CRANFIELD UNIVERSITY

YUN PENG YEH

SURFACE ENGINEERING FOR BIOLOGICAL RECOGNITION

PhD THESIS

Supervisors: Jeremy J. Ramsden
 Hsi-Hsin Chien

April 2010
ABSTRACT

The underlying idea of this thesis is that the surface chemical and morphological nature of bacterial strains uniquely differentiates one from another and hence can be used as the basis for their identification and control. It follows that their interactions with an artificial substratum uniquely characterize them. In principle, potentially it is easier and faster to evaluate the interfacial energy between a bacterium and a substratum than to characterize its genome or determine molecular biomarkers characteristic of the strain, hence validation of this thesis opens the way to rapid screening and diagnosis. Auxiliary to this main idea, an advanced metrology for evaluating the interfacial energies has been developed, exploiting the power of kinetic analysis.

Keywords: identification; interfacial energy; kinetic analysis
ACKNOWLEDGEMENTS

First, I am grateful to my supervisors Professor Jeremy J. Ramsden and Professor Hsi-Hsin Chien who gave me the opportunity to work on this topic and closely followed my progress. I thank them very much for their patience, encouragement and understanding of my difficulties in the course of preparing this thesis. Special thanks to Professor Keng-Jeng Ma and Dr. John Chubb for their help and fruitful advices during my whole study period at Chung Hua and Cranfield Universities.

I would like to acknowledge the grant NSC 095-2917-I-216-001 from the Taiwan National Science Council for part financial support of this research work.

I am very grateful to Dr. Marcello Cacace for his precious help and initial assistance with the bacterial adsorption and many instructive scientific discussions as well as for his kindness and friendship during our evenings of strategy games.

I would like to thank Dr. Robert Horváth for his guidance and very practical help during my experiments. His knowledgeable explanations OWLS theory and practice gave a major impetus to the finalization of this work.

I would like to acknowledge Dr. Sarah Morgan for kindly providing *Escherichia coli* and *Lactobacillus plantarum* as well as guiding me in their cultivation and manipulation and Dr. Kaleem Khosa for providing the organometallic compounds used in the self-assembly experiments.

I am very happy to thank all my friends and colleagues (Megumu, James, Amir, and Farah) for their support and help during my work as well as for the nice time we have spent together inside and outside the lab.

This page would not be completed without mentioning the greatest support I have received from my parents Pu-Wen Yeh and Kuei-Ying Lui and my sisters Jui-Ping Wei and Chia-Jung Yeh, my brothers-in-law Jein-Zhi Wu and Huang-Chin Wu, my niece Peggy Wu and my nephew Da-Kuo Wu. Their presence has helped me to overcome the many hurdles and discouragements encountered during what has been, in many aspects, the hardest time of my life.
LIST OF CONTENTS

ABSTRACT .. II
ACKNOWLEDGEMENTS ... III
LIST OF CONTENTS ... I
LIST OF FIGURES .. VII
LIST OF TABLES ... XX
LIST OF EQUATIONS ... XXIII
LIST OF STRUCTURES .. XXV
LIST OF HYPOTHESIS ... XXVI
NOTATION .. XXVII

Chapter 1 Introduction

Chapter 2 Literature Review

2.1 The interaction of bacteria with substrata .. 4
2.2 The metrology of bacterial adhesion... 7
 2.2.1 Imaging ... 7
 2.2.2 The kinetics of arrival and the numbers adhering...................................... 8
 2.2.3 Direct measurement of interfacial forces .. 10
 2.2.4 Microbial adhesion to solvents (MATS) .. 10
 2.2.5 Experimental determination of single-substance surface tensions 10
2.3 The nature of bacteria .. 11
2.4 Summary and analysis of bacterial adhesion data from traditional methods ... 14
 2.4.1 Implications ... 15
 2.4.2 Critique of DLVO theory .. 16

Chapter 3 Development of a New Paradigm for Measuring Bacterial Adhesion

3.1 Introduction... 17
3.2 The rate of accumulation of objects at the surface \(\frac{dM}{dt} \) ... 18
3.3 The available area function ... 20
3.4 Predicting interfacial interactions from surface tension data 22
3.5 Electrostatic forces via electrokinetic phenomena .. 27
 3.5.1 Estimated interfacial energies ... 27
 3.5.2 Calculation of adsorption energies ... 30
3.6 Conclusions... 30
6.4.3 Comparison of k_s with the hydrodynamic limit .. 106
6.4.4 Correlation between required area and interfacial energy 107
6.4.5 Cases where RSA is inapplicable (GBD) .. 108
6.4.6 Effect of bulk bacterial concentration ... 109

Chapter 7 Nanotextured Surfaces ... 110
7.1 *Escherichia coli* adhesion on surface-modified polymers 110
7.1.1 Materials and methods .. 111
7.2 Results and discussion ... 115
7.3 Conclusion ... 121

Chapter 8 Interaction of Bacteria with Mucin Layer 122
8.1 Introduction .. 122
8.2 Experimental details specific to this chapter ... 123
8.2.1 Mucin .. 123
8.2.2 EGCG .. 124
8.2.3 Adsorption procedure ... 125
8.3 Results .. 126
8.3.1 Qualitative survey ... 127
8.4 Discussion .. 128

Chapter 9 Complex Organometallic Compounds .. 129
9.1 Basic data for DMSO .. 130
9.2 The Kaleem Khosa organometallic compounds ... 131
9.3 Experimental refractometry for DMSO-water mixtures 137
9.4 Experimental refractometry results for DMSO-organometallic compounds
 mixtures and interpretation .. 141
9.5 OWLS details ... 145
9.6 Experimental results for organometallic compounds self-assembly 145
 9.6.1 Explanation of methodology using the data from compound FAR-1 145
 9.6.2 Calculation the number of adsorbed molecules 147
9.7 Experimental results – remaining compounds ... 152
9.8 Adsorption in DMSO-water mixtures ... 169

Chapter 10 Overall Conclusions .. 172

Chapter 11 Future Work .. 175
Appendix A ... 176

Appendix B ... 177

References ... 178
LIST OF FIGURES

Figure 1.1 Sketch of the stages of bacteria interacting with surfaces. Note that the phenotype changes during passage through these stages. Note too that the successive stages become progressively less reversible ... 2

Figure 2.1 The net interfacial interaction potential between a bacterium and a surface, as a function of distance z from the surface. The vertical dashed line separates the “arrival” regime (to the right of the line) from the “adherent” one; adhesion implies that ΔG_{123} becomes negative. z_0 is the value of z at which ΔG_{123} equals zero for the first time when approaching the surface from infinity ... 5

Figure 2.2 Sketch (approximately to scale) of the cell envelope of a Gram-positive bacterium... 12

Figure 2.3 Sketch (approximately to scale) of the cell envelope of a Gram-negative bacterium... 12

Figure 3.1 Diagram of an RSA process. Disk 1 (hatched) creates an exclusion zone around itself, whose border is marked by the dashed ring. No bacterium can be deposited with its centre within this zone. The exclusion zones of bacteria 2 and 3 overlap (crosshatched zone) ... 21

Figure 3.2 The interaction free energy between a bacterium (label 3) and a surface (label 1) in the presence of a medium (label 2) ... 23

Figure 4.1 Principle of chemical sensing ... 31

Figure 4.2 An optical waveguide. C: cover medium; A: adlayer of sample; F: high refractive index waveguide film; S: glass substrate; d_F: thickness of waveguide film F; α: angle of total internal reflexion; Δz: penetration depth and X: propagation direction of light .. 33

Figure 4.3 Electric field distribution of successive guided wave modes: the zeroth, first and second modes. Suspensions constitutes the cover, and the ellipses in the adlayer represent adsorbed bacteria; the actual decay
length of the evanescent fields is \(-\lambda/3 \) where \(\lambda \) is the (vacuum) wavelength of the guided light. 34

Figure 4.4 A diagram of the optical grating biosensor principle. The high refractive index layer (F) is supported on a substrate (S). The cover medium (liquid or air) is C. The red zig-zag represents a guided light beam and the part at the right hand side shows the evanescent fields (right) generated by total internal reflections at the F, A, C and F,S interfaces. The evanescent field interacts with capture layer A, which modifies the waveguide propagation constant and allowing cell shape and size, thin layer formation and dissolution, or more generally polarizability changes, to be monitored and analysed. Waveguide thickness \(d_F \) is typically 170 to 220 nm. Capture layer thickness \(d_A \) is typically less than 10 nm 35

Figure 5.1 \textit{E.coli} growth on agar ... 41

Figure 5.2 Viability test for \textit{E.coli} ... 41

Figure 5.3 Typical ESEM image of \textit{E. coli} ... 42

Figure 5.4 Typical SEM image of \textit{E. coli} (gold-coated) ... 43

Figure 5.5 SEM images of \textit{E. coli} (gold-coated). ... 43

Figure 5.6 Hemocytometer .. 44

Figure 5.7 Hemocytometer grid ... 45

Figure 5.8 Nikon 400X microscope .. 46

Figure 5.9 Leica DM LB2 phase contrast microscope .. 46

Figure 5.10 Optical micrograph of \textit{E. coli} adhered on TiO\(_2\) .. 47

Figure 5.11 Phase contrast micrograph of cultivated \textit{E. coli} in PBS....................... 47

Figure 5.12 Representative SEM micrograph of \textit{E. coli} ... 48
Figure 5.13	Representative SEM micrograph of *L. plantarum*	48
Figure 5.14	Integrated Optical Sensor (IOS-1), made by ASI	51
Figure 5.15	Goniometer	51
Figure 5.16	Gilson Minpuls 3 peristaltic pump	52
Figure 5.17	Flow cell (cuvette), diameter is 10 mm	52
Figure 5.18	Waveguide grating coupler sensor chip	53
Figure 5.19	Outline of adsorption kinetics measurement procedure	57
Figure 5.20	Standard procedures (experimental flow chart)	58
Figure 5.21	U-grooved structures	59
Figure 5.22	V-grooved structures	59
Figure 5.23	Schematic diagrams of hot embossing	60
Figure 5.24	SEM images of V-grooved grating (Left) and U-grooved (Right) on PMMA	60
Figure 5.25	AFM image of U-grooved grating on PMMA	61
Figure 5.26	AFM image of V-grooved grating on PMMA	61
Figure 5.27	SEM image of ungrooved PMMA before (Left) and after (Right) *E. coli* suspension culture	62
Figure 5.28	After *E. coli* suspension culturing and drying at room temperature. V-grooved (Left) and U-grooved (Right)	63
Figure 6.1 The results from a typical adsorption/desorption experiment, for *E. coli* at a concentration $c_b = 9.835 \times 10^8 \text{ cells/ml}$, adsorbing on silica in PBS. Curve segments used to calculate N_0 and N_{sat} are shown. Marker 1 indicates the start of bacterial flow and marker 2 indicates its end.

Figure 6.2 Data of Fig 6.1 transformed to yield $b(t)$. The temporal limits of the curve segments used to calculate b_{sat} and b_w are shown. Marker 1 indicates the start of bacterial flow and marker 2 indicates its end (after which the cuvette is flooded with buffer). The initial tangent is labelled T_a.

Figure 6.3 Data of Figure 6.2 (between the markers 1 & 2) transformed to the time derivative of absorbed number and plotted against adsorbed number and the fitting curve.

Figure 6.4 Plot of b vs time of *E.coli*, fitting $b(t)=b_w+(b_{\text{sat}}-b_w)\exp(-k_dt)$ with b_w and k_d as fitting parameters. b_w is $0.093 \mu\text{m}^2$ and k_d is 0.019 s^{-1}.

Figure 6.5 Plot of b vs time of *L.plantarum*, fitting $b(t)=b_w+(b_{\text{sat}}-b_w)\exp(-k_dt)$ with b_w and k_d as fitting parameters. b_w is $0.10 \mu\text{m}^2$ and k_d is 0.0065 s^{-1}.

Figure 6.6 The results from a typical adsorption/desorption experiment for *L. plantarum*. Concentration $c_b = 4.22 \times 10^6 \text{ cells/ml}$ (100X dilution), adsorbing on silica in PBS. Curve segments used to calculate N_0 and N_{sat} are shown. Marker 1 indicates the start of bacterial flow and marker 2 indicates its end (after which the cuvette is flooded with buffer).

Figure 6.7 Data of Fig 6.6 transformed to yield $b(t)$. The temporal limits of the curve segments used to calculate b_{sat} and b_w are shown. Marker 1 indicates the start of bacterial flow and marker 2 indicates its end (after which the cuvette is flooded with buffer).

Figure 6.8 Data of Figure 6.7 (between the markers 1 & 2) transformed to the time derivative of absorbed number and plotted against adsorbed number and the fitting curve.

Figure 6.9 N-t diagram of *E.coli* in PBS on silica.
Figure 6.10 b-t diagram of *E.coli* in PBS on silica. *b* was established by extrapolation. .. 75

Figure 6.11 RSA Fitting of db/dt vs. *b* of *E.coli* in PBS on silica .. 76

Figure 6.12 N-t diagram of *E.coli* in PBS on zirconia .. 76

Figure 6.13 b-t diagram of *E.coli* in PBS on zirconia .. 77

Figure 6.14 RSA Fitting of db/dt vs. *b* of *E.coli* in PBS on zirconia .. 77

Figure 6.15 N-t diagram of *E.coli* in Z1150 on silica .. 78

Figure 6.16 b-t diagram of *E.coli* in Z1150 on silica .. 78

Figure 6.17 RSA Fitting of db/dt vs. *b* of *E.coli* in Z1150 on silica .. 79

Figure 6.18 N-t diagram of *L. plantarum* in PBS on titania .. 79

Figure 6.19 b-t diagram of *L. plantarum* in PBS on titania .. 80

Figure 6.20 RSA Fitting of db/dt vs. *b* of *L. plantarum* in PBS on titania .. 80

Figure 6.21 N-t diagram of *L. plantarum* in PBS on zirconia .. 81

Figure 6.22 b-t diagram of *L. plantarum* in PBS on zirconia. Clearly not pure RSA .. 81

Figure 6.23 RSA Fitting of db/dt vs. *b* of *L. plantarum* in PBS on zirconia .. 82

Figure 6.24 N-t diagram of *L. plantarum* in Z1150 on silica .. 82

Figure 6.25 b-t diagram of *L. plantarum* in Z1150 on silica .. 83

Figure 6.26 RSA Fitting of db/dt vs. *b* of *L. plantarum* in Z1150 on silica .. 83

Figure 6.27 N-t diagram of *L. plantarum* in Z1150 on titania .. 84
Figure 6.28 b-t diagram of *L. plantarum* in Z1150 on titania 84

Figure 6.29 RSA Fitting of db/dt vs. b of *L. plantarum* in Z1150 on titania 85

Figure 6.30 N-t diagram of *L. plantarum* in Z1150 on zirconia 85

Figure 6.31 b-t diagram of *L. plantarum* in Z1150 on zirconia 86

Figure 6.32 RSA Fitting of db/dt vs. b of *L. plantarum* in Z1150 on zirconia 86

Figure 6.33 N-t diagram of *E.coli* in PBS on titania .. 87

Figure 6.34 b-t diagram of *E.coli* in PBS on titania ... 87

Figure 6.35 RSA Fitting of db/dt vs. b of *E.coli* in PBS on titania 88

Figure 6.36 N-t diagram of *E.coli* in Z1150 on zirconia 88

Figure 6.37 b-t diagram of *E.coli* in Z1150 on zirconia 89

Figure 6.38 RSA Fitting of db/dt vs. b of *E.coli* in Z1150 on zirconia 89

Figure 6.39 N-t diagram of *E.coli* in PBS on alumina ... 90

Figure 6.40 b-t diagram of *E.coli* in PBS on alumina. Clearly not pure RSA.......... 90

Figure 6.41 RSA Fitting of db/dt vs. b of *E.coli* in PBS on alumina 91

Figure 6.42 N-t diagram of 50x dilution *E.coli* in PBS on silica 91

Figure 6.43 b-t diagram of 50x dilution *E.coli* in PBS on silica 92

Figure 6.44 RSA Fitting of db/dt vs. b of 50x dilution *E.coli* in PBS on silica 92

Figure 6.45 N-t diagram of 50x dilution *E.coli* in PBS on zirconia 93

Figure 6.46 b-t diagram of 50x dilution *E.coli* in PBS on zirconia 93
Figure 6.47 RSA Fitting of db/dt vs. b of 50x dilution *E.coli* in PBS on zirconia

Figure 6.48 N-t diagram of 50x dilution *E.coli* in PBS on titania

Figure 6.49 b-t diagram of 50x dilution *E.coli* in PBS on titania

Figure 6.50 RSA Fitting of db/dt vs. b of 50x dilution *E.coli* in PBS on titania

Figure 6.51 N-t diagram of 200x dilution *E.coli* in PBS on silica

Figure 6.52 b-t diagram of 200x dilution *E.coli* in PBS on silica

Figure 6.53 RSA Fitting of db/dt vs. b of 200x dilution *E.coli* in PBS on silica

Figure 6.54 N-t diagram of 200x dilution *E.coli* in PBS on zirconia

Figure 6.55 b-t diagram of 200x dilution *E.coli* in PBS on zirconia

Figure 6.56 RSA Fitting of db/dt vs. b of 200x dilution *E.coli* in PBS on zirconia

Figure 6.57 N-t diagram of 200x dilution *E.coli* in PBS on titania

Figure 6.58 b-t diagram of 200x dilution *E.coli* in PBS on titania

Figure 6.59 RSA Fitting of db/dt vs. b of 200x dilution *E.coli* in PBS on titania

Figure 6.60 Correlation between a and ΔG^\parallel_{123} of *E.coli* in PBS. The fitted line is $y=0.12(\pm0.05)x+3.2(\pm0.5)$

Figure 6.61 Schematic diagram of possible adsorbing orientations of bacteria on a surface

Figure 7.1 Scanning electronic microscopy image of *E.coli*

Figure 7.2 Teflon material ePTFE, 10 mm x 10 mm x 1mm
Figure 7.3 Schematic diagram of plasma surface modification on surface

Figure 7.4 RF plasma etching system

Figure 7.5 SEM image of bacterial attachment on unmodified PMMA

Figure 7.6 FTIR spectra of PMMA materials (Without treatment)

Figure 7.7 SEM image of bacterial attachment on unmodified ePTFE

Figure 7.8 FTIR spectra of ePTFE materials (without treatment)

Figure 7.9 SEM image of bacterial attachment on N₂ plasma-modified PMMA material with higher aspect ratio U-grooved

Figure 7.10 SEM image of bacterial attachment on N₂ plasma-modified PMMA material with lower aspect ratio U-grooved

Figure 7.11 SEM image of bacterial attachment on V-grooved PMMA material

Figure 7.12 SEM image of bacterial attachment on N₂ plasma-modified PMMA material with V-grooves

Figure 7.13 SEM of ePTFE after N₂ plasma treatment (500 W 20 sccm for 15 minutes)

Figure 8.1 Custom-built precision syringe pusher: (left) controller; (right) syringe pusher

Figure 8.2 N-t diagram of 1%Mucin + E. coli in pure water. Marker a is at the start of 1% mucin adsorption on the waveguide; marker b is at the start of washing by water; marker c is at the E.coli adsorption start; marker d is the start of water washing again

Figure 8.3 N-t diagram of 1%Mucin+0.1%EGCg+Escherichia coli. Marker e is at the start of 1% mucin/0.1% EGCg adsorption on the waveguide; marker f is at the start of washing by water; marker g is at the E.coli adsorption start;
Figure 9.1 Rudolph J357 refractometer ... 138

Figure 9.2 Refractive index of 99.7% DMSO (Table 9.1) plotted against temperature. The results somehow follow the linear equation n=-9.2x10^-3T+1.4943, where the error for slope and intercept are 2x10^-5 and 5.4x10^-4 139

Figure 9.3 The effect of water on the refractive index of DMSO 140

Figure 9.4 Representation of the molecule FAR-1 using [Chembio] software 143

Figure 9.5 The N(TE) versus time raw data of FAR-1 at c_b = 0.2 mM in pure DMSO at T=30.9 °C. Marker 1 is at the start of FAR-1 adsorption on the waveguide; marker 2 is at the start of washing by DMSO; marker 3 is again the FAR-1 adsorption start; marker 4 is the start of buffer washing again. Note that excellent reproducibility ... 146

Figure 9.6 Thickness calculated from the plot shown in Figure 9.4 and the accompanying N_{TM} data. Marker 1 is at the start of FAR-1 adsorption on the waveguide; marker 2 is at the start of washing by DMSO 148

Figure 9.7 Refractive index of adlayer calculated from of the plot shown in Figure 9.5 and the accompanying N_{TM} data starting after marker L (at the start of FAR-1 adsorption on the waveguide) to omit the huge fluctuations at the beginning before a defined adlayer is formed; marker 1 is at the start of washing by DMSO. ... 149

Figure 9.8 Calculated from the data shown in Figures 9.6 and 9.7. Marker 1 is at the start of FAR-1 adsorption on the waveguide; marker 2 is at the start of washing by DMSO. M_{plat}=0.009 nmol/cm^2 ... 150

Figure 9.9 Numerically differentiated data from the adsorption part of Figure 9.8 plotted against M ... 151

Figure 9.10 Plot of ln(M(t)/M_{sat}) vs time(data from Figure 9.8 between marker 2 and H) ... 152
Figure 9.11 The N(TE) versus time raw data of FAR-A at $c_b = 0.2$ mM in pure DMSO at $T=28.0$ °C. Marker 1 is at the start of FAR-1 adsorption on the waveguide; marker 2 is at the start of washing by DMSO 153

Figure 9.12 Thickness calculated from the plot shown in Figure 9.11 and the accompanying N_{TM} data. Marker 1 is at the start of FAR-A adsorption on the waveguide; marker 2 is at the start of washing by DMSO .. 154

Figure 9.13 Refractive index of adlayer calculated from the plot shown in Figure 9.11 and the accompanying N_{TM} data. Marker L is at the start of FAR-A adsorption on the waveguide; marker 1 is at the start of washing by DMSO .. 154

Figure 9.14 Calculated from the data shown in Figures 9.11 and 9.12. Marker 1 is at the start of FAR-A adsorption on the waveguide; marker 2 is at the start of washing by DMSO. .. 155

Figure 9.15 Numerically differentiated data from the adsorption part of Figure 9.11 plotted against M (with best fitting of Equation (6.4) $A=2.61$ and $B=0.00055$). by solving $A= a/\theta I$ and $B=k \alpha c_b$, a is equal to 1.41 nm2........ 150

Figure 9.16 Plot of $\ln(M(t)/M_{sat})$ vs time ... 156

Figure 9.17 The N(TE) versus time raw data of FAR-18 at $c_b = 0.2$ mM in pure DMSO at $T=28.5$ °C. Marker 1 is at the start of FAR-1 adsorption on the waveguide; marker 2 is at the start of washing by DMSO 156

Figure 9.18 Thickness calculated from the plot shown in Figure 9.17 and the accompanying N_{TM} data. Marker 1 is at the start of FAR-18 adsorption on the waveguide; marker 2 is at the start of washing by DMSO 157

Figure 9.19 Refractive index of adlayer calculated from the plot shown in Figure 9.17 and the accompanying N_{TM} data. Marker L is at the start of FAR-18 adsorption on the waveguide; marker 1 is at the start of washing by DMSO .. 157
Figure 9.20 Calculated from the data shown in Figures 9.18 and 9.19. Marker 1 is at the start of FAR-18 adsorption on the waveguide; marker 2 is at the start of washing by DMSO

Figure 9.21 Numerically differentiated data from the adsorption part of Figure 9.17 plotted against M (with best fitting of Equation (6.4) A=1.19 and B=0.00098). by solving A= a/θ and B=k ac, a is equal to 0.64 nm²

Figure 9.22 Plot of ln(M(t)/M_{sat}) vs time(data from Figure 9.17)

Figure 9.23 The N(TE) versus time raw data of FAR-42 at c_b = 0.2 mM in pure DMSO at T=27 °C. Marker 1 is at the start of FAR-1 adsorption on the waveguide; marker 2 is at the start of washing by DMSO

Figure 9.24 Thickness calculated from the plot shown in Figure 9.23 and the accompanying N_{TM} data. Marker 1 is at the start of FAR-42 adsorption on the waveguide; marker 2 is at the start of washing by DMSO

Figure 9.25 Refractive index of adlayer calculated from the plot shown in Figure 9.23 and the accompanying N_{TM} data. Marker L is at the start of FAR-42 adsorption on the waveguide; marker 1 is at the start of washing by DMSO

Figure 9.26 Calculated from the data shown in Figures 9.24 and 9.25. Marker 1 is at the start of FAR-42 adsorption on the waveguide; marker 2 is at the start of washing by DMSO

Figure 9.27 Numerically differentiated data from the adsorption part of Figure 9.23 plotted against M (with best fitting of Equation (6.4) A=2.65 and B=0.00063). by solving A= a/θ and B=k ac, a is equal to 1.43 nm²

Figure 9.28 Plot of ln(M(t)/M_{sat}) vs time(data from Figure 9.23)

Figure 9.29 The N(TE) versus time raw data of FAR-41 at c_b = 0.2 mM in pure DMSO at T=30.6 °C. Marker 1 is at the start of FAR-1 adsorption on the waveguide; marker 2 is at the start of washing by DMSO

XVII
Figure 9.30 Thickness calculated from the plot shown in Figure 9.29 and the accompanying N_{TM} data. Marker 1 is at the start of FAR-41 adsorption on the waveguide; marker 2 is at the start of washing by DMSO

Figure 9.31 Refractive index of adlayer calculated from the plot shown in Figure 9.29 and the accompanying N_{TM} data. Marker L is at the start of FAR-41 adsorption on the waveguide; marker 1 is at the start of washing by DMSO

Figure 9.32 Calculated from the data shown in Figures 9.30 and 9.31. Marker 1 is at the start of FAR-41 adsorption on the waveguide; marker 2 is at the start of washing by DMSO

Figure 9.33 Numerically differentiated data from the adsorption part of Figure 9.29 plotted against M (with best fitting of Equation (6.4) A=0.75 and B=0.00245). by solving A= a/\theta , and B=k_{a}c_{b} , a is equal to 0.405 nm^{2}

Figure 9.34 Plot of ln(M(t)/M_{sat}) vs time(data from Figure 9.29)

Figure 9.35 The N(TE) versus time raw data of FAR-6 at c_{b} = 0.2 mM in pure DMSO at T=28.5 °C. Marker 1 is at the start of FAR-1 adsorption on the waveguide; marker 2 is at the start of washing by DMSO

Figure 9.36 Thickness calculated from the plot shown in Figure 9.35 and the accompanying N_{TM} data. Marker 1 is at the start of FAR-6 adsorption on the waveguide; marker 2 is at the start of washing by DMSO

Figure 9.37 Refractive index of adlayer calculated from the plot shown in Figure 9.35 and the accompanying N_{TM} data. Marker L is at the start of FAR-6 adsorption on the waveguide; marker 1 is at the start of washing by DMSO

Figure 9.38 Calculated from the data shown in Figures 9.36 and 9.37. Marker 1 is at the start of FAR-6 adsorption on the waveguide; marker 2 is at the start of washing by DMSO

Figure 9.39 Numerically differentiated data from the adsorption part of Figure 9.35
plotted against M (with best fitting of Equation (6.4) A=4.3 and B=0.0005) by solving A= a/θJ and B=k_\text{a}C_{\text{b}}, a is equal to 2.32 nm^2

Figure 9.40 Plot of ln(M(t)/M_{sat}) vs time (data from Figure 9.35) 168

Figure 9.41 N(TE) vs time for FAR-6 (20 µm) deposition in 50% DMSO-50% water ... 170

Figure 9.42 Thickness of 20 µM FAR -6 on 50% DMSO-50% water. Marker 1 is at the start of FAR-6 in adsorption on the waveguide in 50% DMSO-50% water; marker 2 is at the start of washing by 50% DMSO-50% water 170

Figure 9.43 Mass vs time of 20 µM FAR -6 on 50% DMSO-50% water. The refractive index of 20 µM FAR-6 in 50% DMSO-50% water is 1.10946 and the refractive index of 50% DMSO-50% water is 1.40932, hence dn/dc=(1.40946 - 1.40932)/0.00002=7 .. 171
LIST OF TABLES

Table 2.1 Surface tension parameters (in mJ/m\(^2\)) for selected representative bacteria ...15

Table 2.2 Surface tension parameters (in mJ/m\(^2\)) for biopolymers ...16

Table 3.1 Jamming limits for different aspect ratios of spherocylinders ...21

Table 3.2 Surface tension parameters (in mJ/m\(^2\)) for common metal oxides and liquids ...27

Table 3.3 Interfacial interaction energies (in mJ/m\(^2\)) between infinite planes of \textit{Streptococcus thermophilous} B and two common metal oxides in pure water and a 50%-50% of ethanol-water mixture, neglecting electrostatic interactions ..28

Table 3.4 Interfacial interaction energies \(\Delta G_{123}^{\|}\) (in mJ/m\(^2\)) of \textit{Staphylococci epidermidis} NCTC 100892 (Gram positive) determined from Equations (3.19), (3.20) and (3.21) ..28

Table 3.5 Interfacial interaction energies \(\Delta G_{123}^{\|}\) (in mJ/m\(^2\)) of \textit{Streptococi sanguis} CR311VAR3 ..29

Table 3.6 Interfacial interaction energies \(\Delta G_{123}^{\|}\) (in mJ/m\(^2\)) of \textit{Actinobacillus actinomycetemcomitans} HG1099 (Gram-negative) ...29

Table 3.7 Interfacial interaction energies \(\Delta G_{123}^{\|}\) (in mJ/m\(^2\)) of \textit{Serratia marcescens} RZ37 (Gram-negative) ...29

Table 3.8 Interfacial interaction energies \(\Delta G_{123}^{\|}\) (in mJ/m\(^2\)) of \textit{Serratia marcescens} RZ30 (Gram-negative) ...30

Table 4.1 Contributions to the uncertainty of N in an input grating coupler ..37

Table 5.1 Mean geometrical parameters of the bacteria ...49
Table 8.2 Surface tension parameters (in mJ/m2) for mucin ..128

Table 8.3 Predicted interfacial energy $\Delta G_{113}^{||}(\text{mJ/m}^2)$ of mucin and $E. coli$........128

Table 9.1 Surface tension parameters (in mJ/m2) for DMSO..131

Table 9.2 Selected bond distances [Å] and bond angles [$^\circ$] for compound FAR-1.......132
 ..132

Table 9.3 Crystal data and structure refinement for Compound-FAR-1133

Table 9.4 Crystal data and structure refinement for compound FAR-41136

Table 9.5 Refractive index of DMSO (99.7%) at different temperatures...............138

Table 9.6 Refractive Index of organometallic compounds and dn/dc at 200 μM (28.0
 °C)..141

Table 9.7 The refractive index of different concentrations (2, 20 and 200μM) of FAR-A in
 DMSO ...142

Table 9.8 Refractions of bonds...144

Table 9.9 Summy of the fitted parameters ...169
LIST OF EQUATIONS

(2.1) ... 6
(2.2) ... 6
(2.3) ... 6
(2.4) ... 7
(2.5) ... 7
(2.6) ... 9

(3.1) ... 17
(3.2) ... 17
(3.3) ... 17
(3.4) ... 18
(3.5) ... 18
(3.6) ... 19
(3.7) ... 19
(3.8) ... 19
(3.9) ... 20
(3.10) ... 20
(3.11) ... 22
(3.12) ... 23
(3.13) ... 23
(3.14) ... 24
(3.15) ... 24
(3.16) ... 24
(3.17) ... 24
(3.18) ... 25
(3.19) ... 26
(3.20) ... 26
(3.21) ... 26

(4.1) ... 32
(4.2) ... 34
(4.3) ... 35
(4.4) ... 36
(4.5) ... 36
(4.6) ... 36
LIST OF STRUCTURES

Structure 8.1 (A) high molecular weight (B) low molecular weight mucin.......................... 123

Structure 8.2 (-)Epigallocatechin-3-gallate (EGCg)... 124

Structure 9.1 The Structure of DMSO... 150

Structure 9.2 The Structure of FAR-1 ($C_{24}H_{25}ClNPPdS_2$).. 152

Structure 9.3 The Structure of FAR-A ($C_{12}H_{20}N_2S_4Pd$).. 154

Structure 9.4 The Structure of FAR-6 ($C_{28}H_{21}N_8PS_2Pd$)... 154

Structure 9.5 The Structure of FAR-18 ($C_{16}H_{13}N_2SPPdCl_2$)..................................... 155

Structure 9.6 The Structure of FAR-41 ($C_{31}H_{37}NS_2PPdCl$)....................................... 155

Structure 9.7 The Structure of FAR-42 ($C_{25}H_{27}NPS_2PdCl$)....................................... 157
LIST OF HYPOTHESES

The first two have been formulated at the beginning of the work.

