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ABSTRACT 
\Yith the current develop111ent in computer technology and Computational 

Fluid D)"n<'tlllics techniques, t.he si11utlation within axial flow compressors becomes 
1110re and 1110re pract.ical and beneficial to the compressor designs. Due to the 
insufficient capabilit)" of today's COll1put.ers for three-dimensional unsteady flow 
1110delling of 111Ult i~Llg(' axial flow compressors, sophisticated models of steady 
state flow and perfor111ance 1110delling of the C0111prcssors deserve to be thoroughly 
investigated. 

In l1utltistage C0111pressor sinlulations with steady state methods, frame of ref­
erence is fixed on blades and the c0111putational domains for rotors and stators 
haye relati\"e rotation. One of the difficulties in such simulations is how to pass 
information across the interfaces between blade rows without losing continuity. 
Two 111ajor stead)" state modelling approaches, a mixing plane approach based 
on Denton's circu111ferentially non-uniform mixing plane model and a determinis­
tic stress approach based on Adamczyk's average passage model, are investigated 
and compared with each other through the flow predictions of the third stage of 
Cranfield Low Speed Research Compressor at peak efficiency operating condition. 

In the deterministic stress approach, overlapped solution domains are intro­
duced to calculate deterministic stresses in order to "close" the time-averaged 
governing equation system and the influence of the downstream blade row of the 
blade row under investigation has to be imposed through the simulation of body­
force and blade blockage effect of the downstream blade row. An effective method 
of simulating bodyforce and blade blockage effect has been developed and proven 
to be simple in programming. 

ConYentionally, boundary conditions are specified in CFD calculations based 
on experimental data or other empirical calculations. By taking advantage of the 
special flow features in rear stages of multistage axial flow compressors where each 
rear stage behaves like a repeating stage of its neighbouring stages in terms of 
flow pattern at the inlet and the exit of these stages, a repeating stage model has 
been developed aiming at significantly simplifying the boundary conditions when 
simulating rear stages of a multistage axial flow compressor with only mass flow 
rate and stage exit average static pressure required as global input. 

A computer simulation system 1'/ STurbo3D has been developed to investigate 
a11d assess different steady state simulation models within multistage compressor 
environment. It has been proven that with the mixing plane model M STurbo3D is 
able to predict flows in multistage low speed axial flow compressors with acceptable 
accuracy. Application of the repeating stage model to the third stage of LS RC 
shows that the prediction with this model has equivalent accuracy to the predic­
tion with the conventional boundary setting, and proves that the repeating stage 
model is an effective alternative to the expensive complete compressor simulation. 
The deterministic stress model provides more information of rotor-stator interac­
tion and slightly better performance prediction than the mixing plane model, but 
the benefits of the model is not significant when applied to low speed axial flow 
compressors. 
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Chapter 1 

Introd uction 

1.1 Introduction 

The flow field in turbomachinery is extremely complicated and this complexity 

was well described by :\Ic::\ally et al.[12:3]. Turbomachinery flows can be described 

as three-dimensional, transitional and turbulent, and also separated flows are fre­

quently encountered. The flow is dominated by vortical flows: secondary, leakage. 

trailing. horseshoe \"ortices. In a multistage environment both the relative and 

absolute flows are unsteady. Large axial. radial and centrifugal pressure gradients 

exist within the flow passages due to the turning of the flow within blade rows. 

This turning redistributes the incoming vorticity field and generates cross flows. 

Strong shocks may exist within the blade passages. These can be complex and in­

teracting, and often cause separation and additional loss. Geometrical parameters 

are also complex and many: cambec blade and blade-row spacing. varying thick­

ness from hub-to-tip and from leading-to-trailing edge, stagger and skew. lean, 

twist. aspect ratio. hub/tip ratio, tip clearance, leading and trailing edge radii, 

etc. Typical flow features are described schematically in Figure 1.1. 

The application of numerical methods to turbomachinery dates back to 1950's, 

even before the ad\"ent of the digital computers. Fully three-dimensional CFD 

methods first became available in the early 1980's and made the predictions more 

accurate as compared with previous methods. With the rapid development of com­

puter architecture and pre- and post-data processing during the last two decades. 

computational techniques are able to provide efficient methods for the analysis and 

design of turbomachinery. Nowadays Computational Fluid Dynamics (CFD) plays 

a more and more important role in the aerodynamic design of turbomachinery. The 

design of modern compressors and turbines has become unthinkable without the 

1 
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WAKES 

Figure 1.1: Flow features in an axial flow compressor (McNally et al. 

[123]) 

help of CFD. Combined with measurements, CFD provides an efficient tool for 

simulation. design. optimisation and~ most importantly, analysis of complex three­

dimensional flows hitherto inaccessible to the engineer. In many cases, it is the 

only simulation available. because the actual testing of turbomachinery, including 

detailed measuremf'nt in rotating passages, is cumbersome and even impossible. 

In the aeroengine industry of the 1980's, a typical iterative design procedure 

for a multistage axial flow compressor would take up to three years to develop 

and cost as much as twenty million dollars (LeJambre et al. [109]). However. the 

resulting designs were not optimum. No detailed understanding of the internal 

fluid mechanics was gained; it was not then possible to break from a previous 

design with any confidence. 

In the 1990·s. design methods based on solving the N avier-Stokes equations 

became more accurate and practical for isolated cascades of airfoils such as fans. 

As computers became more powerful, it became more practical to routinely solve 

multiple rows of airfoils in order to evaluate new design concepts. 
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~lnr(' recent l~·, efficient prediction lnethods for n1ldtistage turbomachinery have 

been developed and ha\·e shown great potential in design application. Under these 

circllln~tances. t he research work in recent years has been ain1ed towards the de­

Yf'IOpIllent and cOIllPutational ilnplelnentation of n1ethods for internal flow and 

perforn1ance ~iIllulation and the in1provelnent of 3D design and prediction tools of 

lnulti~tage turbolnachiner~·. The proposed lnethods should be able: 

• to predict the lnost significant flow phenomena and global aerodynamic per­

fonnance of Illultist age turbomachinery. 

• to in\·f'~tigate the better setting of boundary conditions in the simulation of 

nndtistage turbolnachinery . 

• to inyestigate and develop different models for passing information between 

neighbouring blade rows . 

• to Illake the code sufficiently flexible and robust for different turbomachinery 

applications. 

Right now. the capability of flow simulation for multistage turbomachinery is 

still limited by the capability of today's computers and therefore a direct solution 

of ~ ayier-Stokes equations or even an unsteady solution of Reynolds averaged 

~ ayier-Stokes equations for three-dimensional flows in multistage turbomachinery 

are \·ery difficult or even impossible. 

The general aim of this study is to investigate and improve a set of models and 

a computer code in order to efficiently predict the global performance and detailed 

internal flows of multistage axial flow compressors with defined geometries and 

global aerodynamic boundary conditions. A thorough comparison of the predic­

tions against available in-house experimental data and analysis of flow phenomena 

inside compressor flow passages are also required. 

1.2 Brief Review on Turbomachinery CFD 

The current review of CFD methods for turbomachinery flows is based on 

Lakshminarayana [104]' McNally et al. [123], Hirsch et al. [81), Denton and Dawes 

[49], Adamczyk [6] and other recent publications, and only the major categories 

are described here. The development of CFD in turbomachinery may be classified 

in six model groups based on the simplification of the Navier-Stokes equations. 
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1.2.1 Mean-line Model 

This is a Inodel of one-dinlen~ional calculation where the fluid properties and 

\"elocitics are cst inlated along the lllean line by elnpirical corrections of experimen­

tal data. This Inodel i~ also called qua~i-one-dilnensional Illodel. 

The accuracy of the Inean-line lnodel i~ one diIllensional in space and relies 

hea\·ily on a large cnlpirical database. This class of methods continues to be 

deyeloped and used for the prelilninary est ilnation of perforIllance, Howell and 

Calyert [~~)]. 

1.2.2 AxisYlllllletric Flow Models 

The flow field in turboll1achinery can be assumed to be axisymmetric when 

the incoIning and exiting flow is supposed to be axisYInmetric and steady. This 

axisYll1111etric flow representation is described by through flow 1110dels. If the blade 

thickness is allowed to be ignored while the aerodynamic loading is maintained, 

the blade row can be regarded as an "actuating disk". Across the disk, there is 

an aerodynamic force acting on the fluid and energy inputed in (for compressors) 

or extracted from (for turbines) the fluid. The axisYIllmetric flow field is divided 

into two kinds of regions: the core region and the end wall regions. The impact of 

the endwall region is accounted for by means of a flow blockage and needs to be 

estimated with empirical data. There are basically three types of axisymmetric 

flow calculations normally used. They are through-flow, cascade flow and quasi­

three-dimensional flow calculations which are described as follows. 

Through-flow and Cascade Flow Calculations 

The ultimate equations to be solved in Dlost internal flows are the Reynolds­

averaged :\ ayier-Stokes equations. These equations are often reduced to a simpler 

form. the Euler equations. by neglecting the viscous terms. The calculation meth­

ods for through-flows and cascade flows may be classified as follows based on 

different simplification of governing equations: 

1. Streamline Curvature Method. 

This analysis method is based on the direct determination, through iterative 

calculation. of the traces or projections of streamlines on a prescribed surface~ 

for example on a meridional section of a turbomachine. Velocities and fluid 

properties are predicted at locations on the streamlines corresponding to 

control surface intersections. 
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The influence on the hub-to-shroud flow patterns due to the terms in the 

radial cOIllponcllt of t he equation of Illotion representing streamline slope 

(due to radial velocity) and curvature (due to radial velocity change) was 

first described b~' Traupel [li5], and later hy \Vu and Welfonstein [196] and 

Hanlrick. Ginsbur~' and Osborn [7-1]. \Vu [191] provided the basis for a hub­

to-shroud flow field calculation including locations internal to blade rows 

and SOllle design procedures tracing streaInlines through blade rows were 

reported during the 1950s. Between 1960 and 1976 a substantial number of 

COIllputer codes for axial-flow turbomachinery analysis were developed using 

streanlline cun'ature nlethods. 

The starting point of the methods is a family of pseudo streamlines deduced, 

by siIllilarit~,. fronl the profile geometry. The transverse pressure gradients 

are connected to the curvature of these streamlines; a transverse velocity dis­

tribution is derived, and, by iteration on the continuity equation, the shape 

of the streamline is changed until a convergence of the process is reached, 

\Yilkinson [189] and Bindon [16]. The main ad\'antage of the method is the 

rapidity of the computation, also for subsonic compressible flows. Difficulties 

arise for transonic flow because of the discontinuity of the streamline curva­

ture at the shocks. Another drawback lies in the lack of accuracy in areas 

with strong cun'ature (leading and trailing edges). 

0) Stream Function Method 

The continuity equation allows definition of a stream function which com­

bined with the condition of irrotationality provides a second order, non-linear 

equation for compressible flow. This equation is generally discretised in an 

orthogonal grid. by means of a scheme suitable for an elliptic type problem 

(subsonic flow). 

The stream function is defined by postulating that the mass flow components, 

pu and pv. are obtained from a scalar function as follows: 

o'ljJ 
pu =-, oy 

where 'ljJ is the stream function. 

a~, 
pv = --_­

d.l' 
(1.1 ) 

The stream function equations for turbomachinery Sl (blade-to-blade) and 

S2 (hub-to-tip) stream surfaces were firstly introduced by Wu [192]. Kat­

sanis [97] published a method for isentropic blade-to-blade flows applicable 

to any fixed or rotating axial, radial or mixed flow in turbomachinery blade 
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ruw~. ~ LH~h [120] developed a strealll function anal.ysis for hub-to-shroud 

surfaces. ~Iarsh 's technique \\"(lS also applied to axiaL radial and mixed flow 

turbolnachinery. III 1970, Slnith and Frost [158] applied these methods to 

flo\\' on general blade- t u- blade st reanl surfaces. 

The discrct i~('d fi ni t e difference equation was sol vcd by relaxa t ion techniques, 

I{atsanis [96] and Fenain [57], or by a nlat rix technique, Calvert and Smith 
[2.j] . 

:L '-elocity Potential lVlethod 

.\nother approach to circumventing the problems inherent in the full Euler 

equations is to assunle that the velocity components 1.1, and v are derivatives 

of a scalar funct ion 0: 

8¢ 
II =~, 

u.l' 
( 1.2) 

Such a flo\\' is automatically isentropic with constant total temperature and 

zero vorticity (irrotational). Substitution of these relations into the continu­

ity equation yields a second order equation in ¢. As with the stream function, 

the potential equation can be solved by different relaxation techniques. Fur­

thermore. it permits the solution of 3D as well as 2D flows. The isentropic 

assumption implies that shock waves captured in the transonic regime must 

be limited in ~Iach number to a value less than 1.:3. 

The pioneering work on such methods was performed by lVl urman and Cole 

[127] and .Jameson [92]. Hafez et al.[68] later introduced a concept of artificial 

compressibility to accomplish the same objective when the conservation form 

of the full equation is used. Three major discretization methods, i.e., finite 

differences. finite volumes and finite elements, are used to obtain a set of 

algebraic equations for solution. 

Potential methods are very useful for the flow analysis in the subsonic, fully 

supersonic and low transonic (i.e. free of strong shocks) flow regimes during 

the preliminary design stages of turbomachinery. 

4. Solution to Steady State Euler Equations for Inviscid Flows 

For inviscid flows, the viscous terms in N avier-Stokes equations are ignored 

and the equations are simplified to the Euler equations. In this situation, 

the problem raised by the mixed elliptic-hyperbolic nature of the Euler equa­

tions for steady transonic motion with intense shocks can be solved by non­

steady type of methods, l\Iagnus and Yoshihara [117][118]. Such methods 
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offer the great ad\'antage of being applicable to any transonic flow; how­

ey(::"'1'. thf'~' require n'r~' long cOlnputation tilne for the aSYllIPtotic condition 

to be achieved. :\s the <lSYlll ptotic sol u t ion is the only solution retained, 

the intennediate st at ('s do not need to have a physical significance, and the 

nun-steady tenllS can be Inodified in order to accelerate the achievement of 

the final solution. ~lcthods based on such an idea are called time marching 

Inethods. 

The tilne Inarching Inethods of the Euler equations can be classified into two 

Inajor categories: explicit and ilnplicit. 

The explicit lllethod is the one in which all spatial derivatives are evaluated 

using known conditions at the old time level. All such methods are limited 

by the so-called Courant, Friedrichs, and Lew)' (CFL) stability limit, which 

states that the dOlnain of independence of the numerical scheme must contain 

the dOlllain of dependence of the original equations. 

:\IacCorlllack [116] introduced a two-step prediction-correction method, which 

alternates between forward and backward differencing on the two steps. ~Ic­

Donald [1:2:2] used another method for 2D transonic flows in axial turbine 

cascade. in which the conservation laws in an integral form are written and 

applied to local control volumes surrounding each grid point. Denton [43] 

H-±] [.)0] has developed a somewhat simpler method for both 2D and 3D tur­

bomachinery flows. Bosman and Highton [18] have developed a method for 

:3D flows which employs two overlapping grids with density and internal en­

ergy evaluated at one set of nodes and velocities evaluated at the second set. 

~i [1:30] has developed another method that is equivalent to the second order 

Lax- \\-endroff procedures. A pseudo-unsteady method has been developed 

by \'iviand and Veuillet [182] [181]. 

In implicit methods the equations are backward differenced in time. and 

the nonlinear terms at the !lew time are linearised about their values at 

the previous time level. Introductions of difference gives a large system of 

algebraic equations for the unknowns at the new time level. These equations 

are solved by block alternating-direction-implicit (block ADI) techniques. 

The first of these methods was introduced by Briley and l\IcDonald [22, 23], 

primarily for compressible Navier-Stokes equations. Beam and Warming [13] 

independently developed a similar method for Euler equations. Steger [165] 

[166] has developed a curvilinear coordinate version of the Beam-Warming 
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algorit 111n for \'i~cous as \Veil as invi~cid flows. Denton [45] has extended 

hi~ earlier Euler lllethod by e1l1plo~Ting a silllpler Inore accurate differencing 

schelne. But h Ecer and :\ ka.\" [!)~] and Lacor and Hirsch [10:3] have developed 

Inethods for soh"ing the stead~" Euler equations. Another hybrid streamline 

curvature-Euler soIH'l' developed by Ciles & Drela [G2] is now proving very 

popular due to it~ abilit~" to \Vork \Vit h a coupled boundary layer calculation 

and to work in both direct and inv{'rse Illode. 

"J. The Pressure-Based Methods for Viscous Flows 

In the prl'~sllre-based techniques, usually the solution algorithm is based on a 

st:'Ini-iInplicit schenle \\"hich utilises the continuity equation for the derivation 

of a Poissoll Type equation for the calculation of the pressure in order to 

satisfy a divergence free velocity field. In the first step a guessed pressure 

field is the pre-condition for the solution of the momentum equation which 

are decoupled and expressed in a linearised form and in the second step 

an equation for the pressure or pressure correction is solved to update the 

pressure field and promote the satisfaction of the continuity condition. The 

density is then calculated using the perfect gas law. 

This technique \Vas originally suggested by Chorin [:3:3, :34]. The semi-implicit 

method for pressure-linked equations (SIMPLE) algorithm due to Patankar 

and Spalding [1:36] provided a remarkably successful scheme and has dom­

inated the field of numerical simulation of incompressible flows. Patankar 

[1:r5] introduced the SI\IPLER method, in which an extra equation was 

solved for the evaluation of static pressure. The SIMPLEST procedure was 

de\"eloped by Spalding [160]. who recommended an explicit treatment of the 

convection and implicit treatment of diffusion in the momentum equations. 

Another variant is the SI~IPLEC procedure described by Von Doormal and 

Raithby [183] \Vhich uses a consistent under-relaxation of the momentum 

and pressure corrections. Vanka [119] has used the multi-grid method with a 

coupled solution. He proposed an explicit smoothing technique called Sym­

metrical Coupled Gauss-Seidel (SCGS) and improved both convergence and 

cpe time. ~Iost earlier techniques utilised a staggered grid system in or­

der to remove unphysical pressure oscillation. Rhie and Chow [141] used a 

pressure weighted method to suppress pressure oscillations and developed a 

differencing scheme for a curvilinear coordinate system on a non-staggered 

grid. Kirtley and Lakshminarayana [100] developed a coupled pressure-based 

method in which all the equations were solved simultaneously. The pressure-
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based Inethods ha\'e been applied successfully to incolnpressible, compress­

ible, lanlinar, turbulent, lo\\' and high H(',vnolcls nurnber flows for a large class 

of geolnetries. The grid s~'steln may be orthogonal or non-orthogonal. The 

Inethod is flexible: ei ther the finite difference or finite volume formulation can 

be elnployed. The pressure-based Inethocls are efficient and have reached a 

high le\'el of sophist ication: t hey are highly recommenclpd for incompress­

ible and subsonic turbomachinery flows, Lakshn1inarayana [104]. One of 

the successful applications of the pressure-based methods is the commercial 

code T .-L~'(' flow3D. \\'hich is capable of solving diverse and complex multi­

dinlensiona.l fluid flo\\' problems and provides solutions for incompressible 

or conlpressible. steady or transient, laminar or turbulent single-phase fluid 

flow in complex geolnetries [171]. 

6. Tinle-Marching Methods. 

In these techniques, the time derivative in the Navier-Stokes equations is 

retained. \'ery efficient techniques have been developed to solve the equations 

for external and internal flows. There are two classes of methods of solving 

the time-dependent hyperbolic equations: explicit and implicit. 

In the explicit scheme, the spatial derivatives are evaluated using known 

conditions at the old time level. The explicit schemes used widely for the 

computations of turbomachinery flows are as follows: 

• The Lax-Wendroff scheme [108] is second-order accurate in time and 

space. 

• The predictor-corrector method due to MacCormack [116] is a modified 

version of the Lax-Wendroff scheme and has been in use for external 

aerodynamics for a long time. Many early turbomachinery computa­

tions were performed with this scheme. 

• The Runge-hutta type scheme (Jameson et al. [9:3]) has found wide 

application in both the internal and external flows. 

The explicit techniques are highly successful in predicting complex flow fields 

in turbomachinery. 

Implicit methods, where the unknown variables are derived from a simul­

taneous solution of a set of equations, on the other hand, usually allow for 

larger time steps and faster convergence and are attractive for both steady 

and unsteady flows. 
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One of the widel~' wwd illlplicit techniques is tht=' approxirnate factorisation 

due to Brile~' and \lcDonald [:!:~] and Beanl and \Varnling [Ie!]. This tech­

nique is widely used. with lllodifications, to predict viscous flow fields in 

ca~cades. st at ors, and rotors. :\ Ilotil<'r one is the upwind schemes developed 

by Osher and SolOlllon [l:J-l] which are used to capture strong shocks without 

requiring arbitra r~' ~llloothillg pararllet crs (artificial dissipation). which may 

alter the ph~'sics of the problellls. 

The calculation nlethods Ina~' also be categorised based on different numerical 

discretization techniques used: 

(a) Finite Difference Methods 

The nlethod i~ based on the initial definition of a system of grid points 

throughout the flow passage under study. Finite difference equations 

are written for each grid point. Then the equations are solved to de­

termine the distributions of fluid properties and velocities at the nodal 

points. Finite difference methods for turbomachinery analysis were first 

suggested and utilised between 1950 and 1960~ \Vu [190] [191] [193] [194] 

[19.)] . 

(b) Finite Element Methods 

The flow passage to be studied is subdivided by a network of lines into 

elements. :\'odal points are located on the lines forming the boundary 

of each element. The physical laws and empirical input are formulated 

so that the fluid properties and velocities may be determined at each 

nodal point by iteration. 

Finite element methods initially appeared as usable through-flow anal­

ysis techniques during the middle 1970s, Hirsch and Warzee [82], Adler 

and Erimerman [8]. and also developed by Whitehead [187]. The finite 

element mesh can be adapted readily to quite complex geometries and 

also can be developed for three-dirnensional analysis. 

The methods are based on an approximation of dependent variables 

in the form of polynomials, and on integral definition of the problem, 

Krimerman and Adler [102] and Morice [125]. 

The benefits of this technique are as follows: 

• Possibility of giving an optimum grid distribution, especially by 

using curvilinear meshes; 

• Automatic treatment of natural boundary conditions; 
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• Presen'(l t ion of s~'ulInet ry in the discretization of differential oper­

ators. 

(c) Finite Vohnne Methods 

The flow pa~~age is ~ubdivided into a large nunlber of small volunle ele­

nlent~. fitted to the paS~(lg(' geonletry. The physical laws and empirical 

infonnation governing t he calculation are used to generate integral con­

seryation equations for each small vohune. The equations are solved, 

typicall~' h~' an iteratiYe tiule-Inatching process or pressure based meth­

ods. to reach a converged distribution of velocities and properties for 

the finite volunle surfaces. 

The application of finite volume nlethods to hub-to-tip flow fields and 

their strong potential for extension to an effective three-dimensional 

anal~'sis have been reported by Denton and Singh [.50]. Farn and Whirlow 

[:j.j]. and h'ano\' and Kimasov [91]. The finite volume regions can also 

be generated to conform to complex passage geometries. 

Quasi-Three-Dimensional Flow Model 

\\"ith the development of digital computers, the through-flow models were 

replaced by quasi-three dimensional flow models. The quasi-three-dimensional 

model is the numerical coupling between an axisymmetric flow model and a cascade 

flo,\, model. The axisymmetric flow model provides the streamline surfaces on 

which the cascades are defined and the cascade flow model provides the blade 

force distribution required as input to the axisymmetric flow model. This class of 

methods was pioneered by \Vu [191]. 

A. major development paving the ,\'ay for analysis of turbomachinery flows was 

the series of early papers by \Vu. particularly [192]' which derived the stream 

function equation for SI (blade-to-blade) and S2 (hub-to-shroud) stream surfaces 

of turbomachinery. Smith [159] described both the meridional and the blade-to­

blade analysis, which was the first description of the meridional and blade-to-blade 

methods used together. 

In 1976 Bosman [17] presented an iterative approach to couple Sl and S2 anal­

ysis. A more elaborate iterative procedure was described by Adler and Krimerman 

[7]-[9]. Hirsch [82] presented the first solution of the meridional stream function 

equation based on the finite element method. Later, Hirsch [83] developed an iter­

ati\'e analysis in which meridional and blade-to-blade finite element analysis were 

combined for application to axial turbomachinery. 
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DC:1\"i~ [:f" 38] delllonstra.ted a n1ethod for a single full stage machine. On the 

ot her hand, the nlethods of Katsanis [98, 99], and Bosman [17] were applied to 

a ~illgle blade row. Ilafez [69] has extended the solution of the stream function 

equation to transonic flo\\' b)' using techniques developed for the potential equa­

tion. Two publications, Howard and GalliIllore [87] and Gallimore [.58], are the 

represelltat in_" of recent developIllent of axisymmetric flow models. 

\Iost of the cOlllPutationallllethods which have evolved from Wu's theory de­

pend strongl)" on elnpiricisn1 to account for viscous effects of flow deviation and 

blockage and their predict ive capability is limited in separated flow regions. 

1.2.3 Three-Diulensional Single Blade Row Approaches 

Initially the CFD-based models which were introduced into turbomachinery 

calculation ignored the impact of the unsteady, deterministic flow which exists 

within actual Illultistage turbomachinery. Based on this assumption, the govern­

ing equations are simplified to the Reynolds-Averaged steady-state N avier-Stokes 

equations. 

\Iany flow features in turbomachinery, such as the effects of blade lean and 

sweep, of tip leakage and secondary flow, are fully three-dimensional and can 

only be predicted by 3D methods. Three dimensional methods have evolved over 

the past 20 years and now are most commonly used as a final check on designs. 

Inverse methods in 3D are relatively difficult. A few inverse 3D methods have been 

reported, Demeulenaere et al. [42], but they are not yet widely used in industry. 

Only a limited number of numerical schemes have been applied to 3D turbo­

machinery flow. The most common are time marching solutions of the Euler or 

\" avier-Stokes equations, Denton [46] and Dawes [39]. Another type is pressure 

correction methods initially used by Moore and Moore [124], Hah [70] and more 

recently in the commercial code T AS'C flow3D. 

In a typical design system for multistage turbomachinery, preliminary blading 

is defined using through-flow calculations with empirical corrections for 3D viscous 

effects. 2D airfoil cross sections are defined and stacked to form 3D airfoils. Then 

simple 2D viscous CFD calculations are performed to check blade loadings, flow 

separation, etc. After that, a series of rig tests are undertaken to match the stages. 

Finally, engine hardware is defined and built for a full scale engine test. The design 

is assessed after each step and can be changed. This iterative procedure is very 

expensive and time consuming, LeJambre [109]. 

Computational methods for a single blade row in turbomachinery are now 
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highl~" developed and cOllllnonly lIscd in industry. However, few turbomachines 

operate as isolated blade rows. GCllcrallYl thrcc-dimensional CFD based methods 

for Inultistage turbolnachincrYl without taking into account the illlpact of unsteady, 

detenninistic variation generated h~" neighbouring blade rows, are categorised into 

two types: 

1. Successive Analysis of Isolated Blade Rows 

Gi\"en an anal~"sis code for an isolated blade row, Inultistage turbomachinery 

is sillullated b~r anal~"sing successive blade rows from inlet to exit, using 

average flow properties froIn the exit of one blade row as inlet boundary 

conditions for t he next. This lnethod is simplel but it introduces many 

modelling issues. For example, the boundary conditions for a single blade 

row working in a n1111tistage environment are difficult to setl mass flow rate 

and spanwise flow properties are difficult to match between the neighbouring 

blade rows and the method ignores physical processes such as wake mixing 

and migration. acoustic interaction l and other unsteady effects that may be 

important in real turbomachinery. Because of the simplicity of this method, 

it \yas used by several researchers such as Boyle et al. [20] and Politis et al. 

[140] . 

. ) Mixing-Plane Methods 

Simple mixing-plane methods analyse multistage turbomachines by exchang­

ing spanwise distributions of averaged flow quantities at a common grid sur­

face between the blade rows, Denton [47] and Dawes [41]. These methods 

have the advantage of maintaining spanwise consistency and preserving gen­

eral radial variation between blade rows although circumferential averaging 

of flow properties are introduced. 

~Iore recently, an improved mixing-plane treatment has been developed, 

Denton [47L in which the circumferential variation of fluxes at the mixing 

plane is obtained by extrapolation from the upstream and downstream planes 

while adjusting the level of the fluxes to satisfy the overall conservation. Thus 

the fluxes "seen" by the blade rows are circumferentially nonuniform at the 

mixing plane with different circumferential variations, but the same average 

values, being "seen" by the upstream and downstream rows. With this model 

the mixing-plane is allowed to be located very close to the leading or trailing 

edges of the blade rows and the flow calculations for multiple blade rows 

and even for whole multistage compressors and turbines becomes possible. 
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Chen et al. [:n] deriycd another Inethod froln t.he Beanl and \Varnling implicit 

approxilnation factorisation (.\F) finite difference scheme and used the mix­

ing plane Inodel froln Denton [-17] t.o predict ~D nlldtistage turbomachinery 

flow~. 

1.2.4 Till1e Averaged Flow Model 

Thi~ type of Inethod~ \\'a~ developed hy' Adalnczyk [2] [:3] and Adamczyk et a1. 

[3] a~ a rigorous llle(Ul~ of Inodelling unsteady blade row interaction using a steady 

state analy~i~. Thi~ flow lllodel describes the tilne averaged flow field within a 

t~-pical passage of a blade ro\\' elnbedded within a multistage configuration. The 

ullsteady deterlllinistic stresses resulted from a time averaging on the governing 

equations are the result of flow processes directly linked to shaft rotational speed 

and are respon~ible for the recovery of wake mixing loss in compressors, flow block­

age. and the spanwise redistribution of momentum, Adamczyk [6]. The flow quan­

tities are split into a steady component, an unsteady deterministic (periodic) com­

ponent. and an unsteady random (turbulent) component. The flow equations are 

integrated in time using procedures analogous to Reynolds-Averaging to produce 

the a\"erage-passage equations. The average-passage approach has the advantage of 

a rigorous foundation for modelling unsteady blade-row interaction, although lit­

tle data is a\-ailable for modelling the deterministic stresses. The method requires 

that the computational grids for each blade overlap one neighbouring blade row 

on each side. adding to programming complexity and computational difficulties. 

The solution methodology of this model was developed by Celestina et a1. [29] 

and Rhie et a1. [1-18]. A computer code called NASTAR based on average passage 

equations was applied by Le.1ambre et a1. [109] to the design of a P&W's eleven 

stage HP compressor. The application of the code was assessed to achieve 2o/cl 

higher efficiency at no overall stall margin loss and yield up to 50% reduction 

in the compressor development time and cost, Le.1ambre et a1. [109]. Sondak 

et a1. [161] demonstrated a "lumped" deterministic stress (LDS) model where 

the unsteady flow effects are modelled with lower order (inviscid) time dependent 

simulation as source terms in viscous steady flow equations. These source terms, 

expressed with lumped deterministic stresses, are employed to drive steady flow 

solution procedures to produce the time averaged solution of an unsteady flow 

field. The LDS model was recently used by Busby et a1. [24] and Orkwis et a1. 

[133] to investigate turbine hot streaks. 

:\Iore recently, further efforts have been made to investigate the effects and 
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lllodelling of detenninistic stresses and closure approaches to the average passage 

equations. In generaL the passage equations for lllldtistage turbonlachinery ap­

plica t iOll~ require the pit chwise Inesh lines wi th no variation in axial and radial 

direct ion. Such a requirelnent is due to the original ilnplication of the model for 

t he deterillini~t ic ~t re~~('~ which close the av<'rage passage equations. Kirtley et al. 

[101] introduced a nlore general illl plelnenta tion of the closure model that permits 

the use of general lneshes with high distortion especially near blunt leading edges 

or around highl~· ~t aggered airfoils. This methodology was applied to the complete 

turbine for the GE90 turbofan engine, Turner et al. [177]. In addition, the de­

ternlini~t ic st res~e~ were quant i tati vely analysed with a time-dependent CFD tool 

for the Pennsylvania State lTniversity Research Compressor (PSRC), Hall [73] and 

a conlbined strat('g~· of 11lixing plane/deterministic stress modelling was proposed 

by Hall [7:3]. An experimental study' of velocity decomposition and unsteadiness 

at downstream of an embedded stator was made by Prato et al. [144] and the 

experimental analysis of deterministic stresses and heat flux distribution at the 

downstream of the same compressor stator was studied by Suryavamshi [168]. 

1.2.5 Fully Unsteady Flow Sinlulation 

Fully unsteady methods, pioneered by Rai [14;")] and Whitfield et al.[1851, 

involve direct solution of unsteady rotor-stator interaction. These methods pre­

sumably avoid all modelling questions except for turbulence but are very expensive 

computationally and still require averaging at the end to produce useful results. 

The practical application of this model in design processes must await the further 

development of more powerful computers. 

In the application of these methods, the publications of Gundy-Burlet et al. 

[64] [6.5] [66] [67]. Chen et al. [30], Dorney et al. [51], Giles [61], Hodson and Dawes 

[84]. Rai and Dring [146L Sharma et al. [157] and Davis et al. [36] have proven that 

these models are very useful in numerical experiments to quantify the impact of 

the unsteady deterministic flow on turbomachinery aerodynamic performance and 

durability, Adamczyk [6]. l\Iore recently, unsteady three-dimensional viscous flow 

simulation in a multistage turbomachinery application was carried out by several 

researchers such as Chima [32], Nozaki et al. [132], Hall [72], He [76] and Bell and 

He [1,)], etc .. 
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1.2.6 Direct Navier-Stokes SiUlulation 

The advant age of t his approach is that apart froln the elnpirica.l information 

required to Inodel t he physical and thennod.vnan1ic properties of a fluid, no other 

ell1pirical infonnation is required to soln' the Navier-Stokes equations. The direct 

solution of the \" ayicr-Stokes equations for Reynolds nlllnbers typical of aero and 

industrial turbolnachinery configurations \\'ould produce a non-deterministic or 

turbulent flo\\' state. Theoreti((lll~', this ll10del could provide the most accurate 

flo\\' infonnation than an~' other ll10dels Inentioned above. However, thf' computer 

requirell1ent of this Inodel to solve the N avier-Stokes equations and support the 

aerodynalnic design far exceed the capability of today's most advanced computers 

in both CPl~ speed and ll1ell10ry size. 

