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 i 

Abstract 

 

 
The development of sensors assays for comprehensive characterisation of biological 

samples and effective minimal-invasive diagnostics is highly prioritised. Last decade 

this research area has been actively developing due to possibility of simultaneous, real-

time, in vivo detection and monitoring of diverse physicochemical parameters and 

analytes. 

 
The new approach which has been introduced in this thesis was to develop and examine 

an optical diagnostic assay consisting of a mixture of environmental-sensitive 

fluorescent dyes. The operating principle of the system has been inspired by electronic 

nose and tongue devices which combine nonspecific (or semispecific) sensing elements 

and chemometric techniques for multivariate data analysis. The performance of the 

optical assay was based on the analysis of the spectrum of selected dyes with discreet 

reading of their emission maxima. The variations in peaks intensities caused by 

environmental changes provided distinctive fluorescence patterns, which could be 

handled similar to the signals collected from nose/tongue devices. 

 
The analytical capability of the assay was engendered by changes in fluorescence signal 

of the dye mixture in response to changes in pH, temperature, ionic strength and the 

presence of oxygen. Further findings have also proved the ability of optical assay to 

estimate development phases and to discriminate between different strains of growing 

cell cultures as well as identify various gastrointestinal diseases in human. 

 
This novel fluorescence-based diagnostic tool offers a promising alternative to 

electrochemical systems providing high sensitive measurements with broad dynamic 

range, easy, inexpensive measurements and the possibility of remote sensing and 

extreme assay miniaturisation. Additionally it does not require reference signal. 

 
This new approach can impact on a number of applications such as routine minimal-

invasive diagnostics for medical samples, biomedical analysis, pharmaceutical or 

cosmetic research, quality control and process monitoring of food or environmental 

samples. 
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1. Motivation and research objectives 

 

 

 
1.1 Motivation of the study 

 

Each year the World Health Organisation (WHO) provides a detailed report on major 

concerns of the international public health, performance of the research and strategic 

approaches to improve health and health quality. The recent report issued in 2008 

covers the information on current health facilities and highlights the importance of 

increasing needs and demands to renew primary health care (PHC) systems (WHO, 

2008). It emphasises one of the key aspects for the urgent discussion which are chronic 

and non-communicable diseases.  

 

Different from unintentional injuries (e.g., road-traffic accidents) and infection diseases 

(e.g., tuberculosis, HIV/AIDS), which has been reported the frequent cause of human 

deaths in low income countries during the recent past, chronic and non-communicable 

diseases are the major cause of deaths in middle and high income countries including 

The United Kingdom (The World Bank, 2009). They are long duration and often slow 

progression diseases, such as cardiovascular diseases, cancers or diabetes, which may 

result from genetic or lifestyle factors (Kotze et al., 2005). The WHO data has indicated 

that about 75 % of the total population suffers at least one chronic condition which 

certainly becomes a worldwide issue. Furthermore, chronic diseases have been 

projected to cause the highest impact on a number of mortality over the present and 

coming years (see Figure 1.1) and spread across the world, irrespectively of the country 

income level (Abegunde et al., 2007; Beaglehole et al., 2008).  

 

The global call for action highlights the essential role of researchers and modern 

technologies in finding an effective way to improve healthcare facilities and detection of 

illness before it might become critical or life threatening (Beaglehole et al., 2007). This 

requires new developments and implementation of suitable indicators to estimate 

potential risk factors and their effects on health, identification of early symptoms of 

diseases or monitoring the progress of treatment (Danaei et al.; 2009; Genuis, 2008). 
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Additionally, the examination should be possible to perform in any environment, 

including natural conditions, outside the controlled hospital or laboratory environment. 

Advantageous would also be the simplicity and high speed of measurements and data 

analysis. 

 
 
 

 

 
Figure 1.1: Shift towards different causes of a number of human deaths worldwide. Figure adopted from 
(WHO, 2008). 
 
 
 
The ideal approach would be to develop a versatile and portable sensing device with the 

ability to measure simultaneously as many metabolites and parameters as possible in a 

single sample (LaFratta et al., 2008; Palacios et al., 2007; Paolesse et al., 2008). The 

use of such an intelligent device with the capability of accurate and reliable diagnosis 

could help to decrease probability of harm, minimise clinical intervention, costs of 

medical treatment and as a consequence improve long-term public healthcare. This has 

found great interest in many academic and industrial sectors. Particularly medical or 

biochemical, for monitoring glucose concentration or biochemical reactions in patients 

(Castillo et al., 2004; Moczko et al., 2008; Rock et al., 2005; Shepard et al., 2005), 

healthcare and food industries estimating and modifying inappropriate diet (reduction of 

a consumption of certain substances, e.g. salt, cholesterol, sugars, caffeine (Asaria et al., 

2007; Ordovas et al., 2008)), monitoring of blood gases and other cardiovascular 

parameters (Daar et al., 2007; Ganter et al., 2003; Perez-Guisado et al., 2008), testing 
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quality of food and reformulation when it is high in salt, sugar or fat, controlling 

drinking water (Brettar et al., 2008; Prüss-Üstün et al., 2008; Thompson et al., 2008), 

environmental pollutions (Hassing et al., 2009; Rodriguez-Mozaz et al., 2006; Rogers, 

1995; Wanekaya et al., 2008), or bioprocess control (Esbensen et al., 2004; Rudnitskaya 

et al., 2008). 

 

Presently a wide number of analytical strategies for sensitive detection and monitoring 

of various biochemical components and physical parameters of a sample have been 

constantly developed.  They are often combined with different techniques to generate 

the signal and process output data more rapidly and effectively. Distinct progress in this 

area is related to the approach of sensor arrays. Differing from former research and 

developments in sensor technology, which were focused on obtaining analytical device 

with the highest possible selectivity to specific analyte (Cammann et al., 1991), sensor 

arrays have been proposed to identify multitude components in a single sample. They 

have revolutionised  the traditional way of samples examination, usually improved by 

accuracy of particular sensor but always limited to real-time monitoring of only one 

analyte at a time, this remaining impractical for diagnostic purposes.  

 

Further development in multisensing began with the use of diverse chemically selective 

single sensors with appropriate transducers for multicomponent measurements and data 

analysis (Collison et al., 1989; Frost et al., 2002). They enabled examination and 

provided additional information about analysed samples but often involved large 

amounts of reagents and sampling materials, resulting in more complicated, lengthy and 

costly measurements. Although such systems are able to identify several parameters, 

they detect and analyse each compound separately. This, however, could be optimised 

by measuring only a few key parameters, but clearly this proves to be impractical 

especially in studies of complex environmental and biological samples (Careri et al., 

2009). The natural environment may in fact be very demanding and it is not possible to 

predict an importance of the impact of all potential external conditions on the diagnosis. 

 

Current trends toward rapid, simultaneous measurements of several metabolites and 

parameters in a single sample and real time have encouraged analytical researchers to 
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create new, more sophisticated, selective (and partially selective), versatile sensing 

devices for identification and quantification of multiple analytes (Codinachs et al., 

2008; Luong et al., 2008; Seidel et al., 2008).  These devices combine an array of cross-

sensitive chemical receptors with statistical techniques for multivariate interpretations 

of composite signals collected from different sensing units (Cai et al., 2008; Janzen et 

al., 2006; Lawrence et al., 2002). The specificity of a device is related to recognition of 

response patterns that originate from the interface between components of a sample and 

all sensing elements. The obtained patterns are unique to particular conditions and can 

be considered similar to fingerprints identification. Using sensor arrays and multivariate 

statistical techniques for interpretation allows qualitative analysis of samples in a 

relatively short time (Olivieri, 2008). 

 

This approach of multianalyte detection compared to single analyte methods or the use 

of selective sensors is attractive due to its lower sample consumption, higher efficiency, 

and shorter analysis time. The possibility of simultaneous detection and determination 

of several compounds in a single measurement reduces the overall cost of the assay and 

increases the number of potential applications. Additionally, the analytical capability of 

an assay may not always lie in measurements of precise analyte concentration, but 

rather to provide profiling of the chemical or biological processes (Bachinger et al., 

2000). It is of the great advantage for qualitative analysis of samples. 

 

The majority of such multidetection systems have been developed for odour 

characterisation, so-called electronic noses consisting of an array of gas sensors 

combined with statistical techniques for multivariate interpretation of signals (Gopel, 

1998; James et al., 2005; Pravdova et al., 2002). More recently, a similar operating 

principle has been applied to sensor arrays for liquid analysis, known as electronic 

tongues, which are used of qualitative samples analysis (Ciosek et al., 2007; Gutierrez 

et al., 2008; Gutierrez et al., 2008). Although both devices are currently commercially 

available, they suffer from significant limitations, such as poor stability, limited 

selectivity, low reproducibility, demand for frequent calibration, complexity of 

generated information, and high fabrication costs of sensor arrays (del Valle, 2008; 

Pearce et al., 2003; Rock et al., 2008). 
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Lately there has been a surge of attention to optical diagnostics and has been projected 

to expand tremendously in the future, especially in the field of real-time detection in 

vivo. This is explained by the facts that optical techniques are often non-destructive, do 

not require physical contact with a sample during analysis and enable rapid response 

(DTI, 2006; Jokerst et al., 2009; Lee et al., 2007; Tanev et al., 2008). They are able to 

provide information at the molecular level through tissues and living organs to animals 

or human bodies. Light can also be used as a tool for manipulating or modifying living 

cells and can be focused at a tiny spot, which allows precise localised and minimal 

invasive treatment (Duckett, 2009). By providing a more effective, cheaper and easy 

accessible service, biophotonics and optical diagnostic technology can have huge and 

crucial impact on health care facility (Pereira et al., 2009). 

 

In this thesis the development of a novel fluorescence-based assay which offers a 

promising alternative to electrochemical systems is described. The proposed assay 

benefits from numerous studies and analytical ability provided by optical chemical 

multisensors, particularly fluorescence-based sensors (Dickinson et al., 1996; Nagl et 

al., 2007; Wang et al., 2008; Wolfbeis, 1985). Among these are high selectivity and 

sensitivity. Optical systems are often reversible and do not require a reference signal. 

They require low fabrication costs and offer rapid response, which makes them a 

promising tool for simultaneous real-time detection of multiple analytes and complex 

sample characterisation (Baleizao et al., 2008; Kocincova et al., 2008). Another 

advantage of this sensing system also lies in the possibility of extreme assay 

miniaturisation. 

 

Present chapter emphasises the importance of multisensing approach, which is 

described in this thesis. Specific aspects of development, technical demands and 

improvements in multisensing technology have been described in following section 

(Chapter 1.2). 
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1.2 State of art in multisensing technology 

 

In the last several decades, the area of research in the development of sensor arrays to 

detect multiple analytes has been growing intensively. They have become crucial for 

analytical examination and used more and more frequently for quantitative analysis of 

samples. While improving sensors functionality, researchers have also worked actively 

on their physicality to minimise their sizes. 

 

1.2.1 Sensor arrays 

 

Sensor arrays are an assembly of several chemical, physical or biochemical sensing 

elements designed for simultaneous, multitarget detection (Price, 2001) (Alegret, 2006). 

Although work in this area continues for many years already, there is still a lack of 

robust, versatile devices for multianalyte characterisation of a single sample. 

 

Similar to conventional selective sensors, arrays should operate continuously or in 

repeated cycles (Gründler, 2007). The efficiency of the systems can be characterised by 

their reproducibility, stability, sensitivity, accuracy, response time, detection limit, 

miniaturisation, portability, simplicity and production costs (Diamond, 1998; Orsini et 

al., 2005). An important feature for clinical sensors is that their operation should adhere 

to the policy and standards of health care. A significant attribute that distinguishes array 

systems from conventional sensors is that sensors merged in an array do not need to be 

highly selective toward given analytes. The specificity of a device is related to 

recognition of response patterns of all sensing elements (Srivastava et al., 2006). The 

patterns obtained are unique to particular conditions and can be recognised similar to 

fingerprints identification. 

 

The existing multisensor devices typically consist of chemical and/or physical sensors 

that are well established, and commonly available in a wide range of applications. 

Sensors can be classified depending on their two main functional units, either the 

receptor (recognition element), or the type of transducer for signal processing 
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(Cammann et al., 1991; Fraden, 2003; Hulanicki et al., 1991). Based on receptors and 

different mechanisms of an operation, sensors are organised into several groups: 

- PHYSICAL, applied to measure physical variables of the system. These sensors do 

not require a chemical reaction to take place, but use physical effects in the 

recognition and transduction processes (e.g. optical, thermal, motion sensors); 

- CHEMICAL, utilise chemical reactions for identification and quantification of 

specific analytes or monitoring various chemical events (e.g. electrochemical,  

optical, electrical sensors); 

- BIOCHEMICAL, also called biosensors. They may be included in a group of 

chemical sensors that employ particular classes of biological or biochemical 

recognition/transduction processes (e.g. immunosensors, microbial, enzyme sensors). 

 

Chemical sensors that depend on the various operating principles of transducers are 

listed in Table 1.1 (Collings et al., 1997; Fraden, 2003). 

 

The most frequently used sensors for physicochemical and biochemical analysis are 

electrochemical sensors (Janata et al., 1994; Wang et al., 2008). They have been 

employed in a wide variety of analytical applications including well-known electronic 

nose and tongue systems (Gründler, 2007). Both devices are currently commercially 

available devices, which are based on chemical multicomponent characterisations of gas 

and liquid samples. They combine an array of various non-specific chemical sensors 

with subsequent chemiometric techniques in order to simulate human olfactory and taste 

perceptions (Vlasov et al., 1997). These two systems are chemical in nature and 

therefore it is possible to create their artificial analogues. 
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Table 1.1: Classification of chemical sensors based on the type of transducer. 

 

 

1.2.2 Electronic nose system 

 

The electronic nose is an artificial sensing system based on the same principles as 

human olfaction. A schematic illustration of the biological mechanism, followed by its 

electronic analogue is shown in Figure 1.7. Figure 1.7-A indicates the mechanism of the 

human olfactory system which is composed of three main parts: olfactory receptor, 

responsible for the detection of odours; olfactory bulb that transports the detected signal 

from the nose to the brain; and olfactory cortex, where the information is processed. 

Sensor type 
Detection principle or 

property measured 
Operating mechanism 

Optical Fluorescence 
Absorbance 
Reflectance 
Light scattering 
Luminance 
Refractive index (surface 
Plasmon resonance, SPR) 
Optothermal effect 

Transformation of changes of 
electromagnetic radiation caused by the 
interaction between the analyte and 
receptor 

Electrochemical Voltametry 
Amperometry 
Potentiometry 
Impedometry 
Conductometry 

Transformation of the effect of 
electrochemical interaction of the 
analyte with sensing surface of the 
electrode (chemical reaction or charge 
transport modulated by the reaction)   

Electrical Surface conductivity 
Electrolyte conductivity 
Capacitance 

Transformation of changes of electrical 
properties caused by the interaction of 
the analyte 

Thermal Calorimetry 
Thermistors 
Pyroelectric 
Thermopile  

Transformation of changes of internal 
energy of a system that involve the 
analyte (heat effects of specific 
chemical reaction or adsorption) 

Mass Sensitive Piezoelectric 
Surface acoustic wave (SAW) 
Bulk acoustic wave (BAW) 

Transformation of the mass changes at a 
specially modified surface. The mass 
changes are caused by adsorption of the 
analyte 

Magnetic Paramagnetism Transformation of the change of 
paramagnetic properties of a gas being 
analysed 
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This mechanism and the main stages of the human olfactory system are possible to 

simulate within an artificial olfactory device - an electronic nose (Figure 1.7-B) 

(Haddad et al., 2008). The idea behind it is that the sensor array consists of different 

sensor types, equivalent to the olfactory receptor, with high sensitivity to a variety of 

odours. This is followed by complex signal collection and data processing using 

adequate pattern recognition technique, such as artificial neural network (ANN) (Scott 

et al., 2006). 

 

Electronic noses may utilise different types of chemical gas sensors. Typically these are 

conductometric sensors (metal-oxide semiconductors (MOS), and conductrometric 

polymers (CPs)), potentiometric sensors (metal-oxide silicon field-effect transistors 

(MOSFETs)), mass sensitive surface acoustic waves (SAW) or bulk acoustic waves 

(BAW) coated with different odour sensitive polymer membranes (Fernandes et al., 

2008; Garcia-Gonzalez et al., 2002). These sensors, when combined with signal 

processing systems for odour classification and identification, have been frequently 

used for food processing (e.g., testing for food freshness) (Casalinuovo et al., 2006; 

Pioggia et al., 2007), biomedical applications (breath analysis, volatile compound 

analysis of body fluids) (D'Amico et al., 2008; Penn et al., 2007), cosmetics evaluation, 

atmospheric or military applications (detection of pollutants, explosives, fuel dumps) 

(Distante et al., 2009; Srivastava et al., 2006). 

 

In recent years, one of the most studied and extensively used components of 

electrochemical gas sensors and their arrays are CPs deposited on the sensor surface 

(Bai et al., 2007; de Leon et al., 2008; Rahman et al., 2008). Some of these sensors have 

been employed in the development and optimisation of commercially available devices. 

CPs and their composites display a number of unique conducting, optical, mechanical, 

electric and chemical features when they are in contact with various gases, organic 

molecules, inorganic ions, and changes in pH, which means that they are very useful in 

a variety of applications (Rajesh et al., 2009). However, despite a number of advantages 

(Lange et al., 2008; Rahman et al., 2008), polymers are often highly sensitive to even 

small variations in procedure during synthesis and treatment, which is crucial for 
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reproducibility of sensor manufacturing and commercialisation. They can also be very 

sensitive to thermal and environmental changes affecting their stability during storage. 

 

Additionally, the efficiency of devices used for gas detection is also decreased by 

humidity, temperature and base line drift that can result in unstable sensor response over 

time (Pan et al., 2007; Turner et al., 2007). Some major challenges related to the 

utilisation of these devices also include improvements involving their simplicity, long 

term stability, recalibration, and successful operation for real-time measurements in 

natural environments (outside controlled laboratory conditions) (Chang et al., 2008; 

Lieberzeit et al., 2009). 

 

1.2.3 Electronic tongue system 

 

An electronic tongue or taste sensor, combines an array of chemical sensors and data 

processing system for operation in liquid samples. This sensing system has been used 

for discrimination of different taste groups in a manner similar to biological taste 

perception. It has been used in the analysis of food products (sauces, soups) or drinks 

(water, wines, milk). The analysis is based on the taste being determined by five 

elementary flavour qualities and their combinations: sourness, saltiness, sweetness, 

bitterness and umami. The first, sourness, is determined by the presence of hydrogen 

ions of HCl, acetic acid, citric acid, etc. Saltiness depends on the presence of NaCl, 

bitterness - quinine, caffeine and MgCl, sweetness - sucrose, glucose, aspartame, etc. 

The last, umami is a Japanese term referring to deliciousness and implies for e.g., 

monosodium glutamate (MSG) contained mainly in seaweeds, disodium inosinate 

(IMP) in meat and fish and disodium guanylate (GMP) in mushrooms (Toko, 1998). 

More recently, electronic systems (so-called taste sensors) have been used as general 

analytical instruments, based on the principle of taste recognition (Ciosek et al., 2008; 

Citterio et al., 2008; Lopez-Feria et al., 2008). 

 

Due to well known operating principles of electrochemical techniques, the majority of 

electronic tongue systems rely on arrays of electrochemical sensors of a common type, 

in particular potentiometry and voltammetry (Ciosek et al., 2007; Winquist, 2008), with 
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different polymeric membranes and electrode coating. Developments of novel sensors 

are focused on the utilisation of various polymeric membranes, which leads to a number 

of possible modifications of working electrodes. This can result in greater sensor 

selectivity and sensitivity towards different species (Pioggia et al., 2008) (Ciosek et al., 

2007; Citterio et al., 2008). 

 

The electronic tongue system in combination with odour sensors has also been used for 

gaseous analytes. The ability to integrate both liquid and gaseous sensors, and also the 

possibility of  using a combination of different sensors (not only those chemical in 

nature) is an essential advantage of these devices and has led to an improvement in the 

performance of artificial sensing. 

 

Despite the wide variety of chemical sensors that can be used for electronic tongue array 

construction and the possibility of tuning the mode of device operation to the desired 

application (multicomponent analysis, discrimination, classification, recognition, 

estimation), the number of commercially available systems is still low (Krantz-Rulcker 

et al., 2001; Pioggia et al., 2007; Twomey et al., 2006). Major technical challenges 

facing electronic tongue manufacturing are data handling (massive database), system 

optimisation towards a specific given application, and requirements of the system such 

as frequent recalibration. Common problems are also reproducibility and signal drift of 

sensors (Gutierrez et al., 2008). 