Hypothesis 1 All bacteria have a characteristic surface chemical signature 3

Hypothesis 2 Bacterial interfacial energies (chemical signatures) are deducible from the adsorption kinetics ... 30

Hypothesis 3 RSA describes bacterial adsorption .. 104

Hypothesis 4 If substratum chemical and topographical features at least approximately match those of the bacterium surface, adhesion can be enhanced (or diminished) ... 26, 110

Hypothesis 5 Only one millionth of the nominal area of the bacterial surface interacts with a smooth planar substratum ... 106

Hypothesis 6 Bacterial interfacial energies depend on and culture conditions and bacterium age .. 71
NOTATION

(Principle symbolic, other than those used purely locally)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Adlayer</td>
</tr>
<tr>
<td>A<sub>c</sub></td>
<td>Cross sectional area of cuvette</td>
</tr>
<tr>
<td>A<sub>H</sub></td>
<td>Hamaker constant</td>
</tr>
<tr>
<td>A<sub>h</sub></td>
<td>Characteristic frequency of departure attempts</td>
</tr>
<tr>
<td>C</td>
<td>Cover medium</td>
</tr>
<tr>
<td>D</td>
<td>Diffusion coefficient</td>
</tr>
<tr>
<td>G</td>
<td>Free energy</td>
</tr>
<tr>
<td>ΔG<sub>a</sub></td>
<td>Free energy of adsorption, calculated from kinetics</td>
</tr>
<tr>
<td>ΔG<sub></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>High refractive index waveguiding film</td>
</tr>
<tr>
<td>F<sub>c</sub></td>
<td>Volumetric flow rate</td>
</tr>
<tr>
<td>H</td>
<td>Polarization coefficient</td>
</tr>
<tr>
<td>K</td>
<td>Kinematic viscosity</td>
</tr>
<tr>
<td>L</td>
<td>Diffraction order</td>
</tr>
<tr>
<td>L<sub>c</sub></td>
<td>Length of the bacterium</td>
</tr>
<tr>
<td>M</td>
<td>Mass per unit area of adsorbed objects</td>
</tr>
<tr>
<td>N</td>
<td>Effective refractive index</td>
</tr>
<tr>
<td>Ñ</td>
<td>Normalized N</td>
</tr>
<tr>
<td>N<sub>0</sub></td>
<td>Initial effective refractive index</td>
</tr>
<tr>
<td>Ñ<sub>sat</sub></td>
<td>Saturation limit effective refractive index</td>
</tr>
<tr>
<td>N<sub>A</sub></td>
<td>Avogadro’s number</td>
</tr>
<tr>
<td>R</td>
<td>Universal gas constant = k<sub>B</sub>N<sub>A</sub></td>
</tr>
<tr>
<td>R<sub>M</sub></td>
<td>Molar refraction</td>
</tr>
<tr>
<td>S</td>
<td>Waveguide substrate</td>
</tr>
<tr>
<td>S<sub>c</sub></td>
<td>Distance along cuvette</td>
</tr>
<tr>
<td>T</td>
<td>Temperature</td>
</tr>
<tr>
<td>T<sub>a</sub></td>
<td>Slope</td>
</tr>
<tr>
<td>T</td>
<td>Absolute temperature</td>
</tr>
<tr>
<td>U</td>
<td>Factor for converting Ñ to b</td>
</tr>
<tr>
<td>V</td>
<td>Molar volume</td>
</tr>
<tr>
<td>X</td>
<td>Propagation direction of light</td>
</tr>
<tr>
<td>a</td>
<td>Area occupied by one bacterium derived from adsorption kinetics</td>
</tr>
<tr>
<td>ā</td>
<td>Projected area of one bacterium derived from microscopy</td>
</tr>
<tr>
<td>ā̃</td>
<td>Orientation factor</td>
</tr>
<tr>
<td>Symbol</td>
<td>Definition</td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
</tr>
<tr>
<td>b</td>
<td>Number of adsorbed bacteria per unit area</td>
</tr>
<tr>
<td>b_{sat}</td>
<td>Saturated number of adsorbed bacteria per unit area</td>
</tr>
<tr>
<td>b_{w}</td>
<td>Number of adsorbed bacteria per unit area remaining after flooding</td>
</tr>
<tr>
<td>c</td>
<td>Concentration, number of bacteria per unit volume</td>
</tr>
<tr>
<td>d</td>
<td>Layer thickness</td>
</tr>
<tr>
<td>k</td>
<td>Free space wavenumber = $2\pi /\lambda$</td>
</tr>
<tr>
<td>k_a</td>
<td>Adsorption rate coefficient</td>
</tr>
<tr>
<td>k_B</td>
<td>Boltzmann constant</td>
</tr>
<tr>
<td>k_d</td>
<td>Desorption rate coefficient</td>
</tr>
<tr>
<td>l_0</td>
<td>Equilibrium contact distance</td>
</tr>
<tr>
<td>n</td>
<td>Refractive index</td>
</tr>
<tr>
<td>r</td>
<td>Equivalent radius of one bacterium</td>
</tr>
<tr>
<td>t</td>
<td>Time</td>
</tr>
<tr>
<td>u</td>
<td>Fluid velocity relative to the bacterium</td>
</tr>
<tr>
<td>v_p</td>
<td>Phase velocity</td>
</tr>
<tr>
<td>v</td>
<td>Molecular volume</td>
</tr>
<tr>
<td>y</td>
<td>Dimensionless surface potential</td>
</tr>
<tr>
<td>z</td>
<td>Distance perpendicular to adsorbing substratum</td>
</tr>
<tr>
<td>z_0</td>
<td>Approaching distance when ΔG_{123} equals zero for the first time</td>
</tr>
<tr>
<td>\alpha</td>
<td>Coupling angle</td>
</tr>
<tr>
<td>\beta</td>
<td>Propagation constant</td>
</tr>
<tr>
<td>\epsilon</td>
<td>Dielectric constant</td>
</tr>
<tr>
<td>\gamma</td>
<td>Surface tension</td>
</tr>
<tr>
<td>\delta_a</td>
<td>Characteristic adsorption distance</td>
</tr>
<tr>
<td>\delta_d</td>
<td>Diffusion (hydrodynamic) boundary layer thickness</td>
</tr>
<tr>
<td>\eta</td>
<td>Viscosity</td>
</tr>
<tr>
<td>\Kappa</td>
<td>Dissociation constant</td>
</tr>
<tr>
<td>\kappa</td>
<td>Debye length $1/\kappa$</td>
</tr>
<tr>
<td>\phi</td>
<td>Available area function</td>
</tr>
<tr>
<td>\psi</td>
<td>Electrostatic surface potential</td>
</tr>
<tr>
<td>\theta</td>
<td>Occupied fraction of surface</td>
</tr>
<tr>
<td>\theta_j</td>
<td>Surface coverage jamming limit</td>
</tr>
<tr>
<td>\zeta</td>
<td>Electrophoretic zeta potential</td>
</tr>
<tr>
<td>\nu</td>
<td>Appropriate attempt frequency</td>
</tr>
<tr>
<td>\nu_d</td>
<td>Characteristic frequency of departure attempts</td>
</tr>
<tr>
<td>\Lambda</td>
<td>Grating constant</td>
</tr>
<tr>
<td>\Gamma</td>
<td>Dimensionless parameter $N_s \kappa / (4c_{ion})$</td>
</tr>
</tbody>
</table>
Chapter 1 Introduction

Starting point: The unsatisfactory nature of the current technology of bacterial identification.

The natural habitat of most bacteria is at an interface—a solid/liquid or solid/air interface—where in a real, heterogeneous environment they are most likely to survive and proliferate. Hence, the importance and topicality of bacterial adhesion are almost self-evident (for extensive reviews, see (Fletcher, 1996; Yuehuei H. An, 1998; Y.F. Missirlis and Katsikogianni, 2004; Yuehuei H. An and Friedman, 2000)). It is a matter of acute practical interest in hospitals, and wherever surgical operations are carried out. The adsorbent surfaces may be the walls of a ward, textile fibres, surgical instruments, and prosthetic implants. Retention of living bacteria on any of these surfaces may lead to chronic or acute health problems for patients. The adhesion of bacteria to teeth is a preoccupation for the entire population. Biofilm formation by adherent bacteria may impair industrial processes (e.g. (Kolari et al., 2002)). Furthermore, bacterial adhesion (to clay particles, for example) is an essential component of understanding the microbiology of soil ecosystems, which has a technological aspect when bacteria able to metabolize environmental contaminants are artificially introduced into soils for remediation purposes. Bacteria may corrode engineered components (e.g., (Arnold et al., 2004)), degrade building materials, and play an active role in the transformation of rocks and minerals.

Since the dispersal of bacteria in an environment generally takes place through a bulk (three-dimensional) phase (usually air or water), freely floating individual bacteria can be taken as the initial state. The first step in their interaction with a surface is arrival in its immediate vicinity (Figure 1.1), followed by adhesion, which in turn may be followed by the development of a biofilm, in which the bacteria embed themselves in a self-secreted matrix, which offers a great deal of protection from hostile environmental factors, as well as allowing nutrients adequate access to the bacteria.

To understand these processes is crucial to be able to control them. It can generally be supposed that the human agent has no direct control over the bacteria themselves other than through modifying their environment. It is likely to be much more effective to engineer potentially adsorbing surfaces than to control the presence (or absence) of selected chemicals in the bulk environment. Examples of designed surfaces include
Figure 1.1 Sketch of the stages of bacteria interacting with surfaces. Note that the phenotype changes during passage through these stages. Note too that the successive stages become progressively less reversible.

repellent and bactericidal ones: If the bacteria cannot even arrive at the surface due to mutually repulsive forces, much less can they adhere and form a biofilm (e.g., (Harris et al., 2004)); bactericidal surfaces, designed to kill adherent bacteria, typically work by releasing a toxicant (e.g., (Baveja et al., 2004)), but this carries the risk that the bacteria may be induced to express resistance genes able to neutralize the toxicant, after which they can continue their proliferation without restraint, in the same way that resistance to antibiotics can be overcome. There is also a strong medical interest in the design of surfaces to which certain bacteria are able to selectively adhere. Enabling specific adhesion of bacteria leading to rapid identification would be of immense value for diagnostics.

Nevertheless, conventional bacterial identification methods are based on phenotype identification of microorganisms using cultivation, shape and morphological characterization, Gram staining and biochemical methods. The disadvantages of these methods are: that they can only be used for microbes that can be cultivated in vitro; the difficulties of recognizing the unique chemical characteristics of unknown microorganisms; furthermore, the procedures are complex, labour-dependent and take a long time (typically at least a week).

A more recent development is PCR to amplify the bacterial genome followed by microarray-based DNA identification. This is a molecular-level bacterial identification technique. Microarrays are however still expensive and difficult to design (S. Chumakov et al., 2005), hence useless for the vast majority of bacteria whose genomes have not been sequenced.
The third possibility is to explore strain-specific surface properties. Although there is not much data on this, the evidence for a complex, chemically variegated surface of those bacteria that have been investigated. The hypothesis of this work is that all bacteria have a characteristic surface chemical signature (Hypothesis 1). Evidently binding to biopolymers (protein: antibody; nucleic acid: aptamer; polysaccharide) can be used to recognize bacteria. A possible assay procedure is therefore to coat a substratum sensitive to the presence of bacteria with appropriate biopolymers (Fleminger and Shabtai, 1995; Gfeller et al., 2005; Haake et al., 2000; Howell et al., 2003). The disadvantage is that the most useful biopolymers for this purpose, notably antibodies, are expensive and fragile.

The aim of this thesis is to show that artificial nonbiological nanotextured surfaces can selectively bind diverse bacteria, and hence differential binding can be used as the basis of strain identification. In use, an unknown sample would be exposed to a variety of nanotextured surfaces; those retaining them would be characteristic of the bacteria in the sample. The knowledge acquired through the fulfilment of this aim is also expected to be useful for designing surfaces that deliberately repel or attract bacteria.

The novelty lies in the development of selectively binding nanostructured inorganic materials. A key necessity was the adaptation of a precise nanotechnology technique, OWLS, for measuring bacterial binding. The detection of differential binding to diverse substrata implies the need for such a high-resolution method, which has been previously developed for examining the binding of molecules to surfaces. The quantification of interfacial forces enabled by optical waveguide lightmode spectroscopy (OWLS) is, moreover, essential for arriving at a deeper understanding of the nature of bacterial life, whether benign or pathological, within host animals.
Chapter 2 Literature Review

This chapter reviews the theory of interfacial forces, it discusses how the surface energies can be measured and decomposed into components, it critically summarizes and reviews reported measurements of bacterial surface energies, it relates those energies to the chemistry of the bacterial coat, it examines how the kinetics of attachment and detachment of bacteria to a surface can be predicted from the interfacial interaction energy, and how the kinetics can be measured.

2.1 The interaction of bacteria with substrata

Bacteria are typically regular spheres or spherocylinders a few hundred nanometres in diameter. Assuming that the properties of their surface are uniform, their interaction energy with a planar adsorbent surface can be readily calculated from knowledge of the surface energies of the bacteria and the adsorbent. This model is the basis for the calculation of the interaction free energy $\Delta G(z)$, a typical example of which is shown in Figure 2.1.

Since the dispersal of bacteria in an environment generally takes place through a bulk (three-dimensional) phase, freely floating individual bacteria can be taken as the initial state ($z \to \infty$, Figure 2.1). The first step in their interaction with a substratum is arrival in its immediate vicinity ($z \leq z_a$), and beyond this vicinal region, the potential is typically dominated by the longer-range interactions such as electron donor-acceptor (da) and electrostatic (el) (if the ionic strength is low). They are mostly repulsive since both the bacterium and substratum typically have electron-donating character. At short distances ($z = z_b$), attractive Lifshitz-van der Waals (LW) interactions dominate adhesion, corresponding to the transition point across the repulsive energy peak. This may be followed by the development of a biofilm, in which the bacteria embed themselves in a self-secreted matrix, which offers a great deal of protection from most environmental factors, while still allowing adequate accessibility of nutrients.1

Arrival is encapsulated in Figure 2.1, which reviews the essential energetics of a bacterium approaching a surface. The rate of arrival is governed by the interfacial

1 For a comprehensive interaction to interfacial force is aqueous media, see van Oss, C. J. (2006).
interaction potential $\Delta G_{123}(z)$, where the subscripts denote the surface, the intervening medium and the bacterium respectively, and z is the surface-bacterium distance.

Figure 2.1 The net interfacial interaction potential between a bacterium and a surface, as a function of distance z from the surface. The vertical dashed line separates the "arrival" regime (to the right of the line) from the "adherent" one; adhesion implies that ΔG_{123} becomes negative. z_0 is the value of z at which ΔG_{123} equals zero for the first time when approaching the surface from infinity.
By matching the adsorbing particle concentration distribution near the surface (i.e., under the influence of interaction) with the equation for convective diffusion relevant at a greater distance from the surface, (Spielman and Friedlander, 1974) were able to derive an interaction length as the integral of the interaction potential:

$$\delta_\text{a} = \int_0^\infty \exp \left(\frac{\Delta G_\text{ads}(z)}{k_\text{B}T} \right) - 1 \, dz$$ \hspace{1cm} (2.1)$$

assuming a large Peclet number; for \textit{E.coli}, \textit{Pe}=uL_c/D (Al-Homoud and Hondzo, 2008), where \textit{u} is the fluid velocity relative to the bacterium, \textit{L_c} is the length of the bacterium, and \textit{D} is the diffusion coefficient of the bacterium in the medium, from which the rate coefficient for arrival is defined:

$$k_\text{a} = \frac{D}{\delta_\text{a}}$$ \hspace{1cm} (2.2)$$

The full rate equation for arrival is then

$$\frac{db}{dt} = k_\text{a} c_\text{b} \varnothing (b)$$ \hspace{1cm} (2.3)$$

where \textit{b} is the concentration of bacteria at the surface, i.e., the number per unit area (surface density), and \textit{c_b} is the bulk concentration of bacterium (the number per unit volume). \varnothing is the available area function, which gives the fraction of the surface still available for accepting bacteria.

Adhesion concerns the processes that ensue once the bacterium has surmounted the interfacial potential barrier and arrived in the adsorbed state (Figure 2.1). The bacterium now finds itself in an environment different from that of the bulk. It is very likely that the pH and the ionic composition will be different from the bulk values (Healy and White, 1978). In consequence, the water structure - as characterized by its degree of hydrogen bonding - is very likely to be different (Mentré, 2004; Wiggins, 2002). These changes may be registered by the bacterium, which may accordingly change its gene expression pattern (phenotype). It is very likely that the bacteria then start to form a biofilm, with a significantly different phenotype from the planktonic state (Vilain and Brozel, 2006).
Adherent bacteria are known to be very persistent residents at the solid/liquid interface. Nevertheless, it may happen that the interfacial forces dwindle away (e.g., if the bacteria die) in which case they may ultimately depart. A simple rate equation for departure is

\[
\frac{db}{dt} = -k_db
\]

(2.4)

where \(k_d \) is the rate coefficient for departure, implying that \(b(t) \) decreases exponentially. A simple approximation for \(k_b \) assumes an Arrhenius behaviour, i.e.,

\[
k_d \approx u_d \exp \left(\frac{-(\Delta G_\text{a} - \Delta G_\text{b})}{k_BT} \right)
\]

(2.5)

where \(u_d \) is the characteristic frequency of departure attempts.

2.2 The metrology of bacterial adhesion

The problems of metrology in this field can be divided into three groups. The first one is the determination of the bacteria adhering to a surface, most importantly the number per unit area, but also the actual force of adhesion. The second group concerns rate of arrival of bacteria from the bulk medium at the surface (which in fact underlies the number adhering). The third group comprises the measurement of the interfacial energetics (e.g., with atomic force microscopy), which essentially amounts to the determination of surface tensions (and, if the ionic strength is low, the electrostatic surface charge), from which the rate of arrival and the number of adhering may be predicted (Lower et al., 2000; Otto, 2008).

2.2.1 Imaging

The most direct method is actually to observe, using a high-powered microscope, the surfaces on which the bacteria are adhering and actually count the numbers. Although this method can be useful for a rapid preliminary survey, it is rather tedious and, at the same time, automated image analysis is likely to be unreliable. A more severe limitation is that it is practically impossible to obtain high-resolution kinetics by this
method. Normally optical microscopy is considered; higher spatial resolution can of course be achieved using (scanning) electron microscopy (Arnold et al., 2004), but at the price of laborious sample preparation, which may also result in some alteration of the salient sample features. Microscopy has been combined with the flow chambers to yield kinetic information on adhesion (Meinders et al., 1995; Wiencek and Fletcher, 1995).

2.2.2 The kinetics of arrival and the numbers adhering

More significant and useful are the large family of non-imaging methods with which the number of bacteria adhering to the surface can be counted. Many of these methods are suitable for kinetic measurements. The basic problem, of counting particles at an interface, has been addressed in the context of proteins and abiotic nanoparticles (Ramsden, 1994). The simplest of these methods is simply to measure the depletion of bulk bacterial concentration due to adhesion, using nephelometry (Rijnaarts et al., 1993). A slight increase in sophistication is obtained if the surface to which the bacteria may adhere is packed into a column through which the suspension of bacteria is passed; this method however requires the bacteria to the radiolabelled. Columns and nephelometry can be combined (Walker et al., 2004).

Newer and more sophisticated methods are based on transducers sensitive to the presence of objects in their vicinity; for example, chemical sensors (see section 4.1 below)(Acharya et al., 2006; Deisingh and Thompson, 2004; Fleminger and Shabtai, 1995; Grossman et al., 2004; Hug, 2000; Ivnitski et al., 1999; Lukosz, 1995). Using this approach, measurements can be carried out in situ. The most important family of such transducers are based on optical reflexion (scanning angle reflectometry, ellipsometry, and planar waveguide-based methods), of which the most sensitive and informative are optical waveguide lightmode spectroscopy (OWLS) based on grating couplers and optical waveguide lightmode interferometry (OWLI) based on the Mach-Zehnder interferometer and other devices (Ramsden, 1993; Ramsden, 2006; Mann, 2001; Lukosz et al., 1988).

The main challenge with these methods is to determine the actual number of bacteria from the optical signals. Visible light (wavelength λ) is generally used in these transducers, but since bacteria typically have a diameter over ten times longer than the wavelength of the optical source, the uniform thin-film approximation (UTFA) is no longer valid (Mann et al., 1997). One apparently has therefore the choice
of either analysing the optical signals using the UTFA, and applying a correction based on some independent calibration, such as microscopic counting, or using a more sophisticated analysis such as has been done for eukaryotic cells using the concept of effective volume (Ramsden et al., 1995). In this work, however, we have developed a third way relying on the assumption the adsorption is random sequential (see section 4.3). In the one extant work that reports using waveguides to investigate bacterial adhesion (Horváth et al., 2003), no attempt to count the bacteria was made.

Note that counting is not necessary for determining the energetics of the interaction, which depends only on the kinetics. However, if adsorption is allowed to continue to saturation, and this is equated with the jamming limit θJ, appropriate for the shape of the bacteria (which should be established from microscopic observation) (Viot et al., 1992; Schaaf and Talbot, 1989), see section 3.2, we contend this provides a convenient and reliable estimation of the number adsorbed.

The initial rate. In this case the surface is empty (b =0) and φ(b)=1. Departure may be neglected even if it is able to occur because b is close to zero. Hence, the surface can be considered to represent a perfect sink. If the fluid in which the bacteria are suspended is flowing laminarly over the solid/liquid interface, far from the interface the bacteria are transported by convection, but once they get closer than the hydrodynamic boundary (distance δd from the substratum surface) diffusion is faster (the overall process is called convective diffusion (Levich, 1962). Within the diffusion boundary layer Fick’s law applies and we have

\[
\frac{db}{dt} = c_b k_s \frac{D}{\delta_d}
\]

(2.6)

Then ΔG_{123} can be obtained from k_s using Equations (2.1) and (2.2). Since this forms the basis of one of our main experimental methods, we go into more detail in chapter 3.
2.2.3 Direct measurement of interfacial forces

Atomic force microscopy can be used to directly measure the force between an abiotic cantilever tip and a lawn of bacteria immobilized on a rigid substratum (Razatos et al., 1998; Ong et al., 1999; Razatos et al., 2000). However, a main disadvantage of this method is that the bacteria would need to be chemically fixed to the substratum, which may alter their surface properties.

2.2.4 Microbial adhesion to solvents (MATS)

Microbial adhesion to solvents (MATS) is based on the comparison between microbial cell affinity to a monopolar solvent and an apolar solvent and is a very convenient way to determine the surface energetics of bacteria. One simply measures the partitioning between a monopolar solvent (e.g., chloroform (a Lewis acid); ethyl acetate (a Lewis base)) and an apolar solvent such as decane (Bellon-Fontaine et al., 1996; Briandet et al., 1999). The method is a development of the earlier microbial adhesion to hydrocarbons (MATH) technique (Rosenberg et al., 1980).

2.2.5 Experimental determination of single-substance surface tensions

Following Thomas Young, the measurement of contact angles of different fluids is a convenient way of measuring the surface tensions of unknown solid. For any given solids, there are in principle three unknown components, $\gamma^{(LW)}$, $\gamma^{(\oplus)}$ and $\gamma^{(\ominus)}$, the last two corresponding respectively to the electron-accepting and electron-donating components of the da force. Hence, three Young-Dupré Equations with different parameters must be solved simultaneously. The different equations are obtained from measuring the contact angles (which, except for very inert surfaces, must be the advancing angles) with fluids differing in their surface tension components. Convenient choices are water, α-bromonaphthalene and formamide (van Oss, 2006).

This approach can also be used for bacteria deposited as lawns on a substrate (see (van der Mei et al., 1998)). However, the preparation of microbial lawn takes at least 30 minutes for drying and only a limited water is present on the surface, which might change the surface properties of bacteria.
2.3 The nature of bacteria

Bacteria are envelopes of cytoplasm surrounded by a membrane (the plasma membrane). Most bacteria are typically of the order of a micrometre in length (although there is great variety). Different strains (the word “species” is not generally used to describe different kinds of bacteria, because of the promiscuity with which bacteria can exchange DNA with one another) are characterized by different shapes: most typically spheres and spherocylinders (rods). The membrane has the basic structure of a lipid bilayer with embedded proteins, encapsulated within a tough polysaccharide (“exopolymer”) cell wall that may be tens of nanometres thick.

A useful classification of bacteria is into “Gram-positive”, which take up Gram’s stain, and “Gram-negative”, which do not. The former (Figure 2.2) have a structurally simpler cell wall: it essentially comprises a roughly 25-nm thick, possibly multilayered peptidoglycan (murine) and teichoic acid layer. Mureins are glycan heteropolymers—alternating residues of β-1,4-linked N-acetylglucosamine and N-acetyl muramic acid forming strands cross-linked by oligopeptides consisting of both L- and D-amino acids. Teichoic acids are polyols containing mainly of multiple hydroxyl, groups (glycerol, ribitol, and mannitol), and connected to the peptidoglycan in periplasm through covalent phosphodiester bonds. Structural details and composition vary considerably among different types of bacteria.

Gram-negative bacteria (Figure 2.3) have a roughly 3 nm thick peptidoglycan (murine) coating the membrane, encapsulated in turn by a roughly 8-nm thick outer membrane constructed from proteins, lipids, and lipopolysaccharides (LPS) (Kotra et al., 1999). The LPS are fairly exotic molecules, consisting of a core (“kernoligosaccharide”) flanked by lipid A (which has six alkane chains constituting the apolar moiety) penetrating into the peptidoglycan, and O-side chains, consisting of repeated tetrasaccharide units, facing the exterior. The sugars themselves are typically found only in bacteria, molecules such as 2-keto-3-desoxyoctonate, heptose, and L-rhamnose. The peptidoglycan-containing zone between the two membranes is called the periplasma and is an aqueous compartment containing numerous proteins with transporter functions (Alcamo, 2001; Pelczar et al., 1993).

In recent years, much effort has been spent on investigating the identities of specific molecules on the surface of bacteria responsible for particular pathogenicities. These molecules include sialic acid (Nagao and Benchetrit, 1999), lipopolysaccharides
Nevertheless, either type of surface coating may be in turn enveloped by an S-layer, constituted from a rather regular array of globular proteins (Schuster and Sleytr, 2000). The tough coatings of spores are of a similar nature (Gould et al., 1970; Aronson and Fitz-James, 1976).
These two bacterial structures, the outer layers of bacterial spores (spore coats) that form the protective casing of dormant spores, and the S-layers that are found as the outermost cell envelope component of many bacteria, will be used as model surfaces for exploitation, i.e. as sources of proteins and as a source of understanding of the principles of multicomponent self-assembly. Both spore coats and S-layers share a number of similarities: protein composition, ordered arrays of protomeric subunits, self-assembly and protective properties. The robustness of bacterial spores is well known and they are therefore obvious candidates for being introduced into production processes hitherto dominated by purely synthetic materials. These coatings and layers are very sophisticated multicomponent, self-assembled, nanostructured materials.

