CRANFIELD UNIVERSITY

EWA MOCZKO

NEW APPROACH IN MULTIPURPOSE OPTICAL DIAGNOSTICS:
FLUORESCENCE BASED ASSAY FOR SIMULTANEOUS
DETERMINATION OF PHYSICOCHEMICAL PARAMETERS

CRANFIELD HEALTH

PhD THESIS
NEW APPROACH IN MULTIPURPOSE OPTICAL DIAGNOSTICS: FLUORESCENCE BASED ASSAY FOR SIMULTANEOUS DETERMINATION OF PHYSICOCHEMICAL PARAMETERS

Supervisor: Dr Igor V. Meglinski, Prof. S. Piletsky

September 2009
Abstract

The development of sensors assays for comprehensive characterisation of biological samples and effective minimal-invasive diagnostics is highly prioritised. Last decade this research area has been actively developing due to possibility of simultaneous, real-time, \textit{in vivo} detection and monitoring of diverse physicochemical parameters and analytes.

The new approach which has been introduced in this thesis was to develop and examine an optical diagnostic assay consisting of a mixture of environmental-sensitive fluorescent dyes. The operating principle of the system has been inspired by electronic nose and tongue devices which combine nonspecific (or semispecific) sensing elements and chemometric techniques for multivariate data analysis. The performance of the optical assay was based on the analysis of the spectrum of selected dyes with discreet reading of their emission maxima. The variations in peaks intensities caused by environmental changes provided distinctive fluorescence patterns, which could be handled similar to the signals collected from nose/tongue devices.

The analytical capability of the assay was engendered by changes in fluorescence signal of the dye mixture in response to changes in pH, temperature, ionic strength and the presence of oxygen. Further findings have also proved the ability of optical assay to estimate development phases and to discriminate between different strains of growing cell cultures as well as identify various gastrointestinal diseases in human.

This novel fluorescence-based diagnostic tool offers a promising alternative to electrochemical systems providing high sensitive measurements with broad dynamic range, easy, inexpensive measurements and the possibility of remote sensing and extreme assay miniaturisation. Additionally it does not require reference signal.

This new approach can impact on a number of applications such as routine minimal-invasive diagnostics for medical samples, biomedical analysis, pharmaceutical or cosmetic research, quality control and process monitoring of food or environmental samples.
Acknowledgements

I would like to express my considerable gratitude to all the people who helped me throughout the time working on this thesis.

I am sincerely grateful especially to my both supervisors Prof. Sergey Piletsky and Dr Igor Meqlinski for giving me the opportunity to pursue the project, benefit from their criticism, guidance and constant support.

My special thanks go also to Dr Conrad Bessant and Dr Michael Cauchi whose expertise in Bioinformatics contributed significantly to the performance of my research experience.

I would also like acknowledge my appreciation to the institutional support provided by the Cranfield University, which includes the generous Vice- Chancellor Trans-School/Campus Initiative Award.

And last but never the least warm thanks and a lot of hugs to everyone from my family, especially to my mum for her great love, encouragement throughout my studies, listing and understanding me like no one else.
Table of content

Abstract.. i
Acknowledgements .. ii
Table of content .. iii
List of figures ... vii
List of tables ... xiii
Abbreviations .. xv
1. Motivation and research objectives .. 1
 1.1 Motivation of the study .. 1
 1.2 State of art in multisensing technology ... 6
 1.2.1 Sensor arrays ... 6
 1.2.2 Electronic nose system ... 8
 1.2.3 Electronic tongue system ... 10
 1.2.4 Optical multisensing approach ... 12
 1.2.4.1 Fluorescence-based assay .. 14
 1.2.5 Multivariate approach - chemometrics .. 18
 1.2.5.1 Pattern recognition: Principal Component Analysis (PCA) 19
 1.2.5.2 Multivariate calibration: Artificial Neural Network (ANN) 21
 1.3 Analytical characterisation of samples .. 24
 1.3.1 pH ... 24
 1.3.2 Dissolved oxygen .. 25
 1.3.3 Temperature .. 25
 1.3.4 Buffer composition .. 26
1.4 Thesis statement ... 27
1.5 Aims of the research ... 27

2. First objective: selection of commercially available fluorescent dyes 30
 2.1 Introduction ... 30
 2.2 Selection criteria for single fluorescent dyes .. 31
 2.3 Results and Discussion ... 32
 2.3.1 pH sensitive fluorescent dyes ... 34
 2.3.2 Temperature sensitive fluorescent dyes .. 40
 2.3.3 Oxygen sensitive fluorescent dyes ... 43
 2.3.4 Glucose sensitive fluorescent dyes ... 47
 2.4 Conclusions .. 51

3. Second objective: optimisation of fluorescent dye mixtures 52
 3.1 Introduction ... 52
 3.2 Selection criteria for a mixture of fluorescent dyes .. 52
 3.3 Experimental section .. 53
 3.3.1 Chemicals .. 53
 3.3.2 Sample preparation .. 53
 3.3.3 Fluorescence measurements .. 54
 3.3.4 Three-dimensional data display .. 55
 3.4 Results and Discussion .. 56
 3.4.1 Choice of fluorescence dyes ... 56
 3.4.2 Excitation/emission spectra of selected fluorescent dyes 58
 3.4.3 Hypothetical mixtures of environmentally sensitive fluorescent dyes .. 64
 3.4.4 Experimental examination of fluorescence dye mixtures 71
 3.5 Conclusions .. 73
4. Third objective: investigation of analytical capability of suitable optical assay 74
 4.1 Introduction .. 74
 4.2 Experimental section .. 75
 4.2.1 Composition of fluorescent dye mixture .. 75
 4.2.2 Buffer solutions .. 75
 4.2.3 Instrumentation .. 76
 4.2.4 Data evaluation .. 77
 4.3 Results and Discussion ... 78
 4.3.1 Dyes assay characterisation ... 78
 4.3.2 Investigation of analytical capability of the optical assay engendered by
 changes of single parameter .. 79
 4.3.3 Investigation of analytical capability of the optical assay engendered by
 changes of several parameters ... 86
 4.4 Conclusion ... 100
5. Fourth objective: testing optical assay with biological samples 101
 5.1 Introduction ... 101
 5.2 Identification of growing phases of cell cultures .. 102
 5.2.1 Experimental part ... 102
 5.2.2 Results and discussion ... 104
 5.3 Discrimination between cell strains using mixture of fluorescent dyes 108
 5.3.1 Experimental part ... 108
 5.3.2 Results and discussion ... 110
 5.4 Recognition of various gastrointestinal diseases in human 111
 5.4.1 Experimental part ... 112
 5.4.2 Results and Discussion ... 113
 5.5 Conclusions ... 115
6. Overall discussion and conclusions .. 117
 6.1 Dyes selection .. 117
 6.2 Quantitative and qualitative analysis .. 118
 6.3 Suggestions and future work .. 121
7. References ... 124
Appendix A: Matlab pseudo-codes .. 146
Appendix B: Code of practice and content forms 149
Appendix C: Human skin properties .. 163
Appendix D: List of publications and awards ... 171
List of figures

Figure 1.1: Shift towards different causes of a number of human deaths worldwide..... 2

Figure 1.2: Schematic illustration of multispot optical dual sensor assay used to measure CO₂ and O₂... 15

Figure 1.3: The illustration of PCA performance when the original high-dimensional data space (e.g. three dimensions) is projected onto a two dimension principal component space that maintains the largest variance in the data 19

Figure 1.4: Graphical illustration of PCA model .. 20

Figure 1.5: Schematic illustration of a single neuron: biological neuron (A), artificial neuron (B)... 22

Figure 1.6: Schematic representation of fully connected nods layers. 23

Figure 1.7: Schematic representation of sensing systems: human olfactory system (A), electronic analogue (B) and our optic analogue (C) .. 29

Figure 3.1: The spectrofluorometer capable of acquiring three-dimensional excitation–emission matrix (EEM) fluorescence spectra... 54

Figure 3.2: Schematic illustration of three-dimensional spectrofluorometry with CCD detection ... 55

Figure 3.3: Three-dimensional colour mapped surface diagram of FL (0.004 μM) in 50 mM PB buffer (pH 7.4). .. 58

Figure 3.4: Three-dimensional colour mapped surface diagram of HPTS (0.03 μM) in 50 mM PB buffer (pH 7.4) .. 58

Figure 3.5: Three-dimensional colour mapped surface diagram of OG514 (0.006 μM) in 50 mM PB buffer (pH 7.4) .. 59
Figure 3.6: Three-dimensional colour mapped surface diagram of OG488 (0.01 µM) in 50 mM PB buffer (pH 7.4) .. 59

Figure 3.7: Three-dimensional colour mapped surface diagram of TAMRA (0.02 µM) in 50 mM PB buffer (pH 7.4) .. 60

Figure 3.8: Three-dimensional colour mapped surface diagram of FITC (0.02 µM) in 50 mM PB buffer (pH 7.4) .. 60

Figure 3.9: Three-dimensional colour mapped surface diagram of R101 (0.02 µM) in 50 mM PB buffer (pH 7.4) .. 61

Figure 3.10: Three-dimensional colour mapped surface diagram of RB (0.02 µM) in 50 mM PB buffer (pH 7.4) .. 61

Figure 3.11: Three-dimensional colour mapped surface diagram of RuBpy (2.8 µM) in 50 mM PB buffer (pH 7.4) .. 62

Figure 3.12: Three-dimensional colour mapped surface diagram of THA (2 µM) in 50 mM PB buffer (pH 7.4) .. 62

Figure 3.13.1: Three-dimensional colour mapped surface diagrams (right) and colour filled contour diagrams (left): HPTS (A), mixture of HPTS and FITC (B). Measurements of single dyes were performed in 50 mM PBS buffer at pH 7.4 65

Figure 3.13.2: Three-dimensional colour mapped surface diagrams (right) and colour filled contour diagrams (left): mixture of HPTS, FITC and RB (C), mixture of HPTS, FITC, RB and RuBpy (D), mixture of HPTS, FITC, RB, RuBpy and THA (E). Measurements of single dyes were performed in 50 mM PBS buffer at pH 7.4 66

Figure 3.14.1: Three-dimensional colour mapped surface diagrams (right) and colour filled contour diagrams (left): HPTS (A), mixture of HPTS and OG514 (B), mixture of HPTS, OG514 and RB (C). Measurements of single dyes were performed in 50 mM PB buffer at pH 7.4 .. 67
Figure 3.14.2: Three-dimensional colour mapped surface diagrams (right) and colour filled contour diagrams (left): mixture of HPTS, OG514, RB and RuBpy (D), mixture of HPTS, OG514, RB, RuBpy and THA (E). Measurements of single dyes were performed in 50 mM PBS buffer at pH 7.4. ... 68

Figure 3.15.1: Three-dimensional colour mapped surface diagrams (right) and colour filled contour diagrams (left): HPTS (A), mixture of HPTS and FL (B), mixture of HPTS, FL and RB (C). Measurements of single dyes were performed in 50 mM PB buffer at pH 7.4. ... 69

Figure 3.15.2: Three-dimensional colour mapped surface diagrams (right) and colour filled contour diagrams (left): mixture of HPTS, FL, RB and RuBpy (D), mixture of HPTS, FL, RB, RuBpy and THA (E). Measurements of single dyes were performed in 50 mM PBS buffer at pH 7.4. ... 70

Figure 3.16: Three-dimensional colour mapped surface diagrams (right) and colour filled contour diagrams (left): mixture of HPTS, FITC, RB, RuBpy and THA. Measurements were performed in 50 mM PBS buffer at pH 7.4. ... 71

Figure 3.17: Three-dimensional colour mapped surface diagrams (right) and colour filled contour diagrams (left): mixture of HPTS, OG514, RB, RuBpy and THA. Measurements were performed in 50 mM PBS buffer at pH 7.4. ... 71

Figure 3.18: Three-dimensional colour mapped surface diagrams (right) and colour filled contour diagrams (left): mixture of HPTS, FL, RB, RuBpy and THA. Measurements were performed in 50 mM PBS buffer at pH 7.4. ... 71

Figure 4.1: Cuvettes containing solutions of five selected fluorescent dyes and their mixture: HPTS (A), RB (B), OG514 (C), RuBpy (D), THA (E) and mixture of five selected dyes (F). ... 75

Figure 4.2: Three-dimensional colour mapped surface diagram of 5 fluorescent dyes: Dye 1 is HPTS, Dye 2 is OG514, Dye 3 is RB, Dye 4 is RuBpy, Dye 5 is THA. Measurements were performed in 3 ml of 50 mM PB buffer at pH 7.5. ... 78
Figure 4.3.1: Three-dimensional colour mapped surface diagrams (left) and colour filled contour diagrams of the fluorescence signal of dyes mixture at pH 9 (A), pH 8 (B) and pH 7 (C) in 50 mM borate buffer (pH 9.0) and phosphate buffer (pH 8.0 and pH 7.0) ... 80

Figure 6.3.2: Three-dimensional colour mapped surface diagrams (left) and colour filled contour diagrams of the fluorescence signal of dyes mixture at pH 6.0 (D), pH 5.0 (E) and pH 4.0 (F) in 50 mM phosphate buffer and acetate buffer .. 81

Figure 4.4: Change in fluorescence intensity of dyes mixture as a function of pH. Dye 1 is HPTS, Dye 2 is OG514, Dye 3 is RB, Dye 4 is RuBpy, Dye 5 is THA. Measurements were performed in 50 mM acetate (pH 4.0-5.0), phosphate (pH-5.0-8.0) and borate (pH 9.0) buffers ... 82

Figure 6.5: Change in fluorescence intensity of dyes mixture as a function of temperature. Dye 1 is HPTS, Dye 2 is OG514, Dye 3 is RB, Dye 4 is RuBpy, Dye 5 is THA. Measurements were performed in 50 mM phosphate buffer at pH 7.5............. 83

Figure 6.6: Change in fluorescence intensity of dyes mixture as a function of buffer concentration. Dye 1 is HPTS, Dye 2 is OG514, Dye 3 is RB, Dye 4 is RuBpy, Dye 5 is THA. Measurements were performed in 50 mM phosphate buffer at pH 7.5............. 84

Figure 4.7: Correlation between actual (measured) and determined by ANN values of pH (A), temperature (B) ... 86

Figure 4.8.1: The effect of momentum on ANN learning in the estimation of pH....... 93

Figure 4.8.2: The effect of learning rate on ANN learning in the estimation of pH 93

Figure 4.9.1: The effect of momentum on ANN learning in the estimation of temperature ... 94

Figure 4.9.2: The effect of momentum on ANN learning in the estimation of temperature ... 94
Figure 4.10.1: The effect of momentum on ANN learning in the estimation of DO concentration ... 95

Figure 4.10.2: The effect of momentum on ANN learning in the estimation of DO concentration ... 96

Figure 4.11.1: The effect of momentum on ANN learning in the estimation of PB concentration ... 97

Figure 4.11.2: The effect of momentum on ANN learning in the estimation of PB concentration ... 97

Figure 4.9: Correlation between actual (measured) and determined by ANN values of pH (A), temperature (B), DO concentration (C) and PB concentration (D) 99

Figure 5.1: *E. coli* growing on the nutrient agar plate... 103

Figure 5.2: Growth curve of *E. coli* culture showing exponential and stationary phase of bacteria growth... 104

Figure 5.3: Changes in fluorescence intensity of five dyes of the mixture vs. time of bacteria growth. Dye 1 is HPTS, Dye 2 is OG514, Dye 3 is RB, Dye 4 is RuBpy, Dye 5 is THA. Measurements were performed in bacterial supernatant obtained from growing *E. coli*... 105

Figure 5.4: Control measurements of fluorescence intensity of the mixture of five dyes in LB broth. Dye 1 is HPTS, Dye 2 is OG514, Dye 3 is RB, Dye 4 is RuBpy, Dye 5 is THA... 106

Figure 5.5: Correlation between actual (measured) and determined by ANN time of growth of bacteria culture... 107

Figure 5.6: White yeast (left) and pink yeast (right) growing on nutrient agar plate.. 109

Figure 5.7: PCA score plot showing distinction between two different strains of yeasts .. 110
Figure 5.8: Ability of the ANN to discriminate the three diseases from the healthy controls: % Overall means the overall success of discrimination; % Specificity means the success of distinguishing the healthy controls; % Sensitivity means the success of distinguishing the disease. .. 114

Figure C.1: Three-dimensional, schematic drawing of the skin structure; thin hairy skin of the forearm .. 164

Figure C.2: Layer structure of the epidermis .. 164

Figure C.3: Structure of the dermis: a) layers of the dermis, b) the papillary layer, made of loose tissue, forms dermal papillae, c) the reticular layer, dense irregular connective tissue .. 165

Figure C.4: Structure of the hypodermis... 166

Figure C.5: Schematic drawing of optical pathway in the skin 167
List of tables

Table 1.1: Classification of chemical sensors based on the type of transducer............ 8

Table 1.2: Advantages and disadvantages of optical sensors 13

Table 2.1: List of pH sensitive fluorescent dyes. They are listed by increasing emission wavelengths .. 34

Table 2.2: List of temperature sensitive fluorescent dyes. They are listed by increasing emission wavelengths ... 40

Table 2.3: List of oxygen sensitive fluorescent dyes. They are listed by increasing emission wavelength .. 43

Table 2.4: List of glucose fluorescent dyes. They are listed by increasing emission wavelengths .. 47

Table 3.1: List of excitation and emission maxima of selected fluorescent dyes........ 63

Table 4.1: List of fluorescent dyes selected for the assay ... 74

Table 4.2: Effect of the number of neurons in the hidden layer and training algorithm on ANN performance for pH .. 88

Table 4.3: Effect of the number of neurons in the hidden layer and training algorithm on ANN performance for temperature ... 89

Table 4.4: Effect of the number of neurons in the hidden layer and training algorithm on ANN performance for DO ... 90

Table 4.5: Effect of the number of neurons in the hidden layer and training algorithm on ANN performance for buffer concentration ... 90

Table C.1: Mean values for full epidermal thickness ... 165
Table C.2: Main chromophores found in human skin

Table C.3: The relationship between depth of penetration of incident light and wavelength in the case of caucasian skin
Abbreviations

ANN Artificial neural network
BAW Bulk acoustic waves
CD Crohn's disease
CP Conductrometric polymer
COP Code of practice
DNA Deoxyribonucleic acid
DO Dissolved oxygen
EEM Excitation and emission matrix
FITC Fluorescein isothiocyanate
FL Fluorescein
HPTS Hydroxypyrene-1,3,6-trisulfonic acid trisodium salt
LR Learning rate
IBS Irritable bowel syndrome
MU Momentum
MOS Metal-oxide semiconductors
MOSFET Metal-oxide silicon field-effect transistors
NIR Near-infrared
OG488 Oregon green 488
OG514 Oregon green 514
PB Phosphate buffer
PC Principal components
PCA Principal component analysis
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHC</td>
<td>Primary health care</td>
</tr>
<tr>
<td>R6G</td>
<td>Rhodamine 6G</td>
</tr>
<tr>
<td>R101</td>
<td>Rhodamine 101</td>
</tr>
<tr>
<td>RB</td>
<td>Rhodamine B</td>
</tr>
<tr>
<td>RMSE</td>
<td>Root means square error</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive oxygen species</td>
</tr>
<tr>
<td>RuBpy</td>
<td>Tris(2,2′-bipyridine) dichlororuthenium(II) hexahydrate</td>
</tr>
<tr>
<td>SAW</td>
<td>Surface acoustic waves</td>
</tr>
<tr>
<td>TAMRA</td>
<td>5(6)-carboxytetramethylrhodamine</td>
</tr>
<tr>
<td>UC</td>
<td>Ulcerative colitis</td>
</tr>
<tr>
<td>VIS</td>
<td>Visible</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organisation</td>
</tr>
</tbody>
</table>
1. Motivation and research objectives

1.1 Motivation of the study

Each year the World Health Organisation (WHO) provides a detailed report on major concerns of the international public health, performance of the research and strategic approaches to improve health and health quality. The recent report issued in 2008 covers the information on current health facilities and highlights the importance of increasing needs and demands to renew primary health care (PHC) systems (WHO, 2008). It emphasises one of the key aspects for the urgent discussion which are chronic and non-communicable diseases.

Different from unintentional injuries (e.g., road-traffic accidents) and infection diseases (e.g., tuberculosis, HIV/AIDS), which has been reported the frequent cause of human deaths in low income countries during the recent past, chronic and non-communicable diseases are the major cause of deaths in middle and high income countries including The United Kingdom (The World Bank, 2009). They are long duration and often slow progression diseases, such as cardiovascular diseases, cancers or diabetes, which may result from genetic or lifestyle factors (Kotze et al., 2005). The WHO data has indicated that about 75 % of the total population suffers at least one chronic condition which certainly becomes a worldwide issue. Furthermore, chronic diseases have been projected to cause the highest impact on a number of mortality over the present and coming years (see Figure 1.1) and spread across the world, irrespectively of the country income level (Abegunde et al., 2007; Beaglehole et al., 2008).

The global call for action highlights the essential role of researchers and modern technologies in finding an effective way to improve healthcare facilities and detection of illness before it might become critical or life threatening (Beaglehole et al., 2007). This requires new developments and implementation of suitable indicators to estimate potential risk factors and their effects on health, identification of early symptoms of diseases or monitoring the progress of treatment (Danaei et al.; 2009; Genuis, 2008).
Additionally, the examination should be possible to perform in any environment, including natural conditions, outside the controlled hospital or laboratory environment. Advantageous would also be the simplicity and high speed of measurements and data analysis.

Figure 1.1: Shift towards different causes of a number of human deaths worldwide. Figure adopted from (WHO, 2008).

The ideal approach would be to develop a versatile and portable sensing device with the ability to measure simultaneously as many metabolites and parameters as possible in a single sample (LaFratta et al., 2008; Palacios et al., 2007; Paolesse et al., 2008). The use of such an intelligent device with the capability of accurate and reliable diagnosis could help to decrease probability of harm, minimise clinical intervention, costs of medical treatment and as a consequence improve long-term public healthcare. This has found great interest in many academic and industrial sectors. Particularly medical or biochemical, for monitoring glucose concentration or biochemical reactions in patients (Castillo et al., 2004; Moczko et al., 2008; Rock et al., 2005; Shepard et al., 2005), healthcare and food industries estimating and modifying inappropriate diet (reduction of a consumption of certain substances, e.g. salt, cholesterol, sugars, caffeine (Asaria et al., 2007; Ordovas et al., 2008)), monitoring of blood gases and other cardiovascular parameters (Daar et al., 2007; Ganter et al., 2003; Perez-Guisado et al., 2008), testing
quality of food and reformulation when it is high in salt, sugar or fat, controlling
drinking water (Brettar et al., 2008; Prüss-Üstün et al., 2008; Thompson et al., 2008),
environmental pollusions (Hassing et al., 2009; Rodriguez-Mozaz et al., 2006; Rogers,
1995; Wanekaya et al., 2008), or bioprocess control (Esbensen et al., 2004; Rudnitskaya
et al., 2008).

Presently a wide number of analytical strategies for sensitive detection and monitoring
of various biochemical components and physical parameters of a sample have been
constantly developed. They are often combined with different techniques to generate
the signal and process output data more rapidly and effectively. Distinct progress in this
area is related to the approach of sensor arrays. Differing from former research and
developments in sensor technology, which were focused on obtaining analytical device
with the highest possible selectivity to specific analyte (Camman et al., 1991), sensor
arrays have been proposed to identify multitude components in a single sample. They
have revolutionised the traditional way of samples examination, usually improved by
accuracy of particular sensor but always limited to real-time monitoring of only one
analyte at a time, this remaining impractical for diagnostic purposes.

Further development in multisensing began with the use of diverse chemically selective
single sensors with appropriate transducers for multicomponent measurements and data
analysis (Collison et al., 1989; Frost et al., 2002). They enabled examination and
provided additional information about analysed samples but often involved large
amounts of reagents and sampling materials, resulting in more complicated, lengthy and
costly measurements. Although such systems are able to identify several parameters,
they detect and analyse each compound separately. This, however, could be optimised
by measuring only a few key parameters, but clearly this proves to be impractical
especially in studies of complex environmental and biological samples (Careri et al.,
2009). The natural environment may in fact be very demanding and it is not possible to
predict an importance of the impact of all potential external conditions on the diagnosis.

Current trends toward rapid, simultaneous measurements of several metabolites and
parameters in a single sample and real time have encouraged analytical researchers to
create new, more sophisticated, selective (and partially selective), versatile sensing devices for identification and quantification of multiple analytes (Codinachs et al., 2008; Luong et al., 2008; Seidel et al., 2008). These devices combine an array of cross-sensitive chemical receptors with statistical techniques for multivariate interpretations of composite signals collected from different sensing units (Cai et al., 2008; Janzen et al., 2006; Lawrence et al., 2002). The specificity of a device is related to recognition of response patterns that originate from the interface between components of a sample and all sensing elements. The obtained patterns are unique to particular conditions and can be considered similar to fingerprints identification. Using sensor arrays and multivariate statistical techniques for interpretation allows qualitative analysis of samples in a relatively short time (Olivieri, 2008).

