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Then. substituting the equation (-1.27) and (-1.20) into (4.18) and (4.19) vields

1
R
+ plpCRk?

u . (4.28)
C%\/Z"l
yt = p_‘N_J (4.29)

Substituting Equations (4.29), (-1.22). (1.18). (4.27) into (4.20), we get

CiVEPU
o = — “L‘F” P (4.30)
In(ECiVkpy/p)
The shear force F; is now expressed by
C Akl
Fo=—Tydeen = —— ‘fi‘rp P A (4.31)
In(EC#Vkpy/y)

4.4 Mixing Plane Models

4.4.1 Introduction

The mixing plane model is one of the practical ways of predicting flows in mul-
tistage axial flow compressors. The idea of this approach is to simulate multistage
turbomachinery flows with the ensemble averaged Navier-Stokes equations by tak-
ing 1nto account only turbulent fluctuations. Other unsteady effects, the determin-
istic and aperiodic unsteady fluctuations, are ignored. It is also assumed that the
flow is steady in the relative frame of reference in rotors and in the absolute frame
of reference in stators, and therefore the unsteady terms in Navier-Stokes equations
disappear. Separate flow simulations can be carried out in computational domains
for each blade passage by appropriately setting boundary conditions. Hence. diffi-
culties arise on how to pass information between the two frames of reference with
relative rotation and maintain consistency of variables at interfaces.

The first mixing plane model for multi-blade row calculation was introduced by
Denton and Singh [50] where aerodynamic information is circumferentially area av-
eraged and passed across a mixing plane to the next blade row. The disadvantage
of this model is that the averaging process loses a lot of information and causes
errors to the predictions. In order to overcome the above problem, a circumferen-
tially non-uniform mixing plane model was proposed by Denton [47] where both

radial and circumferential variations exist on both sides of the mixing planes.
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It is obvious that the circumferentially non-uniform mixing plane model is
better than the circumferentially uniform mixing plane model. However in some
situations when the circumrefentially non-uniform mixing plane model is difficult
to apply. such as the transformation of velocity field, the uniform mixing plane
model is an effective alternative. Because of this both models are used in the

calculations.

4.4.2 Uniform Mixing Plane Model

In this model. a mixing plane is chosen to be located at an axial position ap-
proximately halfway between two neighbouring blade rows. Since the flow through
two blade rows in relative rotation is inevitably unsteady. the unsteady effects of
the real flow are removed through circumferential averaging so the upstream row
sees a circumferentially uniform downstream boundary condition and the down-
stream row sees a circumferentially uniform upstream flow approaching it. This
averaging process must, as a minimum, ensure conservation of the mass flow rate,
Dawes [41]. It is important to note that although the circumferential information
1s smeared. the radial variation exists.

The circumferential averaging process may be carried out with area averaging

by
— [ ®rdrdd _
o, = —-—— 4.32
[ rdrdf (4.32)
or mass averaging by
5 — J ®pwrdrdd (4.33)
[ pwrdrdf

where ® is a flow parameter, p the density. w the axial velocity. r the radius and
0 the tangential angle of a control volume, Figure 4.2.

This averaging process is not a physically realistic process unless the blade
rows are widely spaced, and can lead to unrealistic predictions of the flow in the
regions close to the leading and trailing edges. In other words. the circumferentially
uniform flow may be forced to exist too close to the leading edge of the downstream
blade row and not allow the flow to adjust circumferentially to the presence of the
blade as it would in reality. As a result the leading edge loading on the blade
row may be wrong and may even be physically unrealistic. The magnitude of this
problem depends on the leading edge loading and thickness and on how close the
leading edge is to the mixing plane. A similar problem occurs at the trailing edge

of the blade row upstream of the downstream mixing plane, but for subsonic exit
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Figure 4.2: Circumferential averaging element

flows the problem is not so serious. In this study. the uniform mixing plane model

is used to pass velocity profiles across mixing planes.

4.4.3 Non-Uniform Mixing Plane Model

In order to relieve the problem mentioned above, a circumferentially non-
uniform mixing plane model is introduced, Denton [47]. The method may be
briefly described as obtaining the circumferential variation of fluxes at the mixing
plane by extrapolation from the upstream and downstream planes while adjusting
the level of the fluxes to satisfy overall conservation. Thus the fluxes “seen” by
the blade rows are circumferentially non-uniform at the mixing plane with differ-
ent circumnferential variations. but the same average value, being “seen” by the

upstream and downstream blade rows.

In more detail, the circumferential averaging is first applied to the parameters
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to be transtered across the mixing plane with Equation (-1.32) or (4.33). In the
process. all the cells at the same spanwise location immediately upstream of the
mixing plane are treated as a single large element and the fluxes are conserved
between the non-uniform flow entering its upstream face and the uniform flow
leaving its downstream face, which is on the mixing plane. However, the fluxes
crossing the mixing plane are not taken to be circumferentially uniform. Instead,
the fluxes crossing the face of an element immediately upstream of the mixing plane
are obtained by multiplyving the fluxes through the upstream face by the ratio of
the circumferentially averaged fluxes at the mixing plane to the circumferentially

averaged fluxes at the upstream plane. i.e.,

¢kmix
katz—l (6 ) (434)

kmz’.’r-—l

Amer

Similar treatment is applied to the elements immediately downstream of the
mixing plane. At a certain spanwise position, the fluxes entering the face of the
element immediately downstream of the mixing plane are obtained by multiply-
ing the fluxes through its downstream plane by the ratio of the circumferentially
averaged flux at the mixing plane to the circumferentially averaged fluxes at the

downstream plane.

b
¢kmi_‘r - kazr+l (6 kmlr ) (4'35)

krmiz+1

The idea and the symbols are schematically described in Figure 4.3. The flux
variation is obtained at every spanwise location and is equivalent to obtaining the
circumferential variation in flux from upstream of the propagating direction of the
parameters but adjusting their magnitude to satisfy the overall conservation.

The described non-uniform mixing plane model allows the flow entering and
leaving the mixing plane to vary circumferentially and is a great improvement
compared with the uniform mixing plane model when the mixing plane is close
to the leading or trailing edge. In this study, the circumferentially non-uniform
mixing plane model is applied to all parameters except the velocity profile and the

details of the application of this model will be described in Chapter 6.

4.4.4 Discussion
The mixing plane models have several advantages:

1. The mixing plane models are numerically simple and easy to be implemented

into an existing computer code of isolated blade row simulation.
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2. They are easv to apply to engineering applications and can provide predic-
tions with acceptable accuracy for multistage turbomachinery working near

peak efficiency, which will be demonstrated in C‘hapter 6.
3. The computer code with the mixing plane models is casy to operate.

4. The mixing plane models provide spanwise consistency of mass flow rate,
velocity profile and static pressure profile crossing the mixing planes between

blade rows.
Apart from the above advantages. these models also have their disadvantages:

1. They can not maintain spanwise consistency of momentum and total pres-
sure. This inconsistency may not be a serious problem when a machine works
near peak efficiency but may be significant when the machine works far away

from the design operating condition.

2. The flow prediction with the mixing plane models will have a large prediction
error when a compressor works near stall or has extended flow separation

areas.

Based on the above discussion, it is suggested that the mixing plane models be
used for multistage simulation of turbomachinery flows near peak efficiency. For
off-design flow simulation. the mixing plane models need to be improved or other

approaches mayv be considered.

4.5 Deterministic Stress Model

4.5.1 Introduction

The major disadvantage of mixing plane models for multistage axial flow
compressor applications based on ensemble averaged Navier-Stokes equations is
the discontinuity of several aerodynamic parameters such as momentum. total
pressure. etc. at interfaces. This discontinuity may cause large prediction errors
when the machines operate away from design operating condition.

The discontinuity at interfaces comes from the deterministic and aperiodic un-
steady fluctuations generated by neighbouring blade rows. According to Prato et
al. [144]. the aperiodic unsteady fluctuations are much smaller than the determin-

istic unsteady fluctuations. Therefore, the aperiodic unsteadiness is ignored in this

study.
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When ignoring the aperiodicity of the flow generated by neighbouring blade
rows and applyving the time-averaging operator to the cnsemble averaged Navier-
Stokes equations. the introduction of the deterministic stresses along with the
bodyforce and blade blockage makes the interfaces between blade rows continuous
for momentum. total pressure. etc..

In order to close the time-averaged Navier-Stokes equations where the deter-
ministic stresses are introduced. overlapped computational domains are used to
transfer deterministic stresses, bodyforce and blade blocking effect. The function
of the body force and blocking effect coming from the neighbouring blade row is to
get a correct average flow field in the downstream extended computational domain

of the blade row under investigation.

4.5.2 Overlapped Solution Domain

It is assumed that the deterministic (periodic) unsteady influence on the flow
in a blade passage onlyv comes from its upstream blade row. In order to “close”
the equation svstem. an overlapped solution domain approach is introduced for
the simulation of deterministic stress terms. Figure 4.4 shows how overlapped
computational domains are utilised for a blade row in a multistage environment
with at least one upstream blade row and one downstream blade row.

For a blade row in a multistage environment, the computational domain starts
axially from its upstream interface and ends at the downstream interface of its
following blade row. A H-tvpe two-block grid, one for the main passage and the
other for the tip clearance ear for a rotor and a H-type single block grid for a
shrouded stator are used for accurate simulation of flow phenomena in different
flow regions.

The bodyforce and blade blockage effect generated by the downstream blade
row are calculated in the computational domain of downstream blade row and
applied on the computational domain of current blade row. With the implemen-
tation of the bodyforce and blade blockage effect. the predicted flow field in the
extended domain of the current blade row reflects the averaged flow nature with
the influence of the downstream relatively rotating blade row.

The deterministic stresses generated by the upstream blade row are calculated
in the computational domain of the upstream blade row and imposed on the com-
putational domain of the current blade row. With the implementation of the de-
terministic stresses, the interface between the current and the upstream blade rows

becomes continuous for all the aerodynamic parameters except for static pressrue
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Figure 4.5: Coordinate systems for deterministic stress approach

and total pressrue. The inconsistency of the pressure distributions at interfaces

will be discussed later.

4.5.3 Special feature of the coordinate system

In the computational system of this study, three coordinate systems, the gen-
eral non-orthogonal curvilinear coordinate system, the cylindrical coordinate sys-
tem and the Cartesian coordinate system, are employed simultaneously. The cylin-
drical coordinate system and the Cartesian coordinate system are two special cases
of the general non-orthogonal curvilinear coordinate system. Such an arrangement
has two reasons. Firstly, the Navier-Stokes equations are expressed in a general
non-orthogonal curvilinear coordinate system with the Cartesian velocity compo-
nents as unknown variables. Secondly. £ and n coordinates in general coordinate

system are chosen to be aligned with § and r coordinates in cylindrical coordinate
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svstem respectively in order to simplify the CFD computation.

The special features of the coordinate systems used in this study are as follows:

o The coordinate lines ¢ and 5 of the non-orthogonal curvilinear coordinate
svstem are designed to be aligned with the 6 and r coordinates of the cylin-

drical coordinate system respectively, Figure 4.5,

The grid nodes with the same 7 have the same r.

The grid nodes with the same £ and ¢ have the same 6.

On each n surface the grid nodes with the same ¢ have the same =.

Under these circumstances. many calculations are simplified and can be oper-
ated in the cvlindrical coordinates and then transferred to the Cartesian or non-

orthogonal coordinate svstem.

4.5.4 Deterministic Stresses

The deterministic fluctuations occur on larger space and time scales than the
random (turbulent) fluctuations. and are the result of tangential non-uniformity of
the flow field generated by neighbouring blade rows. In a three-dimensional simu-
lation, the local deterministic velocity fluctuation can be expressed in a cylindrical

coordinate system. Rhie et al.[148] as:
U, = v, — 52' (Z =T, 9, Z) (436)

where T; is the ensemble-averaged velocity and ©; is the time-averaged velocity

b3
= (4.37)

calculated by:

where d4 = rdfdr, 8, and 05 are explained in Figure 4.6. Velocity decomposition
is schematically shown in Figure 4.7 at a certain radial position across one blade
pitch from 6, to 6;.

The computational procedure for a time-averaged velocity fluctuation Vi, a
normal deterministic stress and its gradient is schematically shown in Figure 4.8.

Other deterministic stress terms and their gradients can be calculated in a similar

manner.
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Figure 1.6: Schematic front view of a blade row

In order to include the deterministic stresses into the momentum equations,

calculated T;.(; = r,0) in each control volume must be projected to x and y
directions:

7, = D,cosl — Tysinb (4.38)

T, = 0,516 + Tgcosf (4.39)
Consequently. the tangentially area-averaged deterministic stresses can be calcu-
lated as:

6
/ pUiv;d.A
pUiD; = g (4,) = 2,9, 2) (4.40)
dA
62

In the computational domain of a given blade row, the deterministic stresses

generated by its upstream blade row are calculated in the computational domain
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Figure 4.7: Velocity decomposition

of the upstream blade row and imposed on the computational domain of the cur-
rent blade row. These deterministic stresses contribute to the correction of the
momentum and make the spanwise continuity of momentum possible at interfaces.
The momentum in a circumferential element at certain radius r before and after
an interface may be expressed for incompressible flows by the following equation:

L(ﬁﬁﬁj)dﬁ = (67T + prit;) A (4.41)

Ny
o gl

before interface after interface

In the deterministic stress approach. the area averaged total pressure is con-
tinuous as well provided that the static pressure is consistent at interfaces because

of the compensation of the deterministic stresses applied:

]_)t,ups = ﬁt,dns (442)
where ~
Bt ups = /A [;—93 + g (@ + 7 + ‘u72)] dA (4.43)
[ R S S l (=3 = =
Prans = Ps + 5P (T +5°+T) + 5P W+ ) (4.44)
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Figure 4.8: Calculation of deterministic stresses (Denton et al. [49])
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The continuity of mass is satisfied automatically at interfaces when the area

averaged mixing process is applied.

4.5.5 Body Force

Body force is caused by the interaction between the flow and blade rows.
It 1s associated with the inviscid and viscous forces acting on the blades. The
influence of body force is not only restricted in the blade passage, but on the flow
fields upstream and downstream of the blade passage. In a computational domain
which covers a blade passage. the flow field can be predicted by removing the blades
and instead introducing the bodyforce and blade blockage generated by the blades.
The predicted flow field is not the same as the original one but is an equilibrium
flow field in terms of axial and radial variation of aerodynamic parameters. The
circumferential variation only reflects the development of the wake generated by
the upstream blade row. The circumferential variation in the original flow field is
smeared just like a flow passing an actuator disk which is equivalent to a rotating
blade row.

It 1s assumed that the body force contributes to the pressure gradient and part
of the momentum change of the flow. Another part of the momentum change comes
from the impact of the blade blockage which will be discussed in the next section.
In a rotating blade passage. centrifugal force also contributes to the bodyforce.
Based on this assumption. the body force acting on a control volume is due to the
pressure difference around the volume surface and the centrifugal force. It is also
assumed that the centrifugal force generated by rotor blade rows only exists in the
areas between blades.

This approximation has the advantage that the body force can be easily sim-
ulated by calculating the circumferentially area-averaged pressure gradients and
centrifugal force(for rotating blade passages) from the current blade computational
domain and implementing in the calculation of the upstream blade computational
domain.

In the simulation procedure, local pressure gradients in a blade computational
domain are first of all calculated in three coordinate directions of the cylindrical
coordinate system. Then the circumferentially area averaged bodyforce compo-
nents at certain radius r are obtained with Equations (4.45), (4.46) and (4.47).

Figures 4.9 and 4.10 show the bodyforce imposed on a tangential volume element
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in z, 0 and r directions in a cvlindrical coordinate system.

b [ P
_ — | dA
- a_ g — /2 (") « —
fr= (l> + Q2 x (2 XT) = w0 b

- + 70 x (Q x F) (4.45)
/ d.\
t2

63 01—)
f (o,,) A (W) “
N 6 — vy = 93
rof | / d
62
93 az_)

Y 05
0 dA

62

R (4.46)

(4.47)

where Ap is the local weighting function of blade blockage defined by Adamczyk
et al. [2] as

|6, — 02| N
a 2T
(i.e. 1 minus blockage) within a blade passage and Agp = 1 outside a blade passage.

Ap =1 (4.48)

In Equation (4.43). .V is the blade number of a blade row, and the meaning of 6,
and #, are shown in Figure 4.10.

The function of Ag here is to average out the tangential pressure gradient on
the whole tangential length. including the area occupied by blades because this
pressure gradient is supposed to be implemented in the momemtum equations
to change the tangential flow momentum in the upstream blade computational
domain where the space of blades are occupied by fluid.

Subsequently. the obtained circumferentially area averaged pressure gradients
are projected locally to the r.y and = directions, similar to the projection of

deterministic stresses.

fz = (f:), cosf — (fg). sinb (4.49)
fy=(f), sinf + (fs), cos (4.50)
fz = (fz)r (451)

4.5.6 Blade Blockage Effect

Blade blockage has obvious influence on the flow momentum inside the blocked

area. When the flow is blocked, the flow must go faster in the blocking direction
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Figure 4.11: Blockage effect on velocity components V., & V}
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in order to pass the unchanged mass flow rate. Adameczyk [2] implemented the
blockage factor (Agr) into the time-averaged Navier-Stokes equations. Effort has
been made for the application of his equation system to the current flow simulation
and it was found that the pressure gradient term has unphysically large influence
on the flow field and the resulted flow field is far away from reality. Because of
this reason. a simplfied approximation for the blade blockage effect is introduced
in this study and described as follows.

A typical control volume in the downstream domain of the blade row of interest
1s shown in Figures 4.11 and 1.12. When blockage occurs to the control volume, the
effect of the blockage 1 just like that when the flow passes through a control volume
with a smaller cross area which is drawn in dotted lines, where the projected flow
areas are reduced in the = and r directions and keep the same in the 6 direction.
Assuming that the mass flow rates in the z. r and 6 directions remain the same
when the flow is blocked. the new velocity components in the cylindrical coordinate

svstem are calculated based on the mass continuity in each direction:

dm, = pr.dA. = p'l';()\Rd;l:)
dm, = pv.dA, = pv.(ArdA,) (4.52)
dmg = prgdAg

and ’
v, = Uz/)\R
v, = v./AR (4.53)
’L’é = Vg

The updated velocity components are then projected to the r.y and = directions

and the resultant (‘artesian velocity components are:

! / ’ .

v, = v,cosf — vysind
! ! . /

v, = v,sind + vgycost (4.54)
/ !

v, = U,

This approximation of the blade blockage effect is only applied after a solution
to a flow field is converged. During the iterations the volume geometries are
actually chosen to be the same to those in the computational domains instead of the
blocked ones so the velocity components used in the computation are the Cartesian
velocity components corresponding to the cylindrical velocity components v, v,

and vy rather than (v;), (v.) and Vp.
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4.5.7 Deficit of Overlapped Solution Approach

Theoretically, the interfaces between blade rows become continuous for all
the aerodyvnamic parameters with the implementation of deterministic stresses.
Unfortunately. due to the closure requirement of the time averaged Navier-Stokes
equations. the overlapped computational domains have to be used to obtained the
deterministic stresses. This type of approach actually causes the inconsistency in
spanwise static pressure distribution at interfaces.

For example at the interface 2 in Figure 1.4, the spanwise distribution of static
pressure obtained in Domain II is not exactly the same to that obtained in Do-
main III due to the model error (i.e. the approximation of bodyforce and the
blade blockage effect) and numerical error. This spanwise inconsistency also con-
tributes to the spanwise inconsistency in total pressure distribution. Therefore.
the deterministic stress model discussed in this section provides interfaces with
spanwise continuous mass flow rate. momemtum, & and e but does not garantee
the spanwise consistency of static pressure and total pressure in practice, although

the influence of the inconsistency is not significant. More analysis can be found in

Chapter 6 (Section 6.6).