1.3 Contribution of the Present Study 

_-\s seen from the literature review, there are several types of methods for the 

simulation of ll1ultistage turbomachinery. Unfortunately, because of the limitation 

of computer capabilities, some of these methods are still under development and 

are not sophisticated. It is the purpose of this study to develop and improve the 

numerical ll10dels for this kind of prediction based on steady state methods, with 

the main focus on multistage axial flow compressors. 

The contribution of the present study is as follows: 

• Implementatioll of the mixing plane models which are used to transfer in­

formation between neighbouring blade rows; analysis of the discontinuity at 

mixing planes and the limitation of the mixing plane models. 

• Development of repeating stage models applicable to the flow simulation in 

rear stages of multistage axial flow compressors. 

• Improvement of a deterministic stress model with focus on a practical way of 

simulating the influence of a relatively rotating blade row on a flow field by 

imposing the approximated bodyforce and blade blockage effect generated 

by the blade row. 

• Development of computer code MSTurb03D which is applicable to the sim­

ulation of single or multiple blade rows of axial flow compressors with the 

above models. 
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• .\ssesslnent of different simulation approaches by comparing the predicted 

result s against experilnental data. 

• Understanding of detailed flow phenOInena inside compressor flow passages, 

interaction between flow and blade ro\\'s and losses resulted from various 

st resses. 

1.4 Structure of the Thesis 

Chapter ~ describes a surface fitting n1ethod which is used in this project 

to generate boundary grid points for the flow passage of a blade row using ex­

isting discrete networked points that define the blade surface. Then an algebraic 

grid generation and grid clustering method is applied to create interior grid points. 

In Chapter :3 general forms of governing equations for turbomachinery flows 

and the transforil1ed form of the governing equations in a non-orthogonal curvilin­

ear coordinate system and in different frames of reference are shown. Then three 

a\'eraging procedures - ensemble, time and passage-to-passage averagings - are 

applied to the governing equations. 

Chapter -:1 presents the closure approaches to the system of governing equations 

for multistage turboil1achinery applications. The closure issues include turbulence 

modelling. an overlapped solution approach and the modelling of deterministic 

stresses. bodyforce and blade blockage effect. A standard wall function is intro­

duced to simplify the treatment of near wall regions. In addition, repeating stage 

models are developed aiming at simplifying the global aerodynamic boundary con­

ditions for the flow simulation of rear stages of multistage axial flow compressors. 

Chapter ·S describes the spatial discretization process of the governing equa­

tions. Subsequently, different numerical schemes for the treatment of the con­

\'ective term of the momentum equations are described in detail. A pressure 

correction method is described followed by the discussion of the application of 

under-relaxation, the use of collocated grids and the remedies to pressure oscilla­

tions. 

In Chapter 6 the developed numerical approaches and the corresponding com­

puter code are applied to the third stage and the complete 4 stages of the Cranfield 
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-l-st age Ln\\' Speed Research COll1prcssor (L8 Re) on the peak efficiency operating 

condition .. \nal~'sis and cOlllparison hct\\'c(,1l the nUll1ericai results froIl1 different 

siIllulation approaches and ('xperiIllental dat (1 are carried out. Efforts are also 

Illade to siIllulate the perforIllance of the third stage working at off-design operat­

ing conditions and to anal~'se the losses of the !Io\\' by calculating the distribution 

of entrop~' generation rate and entropy rise. 

Finally in Chapter "/, conclusions from the present research project are drawn 

and ideas for further \\'ork are suggested. 



Chapter 2 

Surface Modelling and Grid 
Generation 

2.1 Introduction 

~ ormally in turbomachinery applications, the three dimensional surfaces of 

compressor blades are defined by sets of discrete networked points. In this chapter, 

a three-dimensional surface fitting method. \Veatherill [184] and Faux and Pratt 

[.56] is applied to generate surface grids on the blade surfaces to form the boundary 

conditions for the interior grid generation. An algebraic grid generation technique 

with grid point clustering capabilities are used to generate interior grids. 

2.2 Surface Grid Generation 

Surface grid generation is one of the most difficult and yet important aspects in 

grid generation. The surface grid influences the field grid close to the configuration, 

the region where flow gradients are important and need to be resolved accurately. 

Surface grid lines have the same requirement for smoothness and continuity as the 

field grid lines for which they act as boundary conditions, and in addition, they are 

required to conform and describe accurately the configuration surfaces, including 

lines of component intersection, and to model regions of high surface curvature. 

Geometrical surface modelling is a means by which a continuous surface can be 

defined from a discrete set of points. Such a definition of a surface is valuable for 

the generation of surface grids which, in general, will not coincide with the original 

geometry definition. The parametric representation of a surface which is described 

19 
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in detail in ~\ ppendix A, is straight forward to construct and therefore, a surface 

in t hree-din1ensional space can be defined in just two independent parametric 

coordinates. 

In this sellSt" surface grid generation can be vie\\'cd as a transfornlation from 

two dilnensional para.rnetric space \\' here t he grid is generated and mapped to the 
.... .... 

physical space R ---+ X(.r, y, z) h)" the lnapping 

(2.1 ) 

.... 
where F is a blending function ,"ector and Q a matrix, which are defined in Ap-

pendix A. Thus, three din1ensional surface grid generation is simplified to grid 

generation in two dilnensions within the finite parametric domain. Such grids can 

be defined by any grid generation method. 

2.3 Interior Grid Generation 

In order to numerically solve the governing equations of fluid mechanics, the 

fluid domains firstly need to be divided into finite volumes where the governing 

equations are going to be discretised and solved. Therefore, some techniques are 

necessary to specify the grid points that define the finite volumes as well as the 

boundaries of the domain. 

Typically. the computational domain is chosen to be rectangular in shape where 

the interior grid points are distributed along grid lines. Therefore, the grid points 

can be identified easily with reference to the appropriate grid lines. This type of 

grid is called the structured grid, Hoffmann and Chiang [85], and is used in the 

present study. If the fluid domain is rectangular and the grid points are uniformly 

spaced inside the domain, the generation of the grid is simple and the specification 

of boundary conditions is not complicated. Unfortunately, the majority of the 

physical domains of interest are not rectangular. So, applying a Cartesian grid on 

an arbitrary physical domain requires some sort of interpolation for the implemen­

tation of the boundary conditions. This will cause serious numerical error near 

boundaries because the boundary conditions can not be described accurately, and 

create programming difficulties when grid points are not uniformly distributed. 

To overcome these difficulties, a general coordinate system is introduced and 

a transformation from the physical to the computational space is utilised. This 

transformation is accomplished by specifying the general coordinate system which 

will map a non-rectangular grid in the physical space to a rectangular uniform grid 
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(a) 

(b) 

Figure 2.1: Grid in (a) physical and (b) computational spaces 
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in t he COIn pu tat ional space. Such a transforIllation is defined with the following 

expreSSIons: 

~ = t(.r, y, z) 

'7 = 17 ( .1' , y, :: ) (:2.:2) 
- = ((.r. y. z) ~ 

Accordingly, t he governing equations expressed in the Cartesian coordinate sys­

tenl also need to be t ransfonned to the gelleral non-orthogonal coordinate system. 

which will be described in the next chapter. This n1apping is schematically ex­

pressed in Figure ~.L where the physical space is expressed with Cartesian coordi­

nates (.r.y.::) and the cOlnputational space is expressed with general coordinates 

(~.'7.(). 

The purpose of the grid generation is to identify the location of the grid points 

in the physical space and create the relationship between the coordinates in the 

physical space and in the con1putational space. It is desirable that a grid system 

has the following features: 

• One-to-one correspondent mapping to ensure grid lines of the same family 

do not cross with each other; 

• Smoothness of the grid point distribution: 

• Orthogonality or near orthogonality of the grid lines; 

• Options for grid point clustering 

In generaL grid generation methods may be classified as: 

• algebraic methods 

• methods based on partial differential equations 

• conformal mappings based on complex variables 

Conformal mapping are limited to two-dimensional problems and the determi­

nation of the mapping function is sometimes a difficult task. Therefore, this type 

of method is not used here. 

Compared \vith algebraic methods. the methods based on partial differential 

equations may provide grids with better smoothness and orthogonality. In the 

case of interest where there is a requirement for the pitchwise grid lines to have 

no variation in the axial and the radial directions, algebraic methods are more 

suitable than others and are used in the present study. 
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Figure 2.2: Division of flow passage 
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The algebraic method is theoretically simple and has the advantage of fast speed 

with which a grid can be generated. Different algebraic methods are selectable to 

generate required interior grid points between specified boundaries. 

Direct three-dimensional grid generation with algebraic methods can be com­

plicated for programming. Based on the features of the problems concerned which 

will be discussed in the following chapters, the grid generation can be simplified 

to a two-dimensional problem which will be described in detail below. 

The flow passage between two neighbouring blades in an axial flow compressor 

and the applied coordinate systems are schematically shown in Figure 2.2. This 

passage is divided into three sub-domains: the upstream domain, the domain 

between the blades and the downstream domain. The grids of these domains are 

generated separately and connected together to a single domain. 

For each of these three sub-domains, two-dimensional grid points on ~ - ( planes 
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ROTOR G RID BLOCK 2 

ROTOR GRID BLOCK I 
\.o---~ 

x 
z 

Figure 2.:3: Grid for the third rotor of LSRC 
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(a) 

(b) 

Figure 2 . .5: Blade-to-blade view of rotor grid at (a) midspan and (b) 

inside the tip region 
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Figure 2.6: (a) Front view and (b) side view of rotor grid 
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Figure 2.7: Grid distribution inside the tip region (a) blade-to-blade view; 

(b) front view 
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Figure 2.8: (a) Blade-to-blade view and (b) side view of stator grid 
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Figure 2.9: Grids with downstream extension for the third rotor of LSRC 

Figure 2.10: Grids with downstream extension for the third stator of 

LSRC 
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(a) 

(b) 

Figure 2.11: Blade-to-blade view of rotor grid with downstream extension 

(a) at midspan; (b) inside the tip region 
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Figure 2.12: Blade-to-blade view of stator grid with downstream exten­

sion (a) blade-to-blade view; (b) side view 
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are generatl'd separatel.\' whcn it is supposed that the grid points on each ~ - ( 

plane hayc the sanle radius. Then. t wo-din1ensional grids are stacked radially from 

blade hub to blade tip t u fonn a three-diInensional grid. 

In order to control the grid distribution to Blake it suitable for CFD computa­

tion. grid clustering Inust be considered near boundaries or in the regions where 

there are large gradients of aerodynanlic variables. l\Iany algebraic schemes, such 

as those described h~' HoffInannJ~.:\. [85], can bc introduced for this purpose. 

2.4 Results and Discussion 

The cornpressor used in this study is the Cranfield University 4-stage Low 

Speed Research Compressor (LS Re) which is described in detail in Appendix B. 

For this con1pressor. it is only necessary to generate grids for a rotor and a stator 

passages because the compressor has the same geometry for every stage. The grid 

generation procedure for both the boundary surface and the interior passage were 

described in the previous sections. 

In the rotor passage, a two-block grid system is used in order to describe the 

geometry of both the main blade passage and the blade tip clearance accurately, 

Figure :2.:3. The pair of grids are H-type grids ending at a common surface. which 

corresponds to a notional blade-to-blade surface at the blade tip radius. The first 

grid fills the main passage, defined by two successive blade surfaces. their upstream 

and downstream extensions. the inner annular wall and the axisymmetric blade­

to-blade surface at the blade tip radius. The second grid fills the remaining part of 

the flow domain. lying between the blade tip radius and the second annulus. This 

grid covers the full length of the domain and provides the convenience of imposing 

a periodic boundary condition along its side surface for the CFD computation. 

The two dimensional blade-to-blade view. front view and side view of the rotor 

passage grid are shown in Figures 2.5 and 2.6. The ~ - ( 2-D grid layout of the 

tip domain is made identical to that at the same locations in the main passage 

domain in most area. In the remaining part, the grid line at boundary in the tip 

domain moves from blade suction side to blade pressure side. More grid lines are 

introduced in this part and they are linearly distributed in the ~ direction. The 

difference of the grid distribution of the two grids can be seen in Figure 2.7. Grid 

clustering is applied to the regions near the walls, inlet, blade leading edge and 

trailing edge for both grid domains. 

In the case of the stator. a single grid block, Figure 2.4, is used as there is 
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no hub clearance in t he shrouded stator. The generated H-type grid is sinlilar to 

that of the lllain grid in the rotor passage. \\'hose blade-to-blade and side views 

are shown in Fignre ~.~. 

In the application of using a detenninistic stress nlode! which will be described 

In Chapter 6. t he grids need to be ext ended further downstream to cover the 

following blade passage. Under these circlunst.ances. each :2-D grid is extended 

downstreanl before st acking. keeping the sallle radius and following the same ( 

grid line direction as that of the upst.reanl blade extension. The three-dimensional 

grid for the rotor and the stator are shown in Figures 2.9 and :2.10 respectively 

and the grid distribution in the ~ - ( planes for the rotor and the stator passages 

in this situation are shown in Figures :2.11 and :2.1:2 respectively. 

This set of grid generation tool is relatively simple. but quick and effective to 

generate grids of computational donlains for both rotors and stators of axial flow 

compressors. 



Chapter 3 

Governing Equations 

3.1 Introduction 

The theoretical foundation of Computational Fluid Dynamics (CFD) in tur­

bomachinery is the universal laws of conservation of fluid dynamics: 

• Conservation of ~Iass ---+ Ptlass Continuity Equation 

• Consen'ation of ~Iomentum (Newton's Second Law) ---+ Momentum Equation 

• Conservation of Energy (First Law of Thermodynamics) ---+ Energy Equation 

Additionally. the relationship between fluid properties, e.g. the equation of state, 

which relates pressure (p). density (p) and temperature (T), is also necessary in 

order to close the system of equations. The derivation of the governing equations 

of fluid dynamics is described in many text books (such as Versteeg et al. [180], 

Anderson [10]. Hirsch [79]. etc.) and will not be discussed here. 

In turbomachinery applications, it is sometimes assumed that the fluid is steady 

in the relati\'e frame of reference, incompressible and therefore the governing equa­

tions can be simplified to be suitable for numerical simulations. 

Three averaging opera tors are applied to the N avier-Stokes equations, Adam­

czyk [2]. The first averaging operator, referred to as the ensemble averaging 

operator. is introduced to eliminate the need to resolve the structure of turbulent 

flows and yields the Reynolds-Averaged form of these equations. The second is the 

time averaging operator which is used to average the deterministic unsteady 

equations in time at every point in space. This operator removes unsteady time 

scales that are of the order of the period of shaft rotation. The third operator, 



( 'hapter :~. Go,"erning Equations :36 

called the passage-to-passage averaging operator, averages out the details of 

the pa~~agc-to-passage \'(triation in the lIo\\' field. 

In order to treat t he fluid Ilu\\' in turbOInachinery \\'ith cornplex geometries, the 

equat ions are t ransforIned to a sell1i-( 'artesian fOrIn in a generalised non-orthogonal 

coordinate ~ystenl. 

."\11 t he above treatlnents ainl to sinlplify the description of 1 he actual physi­

cal phenoll1ena and the s~'steln of governing equations and make major physical 

processc~ to be predicted easily. :\t the sanle time, they raise closure issues which 

\Yill be discussed in t he next chapt er. 

3.2 Transformation of Coordinate Systems 

To enhance t he efficiency and accuracy of numerical schemes and to simplify 

the inlplenlentation of boundary conditions. a general non-orthogonal curvilinear 

coordinate systenl is introduced and a transformation from a physical space to a 

computational space is performed. The computational domain has a rectangular 

shape \Yhich is di\'ided into an equally spaced grid system. In order to solve the 

governing equat ions of flow mechanics in the physical space, a transformation of 

the equations fronl the physical space into the computational space is required, 

\Yhich is described in detail by Tourlidakis [17:3]. 

3.2.1 Relationship Between Two Spaces 

:-\ relationship exists between the physical space (1', y, z) and the computa­

tional space ((.T].() which is as follows: 

( = (C1', y, z) 

T] = T](.r, y. :: ) 

(= ((x,y,::) 

Consider the following differential expressions: 

(3.1 ) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 
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These three equat ions can be E'XPITSSf'd in a nlatrix form as: 

Ie ~J' C C d.l' ( ~ ~.lI 

d" 1]r 11y '7::: dy (:3.7) 
(ft..,- ~.r (y (::; dz 

or 
--- ---Y=AX (3.8) 

Sinlilarly. the in\'el'se relations between the coordinates of the two spaces are ob­

tained: 

.r = .r ( ~. T/. () (3.9) 

y = y(~.T/.() (3.10) 

z = z ( ~. '7, () (3.11) 

and 

dx .re ;f", .f( d~ 

dy Ye y", Y( dT/ (:3.12) 
dz ze - z( d( -", 

or 
--- ---X=AY (3.13) 

Therefore, comparing the above expressions. 

-1 

~x ~y ~z .re .f", x( 

T/x T/y T/z Ye Y", Y( (3.14) 

(x (y (::: z~ - z( -", 

or 

A = A-I (3.15) 

or 

A·A = I (3.16) 

where I is the unit matrix. From the above relations, a series of relationships 

between the coordinates in the two spaces are obtained: 

(3.17) 

(:3.18) 
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(:3.19 ) 

where J i~ the Jacobian of the transforInation defined as: 

() ( .r , y, :: ) 
.r ~ .r 1] .r( 

J= - y~ Yrj Y( (:3.20 ) 
O(C1l,() 

-

~~ - z( -1] 

The Jacobian J ex prt'~~t'~ the ratio of the volunle of an element in the physical space 

to the yolunle of the elenlent in the conlPutational space. Hoffmann [85] and must 

obtain non-zero positi\'e \'alues for the transfornlation without any singularities. 

3.2.2 Chain Rule Expressions 

The chain rule of partial differentiation provides the following relations be­

tween the Cartesian coordinate systenl and the curvilinear coordinate system for 

a general scalar variable <I>: 

8 <I> 8 <I> 8 <I> 8 <I> 
8x = ~x 8~ + 1]x ory + (x 8( 

8 <I> 8 <I> 8 <I> . 8<I> 
8y = ~y 8~ + 1]y 877 + ~y 8( 

8 <I> 8 <I> 8 <I> . 8<I> 
8:: = ~z 8~ + 1]z 81] + ~z 8( 

(:3.21 ) 

(:3.22 ) 

(3.23) 

In order to transform the N avier-Stokes equations from the Cartesian coor­

dinate system to the curvilinear coordinate system~ another form of chain rule 

expressions is necessary. In this case, Equation (3.21) may be rearranged to give: 

(3.24) 

Ho\\"e\"er. it can be proved by a simple expansion that: 

(3.25) 

Substituting Expression (3.2.5) into the previous Equation (3.24) leads to the al­

ternative chain rule expression: 

(3.26) 
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Silllilarl v 

(') 'Y"') ,).~ I 

(:3.28 ) 

The above equations represent t he fully conservative form of the chain rule, Lap­

worth [105]. 

3.2.3 Generalised Velocity COlllponellts 

The scaled velocity components C, \'. n' in general coordinate systenl are 

related to the Cartesian velocity components u. v. tv by the following relationship: 

or in a com pact form 

\ - = J(1]xU + 1]yl' + 1]z lC) 

n' = J ( C, u + (y l' + C LL' ) 

( , - 1 .) 3) I - , __ , 

where index j means a summation for j = 1.2. :3. 

(:3.29 ) 

(3.30) 

(:3.:31 ) 

( :3.32) 

The components [', \ - and If' have an important physical meaning, Tourlidakis 

(1~J9:2). In facL C/ J /~; + ~~ + (;. l -; J /1]; + 1]~ + 1]; and 11) J /(; + (; + (; are 

the velocities normal to the constant (. 1] and ( planes respectively. In other words, 

C. V and 11' are the contravariant velocity components scaled by the Jacobian of 

the transformation. 

\rith the definitions, the Cartesian velocity components may be expressed by 

the in\'erse relations: 

or 

u = ~ (.r~C + .fry V + .re 11') 
J 

t' = ~( YE. U + Y" V + y( IF) 

w = ~ (z~U + Z1J V + ze ll ') 
J 

_ 1 OXi j 

Ui - J o(j U , (i=1,2,3) 

where j means a summation for j = 1,2.:3. 

(:3.33) 

(3.34) 

(3.35) 

(3.36) 
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3.3 Governing Equations in Cartesian Coordi­

nate System 

The equations t hat govern the flo\\' Inechanics in t urbomachinery are the con­

sCTYation equations for Inass. InOlnentuln and energy. They are also called the 

N avier-Stokes equations. In order to sinlplify the solution process, these equa­

tions are transfonned to a general non-orthogonal curvilinear coordinate system 

in a relative fralne of reference fixed on a rotating passage or in absolute frame of 

reference on stationery passage and then are averaged with averaging operators, 

\yhich will be described later in this chapter. Different forms of N avier-Stokes 

equations are described as follows. 

3.3.1 The Conservation Equation for Mass 

The COIlSen"a t ion of lllass expresses that the rate of increase of mass of a 

fluid element equals the net rate of flow mass into the fluid element. In other 

words. mass cannot disappear from nor be created in a fluid s:vstem. On the other 

hand. we will not consider multiphase fluids and hence no sources due to chemical 

reaction will ha,"e to be introduced. 

The general conservation equation then becomes: 

and in a differential form: 

a Ai ..... ..... -a pdVp + p V . dS = 0 
t \/ S p 

ap + \7 . (p V) = 0 
at 

In the Cartesian coordinate system. it may be written as: 

ap a - + -(pVj) = 0 
at aXj 

(3.37) 

(3.38) 

(3.39) 

where p is the fluid density, V the fluid velocity. 5' the surface area and \/~ the 

volume of the element. Equations (:3.37) to (3.39) are the different forms of the 

unsteady. three-dimensional mass conservation or continuity equation for a com­

pressible fluid. 

3.3.2 The Conservation Equation for Momentum 

The Newton's second law of motion states that the rate of change of momen­

tum of a fluid particle equals the sum of the forces exerted on the particle. These 
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forces consi~t of external \·ohllne forces fe.rt and internal forces fnt. The former 

are also called hod~·forces such as gra\·i t a tional force, Illagnct ic force. centrifugal 

force. dc. The latter are dependent on the nature of the fluid concerned and are 

applied b~· the external ~t res~('s on t he fluid elelnent. The external stresses consist 

of nonnal st n'sscs and shear st IT~S(,S and are expressed by 

(:3.40 ) 

where II is the str('s~ tensor. The integral forn1 of the momentum conservation 

equation is 

(3.41 ) 

which leads to the differential conservation form of the momentum equation: 

a ( -) (- -) -at p v + V' p v x V = V . II + pfext (:3.42 ) 

It is assumed that the fluid is Newtonian. and therefore the stress tensor II is 

taken to be: 

II = -pI + T (3.43 ) 

\"here I is the unit tensor. Here the existence of the isotropic pressure component 

- pI is introduced and T is the viscous shear stress tensor, equals to 

[ - ( ..... ) T] :2 ( ..... ) 
T = J.L graN + gradY - 3 J.L V· V . I (3.44) 

or in the most general form: 

(3.45) 

where J.L is the dynamic viscosity of the fluid and), the second viscosity coefficient. 

fL and), are related by the Stokes relation: 

"2p + 3), = ° 
The stress tensor component IIij can also be expressed by 

( i ,j = L 2, :3) 

where Jij is the Kronecker delta function: 

1, if i = j 
0, if i i- j 

(3.46) 

(3.47) 
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and 

[ 
al'i al'j] 2 ()l'k 

Tij == Ii -a + -')- - 3P6;j-a 
.r j ( .r i :r J..~ (3.48 ) 

FpOIl ~ubstituting Equations (:~.-!I) and (3.18) int.o Equation (:3.42) and expanding 

Equation (:~.-l:?). the nl0111entU111 eqU<1 t ion in the i -direction becomes: 

a a a { [dl\ ()l'i :2 Ul'k]} iJp 
at (pt'i) + a " (PCil'j) = -a " Ii a. , + a :, - -;6i j---:--j . - -)' " + pli 

.l J .l J .1 J .l t • ) ( .l k ( .l I 

(:3.49 ) 

3.3.3 The Conservation Equation for Energy 

The energ~- equation is deri\-ecl fron1 the first law of thermodynamics which 

states that the rate of change of energy of a fluid particle is equal to the rate of 

heat adding to the fluid particle plus the rate of work done on the particle. In a 

fluid elen1ent the total energy to be considered in the conservation equation is the 

sun1 of its internal energy e and its kinetic energy per unit mass 1"2 /2. Therefore~ 

the total energy per unit mass E may be expressed as: 

,-2 
E==e+-

2 

The energy conservation equation in an integral form is: 

and in a differential form is: 

a -- aQ --
-(pE) + v . (pV E) == - - v . q + Wj + V· (II . V) at at 

(3.50) 

(:3.51 ) 

(:3.52) 

The first term on the left-hand side of Equation (3.52) represents the rate of in­

crease of total energy per unit volume in the control volume while the second 

term represents the rate of total energy lost through convection (per unit volume) 

through the control volume surface. The first term on the right-hand side of the 

Equation (3.7)2) is the rate of heat produced by external sources (i.e. radiation, 

chemical reactions~ etc.) while the second term is the rate of heat lost by con­

duction (per unit volume) through the control volume surface. Fourier's law for 

heat transfer bv conduction will be assumed so that the heat transfer q can be 

expressed as 

(:3.53) 
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where "h: is the thenllal conductivity coefficient and r is the absolute tf'mperature. 

The third tel'ln U'J on the right-hand side of Equation (:~.')2) is the work done on 

the control vohllne (per unit vohllne) h,\' the bod,\' forces 

-- --ll'J = I if.1'! . V (:3.54 ) 

while the fourth ter111 represents the work done on the control volume (per unit 

\"01u111e) by the surface forces. ;\n extrcl relation is often used to determine the 

coefficient of thel'lnal conducti\"ity k once It is known: 

k = Ilcp 

Pr 
(3 .. 55) 

where Pr i~ the Prandtl number. fL the viscosity and Cp the specific heat at constant 

pressure. 

Substituting Equations (3.-t3), (:3.,5:3) and (:3.54) into Equation (3.,:)2) produces: 

fJ -- fJQ .... -- .... at (p£) + \7 . (pV E) = at + \7 . (k \7 T) + pfext . V + \7' (II . V) (:3.56 ) 

.... 
Clarifying the term \7' (II· V) in Equation (3.:52) and introducing the enthalpy 

h of the fluid leads to the following alternative expression in a differential form: 

fJ(pH) ( ....) fJQ .... .... ap ( .... ) 
fJt + \7' pV H = at + \7 . (k \7 T) + pfert . V + fJt + \7' T' V (3.57) 

where the stagnation. or total. enthalpy H is introduced: 

1 "2 1"2 
p~' ~. p 

H=t+-+-=h+-=E+-
p 2 2 p 

(3.58) 

3.3.4 Equation of State 

In aerodynamics. it is generally reasonable to assume that the fluid is a perfect 

gas (which assumes that intermolecular forces are negligible). For a perfect gas~ 

the equation of state is 

p= pRT (3.59) 

where R is the specific gas constant. Additionally for a perfect gas the following 

relationships are defined: 

c = CvT 

h = CpT 
R 

Cv =-­
,-I 

(3.60) 

(3.61 ) 

(3.62) 
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x 
o 

z 

y 

Figure :3.1: Absolute and relative coordinate systems 

(3.63) 

(3.64) 

where Cv is the specific heat at constant volume, Cp is the specific heat at constant 

pressure and "'/ is the ratio of specific heats. 
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3.4 Governing Equations in Rotating Frame of 

Reference 

In turbonlachinery applications we han' to deal with rotating systems. It is 

llt'ccssary to be able to describe t he flow beha\'iour relative to a rotating frame 

of reference. Figure :3.1 represents a schenlatic relation between a st ationary and 

a rotating s~·stenl. It is assulned that the coordinates:: and Z are aligned (so 

R = 0) and the 1l10\'ing systelll (.1'. y . .:) is rot ating steadily in the absolute frame 

of reference (_\. Y. Z) with a constant angular velocity n around the axis:: (or Z). 

Figure 3.1. Defining r as the position \'ector of a particle relative to the rotating 

franle of reference and X as the position vector of the particle relative to the 

absolute franle of reference. \ Ye have 

(3.65) 

~ 

Defining W as the velocity \"ector of the particle relative to the rotating system~ 

\~ as the velocity \"ector of the particle relative to the absolute frame of reference 
~ 

and (0 x rl as the entrainment velocity. the composition law holds 

(3.66) 

• Continuity Equation 

Since the entrainment \"elocity does not contribute to the mass balance. the 

continuity equation remains the same form and can be written in the relative 

svstem as: 

• Momentum Equation 

ap ~ 
- + \1' (pW) = 0 at ( 3.67) 

The acceleration of the particle relative to the absolute frame of reference is 

V dW d ~ 
ii = - = - + -(0 x r) 

dt dt dt 
(3.68) 

E \'entually 
~ -+ -+ -+ -+ 

ii = ii' + 20 x W + 0 x (0 x r) (:3.69 ) 

where ii' is the acceleration of the particle relati\'e to the rotating frame of 

reference. 20 x W is the Coriolis acceleration due to the motion of the particle 

within the moving frame and n x (n x r) is the centrifugal acceleration due 

to rotation of the moving frame of reference. 
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Then the differential fonn of the conservation law for momentum in the 

relative franle of reference can be derived according to Newton's Second Law 
of Illotion: 

a ( ..... ) .......... at pW + \7' (pW x W) = - \7 jJ + \7' T + pfext (:3.70) 

The extra two external forces. the Coriolis and centrifugal forces acting on 

a fluid particle in t he rot ating system. playa very important role in rotat­

ing flows. especiall)' when the velocity vector W has large components in 
..... 

the direction perpendicular to n and other external forces, such as gravity, 

magnetic force. are neglected. The external forces can then be expressed by 

and their components are 

• Energy Equation 

(3.71) 

(3.72) 

(:3.73) 

(3.74) 

The energy conservation equation in a relative system with a steady rotation 

is obtained by adding the work of the centrifugal force. since the Coriolis 

forces do not contribute to the energy balance of the work. 

The differential conservative form of the equation (Hirsch [79]) is 

(3.75) 

3.5 Averaged Forms of Navier-Stokes Equations 

The flow field in multistage turbomachinery is extremely complex in terms 

of vast range of time and length scales, which make the direct numerical simula­

tion practically impossible. The original form of the governing equations which 

describes the flow mechanics in turbomachinery is also too complicated for prac­

tical application. In order to simplify the equation system based on the problems 

concerned it is assumed that the flow is incompressible and adiabatic. , 
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One of the pract ical wa)'s of simplif)·ing the governing equations is to use some 

kind of approxin1ately averaged set of equations \vhich can be obtained with the 

following three ayeraging operators, .\danlczyk [:2], The first averaging operatoL 

refered to as the ensell1ble averaging or Reynolds averaging, is introduced 

to elin1inate the need to resolve t he structure of turbulent flows and yields the 

Reynolds-a\·eraged fonn of these equations. The second is the time-averaging 

operator which is used to average the determinist ic unsteady equations in time at 

every point in space. This operator relnoves unsteady time scales that are of the 

order of the period of shaft rotation. The third operator, called the passage-to­

passage averaging operator, averages out the details of the passage-to-passage 

variation in the flow field. 

3.5.1 Original FornI of Navier-Stokes Equations 

For the problem concerned in the simulation of internal flows in multistage 

axial flow compressors. the governing equations in general form can be simplified 

by using a relati\'e frame of reference for rotor blade rows and an absolute frame of 

reference for stator blade rows. It is supposed that the flows are incompressible and 

adiabatic for low speed, low pressure ratio axial flow compressors, so the density 

p is constant and the energy equation is not applied in the application. 

l-nder these circumstances, the continuity and the momentum equations in 

the Cartesian coordinate system are rewritten in a relative frame of reference as 

follows: 

• Continuity Equation 

Op + o(pVj) = 0 
ot Ox j 

(3.76) 

\vhere j is a summation for j = 1,:2,3 . 

• i-Momentum Equation 

where 
(3.78) 

Cijk is the alternating tensor, which is equal to 1 if ijk is cyclic (1:2:3,231,312), 

is -1 if ijk is anti-cyclic (321,213,1:3:2) and is 0 otherwise; i= 1,:2, :3, corre-
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sponding to .r, y,:: directions; j, h', In and n are sumo1ations for each index 

\'(H~'ing fro1l1 1 to 3. 

• General Scalar Equation 

The continuit~· and 11101nelltu1l1 equations all can be expressed in a general 

fOrIn of scalar equation: 

a a a ( O<P) 
at (p<P) + -a . . (pl'j<P) = ;:l '. r <l> ~ + S<l> 

x) U.l) OJ) 
(:3.79 ) 

where <P is a scalar quantity, r <l> is a diffusion coefficient and 5'<l> is a source 

tenn and has specific o1eanings for different <P. It can also be expressed by 

the following fOrIn: 

[ 
Cn."tt-ady ] + [ 

t f. r1'n 

Convection 

terms ] [ 
Di f fU8ion ] + [ source] 

tf. nns terms 

3.5.2 Enseulble-Averaging Procedure 

Turbulent fluid motion is defined as an irregular condition of flow in which 

the various quantities show a random variation with time and space coordinates, 

so that statistically distinct average values can be discerned, Hinze [78]. 

If the value of a variable <P can be considered as the ensembled mean value <P 

plus a fluctuating component about the average <P', we get 

<P = <P + <p' (3.80) 

where the overbar denotes the average value, then by definition 

<p' = 0 (3.81 ) 

The \'ariable <P is the function of time and space. If it is averaged with time at a 

certain location then: 

(3.82) 

In the case of a homogeneous turbulence flow field, averaging with respect to space 

can be considered: 
- 1 j+X <Ps(to) = lim -, -r <P(.r, to)dx 

X -too LX -x 
(3.83) 
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If t he flow field is neither st('(ld~r nor hOIllogeneous, we then speak of an ensemble 

lnean yalue. III other \\'ords, an aY('rage is taken 0\,('1' a large number of experiments 

t hat have the saIne illit ial and boundary conditions. 