This approach of multianalyte detection compared to single analyte methods or the use of selective sensors is attractive due to its lower sample consumption, higher efficiency, and shorter analysis time. The possibility of simultaneous detection and determination of several compounds in a single measurement reduces the overall cost of the assay and increases the number of potential applications. Additionally, the analytical capability of an assay may not always lie in measurements of precise analyte concentration, but rather to provide profiling of the chemical or biological processes (Bachinger et al., 2000). It is of the great advantage for qualitative analysis of samples.

The majority of such multidetection systems have been developed for odour characterisation, so-called electronic noses consisting of an array of gas sensors combined with statistical techniques for multivariate interpretation of signals (Gopel, 1998; James et al., 2005; Pravdova et al., 2002). More recently, a similar operating principle has been applied to sensor arrays for liquid analysis, known as electronic tongues, which are used of qualitative samples analysis (Ciosek et al., 2007; Gutierrez et al., 2008; Gutierrez et al., 2008). Although both devices are currently commercially available, they suffer from significant limitations, such as poor stability, limited selectivity, low reproducibility, demand for frequent calibration, complexity of generated information, and high fabrication costs of sensor arrays (del Valle, 2008; Pearce et al., 2003; Rock et al., 2008).
Lately there has been a surge of attention to optical diagnostics and has been projected to expand tremendously in the future, especially in the field of real-time detection in vivo. This is explained by the facts that optical techniques are often non-destructive, do not require physical contact with a sample during analysis and enable rapid response (DTI, 2006; Jokerst et al., 2009; Lee et al., 2007; Tanev et al., 2008). They are able to provide information at the molecular level through tissues and living organs to animals or human bodies. Light can also be used as a tool for manipulating or modifying living cells and can be focused at a tiny spot, which allows precise localised and minimal invasive treatment (Duckett, 2009). By providing a more effective, cheaper and easy accessible service, biophotonics and optical diagnostic technology can have huge and crucial impact on health care facility (Pereira et al., 2009).

In this thesis the development of a novel fluorescence-based assay which offers a promising alternative to electrochemical systems is described. The proposed assay benefits from numerous studies and analytical ability provided by optical chemical multisensors, particularly fluorescence-based sensors (Dickinson et al., 1996; Nagl et al., 2007; Wang et al., 2008; Wolfbeis, 1985). Among these are high selectivity and sensitivity. Optical systems are often reversible and do not require a reference signal. They require low fabrication costs and offer rapid response, which makes them a promising tool for simultaneous real-time detection of multiple analytes and complex sample characterisation (Baleizao et al., 2008; Kocincova et al., 2008). Another advantage of this sensing system also lies in the possibility of extreme assay miniaturisation.

Present chapter emphasises the importance of multisensing approach, which is described in this thesis. Specific aspects of development, technical demands and improvements in multisensing technology have been described in following section (Chapter 1.2).
1.2 State of art in multisensing technology

In the last several decades, the area of research in the development of sensor arrays to detect multiple analytes has been growing intensively. They have become crucial for analytical examination and used more and more frequently for quantitative analysis of samples. While improving sensors functionality, researchers have also worked actively on their physicality to minimise their sizes.

1.2.1 Sensor arrays

Sensor arrays are an assembly of several chemical, physical or biochemical sensing elements designed for simultaneous, multitarget detection (Price, 2001) (Alegret, 2006). Although work in this area continues for many years already, there is still a lack of robust, versatile devices for multianalyte characterisation of a single sample.

Similar to conventional selective sensors, arrays should operate continuously or in repeated cycles (Gründler, 2007). The efficiency of the systems can be characterised by their reproducibility, stability, sensitivity, accuracy, response time, detection limit, miniaturisation, portability, simplicity and production costs (Diamond, 1998; Orsini et al., 2005). An important feature for clinical sensors is that their operation should adhere to the policy and standards of health care. A significant attribute that distinguishes array systems from conventional sensors is that sensors merged in an array do not need to be highly selective toward given analytes. The specificity of a device is related to recognition of response patterns of all sensing elements (Srivastava et al., 2006). The patterns obtained are unique to particular conditions and can be recognised similar to fingerprints identification.

The existing multisensor devices typically consist of chemical and/or physical sensors that are well established, and commonly available in a wide range of applications. Sensors can be classified depending on their two main functional units, either the receptor (recognition element), or the type of transducer for signal processing
(Cammann et al., 1991; Fraden, 2003; Hulanicki et al., 1991). Based on receptors and different mechanisms of an operation, sensors are organised into several groups:

- PHYSICAL, applied to measure physical variables of the system. These sensors do not require a chemical reaction to take place, but use physical effects in the recognition and transduction processes (e.g. optical, thermal, motion sensors);

- CHEMICAL, utilise chemical reactions for identification and quantification of specific analytes or monitoring various chemical events (e.g. electrochemical, optical, electrical sensors);

- BIOCHEMICAL, also called biosensors. They may be included in a group of chemical sensors that employ particular classes of biological or biochemical recognition/transduction processes (e.g. immunosensors, microbial, enzyme sensors).

Chemical sensors that depend on the various operating principles of transducers are listed in Table 1.1 (Collings et al., 1997; Fraden, 2003).

The most frequently used sensors for physicochemical and biochemical analysis are electrochemical sensors (Janata et al., 1994; Wang et al., 2008). They have been employed in a wide variety of analytical applications including well-known electronic nose and tongue systems (Gründler, 2007). Both devices are currently commercially available devices, which are based on chemical multicomponent characterisations of gas and liquid samples. They combine an array of various non-specific chemical sensors with subsequent chemiometric techniques in order to simulate human olfactory and taste perceptions (Vlasov et al., 1997). These two systems are chemical in nature and therefore it is possible to create their artificial analogues.
Table 1.1: Classification of chemical sensors based on the type of transducer.

<table>
<thead>
<tr>
<th>Sensor type</th>
<th>Detection principle or property measured</th>
<th>Operating mechanism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optical</td>
<td>Fluorescence
Absorbance
Reflectance
Light scattering
Luminance
Refractive index (surface Plasmon resonance, SPR)
Optothermal effect</td>
<td>Transformation of changes of electromagnetic radiation caused by the interaction between the analyte and receptor</td>
</tr>
<tr>
<td>Electrochemical</td>
<td>Voltametry
Amperometry
Potentiometry
Impedometry
Conductometry</td>
<td>Transformation of the effect of electrochemical interaction of the analyte with sensing surface of the electrode (chemical reaction or charge transport modulated by the reaction)</td>
</tr>
<tr>
<td>Electrical</td>
<td>Surface conductivity
Electrolyte conductivity
Capacitance</td>
<td>Transformation of changes of electrical properties caused by the interaction of the analyte</td>
</tr>
<tr>
<td>Thermal</td>
<td>Calorimetry
Thermistors
Pyroelectric
Thermopile</td>
<td>Transformation of changes of internal energy of a system that involve the analyte (heat effects of specific chemical reaction or adsorption)</td>
</tr>
<tr>
<td>Mass Sensitive</td>
<td>Piezoelectric
Surface acoustic wave (SAW)
Bulk acoustic wave (BAW)</td>
<td>Transformation of the mass changes at a specially modified surface. The mass changes are caused by adsorption of the analyte</td>
</tr>
<tr>
<td>Magnetic</td>
<td>Paramagnetism</td>
<td>Transformation of the change of paramagnetic properties of a gas being analysed</td>
</tr>
</tbody>
</table>

1.2.2 Electronic nose system

The electronic nose is an artificial sensing system based on the same principles as human olfaction. A schematic illustration of the biological mechanism, followed by its electronic analogue is shown in Figure 1.7. Figure 1.7-A indicates the mechanism of the human olfactory system which is composed of three main parts: olfactory receptor, responsible for the detection of odours; olfactory bulb that transports the detected signal from the nose to the brain; and olfactory cortex, where the information is processed.
This mechanism and the main stages of the human olfactory system are possible to simulate within an artificial olfactory device - an electronic nose (Figure 1.7-B) (Haddad et al., 2008). The idea behind it is that the sensor array consists of different sensor types, equivalent to the olfactory receptor, with high sensitivity to a variety of odours. This is followed by complex signal collection and data processing using adequate pattern recognition technique, such as artificial neural network (ANN) (Scott et al., 2006).

Electronic noses may utilise different types of chemical gas sensors. Typically these are conductometric sensors (metal-oxide semiconductors (MOS), and conductometric polymers (CPs)), potentiometric sensors (metal-oxide silicon field-effect transistors (MOSFETs)), mass sensitive surface acoustic waves (SAW) or bulk acoustic waves (BAW) coated with different odour sensitive polymer membranes (Fernandes et al., 2008; Garcia-Gonzalez et al., 2002). These sensors, when combined with signal processing systems for odour classification and identification, have been frequently used for food processing (e.g., testing for food freshness) (Casalinuovo et al., 2006; Pioggia et al., 2007), biomedical applications (breath analysis, volatile compound analysis of body fluids) (D’Amico et al., 2008; Penn et al., 2007), cosmetics evaluation, atmospheric or military applications (detection of pollutants, explosives, fuel dumps) (Distante et al., 2009; Srivastava et al., 2006).

In recent years, one of the most studied and extensively used components of electrochemical gas sensors and their arrays are CPs deposited on the sensor surface (Bai et al., 2007; de Leon et al., 2008; Rahman et al., 2008). Some of these sensors have been employed in the development and optimisation of commercially available devices. CPs and their composites display a number of unique conducting, optical, mechanical, electric and chemical features when they are in contact with various gases, organic molecules, inorganic ions, and changes in pH, which means that they are very useful in a variety of applications (Rajesh et al., 2009). However, despite a number of advantages (Lange et al., 2008; Rahman et al., 2008), polymers are often highly sensitive to even small variations in procedure during synthesis and treatment, which is crucial for
reproducibility of sensor manufacturing and commercialisation. They can also be very sensitive to thermal and environmental changes affecting their stability during storage.

Additionally, the efficiency of devices used for gas detection is also decreased by humidity, temperature and baseline drift that can result in unstable sensor response over time (Pan et al., 2007; Turner et al., 2007). Some major challenges related to the utilisation of these devices also include improvements involving their simplicity, long term stability, recalibration, and successful operation for real-time measurements in natural environments (outside controlled laboratory conditions) (Chang et al., 2008; Lieberzeit et al., 2009).

1.2.3 Electronic tongue system

An electronic tongue or taste sensor, combines an array of chemical sensors and data processing system for operation in liquid samples. This sensing system has been used for discrimination of different taste groups in a manner similar to biological taste perception. It has been used in the analysis of food products (sauces, soups) or drinks (water, wines, milk). The analysis is based on the taste being determined by five elementary flavour qualities and their combinations: sourness, saltiness, sweetness, bitterness and umami. The first, sourness, is determined by the presence of hydrogen ions of HCl, acetic acid, citric acid, etc. Saltiness depends on the presence of NaCl, bitterness - quinine, caffeine and MgCl, sweetness - sucrose, glucose, aspartame, etc. The last, umami is a Japanese term referring to deliciousness and implies for e.g., monosodium glutamate (MSG) contained mainly in seaweeds, disodium inosinate (IMP) in meat and fish and disodium guanylate (GMP) in mushrooms (Toko, 1998).

More recently, electronic systems (so-called taste sensors) have been used as general analytical instruments, based on the principle of taste recognition (Ciosek et al., 2008; Citterio et al., 2008; Lopez-Feria et al., 2008).

Due to well known operating principles of electrochemical techniques, the majority of electronic tongue systems rely on arrays of electrochemical sensors of a common type, in particular potentiometry and voltammetry (Ciosek et al., 2007; Winquist, 2008), with
different polymeric membranes and electrode coating. Developments of novel sensors are focused on the utilisation of various polymeric membranes, which leads to a number of possible modifications of working electrodes. This can result in greater sensor selectivity and sensitivity towards different species (Pioggia et al., 2008) (Ciosek et al., 2007; Citterio et al., 2008).

The electronic tongue system in combination with odour sensors has also been used for gaseous analytes. The ability to integrate both liquid and gaseous sensors, and also the possibility of using a combination of different sensors (not only those chemical in nature) is an essential advantage of these devices and has led to an improvement in the performance of artificial sensing.

Despite the wide variety of chemical sensors that can be used for electronic tongue array construction and the possibility of tuning the mode of device operation to the desired application (multicomponent analysis, discrimination, classification, recognition, estimation), the number of commercially available systems is still low (Krantz-Rulcker et al., 2001; Pioggia et al., 2007; Twomey et al., 2006). Major technical challenges facing electronic tongue manufacturing are data handling (massive database), system optimisation towards a specific given application, and requirements of the system such as frequent recalibration. Common problems are also reproducibility and signal drift of sensors (Gutierrez et al., 2008).

The electronic tongue can be compared to the electronic nose, with regards to them both via a similar mechanism. They both combine an array of non selective (or partially selective) sensors with multivariate data processing using pattern recognition. However, electronic noses are still better developed for analyte recognition, samples classification, or multicomponent quantitative analysis (Chang et al., 2008; Gutierrez et al., 2008; Vlasov et al., 2008) taste sensors enable analysis of liquid samples or solids dissolved in liquids. Despite a number of limitations relating to artificial systems, electronic nose and tongue systems offer significant advantages over the natural receptors of taste and smell, including better selectivity, objectivity, and the possibility of detecting some substances not detectable by natural systems. Furthermore, electronic systems do not
become tired, overworked or infected and their performance is not affected by previous valuations. Using electronic devices it is also possible to analyse toxic or uneatable samples.

Artificial systems are very promising for the future but there are still a number of applications where their use is insufficient and can often cause problems. This includes commonly employed electrochemical sensors. They are well-established and popular but not always easy to operate, which is important, e.g. during routine handling. Additionally, they are invasive, limited to single-point valuation and are unable to analyse analytes distribution. The development of an analytical tool that enables detection or differentiation among a wide range of analytes and microorganisms is urgently required, especially for testing real food or medical samples. The aim is to detect and quantify analytes and physical parameters in real-time, at low cost, with high reproducibility, specificity and sensitivity. Ideally the device should be prompt for automatisation, allowing routine handling and minimising the risk of contamination and human error during measurements (Ahmed et al., 2008). These requirements could possibly be met by using mentioned alternative system based on optical sensing.

1.2.4 Optical multisensing approach

While the concept of multivariate analysis as an approach for examination of sensor array data and detection of analytes in complex samples has been explored mainly for electrochemical, electrical or piezoelectric sensors (Fernandes et al., 2008; Rudnitskaya et al., 2008; Steen et al., 2008), only limited efforts have been put into the development of equivalent optical sensors.

Optical methods when compared to electrochemical techniques, represent one of the oldest and most widespread methods for chemical, biochemical or physical examination (Mendelson, 2000). Optical sensing systems are based on light–matter interactions in order to obtain required information.
Currently, optical sensing and imaging techniques have experienced increased attention, especially in the field of *in vivo* measurements, since they do not require physical contact with a sample during analysis. Other specific advantages compared to electrochemical sensors are included in Table 1.2, along with a few less essential limitations.

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>- do not require an additional reference signal as electrodes do</td>
<td>- interference of ambient light</td>
</tr>
<tr>
<td>- offer greater flexibility with design</td>
<td>- limited dynamic rage, smaller compared to electrochemical sensors</td>
</tr>
<tr>
<td>- enable more efficient and easier remote sensing (long-distance transition of light)</td>
<td>- dependence on concentration of indicator and analyte</td>
</tr>
<tr>
<td>- provide real-time analysis of complex samples</td>
<td>- signal dependency on ionic strength, solvent</td>
</tr>
<tr>
<td>- enable monitoring or probing of a wide range of analytes and parameters (chemical, biochemical, physical)</td>
<td>- require immobilisation for better sensitivity and selectivity - as a result smaller slope of response curve</td>
</tr>
<tr>
<td>- do not consume an analyte (non destructive)</td>
<td>- possess limited long-term stability due to photobleaching or leaching of the indicators</td>
</tr>
<tr>
<td>- offer lower cost and time of measurements</td>
<td>- higher power consumption</td>
</tr>
<tr>
<td>- measurements are less invasive and harmless for the system, far less so than electrochemical devices</td>
<td></td>
</tr>
<tr>
<td>- transmit more information than an electrical signal</td>
<td></td>
</tr>
<tr>
<td>- do not suffer from electrical interferences</td>
<td></td>
</tr>
<tr>
<td>- allow possibility of wide-range temperature control, smaller temperature dependence</td>
<td></td>
</tr>
</tbody>
</table>
Optical sensing is a very attractive alternative to state-of-the-art sensing technology since they often provide simple, user friendly, real-time, continuous monitoring of analytes and environmental parameters. Different from other techniques, optical examination enables multimode measurements. It enlarges the number of output parameters including intensity, spectral shape, wavelengths, decay time, energy transfer, quenching efficiency, and polarisation providing collective information on a sample thereby simplifies and reduces cost and time of measurements. The application of available mechanisms and outputs of optical signal can be specified according to the actual requirements.

The most common optical techniques applied in sensing systems are absorption, fluorescence, reflection and light scattering (Baldini et al., 2006). Recent advances in technology and development highlighted a focus on fluorescence-based methods.

1.2.4.1 Fluorescence-based assay

Among these optical techniques, fluorescence spectroscopy appears to be particularly promising for chemical and biochemical sensing technology as it contains most of the advantages listed for optical sensors (Lakowicz et al., 1999). This includes high sensitivity, ability to monitor several analytes with a single instrument at very low concentrations, and detection of real-time responses for a target. An additional advantage is versatility, possibility of system miniaturisation, speed and compared to others low cost (Basabe-Desmonts et al., 2008). Fluorescence spectroscopy has become favourable especially in the areas of medical, cosmetic or biochemical science as they allow contactless sensing. This is of great advantage over other sensing methods for diagnostic and analytical proposes if the non-invasive in-vivo measurements (or sterile conditions) are an essential requirement (Kocincova et al., 2007; Öberg, 2003). Optical assessment and data collection can be performed directly from the sample, thus a sample extraction is not necessary (Wolfbeis, 2008). Also they are not limited by area (monitoring of distribution of oxygen and pH in human skin, seawater). A further advantage is that fluorescence measurement does not consume analytes, does not require a reference signal or any physical waveguide for the light. These significant
features facilitate technical requirements and devices handling, and greatly increase the potential of fluorescence-based optical sensing from a technical point of view. Fluorescent sensors also prompt to miniaturisation (Nagl et al., 2005).

Considering the possibilities of an optical multisensing approach, the strategies of using a number of optical sensing elements (biochips, micro-, nanobiosensors or probes) employed in high-density sensing arrays for multiplex screening and biochemical analysis have already been reported (Bally et al., 2006; Basabe-Desmonts et al., 2008; Basabe-Desmonts et al., 2007; Lee et al., 2008). One very attractive concept that has been described is the implementation of fluorescence-based sensor arrays, so-called multispot sensors that involve each single sensing spot to yield distinctive optical information including analytical information for chemical, biochemical or physical species in the sample (Demchenko, 2005; Nagl et al., 2007; Thete et al., 2009). This approach is illustrated in Figure 1.2.

![Figure 1.2: Schematic illustration of multispot optical dual sensor assay used to measure CO\(_2\) and O\(_2\). Figure adopted from (Bake et al., 2008).](image)

Dye indicators are deposited on the surface of the analysed sample and they are allowed to diffuse inside the sample. Excitation and emission collection are performed from the bottom. However, it gives multiplex information about the analysed media, but it does
not allow truly simultaneous measurements. These spots are separated from each other and therefore cannot measure several analytes at the same point and time.

The best solution for this limitation would be to use a single spot that consists of several fluorescence-based sensors combined together. It would minimise the size of the sensing system and enable all sensors of the array to be placed in the one, exact place in the sample allowing local and simultaneous measurements of numerous of parameters. It could also be very useful for controlling different factors that cause interferences in measurements, such as temperature, pH, humidity, etc. So far, the multisensors based on this approach were limited to the detection of only two parameters in a single measurement (Baleizao et al., 2008; Borisov et al., 2006; Kocincova et al., 2007).

Currently, numerous studies have proven the advantages and great potential of fluorescence-based chemical multisensing. A large group of optical sensors use fluorescent dyes for the identification of different physicochemical, biochemical or biological species (Wolfbeis, 2005, 2008). Fluorescent dyes often provide high sensitivity and selectivity for the analytes of interest. Molecular information about the media is contained in their spectral behaviour (Nagl et al., 2009). The relationship between spectral characteristics of a free fluorophore, and changes caused by interactions with its surroundings, can provide significant information about a sample. It makes a great tool for fast, easy monitoring of the environmental conditions.

The nature of the fluorophore spectra are usually analysed based on the fluorescence intensity, lifetime, energy distribution or anisotropy (Lakowicz, 2006; Valeur, 2001). The fluorescence intensity is related to the changes in emission of the fluorophore in response to interactions or binding with analytes. Fluorescence lifetime is defined as the time when molecules stay in its excited state before returning to the ground state (Valeur, 2001). This parameter is important because it determines the time available for fluorophores to interact with the environment. Energy distribution is analysed based on the shape or shift of fluorescence spectra and fluorescence anisotropy on the polarisation, that provides information on the size and shape of fluorescent molecules, and examines binding interactions with other species (McCarroll et al., 2001).
A variety of fluorescent probes is known from the literature and is commercially available (Haugland, 1996). In addition, they are not expensive and so cost of the measurement is minimal. The principal demands on fluorescent probes are for high fluorescence quantum yields, selectivity, long-wave excitation and emission, and a high excitation coefficient at the excitation wavelength (Kemmitzer et al., 2002). Further requirements are lack of toxicity, photochemical and chemical stability, and the presence of functional groups for suitable immobilisation on the rigid support without any changes in the physicochemical constant of the indicator.

Considering all these requirements, the first important step for the successful design of a fluorescent sensing scheme is the selection of the most suitable fluorescent probes for the recognition of particular target analytes (Basabe-Desmonts et al., 2007). Additionally in the multisensing approach, the selected fluorescent dyes should possess various sensitivities and substantially different emission spectra so they can be combined together in order to enable the monitoring of the contribution from the individual dyes in the total fluorescent spectrum of their mixture. Such a system might offer a promising optical equivalent to electronic noses and tongues that use fluorescence spectroscopy and a mixture of environment-sensitive fluorescent dyes (where each dye of the mixture represents a different indicator). If the intensity spectrum of the suitable dyes allows discreet reading of emission maxima of all dyes, the intensity variations in response to environmental changes might provide distinctive patterns, which can then be analysed in the same way as complex signals collected by an electronic nose/tongue electrochemical or piezoelectric array. The analytical information about a sample coded in the fluorescence pattern can be decoded using multivariate data analysis by transformation of an optical system response into the actual physicochemical parameters and target analytes.

The use of a mixture of fluorescent dyes for optical sensing could have a number of advantages, including easy application, high speed and low cost of measurements. It might also resolve one of the main problems associated with electronic nose technology, wherein a sensor array has to be calibrated each time it is used. The proposed assay does not have this limitation and the mixture of fluorescent dyes can be perceived as an
analytical reagent that can be tuned for various specific analytical tasks. Since the proposed assay includes only a small spot of all dyes, it opens the possibility of extreme system miniaturisation and application to a very small volume of sample. The utilisation of a mixture of fluorescent dyes is very promising for simultaneous measurements of several physicochemical, biochemical or chemical properties of analytical species that has not been documented before.

1.2.5 Multivariate approach - chemometrics

A large number of multicomponent sensing systems consist of cross-reactive chemical non-specific sensor arrays that generate a complex pattern as a response. The outcome signal is less specific, but distinctively different for each sample. The challenge is to process the obtained patterns in order to understand the meaning of the outcomes. Therefore, the success of sensing technology depends not only on accurate analytical measurements and technology developments, but also on chemometrics applications which help to process the data. Nowadays, the multivariate approach is commonly used by scientists and plays a major role in interpretation of sensor array responses. This includes different fields of science, starting from environmental, food, biological, chemical, physicochemical, forensic and geochemical, up to areas of sociology or marketing.

The multivariate outputs can be evaluated by several chemometric methods depending on the purpose. This includes four main approaches, such as pattern recognition, multivariate calibration, experimental design and signal processing (Brereton, 2007). In this study the first two methods have been briefly described and used in further experiments. The pattern recognition technique has been employed by performing Principal Component Analysis (PCA) for discrimination between different samples and multivariate calibration applied Artificial Neural Network (ANN) for quantitative analysis of specific compounds as well as qualitative analysis of samples (Gutes et al., 2007).
1.2.5.1 Pattern recognition: Principal Component Analysis (PCA)

Among chemometric and multivariate analysis one of the most recognised disciplines is pattern recognition technique. It aims at uncovering information contained within the raw data (patterns in data) through identification, extraction and conversion of this data into more understandable format to allow easier analysis.