4.6 Repeating Stage Models

4.6.1 Introduction

In multistage axial flow compressors, it is observed that after a few similar
stages the flow develops a radial distribution which repeats itself after every stage.
This is particularly obvious in terms of the radial distribution of axial velocity and
flow angles. but it is also true for other parameters such as static pressure and total
pressure although with different absolute values at the inlet and exit of the stage.
The effects of casing. hub friction, tip leakage and hub leakage in the first few blade
rows appear to rapidly reach an equilibrium condition similar to fully developed
pipe flows. Therefore in repeating stages, the spanwise distribution of velocity,
flow angle, & and € at the inlet and the exit of the stages remain almost the same
and the spanwise distribution of static pressure and total pressures maintain a
radially constant increment across the stages. It is assumed that each rear stage of
a multistage axial flow compressor is just like a repeating stage of its neighbouring
stages in terms of flow patterns.

The repeating stage concept resulted in a repeating stage model suitable for
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the flow prediction of rear stages of multistage axial flow compressors, Li et al.[113]
and [114]. The major advantage of the repeating stage model is that the inlet and
exit spanwise distributions of all the aerodynamic parameters such as velocity.
static pressure, total pressure. k& and € become the result of the simulation instead
of boundary conditions and only the averaged static pressure at the exit of the
stage together with the total mass flow rate are required as global input. Two

repeating stage models are described in this section.

4.6.2 Repeating Stage Model |

In the case of low speed multistage axial flow compressor simulations with a
simple mixing plane model. a first repeating stage model was developed by Li et
al. [113] and is described as follows.

Figure 1.13 shows how the repeating stage model works. For a typical rear
stage of a multistage axial flow compressor there are three mixing planes used to
pass circumferentially area-averaged information between the neighbouring blade
rows. one at the inlet of the stage located halfway between the current rotor and
the upstream stator. one at the interface between the rotor and the stator and
another at the exit of the stage located halfway between the current stator and
the downstream rotor.

It is assumed that the spanwise velocity profile at the stage inlet is the same to
that at the stage exit. The total mass flow rate is used to scale the inlet velocity
profile in order to maintain mass continuity during global iterations. The velocity
scaling factor (', is calculated as:

m

C, = (4.55)

M cal

where m is the specified mass flow rate and 1., is the calculated mass flow rate
by imposing the stage exit velocity profile at the stage inlet. The three velocity
components. axial. tangential and radial, are scaled using the same scaling factor
in order to keep the flow angle in a absolute frame of reference unchanged after
scaling. The scaling factor becomes unity when global convergence is achieved.

Similarly. the stage inlet k and e profiles are set to be equal to those at the
stage exit as they tend to be unchanged when the turbulent flow is fully developed,
and hence the scaling factors for k and ¢ profiles are equal to 1.

The way of setting the static pressure at the stage exit is to define the average

static pressure for the whole exit area as a given value, maintain the same shape
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of spanwise static pressure distribution at the inlet and the exit of the stage and
allow pressure variation to exist circumferentially. Firstly, the circumferentially
area averaged static pressure profile is shifted from the stage inlet to the stage exit
with appropriete interpolation. Then the static pressure at the exit is scaled by a

scaling factor (',

(,, = P (15
Ps,cal

where p; it 15 the specified value of the average static pressure at the stage exit,

Ps.cat 15 the calculated area-averaged static pressure at the stage exit after imposing

the stage inlet pressure profile on the exit. This kind of setting also results in the

similarity of spanwise total pressure distribution at the inlet and the exit of the

stage because the flow is supposed to be incompressible and the total pressure is

calculated with static pressure and velocity components.

1 .
Pt = ps + EP(UQ + 0?4+ 102) (4.57)

4.6.3 Repeating Stage Model 1]

In the case of multistage simulation of axial flow compressors where a deter-
ministic stress model is applied. second repeating stage model has been developed
in order to provide a better prediction than the repeating stage model I and to
simplifv the global aerodynamic boundary conditions.

The idea of this model is to implement the deterministic stress into the Navier-
Stokes equations to make the interfaces between blade rows continuous for aero-
dynamic parameters. Sondak et al. [161] developed a “lumped” deterministic
stress (LDS) model where the deterministic stress field is modelled with a lower
order (inviscid) time dependent simulation and then implemented in the viscous
steady flow equations as source terms. Unlike the idea of the “lumped” determin-
istic stress model, the deterministic stress field is simulated in this study with the
deterministic stress model described in Section 4.5.

In the flow simulation for rear stages of multistage axial flow compressors
with the repeating stage model I, there are two individual computations in-
volved in the global iterations of the calculation. One is the major computation
(Computation I) which is similar to the repeating stage model I. The only differ-
ence between Computation I and the repeating stage model [ is that the deter-

ministic stresses as additional source terms are implemented in the Navier-Stokes
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equations in C'ompution I. The other (Compution I1)is similar to the flow simu-
lation with the deterministic stress model described in Section 4.5. which is carried
out once in every 4 to 5 global itcrations of Computation I. In ('omputation 1
the overlapped computational domains are employed. In other words, every com-
putational domain for a blade row has an extended domain covering the flow field
of the following blade passage. The purpose of the extended computational domain
15 to calculate the deterministic stress field resulted from the circumferential non-
uniformity of the flow. In order to get a correct circumferentially averaged flow
field in the extended computational domain, the bodyforce and blade blockage cal-
culated in Computation I have to be implemented. The boundary conditions and
bodyforce field required by Computation Il are obtained from Computation [
and the deterministic stress field required by Computation I is obtained from
Computation II. The two computations in the repeating stage model I] are
illustrated in Figures 4.14 and 4.15.

It 1s assumed that mixing planes are located halfway between two neighbouring
blade rows. For a typical stage working in a multistage environment there are three
mixing planes for the compressor stage in Computation I, one (Mixing Plane
1) at the inlet of the rotor. one (Mixing Plane 2) at the interface between the
rotor and the stator and another (Mixing Plane 3) at the exit of the stator. For
Computation Il of the same compressor stage there are four mixing planes, the
first three mixing planes are the same to those in C'omputation I and the last one
(Mixing Plane 1) is at the exit of the following rotor.

The setting of boundary conditions for the computational domains are based on
the assumption that the stage under investigation possesses repeating flow nature.
In Computation I of the repeating stage model /1, the velocity, k and e profiles
at the inlet of the stage are set to be equal to those at the stage exit and the static
pressure profile at the stage exit is assumed to have the same shape of the static
pressure at the stage inlet but with a given average value. In C'omputation I1,
the velocity, & and ¢ profiles at the rotor and stator inlet are set to be equal to
those at the same locations in computation I. The static pressure profiles at the
exit of both the rotor and the stator computational domains are assumed to have
the same shapes to those at the inlet of the rotor and the stator respectively in
Computation I but with different average values. In addition, the average value of
the static pressure at a computational domain exit needs to be modified in order to
satisfy the average value of the static pressure at the blade exit because the given

values of static pressure at the domain exit and the blade exit can not be both
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satisfied in Computation 11 due to the model and numerical errors. For example,
the average value of static pressure at mixing plane | of the stator computational
domain needs to be corrected in every global iteration using Equation (4.58) in
order to satisfy the average static pressure at the stator exit (Mixing Plane 3) to
a given value.

pitt = pi + w(perie — 1Y) (4.58)
where peyir 15 the specified value of the average static pressure at the stator exit
(Mixing Plane 3). p3 is the calculated value of the average static pressure at mixing
plane 3 for the current iteration in the stator computational domain, p? and p}t’
are the average values of static pressure at Mixing Plane 4 of the stator computa-
tional domain for the current and next global iterations respectively, and w is the
under relaxation factor which normally takes a value between 0.6 and 0.8.

In Computation II of the repeating stage model II, the deterministic stress
field obtained from the downstream extension of the stator passage between Mixing
Planes 3 and 4 is shifted upstream and imposed on the rotor computational domain
between Mixing Planes 1 and 2 to compensate the discontinuity of momentum for
the Mixing Plane 1. Similarly. the deterministic stress field obtained from the
downstream extension of the rotor passage between Mixing Planes 2 and 3 is
applied to the stator domain (Domain /7) between the same mixing planes.

With the implementation of deterministic stresses, the interfaces in Computation [
is continuous for all the aerodynamic parameters and the flow field predicted in
Computation [ is the major result of the repeating stage model I1. The role
of Computation II of the model is to provide required deterministic stress field.

More details of the prediction with this model and the benefits of the model will
be discussed in C'hapter 6.

4.6.4 Discussion

The advantage of the repeating stage models for flow prediction of rear stages
of multistage axial flow compressors is that they simplify the global aerodynamic
boundary conditions. In other words, the boundary distribution of aerodynamic
parameters becomes the result of the simulation instead of the aerodynamic bound-
ary setting with only the requirement of total mass flow rate and average static
pressure at the stage exit.

However. the above repeating stage models are based on the particular case

concerned, where the compressor stages have constant inner and outer diameters,
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the flow is supposed to be incompressible and the compressor works near peak ef-
fictency. In more general, if the compressor annulus is convergent downstream and
the flow 15 compressible, the current repeating stage models need to be modified.
This 1ssue will not be discussed in this thesis,

In addition. if the compressor operates at off-design conditions it is very likely
that the flow loses its repeating nature and the repeating stage models can not be

applied.
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Numerical Procedures

5.1 Introduction

In this chapter. the detailed description of the discretization and solution
procedure of the governing equations is provided.

Firstly. a complete form of governing equations is expanded here to make them
easier to be used later.

Secondly. a finite volume method is utilised to discretize the governing equa-
tions on each control volume and a general form of the discretized equations is
obtained. Different differencing schemes for convection terms are discussed.

Then. a solution procedure for the discretized algebraic equation system and
relaxation methodology are described.

A pressure correction method which describes how the continuity equation and
momentum equation are used to derive a pressure correction equation and how
both momentum and continuity equations are satisfied. In addition, a solution
acceleration method to the pressure correction equation and a remedy to pressure
oscillations are discussed.

Finally. the ST/ PLE algorithm is described for the solution of incompressible

flow problems.

5.2 Expanded Forms of Governing Equations

To make the expression of the governing equations simpler, the overbars above
variables describing averaging processes in Chapter 2 are omitted in this chapter.

The expanded form of the time-averaged governing equations in the transformed

94
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coordinates where the z—axis coincides with the axis of rotation may be written

as follows.

Continuity Equation

ANpll) O(pV)  O(pll")

ot ot =0 (5.1)
Momentum Equations
u-moimentum
J [ . ou dz
_ [ —J 11
e -p U (4t + per) (9 8§ +g o +g' ag)J +
o . 5 Ou du
Il ovu—J 210U 22
+8,] pVu—J (1 + pr) (g a€+ 8n +9° 84) +
+i pWu—J(p+ pur) 9318 +9 +9g% = (5.2)
()\ aé a ag -
‘p 8p \
=Jpfi —J -
pfi ( fé P T+ == aC +

9, £ (Ov, 0§ _g Ovy 06, \] B
. [ et ur) 5 (ag, 01‘) 30 (agn axm)

d(pk) 0¢; J O | ==
__J 0€; Oz, N O&x [JOIJ (puv])]

where
fi=20,0+ Q% + f,
and f; is the bodyvforce in the z direction generated by neighbouring blade

rows.
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where

fr==2Q.u+ Q%Y+ f,
and f, is the bodyforce in the y direction generated by neighbouring blade
TOWS,

w-momentum

o1 . ndw oW 50w ]
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where
fa=f.
and f. is the bodyforce in the = direction generated by neighbouring blade
TOWS.
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General Scalar Equation
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where the non-orthogonal ~cross diffusion” terms have been lumped into
the source terms. Thus the scalar equation takes similar form to that in the
(artesian coordinates and allows fluid dynamics problems involving complex

geometries to be handled in a similar way.

In the governing equations the coefficients ¢g’* are defined as follows:

g =E+E+E
9% =n;+n; +n:
§ f?=¢+@+@ (5.9)
g =g =&ne + &y + £
g2 = ¢ =&+ EG +EC
923 = 932 = NeCe + nyCy + 1.

The variables in the scalar equation take different forms for different equations

and are summarised in Table 5.1.
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Table 5.1: Meanings of symbols in scalar equation

Although the governing equations have different expressions, they take the
same form expressed with the scalar equation. This similarity has the advantage

that a similar discretization and solution procedures can be followed.

5.3 Discretization Procedure

5.3.1 Finite Volume Integration

There are basically three major discretization methods for fluid dynamics
problems: the Finite Difference (F D), the Finite Volume (F'}"/) and the Finite
Element methods (F EM). The discretization procedure in this study is based on
the finite-volume method where the flow domain is firstly divided into small non-
overlapped volumes (finite control volumes). Each control volume surrounds a
nodal point that is located at the centre of the volume and the flow quantities
representing the mean value of the volume are stored at that point. Figure 5.1
illustrates a typical control volume in physical space around node P, along with
some neighbouring nodes and mid-nodes and clarifies the notation used hereafter.
E.W.N.S. Fand B denote the neighbouring grid points per two in the £,7 and

¢ directions respectively and ¢, w. n, s, f and b correspond to the mid-nodes on
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Figure 5.1: A Control volume and notation

the volume faces.

The transport equation for a scalar variable ®, which is a typical steady

convection-diffusion equation, can be written in the following form:

V- (pOV) =7 (Te 7 ) + So (5.10)

Formal integration over a three-dimensional control volume V, yields

[ 7oV, = [ - (To v v, + [ Sedy, (5.11)

On the control volume Gauss’s divergence theorem is applied, where the integral
of the divergence of a vector variable f over a volume is equal to the component of
f in the direction normal to the surface which bounds the volume integrated over

the entire bounding surface S, expressed in the following equation.

fav, = § G-FdS = ¢ £-dS 5.12
/va fav, }in fds fsf 45 (5.12)

99
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The mean value theorem is utilised to provide the value of ® at the surfaces of the

control volume. For example. at “cast™ surface

/ dd S,
Se

¢ = (5.13)
/ dS.
S

The transport Equation (5.11) can be written as follows
~f@@ﬁ)q@::f(lkxycb)-déJr/Sq,d»;, (5.14)
S S v,

This equation represents the flux balance in a control volume. In other words. the
net convective flux equals to the sum of the net diffusive flux plus the generation

or destruction of the property ® within the control volume.

5.3.2 Discretization of the Convection Term

The convection term in the transport equations can be discretized into the

following form around the control volume
ﬂlzﬁ@9¢yd§=Q?—ﬁ+15—544§—ﬁ7 (5.15)
where

(pV'®)dS = F.®., where F.= (
(pV®)dS = Fu®,, where Fy= ( )
IC — /5 (plU'®)dS = F,®,. where F,= (pUbS()n
} ( )

(

(5.16)
]sC: / pl ®)dS = F,®,. where F,=
Ss

W::/(NHNM'=F@L where  Fr= (plVé&on);

St

Iy = / (P ®)dS = Fy®,, where Fy= (pl1'6€dn)s
Sp

where [ represents the convection term and F is the mass flux.

The values of velocity components {7, V" and " and the scalar quantity @
at control volume faces are estimated with corresponding values stored in neigh-
bouring control volumes by using approximate numerical schemes which will be
discussed in Section 5.4.

The continuity equation contains only convective terms when ® = 1 and can

be expressed in the following form:

Fo—Fu+F,—F,+F—F=0 (5.17)



Chapter 5. Numerical Procedures 101

5.3.3 Discretization of the Diffusion Term

The integration of the diffusion term in the transport equations can be dis-

cretized in the following form:

1D=fubv¢yd§:ﬁi—$+J£—FMJf—ﬁ) (5.18)

. S
S

The diffusion term I? consists of two parts: the “normal” diffusion terms IPN
where the first derivative of ® i1s normal to the volume faces, and the “cross”
diffusion terms where the first derivatives of @ is crossing the volume faces. For

example. at the ~e” face of the control volume

od od o0
D _ = gt gty T 18 ond 5.19
I =(Te v @), L [JFQ(aég + 0779 + R4 )}( né¢)p  (5.19)

[P = [PN 4 [PC (5.20)

where

P = {JF¢ (%? 11)} (6n0¢)p

0P 0d :
DC _ _12|__13 Sné
t [JT&’(an a¢? )]6(77Q)P

By applying the central difference scheme to the following first derivatives of ¢,

(%), ="."
o), ~ (@0

we obtain:

(8@) (q)n - (I)S)e (I)ne - q)se

) T Gn. (e

90\ (B;— ), _ By — s
(5{) (80)e  — (80)p

where the values of ®,,.. ®,., ®s. and @, are obtained from the neighbouring nodal
values through approximate interpolation based on central differencing scheme.

Then the “normal” and “cross” diffusion terms can be expressed as follows:

JFQQ“
0¢

[é)c = (']F‘ng)e(q)m - (I)se)((SC)P + (JFQQIB)e(q)fe - (I)be)(‘sn)P (5°22)

IPY = D (95 — ®p) where D. = ( ) (6ndC)p (5.21)
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[n a similar way on other cell faces. the normal diffusion terms can be expressed

as:

Y = D.(®p — ). where D, = (JF;fg”) (0nd¢)p

IPN = Dy(®y - ®p). where D, = [ F;;"ﬂ)w(agac),;

IPY = Dy(®p— ®.). whore D, = ("F;;"”)n(éséc)p

IPY = Dy(®F —®p). where Dy= (JF;CQ33)S(5§577)P
f

IPY = Dy(®p—®p). where D, = ("F;f%) (5€5m)
b

¢= ( Je(
= ( )e( ,
]sDC = (JTeg?*")e(®se — P, )(8¢) P
IP¢ = ( )e(

( )e(

+ + + + +

DC
[b

5.3.4 Discretization of the Source Term

(5.23)

(5.24)

The source term in the transport equations includes the pressure gradient term
(Op/d.r;), cross diffusion term (IP¢) and the rest of the terms (Sg) not included

in the convection and normal diffusion terms.

The pressure term is separated from the source term because of its significance

for the calculation of the pressure field with pressure correction approach. It is

integrated approximately over the control volume by

GPGT _/ ( dll)

p op op\ -
-, (G a—n% ) ac“f') "
__ (% 0_1?

The pressure gradients may be approximated by the following formula:

(@) _ Pe— P (@) _ Pa—Ps (@) _ PP
o), (86)p om)p (dn)p’ ) p  (6C)p

(5.25)
(5.26)
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The volume integral of the source term (Sg) is approximated by:

]*\““ = /‘ .\'q)(/‘;, = (H(p)p(J(sg(Sn(sC)P (527)

P

where (Ng)p is the average value of Sy in the control volume and stored at the
centre of the volume, 1}, is the volume of the control volume surrounding the node
P. According to Patankar [135] the source term Sy can be linearised into two

distinct parts and expressed by
No = Sp + Sgd (5.28)

The sign of 5§ is chosen to be negative to ensure realistic solutions. In such cases,

the discretization of the source term can be expressed as

I°* = (S 4 S5®)p (JEEMSC)p

) 5.29
=[% + [S:+Pp ( )
where
%% = (S3)p(J6E60SC) P (5.30)
I = (S3)p(J8E608¢)p (5.31)

The source term 7+ ®p is lumped into the central node term of the discretized
equation. Eventually. the integrated source term in the discretized equation be-

comes:
Sp = I 4 §PCT 4 gODT (5.32)

GCDT

where includes all the cross diffusion terms and is expressed by

SC‘DT — [eDC . IgC' 4 [nDC _ ISDC n I}?C . IbDC (533)

5.3.5 General Form of the Discretized Equations

After the discretization of all the terms of the integrated transport equations
on a control volume, they can be combined together and expressed in the following

typical form:
Ap®p = AQp + Aw®w + ANON + AsDPs + Ar®r + AP + Sp (5.34)

or

Ap®p =3 A + Sp (5.35)
nb
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where the coefficients A,,(nb = E, 1. N. S F. B, P) are obtained from the combi-
nation of discretized convection and diffusion terms which will be discussed in the

next section: Sp is determined by Equation (5.32) and the coefficient of central

node term 1s

Ap =" A= I (5.36)
nb

5.4 Numerical Schemes for the Convection Term

Properties of Numerical Schemes

The values of the independent variables in the convection terms of the trans-
port equations have to be estimated in terms of their values at the neighbour-
ing erid points during the discretization process. Different numerical differential
schemes have been developed for such estimation. According to Versteeg et al.
[130]. numerical results may theoretically be indistinguishable from the “exact”
solution of the transport equations when the number of computational volumes
1s infinitely large irrespective of the differencing method used. However in prac-
tice. only a finite number of volumes can be used and the numerical results will
only be physically realistic when the discretization scheme has certain fundamental

properties. The most important ones are stated below, Versteeg et al. [180]:

Conservativeness

The discretization of the transport equations over control volumes yields a
set of discretized conservation equations involving the flux of the transported
property ® through the volume faces. To ensure the conservation of @ for
the whole solution domain. the flux of ® leaving a control volume across a
certain face must be equal to the flux entering the adjacent control volume
through the same face. This can only be achieved when the flux through
a common face is represented by the same expression in adjacent control

volumes.