N 

L ~n(.I'O' to) 
ffi( ) 11=1 
'l' ·1'0, to = -----

iV 
(3.84) 

\\'here .Y is the sanlple nlllnber. The expression (:~.84) is suitable for incompress­

ible turbulent flows. For t he analysis of a con1pressible turbulent flow, it is recom­

n1ended to use a densit~'-weighted average. 

:-\ctuall~', turbulent flo\\' in reality is neither stationary nor homogeneous. So 

in the application of turbolnachinery calculations ensemble averaging is used as 

the first an:~raging operator. 

\Yhen averaging procedures are carried out on products of quantities, the over­

bars ha\'e the following properties: 

Let a = ([ + a' and b = b + b'. Thus 

a' = 0 b' = 0 

ab = ab 

ab' = a'b = 0 

8.1; 8;1; 

(:3.85 ) 

(3.86) 

(3.87) 

(3.88) 

(:3.89 ) 

(3.90) 

where a. band .1' are independent variables. These properties are often taken for 

granted in deriving the following averaged Navier-Stokes equations. 

When the first averaging operator is applied on the N avier-Stokes equations, 

the derived ensemble averaged equations are as follows: 

• Continuity Equation 
(3.91 ) 

• i-Momentum Equation 

8 8 8p 8 (- --, ') + -I - (pvd + - (pViVj) = -~ + 8 '. Tij - PViVj P i 
8t 8xj U.li .I] 

(3.92) 

where 
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• General Scalar Equation 

a - n - a ( a <I> -) _ at (p<l» + -a '. (pl'j<l» = -:-) " r ~ -:-) " - Pl'i<l>' + S'~ 
.1 J ( .1 J ( .1 J 

(:3.9:3 ) 

The ne\\" turbulent quantities, -Pl'~l'~ produced f1'0111 the ensen1ble averaging 

process, are Re~'nolds st ress('s due to the transport of n10mentum bv turbulent 

fluctuation. In order to close the equation systen1, an approximate turbulence 

n10delling is required, \\'hich will be discussed in Chapter 4. 

In SOIllt' cases, the Equations (:L91) to (:3.93) are simplified by ignoring the 

unsteady tenns on t he left-hand side of the equations when it is assumed that 

the unsteady. detern1inistic flow produced by neighbouring blade rows is not taken 

into account. 

3.5.3 TillIe-Averaging Procedure 

The second operator for averaging in the turbomachinery flow field is the time­

averaging operator. This operator is used to average the deterministic unsteady 

equations in time at e\'ery point in space and removes the periodic unsteadiness 

in the flo\\' field. The definition of this averaging operator is given by the integral: 

= 1 !,t 1+T _ 
<I> = - <l>dt 

T tl 
(3.94) 

So the ensemble-averaged mean value <I> can be considere~ as the time-averaged 

\'alue <I> plus a primary time resolved periodic fluctuation <1>: 

(3.95) 

\Vith this definition. the time-averaged unsteady term in ensemble averaged gov­

erning equations in relati ve frame of reference becomes zero: 

O(f5<1» = ~ [tl +T [O(f5~) 1 dt = 0 
ot T itl ot (3.96) 

Introducing the decomposition Equations (3.94) to (3.96) into Equations (3.91) 

to (3.93). upon time averaging, results in the following time-averaged form of the 

~avier-Stokes equations in the relative frame of reference: 

• Continuity Equation 

(3.97) 
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• i -l\I0I11entUI11 Equation 

(3.98) 

\\' here 

• General Scalar Equation 

(3.99) 

\Ye can ~ef' froIl1 Equations (3.97) to (3.99) that the unsteady terms on the 

left-hand side of the equations have disappeared and instead extra terms, the 

deternlinistic un~teady terms, appear on the right-hand side of Equations (3.98) 

and (3.99). The inlportance of this change means that a complex unsteady problem 

now is converted into a relatively simple steady state problem by introducing 

deterministic unsteady terms into the governing equations. 

3.5.4 Passage-to-Passage Averaging Procedure 

For a multistage machine in which the number of blades varies from row to 

row. the steady flow will not. in general. be identical from blade passage to blade 

passage. In this case. a third averaging operator is introduced and the passage-to­

passage average of a variable will in general be different for each blade row. The 

decomposition of the time averaged variable" <I> into a passage-to-passage averaged 

component <I> and an aperiodic component <I> is as follows: 

(3.100) 

\Yhen the above decomposition is introduced into Equations (3.97) to (:3.99), the 

resultant continuity. momentum and scalar equations become: 

• Continuity Equation 

• i-Momentum Equation 

a (=) ax' pVj = 0 
J 

a (= = ) ap + a ( --" " " " " ) + -I -a . PViVj = -~ -a. Tij - PViVj - PL'(Uj - PViVj P i 
x

J 
(.l.lz x J 

(3.101) 

(3.102) 
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where 

• General Scalar Equation 

8 (= =) n ( 8<1> - __ -- __ --) ~ I){'j<l> = ~ r<l> ~ - eui<l>' - 0'/<1> - pvi<l> 
u.l ) u.l ) u.l ) 

+ 5'<l> (3.10:3) 

\Ye call ~ee frolll Equations (3.102) to (:L103) that extra aperiodic unsteady 

tenns appear OIl the right-hand side of the equations. In order to model the 

aperiodic flow features. further techniques need to be investigated to close the 

equation ~~-~teln. which will not be discussed in this study. 

3.6 Governing Equations in General Coordinate 

System 

In general. the ); avier-Stokes equations consist of four basic terms: the un­

steady term. the con\-ection terms. the diffusion terms and the source terms and 

their general form of Equation (:3.79) is rewritten here for convenience. 

a a a ( a<l> ) ~, ~ (p<l» + ~ (pVj<l» = ;.") . _ r<l>;."). _ + ~<l>(;r, y, z) 
ut u x ) u.l J u.1 ) 

(3.104 ) 

\Yhen the governing equations are transformed into a general coordinate system, 

the unsteady term keeps the same form and the source terms can be transformed 

with chain rules described in Section :3.2. The transformation of the convection 

terms and the diffusion terms is more complicated and they are derived in more 

detail in the following two sections. Subsequently, the governing equations in a 

general coordinate system are derived. 

3.6.1 Convection Terms 

The convection terms in Equation (3.104) may be expressed as: 

d({Jl'-<I» a a a 
__ J _ = ~(pu<l» + ~(pl'<I» + ~_ (pw<l» 

aXj u,I uy u~ 
(3.105) 
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IT ~i llg the consen'cl ti \'t' fonn of chain rule, the expression for the convection terms 

in a. general coordinat e ~~'steln is obtained as: 

8 
-. -(pl' <I> ) = 
a.1'j J 

(:3.106 ) 

or it can be expressed in a. conlpact fornl as: 

8 1 8 . 
-. -(pl'j<l» = --. -(pUJ<I» 
8.rj J 8~j 

( . - 1 .) 3) J - ~--~ (3.107) 

\\'here 

. k - 1 .) 3 )'"1 - .,~ .. 

3.6.2 Diffusion TernlS 

The diffusion terms in Equation (:3.104) may be expressed as: 

~ (r 8<1» = ~ (r8<1» + ~ (rO<l» + ~ (rO<l» 
8x j 8.1'j 8.1' d.r oy oy 0:: 0:: 

(:3.108) 

In a similar \\'a\'. the conservative form of chain rule are used in the diffusion terms 

and gives: 

D~j (r ;~) = 
1 0 D<I> D<I> D<I> ) 
-- Jr ~xT + ~Ya + ~za + J O~ ( .r y :: 
1 0 

Jr 
D<I> D<I> D<I> ) (3.109) -- 7lrT + "1Ya + lha + 

J 0"1 (.r Y :: 
1 0 D<I> D<I> D<I> ) 
-- Jr (x Ox + (y oy + (: 0:: J o( 

If the Cartesian derivatives of <I> are replaced by non conservative chain rule, the 

resultant diffusion terms may be written as: 

D~j (r :~) = 
1 0 

Jr 
II 0<1> 12 0<1> 13 o <I> + --

g O~ + g 0"1 + g 8( J O~ 
1 0 

Jr 
21 0<1> 22 0<1> 23 0<1> (3.110) --

g O~ + g 0"1 + g o( + 
J 0"1 
1 0 

Jr 31 0<I> 32 0<1> 33 0<1> 
--

g O~ + g 0"1 + g O( J O( 
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or in a cOlllpact fonn: 

-. - r-. - = --. - Jrq' '-, -a ( ()<I» 1 a ( k a<l> ) 
a~rj a.zo j J a~j a~k 

(j, h: = 1, 2, : ~ ) 

where the Inetric cOlllponents gjk arc defined as: 

22 2 2 2 
9 = '7.r + 17y + "lz 

933 = (; + (~ + (; 
12 21 C C c 

9 = 9 = I.,.rTh + I.,y"ly + I.,z liz 

13 31 c· c ;- c· 
9 = 9 = I.,x~x + I.,yl.,y + I.,z~z 

.54 

(3.111) 

(3.112) 

(3.113) 

(3.114) 

(3.115) 

(3.116) 

(3.117) 

3.6.3 Governing Equations in General Coordinate System 

In a more general case, the Navier-Stokes equations in Cartesian coordinate 

system (:3.101) to (3.10:3) can be transfered to those in a general coordinate system 

by using the relations (:3.107) and (3.111) and the chain rules described in Section 

:3.:2. They may be expressed in the following form: 

• Continuity Equation 

1 a ( =3) -- JpV =0 
J a~j 

(3.118) 

• i-Momentum Equation 

(3.119) 

• General Scalar Equation 
With the transformation relations mentioned above, the transformed general 

transport equation in the curvilinear coordinate system may be written as: 

(3.120) 
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where S~(~, 1], () are the transformed form of the source terms S~(x, y, z). 
Expression (3.120) may also be expressed as: 

(3.121) 

where the non-orthogonal ""cross diffusion" terms have been lumped into the 

source ternlS. This transformation allows fluid dynamics problems involving 

complex geometries to be handled in a general and precise manner. 



Chapter 4 

Closure Modelling Issues 

4.1 Introduction 

The averaged forn1s of governing equations derived in Chapter :3 can not be 

soh"ed directly without further information. In order to close the equation system 

different numerical models are introduced to provide sufficient information for the 

total mixing stresses which consist of the Reynolds stresses, stresses generated by 

an unsteady velocity field linked to the rotational speed and stresses due to the 

steady. aperiodic velocity field: 

( . . - 1 .) 3) l, J - ,~, (4.1 ) 

Their evaluation, along with the application of overlapped solution domains and 

mixing planes and the simulation of bodyforce and blade blockage effect, consti­

tutes the closure problems for the equation system in a multistage environment. 

In this chapter. different steady state simulation approaches are discussed. 

\Vhen only the turbulent fluctuation is taken into account by ignoring the deter­

ministic and the aperiodic unsteady fluctuations, the flow is assumed to be steady 

in a relative frame of reference and mixing plane models are introduced to pass 

information between blade rows to make the multistage simulation of axial flow 

compressors practicable. 

\Vhen deterministic unsteady fluctuation is accounted, a deterministic stress 

model is applied based on the idea of Adamczyk [2]. This approach is more rigorous 

and also more complicated. 

A more rigorous description of the flow in multistage axial flow compressors 

with a steady state approach should account for the aperiodic unsteady flow. The 

aperiodic unsteady effect is ignored in the current study because it is much smaller 

56 
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than other ull~tead~' effects and therefore this silnplification will not produce ob­

YiOll~ error to t he predict ions. 

In addition, repeating ~t age Il10dels (lre cicv('loped in this study and described 

aften\'(uds. These Il10dels effect i \"('ly sinlplify t.he global aerodynarnic boundaTY 

condi t ions requi red for t he flow si nuda tion of rear ~t ages of 1l1uItistage axial flow 

cOInpressors. 

4.2 Turbulence Modelling 

The detennination of t he Re~'nolds stress term, - Pl'>~' is carried out through 

turbulence nlodeb. 

The Inost COIllIl10nly used t.urbulence models can be classified in terms of the 

nunlber of differential equations solved in addition to the mean flow Navier-Stokes 

equations. ~ allasanlY [1 :28]. 

1. Zero equation models 

.) One equation nlodels 

:3. T\\'o equation models 

-±. Reynolds stress equation models 

~Iost of the models. (1) to (3), use the Boussinesq eddy viscosity model whose 

concept is based on the assumption that the Reynolds stresses follow the same 

type of stress-strain relation as in the laminar flow: 

-, -, iJT'i iJT' j 2 iJ Uk 2 
-pt'-/.'- = 1/ (- + - - -8---) - -pk8· 

I J rT a a '3 lJ a 3 lJ X j .l'i . ,1' k • 

1-,-, 
k = -v t' 2 k k 

(4.2) 

where J.1T is a turbulent eddy viscosity coefficient and k the turbulent kinetic energy. 

The advantage of this assumption is that the turbulent flow equations have the 

same fornl as the laminar flow equations with the molecular viscosity J.1 replaced 

by an effective viscosity 

J.1ef f = J.1 + J.1T 

Thus, the effects of turbulence are completely simulated by the turbulent viscosity 

and the system of ensemble averaged N avier-Stokes equations becomes: 
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• Continuity Equation 

a 
-. -(7)1'.) = 0 
a.tj J 

( 4.:3) 

• i-Molnentulll Equation 

(4.4 ) 

where 
_ aT'i aT'j 2 aT' k 
iij = (It + fiT)(-. - + -. - - -:-Jij -.-) a .r j iJ.r i .) iJ.r k 

.) 

P=p+;pk 

Thi~ is the easiest closure approach to the ensemble averaged Navier-Stokes 

equations. \ 'arious turbulence models in this group are distinguished from one 

another by the way the quantities h~ and /-1T are estimated. The models most 

frequently used in turbon1achinery applications are described below in detail. 

4.2.1 Zero Equation Models 

Zero equation models are mostly based on the eddy viscosity concept. The 

first turbulence model proposed is the Prandtl's mixing length hypothesis. Prandtl 

[1-12]. which employs the eddy viscosity concept to relate the turbulent transport 

terms to the local gradient of mean flow quantities. \Vith this model. the distri­

bution of the eddy viscosity is calculated with the mean velocity gradient: 

C1 l2 au 
/-11' = I1P m ay ( 4.5) 

where ell is a constant. The mixing length lm whose distribution over the flow 

field has to be given with the aid of empirical information. The main drawback 

of this model is the difficulty of the evaluation of lm for complex flows. such as 

recirculating flows and 3-D flows. The incorporation of the effects of curvature, 

buoyancy or rotation in the model is entirely empirical and the transport and 

history effects of turbulence are not accounted. 

The most popular algebraic turbulence model in turbomachinery applications is 

the Baldwin-Lomax model. Baldwin and Lomax [11]. Application of the Baldwin­

Lomax model to turbomachinery flow problems were reported and summarized by 

Hirsch [80] and Dawes [40]. This model split the boundary layer into an inner 
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region and an outer region, and the lllixing length 1m and the eddy viscosity Ilt are 

calculated in each region with corr('~ponding (\111Pirical rela.tions. 

Although the lllodeb are si111ple and cOlllPutationa.lly econonlical, theoretical 

and practical difficultil'~ appear when illlplelnenting these nlodels in the flow simu­

lations where corner flows t'xi~t. It can be considered that algebraic n10dels provide 

acceptable accuracy for predictions of well-beha\'(\d, attached shear la\·crs. 

4.2.2 Qne Equation Models 

In one equation turbulence models, the turbulent kinetic energy k is the solu­

tion of an equation which can be derived from the N avier-Stokes equations. The 

earliest One-Equation ~Iodel was described by Prandtl [14:3], Emmons [5:3] and 

Glushko [lH] and Inay be expressed as follows: 

ok a!.: avo k3
/

2 a [ Il ok 1 
P ;..)t + pt'j~ = Tij ~ ,l - CDP-l- + ~ (fl + -)~ 

u u.1. J u:z J u.r J a k u.r J 
(4.6) 

where Tij is the Reynolds stress tensor and fly the eddy viscosity modelled by 

(4.7) 

Before the model can be used in applicationsl the length scale, l. and the closure 

coefficients (J} and CD must be specified. 

Bradshaw. Ferriss and Atwell (:21] formulated a one equation model that avoids 

introducing a gradient-diffusion approximation. The model's skin friction for 

boundary layers in adverse pressure gradient was closest of the various modes 

tested in the 1968 Conference to measured values, \Vilcox [188]. 

One equation models wert' also formulated that based on somthing like the 

kinetic eddy viscosity other than the turbulence kinetic energy, such as a model 

de\'eloped by Xee and I~ovasznay [129]. In early 1990's, Baldwin and Barth [1:2] 

and Spalart and Allmaras [163] derived more elaborate model equations for the 

eddy viscosity. The Baldwin-Barth model includes seven closure coefficients, two 

empirical function and a function describing the turbulence length scale. The 

Spalart-Allmaras model is also written in terms of the eddy viscosity and includes 

eight closure coefficients and three functions. 

The early one equation model only performs slightly better than the zero equa­

tion models. While the improved models by Baldwin and Barth [12] and Spalart 

and Allmaras [163] show better predictive capability and have achieved closer 

agreement with measurement than is possible with zero equation models. 
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4.2.3 Two Equation Models 

The two equation 11lodels are widel)' used in engineering applicat.ions. The 

tir~t atteI1lp to apply the two-equation k - ( 11lodel to turbomachinery flows was 

pioneered by lIah [71]. Application of the k - ( Illodel to various turbomachinery 

flo\y~. snch as subsonic turbine blade and i:l transonic COIllpressor. were performed 

b)' ~Iatuso [1 ~ 1]. and Jennions and Turner [94]. The idea of the models is to 

introduce anot her differential equation for the calculation of the turbulence length 

scale in addition to the transport equation for the turbulent kinetic energy. 

The length scale equation can. in principle. be derived from the Navier-Stokes 

equations. Basically. three kinds of two equation models \vere proposed: k - kl, 

h: -~' and k - f l1lodels. Launder and Spalding [106]. Here l is a length representing 

the Illacroscale of turbulence which may be defined in terms of k. ( and a constant 

CD through 

(4.8) 

where ( is the dissipation rate of the turbulence kinetic energy defined as 

(4.9) 

.....,' is a quantity haying the dimension of (time )-2 and can be defined in terms of 

k'. ( and CD: 

The above definitions imply that: 

d(kl) 
kl 

5 dk d( 

:2 k ( 

dw dk d( 
- - _.)-+.)-
1./.",- ~k ~( 

(~.10) 

(4.11 ) 

(4.1:2) 

\Yith these equations, the three models are closely related to one another and it 

is possible to transform one pair of equations into another. However, the k - ( 

model becomes the most popular because of the advantage that the (-equation 

requires no extra terms near walls. In addition, E itself appears in the k-equation 

and the (-equation requires no secondary source term. Hence, only the k - ( model 

is described in detail here. 

The standard k - ( model. Launder and Spalding [106]. employs eddy viscosity 

and relates it to k and c 

( 4.13) 
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The two lllodel equations <It high Re~'nolds IHllllbers, one for turbulent kinetic 

energy and t he other for its dissipation rate are gi ven below: 

• Kinetic energy equation 

o(pT'j h:) n liT Oh' 
;:) . . = ~ ( - -:--), ) + G k - pf + G e 
u.l J u.l j (T k ( .1 j 

(4.14) 

• Kinetic energy dissipation rate equation 

o(pT'jt) 0 liT Of t, 1 , 

;:) = ~(-~) + 1(( IG k - C2Pf + C,e) 
u.rj u.rj O't u.l'j ,,' 

(4.15) 

where Gk is the generation rate of turbulence obtained by' 

C1.16 ) 

The constanb in these equations ha\'e been found to take the following values: 

C~j = 0.09, C1 = l.44. O'k = 1.0, 

However. these constants need to be changed in order to accommodate effects such 

as cun'ature. low Reynolds number. near walL etc. 

4.2.4 Other Models 

The two equation models which have been used extensively have their own 

limitations. The major limitation is the assumption of isotropic eddy viscosity. 

The same value of I1T are taken for different PL'>j terms. In order to account for 

the different development of the individual stresses and additional effects, such as 

cun'ature and rotation. more advanced turbulence models such as Reynolds Stress 

Transport Equation models (RST E) and the Large Eddy Simulation (LE8) have 

been introduced. One of the successful Reynolds stress models is due to Rodi 

[149]. who provided an algebraic equation for the Reynolds stresses. The algebraic 

Reynolds stress model in conjection with the h' - t turbulence model captured 

rotation and curvature effects, Lakshminarayana [104]. More recently, a turbulent 

potential model was developed by Tsuei et al. [176] based on the ealier work of 

Perot et al.[137] and Perot [138]. and was implemented into a turbomachinery CFD 

solver and indicated more benefits than the two widely used turbulence models, 

the Baldwin-Lomax model and the two equation k - f model, in their calculations. 

r nfortunately, the advanced turbulence models still lack universal validity and 
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are in the acadelnic developlnent SLl~C. They sufff'r froIn lllany limitations and 

lead to a s igllificant increase in COlllpU tel' ti nle. Even so, their application for 

turbonlachiller~' flows lllight provide 1110re reliable turbulence modelling in the 

future. Hirsch [~O]. 

4.3 Wall Function 

In a turbulent flow. t he flow dose to a wall is dominated bv viscous effects and 

t he flow properties in boundar~T layers change steeply. This makes the treatment of 

wall boundaries Inore conlplicated. :\ detailed description of turbulent boundary 

layers would require prohibiti\'ely large number of grid points. Normally, the "wall 

function" is enlployed to represent the effect of the wall boundaries and link the 

solution in the interior of t he domain to t he near wall region and avoid the use of 

a fine grid. 

According to \ 'ersteeg et al. [ISO] and Tourlidakis [1'/:3], a turbulent boundary 

layer adjacent to a solid surface is composed of two regions: the inner region which 

occupies 10c;( to :20(/~ of the total thickness of the wall layer and the outer region 

or law-of-the-wake layer occupying the rest of the wall layer which is an inertia­

dominated core flow far from t he wall. Normally. only the flow behaviour in the 

inner region is simulated with the "wall function" approach as the control volumes 

closest to the \vall are chosen to be within that region. In the inner region, it is 

supposed that the mean flow velocity Up only depends on the distance from the 

wall .y. fluid density p, viscosity f..L and the wall shear stress T w: 

Dimensional analysis show that 

where 
+ PUTY 

Y = 
f..L 

and U T is called friction velocity and defined as 

~ 
U T = vr; 

Expression (4.18) is called the law of the wall. 

\Vithin the inner region there are three zones (Figure 4.1): 

( 4.17) 

( 4.18) 

(4.19 ) 

( 4.20) 
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Figure -1. 1: Typical turbulent boundary-layer velocity profile [162] 

• The Linear Sub-layer 

At the solid surface the fluid is stationary. In the absence of a turbulent 

shear stress effect the fluid closest to the wall is dominated by viscous shear. 

This layer is in practice extremely thin (y+ < :3) and we may assume that 

the shear stress is approximately constant and equal to the wall shear stress 

T w throughout the layer. The following relationship is used to describe the 

la\Oer: 

(4.21 ) 

• Log-Law Layer 

This region (.sO < y+ < .500) is fully turbulent and dominated by turbulent 

(Reynolds) stresses. A functional relationship between u+ and y+ is used to 

describe the layer: 
1 

u+ = -In(Ey+) (4.22) 
fl, 

where fl, is Von I\"arman's constant and equals to 0.41, E is a function of the 

wall roughness and found to be 9.0 for smooth walls. 
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• The buffer Layer 

Thi::-; region exist s between the linear sub-layer and the Log-law layec where 

viscous and turbulent StiTSS{,S <He of silnilar lllagnitude. There is a smooth 

change of the velucity profile in the region. In an engineering application, 

this layer is ignored and a transition point is found to be at y+ ~ 11..5 to 

join t he linear ::-;u b-1<:l)'('1' and t he Log-law layer. 

So in t he near wall region, the How is taken to be laminar if y+ < 11.5 and the 

wall shear stress is as::-;ullled to be entirely viscous in origin. If y+ > 11.5 the flow 

is turbulent and the \yall function is used. The relationship between u+ and y+ is 

re-written as follows 

{ 

y+ if y+ < 11..j 
u+ = 1 

-In(Ey+) ify+ > 11.5 
f\, 

(4.2:3) 

The wall force is extended into the discretised momentum equations as sources. 

The detailed description is stated below . 

• Laminar Flow/Linear Sub-layer 

In the near wall region when y+ < 11.5 the near wall flow is taken to be 

laminar. The definition of the friction velocity U r yields 

') 

Tw = pu; ( 4.24) 

\Yith the definition of u+ (4.18) and y+ (4.19) and Expression (4.21) we get 

Ii [Tp 
Tw =--

Y 

The shear force Fs is now given by 

Up 
Fs = -TwAceli = -p-Acell 

y 

where Acell is the wall surface area of the control volume . 

• Turbulent Flow 

( 4.25) 

( 4.26) 

If the value of y+ is greater than 11.5 the flow is considered to be turbulent. 

In the k - (. modeL it is assumed that t he generation of turbulence kinetic 

energy k is in equilibrium with the dissipation of turbulence kinetic energy 

(. and the expression of the friction velocity is given through the following 
. 

expreSSIon: 
( 4.27) 
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Then. ~ubstituting the equation (-1.27) and (-1.20) into (-4.18) and (4.19) yields 

( 4.28) 

1 

+ pCJ-1Vky 
y = (4.29) 

P 

Suh~tituting Equations (4.~q), (-1.22). (-1.18). (4.27) into (4.20), we get 

1 

he] VkpU 
T - P 
w- 1 

In( ECJ Vkpy / fJ) 
(4.30) 

The shear force Fs i::; now expressed by 

(4.31 ) 

4.4 Mixing Plane Models 

4.4.1 Introduction 

The mixing plane model is one of the practical ways of predicting flows in mul­

tistage axial flow compressors. The idea of this approach is to simulate multistage 

turbomachinery flows with the ensemble averaged N avier-Stokes equations by tak­

ing into account only turbulent fluctuations. Other unsteady effects, the determin­

istic and aperiodic unsteady fluctuations. are ignored. It is also assumed that the 

flow is stead\" in the relative frame of reference in rotors and in the absolute frame 

of reference in stators, and therefore the unsteady terms in N avier-Stokes equations 

disappear. Separate flow simulations can be carried out in computational domains 

for each blade passage by appropriately setting boundary conditions. Hence. diffi­

culties arise on how to pass information between the two frames of reference with 

relative rotation and maintain consistency of variables at interfaces. 
J 

The first mixing plane model for multi-blade row calculation was introduced by 

Denton and Singh [.50] where aerodynamic information is circumferentially area av­

eraged and passed across a mixing plane to the next blade row. The disadvantage 

of this model is that the averaging process loses a lot of information and causes 

errors to the predictions. In order to overcome the above problem. a circumferen­

tially non-uniform mixing plane model was proposed by Denton [47] where both 

radial and circumferential variations exist on both sides of the mixing planes. 
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It i~ ob\'ioll~ that the circlllnferentiallv non-unifor11l 11l1xlng plane model is 

better than the circlunferentially unifor11l lnixing plane 11lode!. However in some 

situatiuIl~ when the circullnefent iall~' non-unifonn lnixing plane model is difficult 

to appl~T. ~uch a~ the tranSfOl'llldt ion of v('locit,v field, the uniform mixing plane 

nlodel is an effect i \'c alterna t i \"('. Because of this both 11lodels are used in the 

calcula t iOll S. 

4.4.2 Uniforul Mixing Plane Model 

In this 1110deL a lnixing plane is chosen to be located at an axial position ap­

proxi11lately halfway between two neighbouring blade rows. Since the flow through 

two blade rows in relative rotat ion is inevitably unsteady. the unsteady effects of 

the real flow are relllO\'ed through circumferential averaging so the upstream row 

sees a circulnferentially uniform downstream boundary condition and the down­

strea11l row sees a circumferentially uniform upstream flow approaching it. This 

averaging process Illust. as a minimum, ensure conservation of the mass flow rate, 

Da\\'es [-11]. It is important to note that although the circumferential information 

is sIlleared. the radial \'ariation exists. 

The circumferential averaging process may be carried out with area averaging 

bv 

or mass averaging by 

<I> a = J <I>rdrdB 
J rdrdB 

- J <I> pwrdrdB 
<I>m = ----­

J pwrdrdB 

( 4.:32) 

( 4.33) 

where <I> is a flow parameter, p the density. lU the axial velocity. r the radius and 

B the tangential angle of a control volume. Figure 4.:2. 

This averaging process is not a physically realistic process unless the blade 

rows are widely spaced. and can lead to unrealistic predictions of the flow in the 

regions close to the leading and trailing edges. In other words. the circumferentially 

uniform flow may be forced to exist too close to the leading edge of the downstream 

blade row and not allow the flow to adjust circumferentially to the presence of the 

blade as it would in reality. As a result the leading edge loading on the blade 

row may be wrong and may even be physically unrealistic. The magnitude of this 

problem depends on the leading edge loading and thickness and on how close the 

leading edge is to the mixing plane. A similar problem occurs at the trailing edge 

of the blade [OW upstream of the downstream mixing plane, but for subsonic exit 



Chapter -1. Closure .\lodelling Issues 

x 

I 
I 

I 

I 

I I 

B ... .' I 
Iqnl 

I '-1, 
I I 

I I 
I I 

I I 
I 

II 
II 

II 

I 

avera 

I 
I 

I 

element 

control volume 

y 

Figure -1.2: Circumferential averaging element 

67 

flows the problem is not so serious. In this study. the uniform mixing plane model 

is used to pass velocity profiles across mixing planes. 

4.4.3 Non-Uniform Mixing Plane Model 

In order to relieve the problem mentioned above, a circumferentially non­

uniform mixing plane model is introduced, Denton [47]. The method may be 

briefly described as obtaining the circumferential variation of fluxes at the mixing 

plane by extrapolation from the upstream and downstream planes while adjusting 

the level of the fluxes to satisfy overall conservation. Thus the fluxes "seen" by 

the blade rows are circumferentially non-uniform at the mixing plane with differ­

ent circumferential variations. but the same average value, being "seen" by the 

upstream and downstream blade rows. 

In more detail, the circumferential averaging is first applied to the parameters 
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to be trall~fered acros~ the nlixing plane with Equation (1.:32) or (4.:3:3). In the 

proce~~. all t he cells at t he ~(llne spanwise locat ion ilnlnediately upstream of the 

lnixing plane are treat cd a~ a single large elelnent and the fluxes are conserved 

between the non-unifonn lIow entering its upst reanl face and the uniform flow 

leaving ib downst reanl face, which is on the nlixing plane. However, the fluxes 

crossing the nlixing plane are not taken to be circlunferentiall \' uniform. Instead .. , 
the fluxes cro~~ing the face of an elelnent inlmediately upstream of the mixing plane 

are obtained by nHdtipl~'ing the fluxes through the upstreanl face by the ratio of 

the circlunferent iall~' averaged fluxes at the nlixing plane to the circumferentially 

averaged fluxes at the upstreanl plane. i.e., 

<I>k . 
<I> - <I> ( mIx) 

k mrx - k mtx - 1 <I> 
kmix-l 

( 4.34) 

Sinlilar treatnlent is applied to the elements immediately downstream of the 

mixing plane. At a certain spanwise position, the fluxes entering the face of the 

element inlmediately downstream of the mixing plane are obtained by multiply­

ing the fluxes through its downstream plane by the ratio of the circumferentially 

averaged flux at the mixing plane to the circumferentially averaged fluxes at the 

downstream plane. 

( 4.35) 

The idea and the symbols are schematically described in Figure 4.3. The flux 

\'ariation is obtained at every spanwise location and is equivalent to obtaining the 

circumferential variation in flux from upstream of the propagating direction of the 

parameters but adjusting their magnitude to satisfy the overall conservation. 

The described non-uniform mixing plane model allows the flow entering and 

leaving the mixing plane to vary circumferentially and is a great improvement 

compared \vith the uniform mixing plane model when the mixing plane is close 

to the leading or trailing edge. In this study, the circumferentially non-uniform 

mixing plane model is applied to all parameters except the velocity profile and the 

details of the application of this model will be described in Chapter 6. 

4.4.4 Discussion 

The mixing plane models have several advantages: 

1. The mixing plane models are numerically simple and easy to be implemented 

into an existing computer code of isolated blade row simulation. 
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.) They are e<t~~r to appl~' to engineering applications and can provide predic­

tiOIl~ with acceptable accurac~' for 111ultistage turboI11achinery working near 

peak efficiellc~', which will be demonstrated in (1hapter 6. 

:1. The COll1puter code with the 11lixing plane tllodels is easy to operate. 

4. The 11lixing plane 1110deb provide spanwise consistency of mass flow rate, 

veloci t~' profile and st atic pressure profile crossing the mixing planes between 

blade ro\\"s. 

Apart fron1 the above ad\'antages, these Inodels also have their disadvantages: 

1. They can not Inaintain spanwise consistency of momentum and total pres­

sure. This inconsistenc~' may not be a serious problem when a machine works 

near peak efficiency but may be significant when the machine works far away 

fron1 the design operating condition . 

. ) The flow prediction with the mixing plane models will have a large prediction 

error when a compressor works near stall or has extended flow separation 

areas. 

Based on the above discussion, it is suggested that the mixing plane models be 

used for multistage simulation of turbomachinery flows near peak efficiency. For 

off-design flow simulation, the mixing plane models need to be improved or other 

approaches may be considered. 

4.5 Deterministic Stress Model 

4.5.1 Introduction 

The major disadvantage of mixing plane models for multistage axial flow 

compressor applications based on ensemble averaged N avier-Stokes equations is 

the discontinuity of several aerodynamic paranleters such as momentum, total 

pressure. etc. at interfaces. This discontinuity may cause large prediction errors 

when the machines operate away from design operating condition. 

The discontinui ty at interfaces comes from the deterministic and aperiodic un­

steady fluctuations generated by neighbouring blade rows. According to Prato et 

al. [144]. the aperiodic unsteady fluctuations are much smaller than the determin­

istic unsteady fluctuations. Therefore, the aperiodic unsteadiness is ignored in this 

study. 
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\ Yhen ignoring the aperiodici ty of the flow generated b~r neighbouring blade 

rO\\"~ and appl~"ing the ti llle-aHTaging operator to the <'nsernble averaged N avier­

Stokt'~ equation~, the int roduct ion of the detenninistic stresses along with the 

bodyforce and blade blockage Blakes t he interfaces between blade rows continuous 

for Il1011lenhlln, total pre~~ure, etc.. 

