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SUMMARY 

This thesis aims to assist the development of a multiblock 

implicit Navier-Stokes code for hypersonic flow applications. 

There are mainly three topics, which concern the understanding 

of basic Riemann solvers, the implementing of implicit zonal 

method, and grid adaption for viscous flow. 

Three problems of Riemann solvers are investigated. The 

post-shock oscillation problem of slowly moving shocks is 

examined, especially for Roe's Riemann solver, and possible cures 

are suggested for both first and second order schemes. The 

carbuncle phenomenon associated with blunt body calculation is 

cured by a formula based on pressure gradient, which will not 

degrade the solutions for viscous calculations too much. The 

grid-dependent characteristic of current upwind schemes is also 

demonstrated. 

Several issues associated with implicit zonal methods are 

discussed. The effects of having different mesh sizes in 

different zones when shock present are examined with first order 

explicit scheme and such effects are shown to be unwanted 

therefore big mesh size change should be avoided. Several 

implicit schemes are tested for hypersonic flow. The 

conservative DDADI scheme is found to be the most robust one. A 

simple and robust implicit zonal method is demonstrated. A 

proper treatment of the diagonal Jacobian and choosing the 

updating method are found to be crucial. 



The final topic concerns the calculation and grid adaption 

of viscous flow. We study the linear advection-diffusion equation 

thoroughly. The results are unfortunately not applicable to 

Navier-Stokes equations directly. Nevertheless a suggestion on 

the mesh size control for viscous flow is made and demonstrated. 

An attempt to construct a cell-vertex TVD scheme is 

described in the appendix. 
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1 

CHAPTER 1: INTRODUCTION 

This work forms part of the French national project which 

aims to produce a multiblock implicit Navier-Stokes solver with 

real gas effects and a multiblock grid generator for hypersonic 

flow application (Mach number 4 to 20 steady state flow). 

Several organisations are involved while this work is part of 

the share of Dassault industries. 

This thesis does not cover the real gas effects and grid 

generation. We are only concerned with the single- and 

multi-zone solver in two dimension. 

1.1 General Theoretical Background 

The steady state solution is obtained by pseudo-unsteady 

method. Start with fixed boundary conditions and an a6itrary 

initial condition we compute the unsteady solution' until the 

solution state ceases to change. This final state is thus the 

steady state solution. 

The equations governing the compressible inviscid and 

viscous flow are the Euler and Navier-Stokes equations 

respectively. For viscous flow we are more interested in high 

Reynolds number flow,. which is convection dominated. The method 

used on such flow is mainly ., based on the method for Euler 

equations. 

Before one can- solve 'a partial differential equation 

numerically it is very important to understand the equation 

type. The unsteady Euler equations are hyperbolic in time. For 

the hyperbolic system the information is transferred with finite 

speed waves. The point at later time is only influenced by a 

limited domain in -previous time. - The hyperbolic system can 
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generate discontinuity solutions (shocks) even when the initial 

condition is smooth (Lax 1973). 

Another property of Euler equations is that it satisfies 

conservation law. A conservation law can be expressed as 

ätff1Wdv+ff9 Ns=o 

The first term is the time change of conservative variables W in 

the control volume V. The second term expressesthe net fluxes 

lt(w) across the surface S of the control volume. The 

conservation law simply says nothing is generated inside the 

control volume. The Euler equations have mass, momentum, and 

energy as conservative variables. The differential form of the 

conservation law is 
ýW + V=o 

The differential equation does not allow solutions with shocks 

(weak solutions). 

The Euler equations are thus a hyperbolic conservation 

system. The presence of shocks is probably the chief difficulty 

in solving a hyperbolic conservation system. A breakthrough was 

made by Lax (1954) who proved the limit solution of any 

finite-difference scheme in a conservative form can capture the 

discontinuities automatically. The idea of conservative scheme 

can be made clear by considering the one dimension case. 