Boundedness

Normally iterative numerical techniques are used to solve a set of discretized
algebraic equations for a solution domain. This iteration process starts from a
guessed distribution of the variable ® and perform successive updates until a
converged solution is obtained. A sufficient condition known as Scarborough

criterion for a convergent iteration method can be expressed in terms of the
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coeflicients of the discretized Equation (5.34):
Z | ‘n/v|
nb

{ <1 at all nodes 5 3+
T (5.37)

< 1 at one node at least

Here 1p is the net coefficient of the central node P and the summation in the
numerator is taken over all the neighbouring nodes (nb). If the differencing
scheme produces coefficients that satisfy the above criterion the resulting

matrix of coeflicients is diagonally dominant.

Diagonal dominance is desirable for satisfying the “boundedness” criterion
which means that the internal nodal value of ® should be between its min-
imum and maximum boundary values. Another essential requirement for
boundedness is that all coefficients of the discretized equations should have
the same sign (usually all positive) which physically implies that an increase
in variable ® at one node should result in an increase in ® at neighbour-
ing nodes. If the discretization scheme does not satisfy the boundedness

requirements the solution may not converge at all or contains “wiggles”.

Transportiveness

The transportiveness of a numerical scheme is the relationship between the
magnitude of the Peclet number (Pe¢) and the directionality of influencing
of flows. The non-dimensional volume Peclet number is defined as a ratio
between convection and diffusion and as a measure of the relative strength
of convection and diffusion.
P — F _ CO.n,vect'zon (5.38)
D Dif fusion

The features of the transportiveness can be described by two extreme cases:

in the case of pure diffusion the fluid is stagnant (P. = 0) and the diffusion
process tends to spread ® equally in all directions; in the case of pure con-
vection ( P. = 0o) all of property ® propagating from the source immediately
transported downstream or the flow properties have no influence on the up-
stream regions. If the discretization scheme does not satisfy the features of

transportiveness. the unrealistic results will be produced.

Central Difference Scheme

The central difference provides an approximation of property ® at a certain

position from a linear interpolation between its bracketing nodal values. For ex-
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Figure 5.2: Central difference scheme

ample. this scheme is shown in Figure 5.2 in a one dimensional situation. Based
on the above definition. the scalar quantity ® on the control volume faces are

estimated with the following expressions:

¢, =/ pPp +(1- )

(5.39)
b, = far®uw +(1— fiy)®p
where ffg and f5- are interpolation factors and defined as:
e _ b e __wP (5.40)
b =y W Twururp

where the overbar denotes distance. Similar expressions can be obtained in other
coordinates. The coefficients corresponding to the variables of discretized transport

Equation (5.31) can be expressed as:

Ap = Do+ F.(l - fp), Aw =Dy + Fuff
Av =D, + F,(1 - fp), As =D, + F,f2 (5.41)
Ar =Dy + Fy(1 - fp), Ap =Dy + B fg

Ap =Ag+ Aw+ Ay + A5+ A+ Ap+
+(F6_Fw+Fn_Fs+Ff_Fb)

When the mass continuity equation is satisfied, we obtain:

Ap = Au, nb=E,W,N,S,F.B (5.43)
nb
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Discussion

1. The central difference scheme uses consistent expressions so the scheme is

conservative.

o

In the case of a high Peclet number (Pe) which means the convection dom-
inates the flows. some of the coefficients are negative. This violates one

of the requirements of boundedness and may lead to physically impossible

solutions.

3. The central difference scheme does not recognise the direction of the flow
or the strength of convection relative to diffusion, so it does not possess the

transportiveness property at high Pe.

1. The central difference scheme is the second order in terms of Taylor series
truncation error. This scheme is more suitable for flows with a small Peclet

number ( Pe < 2).

Upwind Difference Scheme

The upwind difference scheme takes into account the flow direction when
determining the convected value of ® at a certain point: it is taken to be equal
to the value at the upstream node. In Figure 5.3 when the flow is in the positive
direction (from E to 117). i.e. uy > 0. ue > 0 (Fw > 0,Fe > 0), the upwind

scheme sets face values as:
‘I)w = (I)p and (I)e = (I)E (5.44)

When the flow is in the negative direction, i.e. u, < 0. u. <0 (F, <0,F < 0),

the scheme takes the form:
(I)w = (I)W and (I)e = q)p (545)

Similar expressions can be obtained in other coordinates. So the coefficients of

the discretized transport Equation (5.34) are

Ar = D. + max(0, F,), Aw = Dy +mar(0,—F,)
Av =D, + mar(0, F,), As = Dy + max(0, —F5) (5.46)
A = Df +ma:1:(O,Ff), A =Dy —I—ma;IT(O,—Fb)

where “maz” means maximum value. The central coefficient is calculated by

Ap =Ap+Aw+ Av+ As+ Ar+ Ap+

(5.47)
+ (Fe—Fw+Fn"‘fs+Ff_Fb)
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Figure 5.3: Upwind difference scheme

When the mass continuity equation is satisfied. the central coefficient becomes

Ap=YAw nb=E.IV.N.S.FB (5.48)
nb

Discussion

1. The upwind scheme is conservative because consistent expressions are utilised

for flux calculation through the volume faces.

The coefficients of the discretized equation are always positive and 4, =

Z A,s when the flow satisfies mass continuity. Therefore, the requirements

nb
of the boundedness are satisfied and stable iterative solutions can be ob-

N

tained.
3. The scheme accounts for the flow direction so it is transportive.

4. The accuracy of the upwind scheme is only the first order on the basis of the
Taylor series truncation error. Therefore, the upwind difference scheme is not

entirely suitable for accurate flow prediction but has the favourite advantage

of strong stability.
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5. This scheme is more suitable for flows with a high Peclet number (Pe > 2).

QUICLK Scheme

The hrst order upwind scheme is very stable and obeys the transportiveness
requirements but is prone to numerical diffusion errors due to its first order ac-
curacy. The central difference scheme which has second-order accuracy proved to
be unstable and does not possess the transportiveness property. So higher order
schemes. which preserve upwinding for stability and sensitivity to the flow direc-
tion. reduce the discretization errors by employing higher order discretization and
bring in a wider influence. are required, Versteeg et al. [180]. One of the most pop-
ular higher order schemes is the Quadratic Upstream Interpolation for Convection
Kinetics (QUICK) scheme developed by Leonard [110]. which uses a three-point
upstream-weighted quadratic interpolation for cell face values. This scheme was
improved by several researchers such as Hayvse et al. [75] who generalised the ap-
proach for re-arranging QU IC’' K" schemes and derived a stable and fast converging
variant which is described in detail below.

The face value of ® is obtained from two bracketing nodes (on each side of the
face) and a further upstream node with a quadratic function. In one-dimensional
case where uniform grids are employed, the face value of ® at “e¢” is given by the

following formula when u, > 0.u, > 0 (F. > 0. F), > 0), Figure 5.4(a):

b, =P + %(3‘1)13 — 20 — ®gp) (5.49)
b, = p + %(3% _20p — &) (5.50)
and when u. < 0.u,. <0 (F. <0.F, <0). Figure 5.4(b):
¢, =dp + %(3(1),; —20p — dy) (5.51)
&, =y + é(3¢}3 — 20y — Dy (5.52)

Similar face values can be obtained in other coordinate directions. The above
expressions are derived from uniform grids but applied to non-uniform grids for
simplicity. Therefore the coefficients of the discretized transport equation are given

by the following expressions:

Ag = D. + max(0, F,). Ayw = D, + max(0,—F,)
Av = D, + mClCL'(Oq Fn), As = Ds + max(O, —Fs) (553)
Ar = Ds + max(0, Fy), Ag = Dy 4+ max(0.—F)
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-
u.<0, u.,<0

Figure 5.4: QUICK scheme
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where “mar™ and “min” mean maximum and minimum values. respectively. The
central coefficient is calculated by

Ap =g — 4+ v — As+ A — Ap+

5.54
+(F6—Fw+Fn_Fs+Ff—Fb) () )

When the mass continuity is satisfied. the expression of 1p becomes:
Ap =) A, nb=FE W, N, S.F B (5.55)

nb

Other terms not included in the above coefficients are put into a high order term

(S79T) and lumped into the source term:

- - “HOT
Sp = 5Sp + ¢ (556)
where 1n one-dimensional case

) 1
b‘HOT — _(3(I)P — Z(DE — (I)EE)ma;l‘(O. Fe)+

<

(3P4 — 20p — Op)max(0. F,)+
(5.57)

+
+<(3®g —20p — Oy )min(0. —F,)+
4

0| —0| —OO | —.

(3®p — 20w — Oy )mar(0. —F,)

SHOTY can be extended to three-dimensional

The expression of the high order term (
cases In a similar manner.

Discussion:

1. The scheme uses consistent quadratic profiles and is therefore conservative.

2. In the original QU /('K scheme developed by Leonard (1979). the discretized
equation includes not only immediate neighbouring nodes but also those fur-
ther away and the coefficients corresponding to ®gg. Py, Pan, Pss, Prr
and ®pp are not guaranteed to be positive. This gives rise to stability prob-
lems and unbounded solutions under certain flow conditions. Therefore, the
original QU IC K scheme is conditionally stable. In the improved QUICK
scheme (Hayse et al.[75]), the discretized equations involve only the imme-
diate neighbouring nodes by lumping other terms into the source terms of
the transport equations and the coeflicients are always kept positive. In ad-
dition, when the flow field satisfies mass continuity the coefficient Ap equals
the sum of all neighbouring coefficients. Therefore, this scheme is diagonally

dominant. stable and fast converging in most cases.
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Figure 5.5: “Overshoot” phenomenon produced by QU/(C'k scheme

3. The QU IC' K" schemes have the transportiveness property because the quadratic

function is based on two upstream and one downstream nodal values.

4. The accuracy of the QU IC'K scheme is third order in terms of Taylor series

truncation error.

5. The QU IC'KR scheme has the tendency to cause “overshoots™ or “under-
shoot”™ during numerical transition and therefore in this situation does not
satisfy the requirement of boundedness. This problem is schematically shown
in Figure 5.5 for a one-dimensional case. When &g ~ ®p. the value ®. ob-
tained from the interpolation can be higher than the values in the surround-

ing nodes. This phenomenon can lead to non-linear instability.

Other High Order Schemes

As mentioned in QUICHK scheme, the problem of “overshoots™ or “under-
shoots™ in numerical processes exist for high order schemes without any con-

straints. In order to overcome this problem, a correction boundedness criterion
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P,

=)

Figure 5.6: Convection boundedness criterion in N1'D

was defined by Gaskell and Lau [59]. Therefore, different limiters or constraints
imposed by the boundedness were introduced to limit the variable values on a cell
face obtained from high order schemes before being used in the transport equa-
tions. The logic of the limiters or constraints in a one-dimensional case (Figure

5.5). Botte [19] is:

1. in locally monotonic regions. the value on a cell face should lie between ad-
jacent nodal values, i.e. ®. € [®g. ®p]. if the upstream value ®p is bounded

by the values in upstream and downstream nodes, i.e. &g € [Ppg, Dp).

2. if &g ¢ [Ppp. Pp], no information is available to limit the interpolated value;
in this case, a lower-order scheme is used, such as first order Upwind scheme

which is always bounded.



Chapter 5. Numerical Procedures 114

(1) central differencing
(i) QUICK
(iii) Upwind

S
=X

Figure 5.7: Different Schemes in normalized variable diagram

Leonard and Mokhtari [112] defined a normalised variable ® with which all the
schemes can be expressed with the variable in a similar way. The definition of the

normalised variable is:

¢ — g
bdp — OrE

which results in ¢ = 0 and ®p = 1. The convection boundedness criterion then

d = (5.58)

can be represented in the Normalized Variable Diagram (NVD) shown in Figure

5.6 and expressed as:
o for &y € [0.1]. b <O, < 1:
o for &g ¢ [0.1], D, = Og

The functional relationships of all previously mentioned schemes can also be

plotted in the normalised variable diagram (NV D) (Figure 5.7) and expressed as

follows:

o first order Upwind scheme

o, =0y or O =0 (5.59)
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Figure 5.8: Advanced composite schemes in NV'D
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It is obvious that high order schemes, such as the second-order central dif-
ference and the third-order QUIC' K schemes, can not achieve boundedness and
accuracy simultaneously. Therefore, several combinations have been proposed to

obtain a high-resolution bounded scheme. Some of them are: second and third
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order interpolation for convection (STOIC) from Darwish [35], second-order up-
wind central differencing first-order upwind (SOUC'OU P) of Zhu and Rodi [198],
sharp and monotonic algorithm for realistic transport by convection (SMART) of
Gaskell and Lau [59] and exponential upwinding or linear extrapolation refinement
(EULER) of Leonard [112]. The N1 D plots for all these schemes are lustrated

in Figure 5.3,

5.5 Boundary Conditions

The boundary conditions employed for the computational domains of com-

pressor blade rows in the predictions are as follows:

1. On all solid surfaces, i.e. the blade surfaces, inner and outer annulus walls,
non-slip condition is used for velocity and zero gradient condition for static
pressure. The values of & and ¢ are specified near the wall with standard

wall function. which is described in detail in Chapter 4.

S

Periodic conditions are implemented for all the parameters on both sides of
upstream and downstream extensions and also applied to both sides of tip

clearance domain.

3. The cylindrical interface between the two rotor blocks is treated by means
of halo cells extended from one block into the interior of the adjacent one.

Interpolation is used to exchange information between the two blocks.

4. For the computational domain of each blade, spanwise distributions of ve-
locity. & and € either transfered from upstream blade domain or fixed to ex-
perimental data are applied at the inlet of the domain of each blade passage.
Zero gradient condition for static pressure is applied at the inlet interface of

each domain.

At the exit interface of the computational domain of each blade row, spanwise

Ot

static pressure distribution is imposed when there is a downstream blade row
or a zero gradient condition with a specified average value for static pressure
1s imposed when there is no downstream blade row. Zero gradient condition

is used for velocity, k£ and e at the exit interface of the computational domain

of each blade row.



Chapter 5. Numerical Procedures 117

6. The inlet and exit boundary conditions of compressor stages can also be set

with the repeating stage model described in Chapter 6.

5.6 Solution of Discretised Algebraic Equation
System

After the control volume discretization of convection, diffusion and source
terms and the combination of these terms. the full discretized form of the transport

equation has the following tvpical form:
ijk gk g ik ik -
ApT =) @Y + S (5.62)
nb

Where i. ;. k are coordinates of the central nodal point of a control volume in the
computational space: nb= E. W N, S,F.B;i=0tol, j=0toJ and k = 0 to
i Aif; are the coefficients corresponding to the variable ® at the neighbouring
volumes around volume P. There are NV such equations for all control volumes as

a whole and

N=(T+1D)(J+1)(K +1) (5.63)

where /. J and A" are maximum numbers of nodes in &, n and ¢ directions respec-
tively.
The system of the discretized equations with N unknowns can be expressed

with the general form:

—

[A]® =S (5.64)

Where [A] is the coefficient matrix, ® is the variable vector and S is the source
term vector. In three-dimensional cases. each row of the matrix [A] normally
consists of seven non-zero elements.

There are various methods available to solve the above discretised equation
system. such as Gauss-Seidel iteration method. ADI (the Alternating Direction
Iteration), T'DM A (Tri-Diagonal-Matrix-Algorithm), etc. which were analysed
by Stone [167]. In the present study a “factorisation” strategy known as the
Strongly Implicit Procedure (S1P) proposed by Stone [167] is used. The idea
of the method is to replace the sparse matrix [A] by a modified matrix [A + P]
such that the modified matrix can be decomposed into upper and lower triangular
sparse matrices denoted by [U] and [L]. respectively. The manner in which [P]

is selected is that the elements of [P] are small in magnitude and permit the set
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of equations to remain implicitly stronger than that of the ADI procedure. An

iterative procedure is defined by writing [A]® = S as
[A +P]®+) = § 4 [P)op™ (5.65)

Decomposing [B] = [A + P] into the upper and lower triangular matrix [U] and
[L] permits the svstem to be written as

[L)[U]®™+Y = § + [P]o™) (5.66)

Defining an intermediate vector as V(1) = [U]$(n+1) 4 two-step algorithm is

formed as follows:

Step1 : L]V = § 4 [P]o(™)

Step2 : [U]o*+D) = V(n+D)
which is repeated iteratively. Step 1 consists simply of a forward substitution and
step 2 1s a backward substitution.

The matrix [P] is selected in the way that [L] and [U] have only four non-zero
diagonals with the principle diagonal of [U] being the unity diagonal. Furthermore,
the elements of [U] and [L] are determined such that the coefficients in the [B]
matrix in the location of the non-zero entries of matrix [A] are identical with
those in [A]. Three additional non-zero diagonals appear in [B]. The details of
the decomposion and solution procedure can be found in Appendix B.

Stone’s studyv shows that. for solutions to two-dimensional Laplace’s equations
the method requires only around 50-60% of the computational time required by
the ADI scheme.

Alternativelv. other implicit iteration methods like the Modified Strongly Im-
plicit (M SI) procedure, Schneider and Zedan [153] and GMRES [150] can be

incorporated in the solution process of the discretized equation system.

5.7 Application of Under-Relaxation

In order to make the iteration solution process converge smoothly, the change
of the magnitude of the variables between successive iterations is controlled with
the application of under-relaxation, Patankar [135]. Starting from the general

discretized Equation (5.35) the variable at central point P can be expressed as

Z Anb(Dnb + SP
nb

bp = 5.67
P P (5.67)
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or in an equivalent form

Y @y + Sp

dp = 03 + | 2 » .y (5.68)

where nb  (nb = E. 1. N. 5. F. B) denotes the neighbouring nodes and the value
of &% is obtained in the previous iteration. The change of the magnitude of
the variable ®p between two successive iterations. which is expressed by the term
inside the parenthesies, can be controlled by multiplying an under-relaxation factor

« (0 <« <1) to the terms inside the parenthesis. So the relation (5.68) becomes

Z ‘4an)nb + SP

Op = 05+ |2 — 3 (5.69)
Ap

Finally. the following under-relaxed discrete equation is obtained:

A :
—{DQP =3 Au®u + Sp + (
it nb

“’) Ap®s (5.70)

W‘

The selection of under-relaxation factor w is very important for cost-effective
simulation. Too large a value of w may lead to oscillation or even divergence to the
solution and too small a value of w will result in slow convergence. Unfortunately,
there is no general rule to choose the optimum value of the under-relaxation factors.
They are flow dependent and must be sought on a case-by-case basis with previous

experience.

5.8 Pressure-Velocity Coupling Approach

5.8.1 Introduction

The pressure gradient term in momentum equations is an important term
among source terms. If the flow is incompressible the density is constant, there is
no link between density and pressure but strong link between pressure and velocity.
The difficulty of the problem concerned is how to calculate the pressure field and
make the velocity field satisfy both the momentum and continuity equations. This
kind of problems can be resolved by using the so-called pressure correction methods
first introduced by C'aretto et al. [28] and Patankar and Spalding [136].

Several pressure correction methods have been developed. One of the most

extensively used pressure correction methods is the SIMPLE algorithm (Semi
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Implicit Method for Pressure Linked Equations). (‘aretto et al. [28] and Patankar
and Spalding [136]. where a pressure correction equation is derived from the dis-
cretized continuity and momentum equations and gives rise to appropriete correc-
tions of the pressure and velocity fields obtained from the momentum equations. In
addition. a number of pressure correction methods which are improved versions of
STMPLE algorithm have been derived, such as SIMPLER (SIMPLE-Revised)
algorithm of Patankar [135]. SIMPLEC (SIM PLE-Consistent) algorithm of Van
Doormal and Raithby [178]. PI50 (Pressure Implicit with Splitting of Operators)
algorithm of [ssa [90]. etc..