Bacterial surface layer (S-layers)

Many prokaryotes including bacteria and archaea produce an S-layer, a surface-exposed paracrystalline layer surrounding the cell envelope. S-layers are monomolecular arrays composed of a single species of protein or glycoprotein subunits. As a first order self-assembly system, S-layer proteins form lattices with oblique, square or hexagonal symmetry, thus representing the simplest biological membrane developed during evolution (Sára and Sleytr, 1996; Schuster and Sleytr, 2000; Beveridge, 1997; Sleytr, 1997). S-layers can (a) form pores of defined size and morphology; (b) carry precisely aligned functional groups on the surface; (c) be induced to recrystallize on a variety of solid supports and lipid based membranes; and (d) be modified by genetic engineering to display novel functional groups (Messner, 1997; Rachel, 1997; Schar-Zammaretti and Ubbink, 2003; Beveridge, 1997). Thus, S-layers clearly offer new approaches for nanotechnology, particularly for nanopatterning of surfaces and the formation or ordered arrays.

Bacterial spores

Bacterial spores (endospores) are a unique natural material due to their extreme robustness—it is this that distinguishes bacterial spores from fungal spores (exospores) (Aronson and Fitz-James, 1976). As dormant metabolically inactive life forms, spores can survive indefinitely in a desiccated state, and indeed have been documented as surviving intact for 28 million years. The spore can resist temperatures as high as 90 °C as well as exposure to noxious substances (Gould et al., 1970; Colwell, 1997). *Bacillus* species produce a single spore (endospore) within the bacterial cell by a process of differentiation requiring the coordinated action of hundreds of developmental genes (Chada et al., 2003; Henriques and Moran, 2000; Nicholson, 2002; Nicholson et al., 2000). Oral delivery of spores carrying a hybrid protein (a recombinant CotB-TTFC
chimera) to mice was sufficient to immunise and protect animals challenged with an otherwise lethal dose of tetanus toxin (Duc et al., 2003; Ricca and Cutting, 2003).

The next section presents a selection of measured single-substance surface tensions for bacteria (from which the LW and da potentials can be derived), and some el data from electrophoretic mobility measurements.

2.4 Summary and analysis of bacterial adhesion data from traditional methods

Table 2.1 presents experimental and measured surface tension parameters for selected bacteria from literature. In the past, surface and bacteria have been classified as simply hydrophobic or hydrophilic (van Oss, 1997), but this is clearly an oversimplification with little predictive power.

Electrophoretic mobility data is much sparser, but both Streptococcus thermophilous B and Leuconostoc mesenteroides NCDO have been reported to have a mobility of $-1.7 \times 10^{-8} \text{ m}^2 \text{ V}^{-1} \text{ s}^{-1}$ in 10 mM potassium phosphate buffer (pH 7) (Bellon-Fontaine et al., 1996), which corresponds to a ζ-potential of approximately -20 mV (roughly estimated using the Helmholtz-Smoluchowski Equation). These two observations do not contradict the widely held belief that the surface charge of all bacteria is negative.

On the other hand, there is a wide variation among the ratio of electron donor to electron acceptor potentials. This variety confirms our hypothesis (Hypothesis 1) that different bacteria have different surface characteristics. Most, but by no means all, of the bacteria show a preponderance of γ^Θ.

Table 2.1 Surface tension parameters (in mJ/m²) for selected representative bacteria.

<table>
<thead>
<tr>
<th>Strain</th>
<th>Gram</th>
<th>$\gamma^{(LW)}$</th>
<th>γ^\oplus</th>
<th>γ^\ominus</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actinobacillus actinomycetemcomitans HG1099</td>
<td>Negative</td>
<td>33.5</td>
<td>3.2</td>
<td>0.2</td>
<td>[a]</td>
</tr>
<tr>
<td>Acinetobacter calcoaceticus MR-481</td>
<td>Negative</td>
<td>36.2</td>
<td>1.3</td>
<td>44.1</td>
<td>[a]</td>
</tr>
<tr>
<td>Acinetobacter calcoaceticus RAG-1</td>
<td>Negative</td>
<td>36.8</td>
<td>0.0</td>
<td>41.4</td>
<td>[a]</td>
</tr>
<tr>
<td>Leuconostoc mesenteroides NCDO 523</td>
<td>Positive</td>
<td>36.3</td>
<td>0.02</td>
<td>68.4</td>
<td>[b]</td>
</tr>
<tr>
<td>Serratia marcescens RZ37</td>
<td>Negative</td>
<td>10.5</td>
<td>310.0</td>
<td>46.7</td>
<td>[a]</td>
</tr>
<tr>
<td>Serratia marcescens RZ30</td>
<td>Negative</td>
<td>12.2</td>
<td>5.0</td>
<td>35.3</td>
<td>[a]</td>
</tr>
<tr>
<td>Staphylococci epidermidis NCTC 100892</td>
<td>Positive</td>
<td>26</td>
<td>6</td>
<td>49</td>
<td>[c]</td>
</tr>
<tr>
<td>Staphylococci epidermidis 3294</td>
<td>Positive</td>
<td>36.4</td>
<td>7.4</td>
<td>10.3</td>
<td>[a]</td>
</tr>
<tr>
<td>Streptococci cricetus H56</td>
<td>Positive</td>
<td>35.0</td>
<td>0.0</td>
<td>66.9</td>
<td>[a]</td>
</tr>
<tr>
<td>Streptococci mitis BA</td>
<td>Positive</td>
<td>35.8</td>
<td>5.8</td>
<td>3.8</td>
<td>[a]</td>
</tr>
<tr>
<td>Streptococci sanguis CR311VAR3</td>
<td>Positive</td>
<td>31.7</td>
<td>0.57</td>
<td>55.6</td>
<td>[a]</td>
</tr>
<tr>
<td>Streptococci sobrinus HG970</td>
<td>Positive</td>
<td>33.8</td>
<td>0.004</td>
<td>68.5</td>
<td>[a]</td>
</tr>
<tr>
<td>Streptococci oralis 34</td>
<td>Positive</td>
<td>37.2</td>
<td>2.4</td>
<td>43.7</td>
<td>[a]</td>
</tr>
<tr>
<td>Streptococci oralis PK1317</td>
<td>Positive</td>
<td>36.8</td>
<td>6.7</td>
<td>1.5</td>
<td>[a]</td>
</tr>
<tr>
<td>Streptococcus thermophilus B</td>
<td>Positive</td>
<td>37.9</td>
<td>0.03</td>
<td>62.1</td>
<td>[b]</td>
</tr>
<tr>
<td>Streptococcus thermophilus B</td>
<td>Positive</td>
<td>36.4</td>
<td>0.4</td>
<td>58.6</td>
<td>[a]</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa AK1</td>
<td>Negative</td>
<td>34.7</td>
<td>4.8</td>
<td>5.8</td>
<td>[a]</td>
</tr>
<tr>
<td>Candida albicans ATCC10261 (37°C)</td>
<td>Positive</td>
<td>40.3</td>
<td>1.7</td>
<td>45.9</td>
<td>[a]</td>
</tr>
</tbody>
</table>

[a] (van der Mei et al., 1998).
[b] (Bellon-Fontaine et al., 1996).
[c] (van der Mei et al., 1997)

2.4.1 Implications

The notion of equivalent chemistry. Knowing that the surface of bacteria is composed primarily of polysaccharides and proteins, the fraction of polysaccharides being p, bacterial surface chemical characteristics can be approximated as a mixture of these two components. Table 2.2 gives the surface tension parameters for two typical polysaccharides, the two most abundant blood proteins in humans, and the common lipid lecithin. Comparison with Table 2.1 shows that in fact the bacterial surface cannot be represented as an obviously simple combination of natural substances, in particular since γ^\ominus for some strains exceeds even the electro-donor potential (datività) of lecithin.
Table 2.2 Surface tension parameters (in mJ/m2) for same common biopolymers (van Oss, 2006).

<table>
<thead>
<tr>
<th>Substance</th>
<th>$\gamma^{(\text{LW})}$</th>
<th>$\gamma^{(\oplus)}$</th>
<th>$\gamma^{(\ominus)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agarose</td>
<td>41</td>
<td>0.0</td>
<td>27</td>
</tr>
<tr>
<td>Cellulose</td>
<td>44</td>
<td>1.6</td>
<td>17</td>
</tr>
<tr>
<td>Human serum albumin</td>
<td>27</td>
<td>6.3</td>
<td>51</td>
</tr>
<tr>
<td>Immunoglobulin G</td>
<td>34</td>
<td>1.5</td>
<td>50</td>
</tr>
<tr>
<td>Lecithin</td>
<td>29</td>
<td>2.7</td>
<td>60</td>
</tr>
</tbody>
</table>

2.4.2 Critique of DLVO theory

DLVO theory, which takes into account LW and el forces only, has been widely used to interpret bacterial adhesion (van Loosdrecht et al., 1990; Hermansson, 1999; van Oss et al., 1999; Y.F. Missirlis and Katsikogianni, 2004). However, as van Oss has pointed out (van Oss, 2006; Cacace et al., 1997), under typical physiological conditions (e.g., bloodstream, cytoplasm) these two forces only account for five to ten percent of the interfacial energy. The balance is made up from the Lifshitz-van der Waals(LW), electron donor-acceptor (da) and electrostatic (el) forces (see earlier sections of chapter 2). Therefore these DLVO papers are wrong, in the same that they neglect the da interactions.
Chapter 3 Development of a New Paradigm for Measuring Bacterial Adhesion

The novel concepts here focus on the adsorption kinetics to determine adhesion.

3.1 Introduction

We assume that the paradigm of adhesion (cf. Ch. 1, Fig. 1.1) can be divided into these three steps, namely:

(1) Approach to the surface, governed by an adsorption rate constant (cf. Equations 2.1 and 2.2—derived with certain assumptions as detailed in Section 2.1)

\[k_a = \frac{D}{\delta_a} \]

(3.1)

and

\[\delta_a = \int_{l_0}^{\infty} \left[\exp \left(\frac{\Delta G_{123}(z)}{k_BT} \right) - 1 \right] dz \]

(3.2)

where \(k_a \) is the adsorption rate coefficient; \(D \) is the coefficient of the bacterium; \(\delta_a \) is the adsorption distance in the \(z \) direction, which is perpendicular to the adsorption surface; \(\Delta G_{123}(z) \) is interfacial energy. The integral is taken from infinity down to the distance of closest approach \(l_0 \).

Because the assumption of a large Peclet number is not applicable to our experimental conditions, strictly speaking we cannot use Equation (3.2), hence we approximate \(k_a \) using a heuristic approach (cf. Equation (3.6)), multiplying the diffusive contribution \(D/\delta_d \), where \(\delta_d \) is the diffusion boundary layers thickness, by a Boltzmann factor \(\exp(-\Delta G_a/k_BT) \), giving

\[k_a \approx \frac{D}{\delta_d} \exp \left(\frac{-\Delta G_a}{k_BT} \right) \]

(3.3)
(2) Arrival: the bacterium falls into a deep potential well at a distance z_b from the surface.

(3) Postarrival: the cytoplasm of bacteria may secrete chemicals or biochemical after attaching to the substrate. The shape and surface composition of bacteria may change and this usually causes enhancement of adhesion.

In solution, the interaction free energy ΔG_{123} will increase or decrease when two particles or bacteria approach each other, or when the bacteria come near the surface. These two situations are quite similar. The net interfacial energy ΔG_{123} can be obtained by Equation (3.4) (see (van Oss, 2006)):

$$\Delta G_{123} = \Delta G_{13} + \Delta G_{22} - \Delta G_{12} - \Delta G_{23} \quad (3.4)$$

where ΔG_{23}, ΔG_{12} and ΔG_{13} are the interaction free energies between bacteria and medium, medium and substrate, and substrate and bacteria respectively, and ΔG_{22} is the cohesive energy of the medium (e.g., water). How the binary ΔG quantities are defined from the surface tension data (e.g. Table 2.1) is described in section 3.4.

Much metrology, more or less quantitative, has been merely concerned with counting the number of bacteria present at solid/liquid interfaces (e.g., (Harris et al., 2004)). Much more information about the overall process can be obtained if it is possible to obtain high resolution kinetic data on the arrival, residence and departure of the bacteria. Appropriate metrology techniques will be described in Chapter 4.

3.2 The rate of accumulation of objects at the surface (dM/dt)

In the case of the perfect sink (pure diffusion):

$$\frac{dM}{dt} = c_b \left(\frac{D}{t} \right)^{1/2} \quad (3.5)$$

where M is the mass of the objects, c_b is the bulk concentration and D is the diffusion coefficient of the object. When the liquid in which the object is dissolved or suspended flows over the surface, deposition occurs via convective diffusion:
\[
\frac{dM}{dt} = c_b \left(\frac{D}{\delta_d} \right)
\]

(3.6)

where \(\delta_d \) is the thickness of the diffusion boundary layer (typically 10-100 nm), i.e., that distance from the surface at which transport by diffusion and by convection are equally fast; it depends on the actual geometry of the flow (Levich, 1962).

Note that:
- Careful investigation of adsorption kinetics is an extremely powerful and sensitive method for probing the energetic profile in the vicinity of an adsorbing surface.
- Bacterium: has a highly heterogeneous surface, nevertheless adsorption is rather precisely characterized by \(\frac{dM}{dt} \) and may display very rich behavior when approaching the substratum.
- An adsorption energy barrier \(E_a \) can be introduced via the chemical rate coefficient for adsorption \(k_a \):

\[
k_a = \bar{a} \delta \nu \exp(-E_a/k_B T)
\]

(3.7)

where \(\bar{a} \) is an orientation factor (the fraction of bacteria which approach the surface in an orientation which permits adsorption) and will be unity for a uniform, spherical colloidal object. \(\delta \) is an appropriate length. \(\nu \) is an appropriate attempt frequency. Compare this with equation (3.3).

We now relax the perfect sink assumption by introducing the available area function \(\phi \). It is equal to \((1-\theta) \) in the case of discrete, independent sites equal in size to or bigger than the adsorbing particles (Langmuir’s condition), applicable to gas molecules adsorbing to a metal in high vacuum. Furthermore, we have the energy barrier \(E_a \), which has the effect of introducing a rate coefficient for adsorption \(k_a \): Hence instead of equation (3.6), we have

\[
\frac{dM}{dt} = k_a c_a \Phi
\]

(3.8)

Because the adsorbent surface is no longer a perfect sink, the relevant bulk concentration of dissolved particles is \(c_s < c_b \), where \(c_s \) is the particle concentration right above the interface and can be derived by summing fluxes to and from a thin layer.
where V is unit volume and S is unit surface. By letting the left hand side go to zero, we can derive

$$c_s = c_b \left(\frac{k_b \phi \delta_d}{D} + 1 \right)$$

for substitution into equation (3.8).

3.3 The available area function

Bacteria are typically regular spheres or spherocylinders a few hundred nanometres to a few micrometres in diameter. It may be assumed that upon arrival at the surface, they can at most form a monolayer. The biofilm formation that may ultimately ensue of course involves a complex multilayered structure, but it goes beyond the scope of this work. The aim here is essentially to determine the form of the function ϕ in Equation (3.8).

Since we are not considering multilayer formation, the bacteria must be arranged in nonoverlapping fashion in a plane immediately above the surface. This implies that the centre of an arriving bacterium of radius r (we shall initially restrict ourselves to spheres) must remain at the distance of at least $2r$ from the centre of any previously arrived bacterium (the circle of radius $2r$ centred on the previously arrived bacterium encloses the exclusion zone associated with that bacterium), see Figure 3.1. In other words, defining $\theta = ba$, where $a = \pi r^2$ in the case of spheres) is the area occupied by the bacterium on the surface, as the fractional occupation of the surface, we have $\phi = 1 - 4\theta$. However, the factor 4 can only be valid at the very beginning of addition of bacteria to the surface; as soon as it becomes moderately occupied, exclusion zones will overlap and the factor will overestimate the exclusion; hence additional terms proportional to $\theta^2, \theta^3, \ldots$ must be added (Schaaf and Talbot, 1989). This is known as the random sequential addition (RSA) model. The constants of proportionality depend on the aspect ratio for the spherocylinders (Ricci et al., 1992; Viot et al., 1992).

The RSA model also delivers the value θ_J of the surface coverage θ at which ϕ becomes zero and hence no further addition is possible, called the jamming limit.
For spheres, $\theta_J \sim 0.54$ (Schaaf and Talbot, 1989); the value of this constant depends on the aspect ratio for spherocylinders and (Ricci et al., 1992; Viot et al., 1992) (See Table 3.1). The aspect ratio is defined as the ratio of the long axis to the short axis.

Table 3.1 Jamming limits for different aspect ratios of spherocylinders

(Viot et al., 1992).

<table>
<thead>
<tr>
<th>Aspect ratio</th>
<th>Jamming Limit (θ_J)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.54</td>
</tr>
<tr>
<td>1.25</td>
<td>0.56</td>
</tr>
<tr>
<td>1.75</td>
<td>0.58</td>
</tr>
<tr>
<td>3</td>
<td>0.56</td>
</tr>
<tr>
<td>4</td>
<td>0.55</td>
</tr>
<tr>
<td>6</td>
<td>0.52</td>
</tr>
<tr>
<td>10</td>
<td>0.48</td>
</tr>
<tr>
<td>15</td>
<td>0.44</td>
</tr>
</tbody>
</table>

Figure 3.1 Diagram of an RSA process. Disk 1 (hatched) creates an exclusion zone around itself, whose border is marked by the dashed ring. No bacterium can be deposited with its centre within this zone. The exclusion zones of bacteria 2 and 3 overlap (crosshatched zone).
For practical use, accurate interpolation formulae are available valid over the entire range \(0 \leq \theta \leq \theta_j \), of which an example is (Schaaf and Talbot, 1989):

\[
\phi = (1 - \frac{\theta}{\theta_j})^3 \left[1 - 0.8120 \frac{\theta}{\theta_j} + 0.4258 \left(\frac{\theta}{\theta_j} \right)^2 + 0.0716 \left(\frac{\theta}{\theta_j} \right)^3 \right]
\] (3.11)

3.4 Predicting interfacial interactions from surface tension data

Assuming that the properties of the bacterial surface are uniform, the interaction energy with a planar adsorbent surface can be readily calculated from knowledge of the surface energies of the bacteria (see Table 2.1) and the adsorbent.

A convenient mesoscopic formalism is based on Young’s law, as extended by Girifalco, Good and van Oss (van Oss, 2006). This allows the calculation of the interfacial tension between bacterium and substratum in the presence of a liquid medium. Dupré-like equations are then used to calculate the interfacial energy from the interfacial tension (van Oss, 2006; Cacace et al., 1997).

The interfacial energy can be decomposed into the Lifshitz-van der Waals (LW), electron donor-acceptor (da) (Lewis acid-base) and electrostatic (el) (Coulombic) interactions. Whereas the short range Lifshitz-van der Waals interactions are attractive, the other two interactions can be either repulsive or attractive. In the presence of appreciable concentrations (~ 0.1 M, i.e. physiological concentrations) of salt, the electrostatic interactions are strongly shielded (e.g. (Cacace et al., 1997)), and the electron donor-acceptor interactions will typically account for about 90% of the total interaction.

The Lifshitz-van der Waals force arises through correlations between the electrons of the atoms of adjacent materials. It is therefore generally attractive, and is weak and short-range, the potential decaying as \(1/z^2 \). Denoting \(\Delta G^{(LW)} || \) as the interaction between two infinite planes, the interaction between an infinite plane (representing the planar substratum) and the sphere of radius \(r \) (representing the bacterium) – see Figure 3.2 and making use of the Derjaguin approximation – is (van Oss, 2006):

\[\Delta G^{(LW)} || = \left(\frac{\theta}{\theta_j} \right)^3 \left[1 - 0.8120 \left(\frac{\theta}{\theta_j} \right) + 0.4258 \left(\frac{\theta}{\theta_j} \right)^2 + 0.0716 \left(\frac{\theta}{\theta_j} \right)^3 \right] \]

\[\phi = \left(\frac{\theta}{\theta_j} \right)^3 \left[1 - 0.8120 \left(\frac{\theta}{\theta_j} \right) + 0.4258 \left(\frac{\theta}{\theta_j} \right)^2 + 0.0716 \left(\frac{\theta}{\theta_j} \right)^3 \right] \]

2 The potential initially decays rapidly in capanian with \(\exp(-z) \), but has a very long tail. Hence, at intermediate range, the exoententailly decaying function is actually more significant.

3 The prefactor is different for a cylinder (rod-shaped bacterium).
\(\Delta G_{123}^{(lw)}(z) = 2 \pi l_0^2 \Delta G_{123}^{(lw)} \| \frac{r}{z} \) \quad (3.12)

where \(l_0 \) is the so-called distance of closest approach, equal to about 1.6 ångström units, beyond which the Born repulsion between electron clouds on the atoms of the two materials prevents approach (cf. Fig. 2.1).

Figure 3.2 The interaction free energy between a bacterium (label 3) and a substratum (label 1) in the presence of a medium (label 2).

The electron donor-acceptor force is due to the interaction between Lewis acids and bases in the adjacent materials. Its most common manifestation in biological systems is the hydrogen bond. Electron donors in one material will repel electron donors in the opposing material, but attract electron acceptors. Hence, the net interaction force can be either attractive or repulsive. It is strong and long-range\(^4\), and the potential decays exponentially according to (van Oss, 2006):

\[
\Delta G_{123}^{(da)} = 2 \pi \chi \Delta G_{123}^{(da)} \| \exp \left(\frac{l_0 - z}{\chi} \right) \frac{r}{z} \quad (3.13)
\]

where \(\chi \) is the characteristic decay length for the da interactions, which is one of the least well-determined parameters in intermolecular science. Unlike the Debye length

\(^4\) See footnote 2 (p. 22).
discussed below, no convenient expression showing its dependence on characteristic parameters of the medium is presently available. χ seems to be at least 1 nm and may well be longer under typical biomedical conditions.

The electrostatic force is the Coulomb force between electrostatic charges created at the surfaces of the materials typically by the ionization of certain elements, or the protonation of certain chemical groups, modulated by the presence of dissolved ions, which is taken into account via the Debye length $1/\kappa$, defined by:

$$\kappa = e \left(\frac{c_{\text{ion}}}{\varepsilon \varepsilon_0 kT} \right)^{1/2} \tag{3.14}$$

where ε is the relative dielectric constant of medium 2, for a 1:1 electrolyte such as KCl. The electrostatic interaction potential is given by (e.g., (van Oss, 2006)):

$$\Delta G^{(e)}_{123} = 4\pi \varepsilon_0 \varepsilon \psi_1 \psi_3 \ln[1+\exp(-kz)]r \tag{3.15}$$

where the ψ are the electrostatic surface potentials. These can readily be determined using Healy and White’s surface ionizable group model (Healy and White, 1978). For monoprotic acidic or basic groups with a dissociation constant K present at a density N_s on a surface, we have

$$pH = pK - \frac{y}{2.303} \pm \log_{10} \left(\frac{\pm \Gamma}{\sinh(y/2) - 1} \right) \tag{3.16}$$

(taking plus signs for a (Brønsted) basic and minus signs for an acidic surface), where $y = \psi e/(k_B T)$ is the dimensionless surface potential, and Γ is a dimensionless parameter defined by $\Gamma = N_s \kappa / (4c_{\text{ion}})$; for an amphoteric surface with isolectric point pH_0 (e.g., a metal oxide), we have the expression:

$$\frac{\sinh(y/2)}{\Gamma} = \frac{\delta \sinh \xi}{1 + \delta \cosh \xi} \tag{3.17}$$

where $\delta = 2 \times 10^{\Delta pK/2}$, where $\Delta pK = pK_- - pK_+$ and $\xi = 2.303 \Delta pH \cdot y$, where $\Delta pH = pH_0 - pH$.

24
Depending to the surface potential and its sign, the immediate vicinity of the surface may be enriched or depleted in protons, resulting in a surface pH different from the bulk value, and given by

$$\text{pH}_s = \text{pH}^+ - \frac{\Delta \psi}{2.303}$$ \hspace{1cm} (3.18)

In the presence of moderate to high ionic strength liquids between interacting materials, the electrostatic interaction potential is weak and long-range. It can be either attractive or repulsive. Typically, in calculations the net surface charge is taken (mean field approach).

As a result of the difference between bulk and surface pH, the surface potential ψ_3 of the bacterium might change as it nears the surface, changing the value of $\Delta G_{123}^{(el)}$. It can be either attractive or repulsive, but individual charges are supposed to be laterally smeared out and the net surface charges are used to calculate $\Delta G_{123}^{(el)}$. This is valid at low ionic strength when $1/\kappa$ is large, and in the presence of moderate to high ion concentrations the electrostatic interaction potential is anyway weak (amounting to 5–10% of $\Delta G_{123}^{(ea)}$).

From the above it is apparent that to estimate the interaction potential between a surface and a bacterium, it is necessary to know the surface tension components for the adsorbent substratum (label 1), the bacterium (label 3) and the intervening fluid (label 2), which will typically be some kind of aqueous solution containing salts and small osmolytes such as glucose (Johnson and Harvey, 1937). Note in particular that we need:

a. The Hamaker constant A_H for calculating the LW interaction potential, using the relation $\Delta G^{(LW)} = -A_H r/(6z)$. If A_H is not available $\Delta G^{(LW)}$ can of course be calculated from the LW component of the surface tension.

b. The datività (electron donor potential, or Lewis basicity), most conveniently expressed as the surface tension component γ^\oplus.

c. The recettività (electron acceptor potential, or Lewis acidity), most conveniently expressed as the surface tension component γ^\otimes.

d. The mean net electrostatic surface potential.
Dupré-like laws are then used to compute the pairwise interaction potentials between infinite planar surfaces required in (3.12) and (3.13), that is (van Oss, 2006):

\[\Delta G_{12}^{(lw)} = -2(y_1^{(lw)} y_2^{(lw)})^{1/2} \]

(3.19)

and

\[\Delta G_{12}^{(da)} = -2\left[y_2^{(∅)} y_1^{(∅)} \right]^{1/2} + \left[y_1^{(∅)} y_2^{(∅)} \right]^{1/2} \]

(3.20)

The same equations, mutatis mutandis, are used to compute \(\Delta G_{13} \) and \(\Delta G_{23} \). The final step is to compute the overall interaction between protein and biomaterial in the presence of solvent (cf. Equation (3.4)).

\[\Delta G_{123}^{(total)} = \Delta G_{22}^{(total)} + \Delta G_{13}^{(total)} - \Delta G_{12}^{(total)} - \Delta G_{23}^{(total)} \]

(3.21)

Once the interfacial energy between infinite parallel planar surfaces has been obtained, it is straightforward to calculate the interaction energy between an infinite plane of the adsorbent and a spherical object (the bacterium) using Equations (3.12), (3.13) and (3.15). The sum of these expressions is then integrated to yield the interaction length (Equation (3.2)) and hence the rate constant for arrival.

The actual energy of adhesion, \(\Delta G_{123}^{(total)} \) at \(z = z_b \) corresponds to the depth of the well in Figure 3.2. If the medium 2 is excluded (e.g. as adhesion tightens), then \(\Delta G_{13}^{(total)} \) should be computed instead.

In the case of heterogeneous surfaces, the obvious first approach is simply to take the arithmetically weighted mean of all the different components (the Cassie-Baxter law). This can reasonably be expected to give correct predictions of the interfacial potential when the characteristic scale of the substratum heterogeneity is much smaller or much larger than that of the bacterium. On the other hand, if the length scale of substratum heterogeneity is commensurate with that of bacterial surface heterogeneity, the actual interfacial potential may differ considerably from the mean prediction, since patches of datività on the substratum could match complementary patches of recettività on the bacterium, and so forth. This forms the basis of my Hypothesis 4.
3.5 Electrostatic forces via electrokinetic phenomena

Although, as has been pointed out earlier, under physiological conditions the electrostatic component of the interfacial energy is typically rather minor (of the order of 10% of the total), under certain circumstances (for example, the adhesion of bacterium to the internal surfaces of potable water distribution networks) the ionic strength is very low, and hence the electrostatic forces will be more prominent (cf. (Ramsden and Máté, 1998)). In this case, the electric charge density on the surface of the bacterium can be deduced from measuring the velocity of bacteria in an electric field (particle electrophoresis) (e.g. (Torimura et al., 1999; Pelletier et al., 1997; Bellon-Fontaine et al., 1996)), see also section 2.4.

3.5.1 Estimated interfacial energies

Table 3.2 gives the surface tension parameters for commonly encountered metal oxides and liquids of practical importance. For an example of prediction, we take the mean of the two determinations of Streptococcus thermophilous B (Table 2.1), namely $\gamma^{(\text{LW})} = 37$, $\gamma^{(\circ)} = 0.3$ and $\gamma^{(\circ)} = 60 \text{ mJ/m}^2$. Table 3.3 gives the results of applying Equations (3.19), (3.20) and (3.21) to this data. Electrostatic interactions are neglected, as is appropriate for a physiological solution (approximately 150 mM NaCl). This estimate yields the signs and magnitudes of the energies between infinite planar surfaces.

Table 3.2 Surface tension parameters (in mJ/m2) for common metal oxides and liquids.