Consider a scalar conservation law 

au Of 
ýt + Ox =o 

where the f is the flux function in x direction. With a central 

difference applied to the mesh of Fig. 1.1 we obtain a 

discretised equation at i: 
!k+ ih+1ý-fý-gis 

=0 ox 
The same discretisation applied to point i+l will give 

0U1,. 1 + f+M_fI+IA 
_o at ox 
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and for i-1 
äU, -I + 

fl-sn-fl-en 
.0 at Ax 

The sum of these three equations is a consistent discretisation 

of the conservation law from x-i-2/3 to i+2/3 since the fluxes 

at internal points cancel each other. This concept is easy to 

generalise to multidimension. 

To remain consistent with the conservation law the simplest 

way is to use finite-volume scheme. It approximates the 

integral form of conservation directly while the finite 

difference scheme uses the differential form. The FV approach 

guarantees conservation while the FD approach may not. Consider 

a grid with polygon cells one can write an integral form for 

each cell with area Aj 

� WdA +j o at 
The discretised equation associated with each cell is 

ät(AjW, )+E(V'-A=o 

where the sum of the flux terms are referred to all the external 

sides of the control cell Aj. 

How to approximate the fluxes at the faces is not a simple 

problem. Although the shock capturing (conservative scheme) 

scheme can capture shocks it usually generates wiggles around 

discontinuities. The wiggles can either decrease accuracy or 

even cause the computer code to stop. 

The classical shock capturing schemes use artificial 

dissipation to suppress the wiggles while the modern shock 

capturing schemes use a nonlinear filter to suppress the 

wiggles. The theory of producing monotone shocks is based on 

the nonlinear scalar equation (Godunov 1959, Van Leer 1973, 

Harten 1983)). To generalise itto3 system it is through the use 
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of the Riemann solver, which solves the Riemann problem. 

The Riemann problem is a classical initial value problem 

that can be posed for any hyperbolic system of equations. The 

initial data contains two constant states at the left and right 

sides of x=0. A Riemann problem and its solution for 1D Euler 

equation might look like Fig. 1.2. The solution is constant on 

each line (x/t)=constant, and consists of piecewise uniform 

regions separated by waves. A Riemann solver provides the waves 

information and therefore solution. The exact Riemann solver is 

usually computational expensive. Fortunately we do not need to 

use exact solution but a reasonable accurate solution is usually 

enough for numerical purposes. The nonexact Riemann solvers are 

often called approximate Riemann solvers (e. g. Roe 1981b, Osher 

1982). 

The Riemann solvers not only help one to generalise the 

schemes for scalar equation to systems but also make the schemes 

more physically based (Roe 1986a). In one dimension there are 

only two possible wave propagating directions. The 1D Riemann 

solver copes with this well. In two dimension the wave 

propagating directions are infinite. The two dimensional Riemann 

problem is too complicated to use numerically. The current 

solution is to consider the waves normal to the mesh boundaries 

only thus the 1D Riemann solver can be used on multidimension 

calculation. There are also more advanced-approaches under 

development which find the main wave propagating directions 

instead of depending on the mesh orientation (Roe 1986b, Hirsch 

1987). 
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In principal a finite volume scheme can be used on the grid 

consisted of any types of polygon. It is due to the accuracy 

and efficiency consideration that either quadrilateral or 

triangular grid are mainly used in two dimension. 

It is easier and simpler to obtain accurate solutions on 

meshes with regular cells than on irregular cells. Another 

problem is that the cell relation needs to be established. If 

the cell relation can be fitted into a simple two dimension 

array we have structured grid. If it needs more complex ways of 

specifying cell relations it is called unstructured grid. 

Structured grid tends to be more efficient to compute but lacks 

the freedom of unstructured grid on complex domain. Triangular 

grid is often unstructured while the quadrilateral cell is often 

associated with structured grid. 

For geometry complex problem, especially on three 

dimension, to generate a structured grid is sometimes 

impossible. A popular solution is to use zonal/multiblock grid 

generation. It first separates the computation domain to 

several nonoverlapped subdomains, then a structured grid is 

generated for each subdomain. A more flexible approach is to 

separate the original domain to several overlapped subdomain. 