The pressure correction method used in this study is based on the STV PLE al-
gorithm. Patankar [135]. A\ collocated grid arrangement in general non-orthogonal
curvilinear coordinate syvstem is applied for its convenience in computer program-
ming and boundary treatment. An appropriate technique, originated by Rhie and
Chow [147] and developed by Majumdar [119]. is utilised to avoid the decoupling
between velocity and pressure fields. A method proposed by Giannakoglou et
al. [60] is employed to accelerate the convergence of the solution of the pressure

correction equation.

5.8.2 The Pressure Correction Equation

The continuity equation is integrated and discretized over a control volume,

giving rise to
F.—F,+F,—F,+F;—F,=0 (5.71)

or
V], (6n6¢) — [pV],, (8n6¢) + [pU],, (6€6C)— (5.72)
— [pU], (8€6¢) + [pW], (8&dn) — [pIV], (6€dm) = 0

When applying the values of provisional contravariant velocity components
[™=.V~ and 11" on control volume faces. which can be obtained by initial assump-
tion or previous iteration, to the continuity equation. there will appear a “mass

source” term i, at the right-hand side of the continuity equation instead of zero:

[pV 7], (6178¢) = [pV*],, (6n6C) + [pU~],, (8£6¢)— (5.73)
— [pU"], (8€6¢) + [pW™], (6€6m) — [pW ], (6€dn) =

where * stands for provisional values.
The calculation of m, requires the contravariant velocities Uz (m = 1,2,3) at

control volume faces. They can be obtained from the momentum equations, which

will be described in detail in Section 5.7.4.
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['he accurate values of up. vp, wp and pp can be expressed as their provisional
r S * !‘ 1* ¥ * A AR 3 o) ¥ \ A1 . ! !
values up. vp. wp and pj plus corresponding correction values Up. Up, wp and Pp
respectively. Hence

up =up + ulp
rtp =0vp + v}; -
wp = wp + w'P (5.1 )
PP =pp + pp

Both set of values up. vp. wp. pp and Up, vp, wp, pp satisfy the momentum
equations:

Apup =3 Aty + 8T+ STPT 4 ST 4 (pebe + pyne + p, ) (J8E6MSC) (5.75)
nb

Aprp = Zb A+ 8T 4 STPT 4 89T 4 (pe€y + pomy + peC, ) (J8E808C) (5.76)

Apwp =) A + 55T + S0P+ SOT 4 (pebe + pans + peC ) (J6E8NSE) (5.77)
nb

and

Apup = Z Anptne + ST+ STPT 4+ SOT 4 (pie + Pina + PG (S E60SC) (5.78)

Aprp =3 Aneny + 57T+ SOPT 4+ SUT 4 (€, + pmy + PG ) (J6E8RSC) (5.79)
nb

Apup = Z A% wern, 4 SHOT L SODT 4 QOT 4 + (Pg€- +ppn- +peC.)(JEdndc) (5.80)
nb

Subtracting Equations (5.75) to (5.77) by Equations (5.78) to (5.80) respectively
produces the following relations relating to the velocity corrections with the pres-

sure correction:

Apup =3 Wuny — (Pea + Py + G )(JEEMSC) (5.81)
nb

Abvp = Z Ay vy — (Pe&y + Pyly + PGy ) (JEMSC) (5.82)

ABwp = > A%y — (pels + Py + peC:)(J6E6MEC) (5.83)
nb

The first term of the right-hand side of Equations (5.81) to (5.83) can be
neglected because up, vp and wp tend to be zero when convergence is achieved.
Substituting Equation (5.74) into simplified Equations (5.81) to (5.83) gives rise
to

up = up + (B"p; + C"p, + D"p) (5.84)
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vp=vp+ (B + C'p, + D¥pl) (5.85)
wp = wp+ (B“'pl£ + (WPI:; + D“’plc) (5.86)
where
JSESNC JSENSC “
Bu — _(ﬁ;mg cvo= | ]5\511]5@)‘ R CLI UL
p A A¥
oo W00 SN (J8Ensg)
- Sy ' , ’ - = . - —( -2 ' 27
Ap by Y
e = _¢ WJonog) I CLISYLIS _¢ (J8E8n80)
T Y Ty
(5.87)

Substituting Equations (5.84) to (5.86) into Equations (3.29) to (3.31) produces

the expressions of the contravariant velocities {'p, V5 and 11p:
Up=1Up +J(B'6 + B¢, + B E.)p;
+J(CHE + CUE + CHE)p, (5.
+J(D"E: + D¥¢, + Dwfz)plg

ot
o
o8]
N

\p=15 +J(B“n, + B'n, + B“’r;z)pé
+J(C¥nr + C¥ny + C'“'r]z)p; (5.89)
+J(D*n: + D¥ny + D¥n-)p,

Wp =05 +J(B“C + B*C, + B*C.)p;
+J(CUCI + CUCy + C‘M'C:)pln (590)
+J(D*C, + D¥¢, + D¥C)p,

The cross terms. marked with under-line, appear due to the non-orthogonality

of the coordinate system and can be neglected without affecting the converged

solution. so the simplified expression for {'p. V» and 1'p becomes:
['p =07+ Bp
ilp =15+ Cp, (5.91)
Wp =Wp+ Dp,

where

J(B*¢; + B¢, + B¥¢.)
J(C'ne + Cyy + C¥)2) (5.92)
J(D¢: + D¢y + DY)
91) into (5.72) and combined with Equation (5.73)

and rearranging the equations, we eventually obtain the pressure correction equa-

B
‘
D
Substituting Equation (5

tion as follows:

A2pp = Ape + Mepy + py + Alps + App 4+ Alpg —m, (5.93)
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where
.4‘) = (pB)e(8n5C)e l” = (pB)w(6nd()y
(pCV)n((s’](SC)n A S = (IOC)S((SU(SC)S (5 94)
A’p = (pD)s(ond)y Al = (pD)y(18¢), -
Ap = AL+ AL+ A+ 8+ R R
and
= 1P (9050) ~ bV, (00 + U, (6650

— [pU~], (386Q) + [pW 7], (8€dm) — [p¥V 7], (8€6n)
The solution procedure of the pressure correction equation is prone to oscilla-

tion or even divergence unless some under-relaxation is used during the iteration

process. The new. updated, pressure field is obtained by

Pr = DPp +w,pp (5.96)

where ., 1s the under-relaxation factor for the pressure equation. which is between
0 and 1.

The term m, is the "mass source” (Patankar [135]) of the pressure correction
equation and is actually the left hand side of the discretized continuity equation
evaluated in terms of the provisional velocities. When m, becomes zero, the conti-
nuity equation is satisfied and no corrections for both pressure and velocity fields
are required.

It can be seen that the Equation (5.93) has similar form to the general discrete
transport Equation (5.31). This provides the convenience that the solution process
of the pressure correction equation can be performed in a similar way as that of

the general discrete transport equation system which is described in Section 3.5.

5.8.3 Acceleration to Pressure Correction Equation

The set of pressure correction equations for the whole flow field, derived in a
similar way to that of the governing equations and written in the form of Equation
(5.97). can be iteratively solved using the same approximate factorisation scheme,

i.e. SIP (Strongly Implicit Procedure) described in Appendix C.

— -

[Blp' = S (5.97)

where B is the coefficient matrix, p’ the pressure correction vector and S* the

“mass source vector.
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In this study. the convergence of the pressure correction equation is accelerated
by imposing residual minimisation constraints, Giannakoglou and Politis [60]. The
detailed method was also described and used by Politis and Giannakoglou [139]
and they are stated as follows.

Firstly. [B] is approximately decomposed into an upper and lower triangular
matrices. i.e.

[B] ~ [P]™" = [L][U] (5.98)

and a preconditioned pressure correction is obtained based on SIP, Stone [167]
p' = [P]S- (5.99)

where [P] is the approximate inverse of the coefficient matrix [B]. Then a precon-
ditioned residual

(n)

R = [P(Blp"" — 5" (5.100)

1s minimized. In order to advance the solution from iteration (n) to iteration
(n 4+ 1), the preconditionaed residual multiplied by an acceleration parameter 3 is

added to the existing solution vector };’(n) according to the expression

= (n+1) _ =~(n) n 131:_{(") 5101
p p

The calculation of .3 is based on the minimisation of the preconditioned residual

at the next iteration (n + 1) and its final expression is given by:

03]
F = = 5.102
a? 4+ a3 ( )
where -
R
oap =5 —= (5.103)
| R
R
o = |7 — oy — H (5.104)
| R

According to Equation (5.104), vector ¥ is calculated through the definition of an

intermediate vector 7 and the following two step procedure:

Stepl : [L]y" = [B]——
Step2 : [U)5 ="

Actually, this approach employs a weighted, over the whole field, correction

to the values of pressure correction obtained from SIP. This method was proved

more efficient by Giannakoglou and Politis [60].
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Figure 5.9: Schematical expression of control volumes and nodes

5.8.4 Remedy to Pressure Oscillations

The arrangement of a non-staggered grid does provide convenience in com-
puter programming and the treatment of boundary conditions. However. an os-
cillatory pressure field may appear due to the second-order centred 24¢;-difference
approximation of the pressure gradient at the grid nodes, Rhie and Chow [147].
One of the remedies to remove the oscillation is by using a staggered grid, but it
cannot be applied to a collocated grid system.

Rhie and (‘how [147] proposed a remedy to overcome the pressure oscillations
in a non-staggered grid system, which is called Rhie and Chow scheme or Momen-
tum Interpolation scheme. Tourlidakis [173] applied this method in his calcula-
tions, which proved to be very eflective. The idea of the method is to introduce
two different expressions for the two pressure gradient terms in the contravari-
ant velocity component expressions to sense 16¢;-pressure difference. The detailed
expression for contravariant velocity component, for example at “¢” volume face

schematically shown in Figure 5.9. is as follows:

op” dp* -
( € ) - ( % ” (5109

*

0 :
where the first pressure gradient term ( Opé) is calculated by the 14{;-centre

Ue :UE-F_B;

pressure on the volume face:

(QE) _Pe—Pr (5.106)
o ),  (68)e
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) X

The second pressure gradient term ( ,

) and other terms with overbars are the
€

values obtained from an interpolation between their corresponding values at grid

P and E:
(?f; ) = fp (001; )E + (1 — fp) (%pg )P (5.107)
where
o™\ Pep — P
( 0¢ )E " (06)e + (86).e
(ap* _ PE =Dy
o€ )p (86)c + (86)w
and
Uo = frUp 4+ (1 - fp)Up (5.108)
B." = fpBr + (1 — fp)Bp (5.109)

where fp is the interpolation coefficient determined by volume geometry.

Similar treatment is applied to other contravariant velocity components. After
this treatment. m, can sense the 16¢;-pressure difference and the pressure correc-
tion can eventually remove the pressure oscillation during iteration processes.

However. it was found that with Rhie and Chow’s scheme the converged result
for any flow situation depend on the under-relaxation parameter used for velocity.
Majumdar [119]. Thereafter, Majumdar [119] improved the momentum interpola-
tion and make it independent of the under-relaxation parameter used. The method
of removing the pressure oscillations used in this study follows the idea suggested
by Majumdar [119]. which is also described by Giannakoglou and Politis [60]. The
details are as follows:

The discretized momentum equations give the expression for the contravariant

velocity component at nodes P and £, Figure 5.9:

J ap 06] aé'rr ;
= — =1,2.3 5.110

. J dp 0&; 9, .
(L) = Hay (AP)M [aﬁj D 8:1:1-]” (m ) ( )

where M denotes a neighbouring node and H includes all the terms on the right-

hand side of the discrtized momentum equation except the pressure gradient term:

1 . 73 1 HOT , ~CDT o\ 9&r :
_ : . S SYiy == 5.112
H=— [(}nbj Anbuz,nb) 8@] + !(S, + 57+ ST )5 (5.112)




Chapter 5. Numerical Procedures 127

An under-relaxation parameter w is incorporated for stability reason to update

the cell centre velocity components as:

(U)p = [Hp - (i)P ("” o 05") } T8 (5.013)
P

Ap OE, Dy i,

. _ . I dp df, dfﬂ ; (n) )
(Urdar = [H“’ < )A\, (agj Dy O.z'z)‘\,} =)y (5.114)

Ap

where (l-’,r)ﬁ?) and (Un)_(\'}) are values of ({';)p and ({',)y; at the previous iteration

level. This scheme assumed a linear variation between nodes for velocity, source

: J : :

term H and the quantity (T) Therefore. the contravariant velocity component
Ap

at the cell face mayv be written as:

- - 7 0 0 0 s r 7
(0 )mig = [H — (q—;) (05 aij 0i):| + (1 - w)(l“'n)ini)d (5115)

H = fyHp + (1 — far)Hy,

(L) = (L) +a-ni(L),

(C)) = far(C) 8 + (1= far)(Un) &) (5.116)

where fys is the interpolation coefficient determined by volume geometry; “mid”

where

is any face centre lying between the central node P and the neighbouring node
M: and the overbar represents the quantities transferred to the volume faces by
interpolation over the adjacent central nodes.

Equation (5.115) clearly shows that the cell face contravariant velocity ({'z)mid-
during the iteration process. is made up of the w portion of the value resulting
from the momentum interpolation and the (1 — w) portion of the value from the
linear interpolation.

The last term in Equation (3.115) is treated explicitly in order to prevent any
dependence of the solution on the under-relaxation factor. The pressure gradient
term at volume faces in the equation is calculated with pressure difference between

grid nodes P and AM:
dp _ pm —pe (5.117)

9 (0&)mia

In this way, the “mass source” of the pressure correction equation m, calculated

with contravariant velocity components can sense the 16¢;-pressure difference and

the pressure oscillation can be removed during the iteration process.
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5.9 Solution Procedure of SIMPLE Algorithm

So far.the transport equations have been discretized and the pressure correc-
tion equation has been derived. With approximate implementation of boundary
conditions which will be discussed in calculation cases in the next chapter, a com-
plete set of discrete equations is to be solved with some kind of iterative procedure
in order to get solutions of the flow fields for certain cases.

The STMPLE algorithm provides a method of calculating pressure and veloc-
ity fields for incompressible flows. The method is iterative and the procedure of
the SIM PLE algorithm is outlined as follows:

1. Guess the initial values of parameters u™, v™, w*, p*, k™, €*, u*. etc., as provi-
sional values for all the nodes in the flow field. The initial values are expected

to be not too far from reality. Otherwise. it may cause divergence.

2. Calculate the coefficients of the momentum equations and solve the discrete

momentum equations to obtain a new velocity field.

3. Calculate the coefficients of & and € equations and solve the discrete k and ¢

equations to get new values of k. € and turbulent viscosity pur.

1. Calculate the new value of “mass source” m, and the coeflicients of the
pressure correction equation. Solve the pressure correction equation to obtain

the pressure correction field.

5. Update the pressure field and the velocity field with the pressure correction

field.

6. Check if the convergence criteria are satisfied. If not, return to step (2) and

repeat the process until convergence is achieved.

5.10 Convergence Criteria

During an iteration process of the SIMPLE algorithm, the iteration process
is checked and is stopped when certain criteria are satisfied.
In the case of a single blade passage domain, a solution is supposed to be

converged when the residuals of all the flow variables satisfy the following two
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conditions:

loglo Z I:’lpq)p - Z Aan)nb - Sp!] < 5@
L nb (5.118)
loglo Lmax (lrlpq)p — Z Aan)nb — Spln) < 5@
nb

where n is the nodal index (n = 0 to N) and d¢ is a negative number, normally
equals to -2.5. The first equation means that the summation of residuals of all
the control volumes in the computational domain satisfies the criteria, and the
second equation means that the maximum residual in the whole domain satisfies

the criteria.



Chapter 6

Prediction and Analysis of a Low

Speed Research Compressor

6.1 Introduction

The physical and mathematical models and numerical algorithm towards the
three-dimensional simulation of multistage turbomachinery flows have been de-
scribed in previous chapters. Two tvpes of approaches for flow simulation in mul-
tistage axial flow compressors have been used and developed in the current study,
one is based on the mixing plane approach and the other is a deterministic stress
model based on the average passage approach described by Adameczyk [2]. The tip
leakage flow in rotor blade rows is rigorously simulated with a two block grid sys-
tem. Two repeating stage models have been developed aiming at simplifying the
aerodynamic boundary setting when simulating flows in rear stages of multistage
axial flow compressors.

The test case used in this study is the Cranfield 4-stage Low Speed Research
Compressor (LS RC'). Numerical simulations with different approaches have been
carried out for both the third stage and the complete 4-stage compressor. Detailed
comparison between the numerical results and the experimental data is made in
this chapter in order to assess the prediction accuracy of different approaches.
Performance prediction of the third stage working at off-design conditions and the

analysis of entropy generation rate are also carried out.

130
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6.2 Cranfield Low Speed Research Compressor

The Cranfield University (('{7) Low Speed Research Compressor (L.SR(') con-
sists of four repeating stages. The design of the blading and the aerodynamic mea-
surements were carried out within the BRITE EURAM project A¢'3.4 (Advanced
Civil Core Compressor Acrodyvnamics). Swoboda et al, [170]. The experimental
mvestigation was carried out at (‘ranfield University.

For multistage low speed research compressors with identical stages, it has been
found that the flow approaches a repeating flow pattern after several stages (at
least two stages). Four stage research machines have been adopted in a number of
cases for this reason. where the first two stages function as leading stages where the
flow fully develops and reaches a repeating pattern. and the fourth stage functions
as a trailing stage providing representative back conditions to the third stage which
1= the stage under investigation . The third stage, the study stage, demonstrates
major flow features of a typical rear stage with repeating flow features working in
a multistage environment. More description of the Cranfield Low Speed Research

Compressor (LSRC') can be found in Appendix B.

6.3 Brief Description of Computational Methods

6.3.1 Governing Equations and Numerical Algorithm

The flow in the compressor is assumed to be incompressible, three-dimensional,
adiabatic. steady in a relative frame of reference and turbulent.

The governing equations for the flow problems concerned are the mass conti-
nuity and momentum equations which are described in Chapter 3. The form of
the ensemble averaged Navier-Stokes equations are used in the predictions with
the mixing plane approaches where the unsteady term is ignored. The form of the
time averaged Navier-Stokes equations are used in the predictions with the deter-
ministic stress approaches. The standard k — ¢ turbulence model, Launder and
Spalding [106]. is used to “close™ the Reynolds averaged equation system and the
overlapped solution approach is used to “close” the time averaged equation sys-
tem. The standard wall function method is introduced to simplify the treatment
of near wall regions.

The third order QUIC'K scheme is applied to the momentum equations and
the first order upwind scheme is applied to the k and € equations. The QUIC'K

scheme is more accurate than the upwind scheme but is prone to instabilities or
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even divergence as it remains unbounded. For this reason, QUIC'K" scheme is
only used in momentum equations. (‘entral differencing is applied to the pressure
gradient terms and other source terms of the governing equations.

The SIMPLE approach, Patankar and Spalding [136], is used to update the
velocity and pressure fields in an iterative way. Stone’s Strongly Implicit Procedure
(STP) (Stone [L167]) is applied to the discretised momentum equations to obtain a
solution. The strongly implicit procedure combined with the residual minimisation
constraints. GGiannakoglou and Politis [60]. accelerates the solution convergence of
the pressure correction equation. Approximate under-relaxation is used for the

equation svstem to enhance the convergence of each equation.

6.3.2 Computational Grids

In order to predict the flow rigorously in both the main passage and the
tip clearance of a rotor blade row, a H-type two-block grid is used for a rotor
passage. A single H-tyvpe block grid is used for a shrouded stator passage. In the
rotor passage including its upstream and downstream extensions. the first block
fills the main passage below the cylindrical blade-to-blade surface at the blade
tip radius and defined by two successive blades, and the second block . the tip
block. fills the remaining part of the flow domain lying between the blade tip
radius and the outer annulus. In the stator passage, a single block is used to
describe the domain between two shrouded stator blades including its upstream
and downstream extensions. where the stator hub cavity is ignored. The grid block
arrangement and the grids for the third stage of LSRC used in the mixing plane
approaches are shown in Figure 6.1. In the predictions with the deterministic stress
model. the grid for each blade passage has a further downstream extension which
covers the flow passage of the following blade row. The grids for the third stage of
LSRC used in the deterministic stress approaches are shown in Figure 6.2. The
grids for other stages of LSRC' are the same as those for the third stage because
the geometry of every stage is the same. The number of the grid nodes used in
the prediction are shown in Table 6.1. More details about the grid generation are

described in Chapter 2.