A standard pattern recognition technique and probably the most widespread statistical approach for multivariate data analysis is PCA (Otto, 2007). The key idea of PCA is to resize the large original dataset to a smaller matrix by highlighting similarities and differences within the data. As a consequence, redundant and noisy information can be eliminated, which helps to improve visualisation and simplify analysis of the data pattern without essential information being lost. Performing PCA, the large number of variables in raw data (the dimensionality of the data) is reduced to a lower number of significant factors, so-called principal components (PCs) (Malecha et al., 2002). They are determined from a linear projection of the original data. This approach is illustrated for three dimensions in Figure 1.3.

Figure 1.3: The illustration of PCA performance when the original high-dimensional data space (e.g. three dimensions) is projected onto a two dimension principal component space that maintains the largest variance in the data. The illustration is adopted from (Lobanov et al., 2001; Scholz, 2006).
The selected PCs indicate the most variance that has been found in the original data. The first PC is evaluated based on the maximal variance in the data, the second PC results from the maximal variance in the direction that is orthogonal to the first one. Other components can be defined in different dimensions followed by the most variance of observations (Rencher, 2002). Two dimensional visualisation of the presented example (Figure 1.3) reveals qualitative information about four experimental conditions of the analysed system.

Mathematically, the input data matrix X ($M \times N$) is decomposed into two matrices: scores matrix T ($M \times K$) and loading matrix P ($N \times K$) and residual, noisy part E ($M \times N$) according to (Esbensen et al., 2002):

$$X = t_1 p_1^T + t_2 p_2^T + \cdots + t_k p_k^T + E$$

$$X = TP^T + E$$

Where, matrix T describes the spread of samples within the PCA model space (TP^T). M is the number of rows of matrix X and indicates the number of samples or measurements. Matrix P defines the relationships between variables, where N is the number of columns and indicates the number of variables. K defines the number of PCs and the symbol T is a transpose of the matrix.

The graphical interpretation of the decomposition of the original dataset X is illustrated in Figure 1.4.

Figure 1.4: Graphical illustration of PCA model. Adopted from (Esbensen et al., 2002).
PCA performance has been appreciated especially for the interpretation of sensor arrays responses when many variables have to be analysed simultaneously. It can be a very useful tool to sort out acquired data, recognise similarities and differences in the samples (Palacios \textit{et al.}, 2007) and also to pre-process response datasets that can be later used for quantitative analysis of target compounds as well as qualitative samples evaluation (Raykov \textit{et al.}, 2008; Siripatrawan, 2008). Additionally, PCA does not require any prior information other than the original data.

1.2.5.2 Multivariate calibration: Artificial Neural Network (ANN)

Along with PCA, ANN is another chemometric technique extensively used by scientists. While PCA has been frequently applied for processing large amounts of data or qualitative analysis, ANN allows quantitative analysis of a particular species and samples classification. The origin of the artificial neural network concept has a biological nature. Inspired by the mammalian neural system, ANN forms a model of human brains and imitates some of its functions. This includes information processing, such as function approximation (prediction of behaviour and properties of a system), pattern classification (identification and assignment of data to a class), or clustering (recognition clusters in data) (Samarasinghe, 2007). ANN aims at following the ability of the human brain and learning this information over a period of time to allow the drawing of the conclusions, and making reliable predictions. It should be accomplished despite complexity, and irrelevant or partial information on the environment.

Based on the structure of a biological system, ANN consists of nodes/neurons connected together forming an artificial neural net to process information. A biological neuron structure and its artificial representation are presented in Figure 1.5.

A biological cell (Figure 1.5-A) contains three basic components: dendrites, cell body and axons. Dendrites lead the input signals to the cell body, where these signals are accumulated, processed and then sent further to axons, which channel the information to other neurons of the net. This process is imitated by nodes that apply mathematical models for biological neurons (Figure 1.5-B). The input information (x_n) is weighted
(w_n) and transferred to the cell body of the artificial neuron. Further, two actions are performed: the weighted inputs are summed (Σ) and then the sum is processed through a transfer function (f(Σ)) to produce an output signal (y). The outcome is moved forward to neighbouring units. Weights form connections between nodes and they are adjustable during the network learning process. Their estimation is crucial to the network performance and error minimisation. Finding the appropriate weights leads to the smallest network error.

![Diagram of a single neuron](image)

Figure 1.5: Schematic illustration of a single neuron: biological neuron (A), artificial neuron (B). Illustration adopted from (Lobanov et al., 2001; Samarasinghe, 2007).

Artificial neurons are organised in layers, and most artificial neural networks have a multilayered architecture (see Figure 1.6). The first layer, input layer consists of independent variables. The last layer is the output layer, which projects the outcome of the dependent variables. The middle layer is called the hidden layer, which provides interconnections between the input and output layers. There can be one or more hidden layers, usually depending on the complexity of the problem. Commonly used models contain one hidden layer with a varying number of nodes. Additional hidden layers are often used for more complicated applications (Huang et al., 2007).

The network learning process can be either supervised with knowing target outputs as a guide, or unsupervised (self-organising) when targets are not required and by application of different mathematical methods, data organise themselves.
ANN is a powerful advanced tool in analysing different linear and non-linear systems with or without knowing the underlying characteristics of the complex problems. The main advantage of ANN over conventional statistical techniques is that once the network is trained and the model is evaluated, the same network can be applied to solve analogues problems (adaptive learning). It gives the possibility of real-time operations on numerous multicomponent systems.
1.3 Analytical characterisation of samples

The approach of multidetection has become crucial in analytical laboratories for routine measurements of physicochemical parameters and metabolites in complex samples and constant real-time bioprocess monitoring (Schroder et al., 2007). The list of required analytes is lengthy and continuously expands. Therefore, it is extremely critical to improve sensing tools for multiple analyte detection and quantification, which would allow rapid diagnosis. The development of the assay presented in this work involves analytical characterisation of samples including simultaneous measurements of several critical parameters (Ferguson et al., 1997; Krommenhoek et al., 2008; Lieberzeit et al., 2008), such as pH, temperature, level of oxygen and salinity. For a number of applications these parameters should be monitored continuously.

1.3.1 pH

The determination of pH is essential in many areas of research and industry. The pH is one of the commonly measured parameters e.g. in clinical analysis of blood samples and other physiological fluids (Baldini et al., 2007; Medlock et al., 2007) for diagnostic proposes, tissues engineering as an important physicochemical control factor for tissues regeneration and functioning (Mano, 2008; Starly et al., 2008). It is also used as a crucial chemical stimulus in studies of smart materials for drug delivery applications (Ju et al., 2009). Furthermore it can be used as a quality indicator to regulate the condition of drinking water, determine the freshness of food and monitor growth of cell cultures (Krommenhoek et al., 2007; Wu et al., 2009). The pH also plays an important role in environmental examination by investigation of an industrial waste water treatment, characterisation of soil condition (Unger et al., 2009) or the level of the air pollution by analysing acidity of rain (Badugu et al., 2008). Along with oxygen concentration, information on pH is also required in marine research and seawater analysis (Schroder et al., 2005; Vasylevska et al., 2006).
1.3.2 Dissolved oxygen

Besides pH, oxygen is one of the most important and essential for life chemical species. The determination of the oxygen concentration is constantly required in medicine, cell biology, biotechnology, marine science or environmental analysis (Borisov et al., 2009). Dissolved oxygen (DO) is the key parameter that refers to liquid systems, which describes the amount of gaseous form of oxygen dissolved in aquatic media. It is an important factor often referred as the quality of water (Xu et al., 2008) but also applied in clinical research, as a key physiological parameter in monitoring of the oxygen level in blood samples (Baldini et al., 2007; Jiang et al., 2008) or internal oxygen concentration of tissues (Amao, 2003; Schmalzlin et al., 2005). In fermentation and other biological, chemical or biotechnological processes, it is used to control and optimise microenvironment and growth of bacteria or yeasts (Funfak et al., 2009; Mehta et al., 2007). It can also be used as a guide for ecology condition of waste or territorial waters analysis (Amao, 2003).

1.3.3 Temperature

Temperature is an important factor in medical, pharmaceutical applications and bioprocess control. Different temperatures of environmental conditions can radically change cell metabolism and further process efficiency (Vojinovic et al., 2006), therefore the microenvironment of cell cultivation must be carefully adjusted and controlled to ensure effective productivity of the process. This is also related to the pharmaceutical industry and metabolic engineering, which utilises plants and microorganisms for production of drugs such as antibiotics or extraction of valuable natural pharmaceutical compounds (Lee et al., 2009). The examination of temperature changes is also essential for material science and drug delivery purposes (Bawa et al., 2009). Of great importance is that drugs are encapsulated and carried to the desired place within the body where it can be safely released. This process is often controlled by temperature of phase transition of thermo-responsive materials (Bhattacharai et al., 2005). Additionally, temperature is a basic parameter that can influence sensors outputs, synthesis,
measurements, production, and storage, transport of different compounds or substances. Therefore it requires constant attention.

1.3.4 Buffer composition

The effect of changes in buffer composition similar to fluctuations in real samples has a significant impact on the sensor outputs. One of the factors which can be rather variable and influence the analysis of biological samples, is their ionic state (Chow et al., 2009; Weidgans et al., 2004). The presence of different salts and their various concentrations might change processes that occur in the environment (Cortez et al., 2006), therefore it is essential to test the efficiency of sensing system in response to varying ionic strength or a presence of different ions in the samples. This can be simulated by preparing different buffers with adjusted proprieties and desired parameters, which has been done in presented experiments (Ahmad et al., 2009).
1.4 Thesis statement

This thesis describes the work which has been done to prove the validity of following hypotheses:

- possibility to develop and examine novel fluorescence based diagnostic assay as an optical equivalent to electronic nose and tongue systems (Figure 1.7);

- application of fluorescence spectroscopy and a mixture of environment-sensitive fluorescent dyes instead of electronic sensor arrays to monitor changes in the sample;

- evaluation of acquired by the assay data base on chemometric methods, similarly to electronic nose/tongue sensors;

- using the assay for qualitative and quantitative analysis of complex samples.

1.5 Aims of the research

Following the approach of a new multipropose fluorescent based assay, the research aims were focused on characterisation of the assay and testing its diagnostic potential. In particular, several tasks have been performed:

(A) One of the major aims of this study was to design the recognition element for an optical assay consisting of a mixture of fluorescent dyes. Based on available information in the literature, lists of commercially available fluorescent dyes have been chosen and dyes were classified regarding their sensitivities, optical and chemical properties and prices.

Selection criteria for fluorescent dyes, their lists and required information are described in Chapter 2.
(B) Collected information and lists of dye-indicators has been used to select the favoured ones. These dyes were later acquired and their optical properties were examined experimentally in order to test which of them could be mixed together in one solution. Based on the results, suitable mixtures of selective dyes have been defined, where each dye representing distinct unit of specific indication, and combined with chemometric techniques for fluorescence data processing.

The selection criteria and optimisation of fluorescent dye mixture are described in Chapter 3.

(C) The next aim of this study was to investigate the analytical capability of the proposed assay engendered by changes in fluorescence signal in response to changes in environment such as pH, temperature, ionic strength and the presence of oxygen. It has been done to validate its potential for simultaneous identification and measurements of several physicochemical parameters, thus quantitative analysis of samples.

Testing of the analytical capability of the assay for multiply parameters of a sample is described in Chapter 4.

(D) A further major aim was to investigate the possibility of using the assay for qualitative analysis of biological samples. The feasibility of this approach has been tested for the identification of development phases of growing bacterial cultures, discrimination between two different strains of yeast and urine samples from subjects with several gastrointestinal diseases.

The optical approach for diagnose of biological samples is described in Chapter 5.
Figure 1.7: Schematic representation of sensing systems: human olfactory system (A), electronic analogue (B) and our optic analogue (C). Principle adopted from (Turner et al., 2004)
2. First objective: selection of commercially available fluorescent dyes

2.1 Introduction

Considering the great potential of fluorescent dyes, their high sensitivity and specificity in measurements of wide range physicochemical and biochemical analytes, the first task of the project was to collect a number of well-characterised and commercially available fluorescent probes, which allow measurements of three physicochemical parameters, namely: pH, temperature and oxygen concentration. These parameters were chosen for the first instance since their regular examination is required in many areas including medicine, biotechnology or environmental diagnostics. The distinctive functions of these parameters were described in Chapter 1.3.

Later, the sensitivity of the assay was expanded to determine the ionic strength of a solution, which however was based not on the sensitivity of the particular dye but was related to recognition of response fluorescence pattern that originated from interferences between buffer concentration and all dyes included in the assay (see Chapter 4.3.3).

Taking also into account the future improvements and the application of the assay involving the development of a smart vanishing ‘tattoo’ (similar to kids temporal tattoos) (see Chapter 6 and (Moczko et al., 2008)) the selection of dyes has been performed also for glucose concentration. The vanishing ‘tattoo’, consisting of a mixture of environmental-sensitive fluorescence dyes can be used for an in-vivo real-time clinical monitoring of physiological parameters and metabolite concentrations in human skin. Among other key parameters to control glucose concentration is crucial especially for diabetics. Diabetes affects the ability of the body to produce or respond to insulin, the hormone that allows glucose to enter the body’s cells and to be stored or used for energy (Bronzino, 2000). Most diabetics require insulin injections, and most of the time they have to carefully monitor and manage their blood glucose levels themselves. Because glucose levels can fluctuate widely throughout the day, for optimal control they have to do the blood test several times a day (usually from finger pricks).
Consequently, novel, rapid and minimal-invasive method for measurements of glucose level could have a significant impact on new developments in medicine.

Even though the actual measurements of glucose have not been attempted yet, the idea of vanishing ‘tattoo’ is still under development.

2.2 Selection criteria for single fluorescent dyes

Lists of suitable fluorescent dyes for the optical assay were prepared according to following criteria:
- Dyes should have the ability to change their optical properties in response to suitable changes of an environment (pH, temperature or oxygen).
- They should be commercially available and preferably inexpensive.
- For the minimum interference with biological samples, fluorescent dyes should be responsive in VIS-NIR (~400~1600 nm).
- Considering future immobilisation of dyes onto rigid support, they should contain functional chemical groups allowing binding to occur.

Other major factors which should be taken into account during a selection are also the molar excitation coefficient of the dyes (the ability of a dye to absorb light at a particular wavelength), fluorescence quantum yield (the efficiency of the fluorescence process) or photostability (quality of a dye to retain resistant to light exposure) (Singer, 1997).

A variety of fluorescent dye indicators have been reported and their susceptibility to different environmental effects have been characterised in a number of journals, handbooks of fluorescent probes and research chemicals (Haugland, 1996; Sabnis, 2008). The lists of suitable fluorescent dyes were prepared on the basis of this information and in respect to above specifications.

Additional requirements for the combination of favourable fluorescence dyes are described later, in Chapter 3.2.
2.3 Results and Discussion

The suggested indicators which allow qualitative and/or quantitative detection of different chemical or physicochemical analytes along with their spectral characteristics (excitation and emission maxima and spectra) were listed and reported in the earliest phase of this study on the optical assay development. This included pH, temperature, oxygen, which were considered in this study (see Table 2.1, 2.2, 2.3 for pH, temperature and oxygen respectively). Indicators for glucose detection are listed in Table 2.4.

The first table (see Chapter 2.3.1) consists of pH indicators which can change fluorescence spectra by shifting their fluorescence maxima, or changing the intensity at the certain range of pH. It can be also the combined influence of both these features. Dyes which have been chosen, are sensitive to pH within relatively wide range. Most of them are highly sensitive within physiological and higher pH, such as fluorescein and fluorescein derivatives and some of them, e.g. Oregon green 480 and Oregon green 514 have been reported very sensitive at lower pH. This gives the possibility of integrating the system of dyes with high sensitivity in different ranges of pH.

Regarding temperature (see Chapter 2.3.2), it is well known that the majority of fluorescent dyes change their spectral characteristics at different temperatures, however these changes may not be correlated with the influence of this one parameter only, but can be driven by the presence of other variables of the system. They can not therefore be used as reliable indicators to measure the actual temperature of the sample. Moreover, they are less sensitive to temperature than some fluorescent probes presented in the literature as accurate indicators for temperature and less or not sensitive to others. The fluorescence intensity of these dyes can therefore be proportional to temperature. Depending on the sensitivity range for temperature, several suitable probes have been selected for the consideration of their implementation in the optical assay.

The third table includes oxygen sensitive probes (see Chapter 2.3.3). The measurement of oxygen concentration in a sample is based on the principle of collisional quenching of certain fluorophores by the presence of oxygen (Lakowicz, 2006). First the
fluorophore absorbs certain energy, produces excited electrons, which then comes back to the original energy state. This is associated with emitting energy. When oxygen molecules are present, the amount of fluorescence intensity is reduced because the excited state of the fluorophore is deactivated upon diffusive encounter with a quencher molecule. By measuring the amount of quenching, it is possible to map the real concentration of oxygen in the sample.

The last table (see Chapter 2.3.4) includes glucose receptors that have been employed in fluorescence based sensing. Many of them involve measuring of changes in fluorescence resonance energy transfer (FRET) between fluorescence donor and the acceptor based on competitive binding to the lectin concavalin A (Con A) of either labelled carbohydrate derivative such as dextran, mannoside or glucose. FRET might occur only when the emission spectrum of the donor overlaps with absorption spectrum of the acceptor and when these molecules are placed in approximately 20-100 Å from each other (Fröster distance) (Lakowicz, 2006). This results in promotion of energy transfer and increases the fluorescence intensity. When glucose is introduced to the system, it replaces the donor, e.g. dextran from the Con A and increases the separation distance between two acceptor and donor, which leads to a loss of energy transfer and fluorescence decrease. Widely employed in glucose sensing has also been enzymatic assays such as one involving, e.g. glucose oxidase (GOx) as a catalyst and hydrogen peroxide (HRP) as a product of the reaction. The concentration of HRP is correlated with glucose levels in the sample and therefore dye sensitive to HRP can be use for this indication.

All dyes listed in following tables were considered as potential indicators for different parameters that can be combined and used in the optical assay.

The most challenging criterion was to choose dyes sensitive to specific parameters at the suitable range and their emission at the longer wavelengths of light spectrum. This property makes them advantageous for many biological applications. The lists of fluorescent dye indicators considered in this research are presented below in respect to their different sensitivities (pH, temperature, oxygen and glucose).
2.3.1 pH sensitive fluorescent dyes

Table 2.1: List of pH sensitive fluorescent dyes. They are listed by increasing emission wavelengths.

<table>
<thead>
<tr>
<th>Indicator Name</th>
<th>Chemical Structure</th>
<th>Sensitivity</th>
<th>Excitation / Emission [nm]</th>
<th>References</th>
<th>Supplier/Price</th>
</tr>
</thead>
</table>
| LysoSensor blue | ![Chemical Structure](image) | pH 4.0-7.0 | 365 / 430 | (Lin et al., 2001) | Molecular Probes
Unit Size: 20 × 50 µl
Price: 194.00 GBP |
| DND-167 | ![Chemical Structure](image) | ![Fluorescence Response](image) | ![Fluorescence Response](image) | | |
| 5(6)-carboxyfluorescein | ![Chemical Structure](image) | pH 4.5-7.0 | 490 / 517 | (Mordon et al., 1992)
(Begu et al., 2005)
(Manconi et al., 2007)
(Lee et al., 1998) | Molecular Probes
Unit Size: 100 mg
Price: 92.00 GBP |
| 5,6-CF | ![Chemical Structure](image) | ![Fluorescence Response](image) | ![Fluorescence Response](image) | | |
6-carboxyfluorescein
6-CF

\[
\text{CO} \quad \text{C} \quad \text{OH} \\
\text{O} \quad \text{COH} \quad \text{O}
\]

pH 5.0-7.5 492 / 517
(Aschi et al., 2008)
(Thomas et al., 1979)
(Cohen-Kashi et al., 1997)

Molecular Probes
Unit Size: 100 mg
Price: 97.00 GBP

8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt
HTPS

\[
\text{OH} \\
\text{S} \\
\text{S} \\
\text{O} \\
\text{ONa} \\
\text{ONa} \\
\text{O} \\
\text{NaO} \\
\text{O}
\]

pH 6.0-11.0 460 / 518
(Lakowicz, 2006)
(Oter et al., 2006)
(Agostiano et al., 2004)
(Hulth et al., 2002)

Molecular Probes
Unit Size: 1g
Price: 110.00 GBP

Fluorescein
FL

\[
\text{C} \quad \text{O} \quad \text{OH} \quad \text{OH} \quad \text{O} \\
\text{O}
\]

pH 5.0-8.0 494 / 510
(Lakowicz, 2006)
(Sjoback et al., 1995)
(Fisher et al., 2003)
(Ge et al., 2008)
(Baker et al., 1999)

Molecular Probes
Unit Size: 1 g
Price: 67.00 GBP
Oregon green 488 carboxylic acid

OG488

\[
\text{pH 3.5-5.7} \quad 490 / 520 \quad (\text{Orte et al., 2005})
\]

Molecular Probes
Unit Size: 10 mg
Price: 36.00 GBP

BCECF

\[
\text{pH 5.0-8.0} \quad 505 / 528 \quad (\text{Hanson et al., 2002})
\]

Molecular Probes
Unit Size: 1 mg
Price: 96.00 GBP
Oregon green 514 carboxylic acid
OG514

pH 3.0-8.0 510 / 530 (Delmotte et al., 1999) (Lin et al., 1999)

Molecular Probes
Unit Size: 5 mg
Price: 116.00 GBP

DM-NERF

pH 5.0-7.0 488 / 536 (Lin et al., 1999) (Li et al., 2008)

Molecular Probes
Price: N/A

Cl-NERF

pH 3.0-5.5 488 / 540 (Lin et al., 1999) (Slivka et al., 2001) (Coskun et al., 2001)

Figure: The pH-dependent absorption and emission spectra of DM-NERF. The excitation wavelength was 488 nm.

Figure: The pH-dependent absorption and emission spectra of Cl-NERF. The excitation wavelength was 488 nm.

Figure: The pH-dependent absorption and emission spectra of OG514. The excitation wavelength was 488 nm.

Figure: The pH-dependent absorption and emission spectra of OG514. The excitation wavelength was 488 nm.

Figure: In vivo calibration of DM-NERF (pH indicator).

Figure: Cl-NERF as an on-line pH sensor. Calibration curve of 512- to 433-nm fluorescence excitation ratio of Cl-NERF vs. pH. Cl-NERF (0.1 mM) added to perfusate solution was measured at the indicated pH values.
LysoSensor yellow/blue DND-160
\[\text{pH 3.0-8.5} \]
pressure
384 / 540 (DePedro et al., 2009)
(Lin et al., 2001)
Molecular Probes
Unit Size: 20 × 50 µl
Price: 190.00 GBP

Carboxy-seminaphtho-fluorescein-1
C-SNAFL-1
\[\text{pH 6.5-9.5} \]
514 / 550 (Lin et al., 2003)
(Kuwana et al., 2003)
(Sanders et al., 1995)
Molecular Probes
Unit Size: 1 mg

C-SNARF-6
\[\text{pH 6.0-9.0} \]
540 / 560 (Lakowicz, 2006)
Molecular Probes
Price: N/A
C-SNARF-5F
\(\text{pH 5.0-9.0} \)
530 / 625
(Liu et al., 2001)
(Hille et al., 2008)
Molecular Probes
Unit Size: 1 mg
Price: 189.00 GBP

C-SNARF-1
\(\text{pH 6.0-9.0} \)
535 / 640
(Yassine et al., 1997)
(Vecer et al., 2001)
(Magg et al., 2007)
Molecular Probes
Unit Size: 1 mg
Price: 189.00 GBP

C-SNARF-4F
\(\text{pH 5.0-8.0} \)
514 / 660
(Marcotte et al., 2005)
(Liu et al., 2001)
Molecular Probes
Unit Size: 1 mg
Price: 189.00 GBP
2.3.2 Temperature sensitive fluorescent dyes

Table 2.2: List of temperature sensitive fluorescent dyes. They are listed by increasing emission wavelengths.