In order to close the tirne-averaged Na,"ier-Stokes equations where the deter­

Ininistic stre~~e~ are introduced, oycrlapped C0111Putationai domains are used to 

tran~fer detennini~tic stresses, bod~"force and blade blocking effect. The function 

of t he bod~" force and blocking effect c0111ing from the neighbouring blade row is to 

get a correct ayerage flow field in the downstream extended computational domain 

of the blade row under inH='stigation. 

4.5.2 Overlapped Solution Domain 

It is assumed that the deterministic (periodic) unsteady influence on the flow 

in a blade passage only comes from its upstream blade row. In order to "close" 

the equation system, an overlapped solution domain approach is introduced for 

the simulation of deterministic stress terms. Figure 4.4 shows how overlapped 

computational domains are utilised for a blade row in a multistage environment 

with at least one upstream blade row and one downstream blade row. 

For a blade row in a multistage environment, the computational domain starts 

axially from its upstream interface and ends at the downstream interface of its 

following blade row. A H-type two-block grid, one for the main passage and the 

other for the tip clearance ear for a rotor and a H-type single block grid for a 

shrouded stator are used for accuratp simulation of flow phenomena in different 

flow regions. 

The bodyforce and blade blockage effect generated by the downstream blade 

row are calculated in the computational domain of downstream blade row and 

applied on the computational domain of current blade row. With the implemen­

tation of the bodyforce and blade blockage effect, the predicted flow field in the 

extended domain of the current blade row reflects the averaged flow nature with 

the influence of the downstream relatively rotating blade row. 

The deterministic stresses generated by the upstream blade row are calculated 

in the computational domain of the upstream blade row and imposed on the com­

putational domain of the current blade row. With the implementation of the de­

terministic stresses, the interface between the current and the upstream blade rows 

becomes continuous for all the aerodynamic parameters except for static pressrue 
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and total pressrue. The inconsistency of the pressure distributions at interfaces 

will be discussed later. 

4.5.3 Special feature of the coordinate systenl 

In the computational system of this study, three coordinate systems, the gen­

eral non-orthogonal curvilinear coordinate system, the cylindrical coordinate sys­

tem and the Cartesian coordinate system, are employed simultaneously. The cylin­

drical coordinate system and the Cartesian coordinate system are two special cases 

of the general non-orthogonal curvilinear coordinate system. Such an arrangement 

has two reasons. Firstly, the N avier-Stokes equations are expressed in a general 

non-orthogonal curvilinear coordinate system with the Cartesian velocity compo­

nents as unknown variables. Secondly, ~ and r; coordinates in general coordinate 

system are chosen to be aligned with () and r coordinates in cylindrical coordinate 
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s~·stenl respectin\l\ in order to siIllplif\ the CFD cOlnputation. 

The special features of the coordinate S\stenls used in this study are as follows: 

• The coordinate lines ~ and '17 of the non-orthogonal curvilinear coordinate 

s~'steIll are designed to be aligned with the 0 and,. coordinates of the cylin­

drical coordinat {' s~·st ('In rt'specti vely, Figure 4.5. 

• The grid nodes wit h the sanle 17 hav(' the same r. 

• The grid nodes with the saUle ~ and ( have the same O. 

• On each '1] surface the grid nodes wi t h the same ( have the same z. 

l~ nder these circunlstances. lnany calculations are simplified and can be oper­

ated in the cylindrical coordinates and then transferred to the Cartesian or non­

orthogonal coordinate system. 

4.5.4 Deterulinistic Stresses 

The deterministic fluctuations occur on larger space and time scales than the 

random (turbulent) fluctuations, and are the result of tangential non-uniformity of 

the flow field generated by neighbouring blade rows. In a three-dimensional simu­

lation, the local deterministic velocity fluctuation can be expressed in a cylindrical 

coordinate systen1. Rhie et al. [148] as: 

(i=r,O,z) ( 4.36) 

where Vi is the ensemble-averaged velocity and Vi IS the time-averaged velocity 

calculated by: 

1
83 

VidA 
82 Vi = ----!:-:;----

r83 (L4 
J82 

( 4.37) 

where dA = rdOdr, O2 and 03 are explained in Figure 4.6. Velocity decomposition 

is schematically shown in Figure 4.7 at a certain radial position across one blade 

pitch from O2 to 83 . 

The computational procedure for a time-averaged velocity fluctuation ~i' a 

normal deterministic stress and its gradient is schematically shown in Figure 4.8. 

Other deterministic stress terms and their gradients can be calculated in a similar 

manner. 
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Figure -1.6: Schematic front view of a blade row 

In order to include the deterministic stresses into the momentum equations, 

calculated ;:i. (i r,O) in each control volume must be projected to .T and y 

directions: 

( 4.38) 

(-1.39) 

Consequently. the tangentially area-averaged deterministic stresses can be calcu­

lated as: 

l
(h .............. 

pVivjdA 
(h 

pv i v j = --='----::----

{B3 dA 
JB2 

(i,j = :r, y, z) ( 4.40) 

In the computational domain of a given blade row, the deterministic stresses 

generated by its upstream blade row are calculated in the computational domain 
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8 

of the upstream blade row and imposed on the computational domain of the cur­

rent blade row. These deterministic stresses contribute to the correction of the 

momentum and make the spanwise continuity of momentum possible at interfaces. 

The momentum in a circumferential element at certain radius r before and after 

an interface may be expressed for incompressible flows by the following equation: 

i (pVi 1'j )d.4 
, ~ 

'" before interface 

'-'----",------,1 (4.41 ) 
after interface 

In the deterministic stress approach, the area averaged total pressure is con­

tinuous as well provided that the static pressure is consistent at interfaces because 

of the compensation of the deterministic stresses applied: 

Pt ,ups = Pt,dns ( 4.42) 

where 

P"ups = i [Ps + ~ (u2 + v2 + W2)] dA ( 4.43) 

P',dns = Ps + ~P (u2 + v2 + w2
) + ~,ii (i? + 1/ +J?) (4.44 ) 
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The continuit~· of lnass is satisfied autlHnatically at interfaces when the area 

a\·craged lnixing process is (1 pplied. 

4.5.5 Body Force 

Body force is ca llsed h~· the interaction betw(\(,ll the flow and blade rows. 

It is associated \\"ith the inyiscid and \·iscous forces acting on the blades. The 

influence of body force is not Olll~r restricted in the blade passage, but on the flow 

fields upstrealn and downstreanl of t he blade passage. In a computational domain 

which covers a blade passage. the flow field can be predicted by removing the blades 

and instead introducing the bodyforce and blade blockage generated by the blades. 

The predicted flow field is not t he same as the original one but is an equilibrium 

flow field in tenns of axial and radial variation of aerodynamic parameters. The 

circunlferential variation only reflects the development of the wake generated by 

the upstream blade row. The circumferential variation in the original flow field is 

smeared just like a flow passing an actuator disk which is equivalent to a rotating 

blade row. 

It is assumed that the body force contributes to the pressure gradient and part 

of the momentum change of the flow. Another part of the momentum change comes 

from the impact of the blade blockage which will be discussed in the next section. 

In a rotating blade passage. centrifugal force also contributes to the bodyforce. 

Based on this assumption. the body force acting on a control volume is due to the 

pressure difference around the volume surface and the centrifugal force. It is also 

assumed that the centrifugal force generated by rotor blade rows only exists in the 

areas between blades. 

This approximation has the advantage that the body force can be easily sim­

ulated by calculating the circumferentially area-averaged pressure gradients and 

centrifugal force( for rotating blade passages) from the current blade com put ational 

domain and implementing in the calculation of the upstreanl blade computational 

domain. 

In the simulation procedure, local pressure gradients in a blade computational 

domain are first of all calculated in three coordinate directions of the cylindrical 

coordinate system. Then the circumferentially area averaged bodyforce compo­

nents at certain radius r are obtained with Equations (4.45), (4.46) and (4.47). 
Figures 4.9 and 4.10 show the bodyforce imposed on a tangential volume element 
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in =, () and r directions in a c~·lindrica.l coordinate S,ysteIll, 

1.
B3 (()jJ) 

(
'-) - d.\ , ap _ ..... .......... B2 a" _ ..... ..... ..... 

.1,.= a1' +p!1~(!1xr)= B3 +p!1x(!1xr) 
" f d. \ 

Jrh 

(4.4.5) 

fB = ( 4.46) 

(4.4 7) 

where AR is the local weighting function of blade blockage defined by Adamczyk 

et al. [:! J as 

(4.48 ) 

(i.e. 1 minus blockage) within a blade passage and AR = 1 outside a blade passage. 

In Equation (-1,-18). ~y is the blade number of a blade row, and the meaning of ()I 

and f)2 are shown in Figure 4.10. 

The function of AR here is to average out the tangential pressure gradient on 

the whole tangential length. including the area occupied by blades because this 

pressure gradient is supposed to be implemented in the momemtum equations 

to change the tangential flow momentum in the upstream blade computational 

domain where the space of blades are occupied by fluid. 

Subsequently. the obtained circumferentially area averaged pressure gradients 

are projected locally to the .1'. Y and = directions, similar to the projection of 

deterministic stresses. 

fx = (fr)r cosf) - (fB),. sine 

fy = (fr),. sine + (fB)r cose 

4.5.6 Blade Blockage Effect 

(4.49) 

( 4.50) 

(4.51 ) 

Blade blockage has obvious influence on the flow momentum inside the blocked 

area. When the flow is blocked, the flow must go faster in the blocking direction 
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in order to p<l~S the unchanged Illass flow rate. AdcHnczyk [2] iIllplemented the 

blockage factor (AR) into the t.illle-aycraged N avier-S1 okes ~quations. Effort has 

been lnade for t he application of his equation sysU'lll to the current flow simulation 

and it was found that t he pressure gradient. terlll has unphysically large influence 

on the flow field and the resulted How field is far away frolll reality. Because of 

this reason, a silllplfied approxilllation for tIlt' blade blockage effect is introduced 

in this study and described as follows. 

:-\. typical control vohulle in the downstreanl dOIllain of the blade row of interest 

is shown in Figures 4.11 and -1.1~. \Vhen blockage occurs to the control volume, the 

effect of the blockage is just like that when t he flow passes through a control volume 

\yith a slnaller cross area which is drawn in dotted lines, where the projected flow 

areas are reduced in the:: and r directions and keep the same in the () direction. 

Assuilling t ha t the 111ass flow rates in the ::. ,. and () directions remain the same 

when the flow is blocked. the new velocity components in the cylindrical coordinate 

system are calculated based on the mass continuity in each direction: 

and 

dni z = pL,::dA:: = Pl':( ARdA-:) 

drri r = pc,.dAr = pV~(ARdAr) 

drrie = pL'edAe 

v: = vzI AR 

L'~ = Uri AR 
, 

l'e = Ve 

( 4.!52) 

( 4.53) 

The updated \'elocity components are then projected to the .T. Y and z directions 

and the resultant Cartesian velocity components are: 

, , e ,. e 
u = v cos - L'eSllt x r 

, ,. e ' e 
u y = l'rSzn + l'e COS ( 4.54) 
, , 

Vz = Uz 

This approximation of the blade blockage effect is only applied after a solution 

to a flow field is converged. During the iterations t he volume geometries are 

actually chosen to be the same to those in the computational domains instead of the 

blocked ones so the velocity components used in the computation are the Cartesian 

velocity components corresponding to the cylindrical velocity components vz , Vr 
" , 

and Ve rather than (v z ), (l'r) and Ve' 



Chapter cJ. Closure .\'odelling Issues 8,) 

4.5.7 Deficit of Overlapped Solution Approach 

Theoretically, the int erfacl's between blade rows beconle continuous for all 

the aerod)'nalnic paralneters with the ilnplelnentation of deternlinistic stresses. 

Pnfortunatel)·. due to the closure requirelnent of the tinle averaged Navier-Stokes 

equations. the overlapped C0111putational dOlnains have to be used to obtained the 

deternli nist ic st ress('s. This type of approach act ually causes the inconsistency in 

spanwise st at ic pressure dist ri bu t ion a t interfaces. 

For exanlple at the interface :2 in Figure .:1.4, the spanwise distribution of static 

pressure obtained in DOlnain II is not exact ly the same to that obtained in Do­

Inain III due to the 1110del error (i.e. the approximation of bodyforce and the 

blade blockage effect) and nlunerical error. This span\vise inconsistency also con­

tributes to the spanwise inconsistency in total pressure distribution. Therefore. 

the deternlinistic stress model discussed in this section provides interfaces with 

spanwise continuous mass flow rate, momemtum, k and t but does not garantee 

the span"'ise consistency of static pressure and total pressure in practice, although 

the influence of the inconsistency is not significant. More analysis can be found in 

Chapter 6 (Section 6.6). 

4.6 Repeating Stage Models 

4.6.1 Introduction 

In multistage axial flow compressors, it is observed that after a few similar 

stages the flo\-\, develops a radial distribution which repeats itself after every stage. 

This is particularly obvious in terms of the radial distribution of axial velocity and 

flow angles. but it is also true for other parameters such as static pressure and total 

pressure although with different absolute values at the inlet and exit of the stage. 

The effects of casing. hub friction, tip leakage and hub leakage in the first few blade 

rows appear to rapidly reach an equilibrium condition similar to fully developed 

pipe flows. Therefore in repeating stages, the spanwise distribution of velocit.y, 

flow angle, k and t at the inlet and the exit of the stages remain almost the same 

and the spanwise distribution of static pressure and total pressures maintain a 

radially constant increment across the stages. It is assumed that each rear stage of 

a multistage axial flow compressor is just like a repeating stage of its neighbouring 

stages in terms of flow patterns. 

The repeating stage concept resulted in a repeating stage model suitable for 
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the flow prediction of rear stages of mult istage axial flo\V C0111pressors~ Li et al.[11:~] 

and [11-1]. The 111ajor ach'antage of t he repeating stage 1110del is that the inlet and 

exit spanwise dist ributions of all the aerodynan1ic para111eters such as velocity, 

static pressure, total pressure. ~. and ( becOl11e the result of the simulation instead 

of boundar.\· conditions and onl.\· the aY('raged static pressure at the ('xit of the 

stage together with the total 111ass flow rate are required as global input. Two 

repeating stage 1110deb aTe described in this section. 

4.6.2 Repeating Stage Model I 

In the case of low speed 111ultistage axial flow COl11pressor simulations with a 

sin1ple 111ixing plane model. a first repeating stage model \Vas developed by Li et 

al. [113] and is described as follows. 

Figure -1.13 shows how the repeating stage model works. For a typical rear 

stage of a multistage axial flow compressor there are three mixing planes used to 

pass circumferentially area-averaged information between the neighbouring blade 

rows. one at the inlet of the stage located halfway between the current rotor and 

the upstream stator. one at the interface between the rotor and the stator and 

another at the exit of the stage located halfway between the current stator and 

the downstream rotor. 

It is assumed that the spanwise velocity" profile at the stage inlet is the same to 

that at the stage exit. The total mass flow rate is used to scale the inlet velocity 

profile in order to maintain mass continuity during global iterations. The velocity 

scaling factor C t , is calculated as: 

. 
m 

Cv = -.­
rneal 

(4.55) 

where m is the specified mass flow rate and meal is the calculated mass flow rate 

by imposing the stage exit velocity profile at the stage inlet. The three velocity 

components~ axial. tangential and radial, are scaled using the same scaling factor 

in order to keep the flow angle in a absolute frame of reference unchanged after 

scaling. The scaling factor becomes unity when global convergence is achieved. 

Similarly, the stage inlet k and ( profiles are set to be equal to those at the 

stage exit as they tend to be unchanged when the turbulent flow is fully developed, 

and hence the scaling factors for k and ( profiles are equal to 1. 

The \vay of setting the static pressure at the stage exit is to define the average 

static pressure for the whole exit area as a given value, maintain the same shape 
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of ~pan\\'i~t' ~t at ic prt'~~ure distri bu tion ;-1 t the inlet and the exi t of the stage and 

allow pre~~ure variation to {'xist circulnferentia 11y. Firstly, the circumferentially 

area averaged st a tic prt'ssu rc profile is shifted froln t Ite stage inlet to the stage exit 

,,,ith appropriete interpolation. Then the static pressure at the exit is scaled by a 

scaling factor Cp~: 

( ~ _ Ps,Cl'it 
p~ -

Ps,cal 
( 4 . .56) 

where Ps.u:it is t he specified \'al ue of t he average static pressure at the stage exit, 

Ps,cal is the calculated area-averaged st atic pressure at the stage exit after imposing 

the stage inlet pre~sure profile on the exit. This kind of setting also results in the 

sinlilarity of spanwise total pressure distribution at the inlet and the exit of the 

stage because the flow is supposed to be incompressible and the total pressure is 

calculated with static pressure and velocity components. 

1 2 2 2 
Pt = P s + "2 P (u + u + w ) (4 . .57) 

4.6.3 Repeating Stage Model I I 

In the case of multistage simulation of axial flow compressors where a deter­

ministic stress model is applied. second repeating stage model has been developed 

in order to provide a better prediction than the repeating stage model I and to 

simplify the global aerodynamic boundary conditions. 

The idea of this model is to implement the deterministic stress into the Navier­

Stokes equations to make the interfaces between blade rows continuous for aero­

dynamic parameters. Sondak et al. [161] developed a "lumped" deterministic 

stress (LDS) model where the deterministic stress field is modelled with a lower 

order (inviscid) time dependent simulation and then implemented in the viscous 

steady flow equations as source terms. Unlike the idea of the "lumped" determin­

istic stress model, the deterministic stress field is simulated in this study with the 

deterministic stress model described in Section 4 .. 5. 

In the flow simulation for rear stages of multistage axial flow compressors 

with the repeating stage model I I, there are two individual computations in­

volved in the global iterations of the calculation. One is the major computation 

(Computation I) which is similar to the repeating stage model I. The only differ­

ence between Computation I and the repeating stage model I is that the deter­

ministic stresses as additional source terms are implemented in the Navier-Stokes 
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equation~ in COlnpution I. The other (COlnput ion I I) is silnilar to the flow simu­

lation wi t h t he detenHini~t ic ~t rt:'~s lHodel described in Section 4.5, which is carried 

out once in every --l to !) global iterations of Computatio/l. I. In Computation I I 

the overlapped cOlHputational dorHains are erHployed. In other words
1 

every com­

putational dOlnain for a blade row has an extended domain covering the flow field 

of the following blade pa~S(lg('. The purpose of the extended computational domain 

is to calculate the detenninist ic ~t ress field resulted from the circumferential non­

unifornlit:" of the flow. In order to get a correct circunlferentially averaged flow 

field in the extended conlput ational dOlnain, the bodyforce and blade blockage cal­

culated in COlnputafion I have to be implelnented. The boundary conditions and 

bodyforce field required by C O1nputat ion I I are obtained from Computation I 

and the deternlinistic st ress field required by C ornputation I is obtained from 

Computation I I. The two conlputations in the repeating stage model I I are 

illustrated in Figures -1.1-1 and -1.1.5. 

It is assumed that mixing planes are located halfway between two neighbouring 

blade rows. For a typical stage working in a multistage environment there are three 

mixing planes for the compressor stage in Computation I, one (i\1ixing Plane 

1) at the inlet of the rotor. one (l\Iixing Plane 2) at the interface between the 

rotor and the stator and another (l\Iixing Plane 3) at the exit of the stator. For 

Computation I I of the same compressor stage there are four mixing planes, the 

first three mixing planes are the same to those in C omputat ion I and the last one 

(~Iixing Plane -1) is at the exit of the following rotor. 

The setting of boundary conditions for the computational domains are based on 

the assumption that the stage under investigation possesses repeating flow nature. 

In C omputat ion I of the repeating stage model I I, the velocity, k and E profiles 

at the inlet of the stage are set to be equal to those at the stage exit and the static 

pressure profile at the stage exit is assumed to have the same shape of the static 

pressure at the stage inlet but with a given average value. In Computation I I, 

the velocity, k and E profiles at the rotor and stator inlet are set to be equal to 

those at the same locations in computat ion I. The static pressure profiles at the 

exit of both the rotor and the stator computational domains are assumed to have 

the same shapes to those at the inlet of the rotor and the stator respectively in 

Computation I but with different average values. In addition 1 the average value of 

the static pressure at a computational domain exit needs to be modified in order to 

satisfy the average \'alue of the static pressure at the blade exit because the given 

values of static pressure at the domain exit and the blade exit can not be both 
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satisfied in C01npulalion 1 I due to the lllodel and nU1l1ericai errors. For example. 

the aYf'rage value of ~t atic pressure at lllixing plane 1 of the stator computational 

dOInain needs to be corrected in e\'ery global it ('ration using Equation (4.58) in 

order to ~(ltisfy the average ~Lltic pressure at the stator exit (l\Iixing Plane 3) to 

a given \'alue. 

n+ 1 n + ( II) P-1 = P-1 I,k' Perit - P:~ ( 4.58) 

where PeJ:it i~ the ~pecified value of the aXf'rage static pressure at the stator exit 

(\Iixing Plane :)), p~ is the calculated yalue of the average static pressure at mixing 

plane 3 for the current iteration in the stator computational domain, p~ and p~+l 

are the average values of static pressure at i\Iixing Plane 4 of the stator computa­

tional d01l1ain for t he current and next global iterations respectively. and w is the 

under relaxation factor \yhich normally takes a value between 0.6 and 0.8. 

In C 0177 putat ion /1 of the repeating stage 1110del I I, the deterministic stress 

field obt ained fro1l1 the downstream extension of the stator passage between Mixing 

Planes :3 and .:.1 is shifted upstream and imposed on the rotor computational domain 

between \Iixing Planes 1 and :2 to compensate the discontinuity of momentum for 

the \Iixing Plane 1. Similarly. the deterministic stress field obtained from the 

downstrean1 extension of t he rotor passage between Mixing Planes 2 and 3 is 

applied to the stator domain (Domain 1/) between the same mixing planes. 

\\'ith the implementation of deterministic stresses, the interfaces in Computation / 

is continuous for all the aerodynamic parameters and the flow field predicted in 

Computation / is the major result of the repeating stage model I I. The role 

of Computat ion / / of the model is to provide required deterministic stress field. 

\Iore details of the prediction with this model and the benefits of the model will 

be discussed in Chapter 6. 

4.6.4 Discussion 

The advantage of the repeating stage models for flow prediction of rear stages 

of multistage axial flow compressors is that they simplify the global aerodynamic 

boundary conditions. In other words, the boundary distribution of aerodynamic 

parameters becomes the result of the simulation instead of the aerodynamic bound­

ary setting with only the requirement of total mass flow rate and average static 

pressure at the stage exit. 

However. the above repeating stage models are based on the particular case 

concerned, where the compressor stages have constant inner and outer diameters, 
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the flow is supposed to be incolnpressible and the conlpressor works near peak ef­

ficiency. In nlore general. if the conlpressor clllnulus is convergent downstreanl and 

the flow is conlpressible, the current repeating stage lnodels need to be modified. 

This issue will not be discllssed in this thesis. 

In addition. if t he conI pressor operat ('s at off-design conditions it is Vf'ry likely 

that t he flow losl's its repeating nat ure and the repeating stage models can not be 

applied. 



Chapter 5 

Numerical Proced ures 

5.1 Introduction 

In this chapter. the detailed description of the discretization and solution 

procedure of the governing equations is provided. 

Firstly. a complete form of governing equations is expanded here to make them 

easier to be used later. 

Secondly. a finite volume method is utilised to discretize the governing equa­

tions on each control volume and a general form of the discretized equations is 

obtained. Different differencing schemes for convection terms are discussed. 

Then. a solution procedure for the discretized algebraic equation system and 

relaxation methodology are described. 

A pressure correction method which describes how the continuity equation and 

momentum equation are used to derive a pressure correction equation and how 

both momentum and continuity equations are satisfied. In addition. a solution 

acceleration method to the pressure correction equation and a remedy to pressure 

oscillations are discussed. 

Finally. the SfJI P LE algorithm is described for the solution of incompressible 

flow problems. 

5.2 Expanded Forms of Governing Equations 

To make the expression of the governing equations simpler, the overbars above 

variables describing averaging processes in Chapter 2 are omitted in this chapter. 

The expanded form of the time-averaged governing equations in the transformed 

94 



('hapter ,). lYll111ericai Procedures 9.5 

coordinatc~ where the .:-axi~ coincides with the axis of rotation may be written 

(l~ follows. 

Continuity Equation 

O(pU) o(p\') o(pl (') 
') c + ~) + ~) - = 0 
( " VII v~ 

Monlentunl Equations 

u-nlonlentulll 

o [ ( 11 OU 12 au 13 OU)] ()~ p[ 'u - J (p + PT) 9 o~ + 9 ory + 9 o( + 

o [ ( 210U 220U 23 0U )] + a'l p 1 'll - J (Jl + PT) 9 o~ + 9 ory + 9 o( + 

o [ . ( 310U 320U 330U)] + ()~' p 1\ II - J (p + PT) 9 o~ + 9 ory + 9 o( = 

(
oP op op _ ) 

=JpII-J o~~X+oryryX+O(~I + 

o [ ~ (at,]) O~l) _ 2 J (Ot'm O~n)] _ 
+ O~s J (p + PT) o.1'p O~l 0.1' 3 Ip o~n OX m 

2 o(pk) O~j 0 [J O~k ( ~~ .)] --J - - - -, - pUVJ :3 O~j ox i O~k a.rj 

where 

II = 2[2zt, + [22.1' + Ix 

(.5.1 ) 

( 5.2) 

and Ix is the bodyforce in the x direction generated by neighbouring blade 

ro\\'s. 
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where 

and fy is the bodyforce in the .lI direction genera t eel bS' neighbouring blade 

ru\\'s. 

"·-lllOlllelltulll 

(.5.4) 

where 

and f;; is the bodyforce in the z direction generated by neighbouring blade 

rows. 

It,- Equation 

where 

(-Equation 
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General Scalar Equation 

(.5.7 ) 

or 

(.5.8) 

where the non-orthogonal "cross diffusion" terms have been lumped into 

the source terms. Thus the scalar equation takes similar form to that in the 

Cartesian coordinates and allows fluid dynamics problems involving complex 

geometries to be handled in a similar way. 

In the governing equations the coefficients gJk are defined as follows: 

gl1 = ~; +~; +~; 
g22 = 1]; + 1]; + 1]; 
g33 = (; + (; + (; 

(.5.9) 
g12 = g21 = ~r1]x + ~y1]y + ~z1]z 
g13 = g31 = ~x(x + ~y(y + ~zc 
g23 = g32 = 1]x(x + 1]y(y + 1]z(z 

The variables in the scalar equation take different forms for different equations 

and are summarised in Table .5.1. 
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I Equations I <P I r~ 
~[ass 1 0 o 

(i = 1.:? :)) 

k-Equation h' 
/-IT 

Gk - pE 
ak 

E-Equation E /-l-T ~ (C1Gk - C2pE) 
a[ 

Table ;).1: Meanings of symbols in scalar equation 

Although the governing equations have different expressions, they take the 

san1e form expressed with the scalar equation. This similarity' has the advantage 

that a similar discretization and solution procedures can be followed. 

5.3 Discretization Procedure 

5.3.1 Finite Volume Integration 

There are basically three major discretization methods for fluid dynamics 

problems: the Finite Difference (F D "'I), the Finite Volume (F~' "'I) and the Finite 

Element methods (F E'\/). The discretization procedure in this study is based on 

the finite-volume method where the flow domain is first ly divided into small non­

overlapped volumes (finite control volumes). Each control volume surrounds a 

nodal point that is located at the centre of the volume and the flow quantities 

representing the mean value of the volume are stored at that point. Figure 5.1 

illustrates a typical control volume in physical space around node P, along with 

some neighbouring nodes and mid-nodes and clarifies the notation used hereafter. 

E. TV. i.V. 5', F and B denote the neighbouring grid points per two in the ~, 1] and 

( directions respectively and f, w, n, s, f and b correspond to the mid-nodes on 
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The transport equation for a scalar variable <I> , which is a typical steady 

convection-diffusion equation 1 can be written in the following form: 

-# 

\1 . (p<I>V) = 'V . (r <I> 'V <I» + S<I> (5.10) 

Formal integration over a three-dimensional control volume l/~ yields 

(5.11 ) 

On the control volume Gauss's divergence theorem is applied, where the integral 
-# 

of the divergence of a vector variable f over a volume is equal to the component of 
-# 

f in the direction normal to the surface which bounds the volume integrated over 

the entire bounding surface S, expressed in the following equation. 

(5.12) 
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The Inean value t heoren1 is utilised to provide the value of <I> at the surfaces of the 

control voItlIne. For exanlple. at "east" surface 

j , <I>d,~'e 
<I> - _~t"::--~ __ 

e - j dS'E 
5", 

(,5.13) 

The transport Equation (;").11) can be written as follows 

1 (p<I> \T) . dS = i ( r <I> v <I» . dS + J 8<1> d ~.~ J.:; c \' ~ ~, p 
(5.14) 

This equation represenb the flux balance in a control volume. In other words. the 

net convecti,'e flux equals to the sunl of the net diffusive flux plus the generation 

or destruction of the property <I> within the control volume. 

5.3.2 Discretization of the Convection Term 

The con,'ection term in the transport equations can be discretized into the 

following fornl around the control volume 

(5.15) 

where 

Ie = 
e L(p\"<I»dS = Fe<I>e, tL'hEre Fe= (p ~." J1]J()e 

C j -(p \ -<I> ) d S' = Fw<I>w, tL'h ere Fw = (pV J1]J()w I = w 
SW 

I C = j (pC<I»d8 = Fn<I>n. where Fn = (pU J~J()n n 
Sn (;3.16) 

I C = j (pC<I»d8 = Fs<I>s. whe re Fs = (pUJ~J()s s s. 
C j- (pH"<I»d8 = Ff<I> f. lL'hfTf Ff = (p IF J~J1]) f If = 

Sf 

I C - j ( p I r <I> ) d 5' = Fb<I>b, whel'e Fb = (pIV J~J17 h b -
Sb 

where I C represents the convection term and F is the mass flux. 

The values of velocity components U. \" and IV and the scalar quantity <I> 

at control volume faces are estimated with corresponding values stored in neigh­

bouring control volumes by using approximate numerical schemes which will be 

discussed in Section ,S.4. 

The continuity equation contains only convective terms when <I> = 1 and can 

be expressed in the following form: 

( 5.17) 
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5.3.3 Discretization of the Diffusion Tern1 

The integrat ion of t he diffusion tenn in the transport equations can be dis­

cretized in the following fonn: 

J D = 1 (r ~ \7 <I» • dS = [D - [D + [D _ [D _ [D _ [D J.::; v f W n sib (5.18) 

The diffusion tenn JD consists of two parts: the "nornlal" diffusion terms [DN 

,yhere the first deri \"a t i yf' of <I> is normal to the volume faces, and the "cross" 

diffusion tenns where the first deriyatiyes of <I> is crossing the volume faces. For 

exaulple. at the "e" face of the control volume 

(5.19 ) 

(5.20) 

where 

If x = [Jr~ (~~ gl1) L (J1]J()p 

Ifc = [Jr~ (~~g12 + ~~g13)L (J1]J()p 

By applying the central difference scheme to the following first derivatives of <I> , 

we obtain: 

(~;) e 

<I>E-<I>P 
( 6~)e 

(~~) e 

(<I>n - <I>s)e <I> ne - <I> se 

(6ry )e (6ry)p 

(~~) e 

(<I> I - <I>b)e <I> I e - <I> be 

( J()e (J()p 

where the values of <I>ne. <I>se, <I> Ie and <I>be are obtained from the neighbouring nodal 

values through approximate interpolation based on central differencing scheme. 

Then the "normar' and "cross" diffusion terms can be expressed as follows: 

where (
Jr gl1) 

De = ;~ e (J1]J()p (5.21 ) 

I~C = (Jr~g12)e(<I>ne - <I>se)(J()p + (Jr~g13)e(<I>le - <I>be)(Jry)p (5.22) 
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In a ~inlilar \\'<1~' on ot her cell faces. the normal diffusion tenns can be expressed 
a~: 

IDS = Dw(<I>p - <1>\\.). U'hfTt' D u' = cr~gl\ ) 
lL' 6~ w (6176()p 

IDS = Cr 22) Dn(<I>s - <l>p), wlu "f Dn = ;,~ n (O~O()p 11 

IDS = Ds(<I>p - <l>s). ll'htFe Ds= ( Jl;,~22) s (o~o()p (.5,23) s 

IDS - Df(<I>F - <l>p). U'h t Fe Df = ( Jr~g33) f - 6( f (6~61])p 

IDS - Db (<I> p - <I> B), 1_l'hfTf Db= ( Jr~g33) b - 6( b (6~61])p 

and the cross diffusion ternlS can be expressed as: 

IDe = 
U' ( J f <1> 9 12 ) e ( <I> n u' - <I> S tL' )( 6 ( ) p + (Jr <1>gI3)e( <I> fw - <l>bw)( 61])p 

IDe = n (Jr <1>g21 )e( <l>ne - <l>nw)( 6()p + (Jf<1>g23)e(<I>fn - <l>bn)(6~)p 
IDe = s (Jr <1>g21 )e( <I> Se - <I> sU')( 6()p + (Jf<1>g23)e(<I>fs - <l>bs)(6~)p (,5.24 ) 
IDe -f - (Jf <1>g31 )e( <I> fe - <I> fw)( 61])p + ( J f <1> g3 2 ) e ( <I> f n - <I> f s ) ( 6 ~) p 

De Ib = (.If <1>g31)e (<I>be - <l>bw)( 61])p + (Jf <1>g32 )e( <l>bn - <l>bs) (6~)p 

5.3.4 Discretization of the Source Term 

The source term in the transport equations includes the pressure gradient term 

(8p/d.td~ cross diffusion term (IDe) and the rest of the terms (5<1» not included 

in the convection and normal diffusion terms. 

The pressure term is separated from the source term because of its significance 

for the calculation of the pressure field with pressure correction approach. It is 

integrated approximately' over the control volume by 

C;PGT 
'. 