For both approaches the global grid usually becomes 

unstructured. An'advantage of using multiblock grid is that 

since each grid in the subdomain is generated independently one 

can use different mesh sizes in different subdomains to resolve 

fine flow feature locally. Another advantage is that different 

levels of governing equations can be used on different zones. 
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For the conservation problem one can consider the 

nonoverlapped zonal grid as a polygon grid on which the finite 

volume scheme keeps the conservation naturally. The overlapped 

grid is more flexible but to ensure a global conservation on 

such grid is quite difficult. 

To simulate a realistic 3D configuration the memory 

required is very large for the mesh number is enormous big. It 

is currently impossible to put all the data in the primary 

memory in the CPU for full scale calculation. One has to swap 

the data between the primary and secondary memories constantly 

whether the multiblock or unstructured grid is used. 

I 
Once the grid is established it can be used to compute any 

flow condition in principle; however, the grid can not be 

optimum for every flow condition. For example one would like to 

have finer grid pear the shock but the shock positions and 

numbers of shocks change for different Mach numbers. Even the 

grid is only used for one condition the grid can be too coarse 

or unnecessarily fine than it is actually required. Since the 

computer power is still far from sufficient one would like to 

make better use of computing resources. Grid adaption is a very 

effective solution to this problem. The original grid can be 

adjusted constantly during the calculation or the grid density 

can be increased/decreased locally to achieve uniform global 

accuracy. 

1.2 Overview 

The next five chapters are arranged in chronological order. 

There are mainly three topics covered in this thesis, which are 

either directly or indirectly related to the objective of 
producing a multiblock code for hypersonic flow. 
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The first topic contains three problems about Riemann 

solvers. The post-shock oscillation problem is discussed in 

chapter 2. The carbuncle phenomenon is examined at section 4.2 

and section 6.7. The grid-dependent problem of current Riemann 

solver is demonstrated at section 6.8. The aim of these 

investigations is to improve the basic solver in single zone. 

The second topic mainly concerns the zonal calculation. 

The effect of having different mesh sizes on different zones, 

especially with shocks present, is examined in chapter 3 with 

explicit schemes and a suggestion on mesh ratio between 

different zones is made. Chapter 4 discusses the implicit 

schemes for two dimensional steady state solutions. Various 

solvers are tried and special problems associated with 

hypersonic calculations are emphasized. The schemes tested are 

used in chapter 5. Chapter 5 concerns the implementation of 

implicit zonal method. A simple but robust treatment on the 

zonal boundary conditions is presented with results from 

different implicit solvers. The effect of shock present near 

the zonal boundary is also discussed. 

The last topic which occupies most part of chapter 6 is 

about the calculation and grid adaption of viscous flow. A 

numerical study on Burgers equation and some suggestions on the 

mesh size control for grid adaption are presented. 

An attempt to construct a cell-vertex TVD scheme is 

described in the appendix. 

Since each chapter is quite independent the concluding 

remarks are given at the end of each chapters. 
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CHAPTER 2: NUMERICAL STUDY OF 

RIEMANN SOLVERS ON SLOWLY MOVING SHOCKS 

2.1 Introduction to Post-Shock Oscillation Problem 

It has been observed for some time that when a shock is 

moving slowly some upwind schemes may produce wiggles at the 

higher density (post-shock) region, even when those schemes can 

not produce oscillations when used in the scalar equation. Note 

that this is not the same as the classical problem that some 

schemes produce wiggles around the discontinuities. 

This problem only can happen in coupled systems, it does 

not occur in the scalar equation or in systems of equations that 

can be decouplable. 

The non-monotone behaviour is certainly unwanted in 

unsteady flow calculations. Also it may cause convergence 

difficulty when one is using the time marching approach to find 

the steady state solution, which is the main reason that we want 

to investigate it. 