6.3.3 Boundary Conditions

Detailed boundary conditions for each computational domain of blade rows

are described in Chapter 5 and will not be repeated here. The inlet and outlet



Chapter 6. Prediction and Analvsis of a Low Speed Research Clompressor 133

STATOR GRID BLOCK

ROTOR GRID BLOCK 2

ROTOR GRID BLOCK

Figure 6.1: Grids for LSRC third stage
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Figure 6.2: Grids with downstream extension for LSRC third stage

Parameter Rotor Stator

Grids (for Deterministic Stress Model) | 35x35x115(main) | 35x35x115
40x9x115 (tip)

Total number of grid points 182,275 140,875

Grids (for Mixing Plane Model) 35x35x7H(main) | 35x35x75
40x9x75(tip)

Total number of grid points 118,875 91,875

Table 6.1: Number of grid nodes
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boundary conditions for the third stage or the complete four stages of LS in

different computation cases are presented in the following sections.

6.3.4 Under-Relaxation Factors

In global iterations. under-relaxation is used to enhance the consistency of
all the parameters at the interfaces between blade rows. The relaxation factors
for global iterations normally take a value of 0.7 in the first several iterations and
about 0.9 in the following iterations.

Under-relaxation is used to enhance the convergence of the governing equations
during the local iterations. The relaxation factors for all the equations normally
take the value of 0.10 in the first global iteration and 0.15 for the stator and 0.25
to 0.30 for the rotor in the following global iterations.

In general. the determination of the under-relaxation factors are problem de-

pendent and based on previous experience.

6.3.5 Computation Time Required

The computational time requirement on a DEC' ALPHA FARM for each inner
iteration is approximately 5 seconds for a grid which only covers a blade passage
without an extension and 7.5 seconds for a grid which has further downstream
extension covering the flow passage of the following blade row. Typically, a maxi-
mum number of 5.000 inner iterations is used locally for each blade row to satisfy
numerical convergence criteria for the governing equations and about 15 to 20
global iterations are required for global convergence of a single stage computation

and about 10 global iterations for a four stage computation.

6.3.6 Convergence Criteria

In order to achieve a converged solution, two types of convergence criteria
must be satisfied. The first one refers to the numerical convergence criterion for
the governing equations on each blade row. which is satisfied when the residuals of
all the governing equations are sufficiently small. This type of criteria is discussed
in detail in Chapter 5. The second type is a physical convergence criterion for the
global iterations when physical flow quantities of the flow (mass flow rate, velocity.
static and total pressure, k and € ) in each computational domain stop changing

and provide consistency of all the parameters at the interfaces between blade rows
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with global iteration count. Specified target mass flow rate for each blade row as

a constraint is used globally to enhance convergence and avoid accumulated mass

flow rate error.

6.3.7 Computer Code

A computer code M STurbo3D originated from code ELISA. Politis et al.
[141] has been developed in this project based on the physical and mathematical
models and the numerical algorithm described in this thesis. The structure of the

code 1x demonstrated in Appendix D and the format of input data files is described

in Appendix E.

6.4 Prediction I: LSRC Third Stage with Con-
ventional Boundary Setting and Mixing Plane
Model

The layout of the computational domains and boundary condition setting for
the third stage of LS RC is shown in Figure 6.3. There are three mixing planes used
for the stage analysis. one at the inlet of the rotor, one at the interface between
the rotor and the stator and one at the exit of the stator. The spanwise velocity
profile at the stage inlet is set equal to the experimental data, Figure 6.5. k£ and €
distribution at the stage inlet are calculated with the local velocity value and im-
posed at the inlet. The mixing plane models are used to pass information between
the rotor and the stator computational domains at the interface located halfway
between the two blade rows, where the velocity, k£ and e propagate downstream
and the static pressure upstream:.

Performance comparisons of the third stage of LSRC are carried out at the
operating point of peak efficiency. at the inlet, the exit and the interface between
the blade rows in terms of total pressure. static pressure, flow angle and velocity
components. In addition, static pressure distributions on the rotor and the stator
blade surfaces near blade hub, at midspan and near blade tip are also compared
against experimental data. The experimental data are obtained from the A('34
project where the total pressure, static pressure and flow angle distributions were
directly measured whereas the velocity components were calculated from them.

The predicted area averaged static pressure and total pressure distributions in



Chapter 6. Prediction and Analysis of a Low Speed Research Compressor 137

7]
= l
= =
~§ 1 2
S
w R
=3 | N
e ~
1 | B
I TS
S A
i.;‘co
S Ry
Y
“ T3 3
2 <
)
Ny - 0
S S
V
-
<

Figure 6.3: Boundary conditions for Prediction [

the axial direction of the third stage are presented in Figure 6.4. Compared with
the experimental data at three stations of the stage. the inlet, the interface between
the two blade rows and the exit. good agreement between the computational and
the experimental data is shown in the figure although there are small discrepancies.
When an average static pressure is fixed at the stator exit. static pressure ratio
was over-predicted by about 2% in the stator and under-predicted by about 2%
in the rotor. Regarding the total pressure, the prediction provides about 2% over-
predicted pressure ratio throughout the stage. Sudden changes of average static
pressure and total pressure appear near the leading and trailing edges of each blade
row. showing that there are strong interaction between the blades and the flow and
significant influence of the sudden change in passage area.

The difference between the total pressure on both sides of the mixing plane is
nearly negligible. showing that the discontinuity of the momentum resulted from

the mixing-plane model is very small and can be neglected at peak efficiency for

this compressor.
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Figure 6.12: Spanwise flow angle at stage exit from Prediction I & []

The calculated spanwise distribution of velocity components at the interface
between the two blade rows and the stator exit match very well with the experi-
mental data for most part of the blade span although with some discrepancies in
the area between S0% and 100% span near the rotor tip, see Figures 6.6 to 6.7.
The discrepancies at the rotor exit are very likely due to numerical inaccuracies in
resolving the complex, unsteady tip clearance flows because even when the inlet
velocity profile is set equal to the experimental data these discrepancies still exist.
Downstream the stator passage these discrepancies become smaller because there
is no tip clearance in the stator.

In Figures 6.8 to 6.10 the spanwise distributions of static and total pressure are
presented for the three locations. Good predictions of static pressure at the three
stations are shown with slight under-predicted static pressure at the interface.
The sudden changes of experimental static pressure near the annulus wall are not
physical and susceptible to measurement error due to the presence of the solid walls
(Howard et al.. [88]). Hence, the difference in static pressure between experiment
and prediction near the blade tip should not be as large as shown in Figures 6.9
and 6.10.

The spanwise total pressure distributions are well predicted as compared with
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the experimental data except for the area hetween 30% and 100% span at the mid-
interface and the stator exit. In the case concerned the fow in the compressor is of
low speed and is assumed to be incompressible and the total pressure is calculated
using static pressure and velocity values so the discrepancy of the total pressure
near the blade tip is caused by the inaccurate prediction of velocity distribution
in this area.

The spanwise distribution of relative flow angles at the rotor and the stator exits
are compared with the experimental data in Figures 6.11 and 6.12 respectively. The
maximum difference of the flow angle between the prediction and the experimental
data in the area between 0% to 90% span is less than 2 degrees, but in the area
between 90%T to 100% blade height it reaches approximately 8 degrees in the rotor
and about 10 degrees in the stator due to the inaccurate prediction of the flow in
the rotor tip clearance.

The relative total pressure contours and velocity vectors in cross plane views
in and near the blade tip clearance at 20%. 40%, 60% and 80% blade chord down-
stream Rotor 3 leading edge are shown in Figure 6.13. Strong crossing flow in the
tip clearance causing secondary flow near the tip is also illustrated in the figure.
It 1= clear that the relative total pressure is higher in the pressure side of the blade
and lower in the suction side and tip clearance. Larger values of the relative total
pressure and velocity near outer casing is due the relative moving of the casing.

Static pressure distributions on both the rotor and the stator blade surfaces
are presented in Figures 6.14 to 6.19 and show very good agreement with the
experimental data in most of the blade chord. Some discrepancies in the static
pressure near the stator blade leading edge at tip are shown in Figure 6.19, which
may be due to the inaccurate prediction of rotor tip leakage flow and the subsequent
inaccurate flow incidence to the stator blades.

The predicted relative total pressure contours at the rotor exit and the abso-
lute total pressure contours at the stator exit are plotted and compared against
the corresponding experimental contours. In Figure 6.20 which is viewed from the
front of the stage in the relative frame of reference, clear wakes at downstream of
the rotor are well predicted. The calculated tangential gradients are in agreement
with the experimental contours but with smaller average values. The peak point of
the total pressure in the prediction appears at about 67% of the blade height and
half way between the blade pressure and suction surfaces, while in the experimen-
tal contours the peak point appears at about the same blade height but close to

the blade pressure surface. Deeper wakes are predicted compared with the exper-
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imental data especially near the hub and the tip. At the exit plane of the stator,
Figure 6.21. quite similar total pressure contours are predicted as compared with
the experimental ones. but with around 0.3 higher value in (P, — P,.ff)/(%p[ffl)
peak value in the main passage. In the arcas between 5% to 80% blade span of the
main passage. the predicted total pressure values are nearly uniform as found in
the experiment as well. Obvious deficits are predicted at the flow region originated
from the shroud suction surface corner that may be due to the separation of the
flow which does not appear in the experimental contours.

The static pressure and velocity vectors distributions in blade-to-blade surfaces
at o%. 40%. 80% and 99( blade heights of the Rotor 3 passage are shown in Figures
6.22 and 6.23. giving a detailed description of the flow inside the flow passage. In
the rotor tip clearance area (99% blade height). low pressure area can be spotted
above the blade between 10% to 30% of blade chord downstream the leading edge
and the strong crossing flow is apparent in the velocity vector distribution. In the
Stator 3 passage. the static pressure and velocity vector distribution in blade-to-
blade surfaces at different blade heights are shown in Figures 6.24 and 6.25. Flow
separations on the blade suction surfaces near the trailing edge can be observed
in Figure 6.25 near the hub (5% blade height) and the tip (99% blade height).
The influence of the separation on the downstream flow can also be seen in Figure
6.102 where the low total pressure areas appear near the hub and the tip in the
wake area.

In conclusion, the mixing plane approach combined with conventional bound-
ary setting is a fast and effective method for flow and performance prediction of low
speed axial flow compressor stages working near peak efficiency. The discontinuity
of aerodynamic parameters at the interface between blade rows does not intro-

duce large prediction errors when the machines operate near their peak efficiency

condition.

6.5 Prediction [/: LSRC Third Stage with Re-
peating Stage and Mixing Plane Models

The repeating stage Model I combined with the mixing plane model is de-
scribed in Chapter 4 and is used to simulate the flow field in the LS RC third stage.
The detailed computational results are described and analysed in this section. In
this prediction case, most of the physical and numerical models are similar to those

in Prediction I. The only difference lies in the aerodynamic boundary conditions
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which is schematically shown in Figure 6.26. With the repeating stage model / the
requirement of inlet and outlet boundary conditions is significantly simplified. The
only requirement is a total mass flow rate and stage exit average static pressure.
The predicted results with this approach at the same working condition of the
same compressor stage are compared with the experimental data and those from
Prediction [ as follows.

The area averaged static pressure and total pressure along the axial direction of
the compressor stage are shown in Figure 6.4. Good agreement is achieved in most
axial locations except in the rotor upstream extension. Compared with Prediction
I, the discrepancy from Prediction I1 comes from the different stage inlet velocity
profile which is set to be equal to that at the stage exit.

Figures 6.5 to 6.7 show that the predicted velocity profiles match well with the

experimental data in most of the blade span. Over-prediction of axial velocity 1s
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shown in the area between 3% to 15% and between 80% to 92% blade height and
over-prediction of circumferential velocity in the area between 85% to 100% blade
height. The spanwise distribution of the predicted velocity components at the exit
of the rotor and the stator from Prediction 17 are similar to those from Prediction
I but not as good as Prediction I especially near the blade hub and the tip.

Due to the discrepancy of the stage inlet velocity setting as compared to Predic-
tion /. over-predicted spanwise static pressure and total pressure distributions at
the stage inlet are shown in Figure 6.8, especially for total pressure near the blade
hub and tip area. Downstream of the stage. this discrepancy becomes smaller and
close to the results from Prediction I.

Small discrepancy can also be seen in the spanwise distribution of the flow angle
at the exit of the rotor and the stator in Figures 6.11 and 6.12, with about 2 degrees
maximum difference to Prediction /. The spanwise flow angle from Prediction I/
1s about the same accuracy to the Prediction I compared with experimental data
in most part of the blade span.

Similar predicted static pressure distributions on the rotor and stator surfaces
to Prediction [ are shown in Figures 6.14 to 6.19. The only obvious discrepancy
can be seen near the rotor tip in Figure 6.16 compared with Prediction I but is also
around the experimental data. This discrepancy comes from the difference in the
inlet velocity setting. especially near the blade tip where there is more difference
in the velocity profile (see Figure 6.5).

The total pressure contours agree well for Predictions [ and I/, Figures 6.20
and 6.21. At the exit of Rotor 3, Prediction I] shows larger calculated relative
total pressure values near about 67% and 15% blade height due to the larger
velocity values at the same locations, Figure 6.6. In general, the difference of the
calculated total pressure contours between the two predictions is very small.

To conclude. the repeating stage model is an effective tool to simplify the
boundary conditions for the analysis of rear stages of multistage axial flow com-
pressors. The predicted results with this model for the third stage of the LSRC

provides comparable accuracy to those with conventional setting of boundary con-

ditions.
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6.6 Prediction /7/]: LSRC Third Stage with Con-

ventional Boundary Setting and Deterministic
Stress Model

In this section. the predicted results of the flow with the more rigorous de-
terministic stress model for the third stage of LSRC' are presented and compared
with those from Prediction I and with the experimental data, aiming to show any
improvements from the deterministic stress model to the prediction.

The layout of the computational domains and the setting of the boundary con-
ditions are shown in Figure 6.27. Because of the implementation of the overlapped
domain approach. Stator 2 domain provides an upstream flow environment and a
deterministic stress field to the third rotor and Rotor 4 domain provides a down-
stream flow environment to the third stator. The inlet velocity profile and the exit
average static pressure to the third stage are set to the experimental values, which
15 also the case for Prediction /. By taking advantage of the repeating nature
of the compressor stages in order to simplify the boundary conditions, the inlet
velocity. & and € profiles of Stator 2 are set to be the same as those at Stator 3
inlet (Interface 2).

Compared with the mixing plane model used in Prediction /. the deterministic
stress model has the advantage that the momentum terms are continuous at inter-
faces by introducing the deterministic stresses in the momentum equations. For
example. circumferentially area-averaged spanwise distribution of the momentum
terms at Rotor 3 inlet at Interface 1 before and after the interface are compared in
Figure 6.28 where two different models, the mixing plane model and the determin-
istic stress model. are used to calculate the momentum terms across the interface.
The difference between the momentum terms before and after the interface with
the mixing plane model is obvious. With the implementation of the deterministic
stresses the calculated momentum terms after the interface with the deterministic
stress model keep almost unchanged. Minor inconsistency in momentum terms is
due to numerical errors.

The circumferentially area-averaged body force component distribution in cylin-
drical coordinates in the downstream of Rotor 3 and Stator 3 are illustrated in
Figures 6.29 and 6.30. The axial body force component contributes to the pres-
sure distribution and part of momentum change in the axial direction, the cir-
cumferential body force component contributes to the turning of the flow in the

circumferential direction and the radial body force component contributes to the
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Figure 6.27: Boundary setting for Prediction ///

static pressure and mass flow rate distribution in the radial direction.

The circumferentially area-averaged deterministic stress component distribu-
tion in cylindrical coordinates at downstream of Stator 2 and Rotor 3 are shown
in Figures 6.31 and 6.32. The deterministic stresses generated by Stator 2, Figure
6.31, are imposed on the Rotor 3 passage and the deterministic stresses generated
by Rotor 3, Figure 6.32, are imposed on the Stator 3 passage. It can be seen in Fig-
ure 6.31 that the deterministic stresses have larger values in the area close to the
hub and the tip in the stator downstream domain than in the central domain of the
passage due to the flow separations in the blade passage near the hub and the tip.
These separations generate larger periodic flow variation propagating downstream.
It can also be observed that the deterministic stress components shown in Figure
6.31 have their largest values near the trailing edge of Stator 2 and deteriorate very
rapidly downstream the Stator 2 blade trailing edge and become very small at the
interface. In Rotor 3 downstream domain, Figure 6.32, the deterministic stress
components containing v, are about ten times smaller than others and have the

largest values near the tip due to the influence of the rotor tip clearance flow. In
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Figure 6.28: Momentum terms at Rotor 3 inlet at interface 1
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axial direction. all the components have the largest values near the rotor trailing
edge and deteriorate very rapidly downstream. This means that for this low pres-
sure compressor the non-uniformity of the flow from a blade row is mixed out very
quickly and the benefit from the implementation of the deterministic stresses will
not be significant, which can be seen from the following performance comparison.

The contours of the deterministic stress components at the exit planes of Rotor
3 and Stator 3 from the experiment are compared with those from Prediction 1]
in Figures 6.33 to 6.38. The predicted deterministic stress distribution match very
well with those from experiments. At the exit of Rotor 3, the maximum values of
the predicted deterministic stress components are about half of the corresponding
values from the experiment. The reason for this discrepancy is that the predicted
wake generated by the rotor blade is not as strong as the actual wake measured
in the experiment. which can be seen in Figures 6.61 and 6.62 where the circum-
ferential distributions of the axial velocity and the total pressure at midspan of
Rotor 3 outlet are shown. At the exit of Stator 3 the peak values of the calculated
deterministic stresses are slightly larger than those from the experiment because
the predicted wakes are stronger than obtained in the experiment, as shown in
Figures 6.63 and 6.64.

The contours of the turbulence kinetic energy distributions at the exit planes
of Rotor 3 and Stator 3 are shown in Figure 6.39. We can see that the peak
values of the turbulence kinetic energy is much smaller than those of the major
deterministic stress components.

In addition. the contours of total viscous stress components at the exits of Rotor
3 and Stator 3 are plotted in Figures 6.40 and 6.41 and the expressions of these
components are presented by Equations (6.1) expressed in cylindrical coordinates.
Obviously. they are also much smaller than the deterministic stress components.

_ dv,
Trr = 2(:” + :uT) or

01)9 Uy
o =2Aptpr) | mpt T
Jv,
T = 2p+pT) 5
Ov, Jvg vy (6.1)
T = Tor = (1t + K1) T T
ng 1 8vz

e =m0 =) G F

Tzr :Trz:(H+NT) 57,—+a:
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Figure 6.35: Deterministic stress pV,V, at Rotor 3 Exit
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Figure 6.37: Deterministic stress pV.V, at Stator 3 Exit
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The comparison among the deterministic stresses, turbulent kinetic energy (k)
and the total viscous stresses shows that the influence of the deterministic stresses
on the upstream extension of a blade row should be stronger than others.

The blockage factor distribution for Rotor 3 and Stator 3 is shown in Figure
6.42 which contributes to another part of axial momentum change inside the blade
passages. Without this correction, the predicted momentum and total pressure
inside blade passage in the blade extension domains will be completely wrong. For
example in the downstream domain of Rotor 3 which covers the Stator 3 passage,
area averaged static pressure and momentum terms in axial direction calculated
from the Stator 3 and Rotor 3 domains are compared in Figure 6.43. For the
Rotor 3 domain, two results are presented, one taking into account the blockage
and the other without taking into account the blockage. Figure 6.43 shows that

the result without taking into account the blockage effect gives wrong prediction

1 : : -
of the momentum component (—pwz), which contributes to the wrong prediction

of the total pressure distribution in the downstream extension of Rotor 3, Figure
6.44, because the increase of the total pressure in the stator passage downstream
the flow is not physical.