<table>
<thead>
<tr>
<th>Substance</th>
<th>$\gamma^{(\text{LW})}$</th>
<th>$\gamma^{(\circ)}$</th>
<th>$\gamma^{(\circ)}$</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alumina</td>
<td>36.4</td>
<td>0.0</td>
<td>4.5</td>
<td>[d]</td>
</tr>
<tr>
<td>Silica</td>
<td>39</td>
<td>0.8</td>
<td>41</td>
<td>[e]</td>
</tr>
<tr>
<td>Titania</td>
<td>43</td>
<td>0.6</td>
<td>46</td>
<td>[e]</td>
</tr>
<tr>
<td>Zirconia</td>
<td>35</td>
<td>1.3</td>
<td>3.6</td>
<td>[e]</td>
</tr>
<tr>
<td>Water/Ethanol</td>
<td>20.5</td>
<td>12.7</td>
<td>46.7</td>
<td>[d]</td>
</tr>
<tr>
<td>Water</td>
<td>22</td>
<td>25.5</td>
<td>25.5</td>
<td>[e]</td>
</tr>
<tr>
<td>Ethanol</td>
<td>19</td>
<td>0.0</td>
<td>68</td>
<td>[e]</td>
</tr>
<tr>
<td>Cellulose</td>
<td>44</td>
<td>1.6</td>
<td>17</td>
<td>[e]</td>
</tr>
</tbody>
</table>

[d] Determined in this work.
[e] (van Oss, 2006).
Table 3.3 Interfacial interaction energies ΔG_{123}^{II} (in mJ/m2) between infinite planes of *Streptococcus thermophilous* B (Gram positive) and two common metal oxides in pure water and a 50%-50% ethanol-water mixture, neglecting electrostatic interactions.

<table>
<thead>
<tr>
<th></th>
<th>Water</th>
<th>Ethanol-water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silica</td>
<td>30.3</td>
<td>-3.1</td>
</tr>
<tr>
<td>Zirconia</td>
<td>-10.7</td>
<td>-29.8</td>
</tr>
</tbody>
</table>

In other words, *Streptococcus thermophilous* B will be repelled from silica in water, but attracted to zirconia; the addition of ethanol will make the bacterium weakly attracted to the silica, and will enhance the attraction to zirconia. It is a corollary of this result that there will be an ethanol fraction at which the silica-*S. thermorohilous* B interaction will be precisely zero.

Another example of interfacial interaction energies is for *Staphylococci epidermidis* NCTC 100892 (Gram positive) (Table 3.4). From the comparison with Table 3.3, the affinities to two metal oxides in pure water and a 50%-50% ethanol-water mixture are only quantitatively different, that is, *Staphylococci epidermidis* NCTC 100892 should be less strongly repelled from silica in water than *Streptococcus thermophilous* B, but otherwise this pattern of interactions is similar. We presume that different types of binding agents are present on the surface of different bacteria, which have different binding affinities (Neu, 1996; Otto *et al.*, 1999; Grossman *et al.*, 2004), in accordance with Hypothesis 1.

Table 3.4 Interfacial interaction energies ΔG_{123}^{II} (in mJ/m2) of *Staphylococci epidermidis* NCTC 100892 (Gram positive) determined from Equations (3.19), (3.20) and (3.21).

<table>
<thead>
<tr>
<th></th>
<th>Water</th>
<th>Ethanol-water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silica</td>
<td>22.0</td>
<td>-2.1</td>
</tr>
<tr>
<td>Zirconia</td>
<td>-2.1</td>
<td>-11.9</td>
</tr>
</tbody>
</table>
Here is another example with a similar pattern. Interfacial interaction energies of *Streptococci sanguis* CR311VAR3 (Gram positive) shown in Table 3.5.

Table 3.5 Interfacial interaction energies $\Delta G_{123}^{\parallel}$ (in mJ/m2) of *Streptococci sanguis* CR311VAR3.

<table>
<thead>
<tr>
<th></th>
<th>Water</th>
<th>Ethanol-water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silica</td>
<td>28.7</td>
<td>-2.9</td>
</tr>
<tr>
<td>Zirconia</td>
<td>-10.6</td>
<td>-27.9</td>
</tr>
</tbody>
</table>

Some other bacteria are given in the following Tables 3.6 to 3.7.

Table 3.6 Interfacial interaction energies $\Delta G_{123}^{\parallel}$ (in mJ/m2) of *Actinobacillus actinomycetemcomitans* HG1099 (Gram-negative).

<table>
<thead>
<tr>
<th></th>
<th>Water</th>
<th>Ethanol-water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silica</td>
<td>-32</td>
<td>-40.1</td>
</tr>
<tr>
<td>Zirconia</td>
<td>-59</td>
<td>-52.2</td>
</tr>
</tbody>
</table>

Now we see strong attraction of *Actinobacillus actinomycetemcomitans* HG1099 to silica in water, as well as to zirconia.

Table 3.7 Interfacial interaction energies $\Delta G_{123}^{\parallel}$ (in mJ/m2) of *Serratia marcescens* RZ37 (Gram-negative).

<table>
<thead>
<tr>
<th></th>
<th>Water</th>
<th>Ethanol-water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silica</td>
<td>-14.7</td>
<td>16.6</td>
</tr>
<tr>
<td>Zirconia</td>
<td>96.7</td>
<td>142.2</td>
</tr>
</tbody>
</table>

Serratia marcescens RZ37 is only attractive to silica in water and strongly repulsive from everything else.
Table 3.8 Interfacial interaction energies ΔG_{123}^{I} (in mJ/m2) of *Serratia marcescens* RZ30 (Gram-negative).

<table>
<thead>
<tr>
<th></th>
<th>Water</th>
<th>Ethanol-water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silica</td>
<td>18.7</td>
<td>-2.4</td>
</tr>
<tr>
<td>Zirconia</td>
<td>-7.8</td>
<td>-14.7</td>
</tr>
</tbody>
</table>

Despite apparent closeness to strain RZ37, its behaviour is rather like that of *S. thermophilous B*.

3.5.2 Calculation of adsorption energies

For more precise calculations, the bacteria could be considered to be uniform spheres interacting with a uniform planar surface (see Figure 3.2), Equations (3.12) and (3.13) (Derjaguin approximation) integrated from $z = \infty$ to z_0. However, the bacteria are mostly not uniform spheres, making the value of this precision doubtful.

3.6 Conclusions

My second hypothesis is that we can deduce bacterial interfacial energies from the adsorption kinetics (Hypothesis 2). It follows that we need an accurate method to measure the kinetics experimentally with the requisite precision. The next Chapter 4 considers this.
Chapter 4 New Ways of Measuring Bacterial Adhesion

4.1 Principle of chemical sensing

The process of sensing includes three main steps: input preparation, surface reaction and signal collection. The purpose of the sensor is to understand and interpret the sample and surrounding situations. It can sense heat, pressure, light, sound in physical sensing; gas, liquid, solid in chemical sensing; DNA, protein, bacteria in biological sensing. Advanced micro- and nanosensors are smaller, faster, smarter, cheaper, etc. than their macro brothers. The capture layer concentrates (captures, see Fig. 4.1) analyte from the sample. Its presence is converted into an electrical, optical, etc, and output by the transducer.

![Figure 4.1 Principle of chemical sensing.](image)

To create a synthetic surface capable of interacting with selected bacteria whose presence is then sensed is an important part of this research.

In the first stage of this work, a variety of pure oxides with different surface free energy parameters were investigated as capture layers (Chapter 6). Finally, nanotextured surface were developed (Chapter 9). In parallel, a practical model for qualifying bacterial adhesion was developed. Mostly, optical waveguide lightmode spectroscopy (OWLS) has been used to monitor capture in situ. The rest of this chapter focuses on the transducer function.
4.2 Principle of waveguide chemical sensing

Many techniques are available for measuring the presence of micro- and nano- objects at a surface (Ramsden, 1994) and one of the most important areas of interest among biosensors is the optical biosensor. However, among of the most informative and versatile methods are those using the evanescent field of total internally reflected light to sense particle on the surface. Not only they are the most sensitive, with mass resolution $\pm 1 \text{ ng/cm}^2$ or better at present but they can offer a straightforward understanding of density profile perpendicular to the sensing surface and thus enable the determination of the mass of the adsorption or number of the adsorbed particles. Among these evanescent field-based methods, optical waveguide lightmode spectroscopy (OWLS) is the most attractive and powerful technique in the field of optical particle sensing.

The basic principle of the reflection of light at the boundary of two transparent dielectrics F (waveguide film) and C (cover) with refractive indices n_F and n_C is encapsulated by Snell’s law:

$$n_F \sin \alpha_F = n_C \sin \alpha_C \quad (4.1)$$

where n_F and n_C are the refractive indices of F and C respectively and α_F and α_C are the angles of incidence and transmission respectively to the normal of the boundary surface. For $n_F > n_C$, a beam of light propagating in the dielectric layer F with an angle α_F to the normal of the dielectric-interface is refracted at the interface with an angle of α_C to the normal of the interface. This is called external reflection. However, if n_F is bigger enough than n_C (for example $\sin \alpha_C = 1$), then $\sin \alpha_F = n_F/n_C$, which means that a ray with an incident angle bigger then this particular α_F will be totally reflected back to F. If a planar dielectric material F is surrounded by two layers, Support and Cover, of which both the refractive indices are smaller than that of the film F, the light is confined between the boundaries with S and C and propagates as a zigzag wave within the film as shown in Figure 4.2

In Figure 4.2, an optical waveguide composed of an optical glass support S with thickness typically 0.5 mm (i.e. thick enough to be mechanically strong) and a high refractive index waveguiding layer F in a few hundred nanometers thick, which gives the highest sensitivity that can be attained with thin waveguides and the cover C that normally is the liquid containing with sample particles. The light can be successfully
propagated by total internal reflection at the F, S and F, C interfaces. The reflectivity will change when particles are adsorbed at the F, C interface. The evanescent field is represented by the penetration distance Δz of the beam beyond the confines of F and decays exponentially with a characteristic length of typically 200-300 nm for the glass-water interface. Modes propagate with discrete phase velocities which depend on the mode number and the polarization, and not only on the refractive indices of S, F but also of the cover C and adlayer A, and the thicknesses of F and A (Ramsden, 1993). The electromagnetic field distributions of various guided modes in an optical waveguide are shown in Figure 4.3.

Depending on the optical parameters of the waveguiding film only certain modes can propagate in the layer. This is at least the zeroth order mode with two different polarizations, the transverse electric (TE) and the transverse magnetic (TM) waves. These have respectively either their electric or their magnetic component perpendicular to the reflection plane.

![An optical waveguide. C: cover medium; A: adlayer of captured sample; F: high refractive index waveguide film; S: glass supporting substrate; d_F: thickness of waveguide film F; α: angle of total internal reflexion; Δz: penetration depth and X: propagation direction of light.](image)

Figure 4.2 An optical waveguide. C: cover medium; A: adlayer of captured sample; F: high refractive index waveguide film; S: glass supporting substrate; d_F: thickness of waveguide film F; α: angle of total internal reflexion; Δz: penetration depth and X: propagation direction of light.
Figure 4.3 Electric field distribution of successive guided wave modes: the zeroth, first and second modes. Bacterial suspensions constitutes the cover, and the discs in the adlayer represent adsorbed bacteria; here the actual decay length of the evanescent fields is -λ/3 where λ is the (vacuum) wavelength of the guided light.

In order to couple an external beam into the waveguide for detecting bacteria, a grating is the most convenient way. One possible way to measure the effective refractive indices \(N(TE), N(TM)\), shown in Figure 4.4. The laser beam is coupled into the waveguide film. At a certain angle either the TE mode or the TM mode (zeroth mode) is excited and measured by a photodetector at the end of the waveguide. By matching the incident laser beam, with its wavelength \(\lambda\), with a possible guided mode \(kN\) falling on the grating with incoupling angle \(\alpha\), one can immediately derive the effective refractive indices \(N(TE), N(TM)\) from the coupling angle using the coupling equation:

\[
kN(n_F,d_F,n_S,n_C) = kn_{air} \sin \alpha + \frac{2\pi L}{\Lambda}
\]

(4.2)

where \(N\) is the effective refractive index \(= c / \nu_p\), where \(\nu_p\) is phase velocity, \(\alpha\) is a coupling angle; \(k\) is a free space wavenumber\(= 2\pi /\lambda\); \(L\) is a diffraction order \((0, \pm1, 2, 3...\) and \(\Lambda\) is a grating constant.

Whenever the diffracted external beam matches a possible guided mode \(kN\) (note that \(N\) depends on the refractive index of the layers \((n_S, n_F, \text{and } n_C)\) and the thickness of \(F\) \((d_F)\), propagation occurs, i.e. the light beam is coupled in and a peak is measured by a photodetector at the end of the waveguide.
Figure 4.4 A diagram of the optical grating biosensor principle. The high refractive index layer (F) is supported on a substrate (S). The cover medium (liquid or air) is C. The red zig-zag represents a guided light beam and the part at the right hand side shows the evanescent fields (right) generated by total internal reflections at the F, A, C and F,S interfaces. The evanescent field interacts with capture layer A, which modifies the waveguide propagation constant and allowing cell shape and size, thin layer formation and dissolution, or more generally polarizability changes, to be monitored and analysed. Waveguide thickness d_F is typically 170 to 220 nm. Capture layer thickness d_A is typically less than 10 nm.

A mode is characterized by its effective refractive index (or mode index) which can be defined by the following equation

$$N = \frac{\beta}{k} = n_F \sin \alpha_F$$

(4.3)

where β is the propagation constant (the wave component parallel to the waveguide), and $k(=2\pi/\lambda)$ is the free space wavenumber. If no adlayer is adsorbed on the surface of the waveguide, then the measured effective refractive indices obey the following three-layer mode equation (Tiefenthaler and Lukosz, 1989) which can be used to calculate the parameters of the system, i.e. determine n_F and d_F in the case of the zeroth order modes) from the measured incoupling angles:
\[\pi m = \frac{2\pi}{\lambda} \sqrt{n_F^2 - N^2 d_F} - \tan^{-1} \left[\frac{\left(\frac{n_F}{n_S} \right)^{2p} \sqrt{N^2 - n_S^2}}{\sqrt{n_F^2 - N^2}} \right] - \tan^{-1} \left[\frac{\left(\frac{n_F}{n_C} \right)^{2p} \sqrt{N^2 - n_C^2}}{\sqrt{n_F^2 - N^2}} \right] \]

(4.4)

where \(\rho = 1 \), \(N = N_{TM} \) for TM mode; \(\rho = 0 \), \(N = N_{TE} \) for TE mode and \(m \) is the mode (in the case of zeroth order mode, \(m = 0 \)). When only these two modes are propagating in the film and \(n_C, n_S \) are known, then by measuring \(N(TE) \) and \(N(TM) \), the optogeometrical parameters, \(n_F \) and \(d_A \), of the waveguiding film can hence be determined. If a thin optically isotropic adlayer (\(d_A \ll \lambda \)) is formed on the surface, then it leads to the four-layer mode equations (Tiefenthaler and Lukosz, 1989),

\[\pi m = \frac{2\pi}{\lambda} \sqrt{n_F^2 - N^2} \left\{ d_A + d_A \left[\frac{n_A^2 - n_C^2}{n_F^2 - n_C^2} \left(\frac{N}{n_C} \right)^2 + \frac{n_A^2 - n_F^2}{n_F^2 - n_C^2} \left(\frac{N}{n_F} \right)^2 - 1 \right] \right\} \]

- \[\tan^{-1} \left[\frac{\left(\frac{n_F}{n_C} \right)^{2p} \sqrt{N^2 - n_C^2}}{\sqrt{n_F^2 - N^2}} \right] - \tan^{-1} \left[\frac{\left(\frac{n_F}{n_C} \right)^{2p} \sqrt{N^2 - n_C^2}}{\sqrt{n_F^2 - N^2}} \right] \]

(4.5)

where, as before, \(\rho = 0 \) and 1 for the TE and TM modes respectively. If \(n_C, n_S, n_F \) and \(d_F \) are known, by solving these equations simultaneously to the parameters characterizing the adlayer \(d_A \) and \(n_A \) can be determined when \(N(TE) \) and \(N(TM) \) are measured, i.e., the adlayer parameters are calculated explicitly from the linearized 4-layer model (Ramsden, 1993), assuming the optogeometrical parameters of the waveguide film \((n_F \) and \(d_F) \), the refractive indices of the cover \((n_C) \) and the substrate \((n_S) \), \(\lambda \) and mode number \((m=0) \) are known. Equations for practical use are:

\[n_A = \left[\frac{F_M(N(TM))}{A(N(TM))} - d_F \left(\frac{1}{n_C^2} + \frac{1}{n_F^2} \cdot \frac{1}{N(TM)^2} \right) - \frac{1}{n_C^2} + \frac{1}{N(TM)^2} \right]^{1/2} \]

(4.6)

and

\[d_A = \left[\frac{F_E(N(TE))}{A(N(TE))} - d_F \left(\frac{n_F^2 - n_C^2}{n_A^2 - n_C^2} \right) \right] \]

(4.7)
where

\[A(N) = \frac{2\pi}{\lambda} \sqrt{n_s^2 - N^2} \]

(4.8)

\[FE(N) = \tan^{-1} \left[\frac{N^2 - n_s^2}{n_s^2 - N^2} \right] + \tan^{-1} \left[\frac{N^2 - n_c^2}{n_c^2 - N^2} \right] \]

(4.9)

and

\[FM(N) = \tan^{-1} \left(\frac{n_s^2}{n_s^2} \sqrt{\frac{N^2 - n_s^2}{n_s^2 - N^2}} \right) + \tan^{-1} \left(\frac{n_c^2}{n_c^2} \sqrt{\frac{N^2 - n_c^2}{n_c^2 - N^2}} \right) \]

(4.10)

It must be emphasized that the effective refractive indices N of an optical waveguide are a function not only of the materials of the waveguide properties, but also its environment (Tiefenthaler and Lukosz, 1989; Ramsden, 1993; Tien, 1977).

Table 4.1 summarizes the contributions to the uncertainty of the effective refractive index caused by the environment and mechanical properties of the apparatus used to measure \(\alpha \). During the measurement, the refractive index of the air will increase/decrease if the room temperature decreases or increases. The uncertainty of effective refractive index \(\Delta N \) is therefore ± 1~2 × 10^{-6}, note that all the contribution are of comparable magnitude.

Table 4.1 Contributions to the uncertainty of effective refractive index N in an input grating coupler (Ramsden, 1997).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Typical value</th>
<th>Uncertainty</th>
<th>Physical origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n_{\text{air}})</td>
<td>1.0002673</td>
<td>10^{-7}</td>
<td>Temperature fluctuations (±1°C)</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>0.09 rad</td>
<td>1.25x10^{-6} rad</td>
<td>Goniometer (mechanical instability)</td>
</tr>
<tr>
<td>(\lambda)</td>
<td>632.816 nm</td>
<td>0.001 nm</td>
<td>Laser mode jumping</td>
</tr>
<tr>
<td>(\Lambda)</td>
<td>416.147 nm</td>
<td>0.001 nm</td>
<td>Grating lateral thermal movement</td>
</tr>
</tbody>
</table>
4.3 Theory: analysis of results

4.3.1 Calculation of the number of adsorbed bacteria

The raw data from the OWLS measurement consist of sequential values of effective refractive index. Bacteria are somewhat too big to fulfill the conditions enabling us to make the uniform thin film approximation (UTFA) (Mann et al., 1997) in order to calculate \(b \). We could possibly correct the values determined from the UTFA, but since the correction requires parameters we do not have, we prefer to use a different procedure.

The number of adsorbed bacteria \(b \) is, to a good approximation, linearly proportional to the effective refractive index \(N(t) \). However, the constant of proportionality depends on the thickness and the refractive index of the waveguide prior to adsorption. To allow for this, we define a normalized effective refractive index:

\[
\tilde{N}(t) = \frac{N(t) - N_0}{N_0}
\]

(4.11)

where \(N_0 \) is the effective refractive index prior to adsorption. We therefore assume that \(b \) (the number of bacteria adsorbed on the surface) is proportional to \(\tilde{N} \).

Provided the adsorption is quasi-irreversible, \(b \) will saturate at the jamming limit. Hence,

\[
b_{\text{sat}} = \frac{\theta_j}{a}
\]

(4.12)

where \(a \) is the area occupied by one bacterium (determined from micrographs). This Equation (4.12) provides us with the means to calibrate \(\tilde{N}(t) \), i.e.

\[
\frac{\tilde{N}(t)}{\tilde{N}_{\text{sat}}} = \frac{b(t)}{b_{\text{sat}}}
\]

(4.13)

The waveguides were examined in an optical microscope before and after exposure to the bacteria to verify (i) the cleanliness of the starting slide, and (ii) to check the precision of the calculation of \(b \).
Chapter 5 Experimental Methods

5.1 Overview

The general approach was to use coated planar optical waveguides as adsorbing substrata for the bacteria when a fresh bacterial suspension was brought in contact with a waveguide, and to determine the kinetics of adsorption and the quantity adsorbed via continuous measurement of the effective refractive indices (phase velocities) of the zeroth order transverse magnetic (TM) and/or the transverse electric (TE) guided modes.

This chapter is organized as follows:
5.2 Culture and storage of bacteria
5.3 Viability
5.4 Resuspension
5.3 Estimation of concentration of bacteria in suspension
5.4 Determination of size of bacteria
5.5 Optical waveguide sensor
5.6 Waveguide cleaning process
5.7 Optical Waveguide Lightmode Spectroscopy (OWLS)
5.8 The propensity for Escherichia coli to adhere on gratings
5.9 Surface design by sputtering method (Future work)

5.2 Culture and storage of bacteria

The bacteria used for this work were Escherichia coli (strain JM83, a K12 derivative) and Lactobacillus plantarum. These two were chosen as they are common nonpathogenic strains widely used for research, which makes them good representatives for investigating bacterial adsorption. Culture was carried out in the microbiology lab in Cranfield Health in Silsoe under Dr. Sarah Morgan’s instructions. The materials for plate culture are general microbiological laboratory reagents including 10 g tryptone, 5 g NaCl, 10 g yeast extract. The materials were suspended into 1 L of distilled water to make a Luria broth (LB), then autoclaved at 120 °C. After cooling, 15 g of agar was added to the LB for making the bed on Petri dishes. The standard procedures for bacterial growth are follows:

5 Provided by Dr. Sarah Morgan in Cranfield Health in Cranfield University.
(1) Take an agar plate and label it with the bacteria details with name and the condition of environment.
(2) Take inoculation loop and heat until red to remove any contaminants from loop.
(3) Let the loop cool to room temperature and use it to take a small quantity of culture from the frozen stock.
(4) Streak one quarter of the plate with bacteria.
(5) Flame the loop again as above and let it cool down again.
(6) Rotate the plate one quarter and streak from the end of the first part.
(7) Repeat step 5 and 6 until the plate is treated.
(8) Incubate the plate at 37 °C for 24 hours and during this time, colonies develop.

After 24 hours incubation, a fresh and single colony of *E.coli* was grown and ready either for an adsorption experiment (see next paragraph) or stored in the freezer at -80 °C.

A live sample of *E. coli* was cultured in 100 ml Luria broth (LB) overnight for approx. 18 hours at 37 °C. *Lactobacillus plantarum* was cultured in 100 ml MRS broth overnight at 30 °C. After liquid culture, each of the samples were centrifuged at 1300 rpm for 10 min at 4 °C to pellet the bacteria. After removal of the supernatant, pellets were resuspended in cold phosphate-buffered saline (PBS) and centrifuged as above. This was a wash step to remove traces of the liquid broth, which may interfere with the surface in the adsorption measurement. After supernatant removal, the pellets were resuspended in cold aqueous buffer, either PBS or Z (HEPES) buffer. They were then stored at 4 °C before use.

5.3 Viability

Where necessary, the viability of the bacteria was checked by spread plating technique. The materials for plate culture are general microbiological laboratory reagents including 10 g tryptone, 5 g NaCl, 10 g yeast extract. The materials were suspended into 1 L of distilled water to make a Luria broth (LB), then autoclaved at 120 °C. After cooling, 15 g of agar was added to the LB for making beds in Petri dishes. Figure 5.1 shows the growth of *E. coli* on an agar plate and Figure 5.2 shows the viability test of *E.coli*.
Figure 5.1 *E.coli* growth on agar.

(a) After 1 hour
(b) After 10 hours
(c) After 15 hours
(d) After 24 hours

Figure 5.2 Viability test of *E.coli*.
5.4 Resuspension

Bacterial preparations were allowed to dry on a glass cover slip and examined in a Philips XL Series environmental scanning electron microscope (ESEM). A typical image is shown in Figure 5.3. Some of these preparations were coated with gold and examined in a Hitachi S-4200 scanning electron microscope (SEM). A typical image is shown in Figure 5.4. From these two figures it can be seen that the bacteria are actually quite polydisperse (variable in both size and shape). Figure 5.5 shows different magnifications and appearances.

![Figure 5.3 Typical ESEM image of E. coli.](image)
Figure 5.4 Typical SEM image of *E. coli* (gold-coated).

Figure 5.5 SEM images of *E. coli* (gold-coated).
5.5 Estimation of concentration of bacteria in suspension

The concentration c of bacteria in suspension was counted using a hemocytometer under an optical microscope. The hemocytometer (Figure 5.6) is a common device for counting cells or other microscopic particles in solution and provides a direct and visual approximation of cell concentrations in a specific volume. The hemocytometer was provided by Marienfeld (GmbH, Marienfeld, Germany, Neubauer-improved model). The bacterial suspension was diluted 10 to 100 times if the number of bacteria was too great to count.

![Hemocytometer](image)

Figure 5.6 Hemocytometer.

The typical procedure was:

1. Collect 5 ml fresh samples from liquid cultured bacterial suspensions and dilute the concentration 10x with 50 ml PBS buffer solution.
2. Place a 50 μl drop of the diluted bacterial sample between the cover glass and the counting chamber on the hemocytometer.
3. Count the number of bacteria in five 0.2x 0.2 mm squares R₁ to R₅ (see Figure 5.7) and average.

Example: average numbers of *E. coli* per 0.04 mm² is 393, which means 9,825 *E. coli* in 1 mm². Because the thickness is 0.1 mm (see Figure 5.6), the number of *E.coli* in 1 ml in the original undiluted sample is 9.825×10^8 cells in buffer solution.
5.6 Determination of the size of the bacteria

Usually colony size and morphology in many bacteria, including *E. coli* and *L. plantarum* can greatly vary from strain to strain in the same media. The outer aspect of a colony is not a good guide for identification. There is, however, we determined the size of bacteria using electron microscopy in this work for the consistency of the modeling adsorption kinetics.

5.6.1 Optical microscopy

Microscopic characterizations of bacterial suspensions were allowed to adsorb for 10 minutes on glass cover slips cleaned in the same way as the waveguides. The slides were examined in a Nikon 400X microscope (Figure 5.8) and Leica DM LB2 phase contrast microscope (Figure 5.9); the typical images are Figure 5.10 and Figure 5.11 respectively. For these preparations the bacterial stock solutions were diluted 100 times in buffer.
Figure 5.8 Nikon 400X microscope.

Figure 5.9 Leica DM LB2 phase contrast microscope.
5.6.2 Electron microscopy

This observation contrasts with the textbook characteristics of *E. coli* — a motile Gram-negative rod-shaped bacterium, 2 µm in diameter and 4 µm in length (Figure 5.12), and *Lactobacillus plantarum* - a non-motile Gram-positive rod-shaped bacterium, with a size of approximately 1 µm in diameter and 6 µm in length (Figure 5.13).
Figure 5.12 Representative SEM micrograph of *E.coli*.

Figure 5.13 Representative SEM micrograph of *L. plantarum*.
5.6.3 Quantitation of size

The mean geometrical parameters of both bacteria are shown in Table 5.1. The size of each bacterium is different and varies from 50 to 100 nm in length and width. We assume that the diffusivity of bacterium is in homogeneous, isotropic, viscous media; hence, the diffusion coefficient D of the bacterium was determined from the Stokes-Einstein equation assuming the bacteria to be spherical:

$$D = \frac{k_B T_S}{6\pi \eta r}$$ \hspace{1cm} (5.1)

where k_B is Boltzmann’s constant ($k_B = 1.38 \times 10^{-23} \text{ J K}^{-1}$), T_S is the absolute temperature, r is the bacterial equivalent radius (i.e., the radius of the sphere equal to the radius of the disc with the same projected area as that of the (irregularly shaped) bacterium) and η is the viscosity of the medium (taken to be that of pure water ($1.002 \times 10^{-3} \text{ Ns/m}^2$ at 20 °C).

<table>
<thead>
<tr>
<th>Strain</th>
<th>Mean length/nm</th>
<th>Mean width/nm</th>
<th>Projected area \bar{a}/μm2</th>
<th>Equivalent radius r/nm</th>
<th>Diffusivity D/m2s$^{-1}$ @20 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli</td>
<td>4270±100</td>
<td>1256.12±100</td>
<td>5.02±0.01</td>
<td>1260 ±100</td>
<td>1.693x10$^{-13}$</td>
</tr>
<tr>
<td>Lactobacillus plantarum</td>
<td>2470±100</td>
<td>891.57±100</td>
<td>2.03±0.01</td>
<td>803 ±100</td>
<td>2.663x10$^{-13}$</td>
</tr>
</tbody>
</table>

This assumes that the evidently spherocylindrical bacteria adsorb with their long axis parallel to the substratum surface.

5.7 pH buffer solution

The buffer solutions for bacteria adsorption were PBS, Z1 and Z1150 buffer. The composition of the PBS was 0.14 M NaCl, 3 mM KCl and 0.01 M sodium phosphate buffer (pH 7.4), purchased in tablet form from Gibco (Paisley, Scotland). The Z1 buffer was made from 2.383 g of HEPES and 0.688 ml of 6 M KOH in 1 litre at 0.01 M (pH 7.4). The composition of Z1150 was Z1 with an additional 0.15 M NaCl.
5.8 Optical Waveguide Lightmode Spectroscopy (OWLS)

Optical waveguide lightmode spectroscopy (OWLS) is adequate for providing the high-accuracy kinetic data required with excellent time resolution. In this technique, the adsorbing surface (which should be ultra-smooth and planar) performs a dual role as both adsorbent and as an optical waveguide. The adsorbing surface is an optical waveguide, which can be coated with desired materials beforehand, and the spectrum of guided modes is measured by the grating coupler. The time resolution of the measurement depends on the particular experimental arrangement, see Chapter 4.