<table>
<thead>
<tr>
<th>Indicator Name</th>
<th>Chemical Structure</th>
<th>Sensitivity</th>
<th>Excitation / Emission [nm]</th>
<th>References</th>
<th>Supplier/Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluorescein isothiocyanate</td>
<td></td>
<td>Temperature</td>
<td>495 / 520</td>
<td>(Liu et al., 2005)</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>FITC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Unit Size: 250 mg, Price: 34.10 GBP</td>
</tr>
</tbody>
</table>
5(6)-Carboxytetramethylrhodamine (TAMRA)

Temperature: 540 / 570°C

Sigma-Aldrich
Unit Size: 100 mg
Price: 91.30 GBP

![TAMRA structure]

Figure. Effects of salt concentration on fluorophore stabilities with respect to temperature on gel-based microchips. The formamide concentration in the buffer was fixed at 0.5%, (excitation 450 nm/emission 525 nm) at salt concentrations (0, 100, and 500 mM).

Rhodamine 101

Temperature: 520 / 580°C

Sigma-Aldrich
Unit Size: 500 mg
Price: 35.80 GBP

![Rhodamine 101 structure]

Figure. Temperature dependence of the normalized absorbance of 10 micrograms/ml of rhodamine 101 in a modified ethanol solution containing 0.5% formamide at 20°C, 30°C, 40°C, 50°C, and 60°C.

Merocyanine 540 (MC540)

Temperature: 530 / 580°C

Molecular Probes
Unit Size: 25 mg
Price: 63.00 GBP

![Merocyanine 540 structure]

Figure. Fluorescence of MC540 in the presence of DOPC, unilamellar vesicles (LV), and ethanol solution (E) as a function of temperature. The solid line represents a least-squares data approximation.
Rhodamine Red

Temperature 570 / 590 (Liu et al., 2005)

Molecular Probes
Unit Size: 1 g
Price: 57.00 GBP

Figure. Effects of salt concentration on fluorescence stability with respect to temperature on gel-based microchips. The formamide concentration in the buffer was fixed at 0%.
(excitation, 535/50 nm; 610/75 nm at salt concentrations (10, 100, and 500 mM)

Rhodamine B

Temperature 540 / 625 (Sakakibara et al., 1999)
(Yuen et al., 2009)
(Natrajan et al., 2009)

Molecular Probes
Unit Size: 1 g
Price: 24.10 GBP

Figure. Variation of the fluorescence intensity against temperature.

Hematoporphyrin IX

Temperature 520 / 625 (Ricchelli et al., 1995)
(Ricchelli et al., 1998)

Sigma-Aldrich
Price: N/A

Protoporphyrin IX

Temperature 535 / 635 (Ricchelli et al., 1995)
(Ricchelli et al., 1998)

Sigma-Aldrich
Price: N/A
2.3.3 Oxygen sensitive fluorescent dyes

Table 2.3: List of oxygen sensitive fluorescent dyes. They are listed by increasing emission wavelength.

<table>
<thead>
<tr>
<th>Indicator Name</th>
<th>Chemical Structure</th>
<th>Sensitivity</th>
<th>Excitation / Emission [nm]</th>
<th>References</th>
<th>Supplier/Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-Pyrene butyric acid</td>
<td></td>
<td>O₂</td>
<td>345 / 375</td>
<td>(Lee et al., 1987)</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Ribou et al., 2004)</td>
<td>Unit Size: 1g</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Fujiiwara et al., 2002)</td>
<td>Price: 21.40 GBP</td>
</tr>
</tbody>
</table>

Figure: Temperature dependence of hematoporphyrin and protoporphyrin fluorescence quantum yield in OMM (A), IAM (B), and whole mitochondria (C). All fluorescence quantum yields were calculated as a ratio relative to that obtained at 21 °C. Excitation at 400 nm. Hematoporphyrin and protoporphyrin were dispersed into liposomes, in this case, liposomes. Similar curves were obtained where Pram2Glo/Dox/ administrated or Pram2Glo/Chloroform/Dox were used as dye carriers. Concentration of rhodamine 110 methanol was 0.5 mg/ml.

Figure: Fluorescence spectrum change of PBA chemisorption film under various oxygen partial pressures excited at 365 nm.
Pyrene

![Pyrene molecule](Image)

O_2 340 / 375
(Basu et al., 2004)
(Basu et al., 2005)
(Miller et al., 2007)

Sigma-Aldrich
Unit Size: 1g
Price: 12.10 GBP

7-hydroxycoumarin

![7-hydroxycoumarin molecule](Image)

O_2 346 / 456
(Luo et al., 2009)

Sigma-Aldrich
Unit Size: ampule of 1 g
Price: 30.00 GBP

Fluorescein

![Fluorescein molecule](Image)

O_2 494 / 518
(Arik et al., 2005)

Molecular Probes
Unit Size: 1 g
Price: 67.00 GBP
Pyronin Y

PyY

- **O₂**
- **540 / 570** (Celebi *et al.*, 2007)
- **540 / 570** (Arik *et al.*, 2003)

- Sigma-Aldrich
- Unit Size: 5 g
- Price: 28.00 GBP

![Normalized absorption and fluorescence spectra of Pyronin Y in deionized water at 25 °C. (PyY concentration is about 10⁻⁶ M.)](image)

Pyronin B

PyB

- **O₂**
- **550 / 580** (Celebi *et al.*, 2007)
- **550 / 580** (Onganer *et al.*, 1992)
- **550 / 580** (Arik *et al.*, 2003)

- Sigma-Aldrich
- Unit Size: 25 g
- Price: 108.00 GBP

![Normalized absorption and fluorescence spectra of Pyronin B in deionized water at 25 °C. (PyB concentration is about 10⁻⁶ M.)](image)

Tris(2,2′-bipyridine) dichlororuthenium(II) hexahydrate

RuBpy

- **O₂**
- **450 / 620** (Kober *et al.*, 1985)

- Sigma-Aldrich
- Unit Size: 1 g
- Price: 50.00 GBP

![Normalized absorption and fluorescence spectra of Tris(2,2′-bipyridine)dichlororuthenium(II) hexahydrate in deionized water at 25 °C. (RuBpy concentration is about 10⁻⁶ M.)](image)

45
<table>
<thead>
<tr>
<th>Chemical Name</th>
<th>Oxygen Value</th>
<th>Reference</th>
<th>Supplier</th>
<th>Unit Size</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tetraphenylporphin, TPP</td>
<td>O2</td>
<td>515 / 650</td>
<td>(Potyrailo et al., 1998)</td>
<td>Sigma-Aldrich</td>
<td>82.10 GBP</td>
</tr>
<tr>
<td>Erythrosin B</td>
<td>O2</td>
<td>530 / 690</td>
<td>(Bailey et al., 2002)</td>
<td>Sigma-Aldrich</td>
<td>30.00 GBP</td>
</tr>
<tr>
<td>Platinum(II) coproporphyrin ketone</td>
<td>O2</td>
<td>590 / 760</td>
<td>(O’Riordan et al., 2007)</td>
<td>Luxcel Biosciences</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Figure. Fluorescent wave spectra of TPP immobilized into the silicone cladling of a PCS optical fiber. Fluorescence spectra upon exposure to dry nitrogen (solid line) and dry oxygen (dashed line). Excitation wavelength, 515 nm (Q bands - fluorescence peaks).

Figure. Stern-Volmer calibration plot for the new oxygen sensor. The 90% confidence intervals for nine replicate measurements are smaller than the plotted data points. Fluorescence excitation was provided by a yellow LED at 590 nm. Fluorescence was collected at 650 nm. The solid line is a fit to the Stern-Volmer equation; the dashed line is a fit to the two-site model.

Figure. Variation of fluorescence intensity of erythrosin B in saline at 1.0 g/ml with dissolved oxygen concentration.

Figure. Emission of 1 μM of the PtCPK probe in PBS at different O2 concentrations: 100% (A), 48.7% (B), 24.4% (C), 9.7% (D), 2.8% (E), and 0% (F) of air saturation (left). Intensity calibration and Stern-Volmer plot for the PtCPK probe (right).
2.3.4 Glucose sensitive fluorescent dyes

Table 2.4: List of glucose fluorescent dyes. They are listed by increasing emission wavelengths.

<table>
<thead>
<tr>
<th>Indicator Name</th>
<th>Chemical Structure</th>
<th>Sensitivity</th>
<th>Excitation / Emission [nm]</th>
<th>References</th>
<th>Supplier/Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-amino-4-methylcoumarin–Concanavalin A</td>
<td></td>
<td>Glucose</td>
<td>360 / 450</td>
<td>(Lakowicz et al., 1993)</td>
<td>Molecular Probe Price: N/A</td>
</tr>
<tr>
<td>AMCA–ConA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetramethylrhodamine isothiocyanate–Mannoside</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRITC–Mannoside</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Frontier Scientific
Unit Size: N/A

Platinum(II) octaethylporphyrin ketone
PtOEPK

O₂ 590 / 760 (Vollmer, 2005)
(Hartmann et al., 1996)
(Papkovsky et al., 1995)

Frontier Scientific
Unit Size: N/A
8-anilino-1-naphthalenesulfonic acid

Glucose 425 / 480

- D'Auria et al., 2006
- D'Auria et al., 1999
- D'Auria et al., 2001

Molecular Probes
ANS
Unit Size: 5 g
Price: 17.00 GBP

Fluorescein isothiocyanate–Dextran

FITC–Dextran

Tetramethylrhodamine isothiocyanate–Concanavalin A

TRITC–Con A

Glucose 480 / 520

- Ibey et al., 2006
- McShane et al., 2000
- Russell et al., 1999
- Sato et al., 2006

Sigma-Aldrich
FITC–Dextran
Unit Size: 100 mg
Price: 29.00 GBP
TRITC–Con A
Price: N/A
Rhodamine 123

![Rhodamine 123 structure](image)

Glucose 510 / 530

(Borth et al., 1993)

(Pickup et al., 2005)

Molecular Probes

Unit Size: 25 mg

Price: 56.00 GBP

2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose

2-NBDG

![Fluorescence spectra](image)

Glucose 465 / 540

(Nitin et al., 2009)

(O’Neil et al., 2005)

(Yamada et al., 2007)

Sigma-Aldrich

Unit Size: 5 g

Price: 105.00 GBP

Resazurin

![Resazurin structure](image)

Glucose 568 / 582

(Maeda et al., 2001)

Orgchem

Price: N/A
<table>
<thead>
<tr>
<th>Product</th>
<th>Description</th>
<th>Glucose</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplex Red</td>
<td>Glucose/Glucose Oxidase Assay Kit</td>
<td>570 / 585</td>
<td>209.00 GBP</td>
</tr>
<tr>
<td>3, 7-diamino-5-phenothiazinium acetate</td>
<td>Thionin acetate</td>
<td>590 / 620</td>
<td>26.40 GBP</td>
</tr>
<tr>
<td>Alexa Fluor 568–Dextran</td>
<td>Alexa Fluor 568 carboxylic acid, succinimidyl ester</td>
<td>650 / 668</td>
<td>110.00 GBP</td>
</tr>
<tr>
<td>Alexa Fluor 647 conjugate–Concanavalin A</td>
<td>Alexa Fluor 647 - proprietary</td>
<td>650 / 668</td>
<td>229.00 GBP</td>
</tr>
</tbody>
</table>
2.4 Conclusions

Considering the variety of analytical applications using fluorescence dye indicators in the detection methods it is not possible to determine that one particular dye is generally “better” than others. Instead, a more reasonable approach is to designate which dyes are better suited for particular applications. Therefore, it is necessary to define the desired characteristics of fluorophores that could be used.

The wide spectrum of fluorescent dyes which has been described in literature are commercially available often at relatively low price. They can be classified in relation to characteristic properties of each dye, including various sensitivity, spectral properties, solubility, etc., specific needs of customers (e.g. indicators, energy transfer, drug screening, markers for biological molecules, etc.) and instrument specifications (measurement methods, excitation sources, optical filters or sensitivity). It is particularly valuable when a new assay is developed and it is crucial to choose the most suitable fluorescent labels from all available options.

In this study, appropriate fluorescent dyes were chosen in the first instance due to their high detection sensitivities and dynamic range for given environmental factors, excitation and emission wavelengths in VIS-NIR range of light spectrum, presence of functional chemical groups to enable binding with other molecules, stability to photobleaching as well as excitation coefficient.

It was also important to pay attention to prices of suitable dye-indicators to minimise the cost of measurements. This information was important in further optimisation of the mixture of dyes involving testing of increased number of indicators and aiming to obtain their extensive variety, which could enable analysis of different parameters and analytes within samples.
3. Second objective: optimisation of fluorescent dye mixtures

3.1 Introduction

The specific objective of further investigation was to establish a combination of environmental-sensitive fluorescent dyes suitable to measure changes pH, temperature and dissolved oxygen and glucose concentration. Based on a drawn up list of fluorescent indicators and their characterisation, several probes were chosen for further investigation. The spectroscopic measurements were first performed on single dyes and the obtained excitation and emission spectra were used for hypothetical examination of their simultaneous utilisation. Potential mixtures of pH-sensitive, temperature-sensitive, oxygen-sensitive and hydrogen peroxide-based glucose probes were first illustrated in Matlab, to exclude combinations of dyes, which are not suitable to be used in the same solution. The collection of promising mixtures were later analysed experimentally.

3.2 Selection criteria for a mixture of fluorescent dyes

The favoured dyes were selected according to several important criteria:
- Dyes should have the ability to change their optical properties in response to suitable changes of an environment and it should be possible to monitor at least some contribution from the individual dyes in the total spectrum of their mixture.
- The mixture should contain several fluorescent dyes, preferably more then two.
- They should be responsive in VIS-NIR.
- It is also desired to choose fluorescent dyes with emission maxima at wavelengths separated by at least 20 nm.
- Selected dyes should preferably be soluble in water, possess high quantum yield, low toxicity and low photo-blanching (photo-decomposition).

Additionally, the selected dyes should not be considered as specific in the sense that their response can be triggered by more than one parameter. It is for this reason that
multivariate calibration is further required for quantitative and qualitative analysis of their collective response.

3.3 Experimental section

Following above requirements several suitable fluorescent dyes have been selected and used in further spectrofluorometric analysis.

3.3.1 Chemicals

Fluorescent indicators were obtained from Sigma-Aldrich, except Oregon green 514 purchased from Molecular Probes and Thionin acetate purchased from Acros Organics. Concentrated solutions of dyes were prepared in deionised water and stored in ~5 °C and covered with aluminium foil to protect them from light. Various concentrations of water/dyes solutions were used later in optimisation of their mixtures in order to have a balance in measurements of fluorescence intensity.

All measurements were performed in sodium phosphate buffer (PB) consisted of sodium phosphate dibasic (Na$_2$HPO$_4$) and sodium phosphate monobasic (NaH$_2$PO$_4$) diluted in distilled water. The desired pH of buffer was prepared based on the ratio of monobasic and dibasic sodium phosphate.

3.3.2 Sample preparation

The spectrofluorometric investigation (excitation – emission – intensity spectra) of fluorescent dyes was performed separately for each dyes, as well as together with others. The sample solutions used in measurements were composed of 3 ml 50 mM phosphate buffer (PB) and 10 µl of each water/dye stock solution.
3.3.3 Fluorescence measurements

All measurements were performed using a three-dimensional spectrofluorometer, Jobin Yvon-SPEX, model FL-3D (Instruments SA (Stanmore, Middlesex, UK), (Figure 3.1).

![Spectrofluorometer](image)

Figure 3.1: The spectrofluorometer capable of acquiring three-dimensional excitation–emission matrix (EEM) fluorescence spectra.

The spectrofluorometer provided three-dimensional, excitation–emission-intensity data of fluorescent compounds. A schematic illustration of a three-dimensional spectrofluorimetry with CCD detection is shown in Figure 3.2.

Light from a broad wavelength excitation source (Xenon lamp) was dispersed in a vertical plane using an excitation polychromator and passed through the sample. Emitted fluorescence was dispersed in a horizontal plane by emission polychromator and collected on a CCD 2D detector array (Setford et al., 2000). For both excitation and
emission, light was dispersed such that its component wavelengths were spatially separated. A shutter arrangement (a high speed emission shutter, 0.01-5 s, located in the emission spectrograph) was used to illuminate the sample for the desired exposure time, after which the photo-generated charge stored within the device was collected and processed (e.g. via CCD read-out operation). The 3D spectrofluorometer was designed to allow imaging of a full excitation and emission matrix (EEM) spectrum from a fluorescent sample over a range of excitation (74 – 691 nm) and emission (228 – 725 nm) wavelengths.

Figure 3.2: Schematic illustration of three-dimensional spectrofluorometry with CCD detection. Adopted from (Cauchi, 2006).

In all experiments, the spectra were recorded over whole range of excitation and emission wavelengths based on the technical specification of the spectrofluorometer. The fluorescence measurements were performed with 0.5 s of time exposure using 4 ml quartz cuvettes with stoppers and a light path of 10 mm.

3.3.4 Three-dimensional data display

The software which was provided for 3D spectrofluorometer (Grams/32 version 4.14, Galactic Inc., 2000) enabled illustration of fluorescence spectra in 3D format, whereby
the x-, y- and z-axes corresponded to the emission, excitation wavelengths and fluorescence intensity. These spectra could also be seen in 2D, whereby the x- and y-axes corresponded to emission and excitation wavelengths, and fluorescence intensity was orientated into the plane of the paper. The contour lines were equated to signal intensity in the same manner as the contour lines on a geographical survey map. Excitation and emission values could also be displayed in pixels.

The problem with the software was that the data could only be exported as an ASCII file in 2D plane (emission wavelengths and fluorescence intensity). The excitation values were not stored. Therefore to enable illustration of 3D pictures, data was exported in original SPC format of spectra and converted into image format using Matlab (version 7.3.0, MathWorks Inc., 2006). The excitation values were calculated based on the first and last values of excitation wavelengths and the known spectral resolution. Creating a Matlab script file suitable to convert data was also part of the work. The pseudo-code of the script is enclosed in Appendix A.1.

3.4 Results and Discussion

3.4.1 Choice of fluorescence dyes

Based on the lists of fluorescent dyes and specific criteria for their mixtures, selected probes for further examination included:

- **pH-sensitive**: Fluorescein (FL), Hydroxypyrene-1,3,6-trisulfonic acid trisodium salt (HPTS), Oregon Green 488 (OG488), Oregon green 514 (OG514);
- **temperature-sensitive**: 5(6)-carboxytetramethylrhodamine (TAMRA), Fluorescein isothiocyanate (FITC), Rhodamine 101 (R101), Rhodamine B (RB);
- **oxygen-sensitive**: Tris(2,2′-bipyridine) dichlororuthenium(II) hexahydrate (RuBpy).

Additionally, hydrogen peroxide-based glucose probe, Thionine Acetate (THA), which is sensitive to hydrogen peroxide (HRP), allows further expansion of possible applications into enzymatic assays, where HRP is a product or substrate of the reaction.
(Cardosi, 2000; Gemeay et al., 2004). It has been also reported as carboxylic groups (\(-\text{COOH}\)) indicator, important in engineering of biocompatible polymer surfaces (Ivanov et al., 1996; Tzoneva et al., 2008).

From an extensive group of readily available fluorescent pH indicators, FL and HPTS were chosen in the first instance because of their well characterised optical properties and frequent use. Criteria for the choice were also their response within visible light spectrum, already proved high sensitivity to pH with wide dynamic range and successful results of their immobilisation. Despite many advantages these indicators are able to sense pH near physiological level yet seem to be unpractical at lower pH. For this reason fluorescence indicator such OG480 and OG514 were selected. Both dyes have shown high sensitivity for low pHs. Further experiment also proved the sensitivity of HPTS to ionic strength (concentration) of PB solution (see Chapter 4.3.2.).

To control the temperature of the sample several dyes were chosen whereat the criteria for the choice of these indicators were: a suitable temperature rage of their response (approximately from 20 to 45 °C), excitation and emission wavelengths, photostability, chemical structure and general information, which have been presented in the literature. As mentioned in the introduction of this chapter, most of fluorescent dyes show some response to temperature changes and therefore this is where only dyes responsive to temperature must be chosen.

For the detection of oxygen level RuBpy was chosen considering that its high quality to measure oxygen has already been shown in the literature. Additionally, its responsive for longer wavelength of light, which is promising for combing it with other dyes of the choice.
3.4.2 Excitation/emission spectra of selected fluorescent dyes

Initially, measurements of fluorescence spectra were performed with individual dyes using 3D spectrofluorometer, which allowed fluorescence measurements over multiple excitation/emission wavelengths. These spectra were later used for investigation on the dyes mixtures. Obtained spectra are presented below (Figure 3.3-3.12).

Figure 3.3: Three-dimensional colour mapped surface diagram of FL (0.004 µM) in 50 mM PB buffer (pH 7.4).

Figure 3.4: Three-dimensional colour mapped surface diagram of HPTS (0.03 µM) in 50 mM PB buffer (pH 7.4).
Figure 3.5: Three-dimensional colour mapped surface diagram of OG514 (0.006 µM) in 50 mM PB buffer (pH 7.4).

Figure 3.6: Three-dimensional colour mapped surface diagram of OG488 (0.01 µM) in 50 mM PB buffer (pH 7.4).
Figure 3.7: Three-dimensional colour mapped surface diagram of TAMRA (0.02 µM) in 50 mM PB buffer (pH 7.4).

Figure 3.8: Three-dimensional colour mapped surface diagram of FITC (0.02 µM) in 50 mM PB buffer (pH 7.4).
Figure 3.9: Three-dimensional colour mapped surface diagram of R101 (0.02 µM) in 50 mM PB buffer (pH 7.4).

Figure 3.10: Three-dimensional colour mapped surface diagram of RB (0.02 µM) in 50 mM PB buffer (pH 7.4).
Figure 3.11: Three-dimensional colour mapped surface diagram of RuBpy (2.8 µM) in 50 mM PB buffer (pH 7.4).

Figure 3.12: Three-dimensional colour mapped surface diagram of THA (2 µM) in 50 mM PB buffer (pH 7.4).
The maxima of excitation and emission for selected fluorescent dyes are listed in Table 3.1. All dyes revealed strong excitation and emission peaks at the wavelengths similar to the data published in the literature (see Chapter 2).

The presented measurements show that distances between emission maxima of some selected probes might be sufficient to make their mixtures feasible, with noticeable separation of their fluorescence intensities. Moreover, these fluorescent dyes are characterised by different sensitivities thus it might be possible to establish mixture with various specifications.

Table 3.1: List of excitation and emission maxima of selected fluorescent dyes.

<table>
<thead>
<tr>
<th>Dye Name</th>
<th>Excitation [nm]</th>
<th>Emission [nm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluorescein FL</td>
<td>465</td>
<td>516</td>
</tr>
<tr>
<td>Hydroxypyrene-1,3,6-trisulfonic acid trisodium salt HPTS</td>
<td>470</td>
<td>527</td>
</tr>
<tr>
<td>Oregon green 488 OG488</td>
<td>465</td>
<td>516</td>
</tr>
<tr>
<td>Oregon green 514 OG514</td>
<td>480</td>
<td>529</td>
</tr>
<tr>
<td>5(6)-carboxytetramethylrhodamine TAMRA</td>
<td>520</td>
<td>575</td>
</tr>
<tr>
<td>Fluorescein isothiocyanate FITC</td>
<td>468</td>
<td>521</td>
</tr>
<tr>
<td>Rhodamine 101 R101</td>
<td>517</td>
<td>600</td>
</tr>
<tr>
<td>Rhodamine B RB</td>
<td>519</td>
<td>579</td>
</tr>
<tr>
<td>Tris(2,2'-bipyridine)dichlororuthenium(II) hexahydrate RuBpy</td>
<td>440</td>
<td>623</td>
</tr>
<tr>
<td>Thionin acetate THA</td>
<td>520</td>
<td>624</td>
</tr>
</tbody>
</table>
3.4.3 Hypothetical mixtures of environmentally sensitive fluorescent dyes

Potential mixtures of selected dye indicators were illustrated in Matlab by merging their individual excitation/emission/intensity spectra. This hypothetical examination, which is based on a subjective visual inspection, allowed fast analysis of proposed dyes and finding suitable mixtures for further measurements. The favoured combination should contain several dye indicators which are characterised by different sensitivities and have discreet emission maxima separated enough to allow monitoring of the individual dyes contribution in the overall spectrum of their mixture. As a result three possible mixtures composed of five fluorescent dyes were obtained and analysed. The first possible mixture composed of HPTS, FITC, RB, RuBpy and THA is presented in Figure 3.13.1-2. The second, composed of HPTS, OG514, RB, RuBpy and THA, and the third mixture composed of HPTS, FL, RB, RuBpy and THA are presented in Figure 3.14.1-2 and Figure 3.15.1-2 respectively. As shown in figures based on theoretical calculations, three mixtures composed of five fluorescent dyes were possible to obtain, with their intensity peaks quite well separated, specially for mixture two (Figure 3.14.2-E). However to make a final objective decision which of these mixtures should be chosen and used in an optical assay development, this subjective visualisation had to be confirmed by experimental examination.
Figure 3.13.1: Three-dimensional colour mapped surface diagrams (right) and colour filled contour diagrams (left): HPTS (A), mixture of HPTS and FITC (B). Measurements of single dyes were performed in 50 mM PB buffer at pH 7.4.
Figure 3.13.2: Three-dimensional colour mapped surface diagrams (right) and colour filled contour diagrams (left): mixture of HPTS, FITC and RB (C), mixture of HPTS, FITC, RB and RuBpy (D), mixture of HPTS, FITC, RB, RuBpy and THA (E). Measurements of single dyes were performed in 50 mM PBS buffer at pH 7.4.
Figure 3.14.1: Three-dimensional colour mapped surface diagrams (right) and colour filled contour diagrams (left): HPTS (A), mixture of HPTS and OG514 (B), mixture of HPTS, OG514 and RB (C). Measurements of single dyes were performed in 50 mM PB buffer at pH 7.4.
Figure 3.14.2: Three-dimensional colour mapped surface diagrams (right) and colour filled contour diagrams (left): mixture of HPTS, OG514, RB and RuBpy (D), mixture of HPTS, OG514, RB, RuBpy and THA (E). Measurements of single dyes were performed in 50 mM PBS buffer at pH 7.4.
Figure 3.15.1: Three-dimensional colour mapped surface diagrams (right) and colour filled contour diagrams (left): HPTS (A), mixture of HPTS and FL (B), mixture of HPTS, FL and RB (C). Measurements of single dyes were performed in 50 mM PB buffer at pH 7.4.
Figure 3.15.2: Three-dimensional colour mapped surface diagrams (right) and colour filled contour diagrams (left): mixture of HPTS, FL, RB and RuBpy (D), mixture of HPTS, FL, RB, RuBpy and THA (E). Measurements of single dyes were performed in 50 mM PBS buffer at pH 7.4.
3.4.4 Experimental examination of fluorescence dye mixtures

Based on the hypothetical examination, three possible mixtures of selected fluorescent dyes were tested using a 3D spectrofluorometer. The result spectra are presented in Figure 3.16, 3.17, 3.18 for the first, second and third mixture respectively. The order and compositions of following mixtures corresponds to the theoretical studies.