 

The electronic tongue can be compared to the electronic nose, with regards to them both 

via a similar mechanism. They both combine an array of non selective (or partially 

selective) sensors with multivariate data processing using pattern recognition. However, 

electronic noses are still better developed for analyte recognition, samples classification, 

or multicomponent quantitative analysis (Chang et al., 2008; Gutierrez et al., 2008; 

Vlasov et al., 2008) taste sensors enable analysis of liquid samples or solids dissolved in 

liquids. Despite a number of limitations relating to artificial systems, electronic nose 

and tongue systems offer significant advantages over the natural receptors of taste and 

smell, including better selectivity, objectivity, and the possibility of detecting some 

substances not detectable by natural systems. Furthermore, electronic systems do not 
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become tired, overworked or infected and their performance is not affected by previous 

valuations. Using electronic devices it is also possible to analyse toxic or uneatable 

samples. 

 

Artificial systems are very promising for the future but there are still a number of 

applications where their use is insufficient and can often cause problems. This includes 

commonly employed electrochemical sensors. They are well-established and popular 

but not always easy to operate, which is important, e.g. during routine handling. 

Additionally, they are invasive, limited to single-point valuation and are unable to 

analyse analytes distribution. The development of an analytical tool that enables 

detection or differentiation among a wide range of analytes and microorganisms is 

urgently required, especially for testing real food or medical samples. The aim is to 

detect and quantify analytes and physical parameters in real-time, at low cost, with high 

reproducibility, specificity and sensitivity. Ideally the device should be prompt  for 

automatisation, allowing routine handling and minimising the risk of contamination and 

human error during measurements (Ahmed et al., 2008). These requirements could 

possibly be met by using mentioned alternative  system based on optical sensing. 

 

1.2.4 Optical multisensing approach 

 

While the concept of multivariate analysis as an approach for examination of sensor 

array data and detection of analytes in complex samples has been explored mainly for 

electrochemical, electrical or piezoelectric sensors (Fernandes et al., 2008; Rudnitskaya 

et al., 2008; Steen et al., 2008), only limited efforts have been put into the development 

of equivalent optical sensors. 

 

Optical methods when compared to electrochemical techniques, represent one of the 

oldest and most widespread methods for chemical, biochemical or physical examination 

(Mendelson, 2000). Optical sensing systems are based on light–matter interactions in 

order to obtain required information. 
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Currently, optical sensing and imaging techniques have experienced increased attention, 

especially in the field of in vivo measurements, since they do not require physical 

contact with a sample during analysis. Other specific advantages compared to 

electrochemical sensors are included in Table 1.2, along with a few less essential 

limitations. 

 
 
 
Table 1.2: Advantages and disadvantages of optical sensors. 
 

Advantages Disadvantages 

- do not  require an additional reference signal 
as electrodes do 

- offer greater flexibility with design  

- enable more efficient and easier remote 
sensing  (long-distance transition of light) 

- provide real-time analysis of complex samples 

- enable monitoring or probing of a wide range 
of analytes and parameters (chemical, 
biochemical, physical) 

- do not consume an analyte (non destructive) 

- offer lower cost and time of measurements 

- measurements are less invasive and harmless 
for the system, far less so than electrochemical 
devices 

- transmit more information than an electrical 
signal 

- do not suffer from electrical interferences 

- allow possibility of wide-range temperature 
control, smaller temperature dependence 

- interference of ambient light 

- limited dynamic rage, smaller compared to 
electrochemical sensors 

- dependence on concentration of indicator and 
analyte 

- signal dependency on ionic strength, solvent 

- require immobilisation for better sensitivity 
and selectivity - as a result smaller slope of 
response curve 

- possess limited long-term stability due to 
photobleaching or leaching of the indicators 

- higher power consumption 
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Optical sensing is a very attractive alternative to state-of-the-art sensing technology 

since they often provide simple, user friendly, real-time, continuous monitoring of 

analytes and environmental parameters. Different from other techniques, optical 

examination enables multimode measurements. It enlarges the number of output 

parameters including intensity, spectral shape, wavelengths, decay time, energy transfer, 

quenching efficiency, and polarisation providing collective information on a sample 

thereby simplifies and reduces cost and time of measurements. The application of 

available mechanisms and outputs of optical signal can be specified according to the 

actual requirements. 

 

The most common optical techniques applied in sensing systems are absorption, 

fluorescence, reflection and light scattering (Baldini et al., 2006). Recent advances in 

technology and development highlighted a focus on fluorescence-based methods. 

 

1.2.4.1 Fluorescence-based assay 

 

Among these optical techniques, fluorescence spectroscopy appears to be particularly 

promising for chemical and biochemical sensing technology as it contains most of the 

advantages listed for optical sensors (Lakowicz et al., 1999). This includes high 

sensitivity, ability to monitor several analytes with a single instrument at very low 

concentrations, and detection of real-time responses for a target. An additional 

advantage is versatility, possibility of system miniaturisation, speed and compared to 

others low cost (Basabe-Desmonts et al., 2008). Fluorescence spectroscopy has become 

favourable especially in the areas of medical, cosmetic or biochemical science as they 

allow contactless sensing. This is of great advantage over other sensing methods for 

diagnostic and analytical proposes if the non-invasive in-vivo measurements (or sterile 

conditions) are an essential requirement (Kocincova et al., 2007; Öberg, 2003). Optical 

assessment and data collection can be performed directly from the sample, thus a 

sample extraction is not necessary (Wolfbeis, 2008). Also they are not limited by area 

(monitoring of distribution of oxygen and pH in human skin, seawater). A further 

advantage is that fluorescence measurement does not consume analytes, does not 

require a reference signal or any physical waveguide for the light. These significant 



 

 15 

features facilitate technical requirements and devices handling, and greatly increase the 

potential of fluorescence-based optical sensing from a technical point of view. 

Fluorescent sensors also prompt to miniaturisation (Nagl et al., 2005). 

 

Considering the possibilities of an optical multisensing approach, the strategies of using 

a number of optical sensing elements (biochips, micro-, nanobiosensors or probes) 

employed in high-density sensing arrays for multiplex screening and biochemical 

analysis have already been reported (Bally et al., 2006; Basabe-Desmonts et al., 2008; 

Basabe-Desmonts et al., 2007; Lee et al., 2008). One very attractive concept that has 

been described is the implementation of fluorescence-based sensor arrays, so-called 

multispot sensors that involve each single sensing spot to yield distinctive optical 

information including analytical information for chemical, biochemical or physical 

species in the sample (Demchenko, 2005; Nagl et al., 2007; Thete et al., 2009). This 

approach is illustrated in Figure 1.2. 

 
 

 

 
Figure 1.2: Schematic illustration of multispot optical dual sensor assay used to measure CO2 and O2. 
Figure adopted from (Bake et al., 2008). 
 
 
 
Dye indicators are deposited on the surface of the analysed sample and they are allowed 

to diffuse inside the sample. Excitation and emission collection are performed from the 

bottom. However, it gives multiplex information about the analysed media, but it does 
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not allow truly simultaneous measurements. These spots are separated from each other 

and therefore cannot measure several analytes at the same point and time. 

 

The best solution for this limitation would be to use a single spot that consists of several 

fluorescence-based sensors combined together. It would minimise the size of the 

sensing system and enable all sensors of the array to be placed in the one, exact place in 

the sample allowing local and simultaneous measurements of numerous of parameters. 

It could also be very useful for controlling different factors that cause interferences in 

measurements, such as temperature, pH, humidity, etc. So far, the multisensors based on 

this approach were limited to the detection of only two parameters in a single 

measurement (Baleizao et al., 2008; Borisov et al., 2006; Kocincova et al., 2007). 

 

Currently, numerous studies have proven the advantages and great potential of 

fluorescence-based chemical multisensing. A large group of optical sensors use 

fluorescent dyes for the identification of different physicochemical, biochemical or 

biological species (Wolfbeis, 2005, 2008). Fluorescent dyes often provide high 

sensitivity and selectivity for the analytes of interest. Molecular information about the 

media is contained in their spectral behaviour (Nagl et al., 2009). The relationship 

between spectral characteristics of a free fluorophore, and changes caused by 

interactions with its surroundings, can provide significant information about a sample. It 

makes a great tool for fast, easy monitoring of the environmental conditions. 

 

The nature of the fluorophore spectra are usually analysed based on the fluorescence 

intensity, lifetime, energy distribution or anisotropy (Lakowicz, 2006; Valeur, 2001). 

The fluorescence intensity is related to the changes in emission of the fluorophore in 

response to interactions or binding with analytes. Fluorescence lifetime is defined as the 

time when molecules stay in its excited state before returning to the ground state 

(Valeur, 2001). This parameter is important because it determines the time available for 

fluorophores to interact with the environment. Energy distribution is analysed based on 

the shape or shift of fluorescence spectra and fluorescence anisotropy on the 

polarisation, that provides information on the size and shape of fluorescent molecules, 

and examines binding interactions with other species (McCarroll et al., 2001). 
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A variety of fluorescent probes is known from the literature and is commercially 

available (Haugland, 1996). In addition, they are not expensive and so cost of the 

measurement is minimal. The principal demands on fluorescent probes are for high 

fluorescence quantum yields, selectivity, long-wave excitation and emission, and a high 

excitation coefficient at the excitation wavelength (Kemnitzer et al., 2002). Further 

requirements are lack of toxicity, photochemical and chemical stability, and the 

presence of functional groups for suitable immobilisation on the rigid support without 

any changes in the physicochemical constant of the indicator. 

 

Considering all these requirements, the first important step for the successful design of a 

fluorescent sensing scheme is the selection of the most suitable fluorescent probes for 

the recognition of particular target analytes (Basabe-Desmonts et al., 2007). 

Additionally in the multisensing approach, the selected fluorescent dyes should possess 

various sensitivities and substantially different emission spectra so they can be 

combined together in order to enable the monitoring of the contribution from the 

individual dyes in the total fluorescent spectrum of their mixture. Such a system might 

offer a promising optical equivalent to electronic noses and tongues that use 

fluorescence spectroscopy and a mixture of environment-sensitive fluorescent dyes 

(where each dye of the mixture represents a different indicator). If the intensity 

spectrum of the suitable dyes allows discreet reading of emission maxima of all dyes, 

the intensity variations in response to environmental changes might provide distinctive 

patterns, which can then be analysed in the same way as complex signals collected by 

an electronic nose/tongue electrochemical or piezoelectric array. The analytical 

information about a sample coded in the fluorescence pattern can be decoded using 

multivariate data analysis by transformation of an optical system response into the 

actual physicochemical parameters and target analytes. 

 

The use of a mixture of fluorescent dyes for optical sensing could have a number of 

advantages, including easy application, high speed and low cost of measurements. It 

might also resolve one of the main problems associated with electronic nose technology, 

wherein a sensor array has to be calibrated each time it is used. The proposed assay does 

not have this limitation and the mixture of fluorescent dyes can be perceived as an 
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analytical reagent that can be tuned for various specific analytical tasks.  Since the 

proposed assay includes only a small spot of all dyes, it opens the possibility of extreme 

system miniaturisation and application to a very small volume of sample. The utilisation 

of a mixture of fluorescent dyes is very promising for simultaneous measurements of 

several physicochemical, biochemical or chemical properties of analytical species that 

has not been documented before. 

 

1.2.5 Multivariate approach - chemometrics 

 

A large number of multicomponent sensing systems consist of cross-reactive chemical 

non-specific sensor arrays that generate a complex pattern as a response. The outcome 

signal is less specific, but distinctively different for each sample. The challenge is to 

process the obtained patterns in order to understand the meaning of the outcomes. 

Therefore, the success of sensing technology depends not only on accurate analytical 

measurements and technology developments, but also on chemometrics applications 

which help to process the data. Nowadays, the multivariate approach is commonly used 

by scientists and plays a major role in interpretation of sensor array responses. This 

includes different fields of science, starting from environmental, food, biological, 

chemical, physicochemical, forensic and geochemical, up to areas of sociology or 

marketing. 

 

The multivariate outputs can be evaluated by several chemometric methods depending 

on the purpose. This includes four main approaches, such as pattern recognition, 

multivariate calibration, experimental design and signal processing (Brereton, 2007). In 

this study the first two methods have been briefly described and used in further 

experiments. The pattern recognition technique has been employed by performing 

Principal Component Analysis (PCA) for discrimination between different samples and 

multivariate calibration applied Artificial Neural Network (ANN) for quantitative 

analysis of specific compounds as well as qualitative analysis of samples (Gutes et al., 

2007). 
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1.2.5.1 Pattern recognition: Principal Component Analysis (PCA) 

 

Among chemometric and multivariate analysis one of the most recognised disciplines is 

pattern recognition technique. It aims at uncovering information contained within the 

raw data (patterns in data) through identification, extraction and conversion of this data 

into more understandable format to allow easier analysis. 

 

A standard pattern recognition technique and probably the most widespread statistical 

approach for multivariate data analysis is PCA (Otto, 2007). The key idea of PCA is to 

resize the large original dataset to a smaller matrix by highlighting similarities and 

differences within the data. As a consequence, redundant and noisy information can be 

eliminated, which helps to improve visualisation and simplify analysis of the data 

pattern without essential information being lost. Performing PCA, the large number of 

variables in raw data (the dimensionality of the data) is reduced to a lower number of 

significant factors, socalled principal components (PCs) (Malecha et al., 2002). They 

are determined from a linear projection of the original data. This approach is illustrated 

for three dimensions in Figure 1.3. 

 
 
 
 

 

 
Figure 1.3: The illustration of PCA performance when the original high-dimensional data space (e.g. 
three dimensions) is projected onto a two dimension principal component space that maintains the largest 
variance in the data. The illustration is adopted from (Lobanov et al., 2001; Scholz, 2006). 
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The selected PCs indicate the most variance that has been found in the original data. 

The first PC is evaluated based on the maximal variance in the data, the second PC 

results from the maximal variance in the direction that is orthogonal to the first one. 

Other components can be defined in different dimensions followed by the most variance 

of observations (Rencher, 2002). Two dimensional visualisation of the presented 

example (Figure 1.3) reveals qualitative information about four experimental conditions 

of the analysed system. 

 

Mathematically, the input data matrix X (M x N) is decomposed into two matrices: 

scores matrix T (M x K) and loading matrix P (N x K) and residual, noisy part E (M x N) 

according to (Esbensen et al., 2002): 

 

 

 

Where, matrix T describes the spread of samples within the PCA model space (TP
T). M 

is the number of rows of matrix X and indicates the number of samples or 

measurements. Matrix P defines the relationships between variables, where N is the 

number of columns and indicates the number of variables. K defines the number of PCs 

and the symbol T is a transpose of the matrix. 

 

The graphical interpretation of the decomposition of the original dataset X is illustrated 

in Figure 1.4. 

 

 

Figure 1.4: Graphical illustration of PCA model. Adopted from (Esbensen et al., 2002). 
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PCA performance has been appreciated especially for the interpretation of sensor arrays 

responses when many variables have to be analysed simultaneously. It can be a very 

useful tool to sort out acquired data, recognise similarities and differences in the 

samples (Palacios et al., 2007) and also to pre-process response datasets that can be later 

used for quantitative analysis of target compounds as well as qualitative samples 

evaluation (Raykov et al., 2008; Siripatrawan, 2008). Additionally, PCA does not 

require any prior information other than the original data. 

 

1.2.5.2 Multivariate calibration: Artificial Neural Network (ANN) 

 

Along with PCA, ANN is another chemometric technique extensively used by 

scientists. While PCA has been frequently applied for processing large amounts of data 

or qualitative analysis, ANN allows quantitative analysis of a particular species and 

samples classification. The origin of the artificial neural network concept has a 

biological nature. Inspired by the mammalian neural system, ANN forms a model of 

human brains and imitates some of its functions. This includes information processing, 

such as function approximation (prediction of behaviour and properties of a system), 

pattern classification (identification and assignation of data to a class), or clustering 

(recognition clusters in data) (Samarasinghe, 2007). ANN aims at following the ability 

of the human brain and learning this information over a period of time to allow the 

drawing of the conclusions, and making reliable predictions. It should be accomplished 

despite complexity, and irrelevant or partial information on the environment. 

 

Based on the structure of a biological system, ANN consists of nodes/neurons 

connected together forming an artificial neural net to process information. A biological 

neuron structure and its artificial representation are presented in Figure 1.5. 

 

A biological cell (Figure 1.5-A) contains three basic components: dendrites, cell body 

and axons. Dendrites lead the input signals to the cell body, where these signals are 

accumulated, processed and then sent further to axons, which channel the information to 

other neurons of the net.  This process is imitated by nodes that apply mathematical 

models for biological neurons (Figure 1.5-B). The input information (xn) is weighted 
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(wn) and transferred to the cell body of the artificial neuron. Further, two actions are 

performed: the weighted inputs are summed (ΣΣΣΣ) and then the sum is processed through a 

transfer function (f(Σ)Σ)Σ)Σ)) to produce an output signal (y). The outcome is moved forward 

to neighbouring units. Weights form connections between nods and they are adjustable 

during the network learning process. Their estimation is crucial to the network 

performance and error minimisation. Finding the appropriate weights leads to the 

smallest network error. 

 
 
 

 

 
Figure 1.5: Schematic illustration of a single neuron: biological neuron (A), artificial neuron (B). 
Illustration adopted from (Lobanov et al., 2001; Samarasinghe, 2007). 
 
 
 
Artificial neurons are organised in layers, and most artificial neural networks have a 

multilayered architecture (see Figure 1.6). The first layer, input layer consists of 

independent variables. The last layer is the output layer, which projects the outcome of 

the dependent variables. The middle layer is called the hidden layer, which provides 

interconnections between the input and output layers. There can be one or more hidden 

layers, usually depending on the complexity of the problem. Commonly used models 

contain one hidden layer with a varying number of nodes. Additional hidden layers are 

often used for more complicated applications (Huang et al., 2007). 

 

The network learning process can be either supervised with knowing target outputs as a 

guide, or unsupervised (self-organising) when targets are not required and by 

application of different mathematical methods, data organise themselves. 
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Figure 1.6: Schematic representation of fully connected nods layers. 

 
 
 

ANN is a powerful advanced tool in analysing different linear and non-linear systems 

with or without knowing the underlying characteristics of the complex problems. The 

main advantage of ANN over conventional statistical techniques is that once the 

network is trained and the model is evaluated, the same network can be applied to solve 

analogues problems (adaptive learning). It gives the possibility of real-time operations 

on numerous multicomponent systems. 
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1.3 Analytical characterisation of samples 

 

The approach of multidetection has become crucial in analytical laboratories for routine 

measurements of physicochemical parameters and metabolites in complex samples and 

constant real-time bioprocess monitoring (Schroder et al., 2007). The list of required 

analytes is lengthy and continuously expands. Therefore, it is extremely critical to 

improve sensing tools for multiple analyte detection and quantification, which would 

allow rapid diagnosis. The development of the assay presented in this work involves 

analytical characterisation of samples including simultaneous measurements of several 

critical parameters (Ferguson et al., 1997; Krommenhoek et al., 2008; Lieberzeit et al., 

2008), such as pH, temperature, level of oxygen and salinity. For a number of 

applications these parameters should be monitored continuously. 

 

1.3.1 pH 

 

The determination of pH is essential in many areas of research and industry. The pH is 

one of the commonly measured parameters e.g. in clinical analysis of blood samples and 

other physiological fluids (Baldini et al., 2007; Medlock et al., 2007) for diagnostic 

proposes, tissues engineering as an important physicochemical control factor for tissues 

regeneration and functioning (Mano, 2008; Starly et al., 2008). It is also used as a 

crucial chemical stimulus in studies of smart materials for drug delivery applications (Ju 

et al., 2009). Furthermore it can be used as a quality indicator to regulate the condition 

of drinking water, determine the freshness of food and monitor growth of cell cultures 

(Krommenhoek et al., 2007; Wu et al., 2009). The pH also plays an important role in 

environmental examination by investigation of an industrial waste water treatment, 

characterisation of soil condition (Unger et al., 2009) or the level of the air pollution by 

analysing acidity of rain (Badugu et al., 2008). Along with oxygen concentration, 

information on pH is also required in marine research and seawater analysis (Schroder 

et al., 2005; Vasylevska et al., 2006). 
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1.3.2 Dissolved oxygen 

 

Besides pH, oxygen is one of the most important and essential for life chemical species. 

The determination of the oxygen concentration is constantly required in medicine, cell 

biology, biotechnology, marine science or environmental analysis (Borisov et al., 2009). 

Dissolved oxygen (DO) is the key parameter that refers to liquid systems, which 

describes the amount of gaseous form of oxygen dissolved in aquatic media. It is an 

important factor often referred as the quality of water (Xu et al., 2008) but also applied 

in clinical research, as a key physiological parameter in monitoring of the oxygen level 

in blood samples (Baldini et al., 2007; Jiang et al., 2008) or internal oxygen 

concentration of tissues (Amao, 2003; Schmalzlin et al., 2005). In fermentation and 

other biological, chemical or biotechnological processes, it is used to control and 

optimise microenvironment and growth of bacteria or yeasts (Funfak et al., 2009; Mehta 

et al., 2007). It can also be used as a guide for ecology condition of waste or territorial 

waters analysis (Amao, 2003). 