Performance comparisons among Prediction /71, Prediction I and the exper-
imental data for the third stage of LSRC are carried out in this section. The
predicted area-averaged static pressure and the total pressure distributions in the
axial direction of the compressor stage are presented in Figure 6.45. Compared
with the experimental data at three stations, the Rotor 3 inlet at Interface 1,
Interface 2 between the two blade rows and the Stator 3 outlet at Interface 3,

good agreement between computational and experimental data is shown. It can
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Figure 6.42: Blockage factor for Rotor 3 and Stator 3

be seen that there is very little difference in axial distribution of static and total
pressure values between the two predictions. However, the most interesting part
of the prediction from the deterministic stress model is the downstream extension
domain of the blade rows. where the predicted axial distribution of the pressure
show almost the same variation to that from the analysis of the downstream blade
row. This means that the development of the flow in the domain which covers
the following blade passage from an upstream blade row is well predicted with the
implementation of bodyforce and blade blockage effect of the downstream blade
row in terms of average effects.

In Figures 6.46 and 6.47 the comparison of the spanwise velocity profiles at
Interface 2 between Rotor 3 and Stator 3. and the Stator 3 exit at Interface 3 are
illustrated. The velocity distributions from the two predictions are close to the
experimental data and have almost the same accuracy. In the area between 80 %
to 100 % blade span at the exit of Stator 3. the deterministic stress model provides
slightly better prediction of velocity profile than the mixing plane model, Figure
6.47. This proves that the deterministic stress model provides slight improvement

to the velocity distribution.
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In Figure 6.43, Prediction I provides improvement for the spanwise static
pressure distribution and maintains almost unchanged to the total pressure dis-
tribution as compared to Prediction [. At the interface between Rotor 3 and
Stator 3. the spanwise distributions of the static pressure and the total pressure
in Prediction I/ can be obtained from both Rotor 3 and Stator 3 domains. The
predicted P, and P; distributions from the Rotor 3 domain are very close to those
from Prediction I. In the Stator 3 domain of Prediction I71, the predicted span-
wise P; distribution between 0% to 50% span is closer to the experimental data
than Prediction [ and the predicted spanwise P, in the same span area is slightly
over-predicted, while in the area between 65% and 100% span the P, distribution
is under-predicted compared to Prediction I and the P; distribution is obviously
better than that from Prediction I. At the Stator 3 exit, Figure 6.50, two predic-
tions of spanwise static pressure distribution are close to the experimental data
with almost the same accuracy although they differ with each other. Tor the
spanwise total pressure distribution. Prediction 111 gives better distribution near
the tip (between T0% to 100% blade height). Prediction I gives better distribu-
tion near the hub (between 0% to 50%) and the two computations provide similar
distribution near midspan.

As mentioned in Chapter 1. the spanwise static pressure distributions obtained
from the Rotor 3 domain and the Stator 3 domain at Interface 2 between Rotor
3 and Stator 3 is not consistent, which is shown in Figure 6.49. The maximum
difference of the static pressure values between two sides of the interface appearing
near the blade tip. is about 0.12% of the pressure ratio of the third stage.

In terms of flow angles, Prediction 1] demonstrates about 1 to 1.5 degrees
improvement in its spanwise distribution than Prediction I in the area between
5% to 80% blade height at Interface 2 and also in the area between 0% to 75%
blade height at Stator 3 exit (Interface 3). Near the tip area, Prediction I shows
slightly better prediction for spanwise flow angle distribution than Prediction I11
in the area between 94% to 100% blade height at interface 2 and between 87% to
95% blade height at Stator 3 exit (Interface 3).

The total pressure contours in the relative frame of reference at the exit of
Rotor 3 and in the absolute frame of reference at the exit of Stator 3 are compared
with those from the experiment and Prediction I, Figures 6.53 and 6.54. and the
contours from the two predictions are very similar to each other especially for
those at the exit of Rotor 3. The small discrepancy between the two predictions

at Stator 3 exit (Figure 6.54) is that the peak value area of the contours from
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Prediction I11 is in the lower part of the passage while the peak value area of the
contours in Prediction [ is in the upper part of the passage.

The static pressure and the velocity vector distributions in blade-to-blade sur-
faces at different blade height are illustrated in Figures 6.55 and 6.56 for the Rotor
3 domain and in Figures 6.57 and 6.53 for the Stator 3 domain. It can be seen
that in the downstream extension of each domain the axial variations are well pre-
dicted which is corresponding to the average flow in the following blade passage
while the circumferential variations are smeared with the action of the downstream
relatively rotating blade row. The turning of the flow in the downstream extension
of Rotor 3 with the action of its downstream blade row i1s demonstrated with the
streamlines in a blade-to-blade surface at midspan in Figure 6.59.

The wakes generated by Rotor 3 and Stator 3 blades are well predicted with
the comparison of the circumferential variation of the axial velocity component
and the relative total pressure in the rotating frame of reference for Rotor 3 at
midspan of Rotor 3 exit (at Interface 2 of the Rotor 3 domain) and in the absolute
frame of reference for Stator 3 at midspan of Stator 3 exit (at Interface 3 of Stator
3 domain) in Figures 6.61 to 6.64. The deterioration of the wakes, schematically

illustrated in figure 6.60, are due to the “chopping” of their downstream relatively
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Figure 6.59: Stream lines on a blade-to-blade surface from Prediction /7]
(Rotor 3 domain)
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Figure 6.60: Illustration of development of wakes chopped by downstream

relative rotating blades, Hall [73]
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midspan and its development (in relative frame of reference)

rotating blades. The circumferential variations of the axial velocity component
and the relative total pressure at the same span position after the “chopping” at
Interface 3 of the Rotor 3 domain are plotted in Figures 6.61 and 6.62 and at
Interface 4 of the Stator 3 domain in Figures 6.63 and 6.64. Although the experi-
mental data for the decay of the wakes for Cranfield LSRC are not available, the
prediction show the similar tangential variation of time-average total pressure to
the experimentally measured tangential variation of time-averaged relative total
pressure at midspan position both before and after a downstream blade row for
the Towa State Research Compressor (Figure 6.65) and NASA Low Speed Axial
(‘ompressor (Figures 6.66) and the predicted tangential variation of time-averaged
rotor relative total pressure at midspan position both before and after a down-
stream blade row for the Penn State Research Compressor, Hall[73]. Therefore, it
has been proved that the deterministic stress model is able to reproduce the wake
behaviour very well.

By comparing the experimental data with the results from Prediction 111 &
I. we can conclude that the deterministic stress model does provide improved
prediction than the mixing plane approach in the area between 50% and 100%
blade height but this improvement is not significant. This may be due to the

following reasons:

o The implemented deterministic stresses have larger influence on the upstream
extension of a blade domain than on the following downstream domain. The

deterministic stresses decay rapidly and have little influence downstream

17
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blade leading edge.

o The rotor tip leakage flows have significant influence on the flow and this

influence i1s comparable to the improvement from the implementation of the

deterministic stresses.

e The inaccurate prediction of the rotor tip leakage flows is obvious. The

deterministic stress model does not have the capability to solve the problem.

Generally speaking. the deterministic stress model does provide better predic-
tion of the flow and performance of the third stage of LS R(C but this improvement
is not significant. It is likely that the deterministic stress model can provide more
benefits than the mixing plane model for high pressure multistage axial flow com-

pressors with small axial gaps.

6.7 Prediction IV: LSRC Third Stage with Re-
peating Stage Model and Deterministic Stress
Model

A numerical prediction with the deterministic stress model in combination
with the repeating stage model is presented in this section and the results are
compared with Prediction I/ which uses the mixing plane model combined with
the repeating stage model. The only difference between Prediction /T and IV is
the treatment of the interfaces. Through the comparison of the two predictions
on the third stage of LSRC', the benefits of the deterministic stress model will be
further presented.

The details of the second repeating stage model used in Prediction IV is de-
scribed in Chapter 4 and will not be repeated here. The layout of the compu-
tational domains for the third stage and the setting of boundary conditions are
illustrated in Figure 6.68. This prediction consists of two global iterations. One
is the Computation I which is a repeating stage approach similar to Prediction
I1 by imposing the deterministic stress field on the flow field. The other, the
Computation I 1, is a deterministic stress approach similar to Prediction 11 whose
boundary conditions come from Computation I. The C'omputation 11 which is
carried out once after every 4 to 5 global iterations of C'omputaiton! provides a
deterministic stress field to Computation I. Of the two computations in Predic-

tion IV the results from the Computation I are more concerned and are compared
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Figure 6.68: Boundary setting for Prediction IV
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with Prediction /1. which shows the difference between the repeating stage models
with and without deterministic stresses implemented in the governing equations.
The Computation IT provides similar result to Computation I and provides more
details about the interaction between the flow and the blade rows.

The total and static pressure distributions along the axial direction of the third
stage of LSRC from Computation I of Prediction IV and Prediction [] ave lus-
trated in Figure 6.69. Both predictions match very well with the experimental
data and Prediction I1” gives better result than Prediction /7 in the rotor up-
stream extension. This improvement is illustrated more clearly in Figure 6.70.
The spanwise distributions of the total and static pressure at the exit of Rotor 3
and Stator 3 from Prediction /17 is almost the same as those from Prediction 1.
which are shown in Figures 6.71 and 6.72.

The spanwise velocity distributions from Prediction IV and I7 are compared
with the experimental data in Figures 6.73 to 6.75. which show very little difference
between the two predictions.

The two predictions show very little difference in flow angle at the exit of the
two blade rows. The spanwise flow angle distributions from the two predictions
are almost the same at the exit of Rotor 3 and less than 1 degree difference at the
exit of Stator 3. Figures 6.76 and 6.77.

The total pressure contours from Prediction [}~ at the exit of Rotor 3 and
Stator 3 also show very similar distribution with those from Prediction I1. which
are shown in Figures 6.78 and 6.79. respectively. The difference between the ex-
perimental and predicted contours are discussed in Section 6.6 and will not be
discussed here again.

From the comparison. it can be seen that the improvement for the current case
only appears in the rotor upstream extension in terms of the static and the total
pressure distributions and keep almost the same for all the parameters downstream

the stage. The reasons for this may be as follows:

1. According to the distribution of circumferentially area averaged deterministic
stress components, Figures 6.31 and 6.32, the significant values of determin-
istic stresses which are imposed on a computational domain always appear
at the inlet of the domain. The magnitude of the deterministic stresses dete-
riorate very rapidly downstream the flow passages. Therefore the significant

influence of the deterministic stress should appear in the upstream extension

of a blade passage.

2. Comparing the deterministic stress components imposed on the computa-
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tional domain of Rotor 3 (Figure 6.31) and the deterministic stress compo-

nents imposed on the domain of Stator 3, we can see that the most significant

— — — —

components are pl V., pV.V, and pV,V,, and the deterministic stress field

imposed on the Rotor 3 domain is comparable to that imposed on the Sta-

e —

tor 3 domain except for the component pl;,V, where the difference is about
30% in magnitude at the inlet interface between the two domains. Other

deterministic stress components are much smaller and can be ignored.

3. The flow in the Stator 3 passage is less sensitive to the deterministic stresses

than the Rotor 3 passage.

Based on the above comparison and analysis, it has been proven again that
the deterministic stress model dose not provide significant benefits to the predic-
tion of low speed compressors when the deterministic unsteadiness generated by

neighbouring blade rows is small.
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6.8 Prediction V: LSRC Complete Four Stages

with Conventional Boundary Setting and Mix-
ing Plane Model

In this prediction case, the flow field and the performance of the complete four
stages of the (‘ranfield Low Speed Research Compressor (LSRC') are simulated.
Figure 6.80 shows the layout of the computational domains for all blade rows and
the setting of the boundary conditions. Mixing planes are used at the inlet and the
exit of every domain of blade rows and the mixing plane model is used to transfer
information between neighbouring blade rows. The velocity, k and e profiles at
the inlet and the average static pressure at the exit of the compressor are set to
be equal to the experimental data. Local and global iterations are carried out to
satisfy the convergence criteria of the governing equations and the consistency of
aerodynamic parameters at all interfaces between the blade rows.

The predicted area averaged static pressure and total pressure distributions
in the axial direction of the compressor are presented in Figure 6.81. Compared
with the experimental data at five stations, Rotor 1 inlet and exit, Rotor 3 inlet
and exit and Stator 3 exit, good agreement between the predicted results and the
experimental data is shown although there are slight discrepancies. In Prediction
1" where the average static pressure is fixed at the compressor exit, the numerical
error of the static pressure in the calculation are accumulated through the calcu-
lation of the whole blade rows and obtain their maximum value at the Rotor 1
inlet at approximately 1.4% of the static pressure ratio for the whole compressor.
Regarding the total pressure, the maximum error also appears at Rotor 1 inlet due
to the maximum error in static pressure at the same location where the velocity
profile at Rotor 1 inlet is set to be exactly the same to the experimental data.

The difference between the total pressure on both sides of the mixing planes
are nearly negligible, showing that the discontinuity of the momentum resulted
from the mixing-plane model is very small and can be neglected at peak efficiency
for the compressor.

In Figures 6.82 and 6.83 the spanwise distributions of static and total pressure
are presented. Prediction V gives good predictions for the static pressure at the
inlet and exit of the third rotor and the exit of the third stator with a slight
over-estimated average value at Rotor 3 inlet and under-estimated average value
at Rotor 3 exit. Due to the accumulated error in static pressure further upstream

the compressor, under-estimated spanwise distributions of static pressure at Rotor
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Figure 6.80: Boundary setting for Prediction V

1 inlet and exit are obvious, which can also be seen in Figure 6.81. This error in
static pressure also contributes to the error in total pressure at the same location,
Figure 6.83. The sudden changes of experimental static pressure near the walls
are not physical and susceptible to measurement error due to the presence of the
solid walls (Howard et al. [88]). Hence, the difference in static pressure between
experiment and prediction near the blade tip should not be as large as shown in
Figures 6.82. The spanwise total pressure distribution at Rotor 3 inlet and exit
and Stator 3 exit match very well with the experimental ones in the area between
0% to 85% blade height. The over-prediction in total pressure in the area between
85% to 100% blade span are very likely due to the inaccurate prediction of the
rotor tip clearance flows, which can also be seen in Prediction I.

The calculated spanwise distribution of velocity components from Prediction V
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Figure 6.82: Spanwise Ps at exit of LSRC blade rows

at Rotor 1 exit, Rotor 3 inlet and exit and Stator 3 exit match very well with the
experimental data for most part of the blade span although with some discrepancies
in the area between 80% and 100% span near the blade tip, Figure 6.85 to 6.88.
These discrepancies are very likely due to the numerical inaccuracies in resolving
the complex, tip clearance flows.

The above mentioned inaccurate flow prediction in rotor tip clearances also
contribute to the discrepancy of the flow angle near the tip, which are illustrated in
Figures 6.89 to 6.92 and are of about the same accuracy to that in other prediction
cases.

The total pressure contours at Rotor 3 exit and Stator 3 exit are compared with

the experimental total pressure contours in Figures 6.93 to 6.94. These predicted
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contours are more or less the same with those from Prediction I which is a similar
prediction case, therefore the detailed analysis is not discussed any further.

From the above analvsis. we can conclude that the mixing plane model com-
bined with conventional boundary sctting is an effective approach for the flow
and performance prediction of multistage low speed axial flow compressors with

satisfving accuracy.

6.9 Entropy Analysis

The rate of entropy generation is a parameter to measure the significance
of irreversibilities related to heat transfer. friction, and other nonidealities within
svstems. Sciubba [154]. The analysis of entropy generation inside turbomachinery
allows a more exact understanding of losses in the flow path than is possible with
traditional methods involving the application of empirical correlations.

With the first law of thermodynamics and the governing equations of flows
(i.e. the continuity. momentum and energy equations), an entropy equation can

be derived (see Appendix F) and is expressed as follows:

- 1 1
(pVs) = =, — (V- 6.2
7 - (pV's) T TW7® (6.2)

where =, is a non-negative dissipation term which behaves as a non-reversible heat
source and may be expressed by the product of the viscous stress tensor 7 and the
rate of deformation (<7 - \f'):
d avi . p
5V:T°(V-V)=Tij7a—‘ (i,7 =1,2.3) (6.3)
£y

where p 5 9
V; v; 2 Uk .
o [[(Or O 2 O =123
Y ad [(01] + 01'1) 3 Jdll'kj| (2 J )

The heat flux may be expressed as:

§=—k(vT)

The entropy equation (6.2) states that the difference between the rate flow
of entropy out of a fluid element and into the element equals the rate of entropy
generation inside the element either from the dissipation of mechanical energy into

entropy (loss work) or the dissipation of thermal energy into entropy (loss heat).
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For adiabatic flows (A = 0), the entropy equation becomes:

VeV = 5[ (v e V) (6.4)

or
V- (pVs) = % (6.5)
[t can be seen from Iiquation (6.5) that the entropy increase in a fluid element
in adiabatic flows is due to the non-reversible heat source generated by viscous and
turbulent stresses. The right hand side of the entropy equation (6.5) is actually

!

the local entropy generation rate s’, which can be calculated based on available

flow field as follows:

; = }fnj% (1,7 =1.2,3) (6.6)

The entropy generation rate inside the blade passage of the third stage of the
Cranfield LS RC' can be calculated from the predicted flow field. for example from
Prediction I. The distribution of entropy generation rate in both Rotor 3 and
Stator 3 passages are illustrated in Figures 6.95 to 6.100, where blade-to-blade
views at different blade heights and cross plane views at different axial positions
are shown. It can be seen that large entropy generation rate appears in the areas
with large velocity gradient, such as those near solid boundaries especially near
blade leading and trailing edges. in the areas near blade suction surfaces with
flow separations and in the downstream area of blade trailing edges where strong
wakes exist. Unfortunately, the predicted large value of entropy generation rate
near blade leading edge is not physical and is due to the incorrect prediction of
large value of turbulence in that area with the two-equation turbulence model.

Relative total pressure is another parameter to assess the efficiency of the flow
inside the machine. As a comparison to the entropy generation rate. the total
pressure distribution in relative frame of reference at the same locations are also
plotted in Figures 6.101 to 6.106. The distribution of relative total pressure shows
that in most area where there is large entropy generation rate the relative total
pressure is low and vice versa.

With the obtained entropy generation rate, the increase of entropy in axial

direction in both Rotor 3 and Stator 3 can be calculated through the following

integration:

nz I J
5' — Sref + 1\7 * !ZZ (p A ‘;]kS;]k)] (773 S [\7) (67)
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99% blade heigh

Figure 6.95: Distribution of entropy generation rate In(s’) at blade-to-
blade surfaces at different blade height from Prediction / (Rotor 3 do-

main)
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Figure 6.96: Distribution of entropy generation rate In(s’) at blade-to-
blade surfaces at different blade height from Prediction / (Stator 3

domain)
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—9% blade chord

20% blade chord 50% blade chord

Figure 6.97: Distribution of entropy generation rate In(s’) at cross plane
surfaces at different axial position from Prediction / (Rotor 3 domain)
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Figure 6.98: Distribution of entropy generation rate In(s’) at cross plane

surfaces at different axial position from Prediction / (Rotor 3 domain)
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Figure 6.99: Distribution of entropy generation rate In(s’) at cross plane
surfaces at different axial position from Prediction / (Stator 3 domain)
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Figure 6.100: Distribution of entropy generation rate In(s’) at cross plane

surfaces at different axial position from Prediction / (Stator 3 domain)
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40% blade heigh

99% blade heighh

Figure 6.101: Distribution of relative total pressure (F; — Pres)/(3pU2) at
blade-to-blade surfaces at different blade height from Prediction / (Ro-

tor 3 domain)
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Figure 6.102: Distribution of total pressure (P, — P,..;)/(5pU;,) at blade-
to-blade surfaces at different blade height from Prediction / (Stator 3

domain)
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20% blade chord 50% blade chord

Figure 6.103: Distribution of relative total pressure (/; — Prer)/(5pU}) at
cross plane surfaces at different axial position from Prediction / (Rotor

3 domain)
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.2.150

130% blade chord

120% blade chord

Figure 6.104: Distribution of relative total pressure (F; — Per)/(3pU2) at
cross plane surfaces at different axial position from Prediction / (Rotor

3 domain)



Chapter 6. Prediction and Analysis of a Low Speed Research Compressor 220

50% blade chord

EO% blade chord

Figure 6.105: Distribution of total pressure (P,— P,.;)/(;pU, )at cross plane
surfaces at different axial position from Prediction / (Stator 3 domain)
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Figure 6.106: Distribution of total pressure (P, — P..)/(50U;) at cross
plane surfaces at different axial position from Prediction / (Stator 3

domain)
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Figure 6.107: Calculated axial entropy rise in Rotor 3 (Prediction [)

where S is the total entropy at certain axial location. NV is the number of blades,
AVjk is the volume of a cell. p is the density. and I. J and K are the numbers of
grid lines in the three grid line directions. The reference entropy normally takes its
value at the inlet of a blade row. The calculated entropy rise in Rotor 3 and Stator
3 are shown in Figures 6.107 and 6.108. From the figures. it can be seen that the
most significant increase appear in the blade passage area between 0% and 30%
blade chord downstream from the blade leading edge for both Rotor 3 and Stator
3. The losses of the flow in the wake areas downstream the blade trailing edges
of both the rotor and the stator are also shown through the increase of entropy in
these areas.