Figure 3.16: Three-dimensional colour mapped surface diagrams (right) and colour filled contour diagrams (left): mixture of HPTS, FITC, RB, RuBpy and THA. Measurements were performed in 50 mM PBS buffer at pH 7.4.

Figure 3.17: Three-dimensional colour mapped surface diagrams (right) and colour filled contour diagrams (left): mixture of HPTS, OG514, RB, RuBpy and THA. Measurements were performed in 50 mM PBS buffer at pH 7.4.
Figure 3.18: Three-dimensional colour mapped surface diagrams (right) and colour filled contour diagrams (left): mixture of HPTS, FL, RB, RuBpy and THA. Measurements were performed in 50 mM PBS buffer at pH 7.4.

Above figures demonstrate close agreement of experimental results using visual display of proposed mixtures. All three combinations of five fluorescent dyes were successfully established, which proves the benefits of subjective visual inspection performed by Matlab. This allows rapid selection of possible combinations of fluorescent dye mixtures.

The most significant separation of the fluorescence maxima of dyes was obtained for the second mixture composed of HPTS, OG514, RB, RuBpy and THA, and therefore this mixture was selected for further experimental investigation. An additional advantage of the choice was that one of the dyes in the mixture (OG514) has been reported as a low pH indicator (Sabnis, 2008). Combined with HPTS, near-neutral and higher pH indicator (Lakowicz, 2006), they should allow measurements in wider range of pH. Two other mixtures are different from the favourable one by FITC (used in a first mixture) and FL (used in the third mixture). They are both sensitive to neutral pH about 7.0 and therefore it was assumed that measurements in lower pH might be not as effective as in the presence of OG514. The mixture also consists of temperature, oxygen and HRP sensitive dye such as RB, RuBpy and THA respectively.
3.5 Conclusions

Literature information and prepared lists of available fluorescent dye-indicators allowed quick selection of several suitable specific dyes with different excitation and emission wavelengths and required sensitivities.

The experimental investigation of selected dyes sensitive to different parameters was performed and proved that some of them can be mixed together with clear separation of their maxima of fluorescence intensities. Therefore, it might be possible to observe changes in fluorescence intensity of individual dyes while the environmental conditions are changing.

Based on excitation-emission spectra of individual probes, the potential mixtures were visualised in Matlab and theoretical predictions proved experimentally. Matlab has been very helpful tool for visual display, thus for an easy illustration and rapid selection of fluorescent dyes, which can be mixed together in the same solution. It is very promising for future, and looking at dye mixtures containing as many suitable dyes as possible to expand the number of parameters or analytes that could be measured.

The 3D spectrofluorometer seems to be the perfect instrument for these measurements because the spectral analysis can be easily made by scanning the sample over a wide range of excitation and emission wavelengths.
4. Third objective: investigation of analytical capability of suitable optical assay

4.1 Introduction

The most suitable mixture composed of five fluorescent dyes (see Table 4.1) was chosen and used in following experiments for quantitative measurements of environmental changes including pH, temperature, ionic strength and dissolved oxygen.

Initially, the optical properties of dyes mixture was analysed depending on changes of single parameter. This involved measurements of different values of pH, temperature and ionic strength of PB. Results of performed experiments have been included in the patent application describing a concept of optical multisensor (Piletsky et al., 2002). Further, simultaneous determination of four parameters (pH, temperature, ionic strength and DO concentration) was performed and the results were recently published (Moczko et al., 2009).

Table 4.1: List of fluorescent dyes selected for the assay.

<table>
<thead>
<tr>
<th>Dye Name</th>
<th>Sensitivity</th>
<th>Excitation [nm]</th>
<th>Emission [nm]</th>
<th>Extinction coefficient [cm3M$^{-1}$]</th>
<th>Purity [%]</th>
<th>Supplier</th>
<th>CAS Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 – Hydroxypyrene - 1',3,6 - trisulfonic acid</td>
<td>near-neutral pH</td>
<td>470</td>
<td>527</td>
<td>24,000 (water)</td>
<td>≥98</td>
<td>Sigma-Aldrich</td>
<td>6358-69-6</td>
</tr>
<tr>
<td>3 Rhodamine B</td>
<td>temperature</td>
<td>541</td>
<td>576</td>
<td>88,000 (water)</td>
<td>~95</td>
<td>Sigma-Aldrich</td>
<td>81-88-9</td>
</tr>
<tr>
<td>2 Oregon green 514 carboxylic acid</td>
<td>low pH</td>
<td>504</td>
<td>528</td>
<td>86,000 (DMF)</td>
<td>94</td>
<td>Molecular Probes</td>
<td>N/A</td>
</tr>
<tr>
<td>4 Tris (4,7 - diphenyl - 1,10 - phenanthroline) ruthenium dichloride</td>
<td>oxygen</td>
<td>463</td>
<td>637</td>
<td>14600 (water)</td>
<td>99.95</td>
<td>Sigma-Aldrich</td>
<td>50525-27-4</td>
</tr>
<tr>
<td>5 Thionin acetate</td>
<td>hydrogen peroxide</td>
<td>541</td>
<td>628</td>
<td>53,000 (water)</td>
<td>>85</td>
<td>Acros Organics</td>
<td>78338-22-4</td>
</tr>
</tbody>
</table>
4.2 Experimental section

4.2.1 Composition of fluorescent dye mixture

The mixture of selected fluorescent dyes were prepared as a stock solution of following dyes: 0.15 mM 8-Hydroxypyrene-1’,3,6-trisulfonic acid, 0.1 mM Rhodamine B, 0.025 mM Oregon green 514, 6 mM Tris (4,7-diphenyl-1,10-phenanthroline) ruthenium dichloride and 2 mM Thionin acetate (see Figure 6.1). Solutions of dyes were prepared in deionised water and stored at ~5 °C, covered with aluminium foil to protect them from light. 200 µl of each water/dye stock solutions were mixed together and used in further experiments. Measurements were carried out using 3 ml of suitable buffer and 50 µl of the mixture.

![Figure 4.1](image.png)

Figure 4.1: Cuvettes containing solutions of five selected fluorescent dyes and their mixture: HPTS (A), RB (B), OG514 (C), RuBpy (D), THA (E) and mixture of five selected dyes (F).

4.2.2 Buffer solutions

A) Measurements of single parameter

Fluorescent measurements were performed in buffers at pH range from 4.0 to 9.0, temperature – from 20 to 40 °C and buffer concentrations - from 5 to 150 mM.

Values of a pH of a buffer was adjusted using acetic acid – sodium acetate (C$_2$H$_4$O$_2$ – NaC$_2$H$_3$O$_2$) for low values of pH (from 4.0 to 5.0), sodium phosphate dibasic – sodium
phosphate monobasic (\(\text{Na}_2\text{HPO}_4 \) – \(\text{NaH}_2\text{PO}_4 \)) for pH from 5.0 to 8.0 and boronic acid –sodium borate (\(\text{H}_2\text{B}_4\text{O}_7 \) – \(\text{Na}_2\text{B}_4\text{O}_7 \)) for pH from 8.0 to 9.0.

B) Measurements of four parameters

Simultaneous measurements of four parameters were performed at pH range from 5.0 to 9.0, temperature - from 25 to 40 °C, dissolved oxygen (DO) - from 0 to 21.6 ppm and PB concentration - from 5 to 150 mM.

All measurements were carried out in sodium phosphate buffer (PB) consisted of sodium phosphate dibasic (\(\text{Na}_2\text{HPO}_4 \)) and sodium phosphate monobasic (\(\text{NaH}_2\text{PO}_4 \)) dissolved in distilled water.

4.2.3 Instrumentation

As in previous experiments, fluorescence intensity measurements were performed using three-dimensional spectrofluorometer with 0.5 s of time exposure.

The pH of a buffer was controlled by using pH meter (Hanna Instruments Ltd., Model 8519, Italy). The ionic strength was varied using different buffer concentrations. The temperature of the cuvette containing dyes solution was adjusted externally using thermostatic water-bath (Grant Instruments Ltd, Model 0331, Cambridge, UK). The concentration of DO was measured using oxygen probe (World Precision Instruments Ltd, OXEL-1, Stevenage, UK) and potentiostat-galvanostat (Uniscan Instrument Ltd, PG580, Buxton, UK). The concentration of oxygen was adjusted by bubbling solutions with air or nitrogen and measured amperometrically. The number of moles of oxygen present in the solution was calculated at different temperatures using the ideal gas low (Sabnis, 2008).
4.2.4 Data evaluation

The spectral characteristics of dyes mixture and changes caused by interactions with its surroundings have been analysed using artificial neural networks. ANNs were implemented in Matlab (version 7.3.0, MathWorks Inc., 2006) using the Neural Network Toolbox (version 5.0.1).

The evaluation of a parameter was based on changes of the height of the fluorescence peaks of all five dyes of the mixture.

A) ANN model for single parameter

The prediction model used for determination of single parameter of the sample was created based on linear neural network classifier (Demuth et al., 2007). The network structure used in this study consisted of linear neuron with five neurons in the input layer corresponding to fluorescent emission of the five fluorescent dyes (taken at wavelengths shown in Table 4.1) and a single neuron in the output layer corresponded to a parameter of interest. The network was designed using the function newlind and 33 samples for each parameter being tested. The ability of the model network was tested on a set of previously unseen 11 samples measured at different pH and 5 samples at different temperature.

B) ANN model for four parameters

The prediction model used for simultaneous determination of four parameters was created based on a feedforward network trained using backpropagation of errors (Demuth et al., 2007). The network consisted of an input layer, one hidden layer and an output layer. The same as for simulation of single parameters, the input layer was made up of five neurons corresponding to fluorescent emission of the five fluorescent dyes (taken at wavelengths shown in Table 4.1) and a single neuron in the output layer corresponded to a parameter of interest. A different network was trained with 576 samples for each parameter being tested. The best performance obtained for the hidden layer consisted of 25 neurons and Bayesian regularisation (Demuth et al., 2007) used in
the learning process. To test the ability of the trained network to predict parameters from acquired data, the network was tested with a set of previously unseen 192 samples. The pseudo-code for Matlab script, which was developed for these calculations, is in Appendix A.2.

4.3 Results and Discussion

4.3.1 Dyes assay characterisation

The spectrum of the fluorescent dye mixture used in the study is shown in Figure 4.2.

![Figure 4.2: Three-dimensional colour mapped surface diagram of 5 fluorescent dyes: Dye 1 is HPTS, Dye 2 is OG514, Dye 3 is RB, Dye 4 is RuBpy, Dye 5 is THA. Measurements were performed in 3 ml of 50 mM PB buffer at pH 7.5.](image)
The concentration of dyes was optimised corresponding to maximum values of their fluorescence intensities to allow clear discreet reading of emission peaks for each fluorescent dye and to provide visualisation of a collective fluorescent patterns of dye mixture. To exclude possible influence on the detected signal response, the concentrations were kept constant in all experiments. Therefore, it was expected that any changes of fluorescence emission of the solution of dyes were caused only by interaction with surrounding medium.

Figure 4.2 shows that fluorescence emission bands of proposed dyes overlap each other but the intensity maxima remain reasonably separated. This gives the possibility to analyse the comprehensive response of the whole mixture, along with each dye’s individual impact on the signal.

The dyes mixture in a solution appeared to be stable showing no variation in spectral properties over at least a one month period. Practically, no photobleaching was observed in the process of measurements.

4.3.2 Investigation of analytical capability of the optical assay engendered by changes of single parameter

The initial experiments were performed to establish the influence of single parameter on the spectrum response while other parameters of the dye assay were kept constant. An example of an effect on fluorescence characteristic of the mixture caused by pH changes from 4.0 to 6.0 and from 7.0 to 9.0 is shown in Figure 4.3.1, 4.3.2 respectively. Three-dimensional colour mapped surface diagrams (on the left) and colour filled contour diagrams (on the right) illustrate changes of fluorescence signal of the dyes due to different pH of a buffer. Since the excitation/emission maxima of the intensity of fluorescent dyes are well separated, their individual characteristics due to decreasing pH are easily distinguished.
Figure 4.3.1: Three-dimensional colour mapped surface diagrams (left) and colour filled contour diagrams of the fluorescence signal of dyes mixture at pH 9 (A), pH 8 (B) and pH 7 (C) in 50 mM borate buffer (pH 9.0) and phosphate buffer (pH 8.0 and pH 7.0).
Figure 6.3.2: Three-dimensional colour mapped surface diagrams (left) and colour filled contour diagrams of the fluorescence signal of dyes mixture at pH 6.0 (D), pH 5.0 (E) and pH 4.0 (F) in 50 mM phosphate buffer and acetate buffer.
Fluorescence intensity of dyes changing differently depends on their sensitivity to pH. The most significant changes revealed HPTS which was specified as near-neutral pH indicator and OG514, which is specified as low pH indicator (Lakowicz, 2006; Sabnis, 2008). Colour filled contour diagrams (see right side of the figures) show that while the intensity of fluorescent dyes are changed at different pH, the position of the fluorescence picks of all dyes remained stable.

The pH profile of the maxima of dyes fluorescence intensity is shown in Figure 4.4.

Figure 4.4: Change in fluorescence intensity of dyes mixture as a function of pH. Dye 1 is HPTS, Dye 2 is OG514, Dye 3 is RB, Dye 4 is RuBpy, Dye 5 is THA. Measurements were performed in 50 mM acetate (pH 4.0-5.0), phosphate (pH-5.0-8.0) and borate (pH 9.0) buffers.

Measurements at different pH were recorded in triplicate. Error bars indicate the standard deviation of the results obtained for each data point. As demonstrated in Figure 6.4, the fluorescence intensity of HPTS and OG514 is highly dependent on pH changes. Along with the decreasing of pH the fluorescent intensity of HPTS dropped almost linearly. The lowest signal was recorded at the most acidic (pH 4.0) and the highest at the most basic (pH 9.0) environment. OG514 appeared to be sensitive within the lower
values of pH, in the range of pH 4.0 – 6.0 and then its fluorescence remained almost
stable. Emission intensity of other dyes stayed rather constant. The small fluctuations
which occurred are possibly due to the changes in concentrations or interferences with
other dyes and did not depend on different pH. These results prove that in the solution
HPTS and OG514 remained their specific sensitivities described in literature.

Even if HPTS is known as an excellent pH indicator, its sensitivity can be slightly
shifted while it is immobilised on different support (Choi, 1997; Zhu et al., 2005) and it
is also characterised by very low fluorescence intensity at acidic pH (near background).
Therefore another pH sensitive dye, OG514 was chosen as more promising indicator for
low pH range.

Further experiments were carried out to establish the sensitivity profile of the dye
mixture at different temperatures and ionic strengths of a buffer. Obtained results are
presented in Figure 4.5 and Figure 4.6 for the dependence on temperatures and ionic
strength respectively.

![Figure 6.5: Change in fluorescence intensity of dyes mixture as a function of temperature. Dye 1 is HPTS, Dye 2 is OG514, Dye 3 is RB, Dye 4 is RuBpy, Dye 5 is THA. Measurements were performed in 50 mM phosphate buffer at pH 7.5.](image.png)
It was found that fluorescence intensity of all dyes in the mixture was influenced by temperature (see Figure 6.5). While the temperature increased the intensity of four dyes decreased. The exception was HPTS, where intensity slightly rose up due to temperature increase. The highest changes revealed RB, which has been indicated in literature as temperature sensitive dye (see Section 2.3.2).

Figure 4.6 shows the dependence of the mixture spectral characteristic on ionic strength (buffer concentration).

![Figure 6.6: Change in fluorescence intensity of dyes mixture as a function of buffer concentration. Dye 1 is HPTS, Dye 2 is OG514, Dye 3 is RB, Dye 4 is RuBpy, Dye 5 is THA. Measurements were performed in 50 mM phosphate buffer at pH 7.5.](image)

There were no substantial changes in the fluorescence intensity of the mixture. Only the intensity of HPTS increased corresponding to the increase in ionic strength and it appeared to be most sensitive in its lower range. Other dyes were not affected by different concentrations of buffer solution.
As a result of measurements of DO concentration, significant changes in fluorescence intensity were observed particularly for RuBpy, with decreasing tendency at higher level of oxygen. Due to limited data points it was difficult to define the curves and therefore this graph is not displayed.

Data evaluation – ANN method

The effect of single parameter on the fluorescence changes of the dye mixture was further analysed based on ANN as a pattern recognition method. It was done to test the analytical capability of the optical assay consisting of the dye mixture and multivariate data analysis engendered by changes of individual factors.

In the prediction of a single parameter, it was sufficient to use the linear neural network classifier whose predictive abilities are equivalent to linear regression models (Samarasinghe, 2007). To design the linear network the function `newlind` was applied, which is used for purposes when input set of data and corresponding targets (values of parameters) are known. To do so, the input set of data consisted of spectral responses of the fluorescent dyes corresponding to known values of output parameters such as pH and temperature. Similar to the analysis of the sensitivity profiles of the mixture, the five wavelength points at the maxima of fluorescence intensity of dyes were chosen for a representation of the profile of original spectra and used as an input data for the ANN. To test if the model network was designed properly its behaviour was simulated with an unseen set of data (the test set). Results of these simulations for different values of pH and temperature are shown in Figure 4.7A-B.

The graphs illustrate very good correlation between real (measured) values (x axis), and the values determined by ANN (y axis). Circles (○) indicate the values of data points of the network predictions for test samples and the error bars indicate the errors of the network prediction for each data point. The highest error was obtained for prediction of pH 8.5 and it was 0.3 and 1.6 for temperature at 45 °C.
Therefore, the combination of fluorescence signals of dye assay as a response to changes of single parameters in the environment and simple, linear ANN model was sufficient enough to allow accurate analysis of the parameters.

4.3.3 Investigation of analytical capability of the optical assay engendered by changes of several parameters

As expected, reasonable changes in fluorescent spectrum of dyes mixture were observed in response to change of single parameter. It was also expected that the signal was not just a summation of individual spectral signatures of fluorescent dyes but additionally the product of their interaction and cross-interferences, which complicated the analysis.
in the case when several parameters were changing simultaneously. Therefore more advanced network, which would be able to model this non-linear and interference effect between fluorescence of dyes at different conditions, was applied for the data evaluation and the determination of target parameters.

To study the effect of the parameters’ variations, the fluorescence emission values were recorded for a number of samples with different values of pH, temperature, DO and PB concentrations.

The key ability of the network has been identified and tested. This includes training the ANN on patterns from samples of known identity and using them to predict the characteristics of new unknown samples with the smallest prediction error. Thus, the optimised network of the best performance was selected and applied for simultaneous determination of four parameters. The input dataset consisted of spectral responses of the fluorescent dyes corresponding to known values of output parameters: pH, temperature, DO and PB concentration. Although it was expected that the use of the whole fluorescent spectra in the training process would give the best contrast of unique responses of the dyes due to changes in a solution, it would also increase amount of processing data and training time of the network. To minimise workload similar as in analysis of single parameter, five wavelength points at the maxima of fluorescence intensity of dyes were chosen for a representation of the profile of original spectra and used as actual input data for the ANN. This decision has been found sufficient for accurate prediction of target parameters.

In order to optimise the ANN, two main steps were carried out. First, the network architecture giving sufficient performance for all four parameters has been optimised by an experiment. The training process was verified using several networks with different number of neurons in hidden layer and applying different learning algorithms. The second stage of the process concerned the improvement of the network performance by optimising and adjusting values of individual training function parameters such as performance goal, momentum or number of training iteration (epochs), in order to reduce the possibility of invalid generalisation of the network with the high performance for one purpose but sacrificing the others.
The efficiency of each ANN model was assessed in terms of root mean square error (RMSE) with units adequate to parameters being measured.

In the optimisation process of ANN, two frequently used algorithms Levenberg-Marquardt algorithm (trainlm) and Bayesian regularization (trainbr) were chosen for testing. While trainlm has been documented as the fastest training algorithm, trainbr provides a better quality of generalisation (Demuth et al., 2007). Their estimates of the actual values of four parameters were compared in Tables 4.2, 4.3, 4.4 and 4.5 for different number of neurons in the hidden layer between 1 and 30 neurons. All other parameters were kept constant and set as shown in the literature (Demuth et al., 2007).

The first parameter used for testing was pH (Table 4.2). As the table shows, for both trading functions the networks performance was very high. However, better results (lower prediction error) have been obtained for trainlm, the values given by trainbr are acceptable because the error is still very low and decreased when the number of neurons in the hidden layer was between 25 and 30 (see NET10 and NET11).

<table>
<thead>
<tr>
<th>Network</th>
<th>Neurons in hidden layer</th>
<th>RMSE1 (trainlm)</th>
<th>RMSE2 (trainbr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Net1</td>
<td>3</td>
<td>0.1286</td>
<td>0.0045</td>
</tr>
<tr>
<td>Net2</td>
<td>5</td>
<td>4.5491e-008</td>
<td>0.0023</td>
</tr>
<tr>
<td>Net3</td>
<td>8</td>
<td>8.2235e-005</td>
<td>0.0054</td>
</tr>
<tr>
<td>Net4</td>
<td>10</td>
<td>4.0883e-007</td>
<td>0.0041</td>
</tr>
<tr>
<td>Net5</td>
<td>13</td>
<td>0.1203</td>
<td>0.0627</td>
</tr>
<tr>
<td>Net6</td>
<td>15</td>
<td>9.2789e-005</td>
<td>0.0063</td>
</tr>
<tr>
<td>Net7</td>
<td>18</td>
<td>7.4832e-004</td>
<td>0.0108</td>
</tr>
<tr>
<td>Net8</td>
<td>20</td>
<td>6.7050e-004</td>
<td>0.0100</td>
</tr>
<tr>
<td>Net9</td>
<td>23</td>
<td>0.0019</td>
<td>0.0111</td>
</tr>
<tr>
<td>Net10</td>
<td>25</td>
<td>2.2398e-004</td>
<td>3.7477e-004</td>
</tr>
<tr>
<td>Net11</td>
<td>28</td>
<td>1.3200e-005</td>
<td>3.5313e-004</td>
</tr>
<tr>
<td>Net12</td>
<td>30</td>
<td>9.5878e-004</td>
<td>0.0027</td>
</tr>
</tbody>
</table>
In temperature estimation, trainbr revealed significantly higher performance, which was further enhanced by increasing the number of neurons in the hidden layer (Table 4.3, NET7-NET10).

Table 4.3: Effect of the number of neurons in the hidden layer and training algorithm on ANN performance for temperature.