 

1.3.3 Temperature 

 

Temperature is an important factor in medical, pharmaceutical applications and 

bioprocess control. Different temperatures of environmental conditions can radically 

change cell metabolism and further process efficiency (Vojinovic et al., 2006), therefore 

the microenvironment of cell cultivation must be carefully adjusted and controlled to 

ensure effective productivity of the process. This is also related to the pharmaceutical 

industry and metabolic engineering, which utilises plants and microorganisms for 

production of drugs such as antibiotics or extraction of valuable natural pharmaceutical 

compounds (Lee et al., 2009). The examination of temperature changes is also essential 

for material science and drug delivery purposes (Bawa et al., 2009). Of great 

importance is that drugs are encapsulated and carried to the desired place within the 

body where it can be safely released. This process is often controlled by temperature of 

phase transition of thermo-responsive materials (Bhattarai et al., 2005). Additionally, 

temperature is a basic parameter that can influence sensors outputs, synthesis, 
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measurements, production, and storage, transport of different compounds or substances. 

Therefore it requires constant attention. 

 

1.3.4 Buffer composition 

 

The effect of changes in buffer composition similar to fluctuations in real samples has a 

significant impact on the sensor outputs. One of the factors which can be rather variable 

and influence the analysis of biological samples, is their ionic state (Chow et al., 2009; 

Weidgans et al., 2004). The presence of different salts and their various concentrations 

might change processes that occur in the environment (Cortez et al., 2006), therefore it 

is essential to test the efficiency of sensing system in response to varying ionic strength 

or a presence of different ions in the samples. This can be simulated by preparing 

different buffers with adjusted proprieties and desired parameters, which has been done 

in presented experiments (Ahmad et al., 2009). 
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1.4 Thesis statement 

 

This thesis describes the work which has been done to prove the validity of following 

hypotheses: 

 

- possibility to develop and examine novel fluorescence based diagnostic assay as an 

optical equivalent to electronic nose and tongue systems (Figure 1.7); 

 

- application of fluorescence spectroscopy and a mixture of environment-sensitive 

fluorescent dyes instead of electronic sensor arrays to monitor changes in the sample; 

 

- evaluation of acquired by the assay data base on chemometric methods, similarly to 

electronic nose/tongue sensors; 

 

-  using the assay for qualitative and quantitative analysis of complex samples. 

 

1.5 Aims of the research 

 

Following the approach of a new multipropose fluorescent based assay, the research 

aims were focused on characterisation of the assay and testing its diagnostic potential. 

In particular, several tasks have been performed: 

 

(A) One of the major aims of this study was to design the recognition element for an 

optical assay consisting of a mixture of fluorescent dyes. Based on available 

information in the literature, lists of commercially available fluorescent dyes have 

been chosen and dyes were classified regarding their sensitivities, optical and 

chemical properties and prices. 

 

Selection criteria for fluorescent dyes, their lists and required information are 

described in Chapter 2. 
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(B) Collected information and lists of dye-indicators has been used to select the 

favoured ones. These dyes were later acquired and their optical properties were 

examined experimentally in order to test which of them could be mixed together 

in one solution. Based on the results, suitable mixtures of selective dyes have been 

defined, where each dye representing distinct unit of specific indication, and 

combined with chemometric techniques for fluorescence data processing. 

 
The selection criteria and optimisation of fluorescent dye mixture  are described in 

Chapter 3. 

 

(C) The next aim of this study was to investigate the analytical capability of the 

proposed assay engendered by changes in fluorescence signal in response to 

changes in environment such as pH, temperature, ionic strength and the presence 

of oxygen. It has been done to validate its potential for simultaneous identification 

and measurements of several physicochemical parameters, thus quantitative 

analysis of samples. 

 
Testing of the analytical capability of the assay for multiply parameters of a 

sample is described in Chapter 4. 

 

(D) A further major aim was to investigate the possibility of using the assay for 

qualitative analysis of biological samples. The feasibility of this approach has 

been tested for the identification of development phases of growing bacterial 

cultures, discrimination between two different strains of yeast and urine samples 

from subjects with several gastrointestinal diseases. 

 
The optical approach for diagnose of biological samples is described in Chapter 5. 
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Figure 1.7: Schematic representation of sensing systems: human olfactory system (A), electronic 
analogue (B) and our optic analogue (C). 
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2. First objective: selection of commercially available 

fluorescent dyes 

 
 
2.1 Introduction 

 

Considering the great potential of fluorescent dyes, their high sensitivity and specificity 

in measurements of wide range physicochemical and biochemical analytes, the first task 

of the project was to collect a number of well-characterised and commercially available 

fluorescent probes, which allow measurements of three physicochemical parameters, 

namely: pH, temperature and oxygen concentration. These parameters were chosen for 

the first instance since their regular examination is required in many areas including 

medicine, biotechnology or environmental diagnostics. The distinctive functions of 

these parameters were described in Chapter 1.3. 

 

Later, the sensitivity of the assay was expanded to determine the ionic strength of a 

solution, which however was based not on the sensitivity of the particular dye but was 

related to recognition of response fluorescence pattern that originated from interferences 

between buffer concentration and all dyes included in the assay (see Chapter 4.3.3). 

 
Taking also into account the future improvements and the application of the assay 

involving the development of a smart vanishing ‘tattoo’ (similar to kids temporal 

tattoos) (see Chapter 6 and (Moczko et al., 2008)) the selection of dyes has been 

performed also for glucose concentration. The vanishing ‘tattoo’, consisting of a 

mixture of environmental-sensitive fluorescence dyes can be used for an in-vivo real-

time clinical monitoring of physiological parameters and metabolite concentrations in 

human skin. Among other key parameters to control glucose concentration is crucial 

especially for diabetics. Diabetes affects the ability of the body to produce or respond to 

insulin, the hormone that allows glucose to enter the body’s cells and to be stored or 

used for energy (Bronzino, 2000). Most diabetics require insulin injections, and most of 

the time they have to carefully monitor and manage their blood glucose levels 

themselves. Because glucose levels can fluctuate widely throughout the day, for optimal 

control they have to do the blood test several times a day (usually from finger pricks). 
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Consequently, novel, rapid and minimal-invasive method for measurements of glucose 

level could have a significant impact on new developments in medicine. 

 

Even though the actual measurements of glucose have not been attempted yet, the idea 

of vanishing ‘tattoo’ is still under development. 

 

2.2 Selection criteria for single fluorescent dyes 

 

Lists of suitable fluorescent dyes for the optical assay were prepared according to 

following criteria: 

- Dyes should have the ability to change their optical prosperities in response to 

suitable changes of an environment (pH, temperature or oxygen). 

- They should be commercially available and preferably inexpensive. 

- For the minimum interference with biological samples, fluorescent dyes should be 

responsive in VIS-NIR (~400~1600 nm). 

- Considering future immobilisation of dyes onto rigid support, they should contain 

functional chemical groups allowing binding to occur. 

 

Other major factors which should be taken into account during a selection are also the 

molar excitation coefficient of the dyes (the ability of a dye to absorb light at a 

particular wavelength), fluorescence quantum yield (the efficiency of the fluorescence 

process) or photostability (quality of a dye to retain resistant to light exposure) (Singer, 

1997). 

 

A variety of fluorescent dye indicators have been reported and their susceptibility to 

different environmental effects have been characterised in a number of journals, 

handbooks of fluorescent probes and research chemicals (Haugland, 1996; Sabnis, 

2008). The lists of suitable fluorescent dyes were prepared on the basis of this 

information and in respect to above specifications. 

 

Additional requirements for the combination of favourable fluorescence dyes are 

described later, in Chapter 3.2. 
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2.3 Results and Discussion 

 

The suggested indicators which allow qualitative and/or quantitative detection of 

different chemical or physicochemical analytes along with their spectral characteristics 

(excitation and emission maxima and spectra) were listed and reported in the earliest 

phase of this study on the optical assay development. This included pH, temperature, 

oxygen, which were considered in this study (see Table 2.1, 2.2, 2.3 for pH, temperature 

and oxygen respectively). Indicators for glucose detection are listed in Table 2.4. 

 

The first table (see Chapter 2.3.1) consists of pH indicators which can change 

fluorescence spectra by shifting their fluorescence maxima, or changing the intensity at 

the certain range of pH. It can be also the combined influence of both these features. 

Dyes which have been chosen, are sensitive to pH within relatively wide range. Most of 

them are highly sensitive within physiological and higher pH, such as fluorescein and 

fluorescein derivatives and some of them, e.g. Oregon green 480 and Oregon green 514 

have been reported very sensitive at lower pH. This gives the possibility of integrating 

the system of dyes with high sensitivity in different ranges of pH. 

 

Regarding temperature (see Chapter 2.3.2), it is well known that the majority of 

fluorescent dyes change their spectral characteristics at different temperatures, however 

these changes may not be correlated with the influence of this one parameter only, but 

can be driven by the presence of other variables of the system. They can not therefore 

be used as reliable indicators to measure the actual temperature of the sample. 

Moreover, they are less sensitive to temperature than some fluorescent probes presented 

in the literature as accurate indicators for temperature and less or not sensitive to others. 

The fluorescence intensity of these dyes can therefore be proportional to temperature. 

Depending on the sensitivity range for temperature, several suitable probes have been 

selected for the consideration of their implementation in the optical assay. 

 

The third table includes oxygen sensitive probes (see Chapter 2.3.3). The measurement 

of oxygen concentration in a sample is based on the principle of collisional quenching 

of certain fluorophores by the presence of oxygen (Lakowicz, 2006). First the 
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fluorophore absorbs certain energy, produces excited electrons, which then comes back 

to the original energy state. This is associated with emitting energy. When oxygen 

molecules are present, the amount of fluorescence intensity is reduced because the 

excited state of the fluorophore is deactivated upon diffusive encounter with a quencher 

molecule. By measuring the amount of quenching, it is possible to map the real 

concentration of oxygen in the sample. 

 

The last table (see Chapter 2.3.4) includes glucose receptors that have been employed in 

fluorescence based sensing. Many of them involve measuring of changes in 

fluorescence resonance energy transfer (FRET) between fluorescence donor and the 

acceptor based on competitive binding to the lectin concavalin A (Con A) of either  

labelled carbohydrate derivative such as dextran, mannoside or glucose. FRET might 

occur only when the emission spectrum of the donor overlaps with absorption spectrum 

of the aceptor and when these molecules are placed in approximately 20-100 Å from 

each other (Fröster distance) (Lakowicz, 2006). This results in promotion of energy 

transfer and increases the fluorescence intensity. When glucose is introduced to the 

system, it replaces the donor, e.g. dextran from the Con A and increases the separation 

distance between two acceptor and donor, which leads to a loss of energy transfer and 

fluorescence decrease. Widely employed in glucose sensing has also been enzymatic 

assays such a one involving, e.g. glucose oxidase (GOx) as a catalyst and hydrogen 

peroxide (HRP) as a product of the reaction. The concentration of HRP is correlated 

with glucose levels in the sample and therefore dye sensitive to HRP can be use for this 

indication. 

 
All dyes listed in following tables were considered as potential indicators for different 

parameters that can be combined and used in the optical assay. 

 

The most challenging criterion was to choose dyes sensitive to specific parameters at 

the suitable range and their emission at the longer wavelengths of light spectrum. This 

property makes them advantageous for many biological applications. 

The lists of fluorescent dye indicators considered in this research are presented below in 

respect to their different sensitivities (pH, temperature, oxygen and glucose). 
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2.3.1 pH sensitive fluorescent dyes 

 

Table 2.1: List of pH sensitive fluorescent dyes. They are listed by increasing emission wavelengths. 
 

Indicator Name Chemical 

Structure 

Sensitivity Excitation / 

Emission 

[nm] 

References 

 

Supplier/Price 

LysoSensor blue 
DND-167 N

O

CH
2

N

O

CH
2

 

pH 4.0-7.0 365 / 430 (Lin et al., 2001) 
 
Molecular Probes 
Unit Size: 20 × 50 µl 
Price: 194.00 GBP 

  

5(6)-
carboxyfluorescein 
 
5,6-CF 

C

O OOH

OH

O

COH

O  
 

pH 4.5-7.0 490 / 517 (Mordon et al., 1992) 
(Begu et al., 2005) 
(Manconi et al., 2007) 
(Lee et al., 1998) 
 
Molecular Probes 
Unit Size: 100 mg 
Price: 92.00 GBP 
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6-carboxyfluorescein 
 
6-CF 
 

C

O OOH

OH

O

COH

O  

pH 5.0-7.5 492 / 517 (Aschi et al., 2008) 
(Thomas et al., 1979) 
(Cohen-Kashi et al., 
1997) 
 
Molecular Probes 
Unit Size: 100 mg 
Price: 97.00 GBP 

  

8-hydroxypyrene-
1,3,6-trisulfonic acid 
trisodium salt 
 
HTPS 

OH S

S S

O O

ONa

ONa

OO

NaO

O O  
 

pH 6.0-11.0 
 

460 / 518 (Lakowicz, 2006) 
(Oter et al., 2006) 
(Agostiano et al., 2004) 
(Hulth et al., 2002) 
 
Molecular Probes 
Unit Size: 1g 
Price: 110.00 GBP 

 
 

Fluorescein 
 
FL C

O OOH

OH

O

 
 

pH 5.0-8.0 
 

494 / 510 (Lakowicz, 2006) 
(Sjoback et al., 1995) 
(Fisher et al., 2003) 
(Ge et al., 2008) 
(Baker et al., 1999) 
 
Molecular Probes 
Unit Size: 1 g 
Price: 67.00 GBP 
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Oregon green 488 
carboxylic acid 
 
OG488 

C

O OOH

F F

OH

O

 

pH 3.5-5.7 490 / 520 (Orte et al., 2005) 
 
Molecular Probes 
Unit Size: 10 mg 
Price: 36.00 GBP 

 

2’,7’-bis(2-
carboxyethyl)-5(6)-
carboxyfluorescein 
 
BCECF 

C

O OOH

OH

O

COH

O
C OH

O

COH

O  

pH 5.0-8.0 505 / 528 (Hanson et al., 2002) 
(Russell et al., 1995) 
(Rochon et al., 2007) 
(Boens et al., 2006) 
 
Molecular Probes 
Unit Size: 1 mg 
Price: 96.00 GBP 
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Oregon green 514 
carboxylic acid 
 
OG514 
 
 

O OOH

FF

F

F

C OH

O

F
COH

O

CH
2
S

 

pH 3.0-8.0 510 / 530 (Delmotte et al., 1999) 
(Lin et al., 1999) 
 
Molecular Probes 
Unit Size: 5 mg 
Price: 116.00 GBP 

 
 

DM-NERF 
 

O

Cl

O NHCH
2
CH

3

CH3

C
OH

O

C

O

OH

 

pH 5.0-7.0 488 / 536 (Lin et al., 1999) 
(Li et al., 2008) 
 
Molecular Probes 
Price: N/A 

  

Cl-NERF 
 

O

Cl

O NHCH
2
CH

3

CH3

C
OH

O

C

O

OH

 

pH 3.0-5.5 488 / 540 (Lin et al., 1999) 
(Slivka et al., 2001) 
(Coskun et al., 2001) 
 
Molecular Probes 
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LysoSensor 
yellow/blue DND-160 
 

O

N

N OCH
2
CNHCH

2
CH

2
N(CH

3
)
2

O

 
pH 3.0-8.5 
pressure 

384 / 540 (DePedro et al., 2009) 
(Lin et al., 2001) 
 
Molecular Probes 
Unit Size: 20 × 50 µl 
Price: 190.00 GBP 

  

Carboxy-seminaphtho-
fluorescein-1 
 
C-SNAFL-1 

O

O

OH

C OH

O

COH

O  

pH 6.5-9.5 514 / 550 (Lin et al., 2003) 
(Kuwana et al., 2003) 
(Sanders et al., 1995) 
 
Molecular Probes 
Unit Size: 1 mg 

 
 

C-SNARF-6 

C OH

O

COH

O

O

O NHEt

CH3

 

pH 6.0-9.0 540 / 560 (Lakowicz, 2006) 
 
Molecular Probes 
Price: N/A 
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C-SNARF-5F 

C OH

O

COH

O

O

O

F

(CH
3
)
2
N

 

pH 5.0-9.0 530 / 625 (Liu et al., 2001) 
(Hille et al., 2008) 
 
Molecular Probes 
Unit Size: 1 mg 
Price: 189.00 GBP 

 

C-SNARF-1 
 

C OH

O

COH

O

O

O

(CH
3
)
2
N

 

pH 6.0-9.0 535 / 640 (Yassine et al., 1997) 
(Vecer et al., 2001) 
(Magg et al., 2007) 
 
Molecular Probes 
Unit Size: 1 mg 
Price: 189.00 GBP 

  

 
C-SNARF-4F 
 

C OH

O

COH

O

O

O

(CH
3
)
2
N

F

 

pH 5.0-8.0 514 / 660 (Marcotte et al., 2005) 
(Liu et al., 2001) 
 
Molecular Probes 
Unit Size: 1 mg 
Price: 189.00 GBP 
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5(6)-
carboxynaphtofluorescein 
CNF 

O

O

O O

O

CH
3

C

O

CH
3

C

O

COH

O  

pH 6.5-8.5 633 / 665 (Lakowicz, 2006) 
(Song et al., 1997) 
(Jorge et al., 2005) 
 
Molecular Probes 
Unit Size: 10 mg 
Price: 103.00 GBP 

 

 

 

 

 

2.3.2 Temperature sensitive fluorescent dyes 

 

Table 2.2: List of temperature sensitive fluorescent dyes. They are listed by increasing emission 
wavelengths. 
 

Indicator Name Chemical 

Structure 

Sensitivity Excitation / 

Emission 

[nm] 

References 

 

Supplier/Price 

Fluorescein 
isothiocyanate 
 
FITC 

O OOH

SN C

C OH

O

 

Temperature 495 / 520 (Liu et al., 2005) 
 
Sigma-Aldrich 
Unit Size: 250 mg 
Price: 34.10 GBP 
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5(6)-
Carboxytetramethylrho
damine 
 
TAMRA 
 

COH

O

CH
3

N

O

ON

O

CH
3

CH
3

CH
3

 

Temperature 540 / 570 (Liu et al., 2005) 
 
Sigma-Aldrich 
Unit Size: 100 mg 
Price: 91.30 GBP 

 

Rhodamine 101 

ON N
+

C

O

O

 

Temperature 520 / 580 (Holzwarth et al., 2003) 
(Clark et al., 1998) 
 
Sigma-Aldrich 
Unit Size: 500 mg 
Price: 35.80 GBP 

   

Merocyanine 540 
 
MC540 

S

N

O

O N

N

S

CH
2
(CH

2
)
2
CH

3

O

ONa

O

CH
2
(CH

2
)
2
CH

3

 

Temperature 
 
 

530 / 580 (Langner et al., 1993) 
(Sikurova et al., 1997) 
 
Molecular Probes 
Unit Size: 25 mg 
Price: 63.00 GBP 
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Rhodamine Red 

O

CH
3

NH+ CH
3N

H
CH

3

O CH
3

CH
3

O

Cl

Temperature 570 / 590 (Liu et al., 2005) 
 
Molecular Probes 
Unit Size: 1 g 
Price: 57.00 GBP 

 

Rhodamine B 

O N CH
3NCH

3

OH
O

Cl

CH
3

CH
3  

Temperature 540 / 625 (Sakakibara et al., 1999) 
(Yuen et al., 2009) 
(Natrajan et al., 2009) 
 
Molecular Probes 
Unit Size: 1 g 
Price: 24.10 GBP 

 

Hematoporphyrin IX 
 

N
H

N

NN
H

CH
3

OHCH
3 CH

3

CH
3

OH

CH
3

OH
O

OH
O

CH
3

 

Temperature 520 / 625 (Ricchelli et al., 1995) 
(Ricchelli et al., 1998) 
 
Sigma-Aldrich 
Price: N/A 

Protoporphyrin IX 
 

NH

N
H

N

N

CH
2

CH
3

O

OH
CH

2

CH
3

OH

O

CH
3

CH
3

 

Temperature 535 / 635 (Ricchelli et al., 1995) 
(Ricchelli et al., 1998) 
 
Sigma-Aldrich 
Price: N/A 
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2.3.3 Oxygen sensitive fluorescent dyes 

 

Table 2.3: List of oxygen sensitive fluorescent dyes. They are listed by increasing emission wavelength. 
 