The pressure gradients may be approximated by the following formula: 

Pn - Ps 
(61])p ~ 

(5.26) 
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The yohune integral of the source tel'ln (,1..,'<1» is approxinlated by: 

/>',1' = j, S<1>d\ ~ = (S<1»p(JJ~JTJJ()p 
p 

(.5.27) 

where (, ..... <1»p i~ the average value of StP in the control volunle and stored at the 

centre of the YohlIne, \~) i~ the vohlIne of the control volunle surrounding the node 

P. :-\ccording to Pa tankar [1:):)] the source ternl S<1> can be linearised into two 

distinct part ~ and expre~~('d h,\' 

(.5.28) 

The sign of ,.:,'~ is chosen to be negative to ensure realistic solutions. In such cases~ 

the discretization of the source term can be expressed as 

where 

I S
¢ = (S~ + S'~<I»p (JJ~J17J()p 

= IS~ + IS~<I>p 

IS~ = (5'~)p(JJ~JTJJ()p 

IS~ = (S~)p(JJ~JTJJ()p 

(5.29) 

(.5.:30 ) 

(5.31 ) 

The source term r3~ <I> p is lumped into the central node term of the discretized 

equation. Eventually. the integrated source term in the discretized equation be-

comes: 

(5.32) 

where SCDT includes all the cross diffusion terms and is expressed by 

s·eDT = IDe _ IDe + IDe _ IDe + IDe _ IDe 
'- e w nsf b (5.33) 

5.3.5 General Form of the Discretized Equations 

After the discretization of all the terms of the integrated transport equations 

on a control volume, they can be combined together and expressed in the following 

typical form: 

(5.34 ) 

or 

Ap<I>p = L Anb<I>nb + Sp (5.35 ) 
nb 
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where the coefficients Anb(nb = E, It'. lY. ,1..,'. F, B. P) are obtained fron1 the con1bi­

nation of discretized conYt'ction and diffusion tenns which will be discussed in the 

next section; Sp is detennined h.\· Equ<lt ion (5.:U) and the coefficient of central 

node tel'ln is 

(5.:36 ) 

5.4 Numerical Schemes for the Convection Term 

Properties of N ulllerical Schenles 

The yalues of the independent variables in the convection terms of the trans­

port equations ha\'e to be estin1ated in terms of their values at the neighbour­

ing grid point s during the discret ization process. Different numerical differential 

schenlPs have been developed for such estimation. According to Versteeg et al. 

[1~0]. numerical results may theoretically be indistinguishable from the "exact" 

solution of the transport equations when the number of computational volumes 

is infinitely large irrespective of the differencing method used. However in prac­

tice. only a finite number of volumes can be used and the numerical results will 

only be physically realistic when the discretization scheme has certain fundamental 

properties. The most important ones are stated below, Versteeg et al. [ISO]: 

Conservativeness 

The discretization of the transport equations over control volumes yields a 

set of discretized conservation equations involving the flux of the transported 

property <I> through the volume faces. To ensure the conservation of <I> for 

the whole solution domain. the flux of <I> leaving a control volume across a 

certain face must be equal to the flux entering the adjacent control volume 

through the same face. This can only be achieved when the flux through 

a common face is represented by the same expression in adjacent control 

volumes. 

Boundedness 

Normally iterative numerical techniques are used to solve a set of discretized 

algebraic equations for a solution domain. This iteration process starts from a 

guessed distribution of the variable <I> and perform successive updates until a 

converged solution is obtained. A sufficient condition known as Scarborough 

criterion for a convergent iteration method can be expressed in terms of the 
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coefficient s of the discretized Equat.ion U>.Jl): 

nb 

{ 
< 1 

< 1 

at all nodes 

<l t one node at least 
(5.37 ) 

Here .-\p i~ the nct coefficient of the central node P and the sumnlat ion in the 

nUIlIerator i:-; taken U\'Cl' all the neighbouring nodes (nb). If the differencing 

scheIlle producc:-; coefficients that satisfy the above criterion the resulting 

nla trix of coefficient s is diagonally dOlninant. 

Diagonal dOIllinance is desirable for satisfying the "boundedness" criterion 

which Illeans that t he internal nodal value of <I> should be between its min­

inIulll and Illaxinlunl boundary values. Another essential requirement for 

boundedness is that all coefficients of the discretized equations should have 

the sanle sign (usually all positive) which physically' inIplies that an increase 

in \'ariable <I> at one node should result in an increase in <I> at neighbour­

ing nodes. If the discretization scheme does not satisfy the boundedness 

requirements the solution may not con\'erge at all or contains ··wiggles". 

Transportiveness 

The transportiveness of a numerical scheme is the relationship between the 

nlagnitude of the Pedet number (Pe) and the directionality' of influencing 

of flows. The non-dimensional volume Pedet number is defined as a ratio 

between con\'ection and diffusion and as a measure of the relative strength 

of con\'ection and diffusion. 

F C017L'ection 
Pe = -- = ----------

D Diffusion 
(5.38) 

The features of the transportiveness can be described by two extreme cases: 

in the case of pure diffusion the fluid is stagnant (Pe = 0) and the diffusion 

process tends to spread <I> equally in all directions; in the case of pure con­

vection (Pe = 00) all of property <I> propagating from the source immediately 

transported downstream or the flow properties have no influence on the up­

stream regions. If the discretization scheme does not satisfy the features of 

transportiveness. the unrealistic results will be produced. 

Central Difference Scheme 

The central difference provides an approximation of property <I> at a certain 

position from a linear interpolation between its bracketing nodal values. For ex-
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Figure 7).1: Central difference scheme 

ample. thi~ schelne is shown in Figure 5.2 in a one dimensional situation. Based 

on the above definition. the scalar quantity <I> on the control volume faces are 

estimated with the following expressions: 

<I> e = f~ <I> p + (1 - f~) <I> E 

<I>w = f~' <I>w +( 1 - f~,)<I> p 

where f~ and f~' are interpolation factors and defined as: 

~ fE 
fp = Pt+fE' 

wP 
f~· = ----, H'w+wP 

(5.39) 

(5.40) 

where the over bar denotes distance. Similar expressions can be obtained in other 

coordinates. The coefficients corresponding to the variables of discretized transport 

Equation (.3.:3-'1) can be expressed as: 

AE 
As 
AF 

= De + Fe(l - f~), "\w = Dw + Fwf~· 
= Dn + Fn(l - f~), As = Ds + Fsf~ 
= DJ + FJ(l - f~), ' \B = Db + Fbf~ 

.-i p = AE + Aw + AN + As + AF + AB+ 

+(Fe - Fw + Fn - Fs + FJ - Fb) 

\Vhen the mass continuity equation is satisfied, we obtain: 

nb=E,W,N,S,F,B 

(5.41) 

(5.42) 

(5.43) 
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Discllssion 

1. The central difference scheine llses consistent expreSSIons so the scheme is 

conscn'(1 t i \'(' . 

. ) In the cast' of a high Peclct Illllllber (Pe) which Ineans the convection dom­

inates the flows. S0111e of the coefficients are negative. This violates one 

of the requi l'CInent s of boundedness and may lead to physically impossible 

solutions. 

:3. The central difference schen1e does not recognise the direction of the flow 

or the strength of con\'ection relative to diffusion, so it does not possess the 

transport i veness property at high P f. 

--1. The central difference scheme is the second order in terms of Taylor series 

truncation error. This scheme is more suitable for flows with a small Peclet 

nUlnber (PE < 1). 

L-:- pwind Difference Scheme 

The upwind difference scheme takes into account the flow direction when 

determining the convected value of <P at a certain point: it is taken to be equal 

to the value at the upstream node. In Figure 5.:3 when the flow is in the positive 

direction (from E to n·). i.e. Uw > 0, U e > 0 (Fw > 0, Fe > 0), the upwind 

scheme sets face \'alues as: 

and (5.44 ) 

\Vhen the flo\\' is in the negative direction, i.e. U w < 0, U e < 0 (Fw < 0, Fe < 0), 

the scheme takes the form: 

and (5.45 ) 

Similar expressions can be obtained in other coordinates. So the coefficients of 

the discretized transport Equation (5.:34) are 

A£ = Dc + ma,r(O, Fe), Aw = Dw +mo,r(O, -Fw) 

As = Dn + 1170.1'(0, Fn), . -1 ,S = Ds + ma,r(O, -Fs) ( 5.46) 

AF = Df + max(O,Ff ), AB = Db + ma;r(O, -Fb) 

where "max" means maximum value. The central coefficient is calculated by 

Ap = AE + Aw + .4N + As + AF + AB+ 

+ (Fe-Fw+Fn-fs+Ff-Fb) 
( 5.47) 
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Figure ;").3: Upwind difference scheme 

\Vhen the mass continuity equation is satisfied. the central coefficient becomes 

nb = E, 1 r, ~V. S, F, B (5.48) 

Discussion 

1. The upwind scheme is conservative because consistent expressions are utilised 

for flux calculation through the volume faces . 

. ) The coefficients of the discretized equation are always positive and Ap = 

L Anb when the flow satisfies mass continuity. Therefore, the requirements 
nb 

of the boundedness are satisfied and stable iterative solutions can be ob-

tained. 

:3. The scheme accounts for the flow direction so it is transportive. 

4. The accuracy of the upwind scheme is only the first order on the basis of the 

Taylor series truncation error. Therefore, the upwind difference scheme is not 

entirely suitable for accurate flow prediction but has the favourite advantage 

of strong stability. 



Chapter :i. S tlIl1ericai Procedu res 109 

;"). Thi~ ~chellle is lllore suit able for flows with a high Pedet number (Pe > 2). 

The hr~t order upwind schenle is H'1'\' st able and obeys the transportiveness 

requirelllent ~ but i~ prone to nunlerical diffusion errors due to its first order ac­

curacy. The central difference schenle which has second-order accuracy proved to 

be unstable and doe~ not pos~t's~ the t ransportiveness property. So higher order 

schenles, which prescn'(' u pwinding for st abili t y and sensitivity to the flow direc­

tion, reduce the discretization errors by employing higher order discretization and 

bring in a wider influence. are required, Versteeg et al. [180]. One of the most pop­

ular higher order schenles is t he Quadratic U pstreanl Interpolation for Convection 

Kinetics (QC / C 1\,") schenle developed by Leonard [110], which uses a three-point 

upstreanl-weighted quadratic interpolation for cell face values. This scheme was 

inlpro\"ed by se\"eral researchers such as Hayse et al. [75] who generalised the ap­

proach for re-arranging Q[T / (---./{ schemes and derived a stable and fast converging 

variant which is described in detail below. 

The face \"alue of <P is obtained from two bracketing nodes (on each side of the 

face) and a further upstream node with a quadratic function. In one-dimensional 

case where uniform grids are employed, the face value of <P at "f'~ is given by the 

following formula when 'U e > O.Hw > ° (Fe> O,Fw > 0), Figure .5.4(a): 

1 
<Pe = <PE + 8 (3<Pp - 2<PE - <PEE) 

1 
<Pw = <P p + 8 (3<Pw - 2<P p - <P E) 

and when lie < 0. UU/ < ° (Fe < 0, Fw < 0), Figure 5.4(b): 

1 
<Pe = <Pp + -(:3<PE - 2<Pp - <pw) 

8 

(5.49 ) 

(.5.50) 

(;3.51 ) 

(.5.52) 

Similar face values can be obtained in other coordinate directions. The above 

expressions are derived from uniform grids but applied to non-uniform grids for 

simplicity. Therefore the coefficients of the discretized transport equation are given 

by the following expressions: 

AE = De + 177,(11'(0, Fe). A{v = Dw + 7na.1'(0, -Fw) 

As = Dn + max(O, Fn), As = Ds + rnax(O, - Fs) (5.53) 

AF = D J + rno.1'(O, FJ), AB = Db + ma.r(O, -Fb) 
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Figure .5.4: QU Ie I{ scheme 
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where ··'na.r" and .. mi n" Illean ll1axiIlllllll and ll1inimul11 values. respectively. The 

central coefficient i~ calculated bv 

Ap == AE - . \ U' + .\,V - As + AF - o'\B+ 

+(Fe - Fw + Fn - Fs + Fj - Fb ) 

\\"hen the l1la~~ continuit~· i~ satisfied. the expression of Ap becomes: 

nb == E, lr, .V, 5'. F, B 

(.5.54 ) 

Other tenl1S not included in t he above coefficients are put into a high order ter111 
(~..:;HOT) and IU111ped into t he source term: 

(5.56) 

where in one-dil1lensional case 

(5.57 ) 

The expression of the high order term (SHOT) can be extended to three-dimensional 

cases in a similar manner. 

Discussion: 

1. The scheme uses consistent quadratic profiles and is therefore conservative . 

. ) In the original QC ICK scheme developed by Leonard (1979). the discretized 

equation includes not only immediate neighbouring nodes but also those fur­

ther away and the coefficients corresponding to <PEE, <Pwn:, <PNN , <P ss , <PFF 

and <P BB are not guaranteed to be positive. This gives rise to stability prob­

lems and unbounded solutions under certain flow conditions. Therefore. the 

original QC ICI{ scheme is conditionally stable. In the improved QU Ie I{ 

scheme (Hayse et al. [T5]), the discretized equations involve only the imme­

diate neighbouring nodes by lumping other terms into the source terms of 

the transport equations and the coefficients are always kept positive. In ad­

dition, when the flow field satisfies mass continuity the coefficient Ap equals 

the sum of all neighbouring coefficients. Therefore, this scheme is diagonally 

dominant, stable and fast converging in most cases. 
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Figure :3.:3: "Overshoot" phenomenon produced by QF I C I{ scheme 

:3. The QL" I C!\' schemes have the transportiveness property because the quadratic 

function is based on two upstrean1 and one downstream nodal values. 

-1. The accuracy of the Q[" IC I{ scheme is third order in terms of Taylor series 

truncation error. 

.). The QC I C K scheme has t he tendency to cause "overshoots" or "under­

shoot" during numerical transition and therefore in this situation does not 

satisfy the requirement of boundedness. This problem is schematically shown 

in Figure :3.·) for a one-dimensional case. When <I> E ~ <I> p, the value <I>e ob­

tained from the interpolation can be higher than the values in the surround­

ing nodes. This phenomenon can lead to non-linear instability. 

Other High Order Schemes 

As mentioned in QU Ie I{ scheme~ the problem of "overshoots" or "under­

shoots" in numerical processes exist for high order schemes without any con­

straints. In order to overcome this problem, a correction boundeclness criterion 
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1.0 -----------

o 1.0 

Figure ·5.6: Convection boundedness criterion in iV" D 

was defined by Gaskell and Lau [.59]. Therefore, different limiters or constraints 

imposed by the boundedness \\"('re introduced to limit the variable values on a cell 

face obtained from high order schemes before being used in the transport equa­

tions. The logic of the limiters or constraints in a one-dimensional case (Figure 

.5 .. 5). Botte [19] is: 

1. in locally monotonic regions. the value on a cell face should lie between ad­

jacent nodal values, i.e. <I>e E [<I>E.<I>P]' if the upstream value <I>E is bounded 

by the values in upstream and downstream nodes, i.e. <I>E E [<I>EE' <I>p]. 

2. if <I>E 1:. [<I>EE. <I>p], no information is available to limit the interpolated value; 

in this case, a lower-order scheme is used, such as first order Upwind scheme 

which is always bounded. 
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( i) central differencing 
(ii) QUICK 

(iii) Upwind 

1.0 

Figure :3.1: Different Schemes in normalized variable diagram 

Leonard and .\Iokhtari [112] defined a normalised variable <I> with which all the 

schemes can be expressed with the variable in a similar way. The definition of the 

normalised variable is: 
- <I>-<I>EE 
<I> = ----

<I>P-<I>EE 
(5.58) 

- -which results in <I> EE = 0 and <I> p = 1. The convection boundedness criterion then 

can be represented in the );ormalized Variable Diagram (NVD) shown in Figure 

·3.6 and expressed as: 

• for <I>E E [0.1]. <I>E < <I>e < 1: 

• for <I>E rt [0.1]' <I>e = <I>E 

The functional relationships of all previously mentioned schemes can also be 

plotted in the normalised variable diagram (NV D) (Figure 5.7) and expressed as 

follows: 

• first order C pwind scheme 

or (5.59) 



-0.5 

(c) SMART (d) EULER 

Figure .3.8: Advanced composite schemes in ~vv D 

• second order central difference scheme 

1 
<I>e = ~ * (<I>E + <I>p) 
- t -

or <I> to = :2 * (1 + <I> E ) 

(5.60) 

• third-order QC I C I{ scheme 

1 1 
<I>e = ~(<I>E + <I>p) - S(<I>p - :2<I>E + <I>EE) 
- 1 3-

or <I> = - + -<I>E 
e 8 4 

(5.61 ) 

I t is obvious t hat high order schemes, such as the second-order central dif­

ference and the third-order QU Ie I{ schemes, can not achieve boundedness and 

accuracy simultaneously. Therefore, several combinations have been proposed to 

obtain a high-resolution bounded scheme. Some of them are: second and third 
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order interpolation for con\Tction (STOIC) from Darwish [T")L second-order up­

wind central differencing first -order upwind (S'Or r (' or' P) of Zhu and Rodi [198], 

s harp and lnonotonic algori thIn for realistic transport by convection (S AI ART) of 

Caskell and Lau [59] and ('xponential upwinding or linecH extrapolation refinement 

(EC L E R) of Leonard [112]. The .Y \ . D plots for all these schenles are illustrated 
in Figure :).~. 

5.5 Boundary Conditions 

The boundary conditions employed for the computational domains of com­

pressor blade rows in t he predictions are as follows: 

1. On all solid sllrfaces~ i.e. the blade surfaces, inner and outer annulus \valls, 

non-slip condition is used for velocity and zero gradient condition for static 

pressure. The \'alues of k and t are specified near the wall with standard 

\\'all fUIlction, \\'hich is described in detail in Chapter 4 . 

. ) Periodic conditions are inlplemented for all the parameters on both sides of 

upstreanl and downstream extensions and also applied to both sides of tip 

clearance domain. 

:3. The cylindrical interface between the two rotor blocks is treated by means 

of halo cells extended from one block into the interior of the adjacent one. 

Interpolation is used to exchange information between the two blocks. 

-1. For the computational domain of each blade, spanwise distributions of ve­

locity. !to and t either transfered from upstream blade domain or fixed to ex­

perimental data are applied at the inlet of t he domain of each blade passage. 

Zero gradient condition for static pressure is applied at the inlet interface of 

each domain . 

. J. At the exit interface of the computational domain of each blade row, spanwise 

static pressure distribution is imposed when there is a downstream blade row 

or a zero gradient condit ion with a specified average value for static pressure 

is imposed when there is no downstream blade row. Zero gradient condition 

is used for velocitYl k and t at the exit interface of the computational domain 

of each blade row. 
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6. The inlet and exit boundary conditions of COll1pressor stages can also be set 

wi t h the repeati llg st age lllodel descri bed in Chapter 6. 

5.6 Solution of Discretised Algebraic Equation 

System 

After the control \'oluille discretization of cOllvection, diffusion and source 

terlllS and the cOll1bina t ion of these t ('rIllS. the full discretized form of t he transport 

equation has the following typical form: 

--l.ljk = "",,,I ijk<I>ijk + Sijk 
~ P L- ~ 1 nb nb P Us.62) 

nb 

\Yhere i. j. h: are coordinates of the central nodal point of a control volume in the 

computational space: nb = E. ll", .Y, 5', F, B; i = 0 to f, j = 0 to J and k = 0 to 

f\": .--1~b~· are the coefficients corresponding to the variable <I> at the neighbouring 

volull1es around volull1e P. There are lV such equations for all control volumes as 

a whole and 

.Y = (f + 1) (J + 1) (f\" + 1) (5.63) 

where f. J and f{ are maximUlll numbers of nodes in ~, "7 and ( directions respec­

ti\'eh'. 

The system of the discretized equations with iV unknowns can be expressed 

with the general form: 

[A]ci = § (5.64) 
~ ~ 

\Yhere [A] is the coefficient matrix, <I> is the variable vector and S is the source 

term vector. In three-dimensional cases, each row of the matrix [A] normally 

consists of seven non-zero elements. 

There are various methods available to solve the above discretised equation 

system. such as Gauss-Seidel iteration method, AD f (the Alternating Direction 

Iteration): T D .1/.--1 (Tri-Diagonal- ~Iatrix-Algorithm), etc. which were analysed 

by Stone [167]. In the present study a "factorisation" strategy known as the 

Strongly Implicit Procedure (Sf P) proposed by Stone [167] is used. The idea 

of the met hod is to replace the sparse matrix [A] by a modified matrix [A + P] 

such that the modified matrix can be decomposed into upper and lower triangular 

sparse matrices denoted by [U] and [L]. respectively. The manner in which [P] 
is selected is that t he elements of [P] are small in magnitude and permit the set 
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of equation~ to relnain ilnplicitl~' stronger than that of the .·lDI procedure. An 

iterative procedure is defined hy writing [A]~ = § as 

[A + p]~(n+l) = § + [p]<I>(n) (.5.6.5) 

DecOlnposing [B] = [A + P] into the upper and lower triangular mat rix [U] and 

[L] pernlits the ~~'stt'nl to be written as 

[L][U]<I>(n+l) = § + [p]<I>(n) (.5.66 ) 

Defining an intennediate vector as y(n+l) = [U]<I>(n+l). a two-step algorithm is 

fornled a~ follows: 

Step! : 

Step2 : 

[L]y(n+l) = § + [p]<I>(n) 
[U]<I>(n+l) = y(n+l) 

,yhich is repeated iteratively. Step 1 consists simply of a forward substitution and 

step ~ is a backward substitution. 

The matrix [P] is selected in the way that [L] and [U] have only four non-zero 

diagonals with the principle diagonal of [U] being the unity diagonal. Furthermore, 

the elements of [U] and [L] are determined such that the coefficients in the [B] 

matrix in the location of the non-zero entries of matrix [A] are identical with 

those in [A]. Three additional non-zero diagonals appear in [B]. The details of 

the decomposion and solution procedure can be found in Appendix B. 

Stone's study shows that, for solutions to two-dimensional Laplace~s equations 

the method requires only around .50-60% of the computational time required by 

the ADI scheme. 

Alternatively, other implicit iteration methods like the Modified Strongly Im­

plicit (.11SI) procedure~ Schneider and Zedan [1.53] and G111 RES' [150] can be 

incorporated in the solution process of the discretized equation system. 

5.7 Application of Under-Relaxation 

In order to make the iteration solution process converge smoothly, the change 

of the magnitude of the variables between successive iterations is controlled with 

the application of under-relaxation, Patankar [135]. Starting from the general 

discretized Equation (.5.:35) the variable at central point P can be expressed as 

L Anb<I>nb + Sp 
<I> p = _n_b ____ _ 

Ap 
( 5.67) 
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or in an equivalent fOrIn 

<I>p = <I>p + (5.68) 

where nb (nb = E. lL .Y. ~ .... '. F. B) denotes the neighbouring nodes and the value 

of <I>p i::; obtained in the pn>\'ious iteration. The change of the magnitude of 

the variable <I> p between two successi v(' iterations
1 

which is expressed by the term 

in::;ide the parent hesil'::;l can be controlled by multiplying an under-relaxation factor 

",,' (0 < "",' < 1) to the ternlS inside the parenthesis. So the relation (5.68) becomes 

L .4nb<I>nb + S'p 
nb ------------- -<I>* 

.4p p 
<I> p = <I> p + "",' (5.69) 

Finally. the following under-relaxed discrete equation is obtained: 

Ap ""' ~,( 1 - W) * -=-<I>p = ~ Anb<I>nb + ... i..,p + u.,' Ap<I>p (5.70 ) 

The selection of under-relaxation factor u.,' is very important for cost-effective 

simulation. Too large a value of u.,' may lead to oscillation or even divergence to the 

solution and too small a value of W will result in slow convergence. Unfortunately, 

there is no general rule to choose the optimum value of the under-relaxation factors. 

They are flow dependent and must be sought on a case-by-case basis with previous 

experIence. 

5.8 Pressure-Velocity Coupling Approach 

5.8.1 Introduction 

The pressure gradient term In momentum equations is an important term 

among source terms. If the flow is incompressible the density is constant 1 there is 

no link between density and pressure but strong link between pressure and velocity. 

The difficulty of the problem concerned is how to calculate the pressure field and 

make the velocity field satisfy both the momentum and continuity equations. This 

kind of problems can be resolved by using the so-called pressure correction methods 

first introduced by Caretto et al. [28] and Patankar and Spalding [136]. 

Several pressure correction methods have been developed. One of the most 

extensively used pressure correction methods is the SIAl P LE algorithm (Semi 
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1111 plici t \ [ethod for P r('~~u rc Linked Equations), ('arett u et al. [28] and Patallkar 

and Spalding [1 :)b], \y here a pressure correction equation is derived from the dis­

cretized continui t~· and IllOIllent UIll equatioll ~ and gi V('s rise to appropriete correc­

tion~ of t he pre~~llre a lld n'loci t~· fields obtained frol11 the Illomentulll equations. In 

addi t ion. a nlllnber of press II rc corrcction I11cthods \\' hich are iin proved versions of 

,""'/JIPLF algoritlull han' heCll deri\'cd, such (1~ .~'I.\lPLER (S'/JIPLE-Revised) 

algorithln of Pat ankar [1:F)]. ,~y 1,\1 P L I~'C (S I J 1 P LE-Consistent) algorit hnl of Van 

Doonllal and Rai thby [l'l~]. PI SO (Pressure IInplicit \vith Splitting of Operators) 

aigorithill of Issa [90], etc.. 

The prc~~ure correction Illethod used in this study is based on the S'I'\I P LE al­

gori t hIll. Pat ankar [1:3;)]. A collocated grid arrangenlent in general non-orthogonal 

cun"ilinear coordinate S~"steIll is applied for its convenience in computer program­

Illing and boundary treatment. An appropriate technique, originated by Rhie and 

Chow [l-l'l] and developed by \Iajumdar [119]. is utilised to avoid the decoupling 

between ,"elocity and pressure fields. A method proposed by Giannakoglou et 

al. [60] is enlployed to accelerate the convergence of the solution of the pressure 

correction equation. 

5.8.2 The Pressure Correction Equation 

The continuity equation is integrated and discretized over a control volume, 

gi'"ing rise to 
(5.'11) 

or 
[p1l: (JryJ() - [pl"]w (J1]J() + [pU]n (J~J()-
- [pels (J~J() + [pW]j (J~J1]) - [pH"h (J~J1]) = 0 

( 5.72) 

\rhen applying the values of provisional contravariant velocity components 

["x. 1 "x and ll"* on control volume faces, which can be obtained by initial assump­

tion or previous iteration, to the continuity equation, there will appear a "mass 

source·' term Tnp at the right-hand side of the continuity equation instead of zero: 

[p l"x]e (J1]J() - [p V*]w (Jr7J() + [pU*]n (J~J()-
- [pux]s (J~J() + [p W*]j (J~J1]) - [p ll;"*]b (J~J1]) = mp 

(5.73) 

\vhere * stands for provisional values. 

The calculation of mp requires the contravariant velocities U; (IT = 1,2,3) at 

control volume faces. They can be obtained from the momentum equations, which 

will be described in detail in Section 5.7.4. 
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The accurate values of lip, I'p, il'p and pp can be expressed as their provisional 

values up, l'p, H'p and Pp plus corresponding correction vcdues U~,l'~, ll'~ and P~ 
respect i \'t' l~·. Hence 

= lip 
I 

lip + lip 

= l'p 
I 

l'p + l'p 

'" 
I (.5.74) 

il'p = II'}> + wp 

= pp 
I 

pp + jJp 

Both ~('t of values lip, l'p, Il'p. pp and Up. Up. Il'? pp satisfy the momentum 
equations: 

ApllP = L A~bunb + .. ~'~IOT + S'~'DT + 8~T + (p~~J: + P7)17x + P((r)(JJ~J"lJ() (.5.75) 
nb 

Apl'p = L . \~'bl'lib + 5~oT + S'~.'DT + 8~T + (p~~y + P7)"ly + p((y)(JJ~J"lJ() (5.76) 
nb 

nb 

and 

-iu 
>< "'"" -i u x + C;HOT ",CDT S,OT (x(: '" * - )(JJ:(:J: J: -) (5 ~8) . plip = L-' nbunb '-- u + .. u + tl + P~r."x + P7)7]x + p(~X ur."u"lu~ ., 

nb 

Subtracting Equations (5,7.j) to (5.77) by Equations (:3,78) to (5.80) respectively 

produces the follo\ving relations relating to the velocity corrections with the pres­

sure correction: 

Apll~ = L· \~bU~b - (p~~x + P~"lx + p~C·)(JJ~J"lJ() (5.81 ) 
nb 

( 5.82) 
nb 

(5.83) 
nb 

The first term of t he right-hand side of Equations (5.81) to (5.83) can be 

neglected because u~, v~ and w~ tend to be zero when convergence is achieved. 

Substitut ing Equation (5.74) into simplified Equations (5.81) to (.5.83) gives rise 

to 
* (BU I C'U I DU ') 

Up = Up + p~ + P7) + Pc ( 5.84) 
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where 

i'p = i'f) + (BVp~ + eup~ + DUjJ~) 
U'p = ll'p + (BWp~ + CU'p:) + DW jJ~) 

(.).8.5) 

(5.86 ) 

c (J S ~ ()17() () 

.... r .\11 

c (J 6~l;76(J 
.... y 

'w ."'ip 

ct' 

e u (J6~S'l6() 
- -17 
- x .-111 • 

(J 6~Y;76() 
- -17 ----
- y -P' . 

. p 

(J 6E,6r;6() 
= -17?----

.;. _\ W • 
.p 

( 'u' 

D U - (J 6~6r;6() 
= -~x .-1 U 

DV - (J 6~t:76() 
= -~y _tv 

.p 

DW = _(? (J 6~6l]6() 
~ _\ W 

.p 

(5.87) 
Substituting Equations (5.S-1) to (;'5.86) into Equations (3.29) to (:3.:31) produces 

the expressions of the contravariant velocities Cp , lp and HTp: 

[Tp = Cp +J(BU~x + BV~y + BW~z)p~ 
+J( eu~x + CV~y + ('u'(: )p~ 

+J(DU~x + DV~y + DW~::)p~ 

'p = 'p +J(Bu'J;- + BVr;y + BWl7:;)P~ 
+J(CtI'lr + ('vr;y + ('IL'll:;)P~ 
+J(DU l7x + DVr;y + DWll:;)P~ 

HTp = IV; +J(BU(r + BV(y + BW(::)p~ 
+J( Ct\r + CU(y + ('tI'( )p~ 

+J(DU(r + DV(y + DWC)p~ 

(5.88) 

(:'5.89) 

(.5.90) 

The cross terms. marked with under-line, appear due to the non-orthogonality 

of the coordinate system and can be neglected without affecting the converged 

solution. so the simplified expression for Cpo lp and IVp becomes: 

where 

r T .p = C;~+ Bp~ 
lp , T" = 'p+ C' Pry 
I:Fp = nTp+ 

, 
Dp( 

B = J(BU~x + BV~y + BW~::) 
e = J(ClIllr + CU'ly + Cw ,l::) 

D = J(DU(r + DV(y + DW() 

(.5.91) 

(.5.92) 

Substituting Equation (.5.91) into (.5.72) and combined with Equation (.5.7:3) 

and rearranging the equations, we eventually obtain the pressure correction equa­

tion as follows: 

(5.93) 
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where 

and 

A~ = (/)B)e( 8'781,-)e 

A\- = (pC)n(8'781,-)n 

Aj- = (pD)f((~lJSl,')f 
,p - ,p -\P ·tP tP tP P ·-tp-·-tr+· u·+, s+·- , ... ;+. F+·tB 

. tfl' = (pB)w( 6776()w 

.t~ = (pC)s( 6776()s 

.-t~ = (pDh( 6776()b 

nlp = [p\ ''']e (()'76() - [p\ '*L, (6776() + [pU*]n (6~6()­

- [p U x ls (() ~ 8 () + [p It' x ] f (6 ~ 6 17) - [p n' * h ( 6 ~ 6 1] ) 

(.5.94 ) 

(5.9.5) 

The solution procedure of t he pressure correction equation is prone to oscilla­

tion or eyen divergence unless some under-relaxation is used during the iteration 

process. The new. updated, pressure field is obtained by 

I 

pp = P; + u..'pP p ( 5.96) 

where w·p is the under-relaxation factor for the pressure equation. which is between 

o and l. 

The term mp is the "I11ass source" (Patankar [135]) of the pressure correction 

equation and is actually the left hand side of the discretized continuity equation 

evaluated in terms of t he provisional velocities. \Vhen rn p becomes zero, the conti­

nuity equation is satisfied and no corrections for both pressure and velocity fields 

are required. 

It can be seen that the Equation (5.93) has similar form to the general discrete 

transport Equation (;:>.:3·1). This provides the convenience that the solution process 

of the pressure correction equation can be performed in a similar way as that of 

the general discrete transport equation system which is described in Section 5.5. 

5.8.3 Acceleration to Pressure Correction Equation 

The set of pressure correction equations for the whole flow field, derived in a 

similar way to that of the governing equations and written in the form of Equation 

U>.97). can be iteratively solved using the same approximate factorisation scheme, 

I.e. SIP (Strongly Implicit Procedure) described in Appendix C. 

( 5.97) 

-+ 

where B is the coefficient matrix, fJ the pressure correction vector and S* the 

;'mass source" vector. 
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In this ~tud)·. the convergence of the pressure correction equation is accelerated 

by illlPosing re~idualllliniIllisation constraints, Giannakoglou and Politis [60]. The 

detailed lllethod was also described and llsed by Politis and Giannakoglou [1:39] 

and they are ~tatt'd as follows. 

Fir~t ly. [B] i~ approxiIllat(\l)' decOlllposed into an upper and lower triangular 

Illatricl'~. i.e. 

[B] ~ [p]-l = [L] [U] (5.98 ) 

and a preconditioned pressure correction is obtained based on 81 P, Stone [167] 

(5.99) 

where [P] is the approxinlate inverse of the coefficient matrix [B]. Then a precon­

ditioned residual 

(;3.100) 

is nlinilnized. In order to advance the solution from iteration (n) to iteration 

(11 + 1), the preconditionaed residual multiplied by an acceleration parameter /3 is 

dd d h .. l' ..... ,(n) d' h . a e to t e eXIstIng so utIon vector p accor Ing to t e expreSSIon 

..... (n+l) ..... (n) ..... ( ) 
p' = p' +:3R n (5.101) 

The calculation of 3 is based on the minimisation of the preconditioned residual 

at the next iteration (n + 1) and its final expression is given by: 

( 5.102) 

where ..... 
R 

II R II 
(5.103) 

..... 
..... R 
, - al II R II ( 5.104) 

According to Equation (').104), vector '9 is calculated through the definition of an 

intermediate vector :::;" and the following two step procedure: 
..... 