According to the basic theory of thermodynamics, the efficiency of a compressor

stage can be calculated with the following equation, Denton [48]:

T5(52 — S1)

— o T— (6.8)

ne ~ 1

where 7. is the thermal efficiency of the compressor stage, T3 is the exit average
temperature of the stage and the subscripts 1 and 2 mean the inlet and the exit of

the stage, Figure 6.109. The total entropy rise across the stage can be obtained by
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Figure 6.108: Calculated axial entropy rise in Stator 3 (Prediction I)

)

Figure 6.109: Enthalpy-entropy diagram for compressor flow
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adding the entropy rises in Rotor 3 and Stator 3 together (the entropy rise in the
third stage is 19.1335 1W/K'). The temperature may be calculated with the state
equation of ideal gas (for the third stage the calculated inlet temperature is 283.8
K and the outlet temperature is 288.2 K). Eventually. the efficiency of the third
stage can be calculated with Equation (6.8) and the calculated efficiency is 89.8%.
which is a very satisfactory result as compared to the experimental data (around
S8 to S9%).

Loss analysis using entropy-generation rate due to heat and fluid flow is a
relative new technique for assessing turbomachinery performance, Sciubba [154].
It will become a better analysis method to the understanding of the loss of the
flow in turbomachinery and will be beneficial to the design of more advanced

turbomachines.

6.10 Prediction of LSRC Third Stage at Off-Design

Conditions

Performance predictions with the current computational method at off-design
conditions of the Cranfield LS RC' were carried out and show valuable result. The
repeating stage model in combination with the mixing plane model was used in the
computation . which is similar to Prediction /] taking advantage of the repeating
flow nature of the compressor and simplify the setting of the boundary conditions.
The only difference to Prediction I is that the inlet velocity profiles used in
this computation are scaled experimental velocity profiles according to the mass
flow rate instead of using the calculated stage exit velocity profile. The reason
for this is to reduce the accumulated prediction error resulted from the repeating
stage model during the global iterations due to the following two reasons: (1)
the further the compressor works away from its peak efficiency point, the more the
repeating nature of the compressor stages reduces, and (2) if the stage exit velocity
profile is used as the stage inlet velocity boundary condition which has significant
influence on the flow prediction, the difference of the velocity distributions between
the inlet and the exit of the stage will be amplified during the global iterations
and the converged result will be far from reality.

Two off-design operating points of the third stage of the Cranfield LSRC with
the same rotational speed (1100 rpm) have been analysed and plotted in the stage
characteristic map, Figure 6.110, one with 2% less mass flow rate and the other

with 5% more mass flow rate than the design point. Compared with two test points
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Figure 6.110: Characteristics of the third stage of LSRC

in the map. it is shown that the predicted pressure ratio of the stage reasonably
varies with the mass flow rate. Unfortunately, it is difficult to judge the accuracy
of the off-design point predictions because there are no corresponding experimental
data available to compared with.

Attempts have also been made to simulate the flow in the third stage of the
Cranfield low speed research compressor (LS RC) working at an operating condi-
tion near stall. Unfortunately. no satisfying results have been obtained.

The effort of the near stall flow simulations in the third stage of LSRC was
started by setting the inlet velocity profile and the exit static pressure profile to
both the rotor and stator domains based on the experimental data. In the rotor
domain, the predicted spanwise velocity distribution and the total and the static
pressure distributions at the rotor exit are close to the experimental profiles while
the spanwise total and static pressure distributions at the rotor inlet are similar to
the experimental ones in shape but over-predicted in magnitude. In other words,
the total and static pressure ratios in the rotor are obviously under-predicted. In
the stator domain. the static pressure distributions at both the inlet and the exit

of the stator are close to the experimental ones. The spanwise distribution of the
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velocity. especially the axial velocity component. is far away from the experimental
data, where much higher predicted axial velocity appears in the area between 0%
and 70% blade span and much lower predicted axial velocity appears in the area
between 0% and 100% span. This means that there is a large flow separation in
the predicted stator flow passage near the hlade tip which does not appear in the
measured field. The inaccurate prediction in the velocity distribution results in the
inaccurate prediction of the total pressure distribution. Under these circumstances.
simulation with the mixing plane approach did not proceed any further.

Similar simulation for the near stall flow in the LSRC third stage blade rows
with downstream extended computational domains were also carried out by im-
plementing the deterministic stresses, bodyforce and blockage effect to the compu-
tation. Similar predicted results to the mixing plane approach were also obtained.
The only difference between the two predictions was that large flow separations in
the predicted stator flow passage appear near both the blade hub and tip, resulting
in much higher axial velocity component at midspan and much lower axial veloc-
ity components near both the hub and the tip in the downstream stator passage.
Hence. it has been proven that the deterministic stress model cannot improve the
prediction of the flow when the compressor stage works far from the peak efficiency
point.

Similar difficulties were also experienced in the simulation of the Lewis low
speed axial compressor. Adamczyk [6]. which is a four stage machine with an inlet
guide vane. This compressor. which is similar to Cranfield low speed research
compressor. also has four geometrically identical stages and is representative of
the rear stages of a high pressure compressor. The simulation accounted for the
rotor tip clearance and did not include the stator hub cavity and hub leakage. The
simulation results for the compressor working near the peak efficiency are in good
agreement with the measurement, while the simulation of a working point near
peak pressure (near stall point) failed to converge.

In conclusion. the developed computer code in this study with current steady
state CFD approaches. like other CFD codes, is not able to accurately predict the

flow field of multistage axial flow compressors working far off the peak efficiency

points.
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Conclusions and Future Work

7.1

Conclusions

In this study. simulation approaches of three dimensional internal flow and
performance of multistage axial flow compressors have been investigated,
developed and analysed in great detail based on the original ideas of Den-
ton [47] and Adamczyk [2]. A computational procedure has been developed
and proved to be successful. Flow and performance predictions with differ-
ent models are presented and compared with each other and with available

experimental data.

The surface fitting method to generate boundary grid points of blade passages
and the algebraic interior grid generation and clustering have been proven

to be fast and effective. The developed computer code for grid generation is

successful.

The svstem of governing equations, the Navier-Stokes equations, have been
averaged with three averaging operators: the ensemble averaging operator,
the time averaging operator and the passage-to-passage averaging operator.
As the result of these averaging processes, the Reynolds stresses, the de-
terministic stresses and the stresses related to the aperiodic unsteadiness
together with bodyforce and blade blockage appear in the averaged Navier-
Stokes equations which take into account diflerent types of unsteady effects
and raise the issues of closure modelling. The stresses related to the aperi-
odic unsteadiness are ignored in this study because it is much smaller than

the turbulence unsteadiness and the periodic unsteadiness.

227
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o0

e The two equation turbulence model provides an effective approach in this
study to the modelling of Revnolds stresses. It is one of the best among

turbulence models in terms of accuracy, computation speed and robustness.

* Anoverlapped solution domain approach combined with detailed simulation
of bodyforce and blade blockage effect provides an effective way of imple-
menting the deterministic stresses in flow simulations. The developed ap-
proximation of bodyforce and blade blockage effect is very effective in the
flow simulation and simple in programming. This type of deterministic stress
model provides spanwise continuous interfaces for mass flow rate, momen-
tum, velocity. & and ¢ when they are transfered across interfaces between
blade rows. Unfortunately, spanwise static and total pressure distributions
are not continuous at interfaces due to model and numerical errors. This

inconsistency is small and can be negligible.

e The mixing plane models are adopted in the study and have been proven
to be very effective in the simulation of multistage axial flow compressors.
Although they can not provide continuity for some aerodynamic parame-
ters when they are transfered across the interfaces between the blade rows,
they provide satisfactory prediction of the flows when the machines have low

pressure ratios and work near peak efficiency.

e The deterministic stress model is an improvement to the mixing plane ap-
proach. [t has taken into account the periodic unsteadiness generated by
neighbouring blade rows and provides continuous interfaces between neigh-
bouring blade rows for all the aerodynamic parameters except pressure. By
implementing this model into the flow simulation of the third stage of Cran-
field low speed compressor (LSRC) and comparing the results with those
from similar simulations with the mixing plane model, we can see that the
deterministic stress model shows only slightly better improvement than the
mixing plane model. The reasons for this may be that (1) the compressor
under investigation is a low speed compressor with large axial space between
blade rows so the influence of the deterministic stress is not significant, and
(2) the effectiveness of the model itself is limited and is not able to improve
the prediction accuracy significantly, which has been proven in the predic-

tions for the Cranfield low speed compressor (LS RC') working both at peak

efficiency operation point and near stall point.



Chapter ;. Conclusions and Future Work 229

o lwo repeating stage models have been developed in this study based on the
repeating flow behaviour always appearing in the rear stages of multistage
axial flow compressors. One of the models works together with the mixing
plane model and the other with the deterministic stress model. With the
repeating stage models. the aerodynamic boundary conditions for the simu-
lation of rear stages of multistage axial flow compressors can be significantly
simplified and the only requirement of the boundary input is a total mass
flow rate and average static pressure at the stage exit. The predicted flow
field and the performance of the third stage of LSRC with the repeating
stage models match very well with the experimental data and demonstrate
equivalent accuracy to the predictions with conventional boundary setting.
It has been proven that the repeating stage models are effective and are
economic alternatives to the simulation of complete multistage axial flow
compressors when only the flow in the rear stages are concerned and the
spanwise distribution of the aerodynamic parameters at the inlet and the

exit of these stages are difficult to be obtained.

o The governing equations are expressed in a general non-orthogonal curvi-
linear coordinate system. which make them easy to be applied to different
compressors with complex geometries. This equation system is discretized
in finite control volumes with variables stored at the control volume centres.
The application of collocated grids minimises the estimation of the coeth-
cients of the discretized equations and simplify the treatment of the bound-
ary volumes. The SI)M PLE method is utilised in the solution procedure
and the numerical scheme originated by Rhie and Chow [147] and developed
bv Majumdar [119] is used as a remedy to the pressure oscillations and de-
coupling between pressure and momentum fields. The discretized equation

system is solved efficiently with Stone’s Strongly Implicit Procedure (S1P),
Stone [167].

e The calculated distribution of entropy generation rate inside the flow pas-
sages of the compressor blade rows gives a clear and accurate description of
the fluid losses resulted from viscous stresses. The predicted thermal effi-

ciency for the third stage of the Cranfield LS RC working at peak efficiency

operation point is very satisfactory.

o The developed simulation methods and computer code are able to predict

pretty well the internal flow and performance of low speed axial flow com-
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pressor stages working at off-design conditions not far from peak efficiency
point but not able to provide good prediction when the machine works near
stall point. The computer code has been proven to be a robust analysis
tool in simulating flows inside the C(ranfield low speed compressor (LSRC)
and can be casily modified to simulate flows in other low speed multistage

turbomachinery.

7.2 Future Work

o Compressible Flow Simulation of Multistage Axial Flow Compressors
Because of the assumption of the incompressibility of the flow in the current
study. the developed computer code was only implemented for the flow sim-
ulation of a low speed axial flow compressor where the compressibility of the
flow can be ignored. By introducing the energy equation into the system
and taking into account the compressibility of the flow, the computer code
can be extended to simulate flows in high speed multistage axial flow com-
pressors. It is also possible to extend the code to simulate transonic and
supersonic flows and capture shock waves in high speed multistage axial flow

compressors with additional modifications.

e Improved Repeating Stage Model
The repeating stage models presented in this thesis have the limitation that
theyv were only applied to the stages with constant inner and outer diameters
and the flow is supposed to be incompressible. If the compressor annulus is
convergent downstream and the flow is compressible, the repeating stage

models need to be modified.

¢ Unsteady Flow Prediction in Multistage Compressors
The mixing plane approach has the limitation when applied to multistage tur-
bomachinery flow simulations that they only behave well when the machines
work near peak efficiency. The deterministic stress model is an improvement
to the mixing plane model and is a simplified alternative to the complete
unsteady simulation of multistage turbomachinery. Unfortunately, the de-
terministic stress model is not good enough to replace the direct unsteady
simulation. With the development of modern computers, it is possible to
simulate three dimensional unsteady flows and rotor-stator interactions di-

rectly with an unsteady Navier-Stokes approach. A lot of effort has been



Chapter 7. Conclusions and Future Work 231

devoted in this field during the last decade. which is reviewed in Chapter 1.

o Acceleration of the Code with Parallel Computation
Flow predictions of multistage compressors are very time consuming, even
with steady state approaches. In order to accelerate the computation signifi-
cantly. it is suggested that parallel computations (for example, using PV /)
be used in the simulation and it is expected that the computational speed
could be increased by many times depending on the number of computers
used and the parallelisation techniques applied. Parallelisation is a great

potential to speed up the simulations.

e Influence of Stator Hub Cavity Flow
The stator hub cavity flows in multistage axial flow compressors, which are
ignored in the present study. exist in all multistage axial flow compressors.
The influence of the cavity flow sometimes plays an important role to the
performance of high speed axial flow compressors. By implementing the
cavity domains into the simulation system. the developed computer code
can be extended to investigate the rigorous influence of the cavity flows on
the main passage flows and the whole compressor performance. Numerical
investigation of cavity flows in axial flow compressors have been carried out
by some researchers. such as LeJambre et al. [109], Heideggar et al. [77].

Campobasso et al. [27] and Scott et al. [155].



Appendix A

Composite Surfaces and Patches

Usually. a three-dimensional surface can be described with an implicit equa-

tion of the following form:
flz,y.2)=0 (A.1)

It 1s also possible to describe the surface in terms of parametric coordinates. In
practice. most geometries such as compressor blades cannot be defined by an accu-
rate expression of form (A.1), but are defined by sets of discrete networked points.
For example in Figure A.1. a surface is shown on which two families of intersect-
ing curves u and v are drawn. The surface can be viewed as a rectangular plane
in the parametric coordinates u and v where these two families of curves can be
represented by parametric curves. There is a one-to-one correspondence between
the points on the physical and parametric spaces.

An isolated patch is shown in Figure A.2 | defined in parametric coordinate
vectors as F(u. ). 0 < u < 1.0 < v < 1. The four corners are ¥(0,0).r(1,0),7(0,1)
and 7(1.1). and their coordinates are assumed to be known. The four edges which
represent the boundary curves are defined as r(u,0). F(u,1). £(0,v) and r(1,v).
The required interpolant form for the patch, often called Coons patch, Faux [56]

1S

r(u,v) = F1(u,v) + 2(u,v) — r3(u, v) (A.2)
where
ri(u.v)= (1 —u)r(0,v)+ ur(l,v)
r(u,v) = (1—v)f(u,0)+vr(u,l) ) (A.3)
f(u,v) = (1 —u)(1 —v)r(0,0) + u(l —v)r(1,0)+
(1 — u)or(0,1) + uvr(l,1)
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Figure A.2: Isolated patch on a physical surface
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The above expression can be written in a matrix form:

—

T l—v

riu.v) = [ (L—) u |

U

2 jl + [ r(u,0) r(u.l) ] [
[(l—u) o] (0.0) r(0,1) l1—v
21 r(1.0) r(1.1) v

This patch. obtained from the information given on the boundaries is the most

} (A.4)

e e 1

elementary of a class of surface originally studied by Coons, Weatherill [184]. The
function u.(1—u).v and (1—v) are called blending functions since their role is to
blend together geometrical information from the four boundaries. A generalisation

of the above blending function can be made to provide:
. . . ap(v)

+ | r(u.0) r(u,l -
] [ (. 0) )][al(v)}

)
)
0.0) T©(0.1) ag(v)
[ao(u) al(u)] | 7(1.0) f(l.l)] [al(l‘)}

o

riu.v) = [ao(u) al(u)]

i
T T e T ]

PEAGEAGE A
U
-
~

(A.5)

where
ao(O) =1 ao(l) =

a1(0) =0 (1) =1
The blending functions are usually chosen to be continuous and monotone.
The tvpe of patch described above ensures continuity at patch boundaries, but, in
general will result in discontinuities in slope, curvature etc. To ensure continuity
in slope at patch boundaries it is necessary to introduce a cross boundary slope
£, (u.0).Fy(1.v),Fu(u. 1) and Fy(0,v) into the interpolation process. The equa-
tion for such a patch utilises generalised Hermite interpolation rather than linear

interpolation. The resulting equation is

r(0,v)

e = [aol) antw) Aol A ]| L")
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[ £(0,0) ©(0,1) F,(0,0) F,(0.1 [ ag(v)
~ | | N £(1.0) r(1 £,(1.0) T, a1 (v)
[ ao(t) ar(w) () H(u) | £.00,0) Fu(0.1) Ful0.0) £a0.1) | | e
| Fu(1.0) Fu(l,1) Fu(1,0) Fuu(1.1) | | Ai(v)
where
0‘0(0) =1 ()0(1) =0
ar(0) =0  ay(1) =1 _
FO)=1 (1) =0 (A7)
#0)=0 F1)=1
and
ao(0) = ap(l) =ay(0) =aj(l) =0 (A8)

o =H(1) =5(0) =5(1) =0
It 1s possible to simplify the C'oons patch equation (A.6) by defining suitable
boundary curves and cross-boundary gradients. If a curve segment is defined in

term of its end points and end tangents then

Flu,v) = F(u) Q FT(v) (A.9)
where
F(u) = [ ao(u) ai(u) Bolu) Bulu) ] (A.10)
and
[ F(0.0)  F(0,1) 1,(0.0) TF,(0,1) |
0= r(1.0) r(1,1) ?@W @ﬂﬁ) (A1)
,(0,0) Fu(0.1) Fup(0.0) Tuy(0,1)
| Fu(1.0) Tu(l.1) Fuu(1,0) Tuu(L,1) |

Such a patch is often called a tensor-product patch. The simplest set of polynomial

blending functions satisfyving conditions (A.7) and (A.8) consist of the following

cubics

ao(u) =1—3u? +2u’

ar(u) = 3u? — 20 (A.12)
Bo(u) =u—2u?+u’

Bi(u) = —u®+u’

If such blending functions are used in Equation (A.9) then a composite surface

is defined, which is made of Ferguson cubic curve segment. In this case the blending
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function vector

—

F(u) = [ ao(u) aqg(u) Fo(u) ydl(u)]
1 0 0 0]
. 0
2[111 u? 113] 0 : 0
-3 3 =2 -1
2 =2 1 1
= U(
Cao(v)] [1 0 =3 2][ 1]
FT() = aq(v) _ 0 0 3 =2 v
Jo(v) 01 -2 1 v?
i Lgl(l?) i i 0 0 -1 1 1L UB i
=TV

The Ferguson surface patch can then be expressed as
r(u.v) = UCQCTv = UAV

where

A=cQct

Such a surface representation is widely used in geometry modelling.