Indicator Name Chemical 

Structure 

Sensitivity Excitation / 

Emission 

[nm] 

References 

 

Supplier/Price 

1-Pyrene butyric acid 
 
PBA 

OH

O

 

O2 345 / 375 (Lee et al., 1987) 
(Ribou et al., 2004) 
(Fujiwara et al., 2002) 
 
Sigma-Aldrich 
Unit Size: 1g 
Price: 21.40 GBP 
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Pyrene 

 

O2 340 / 375 (Basu et al., 2004) 
(Basu et al., 2005) 
(Miller et al., 2007) 
 
Sigma-Aldrich 
Unit Size: 1g 
Price: 12.10 GBP 

  

7-hydroxycoumarin OOH O

 
O2 346 / 456 (Luo et al., 2009) 

 
Sigma-Aldrich 
Unit Size: ampule of 1 g 
Price: 30.00 GBP 

 

Fluorescein 
 
FL 

C

O OOH

OH

O  
 

O2 
 

494 / 518 (Arik et al., 2005) 
 
Molecular Probes 
Unit Size: 1 g 
Price: 67.00 GBP 
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Pyronin Y 
PyY O N

+
N

CH
3

CH
3CH

3

CH
3

Cl  

O2 540 / 570 (Celebi et al., 2007) 
(Arik et al., 2003) 
 
Sigma-Aldrich 
Unit Size: 5 g 
Price: 28.00 GBP 

  

Pyronin B 
PyB O N

+
N

CH
3

CH
3CH

3

CH
3

FeCl
4
-

 

O2 550 / 580 (Celebi et al., 2007) 
(Onganer et al., 1992) 
(Arik et al., 2003) 
 
Sigma-Aldrich 
Unit Size: 25 g 
Price: 108.00 GBP 

  

Tris(2,2′-bipyridine) 
dichlororuthenium(II) 
hexahydrate 
RuBpy 

N

N N

N

N

N

Ru
2+ Cl

H O6 2*

 

O2 450 / 620 (Kober et al., 1985) 
 
Sigma-Aldrich 
Unit Size: 1 g 
Price: 50.00 GBP 
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5,10,15,20-
Tetraphenylporphin, 
TPP N

H
N

NN
H

R

R

R

R

R = *

 

O2 515 / 650 (Potyrailo et al., 1998) 
 
Sigma-Aldrich 
Unit Size: 1g 
Price: 82.10 GBP 

  

Erythrosin B 
 
EB 

O

I

NaO

I I

O

I

C

O

ONa

 

O2 530 / 690 (Bailey et al., 2002) 
 
Sigma-Aldrich 
Unit Size: ampule of 1 g 
Price: 30.00 GBP 

 

Platinum(II) 
coproporphyrin ketone 
 
PtCPK 

 O2 590 / 760 (O'Riordan et al., 2007) 
 
Luxcel Biosciences 
Price: N/A 
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Platinum(II) 
octaethylporphyrin 
ketone 
 
PtOEPK 

N

N

N

N

R6R5

R8

R2

R7

R1

R3
R4

O

Pt

 

O2 590 / 760 (Vollmer, 2005) 
(Hartmann et al., 1996) 
(Papkovsky et al., 1995) 
 
Frontier Scientific 
Unit Size: N/A 

 
 

 

 

 

2.3.4 Glucose sensitive fluorescent dyes 

 

Table 2.4: List of glucose fluorescent dyes. They are listed by increasing emission wavelengths. 

Indicator Name Chemical  

Structure 

Sensitivity Excitation / 

Emission 

[nm] 

References 

 

Supplier/Price 

7-amino-4-methyl-
coumarin–

Concanavalin A 
 
AMCA–ConA 
 
 
Tetramethylrhodamine 
isothiocyanate–

Mannoside 
 
TRITC–Mannoside 

O NH
2

O

CH
2

CH
3

CNHConA

 
 
 

 

O

COO-

(CH
3
)
2
N N(CH3)2

CNHMannoside

O

+

 

Glucose 360 / 450 
 

(Lakowicz et al., 1993) 
 
Molecular Probe 
Price: N/A 
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8-anilino-1-
naphthalenesulfonic 
acid 
 
ANS 
 
 
APO–Glucose oxidase 
 

NH S

OH

OO

 
 

 

 

Glucose 425 / 480 (Ibey et al., 2006) 
(D'Auria et al., 1999) 
(D'Auria et al., 2001) 
 
Molecular Probes 
ANS 
Unit Size: 5 g 
Price: 17.00 GBP 

  

Fluorescein 
isothiocynanate–

Dextran 
 
FITC–Dextran 
 
 
Tetramethylrhodamine 
isothiocyanate–

Concanavalin A 
 
TRITC–Con A 

O

NH

O

O

OH OH

CS

Dextran

 

O

COO-

(CH
3
)
2
N N(CH

3
)
2

CNHConA

O

+

 

Glucose 480 / 520 (Ibey et al., 2006) 
(McShane et al., 2000) 
(Russell et al., 1999) 
(Sato et al., 2006) 
 
Sigma-Aldrich 
FITC–Dextran 
Unit Size: 100 mg 
Price: 29.00 GBP 

TRITC–Con A 
Price: N/A 
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Rhodamine 123 
 
Rh123 

ONH
2

NH
2

+

O

C OCH
3

Cl

 

Glucose 510 / 530 (Borth et al., 1993) 
(Pickup et al., 2005) 
 
Molecular Probes 
Unit Size: 25 mg 
Price: 56.00 GBP 

 

2-(N-(7-nitrobenz-2-
oxa-1,3- diazol-4-
yl)amino)-2-
deoxyglucose 
 
2-NBDG 
 

 

Glucose 465 / 540 (Nitin et al., 2009) 
(O'Neil et al., 2005) 
(Yamada et al., 2007) 
 
Sigma-Aldrich 
Unit Size: 5 g 
Price: 105.00 GBP 

  

Resazurin 
N

+

OO OH

O  

Glucose 568 / 582 (Maeda et al., 2001) 
 
Orgchem 
Price: N/A 
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Amplex Red 
Glucose/Glucose 
Oxidase Assay Kit 

N

OOH OH

C CH
3

O  

Glucose 570 / 585 Molecular Probes 
Unit Size: 1 kit 
Price: 209.00 GBP 

  

3, 7-diamino-5-
phenothiazinium 
acetate 
 
Thionin acetate 

S
+

N

NN

O

O

 

Glucose 590 / 620 (Sharma et al., 1994) 
(Salimi et al., 2007) 
(Gemeay et al., 2004) 
 
Acros Organics 
Unit Size: 5 g 
Price: 26.40 GBP 

   

Alexa Fluor 568–
Dextran 
 
 
 
Alexa Fluor 647 
conjugate– 
Concanavalin A 

O NH CH
3

CH
3

CH
3 N

H

CH
3

CH
2
SO

3
CH

2
SO

3
H COH

O C

O

-

O

N

O

O  

Alexa Fluor 568 
carboxylic acid, 
succinimidyl ester 
 
Alexa Flour 647 - 
proprietary 

G lucose 650 / 668 
 

(Ibey, 2006) 
(Ibey et al., 2005) 
(Liang et al., 2005) 
 
Molecular Probes 
Alexa 647–Con A 
Unit Size: 5 mg 
Price: 110.00 GBP 
Alexa Fluor 568–
Dextran 
Unit Size: 5 mg 
Price: 229.00 GBP 
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2.4 Conclusions 

 

Considering the variety of analitycal applications using fluorescence dye indicators in 

the detection methods it is not possible to determine that one particular dye is generally 

“better” than others. Instead, a more reasonable approach is to designate which dyes are 

better suited for particular applications. Therefore, it is necessary to define the desired 

characteristics of fluorophores that could be used. 

 

The wide spectrum of fluorescent dyes which has been described in literature are 

commercially available often at relatively low price. They can be classified in relation to 

characteristic properties of each dye, including various sensitivity, spectral properties, 

solubility, etc., specific needs of customers (e.g. indicators, energy transfer, drug 

screening, markers for biological molecules, etc.) and instrument specifications 

(measurement methods, excitation sources, optical filters or sensitivity). It is 

particularly valuable when a new assay is developed and it is crucial to choose the most 

suitable fluorescent labels from all available options. 

 

In this study, appropriate fluorescent dyes were chosen in the first instance due to their 

high detection sensitivities and dynamic range for given environmental factors, 

excitation and emission wavelengths in VIS-NIR range of light spectrum, presence of 

functional chemical groups to enable binding with other molecules, stability to 

photobleaching as well as excitation coefficient. 

 

It was also important to pay attention to prices of suitable dye-indicators to minimise the 

cost of measurements. This information was important in further optimisation of the 

mixture of dyes involving testing of increased number of indicators and aiming to 

obtain their extensive variety, which could enable analysis of different parameters and 

analytes within samples. 
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3. Second objective: optimisation of fluorescent dye mixtures 

 
 
3.1 Introduction 

 

The specific objective of further investigation was to establish a combination of 

environmental-sensitive fluorescent dyes suitable to measure changes pH, temperature 

and dissolved oxygen and glucose concentration. Based on a drawn up list of 

fluorescent indicators and their characterisation, several probes were chosen for further 

investigation. The spectroscopic measurements were first performed on single dyes and 

the obtained excitation and emission spectra were used for hypothetical examination of 

their simultaneous utilisation. Potential mixtures of pH-sensitive, temperature-sensitive, 

oxygen-sensitive and hydrogen peroxide-based glucose probes were first illustrated in 

Matlab, to exclude combinations of dyes, which are not suitable to be used in the same 

solution. The collection of promising mixtures were later analysed experimentally. 

 

3.2 Selection criteria for a mixture of fluorescent dyes 

 

The favoured dyes were selected according to several important criteria: 

- Dyes should have the ability to change their optical properties in response to suitable 

changes of an environment and it should be possible to monitor at least some 

contribution from the individual dyes in the total spectrum of their mixture. 

- The mixture should contain several fluorescent dyes, preferably more then two. 

- They should be responsive in VIS-NIR. 

- It is also desired to choose fluorescent dyes with emission maxima at wavelengths 

separated by at least 20 nm. 

- Selected dyes should preferably be soluble in water, possess high quantum yield, low 

toxicity and low photo-blanching (photo-decomposition). 

 

Additionally, the selected dyes should not be considered as specific in the sense that 

their response can be triggered by more than one parameter. It is for this reason that 
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multivariate calibration is further required for quantitative and qualitative analysis of 

their collective response. 

 

3.3 Experimental section 

 

Following above requirements several suitable fluorescent dyes have been selected and 

used in further spectrofluorometric analysis. 

 

3.3.1 Chemicals 

 

Fluorescent indicators were obtained from Sigma-Aldrich, except Oregon green 514 

purchased from Molecular Probes and Thionin acetate purchased from Acros Organics. 

Concentrated solutions of dyes were prepared in deionised water and stored in ~5 oC 

and covered with aluminium foil to protect them from light. Various concentrations of 

water/dyes solutions were used later in optimisation of their mixtures in order to have a 

balance in measurements of fluorescence intensity. 

 

All measurements were performed in sodium phosphate buffer (PB) consisted of 

sodium phosphate dibasic (Na2HPO4) and sodium phosphate monobasic (NaH2PO4) 

diluted in distilled water. The desired pH of buffer was prepared based on the ratio of 

monobasic and dibasic sodium phosphate. 

 

3.3.2 Sample preparation 

 

The spectroflorometric investigation (excitation – emission – intensity spectra) of 

fluorescent dyes was performed separately for each dyes, as well as together with 

others. The sample solutions used in measurements were composed of 3 ml 50 mM 

phosphate buffer (PB) and 10 µl of each water/dye stock solution. 
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3.3.3 Fluorescence measurements 

 

All measurements were performed using a three-dimensional spectrofluorometer, Jobin 

Yvon-SPEX, model FL-3D (Instruments SA (Stanmore, Middlesex, UK), (Figure 3.1). 

 

 
Figure 3.1: The spectrofuorometer capable of acquiring three-dimensional excitation–emission matrix 
(EEM) fluorescence spectra. 
 
 

The spectrofluorometer provided three-dimensional, excitation–emission-intensity data 

of fluorescent compounds. A schematic illustration of a three-dimensional 

spectrofluorimetry with CCD detection is shown in Figure 3.2. 

 

Light from a broad wavelength excitation source (Xenon lamp) was dispersed in a 

vertical plane using an excitation polychromator and passed through the sample. 

Emitted fluorescence was dispersed in a horizontal plane by emission polychromator 

and collected on a CCD 2D detector array (Setford et al., 2000). For both excitation and 
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emission, light was dispersed such that its component wavelengths were spatially 

separated. A shutter arrangement (a high speed emission shutter, 0.01-5 s, located in the 

emission spectrograph) was used to illuminate the sample for the desired exposure time, 

after which the photo-generated charge stored within the device was collected and 

processed (e.g. via CCD read-out operation). The 3D spectrofluorometer was designed 

to allow imaging of a full excitation and emission matrix (EEM) spectrum from a 

fluorescent sample over a range of excitation (74 – 691 nm) and emission (228 – 725 

nm) wavelengths. 

 

 
 

Figure 3.2: Schematic illustration of three-dimensional spectrofluorometry with CCD detection. Adopted 
from (Cauchi, 2006). 
 

 
In all experiments, the spectra were recorded over whole range of excitation and 

emission wavelengths based on the technical specification of the spectrofluorometer. 

The fluorescence measurements were performed with 0.5 s of time exposure using 4 ml 

quartz cuvettes with stoppers and a light path of 10 mm. 

 

3.3.4 Three-dimensional data display 

 

The software which was provided for 3D spectrofluorometer (Grams/32 version 4.14, 

Galactic Inc., 2000) enabled illustration of fluorescence spectra in 3D format, whereby 
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the x-, y- and z-axes corresponded to the emission, excitation wavelengths and 

fluorescence intensity. These spectra could also be seen in 2D, whereby the x- and y-

axes corresponded to emission and excitation wavelengths, and fluorescence intensity 

was orientated into the plane of the paper.  The contour lines were equated to signal 

intensity in the same manner as the contour lines on a geographical survey map.  

Excitation and emission values could also be displayed in pixels. 

 

The problem with the software was that the data could only be exported as an ASCII file 

in 2D plane (emission wavelengths and fluorescence intensity). The excitation values 

were not stored. Therefore to enable illustration of 3D pictures, data was exported in 

original SPC format of spectra and converted into image format using Matlab (version 

7.3.0, MathWorks Inc., 2006). The excitation values were calculated based on the first 

and last values of excitation wavelengths and the known spectral resolution. Creating a 

Matlab script file suitable to convert data was also part of the work. The pseudo-code of 

the script is enclosed in Appendix A.1. 

 

3.4 Results and Discussion 

 

3.4.1 Choice of fluorescence dyes 

 

Based on the lists of fluorescent dyes and specific criteria for their mixtures, selected 

probes for further examination included: 

 
- pH–sensitive: Fluorescein (FL), Hydroxypyrene-1,3,6-trisulfonic acid trisodium salt 

(HPTS), Oregon Green 488 (OG488), Oregon green 514 (OG514); 

- temperature–sensitive: 5(6)-carboxytetramethylrhodamine (TAMRA), Fluorescein 

isothiocyanate (FITC), Rhodamine 101 (R101), Rhodamine B (RB); 

- oxygen–sensitive: Tris(2,2′-bipyridine) dichlororuthenium(II) hexahydrate (RuBpy). 

 

Additionally, hydrogen peroxide-based glucose probe, Thionine Acetate (THA), which 

is sensitive to hydrogen peroxide (HRP), allows further expansion of possible 

applications into enzymatic assays, where HRP is a product or substrate of the reaction 
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(Cardosi, 2000; Gemeay et al., 2004). It has been also reported as carboxylic groups (-

COOH) indicator, important in engineering of biocompatible polymer surfaces (Ivanov 

et al., 1996; Tzoneva et al., 2008). 

 

From an extensive group of readily available fluorescent pH indicators, FL and HPTS 

were chosen in the first instance because of their well characterised optical properties 

and frequent use. Criteria for the choice were also their response within visible light 

spectrum, already proved high sensitivity to pH with wide dynamic range and 

successful results of their immobilisation. Despite many advantages these indicators are 

able to sense pH near physiological level yet seem to be unpractical at lower pH. For 

this reason fluorescence indicator such OG480 and OG514 were selected. Both dyes 

have shown high sensitivity for low pHs. Further experiment also proved the sensitivity 

of HPTS to ionic strength (concentration) of PB solution (see Chapter 4.3.2.). 

 

To control the temperature of the sample several dyes were chosen whereat the criteria 

for the choice of these indicators were: a suitable temperature rage of their response 

(approximately from 20 to 45 oC), excitation and emission wavelengths, photostability, 

chemical structure and general information, which have been presented in the literature. 

As mentioned in the introduction of this chapter, most of fluorescent dyes show some 

response to temperature changes and therefore this is where only dyes responsive to 

temperature must be chosen. 

 

For the detection of oxygen level RuBpy was chosen considering that its high quality to 

measure oxygen has already been shown in the literature. Additionally, its responsive 

for longer wavelength of light, which is promising for combing it with other dyes of the 

choice. 
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3.4.2 Excitation/emission  spectra of selected fluorescent dyes 

 

Initially, measurements of fluorescence spectra were performed with individual dyes 

using 3D spectrofluorometer, which allowed fluorescence measurements over multiple 

excitation/emission wavelengths. These spectra were later used for investigation on the 

dyes mixtures. Obtained spectra are presented below (Figure 3.3-3.12). 
 

 
 
Figure 3.3: Three-dimensional colour mapped surface diagram of FL (0.004 µM) in 50 mM PB buffer 
(pH 7.4). 
 

 

 
Figure 3.4: Three-dimensional colour mapped surface diagram of HPTS (0.03 µM) in 50 mM PB buffer 
(pH 7.4). 
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Figure 3.5: Three-dimensional colour mapped surface diagram of OG514 (0.006 µM) in 50 mM PB 
buffer (pH 7.4). 
 
 
 
 

 

 
 
Figure 3.6: Three-dimensional colour mapped surface diagram of OG488 (0.01 µM) in 50 mM PB buffer 
(pH 7.4). 
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Figure 3.7: Three-dimensional colour mapped surface diagram of TAMRA (0.02 µM) in 50 mM PB 
buffer (pH 7.4). 
 
 
 
 

 
 
 
Figure 3.8: Three-dimensional colour mapped surface diagram of FITC (0.02 µM) in 50 mM PB buffer 
(pH 7.4). 
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Figure 3.9: Three-dimensional colour mapped surface diagram of R101 (0.02 µM) in 50 mM PB buffer 
(pH 7.4). 
 
 
 
 

 
 
 
Figure 3.10: Three-dimensional colour mapped surface diagram of RB (0.02 µM) in 50 mM PB buffer 
(pH 7.4). 
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Figure 3.11: Three-dimensional colour mapped surface diagram of RuBpy (2.8 µM) in 50 mM PB buffer 
(pH 7.4). 
 
 
 
 

 
 
 
Figure 3.12: Three-dimensional colour mapped surface diagram of THA (2 µM) in 50 mM PB buffer (pH 
7.4). 
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The maxima of excitation and emission for selected fluorescent dyes are listed in Table 

3.1. All dyes revealed strong excitation and emission peaks at the wavelengths similar 

to the data published in the literature (see Chapter 2). 

 

The presented measurements show that distances between emission maxima of some 

selected probes might be sufficient to make their mixtures feasible, with noticeable 

separation of their fluorescence intensities. Moreover, these fluorescent dyes are 

characterised by different sensitivities thus it might be possible to establish mixture with 

various specifications. 
 

 

Table 3.1: List of excitation and emission maxima of selected fluorescent dyes. 

 
 

Dye Name Excitation [nm] Emission [nm] 

Fluorescein 
FL 

465 516 

Hydroxypyrene-1,3,6-trisulfonic acid trisodium salt 
HPTS 

470 527 

Oregon green 488 
OG488 

465 516 

Oregon green 514 
OG514 

480 529 

5(6)-carboxytetramethylrhodamine 
TAMRA 

520 575 

Fluorescein isothiocyanate 
FITC 

468 521 

Rhodamine 101 
R101 

517 600 

Rhodamine B 
RB 

519 579 

Tris(2,2′-bipyridine) 
dichlororuthenium(II) hexahydrate 

RuBpy 
440 623 

Thionin acetate 
THA 

520 624 
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3.4.3 Hypothetical mixtures of environmentally sensitive fluorescent dyes 

 

Potential mixtures of selected dye indicators were illustrated in Matlab by merging their 

individual excitation/emission/intensity spectra. This hypothetical examination, which is 

based on a subjective visual inspection, allowed fast analysis of proposed dyes and 

finding suitable mixtures for further measurements. The favoured combination should 

contain several dye indicators which are characterised by different sensitivities and have 

discreet emission maxima separated enough to allow monitoring of the individual dyes 

contribution in the overall spectrum of their mixture. As a result three possible mixtures 

composed of five fluorescent dyes were obtained and analysed. The first possible 

mixture composed of HPTS, FITC, RB, RuBpy and THA is presented in Figure 3.13.1-

2. The second, composed of HPTS, OG514, RB, RuBpy and THA, and the third 

mixture composed of HPTS, FL, RB, RuBpy and THA are presented in Figure 3.14.1-2 

and Figure 3.15.1-2 respectively. As shown in figures based on theoretical calculations, 

three mixtures composed of five fluorescent dyes were possible to obtain, with their 

intensity peaks quite well separated, specially for mixture two (Figure 3.14.2-E). 