The optical waveguide is mounted on a goniometer, which is used for measuring the effective refractive indices N_{TE} and N_{TM} (Figure 5.15) while the biological samples flow through a cuvette of which the waveguide forms the floor. As the goniometer rotates with respect to the fixed laser beam, successive discrete modes (TM$_0$, TE$_0$, etc.) are coupled into the waveguide and received at the photodetector (Ramsden et al., 1995).

The adsorption results presented in this thesis were obtained with the integrated optical scanner IOS-1. This is a commercially available instrument produced by the company Artificial Sensing Instruments (ASI, Zürich, Switzerland). Here the most basic model was used which consists of four main parts (Figure 5.14). The main part contains the measuring head with the sensor chip and detector photodiodes, preamplifiers, goniometer with the stepping motor for varying incoupling angle α, and the laser light source (see Figure 5.15). The second part is a PC-compatible computer with an A/D converter board. All the measurements are controlled by the computer. The third part is a power supply unit PSU 1-3 for the sensor system; this unit also contains a main signal amplifier. The fourth part is a peristaltic pump (Gilson Miniplus 3, Gilson Medical Electronics, Villiers-le-Bel, France) (see Figure 5.16); this is connected to the flow cell (cuvette) (see Figure 5.17).
Figure 5.14 Integrated Optical Sensor (IOS-1), made by ASI.

Figure 5.15 Goniometer (Vörös J. et al., 2002).
In this work, all the experiments were carried out at room temperature. To minimize temperature fluctuations during measurements, the main part was covered with a Perspex box. The flow cell was cylindrical and made from passivated aluminium. It was sealed to the chip with a Kalrez O-ring. The diameter was 1 cm and the total volume was 34 μl. The cuvette was clamped and sealed to the surface of the sensor chip with the help of a screw.
Inlet and outlet tubes of the flow cell were made of Teflon and had an inner diameter of 0.3 mm. The peristaltic pump was placed after the cuvette, which means that the solutions are sucked rather than pumped through the cell. This avoids contamination from the soft rubber tubing of the pump but sometimes leads to air bubble formation inside the flow cell. The tube between the sample solution holder and the cuvette was 20 cm long, which the total volume of solution in tube is 14 μl.

5.8.1 Optical waveguide grating coupler sensor chip (OW2400)

An optical waveguide grating coupler sensor chip is shown in Figure 5.18, it is the key element of the optical waveguide sensor and is used to sense the adsorption of the cells. For exact and reliable measurements, the waveguide chips need high specification characters, for example the thickness and the refractive index of the waveguiding layer, the fine periodicity of the grating, etc. The chip can be divided into three layers: optical glass substrate, thin waveguide layer with fine optical grating, and cover medium. There is a resonance angle, at which a linearly polarized laser (He-Ne) is coupled via the grating into waveguide layer (see Chapter 4). This incoupling angle will change if there is some adsorption of cells on the waveguide surface.

![Waveguide grating coupler sensor chip](image)

Figure 5.18 Waveguide grating coupler sensor chip (Made by MicroVacuum Ltd).

Sensor chips (Figure 5.18) for the IOS-1 instrument consist of a glass support S and a waveguiding film F resting on the top of S. The dimension of the chip is 48 mm long, 16 mm wide and 0.6 mm thick. The grating is 2 mm wide and has a depth of about 15 nm (details are in Table 5.2). The thickness of F is typically in the range of 170-220 nm and produced by pyrolyzed sol-gel dip coating (ASI 2400, made by Microvacuum Ltd., Budapest, Hungary). The incoupling grating was made by an embossing method. During embossing, the substrate with the gel film bends under the applied force produced by pneumatic cylinder and touches the master grating with 2400 lines/mm periodicity, the sol-gel material on the substrate fills the grooves of the master grating and a replica is formed in the sol-gel film.
Table 5.2 Physical and optical parameters of the sensor chip.

<table>
<thead>
<tr>
<th>Sensor Chip</th>
<th>Characterization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substrate Glass Slide (L x W x H)</td>
<td>48 mm x 16 mm x 0.55 mm refractive index (n_s)=1.53</td>
</tr>
<tr>
<td>Surface Relief Structure</td>
<td>depth ≈ 5~15 nm</td>
</tr>
<tr>
<td>Grating Periodicity</td>
<td>2400 lines/mm</td>
</tr>
<tr>
<td>Grating Area Dimensions</td>
<td>length (l) = 2 mm</td>
</tr>
<tr>
<td></td>
<td>width (w)=16 mm</td>
</tr>
<tr>
<td>Waveguide Material (Sol-Gel)</td>
<td>Si_xTi_(1-x)O_2, where x=0.75±0.05</td>
</tr>
<tr>
<td>Waveguide Film</td>
<td>refractive index (n_f)=1.77±0.03</td>
</tr>
<tr>
<td></td>
<td>thickness (d_f)=170-220 nm</td>
</tr>
</tbody>
</table>

Different surfaces. Physical vapour deposition (PVD) was used to coat them with a thin (10–20 nm) layer of silica, titania alumina or zirconia.

5.9 Waveguide cleaning process

The surface properties of the chips are of great importance when doing any surface adsorption experiments or chemical modification of the chip surface. Unfortunately, the surface properties of the chip can vary quite a lot (e.g. due to contaminations) even when the chips come from the same product line. Although the chips were planned originally to be disposable, in practice they must be regenerated, not only because of their current relatively high price at present, but also due to the uniqueness of the chips, i.e. to produce reliable results, the same chips should be used in a series of experiments. This is only possible when the cleaning method used to regenerate the chips does not modify the surface properties of the sensors. Brand new chips may also be strongly contaminated (e.g. from the atmosphere or the package box) and should not be used directly.
A numbers of methods have been reported to clean the sensor chips in a reproducible ways:

(1) 30 minutes in Caro’s acid (permonosulphuric acid, H$_2$SO$_5$; (Kurrat et al., 1994));

(2) 10 minutes in an ultrasonic bath containing 10% Contrad 90® (Technosa SA, Lausanne, Switzerland) and then 1 minute in chromic acid (Nellen and Lukosz, 1990; Nellen and Lukosz, 1991);

(3) Washing with undiluted Deconex®(Borer Chemie AG, Switzerland) and then 5 minutes sonication in 10 % solution of Deconex® (Clerc and Lukosz, 1997). Between the different cleaning steps, the chips were always extensively rinsed in distilled water;

(4) We use standard planar optical waveguide sensor chip (ASI2400) obtained from MicroVacuum (Budapest). Prior to use, the waveguides were cleaned by immersing in chromic acid for 3 minutes and then very briefly dipped in potassium hydroxide (KOH) immediately afterwards to minimize the damage to grating. Then the waveguides were sonicated with deionized water at room temperature, changing the water frequently during sonication. Finally they were dried with filtered nitrogen and treated with O$_2$ plasma at 20 mW for 3 minutes. The waveguides were kept in deionized water for at least 30 minutes before measurement.

(5) A very effective method is cleaning in an oxygen plasma: 2 minutes removes any organic contamination from the surface, especially if some preliminary cleaning (washing with ethanol) is also carried out. After plasma treatment the surface is rather hydrophilic with a low contact angle (Chien et al., 2005). These freshly cleaned surfaces are so reactive that after one hour in air they will be contaminated. To avoid this, one can only use freshly cleaned chips or must keep the cleaned chips in pure water or buffer solution.

(6) Prior to use, the waveguides were cleaned by agitated immersion in a 1% solution of COBAS Integra cleaner (Roche) at room temperature (25 °C), and equilibrated in PBS or Z1150 until a stable baseline was achieved.
For my experiments, the above cleaning process (4) was combined with oxygen plasma treatment (5). Procedure (6) was used between members of a series of consecutive experiments. A considerable inconvenience is the baseline drift of the chips, which means a slow change in N(TE) and N(TM) whenever a chip is placed in contact with a new cover medium C. The changes may last for tens of minutes to tens of hours so pre-soaking the waveguide chips in the buffer before measurement is needed to get the saturated baseline. Previous work shown that it is possible to reduce the N(TE) and N(TM) drift to 1.6×10^{-8} s$^{-1}$ and a slightly bigger drift could be acceptable (Csúcs and Ramsden, 1998b). With Kurrat’s ASI-eval program6, it is possible to extrapolate and subtract the baseline drift from the measured curves.

5.10 Adsorption experiments

The waveguides were sealed to a cylindrical flow-through cuvette such that they formed the floor of the cuvette. The assembled cuvette was mounted in an IOS-1 integrated optical scanner (Artificial Sensing Instruments, Zürich). The bacterial suspension was pumped through the cuvette using a Gilson Minpuls 3 peristaltic pump at a flow rate F of $10 \, \mu l/s$. After a steady condition was reached, flow was switched back to pure PBS or Z1150 without bacteria. The effective refractive indices N of the zeroth transverse magnetic (TM$_0$) and transverse electric (TE$_0$) modes at a wavelength $\lambda = 632.814$ nm were determined by continuously scanning the incoupling angles.

Choice of concentration of bacteria. It was found that diluting the original liquid cultures 100x gave conveniently measurable kinetics.

6 Evaluation program written by Dr. Roger Kurrat for OWLS results, based on Equation (4.4).
An outline of the procedure is given in Figure 5.19 and the details are described in Figure 5.20.

Figure 5.19 Outline of adsorption kinetics measurement procedure.
Figure 5.20 Standard procedures (experimental flow chart).
5.11 The propensity for *Escherichia coli* to adhere to gratings

Since the use of the grating coupler inevitably implies that deposition takes place on the grating (albeit a shallow one), it was of interest to investigate the influence of the grating on bacterial adsorption.

5.11.1. Grating Fabrication

In this work, two types of grating (U grooved and V grooved) were applied to a common polymer biomaterial PMMA, the dimension of the substrate 10 mm x 10 mm x 3 mm. The specific gravity of PMMA is 2.1 g cm\(^{-1}\) and the melting point is 170 °C.

The fabrication technique of the nanostructure is the hot embossing method. The die material is silver-nickel alloy, and is commercially available (a part of the dies used to emboss DVD ROMs). The dimensions of the U groove were 400 nm in width and 200 nm in depth (Figure 5.21) and the V groove had the same width of 200 nm but was only 50 nm in depth (Figure 5.22).

![Figure 5.21 U-grooved structure.](image1)

![Figure 5.22 V-grooved structure.](image2)

The schematic diagram of hot embossing is shown in Figure 5.23. During the experiments, the optimized condition for making fine grating on PMMA is a 400 kg load at 150 °C for 90 seconds. After applying the U-grooved and V-grooved gratings on PMMA, the substrates were sterilized in an autoclave at 121 °C for 30 minutes and then put into a flask containing a suspension culture of *E.coli* at 37 °C for 24 hours after cooling.
5.11.2 Fabrication results

The structure of U-grooves and V-grooves on PMMA were investigated by scanning electronic microscopy (Figure 5.24). The results of atomic force microscopy (AFM) are shown in Figures 5.25 and 5.26. Grating shapes are satisfactory and can be changed by grating die redesign.

Figure 5.24 SEM images of V-grooved grating (Left) and U-grooved (Right) on PMMA.
Figure 5.25 AFM image of U-grooved grating on PMMA.

Figure 5.26 AFM image of V-grooved grating on PMMA.
5.11.3 Adhesion results

In order to investigate the affinity of ungrooved PMMA to *E.coli* for comparison, we also simply placed the ungrooved PMMA into an agitated *E.coli* suspension for 24 hours at 37 °C and rinsed with pure water. Figure 5.27 shows the SEM results. Although pure PMMA is fairly hydrophobic (water contact angle is 53 °C), nevertheless only very few *E.coli* cells randomly attached to the ungrooved PMMA (Right). Note that PMMA is well known as a biocompatible material for contact lenses and intraocular devices (Alava *et al.*, 2005; Bertoluzza *et al.*, 1991).

![Figure 5.27 SEM image of ungrooved PMMA before (Left) and after (Right) placing in an E. coli suspension culture.](image)

The modulated surfaces made by the hot embossing method into U and V grooves have been shown in Section 5.8.2 and the results of the U-grooved and V-grooved modified structures of PMMA placed in an agitated *E.coli* suspension are shown in Figure 5.28. The U-grooved and V-grooved modified structures of PMMA were kept in an agitated *E.coli* culture suspension for 24 hours at 37 °C. The SEM results show that both modified surfaces are more attractive than a smooth PMMA surface. The results also show that a V-grooved surface has less attraction than a U-grooved surface. This could be due to the higher aspect ratio of U-grooved PMMA: the grooves dominate the attachment and the orientation of *E.coli* (Curtis and Wilkinson, 1997; Curtis and Wilkinson, 2001; Edwards and Rutenberg, 2001; Curtis, 2004) and give the benefit of preventing the accumulation of bacteria. On the other hand, the V-grooved structure
shows no cell agglomeration and alignment effect, this will allow that bacteria to more easily congregate together and results in biofilm formation afterwards (Fux et al., 2005; van Houdt and Michiels, 2005; Diaz et al., 2007).

![Image](image_url)

Figure 5.28 After *E. coli* suspension culturing and drying at room temperature. V-grooved (Left) and U-grooved (Right).

5.11.4 Conclusions

The surfaces with a nanostructured grating raise the adhesion surface area for *E.coli* and the alignments of bacteria is demonstrated on SEM images and indicate that a nanostructured substratum can control the adhesion behaviour of *E. coli* cells, rather than the surface chemical properties of the substratum material in this study. This is in contradiction to the earlier work of (Magnani et al., 2003; Wong et al., 2004). *E. coli* cells were found to be aligned along the nanogrooved surface with a higher aspect ratio, which is not beneficial for the further aggregation and growth of *E. coli* cells due to the 1-D confinement effect. However for some applications this may be advantageous.

In summary, designed surfaces made by the hot embossing method (U and V grooves) have been demonstrated here. Surfaces with low aspect ratio give rise to random adhesion of *E.coli*, and surface with high aspect ratio give rise to the alignment and orientation of bacteria along the grooves.

Note that these gratings are much deeper than the optical waveguide grating couplers.
Chapter 6 Bacteria Interacting With Smooth Pure Substrata

Figure 6.1 shows the results from a typical adsorption/desorption experiment. Adsorption approaches saturation, apparently asymptotically. Upon flooding with buffer solution at the same flow rate, some bacteria were desorbed (in this case). Note that our bacterial suspensions (original liquid culture) were aliquotted into small Eppendorf tubes and kept at -20 °C until required. The procedure for 100x dilution was to put 0.5 ml of the original suspension from an Eppendorf tube into 49.5 ml of buffer solution with a pipette. 50x dilution was made by adding 1 ml of the original suspension from an Eppendorf tube to 49 ml buffer solution and 200x dilution was made by adding 0.25 ml of the original suspension from an Eppendorf tube to 49.75 ml buffer solution.

![Graph showing adsorption and desorption of bacteria](image)

Fig 6.1 The results from a typical adsorption/desorption experiment for E. coli. Concentration $c_b = 1.04 \times 10^8$ cells/ml (100X dilution), adsorbing on zirconia in Z1. The temporal limits of the curve segments used to calculate N_0 and N_{sat} are shown. Marker 1 indicates the start of bacterial flow and marker 2 indicates its end (after which the cuvette is flooded with buffer). [Experimental code: 080304-5]
The rest of this chapter is organized as follows.

First, we describe the standard drill used to analyze the results, applicable to all the data. Then we present the actual data that comprise the measurements of the two bacterial strains, *Escherichia coli* and *Lactobacillus plantarum*, (their salient surface properties are summarized in Table 6.1 and 6.2) adsorbing on alumina, silica, titania and zirconia, in the presence of different aqueous media of differing ionic strengths.

Table 6.1 The salient surface properties of the bacterial strains.

<table>
<thead>
<tr>
<th>Strain</th>
<th>$\gamma_{(LW)}$</th>
<th>γ^\oplus</th>
<th>γ^\ominus</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli K12</td>
<td>35.1</td>
<td>2.2</td>
<td>38.5</td>
<td>[c]</td>
</tr>
<tr>
<td>E. coli O8K(A)28</td>
<td>36</td>
<td>2.1</td>
<td>27.4</td>
<td>[a]</td>
</tr>
<tr>
<td>E. coli Hu734</td>
<td>37.2</td>
<td>1.5</td>
<td>52.8</td>
<td>[b]</td>
</tr>
<tr>
<td>E. coli O2K2</td>
<td>36.4</td>
<td>2.9</td>
<td>14.9</td>
<td>[a]</td>
</tr>
<tr>
<td>E. coli O2K7</td>
<td>34.3</td>
<td>1.5</td>
<td>47.4</td>
<td>[a]</td>
</tr>
<tr>
<td>E. coli O157K</td>
<td>31.6</td>
<td>3.1</td>
<td>50.3</td>
<td>[a]</td>
</tr>
<tr>
<td>L. plantarum</td>
<td>39.3</td>
<td>1.3</td>
<td>28.1</td>
<td>[c]</td>
</tr>
<tr>
<td>L. plantarum RC6</td>
<td>40.3</td>
<td>0.3</td>
<td>54.4</td>
<td>[a]</td>
</tr>
<tr>
<td>L. plantarum RC20</td>
<td>38.3</td>
<td>2.4</td>
<td>1.8</td>
<td>[a]</td>
</tr>
</tbody>
</table>

[a] (van der Mei *et al.*, 1998)
[b] (Reid *et al.*, 1996)
[c] In the absence of measurements of our strains, the expedient of simply averaging all available data for closely related strains has been adopted.
Table 6.2 Aqueous buffer media at 25 °C (cf. Section 5.4).

<table>
<thead>
<tr>
<th>Medium</th>
<th>Buffer</th>
<th>Salt</th>
<th>pH</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z1</td>
<td>10 mM Hepes</td>
<td>0</td>
<td>7.4</td>
<td>[a]</td>
</tr>
<tr>
<td>Z1150</td>
<td>10 mM Hepes</td>
<td>150 mM NaCl</td>
<td>7.2</td>
<td>[b]</td>
</tr>
<tr>
<td>PBS</td>
<td>10 mM Phosphate</td>
<td>140 mM NaCl</td>
<td>7.4</td>
<td>[c]</td>
</tr>
</tbody>
</table>

[a]: (Good et al., 1966)
[b]: (Cacace et al., 1997)
[c]: GIBCO® PBS Tablets Cat. No. 18912-014.

6.1 Data treatment

The raw data (N(t), for TE or TM) were first examined for the stability of the baseline (prior to addition of bacteria). If there was a uniform drift, it was extrapolated and subtracted from the measured points. If it had a progressively diminishing slope, it was assumed to approach stability logarithmically, and a logarithmic function was fitted to the baseline, which was extrapolated and subtracted from the rest of the curve.

The corrected (where it was necessary) data were then transformed according to Equations (4.11 to 4.13). From Equations (4.12) and (4.13), we get

$$b(t) = \frac{\bar{N}(t)}{N_{sat}} \cdot \frac{\theta_j}{\bar{a}}$$

(6.1)

using areas from Table 5.1 and $$\theta_j = 0.54$$ (Table 3.1)---note that this value applies to aspect ratios of both one and about 3---we get the number of bacteria adsorbed on the surface of waveguide. In other words, we assume that $$b_{sat}$$ corresponds to the jamming limit. Figure 6.2 shows the data of Figure 6.1 transformed to a plot of number of bacteria adsorbed at the surface vs. time.
Figure 6.2 Data of Fig 6.1 transformed to yield \(b(t) \). The temporal limits of the curve segments used to calculate \(b_{\text{sat}} \) and \(b_w \) are shown. Marker 1 indicates the start of bacterial flow and marker 2 indicates its end (after which the cuvette is flooded with buffer). The initial tangent is labelled \(T_a \).

\(b_{\text{sat}} \) is the saturation value and \(b_w \) is the number of adsorbed bacteria remaining on the surface after flooding with buffer. We use the ratio \(b_w / b_{\text{sat}} \) as a measure of the irreversibility of the adsorption.

6.2 Data analysis

From the discussion of adsorption in Section 3.1, we now give the canonical equation for addition to a surface, specifically for bacteria, as (cf. Equation (3.8)):

\[
\frac{db}{dt} = k_a c_s \phi(a,b) \tag{6.2}
\]

where \(k_a \) is the rate coefficient for adsorption, \(c_s \) is defined as the (approximately) stationary concentration of particles in a layer directly above the surface, given by Equation (3.8), and the available area function \(\phi \) depends on \(b \) and \(a \), the area occupied by one bacterium.
Since the precision of the determination of the bacterial concentration is not very great, we approximate \(c_s \) as equal to \(c_b \) in Equation (6.2).

Equation (6.1) implies that we can estimate \(k_a \) from the initial slope of the \(b(t) \) curve when \(\phi \) is still practically equal to 1 (tangent \(T_a \) in Figure 6.2). i.e., \((db/dt)_{t \to 0} = k_a c_b \).

From Equation (3.3), we then estimate \(\Delta G_a \):

\[
\Delta G_a = -k_B T \ln \left(\frac{k_a \delta_a}{D} \right)
\]

(6.3)

where \(k_B \) is the Boltzmann constant \((1.38 \times 10^{-23} \text{ J/K}) \). The diffusion coefficient \(D \) was determined using the Stokes-Einstein Equation (see Equation (5.1)). I assume \(\delta_a \) is equal to the equivalent radius \(r \) of the bacterium.

By numerical differentiation, the \(b(t) \) data were transformed into \(db/dt \) and plotted against \(b \). This enabled Equation (6.2) to be fitted directly. A convenient expression for \(\phi \), alternative to Equation (3.11), is (Schaaf and Talbot, 1989):

\[
\phi = (1-\chi)^3 / (1+f_1 \chi+f_2 \chi^2+f_3 \chi^3)
\]

(6.4)

where \(\chi = \theta / \theta_j \), \(\theta = ba \), and the constants \(f_1 \), \(f_2 \) and \(f_3 \) are -0.8120, 0.2336 and 0.00845 respectively (Schaaf and Talbot, 1989).

If Equation (6.2) with \(\phi \) given by Equation (6.4) was a good fit to the data, bacterial deposition was considered to follow RSA, and the parameters \(k_a \) and \(a \) were determined as fitting parameters. It is clear that a plot of \(db/dt \) vs mass of bacteria \((E.coli) \), as shown in Figure 6.3, is reasonably well fitted by a random sequential adsorption process.
Figure 6.3 Data of Figure 6.2 (between the markers 1 & 2) transformed to the time derivative of absorbed number and plotted against adsorbed number and the fitting curve.

Desorption. In same case, desorption of bacteria from the surface takes place. The simple desorption equation is:

\[
\frac{db}{dt} = -k_db
\]

(6.5)

where \(k_d \) is the rate coefficient for departure, implying that \(b(t) \) decreases exponentially. By integrating it, we get

\[
b(t) = b_{sat} \exp(-k_d t)
\]

(6.6)

Hence, a plot of \(b \) vs time enables \(k_d \) to be determined Two examples are shown in Figures 6.4 and 6.5. The departure of the (usually small) desorbable fraction follows reasonably pure exponential kinetics. Given the stability of the post-flooding plateau \(b_w \), it is possible that the departing bacteria have slightly different surface properties from their congeners. However, I considered it sufficient to note the fraction desorbed (see Section 6.3.3).
Figure 6.4 Plot of b vs time of *E. coli*, fitting $b(t)=b_w+(b_{\text{sat}}-b_w)\exp(-k_d t)$ with b_w and k_d as fitting parameters. b_w is 0.093 μm$^{-2}$ and k_d is 0.019 s$^{-1}$.

Figure 6.5 Plot of b vs time of *L. plantarum*, fitting $b(t)=b_w+(b_{\text{sat}}-b_w)\exp(-k_d t)$ with b_w and k_d as fitting parameters. b_w is 0.10 μm$^{-2}$ and k_d is 0.0065 s$^{-1}$.
6.3 Data

6.3.1 Qualitative summary of the main features

Nearly all adsorption is following the random sequential adsorption model, only in a few cases (*E.coli* on Al₂O₃ in PBS, very markedly; *L. plantarum* on ZrO₂ in PBS, *E.coli* on SiO₂ in Z1150) follow the generalized ballistic deposition (GBD) model (Csúcs and Ramsden, 1998a), see details in Section 6.4.5.

Reversibility. In many cases the adsorption was irreversible with respect to dilution with bacteria-free medium; in some cases an appreciable fraction could be removed.

Reproducibility. Acceptable given the intrinsic variability of a growth culture. My general strategy was to assess whether the results from many experiments under diverse conditions (substrata, media) fit into an interpretable framework, rather than repeat a single experiment 20 times. I postulate that where different batch gave a different result, the bacterium was in a different state due to a difference in its life-history (Hypothesis 6).

6.3.2 Compendium of results

First I present another result of bacterial adsorption from the strain *L. plantarum*.
Fig 6.6 The results from a typical adsorption/desorption experiment for *L. plantarum*. Concentration $c_0 = 4.22 \times 10^6$ cells/ml (100X dilution), adsorbing on silica in PBS. Curve segments used to calculate N_0 and N_{sat} are shown. Marker 1 indicates the start of bacterial flow and marker 2 indicates its end (after which the cuvette is flooded with buffer). [Experimental code: LPS100]
Figure 6.7 Data of Fig 6.6 transformed to yield $b(t)$. The temporal limits of the curve segments used to calculate b_{sat} and b_w are shown. Marker 1 indicates the start of bacterial flow and marker 2 indicates its end (after which the cuvette is flooded with buffer).
Figure 6.8 Data of Figure 6.7 (between the markers 1 & 2) transformed to the time derivative of absorbed number and plotted against adsorbed number and the fitting curve.

The following figures are results from different bacteria including both *E. coli* and *L. plantarum* in PBS, HEPES (Z1) and HEPES with salt (Z1150) buffer solutions on silica, titania, zirconia and alumina.
Figure 6.9 N-t diagram of *E.coli* in PBS on silica. [Experimental code: EPS100]

Figure 6.10 b-t diagram of *E.coli* in PBS on silica. b_w was established by extrapolation.
Figure 6.11 RSA Fitting of α/dt vs. b of *E. coli* in PBS on silica.

Figure 6.12 N-t diagram of *E. coli* in PBS on zirconia. [Experimental code: 090304-6]
Figure 6.13 b-t diagram of *E.coli* in PBS on zirconia. $b_w = b_{\text{sat}}$.

Figure 6.14 RSA Fitting of db/dt vs. b of *E.coli* in PBS on zirconia.
Figure 6.15 N-t diagram of *E.coli* in Z1150 on silica. [Experimental code: EZS100]

Figure 6.16 b-t diagram of *E.coli* in Z1150 on silica.
Figure 6.17 RSA Fitting of $\frac{db}{dt}$ vs. b of *E.coli* in Z1150 on silica.

Figure 6.18 N-t diagram of *L. plantarum* in PBS on titania. [Experimental code: LPT100]
Figure 6.19 b-t diagram of *L. plantarum* in PBS on titania. $b_w = b_{sat}$.

Figure 6.20 RSA Fitting of db/dt vs. b of *L. plantarum* in PBS on titania.
Figure 6.21 N-t diagram of *L. plantarum* in PBS on zirconia. [Experimental code: LPZ100]

Figure 6.22 b-t diagram of *plantarum* in PBS on zirconia. Clearly not pure RSA.
Figure 6.23 RSA Fitting of \(\frac{db}{dt} \) vs. \(b \) of \(L. \) plantarum in PBS on zirconia.

Figure 6.24 N-t diagram of \(L. \) plantarum in Z1150 on silica. [Experimental code: LZS100]
Figure 6.25 b-t diagram of \textit{L. plantarum} in Z1150 on silica.

Figure 6.26 RSA Fitting of \(\frac{db}{dt} \) vs. \(b \) of \textit{L. plantarum} in Z1150 on silica.
Figure 6.27 N-t diagram of *L. plantarum* in Z1150 on titania.
[Experimental code: LZT100]

Figure 6.28 b-t diagram of *L. plantarum* in Z1150 on titania.
To a first approximation, we ascribe no special significance to the erratic behaviour near saturation.

Figure 6.29 RSA Fitting of $\frac{db}{dt}$ vs. b of *L. plantarum* in Z1150 on titania.

Figure 6.30 N-t diagram of *L. plantarum* in Z1150 on zirconia. [Experimental code: LZZ100]
Figure 6.31 b-t diagram of *L. plantarum* in Z1150 on zirconia. $b_w = b_{sat}$.

Figure 6.32 RSA Fitting of $\frac{db}{dt}$ vs. b of *L. plantarum* in Z1150 on zirconia.
Figure 6.33 N-t diagram of *E.coli* in PBS on titania. [Experimental code: 090304-3]

Figure 6.34 b-t diagram of *E.coli* in PBS on titania.
Figure 6.35 RSA Fitting of $\frac{db}{dt}$ vs. b of *E.coli* in PBS on titania.

Figure 6.36 N-t diagram of *E.coli* in Z1150 on zirconia. [Experimental code: EZZ100]
Figure 6.37 b-t diagram of *E.coli* in Z1150 on zirconia.

Figure 6.38 RSA Fitting of \(\frac{db}{dt} \) vs. \(b \) of *E.coli* in Z1150 on zirconia.
Figure 6.39 N-t diagram of *E.coli* in PBS on alumina. [Experimental code: ALE100X1]

Figure 6.40 b-t diagram of *E.coli* in PBS on alumina. Clearly not pure RSA.
Figure 6.41 RSA Fitting of \(\frac{db}{dt} \) vs. \(b \) of *E. coli* in PBS on alumina.

Figure 6.42 N-t diagram of 50x dilution *E. coli* in PBS on silica

[Experimental code: R0-1].
Figure 6.3 b-t diagram of 50x dilution *E.coli* in PBS on silica. Unusual desorption behaviour.

Figure 6.44 RSA Fitting of db/dt vs. b of 50x dilution *E.coli* in PBS on silica.
Figure 6.45 N-t diagram of 50x dilution *E.coli* in PBS on zirconia

[Experimental code: R0-2].