We briefly review some Riemann solvers in section 2.2 and 

some previous works in section 2.3. In section 2.4 some results 

of extensive tests on Roe's scheme, which is known to have 

post-shock oscillations, are presented. We investigate the P 

variant of Osher's scheme and introduce Bell's method in section 

2.5. In section 2.6 we show some results from Roe's scheme with 

dissipation. Section 2.7 shows how. to, reduce the post-shock 

oscillations 'of second ., order schemes. Concluding remarks are 

given in section 2.8. 
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2.2 Review of Riemann solvers 

Here we only point out some important differences between 

various Riemann solvers. For more complete comparisons we 

recommend the paper by Van Leer '(1984) for the scalar equation 

and the lecture notes by Pandolfi (1987) for nonlinear systems. 

The chapter 20 in the textbook by Hirsch (1990) also gave very 

good introductions. 

We first start with the scalar equation 

Wt + [f(w))ir =o 
The Ist order conservative scheme can be written as, refer to 

Fig. 1.1, 

w n+t _wn+ 
°Q [Hi�/2 (Wt, wtý>] - Ht-t/2 (wt-t 

, Wi) ] =O 

For the Godunov's scheme (1959) H°(WL, WR), the interface flux, is 

equal to the exact flux value of the Riemann problem at 

X 0.5(XL+XR) with W. and WR as left and right states. For 

Roe's scheme (1981a) we have 

HR (WL 
0 

WR) °2 (f 
ß{'`L)- 2Ii 

WR -f EL I 
(WR-WL) 

wR-WL 

For Engquist-Osher's scheme (1980) we have 

W df 
HEO (WL WR)= 

. (f s4-f L)- 2 
fyltL 

I dW 
I dW 

For the case in which (WL, W) does not contains the sonic 

point (where df/dw=0), these three fluxes are the same. However 

for the case where the interval contains the sonic point (now we 

only consider the sonic point in the'compression wave) we have 
H° HR ý H6? Analytically HeO is smooth but not H' or HR 
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Take the inviscid Burgers' equation Wt+(1/2w=)s=0 for 

example. Using the Rankine-Hugoniot relation fR fL=w, (wR-wi) we 

obtain the shock speed wa=1/2(w,, +w=). The sonic point is w=O. 

Consider the right moving shock case, i. e. WL> ws> 0 >w:. Both 

Godunov and Roe fluxes take the flux at x=0 therefore 

H(wL, wa)=1/2w, see Fig. 2.1a. E-0 scheme considers the shock as 

an overturned centered compression wave (Van Leer 1984) and the 

interface flux is equal to the sum of three fluxes at x=0 , thus 

Hi0=1/2v4L+0+1/2w;, see Fig. 2.1b. 

For the one dimension Euler equations 

OW OF 
UT + äX =0 

where 
P pu 

W= pu ' F= puu+p 
e u(e+p) 

the 1st order conservative scheme is again 

Wo4 t-W" +X [Ht+i/2 (Wt. w+) -Ht-t/z (Wt-t. W1)] =0 

Godunov's scheme uses exact Riemann solution for H14112 which 

needs expensive iterations. 

In the approximate Riemann solver of Roe three linearised 

waves replace two nonlinear waves and one linear wave, therefore 

the expansion wave is replace by a single wave. Roe defined a 

local matrix A(WL. Wg) whose eigenvector ek and eigenvalues k 

satisfy 
WR-WL =faker k-1 

FR -FL =EXk akek 
k-1 

where at is the wave strength. Roe's Riemann solver returns the 

exact solution whenever WL and WR lies on opposite sides of a 

shock or a contact discontinuity. The expression for Ak, ak, and 
ek were given by Roe (1981b) 
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111 
et = ü-ä 