However to make a final objective decision which of these mixtures should be chosen 

and used in an optical assay development, this subjective visualisation had to be 

confirmed by experimental examination. 
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Figure 3.13.1: Three-dimensional colour mapped surface diagrams (right) and colour filled contour 
diagrams (left): HPTS (A), mixture of HPTS and FITC (B). Measurements of single dyes were performed 
in 50 mM PB buffer at pH 7.4. 

A) 

B) 
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Figure 3.13.2: Three-dimensional colour mapped surface diagrams (right) and colour filled contour 
diagrams (left): mixture of HPTS, FITC and RB (C), mixture of HPTS, FITC, RB and RuBpy (D), 
mixture of HPTS, FITC, RB, RuBpy and THA (E). Measurements of single dyes were performed in 50 
mM PBS buffer at pH 7.4. 

C) 

D) 

E) 
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Figure 3.14.1: Three-dimensional colour mapped surface diagrams (right) and colour filled contour 
diagrams (left): HPTS (A), mixture of HPTS and OG514 (B), mixture of HPTS, OG514 and RB (C). 
Measurements of single dyes were performed in 50 mM PB buffer at pH 7.4. 

A) 

B) 

C) 
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Figure 3.14.2: Three-dimensional colour mapped surface diagrams (right) and colour filled contour 
diagrams (left): mixture of HPTS, OG514, RB and RuBpy (D), mixture of HPTS, OG514, RB, RuBpy 
and THA (E). Measurements of single dyes were performed in 50 mM PBS buffer at pH 7.4. 
 

 

 

 

 

 

 

 

 

D) 

E) 
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Figure 3.15.1: Three-dimensional colour mapped surface diagrams (right) and colour filled contour 
diagrams (left): HPTS (A), mixture of HPTS and FL (B), mixture of HPTS, FL and RB (C). 
Measurements of single dyes were performed in 50 mM PB buffer at pH 7.4. 
 

A) 

B) 

C) 
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Figure 3.15.2: Three-dimensional colour mapped surface diagrams (right) and colour filled contour 
diagrams (left): mixture of HPTS, FL, RB and RuBpy (D), mixture of HPTS, FL, RB, RuBpy and THA 
(E). Measurements of single dyes were performed in 50 mM PBS buffer at pH 7.4. 
 

 

 

 

 

 

 

 

 

 

D) 

E) 
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3.4.4 Experimental examination of fluorescence dye mixtures 

 

Based on the hypothetical examination, three possible mixtures of selected fluorescent 

dyes were tested using a 3D spectrofluorometer. The result spectra are presented in 

Figure 3.16, 3.17, 3.18 for the first, second and third mixture respectively. The order 

and compositions of following mixtures corresponds to the theoretical studies. 

 

 
 
Figure 3.16: Three-dimensional colour mapped surface diagrams (right) and colour filled contour 
diagrams (left): mixture of HPTS, FITC, RB, RuBpy and THA. Measurements were performed in 50 mM 
PBS buffer at pH 7.4. 
 
 

 

Figure 3.17: Three-dimensional colour mapped surface diagrams (right) and colour filled contour 
diagrams (left): mixture of HPTS, OG514, RB, RuBpy and THA. Measurements were performed in 50 
mM PBS buffer at pH 7.4. 
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Figure 3.18: Three-dimensional colour mapped surface diagrams (right) and colour filled contour 
diagrams (left): mixture of HPTS, FL, RB, RuBpy and THA. Measurements were performed in 50 mM 
PBS buffer at pH 7.4. 
 
 

Above figures demonstrate close agreement of experimental results using visual display 

of proposed mixtures. All three combinations of five fluorescent dyes were successfully 

established, which proves the benefits of subjective visual inspection performed by 

Matlab. This allows rapid selection of possible combinations of fluorescent dye 

mixtures. 

 

The most significant separation of the fluorescence maxima of dyes was obtained for 

the second mixture composed of HTPS, OG514, RB, RuBpy and THA, and therefore 

this mixture was selected for further experimental investigation. An additional 

advantage of the choice was that one of the dyes in the mixture (OG514) has been 

reported as a low pH indicator (Sabnis, 2008). Combined with HPTS, near-neutral and 

higher pH indicator (Lakowicz, 2006), they should allow measurements in wider range 

of pH. Two other mixtures are different from the favourable one by FITC (used in a first 

mixture) and FL (used in the third mixture). They are both sensitive to neutral pH about 

7.0 and therefore it was assumed that measurements in lower pH might be not as 

effective as in the presence of OG514. The mixture also consists of temperature, oxygen 

and HRP sensitive dye such as RB, RuBpy and THA respectively. 
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3.5 Conclusions 

 

Literature information and prepared lists of available fluorescent dye-indicators allowed 

quick selection of several suitable specific dyes with different excitation and emission 

wavelengths and required sensitivities. 

 

The experimental investigation of selected dyes sensitive to different parameters was 

performed and proved that some of them can be mixed together with clear separation of 

their maxima of fluorescence intensities. Therefore, it might be possible to observe 

changes in fluorescence intensity of individual dyes while the environmental conditions 

are changing. 

 

Based on excitation-emission spectra of individual probes, the potential mixtures were 

visualised in Matlab and theoretical predictions proved experimentally. Matlab has been 

very helpful tool for visual display, thus for an easy illustration and rapid selection of 

fluorescent dyes, which can be mixed together in the same solution. It is very promising 

for future, and looking at dye mixtures containing as many suitable dyes as possible to 

expand the number of parameters or analytes that could be measured. 

 

The 3D spectrofluorometer seems to be the perfect instrument for these measurements 

because the spectral analysis can be easily made by scanning the sample over a wide 

range of excitation and emission wavelengths. 
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4. Third objective: investigation of analytical capability of 

suitable optical assay 

 
 
4.1 Introduction 

 

The most suitable mixture composed of five fluorescent dyes (see Table 4.1) was 

chosen and used in following experiments for quantitative measurements of 

environmental changes including pH, temperature, ionic strength and dissolved oxygen. 

 

Initially, the optical properties of dyes mixture was analysed depending on changes of 

single parameter. This involved measurements of different values of pH, temperature 

and ionic strength of PB. Results of performed experiments have been included in the 

patent application describing a concept of optical multisensor (Piletsky et al., 2002). 

Further, simultaneous determination of four parameters (pH, temperature, ionic strength 

and DO concentration) was performed and the results were recently published (Moczko 

et al., 2009). 

 
Table 4.1: List of fluorescent dyes selected for the assay. 
 

 Dye Name Sensitivity 
Excitation 

[nm] 

Emission 

[nm] 

Extinction 

coefficient 

[cm
-1

M
-1

] 

Purity 

[%] 

Supplier 

CAS Number 

1 
8 – Hydroxypyrene - 

1’,3,6 - trisulfonic 
acid 

near-neutral 
pH 

ionic strength 
470 527 24,000 

(water) ≥98  
Sigma-Aldrich 

6358-69-6 

3 Rhodamine B temperature 541 576 88,000 
(water) ~95 

Sigma-Aldrich 
81-88-9 

2 Oregon green 514 
carboxylic acid low pH 504 528 86,000 

(DMF) 94 
Molecular 

Probes 
N/A 

4 
Tris (4,7 - diphenyl - 

1,10 - phenanthroline) 
ruthenium dichloride 

oxygen 463 637 14600 
(water) 99.95 Sigma-Aldrich 

50525-27-4 

5 Thionin acetate hydrogen 
peroxide 541 628 53,000 

(water) >85 Acros Organics 
78338-22-4 
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4.2 Experimental section 

 

4.2.1 Composition of fluorescent dye mixture 

 

The mixture of selected fluorescent dyes were prepared as a stock solution of following 

dyes: 0.15 mM 8-Hydroxypyrene-1’,3,6-trisulfonic acid, 0.1 mM Rhodamine B, 0.025 

mM Oregon green 514, 6 mM Tris (4,7-diphenyl-1,10-phenanthroline) ruthenium 

dichloride and 2 mM Thionin acetate (see Figure 6.1). Solutions of dyes were prepared 

in deionised water and stored at ~5 oC, covered with aluminium foil to protect them 

from light. 200 µl of each water/dye stock solutions were mixed together and used in 

further experiments. Measurements were carried out using 3 ml of suitable buffer and 

50 µl of the mixture. 

 

 

 
 
Figure 4.1: Cuvettes containing solutions of five selected fluorescent dyes and their mixture: HPTS (A), 
RB (B), OG514 (C), RuBpy (D), THA (E)  and mixture of five selected dyes (F). 
 

 

4.2.2 Buffer solutions 

 

A) Measurements of single parameter 

Fluorescent measurements were performed in buffers at pH range from 4.0 to 9.0, 

temperature – from 20 to 40 oC and buffer concentrations - from 5 to 150 mM. 

 

Values of a pH of a buffer was adjusted using acetic acid – sodium acetate (C2H4O2 – 

NaC2H3O2) for low values of pH (from 4.0 to 5.0), sodium phosphate dibasic – sodium 
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phosphate monobasic (Na2HPO4 – NaH2PO4) for pH from 5.0 to 8.0  and  boronic acid 

–sodium borate (H2B4O7 – Na2B4O7) for pH from 8.0 to 9.0. 

 

B) Measurements of four parameters 

Simultaneous measurements of four parameters were performed at pH range from 5.0 to 

9.0, temperature - from 25 to 40 oC, dissolved oxygen (DO) - from 0 to 21.6 ppm and 

PB concentration - from 5 to 150 mM. 

 

All measurements were carried out in sodium phosphate buffer (PB) consisted of 

sodium phosphate dibasic (Na2HPO4) and sodium phosphate monobasic (NaH2PO4) 

dissolved in distilled water. 

 

4.2.3 Instrumentation 

 

As in previous experiments, fluorescence intensity measurements were performed using 

three-dimensional spectrofluorometer with 0.5 s of time exposure. 

 

The pH of a buffer was controlled by using pH meter (Hanna Instruments Ltd., Model 

8519, Italy). The ionic strength was varied using different buffer concentrations. The 

temperature of the cuvette containing dyes solution was adjusted externally using 

thermostatic water-bath (Grant Instruments Ltd, Model 0331, Cambridge, UK). The 

concentration of DO was measured using oxygen probe (World Precision Instruments 

Ltd, OXEL-1, Stevenage, UK) and potentiostat-galvanostat (Uniscan Instrument Ltd, 

PG580, Buxton, UK). The concentration of oxygen was adjusted by bubbling solutions 

with air or nitrogen and measured amperometrically. The number of moles of oxygen 

present in the solution was calculated at different temperatures using the ideal gas low 

(Sabnis, 2008). 
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4.2.4 Data evaluation 

 

The spectral characteristics of dyes mixture and changes caused by interactions with its 

surroundings have been analysed using artificial neural networks. ANNs were 

implemented in Matlab (version 7.3.0, MathWorks Inc., 2006) using the Neural 

Network Toolbox (version 5.0.1). 

 

The evaluation of a parameter was based on changes of the height of the fluorescence 

peaks of all five dyes of the mixture. 

 

A) ANN model for single parameter 

The prediction model used for determination of single parameter of the sample was 

created based on linear neural network classifier (Demuth et al., 2007). The network 

structure used in this study consisted of linear neuron with five neurons in the input 

layer corresponding to fluorescent emission of the five fluorescent dyes (taken at 

wavelengths shown in Table 4.1) and a single neuron in the output layer corresponded 

to a parameter of interest. The network was designed using the function newlind and 33 

samples for each parameter being tested. The ability of the model network was tested on 

a set of previously unseen 11 samples measured at different pH and 5 samples at 

different temperature. 

 

B) ANN model for four parameters 

The prediction model used for simultaneous determination of four parameters was 

created based on a feedforward network trained using backpropagation of errors 

(Demuth et al., 2007). The network consisted of an input layer, one hidden layer and an 

output layer. The same as for simulation of single parameters, the input layer was made 

up of five neurons corresponding to fluorescent emission of the five fluorescent dyes 

(taken at wavelengths shown in Table 4.1) and a single neuron in the output layer 

corresponded to a parameter of interest. A different network was trained with 576 

samples for each parameter being tested. The best performance obtained for the hidden 

layer consisted of 25 neurons and Bayesian regularisation (Demuth et al., 2007) used in 
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the learning process. To test the ability of the trained network to predict parameters 

from acquired data, the network was tested with a set of previously unseen 192 samples. 

 
The pseudo-code for Matlab script, which was developed for these calculations, is in 

Appendix A.2. 

 

4.3 Results and Discussion 

 

4.3.1 Dyes assay characterisation 

 

The spectrum of the fluorescent dye mixture used in the study is shown in Figure 4.2. 

 

 

 
 
Figure 4.2: Three-dimensional colour mapped surface diagram of 5 fluorescent dyes: Dye 1 is HPTS, 
Dye 2 is OG514, Dye 3 is RB, Dye 4 is RuBpy, Dye 5 is THA. Measurements were performed in 3 ml of 
50 mM PB buffer at pH 7.5. 
 

 

1 

 

2 

 

3 

 
4 5 
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The concentration of dyes was optimised corresponding to maximum values of their 

fluorescence intensities to allow clear discreet reading of emission peaks for each 

fluorescent dye and to provide visualisation of a collective fluorescent patterns of dye 

mixture. To exclude possible influence on the detected signal response, the 

concentrations were kept constant in all experiments. Therefore, it was expected that 

any changes of fluorescence emission of the solution of dyes were caused only by 

interaction with surrounding medium. 

 

Figure 4.2 shows that fluorescence emission bands of proposed dyes overlap each other 

but the intensity maxima remain reasonably separated. This gives the possibility to 

analyse the comprehensive response of the whole mixture, along with each dye’s 

individual impact on the signal. 

 

The dyes mixture in a solution appeared to be stable showing no variation in spectral 

properties over at least a one month period. Practically, no photobleaching was observed 

in the process of measurements. 

 

4.3.2 Investigation of analytical capability of the optical assay engendered 

by changes of single parameter 

 

The initial experiments were performed to establish the influence of single parameter on 

the spectrum response while other parameters of the dye assay were kept constant. An 

example of an effect on fluorescence characteristic of the mixture caused by pH changes 

from 4.0 to 6.0 and from 7.0 to 9.0 is shown in Figure 4.3.1, 4.3.2 respectively. Three-

dimensional colour mapped surface diagrams (on the left) and colour filled contour 

diagrams (on the right) illustrate changes of fluorescence signal of the dyes due to 

different pH of a buffer. Since the excitation/emission maxima of the intensity of 

fluorescent dyes are well separated, their individual characteristics due to decreasing pH 

are easily distinguished. 
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Figure 4.3.1: Three-dimensional colour mapped surface diagrams (left) and colour filled contour 
diagrams of the fluorescence signal of dyes mixture at pH 9 (A), pH 8 (B) and pH 7 (C) in 50 mM borate 
buffer (pH 9.0 ) and phosphate buffer (pH 8.0 and pH 7.0). 
 

A) 

B) 

C) 
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Figure 6.3.2: Three-dimensional colour mapped surface diagrams (left) and colour filled contour 
diagrams of the fluorescence signal of dyes mixture at pH 6.0 (D), pH 5.0 (E) and pH 4.0 (F) in 50 mM 
phosphate buffer and acetate buffer. 
 

D) 

E) 

F) 
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Fluorescence intensity of dyes changing differently depends on their sensitivity to pH. 

The most significant changes revealed HPTS which was specified as near-neutral pH 

indicator  and OG514, which is specified as low pH indicator (Lakowicz, 2006; Sabnis, 

2008). Colour filled contour diagrams (see right side of the figures) show that while the 

intensity of fluorescent dyes are changed at different pH, the position of the 

fluorescence picks of all dyes remained stable. 

 
The pH profile of the maxima of dyes fluorescence intensity is shown in Figure 4.4. 

 
 

 
Figure 4.4: Change in fluorescence intensity of dyes mixture as a function of pH. Dye 1 is HPTS, Dye 2 
is OG514, Dye 3 is RB, Dye 4 is RuBpy, Dye 5 is THA. Measurements were performed in 50 mM acetate 
(pH 4.0-5.0), phosphate (pH-5.0-8.0) and borate (pH 9.0) buffers. 
 

 

Measurements at different pH were recorded in triplicate. Error bars indicate the 

standard deviation of the results obtained for each data point. As demonstrated in Figure 

6.4, the fluorescence intensity of HPTS and OG514 is highly dependent on pH changes. 

Along with the decreasing of pH the fluorescent intensity of HPTS dropped almost 

linearly. The lowest signal was recorded at the most acidic (pH 4.0) and the highest at 

the most basic (pH 9.0) environment. OG514 appeared to be sensitive within the lower 
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values of pH, in the range of pH 4.0 – 6.0 and then its fluorescence remained almost 

stable. Emission intensity of other dyes stayed rather constant. The small fluctuations 

which occurred are possibly due to the changes in concentrations or interferences with 

other dyes and did not depend on different pH. These results prove that in the solution 

HPTS and OG514 remained their specific sensitivities described in literature. 

 

Even if HPTS is known as an excellent pH indicator, its sensitivity can be slightly 

shifted while it is immobilised on different support (Choi, 1997; Zhu et al., 2005) and it 

is also characterised by very low fluorescence intensity at acidic pH (near background). 

Therefore another pH sensitive dye, OG514 was chosen as more promising indicator for 

low pH range. 

 

Further experiments were carried out to establish the sensitivity profile of the dye 

mixture at different temperatures and ionic strengths of a buffer. Obtained results are 

presented in Figure 4.5 and Figure 4.6 for the dependence on temperatures and ionic 

strength respectively. 

 
 

 
Figure 6.5: Change in fluorescence intensity of dyes mixture as a function of temperature. Dye 1 is 
HPTS, Dye 2 is OG514, Dye 3 is RB, Dye 4 is RuBpy, Dye 5 is THA. Measurements were performed in 
50 mM phosphate buffer at pH 7.5. 
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It was found that fluorescence intensity of all dyes in the mixture was influenced by 

temperature (see Figure 6.5). While the temperature increased the intensity of four dyes 

decreased. The exception was HPTS, where intensity slightly rose up due to temperature 

increase. The highest changes revealed RB, which has been indicated in literature as 

temperature sensitive dye (see Section 2.3.2). 

 

Figure 4.6 shows the dependence of the mixture spectral characteristic on ionic strength 

(buffer concentration). 

 

 

 

 
Figure 6.6: Change in fluorescence intensity of dyes mixture as a function of buffer concentration. Dye 1 
is HPTS, Dye 2 is OG514, Dye 3 is RB, Dye 4 is RuBpy, Dye 5 is THA. Measurements were performed 
in 50 mM phosphate buffer at pH 7.5. 
 

 

There were no substantial changes in the fluorescence intensity of the mixture. Only the 

intensity of HPTS increased corresponding to the increase in ionic strength and it 

appeared to be most sensitive in its lower range. Other dyes were not affected by 

different concentrations of buffer solution. 
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As a result of measurements of DO concentration, significant changes in fluorescence 

intensity were observed particularly for RuBpy, with decreasing tendency at higher 

level of oxygen. Due to limited data points it was difficult to define the curves and 

therefore this graph is not displayed. 

 
 
Data evaluation – ANN method 

 

The effect of single parameter on the fluorescence changes of the dye mixture was 

further analysed based on ANN as a pattern recognition method. It was done to test the 

analytical capability of the optical assay consisting of the dye mixture and multivariate 

data analysis engendered by changes of individual factors. 

 

In the prediction of a single parameter, it was sufficient to use the linear neural network 

classifier whose predictive abilities are equivalent to linear regression models 

(Samarasinghe, 2007). To design the linear network the function newlind was applied, 

which is used for purposes when input set of data and corresponding targets (values of 

parameters) are known. To do so, the input set of data consisted of spectral responses of 

the fluorescent dyes corresponding to known values of output parameters such as pH 

and temperature. Similar to the analysis of the sensitivity profiles of the mixture, the 

five wavelength points at the maxima of fluorescence intensity of dyes were chosen for 

a representation of the profile of original spectra and used as an input data for the ANN. 

To test if the model network was designed properly its behaviour was simulated with an 

unseen set of data (the test set). Results of these simulations for different values of pH 

and temperature are shown in Figure 4.7A-B. 

 

The graphs illustrate very good correlation between real (measured) values (x axis), and 

the values determined by ANN (y axis). Circles (○) indicate the values of data points of 

the network predictions for test samples and the error bars indicate the errors of the 

network prediction for each data point. The highest error was obtained for prediction of 

pH 8.5 and it was 0.3 and 1.6 for temperature at 45 oC. 
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A) B) 

Therefore, the combination of fluorescence signals of dye assay as a response to 

changes of single parameters in the environment and simple, linear ANN model was 

sufficient enough to allow accurate analysis of the parameters. 