Figure 6.46 b-t diagram of 50x dilution *E.coli* in PBS on zirconia.
Figure 6.475 RSA Fitting of \(\frac{db}{dt} \) vs. \(b \) of 50x dilution \(E.\text{coli} \) in PBS on zirconia.

Figure 6.48 N-t diagram of 50x dilution \(E.\text{coli} \) in PBS on titania
[Experimental code: R0-3].
Figure 6.49 b-t diagram of 50x dilution *E. coli* in PBS on titania.

Figure 6.50 RSA Fitting of db/dt vs. b of 50x dilution *E. coli* in PBS on titania.
Figure 6.51 N-t diagram of 200x dilution *E.coli* in PBS on silica.

[Experimental code: R0-7].

Figure 6.52 b-t diagram of 200x dilution *E.coli* in PBS on silica.
Figure 6.53 RSA Fitting of $\frac{db}{dt}$ vs. b of 200x dilution *E.coli* in PBS on silica.

Figure 6.54 N-t diagram of 200x dilution *E.coli* in PBS on zirconia

[Experimental code: R0-8].
Figure 6.55 b-t diagram of 200x dilution *E.coli* in PBS on zirconia.

Figure 6.56 RSA Fitting of ω / ω_t vs. ϕ of 200x dilution *E.coli* in PBS on zirconia.
Figure 6.57 N-t diagram of 200x dilution *E.coli* in PBS on titania
[Experimental code: R0-9].

Figure 6.58 b-t diagram of 200x dilution *E.coli* in PBS on titania.
6.3.3 Tabular summary

Fitting results yielding kinetic parameters for random sequential bacterial adsorption derived from previous equations and figures are tabulated in this section. Here is the summary of how each term is obtained:

- \(b_{\text{sat}} \) is read from the \(b \) versus \(t \) curve where the adsorption of bacteria reaches saturation.

- \(b_w \) is the number of bacteria remaining adsorbed on the surface after flooding (washing) with buffer, also read from the \(b \) versus \(t \) curve.

- \(k_a \) and \(a \) respectively are the kinetic rate coefficient of adsorption and the area occupied by one bacterium and both are derived from fitting Equation (6.2) (p. 67).

Interfacial energy \(\Delta G_a \) is derived from \(k_a \) using Equation (6.3) (p. 68) and the interfacial energy \(\Delta G_{123}^{(\text{exp})} \) is estimated as \(\Delta G_a / a \) and compared with calculated from the independently obtained surface tensions (Table 6.12, p 106).

The bacterial concentration was (100x dilution) \(1.56 \times 10^{-7} \) cells/ml.
Table 6.3 Kinetic parameters for random sequential bacterial adsorption for *E.coli* in PBS.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Al<sub>2</sub>O<sub>3</sub></th>
<th>SiO<sub>2</sub></th>
<th>TiO<sub>2</sub></th>
<th>ZrO<sub>2</sub></th>
<th>unit</th>
<th>Typical Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>b<sub>sat</sub></td>
<td>0.105</td>
<td>0.11</td>
<td>0.105</td>
<td>0.105</td>
<td>µm<sup>-2</sup></td>
<td>±0.005</td>
</tr>
<tr>
<td>b<sub>w/b_sat</sub></td>
<td>100 %</td>
<td><50 %</td>
<td>70 %</td>
<td>100 %</td>
<td>--</td>
<td>±5-10 %</td>
</tr>
<tr>
<td>k<sub>a</sub></td>
<td>0.08<sup>(a)</sup></td>
<td>0.23</td>
<td>0.6</td>
<td>0.46</td>
<td>µm/s</td>
<td>±0.01</td>
</tr>
<tr>
<td>a</td>
<td>2.54<sup>(a)</sup></td>
<td>3.22</td>
<td>5.3</td>
<td>4.26</td>
<td>µm<sup>2</sup></td>
<td>±0.05</td>
</tr>
<tr>
<td>ΔG<sub>a</sub></td>
<td>1.76<sup>(a)</sup></td>
<td>-2.2</td>
<td>-6.2</td>
<td>-5.1</td>
<td>10<sup>-18</sup> mJ</td>
<td>±1x10<sup>-20</sup></td>
</tr>
<tr>
<td>ΔG<sub>123</sub><sup>(exp)</sup></td>
<td>6.9<sup>(a)</sup></td>
<td>-6.8</td>
<td>-11.6</td>
<td>-11.7</td>
<td>10<sup>-7</sup> mJ/m<sup>2</sup></td>
<td>±5x10<sup>-8</sup></td>
</tr>
</tbody>
</table>

(a) Generalized Ballistic Deposition.

Table 6.4 Kinetic parameters for random sequential bacterial adsorption for *E.coli* in Z1.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>TiO<sub>2</sub></th>
<th>ZrO<sub>2</sub></th>
<th>unit</th>
<th>Typical Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>b<sub>sat</sub></td>
<td>0.105</td>
<td>0.11</td>
<td>µm<sup>-2</sup></td>
<td>±0.005</td>
</tr>
<tr>
<td>b<sub>w/b_sat</sub></td>
<td>--<sup>(b)</sup></td>
<td>90%</td>
<td>--</td>
<td>±5-10 %</td>
</tr>
<tr>
<td>k<sub>a</sub></td>
<td>0.59</td>
<td>0.46</td>
<td>µm/s</td>
<td>±0.01</td>
</tr>
<tr>
<td>a</td>
<td>2.76</td>
<td>4.05</td>
<td>µm<sup>2</sup></td>
<td>±0.05</td>
</tr>
<tr>
<td>ΔG<sub>a</sub></td>
<td>-6.1</td>
<td>-5.1</td>
<td>10<sup>-18</sup> mJ</td>
<td>±1x10<sup>-20</sup></td>
</tr>
<tr>
<td>ΔG<sub>123</sub><sup>(exp)</sup></td>
<td>-22.1</td>
<td>-12.6</td>
<td>10<sup>-7</sup> mJ/m<sup>2</sup></td>
<td>±5x10<sup>-8</sup></td>
</tr>
</tbody>
</table>

(b) “—” means no experimental data available.
Table 6.5 Kinetic parameters for random sequential bacterial adsorption for *E.coli* in Z1150.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>SiO₂</th>
<th>ZrO₂</th>
<th>unit</th>
<th>Typical Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>b_sat</td>
<td>0.108</td>
<td>0.19</td>
<td>µm⁻²</td>
<td>±0.005</td>
</tr>
<tr>
<td>b_w/ₘb_sat</td>
<td>50%</td>
<td>60%</td>
<td>—</td>
<td>±5-10%</td>
</tr>
<tr>
<td>k_a</td>
<td>0.42⁽ᶜ⁾</td>
<td>0.44</td>
<td>µm/s</td>
<td>±0.01</td>
</tr>
<tr>
<td>a</td>
<td>4.06⁽ᶜ⁾</td>
<td>2.04</td>
<td>µm²</td>
<td>±0.05</td>
</tr>
<tr>
<td>ΔG_a</td>
<td>-4.66⁽ᶜ⁾</td>
<td>-4.86</td>
<td>10⁻¹⁸mJ</td>
<td>±1x10⁻²⁰</td>
</tr>
<tr>
<td>ΔG⁽¹⁾_¹₂₃</td>
<td>-11.4⁽ᶜ⁾</td>
<td>-23.8</td>
<td>10⁻⁷mJ/m²</td>
<td>±5x10⁻⁸</td>
</tr>
</tbody>
</table>

⁽ᶜ⁾ Assuming pure RSA, GBD may have fitted better.

Table 6.6 Kinetic parameters for random sequential bacterial adsorption for *L.plantarum* in PBS.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>SiO₂</th>
<th>TiO₂</th>
<th>ZrO₂</th>
<th>unit</th>
<th>Typical Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>b_sat</td>
<td>0.27</td>
<td>0.26</td>
<td>0.26</td>
<td>µm⁻²</td>
<td>±0.005</td>
</tr>
<tr>
<td>b_w/ₘb_sat</td>
<td>60%</td>
<td>100%</td>
<td>80%</td>
<td>—</td>
<td>±5-10%</td>
</tr>
<tr>
<td>k_a</td>
<td>1.279</td>
<td>1.71</td>
<td>0.58⁽ᵈ⁾</td>
<td>µm/s</td>
<td>±0.01</td>
</tr>
<tr>
<td>a</td>
<td>1.285</td>
<td>1.52</td>
<td>0.59⁽ᵈ⁾</td>
<td>µm²</td>
<td>±0.05</td>
</tr>
<tr>
<td>ΔG_a</td>
<td>-5.66</td>
<td>-6.85</td>
<td>-2.45⁽ᵈ⁾</td>
<td>10⁻¹⁸mJ</td>
<td>±1x10⁻²⁰</td>
</tr>
<tr>
<td>ΔG⁽¹⁾_¹₂₃</td>
<td>-44</td>
<td>-45.1</td>
<td>-43.1⁽ᵈ⁾</td>
<td>10⁻⁷mJ/m²</td>
<td>±5x10⁻⁸</td>
</tr>
</tbody>
</table>

⁽ᵈ⁾ Generalized Ballistic Deposition.
Table 6.7 Kinetic parameters for random sequential bacterial adsorption for *L. plantarum* in Z1150.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>SiO<sub>2</sub></th>
<th>TiO<sub>2</sub></th>
<th>ZrO<sub>2</sub></th>
<th>unit</th>
<th>Typical Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>b<sub>sat</sub></td>
<td>0.26</td>
<td>0.27</td>
<td>0.24</td>
<td>µm<sup>-2</sup></td>
<td>±0.005</td>
</tr>
<tr>
<td>b<sub>w</sub>/b<sub>sat</sub></td>
<td>70%</td>
<td>45%</td>
<td>60%</td>
<td>–</td>
<td>±5-10 %</td>
</tr>
<tr>
<td>k<sub>a</sub></td>
<td>1.29</td>
<td>3.3</td>
<td>2.1</td>
<td>µm/s</td>
<td>±0.01</td>
</tr>
<tr>
<td>a</td>
<td>1.37</td>
<td>1.59</td>
<td>2.57</td>
<td>µm<sup>2</sup></td>
<td>±0.05</td>
</tr>
<tr>
<td>ΔG<sub>a</sub></td>
<td>-5.7</td>
<td>-9.5</td>
<td>-7.7</td>
<td>10<sup>-18</sup> mJ</td>
<td>±1x10<sup>-20</sup></td>
</tr>
<tr>
<td>ΔG<sub>a</td>
<td></td>
<td>exp</sub></td>
<td>-41.6</td>
<td>-59.7</td>
<td>-29.9</td>
</tr>
</tbody>
</table>

We also present the different dilution (50x and 200x dilution from original concentration) of *E. coli* suspensions for the comparison in Table 6.8 and 6.9.

Table 6.8 Kinetic parameters for random sequential bacterial adsorption for twice concentrated (50X dilution from original concentration) *E. coli* in PBS.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>SiO<sub>2</sub></th>
<th>TiO<sub>2</sub></th>
<th>ZrO<sub>2</sub></th>
<th>unit</th>
<th>Typical Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>b<sub>sat</sub></td>
<td>0.105</td>
<td>0.108</td>
<td>0.108</td>
<td>µm<sup>-2</sup></td>
<td>±0.005</td>
</tr>
<tr>
<td>b<sub>w</sub>/b<sub>sat</sub></td>
<td>60%</td>
<td>90%</td>
<td>80%</td>
<td>–</td>
<td>±5-10 %</td>
</tr>
<tr>
<td>k<sub>a</sub></td>
<td>0.599</td>
<td>0.114</td>
<td>0.312</td>
<td>µm/s</td>
<td>±0.01</td>
</tr>
<tr>
<td>a</td>
<td>4.05</td>
<td>3.61</td>
<td>4.24</td>
<td>µm<sup>2</sup></td>
<td>±0.05</td>
</tr>
<tr>
<td>ΔG<sub>a</sub></td>
<td>-6.08</td>
<td>6.44</td>
<td>-3.43</td>
<td>10<sup>-18</sup> mJ</td>
<td>±1x10<sup>-20</sup></td>
</tr>
<tr>
<td>ΔG<sub>a</td>
<td></td>
<td>exp</sub></td>
<td>-15.0</td>
<td>17.8</td>
<td>-8.1</td>
</tr>
</tbody>
</table>
Table 6.9 Kinetic parameters for random sequential bacterial adsorption for twice diluted (200X dilution from original concentration) *E. coli* in PBS.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>SiO$_2$</th>
<th>TiO$_2$</th>
<th>ZrO$_2$</th>
<th>unit</th>
<th>Typical Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>b_{sat}</td>
<td>0.122</td>
<td>0.108</td>
<td>0.108</td>
<td>μm2</td>
<td>\pm0.005</td>
</tr>
<tr>
<td>b_{w}/b_{sat}</td>
<td>5%</td>
<td>75%</td>
<td>60%</td>
<td>–</td>
<td>\pm5-10%</td>
</tr>
<tr>
<td>k_a</td>
<td>0.166</td>
<td>0.102</td>
<td>0.108</td>
<td>μm/s</td>
<td>\pm0.01</td>
</tr>
<tr>
<td>ΔG_a</td>
<td>-8.53</td>
<td>1.12</td>
<td>8.76</td>
<td>10^{-18}mJ</td>
<td>\pm1x10$^{-20}$</td>
</tr>
<tr>
<td>ΔG_{E23}</td>
<td>-26.7</td>
<td>3.4</td>
<td>26.5</td>
<td>10^{-7}mJ/m2</td>
<td>\pm5x10$^{-8}$</td>
</tr>
</tbody>
</table>

6.4 Discussion

My Hypothesis 3 is that RSA describes bacterial adsorption. In this case, not only should the kinetics follow the characteristic RSA law, but if the adsorption is irreversible then a should equal \bar{a} irrespective of the surface.

6.4.1 Comparison of a with \bar{a}

According to Equation (4.12), the area occupied by one bacterium at the jamming limit should be consistent with the projected area \bar{a} measured independently from microscopy (*E. coli* is 5.02 μm2 and *L. plantarum* is 2.03 μm2, see Table 5.1, p.49). However, according to my results, a depends on substratum and medium.

For *E. coli* and *L. plantarum* on titania, $a = \bar{a}$, confirming titania’s reputation as a highly biocompatible material (Ramsden, 2008). In many other cases a is smaller than \bar{a} (never larger). The possible reasons could be:

- Sample preparation for the electron microscopy distorts the size (Hillman, 2009).
- There is a distribution of sizes and different sizes have different interfacial energies.
- There is a distribution of orientations (bacteria are typically spherocylinders or prolate ellipsoids ; \bar{a} assumes the bacteria are oriented with their long axis parallel to the substratum).
- The orientation of the prolate-ellipsoidal bacteria is substratum dependent.

The dependence on ionic strength (comparing Z1 with Z1150, see Table 6.10) => the effective radius of the bacterium is augmented by long range mutual electrostatic repulsion, which is shielded by salt.

Table 6.10 Summary results of area occupied by one bacterium (a/µm²) in Z1 and Z1150 on ZrO₂.

<table>
<thead>
<tr>
<th>Bacteria</th>
<th>Material</th>
<th>Z1</th>
<th>Z1150</th>
</tr>
</thead>
<tbody>
<tr>
<td>E.coli</td>
<td>ZrO₂</td>
<td>4.05</td>
<td>2.04</td>
</tr>
</tbody>
</table>

The dependence on ion type (comparing Z1150 with PBS, see Table 6.11): on silica, the difference is not so great (slightly smaller in PBS for both E.coli and L.plantarum). On zirconia, there is a dramatic difference - E.coli is bigger in PBS, but L.plantarum is smaller. On silica, a is in good agreement with ā in PBS on TiO₂, but somewhat smaller on SiO₂. Note that phosphate is Kosmotropic (stablizing) (Cacace et al., 1997).

Table 6.11 Summary results of area occupied by one bacterium (a/µm²) in PBS and Z1150.

<table>
<thead>
<tr>
<th>Bacteria</th>
<th>Material</th>
<th>PBS</th>
<th>Z1150</th>
</tr>
</thead>
<tbody>
<tr>
<td>E.coli</td>
<td>SiO₂</td>
<td>3.22</td>
<td>4.06</td>
</tr>
<tr>
<td></td>
<td>ZrO₂</td>
<td>4.26</td>
<td>2.04</td>
</tr>
<tr>
<td>L.plantarum</td>
<td>SiO₂</td>
<td>1.29</td>
<td>1.37</td>
</tr>
<tr>
<td></td>
<td>TiO₂</td>
<td>1.52</td>
<td>1.59</td>
</tr>
<tr>
<td></td>
<td>ZrO₂</td>
<td>0.59</td>
<td>2.57</td>
</tr>
</tbody>
</table>
6.4.2 Comparison of $\Delta G_{123}^{\text{exp}} = \Delta G_a/a$ with predicted ΔG_{123}

By using the data from Tables 6.1 to 6.7, the experimental free energy $\Delta G_{123}^{\text{exp}}$ derived from the area (a) occupied by one bacterium is hugely different from the free energy ΔG_{123} derived from the surface tensions (see Table 6.12). This could be because the real contact area of one bacterium is only a tiny fraction - less than one millionth - of the projected area due to protrusions (Hypothesis 5). However, this may not be the only reason. Equation (6.3) implies that the bacteria follow Boltzmann statistics. Nevertheless, equilibration of the lumbering bacterium may be too slow compared with the characteristic duration of an individual adsorption process, i.e. ergodicity is broken, as in many biological processes (Ramsden, 2009).

We predict repulsive interaction for silica and titania, but attraction for zirconia and alumina. Experiment, however, shows attraction for all substrata (in PBS), although this does depend on the assumption of $\delta_a = r$ (Equation (6.3)).

Table 6.12 Predicted interfacial energy $\Delta G_{123}^{\text{exp}}$(mJ/m2) of *E.coli* and *L.plantarum*.

<table>
<thead>
<tr>
<th></th>
<th>$\Delta G_{123}^{(a)}$</th>
<th>Al$_2$O$_3$</th>
<th>SiO$_2$</th>
<th>TiO$_2$</th>
<th>ZrO$_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>E.coli</td>
<td>-12.5</td>
<td>15.4</td>
<td>17.8</td>
<td>-16.5</td>
<td></td>
</tr>
<tr>
<td>L.plantarum</td>
<td>-24.6</td>
<td>7.8</td>
<td>10</td>
<td>-26.6</td>
<td></td>
</tr>
</tbody>
</table>

(a) Calculated from Equations (3.19), (3.20) and (3.21) using the data from Table 6.1, assuming the medium is pure water.

6.4.3 Comparison of k_a with the hydrodynamic limit

The maximum flux to the surface is given by D/δ_d, where the diffusion boundary distance (δ_d) is calculated using (Ramsden, 1998)

$$\delta_d = \left(\frac{D}{K}\right)^{1/3} \left(\frac{S_c A_c}{F_c}\right)^{1/2}$$

(6.7)

where D is the diffusion coefficient; K is kinematic viscosity (assumed to be that of water, i.e. 9×10^{-3} cm2/s); S_c is distance along the cuvette (3.5×10^{-3} mm for our cuvette); F_c is volumetric flow rate and A_c is a cross-sectional area (2.826 mm2 for our cuvette).
So the mean diffusion boundary distance (δ_d) in this study is 0.513 µm for *E.coli* and 0.596 µm for *L. plantarum* in this study.

Hence $D/\delta_d = 0.33$ µm/s for *E.coli* and 0.44 µm/s for *L. plantarum*. In a few cases, we are adsorbing faster than this. This seems to be especially associated with negative ΔG_{123}.

6.4.4 Correlation between required area and interfacial energy

The more attractive the interfacial energy, the bigger the occupied area a (see Figure 6.60). Presumably if the interfacial interaction is highly repulsive, the bacterium will minimize interfacial area; e.g., by adsorbing with its long axis perpendicular to the plane of the substratum (see Figure 6.61).

![Figure 6.60 Correlation between a and $\Delta G_{123}^{||}$ of *E.coli* in PBS. The fitted line is $y=0.12(\pm0.05)x+3.2(\pm0.5)$.](image-url)
6.4.5 Cases where RSA is inapplicable (GBD)

There are three cases (E.coli in PBS on alumina, E.coli in Z1150 on silica and L.plantarum in PBS on zirconia) is where pure RSA is inapplicable, instead we must use the generalized ballistic deposition (GBD) model (Csúcs and Ramsden, 1998a), which implies that the bacteria like to cluster on the surface. This might be because alumina may not be that attractive to E.coli further implying that area occupied area by one E.coli is small and the adsorption rate is slow (see Table 6.3). In the case of E.coli in Z1150 on silica (Figure 6.7), I assume pure RSA adsorption, nevertheless, GBD may have fitted better, because there was still area available for E.coli adsorbing on the surface. In the case of L.plantarum in PBS on zirconia, it is clear that it is not pure RSA (Figure 6.22), though L.plantarum has reached the jamming limit, the adsorption rate and occupied area are smaller than with silica and titania, this may be because L.plantarum was repeatedly arriving at and leaving the zirconia surface. However, this needs to be further investigated.
6.4.6 Effect of bulk bacterial concentration

The adsorption of *E.coli* in PBS was investigated at double and half the chosen standard concentration. The results (expressed in terms of the fitted parameters, comparing Tables 6.8 and 6.9 with 6.3) are not in perfect agreement, although none of these parameters should be concentration-dependent. However, the experiments were not perfectly comparable in so far as the bacteria had different ages.

Ideally every combination of bacterial strain/substratum/medium should be investigated with microbes over a broad range of concentrations. Although trivial for nonliving adsorbates, this presents many problems of sample stability (for example, bacterial behaviour is known to be sensitive to the proximity of congeners), hence we defer serious investigation of this aspect (see Chapter 11).
Chapter 7 Nanotextured Surfaces

The size of our bacteria is approximately 1-2 µm and surface features are likely to have a characteristic dimension of 10 nm or less. I found only a few data about surface features in the literature. The previous chapter presented the results of adhesion to chemically pure and morphologically smooth substrata. I hypothesize that if chemical and topographical features at least approximately match those of the bacterium surface, adhesion could be enhanced (or diminished) (Hypothesis 4).

In order to make a proper comparison between featureless and feature-containing surfaces, they should be made from the same materials. (Aggarwal et al., 2009) make such a comparison for a protein. I have only been able to take some first steps in this direction. The systems investigated are the following:

1. PMMA and ePTFE;
2. Mucin: a naturally nanostructured giant glycoprotein (Ch 8.).
3. Nanostructured self assembled films from complex organometallic compounds (Ch 9.).

The remainder of this chapter deals with the discussion of nanostructured surface on PMMA and ePTFE, integrated with scanning electronic microscopy.

7.1 *Escherichia coli* adsorption on surface-modified polymers

The control of bacterial attachment to the surface has gained much interest in recent years; especially following the development of nanotechnology. The mechanism of bacterial adhesion may involve sophisticated surface properties of bacteria and attached substrata, either chemical or physical (Wong et al., 2004; Webster et al., 2004). For example the surface roughness (Alava et al., 2005), nanopatterned polymer surfaces (Satriano et al., 2006), chemically microstructured surfaces (Magnani et al., 2003), etc. may affect adhesion.

Here, we focus on the effect of superhydrophobicity on the adhesion of *E.coli* to surfaces. In general, there are two approaches to achieve superhydrophobic properties;
one is chemical, such as to synthesise C-F materials like Teflon, see early work of (Satyaprasad et al., 2007), another approach is to produce nano/microstructured surface leading to the lotus effect. We are more interested in nano/microstructured surfaces. In recent years, there already are many publications showing various processes for the fabrication of superhydrophobic surface, the most frequently used method is to create regular or irregular rough surfaces by lithography or an etching process, followed by fluorine-based or organosilane-based coating for the further reduction of surface free energy (Nakajima et al., 1999; Kessler and Theato, 2009; Wang and Wang, 2006; Jin et al., 2007). Sol-gel processing and self-assembly is another popular process to produce superhydrophobicity relative to silica-based films (Tadanaga et al., 1997; Coupe et al., 2001; Shang et al., 2005). A few research results demonstrate the creation of a stable, superhydrophobic surface using a vertically aligned carbon nanotube forest together with a thin, conformal hydrophobic polytetrafluoroethylene (PTFE) coating on the surface of the nanotubes (Lau et al., 2003).

As we have discussed the effect of different type of grating on E.coli attachment to PMMA in Section 5.8, this chapter shows the preliminary results about the effect of surface nanostructured with plasma treatment to the bacterial attachment.

7.1.1 Materials and methods

Bacteria. A single colony of Escherichia coli K12 (see Figure 7.1) was cultured on an agar plate and then suspended in a 0.1M PBS solution in 50 ml in the tube. After several washings by centrifugation, they were resuspended in PBS at concentration of 9.8 x 10^8 cells per ml.

Materials. Polymer material PMMA and ePTFE are both common biomaterials and used in this study. PMMA is commercially available and the dimension is 10 mm x 10 mm x 2 mm. The specific gravity of PMMA is 1.2 g cm^{-1} and melting point is 170 °C. Two types of nanostructure (U grooved and V grooved, see Section 5.8) were applied to PMMA followed by plasma surface modification. Another material for experiment is ePTFE and its dimension is 10 mm x 10 mm x 1 mm (see Figure 7.2). The melting point of ePTFE is 380 °C and average pore size is 1 μm. ePTFE was modified by plasma treatment only.
Groove embossing. The hot embossing method was used for the fabrication of nanogrooved surfaces as shown in Section 5.8. The optimized condition for making fine gratings on PMMA is a 400 kg load at 150 °C for 90 seconds. After applying the U-grooved and V-grooved gratings on PMMA, the sample was cleaned by ethanol and then modified by plasma modification treatment.

Plasma etching. Gas plasma surface treatment is an ideal technology for the surface modification of plastic, textile & film products while enabling hydrophilic and hydrophobic coatings. Our research concentrates on the plasma surface modification, the characteristics of modified surface (maybe by grafting, etching or sometimes deposition) depend on the process parameters such as plasma treatment time,
reaction gases, and ion energy (see Figure 7.3).

![Figure 7.3 Schematic diagram of plasma surface modification on surface.]

Both polymer materials were modified by plasma modification after cleaning with ethanol. Plasma treatment was carried out by a RF plasma etching system (Figure 7.4) with a maximum power of 600 W. The N\textsubscript{2} gas flow rate was in the range of 10 to 50 SCCM7. The working pressure was kept at 20 mTorr and plasma treatment duration was 1-20 min. After plasma modification, the substrates were put into a flask containing a suspension culture of \textit{E.coli} at 37 °C for 24 hours.

The wettability of the modified PMMA and ePTFE substrates were evaluated by measuring the static contact angles with distilled water. The static contact angles were measured in air at room temperature using the sessile drop method and each drop was fixed at 50 µl. The contour of the droplet was projected onto a screen by visible light and the contact angles were measured on the images. Hitachi 4700 scanning electron microscope was used to characterise surface morphologies. Samples were coated with gold using a S150B Edwards Sputter Coater prior to their installation in the SEM. FTIR microscopy (Jasco FTIR-200) was employed to investigate the surface structure of ePTFE and PTFE plates after plasma treatment.

7 Standard Cubic Centimeters per Minute.
Figure 7.4 RF plasma etching system.
7.2 Results and discussion

The U-grooved and V-grooved structure on PMMA were prepared as described in Section 5.11 and after the grating structures were made, both were modified by plasma treatments. ePTFE only showed the results of plasma modifications because it is too soft to retain fine grooves on the surface. After plasma surface treatments, all samples were kept in agitated *E.coli* suspensions for 24 hours at 37 °C and rinsed with pure water afterwards. The results of FTIR were demonstrated for the comparison of functional group changes before and after plasma treatment.

PMMA. Figure 7.5 shows a SEM image of *E.coli* attached to an unmodified PMMA surface. It can be noticed that only a few bacteria sit on the surface due to its hydrophobicity (wetting angle is 53° before modification). Figure 7.6 shows the FTIR spectra of PMMA before plasma treatment.

![Figure 7.5 SEM image of bacterial attachment on unmodified PMMA (wetting angle is 53°).](image-url)
ePTFE. Figure 7.7 shows a SEM result of *E.coli* attachment on unmodified ePTFE surface. It also can be noticed that a few bacteria still sit on the surface, though it is well known as highly hydrophobic (wetting angle is 121° before modification), which should not impart high affinity to microbial adhesion. This may be because the porous structure facilitate bacterial residence. Figure 7.8 shows the FTIR spectra of ePTFE materials before treatment.

Figure 7.8 shows the FTIR spectra of ePTFE materials before treatment.

Figure 7.7 SEM image of bacterial attachment on unmodified ePTFE (wetting angle is 121°).
Figure 7.8 FTIR spectra of ePTFE materials (without treatment).

Figure 7.9 shows that the high aspect ratio U-grooved surface after N₂ plasma treatment has low affinity to *E.coli*. This seems to be due to the fact that the high aspect ratio grooves restrict the orientation of *E.coli*, hence do not allow the bacteria build up their society. However, Figure 7.10 shows the higher affinity of low aspect ratio (U-grooved) gratings to *E.coli*, this is not only because the lower aspect ratio gives more chance to allow the bacteria stay together and build up a society, which is essential to biofilm formation, but also plasma modification raises its hydrophilicity (wetting angle 10°), which helps to increase affinity. Figure 7.11 shows that =NOH and C=N'HN' functional groups, which are the common hydrophilic functional groups, were discovered after N₂ plasma treatment.
Figure 7.9 SEM image of bacterial attachment on N₂ plasma-modified PMMA material with higher aspect ratio U-grooves.

Figure 7.10 SEM image of *E.coli* attachments on N₂ plasma-modified PMMA material with lower aspect ratio U-grooves.
Furthermore, comparing the result of V-grooved PMMA in Figure 5.28 (Left, p. 63), N$_2$ plasma treatment increases the affinity of the surface to *E.coli*, shown in Figure 7.12, which should be due to the contribution of hydrophilic functional groups (see Figure 7.11).