Step! : 
..... R 

[L]," = [B] ..... 
II R II 

Step2 : [U]'9 = ," 

Actually, this approach employs a weighted, over the whole field, correction 

to the values of pressure correction obtained from 81 P. This method was proved 

more efficient by Giannakoglou and Politis [60]. 



Chapter .>. lYLllJ1erical Procedures 1 :2.5 

---------.--------------1 
I 

I I 

• • mi~(e) • :W • 
EE E(M) p w 

I 
---------~-------- ______ I 

Figure ,-).9: Schematical expression of control volumes and nodes 

5.8.4 Renledy to Pressure Oscillations 

The arrangen1ent of a non-staggered grid does provide convenience in com­

puter programn1ing and the treatment of boundary conditions. However, an os­

cillatory pressure field may appear due to the second-order centred 2J~i-difference 

approximation of the pressure gradient at the grid nodes~ Rhie and Chow [147]. 

One of the remedies to remove the oscillation is by using a staggered grid~ but it 

cannot be applied to a collocated grid system. 

Rhie and Chow [147] proposed a remedy to overcome the pressure oscillations 

in a non-staggered grid system, which is called Rhie and Chow scheme or Momen­

tum Interpolation scheme. Tourlidakis [17:3] applied this method in his calcula­

tions~ which proved to be very effective. The idea of the method is to introduce 

two different expressions for the two pressure gradient terms in the contravari­

ant velocity component expressions to sense 1J~i-pressure difference. The detailed 

expression for contravariant velocity component, for exan1ple at "E l' volume face 

schematically shown in Figure 5.9, is as follows: 

_ - [(8P*) (8P*)] Ue = U; + Be 75[ e - 75[ e (5.105) 

where the first pressure gradient term (8P*) is calculated by the 1J~i-centre 
8~ e 

pressure on the volume face: 

(5.106) 
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( 8 *) The ",'<'ond pressure ~radi('nt (crm ; ,and other terms with overbars are the 

yalul's oht ained froIl1 an interpolation betweell their corresponding values at grid 

P and E: 

where 

and 

( 8P*) (8P*) (8p*) 
() ~ t' = f p 8~ E + (1 - f p ) 8~ p 

( 8
p
"') 

8~ E 

( 8p*) 
8~ p 

I7 = IpUi + (1 - Ip )Up 

Be* = IpB'E + (1 - Ip)B"P 

where Ip is the interpolation coefficient determined by volume geometry. 

(.5.107) 

(.5.108) 

(5.109) 

SiIl1ilar treatIllent is applied to other contravariant velocity components. After 

this treatment. mp can sense the l<5~i-pressure difference and the pressure correc­

tion can eventually remove the pressure oscillation during iteration processes. 

However. it was found that \vith Rhie and Chow's scheme the converged result 

for any flow situation depend on the under-relaxation parameter used for velocity, 

~Iajumdar [119]. Thereafter, :\Iajumdar [119] improved the momentum interpola­

tion and make it independent of the under-relaxation parameter used. The method 

of removing the pressure oscillations used in this study follows the idea suggested 

by :\Iajumdar [119]. which is also described by Giannakoglou and Politis [60]. The 

details are as follows: 

The discretized momentum equations give the expression for the contravariant 

velocity component at nodes P and E, Figure 5.9: 

(IT=1,2,3) (5.110) 

. ( J) [ ap a~j a~7rl (L IT).\! = H;\! - - --. ---
A. p M a~j a.ri aXi M 

(IT = 1,2,3) (5.111 ) 

where .\/ denotes a neighbouring node and H includes all the terms on the right­

hand side of the discrtized momentum equation except the pressure gradient term: 

(5.112) 
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A.n under-relaxation paralneter u.-' is incorporated for stability reason to update 

the cell centre veloci t~· COll1 ponents (lS: 

(.5.11:3 ) 

( r ) [ ( .I) ( ap a~ i a~rr) 1 ( ) (--'rr .U = o.k' H.u - -" - -. -. -. -:. -. -", .. + (1 - w)( Urr );; 
. t p .u a~J a.1 ~ a.l i ,\1 

(.5.114) 

where (Crr)~) and ([irr)\~) are values of (['rr)P and ([Trr),\! at the previous iteration 

level. This srhenle assu1l1ed a linear variation between nodes for velocity, source 

term H and the quantity C:l,)' Therefore. the contravariant velocity component 

at the cell face lnay be written as: 

(5.11.5) 

where 

H = fuHp + (1 - fu)H"1 

CL) =f1f C:Jp +(l-f1flC:Jp 
([ -rr )!::!d = liu( [-rr )~) + (1 - IM)( Urr )~) (5.116) 

where IA/ is the interpolation coefficient determined by volume geometry; "mid" 

is any face centre lying between the celltral node P and the neighbouring node 

J/: and the o\"erbar represents the quantities transferred to the volume faces by 

interpolation over the adjacent central nodes. 

Equation (.5.11.)) clearly shows that the cell face contravariant velocity ([T rr )mid, 

during the iteration process. is made up of the uJ portion of the value resulting 

from the momentum interpolation and the (1 - 1_ .. ,.) portion of the value from the 

linear interpolation. 

The last term in Equation (5.115) is treated explicitly in order to prevent any 

dependence of the solution on the under-relaxation factor. The pressure gradient 

term at volume faces in the equation is calculated with pressure difference between 

grid nodes P and i\/: 
8p PM - pp 

8(j (J(j )mid 
(5.117) 

In this way, the "mass source" of the pressure correction equation mp calculated 

with contravariant velocity components can sense the IJ(j-pressure difference and 

the pressure oscillation can be removed during the iteration process. 
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5.9 Solution Procedure of S1 M P LE Algorithm 

So far.the transport equations have been discretized and the pressure correc­

tion equation has been deri\Td. \Yith approxilnate in1plementation of boundary 

conditions which will be disolss('d in calculation cases in the next chapter, a com­

plete set of discrete equations is to be solved with son1e kind of iterative procedure 

in order to gct solut ions of the flow fields for certain cases. 

The S 1,\1 P L E algorit hIn provides a n1ethod of calculating pressure and veloc­

it~· fields for incon1prcssible flows. The n1ethod is iterative and the procedure of 

the ..... ' 1,\1 P L E algorithn1 is outlined as follows: 

1. Guess the initial values of parameters u X

, t'''', w*, p"', k*, (*, p*, etc" as provi­

sional values for all the nodes in the flow field. The initial values are expected 

to be not too far fron1 reality. Otherwise. it may cause divergence . 

. ) Calculate the coefficients of the n10mentum equations and solve the discrete 

mon1entum equations to obtain a new velocity field. 

:3. Calculate the coefficients of k and ( equations and solve the discrete k and ( 

equations to get new values of k. ( and turbulent viscosity PT· 

--1. Calculate the new value of "mass source" mp and the coefficients of the 

pressure correction equation. Solve the pressure correction equation to obtain 

the pressure correction field . 

. ). t-pdate the pressure field and the velocity field with the pressure correction 

field. 

6. Check if the convergence criteria are satisfied. If not, return to step (:2) and 

repeat the process until convergence is achieved. 

5.10 Convergence Criteria 

During an iteration process of the 5' I J\I P L E algorithm, the iteration process 

is checked and is stopped when certain criteria are satisfied. 

In the case of a single blade passage domain, a solution is supposed to be 

converged \vhen the residuals of all the flow variables satisfy the following two 
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conditions: 

loglo [L: IAp<I>p - L: Anb<I>nb - Spl] < 8<1> 
n nb 

iog lD [max (l.4p<l>p - ~ Anb<l>nb - Spin)] < J~ 
(5.118) 

where n is the nodal index (n = 0 to N) and 8<1> is a negative number, normally 

equals to -2.5. The first equation means that the summation of residuals of all 

the control volumes in the computational domain satisfies the criteria, and the 

second equation means that the maximum residual in the whole domain satisfies 

the criteria. 



Chapter 6 

Prediction and Analysis of a Low 

Speed Research Compressor 

6.1 Introduction 

The physical and 111athematical models and numerical algorithm towards the 

three-dimensional simulation of multistage turbomachinery flows have been de­

scribed in previous chapters. Two ty'pes of approaches for flow simulation in mul­

tistage axial flo\Y compressors have been used and developed in the current study, 

one is based on the mixing plane approach and the other is a deterministic stress 

model based on the average passage approach described by Adamczyk [2]. The tip 

leakage flow in rotor blade rows is rigorously simulated with a two block grid sys­

tem. T \Yo repeating stage models have been developed aiming at simplifying the 

aerodynamic boundary setting when simulating flows in rear stages of multistage 

axial flow compressors. 

The test case used in this study is the Cranfield 4-stage Low Speed Research 

Compressor (LSRC). ~umerical simulations with different approaches have been 

carried out for both the third stage and the complete 4-stage compressor. Detailed 

comparison between the numerical results and the experimental data is made in 

this chapter in order to assess the prediction accuracy of different approaches. 

Performance prediction of the third stage working at off-design conditions and the 

analysis of entropy generation rate are also carried out. 

130 
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6.2 Cranfield Low Speed Research Compressor 

The Cranfield lTniversit~" (C(T) Low Speed Research COlnpressor (LS'Ne) con­

sists of four repeating stages. The design of t he blading and the aerodynamic mea­

surelnenh were carried out within the BRITE EUHA~I project AC:~.-l (Advanced 

Civil Core COlnpressor .\('rud~"nalnics). Swoboda et al. [170]. The experimelltal 

in\"cstigation was carried out at Cranfield University. 

For nndtistage low speed research conlpressors with identical stages, it has been 

found t ha t t he flow approaches a repeating flow pattern after several stages (at 

least t,yU stages). Four st age research n1achines have been adopted in a number of 

cases for this reason. where the first two stages function as leading stages where the 

flow fully develops and reaches a repeating pattern, and the fourth stage functions 

as a trailing st age providing represent ative back conditions to the third stage which 

is the stage under investigation. The third stage, the study stage, demonstrates 

major flow features of a typical rear stage with repeating flow features working in 

a multistage environment. i\Iore description of the Cranfield Low Speed Research 

Compressor (LSRC) can be found in Appendix B. 

6.3 Brief Description of Computational Methods 

6.3.1 Governing Equations and NUlnerical Algorithm 

The flo,v in the compressor is assumed to be incompressible, three-dimensional, 

adiabatic. steadv in a relative frame of reference and turbulent. 

The governing equations for the flow problems concerned are the mass conti­

nuity and momentum equations which are described in Chapter :3. The form of 

the ensemble a\"eraged ~avier-Stokes equations are used in the predictions ,,,,ith 

the mixing plane approaches where the unsteady term is ignored. The form of the 

time averaged :\ avier-Stokes equations are used in the predictions with the deter­

ministic stress approaches. The standard k - ( turbulence model, Launder and 

Spalding [106]. is used to "close" the Reynolds averaged equation system and the 

overlapped solution approach is used to "close" the time averaged equation sys­

tem. The standard wall function method is introduced to simplify the treatment 

of near wall regions. 

The third order QU ICI{ scheme is applied to the momentum equations and 

the first order upwind scheme is applied to the k and (equations. The QU Ie 1\' 

scheme is more accurate than the upwind scheme but is prone to instabilities or 
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even di\'ergence as it rein a ins unbounded. For this reason, QUI C I\r scheme is 

only used in 1110111ent lUll equations. (1cntral differencing is applied to the pressure 

gradient tenllS and ot her source tenns of the governing equations. 

The ~ I J! P L E approach, Patankar and Spalding [1:36], is used to update the 

veloci t~' and IH'CSSUH' fields in an i terat i vc way. Stone's Strongly hnplicit Procedure 

(SI P) (StUllt' [167]) is applied to the discretised IllOlnentum equations to obtain a 

sulution. The strongl~' illlplicit procedure c0111bined with the residual minimisation 

constraint s. Ciannakoglou and Politis [60], accelerates the solution convergence of 

the pressure correction equation. Approximate under-relaxation is used for the 

equation systeIll to enhance t he convergence of each equation. 

6.3.2 COlllPutational Grids 

In order to predict the flow rigorously in both the maIn passage and the 

tip clearance of a rotor blade row, a H-type two-block grid is used for a rotor 

passage. :-\ single H-type block grid is used for a shrouded stator passage. In the 

rotor passage including its upstream and downstream extensions~ the first block 

fills the main passage below the cylindrical blade-to-blade surface at the blade 

tip radius and defined by two successive blades, and the second block , the tip 

block. fills the remaining part of the flow domain lying between the blade tip 

radius and the outer annulus. In the stator passage, a single block is used to 

describe the domain bebveen two shrouded stator blades including its upstream 

and downstream extensions, where the stator hub cavity is ignored. The grid block 

arrangement and the grids for the third stage of LS RC used in the mixing plane 

approaches are shown in Figure 6.1. In the predictions with the deterministic stress 

model. the grid for each blade passage has a further downstream extension which 

covers the flow passage of the following blade row. The grids for the third stage of 

LSRC used in the deterministic stress approaches are shown in Figure 6.2. The 

grids for other stages of L S RC are the same as those for the third stage because 

the geometry of every stage is the same. The number of the grid nodes used in 

the prediction are shown in Table 6.1. More details about the grid generation are 

described in Chapter 2. 

6.3.3 Boundary Conditions 

Detailed boundary conditions for each computational domain of blade rows 

are described in Chapter 5 and will not be repeated here. The inlet and outlet 
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STATOR GRID BLOCK 

ROTOR GRID BLOCK 2 

x 
z 

Figure 6.1: Grids for LS RC third stage 
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x 

\-' 
y 

Figure 6.2: Grids with downstream extension for LS Re third stage 

I Parameter I Rotor I Stator 

Grids (for Deterministic Stress j\Iodel) 35x35xl15(main) 35x35xl15 

40x9xl15 (tip) 

Total number of grid points 182,275 140,875 

Grids (for ~1ixing Plane Model) 35x:35x75(main) 35x35x75 

40x9x7,5( tip) 

Total number of grid points 118,875 91,875 

Table 6.1: Number of grid nodes 
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bound(H~· condi t ion~ for the third stage or t he complete four stages of LS He in 

different cOlnputation casf'~ are presented in the following sections. 

6.3.4 U llder-Relaxatioll Factors 

In glohal iterations. under-relaxat ion is used to enhance the consistency of 

all the paralneters at t he interfaces between blade rows. The relaxation factors 

for global iteration~ nonnaHy take a value of 0.7 in the first several iterations and 

about 0.9 in t he following iteration~. 

l' nder-relaxation is used to enhance the convergence of the governing equations 

during the local iterations. The relaxation factors for all the equations normally 

take the yalue of 0.10 in the first global iteration and 0.15 for the stator and 0.25 

to 0.:30 for the rotor in the following global iterations. 

In general. the determination of the under-relaxation factors are problem de­

pendent and based on previous experience. 

6.3.5 COlllputation Time Required 

The computational time requirement on a DEC ALPHA FARM for each inner 

iteration is approximately;) seconds for a grid \vhich only covers a blade passage 

\vithout an extension and 7.5 seconds for a grid which has further downstream 

extension covering the flow passage of the following blade row. Typically, a maxi­

mum number of ·S.OOO inner iterations is used locally for each blade row to satisfy 

numerical convergence criteria for the governing equations and about 15 to 20 

global iterations are required for global convergence of a single stage computation 

and about -10 global iterations for a four stage computation. 

6.3.6 Convergence Criteria 

In order to achieve a converged solution~ two types of convergence criteria 

must be satisfied. The first one refers to the numerical convergence criterion for 

the governing equations on each blade row, which is satisfied when the residuals of 

all the governing equations are sufficiently small. This type of criteria is discussed 

in detail in Chapter .S. The second type is a physical convergence criterion for the 

global iterations when physical flow quantities of the flow (mass flow rate, velocity~ 
static and total pressure, k and E ) in each computational domain stop changing 

and provide consistency of all the parameters at the interfaces between blade rows 
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\\"i t h global i tera tion count. Specified target IllClSS flow rate for each blade row as 

a constraint is used glohall~' to enhance convergence and avoid accumulated mass 

flo\\" rat e error. 

6.3.7 C0111puter Code 

:\ COlllputt'r code .\ISTll,.b():~D originated frolll code ELISA, Politis et al. 

[1--11] has been developed in t his project based on the physical and mathematical 

1110dels and the nUlllerical algorith1l1 described in this thesis. The structure of the 

code is de1l10nstrated in .\ppendix D and the format of input data files is described 

in Appendix E. 

6.4 Prediction I: LSRC Third Stage with Con­

ventional Boundary Setting and Mixing Plane 

Model 

The layout of the computational domains and boundary condition setting for 

the third stage of LSRC is shown in Figure 6.3. There are three mixing planes used 

for the stage analysis. one at the inlet of the rotor, one at the interface between 

the rotor and the stator and one at the exit of the stator. The spanwise velocity 

profile at the stage inlet is set equal to the experimental data, Figure 6.5. k and ( 

distribution at the stage inlet are calculated with the local velocity value and im­

posed at the inlet. The mixing plane models are used to pass information between 

the rotor and the stator computational domains at the interface located halfway 

between the two blade rows, where the velocity, k and ( propagate downstream 

and the static pressure upstream. 

Performance comparisons of the third stage of LSRC are carried out at the 

operating point of peak efficiency. at the inlet, the exit and the interface between 

the blade rows in terms of total pressure, static pressure, flow angle and velocity 

components. In addition, static pressure distributions on the rotor and the stator 

blade surfaces near blade hub, at midspan and near blade tip are also compared 

against experimental data. The experimental data are obtained from the AC3A. 

project where the total pressure, static pressure and flow angle distributions were 

directly measured whereas the velocity components were calculated from them. 

The predicted area averaged static pressure and total pressure distributions in 
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Figure 6.:3: Boundary conditions for Prediction I 

the axial direction of the third stage are presented in Figure 6.4. Compared with 

the experimental data at three stations of the stage. the inlet, the interface between 

the two blade rows and the exit. good agreement between the computational and 

the experimental data is shown in the figure although there are small discrepancies. 

\Yhen an a\'erage static pressure is fixed at the stator exit. static pressure ratio 

was over-predicted by about 2% in the stator and under-predicted by about 2% 

in the rotor. Regarding the total pressure. the prediction provides about 2o/c, over­

predicted pressure ratio throughout the stage. Sudden changes of average static 

pressure and total pressure appear near the leading and trailing edges of each blade 

row. showing that there are strong interaction between the blades and the flow and 

significant influence of the sudden change in passage area. 

The difference between the total pressure on both sides of the mixing plane is 

nearly negligible. showing that the discontinuity of the momentum resulted from 

the mixing-plane model is very small and can be neglected at peak efficiency for 

this compressor. 
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The calculated spanwise distribution of velocity components at the interface 

between the two blade rows and the stator exit match very well with the experi­

mental data for most part of the blade span although with some discrepancies in 

the area between S07c and 100% span near the rotor tip, see Figures 6.6 to 6.7. 

The discrepancies at the rotor exit are very likely due to numerical inaccuracies in 

resolving the complex, unsteady tip clearance flows because even when the inlet 

velocity profile is set equal to the experimental data these discrepancies still exist. 

Downstream the stator passage these discrepancies become smaller because there 

is no tip clearance in the st ator. 

In Figures 6.8 to 6.10 the spanwise distributions of static and total pressure are 

presented for the three locations. Good predictions of static pressure at the three 

stations are shown with slight under-predicted static pressure at the interface. 

The sudden changes of experimental static pressure near the annulus wall are not 

physical and susceptible to measurement error due to the presence of the solid walls 

(Howard et al.~ [88]). Hence, the difference in static pressure between experiment 

and prediction near the blade tip should not be as large as shown in Figures 6.9 

and 6.10. 

The spanwise total pressure distributions are well predicted as compared with 
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the expcri lllental dat a except for t he area het wccn 80(/{, and 100% span at the mid­

interface and the st at or ('xi t. In the cast' Clmcerlled the flow in the compressor is of 

low speed and is <1SSUllled to be incolllpn'ssible and the total pressure is calculated 

using static pressure and ydocity \·alues so the discrepancy of the total pressure 

near the blade tip is caused h~· the inaccurate predict ion of velocity distribution 
in this area. 

The spanwist' dist ribut iOIl of relatiH' flow angles at the rotor and the stator exits 

are cOlllpared with the experilllental data in Figures 6.11 and 6.1:2 respectively. The 

nlaxinllllll difference of t he flow angle between the prediction and the experimental 

data in the area between 0% to 90% span is less than :2 degrees~ but in the area 

between 90~::( to 100)f blade height it reaches approximately 8 degrees in the rotor 

and about 10 degrees in the stator due to the inaccurate prediction of the flow in 
the rotor tip clearance. 

The relati\·e total pressure contours and velocity vectors in cross plane views 

in and near the blade tip clearance at 20%, 40%, 60% and 80% blade chord down­

stream Rotor 3 leading edge are shown in Figure 6.1:3. Strong crossing flow in the 

tip clearance causing secondary flow near the tip is also illustrated in the figure. 

It is clear that the relative total pressure is higher in the pressure side of the blade 

and lower in the suction side and tip clearance. Larger values of the relative total 

pressure and velocity near outer casing is due the relative moving of the casing. 

Static pressure distributions on both the rotor and the stator blade surfaces 

are presented in Figures 6.14 to 6.19 and show very good agreement with the 

experimental data in most of the blade chord. Some discrepancies in the static 

pressure near the stator blade leading edge at tip are shown in Figure 6.19, \vhich 

may be due to the inaccurate prediction of rotor tip leakage flow and the subsequent 

inaccurate flow incidence to the stator blades. 

The predicted relative total pressure contours at the rotor exit and the abso­

lute total pressure contours at the stator exit are plotted and compared against 

the corresponding experimental contours. In Figure 6.:20 which is viewed from the 

front of the stage in the relat ive frame of reference, clear wakes at downstream of 

the rotor are well predicted. The calculated tangential gradients are in agreement 

with the experimental contours but with smaller average values. The peak point of 

the total pressure in the prediction appears at about 67% of the blade height and 

half way between the blade pressure and suction surfaces, while in the experimen­

tal contours the peak point appears at about the same blade height but close to 

the blade pressure surface. Deeper wakes are predicted compared with the exper-
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Figure 6.23: Velocity vectors at blade-to-blade surfaces of Rotor 3 passage 

from Prediction I 
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Figure 6.:t5: Velocity vectors at blade-to-blade surfaces of Stator 3 pas­

sage from Prediction I 
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il11ental data cspeciall~' near the hub and the tip. At the exit plane of the stator, 

Figure 6. ~ L quite silnila r tot al pressure contours <HC predicted as cOlllpared with 

the experilnental ones, but with around 0.:3 higher value in (Pt - PrE] )/(~P[T,;J 

peak yalue in the lnain passage. In the ilr<'<lS between 5% to 80% blade span of the 

lllain passage, the predicted total pressurc values are nearly uniform as found in 

the experiInent as wcll. Oln'ious deficits are predicted at the flow region originated 

froI11 the shroud surt ion surface corner that may be due to the separation of the 

flow which does not appear in the experimental contours. 

The st at ic pressure and \'eloci tv vectors dist ributions in blade-to-blade surfaces 

at 0){,. 40){, , ~O% and 99S~'~ blade heights of the Rotor 3 passage are shown in Figures 

6.~~ and 6.~:)' giying a detailed description of the flow inside the flow passage. In 

t he rotor tip clearance area (99% blade height), low pressure area can be spotted 

above the blade between 10% to :30% of blade chord downstream the leading edge 

and the strong crossing flow is apparent in the velocity vector distribution. In the 

Stator :3 passage. the static pressure and velocity vector distribution in blade-to­

blade surfaces at different blade heights are shown in Figures 6.24 and 6.25. Flow 

separations on the blade suction surfaces near the trailing edge can be observed 

in Figure 6.2,j near the hub (5% blade height) and the tip (99% blade height). 

The influence of the separation on the downstream flow can also be seen in Figure 

6.102 where the low total pressure areas appear near the hub and the tip in the 

wake area. 

In conclusion, the mixing plane approach combined with conventional bound­

ary setting is a fast and effective method for flow and performance prediction of low 

speed axial flow compressor stages working near peak efficiency. The discontinuity 

of aerodynamic parameters at the interface between blade rows does not intro­

duce large prediction errors when the machines operate near their peak efficiency 

condition. 

6.5 Prediction I I: LS RC Third Stage with Re­

peating Stage and Mixing Plane Models 

The repeating stage Model I combined with the mixing plane model is de­

scribed in Chapter 4 and is used to simulate the flow field in the LS RC third stage. 

The detailed computational results are described and analysed in this section. In 

this prediction case, most of the physical and numerical models are similar to those 

in Prediction I. The only difference lies in the aerodynamic boundary conditions 



lJapt r 6. Prediction and Analysis of a Low Sp ed Researcll Compressor 1.55 

I 
1 2 

R ~ 
~ ~ 

1 2 .... ~ ~ ~ 
t'.I I :-.. 

j ~ ~ ~~~ ~ 
~ : ~ Q ,~ 
~~ ~ 

t'.I I 

~ w 
2 3 

~ ~ Q 

~ ~ 

t ;;;. ~ S w 
~ 
~ 2 3 

t ;;;. ~ 

Figure 6.26: Boundary setting for Prediction I I 

which is schematically shown in Figure 6.26. With the repeating stage model I the 

requirement of inlet and outlet boundary conditions is significantly simplified. The 

only requirement is a total mass flow rate and stage exit average static pressure. 

The predicted results with this approach at the same working condition of the 

same compressor stage are compared with the experimental data and those from 

Prediction I as follows. 

The area averaged static pressure and total pressure along the axial direction of 

the compressor stage are shown in Figure 6.4. Good agreement is achieved in most 

axial locations except in the rotor upstream extension. Compared with Prediction 

I the discrepancy from Prediction I I comes from the different stage inlet velocity 

profile which is set to be equal to that at the stage exit. 

Figures 6.5 to 6.7 show that the predicted velocity profiles match well with the 

experimental data in most of the blade span. Over-prediction of axial velocity is 
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~ ho\\"n in t he area between :1% to l5% and between SO% to 9:2% blade height and 

over-prediction of circulnferential velocity in the area between 8.5(~! to 100% blade 

height. The ~panwise dist ribut ion of the predicted velocity components at the exit 

of the rotor and the sta t or fronl Prediction I I are sin1ilar to those from Prediction 

I but not a~ good as Prediction I especially near the blade hub and the tip. 

Due to the discrt'pallc~' of the stage inlet velocity setting as compared to Predic­

t ion I. over-predicted spanwise static pressure and total pressure distributions at 

the st age inlet are shown in Figure 6.S, especially for total pressure near the blade 

hub and tip area. Downstream of the stage. this discrepancy becomes smaller and 

close to the results from Prediction I. 

Srnall discrepancy can also be seen in the spanwise distribution of the flow angle 

at the exit of the rotor and the stator in Figures 6.11 and 6.12, with about 2 degrees 

n1aximum difference to Prediction I. The spanwise flow angle from Prediction I I 

is about the same accuracy to the Prediction I compared with experimental data 

in n10st part of the blade span. 

Similar predicted static pressure distributions on the rotor and stator surfaces 

to Prediction I are shown in Figures 6.14 to 6.19. The only obvious discrepancy 

can be seen near the rotor tip in Figure 6.16 compared with Prediction I but is also 

around the experimental data. This discrepancy comes from the difference in the 

inlet velocity setting. especially near the blade tip where there is more difference 

in the velocity profile (see Figure 6 .. 5). 

The total pressure contours agree well for Predictions I and I I ~ Figures 6.20 

and 6.:21. At the exit of Rotor 3, Prediction I I shows larger calculated relative 

total pressure values near about 6i7c, and 15% blade height due to the larger 

velocity values at the same locations, Figure 6.6. In general, the difference of the 

calculated total pressure contours between the two predictions is very small. 

To conclude. the repeating stage model is an effective tool to simplify the 

boundary conditions for the analysis of rear stages of multistage axial flow com­

pressors. The predicted results with this model for the third stage of the LS RC 

provides comparable accuracy to those with conventional setting of boundary con­

ditions. 
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6.6 Prediction I I I: LSRC Third Stage with Con­

ventional Boundary Setting and Deterministic 
Stress Model 

In thi~ section. the predicted results of the flow with the more rigorous de­

tennini~t ic ~t res~ lHodel for the third stage of L8 RC are presented and compared 

wi t h those froIn Prediction 1 and with the experimental data, aiming to show any 

inlprovelnent ~ fronl the det enninistic stress model to the prediction. 

The layout of t he computational domains and the setting of the boundary con­

ditions are shown in Figure 6.27. Because of the implementation of the overlapped 

domain approach. Stator 2 domain provides an upstream flow environment and a 

deternlinistic stress field to the third rotor and Rotor 4 domain provides a down­

streanl flow en\'ironment to t he third stator. The inlet velocity profile and the exit 

average static pressure to the third stage are set to the experimental values, which 

is aho the case for Prediction I. By taking advantage of the repeating nature 

of the conlpressor stages in order to simplify the boundary conditions, the inlet 

velocity. k and f profiles of Stator 2 are set to be the same as those at Stator 3 

inlet (Interface 2). 

Compared with the mixing plane model used in Prediction I. the deterministic 

stress model has the advantage that the momentum terms are continuous at inter­

faces by introducing the deterministic stresses in the momentum equations. For 

example. circumferentially area-averaged spanwise distribution of the momentum 

terms at Rotor :3 inlet at Interface 1 before and after the interface are compared in 

Figure 6.28 where two different models, the mixing plane model and the determin­

istic stress model. are used to calculate the momentum terms across the interface. 

The difference between the momentum terms before and after the interface with 

the mixing plane model is obvious. With the implementation of the deterministic 

stresses the calculated momentum terms after the interface with the deterministic 

stress model keep almost unchanged. Minor inconsistency in momentum terms is 

due to numerical errors. 

The circumferentially area-averaged body force component distribution in cylin­

drical coordinates in t he downstream of Rotor 3 and Stator 3 are illustrated in 

Figures 6.29 and 6.30. The axial body force component contributes to the pres­

sure distribution and part of momentum change in the axial direction, the cir­

cumferential body force component contributes to the turning of the flow in the 

circumferential direction and the radial body force component contributes to the 
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Figure 6.27: Boundary setting for Prediction I I I 

tatic pre ure and mass flow rate distribution in the radial direction. 

The circumferentially area-averaged deterministic stress component distribu­

tion in cylindrical coordinates at downstream of Stator 2 and Rotor 3 are shown 

in FiO'ures 6.31 and 6.32. The deterministic stresses generated by Stator 2, Figure 

6.31 are impo ed on the Rotor 3 passage and the deterministic stresses generated 

by Rotor 3, Figure 6.32 are imposed on the Stator 3 passage. It can be seen in Fig­

ure 6.31 that the deterministic stresses have larger values in the area close to the 

hub and the tip in the stator downstream domain than in the central domain of the 

passage due to the flow separations in the blade passage near the hub and the tip. 

These separations generate larger periodic flow variation propagating downstream. 

It can also be observed that the deterministic stress components shown in Figure 

6.31 have their largest values near the trailing edge of Stator 2 and deteriorate very 

rapidly downstream the Stator 2 blade trailing edge and become very small at the 

interface. In Rotor 3 downstream domain, Figure 6.32, the deterministic stress 

components containing vr are about ten times smaller than others and have the 

largest values near the tip due to the influence of the rotor tip clearance flow. In 
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Figure 6.28: Momentum terms at Rotor 3 inlet at interface 1 
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Figure 6.29: Bodyforce components generated by Rotor 3 
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Figure 6.30: Bodyforce con1ponents generated by Stator 3 
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Figure 6.31: Tangentially area-averaged deterministic stresses at Stator 

2 downstream starting from Stator 2 trailing edge 



Chapter 6. Prediction and Analysis of a Low Speed Research Compressor 163 

Figure 6.32: Tangentially area-averaged deterministic stresses at Rotor 3 

downstream starting from Rotor 3 trailing edge 
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axial direction, all the cOlllponents haH' the largest values near the rotor trailing 

edge and deteriorate \'ery rapid 1)' downstreanl. This Ineans that for this low pres­

sure COlllpres~or the non-uniforlllity of the flow fronl a blade row is mixed out very 

quickly and the benefi t froI11 the iinpleI11ellt a tion of the deterministic stresses will 

not be significant, which can be seen fr0111 the following performance comparison. 

The contonrs of the deten11inistic stress conlponents at the exit planes of Rotor 

3 and Stator :) fr0111 the experinlent are cOI11pared with those from Prediction I I I 

in Figures 6.3:) to 6.:)~. The predicted deterministic stress distribution match very 

well with those froln experiments. At the exit of Rotor 3, the maximum values of 

the predicted deterministic stress components are about half of the corresponding 

yalues fronl the experinlent. The reason for this discrepancy is that the predicted 

wake generated by the rotor blade is not as strong as the actual wake measured 

in the experiment. which can be seen in Figures 6.61 and 6.6:2 where the circum­

ferential distributions of the axial velocity and the total pressure at midspan of 

Rotor 3 outlet are shown. At the exit of Stator :3 the peak values of the calculated 

deterministic stresses are slightly larger than those from the experiment because 

the predicted wakes are stronger than obtained in the experiment, as shown in 

Figures 6.6:3 and 6.64. 

The contours of the turbulence kinetic energy distributions at the exit planes 

of Rotor :3 and Stator 3 are shown in Figure 6.39. We can see that the peak 

\'alues of the turbulence kinetic energy is much smaller than those of the major 

deterministic stress components. 

In addition. the contours of total viscous stress components at the exits of Rotor 

:3 and Stator 3 are plotted in Figures 6.40 and 6.41 and the expressions of these 

components are presented by Equations (6.1) expressed in cylindrical coordinates. 