<table>
<thead>
<tr>
<th>Network</th>
<th>Neurons in hidden layer</th>
<th>RMSE1 (trainlm) [°C]</th>
<th>RMSE2 (trainbr) [°C]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Net1</td>
<td>3</td>
<td>5.3979</td>
<td>0.8922</td>
</tr>
<tr>
<td>Net2</td>
<td>5</td>
<td>2.3940</td>
<td>0.8409</td>
</tr>
<tr>
<td>Net3</td>
<td>8</td>
<td>3.1026</td>
<td>0.7137</td>
</tr>
<tr>
<td>Net4</td>
<td>10</td>
<td>4.0045</td>
<td>0.7300</td>
</tr>
<tr>
<td>Net5</td>
<td>13</td>
<td>2.6404</td>
<td>0.7563</td>
</tr>
<tr>
<td>Net6</td>
<td>15</td>
<td>1.4088</td>
<td>0.7912</td>
</tr>
<tr>
<td>Net7</td>
<td>18</td>
<td>0.8510</td>
<td>0.6657</td>
</tr>
<tr>
<td>Net8</td>
<td>20</td>
<td>1.4679</td>
<td>0.5932</td>
</tr>
<tr>
<td>Net9</td>
<td>23</td>
<td>1.3041</td>
<td>0.6310</td>
</tr>
<tr>
<td>Net10</td>
<td>25</td>
<td>1.3974</td>
<td>0.6431</td>
</tr>
<tr>
<td>Net11</td>
<td>28</td>
<td>0.9731</td>
<td>0.8055</td>
</tr>
<tr>
<td>Net12</td>
<td>30</td>
<td>1.5836</td>
<td>0.7114</td>
</tr>
</tbody>
</table>

Similar to the results for temperature, trainbr algorithm showed lower prediction errors for DO (Table 4.4). The performance was additionally enhanced for networks with the neurons in hidden layers of 10, 13, 15 and 18. The highest error showed the network containing 3 neurons in the hidden layer (NET1) but even so it is not higher than the lowest obtained for trainlm (NET7).

The last parameter to test was a buffer concentration. The result of the prediction of this parameter is presented in table 4.5. Despite different algorithms or number of neurons in the hidden layer, networks revealed high estimation error. The highest was obtained when trainlm and low number of neurons was used for training. Better training was achieved for trainbr and slightly improved by increasing the number of neurons in hidden layer. This is getting worse above 25 neurons.
Table 4.4: Effect of the number of neurons in the hidden layer and training algorithm on ANN performance for DO.

<table>
<thead>
<tr>
<th>Network</th>
<th>Neurons in hidden layer</th>
<th>RMSE1 (trainlm) [ppm]</th>
<th>RMSE2 (trainbr) [ppm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Net1</td>
<td>3</td>
<td>1.6080</td>
<td>0.4941</td>
</tr>
<tr>
<td>Net2</td>
<td>5</td>
<td>1.3999</td>
<td>0.2074</td>
</tr>
<tr>
<td>Net3</td>
<td>8</td>
<td>1.5497</td>
<td>0.2153</td>
</tr>
<tr>
<td>Net4</td>
<td>10</td>
<td>0.6293</td>
<td>0.0584</td>
</tr>
<tr>
<td>Net5</td>
<td>13</td>
<td>1.5694</td>
<td>0.0587</td>
</tr>
<tr>
<td>Net6</td>
<td>15</td>
<td>0.5496</td>
<td>0.0759</td>
</tr>
<tr>
<td>Net7</td>
<td>18</td>
<td>0.8505</td>
<td>0.4354</td>
</tr>
<tr>
<td>Net8</td>
<td>20</td>
<td>1.3703</td>
<td>0.0785</td>
</tr>
<tr>
<td>Net9</td>
<td>23</td>
<td>0.5903</td>
<td>0.0769</td>
</tr>
<tr>
<td>Net10</td>
<td>25</td>
<td>0.8522</td>
<td>0.0808</td>
</tr>
<tr>
<td>Net11</td>
<td>28</td>
<td>1.1819</td>
<td>0.3857</td>
</tr>
<tr>
<td>Net12</td>
<td>30</td>
<td>0.6355</td>
<td>0.3123</td>
</tr>
</tbody>
</table>

Table 4.5: Effect of the number of neurons in the hidden layer and training algorithm on ANN performance for buffer concentration.

<table>
<thead>
<tr>
<th>Network</th>
<th>Neurons in hidden layer</th>
<th>RMSE1 (trainlm) [mM]</th>
<th>RMSE2 (trainbr) [mM]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Net1</td>
<td>3</td>
<td>52.2653</td>
<td>39.6519</td>
</tr>
<tr>
<td>Net2</td>
<td>5</td>
<td>52.5966</td>
<td>37.9455</td>
</tr>
<tr>
<td>Net3</td>
<td>8</td>
<td>48.2992</td>
<td>31.1647</td>
</tr>
<tr>
<td>Net4</td>
<td>10</td>
<td>44.1124</td>
<td>32.4427</td>
</tr>
<tr>
<td>Net5</td>
<td>13</td>
<td>34.1128</td>
<td>30.2274</td>
</tr>
<tr>
<td>Net6</td>
<td>15</td>
<td>47.1076</td>
<td>26.5737</td>
</tr>
<tr>
<td>Net7</td>
<td>18</td>
<td>43.2947</td>
<td>28.1090</td>
</tr>
<tr>
<td>Net8</td>
<td>20</td>
<td>32.9877</td>
<td>32.2674</td>
</tr>
<tr>
<td>Net9</td>
<td>23</td>
<td>34.4614</td>
<td>30.0214</td>
</tr>
<tr>
<td>Net10</td>
<td>25</td>
<td>43.2288</td>
<td>21.0038</td>
</tr>
<tr>
<td>Net11</td>
<td>28</td>
<td>39.6913</td>
<td>42.5743</td>
</tr>
<tr>
<td>Net12</td>
<td>30</td>
<td>41.3651</td>
<td>45.0022</td>
</tr>
</tbody>
</table>
Since better networks performance for all four parameters was achieved by using trainbr as learning algorithm, it was chosen and applied in the further optimisation of network parameters and testing. Regarding the decision on the number of hidden neurons, it has been shown that when the number of neurons is smaller than 15, the efficiency of the network to adopt the model data and implement them for parameters estimation was very poor. By increasing the number of neurons over 15, improves the network performance; however above 25 neurons is getting worse again. Decisive in the choice of the rough number of neurons was the last parameter to predict, buffer concentration, which reveals the network of best performance when the training function as trainbr and the number of neurons was 25. Following testing and adjusting specific parameters of a network also showed that the architecture of the network containing 25 neurons in the hidden layer provided the best results with a lowest prediction error for all four parameters. It has therefore been selected as an optimal topology of the network and used for further analysis.

The script, which allows optimise the factors of the network was written in such a way that enable a user to choose the target parameter for testing followed by entries of desired values of network factors.

The neural network has been tested for each target parameter separately and for different values of its factors (Samarasinghe, 2007). While the network was trained by varying one of the factors, others were kept constant. The most significant effect on the network performance has been observed for changes of two factors, learning rate, LR, and momentum, MU. The learning rate controls weights and node biases increments at each training step. Setting this parameter to a large value (the maximum of 1.0) allows the network to learn more quickly but it is compensated by lower efficiency in outputs calculations. Therefore, it is usually better to set this factor to a smaller value unless the learning process seems very slow. The momentum factor improves the network stability. It is achieved by adjustment the current weight in respect to the average of the past weight changes. The MU allows the network to pass through the local minima and reach the optimum weights during learning. The momentum rate can increase from 0.0 to 1.0. If its value is set at 0.0, the MU is not considered in training and the network is
more likely to quickly settle into a local minimum which might result in false calculations. Higher values of the factor may however increase the time of the learning process and decrease network stability.

Other parameters to adjust were number of epoch and performance goal. Epochs define the maximum number of training cycles until the performance goal is reached. Their values should be optimised to avoid the overlearning of the network, when too much information is extracted from the individual cases, not relevant for the general case. Therefore the number of epoch and the goal should also be choose carefully, not too high and not too low but sufficient to reach the network optimal performance.

Illustration of the effect of the learning rate and momentum on the ANN performance

The ANN used for training contained five neurons in the input layer, one neuron on the output and 25 hidden neurons. The algorithm applied in the learning process was trainbr. The effect of the MU and LR was analysed using a computer experiment. The network was first trained for different values of the MU while the LR was held constant at 0.9. The RMSE of the performance in each of the cases is shown in Figures 4.8.1, 4.9.1, 4.10.1 and 4.11.1 for pH, temperature, concentrations of DO and PB respectively. Figures 4.8.2, 4.9.2, 4.10.2 and 4.11.2 illustrate further analysis of the effect of varying LR on the network performance. These trials have been made for a constant MU that gave the lowest prediction error for each individual parameter.

First figures, 4.8.1 and 4.8.2, show that both these factors had some impact on the evaluation of pH, but it did not significantly affect the network performance. It was very high in all cases, which is indicated by behaviour of RMSE and even the least efficient network, with the highest error, was sufficient and gave accurate results. The biggest difference between the lowest and the highest error was only 0.002. For the LR of 0.9, a MU of 0.5 gave the best performance and 0.9 gave the worst performance. Finally, the network was trained with MU of 0.5, LR of 0.5. Further, the performance goal was adjusted to 0.01 and number of epoch 100.
Figure 4.8.1: The effect of momentum on ANN learning in the estimation of pH.

Figure 4.8.2: The effect of learning rate on ANN learning in the estimation of pH.
Figures 4.9.1 and 4.9.2 illustrate the network performance for estimation of different values of temperature. The same as for pH, calculations were made while the momentum or the learning rate of the network was varying between 0.1 and 0.9.

Figure 4.9.1: The effect of momentum on ANN learning in the estimation of temperature.

Figure 4.9.2: The effect of momentum on ANN learning in the estimation of temperature.
Figure 4.9.1 shows that the MU did not influence significantly the calculations, the difference between the lowest and the highest RMSE was 0.1 °C. The network performance was slightly improved by changing the LR (see Figure 4.9.1). As a result the error was decreased up to 0.44 °C when the LR was set to 0.8. The training was done for the performance goal of 0.5 and the number of epoch 200.

This procedure was also repeated for estimations of concentration of DO and PB. For these two parameters varying of MU and LR had visible impact on the network performance. As Figure 4.10.1 shows that applying the momentum of 0.5 again gives the highest efficiency of the trained model network. The worst results of DO determination were obtained for high MU above 0.7 and low, below 0.4. Therefore, MU of 0.5 was used for testing the network with different LR (see Figure 4.10.1). This time acceptable error was given in the range of LR between 0.6 and 0.9. The best performance was obtained for MU set to 0.6 and this value was chosen for further application of the model network. Other parameters were set to 0.1 for the performance goal and 200 for epochs. Such an optimisation of the network revealed an improvement of the RMSE from 0.6 up to 0.05 ppm.

Figure 4.10.1: The effect of momentum on ANN learning in the estimation of DO concentration.
The last parameter to test was PB concentration. In this case both factors play a crucial role for the network performance. Additionally the estimation error was highly improved by increasing the number of epoch of training (see Figure 4.11.1). Changing the number of epoch from 200 to 500 impacted on the changes of RMSE from 23 to 10 mM. Further increase in the number of epoch did not change results significantly. For 1000 epochs the RMSE decreased of only 0.5 mM (see pink dot in the Figure 4.11.1). Because the increase in the number of epoch increase the time of training the model network was set to 500 epoch. The performance was however improved by setting the LR to 0.7 and decreasing the RMSE for next 3 mM (Figure 4.11.1). The performance goal for the network was set to 1.
Figure 4.11.1: The effect of momentum on ANN learning in the estimation of PB concentration.

Figure 4.11.2: The effect of momentum on ANN learning in the estimation of PB concentration.
Once the ANN has been optimised it was capable to find the most likely identity of the unknown data pattern and predict output values of parameters of test solutions.

Results of ANN giving the most accurate prediction for different values of target parameters are shown in Figure 4.12 for pH, temperature, DO and PB concentration. The graphs illustrate the correlation between real (measured) values (x axis), and the values determined by ANN (y axis). Circles (○) indicate the mean values of data points of the network predictions. The standard deviation was calculated for 48 test samples for pH, temperature and PB concentration and 64 samples for DO for each point.

Analytical performance of the assay is demonstrated with relatively low root means square error (RMSE), which describes the quality of fitting of a regression model. The predictions were obtained with an error of only 0.004 for pH (Figure 4.12-A), 0.437 for temperature (Figure 4.12-B), 0.049 for DO (Figure 4.12-C) and 6.818 for PB concentration (Figure 4.12-D). The slightly higher RMSE obtained for PB concentration is probably because sensitivity of fluorescent dye selected for salt detection is lower then sensitivities of other dyes. The RMSE values seem acceptable especially for measurements at the low PB concentration range.

In these studies the combination of fluorescence signals of dye assay as a response to simultaneous changes of four parameters in the environment together with ANN allowed quick and accurate analysis of all these parameters.
Figure 4.12: Correlation between actual (measured) and determined by ANN values of pH (A), temperature (B), DO concentration (C) and PB concentration (D). Points marked as circles (○) indicate mean values of data points of ANN simulations of unseen samples. Diagonal line (—) indicates best linear fit of data points and the line (−•−) indicates ideal response with zero error. Error bars indicate standard deviation.
4.4 Conclusion

The suitable mixture of five fluorescent dyes was designed with separation of their intensity maxima sufficient for discreet reading of the emission intensity changes of individual dyes in response to the changes of the tested environment.

The assay composed of the mixture fluorescent dyes combined with an ANN has been successfully developed for measurements of pH, temperature, dissolved oxygen and ionic strength of a solution. The obtained results have demonstrated high accuracy of the assay in simultaneous identification and calculation of several physicochemical parameters. Analytical performance of the assay was given by relatively low RMSE.

The ANN has shown promising ability in adapting and modelling the non-linear changes in the investigated systems, and providing accurate data analysis for measured solutions and prediction of simultaneously changes of several parameters.

The performance of the network can be improved by optimising the control factors such as momentum, learning rate, number of epoch or performance goal. This can reduce the error in the estimation of target parameters.

The selected fluorescent dyes were stable, soluble in water and had emission in VIS-NIR region making them attractive for analysis of biological samples.

The response time of dyes mixture to all analytes is very short (<1 min, the time for fluorescence scan to be taken) therefore the assay can be suitable for real-time measurements.
5. Fourth objective: testing optical assay with biological samples

5.1 Introduction

Considering the recent surge of attention to optical diagnostics, especially in the field of real-time detection in vivo, which is essential for biotechnology and clinical diagnostics, the development of an optical assay aimed not only at precise quantitative analysis of different analytes and physicochemical parameters of samples, but also at their qualitative characterisation. Sufficient diagnostics not always require exact concentration of individual compounds but rather tend to determine general condition of analysed samples. This usually depends on measurements of changes of various parameters and analytes. Therefore it would be more practical if the specificity of a device is related to recognition of response patterns obtained from overall interaction between a sample and all sensing elements. In this case the analytical capability of the system can lie in profiling the chemical or biological processes which occur in the samples and enable their qualitative analysis.

In this chapter the possibility of using the assay for such analysis is investigated. This study has been done to prove the general and diverse analytical ability of the assay. The successful development of the device would be of the great importance for many scientific and industrial sectors, improving the quality, speed of measurements and reducing their costs.

Using pattern recognition the mixture of dyes was tested on its ability to monitor development phases of cell cultures, identification of different strains of cells and diagnosis of several gastrointestinal diseases in human. The mixture of five fluorescent dyes while contacting with samples, generated fluorescence patterns distinctive for different environmental or medical conditions. Using chemometrics these patterns were analysed and the optical signal was further transferred into analytical characteristics of measured solutions.
5.2 Identification of growing phases of cell cultures

The majority of microorganisms have no significant impact on human life, but many certain types of bacteria, fungi, viruses or parasites are very important considering their beneficial or harmful effects.

To control of the growth of microorganisms is necessary for many practical reasons, e.g. in medicine (prevention and treatment of diseases, production of drugs), food industry (improving process of fermentation, food safety, controlling food spoilage) or agriculture science (indicating disinfection and sanitation, water, soil quality and fertility) (Shearer et al., 2009; McMeekin et al., 2010; Corbin et al., 2008; Hornung et al., 2009). This involves the identification of the phases of microbial growth to inhibit the process or recognise and learn favourable environmental conditions, which they need to live and reproduce (Kim et al., 2004; Ingraham et al., 1983).

In this chapter, the feasibility of the proposed approach to control microbial different development phases using the optical assay has been tested in growing Escherichia coli cultures.

5.2.1 Experimental part

Sample preparation
The bacterial strain used in the experiment was Escherichia coli (JM 83) received from Dr Judith Taylor, Cranfield Health (Cranfield University). Bacteria were recovered from frozen state by growing them in a Miller LB broth (Fluka Biochemica, Cat No. 1.10285), solution of 12.5 g of the medium in 0.5 L of Milli-Q water, overnight at 37 °C and subcultured. A petri dish containing E. coli is shown in Figure 5.1. The bacteria colonies were transferred into centrifuge tubes filled with 20 ml of liquid medium and incubated for 60 hours at 37 °C (Stanier et al., 1987). The tubes with bacteria cells were collected at different intervals and centrifuged at 2800 rpm for 20 min. The supernatant was filtrated through a 0.22 μm filters and 3 ml of the filtrate were transferred into
quartz cuvette. 100 µl of the mixture of fluorescent dyes (concentrations pacified in Chapter 4.2.1) was added to cuvette and the fluorescence of the dyes was measured.

![Figure 5.1: E. coli growing on the nutrient agar plate.](image)

Instrumentation
Absorption spectra of bacteria suspension at different growing phases were measured with Spectrometer (UVPC 2100, Shimadzu, Japan) at 550 nm. The fluorescence measurements were carried out with 3D spectrofluorometer (see description and specifications in Chapter 3.3.3).

Data evaluation
The obtained fluorescence patterns were analysed using an ANN based on changes of the height of the intensity peaks of fluorescent dyes caused by interactions with its surrounding media. The model network was created based on a feedforward network described in Chapter 4.2.4-B. All network control factors were chosen by default.

The network and trained on data patterns of samples of known identity (45 samples with known time of bacteria growth from 0 to 60 hours) using Bayesian backpropagation of errors. Once the ANN was trained an unseen set of data was used for the model evaluation (18 previously unseen samples). Based on learning experience, the network was capable of identifying unknown fluorescent fingerprints and predicts outputs (identifying test solutions).
5.2.2 Results and discussion

In the analysis of bacteria growth the mixture of dyes was added to supernatants taken from suspensions of growing microorganisms. Samples were collected at different intervals of time. Bacterial growth was monitored by measuring the absorption of the suspensions.

The example of a growth curve obtained for pure culture of *E. coli* (subcultured and left to grow) is presented in Figure 5.2. The curve demonstrated two main phases of bacteria growth (exponential and stationary phase of growth) (Ingraham *et al.*, 1983).

![Growth curve of E. coli culture showing exponential and stationary phase of bacteria growth.](image)

It can be seen that for the first ten hours (after the bacteria culture was transferred to a fresh medium) that there is a rapid increase in the absorption of bacteria suspension. Then, the increase of absorption stopped and it remained more or less constant. This corresponds to the intensive growth of bacteria culture while it is in the fresh medium, rich in nutrients. After they are consumed the culture stops growing and enter the stationary phase, when growth becomes unbalanced.
The curve presented in Figure 5.2 demonstrates control measurements performed along with fluorescence measurements of bacteria culture growth phases using an optical assay (see Figure 5.3). To avoid contamination of bacteria, the pure culture was subcultured to the series of tubes for independent testing (Stanier et al., 1987). In certain time periods the suspension from one of the tubes was used in fluorescence measurements and the rest was left to grow for longer. The fluorescence measurements were performed by adding the mixture of fluorescent dyes to 3 ml of supernatant, which was taken from the tube containing a suspension of growing cells. The experiment was performed in triplicate. The maximum of fluorescence intensity of each dye is plotted as a function of time of bacteria growth.

![Figure 5.3: Changes in fluorescence intensity of five dyes of the mixture vs. time of bacteria growth. Dye 1 is HPTS, Dye 2 is OG514, Dye 3 is RB, Dye 4 is RuBpy, Dye 5 is THA. Measurements were performed in bacterial supernatant obtained from growing E.coli.](image)

As Figure 5.3 shows these results correspond to the absorption measurements presented in Figure 5.2. The most significant changes in the absorption were observed during first 10 hours of the cell growth. Similar results were obtained for measurements of fluorescence intensity of the dyes mixture for different growing phases of bacteria.
Additionally, control measurements were performed using samples consisting of the mixture of fluorescence dyes in solution of only the medium, without growing cells (LB broth). They were kept in the same condition as diagnosed samples. Results for controls are presented in Figure 5.4 and show no changes in fluorescence intensity of dyes, therefore the changes in fluorescence for cell suspensions (see Figure 5.3) were caused by the presence of bacteria.

![Figure 5.4: Control measurements of fluorescence intensity of the mixture of five dyes in LB broth. Dye 1 is HPTS, Dye 2 is OG514, Dye 3 is RB, Dye 4 is RuBpy, Dye 5 is THA.](image)

The collected fluorescence patterns were analysed using an ANN based on changes of the height of the intensity peaks of fluorescent dyes. The model network, which has been previously optimised for simulations of four different parameters, was applied in the current experiment and revealed high efficiency. Similar to quantitative analysis of samples, the ability of the model network was tested by its training on data patterns of known identity (the known time of bacteria growth) and used this knowledge to determine the time of growth of bacteria in unknown suspensions (previously unseen samples).
Results of ANN predictions are shown in Figure 5.5. The graph illustrates the correlation between real (measured) time of growth of bacteria culture (x axis), and the time predicted by ANN (y axis). Circles (○) indicate the mean values of data points of the network prediction and error bars indicate standard deviation. The accurate prediction of time using ANN is demonstrated with the root means square error (RMSE) of 6.41.

These promising results indicate that it is possible to use the fluorescence signals of a dye assay combined with ANN model in the determination of bacterial presence and their growth phases, which might be helpful for analysis of the quality of medical, food or environmental samples.

Further analysis can be improved by investigation of particular factors which affect bacteria growth, such as pH, oxygen, salt, sugars or nutrients concentration (Spaepen et
Usual, these parameters are optimal for one strain but they vary for others and can change frequently the natural environment affecting differently the growth of particular strain of microorganisms. Thus it is important to know the actual effects of these factors on the growth of microbial.

The current results are useful for controlling the growth rate of microorganisms and promising for the future, but for comprehensive control, to inhibit unwanted strain from growing, such as human pathogenic bacteria or to improve the development of the advantageous ones, the impact of certain factors on their growth should be better understood.

5.3 Discrimination between cell strains using mixture of fluorescent dyes

The next objective in the examination of analytical capability of the optical assay was to test the possibility of application of the mixture of fluorescent dyes to differentiate between two microbial species. As mentioned at the beginning of previous chapter, identification of certain kinds of microorganisms is very useful in many fields of science and industry for fast and robust recognition of specific strains, which can be useful for supplying products to improve human lives or harmful, causing diseases (Kopsahelis et al., 2009; Aneesh et al., 2009).

This approach has been carried out using two different strains of yeast.

5.3.1 Experimental part

Sample preparation
Two strains of yeasts used in the experiments were *Debaryomyces Hansenii CBS. 941* and *pink yeast* - occurring naturally. Both strains were provided by Prof Naresh Magan from Applied Mycology Group, Cranfield Health (Cranfield University). Yeast cultures were grown in solidified agar plates containing the Malt Extract Agar (solution of 12.5 g of the medium in 0.5 L of Milli-Q water) and 100 ppm chloramphenicol at 25 °C and subcultured until pure colonies were obtained (see Figure 5.6, white yeast (left) and
pink yeast (right)). Then they were transferred into six tubes (three tubes for each kind of yeast) containing 20 ml of medium (solution of 1 g of the Yeast Extract Powder medium containing 1 g of glucose in 0.5 L of Milli-Q water) and incubated at 25 °C for 12 hours. The supernatant from two strains of yeast suspensions was taken and filtrated through a 0.22 µm filter and collected in new tubes. 3 ml of liquid were transferred into quartz cuvette and mixed with 100 µl of the mixture of fluorescent dyes was added to cuvette and the fluorescence of the dyes was measured. The concentrations of dyes are reported in Chapter 4.2.1.

Figure 5.6: White yeast (left) and pink yeast (right) growing on nutrient agar plate.

Instrumentation
The fluorescence measurements were carried out with 3D spectrofluorometer (see description and specifications in Chapter 3.3.3).

Data evaluation
The spectral characteristics of dyes mixture and changes caused by interactions with its surroundings were analysed using Principal Component Analysis (PCA). PCA was performed in Matlab (version 7.3.0, MathWorks Inc., 2006) using the PLS Toolbox (version 3.5).
The analysis of two strains of yeasts was based on changes of whole fluorescence spectra of the dye mixture.