Figure 7.12 SEM image of bacterial attachment on N$_2$ plasma-modified PMMA material with V-grooves.
Figure 7.13 shows the result of bacterial attachment on N₂ plasma (500 W 20 sccm for 5 minutes)-modified ePTFE, nevertheless, the micrograph shows no *E.coli* attachment on the surface- presumably because the porous structure of ePTFE has been damaged by the plasma etching, which leads to a superhydrophobic surface (wetting angle is 151°), and is unfavourable to *E.coli* adhesion (Lotus effect).

Figure 7.13 SEM of ePTFE after N₂ plasma treatment (500 W 20 sccm for 15 minutes).
7.3 Conclusion

The results indicated that a nanostructured surface dominates the adhesion behaviour of *E. coli* K-12 cells, rather than the surface chemical properties of materials. In the case of PMMA materials, the nanogrooved surface with a lower aspect ratio favors the attachment of *E. coli* K-12 cells on the surface. A thin layer of amino groups deposited on the nanogrooved surface of PMMA substrates can further improve the adhesion and growth of *E. coli* K-12 cells on the surface. However, *E. coli* K-12 cells were found to be aligned along the nanogrooved surface with a higher aspect ratio, which is not beneficial for the further aggregation and growth of *E. coli* K-12 cells due to the 1-D confinement effect. The ePTFE materials demonstrate superhydrophobic characteristics after N₂ plasma etching treatment due to the existence of needle-like structure on the surface, which obviously prevents the adhesion and growth of *E. coli* K-12 cells on ePTFE materials, even with hydrophilic functional groups on the surface.

The designed surfaces made by hot embossing into U and V grooves have been demonstrated here. The alignment of bacteria is demonstrated on SEM images. In addition, the needle-like nanostructures caused by plasma etching impart superhydrophobicity and may prevent the bacterial adhesion to the surface.

The ePTFE materials demonstrate superhydrophobic characteristics after N₂ plasma etching treatment due to the existence of needle-like structure on the surface, which obviously prevents the adhesion and growth of *E. coli* cells on ePTFE materials, even with hydrophilic functional groups on the surface.

In addition, the needle-like nanostructures caused by the plasma etching effect engender superhydrophobicity and may prevent bacterial adhesion.
Chapter 8 Interaction of bacteria with mucin layers

Epithelial surfaces, e.g. in the mouth, are lined with the giant glycoprotein mucin, which constitutes the first line of defence against bacteria. It is supposed to work by simply engulfing them. The self-assembly of mucin layers has been studied by others in the Ramsden group, and this provided a good opportunity to investigate molecularly microscopically (i.e., using OWLS) what happens when bacteria interact with a mucin layer. I prepared mucin coatings on a planar optical waveguide, and determined the kinetics of bacteria interacting with the coating and with mucin modified by the polyphenol EGCg, which has been recently found by another student in the group to profoundly affect the dynamical structure of the mucin layers.

8.1 Introduction

One of the most important functions of the ubiquitous proteoglycan mucin is the trapping and engulfment of bacteria invading the mucosae, such as the gastrointestinal tract. Mucin, abundantly secreted by goblet cells in a healthy organism, lines many of the internal surfaces of mammals etc., and is the first line of defence of the body against microbial invaders arriving at those surfaces (Slomiany et al., 1996).

While this is well-known in traditional medico-physiological terms, details of the actual mechanism of trapping and involvement remain obscure. Indeed, it is only very recently that the structure and dynamics of the mucin layers themselves have been elucidated (McColl et al., 2007; McColl et al., 2008; Horváth et al., 2008). Our purpose in this investigation is to give a more precise biophysico-chemical account of the process, revealing the underlying regularities. It is expected that this will be very useful in improving medical intervention in cases where the body is not able to eliminate the infection itself. It is also expected to help in designing artificial surfaces for trapping bacteria, with a variety of applications, including bacterial detection, in view.

The mucociliary system of the upper and lower respiratory tracts is a critical nonspecific pathway for the elimination of bacteria and other particulate matter (Bernstein and Reddy, 2000). The interaction between Escherichia coli and mucin has seen no previous studies, particularly on the kinetic interaction. Such information gained from these experiments would be of extreme importance in understanding the specific mechanisms of preventing colonization of bacteria to mucin.
8.2 Experimental details specific to this chapter

The experimental monitoring of bacterial adsorption/desorption to 0.1% mucin and to 0.1% mucin with 1% EGCg were carried out by OWLS.

8.2.1 Mucin

Pharmaceutical grade porcine gastric mucin was purchased from A/S Orthana Kemisk Fabrik, Kastrup, Denmark. The commercial preparation was extensively dialysed to remove all salts and other low molecular weight additives and finally lyophilized and stored for use as required. All solutions were freshly made up by dissolving weighed portions of the lyophilized material in Elga ultrapure (resistance 18.2 MΩ cm, filtered through 200 nm pores) water.

Mucins are cell surface and secreted glycoproteins characterized by high levels of O-linked glycosylation, often over 50% carbohydrate by weight, which is generally densely clustered in repeating units of 20 or so amino acid residues (termed tandem repeats) of protein sequence rich in serine, threonine and proline (Allen and Snary, 1972; Hanisch and Muller, 2000; Bansil and Turner, 2006).

Structure 8.1 (A) high molecular weight (B) low molecular weight mucin (Slomiany et al., 1996).
Table 8.1 Composition of mucin (Bromberg and Barr, 2000).

<table>
<thead>
<tr>
<th>component</th>
<th>wt %</th>
<th>amino acid</th>
<th>(mol %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>total protein</td>
<td>22.8</td>
<td>aspartic acid</td>
<td>4.68</td>
</tr>
<tr>
<td>fucose</td>
<td>9.70</td>
<td>threonine</td>
<td>23.4</td>
</tr>
<tr>
<td>N-acetylglucosamine</td>
<td>16.9</td>
<td>serine</td>
<td>11.4</td>
</tr>
<tr>
<td>N-acetylgalactosamine</td>
<td>12.7</td>
<td>glutamic acid</td>
<td>5.75</td>
</tr>
<tr>
<td>galactose</td>
<td>22.6</td>
<td>proline</td>
<td>13.6</td>
</tr>
<tr>
<td>sialic acid</td>
<td>10.4</td>
<td>glycine</td>
<td>7.70</td>
</tr>
<tr>
<td>sulfate</td>
<td>4.90</td>
<td>alanine</td>
<td>9.93</td>
</tr>
<tr>
<td></td>
<td></td>
<td>valine</td>
<td>4.98</td>
</tr>
<tr>
<td></td>
<td></td>
<td>methionine</td>
<td>0.68</td>
</tr>
<tr>
<td></td>
<td></td>
<td>isoleucine</td>
<td>1.93</td>
</tr>
<tr>
<td></td>
<td></td>
<td>leucine</td>
<td>5.93</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tyrosine</td>
<td>0.78</td>
</tr>
<tr>
<td></td>
<td></td>
<td>phenylalanine</td>
<td>1.52</td>
</tr>
<tr>
<td></td>
<td></td>
<td>histidine</td>
<td>2.31</td>
</tr>
<tr>
<td></td>
<td></td>
<td>lysine</td>
<td>2.23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>arginine</td>
<td>3.18</td>
</tr>
</tbody>
</table>

8.2.2 EGCg

Epigallocatechin-3-gallate (EGCg) (Structure 8.2) is one of the main catechins in green tea, which have been shown to be effective chemopreventive agents in vitro and in many in vivo animal models of induced carcinogenesis (Liao et al., 1995; Liao et al., 2001).

Structure 8.2 (-)Epigallocatechin-3-gallate (EGCg) (Yang and Wang, 1993). Note that the structure is copyed exactly as it appear in Yang and Wang, but the stereochemical indication seems to be incorrect.
8.2.3 Adsorption procedure

Deposition of mucin, and attachment of the bacteria to the mucin, was carried out on surfaces of the optical waveguides while measuring the zeroth order TE and TM modes using an IOS-1 integrated optical scanner (Artificial Sensing Instruments, Zürich) (see details in Sections 5.5 and 5.7).

The flow through the cuvette was controlled by a custom-built precision syringe pusher (Figure 8.1) (FKI, Budapest, Hungary). The typical procedure was to ensure that the substrate was equilibrated with the covering medium (water for the mucin deposition phase), and then to flow the mucin solution through the cuvette until saturation monolayer coverage, known from previous work to be about 200 ng/cm3.

The layer was then thoroughly rinsed in water to remove any weakly attached mucin and then the suspension of bacteria in water was flowed through the cuvette. After reaching or obviously approaching saturation of adsorption, flow reverted to pure water to remove adventitiously resident bacteria.

![Figure 8.1 Custom-built precision syringe pusher: (left) controller; (right) syringe pusher.](image-url)
8.3 Results

The results of adsorption of *E.coli* on a layer 1% mucin are shown in Figure 8.2.

Figure 8.2 N-t diagram of 1%Mucin + *E. coli* in pure water. Marker a is at the start of 1% mucin adsorption on the waveguide; marker b is at the start of washing by water; marker c is at the *E.coli* adsorption start; marker d is the start of water washing again. [Experimental code: 201106].
The results of adsorption *E.coli* on 1% mucin/0.1% EGCg is shown in Figure 8.3.

Figure 8.3 N-t diagram of 1% Mucin+0.1%EGCg+Escherichia coli. Marker e is at the start of 1% mucin/0.1% EGCg adsorption on the waveguide; marker f is at the start of washing by water; marker g is at the *E.coli* adsorption start; marker h is the start of water washing again. [Experimental code: 060207-1].

8.3.1 Qualitative survey

- Initial adsorption of bacteria is RSA, but prior admixture of EGCg makes a noticeable change.

- Adsorption is more reversible on mucin compared with uncoated oxides (e.g., zirconia, see Figure 6.1), but an appreciable residual deposit remains, $b_w/b_{sat} \approx 20\%$.

- Admixture of EGCg to the mucin makes the adsorption less reversible, $b_w/b_{sat} \approx 35\%$.

127
8.4 Discussion

Table 8.2 Surface tension parameters (in mJ/m²) for mucin\(^{(a)}\).

<table>
<thead>
<tr>
<th>Material</th>
<th>(\gamma^{(lW)})</th>
<th>(\gamma^{\ominus})</th>
<th>(\gamma^{\ominus})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mucin</td>
<td>27</td>
<td>0</td>
<td>60</td>
</tr>
</tbody>
</table>

\(^{(a)}\) Estimated from similarly glycosylated molecules, see (van Oss, 2006).

Estimated interfacial energies are given in Table 8.3.

Table 8.3 Predicted interfacial energy \(\Delta G_{123}^{\parallel}\) (mJ/m²) of mucin and E.coli.

<table>
<thead>
<tr>
<th>(\Delta G_{123}^{\parallel})</th>
<th>mucin</th>
<th>E.coli</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>34.5</td>
<td>15.4</td>
</tr>
<tr>
<td>mucin</td>
<td>–</td>
<td>29.6</td>
</tr>
</tbody>
</table>

Clearly mucin easily manages to overcome the large predicted repulsive barrier to silica. Perhaps this is not too surprising in view of its great conformational lability. This may also explain the attraction of E.coli to mucin, despite an even bigger repulsive barrier. The effect of EGCg on bacterial adsorption seems to be rather minor. That the desorption of E.coli from mucin with EGCg is less than from a pure mucin layer might be because of some chemical bonding to the bacterial surface. Note that EGCg has a strong antibacterial effect through causing damage to the lipid bilayer of the bacterial membrane (Ikigai et al., 1993; Spina et al., 2008). At present, we lack the specific chemical knowledge of the bacterial surface that would allow us to understand these results better.
Chapter 9 Complex Organometallic Compounds

The mucin/EGCg work shows the limitations of using natural nanotextured substrata. It is difficult to control the characteristics of the deposited film. In order to create nanosurfaces with better defined features, I explored the self-assembly of complex organometallic molecules (”nanoblocks”).

Large organometallic complexes are known from previous work to self-assemble into structured layers (Constable et al., 1997). This provides a very convenient way of creating self-assembly nanotextured surface, with potentially, an almost limitless variety of chemistry and morphology. A visiting chemist, Dr Kaleem Khosa from the University of Faisalabad, provided novel organometallic molecules. We only investigated their self-assembly behaviour (adsorption/desorption kinetics) in this thesis. These compounds are not soluble in pure water, but in a suitable organic solvent such as dimethylsulfoxide (DMSO). Mixtures of DMSO and water can be used to achieve the deposition of stable layers. The ternary system organometallic complex/DMSO/water turned out to have a complex behaviour, which I was able to partly characterize and analyze.

The structure of this chapter is as follows:

9.1 Basic data for DMSO
9.2 Basic data for organometallic compounds
9.3 Experimental refractometry results for DMSO-water mixtures
9.4 Experimental refractometry results for DMSO-organometallic compounds mixtures and interpretation
9.5 Experimental results for organometallic compounds, self-assembly
9.6 Interpretation
9.1 Basic data for DMSO

Dimethyl sulfoxide (DMSO; Sigma Aldrich, U.K.), (CH$_3$O)$_2$SO$_2$, one of the strongest organic solvents, has been used as a solvent for water-insoluble substances applied to biological material, or as a radio- or cryoprotective agent for many years. It is also an effective solvent for a wide array of organic materials, including many polymers. DMSO also dissolves many inorganic salts, particularly transition metals nitrates, cyanides and dichromates. DMSO is miscible with water and most organic liquids. The structure of dimethyl sulfoxide (DMSO) is pyramidal with sulphur, oxygen and carbon atoms at the corners (Macgregor, 1967), as shown in Structure 9.1.

![Structure 9.1](image)

Structure 9.1 The structure of DMSO.

DMSO has special properties within the series of dipolar aprotic solvents. The methylsulfinyl carbanion is formed in reactions with bases. The dipolar aprotic solvent dimethyl sulfoxide is liquid over a wide range of temperatures, is a strong electron donor, and has a high polarity. It is therefore an excellent and selective solvent for many organic and even polymeric compounds, and can enter into Hydrogen-bonding and dipole-dipole association. The structure of dimethyl sulfoxide, with a oxygen atom and a sulfur atom, leads to good solvation of cations and poor solvation of anions. (Martin *et al.*, 1967; Constable *et al.*, 1997).

Dimethyl sulphoxide (DMSO) is an unusual solvent owing to its physicochemical properties. It has some properties similar to those of water with which it is fully
miscible, but it is a dipolar aprotic solvent which has a tendency to accept rather than to donate protons (Rammler and Zaffaroni, 1967). The hydrogen bonds which exist between DMSO and water are stronger than those existing between water molecules (Cowie and Toporowski, 1961).

Table 9.1 gives the surface tension parameter of DMSO from literature.

<table>
<thead>
<tr>
<th>Substance</th>
<th>T/°C</th>
<th>γ_{total}</th>
<th>γ_{LW}</th>
<th>γ^A</th>
<th>γ^O</th>
<th>γ^O</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMSO</td>
<td>20</td>
<td>44</td>
<td>36</td>
<td>8</td>
<td>0.5</td>
<td>39</td>
<td>[a]</td>
</tr>
<tr>
<td>DMSO</td>
<td>0</td>
<td>45.1</td>
<td>36.9</td>
<td>8.21</td>
<td>0.51</td>
<td>33.0</td>
<td>[b]</td>
</tr>
</tbody>
</table>

[a] (van Oss et al., 1989)
[b] By extrapolations to 0° and assuming that the ratios γ_{LW}/γ^A and γ^O/γ^O valid at 20 °C remain unchanged (van Oss, 2006).

9.2 The Kaleem Khosa organometallic compounds

These organometallic compounds are Pd(II) complexes with organophosphines and dithiocarbamate derivatives of α-amino acids. The complexes of organophosphines and dithiocarbamates compounds are of great interest to the pharmaceutical industry and analytical and organic chemistry due to their biological and catalytic properties (Bond and Martin, 1984; Alverdi et al., 2004). In recently years, antitumor properties of dithiocarbamate and dithioester complexes of Pd(II) have been found in (Mital et al., 1989) and (Faraglia et al., 2001), and antibacterial effects (Shaheen et al., 2007a). This provides a cue for characterizing and analyzing the self-assembly behaviour of these complex compounds, and investigate the kinetics of bacterial adsorption on them.
One of the organometallic compounds in this work is chloro-[(piperidine-1-dithiocarbamato) (triphenylphosphine)] - palladium(II) (FAR-1) (Structure 9.2). It has been crystallized and XRD carried out (see Table 9.3).

Table 9.2 Selected bond distances [Å] and bond angles [°] for compound FAR-1.

<table>
<thead>
<tr>
<th>Bond Lengths</th>
<th>Bond angles</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(1)-S(1)</td>
<td>1.735(6)</td>
</tr>
<tr>
<td>N(1)-C(1)</td>
<td>1.308(7)</td>
</tr>
<tr>
<td>C(1)-S(2)</td>
<td>1.715(6)</td>
</tr>
<tr>
<td>S(1)-Pd(1)</td>
<td>2.2874(14)</td>
</tr>
<tr>
<td>S(2)-Pd(1)</td>
<td>2.3506(14)</td>
</tr>
<tr>
<td>Pd(1)-S(1)#1</td>
<td>2.299(3)</td>
</tr>
</tbody>
</table>
Table 9.3 Crystal data and structure refinement for Compound-FAR-1

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>$\text{C}{24}\text{H}{25}\text{ClNPPdS}_2$</td>
</tr>
<tr>
<td>Formula weight</td>
<td>564.41</td>
</tr>
<tr>
<td>Temperature</td>
<td>571(2) K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71073 Å</td>
</tr>
<tr>
<td>Crystal system</td>
<td>orthorhombic</td>
</tr>
<tr>
<td>Space group</td>
<td>Pbcn (#60)</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td>$a = 13.7318(9)$ Å, $\alpha = 90^\circ$</td>
</tr>
<tr>
<td></td>
<td>$b = 20.7666(13)$ Å, $\beta = 90^\circ$</td>
</tr>
<tr>
<td></td>
<td>$c = 18.4274(13)$ Å, $\gamma = 90^\circ$</td>
</tr>
<tr>
<td>Volume</td>
<td>5254.8(6) Å³</td>
</tr>
<tr>
<td>Density (calculated)</td>
<td>1.508 Mg/m³</td>
</tr>
<tr>
<td>F(000)</td>
<td>2416</td>
</tr>
<tr>
<td>Crystal size</td>
<td>0.14 x 0.07 x 0.09 mm³</td>
</tr>
<tr>
<td>Theta range for data collection</td>
<td>4.08 to 20.81°</td>
</tr>
<tr>
<td>Index ranges</td>
<td>$-13 \leq h \leq 13$, $-20 \leq k \leq 20$, $-18 \leq l \leq 18$</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>19903</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>2730 [R(int) = 0.0216]</td>
</tr>
<tr>
<td>Completeness to $\theta = 20.81^\circ$</td>
<td>99.2 %</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F^2</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>2730 / 0 / 289</td>
</tr>
<tr>
<td>Goodness-of-fit on F^2</td>
<td>1.116</td>
</tr>
<tr>
<td>Final R indices [I>2\sigma (I)]</td>
<td>$R_1 = 0.0317$, $wR_2 = 0.0887$</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>$R_1 = 0.0432$, $wR_2 = 0.1010$</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>0.810 and -0.291 e Å⁻³</td>
</tr>
</tbody>
</table>

(a) Data from Dr K. Khosa.
(2) FAR-A

Structure 9.3 The structure of FAR-A($\text{C}_{12}\text{H}_{20}\text{N}_{2}\text{S}_{4}\text{Pd}$), the molecular weight is 426.943.

(3) FAR-6

Structure 9.4 The structure of FAR-6($\text{C}_{28}\text{H}_{21}\text{N}_{8}\text{PS}_{2}\text{Pd}$), the molecular weight is 671.213.
Structure 9.5 The structure of FAR-18 \((\text{C}_{16}\text{H}_{13}\text{N}_{2}\text{SPPdCl}_{2})\), the molecular weight is 473.632.

Structure 9.6 The Structure of FAR-41 \((\text{C}_{31}\text{H}_{37}\text{NS}_{2}\text{PPdCl})\), the molecular weight is
See Table 9.4

Table 9.4 Crystal data and structure refinement for compound FAR-41 (Shaheen et al., 2007b).

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>$C_{31}H_{37}NS_2PPdCl$</td>
</tr>
<tr>
<td>Formula weight</td>
<td>660.56</td>
</tr>
<tr>
<td>Temperature</td>
<td>293(2) K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71073 Å</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Trigonal</td>
</tr>
<tr>
<td>Space group</td>
<td>$P3_1$</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td>$a = 16.262(1)$ Å, $c = 10.198(1)$ Å</td>
</tr>
<tr>
<td>Volume</td>
<td>2335.5(4) Å³</td>
</tr>
<tr>
<td>Density (calculated)</td>
<td>1.409 Mg/m³</td>
</tr>
<tr>
<td>F(000)</td>
<td>1020</td>
</tr>
<tr>
<td>Crystal size</td>
<td>0.1 x 0.1 x 0.1 mm³</td>
</tr>
<tr>
<td>Theta range for data collection</td>
<td>4.25 to 26.37°</td>
</tr>
<tr>
<td>Index ranges</td>
<td>$-20 \leq h \leq 20$, $-20 \leq k \leq 20$, $-12 \leq l \leq 12$</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>17684</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>6340 [R(int) = 0.0590]</td>
</tr>
<tr>
<td>Completeness to $\theta = 25.31^\circ$</td>
<td>99.7 %</td>
</tr>
<tr>
<td>Adsorption correction</td>
<td>Analytical</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F^2</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>6340 / 1 / 334</td>
</tr>
<tr>
<td>Goodness-of-fit on F^2</td>
<td>1.007</td>
</tr>
<tr>
<td>Final R indices [I>2σ(I)]</td>
<td>$R_1 = 0.0400$, $wR_2 = 0.0708$</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>$R_1 = 0.0647$, $wR2 = 0.0774$</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>0.470 and -0.270 e Å⁻³</td>
</tr>
</tbody>
</table>
9.3 Experimental refractometry for DMSO-water mixtures

The refractive index of a few drops of each solution was measured using a Rudolph J357 refractometer (see Figure 9.1). As the refractive index of DMSO depends on the temperature and the water content, we have measured the refractive index of DMSO at different temperatures and water contents. Table 9.5 shows how the refractive index of DMSO decreases with the increase of temperature, due to its expansion (density decrease).
Figure 9.1 Rudolph J357 refractometer.

Table 9.5 Refractive index of DMSO (99.7%) at different temperatures.\(^{(a)}\)

<table>
<thead>
<tr>
<th>T/°C</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>1.47619</td>
<td>1.47636</td>
<td>1.47583</td>
<td>1.47556</td>
</tr>
<tr>
<td>23</td>
<td>1.47362</td>
<td>1.47342</td>
<td>1.47326</td>
<td>1.47311</td>
</tr>
<tr>
<td>25</td>
<td>1.47113</td>
<td>1.47091</td>
<td>1.47080</td>
<td>1.47070</td>
</tr>
<tr>
<td>28</td>
<td>1.46879</td>
<td>1.46858</td>
<td>1.46851</td>
<td>1.46833</td>
</tr>
<tr>
<td>30</td>
<td>1.46730</td>
<td>1.46692</td>
<td>1.46670</td>
<td>1.46656</td>
</tr>
</tbody>
</table>

\(^{(a)}\) Measurements A, B, C and D are repeats. Uncertainty is ± 0.0001.
Figure 9.2 Refractive index of 99.7% DMSO (Table 9.1) plotted against temperature. The results somehow follow the linear equation \(n = -9.2 \times 10^{-4}T + 1.4943 \), where the error for slope and intercept are \(2 \times 10^{-5} \) and \(5.4 \times 10^{-4} \).
Interestingly, the refractive index of DMSO-water mixtures is not linear with volume fraction, hinting at some nonideality, not surprising given the strong H-bonding between water and DMSO (see Section 9.1). The mixtures were made by separately preparing volumes of the constituents at room temperature (20 °C); e.g., for 20% water-DMSO, I prepared 20 mL water and 80 mL DMSO; and mixing them together. The mixture was then heated to 25 °C or 30 °C in refractometer.

![Figure 9.3 The effect of water on the refractive index of DMSO.](image)

Hence, from measuring the refractive index at a given temperature, we can estimate the water content using Figure 9.3.
9.4 Experimental refractometry results for DMSO-organometallic compounds mixtures and Interpretation

The refractive index increments of organometallic compounds in DMSO at 28 °C were summarized in Table 9.6. Note that all the organometallic compounds are less polarizable than DMSO at this temperature. However this situation changes at 25 °C (see Table 9.7).

Table 9.6 Refractive Index of organometallic compounds and dn/dc at 200 μM (28.0 °C).

<table>
<thead>
<tr>
<th>Compound</th>
<th>Refractive Index</th>
<th>dn/dc /cm³mmol⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMSO</td>
<td>1.47484</td>
<td>—</td>
</tr>
<tr>
<td>FAR-A</td>
<td>1.47473</td>
<td>-0.55</td>
</tr>
<tr>
<td>FAR-1</td>
<td>1.47452</td>
<td>-1.6</td>
</tr>
<tr>
<td>FAR-18</td>
<td>1.47481</td>
<td>-0.15</td>
</tr>
<tr>
<td>FAR-42</td>
<td>1.47477</td>
<td>-0.5</td>
</tr>
<tr>
<td>FAR-41</td>
<td>1.47480</td>
<td>-0.2</td>
</tr>
<tr>
<td>FAR-6</td>
<td>1.47462</td>
<td>-1.1</td>
</tr>
</tbody>
</table>
Table 9.7 The refractive index of different concentrations (2, 20 and 200μM) of FAR-A in DMSO.

<table>
<thead>
<tr>
<th></th>
<th>25 °C</th>
<th>30 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Measured</td>
<td>Means</td>
</tr>
<tr>
<td>DMSO(99.9%)</td>
<td>1.47609</td>
<td>1.47586</td>
</tr>
<tr>
<td></td>
<td>1.47590</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.47578</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.47565</td>
<td></td>
</tr>
<tr>
<td>FAR-A 200μM</td>
<td>1.47596</td>
<td>1.47587</td>
</tr>
<tr>
<td></td>
<td>1.47596</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.47585</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.47572</td>
<td></td>
</tr>
<tr>
<td>FAR-A 20μM</td>
<td>1.47605</td>
<td>1.47592</td>
</tr>
<tr>
<td></td>
<td>1.47601</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.47588</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.47573</td>
<td></td>
</tr>
<tr>
<td>FAR-A 2μM</td>
<td>1.47595</td>
<td>1.47562</td>
</tr>
<tr>
<td></td>
<td>1.47577</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.47560</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.47545</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For comparison, I attempted to calculate the refractive index of organometallic compounds from the molar refraction \(R_M \) using known tabulated atomic refractions \(R_A \), using:

\[
R_M = \sum R_A \tag{9.1}
\]

The refractive index can then be calculated from the Lorentz-Lorenz equation:

\[
R_M = \frac{4\pi}{3} N_A H = \frac{n^2-1}{n^2+2} \frac{M}{\rho} \tag{9.2}
\]

where \(M \) is the molar mass and \(\rho \) is the density, hence \(M/\rho \) is the molar volume \(V, n \) is
the refractive index, N_A is Avogadro’s number and H is the polarization coefficient. Parameters M and ρ are from the X-ray crystallography data. (for example, for FAR-1 in Table 9.3).

As a check of molar volume, I used [Chembio] software (Figure 9.4) to estimate the molecular volume v as 2.24 nm3. This is different from the value (5.23 nm3) calculated from the unit cell (Table 9.3). However the molar volume $M/\rho=564.41/1.508=374$ cm3 (using calculated density 1.508 g/cm3 in Table 9.3) whence $v = V/N_A = 0.62$ nm3. So there is some uncertainty here.

Figure 9.4 Representation of the molecule FAR-1 using [Chembio] software.
Example:
FAR-1 (see Structure 9.2):

From literatures in (Gladstone, 1896; Swientoslawski, 1920; Hammond and Lundberg, 1954; Sayre, 1964), we could summarize the bond refractions in Table 9.8.

Table 9.8 Refractions of bonds.

<table>
<thead>
<tr>
<th>Bonds</th>
<th>Refraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>7.02</td>
</tr>
<tr>
<td>Pd</td>
<td>11.80</td>
</tr>
<tr>
<td>P</td>
<td>9.57</td>
</tr>
<tr>
<td>C-H</td>
<td>1.705</td>
</tr>
<tr>
<td>C-C</td>
<td>1.209</td>
</tr>
<tr>
<td>C≡C</td>
<td>4.15</td>
</tr>
<tr>
<td>C-N</td>
<td>1.55</td>
</tr>
<tr>
<td>C=S</td>
<td>4.12</td>
</tr>
<tr>
<td>C=P</td>
<td>2.99</td>
</tr>
<tr>
<td>Pd-S</td>
<td>6.46</td>
</tr>
<tr>
<td>Pd-P</td>
<td>5.34</td>
</tr>
<tr>
<td>Pd-Cl</td>
<td>8.91</td>
</tr>
</tbody>
</table>

R_{M} = 10 \, R_{C-H} + 4 \, R_{C-C} + 3 \, R_{C-N} + R_{C-S} + R_{C≡S} + 2 \, R_{Pd-S} + R_{Pd-P} + R_{Pd-Cl} + 3 \, (6 \, R_{C-H} + 3 \, R_{C-C} + 3 \, R_{C≡S}) + 3 \, R_{C-P} = 153.97 \, \text{cm}^{3}/\text{mol}.