 

 

 

 

4.3.3 Investigation of analytical capability of the optical assay engendered 

by changes of several parameters 

 

As expected, reasonable changes in fluorescent spectrum of dyes mixture were observed 

in response to change of single parameter. It was also expected that the signal was not 

just a summation of individual spectral signatures of fluorescent dyes but additionally 

the product of their interaction and cross-interferences, which complicated the analysis 

Figure 4.7: Correlation between actual (measured) and determined by ANN values of pH (A), 
temperature (B). Points marked as circles (○) indicate data points of ANN simulations of unseen samples. 
Diagonal line (       ) indicates best linear fit of data points and the line ( – • – ) indicates ideal response 
with zero error. Error bars indicate error of the network prediction. 
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in the case when several parameters were changing simultaneously. Therefore more 

advanced network, which would be able to model this non-linear and interference effect 

between fluorescence of dyes at different conditions, was applied for the data evaluation 

and the determination of target parameters. 

 
To study the effect of the parameters’ variations, the fluorescence emission values were 

recorded for a number of samples with different values of pH, temperature, DO and PB 

concentrations. 

 

The key ability of the network has been identified and tested. This includes training the 

ANN on patterns from samples of known identity and using them to predict the 

characteristics of new unknown samples with the smallest prediction error. Thus, the 

optimised network of the best performance was selected and applied for simultaneous 

determination of four parameters. The input dataset consisted of spectral responses of 

the fluorescent dyes corresponding to known values of output parameters: pH, 

temperature, DO and PB concentration. Although it was expected that the use of the 

whole fluorescent spectra in the training process would give the best contrast of unique 

responses of the dyes due to changes in a solution, it would also increase amount of 

processing data and training time of the network. To minimise workload similar as in 

analysis of single parameter, five wavelength points at the maxima of fluorescence 

intensity of dyes were chosen for a representation of the profile of original spectra and 

used as actual input data for the ANN. This decision has been found sufficient for 

accurate prediction of target parameters. 

 

In order to optimise the ANN, two main steps were carried out. First, the network 

architecture giving sufficient performance for all four parameters has been optimised by 

an experiment.  The training process was verified using several networks with different 

number of neurons in hidden layer and applying different learning algorithms. The 

second stage of the process concerned the improvement of the network performance by 

optimising and adjusting values of individual training function parameters such as 

performance goal, momentum or number of training iteration (epochs), in order to 

reduce the possibility of invalid generalisation of the network with the high performance 

for one purpose but sacrificing the others. 
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The efficiency of each ANN model was assessed in terms of root mean square error 

(RMSE) with units adequate to parameters being measured. 

 

In the optimisation process of ANN, two frequently used algorithms Levenberg-

Marquardt algorithm (trainlm) and Bayesian regularization (trainbr) were chosen for 

testing. While trainlm has been documented as the fastest training algorithm, trainbr 

provides a better  quality of generalisation (Demuth et al., 2007). Their estimates of the 

actual values of four parameters were compared in Tables 4.2, 4.3, 4.4 and 4.5 for 

different number of neurons in the hidden layer between 1 and 30 neurons.  All other 

parameters were kept constant and set as shown in the literature (Demuth et al., 2007). 

 

The first parameter used for testing was pH (Table 4.2). As the table shows, for both 

trading functions the networks performance was very high. However, better results 

(lower prediction error) have been obtained for trainlm, the values given by trainbr are 

acceptable because the error is still very low and decreased when the number of neurons 

in the hidden layer was between 25 and 30 (see NET10 and NET11). 

 
 
Table 4.2: Effect of the number of neurons in the hidden layer and training algorithm on ANN 
performance for pH. 

Network 
Neurons in hidden 
layer 

RMSE1 (trainlm) 
 

RMSE2 (trainbr) 
 

Net1 3 0.1286 0.0045 

Net2 5 4.5491e-008 0.0023 

Net3 8 8.2235e-005 0.0054 

Net4 10 4.0883e-007 0.0041 

Net5 13 0.1203 0.0627 

Net6 15 9.2789e-005 0.0063 

Net7 18 7.4832e-004 0.0108 

Net8 20 6.7050e-004 0.0100 

Net9 23 0.0019 0.0111 

Net10 25 2.2398e-004 3.7477e-004 

Net11 28 1.3200e-005 3.5313e-004 

Net12 30 9.5878e-004 0.0027 
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In temperature estimation, trainbr revealed significantly higher performance, which was 

further enhanced by increasing the number of neurons in the hidden layer (Table 4.3, 

NET7-NET10). 

 
 
Table 4.3: Effect of the number of neurons in the hidden layer and training algorithm on ANN 
performance for temperature. 

Network 
Neurons in hidden 
layer 

RMSE1 (trainlm) 
[oC] 

RMSE2 (trainbr) 
[oC] 

Net1 3 5.3979 0.8922 

Net2 5 2.3940 0.8409 

Net3 8 3.1026 0.7137 

Net4 10 4.0045 0.7300 

Net5 13 2.6404 0.7563 

Net6 15 1.4088 0.7912 

Net7 18 0.8510 0.6657 

Net8 20 1.4679 0.5932 

Net9 23 1.3041 0.6310 

Net10 25 1.3974 0.6431 

Net11 28 0.9731 0.8055 

Net12 30 1.5836 0.7114 

 
 

Similar to the results for temperature, trainbr algorithm showed lower prediction errors 

for DO (Table 4.4). The performance was additionally enhanced for networks with the 

neurons in hidden layers of 10, 13, 15 and 18. The highest error showed the network 

containing 3 neurons in the hidden layer (NET1) but even so it is not higher than the 

lowest obtained for trainlm (NET7). 

 

The last parameter to test was a buffer concentration. The result of the prediction of this 

parameter is presented in table 4.5. Despite different algorithms or number of neurons in 

the hidden layer, networks revealed high estimation error. The highest was obtained 

when trainlm and low number of neurons was used for training. Better training was 

achieved for trainbr and slightly improved by increasing the number of neurons in 

hidden layer. This is getting worse above 25 neurons. 
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Table 4.4: Effect of the number of neurons in the hidden layer and training algorithm on ANN 
performance for DO. 

Network 
Neurons in hidden 
layer 

RMSE1 (trainlm) 
[ppm] 

RMSE2 (trainbr) 
[ppm] 

Net1 3 1.6080 0.4941 

Net2 5 1.3999 0.2074 

Net3 8 1.5497 0.2153 

Net4 10 0.6293 0.0584 

Net5 13 1.5694 0.0587 

Net6 15 0.5496 0.0759 

Net7 18 0.8505 0.4354 

Net8 20 1.3703 0.0785 

Net9 23 0.5903 0.0769 

Net10 25 0.8522 0.0808 

Net11 28 1.1819 0.3857 

Net12 30 0.6355 0.3123 

 

 

 
Table 4.5: Effect of the number of neurons in the hidden layer and training algorithm on ANN 
performance for buffer concentration. 

Network 
Neurons in hidden 
layer 

RMSE1 (trainlm) 
[mM] 

RMSE2 (trainbr) 
[mM] 

Net1 3 52.2653 39.6519 

Net2 5 52.5966 37.9455 

Net3 8 48.2992 31.1647 

Net4 10 44.1124 32.4427 

Net5 13 34.1128 30.2274 

Net6 15 47.1076 26.5737 

Net7 18 43.2947 28.1090 

Net8 20 32.9877 32.2674 

Net9 23 34.4614 30.0214 

Net10 25 43.2288 21.0038 

Net11 28 39.6913 42.5743 

Net12 30 41.3651 45.0022 
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Since better networks performance for all four parameters was achieved by using trainbr 

as learning algorithm, it was chosen and applied in the further optimisation of network 

parameters and testing. Regarding the decision on the number of hidden neurons, it has 

been shown that when the number of neurons is smaller than 15, the efficiency of the 

network to adopt the model data and implement them for parameters estimation was 

very poor. By increasing the number of neurons over 15, improves the network 

performance; however above 25 neurons is getting worse again. Decisive in the choice 

of the rough number of neurons was the last parameter to predict, buffer concentration, 

which reveals the network of best performance when the training function as trainbr and 

the number of neurons was 25. Following testing and adjusting specific parameters of a 

network also showed that the architecture of the network containing 25 neurons in the 

hidden layer provided the best results with a lowest prediction error for all four 

parameters. It has therefore been selected as an optimal topology of the network and 

used for further analysis. 

 

The script, which allows optimise the factors of the network was written in such a way 

that enable a user to choose the target parameter for testing followed by entries of 

desired values of network factors. 

 

The neural network has been tested for each target parameter separately and for 

different values of its factors (Samarasinghe, 2007). While the network was trained by 

varying one of the factors, others were kept constant. The most significant effect on the 

network performance has been observed for changes of two factors, learning rate, LR, 

and momentum, MU. The learning rate controls weights and node biases increments at 

each training step. Setting this parameter to a large value (the maximum of 1.0) allows 

the network to learn more quickly but it is compensated by lower efficiency in outputs 

calculations. Therefore, it is usually better to set this factor to a smaller value unless the 

learning process seems very slow. The momentum factor improves the network 

stability. It is achieved by adjustment the current weight in respect to the average of the 

past weight changes. The MU allows the network to pass through the local minima and 

reach the optimum weights during learning. The momentum rate can increase from 0.0 

to 1.0. If its value is set at 0.0, the MU is not considered in training and the network is 
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more likely to quickly settle into a local minimum which might result in false 

calculations. Higher values of the factor may however increase the time of the learning 

process and decrease network stability. 

 

Other parameters to adjust were number of epoch and performance goal. Epochs define 

the maximum number of training cycles until the performance goal is reached. Their 

values should be optimised to avoid the overlearning of the network, when too much 

information is extracted from the individual cases, not relevant for the general case. 

Therefore the number of epoch and the goal should also be choose carefully, not too 

high and not too low but sufficient to reach the network optimal performance. 

 

Illustration of the effect of the learning rate and momentum on the ANN performance 

The ANN used for training contained five neurons in the input layer, one neuron on the 

output and 25 hidden neurons. The algorithm applied in the learning process was 

trainbr. The effect of the MU and LR was analysed using a computer experiment. The 

network was first trained for different values of the MU while the LR was held constant 

at 0.9. The RMSE of the performance in each of the cases is shown in Figures 4.8.1, 

4.9.1, 4.10.1 and 4.11.1 for pH, temperature, concentrations of DO and PB respectively. 

Figures 4.8.2, 4.9.2, 4.10.2 and 4.11.2 illustrate further analysis of the effect of varying 

LR on the network performance. These trials have been made for a constant MU that 

gave the lowest prediction error for each individual parameter. 

 

First figures, 4.8.1 and 4.8.2, show that both these factors had some impact on the 

evaluation of pH, but it did not significantly affect the network performance. It was very 

high in all cases, which is indicated by behaviour of RMSE and even the least efficient 

network, with the highest error, was sufficient and gave accurate results. The biggest 

difference between the lowest and the highest error was only 0.002. For the LR of 0.9, a 

MU  of 0.5 gave the best performance and 0.9 gave the worst performance. Finally, the 

network was trained with MU of 0.5, LR of 0.5. Further, the performance goal was 

adjusted to 0.01 and number of epoch 100. 
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Figure 4.8.1: The effect of momentum on ANN learning in the estimation of pH. 
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Figure 4.8.2: The effect of learning rate on ANN learning in the estimation of pH. 
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Figures 4.9.1 and 4.9.2 illustrate the network performance for estimation of different 

values of temperature. The same as for pH, calculations were made while the 

momentum or the learning  rate of the network was varying between 0.1 and 0.9. 
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Figure 4.9.1: The effect of momentum on ANN learning in the estimation of temperature. 
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Figure 4.9.2: The effect of momentum on ANN learning in the estimation of temperature. 
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Figure 4.9.1 shows that the MU did not influence significantly the calculations, the 

difference between the lowest and the highest RMSE was 0.1 oC. The network 

performance was slightly improved by changing the LR (see Figure 4.9.1). As a result 

the error was decreased up to 0.44 oC when the LR was set to 0.8. The training was 

done for the performance goal of 0.5 and the number of epoch 200. 

 

This procedure was also repeated for estimations of concentration of DO and PB. For 

these two parameters varying of MU and LR had visible impact on the network 

performance. As Figure 4.10.1 shows that applying the momentum of 0.5 again gives 

the highest efficiency of the trained model network. The worst results of DO 

determination were obtained for high MU above 0.7 and low, below 0.4. Therefore, MU 

of 0.5 was used for testing the network with different LR (see Figure 4.10.1). This time 

acceptable error was given in the range of LR between 0.6 and 0.9. The best 

performance was obtained for MU set to 0.6 and this value was chosen for further 

application of the model network. Other parameters were set to 0.1 for the performance 

goal and 200 for epochs. Such an optimisation of the network revealed an improvement 

of the RMSE from 0.6 up to 0.05 ppm. 
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Figure 4.10.1: The effect of momentum on ANN learning in the estimation of DO concentration. 
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Figure 4.10.2: The effect of momentum on ANN learning in the estimation of DO concentration. 

 
 
 
 
The last parameter to test was PB concentration. In this case both factors play a crucial 

role for the network performance. Additionally the estimation error was highly 

improved by increasing the number of epoch of training (see Figure 4.11.1). Changing 

the number of epoch from 200 to 500 impacted on the changes of RMSE from 23 to 10 

mM. Further increase in the number of epoch did not change results significantly. For 

1000 epochs the RMSE decreased of only 0.5 mM (see pink dot in the Figure 4.11.1). 

Because the increase in the number of epoch increase the time of training the model 

network was set to 500 epoch. The performance was however improved by setting the 

LR to 0.7 and decreasing the RMSE for next 3 mM (Figure 4.11.1). The performance 

goal for the network was set to 1. 
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Figure 4.11.1: The effect of momentum on ANN learning in the estimation of PB concentration. 

 
 

0

10

20

30

40

50

0 0.2 0.4 0.6 0.8 1

LR

R
M

S
E

 [
m

M
]

M U 0.4

 
Figure 4.11.2: The effect of momentum on ANN learning in the estimation of PB concentration. 
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Once the ANN has been optimised it was capable to find the most likely identity of the 

unknown data pattern and predict output values of parameters of test solutions. 

 

Results of ANN giving the most accurate prediction for different values of target 

parameters are shown in Figure 4.12 for pH, temperature, DO and PB concentration. 

The graphs illustrate the correlation between real (measured) values (x axis), and the 

values determined by ANN (y axis). Circles (○) indicate the mean values of data points 

of the network predictions. The standard deviation was calculated for 48 test samples 

for pH, temperature and PB concentration and 64 samples for DO for each point. 

 

Analytical performance of the assay is demonstrated with relatively low root means 

square error (RMSE), which describes the quality of fitting of a regression model. The 

predictions were obtained with an  error of only 0.004 for pH (Figure 4.12-A), 0.437 for 

temperature (Figure 4.12-B), 0.049 for DO (Figure 4.12-C) and 6.818 for PB 

concentration (Figure 4.12-D). The slightly higher RMSE obtained for PB concentration 

is probably because sensitivity of fluorescent dye selected for salt detection is lower 

then sensitivities of other dyes. The RMSE values seem acceptable especially for 

measurements at the low PB concentration range. 

 
In these studies the combination of fluorescence signals of dye assay as a response to 

simultaneous changes of four parameters in the environment together with ANN 

allowed quick and accurate analysis of all these parameters. 
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Figure 4.12: Correlation between actual (measured) and determined by ANN values of pH (A), 
temperature (B), DO concentration (C) and PB concentration (D). Points marked as circles (○) indicate 
mean values of data points of ANN simulations of unseen samples. Diagonal line (         ) indicates best 
linear fit of data points and the line ( – • – ) indicates ideal response with zero error. Error bars indicate 
standard deviation. 

A) B) 

C) D) 
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4.4 Conclusion 

 

The suitable mixture of five fluorescent dyes was designed with separation of their 

intensity maxima sufficient for discreet reading of the emission intensity changes of 

individual dyes in response to the changes of the tested environment. 

 

The assay composed of the mixture fluorescent dyes combined with an ANN has been 

successfully developed for measurements of pH, temperature, dissolved oxygen and 

ionic strength of a solution. The obtained results have demonstrated high accuracy of 

the assay in simultaneous identification and calculation of several physicochemical 

parameters. Analytical performance of the assay was given by relatively low RMSE. 

 

The ANN has shown promising ability in adapting and modelling the non-linear 

changes in the investigated systems, and providing accurate data analysis for measured 

solutions and prediction of simultaneously changes of several parameters. 

 

The performance of the network can be improved by optimising the control factors such 

as momentum, learning rate, number of epoch or performance goal. This can reduce the 

error in the estimation of target parameters. 

 

The selected fluorescent dyes were stable, soluble in water and had emission in VIS-

NIR region making them attractive for analysis of biological samples. 

 

The response time of dyes mixture to all analytes is very short (<1 min, the time for 

fluorescence scan to be taken) therefore the assay can be suitable for real-time 

measurements. 
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5. Fourth objective: testing optical assay with biological 

samples 

 
 
5.1 Introduction 

 

Considering the recent surge of attention to optical diagnostics, especially in the field of 

real-time detection in vivo, which is essential for biotechnology and clinical diagnostics, 

the development of an optical assay aimed not only at precise quantitative analysis of 

different analytes and physicochemical parameters of samples, but also at their 

qualitative characterisation. Sufficient diagnostics not always require exact 

concentration of individual compounds but rather tend to determine general condition of 

analysed samples. This usually depends on measurements of changes of various 

parameters and analytes. Therefore it would be more practical if the specificity of a 

device is related to recognition of response patterns obtained from overall interaction 

between a sample and all sensing elements. In this case the analytical capability of the 

system can lie in profiling the chemical or biological processes which occur in the 

samples and enable their qualitative analysis. 

 

In this chapter the possibility of using the assay for such analysis is investigated. This 

study has been done to prove the general and diverse analytical ability of the assay. The 

successful development of the device would be of the great importance for many 

scientific and industrial sectors, improving the quality, speed of measurements and 

reducing their costs. 

 

Using pattern recognition the mixture of dyes was tested on its ability to monitor 

development phases of cell cultures, identification of different strains of cells and 

diagnosis of several gastrointestinal diseases in human. The mixture of five fluorescent 

dyes while contacting with samples, generated fluorescence patterns distinctive for 

different environmental or medical conditions. Using chemometrics these patterns were 

analysed and the optical signal was further transferred into analytical characteristics of 

measured solutions. 

 



 

 102 

5.2 Identification of growing phases of cell cultures  

 

The majority of microorganisms have no significant impact on human life, but many 

certain types of bacteria, fungi, viruses or parasites are very important considering their 

beneficial or harmful effects. 

 

To control of the growth of microorganisms is necessary for many practical reasons, e.g. 

in medicine (prevention and treatment of diseases, production of drugs),  food industry 

(improving process of fermentation, food safety, controlling food spoilage) or 

agriculture science (indicating disinfection and sanitation, water, soil quality and 

fertility) (Shearer et al., 2009; McMeekin et al., 2010; Corbin et al., 2008; Hornung et 

al., 2009). This involves the identification of the phases of microbial growth to inhibit 

the process or recognise and learn favourable environmental conditions, which they 

need to live and reproduce (Kim et al., 2004; Ingraham et al., 1983). 

 

In this chapter, the feasibility of the proposed approach to control microbial different 

development phases using the optical assay has been tested in growing Escherichia coli 

cultures. 

 

5.2.1 Experimental part 

 

Sample preparation 

The bacterial strain used in the experiment was Escherichia coli (JM 83) received from 

Dr Judith Taylor, Cranfield Health (Cranfield University). Bacteria were recovered from 

frozen state by growing them in a Miller LB broth (Fluka Biochemica, Cat No. 

1.10285), solution of 12.5 g of the medium in 0.5 L of Milli-Q water, overnight at 37 oC 

and subcultured. A petri dish containing E. coli is shown in Figure 5.1. The bacteria 

colonies were transferred into centrifuge tubes filled with 20 ml of liquid medium and 

incubated for 60 hours at 37 oC (Stanier et al., 1987). The tubes with bacteria cells were 

collected at different intervals and centrifuged at 2800 rpm for 20 min. The supernatant 

was filtrated through a 0.22 µm filters and 3 ml of the filtrate were transferred into 
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quartz cuvette. 100 µl of the mixture of fluorescent dyes (concentrations pacified in 

Chapter 4.2.1) was added to cuvette and the fluorescence of the dyes was measured. 

 
 
 

 

 

 

 

 

 

 

 

Figure 5.1: E. coli growing on the nutrient agar plate. 
 