(A.13)

(A.14)

(A.15)



Appendix B

Cranfield Low Speed Research

Compressor

The compressor investigated in this project is the Cranfield University (CU)
Low Speed Research Compressor (LSRC). A photograph of the LSRC installed
on a test rig is shown in Figure B.1. A schematic drawing of the LSRC is given
in Figure B.2 and a diagrammatic view of the blading of the compressor is shown
in Figure B.3. The compressor consists of an inlet guide vane (IG1") followed by
four identical stages and an outlet guide vane (OGV'). The IGV is used to ensure
that inlet conditions of the compressor are representative and thus to set up the
correct levels of swirl and the OGV is to establish the required downstream flow
environment. The annulus of the compressor has constant radius on the inner and
outer wall. The blades are of a modern controlled diffusion type and provide a
desired non-dimensional velocity distribution typical of a high speed design. The
chosen aspect ratio and solidity are typical of modern HP compressor geometries.
Therefore the stage loading was set to «» = 0.35 at a flow coefficient ¢ = 0.5.
The test case which is used in this study has a tip clearance of 2% blade height,
which is also a typical size in rear stages of high pressure axial flow compressors.
Some details of the compressor working at peak efficiency are described in Table
B.1 and B.2. Details about the blading is described in [172].

Conventional traverse measurement of total pressure, static pressure and flow

angle was performed at downstream of

o IGV
e Rotor 1

e Stator 1
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Figure B.1: LSRC on test rig

e Stator 2
e Rotor 3
e Stator 3

Advanced measurement of total pressure, static pressure and flow angle in rotating
frame of reference with a rotating gear at downstream of rotor 3 was also carried
out. Wall static pressure at the outer annular wall was measured as well. Addi-
tionally, the blade static pressure distributions at the hub, the midspan and the
tip of the third stage was also measured.

The third stage is the main study stage, the first two are used to cause the
flow to establish a repeating multistage behaviour and the fourth stage provides
representive outlet flow conditions.

More details about the experimental work is described in [1] and [164].
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Figure B.2: Structure of LSRC

Parameter Values
Mass Flow Rate (hg/s) 12.24
Flow Density (kg/s>) 1.25
Inlet Pressure (A Pa) 101.28
Inlet Temperature (K) 288.15
Rotational Speed (rpm) 1100
Stage Loading (ANH/U?) 0.35
Flow Coefficient (C,./{) 0.5
Stage Pressure Ratio 1.017
Degree of Reaction 0.64

Table B.1: General parameters of LSRC
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Circumference Coordinate y(m)

v _
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0.34 0.36 0.38 0.4 0.42 0.44 0.46 0.48

Axial Coordinate z(m)
Figure B.3: Blading geometry of LSRC Stage 3

Parameter Rotor Stator
Number of Blades 75 96
Aspect Ratio 1.36 1.36
Space Chord 0.71 0.55
Thickness C'hord 0.095 0.088
Turning (degree) 15.7 26.7
Exit Whirl (degree) 42.8 20.5
Diftusion Factor 0.42 0.41
Reynolds Number 2.9 x 10° 2.3 x 10°

Table B.2: Parameters of LSRC Rotor 3 and Stator 3 blades



Appendix C

Strongly Implicit Procedure(SIP)

This appendix describes the iterative procedure of an implicit approximation
of three dimensional partial differential equations suggested by Stone [167] for
solving a class of elliptic partial differential equations (PDE’s). This procedure is
used to solve the algebraic equations arising from the finite volume representation
of the governing equations described in Chapter 3, which belongs to the elliptic
class of equations.

The algorithm is developed to handle a seven-point algebraic equation in three

dimensional cases. which may be represented in the following form:

"k . . _ . - .— . ’.- /-— . . P
_i;)J Oz.].k 1 +‘4;{k¢z,3 l'k-l"ﬁf,k@l 1,],k+‘4;]k¢z,],k+

S - C.1
+:léjk¢i+l'j'k + Aijk¢i,j+l,k 4 Alfjk(bz,],k+1 — Sz,],k ( )

where the subscripts i. j and k refer to location within the grid network rather than
the matrix row-column designation, the subscripts are used to identify the coefhi-
cients corresponding to the variables at different grid points, and the ¢ represent
unknown quantities. see Figure C.1

Since one such equation exists for each grid point (i.j.k), there is a total of
n = (I +1)(J + 1)(K + 1) equations for the unknown variables. The equations

can be written in the form

(A]® =S (C.2)
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242
be 0{
y
T ijk 1
vy n
Figure C.1: Schematical layout of grid network and symbols
or in a expanded form given in Equation (C.3):
(igk
A%
Ak .
41]]‘: gl'l]k ﬁlle . ) .. ) ¢2,],k — S’L,],k
AYE O ATE AL

4ijk

17k
Ab
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We now construct another matrix
B] = [A + P] (C.4)

such that [B] can be decomposed into a lower and an upper triangular matrix [L]
and [U]. It is required that [L] and [U] have only four nonzero elements in each

row. regardless of the size of I, J or . The [L] and [U] matrices have the form

- ;

ai,j.k bi,j,k Ci.j.k e

1 elik fi,j,k ik
U] = o (C-6)

.

The equations to be used to determine the coefficients of [L] and [U] such that

the original seven coefficients in [A] remain unchanged in [B] are

giik = ADF
bi,j,k‘ — »1ijk
“in
Ci,j,k — Aijk
w
o - o Ckrigk—l _ Ak -
cz,],kez—l,],k 4 i3k n bz,],kfz.] 1,k 1+ q' B — rlp (C )

gk ik Algk
dviRet "t = A
di,j,kfi,j,k — AUk
S
Lk gk — AUK
d"*h A
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The modified coefficient matrix [B] = [A + P] has the form

[B] =

ijk o ijk
‘4b 1

The elements in [B] denoted by Tk

mined from

7
%bf;jk Aidk
A -
A
A

ik ik
An ¢3

ijk

2

ijk
2

i7k
3

ik i7k
4 5

"k . . . . _
;J :az,],kez,J,k 1

wk _ ik £i,g41,k-1
2 =4a J f

ik _ 14,5k i,0-1,k

3 =b""e

ik 45,k fi—1,5,k
g4 —=C I f

ijk __ 1i4,kpi0-1,k
Y = b"Fh

éjk — civj’khz—lvjvk
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i
éjk A;jk
(C.8)

-
and 7" are deter-

(C.9)

The numerical molecular associated with matrix [B] is shown schematically in

Figure C.1.

Stone employed Talyor-series expansions to obtain values of

¢i+1,j,k+1, ¢i,j+1,k—1,

N . !’ . P
Gitli-Lk  gi-litLk  ghi=1k+l and #~1ik+1 in terms of ¢ s in the original seven-
9

. o, lk .
point molecular to partially cancel the influence of the additional ¢** terms in the

[B] matrix. These are

¢i+1,j,k—1 _ _¢ijk + ¢i,j,k—1 + ¢i+1,j,k
GHItIR=1 = _giik | GhItLE | ik
¢i+1,j—1,k — ik 4 ¢i+1,j,k + ¢i,j—1,k
¢i—l,j+1,k — _¢ijk + ¢i—1,j,k 4+ ¢i,j+1,k
Hhi—LRHL = _ ik 4 Gk ikt

¢i—1,j,k+1

— _¢ijk + ¢z‘—1,j,k + ¢i,j,k+1

(C.10)
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An iterative parameter « is used to implement partial cancellation of the in-

fluence of the ¢"7* terms appearing in [B]. This is done by using a modified
seven-point scheme in the form

A;‘)jkqbi,j,k-l +Az;ljqu',j—l,k+A3k¢i—1,j,k+A;')jk¢i,j,k+
+Aijk¢i+1,j.k+ _1ijk¢i,j+1,k+Aifjk¢i,j,k+1+
/Uk[¢t+1]k 1 (_¢z’,j,k +¢i+1,j,k +¢i,j,k 1)]+
+¢%J.k[¢1]+lk 1 (_¢i,j,k +¢i,j+1,k +¢i,j,k 1)]+
+4¢,gjk[¢i+1,]‘_1,k _ a(_(bi,j,k 4 GitLik 4 gLk 4
+¢,;jk(¢i—1,j+1,k _ a(_¢i,j,k + ¢i—1,j,k + ¢i.j+1 k)]+
+¢;jk[¢i,j—1,k+l _ a(_¢i,j,k 4 ik 4 phik)| 4
+¢,éjk[¢i—1,j,k+1 . a(_¢i,j,k + ¢z’—1,j,k + ¢i,j,k+1)]

Equation (C.11) is re-arranged to produce the modified expression of Equation

(C.11)

(C.7) to include the partial cancellation:

ai’j,k — Az_yk ( 17k + ,(/)2_71‘:)
bi,j,k — A-Z,i]k (d)z]k z]k)
ci,j,k =A:_2,]k— (1/)2_7k+1/)2_]k)
t,7,k i—1,7,k 1,7,k 1,7,k £1,5—1,k i,7,k L 1,J,k—=1
’ ’ -i-_dAz]k+b {]k zj;ca zilk ,(ngk_‘_d)z]k d)z]k) (012)
= AU* 4 a(P* + 97"+ od" +
diikeiik = AR _ o(y 11k+¢zyk)
di,j,kfi,j,k — Aijk _ a( Uk +'¢)”k)
Jiik pidk — Aifjk_ (v ”k+d)”k)
The explicit evaluation of the elements of [L] and [U] are:
Az]k
aik = —
1+ a(ez,],k 1 + fz,J+1,k)
o Aijk
poik = e —
1 + a(ez,]—l,k + hZ,J—l,k)
o Aijk
cz,],k —
1+a(fz 1],k+hz 1,_7,) i y
di,j,k — A‘L]k + a( 1_7,k i,7,k—1 + az ],kf 4,J+1L,k + bl,J, 1= + (Clg)

+c ,J,kf2 17.7 k + bz] kh"”] 1, k + C 1J1kh2 11.71 )
chikei— 1ok bm,kfu Lk _ gidkpidk—1
gtk d* A ok kL 4 bk TIRY]
fivj’k dz J [Aijk ( zv]rkfzv.]'*'lak + c“]ykfz—lﬂvk)]
1

= T [A;;]k . a(bi,j,khi,j—l,k + ci,j,khi—l,j,k)]

hi,j,k
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The iterative sequence is developed as follows. Adding [P]® to both sides of
Equation (('.2) gives:
[A+P]®=S+[P|® (C'.14)

We evaluate the unknowns on the right-hand side at the n iteration level to write
(A + P]®"*! =S 4 [P|®" (C'.15)
Decomposing [A + P] into [L] and [U] matrices gives
[L)[U]®"*' =S + [P]®" (C.16)
Defining an iterative vector V"+! by
Vi = (U]t (C.17)
Then a two-step process is employed:

Stepl : [L)V™+! = q + [P]®"

Step2 : [Ugrt! = Vrt! (C-18)

The process represented in Step 1 of Equation (C.18) consists of a forward substi-

tution starting with

p000 — So,o,o/do,o,o (C.19)

and continuing with
1

= gl

(i=1.2....1j=12..J;k=12...,K)

. S S ik ilik
[.j.k Jhak _ al,]J\Ul-JJ\ 1 _ bz,J,kL,z,J 1,k ikt ]

v

(C.20)

The process represented in Step 2 of Equation (('.18) consists of a backward sub-

stitution starting with

GTIK = TR (C.21)
and continuing with
ORIk = ik Lk itk ik gl Lk _ ik gkl
(i=1-1,1-2,....005=J—-1,7—-2,...,00k =L — 1,K —2,....0)
(C.22)

\ : ko ijk ik igk ik ijk '
The elements of [P] are simply '}~ 3", 95", 5", ¥5" and g values determined

by Equation (C.9).

Alternatively, we can define a differential vector

Fntl — gntl _ @n (C.23)
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and a residual vector
R"'=S - [A]®" (C.24)
so that Equation (C.15) becomes:
[A 4+ P]§"+! = R™ (C'.25)
Replacing [A + P] by the [L][U] product gives
[L][U]6"* = R™ (C'.26)
Defining an intermediate vector W"+! by
W71+1 — [U]gn+l (C.ZT)
The solution procedure can again be written as a two-step process:
Stepl : L)Wt = R”
P LIV . (C.28)
Step2 : U]+t = wntl

Similar process represented in Equation (('.28) are a forward process starting with
w00 = p0.0.0/40.0.0 (C.29)

and continuing with

1

Gk gk _ ik k=1 _ gk, =Lk _ gk i1k
u T [r a' I w ] (C.30)
(i=1.2....,0:j=1.2.....J:k=1,2....K)

and a backward process starting with

51“]7}\' = lUI’J’K (C31)
and continuing with
51..“ — ik ei'j'k5i+1,j,k _ fi’j’k5i,j+l,k _ hi’J’k5i,j,k+1
(i=1-1.1-2,...05=J-1,j—2,...,00k =K — 1.K —2,....0)

(C.32)

The coefficients remain unchanged for the iterative process. The right-hand side

of Equation (C.28) is then updated and the process is repeated until a converged

solution is obtained.



Appendix D

Structure of the Computer Code
A STurbo3 D

Figures D.1 to D.3 show the flow charts of the main program and the sub-

programs of the computer code M STurbo3D.
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:_ Several I
, Blade Rows |

Figure D.1: Global structure of computer code M STurbo3D
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Figure D.2: Subprogram for the calculation of a blade row
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Figure D.3: Subprogram for the solution of N-S equations



Appendix E

MSTurbo3D Input Data Files —
An Example

The appendix presents a typical input data file to the computer code A\ ST urbo3D
which controls the process of the code. The format of the file “input” is as follows:

Typical “input”

—- number of blade rows

—- format of data file: 1-ascii. 2-binary

—- Interface tvpe : 1-mixing plane, 2—continuous interface

— Boundary setting : 1-set inlet Pt&angle, 2-set inlet vel. 3-repeating stages
— Mixing model : 1-circum. uniform , 2-circum. non-uniform

—- computation choice : 1-initial computation, 2—continuation

—- the blade row from which calculation starts

—- discretisation : 1-upwind, 2-QUICK, 3-Zijjlema

— initial global iterations

O =N = Y W e Y

Additional global Iterations
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Appendix E. MSTurbo3D Input Data Files - An Example 2!

Following is an example of input data file “inicit™ which read in detailed data
of every blade row.

Typical “inicit”

=<=xx BLADE ROW R3

-1.1-  case counter : 0-1 domain. 1-2 domains (with tip)
1
-1.2-  blade type : 1-rotor, 2-stator
1
-1.3-  hub type : 1-moving. 2-stationary
1
-1.4- inlet velocity type: l1-read INLETV, 2-Log profile
1
-1.5- inlet velocity file name
EXIT\?2
-1.6- Exit velocity file name
EXITV1
-1.7- Inlet static pressure file name
INLTPS1
-1.%-  Exit static pressure file name
INLTPS2
-1.9- Inlet tke file name
EXTRKE?
-1.0- Exit tke file name
EXTKEIL

-1.1- main grid file name
grrman.dat

-1.2-  tip grid file name
grrtip.dat

1.3- connection file name (dom2->1)
connect.up

-1.4- connection file name (dom1->2)
connect.low

1.5 average residual file name (domain 1)
convll.dat

1.6 average residual file name (domain 2)

convl2.dat



Appendix E. M ST urbo3D Input Data Files - An Example

-1.7- maximum residual file name (domain 1)
cavrll.dat

-1.8-  maximum residual file name (domain 2)
cavrl?2.dat

-1.9-  intermediate C'FD results file name (binary. domain 1)
rescell

-1.0- intermediate CEF'D results file name (binary, domain 2)

resccl?

-1.1- intermediate CFD results file name (ASCII, domain 1)
rescvll

-1.2-  intermediate CFD results file name (ASCII, domain 2)
rescv1?

-1.3- ptotin  ttotin flrate  anglel psout numbld
-1.0 290.4 0.163168  1000. 102838. 5
-1.4-  relax: u, v, W, tke, ted, h, p. rho,
025 02> 0.25 025 025 1.0 025 1.0 1.0

-1.5- Inlet total pressure file name

INLPT1
-1.6- Inlet flow angle file name
INANGI
-1.7-  ksymm
0
1.8- coords-multiplier; rotational speed;  rescv file output(0-no,1-yes)
1.000 -1100. 0
-1.9- igmon. ixmon. iymon, izmon (monitoring point)
1 15 15 1
-1.0- rschek(allowed error) amschek
-2.5 0.0001
-1.1- inner iteration No. iplrs(printout step)
5000 100
-1.2-  Density
1.2500
=>>*  BLADE ROW 53
-2.1-  case counter : 1-tip clearance, 0-1 domain

0
-2.2-  blade type : 1-rotor, 2-stator



Appendix E. MSTurbo3D Input Data Files - Ay Example

255
2
-2.3- hub type : 1-moving, 2-stationary
9
-2.4- inlet velocity tyvpe: 1-read INLISTYV, 2-Log profile
1
-2.5-  1nlet velocity file name
EXITV1
-2.6-  Exit velocity file name
EXITV?2
-2.7-  Inlet static pressure file name
INLTPS2
-2.%- Exit static pressure file name
INLTPS1
-2.9-  Inlet tke file name
EXTKEL
-2.0-  Exat tke file name
EXTKE?2
-2.1-  grid file name
grsman.dat
-2.2-  average residual file name(domain 1)
conv2l.dat
-2.3-  maximum residual file name(domain 1)
cavr2l.dat
-2.4-  intermediate C'F'D results (binary, domain 1)
rescc21
-2.5-  intermediate C'FD results (ASCII, domain 1)
rescv2]
-2.6-  ptotin ttotin firate anglel  psout numbld
104760.  290.4  0.127475 0. 103391.6 96
-2.7-  relax: u. v, w. tke, ted, h, jof rho, emu
0.10 0.10 0.10 0.10 0.10 1.0 010 1.0 1.0 1.0
-2.8-  ksymm
0
-2.9-  coords-multiplier; rotational speed:  rescv file output(0-no,l-yes)
1.000 -1100. 0

-2.0- igmon, ixmon, iymon, izmon (monitoring point)
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1 15

rschek(allowed error)
2.5

inner iteration No.
5000

Density

1.2500

15 1
amschek
0.0001

iplrs(printout step)
100

o
Ut



Appendix F

Entropy Equation

The first law of thermodynamics may be expressed as:
dQ + dWW =dU (F.1)

Combined with the definition of enthalpy A = e + pv and the state equation of

ideal gas pv = pRT'. another form of the equation is obtained:

1
Tvs=vh—;vzﬁ (F.2)
The continuity equation of mass is:
Dp -
—_ . ‘ = O F.3
5y PV V) (F.3)
'h
where D_g_*_‘i.
Dt 0Ot v
or p
SV (1) =0 (F.4)

For steady state flow the equation becomes
v (pV) =0 (F.5)

The momentum equation takes the following form:

—

BY‘:_VP'*'VT-l'pf (FG)

Dt

For steady state flow it becomes
pVo(v-V)=—vp+v T+of (F.7)
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The encrgy equation has the following form:
()E i ()(L) - ad — — —
o TV V)= = S V= () 4y (- T (F.8)
where
, ™

For steady state flow. substituting the continuity equation (F.5) into Equation

(F.8) aives:

—

Vet U (V) = =g G40/ U=y )47 (- F)  (F9)

Forming the scalar dot product of momentum equation (F.7) with the velocity

vector 1 allows one to obtain:

— — —

U Tet |70 =vp- V] = = v gt [vir T) = (v-7)- 7] (F10)

With continuity equation (F.5) we obtain:

—

- . P
V- (pV) =pV - V(;) (F.11)

Substituting Equation (F.11) into (F.10) obtains:
PV -gh—p-V==v-G+r-(vV) (F.12)

Forming a scalar dot product of Equation (F.2) with V" gives:

—

Combining Equations (}.12) and (F.13) obtains the following steady state entropy

equation:

pTV"-Vs e VA (F.14)

where ¢, is called non-negative dissipation term and may be expressed as:

— V) = F.15
Ey =T (V V) Tij 01’3 ( )
Substituting the continuity equation (F.5) into Equation (F.14) obtains:
— 1 1 ~,
V- (pVs) = T(V"f)‘*‘f [T'(V"’ )] (F.16)
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where the term

(VD [ (9]

is the rate of entropy generation.

!
S =

The entropy equation is not independent from the energy equation. Note also
that the entropy is not a “conserved” quantity in the sense of the derived conserved

form of governing equations, Hirsch [79].
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