5.3.2 Results and discussion

The investigation involved determining whether the two strains of yeast could be distinguished from one another. Measurements of fluorescence intensity of the dye mixture were performed in supernatant of a solution of two strains of yeasts (white and pink) using 3D spectrofluorometer. To exclude the impact of the concentration of cells on measurements, the experiment was carried out in triplicate sets of each type of yeasts. They were subcultured from solidified agar plate into three separate liquid medium and left to grow independently. Figure 5.7 shows the resulting PCA scores plot for these three replicates of each kind of yeast with a good separation of two clusters. The green triangles indicate pink and orange dots white yeasts.

![PCA score plot showing distinction between two different strains of yeasts.](image)

Figure 5.7: PCA score plot showing distinction between two different strains of yeasts.
Two independent variables (PCs) found accounted for 62% of the variance within data set. This might indicate positively that the distinction between two strains of cell was possible. However, orange dots are clustered tightly together and the triangles are far apart. This suggests that the identification of white yeast could be easier than pink yeast, which did not give well repetitions in their fluorescence patterns. It would be therefore sufficient to control the exact concentration level of the cells in future measurements, to be sure that their effect on the fluorescence signal can be definitely excluded. Later it would also be practical to use more than two types of microorganisms (at least three), to allow more judgemental discussion and to increase the degree of certainty on the result.

5.4 Recognition of various gastrointestinal diseases in human

The final test of the optical assay analytical capability was performed on human urine samples for recognition of several gastrointestinal diseases (Crohn's disease, ulcerative colitis and irritable bowel syndrome). These chronic diseases are currently serious public health problems, which have been forecasted to increase further in most countries around the world (Underhill et al., 2008; Reiff et al., 2010). The identification of the symptoms, early diagnosis and treatment of these diseases is still challenging because the etiology and factors causing these complex disorders are yet not well known. Therefore, their mechanisms are difficult to explain, various types difficult to discriminate and therapeutic targets hard to identify (Wijmenga, 2005; Meuwis et al., 2008). Typically, their diagnosis involves many analytical tests which are often costly and invasive. Therefore it is of a great importance to search for the suitable and sensitive method for controlling gastrointestinal microbiota and early detection of dangerous pathogens (Neish, 2009).

The code of practice (COP) for safely handling of clinical / biological samples is included in Appendix B.1.

5.4.1 Experimental part

Sample collection
The urine samples were taken from volunteers at Addenbrookes Hospital and provided by Dr Claire Turner, Head of the Volatiles Research Group, Cranfield Health, Cranfield University (the copy of the ethics approval is in Appendix B.2). All volunteers were given information, consent forms to read and sign, and a questionnaire, which provide details on their diet, exercise, sleep, medication and general health (a copy of these forms are included in Appendix B.3).

Urine samples were taken from healthy volunteers (CTR) and patients diagnosed with either Crohn's disease (CD), ulcerative colitis (UC), or irritable bowel syndrome (IBS). They were obtained prior to any medical treatment.

The samples were labelled with unique codes and stored in Addenbrookes Hospital at -80°C and then delivered to Cranfield University. At Cranfield the samples were storied at -20°C until analysed. Before the measurements, each sample was defrosted and transferred into centrifuge tubes and then centrifuged at 2800 rpm for 20 minutes. The supernatant was filtrated through a 0.45 µm glass fiber filters (recommended to use with biological samples such as plasma, urine, serum) (Phenomenex, 2009). 100 µl of the mixture of fluorescent dyes (concentrations pacified in Chapter 4.2.1) was added into each sample supernatant and measured.

Instrumentation
The fluorescence measurements were carried out with the 3D spectrofluorometer (see description and specifications in Chapter 3.3.3).

Data evaluation
The excitation - emission fluorescence pattern obtained for each samples was first analysed using Principal Component Analysis (PCA). PCA was performed in Matlab (version 7.3.0, MathWorks Inc., 2006) using the PLS Toolbox (version 3.5) and then
ANN probability network was implemented to classify the data (Demuth et al., 2007). The architecture, algorithms and other parameters of this forward feed network were already developed and the modelling was performed in Matlab (version 7.3.0, MathWorks Inc., 2006) using the Neural Network Toolbox (version 5.0.1).

The number of urine (pre-treatment) samples used in analysis included 9 control samples, 11 IBS samples, 6 CD samples and 6 UC samples.

5.4.2 Results and Discussion

The experiments were performed to test whether the dye assay was able to identify different gastrointestinal diseases and healthy control based on the fluorescence patterns obtained from human urine samples so patients could be diagnosed with CD, UC or IBS.

Measurements of fluorescence intensity of the dye mixture were performed in supernatant of urine suspensions using the 3D spectrofluorometer based on changes of whole spectra of the dye mixture. Before measurements samples were centrifuged, filtrated and then, in the analysis the spectra were corrected by the background substraction. The examination was carried out based on the fluorescence signal from the assay.

Data were first analysed using PCA to attained the most influential emission profiles from the EEM of each sample (Winquist et al., 2000). These were further used as inputs for the ANN probability network to classify the three diseases from the healthy controls by assigning class values to the states: 1 for healthy; 2 for disease. Leave-one-out cross-validation (LOO-CV) permitted each sample to be classified leading to an overall success of classification (Figure 5.8). LOO-CV is commonly used in chemimetrics crossvalidation method, where each sample is subsequently excluded from the dataset and others are used for training the network. The idea behind it is to predict the value of a compound from the regression equation obtained for the dataset of all other compounds.
Figure 5.8 shows the results of the combined PCA and ANN results which have been characterised by three features: specificity, which represents the number of true negatives (healthy samples). If the percentage of true negatives was 83% (83 out of 100 healthy samples were classified correctly) then there would be 17% false positives (17 out of 100 healthy samples incorrectly classified, classed as diseased), sensitivity represents the number of true positives (diseased samples). If the percentage of true positives were 92% (92 out of 100 diseased samples correctly classified), then there would be 8% false negatives (8 out of 100 diseased samples incorrectly classified, classed as healthy) and the last is overall success of discrimination.

![Figure 5.8: Ability of the ANN to discriminate the three diseases from the healthy controls: % Overall means the overall success of discrimination; % Specificity means the success of distinguishing the healthy controls; % Sensitivity means the success of distinguishing the disease.](image)

Figure 5.8 illustrates that each disease can be discriminated from the healthy controls; for CD and UC, it can be seen that the healthy controls were all successfully classified (100%). The overall successes of discrimination (83%, 87%, and 97% for IBS, CD and UC respectively) show that the optical approach combined with chemometrics is highly promising. Identification of a number of true positives gave slightly worse results
especially for CD, 67%, but for IBS and UC (83% and 92% respectively) it remains relatively high.

Summarising, the demonstrated results are very promising, but they still require further investigation such as the discrimination the diseases from one another, and comparing other classification techniques including multi-way techniques.

5.5 Conclusions

Following the approach of optical assay development for quantitative analysis of samples, it has been applied further for qualitative examination of complex biological samples. The specificity of the device based on the interferences between their various components and all fluorescence dyes. The analysis of acquired data was related to recognition of response fluorescence patterns which were unique to particular conditions and considered similar to fingerprints.

Firstly, based on the response data patterns the assay proved to be capable to closely estimate different development phases of growing bacteria cells. However, for a final justification on this ability of the assay to control microbial rate growth, it is important to carry on testing of different microorganisms. If the result stays positive it could be of great importance especially in sectors of research of industry where bacteria are used for supply products beneficial for human life, such as food, pharmaceutical or cosmetic areas, but it is also essential for inhibition of dangerous pathogens or monitoring the bacteria, which are used for decomposition of waste materials.

Another experiment which was carried out involved the discrimination between strains of yeasts (white and pink species). Although the discrimination was successful, it has been limited only to two types of yeasts and therefore it would be reasonable to expend the experiment to at least three different kinds of microorganisms, which would give better view on the different types of variation in the patterns and would be closer to the natural environment thus provide more reliable results.
In the final experiment the optical assay was used for diagnosis of clinical samples (human urine) for recognition of three gastrointestinal diseases and healthy controls. It has been shown that by using this assay it was possible to discriminate between healthy patients and those with different diseases and also differentiate Crohn's disease, ulcerative colitis end irritable bowel syndrome. However, the technique does not give information on the composition of samples, however the promising results indicate possibility of using the assay for accurate, noninvasive, not expensive and quick diagnosis of human gastrointestinal microbiota.
6. Overall discussion and conclusions

The leading objective of this thesis was to develop a novel, optical diagnostic assay with an operating principle similar to electronic nose and tongue sensors and to suggest its potential applications. This study was based on a mixture of fluorescence dyes pattern analysis for quantitative and qualitative characterisation of complex samples.

The proposed optical assay was composed of a mixture of five environment-sensitive fluorescent dyes combined with chemometric techniques for the processing of distinctive spectra of the dye mixture in response to changes in environment.

6.1 Dyes selection

The appropriate fluorescence dyes were selected based on the published information on their physical and chemical properties, especially high sensitivities, good stability, suitable spectral characteristics, commercial availability and low price. They are well known dye-indicators for pH, temperature or DO concentration and characterised by low photobleaching and high excitation coefficient, which are of a great importance in giving reliable results and improving the assay stability and efficiency.

It was also advantageous that in the selection of dyes the cross-sensitivity was not an issue, which has been an significant problem in the research on optical sensors before. The selective dyes had to be sensitive to target analyte without cross-interferences with others. This approach is however almost impossible to realise in real samples and outside control, laboratory conditions. In this approach various compounds of samples are detected by all elements of the assay, all dyes in the mixture, and combine with chemometrics to process this data, easy to understand by users.

Experimental studies on the dye mixture were in a close correlation with data from the literature. The assay has revealed high sensitivity within a wide dynamic range for the given parameters and similar excitation and emission wavelengths, advantageous shifted
of about 20 nm to longer values in excitation for rhodamine B (from 519 to 541 nm), oregon green 514 (from 480 to 504 nm), tris (4,7 - diphenyl - 1,10 - phenanthroline) ruthenium dichloride (from 440 to 463 nm) and thionin acetate (from 520 to 541 nm). Values in the emission wavelengths changed only for thionin acetate (from 623 to 638 nm) and 8 – hydroxypyrene - 1’,3,6 - trisulfonic acid did not change its fluorescence spectrum. Therefore, the mixture of dyes did not have a significant impact on the dyes spectral characteristics however it affected their stability. When dyes have been stored as separate solutions and mixed together before measurements, the same stock solutions could be used for months but when their mixture was stored, dyes were permanently losing their ability to fluoresce after one day. This was however tested only when the stock solutions of dyes were prepared in water. Therefore, their stability might be improved through the preparation of high concentrated mixture of dyes in organic solvent and then dissolved the mixture in water before measurements, or dry the mixture, and then when necessary, dissolve the powder.

This approach gives also the possibility of modification of mixture of dyes by choosing dyes with different properties, depending on the various requirements (eg. sensitivity, excitation and emission wavelengths or decay time).

6.2 Quantitative and qualitative analysis

Since different dyes with varying sensitivities were included in the mixture, the assay has been proposed for multiply measurements of several parameters such as pH, temperature and dissolved oxygen concentration in a single sample. Such ability can be crucial for quantitative analysis, especially when these parameters or analytes changing simultaneously. In addition, a mixture of dyes may reveal an enhanced sensitivity to other parameters than those defined, like it happened with salt concentration of a buffer solution. It increases, the assay’s ability to determine more then four parameters at the same place and time and thus enabled chemical or physicochemical sensors to be compensated for the effect of pH, temperature, oxygen or salt level when compared with monosensors.
This feature would be useful especially for qualitative study of clinical, food or environmental samples wherein changes are usually triggered by more than one factor and when these factors interfere with each other. Thus, the combination of several different dyes with known sensitivities could allow specific assay to be made more unspecific if necessary. Using the assay enables also smaller samples volume to be analysed for more information being provided. It is especially important when the volume of the sample is limited (e.g. clinical samples).

In the first approach, the mixture of dyes was combined with ANN for determination and quantification of four parameters, such as pH, temperature, DO and ionic strength of PB buffer. Measurements were carried out in two stages. Initially, only one parameter of the solution was changing while others were kept constant and later all four parameters have been changed and the analysis of the simultaneous determination of four parameters was tested.

ANN has showed great ability to adapt and model non-linear changes of fluorescence patterns and accurate determination of given parameters for all measured solutions. Presented experiments have shown that the structure of model network depended on the complexity of the analysed problem. While single parameter of the sample was changing and others were constant, the prediction model network was based on simple linear neural network classifier, revealed sufficient enough to allow quick and accurate predictions. In a more complicated approach, when several parameters had to be simultaneously determined, the network performance was enhanced by using a more advanced model. This included modification of a structure by increasing the number of neurons in the hidden layer and optimisation of control factors and algorithm used in the network learning process.

The ANN was also used for qualitative analysis of biological samples and determination of growth rate of microbial as well as identification and classification of clinical samples from patients with different gastrointestinal conditions. Obtained results were promising and have shown that the optical assay combined with ANN can also be used as a helpful tool to control development phases of cell cultures and diagnosis of clinical
samples. It suggests wide and diverse applications including biological, clinical and environmental analysis.

Beside ANN, PCA have been applied in the processing of the acquired fluorescence patterns of the dyes mixture for discrimination between two strains of yeasts. PCA has shown the ability for profiling the data and by extracting the “dominant patterns” in the dataset, it allowed the observation of the relationships between the samples, suggesting some differences or similarities among them.

The main limitation of PCA is that this method is not optimised for data classification and does not account for class separation. The results of the PCA recognition do not guarantee that assign directions of maximum variance in the data will contain sufficient features for discrimination of new samples. Thus, the information is not fully reliable and therefore further classification of samples should be made using a different and more advanced method. This was demonstrated in the last experiment, when patients with different gastrointestinal conditions had to be identified and PCA was used for data pre-treatment. It was performed to reduce the number of variables prior to ANN modelling.

These initial experiments and promising results demonstrated the potential of using the optical assay and chemometrics as a new marker for rapid screening of specific diseases and other complex disorders or contaminants and diverse changes in biological or environmental samples. This work has shown that the type of cell cultures, their age, as well as the microbial species and cell lines, all influence fluorescence pattern of the mixture of dyes. However, the assay should be further tested, especially for the ability of qualitative analysis at low concentrations, which is of the great importance for prevention, early diagnosis or immediate treatment implementation.
6.3 Suggestions and future work

The presented work provides the basis and practical framework for the future development of the optical assay. Although, a number of open issues related to its implementation must be solved in order to complete the statement of the assay performance, feasibility and benefits of its applications, it was expected that this research will provide guidance and encouragement for the future research on similar optical systems.

Further investigation should involve additional tests of the assay on other biological, clinical and environmental samples, e.g. waste water, food, soil, or human blood samples. It is advisable to try to discriminate between fluorescence patterns of more than two microbial species and analyse their responses to different environmental conditions, which could improve the qualitative control of food or environmental samples by establishing the correlation between specific factors and samples quality, and provide an easy and efficient screening method. It would also be interesting to try to identify and quantify the parameters or compounds responsible for such changes in the fluorescence patterns. This would help to understand the physiology of the processes and enable their regulation. Additionally, it could be helpful for development of a sensor for detection and monitoring of specific compounds or parameters within biological or environmental samples and define the assay detection limit. However it has been done in buffer solution, never for biological media.

To claim the potential of using the optical assay also for medical applications it is important to make more tests on clinical samples. Additionally, it is decisive to optimise the data analysis and automate the system. Although much work is still required before the system is ready for clinical studies, initial experiments have been done towards attaining this goal.

Another issue in question is the assay stability. Further studies should include the integration of fluorescent dyes with polymers in order to increase the assay thermal and chemical stability and also to reduce possible toxicity of dyes for \textit{in vivo} applications.
The major plan for the future includes using the optical assay as a smart ‘vanishing tattoo’ (similar to temporary child’s tattoos), which could be painlessly impregnated into the human skin and applied for the real-time multi detection and monitoring of physiological parameters and chemical analytes in the human body (this idea was already mentioned in Chapter 2.2). Such a smart tattoo can possibly be applied in routine clinical diagnostics, general therapeutic management, skin care, cosmetic products testing or monitoring transcutaneous drug delivery.

Skin diagnostics may include measurements of physiological parameter and metabolites concentrated within human skin. It is an area of increasing interest especially for the pharmaceutical and cosmetic industries. Skin monitoring is also important for understanding and improving drug efficiency.

The basic parameters, which can be monitored within the human skin, are: pH (pH 4.0-6.0), redox sensitivity, temperature (32-35 °C), humidity, and the level of oxygenation (5.3 kPa (40 mmHg), the average partial pressure of oxygen (pO2) in a tissue). The main metabolites that can be detected, and their levels, include: glucose, saccharides, oxygen, creatinine, lactic acid and urea.

The pH of human skin is acidic and varies from pH 4.0-6.0 (Buraczewska et al., 2005). The pH is an important parameter and with, for example; the skin thickness, moisture and temperature, can play a crucial role for the skin permeability, its barrier function and its recovery (Lee et al., 2006; Martinez-Pla et al., 2003). This can have an impact in the pharmaceutical industry, (solubility and partitioning of drugs in the skin layers), and for skin care. With age skin’s pH becomes more neutral and thus more susceptible to bacterial growth and infections, as the reduced acidity of the skin can kill fewer bacteria. However, it is important to maintain the right microflora of the skin, and therefore, the normal pH and the moisture for each skin type.

Another physiological parameter that is important to control in human skin is the redox status. The skin is constantly exposed to chemical oxidants, air pollutants and ultraviolet (UV) solar light, which is the major generator for reactive oxygen species (ROS) that induct oxidative stress (Briganti et al., 2003; Ziosi et al., 2006).
antioxidant network protects cells against oxidative injury, but when the oxidative stress overwhelms the skin antioxidant capacity, degenerative processes begin to occur. This can lead to many diseases (including skin cancer).

Other compounds used for detection and monitoring in the skin are saccharides or glucose. Knowing the glucose level is especially important for diabetics. They suffer from a chronic disease, diabetes, which affects the ability of the body to produce or respond to insulin, the hormone that allows glucose to enter the body’s cells and to be stored or used for energy. Most diabetics require insulin injections, and most of the time they have to carefully monitor and manage their blood glucose levels themselves. Because glucose levels can fluctuate widely throughout the day for optimal control they have to do the blood test several times a day (usually from finger pricks). Therefore, novel, rapid and minimal-invasive method for measurements of glucose level could have a significant impact on new developments in medicine.

Also, the quantitative visualisation of oxygen flux or molecular oxygen distribution in the skin is very important for medical diagnosis. The oxygen content in the skin can indicate its viability. Monitoring the level of creatinine, lactic acid, urea and other metabolites concentrated in human skin is also possible and important to control.

The essential task in the approach would be the integration of fluorescent dye mixture with polymers, not only to improve its stability but also to facilitate the controlled delivery of the dyes into the skin. Additionally, it should reduce toxicity of dyes and risk of possible reaction in patients. Therefore, the choice of suitable polymers used for dyes conjugation would be extremely important. Next, the toxicity of dyes-polymer conjugates must be analysed in in vitro tests.

The long term plan also includes the development and optimisation of geometry of the vanishing tattoo pattern, delivery protocol for skin impregnation and industrial prototypes for the signal processing.

The optical properties of human skin are described in Appendix C1.
7. References

temperature, dissolved oxygen and viable biomass concentration. *Biotechnology and Bioengineering*, 99(4), 884-892.

Appendix A: Matlab pseudo-codes

A.1. Illustration, adding and subtracting 3D fluorescent spectra

% Clear variables and close figures
% Import SPC file
% Plot and colour 3D surface
 % Set properties (pixels)
 % Replace pixel numbers with wavelength values
 % Label axes
% Plot intensity image
 % Flipped intensity matrix vertically
 % Set properties (pixels)
 % Replace pixel numbers with wavelength values
 % Label axes
% Choose the next step of procedure to add, subtract or finish
 % Use ‘while’ loop and ‘if’ loops
 while (condition = ADD OR SUBSTRACT) do
 if (condition statement = ADD)
 % Select next SPC file
 % Import SPC file
 % Add selected SPC file
 % Display summarised 3D and intensity plot
 elseif (condition statement = SUBTRACT)
 % Select next SPC file
 % Import SPC file
 % Substract selected SPC file
 % Display subtracted plot
 end
 if (condition statement = FINISH)
 % Ask if import background SPC file (Yes / No)
 if (condition statement = No)
 % No file is imported
 break
 end
 end
if (condition statement = Yes)
 % Select background SPC file
 % Import background SPC file
 % Subtract selected SPC file
 % Display summarised 3D and intensity plot
end
end
end

pause

A.2. ANN design and simulation for four parameters

% Clear variables and close figures
% LOAD and SPLIT data into training and test sets
% NORMALISE training and test sets
% CHOOSE the parameter you want to simulate
% Use SWITCH LOOP for different user entries
switch user_entry (condition statement)
 case 'condition statement 1'
 % load variables for pH simulation
 case 'condition statement 2'
 % load variables for temperature simulation
 case 'condition statement 3'
 % load variables for dissolved DO simulation
 case 'condition statement 4'
 % load variables for pH simulation
 otherwise
 % display unknown parameter
End

if (condition statement = 1 OR condition statement = 2 OR condition statement = 3 OR condition statement = 4)
 % DEFINE the number of training cycles (j) and neurons in hidden layer (i)
 for j = ‘epoch’
for i = 'neurons'
 % CREATE the model network
 % set transfer functions and training function
 % set training parameters (number of epochs for each run, epochs between
 % displays, performance goal, initial momentum)
 % TRAIN and TEST the network (simulate target parameter)
 % CALCULATE mean square error (MSE) and standard deviation (STD)
 % PLOT the network outputs and error bars
 % Perform REGRESSION analysis
 % SAVE results
 close
end
end
else
 % do not perform simulation; end program
end

% ASK to run again (Yes / Nn)
if (Yes)
 % RUN again
else
 % do not ask again; end program
end
end
Appendix B: Code of practice and content forms

B.1. Code of practice (COP)

Cranfield Health (Updated February 2008)

CODE OF PRACTICE

Handling of Clinical / Biological Samples

This code of practice describes how to safely handle and dispose of clinical / biological samples including blood, urine and faeces and must be strictly observed. It is your responsibility to ensure that you do not endanger the health of your co-workers. If you do not understand anything, ask for help / advice from the Biological Safety Officer (BSO), Mr R E Ashby.

GENERAL

1. All biological samples must be viewed and treated as being a possible source of infection and therefore a biohazard until evidence is obtained to the contrary.

2. Before receiving any biological / clinical samples, a risk assessment must be completed, outlining the source, tissue type and details of the proposed study.

3. Do not accept any samples known to be infected with HIV, Hepatitis B, Hepatitis C, Tuberculosis or MRSA.

4. Samples can only be accepted if they are received in clearly labelled sealed tubes / vials. If in doubt about any samples do not bring them into Cranfield Health.

HANDLING OF SAMPLES

5. Only competent trained personnel should handle biological / clinical samples. All personnel handling human specimens must be immunised against Hepatitis B (details are available from the Medical Centre).

6. Laboratory coats, disposable gloves (free from holes) and eye protection must be worn at all times when handling samples.
7. Clinical / biological samples must only be handled in P2 designated laboratories and the appropriate laboratory practices described in the Code of Practice for Microbiological Safety adopted (e.g no mouth pipetting, eating, drinking, or pencil chewing in the laboratory).

8. All manipulations should be carried out, as far as possible, within a contained area of the bench e.g. on a plastic tray. This will contain any spillages and minimise any inadvertent contamination of the environment. All surfaces must be thoroughly cleaned with 1% Virkon after use, allowing 15 minutes contact time, prior to finally washing with water.

9. Extreme care must be employed if hypodermic needles are required during sample handling. Any needles must be disposed of in a Sharps Bin which will be sent as Hazardous Waste when full.

AEROSOLS AND SAFETY CABINETS

10. Activities likely to cause the production of aerosols, e.g. homogenisation of samples, must be carried out within a Class 1 Biological Safety Cabinet. The safety cabinet must be cleaned with 1% Virkon (as described in Section 8) after every use.

ACCIDENTS AND SPILLAGES

11. All accidents / incidents, however minor, must be reported to the Laboratory Manager, Mr R E Ashby who will record the nature of the injury / incident and the perceived risk of infection.

12. All spillages must be disinfected / inactivated using an excess of 2% Virkon (contact time must be 15 minutes) prior to washing with excess water (see SOP 1056)

DISPOSAL

13. Treatment of liquid biological waste and dirty glassware / pipettes should be as described in SOP 1057 for the disinfection of mammalian cell culture items.