 
Instrumentation 

Absorption spectra of bacteria suspension at different growing phases were measured 

with Spectrometer (UVPC 2100, Shimadzu, Japan) at 550 nm. The fluorescence 

measurements were carried out with 3D spectrofluorometer (see description and 

specifications in Chapter 3.3.3). 

 

Data evaluation 

The obtained fluorescence patterns were analysed using an ANN based on changes of 

the height of the intensity peaks of fluorescent dyes caused by interactions with its 

surrounding media. The model network was created based on a feedforward network 

described in Chapter 4.2.4-B. All network control factors  were chosen by  default. 

 

The network and trained on data patterns of samples of known identity (45 samples with 

known time of bacteria growth from 0 to 60 hours) using Bayesian backpropagation of 

errors. Once the ANN was trained an unseen set of data was used for the model 

evaluation (18 previously unseen samples). Based on learning experience, the network 

was capable of identifying unknown fluorescent fingerprints and predicts outputs 

(identifying test solutions). 
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5.2.2 Results and discussion 

 

In the analysis of bacteria growth the mixture of dyes was added to supernatants taken 

from suspensions of growing microrganisms. Samples were collected at different 

intervals of time. Bacterial growth was monitored by measuring the absorption of the 

suspensions. 

 

The example of a growth curve obtained for pure culture of E. coli (subcultured and left 

to grow) is presented in Figure 5.2. The curve demonstrated two main phases of bacteria 

growth (exponential and stationary phase of growth) (Ingraham et al., 1983). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.2: Growth curve of E. coli culture showing exponential and stationary phase of bacteria growth. 
 

 

It can be seen that for the first ten hours (after the bacteria culture was transferred to a 

fresh medium) that there is a rapid increase in the absorption of bacteria suspension. 

Then, the increase of absorption stopped and it remained more or less constant. This 

corresponds to the intensive growth of bacteria culture while it is in the fresh medium, 

rich in nutrients. After they are consumed the culture stops growing and enter the 

stationary phase, when growth becomes unbalanced. 
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The curve presented in Figure 5.2 demonstrates control measurements performed along 

with fluorescence measurements of bacteria culture growth phases using an optical 

assay (see Figure 5.3). To avoid contamination of bacteria, the pure culture was 

subcultured to the series of tubes for independent testing (Stanier et al., 1987). In certain 

time periods the suspension from one of the tubes was used in fluorescence 

measurements and the rest was left to grow for longer. The fluorescence measurements 

were performed by adding the mixture of fluorescent dyes to 3 ml of supernatant, which 

was taken from the tube containing a suspension of growing cells.  The experiment was 

performed in triplicate. The maximum of fluorescence intensity of each dye is plotted as 

a function of time of bacteria growth. 

 
 

 
Figure 5.3: Changes in fluorescence intensity of five dyes of the mixture vs. time of bacteria growth. Dye 
1 is HPTS, Dye 2 is OG514, Dye 3 is RB, Dye 4 is RuBpy, Dye 5 is THA. Measurements were 
performed in bacterial supernatant obtained from growing E.coli. 
 

 

As Figure 5.3 shows these results correspond to the absorption measurements presented 

in Figure 5.2. The most significant changes in the absorption were observed during first 

10 hours of the cell growth. Similar results were obtained for measurements of 

fluorescence intensity of the dyes mixture for different growing phases of bacteria. 
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Additionally, control measurements were performed using samples consisting of the 

mixture of fluorescence dyes in solution of only the medium, without growing cells (LB 

broth). They were kept in the same condition as diagnosed samples. Results for controls 

are presented in Figure 5.4 and show no changes in fluorescence intensity of dyes, 

therefore the changes in fluorescence for cell suspensions (see Figure 5.3) were caused 

by the presence of bacteria. 

 
 

Figure 5.4: Control measurements of fluorescence intensity of the mixture of five dyes in LB broth. Dye 
1 is HPTS, Dye 2 is OG514, Dye 3 is RB, Dye 4 is RuBpy, Dye 5 is THA. 
 

 

The collected fluorescence patterns were analysed using an ANN based on changes of 

the height of the intensity peaks of fluorescent dyes. The model network, which has 

been previously optimised for simulations of four different parameters, was applied in 

the current experiment and revealed high efficiency. Similar to quantitative analysis of 

samples, the ability of the model network was tested by its training on data patterns of 

known identity (the known time of bacteria growth) and used this knowledge to 

determine the time of growth of bacteria in unknown suspensions (previously unseen 

samples). 
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Results of ANN predictions are shown in Figure 5.5. The graph illustrates the 

correlation between real (measured) time of growth of bacteria culture (x axis), and the 

time predicted by ANN (y axis). Circles (○) indicate the mean values of data points of 

the network prediction and error bars indicate standard deviation. The accurate 

prediction of time using ANN is demonstrated with the root means square error (RMSE) 

of 6.41. 

 

 

 

 

These promising  results indicate that it is possible to use the fluorescence signals of a 

dye assay combined with ANN model in the determination of bacterial presence and 

their growth phases, which might be helpful for analysis of the quality of medical, food 

or environmental samples. 

 

Further analysis can be improved by investigation of particular factors which affect 

bacteria growth, such as pH, oxygen, salt, sugars or nutrients concentration (Spaepen et 

Figure 5.5: Correlation between actual (measured) and determined by ANN time of growth of bacteria 
culture. Points marked as circles (○) indicate mean values of data points of ANN simulations of unseen 
samples. Diagonal line (         ) indicates best linear fit of data points and the line ( – • – ) indicates ideal 
response with zero error. Error bars indicate standard deviation. 
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al., 2009). Usually, these parameters are optimal for one strain but they vary for others 

and can change frequently the natural environment affecting differently the growth of 

particular strain of microorganisms. Thus it is important to know the actual effects of 

these factors on the growth of microbial. 

 

The current results are useful for controlling the growth rate of microorganisms and 

promising for the future, but for comprehensive control, to inhibit unwanted strain from 

growing, such as human pathogenic bacteria or to improve the development of the 

advantageous ones, the impact of certain factors on their growth should be better 

understood. 

 

5.3 Discrimination between cell strains using mixture of fluorescent dyes 

 

The next objective in the examination of analytical capability of the optical assay was to 

test the possibility of application of the mixture of fluorescent dyes to differentiate 

between two microbial species. As mentioned at the beginning of previous chapter, 

identification of certain kinds of microorganisms is very useful in many fields of 

science and industry for fast and robust recognition of specific strains, which can be 

useful for supplying products to improve human lives or harmful, causing diseases 

(Kopsahelis et al., 2009; Aneesh et al., 2009). 

 

This approach has been carried out using two different strains of yeast. 

 

5.3.1 Experimental part 

 

Sample preparation 

Two strains of yeasts used in the experiments were Debaryomyces Hansenii CBS. 941 

and pink yeast - occurring naturally. Both strains were provided by Prof Naresh Magan 

from Applied Mycology Group, Cranfield Health (Cranfield University).  Yeast cultures 

were grown in solidified agar plates containing the Malt Extract Agar (solution of 12.5 

g of the medium in 0.5 L of Milli-Q water) and 100 ppm chloramphenicol at 25 oC and 

subcultured until pure colonies were obtained (see Figure 5.6, white yeast (left) and 
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pink yeast (right)). Then they were transferred into six tubes (three tubes for each kind 

of yeast) containing 20 ml of medium (solution of 1 g of the Yeast Extract Powder 

medium containing 1 g of glucose in 0.5 L of Milli-Q water) and incubated at 25 oC for 

12 hours. The supernatant from two strains of yeast suspensions was taken and filtrated 

through a 0.22 µm filter and collected in new tubes. 3 ml of liquid were transferred into 

quartz cuvette and mixed with 100 µl of the mixture of fluorescent dyes was added to 

cuvette and the fluorescence of the dyes was measured. The concentrations of dyes are 

reported in Chapter 4.2.1. 

 
 

 

Figure 5.6: White yeast (left) and pink yeast (right) growing on nutrient agar plate. 
 

 

Instrumentation 

The fluorescence measurements were carried out with 3D spectrofluorometer (see 

description and specifications in Chapter 3.3.3). 

 

Data evaluation 

The spectral characteristics of dyes mixture and changes caused by interactions with its 

surroundings were analysed using Principal Component Analysis (PCA). PCA was 

performed in Matlab (version 7.3.0, MathWorks Inc., 2006) using the PLS Toolbox 

(version 3.5). 
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The analysis of two strains of yeasts was based on changes of whole fluorescence 

spectra of the dye mixture. 

 

5.3.2 Results and discussion 

 

The investigation involved determining whether the two strains of yeast could be 

distinguished from one another. Measurements of fluorescence intensity of the dye 

mixture were performed in supernatant of a solution of two strains of yeasts (white and 

pink) using 3D spectrofluorometer. To exclude the impact of the concentration of cells 

on measurements, the experiment was carried out in triplicate sets of each type of 

yeasts. They were subcultured from solidified agar plate into three separate liquid 

medium and left to grow independently. Figure 5.7 shows the resulting PCA scores plot 

for these three replicates of each kind of yeast with a good separation of two clusters.  

The green triangles indicate pink and orange dots white yeasts. 

 

 
Figure 5.7: PCA score plot showing distinction between two different strains of yeasts. 
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Two independent variables (PCs) found accounted for 62 % of the variance within data 

set. This might indicate positively that the distinction between two strains of cell was 

possible. However, orange dots are clustered tightly together and the triangles are far 

apart. This suggests that the identification of white yeast could be easier than pink yeast, 

which did not give well repetitions in their fluorescence patterns. It would be therefore 

sufficient to control the exact concentration level of the cells in future measurements, to 

be sure that their effect on the fluorescence signal can be definitely excluded. Later it 

would also be practical to use more than two types of microorganisms (at least three), to 

allow more judgemental discussion and to increase the degree of certainty on the result. 

 

5.4 Recognition of various gastrointestinal diseases in human 

 

The final test of the optical assay analytical capability was performed on human urine 

samples for recognition of several gastrointestinal diseases (Crohn's disease, ulcerative 

colitis and irritable bowel syndrome). These chronic diseases are currently serious 

public health problems, which have been forecasted to increase further in most countries 

around the world (Underhill et al., 2008; Reiff et al., 2010). The identification of the 

symptoms, early diagnosis and treatment of these diseases is still challenging because 

the etiology and factors causing these complex disorders are yet not well known. 

Therefore, their mechanisms are difficult to explain, various types difficult to 

discriminate and therapeutic targets  hard to identify (Wijmenga, 2005; Meuwis et al., 

2008). Typically, their diagnosis involves many analytical tests which are often  costly 

and invasive. Therefore it is of a great importance to search for the suitable and 

sensitive method for controlling gastrointestinal microbiota and early detection of 

dangerous pathogens (Neish, 2009). 

 

The code of practice (COP) for safely handling of clinical / biological samples is 

included in Appendix B.1. 
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5.4.1 Experimental part 

 

Sample collection 

The urine samples were taken from volunteers at Addenbrookes Hospital and provided 

by Dr Claire Turner, Head of the Volatiles Research Group, Cranfield Health, Cranfield 

University (the copy of the ethics approval is in Appendix B.2). All volunteers were 

given information, consent forms to read and sign, and a questionnaire, which provide 

details on their diet, exercise, sleep, medication and general health ( a copy of these 

forms are included in Appendix B.3). 

 

Urine samples were taken from healthy volunteers (CTR) and patients diagnosed with 

either Crohn's disease (CD), ulcerative colitis (UC), or irritable bowel syndrome (IBS). 

They were obtained prior to any medical treatment. 

 

The samples were labelled with unique codes and stored in Addenbrookes Hospital at -

80˚C and then delivered to Cranfield University.  At Cranfield the samples were storied 

at -20 oC until analysed. Before the measurements, each sample was defrosted and 

transferred into centrifuge tubes and then centrifuged at 2800 rpm for 20 minutes. The 

supernatant was filtrated through a 0.45 µm glass fibber filters (recommended to use 

with biological samples such as plasma, urine, serum) (Phenomenex, 2009). 100 µl of 

the mixture of fluorescent dyes (concentrations pacified in Chapter 4.2.1) was added 

added into each sample supernatant and measured. 

 

Instrumentation 

The fluorescence measurements were carried out with the 3D spectrofluorometer (see 

description and specifications in Chapter 3.3.3). 

 

Data evaluation 

The excitation - emission fluorescence pattern obtained for each samples was first 

analysed using Principal Component Analysis (PCA). PCA was performed in Matlab 

(version 7.3.0, MathWorks Inc., 2006) using the PLS Toolbox (version 3.5) and then 
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ANN probability network was implemented to classify the data (Demuth et al., 2007). 

The architecture, algorithms and other parameters of this forward feed network were 

already developed and the modelling was performed in Matlab (version 7.3.0, 

MathWorks Inc., 2006) using the Neural Network Toolbox (version 5.0.1). 

 

The number of urine (pre-treatment) samples used in analysis included 9 control 

samples, 11 IBS samples, 6 CD samples and 6 UC samples. 

 

5.4.2 Results and Discussion 

 

The experiments were performed to test whether the dye assay was able to identify 

different gastrointestinal diseases and healthy control based on the fluorescence patterns 

obtained from human urine samples so patients could be diagnosed with CD, UC or 

IBS. 

 

Measurements of fluorescence intensity of the dye mixture were performed in 

supernatant of urine suspensions using the 3D spectrofluorometer based on changes of 

whole spectra of the dye mixture. Before measurements samples were centrifuged, 

filtrated and then, in the analysis the spectra were corrected by the background 

substraction. The examination was carried out based on the fluorescence signal from the 

assay. 

 

Data were first analysed using PCA to attained the most influential emission profiles 

from the EEM of each sample (Winquist et al., 2000). These were further used as inputs 

for the ANN probability network  to classify the three diseases from the healthy controls 

by assigning class values to the states: 1 for healthy; 2 for disease. Leave-one-out cross-

validation (LOO-CV) permitted each sample to be classified leading to an overall 

success of classification (Figure 5.8). LOO-CV is commonly used in chemimetrics 

crossvalidation method, where each sample is subsequently excluded from the dataset 

and others are used for training the network. The idea behind it is to predict the value of 

a compound from the regression equation obtained for the dataset of all other 

compounds. 
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Figure 5.8 shows the results of the combined PCA and ANN results which have been 

characterised by three features: specificity, which represents the number of true 

negatives (healthy samples). If the percentage of true negatives was 83% (83 out of 100 

healthy samples were classified correctly) then there would be 17% false positives (17 

out of 100 healthy samples incorrectly classified, classed as diseased), sensitivity 

represents the number of true positives (diseased samples). If the percentage of true 

positives were 92% (92 out of 100 diseased samples correctly classified), then there 

would be 8% false negatives (8 out of 100 diseased samples incorrectly classified, 

classed as healthy) and the last is overall success of discrimination. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8: Ability of the ANN to discriminate the three diseases from the healthy controls: % Overall 
means the overall success of discrimination; % Specificity means the success of distinguishing the 
healthy controls; % Sensitivity means the success of distinguishing the disease. 
 

 

Figure 5.8 illustrates that each disease can be discriminated from the healthy controls; 

for CD and UC, it can be seen that the healthy controls were all successfully classified 

(100%). The overall successes of discrimination (83%, 87%, and 97% for IBS, CD and 

UC respectively) show that the optical approach combined with chemometrics is highly 

promising. Identification of a number of true positives gave slightly worse results 
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especially for CD, 67%, but for IBS and UC (83% and 92% respectively) it remains 

relatively high. 

 

Summarising, the demonstrated results are very promising, but they still require further 

investigation such as the discrimination the diseases from one another, and comparing 

other classification techniques including multi-way techniques. 

 

5.5 Conclusions 

 

Following the approach of optical assay development for quantitative analysis of 

samples, it has been applied further for qualitative examination of complex biological 

samples. The specificity of the device based on the interferences between their various 

components and all fluorescence dyes. The analysis of acquired data was related to 

recognition of response fluorescence patterns which were unique to particular 

conditions and considered similar to fingerprints. 

 

Firstly, based on the response data patterns the assay proved to be capable to closely 

estimate different development phases of growing bacteria cells. However, for a final 

justification on this ability of the assay to control microbial rate growth, it is important 

to carry on testing of different microorganisms. If the result stays positive it could be of 

great importance especially in sectors of research of industry where bacteria are used for 

supply products beneficial for human life, such as food, pharmaceutical or cosmetic 

areas, but it is also essential for inhibition of dangerous pathogens or monitoring the 

bacteria, which are used for decomposition of waste materials.  

 

Another experiment which was carried out involved the discrimination between strains 

of yeasts (white and pink species). Although the discrimination was successful, it has 

been limited only to two types of yeasts and therefore it would be reasonable to expend 

the experiment to at least three different kinds of microorganims, which would give 

better view on the different types of variation in the patterns and would be closer to the 

natural environment thus provide more reliable results. 
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In the final experiment the optical assay was used for diagnosis of clinical samples 

(human urine) for recognition of three gastrointestinal diseases and healthy controls. It 

has been shown that by using this assay it was possible to discriminate between healthy 

patients and  those with different diseases and also differentiate Crohn's disease, 

ulcerative colitis end  irritable bowel syndrome. However, the technique does not give 

information on the composition of samples, however the promising results indicate  

possibility of using the assay for accurate, noninvasive, not expensive and quick 

diagnosis of human gastrointestinal microbiota. 
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6. Overall discussion and conclusions 

 

 
The leading objective of this thesis was to develop a novel, optical diagnostic assay with 

an operating principle similar to electronic nose and tongue sensors and to suggest its 

potential applications. This study was based on a mixture of fluorescence dyes pattern 

analysis for quantitative and qualitative characterisation of complex samples. 

 

The proposed optical assay was composed of a mixture of five environment-sensitive 

fluorescent dyes combined with chemometric techniques for the processing of 

distinctive spectra of the dye mixture in response to changes in environment. 

 

6.1 Dyes selection 

 

The appropriate fluorescence dyes were selected based on the published information on 

their physical and chemical properties, especially high sensitivities, good stability, 

suitable spectral characteristics, commercial availability and low price. They are well 

known dye-indicators for pH, temperature or DO concentration and characterised by 

low photobleaching and high excitation coefficient, which are of a great importance in 

giving reliable results and improving the assay stability and efficiency. 

 

It was also advantageous that in the selection of dyes the cross-sensitivity was not an 

issue, which has been an significant problem in the research on optical sensors before. 

The selective dyes had to be sensitive to target analyte without  cross-interferences with 

others. This approach is however almost impossible to realise in real samples and 

outside control, laboratory conditions. In this approach various compounds of samples 

are detected by all elements of the assay,  all dyes in the mixture, and combine with 

chemometrics to process this data, easy to understand by users. 

 

Experimental studies on the dye mixture were in a close correlation with data from the 

literature. The assay has revealed high sensitivity within a wide dynamic range for the 

given parameters and similar excitation and emission wavelengths, advantageous shifted 
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of about 20 nm to longer values in excitation for  rhodamine B (from 519 to 541 nm),  

oregon green 514 (from 480 to 504 nm), tris (4,7 - diphenyl - 1,10 - phenanthroline) 

ruthenium dichloride (from 440 to 463 nm) and thionin acetate (from 520 to 541 nm). 

Values in the emission wavelengths changed only for thionin acetate (from 623 to 638 

nm) and 8 – hydroxypyrene - 1’,3,6 - trisulfonic acid did not change its fluorescence 

spectrum. Therefore, the mixture of dyes did not have a significant impact on the dyes  

spectral characteristics however it affected their stability. When dyes have been stored 

as separate solutions and mixed together before measurements, the same stock solutions 

could be used for months but when their mixture was stored, dyes were permanently 

losing their ability to fluoresce after one day.  This was however tested only when the 

stock solutions of dyes were prepared in water. Therefore, their stability might be 

improved through the preparation of high concentrated mixture of dyes in organic 

solvent and then dissolved the mixture in water before measurements, or dry the 

mixture, and then when necessary, dissolve the powder. 

 

This approach gives also the possibility of modification of mixture of  dyes by choosing 

dyes with different properties, depending on the various requirements (eg. sensitivity,  

excitation and emission wavelengths or decay time). 

 

6.2 Quantitative and qualitative analysis 

 
Since different dyes with varying sensitivities were included in the mixture, the assay 

has been proposed for multiply measurements of several parameters such as pH, 

temperature and dissolved oxygen concentration in a single sample. Such ability can be 

crucial for quantitative analysis, especially when these parameters or analytes changing 

simultaneously. In addition, a mixture of dyes may reveal an enhanced sensitivity to 

other parameters than those defined, like it happened with salt concentration of a buffer 

solution. It increases, the assay’s ability to determine more then four parameters at the 

same place and time and thus enabled chemical or physicochemical sensors to be 

compensated for the effect of pH, temperature, oxygen or salt level when compared 

with monosensors. 
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This feature would be useful especially for qualitative study of clinical, food or 

environmental samples wherein changes are usually triggered by more than one factor 

and when these factors interfere with each other. Thus, the combination of several 

different dyes with known sensitivities could allow specific assay to be made more 

unspecific if necessary. Using the assay enables also smaller samples volume to be 

analysed for more information being provided. It is especially important when the 

volume of the sample is limited (eg. clinical samples). 