Then from Equation (9.2) (using the three different estimates of ν)

\[R_{FAR-1} = 153.97 \, \text{cm}^{3} = \frac{n^2-1 \, 565.4228 \, \text{g/mol}}{n^2+2 \, 2.24 \, \text{nm}^{3}} \]

\[R_{FAR-1} = 153.97 \, \text{cm}^{3} = \frac{n^2-1 \, 565.4228 \, \text{g/mol}}{n^2+2 \, 5.23 \, \text{nm}^{3}} \]
\[R_{\text{FAR-1}} = 153.97 \text{ cm}^3 = \frac{n^2-1 \cdot 565.4228 \text{ g/mol}}{n^2+2 \cdot 0.62 \text{ nm}^3} \]

Hence, \(n_{\text{FAR-1}} \) is 1.1815 (\(v=2.24 \ \text{nm}^3 \)); 1.0746 (\(v=5.23 \ \text{nm}^3 \)); 1.76595 (\(v=0.62 \ \text{nm}^3 \)), of which only the last value is plausible. However, \(n_{\text{FAR-1}} \) must be less than \(n_{\text{DMSO}} \) because \(dn/dc < 0 \). Probably the true volume \(v \) is between 1 and 2 \(\text{nm}^3 \).

9.5 OWLS details

Self-assembly of organometallic compounds in DMSO on standard planar optical waveguides, was carried out using an IOS-1 integrated optical scanner (Artificial Sensing Instruments, Zürich) (see details in Sections 5.5 and 5.7). The typical procedure was to ensure that the substrate was equilibrated with the covering medium (DMSO for the organometallic compounds deposition), and then to flow the organometallic compounds solution through the cuvette until a steady state was reached.

The flow through the cuvette was controlled by a custom-built precision syringe pusher (see Figure 8.1) (KFKI, Budapest, Hungary) and the flow rate was 10 \(\mu \text{l} \) per second.

9.6 Experimental results for organometallic compounds’ self-assembly

9.6.1 Explanation of methodology using the data from compound FAR-1

Figure 9.5 shows the raw data of \(N(TE) \) versus time. All the compounds investigated gave qualitatively similar results, characterized by the following striking features:

- an adlayer of organometallic compound builds up during exposure of the substratum
to the solution.

- the adlayers never seems to exceed one monolayer.

- the effective refractive index change during deposition is negative, as expected from the negative dn/dc values (Table 9.6).

- desorption is essentially complete, i.e. adsorption is wholly reversible. However, since the compound is insoluble in water, but DMSO and water are completely miscible, I expected that in DMSO-water mixture, an irreversible regime would be achievable at a certain fraction of water (see Section 9.8).

![Figure 9.5 The N(TE) versus time raw data of FAR-1 at $c_0 = 0.2$ mM in pure DMSO at $T=30.9\, ^\circ C$. Marker 1 is at the start of FAR-1 adsorption on the waveguide; marker 2 is at the start of washing by DMSO; marker 3 is again the FAR-1 adsorption start; marker 4 is the start of buffer washing again. Note the good reproducibility of the repeated adsorptions and desorptions within this experiment. [Experimental code: NF1200B].](image)
9.6.2 Calculation the number of adsorbed molecules

To calculate the kinetic parameters of an adsorption process, the number of molecules on the surface should be known. The mass of adsorbed particles per unit area (surface coverage) M is defined as

\[M = \int_0^\infty (c_s(z) - c_{\text{bulk}}) \, dz \] \hspace{1cm} (9.3)

where \(c_s \) and \(c_{\text{bulk}} \) are the surface concentration and the bulk concentration of the bacteria respectively and z is the distance from the surface. Assuming that the molecular layer (adlayer) is compact and can be described by a mean concentration \(c_A \) and a mean thickness \(d_A \) and that \(c_A >> c_{\text{bulk}} \), then Equation (9.3) reduces to

\[M = d_A c_A \] \hspace{1cm} (9.4)

The refractive index \(n_A \) of the adsorbed layer is related linearly according to (Feijter et al., 1978; Ball and Ramsden, 1997):

\[n_A = n_c + c_A \frac{dn}{dc} \] \hspace{1cm} (9.5)

where \(n_c \) is the refractive index of the covering buffer and \(dn/dc \) is the refractive index increment of the adsorbed molecule, which depends on its polarizibility. From Equation (9.4) and (9.5), by eliminating \(c_A \), the mass (ng/cm\(^2\)) is determined from (Ball and Ramsden, 1997):

\[M = \frac{d_A (n_A - n_c)}{dn/dc} \] \hspace{1cm} (9.6)

where \(n_A \) and \(d_A \) are calculated as above, \(n_c \) and \(dn/dc \) are available from the literature or can be measured using a refractometer. From the above it can be seen that M can be calculated when the optogeometric parameters \(n_A \) and \(d_A \) of the adlayer are determined from N(TE) and N(TM) by solving Equation (4.6) and (4.7).

The standard four-layer mode equations reproduced in Appendix B, (Equations (B.1)-(B.8)) were used to determine \(n_A \) and \(d_A \). The two four layer mode equations for
the zeroth TE and TM modes were solved simultaneously to yield thickness and refractive index of the adsorbed organometallic compound layer. However, since $n_A < n_C$, the thickness emerges artificially with a negative sign, which we ignore. These equations assume that the adlayer is isotropic. The thickness is plotted in Figure 9.6 and reaches a plateau of 2.2 nm, and the refractive index in Figure 9.7 which reaches a value of about 2.

![Figure 9.6](image.png)

Figure 9.6 Thickness calculated from the plot shown in Figure 9.4 and the accompanying N_{TM} data. Marker 1 is at the start of FAR-1 adsorption on the waveguide; marker 2 is at the start of washing by DMSO. [Experimental code: NF1200B].
Figure 9.7 Refractive index of adlayer calculated from the plot shown in Figure 9.5 and the accompanying N_{TM} data starting after marker L (at the start of FAR-1 adsorption on the waveguide) to omit the huge fluctuations at the beginning before a defined adlayer is formed; marker 1 is at the start of washing by DMSO. [Experimental code: NF1200B].

The quantity of the adsorbed organometallic compound adlayer was then computed from Equation (9.6). The results are shown in Figure 9.8.
Figure 9.8 Calculated from the data shown in Figures 9.6 and 9.7. Marker 1 is at the start of FAR-1 adsorption on the waveguide; marker 2 is at the start of washing by DMSO. $M_{\text{plat}} = 0.009$ nmol/cm2.

The plateau of 0.09 nmol/cm2 (Figure 9.8) corresponds to an area per molecule of 1.85 nm2; together with our thickness of about 2.2 nm, this gives a molecular volume of about 4 nm3, which lies between the X-ray diffraction and molecular model estimates.

This value of 1.85 nm2 is in fact a slight overestimate because M_{plat} is depressed relative to the jamming limit because of the reversibility: $M_{\text{sat}} = \theta_J/(aN_A) = 0.12$ nmol/cm2, about 30% higher than the measured M_{plat}.

The data was numerically differentiated and plotted against M (Figure 9.9). Equation (3.8) and (3.11) were fitted to it, just as I did with the bacteria (see section 6.2), to obtain the parameters k and a, the area occupied per molecule. The excellence of the fit is a vindication of the applicability of RSA. We assume for simplicity that the jamming limit is that appropriate for spheres ($\theta_J = 0.54$). The fit yielded $a = 0.73$ nm2/molecule. Given that the molecular volume is at least 2 nm3 and is rather elongated (see Figure 9.4), this suggests that the molecule is depositing with its long axis parallel to the plane of the substratum.

Maximum surface number density, which is predicted to be $\theta_J / (aN_A)$, is equals 0.1 nmol/cm2 in agreement with our results. This is a strong validation of our model.
Figure 9.9 Numerically differentiated data from the adsorption part of Figure 9.8 plotted against M (with best fitting of Equation (6.4) A=8.1 and B=0.00013). $a = A\theta_b/N_A = 0.73 \text{ nm}^2$. $k_d = B/c_b = 6.5 \times 10^{-7} \text{ cm/s}$.

Desorption. The canonical desorption equation is:

$$\frac{dM}{dt} = -k_d M \tag{9.7}$$

Integrating, we get

$$M(t) = M_{\text{plat}} \exp(-k_d t) \tag{9.8}$$

Hence, we plot $\ln(M(t)/M_{\text{sat}})$ vs time to obtain k_d. (see Figure 9.10).
Figure 9.10 Plot of ln(M(t)/M_{sat}) vs time(data from Figure 9.8 between marker 2 and H). Best fit is k_d=9.5\times10^{-4} \text{ s}^{-1}.

The desorption is not, in fact, quite a pure exponential, which should be further investigated. Most likely rearrangements within the layer take place following initial desorption, giving rise to memory effects (Talbot, 1996). In other works, k_d in Equation (9.7) must be replaced by a time-dependent function. Evidently, the internal structure of the Kaleem Khosa compounds is sufficient complex to permit conformational rearrangement in the adsorbed state.

9.7 Experimental results – remaining compounds

The general appearance of the adsorption-desorption data from all the compounds tested was similar. We plotted dM/dt vs M for the adsorption to demonstrate RSA, and ln(M(t)/M_{plat}) vs t to demonstrate memoryless desorption and summarize the fitting parameters in Table 9.9.
Figure 9.11 The N(TE) versus time raw data of FAR-A at $c_0 = 0.2$ mM in pure DMSO at $T=28.0$ °C. Marker 1 is at the start of FAR-1 adsorption on the waveguide; marker 2 is at the start of washing by DMSO. [Experimental code: NFA200B].
Figure 9.12 Thickness calculated from the plot shown in Figure 9.11 and the accompanying N_{TM} data. Marker 1 is at the start of FAR-A adsorption on the waveguide; marker 2 is at the start of washing by DMSO. [Experimental code: NFA200B].

Figure 9.13 Refractive index of adlayer calculated from the plot shown in Figure 9.11 and the accompanying N_{TM} data. Marker L is at the start of FAR-A adsorption on the waveguide; marker 1 is at the start of washing by DMSO. [Experimental code: NFA200B]
Figure 9.14 Calculated from the data shown in Figures 9.11 and 9.12. Marker 1 is at the start of FAR-A adsorption on the waveguide; marker 2 is at the start of washing by DMSO.

Figure 9.15 Numerically differentiated data from the adsorption part of Figure 9.11 plotted against M (with best fitting of Equation (6.4) $A=2.61$ and $B=0.00055$). by solving $A= a/\theta_j$ and $B=k_0c_0$, a is equal to 1.41 nm2.
Figure 9.16 Plot of ln(M(t)/M_{sat}) vs time (data from Figure 9.11).

Figure 9.17 The N(TE) versus time raw data of FAR-18 at c_0 = 0.2 mM in pure DMSO at T=28.5 °C. Marker 1 is at the start of FAR-1 adsorption on the waveguide; marker 2 is at the start of washing by DMSO. [Experimental code: NF18200B].
Figure 9.18 Thickness calculated from the plot shown in Figure 9.17 and the accompanying N_{TM} data. Marker 1 is at the start of FAR-18 adsorption on the waveguide; marker 2 is at the start of washing by DMSO. [Experimental code: NF18200B].

Figure 9.19 Refractive index of adlayer calculated from the plot shown in Figure 9.17 and the accompanying N_{TM} data. Marker L is at the start of FAR-18 adsorption on the waveguide; marker 1 is at the start of washing by DMSO. [Experimental code: NF18200B]
Figure 9.20 Calculated from the data shown in Figures 9.18 and 9.19. Marker 1 is at the start of FAR-18 adsorption on the waveguide; marker 2 is at the start of washing by DMSO.

Figure 9.21 Numerically differentiated data from the adsorption part of Figure 9.17 plotted against M (with best fitting of Equation (6.4) $A=1.19$ and $B=0.00098$). by solving $A = a/\theta_j$ and $B=k_cC_0$, a is equal to 0.64 nm2.
Figure 9.22 Plot of ln($M(t)/M_{\text{sat}}$) vs time (data from Figure 9.17).

Figure 9.23 The N(TE) versus time raw data of FAR-42 at $c_0 = 0.2$ mM in pure DMSO at $T=27$ °C. Marker 1 is at the start of FAR-1 adsorption on the waveguide; marker 2 is at the start of washing by DMSO. [Experimental code: NF4200B].
Figure 9.24 Thickness calculated from the plot shown in Figure 9.23 and the accompanying N_{TM} data. Marker 1 is at the start of FAR-42 adsorption on the waveguide; marker 2 is at the start of washing by DMSO. [Experimental code: NF4200B].

Figure 9.25 Refractive index of adlayer calculated from the plot shown in Figure 9.23 and the accompanying N_{TM} data. Marker L is at the start of FAR-42 adsorption on the waveguide; marker 1 is at the start of washing by DMSO. [Experimental code: NF4200B]
Figure 9.26 Calculated from the data shown in Figures 9.24 and 9.25. Marker 1 is at the start of FAR-42 adsorption on the waveguide; marker 2 is at the start of washing by DMSO.

Figure 9.27 Numerically differentiated data from the adsorption part of Figure 9.23 plotted against M (with best fitting of Equation (6.4) A=2.65 and B=0.00063). by solving $A = \frac{a}{\theta}$ and $B = k_c c_0$, a is equal to 1.43 nm2.
Figure 9.28 Plot of \(\ln(\frac{M(t)}{M_{\text{sat}}}) \) vs time (data from Figure 9.23).

Figure 9.29 The N(TE) versus time raw data of FAR-41 at \(c_0 = 0.2 \text{ mM} \) in pure DMSO at \(T=30.6 \text{ °C} \). Marker 1 is at the start of FAR-1 adsorption on the waveguide; marker 2 is at the start of washing by DMSO. [Experimental code: NF41200B].
Figure 9.30 Thickness calculated from the plot shown in Figure 9.29 and the accompanying N_{TM} data. Marker 1 is at the start of FAR-41 adsorption on the waveguide; marker 2 is at the start of washing by DMSO. [Experimental code: NF41200B].

Figure 9.31 Refractive index of adlayer calculated from the plot shown in Figure 9.29 and the accompanying N_{TM} data. Marker L is at the start of FAR-41 adsorption on the waveguide; marker 1 is at the start of washing by DMSO. [Experimental code:
Figure 9.32 Calculated from the data shown in Figures 9.30 and 9.31. Marker 1 is at the start of FAR-41 adsorption on the waveguide; marker 2 is at the start of washing by DMSO.

Figure 9.33 Numerically differentiated data from the adsorption part of Figure 9.29 plotted against M (with best fitting of Equation (6.4) $A=0.75$ and $B=0.00245$). by solving $A= a/\theta_j$ and $B=k_0c_0$, a is equal to 0.405 nm2.

164
Figure 9.34 Plot of $\ln(M(t)/M_{\text{sat}})$ vs time (data from Figure 9.29).

Figure 9.35 The N(TE) versus time raw data of FAR-6 at $c_0 = 0.2$ mM in pure DMSO at $T=28.5$ °C. Marker 1 is at the start of FAR-1 adsorption on the waveguide; marker 2 is at the start of washing by DMSO. [Experimental code: NF6200B].
Figure 9.36 Thickness calculated from the plot shown in Figure 9.35 and the accompanying N_{TM} data. Marker 1 is at the start of FAR-6 adsorption on the waveguide; marker 2 is at the start of washing by DMSO. [Experimental code: NF6200B].

Figure 9.37 Refractive index of adlayer calculated from the plot shown in Figure 9.35 and the accompanying N_{TM} data. Marker L is at the start of FAR-6 adsorption on the waveguide; marker 1 is at the start of washing by DMSO. [Experimental code: NF6200B]
Figure 9.38 Calculated from the data shown in Figures 9.36 and 9.37. Marker 1 is at the start of FAR-6 adsorption on the waveguide; marker 2 is at the start of washing by DMSO.

Figure 9.39 Numerically differentiated data from the adsorption part of Figure 9.35 plotted against M (with best fitting of Equation (6.4) $A=4.3$ and $B=0.0005$) by solving $A=a/\theta$, and $B=k_ac_b$, a is equal to 2.32 nm2.
Figure 9.40 Plot of $\ln(\frac{M(t)}{M_{sat}})$ vs time (data from Figure 9.35).
Table 9.9 Summary of the fitted parameters.

<table>
<thead>
<tr>
<th>Compound</th>
<th>M_r^*</th>
<th>M_{plat} /nmol cm$^{-2}$</th>
<th>d_A /nm</th>
<th>a /nm2</th>
<th>$10^{-7}k_a$ /cm s$^{-1}$</th>
<th>$10^{-4}k_d$ /s$^{-1}$</th>
<th>k_a/k_d /µm</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAR-1</td>
<td>564</td>
<td>0.09</td>
<td>2.2</td>
<td>0.73</td>
<td>6.5</td>
<td>9.5</td>
<td>6.8</td>
</tr>
<tr>
<td>FAR-A</td>
<td>427</td>
<td>0.31</td>
<td>2.6</td>
<td>0.24</td>
<td>27.5</td>
<td>8.4</td>
<td>33</td>
</tr>
<tr>
<td>FAR-6</td>
<td>671</td>
<td>0.19</td>
<td>3.2</td>
<td>0.39</td>
<td>25</td>
<td>8.97</td>
<td>28</td>
</tr>
<tr>
<td>FAR-18</td>
<td>474</td>
<td>0.62</td>
<td>1.4</td>
<td>0.11</td>
<td>49</td>
<td>6.56</td>
<td>74</td>
</tr>
<tr>
<td>FAR-41</td>
<td>661</td>
<td>1.04</td>
<td>3.1</td>
<td>0.07</td>
<td>123</td>
<td>12.0</td>
<td>103</td>
</tr>
<tr>
<td>FAR-42</td>
<td>578</td>
<td>2.9</td>
<td>2.3</td>
<td>0.24</td>
<td>31</td>
<td>11.8</td>
<td>26</td>
</tr>
<tr>
<td>Typical Uncertainty</td>
<td>---</td>
<td>±0.005</td>
<td>±0.1</td>
<td>±0.05</td>
<td>±2x10$^{-8}$</td>
<td>±0.0005</td>
<td>---</td>
</tr>
</tbody>
</table>

* Molecular weight.

We discuss these data rather briefly here, focusing on reasons for extreme values; e.g. although all the compounds fall in the range of $M_r = 427$ to 671, M_{plat} varies from 0.09 to 2.9 nmol/cm2 (conversely, a from 0.73 to 0.07 nm2). Adsorption rate constant varied from 6.5x10$^{-7}$ to 123x10$^{-7}$ cm/s, but desorption constants from 6.6x10$^{-4}$ to 12x10$^{-4}$ s$^{-1}$. Certainly the molecule structures do not obviously reveal these behavioural features, except that the thickness roughly follows the molecular weight. The ratio k_a/k_d measures the adsorption/desorption balance, which is least favourable for FAR-1, but FAR-42, which has the biggest M_{plat}, has the next least favourable value. Evidently FAR-41 can pack into a layer with a very small footprint. A next step -- but beyond the scope of this thesis -- would be to use Brownian dynamics investigate how these molecules randomly adsorb. Note that we can use this data to get estimates of the molecular volume $v = d_A a$.

9.8 Adsorption in DMSO-water mixtures

Since the compounds desorbed from the substrata in the DMSO environment, but are insoluble in water, we can predict that at intermediate solvent compositions we should get irreversible adsorption, which is what we need for our original purpose of generating novel substrata for bacterial adsorption. Figure 9.41 demonstrates that this proposition is correct.
Figure 9.41 shows N(TE) vs time for FAR-6 (20 μm) deposition in 50% DMSO-50% water.

Figure 9.41 N(TE) vs time for FAR-6 (20 μm) deposition in 50% DMSO-50% water [Experimental code: 011007-1].

Figure 9.42 Thickness of 20 μM FAR-6 on 50% DMSO-50% water. Marker 1 is at the start of FAR-6 in adsorption on the waveguide in 50% DMSO-50% water; marker 2 is at the start of washing by 50% DMSO-50% water.
Figure 9.43 Mass vs time of 20 µM FAR-6 on 50% DMSO-50% water. The refractive index of 20 µM FAR-6 in 50% DMSO-50% water is 1.10946 and the refractive index of 50% DMSO-50% water is 1.40932, hence $\frac{dn}{dc}=\frac{1.40946 - 1.40932}{0.00002}=7$.

The detail of mechanism operating are likely to be quite complex, and we also have to take into account the strong propensity of the water to hydrogen-bond to the silica-titania substratum. Initial adsorption rate is 4.4×10^{-6} nmol cm$^{-2}$s$^{-1}$, $M_{sat}=0.0056$ nmol cm$^{-2}$ and giving $k_a=2.2\times10^{-7}$ cm/s.

Figure 9.42 and 9.43 (thickness and mass) are calculated.

Features are
- Adsorption is indeed irreversible.
- The apparent mass increase after flooding with solvent and the dramatic thickness increase, suggest significant intralayer rearrangement. Maybe the assumption of isotropy is a poor one.
- Adsorption does not follow a random sequential mechanism.
- The plateau (saturation) mass is significantly (more than 30%) less than in pure DMSO (only 0.0056 nmol cm2, as opposed to 0.19 despite the irreversibility.
Chapter 10 Principal Conclusions

[Hypothesis 1]
All bacteria have a characteristic surface chemical signature (p. 3).
=> Evidence in Chapter 2.

[Hypothesis 2]
Bacterial interfacial energies are deducible from the adsorption kinetics (p. 26).
=> Evidence in Chapter 6.

[Hypothesis 3]
RSA describes bacterial adsorption (p. 61) (not in all case).
=> Evidence in Chapter 6. Bacteria adsorb according to a random sequential addition process and the interaction can be well predicted by the appropriate equations. The rate of adsorption as characterized by the adsorption rate constant k_a is inversely proportional to the integral of the bacterium-substratum interfacial free energy ΔG_{123}. The results are correlatable with interfacial free energy predicted from saturated surface tension, considering that a fairly unsophisticated approximation approach was used in the calculations. Hence, we may be reasonably confident about expanding the approach to design new biomaterial surfaces for discriminating between different bacteria.

[Hypothesis 4]
If chemical and topographical features at least approximately match those of the bacterium surface, adhesion could be enhanced (or diminished) (p. 25). I.e., the lateral and normal interaction energy profiles between bacterium and substrate in Chapter 2 specifically match characteristic features on the bacterium, resulting in specific binding. No evidence adduced.

[Hypothesis 5]
Only one millionth of the nominal area of the bacterial surface interacts with a smooth planar substratum. (p. 101)
=> Evidence in Chapter 6; only one of at least three alternative explanations.

[Hypothesis 6]
Bacterial interfacial energies depend on and culture conditions and bacterium age. (p. 67) => Evidence in Chapter 6
Organometallic complexes can be self-assembled to form a monolayer.

In summary
1. Bacterial adsorption displays well defined kinetics (follows random sequential adsorption).

2. The adsorption kinetics can be parametrized to provide a numerical representation.

3. The adsorption rate coefficient k_a is a key parameter that is related to the bacterial surface energy ΔG.

4. In order to identify an unknown bacterium, one should first create a database of k_a values for different substrata under different solution conditions. The strategy to identify the bacteria in an uncharacterized sample will be to establish the profile of adsorption parameters to a series of substrata; i.e., like the strategy of olfaction in mammals, for example.

5. A comparison of the ΔG values we derived from our measured k_a with published bacterial surface tension data reveals discrepancies, which raise the issue of how reliable are the published data. Inter alia they may depend on culture conditions, etc.

6. The minimum number of "standard" substrata needed to differentiate between different bacteria depends on what bacteria are anticipated to be present in the sample.

7. As well as using "standard" substrata (i.e., pure metal oxides) sophisticated "designer" substrata have been investigated with the ultimate aim of providing a greater variety of interfacial energies.

8. A further parameter extracted from the adsorption kinetics is the area a per bacterium. Simple RSA theory predicts that it should not change with the substratum and should moreover coincide with the area \bar{a} determined from micrography. The fact that it does not and it raises a variety of pertinent issues that will need resolution before advancing further in this direction.

9. Complex organometallic compound adlayer formation has been characterized.
My results are consistent with the main hypothesis (No. 1), according to which artificial nonbiological, possibly nanotextured, surfaces can selectively bind diverse bacteria, and hence differential binding can be used as the basis of strain identification. In use, an unknown sample would be exposed to a variety of nanotextured surfaces; the rest of those retaining them would be characteristic of the bacteria in the sample (cf. the mammalian olfactory system). The knowledge acquired through the fulfilment of this aim is also expected to be useful for designing surfaces that deliberately repel or attract bacteria.

There are some unexplained observations comparing bacterial adsorption in phosphate with other salts. This would need more extensive systematic investigation with other Hofmeister salts.

If Hypothesis 6 is correct, then the reliability of published interfacial energies for bacteria (see e.g. Table 2.1) is very questionable because insufficient details of culture, age, etc. are given.

Key contributions to knowledge

1. Quantitative analysis of bacterial adsorption including method development and data evaluation.
 1.1 Demonstration of applicability of RSA to bacterial adsorption.
 1.2 Demonstration that bacteria can selectively bind to different surfaces.
 1.3 Simple barrier model used for nano-objects NOT applicable to bacteria.
 1.4 Inverse correlation of a with ΔG_{123} demonstrated and explained.
 1.5 Evidence for variability of bacterial surface properties with age and culture conditions.

2. Elucidation of organometallic thin layer self-assembly
 2.1 Discovery of how to make a stable layer of certain organophosphine palladium complexes.
Chapter 11 Future Work

What I would like to have done had there been more time

Use the Langmuir trough for determining bacterial surface tension.

Systematic investigation of the efforts of different Hofmeister salts on bacterial adsorption.

Systematic investigation of the influence of the age of a bacterium on the surface properties.

Systematic investigation of the spread of surface properties within a culture population.

Systematic investigation of the effect of bulk bacterial concentration on adsorption behaviour.

More extensive investigation of adsorption/desorption of the complex organometallic (Kaleem Khosa) compounds at different water:DMSO ratios.

Analysis of nonexponential desorption kinetics of complex organometallic compounds.

Analysis of adlayer anisotropy of complex organometallic compounds.

Brownian dynamics of the complex organometallic compounds.

Interaction of bacteria with layers made from the Kaleem Khosa organometallic compounds.

Test Hypothesis 4.
Appendix A

List of abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFM</td>
<td>Atomic Force Microscopy</td>
</tr>
<tr>
<td>DLVO</td>
<td>Derjaguin and Landau, Verwey and Overbeek</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl Sulphoxide</td>
</tr>
<tr>
<td>EGCG</td>
<td>Epigallocatechin Gallate</td>
</tr>
<tr>
<td>ESEM</td>
<td>Environmental Scanning Electron Microscope</td>
</tr>
<tr>
<td>GBD</td>
<td>Generalized Ballistic Deposition</td>
</tr>
<tr>
<td>LPS</td>
<td>Lipopolysaccharide</td>
</tr>
<tr>
<td>MATS</td>
<td>Microbial adhesion to solvents</td>
</tr>
<tr>
<td>MATH</td>
<td>Microbial adhesion to hydrocarbons</td>
</tr>
<tr>
<td>OWLI</td>
<td>Optical Waveguide Lightmode Interferometry</td>
</tr>
<tr>
<td>OWLS</td>
<td>Optical Waveguide Lightmode Spectroscopy</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate Buffered Saline</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase Chain Reaction</td>
</tr>
<tr>
<td>RSA</td>
<td>Random Sequential Adsorption</td>
</tr>
<tr>
<td>S-layer</td>
<td>Surface Layer (specific protein layer of certain bacteria)</td>
</tr>
<tr>
<td>SCCM</td>
<td>Standard Cubic Centimeters per Minute</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning Electron Microscope</td>
</tr>
<tr>
<td>TE</td>
<td>Transverse Electric</td>
</tr>
<tr>
<td>TM</td>
<td>Transverse Magnetic</td>
</tr>
<tr>
<td>UTFA</td>
<td>Uniform Thin-Film Approximation</td>
</tr>
</tbody>
</table>
Appendix B

The standard four-layer mode equations for the determination of adlayer (n_A and d_A) (Máté and Ramsden, 1998):

\[n_A = n_C n_F N_{TM} R^{1/2} \] \hspace{1cm} (B.1)

and

\[d_A = \frac{(n_F^2 - n_C^2) \left[\lambda R_E - 2 \pi d_F (n_F^2 - N_{TE}^2)^{1/2} \right]}{2 \pi (n_A^2 - n_C^2) (n_F^2 - N_{TE}^2)^{1/2}} \] \hspace{1cm} (B.2)

where,

\[R = \frac{(n_F^2 - N_{TM}^2)^{1/2} \left[R_E - 2 \pi d_F (n_F^2 - N_{TE}^2)^{1/2} / \lambda \right]}{D_1 - D_2 - D_3} \] \hspace{1cm} (B.3)

\[D_1 = (n_F^2 - N_{TE}^2)^{1/2} (N_{TM}^2 n_F^2 + N_{TM}^2 n_C^2 - n_F^2 n_C^2) R_M \] \hspace{1cm} (B.4)

\[D_2 = n_F^2 (n_F^2 - N_{TM}^2)^{1/2} (N_{TM}^2 - n_C^2) R_M \] \hspace{1cm} (B.5)

\[D_3 = 2 \pi d_F (n_F^2 - N_{TE}^2)^{1/2} (n_F^2 - N_{TM}^2)^{1/2} N_{TM} n_C^2 / \lambda \] \hspace{1cm} (B.6)

\[R_E = \tan^{-1} \left(\frac{N_{TM}^2 - n_F^2}{n_F^2 - N_{TE}^2} \right)^{1/2} + \tan^{-1} \left(\frac{N_{TM}^2 - n_C^2}{n_F^2 - N_{TE}^2} \right)^{1/2} \] \hspace{1cm} (B.7)

\[R_M = \tan^{-1} \left[\left(\frac{n_F^2}{n_S^2} \right)^{1/2} \left(\frac{N_{TM}^2 - n_S^2}{n_F^2 - N_{TM}^2} \right)^{1/2} \right] + \tan^{-1} \left[\left(\frac{n_C^2}{n_S^2} \right)^{1/2} \left(\frac{N_{TM}^2 - n_S^2}{n_F^2 - N_{TM}^2} \right)^{1/2} \right] \] \hspace{1cm} (B.8)
References