14. Solid clinical samples, tissues and any disposables must be placed in a supported autoclave bag and at the end of the day autoclaved. It is the responsibility of the operator to ensure that an adequate process is given (see appropriate SOP ?).
B.2. Ethics approval form

National Research Ethics Service
Bedfordshire Research Ethics Committee
Ambulance Training Centre
Via Lectorum Code 07
GE11 Hospital
Howlands
Welwyn Garden City
Hertfordshire
AL7 4HQ

Telephone: 01707 362583
Facsimile: 01707 394475

03 August 2007

Dr Claire Turner
Senior Research Fellow
Cranfield University
Silsoe
Bedford
MK45 4DT

Dear Dr Turner

Full title of study: Abnormal sulphur metabolism in the pathogenesis of gastrointestinal disease
REC reference number: 07/Q1205/39
SSA reference number: 07/H0309/48

Thank you for your application to conduct the above research as local Principal Investigator for Cranfield University. We can confirm that the application was received on 03 August 2007.

An assessment of the suitability of the local Principal Investigator, site and facilities will be made by this Committee. We will notify the main Research Ethics Committee Leeds (West) Research Ethics Committee within 25 days of receiving your application whether or not there is any objection to the research being conducted locally.

It is the responsibility of the main REC to confirm the favourable opinion for each research site, taking account of the advice from site-specific assessors. The main REC will notify the decision to the Chief Investigator for the study and provide a list of approved sites (on form SF1). It is the responsibility of the Chief Investigator to notify the local Principal Investigator at each site.

It is your responsibility to ensure you have final approval from the R&D office for the relevant NHS care organisation before commencing any research procedures.

Yours sincerely

Sue Oliver
Assistant Administrator

Email: su.oliver@nhs.net

This Research Ethics Committee is an advisory committee to East of England Strategic Health Authority
The National Research Ethics Service (NRES) represents the NRES Directorate within the National Patient Safety Agency and Research Ethics Committees in England
14 August 2007

Professor John Hunter
Consultant Physician
Addenbrooke's Hospital
Hills Road
Cambridge
CB2 2QQ

Dear Professor Hunter

Full title of study: Abnormal sulphur metabolism in the pathogenesis of gastrointestinal disease
REC reference number: 07/Q1205/39

The REC gave a favourable ethical opinion to this study on 24 April 2007.

Further notification(s) have been received from local site assessor(s) following site-specific assessment. On behalf of the Committee, I am pleased to confirm the extension of the favourable opinion to the new site(s). I attach an updated version of the site approval form, listing all sites with a favourable ethical opinion to conduct the research.

R&D approval

The Chief Investigator or sponsor should inform the local Principal Investigator at each site of the favourable opinion by sending a copy of this letter and the attached form. The research should not commence at any NHS site until approval from the R&D office for the relevant NHS care organisation has been confirmed.

Statement of compliance

The Committee is constituted in accordance with the Governance Arrangements for Research Ethics Committees (July 2004) and complies fully with the Standard Operating Procedures for Research Ethics Committees in the UK.

Please quote this number on all correspondence

Yours sincerely,

Miss Anna Fawlik
Assistant Administrator

Email: anna.fawlik@leedsth.nhs.uk

This Research Ethics Committee is an advisory committee to Yorkshire and The Humber Strategic Health Authority.
The National Research Ethics Service (NRES) represents the NRES Directors within the National Patient Safety Agency and Research Ethics Committees in England.
Leeds (West) Research Ethics Committee

LIST OF SITES WITH A FAVOURABLE ETHICAL OPINION

For all studies requiring site-specific assessment, this form is issued by the main REC to the Chief Investigator and sponsor with the favourable opinion letter and following subsequent notifications from site assessors. For issue 2 onwards, all sites with a favourable opinion are listed, adding the new sites approved.

<table>
<thead>
<tr>
<th>REC reference number:</th>
<th>07/Q1205/39</th>
<th>Issue number:</th>
<th>4</th>
<th>Date of issue:</th>
<th>14 August 2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chief Investigator:</td>
<td>Professor John Hunter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full title of study:</td>
<td>Abnormal sulphur metabolism in the pathogenesis of gastrointestinal disease</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This study was given a favourable ethical opinion by Leeds (West) Research Ethics Committee on 24 April 2007. The favourable opinion is extended to each of the sites listed below. The research may commence at each NHS site when management approval from the relevant NHS care organisation has been confirmed.

<table>
<thead>
<tr>
<th>Principal Investigator</th>
<th>Post</th>
<th>Research site</th>
<th>Site assessor</th>
<th>Date of favourable opinion for this site</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof John Hunter</td>
<td>Consultant Physician</td>
<td>Addenbrookes Hospital</td>
<td>Cambridgeshire 2 Research Ethics Committee</td>
<td>04/07/2007</td>
</tr>
<tr>
<td>Dr Rosemary Waring</td>
<td>Reader in Human Toxicology</td>
<td>University of Birmingham Edgbaston Birmingham B15 2TT Cranfield University Silsoe Beds MK45 4DT</td>
<td>South Birmingham Research Ethics Committee</td>
<td>01/06/2007</td>
</tr>
<tr>
<td>Dr Claire Turner</td>
<td>Senior Research Fellow</td>
<td></td>
<td>Pembrokeshire Research Ethics Committee</td>
<td>14/08/2007</td>
</tr>
</tbody>
</table>

Approved by the Chair on behalf of the REC:

(Signature of Chair/Co-ordinator)

(delete as applicable)
B.3. Information and consent forms

B.3.1. Information form

ABNORMAL SULPHUR METABOLISM IN THE PATHOGENESIS OF GASTROINTESTINAL DISEASE vs 2 26/03/07

You are being invited to take part in a research study. Before you decide, it is important for you to understand why the research is being done and what it involves. Please take time to read the following information carefully. Talk to others about the study if you wish.

- Part 1 tells you the purpose of this study and what will happen to you if you take part.
- Part 2 gives you more detailed information about the conduct of the study.

Ask us if there is anything that is not clear or if you would like more information.

Part 1

What is the purpose of the study?

Although many people suffer from ulcerative colitis, Crohn's disease and irritable bowel, the causes are still unknown. Mucins are proteins which protect the gastrointestinal tract and contain sulphate. Bacteria in the gut can remove sulphate from mucin, making the gut leakier and more inflamed. The sulphate is converted to hydrogen sulphide which is poisonous. Normally, it is rapidly converted to non-toxic compounds. We think that all three of these diseases are caused by disruption of this process; mucin breakdown may be too fast, hydrogen sulphide may not be removed fast enough or mucin synthesis may be faulty. We aim to find the precise fault points in the three diseases, looking at bacterial strains, individual metabolism and genetic differences in patients and controls. We will use complex computer techniques to integrate all our data. This information will help to identify individuals 'at risk' of suffering from these diseases and may provide improved treatments.

Why have I been chosen?

1. Because the health professionals involved in your care believe that you are suffering from one of the conditions in which we are interested, that is to say, Inflammatory Bowel Disease, or another bowel disorder which produces similar symptoms.

2. We are also seeking healthy volunteers who may provide specimens for the purposes of comparison.

Do I have to take part?
Taking part in this study is entirely voluntary. If you have been approached as a healthy control, be reassured that should you wish not to take part in this study, there are many other people we can ask. If you have been approached as a patient, your future care will not be compromised if you decide not to take part.

What will happen to me if I take part? What do I have to do?

We need to ask you a few questions about your health and any medicines you may be taking. Then the nurse will arrange to collect a number of samples. You will be asked to blow into a plastic balloon to fill it up with your breath. She will also take a 20ml sample of blood and will give you a plastic bottle into which you will be asked to pass a specimen of urine. You will also be given a plastic container in which we would like to you provide a small quantity of your next bowel motion.

The breath and the urine will be analysed to see which chemicals are present which contain sulphur. The blood will be used to measure the activity of enzymes involved in sulphur metabolism and also for DNA studies to see if the genetic makeup of people with gastrointestinal diseases, is in any way different. The stools will be analysed to see if they contain bacteria which produce a toxic chemical - hydrogen sulphide.

These samples will not reveal any information about you other than that required for this research and all samples will be destroyed after the research has been completed.

What are any possible disadvantages and risks of taking part?

We do not know of any.

What are the possible benefits of taking part?

These tests are completely new, and will not be used by the doctors looking after you to help in the management of your case, because we are still investigating their potential value. You personally will receive no benefit from taking part other than of knowing you may have helped in the understanding of these diseases.

What will happen if I don’t want to carry on with the study?

You may choose to withdraw from the study at any stage. Your data will have been identified by an individual number which will also be used to identify the samples. If you decide that you wish your data to be withdrawn from the study, you should inform one of the research team who will ensure that all information collected under your number is destroyed. None of the data will be identified by your name, which is known only to the research team at Addenbrooke’s.
Will my taking part in the study be kept confidential?

Yes. All the information about your participation in this study will be kept confidential. (see above for clarification).

Contact details

You may phone Mrs Catherine Price on 01223 586739

Please feel free to ask the research team if you have any further questions.

Part 2

Who has reviewed the Study?

The study has been reviewed and approved by the Leeds (West) Research Ethical Committee.

What happens if new relevant information becomes available during the study?

The study will still be completed in case the further information generated by this study further helps our understanding of the diseases concerned

What if there is a problem?

If you have a complaint, you may address it to the director of the Gastroenterology Department, Dr Miles Parkes, Box 133, Addenbrooke's Hospital, Cambridge CB2 2QQ.

What if I come to any harm?

It is unlikely that you will come to any harm providing these samples, although sometimes taking a blood sample can leave a small bruise on the arm. However, if anything went wrong, you would be protected by the usual indemnity arrangements of the National Health Service.

Will my taking part in the study be kept confidential?

Yes, no-one other than the team collecting your samples will know that you have taken part. Your GP will not be informed, as at this early stage, the information derived from the tests will not be of any help to him and we shall not in any way change your treatment.
All data will be stored anonymously under the terms and conditions of the Data Protection Act 1998. Data will be stored in locked cupboard and kept in line with Addenbrooke's NHS Trust 'Data Retention and Destruction Policy' with a retention period of 30yrs in line with the Dept of Health Code of Practice Management

Who is organising and paying for the study?

The study is part of the continuing research program of the Department of Gastroenterology at Addenbrooke's Hospital. The analysis on the specimens which we collect will be performed in the school of Biosciences at the University of Birmingham and at the Dept of Analytical Science and Informatics at the University of Cranfield.

The costs of this study are covered by a grant from the Wellcome Trust - the largest private body funding research in the UK. No individual payments are made to any of the staff taking part.

How will the results of the study be publicised?

In peer-reviewed internationally read medical journals.

THANK YOU FOR YOUR INTEREST
B.3.2. Content forms

Consent Form Healthy Volunteers

Version 2 21/2/07

Centre Number:

Study Number:

Patient Identification Number for this trial:

Title of Project: **ABNORMAL SULPHUR METABOLISM IN THE PATHOGENESIS OF GASTROINTESTINAL DISEASE**

Name of Reseacher: Prof J O Hunter

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>I confirm that I have read and understand the information sheet dated……… (version.....) for the above study. I have had the opportunity to consider the information, ask questions and have had these answered satisfactorily.</td>
</tr>
<tr>
<td>2.</td>
<td>I understand that my participation is voluntary and that I am free to withdraw at any time without giving any reason, without my medical care or legal rights being affected.</td>
</tr>
<tr>
<td>3.</td>
<td>I understand that data collected during the study may be looked at by individuals, from regulatory authorities or from Addenbrooke’s NHS trust and the University of Cranfield and the University of Birmingham, where it is relevant to my taking part in this research. I give permission for these individuals to have access to my records. I further understand that all samples taken will only be identified by numbers and not by personal details.</td>
</tr>
<tr>
<td>4.</td>
<td>I agree to provide samples of breath, urine, stool and blood.</td>
</tr>
<tr>
<td>5.</td>
<td>I understand that the blood sample will be used for various tests including analysis of DNA to see if patients with gut diseases have a different genetic makeup from controls.</td>
</tr>
<tr>
<td>6.</td>
<td>I understand that ALL SAMPLES will be destroyed when the research is completed and that no information will be given to anyone outside the research team. I agree to take part in the above study.</td>
</tr>
</tbody>
</table>

Name of Patient

Date

Signature

Name of Person

Date

Signature

Taking consent

When completed, 1 for Patient; 1 for researcher site file; 1 (original) to be kept in medical notes.
Consent form - Patients

Version 2 21/2/07

Centre Number:
Study Number:
Patient Identification Number for this trial:

Title of Project: ABNORMAL SULPHUR METABOLISM IN THE PATHOGENESIS OF GASTROINTESTINAL DISEASE

Name of Researcher:

Please initial box

1. I confirm that I have read and understand the information sheet dated (version.....) for the above study. I have had the opportunity to consider the information, ask questions and have had these answered satisfactorily.

2. I understand that my participation is voluntary and that I am free to withdraw at any time without giving any reason, without my medical care or legal rights being affected.

3. I understand that data collected during the study may be looked at by individuals, from regulatory authorities or from Addenbrooke’s NHS trust and the University of Cranfield and the University of Birmingham, where it is relevant to my taking part in this research. I give permission for these individuals to have access to my records. I further understand that all samples taken will only be identified by numbers and not by personal details.

4. I agree to provide samples of breath, urine, stool and blood.

5. I understand that the blood sample will be used for various tests including analysis of DNA to see if patients with gut diseases have a different genetic makeup from controls.

6. I understand that ALL SAMPLES will be destroyed when the research is completed and that no information will be given to anyone outside the research team.

I agree to take part in the above study.

Name of Patient ____________________________ Date ______________ Signature ____________________________

Name of Person ____________________________ Date ______________ Signature ____________________________

Taking consent

When completed, 1 for Patient; 1 for researcher site file; 1 (original) to be kept in medical notes

160
B.3.3. Questionnaire

QUESTIONNAIRE Version 1 31/1/07

Project: ABNORMAL SULPHUR METABOLISM IN THE PATHOGENESIS OF GASTROINTESTINAL DISEASE

Participant number:

Today’s date: Time of sample:

PLEASE ANSWER THE FOLLOWING QUESTIONS:

DOB:

APPROX WEIGHT:

APPROX HEIGHT

Do you have or have you ever had?

<table>
<thead>
<tr>
<th>Condition</th>
<th>YES</th>
<th>NO</th>
<th>If yes, what - details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asthma</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metabolic Disorder</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any other long term medical condition</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DO YOU FEEL WELL TODAY?

If not what is wrong (eg: cold, sore throat, headache etc)

BEFORE YOU SUPPLY THIS URINE SAMPLE HOW LONG AGO WAS IT THAT YOU:

1. Ate a standard meal (breakfast, lunch or dinner) – HOURS

What did you eat?
1. Had a drink (tea, orange juice etc) – HOURS

What did you drink?
If tea or coffee how much sugar did you have?

2. Had an alcoholic drink (beer, wine etc) – HOURS, DAYS

Not within the past month
Never
What and how much

3. Had a cigarette to smoke – HOURS, DAYS

Not within the past month
Never

4. Do you use artificial sweeteners as a matter of choice in your food or drink products?
ALWAYS
INDIFFERENT
ACTIVELY AVOID

5. When was the last time you exercised? HOURS, DAYS

What did you do?

6. If you can remember, please record overleaf what you ate or drank over the last 24 hours

9. What medication are you taking?
Appendix C: Human skin properties

Skin is one of the most important parts of the human body (Boon et al., 2006; Freinkel et al., 2001). Problems with the skin can affect people of all ages. Complaints include not only skin diseases, but also appearance and general skin conditions. Healthy and attractive skin is important for most people, because it is one of the main components of the image they present to the outside world. Therefore, it is desirable for it to be physically resilient (i.e. stretch and shrinkage), and highly active metabolically. Weak and unhealthy skin can be a sign of the abnormal state of the body. To prevent many of these problems it is important to diagnose the medical condition of the skin and find its possible meaning. Therefore, monitoring skin properties is important for various cosmetic and clinical applications. Utilising modern technology could be an opportunity for fast and possibly low cost monitoring of the skin, which could test the validity, safety and efficiency of pharmaceutical and cosmetic products. Because many types of human skin are presented, the real-time, painless diagnosis and therapeutic monitoring of skin of particular patients and the interaction with products should be studied. In order to obtain a better description of the process involved, the structure and optical properties of the skin must be taken into account.

C.1. The structure and functions of the skin

The human skin is a multilayered and complex organ which covers and shapes the body. The skin consists of three main layers: epidermis, dermis and hypodermis (see Figure C.1). Each of these layers has its own structural and functional importance (Boon et al., 2006; Freinkel et al., 2001).
Figure C.1: Three-dimensional, schematic drawing of the skin structure; thin hairy skin of the forearm. Adopted from (Procter & Gamble, P&G, 2006).

The epidermis (thickness approximations for a selected set of body sites are given in Table D.1(Whitton et al., 1973); the most exterior layer includes four other layers that are arranged from the surface as follows: corneus (stratum corneum), grainy (stratum granulosum), spiny (stratum spinosum) and basic (stratum basale), see Figure C.2. Additionally, in the thick skin, between stratum corneum and stratum granulosum, lies fifth layer; stratum lucidum. The epidermis is mainly composed of keratinocytes and melanocytes, Langerhans cells, Merkel cells, and unmyelinated axons. The epidermis does not contain blood vessels and it is nourished by diffusion from the underlying dermis. It is responsible for waterproofing, skin colour, and serves as a protective barrier to infections.
Table C.1: Mean values for full epidermal thickness.

<table>
<thead>
<tr>
<th>Body Site</th>
<th>Mean Thickness (μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Palm</td>
<td>429.0</td>
</tr>
<tr>
<td>Fingertip</td>
<td>369.0</td>
</tr>
<tr>
<td>Back of hand</td>
<td>34.5</td>
</tr>
<tr>
<td>Forearm</td>
<td>60.9</td>
</tr>
<tr>
<td>Upper arm</td>
<td>43.9</td>
</tr>
<tr>
<td>Thoracic region</td>
<td>37.6</td>
</tr>
<tr>
<td>Abdomen</td>
<td>46.6</td>
</tr>
<tr>
<td>Upper back</td>
<td>43.4</td>
</tr>
<tr>
<td>Lower back</td>
<td>43.2</td>
</tr>
<tr>
<td>Thigh</td>
<td>54.3</td>
</tr>
<tr>
<td>Calf</td>
<td>74.9</td>
</tr>
<tr>
<td>Forehead</td>
<td>60.3</td>
</tr>
<tr>
<td>Cheek</td>
<td>38.8</td>
</tr>
</tbody>
</table>

The dermis (1-4 mm thick), so called true skin, consists of two main dermal layers: upper (stratum papillare) located under the epidermis and real dermis (stratum reticulare), see Figure C.3 (Saddik, E., 2006).

The dermis is less cellular than the epidermis, and its main component is the network of collagen and elastin fibers, crucial to skin tensile strength and elasticity. The dermis also consists of eccrine and apocrine glands, hair follicles, veins, nerves, and components of...
extra cellular matrix eg. proteins and sugars. It interacts with the epidermis to repair and remodel the skin.

The most interior layer is the hypodermis (1-6 mm thick) also called superficial fascia (Saddik, E., 2006) (Figure C.4). The blood vessels, nerves, lymph vessels, and hair follicles also cross through this layer. The hypodermis is considered as a thermal insulator and is the reserve energy supply for the body. This layer, together with the epidermis and the dermis, also protects internal organs from injury.

C.2. Optical properties of the skin

In the skin are different types of chromophores - molecules or substances able to absorb light. The structure of the skin and chromophores play a major role in signal distribution across the tissue. Therefore, they strongly affect the clinical diagnostic measurements when a signal returns from the skin and is analysed.

Novel technologies for skin diagnosis are based on optical measurements. The impact on the process and the result are down to two main phenomena, which are light absorption and skin scattering (Lim, 1993). However, most of the applicable radiation does not return according to rules of regular reflectance (Anderson et al., 1982). The classic optical pathway in the skin is shown in Figure C.5.
The regular reflectance includes only a small fraction of the incident beam. The rest of the radiation can be absorbed (taken up by other atoms or molecules), scattered (different direction of light propagation) or re-emitted as multi-scatter radiation (backwards light scatter) on any of the skin layer. Many studies of the optical properties of the human skin have been reported (Anderson et al., 1982; Bigio et al., 1997; Gillies et al., 2000; Zeng et al., 1997), but there is still a high level of research activity that can be directed towards the development of novel technologies for optical skin diagnostics (Bos et al., 2004; Meglinski et al., 2002).

The first task of every optical diagnostic is to account for the loss of signal because of interaction with the numerous chromophores in human skin (Young, 1997). The main skin chromophores are summarised in Table C.2.

Shorter wavelength light is absorbed mainly by aromatic amino acids (proteins), nucleic acids or urocanic acid. Melanin and hemoglobin absorb strongly in the ultraviolet (UV: 330-400 nm) and visible (VIS: 400-700 nm) range of the spectrum. During the infrared (IR: 700-1600) region the strongest absorbers are water and deoxyhemoglobin (Kollias et al., 2000).

Table C.2: Main chromophores found in human skin. Adopted form (Kollias et al., 2000).
The second important fact concerning optical skin properties and the application of non-invasive techniques is the depth of the light penetration. This parameter describes how deep the light can penetrate the skin (Anderson et al., 1982; Churmakov et al., 2003) (Table C.3). As the wavelength of the incident light becomes longer, the light reaches deeper into the skin. In human skin, the near-infrared spectral range, (NIR 600–1600 nm) has been defined as a good region for light penetration (Öberg, 2003; Richards-Kortum et al., 1996). This part of the spectrum is called the ‘diagnostic window’ (or the ‘therapeutic window’), the most practical region for medical diagnosis of the skin.

The principal chromophores of skin*

<table>
<thead>
<tr>
<th>Skin chromophore</th>
<th>Spectral range of absorption</th>
<th>Fluorescence</th>
<th>Principal absorption maxima (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxyhemoglobin</td>
<td>UV-VIS</td>
<td>NO</td>
<td>412, 542, 577</td>
</tr>
<tr>
<td>Deoxyhemoglobin</td>
<td>UV-VIS</td>
<td>NO</td>
<td>450, 555, 760</td>
</tr>
<tr>
<td>Melanin</td>
<td>UV-VIS</td>
<td>NO</td>
<td>Monostonic increase to short wavelengths</td>
</tr>
<tr>
<td>Water</td>
<td>IR-long VIS</td>
<td>NO</td>
<td>760, 900, 1250, 1400, etc.</td>
</tr>
<tr>
<td>Porphyryns</td>
<td>VIS</td>
<td>Yes</td>
<td>Ex: ~400; Em: 600</td>
</tr>
<tr>
<td>Bilirubin</td>
<td>VIS</td>
<td>NO</td>
<td>460</td>
</tr>
<tr>
<td>NAD+DNA</td>
<td>UV</td>
<td>Yes</td>
<td>Ex: ~350; Em: 460</td>
</tr>
<tr>
<td>DNA/RNA</td>
<td>UV</td>
<td>NO</td>
<td>260</td>
</tr>
<tr>
<td>Tryptophan</td>
<td>UV</td>
<td>Yes</td>
<td>Ex: 295; Em: 340–350</td>
</tr>
<tr>
<td>Urocanic acid</td>
<td>UV</td>
<td>NO</td>
<td>280</td>
</tr>
<tr>
<td>Collagen x-links</td>
<td>UV</td>
<td>Yes</td>
<td>Ex: 335, 370; Em: 380, 460</td>
</tr>
<tr>
<td>Elastin x-links</td>
<td>UV-VIS</td>
<td>Yes</td>
<td>Ex: 420, 460; Em: 500, 540</td>
</tr>
<tr>
<td>Keratin (dry), horn</td>
<td>UV</td>
<td>Yes</td>
<td>Ex: 370, Em: 460</td>
</tr>
</tbody>
</table>

* NO: not observable; Ex: excitation wavelength; Em: emission wavelength.

Table C.3: The relationship between depth of penetration of incident light and wavelength in the case of caucasion skin.

<table>
<thead>
<tr>
<th>Wavelength / nm</th>
<th>Depth / μm</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>90</td>
</tr>
<tr>
<td>450</td>
<td>150</td>
</tr>
<tr>
<td>500</td>
<td>230</td>
</tr>
<tr>
<td>600</td>
<td>550</td>
</tr>
<tr>
<td>700</td>
<td>750</td>
</tr>
</tbody>
</table>
C.3. Reference

Appendix D: List of publications and awards

D.1. Publications

D.2. Patent

D.3. Oral presentations

D.4. Posters

D.5. Awards

Scientific scholarship – Vice-Chancellor initiative, Cranfield University, UK (2005 - 2008).

Third prize at the Cranfield Health Postgraduate Conference, Cranfield University, UK (2008).

First prize at the Cranfield Health Partnership Conference, Cranfield University, UK (2007).