Obviously. they are also much smaller than the deterministic stress components. 

aVr 
Trr = :2(11 + IlT)-ar 

( aVe t', ) 
TOO = :2(11 + IlT) - + -rae r 

avz 
Tzz = 2(J.l + IlT)-az (6.1 ) at". + a"B _ ve) 
TrO = TOr = (11 + J.lT) rae ar r 
To z = TzO = (11 + J.lT) 

aVe + ~ avz) 
az r ae 

Tzr = Trz = (11 + IlT) 
avz avr) -+-ar a:: 
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The compari on among the deterministic stresses, turbulent kinetic energy (k) 
and the total yi cou stresses shows that the influence of the deterministic stresses 

on the up tream extension of a blade row should be stronger than others. 

The blockage factor distribution for Rotor 3 and Stator 3 is shown in Figure 

6.42 which contributes to another part of axial momentum change inside the blade 

pa ages. \\'ithout this correction, the predicted momentum and total pressure 

inside blade passage in the blade extension domains will be completely wrong. For 

example in the downstream domain of Rotor 3 which covers the Stator 3 passage, 

area averaged static pressure and momentum terms in axial direction calculated 

from the tator 3 and Rotor 3 domains are compared in Figure 6.43. For the 

Rotor 3 domain two results are presented, one taking into account the blockage 

and the other without taking into account the blockage. Figure 6.43 shows that 

the result without taking into account the blockage effect gives wrong prediction 

of the momentum component (~pW2), which contributes to the wrong prediction 

of the total pressure distribution in the downstream extension of Rotor 3, Figure 

6.44 because the increase of the total pressure in the stator passage downstream 

the flow is not physical. 

Performance comparisons among Prediction I I I, Prediction I and the exper­

imental data for the third stage of L5 RC are carried out in this section. The 

predicted area-averaged static pressure and the total pressure distributions in the 

axial direction of the compressor stage are presented in Figure 6.45. Compared 

with the experimental data at three stations, the Rotor 3 inlet at Interface 1, 

Interface 2 between the two blade rows and the Stator 3 outlet at Interface 3, 

good agreement between computational and experimental data is shown. It can 
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Figure 6.-1:2: Blockage factor for Rotor 3 and Stator 3 

be seen that there is very little difference in axial distribution of static and total 

pressure values between the two predictions. However, the most interesting part 

of the prediction from the deterministic stress model is the downstream extension 

domain of the blade rows. where the predicted axial distribution of the pressure 

show almost the same variation to that from the analysis of the downstream blade 

row. This means that the development of the flow in the dOll1ain which covers 

the following blade passage from an upstream blade row is well predicted with the 

implementation of bodyfol'ce and blade blockage effect of the downstream blade 

row in terms of a\'erage pffects. 

In Figures 6.46 and 6.47 the comparison of the spanwise velocity profiles at 

Interface 2 between Rotor :3 and Stator :3. and the Stator :3 exit at Interface :3 are 

illustrated. The velocity distributions from the two predictions are close to the 

experimental data and have almost the same accuracy. In the area between 80 % 
to 100 7c blade span at the exit of Stator 3. the deterministic stress model provides 

slightly better prediction of velocity profile than the mixing plane model, Figure 

6.47. This proves that the deterministic stress model provides slight improvement 

to the velocity distribution. 
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In Figure 6.4~, Prediction I I I provides iIllproverrlent for the spanwise static 

pre~sure dist ribut ion and Inaintains ahnost unchanged to the total pressure dis­

tribution as cOInpared to Prediction I. At the interface between Rotor :3 and 

Stator :t the spanwi~e distributions of the static pressure and the total pressure 

in Prediction I I I can be obLlined from both Rotor :3 and Stator 3 domains. The 

predicted Ps and Pt distributions from the Rotor :3 domain are very close to those 

froIn Prediction I. In t he Stator :~ donlain of Prediction I I I, the predicted span­

wise Ps d i~t ri bu t ion between 0% to 50% span is closer to the experimental data 

than Prediction I and t he predicted spanwise Pt in the same span area is slightly 

over-predicted, while in the area between 65% and 100% span the Ps distribution 

is under-predicted conlpared to Prediction I and the Pt distribution is obviously 

better than that from Prediction I. At the Stator :3 exit, Figure 6.,50, two predic­

tions of spanwise static pressure distribution are close to the experimental data 

with ahnost the san1e accuracy although they differ with each other. For the 

span\\'ise total pressure distribution. Prediction I I I gives better distribution near 

the tip (between iOc;( to 100% blade height). Prediction I gives better distribu­

tion near the hub (between Oo/c to 50%) and the two computations provide similar 

distribution near midspan. 

As mentioned in Chapter 4. the spanwise static pressure distributions obtained 

from the Rotor :3 domain and the Stator :3 domain at Interface 2 between Rotor 

:3 and Stator 3 is not consistent, which is shown in Figure 6,49. The maximum 

difference of the static pressure values between two sides of the interface appearing 

near the blade tip. is about 0.12% of the pressure ratio of the third stage. 

In terms of flow angles, Prediction I I I demonstrates about 1 to 1.5 degrees 

improvement in its spanwise distribution than Prediction I in the area between 

.jo/c, to SOc;( blade height at Interface 2 and also in the area between 0% to 75% 

blade height at Stator :3 exit (Interface 3). Near the tip area, Prediction I shows 

slightly better prediction for spanwise flow angle distribution than Prediction I I I 

in the area between 94% to 100% blade height at interface 2 and between 87% to 

9.S1() blade height at Stator 3 exit (Interface 3). 

The total pressure contours in the relative frame of reference at the exit of 

Rotor 3 and in the absolute frame of reference at the exit of Stator 3 are compared 

with those from the experiment and Prediction I, Figures 6.53 and 6.54. and the 

contours from the two predictions are very similar to each other especially for 

those at the exit of Rotor 3. The small discrepancy between the two predictions 

at Stator 3 exit (Figure 6 .. 54) is that the peak value area of the contours from 
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Prediction I I I is in the lower part of the passage while the peak value area of the 

contours in Prediction I is in the upper part of the passage. 

The static pressure and the velocity vector distributions in blade-to-blade sur­

faces at different blade height are illustrated in Figures 6.55 and 6.56 for the Rotor 

:3 domain and in Figures 6.57 and 6.58 for the Stator 3 domain. It can be seen 

that in the downstream extension of each domain the axial variations are well pre­

dicted which is corresponding to the average flow in the following blade passage 

while the circumferential variations are smeared with the action of the downstream 

relatively rotating blade row. The turning of the flow in the downstream extension 

of Rotor 3 with the action of its downstream blade row is demonstrated with the 

streamlines in a blade-to-blade surface at midspan in Figure 6.59. 

The wakes generated by Rotor :3 and Stator 3 blades are well predicted with 

the comparison of the circumferential variation of the axial velocity component 

and the relative total pressure in the rotating frame of reference for Rotor 3 at 

midspan of Rotor 3 exit (at Interface 2 of the Rotor 3 domain) and in the absolute 

frame of reference for Stator :3 at midspan of Stator 3 exit (at Interface :3 of Stator 

3 domain) in Figures 6.61 to 6.64. The deterioration of the wakes, schematically 

illustrated in figure 6.60, are due to the "chopping" of their downstream relatively 
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Figure 6 .. 56: Velocity vectors at blade-to-blade surfaces from Prediction 

I I I (Rotor 3 domain) 
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Figure 6. 57: (Pa - Pre! )/( !pU;,J distribution at blade-to-blade surfaces from 

Prediction I I I (Rotor 3 domain) 
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Figure 6 . .58: Velocity vectors at blade-to-blade surfaces from Prediction 

I J I (Rotor 3 domain) 
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Figure 6 .. 59: Stream lines on a blade-to-blade surface from Prediction I I I 

(Rotor 3 domain) 
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Figure 6.60: Illustration of development of wakes chopped by downstream 

relative rotating blades, Hall [73] 
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Figure 6.61: Tangential distribution of axial velocity at Rotor 3 exit 

nlidspan and its development (in relative frame of reference) 

rotating blades. The circumferential variations of the axial velocity component 

and the relati\-e total pressure at the same span position after the "chopping" at 

Interface :3 of the Rotor 3 domain are plotted in Figures 6.61 and 6.62 and at 

Interface --l of the Stator :3 domain in Figures 6.63 and 6.64. Although the experi­

mental data for the decay of the wakes for Cranfield LS Re are not available, the 

prediction show the similar tangential variation of time-average total pressure to 

the experimentally measured tangential variation of time-averaged relative total 

pressure at midspan position both before and after a downstream blade row for 

the Iowa State Research Compressor (Figure 6.65) and NASA Low Speed Axial 

Compressor (Figures 6.66) and the predicted tangential variation of time-averaged 

rotor relati\-e total pressure at midspan position both before and after a down­

stream blade row for the Penn State Research Compressor, Hall[73]. Therefore, it 

has been proved that the deterministic stress model is able to reproduce the wake 

behaviour very well. 
By comparing the experimental data with the results from Prediction I I I & 

I. we can conclude that the deterministic stress model does provide improved 

prediction than the mixing plane approach in the area between 50% and 100% 

blade height but this improvement is not significant. This may be due to the 

following reasons: 

• The implemented deterministic stresses have larger influence on the upstream 

extension of a blade domain than on the following downstream domain. The 

deterministic stresses decay rapidly and have little influence downstream 
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blade leading edge . 

• The rotor tip leakage flows haH' significant influence on the flow and this 

influence is cOlnparable to the ilnprovelnent froIn the implementation of the 

detenninistic stresses . 

• The inaccurate predict ion of the rotor tip leakage flows is obvious. The 

deternlinistic stress nlodel does not have the capability to solve the problem. 

Generally speaking. the detenninistic stress model does provide better predic­

tion of t he flow and perforInance of the third stage of LS RC but this improvement 

is not significant. It is likely that the detern1inistic stress model can provide more 

benefits than the n1ixing plane model for high pressure multistage axial flow com­

pressors with snlall axial gaps. 

6.7 Prediction IV: LSRC Third Stage with Re­

peating Stage Model and Deterministic Stress 

Model 

:-\ numerical prediction with the deterministic stress model in combination 

with the repeating stage model is presented in this section and the results are 

compared with Prediction I I which uses the mixing plane model combined with 

the repeating st age model. The only difference between Prediction I I and IV is 

the treatment of the interfaces. Through the comparison of the two predictions 

on the third stage of LS RC, the benefits of the deterministic stress model will be 

further presented. 

The details of the second repeating stage model used in Prediction Il" is de-

scribed in Chapter 4 and will not be repeated here. The layout of the compu­

tational domains for the third stage and the setting of boundary conditions are 

illustrated in Figure 6.68. This prediction consists of two global iterations. One 

is the Computation I which is a repeating stage approach similar to Prediction 

I I by imposing the deterministic stress field on the flow field. The other, the 

Computation I I, is a deterministic stress approach similar to Prediction I I I whose 

boundary conditions come from Computation I. The Computation I I which is 

carried out once after every 4 to .5 global iterations of C omputaitonI provides a 

deterministic stress field to Computation I. Of the two computations in Predic­

tion IV the results from the Computation I are more concerned and are compared 
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wit h Prediction I I. which ~hows t he difference betwcen the repeating stage models 

wi t hand wit hou t detenninist ic st rcsses inl plelnented in the governing equations. 

The COlnputation I I providc~ silnilar result to Computation I and provides more 

details about the int eract ion betw('cll the flow and t he blade rows. 

The total and st atic pressure dist ributions along t he axial direction of the third 

stage of L:<RC froln Computation I of Prediction 1\" and Prediction I I are illus­

trated in Figure l).bq. Both predictions nlatch very well with the experimental 

data and Prediction 1\' gives bet ter result than Prediction I I in the rotor up­

streanl exten~ion. This in1provelnent is illustrated more clearly in Figure 6.70. 

The spanwis(' distributions of the total and static pressure at the exit of Rotor 3 

and Stator :3 fron1 Prediction Il" is almost the same as those from Prediction I I. 
which are shown in Figures 6.71 and 6.72. 

The span\\"ise yelocity distributions from Prediction IV and I I are compared 

\"ith the experinlental data in Figures 6.73 to 6.75. which show very little difference 

between the two predictions. 

The two predictions show very little difference in flow angle at the exit of the 

two blade ro\"s. The spanwise flow angle distributions from the two predictions 

are almost the same at the exit of Rotor :3 and less than 1 degree difference at the 

exit of Stator :3. Figures 6.76 and 6.77. 

The total pressure contours from Prediction IV at the exit of Rotor 3 and 

Stator :3 also show very similar distribution with those from Prediction I I. which 

are shown in Figures 6.78 and 6.79. respectively. The difference between the ex­

perimental and predicted contours are discussed in Section 6.6 and will not be 

discussed here again. 

From the comparison. it can be seen that the improvement for the current case 

only appears in the rotor upstream extension in terms of the static and the total 

pressure distributions and keep almost the same for all the parameters downstream 

the stage. The reasons for this may be as follows: 

1. According to the distribution of circumferentially area averaged deterministic 

stress components, Figures 6.:31 and 6.:32, the significant values of determin­

istic stresses which are imposed on a computational domain always appear 

at the inlet of the domain. The magnitude of the deterministic stresses dete­

riorate very rapidly downstream the flow passages. Therefore the significant 

influence of the deterministic stress should appear in the upstream extension 

of a blade passage. 

2. Comparing the deterministic stress components imposed on the computa-
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tional domain of Rotor 3 (Figure 6.31) and the deterministic stress compo­

nents imposed on the domain of Stator 3, we can see that the most significant 
~...-.......--... 

components are p \'~ \~, p \'~ \~ and p Va Va, and the deterministic stress field 

imposed on the Rotor :3 domain is comparable to that imposed on the Sta-

tor 3 domain except for the component p \,'~ \'~ where the difference is about 

30C;C in magnitude at the inlet interface between the two domains. Other 

deterministic stress components are much smaller and can be ignored. 

3. The flow in the Stator 3 passage is less sensitive to the deterministic stresses 

than the Rotor 3 passage. 

Based on the above comparison and analysis, it has been proven again that 

the deterministic stress model dose not provide significant benefits to the predic­

tion of low speed compressors when the deterministic unsteadiness generated by 

neighbouring blade rows is small. 
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6.8 Prediction V: LSRC Complete Four Stages 

with Conventional Boundary Setting and Mix­

ing Plane Model 

In thi~ prediction case, the flow field and the perforn1ance of the complete four 

stages of the Cranfield Low Speed Research C01l1pressor (LSRC) are simulated. 

Figure 6.,)0 shows the layout of the c01l1putational domains for all blade rows and 

the setting of the boundary conditions. Mixing planes are used at the inlet and the 

exi t of e\"ery dOlllain of blade rows and the mixing plane model is used to transfer 

infonnation between neighbouring blade rows. The velocity, k and E profiles at 

the inlet and the a\"erage static pressure at the exit of the compressor are set to 

be equal to the experimental data. Local and global iterations are carried out to 

satisfy the convergence criteria of the governing equations and the consistency of 

aerodynan1ic parameters at all interfaces between the blade rows. 

The predicted area averaged static pressure and total pressure distributions 

in the axial direction of the compressor are presented in Figure 6.81. Compared 

with the experimental data at five stations, Rotor 1 inlet and exit, Rotor 3 inlet 

and exit and Stator :3 exit, good agreement between the predicted results and the 

experimental data is shown although there are slight discrepancies. In Prediction 

, " where the average static pressure is fixed at the compressor exit, the numerical 

error of the static pressure in the calculation are accumulated through the calcu­

lation of the whole blade rows and obtain their maximum value at the Rotor 1 

inlet at approximately 1.4% of the static pressure ratio for the whole compressor. 

Regarding the total pressure, the maximum error also appears at Rotor 1 inlet due 

to the maximum error in static pressure at the same location where the velocity 

profile at Rotor 1 inlet is set to be exactly the same to the experimental data. 

The difference between the total pressure on both sides of the mixing planes 

are nearly negligible, showing that the discontinuity of the momentum resulted 

from the mixing-plane model is very small and can be neglected at peak efficiency 

for the compressor. 

In Figures 6.82 and 6.83 the spanwise distributions of static and total pressure 

are presented. Prediction V gives good predictions for the static pressure at the 

inlet and exit of the third rotor and the exit of the third stator with a slight 

over-estimated average value at Rotor 3 inlet and under-estimated average value 

at Rotor 3 exit. Due to the accumulated error in static pressure further upstream 

the compressor, under-estimated spanwise distributions of static pressure at Rotor 
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Figure 6.80: Boundary setting for Prediction V 

1 inlet and exit are obvious, which can also be seen in Figure 6.81. This error in 

static pressure also contributes to the error in total pressure at the same location, 

Figure 6.83. The sudden changes of experimental static pressure near the walls 

are not physical and susceptible to measurement error due to the presence of the 

solid walls (Howard et al. [88]). Hence, the difference in static pressure between 

experiment and prediction near the blade tip should not be as large as shown in 

Figures 6.82. The spanwise total pressure distribution at Rotor 3 inlet and exit 

and Stator 3 exit match very well with the experimental ones in the area between 

0% to 85% blade height. The over-prediction in total pressure in the area between 

8.5% to 100% blade span are very likely due to the inaccurate prediction of the 

rotor tip clearance flows, which can also be seen in Prediction [. 

The calculated spanwise distribution of velocity components from Prediction V 
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at Rotor 1 exit, Rotor 3 inlet and exit and Stator 3 exit match very well with the 

experimental data for most part of the blade span although with some discrepancies 

in the area between 80% and 100% span near the blade tip, Figure 6.85 to 6.88. 

These discrepancies are very likely due to the numerical inaccuracies in resolving 

the complex, tip clearance flows. 

The above mentioned inaccurate flow prediction in rotor tip clearances also 

contribute to the discrepancy of the flow angle near the tip, which are illustrated in 

Figures 6.89 to 6.92 and are of about the same accuracy to that in other prediction 

cases. 

The total pressure contours at Rotor 3 exit and Stator 3 exit are compared with 

the experimental total pressure contours in Figures 6.93 to 6.94. These predicted 
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contours are I110re or less the SeHne with those fro111 Prediction I which is a similar 

prediction C,lSt', therefore the detailed analysis is not discussed any further. 

Fro111 the above anal~'sis, we can conclude that the 111ixing plane model com­

bined with convent ional boundar\' sctt i ng is an effect i ve approach for the flow 

and perfonnance predict ion of Inult istage low speed axial flow compressors with 

sat ist\ing accurac~'. 

6.9 Entropy Analysis 

The rate of entropy generation is a parameter to measure the significance 

of irreversibilities related to heat transfer. friction~ and other nonidealities within 

s~'steI11s. Sciubba [15-1]. The analysis of entropy generation inside turbomachinery 

allows a I1lore exact understanding of losses in the flow path than is possible \vith 

traditional methods invoh'ing the application of empirical correlations. 

\Yith the first law of thermodynamics and the governing equations of flows 

(i.e. the continuity. momentum and energy equations), an entropy equation can 

be derived (see :\ppendix F) and is expressed as follows: 

(6.2) 

where ~l/ is a non-negative dissipation term which behaves as a non-reversible heat 

source and may be expressed by the product of the viscous stress tensor T and the 
--+ 

rate of deformation (\] . "): 

( ' . - 1 ,) 3) 
l~J - ~~, (6.3) 

where 
(i,j=1~2,3) 

The heat flux may be expressed as: 

q= -k(\]T) 

The entropy equation (6.2) states that the difference between the rate flow 

of entropy out of a fluid element and into the element equals the rate of entropy 

generation inside the element either from the dissipation of mechanical energy into 

entropy (loss work) or the dissipation of thermal energy into entropy (loss heat). 
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For adiahat ic flows (k = 0), the en tropy equation becollles: 

.... 1 [ .... ] V·(p\'s)=T T'(V'\') (6.4 ) 

or 
.... 1 

V . (p \ '.--) = r f v (6 .. ) ) 

It can be seen frol11 I'~quatioll (6.!)) that the entropy increase in a fluid element 

in adiabatic flows is due to the non-reversible heat source generated by viscous and 

turbulent st rt'ss('s. The right hand side of the entropy equation (6 .. 5) is actually 

the local entropy generation rate s', which can be calculated based on available 

flow field as follows: 

,1 1 8t'i 
.-- = -Cj/ = -T£j-._ -

T T d.tj 
(i,j=1.2,3) (6.6) 

The entropy generation rate inside t he blade passage of the third stage of the 

Cranfield LS RC can be calculated from the predicted flow field. for example from 

Prediction I. The distribution of entropy generation rate in both Rotor :3 and 

Stator :3 passages are illustrated in Figures 6.95 to 6.100, where blade-to-blade 

\'iews at different blade heights and cross plane views at different axial positions 

are shown. It can be seen that large entropy generation rate appears in the areas 

with large velocity gradient, such as those near solid boundaries especially near 

blade leading and trailing edges. in the areas near blade suction surfaces vvith 

flow separations and in the downstream area of blade trailing edges where strong 

wakes exist. t~ nfortunately, the predicted large value of entropy generation rate 

near blade leading edge is not physical and is due to the incorrect prediction of 

large value of turbulence in that area with the two-equation turbulence model. 

Relative total pressure is another parameter to assess the efficiency of the flow 

inside the machine. As a comparison to the entropy generation rate. the total 

pressure distribut ion in relative frame of reference at the same locations are also 

plotted in Figures 6.101 to 6.106. The distribution of relative total pressure shows 

that in most area where there is large entropy generation rate the relative total 

pressure is low and vice versa. 

\Vith the obtained entropy generation rate, the increase of entropy in axial 

direction in both Rotor 3 and Stator :~ can be calculated through the following 

integration: 

(6.7) 
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5 .000 
1.000 

-3.000 

Figure 6.95: Distribution of entropy generation rate In( s' ) at blade-to­

blade surfaces at different blade height from Prediction I (Rotor 3 do-

main) 
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Figure 6.96: Distribution of entropy generation rate In(s') at blade-to­

blade surfaces at different blade height from Prediction I (Stator 3 

domain) 
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blade cbord blade chord 

Fjgure 6.97: Distribution of entropy generation rate In(s' ) at cross plane 

surfaces at different axial position from Prediction I (Rotor 3 domain) 



ChapleT 6. Predicli 11 a.nd Ana./ysi of a. Low p ed ReseaTch CompTessor 213 

9 .000 

blade chord 

blade chord 

Figure 6.98: Distribution of entropy generation rate In( s') at cross plane 

surfaces at different axial position from Prediction I (Rotor 3 domain) 
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Figure 6.99: Distribution of entropy generation rate In( s') at cross plane 

surfaces at different axial position from Prediction I (Stator 3 domain) 
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Figure 6.100: Distribution of entropy generation rate In (s') at cross plane 

surfaces at different axial position from Prediction I (Stator 3 domain) 
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Figure 6.101: Distribution of relative total pressure (Pt - Pre! ) / (~pU'!n) at 

blade-to-blade surfaces at different blade height from Prediction I (Ro-

tor 3 domain) 
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Figure 6.102: Distribution of total pressure (Pt - Pre! )/(~pU!) at blade­
to-blade surfaces at different blade height from Prediction I (Stator 3 

domain) 
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2.150 2.150 

blade chord blade chord 

Figure 6.103: Distribution of relative total pressure (Pt - PreJ)/(~PU!) at 

cross plane surfaces at different axial position from Prediction I (Rotor 

3 domain) 
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2.150 

blade chord 

Figure 6.104: Distribution of relative total pressure (Pt - Pre! )/(~pU!) at 

cross plane surfaces at different axial position from Prediction I (Rotor 

3 domain) 
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0'; blade chord blade chord 

Figure 6.105: Distribution of total pressure (Pt-Pref)/(ipU!)at cross plane 

surfaces at different axial position from Prediction I (Stator 3 domain) 



lion and Anal), i ' r a. Low peed Re::;earch Compressor 221 

100% blade chord 

Figure 6.106: Distribution of total pressure (Pt - Pre] )/(~pU!) at cross 

plane surfaces at different axial position from Prediction I (Stator 3 

domain) 
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Figure 6.107: Calculated axial entropy rise in Rotor 3 (Prediction I) 

where 5 is the total entropy at certain axial location. N is the number of blades, 

t6.l ijk is the volume of a cell. p is the density. and I. J and I{ are the numbers of 

grid lines in the three grid line directions. The reference entropy normally takes its 

,"alue at the inlet of a blade row. The calculated entropy rise in Rotor :3 and Stator 

:3 are shown in Figures 6.107 and 6.108. From the figures, it can be seen that the 

most significant increase appear in the blade passage area between 0% and 30% 

blade chord downstream from the blade leading edge for both Rotor :3 and Stator 

3. The losses of the flow in the wake areas downstream t he blade trailing edges 

of both the rotor and t he stator are also shown through the increase of entropy in 

these areas. 

According to t he basic t heor.y of thermodynamics, the efficiency of a compressor 

stage can be calculated with the following equation, Denton [48]: 

(6.8) 

where TIc is the thermal efficiency of the compressor stage, T2 is the exit average 

temperature of the stage and the subscripts 1 and 2 mean the inlet and the exit of 

the stage, Figure 6.109. The total entropy rise across the stage can be obtained by 
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Figure 6.108: Calculated axial entropy rise in Stator 3 (Prediction J) 
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Figure 6.109: Enthalpy-entropy diagram for compressor flow 
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adding the ent rop~' ri~('~ in Rotor :~ and Stator :3 together (the entropy rise in the 

third ~tagc i~ 19.LU7) ll'j !\"). The teinperature Inay be calculated with the state 

equation of ideal gas (for the third stage t he calculated inlet temperature is 283.8 

!\" and the outlet tClllper.ltur(' is :.?~~.2 J{). Eventually. the efficiency of the third 

stage can be calculated with Equatioll (6.8) and the calculated efficiency is 89.8%. 

which is a \'Cr.\· sat isfactor~' result as cOlnpared to the experimental data (around 
, 'l" , ~) o-t ) ::-'::-',( to ::-.. 10 . 

Loss anal~'sis tl~ing ent rop~'-generation rate due to heat and fluid flow is a 

relatiye new technique for assessing turboll1achinery performance, Sciubba [154]. 

I twill becoine abetter ana.l~·sis method to the understanding of the loss of the 

flow in turboinachinery and will be beneficial to the design of more advanced 

turboll1achines. 

6.10 Prediction of LSRC Third Stage at Off-Design 

Conditions 

Performance predictions with the current computational method at off-design 

conditions of the Cranfield LSRC were carried out and show valuable result. The 

repeating stage model in combination with the mixing plane model was used in the 

computation. which is similar to Prediction!! taking advantage of the repeating 

flow nature of the compressor and simplify the setting of the boundary conditions. 

The only difference to Prediction !! is that the inlet velocity profiles used in 

this computation are scaled experimental velocity profiles according to the mass 

flow rate instead of using the calculated stage exit velocity profile. The reason 

for this is to reduce the accumulated prediction error resulted from the repeating 

stage model during the global iterations due to the following two reasons: (1) 

the further the compressor works away from its peak efficiency point, the more the 

repeating nature of the compressor stages reduces, and (2) if the stage exit velocity 

profile is used as the stage inlet velocity boundary condition which has significant 

influence on the flow prediction, the difference of the velocity distributions between 

the inlet and the exit of the stage will be amplified during the global iterations 

and the converged result will be far from reality. 

Two off-design operating points of the third stage of the Cranfield LS RC with 

the same rotational speed (1100 rpm) have been analysed and plotted in the stage 

characteristic map, Figure 6.110, one with 2% less mass flow rate and the other 

with .5% more mass flow rate than the design point. Compared with two test points 
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Figure 6.110: Characteristics of the third stage of LSRC 
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in the map. it is shown that the predicted pressure ratio of the stage reasonably 

\'aries with the mass flow rate. C nfortunatel.y, it is difficult to judge the accuracy 

of the off-design point predictions because there are no corresponding experimental 

data available to compared with. 

Attempts have also been made to simulate the flow in the third stage of the 

Cranfield low speed research compressor (LSRC) working at an operating condi­

tion near stall. Unfortunately, no satisfying results have been obtained. 

The effort of the near st all flow simulations in the third stage of LS RC was 

started by setting the inlet velocity profile and the exit static pressure profile to 

both the rotor and stator domains based on the experimental data. In the rotor 

domain, the predicted spanwise velocity distribution and the total and the static 

pressure distributions at the rotor exit are close to the experimental profiles while 

the spanwise total and static pressure distributions at the rotor inlet are similar to 

the experimental ones in shape but over-predicted in magnitude. In other words, 

the total and static pressure ratios in the rotor are obviously under-predicted. In 

the stator domain. the static pressure distributions at both the inlet and the exit 

of the stator are close to the experimental ones. The spanwise distribution of the 
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"elocit.'". especiall.'" t he axial \"clocity conlponent. is far away from the experimental 

da t a. where lnuch higher predict ed axial \"(\loci ty appears in the area between 0% 

and 'i07t, blade ~pan and lnuch lower predicted axial velocity appears in the area 

between 70\~' and 100(>~ ~pan. This lneans that there is a large flow separation in 

the predicted ~tator flow passage near the hlade tip which does not appear in the 

nleasured field. The inaccurate prediction in the velocity distribution results in the 

inaccurate prediction of the total pressure distribution. Under these circumstances. 

sinndation with the lnixing plane approach did not proceed any further. 

SiInilar sinndation for the near st all flow in the LS'RC third stage blade rows 

with downstreanl extended computational domains were also carried out by im­

plenlenting the deternlinistic stresses. bodyforce and blockage effect to the compu­

tation. Silnilar predicted results to the mixing plane approach were also obtained. 

The only difference between the two predictions was that large flow separations in 

the predicted stator flow passage appear near both the blade hub and tip, resulting 

in much higher axial \"elocity component at midspan and much lower axial veloc­

ity components near both the hub and the tip in the downstream stator passage. 

Hence. it has been proven that the deterministic stress model cannot improve the 

prediction of the flow when the compressor stage works far from the peak efficiency 

point. 

Similar difficulties were also experienced in the simulation of the Lewis low 

speed axial compressor. Adamczyk [6]. which is a four stage machine with an inlet 

guide vane. This compressor. which is similar to Cranfield low speed research 

compressor. also has four geometrically identical stages and is representative of 

the rear stages of a high pressure compressor. The simulation accounted for the 

rotor tip clearance and did not include the stator hub cavity and hub leakage. The 

simulation results for the compressor working near the peak efficiency are in good 

agreement with the measurement. while the simulation of a working point near 

peak pressure (near stall point) failed to converge. 

In conclusion. the developed computer code in this study with current steady 

state CFD approaches. like other CFD codes, is not able to accurately predict the 

flow field of multistage axial flow compressors working far off the peak efficiency 

points. 
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Conclusions and Future Work 

7.1 Conclusions 

• In this study. simulation approaches of three dimensional internal flow and 

performance of multistage axial flow compressors have been investigated, 

developed and analysed in great detail based on the original ideas of Den­

ton [-fi] and Adamczyk [2]. A computational procedure has been developed 

and proved to be successful. Flow and performance predictions with differ­

ent models are presented and compared with each other and with available 

experimental data. 

• The surface fitting method to generate boundary grid points of blade passages 

and the algebraic interior grid generation and clustering have been proven 

to be fast and effective. The developed computer code for grid generation is 

successful. 

• The system of governing equations, the :\ avier-Stokes equations, have been 

averaged with three averaging operators: the ensemble averaging operator, 

the time averaging operator and the passage-to-passage averaging operator. 

As the result of these averaging processes, the Reynolds stresses, the de­

terministic stresses and the stresses related to the aperiodic unsteadiness 

together with bodyforce and blade blockage appear in the averaged Navier­

Stokes equations which take into account different types of unsteady effects 

and raise the issues of closure modelling. The stresses related to the aperi­

odic unsteadiness are ignored in this study because it is much smaller than 

the turbulence unsteadiness and the periodic unsteadiness. 

227 
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• The two equation turbulence 1l10del provides an effective approach in this 

st ud\ to the Inodelling of Reynolds stresses. It is one of the best among 

turbulence lnodels in terlllS of accuracy, cOlnputation speed and robustness. 

• An overlapped sol u t ion dOlnain approach combined wi th detailed sinlulation 

of bodyforce and blade blockage effect provides an effective way of imple­

nlent ing the detenninist ic stresses in flow simulations. The developed ap­

proxinlation of bod\force and blade blockage effect is very effective in the 

flow sinnllation and silnple in programming. This type of deterministic stress 

lnodel provides spanwise continuous interfaces for mass flow rate, momen­

tunl, velocit\. k and f when they are transfered across interfaces between 

blade rows. l' nfortunately, spanwise static and total pressure distributions 

are not continuous at interfaces due to model and numerical errors. This 

inconsistency is small and can be negligible. 

• The nlixing plane models are adopted in the study and have been proven 

to be very effective in the simulation of multistage axial flow compressors. 

Although they can not provide continuity for some aerodynamic parame­

ters when they are transfered across the interfaces between the blade rows, 

they provide satisfactory prediction of the flows when the machines have low 

pressure ratios and work near peak efficiency . 

• The deterministic stress model is an improvement to the mixing plane ap­

proach. It has taken into account the periodic unsteadiness generated by 

neighbouring blade rows and provides continuous interfaces between neigh­

bouring blade rows for all the aerodynamic parameters except pressure. By 

implementing this model into the flow simulation of the third stage of Cran­

field low speed compressor (L5 RC) and comparing the results with those 

from similar simulations with the mixing plane modeL we can see that the 

deterministic stress model shows only slightly better improvement than the 

mixing plane model. The reasons for this may be that (1) the compressor 

under investigation is a low speed compressor with large axial space between 

blade rows so the influence of the deterministic stress is not significant, and 

(2) the effectiveness of the model itself is limited and is not able to improve 

the prediction accuracy significantly, which has been proven in the predic­

tions for the Cranfield low speed compressor (L5 RC) working both at peak 

efficiency operation point and near stall point. 
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• Two repeatillg st age lllodeis hav(' been developed in this study based on the 

repeating flo\\" behaviour always appearing in the rear stages of multistage 

axial flow COlllpressors. One of the lllodeis works together with the mixing 

plane lllodel and the other with the deternlinistic stress model. With the 

repeat ing st age lnodels, the aerodynanlic boundary conditions for the simu­

lation of rear st ages of llndtistage axial flow compressors can be significantly 

silllplified and the olll~" requirelllent of the boundary input is a total mass 

flow rate and average static pressure at the stage exit. The predicted flow 

field and the perfonnance of the third stage of LS RC with the repeating 

stage lllodels lnatch \"ery well with the experimental data and demonstrate 

equivalent accuracy to the predictions with conventional boundary setting. 