 

In the first approach, the mixture of dyes was combined with ANN for determination 

and quantification of four parameters, such as pH temperature, DO and ionic strength of 

PB buffer. Measurements were carried out in two stages. Initially, only one parameter of 

the solution was changing while others were kept constant and later all four parameters 

have been changed and the analysis of the simultaneous determination of four 

parameters was tested. 

 

ANN has showed great ability to adapt and model non-linear changes of fluorescence 

patterns and accurate determination of given parameters for all measured solutions. 

Presented experiments have shown that the structure of model network depended on the 

complexity of the analysed problem. While single parameter of the sample was 

changing and others were constant, the prediction model network was based on simple 

linear neural network classifier, revealed  sufficient enough to allow quick and accurate 

predictions. In a more complicated approach, when several parameters had to be 

simultaneously determined, the network performance was enhanced by using a more 

advanced model. This included modification of a structure by increasing the number of 

neurons in the hidden layer and optimisation of control factors and algorithm used in the  

network learning process. 

 

The ANN was also used for qualitative analysis of biological samples and determination 

of growth rate of microbial as well as identification and classification of clinical 

samples from patients with different gastrointestinal conditions. Obtained results were 

promising and have shown that the optical assay combined with ANN can also be used 

as a helpful tool to control development phases of cell cultures and diagnosis of clinical 
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samples. It suggests wide and diverse applications including biological, clinical and 

environmental analysis. 

 

Beside ANN, PCA have been applied in the processing of the acquired fluorescence 

patterns of the dyes mixture for discrimination between two strains of yeasts. PCA has 

shown the ability for profiling the data and by extracting the “dominant patterns” in the 

dataset, it allowed the observation of the relationships between the samples, suggesting 

some differences or similarities among them. 

 

The main limitation of PCA is that this method is not optimised for data classification 

and does not account for class separation. The results of the PCA recognition do not 

guarantee that assign directions of maximum variance in the data will contain sufficient 

features for discrimination of new samples. Thus, the information is not fully reliable 

and therefore further classification of samples should be made using a different and 

more advanced method. This was demonstrated in the last experiment, when patients 

with different gastrointestinal conditions had to be identified and PCA was used for data 

pre-treatment. It was performed to reduce the number of variables prior to ANN 

modelling. 

 

These initial experiments and promising results demonstrated the potential of using the 

optical assay and chemometrics as a new marker for rapid screening of specific diseases 

and other complex disorders or contaminants and diverse changes in biological or 

environmental samples. This work has shown that the type of cell cultures, their age, as 

well as the microbial species and cell lines, all influence fluorescence pattern of the 

mixture of dyes. However, the assay should be further tested, especially for the ability 

of qualitative analysis at low concentrations, which is of the great importance for 

prevention, early diagnosis or immediate treatment implementation. 
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6.3 Suggestions and future work 

 

The presented work provides the basis and practical framework for the future 

development of the optical assay. Although, a number of open issues related to its 

implementation must be solved in order to complete the statement of the assay 

performance, feasibility and benefits of its applications, it was expected that this 

research will provide guidance and encouragement for the future research on similar 

optical systems. 

 

Further investigation should involve additional tests of the assay on other biological, 

clinical and environmental samples, e.g. waste water, food, soil, or human blood 

samples. It is advisable to try to discriminate between fluorescence patters of more than 

two microbial species and analyse their responses to different environmental conditions, 

which could improve the qualitative control of food or environmental samples by 

establishing the correlation between specific factors and samples quality, and provide an 

easy and efficient screening method. It would also be interesting to try to identify and 

quantify the parameters or compounds responsible for such changes in the fluorescence 

patterns. This would help to understand the physiology of the processes and enable their 

regulation. Additionally, it could be helpful for development of a sensor for detection 

and monitoring of specific compounds or parameters within biological or environmental 

samples and define the assay detection limit. However it has been done in buffer 

solution, never for biological media. 

 
To claim the potential of using the optical assay also for medical applications it is 

important to make more tests on clinical samples. Additionally, it is decisive to optimise 

the data analysis and automate the system. Although much work is still required before 

the system is ready for clinical studies, initial experiments have been done towards 

attaining this goal. 

 
Another issue in question is the assay stability. Further studies should include the 

integration of fluorescent dyes with polymers in order to increase the assay thermal and 

chemical stability and also to reduce possible toxicity of dyes for in vivo applications. 
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The major plan for the future includes using the optical assay as a smart ‘vanishing 

tattoo’ (similar to temporary child’s tattoos), which could be painlessly impregnated 

into the human skin and applied for the real-time multi detection and monitoring of 

physiological parameters and chemical analytes in the human body (this idea was 

already mentioned  in Chapter 2.2). Such a smart tattoo can possibly be applied in 

routine clinical diagnostics, general therapeutic management, skin care, cosmetic 

products testing or monitoring transcutaneous drug delivery. 

 

Skin diagnostics may include measurements of physiological parameter and metabolites 

concentrated within human skin. It is an area of increasing interest especially for the 

pharmaceutical and cosmetic industries. Skin monitoring is also important for 

understanding and improving drug efficiency. 

 
The basic parameters, which can be monitored within the human skin, are: pH (pH 4.0-

6.0), redox sensitivity, temperature (32-35 oC), humidity, and the level of oxygenation 

(5.3 kPa (40 mmHg), the average partial pressure of oxygen (pO2) in a tissue). The 

main metabolites that can be detected, and their levels, include: glucose, saccharides, 

oxygen, creatinine, lactic acid and urea. 

 

The pH of human skin is acidic and varies from pH 4.0-6.0 (Buraczewska et al., 2005). 

The pH is an important parameter and with, for example; the skin thickness, moisture 

and temperature, can play a crucial role for the skin permeability, its barrier function 

and its recovery (Lee et al., 2006; Martinez-Pla et al., 2003). This can have an impact in 

the pharmaceutical industry, (solubility and partitioning of drugs in the skin layers), and 

for skin care. With age skin’s pH becomes more neutral and thus more susceptible to 

bacterial growth and infections, as the reduced acidity of the skin can kill fewer 

bacteria. However, it is important to maintain the right microflora of the skin, and 

therefore, the normal pH and the moisture for each skin type. 

 

Another physiological parameter that is important to control in human skin is the redox 

status. The skin is constantly exposed to chemical oxidants, air pollutants and 

ultraviolet (UV) solar light, which is the major generator for   reactive oxygen species 

(ROS) that induct oxidative stress (Briganti et al., 2003; Ziosi et al., 2006). The skin 
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antioxidant network protects cells against oxidative injury, but when the oxidative stress 

overwhelms the skin antioxidant capacity, degenerative processes begin to occur. This 

can lead to many diseases (including skin cancer). 

 

Other compounds used for detection and monitoring in the skin are saccharides or 

glucose. Knowing the glucose level is especially important for diabetics. They suffer 

from a chronic disease, diabetes, which affects the ability of the body to produce or 

respond to insulin, the hormone that allows glucose to enter the body’s cells and to be 

stored or used for energy. Most diabetics require insulin injections, and most of the time 

they have to carefully monitor and manage their blood glucose levels themselves. 

Because glucose levels can fluctuate widely throughout the day for optimal control they 

have to do the blood test several times a day (usually from finger pricks). Therefore, 

novel, rapid and minimal-invasive method for measurements of glucose level could 

have a significant impact on new developments in medicine. 

 

Also, the quantitative visualisation of oxygen flux or molecular oxygen distribution in 

the skin is very important for medical diagnosis. The oxygen content in the skin can 

indicate its viability. Monitoring the level of creatinine, lactic acid, urea and other 

metabolites concentrated in human skin is also possible and important to control. 

 

The essential task in the approach would be the integration of fluorescent dye mixture 

with polymers, not only to improve its stability but also to facilitate the controlled 

delivery of the dyes into the skin. Additionally, it should reduce toxicity of dyes and 

risk of possible reaction in patients. Therefore, the choice of suitable polymers used for 

dyes conjugation would be extremely important. Next, the toxicity of dyes-polymer  

conjugates must be analysed in in vitro tests. 

 

The long term plan also includes the development and optimisation of geometry of the 

vanishing tattoo pattern, delivery protocol for skin impregnation and industrial 

prototypes for the signal processing. 

 

The optical properities of human skin are described in Appendix C1. 
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Appendix A: Matlab pseudo-codes 

 
 
A.1. Illustration, adding and subtracting 3D fluorescent spectra 

 
% Clear variables and close figures 

% Import SPC file 

% Plot and colour 3D surface 
% Set properties (pixels) 
% Replace pixel numbers with wavelength values 
% Label axes 

% Plot intensity image 
% Flipped intensity matrix vertically 
% Set properties (pixels) 
% Replace pixel numbers with wavelength values 
% Label axes 

% Choose the next step of procedure to add, subtract or finish 

% Use ‘while’ loop and ‘if’ loops 

while (condition = ADD OR SUBSTRACT) do 

if (condition statemen = ADD) 

% Select next SPC file  
% Import SPC file 
% Add selected SPC file 
% Display summarised 3D and intensity plot 

elseif (condition statemen = SUBSTRACT) 

% Select next SPC file 
% Import SPC file 
% Substract selected SPC file 
% Display subtracted plot 

end 

if (condition statemen = FINISH) 

% Ask if import backgroaund SPC file (Yes / No) 
if (condition statemen = No) 
% No file is imported 

break 

end 
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if (condition statemen = Yes) 

% Select background SPC file 
% Import background SPC file 
% Substract selected SPC file 
% Display summarised 3D and intensity plot 

end 
end 

end 
 

pause 
 

 
A.2. ANN design and simulation for four parameters 

 

% Clear variables and close figures 

% LOAD and SPLIT data into training and test sets 

% NORMALISE training and test sets 

% CHOOSE the parameter you want to simulate 

% Use SWITH LOOP for different user entries 
switch user_entry (condition statement) 

case ' condition statement 1' 
% load variables for pH simulation 

case ' condition statement 2' 
% load variables for temperature simulation 

case ' condition statement 3' 
% load variables for dissolved DO simulation 

case ' condition statement 4' 
% load variables for pH simulation 

otherwise 
% diplay  unknown   parameter 

End 

 

if (condition statement = 1 OR condition statement = 2 OR condition statement = 3 OR 
condition statement = 4) 

% DEFINE the number of training cycles (j) and neurons in hidden layer (i) 

for j = ‘epoch’ 
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for i = ‘neurons’ 

% CREATE the model network 
% set transfer functions and training function 
% set training parameters (number of epochs for each run, epochs between 
displays, performance goal, initial momentum) 

% TRAIN and TEST the network (simulate target parameter) 

% CALCULATE mean square error (MSE) and standard deviation (STD) 

% PLOT the network outputs and error bars 

% Perform REGRESSION analysis 

% SAVE results 

close 

end 

end 

else 
% do not perform simulation; end program 

end 

% ASK to run again (Yes / Nn) 
if (Yes) 

% RUN again 

else 
% do not ask again; end program 

end 
 
end 
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Appendix B: Code of practice and content forms 

 
 
B.1. Code of practice (COP) 
 

Cranfield Health 
(Updated February 2008) 

 

CODE OF PRACTICE 
 

Handling of Clinical / Biological Samples 
 

_____________________________________________________________________ 
 
This code of practice describes how to safely handle and dispose of clinical / biological 
samples including blood, urine and faeces and must be strictly observed.  It is your 

responsibility to ensure that that you do not endanger the health of your co-

workers.  If you do not understand anything, ask for help / advice  from the Biological 
Safety Officer (BSO), Mr R E Ashby. 
_____________________________________________________________________ 
 
 
GENERAL 
 
1. All biological samples must be viewed and treated as being a possible source of 

infection and therefore a biohazard until evidence is obtained to the contrary. 
 
2. Before receiving any biological / clinical samples, a risk assessment must be 

completed, outlining the source, tissue type and details of the proposed study. 
 
3. Do not accept any samples known to be infected with HIV, Hepatitis B, Hepatitis C, 

Tuberculosis or MRSA. 
 
4. Samples can only be accepted if they are received in clearly labelled sealed tubes / 

vials.  If in doubt about any samples do not bring them into Cranfield Health. 
 
 
HANDLING OF SAMPLES 
 
5. Only competent trained personnel should handle biological / clinical samples.  All 

personnel handling human specimens must be immunised against Hepatitis B 
(details are available from the Medical Centre). 

 
6. Laboratory coats, disposable gloves (free from holes) and eye protection must be 

worn at all times when handling samples. 
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7. Clinical / biological samples must only be handled in P2 designated laboratories  
and the appropriate laboratory practices described in the Code of Practice for 
Microbiological Safety adopted (e.g no mouth pipetting, eating, drinking, or pencil 
chewing in the laboratory). 

 
8. All manipulations should be carried out, as far as possible, within a contained area 

of the bench e.g. on a plastic tray.  This will contain any spillages  and minimise any 
inadvertent contamination of the environment.  All surfaces must be thoroughly 
cleaned with 1% Virkon after use, allowing 15 minutes contact time, prior to finally 
washing with water. 

 
9. Extreme care must be employed if hypodermic needles are required during sample 

handling. Any needles must be disposed of in a Sharps Bin which will be sent as 
Hazardous Waste when full. 

 

AEROSOLS AND SAFETY CABINETS 
 
10. Activities likely to cause the production of aerosols, e.g. homogenisation of 

samples, must be carried out within a Class 1 Biological Safety Cabinet.  The safety 
cabinet must be cleaned with 1% Virkon (as described in Section 8) after every use. 

 

ACCIDENTS AND SPILLAGES 
 
11. All accidents / incidents, however minor, must be reported to the Laboratory 

Manager, Mr R E Ashby who will record the nature of the injury / incident  and the 
perceived risk of infection. 

 
12. All spillages must be disinfected / inactivated using an excess of 2% Virkon (contact 

time must be 15 minutes) prior to washing with excess water (see SOP 1056) 
 

DISPOSAL 
 
13. Treatment of liquid biological waste and dirty glassware / pipettes should be as 

described in SOP 1057 for the disinfection of mammalian cell culture items. 
 
14.  Solid clinical samples, tissues and any disposables must be placed in a supported 

autoclave bag  and at the end of the day autoclaved.  It is the responsibility of the 
operator to ensure that an adequate process is given (see appropriate SOP ? ). 
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B.2. Ethics approval form 
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B.3. Information and consent forms 
 
B.3.1. Information form 
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B.3.2. Content forms 
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B.3.3. Questionnaire 
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Appendix C: Human skin properties 

 
 
Skin is one of the most important parts of the human body (Boon et al., 2006; Freinkel 

et al., 2001). Problems with the skin can affect people of all ages. Complaints include 

not only skin diseases, but also appearance and general skin conditions. Healthy and 

attractive skin is important for most people, because it is one of the main components of 

the image they present to the outside world. Therefore, it is desirable for it to be 

physically resilient (i.e. stretch and shrinkage), and highly active metabolically. Weak 

and unhealthy skin can be a sign of the abnormal state of the body. To prevent many of 

these problems it is important to diagnose the medical condition of the skin and find its 

possible meaning. Therefore, monitoring skin properties is important for various 

cosmetic and clinical applications. Utilising modern technology could be an opportunity 

for fast and possibly low cost monitoring of the skin, which could test the validity, 

safety and efficiency of pharmaceutical and cosmetic products. Because many types of 

human skin are presented, the real-time, painless diagnosis and therapeutic monitoring 

of skin of particular patients and the interaction with products should be studied. In 

order to obtain a better description of the process involved, the structure and optical 

properties of the skin must be taken into account. 

 

C.1. The structure and functions of the skin 
 

The human skin is a multilayered and complex organ which covers and shapes the body. 

The skin consists of three main layers: epidermis, dermis and hypodermis (see Figure 

C.1). Each of these layers has its own structural and functional importance (Boon et al., 

2006; Freinkel et al., 2001). 
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Figure C.1: Three-dimensional, schematic drawing of the skin structure; thin hairy skin of the forearm. 
Adopted from (Procter & Gamble, P&G, 2006). 
 

The epidermis (thickness approximations for a selected set of body sites are given in 

Table D.1(Whitton et al., 1973); the most exterior layer includes four other layers that 

are arranged from the surface as 

follows: corneus (stratum corneum), 

grainy (stratum granulosum), spiny 

(stratum spinosum) and basic 

(stratum basale), see Figure C.2. 

Additionally, in the thick skin, 

between stratum corneum and 

stratum granulosum, lies fifth layer; 

stratum lucidum. The epidermis is 

mainly composed of keratinocytes 

and melanocytes, Langerhans cells, 

Merkel cells, and unmyelinated axons. The epidermis does not contain blood vessels 

and it is nourished by diffusion from the underlying dermis. It is responsible for 

waterproofing, skin colour, and serves as a protective barrier to infections. 

Figure C.2: Layer structure of the epidermis.  
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Table C.1: Mean values for full epidermal thickness. 
 

 

 

The dermis (1-4 mm thick), so called true skin, consists of two main dermal layers: 

upper (stratum papillare) located under the epidermis and real dermis (stratum 

reticulare), see Figure C.3 (Saddik, E., 2006). 

 

 
Figure C.3: Structure of the dermis: a) layers of the dermis, b) the papillary layer, made of loose tissue, 
forms dermal papillae, c) the reticular layer, dense irregular connective tissue. 
 

The dermis is less cellular than the epidermis, and its main component is the network of 

collagen and elastin fibers, crucial to skin tensile strength and elasticity. The dermis also 

consists of eccrine and apocrine glands, hair follicles, veins, nerves, and components of 
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extra cellular matrix eg. proteins and sugars. It interacts with the epidermis to repair and 

remodel the skin. 

 

The most interior layer is the 

hypodermis (1-6 mm thick) also called 

superficial fascia (Saddik, E., 2006) 

(Figure C.4). The blood vessels, nerves, 

lymph vessels, and hair follicles also 

cross through this layer. The hypodermis 

is considered as a thermal insulator and 

is the reserve energy supply for the 

body. This layer, together with the 

epidermis and the dermis, also protects internal organs from injury. 

 

C.2. Optical properties of the skin 
 

In the skin are different types of chromophores - molecules or substances able to absorb 

light. The structure of the skin and chromophores play a major role in signal distribution 

across the tissue. Therefore, they strongly affect the clinical diagnostic measurements 

when a signal returns from the skin and is analysed. 

 

Novel technologies for skin diagnosis are based on optical measurements. The impact 

on the process and the result are down to two main phenomena, which are light 

absorption and skin scattering (Lim, 1993). However, most of the applicable radiation 

does not return according to rules of regular reflectance (Anderson et al., 1982). The 

classic optical pathway in the skin is shown in Figure C.5. 

 

 

 

Figure C.4: Structure of the hypodermis. 
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Figure C.5: Schematic drawing of optical pathway in the skin. 
 

The regular reflectance includes only a small fraction of the incident beam. The rest of 

the radiation can be absorbed (taken up by other atoms or molecules), scattered 

(different direction of light propagation) or re-emitted as multi-scatter radiation 

(backwards light scatter) on any of the skin layer. Many studies of the optical properties 

of the human skin have been reported (Anderson et al., 1982; Bigio et al., 1997; Gillies 

et al., 2000; Zeng et al., 1997), but there is still a high level of research activity that can 

be directed towards the development of novel technologies for optical skin diagnostics 

(Bos et al., 2004; Meglinski et al., 2002). 

 

The first task of every optical diagnostic is to account for the loss of signal because of 

interaction with the numerous chromophores in human skin (Young, 1997). The main 

skin chromophores are summarised in Table C.2. 

 

Shorter wavelength light is absorbed mainly by aromatic amino acids (proteins), nucleic 

acids or urocanic acid. Melanin and hemoglobin absorb strongly in the ultraviolet (UV: 

330-400 nm) and visible (VIS: 400-700 nm) range of the spectrum. During the infrared 

(IR: 700-1600) region the strongest absorbers are water and deoxyhemoglobin (Kollias 

et al., 2000). 

 
Table C.2: Main chromophores found in human skin. Adoped form (Kollias et al., 2000). 
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The second important fact concerning optical skin properties and the application of non-

invasive techniques is the depht of the light penetration. This parameter describes how 

deep the light can penetrate the skin (Anderson et al., 1982; Churmakov et al., 2003) 

(Table C.3). As the wavelength of the incident light becomes longer, the light reaches 

deeper into the skin. In human skin, the near-infrared spectral range, (NIR 600–1600 

nm) has been defined as a good region for light penetration (Öberg, 2003; Richards-

Kortum et al., 1996). This part of the spectrum is called the ‘diagnostic window’ (or the 

‘therapeutic window’), the most practical region for medical diagnosis of the skin. 

 

 
Table C.3: The relationship between depth of penetration of incident light and wavelength in the case of 
caucasion skin. 
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