It has been proven that the repeating stage models are effective and are 

economic alternatives to the simulation of complete multistage axial flow 

con1pressors when only the flow in the rear stages are concerned and the 

spanwise distribution of the aerodynamic parameters at the inlet and the 

exit of these stages are difficult to be obtained. 

• The governing equations are expressed in a general non-orthogonal curVI­

linear coordinate system. which make them easy to be applied to different 

compressors with complex geometries. This equation system is discretized 

in finite control volumes with variables stored at the control volume centres. 

The application of collocated grids minimises the estimation of the coeffi­

cients of the discretized equations and simplify the treatment of the bound­

ary volumes. The S 1 J[ P LE method is utilised in the solution procedure 

and the numerical scheme originated by Rhie and Chow [147] and developed 

by ~Iajumdar [119] is used as a remedy to the pressure oscillations and de­

coupling between pressure and momentum fields. The discretized equation 

system is solved efficiently with Stone's Strongly Implicit Procedure (SIP), 

Stone [16,]. 

• The calculated distribution of entropy generation rate inside the flow pas­

sages of the compressor blade rows gives a clear and accurate description of 

the fluid losses resulted from viscous stresses. The predicted thermal effi­

ciency for the third stage of the Cranfield LS RC working at peak efficiency 

operation point is very satisfactory. 

• The developed simulation methods and computer code are able to predict 

pretty well the internal flow and performance of low speed axial flow com-
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pres~ur st ages working at off-design conditions not far from peak efficiency 

point but not able to provide good prediction when the machine works near 

st all point. The cOlnputer code has been proven to be a robust analysis 

tool in silllltlating flows inside the Cranfield low speed compressor (LSRC) 

and can be ea~il)" lllodified to silllltlate flows in other low speed multistage 
turbolnachinen". 

7.2 Future Work 

• Conlpressible Flow Sinlulation of Multistage Axial Flow Compressors 

Because of the assuillption of the incompressibility of the flow in the current 

stud)", the deyeloped COlllputer code was only implemented for the flow sim­

ulation of a low speed axial flow compressor where the compressibility of the 

flow can be ignored. By introducing the energy equation into the system 

and taking into account the compressibility of the flow, the computer code 

can be extended to simulate flows in high speed multistage axial flow com­

pressors. It is also possible to extend the code to simulate transonic and 

supersonic flows and capture shock \vaves in high speed multistage axial flow 

compressors with additional modifications . 

• Improved Repeating Stage Model 

The repeating stage models presented in this thesis have the limitation that 

they were only applied to the stages with constant inner and outer diameters 

and the flow is supposed to be incompressible. If the compressor annulus is 

convergent downstream and the flow is compressible, the repeating stage 

models need to be modified . 

• Unsteady Flow Prediction in Multistage Compressors 

The mixing plane approach has the limitation when applied to multistage tur­

bomachinery flow simulations that they only behave well when the machines 

work near peak efficiency. The deterministic stress model is an improvement 

to the mixing plane model and is a simplified alternative to the complete 

unsteady simulation of multistage turbomachinery. Unfortunately, the de­

terministic stress model is not good enough to replace the direct unsteady 

simulation. With the development of modern computers, it is possible to 

simulate three dimensional unsteady flows and rotor-stator interactions di­

rectly with an unsteady N avier-Stokes approach. A lot of effort has been 
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devot ed in this field during t he last decade. \\' hich is reviewed in Chapter 1. 

• Acceleration of the Code with Parallel Conlputation 

Flo\\' predictions of nntltistage COlnpressors are very tin1e consuming, even 

\\'ith steady state approaches. In order to accelerate the computation signifi­

cantl~o. it is suggested that parallel cOlnputations (for example, using Pl"JJ) 

be used in the sinndat ion and it is expect cd that the computational speed 

could be increased h~' 11lallY t illleS depending on the nUlnber of computers 

used and the parallelisa t ion techniques applied. Parallelisation is a great 

potential to speed up the sinndations . 

• Influence of Stator Hub Cavity Flow 

The stator hub cayity flo\\'s in multistage axial flow compressors, which are 

ignored in the present study. exist in all multistage axial flow compressors. 

The influence of the cavity flow sometimes plays an important role to the 

performance of high speed axial flow compressors. By implementing the 

cavity domains into the simulation systeill. the developed computer code 

can be extended to in\Oestigate the rigorous influence of the cavity flows on 

the main passage flows and the whole compressor performance. Numerical 

in\'estigation of cavity flows in axial flow compressors have been carried out 

bv some researchers. such as LeJambre et al. [109], Heideggar et al. [77], 

Campobasso et al. [2/] and Scott et al. [155]. 



Appendix A 

Composite Surfaces and Patches 

l- suall~·. a three-dimensional surface can be described with an implicit equa­

tion of the following forn1: 

f ( .r , y. :;) = 0 (A.l) 

It is also possible to describe the surface in terms of parametric coordinates. In 

practice. most geometries such as compressor blades cannot be defined by an accu­

rate expression of form (A.l). but are defined by sets of discrete networked points. 

For example in Figure A.1. a surface is shown on which two families of intersect­

ing curves u and /' are drawn. The surface can be viewed as a rectangular plane 

in the parametric coordinates H and v where these two families of curves can be 

represented by paran1etric curves. There is a one-to-one correspondence between 

the points on the physical and parametric spaces. 

An isolated patch is shown in Figure A.2 , defined in parametric coordinate 

vectors as r(u. t·). 0 <u< 1. 0 <t'< 1. The four corners are r(O,O).r(I,O),r(O,I) 

and r(1.1). and their coordinates are assumed to be known. The four edges which 

represent the boundary curves are defined as r(u,O). r(u,I). r(O,v) and r(1.v). 

The required interpolant form for the patch, often called Coons patch, Faux [56] 

IS 

where 
rl(u. v) = (1- u)r(O,v) + ur(1.v) 

r2(u, v) = (1 - v)r(u, 0) + vr(u, 1) 
r3 ( u, v) = (1 - u) (1 - v) r( 0, 0) + u (1 - v) r( 1 , 0) + 

(1 - u)ur(O, 1) + uvr(l, 1) 

232 

(A.2) 

(A.3) 
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The above expres~ion can be written in a lllatrix fornl: 

[ (1 - u) 

[ (1- u) 

] [ 
r( o. I')] [ ] [ 1 - v ] 

u r(1,I') + r(II,O) r(1I,1) t' -

II ] [ r( 0,0) r( 0, 1) ] [ 1 - I' ] 

r(l,O) r(1,1) I' 

(AA) 

Thi~ patch. obtained frOlll the infornlat ion given on t he boundaries is the most 

delllentar:- of a das~ of surface originally studied by Coons, \Veatherill [184]. The 

function u, (1- u), l' and (1- I') are called blending functions since their role is to 

blend together geoilletrical information from the four boundaries. A generalisation 

of the above blending function can be made to provide: 

[ oo( u) 

[ oo(u) 

where 
0'0(0) = 1 

0'1(0) = 0 

O'o( 1) = 0 

O'd1) = 1 

(A.5) 

The blending functions are usually chosen to be continuous and monotone. 

The type of patch described above ensures continuity at patch boundaries, but 1 in 

general will result in discontinuities in slope, curvature etc. To ensure continuity 

in slope at patch boundaries it is necessary to introduce a cross boundary slope 

rv ( u. 0). r u (1. t'), rl'( u. 1) and r u (0, t') into the interpolation process. The equa­

tion for such a patch utilises generalised Hermite interpolation rather than linear 

interpolation. The resulting equation is 

r( u. v) 

r(O,t') 

r(1, v) 

ru(O, t') 

ru(1, v) 

+ 

O'o( v) 

0'1 (v) 

f3o(v) 

f31 ( v) 

(A.6) 
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- [ oo( It ) 01 (u) 

where 

and 

3u(u) 

r(O,O) r( O~ 1) 

r(l.O) r( 1, 1) 
31(u) ] 

ru(O,O) ru(O,l) 

ru(1,O) ru ( 1, 1) 

00(0) = 1 

01(0) = 0 

3()(0) = 1 

3~(0) = 0 

00(1)=0 

01(1) = 1 

.3~( 1) = 0 

/3~ (1) = 1 

rv(O,O) 

rv(1,O) 

ruv(O,O) 
ruv(l,O) 

o~(O) = o~(l) = 0~(0) = 0~(1) = 0 

30 = 30 (1) = Pl(O) = .;]1(1) = 0 

rv(O,l) 

rv(l,l) 

ruv (O.l) 
ruv( 1, 1) 

oo(t') 

01(l') 

f3o(v) 

131 (v) 

(A. i) 

(A.S) 

It is possible to simplify the Coons patch equation (A.6) by defining suitable 

boundary cun"es and cross-boundary gradients. If a curve segment is defined in 

term of its end points and end tangents then 

where 

and 

Q= 

r( 0.0) 

r( 1. 0) 

ru(O,O) 

ru(1, 0) 

r( 0, 1) 

r( 1, 1) 

ru(O,l) 

ru(I,I) 

rv(O.O) rv(O,I) 

rv(I,O) rv(I,I) 

ruv(O.O) ruv(O, l) 

ruv(I,O) ruv(I,I) 

(A.9) 

(A.I0) 

(A.ll ) 

Such a patch is often called a tensor-product patch. The simplest set of polynomial 

blending functions satisfying conditions (A.i) and (A.S) consist of the following 

cubics 

oo(u) = 1 - 3u2 + 2u3 

01(U) = 3u2 - 2u3 

f3o(u) =u-2u2
+U

3 

f31(U) = _u2 + u3 

(A.12) 

If such blending functions are"used in Equation (A.9) then a composite surface 

is defined, which is made of Ferguson cubic curve segment. In this case the blending 
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fUllction ,"ector 

..... 
= [ OO(ll) ,tid u) ] F( ll) 01(1l) }Ju( u) 

1 0 0 0 

= [ 1 u2 u3 
] 

0 0 1 0 
u (A.13) 

-:3 :3 -2 -1 

2 -2 1 1 
..... 

= UC' 

oo( L') 1 0 -:3 2 1 

FT (L') 
O'l(L') 0 0 3 -2 v 

3o( L') 0 1 -2 1 v 2 (A.14) 

31 (v) 0 0 -1 1 v3 

= CTy 

The Ferguson surface patch can then be expressed as 

..... T..... -. ~ 

r(u. v) = UCQC V = UAV (A.15) 

where 

Such a surface representation is widely used in geometry modelling. 



Appendix B 

Cranfield Low Speed Research 

Compressor 

The compressor in\'estigatecl in this project is the Cranfield University (CU) 

Low Speed Research Compressor (L5RC). A photograph of the LSRC installed 

on a test rig is sho\yn in Figure B.l. A schematic drawing of the L5 RC is given 

in Figure B.~ and a diagrammatic view of the blading of the compressor is shown 

in Figure B.:3. The compressor consists of an inlet guide vane (I GV) followed by 

four identical stages and an outlet guide vane (GGV). The I Cl: is used to ensure 

that inlet conditions of the compressor are representative and thus to set up the 

correct levels of swirl and the GCl" is to establish the required downstream flow 

en\'ironment. The annulus of the compressor has constant radius on the inner and 

outer wall. The blades are of a modern controlled diffusion type and provide a 

desired non-dimensional velocity distribution typical of a high speed design. The 

chosen aspect ratio and solidity are typical of modern HP compressor geometries. 

Therefore the stage loading was set to Ul = 0.35 at a flow coefficient ¢ = 0.5. 

The test case which is used in this study has a tip clearance of 2% blade height, 

which is also a typical size in rear stages of high pressure axial flow compressors. 

Some details of the compressor working at peak efficiency are described in Table 

B.l and B.2. Details about the blading is described in [172]. 

Conventional traverse measurement of total pressure~ static pressure and flow 

angle was performed at downstream of 

.IGV 

• Rotor 1 

• Stator 1 
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Figure B.1: LS RC on test rig 

• Stator 2 

• Rotor 3 

• Stator 3 

Advanced mea urement of total pressure, static pressure and flow angle in rotating 

frame of reference with a rotating gear at downstream of rotor 3 was also carried 

out. Wall static pressure at the outer annular wall was measured as well . Addi­

tionally the blade static pressure distributions at the hub, the midspan and the 

tip of the third stage was also measured. 

The third stage is the main study stage, the first two are used to cause the 

flow to establish a repeating multistage behaviour and the fourth stage provides 

representive outlet flow conditions. 

More details about the experimental work is described in [1] and [164]. 
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P.aiiu 
TraversE 

_\Ile &.S"Jnng 

----L..I:l=-=url.....'----~.:s,t::[_1 -'-~JJ....I......_-'---_ 

Figure B.2: Structure of LS RC 

Parameter I Values 

~Iass Flow Rate (kg Is) 12.24 

Flow Density (kgls 3
) 1 'r .~.) 

Inlet Pressure (l\' Pa) 101.28 

Inlet Temperature (I() 288.15 

Rotational Speed (rpm) 1100 

Stage Loading (6HIU 2
) 0.:35 

Flow Coefficient (Caxl U) 0 . .5 

Stage Pressure Ratio 1.017 

Degree of Reaction 0.64 

Table B.1: General parameters of LSRC 
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Rotor 3 Stator 3 
0.03T-I---r----r--~r_--_,_---.____--__.__---~ 

-E 0.02 -~ 
CD -a:s 
c:: 0.01 

"C 
~ 

0 
0 

(.) 0.0 
CD 
0 
c:: 
CD 
~ 

-0.01 CD -E 
:::l 
0 
~ 

-0.02 U 

-0.03--'----t----+----+-----f-----+----_~--__+_---

0.34 0.36 0.38 0.4 0.42 0.44 0.46 0.48 

Axial Coordinate z(m) 

Figure B.:3: Blading geometry of LSRC Stage 3 

I Parameter I Rotor I Stator 

~ umber of Blades 7.5 96 

Aspect Ratio 1.:36 1.36 

Space Chord 0.71 o r: ~ .. ):) 
Thickness Chord 0.095 0.088 

Turning (degree) 1 r: -.). I 26.7 

Exi t Whirl (degree) 42.8 20.5 

Diffusion Factor 0.42 0.41 

Reynolds Number 2.9 x 105 2.3 X 105 

Table B.2: Parameters of LS'RC Rotor 3 and Stator 3 blades 



Appendix C 

Strongly Implicit Procedure(SI P) 

This appendix describes the iterative procedure of an implicit approximation 

of three dinlensional partial differential equations suggested by Stone [167] for 

soh-ing a class of elliptic partial differential equations (PDE's). This procedure is 

used to solve the algebraic equations arising from the finite volume representation 

of the governing equations described in Chapter :3. which belongs to the elliptic 

class of equations. 

The algorithm is developed to handle a seven-point algebraic equation in three 

dimensional cases. which may be represented in the following form: 

.--1.~jkOi.j.k-l +.--1.~k¢i,j-l,k + .--1.~kci/-l,j,k + .--1.~k¢i,j,k+ 
+ ._\~Jk ¢i+l ,j,k + A.~jk¢i,j+l,k + .--1.yk ¢i,j,k+l = S'i,j,k 

(C.1) 

where the subscripts i. j and k refer to location within the grid network rather than 

the matrix row-column designation, the subscripts are used to identify the coeffi­

cients corresponding to t he variables at different grid points, and the ¢ represent 

unknown quantities. see Figure C.1 
Since one such equation exists for each grid point (i.j. k), there is a total of 

n = (I + 1)( J + 1) (K + 1) equations for the unknown variables. The equations 

can be written in the form 
(C.2) 
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s 
j+l sw 

e .... ---t----__ -!.----+-......;......::.,e W 
i+l 

j-l 
n 

fw 

Figure C.l: Schematical layout of grid network and symbols 

or in a expanded form given in Equation (C.3): 

1 ijk 
."1 n 

1 ijk 
.'1. s 

·1 ijk 
."1 J 

242 

(C.3) 
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\ Ve now const ruct another lllatrix 

[B] = [A + P] (C.4) 

such that [B] can be decolllposed into a lower and an upper triangular mat rix [L] 

and [U]. It is required that [L] alld [U] ha\,(' only four nonzero elements in each 

row. regardless of t he silt' of !, J or !\'. The [L] and [U] matrices have the form 

[L] = ( C.S) 

[U] = (C.6) 

The equations to be used to determine the coefficients of [L] and [U] such that 

the original seven coefficients in [A] remain unchanged in [B] are 

i J" k A ijk 
a" = b 

bi,j,k = .-1~k 
ci,j,k = Aijk 

w 
c i ,j,k e

i-l,j,k + (t,j,k + bi,j,k ji. j -l,k + a i .j ,khi ,j,k-l = A.~k (C.I) 

di,j,kei,j,k = Aijk 
e 

di,j,k ji,j,k = A~jk 

di,j,khi,j,k = Ayk 
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The modified coefficient matrix [B] = [A + P] has the form 

[B] = 

Aijk 
e 

Aijk 
p 

Aijk 
w 

244 

(C.8) 

The elements in [B] denoted by v;~j\ V;;jk, V;~k, V;!jk, V;~jk and V;~jk are deter­

mined from 
v;~jk = ai,j,kei,j,k-l 

V;~k = ai,j,k li,j+l,k-l 

V;~k = bi,j,kei,j-l,k 

V;!jk = ci,j,k li-l,j,k 

V;~jk = bi,j,khi,j-l,k 

V;~k = ci,j,khi-l,j,k 

(C.g) 

The numerical molecular associated with matrix [B] is shown schematically in 

Figure C.l. 
Stone employed Talyor-series expansions to obtain values of qi+l,j,k+l , </i,j+l,k-l, 

qi+l,j-l,k, qi-l,j+l,k, <l>i,j-l,k+l and </i-l,j,k+l in terms of 4>' s in the original seven-

point molecular to partially cancel the influence of the additional 4>i
j
k terms in the 

[B] matrix. These are 

4>i+l,j,k-1 = _4>ij k + 4>i,j,k-1 + 4>i+l,j,k 

4>i,j+l,k-1 = _4>ij k + 4>i,j+l,k + 4>i,j,k-1 

4>i+l,j-l,k = _4>ij k + 4>i+l,j,k + 4>i,j-l,k 

4>i-l,j+l,k = _4>ij k + 4>i-l,j,k + 4>i,j+l,k 

4>i,j-l,k+1 = _4>ij k + 4>i,j-l,k + 4>i,j,k+1 

4>i-l,j,k+1 = _4>ij k + 4>i-l,j,k + 4>i,j,k+1 

(C.IO) 
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An iterative parameter Q is used to implement partial cancellation of the in­

fluence of the ¢i,j,k terms appearing in [B]. This is done by using a modified 

seven-point scheme in the form 

A~jk ¢i,j,k-1 + A~!k¢i,j-1,k + A~k¢i-1,j,k + A~k¢i,j,k+ 

+ A~jk¢i+1.j,k + A~jk¢i,j+1,k + Ayk ¢i,j,k+1 + 

+~,~jk[¢i+1,j,k-1 _ Q( _¢i,j,k + ¢i+1,j,k + ¢i,j,k-1 )]+ 

+V,;jk[¢i,j+1,k-1 _ Q( _¢i,j,k + ¢i,j+1,k + ¢i,j,k-1 )]+ 

+,~,~k[¢i+1,j-1,k _ Q( _¢i,j,k + ¢i+1,j,k + ¢i,j-1,k)]+ 

+~,~jk(¢i-1,j+1,k _ Q( _¢i,j,k + ¢i-1,j,k + ¢i.j+1,k)]+ 

+1P~jk[¢i,j-1,k+1 _ Q( _¢i,j,k + ¢i,j-1,k + ¢i,j,k+1 )]+ 

+V,~k[¢i-1,j,k+1 _ Q( _¢i,j,k + ¢i-1,j,k + ¢i,j,k+1)] = sijk 

(C.II) 

Equation (C .11) is re-arranged to produce the modified expression of Equation 

(C.7) to include the partial cancellation: 

ai,j,k = A~k _ Q( lP~jk + lP~jk) 
bi,j,k = A~k - Q( lP~k + lP~jk) 
ci,j,k = A~k _ Q( lP!jk + ~~k) 
ci,j,kei-1,j,k +di,j,k + bi,j,k ji,j-1,k + ai,j,khi,j,k-1 

= A~k + a( ~~jk + ~~jk + ~~k + lP~k + ~~jk + ~~k) 
di,j,kei,j,k = A~k _ a( ~~jk + ~~k) 
di,j,k ji,j,k = A~k _ a( ~;jk + ~1k) 
di,j,khi,j,k = Ayk _ a( ~~jk + ~~k) 

The explicit evaluation of the elements of [L] and [U] are: 

ai,j,k 

hi,j,k 

1 + Q( ei,j,k-1 + ji,j+1,k) 
Aijk 

n 

1 + a( ei ,j-l,k + h i ,j-l,k) 
Aijk 

w 

= 1 + a(ji-l,j,k + h i - l ,j,k) " ., 

= Aijk + Q( a i ,j,k ei,j,k-l + ai,j,k ji,j+l,k + bz,),kez,)-I,k+ 

+ci,J,k ji-l,j,k + bi,j,khi,j-l,k + ci ,j,khi - l ,j,k)­

_ci ,j,ke
i-l,j,k _ bi,j,k ji,j-l,k _ a i ,j,khi ,j,k-l 

= ~ [A~k _ Q( ai,j,k ei ,j,k-l + bi,j,k ei ,j-l,k)] 
dz,),k 

= _.1._ [A1k _ Q( ai,j,k ji,j+l,k + ci,j,k ji-1,j,k)] 
dz,),k 

= ~[Aijk _ a(bi,j,khi,j-l,k + c i ,j,khi - l ,j,k)] 
dz,),k f 

(C.12) 

(C.13) 
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The it('rclti\'e sequence is developed as follows. Adding [P]<P to both sides of 

Equation (('.~) gives: 

(('.14) 

\Ve evaluate t he unknowns on the right -hand side at the n iteration level to write 

[A + p]<I>n+l = S + [p]~n 

Decolnposing [A, + P] into [L] and [U] lnatrices gives 

[L][u]~n+l = S + [p]~n 

Defining an iterative vector yn+l by 

Then a two-step process is employed: 

Step! : 

Step2 : 

[L]yn+l = q + [p]~n 
[u~n+l = Vn+1 

(('.1.5) 

(('.16) 

(C.17) 

(C.18) 

The process represented in Step 1 of Equation (C.18) consists of a forward substi­

tution starting \yi t h 
vo,o,o = so,o,o/ cf,o,o 

and continuing wi t h 

= _l_[si,j'k _ ai,j,k v i .j .k - 1 _ bi,j,kvi,j-l,k _ ci,j,kvi-l,j,k] 
dl.j.k 

( . 1') J' 1') J k 1 ,) }') l = .~ ..... ;) = ,~, ... , ; = ,~, ... , \ 

(C.19) 

(C.20) 

The process represented in Step :2 of Equation (C.18) consists of a backward sub­

stitution starting with 
(C.21 ) 

and continuing with 

¢i.j.k = L,i.j,k _ Ei.),k¢i+1.j.k _ ji,j,kq/j+l,k _ hi,j,kq/j,k+l 

( Z· - J - 1 J - .) O' J' = J - 1 J' - 2 ... O' k = J{ - 1, J{ - 2, .. ., 0) - , ..... , •• -'"1 , .,"'1 , , 

(C.:22) 

[] . I ijk ,,/,ijk ,,/,ijk ,,/,ijk "j,ijk d "j,ijk I es determl' ned The elements of P are SImp Y~'l ,If/2 ,If/3 ,If/4 ''f/5 an 'f/6 va u 

by Equation (C.9). 

Alternatively, we can define a differential vector 

(C.23) 
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and a rt'~idual vector 

~o that Equation (C.1;")) becoIlles: 

Replacing [A. + P] by the [L ][U] prod nct gi \'t'S 

Defining an intern1ediate vector Wn + 1 by 

The solution procedure can again be written as a two-step process: 

Step! : 

Step2 : 

[L]wn+1 = Iln 
[u]ln+1 = W n+ 1 

247 

(C.24 ) 

(C i .)t::) 
.~.) 

(C.26) 

(C.27) 

(C.28) 

Similar process represented in Equation (C. 28) are a forward process starting with 

wO'O,o = rO,o,o I cf'o,o 

and continuing with 

= _.l_[ri,j'k _ a i.j ,kwi,j,k-1 _ bi,j,k~L'i,j-1,k _ c i.j ,k wi-1.j.k] 
dz.).k 

( Z• - l'J !.)' - 1') J. k - 1') }\') 
- __ "' ••• , <Ii - .,....., ..... 1\ .. - "--" ••• "'1 

and a backward process starting with 

.r I,J,K 
UI,J,K = W 

and continuing with 

J;.j:,k = ~L'l.j,k - ei,j,kJ. 1 . k - ji,j,kJ. '+1 k - hi,j,kJ . . k+1 . z+ ,), Z,) , 1,), 

(C.29) 

(C.30) 

(C.31 ) 

(i = [ - 1. I - 2, .... 0; j = J - 1, j - 2, ... 1 0; k = [{ - 1. !{ - :2, .... 0) 
(C.32) 

The coefficients remain unchanged for the iterative process. The right-hand side 

of Equation (C.:2S) is then updated and the process is repeated until a converged 

solution is obtained. 
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Structure of the Computer Code 

~\I STurbo3D 

Figures D.l to D.:3 show the flow charts of the main program and the sub­

progranls of the computer code JIS'Tllrbo3D. 
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~--- ---, 
I Several I 
I Blade Rows I ----.----

No 

Figure D.l: Global structure of computer code NI STurbo3 D 
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INPUT2 

CONTD 

No 

RDDETS 

RDBDF2D 

RDWEIGH -.-----~ 

INVEL --.. ~~--

SETPSEX 

BLADE 

OUTPO 

Figure D.2: Subprogram for the calculation of a blade row 
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INITD2 

DISTUR 

SURQUICK 

LUVEL ... 
LUTUR 

, .... ~ .' 

PUVWCOR 
~;a'U!Jiiln {iii ij)f .:k{U~:"· . ., 

. 'f~!J {~~:(;;{~/j( f'.f}(ati{{trt 
,,~ .~~ ~ ~'~ 

EXBOUND 

No 

, Yes 

OUTPO 

Figure D.3: Subprogram for the solution of N-S equations 



Appendix E 

111 STurbo3D Input Data Files 

An Example 

The appendix presents a typical input data file to the computer code JI STurbo3D 

which controls the process of the code. The format of the file "input" is as follows: 

Typical "input" 

.) - number of blade rows 

1 -- format of data file: I-ascii, 2-binary 

1 -- Interface type: 1-mixing plane, 2-continuous interface 

:3 - Boundary setting: I-set inlet Pt&:angle, 2-set inlet vel. 3-repeating stages 

.) - ~Iixing model: I-circum. uniform, 2-circum. non-uniform 

1 -- computation choice: 1-initial computation, 2-continuation 

1 -- the blade row from which calculation starts 

2 -- discretisation : I-upwind, 2-QUICI~, 3-Zijlema 

1 -- initial global iterations 

o -- Additional global Iterations 
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Following is an exalnple of in pu t dat a file "inici t" which read in detailed data 

of eYf'l'~' blade row. 

Typical ~~inicit" 

BLADE RO\V R3 

-1.1- case counter 0-1 dOlnain. 1--:2 domains (with tip) 

1 

-1 .)- blade t~'pe 

1 

I-rotor. 2-stator 

-1.:3- hub t~'pe 

1 

I-moving. 2-stationary 

-1.4- inlet yeloci ty type: 

1 

-1.:')- inlet velocity file name 

E\'IT\'~ 

-1.6- Exit velocity file name 

EXITVI 

I-read INLETV, 

-1.,- Inlet static pressure file name 

I~LTPSI 

-1.8- Exit static pressure file name 

I~LTPS2 

-1.9- Inlet tke file name 

E\'ThE:2 

-1.0- Exit tke file name 

EXTI~El 

-1.1- main grid file name 

grrman.dat 

-1.:2- tip grid file name 

grrtip.dat 

-1.3- connection file name (dom2-> 1) 

connect.up 

-1.4- connection file name (dom 1-> 2) 

connect.low 

-1.0- average residual file name (domain 1) 

conv11.dat 

-1.6- average residual file name (domain 2) 

convl2.dat 

2-Log profile 
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-1.7-

-I ' - .~-

Inaxin1tlln residual file nalne (clOlnain 1) 

Ca\T 11.dat 

InaxinUllll residual file nalne (doInain :2) 

Ca\T 1 ~ .clat 

-1.9- intennediatc eFD results file nalne (binary. dOlnain 1) 

rt'~cc 11 

-1.0- intennediate eFn result s file nanle (binary, domain 2) 

rescc 1 ~ 

-1.1- intennediate CFD results file nan1e (ASCII, domain 1) 

rescy 11 

-1 .)- intennediate CFD results file nallle (ASCII, domain 2) 

resc\"l :2 

-1.:3- ptotin ttotin flrate angle1 psout numbld 

-1.0 :290.4 0.16:3168 1000. 102838. 75 

-1.-1- relax: u, y. \V, tke. ted, h, p. rho, 

o.~·) 0.:2;) 0.:2;) o -)-.~;) 
o -)-.~;) 1.0 o -r .~;) 1.0 1.0 

-1.;)- Inlet tot al pressure file name 

[\"LPT1 

-1.6- Inlet flow angle file name 

I\".-\\"G1 

-1.7- ksymm 

o 

emu 

1.0 

-1.8- coords-mult i plier: rotational speed; 

1.000 -1100. 

rescv file output(O-no,l-yes) 

o 
-1.9- 19mon. lxmon. lymon. izmon (monitoring point) 

1 1.5 15 1 

-1.0- rschek( allowed error) amschek 
-) ~ 

-~.,') 

-1.1- inner iteration ~o. 

·sooo 
-1.2- Density 

1.2.500 

x*** BLADE ROW S3 

-2.1- case counter 

o 
-2.2- blade type 

0.0001 

iplrs(printout step) 

100 

I-tip clearance, 0-1 domain 

I-rotor, 2-stator 

-):"4 ~.) 
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-:2.3- hub type 
.) 

: 1 ~nlo\'ing, 2~stationarv 

-') --1- inlet vdoci t~' t~'pe: 1 ~read IN L ETV, 

1 
:2~ Log profile 

-:2.5- inlet \"(:"'locit~, file naine 

EXIT\'l 
.) 6 -_. )- Exit velocity file naine 

EXITV:2 

-:2 ,/- Inlet:-;t at ic pressure file name 

[,\LTPS:2 

-:2.~- Exit static pressure file naIne 

L\LTPS1 

-:2.9- Inlet t ke file name 

EXTI~E1 

-') 0- Exit tke file name 

EXTI~E:2 

_.) 1- grid file name 

grsman.dat 

-2.2- average residual file name( domain 1) 

conv21.dat 

-2.3- maximum residual file name( domain 1) 

ca\T:21.dat 

_.) --1- intermediate CFD results (binary, domain 1) 

rescc21 

-2 .. J- intermediate CFD results (ASCII, domain 1) 

rescv:21 
_.) 6--. ptotin ttotin Hrate angle1 psout 

104'/60. 290.4 0.12'/4'/.5 O. 103391.6 

numbld 

96 

-2.'/- relax: u. v, \V. tke, ted, h, p, 

0.10 0.10 0.10 0.10 0.10 1.0 0.10 1.0 

-2.8- ksymm 

o 

:2:3:) 

rho, emu 

1.0 1.0 

-2.9- coords-multiplier; 

1.000 

rotational speed: 

-1100. 

rescv file output( O-no, I-yes) 

o 
-2.0- Igmon, 

. 
lxmon, lymon, izmon (monitoring point) 



.-\ppendix E. J! SFurbo:3D Input Da.ta. Files - An Exarnple 

1 I:) 
_.) 1- r~chek( allowed error) 

-~.;~) 

-~.~- inner iteration ~o. 

5000 

_.) 3- Dl'n~it\" 

1.2500 

15 

anlschek 

1 

0.0001 

iplrs(printout step) 

100 



Appendix F 

Entropy Equation 

The first law of thermodynamics may be expressed as: 

dQ + dlF = dU (F.l ) 

Combined with the definition of enthalpy h = e + pu and the state equation of 

ideal gas pt' = pRT. another form of the equation is obtained: 

1 
Tv s = vh - - V P 

P 

The continuity equation of mass is: 

Dp ~. 
- - p(v· ~ ) = 0 
Dt 

\vhere 
D a -+. 

or 

-=-+\·v 
Dt at 

ap+v·(p(')=O 
at 

For steady state flow the equation becomes 

The momentum equation takes the following form: 

.... 
DV .... 
p- = - V P + vT + pi 

Dt 

For steady state flow it becomes 
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(F.2) 

(F.3) 

(F.4) 

(F.5) 

(F.6) 

(F.7) 
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The energy equation has t he following fonn: 

()E (FC) nq _ - -, -> -> 

at+ V ' '. ==8i- V · Q+ pf ·\ -V'(p\')+V'(T'\') (F.8) 

where 

( (2) 
F=p c+ :2 

if == -k V T 

For ~teady ~tate flow. substituting the continuity equation (F.5) into Equation 
(F.~) gi\'cs: 

pC . Vt + p(' . (( . vC) == - v·if + pf· C - V . (pC) + V· (T' (,) (F.9) 

Fonnin~ the scalar dot product of momentum equation (F.7) with the velocity 
vector \ . allows one to obtain: 

\rith continuity equation (F.:")) we obtain: 

-> ..... p 
V . (p \') == p \' . V( -) 

p 

Substituting Equation (F.II) into (F.IO) obtains: 

..... 
Forming a scalar dot product of Equation (F.:2) with \: gives: 

(F.IO) 

(F.II) 

(F.I:2) 

(F.13) 

Combining Equations (F.l:2) and (F.13) obtains the following steady state entropy 

equation: 

where Cl/ is called non-negative dissipation term and may be expressed as: 

- 8V i 
£ l/ == T . (V . V) == Tij ~ 

u.rj 

Substituting the continuity equation (F.5) into Equation (F.14) obtains: 

(F.14) 

(F.l!5) 

(F.16) 
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where the term 
1 1 [ ~ ] s'=-T(V·V+

T 
T·(V·V) 

is the rate of entropy generation. 

The entropy equation is not independent from the energy equation. Note also 

that the entropy is not a "conserved" quantity in the sense of the derived conserved 

form of governing equations, Hirsch [79]. 
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