, e2= ü. e3= ü+a 
h-üa 1/2u t+ua 

xl=-ä, Ä£ ü, X3=ü+ä 

1at= [°P-Pa°u) a2= 
1z [a °P-°p), a. = ,Q 

I°P+Pa°u] 
2& a 2a 

where 

1/2 1/E 1/2 1/2 

ý2 PL UL +pa uR .., PL 
I/2 +p 1/2 

ha 
p =pL p. ii= 

p L/2 + Pe E 
h= 

pL/Z + p1 2 

For Osher's scheme (1982) three simple waves replace the 

real wave system, therefore shock wave is replaced by 

compression wave. On each simple wave the E-O method is 

applied. In the original Osher's paper (0 variant) the left to 

right state is connected by u+a, u, and u-a waves in a 

physically reversed order. This can be considered as a solution 

of, backward Riemann problem. Another possibility is to use P 

(physical) variant, see Fig. 2.2. The only difference to 0 

variant is that the left to right state is connected by u-a, u, 

u+a simple waves in physically correct order. P variant has 

been used by Hemker (1986) for transonic calculation. The 

intermediate states separated by the simple waves can be found 

by using the Riemann invariants. Since there are two Riemann 

invariants along each simple wave in total six equations can be 

defined for the six unknowns in the two intermediate states W1/3 

and W2/3. The possible sonic points, W31 and Wsz, inside the u-a 

and u+a simple waves can also be found. Equipped with these 

data we can work out the interface flux. The 0 variant of 

Osher's solver is very : expensive -ý due 'to the evaluation of 

exponents and the logics involved. The P variant is cheaper to 

use (Hemker 1986) but the main problem with both variants is 

that they are very difficult tobe used on real gas flow. 
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Fig. 2.3 gives a graphical picture of these Riemann 

solvers. 

2.3 Previous Works 

The first detailed account of this problem was given by 

Colella and Woodward (1984) in their paper about PPM method. 

They observed that low amplitude post-shock oscillations 

occurred when the characteristic speed associated with a strong 

shock, measured relative to the grid, vanished. And the 

dissipation introduced by Godunov's method vanished as the shock 

speed went to zero therefore dissipation presented in a slowly 

moving shock using Godunov's method was not sufficient to 

guarantee correct entropy production across the shock. 

They showed an example for an extremely strong shock moving 

slowly from right to left (see Fig. 2.4). There were 

substantial oscillations on both entropy and the Riemann 

invariant u-2a/(y-l), but the quantity u+2a/(Y-1) the Riemann 

invariant transported along the (u+a) characteristic was well 

behaved. Their explanation was that in (u+a) wave any errors 

generated in that variable were immediately driven back to the 

shock transition layer while in the u and u-a waves the errors 

were carried away from the shock (see Fig. 2.5), therefore 

post-shock oscillations only appeared in nonlinear system of 

equations. They proposed to add some dissipations to decrease 

the oscillations. 

Roberts (1988) compared Godunov's, Roe's, and Osher's 

schemes on a Mach 3 shock which took 50 steps to cross a cell 
for Courant number 0.95. He showed Osher's scheme behaved quite 

well while Godunov's and Roe's schemes exhibited obvious 
post-shock oscillations not only for extremely strong shocks but 
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even for weak shocks. He also showed that the results from 

Roe's scheme with minmod limiter were worse than those from the 

first order Roe's scheme. The reason is because 2nd order 

scheme is less dissipative to suppress the oscillations. One 

more interesting result obtained from Osher's scheme with 

natural ordering of wave paths showed that it was not as good as 

the original scheme which used reversed ordering of wave paths. 

He also showed the oscillations would occur for schemes with 

flux functions that give "exact" shock resolution such as 

Godunov's and Roe's schemes. 

2.4 Numerical Experiments and Results on Roe's Scheme 

A Our purposes in doing the numerical experiments are first 

to reproduce Roberts' results and then test the schemes more 

systematically to find the parameters associated with the 

post-shock phenomena. 

The initial data for these tests are obtained by 

superimposing a velocity on a zero velocity shock, this velocity 

can be either positive or negative (see Fig. 2.6). The shock 

condition is labeled by 'Mach Number X'. Here the "Mach number 

X" shock means the shock data, such as pressure jump, are 

obtained from the steady normal shock relations for Mach number 

X and ratio of specific heats 1.4. The grid is uniform. The 

results shown later, in. some graphs are for the density, 

u-2a/(7-1), entropy, -and u+2a/(y-1). The last three quantities 

are the Riemann invariants of u-a, u, and u+a waves, and they 

will be denoted as R1, R2, and R3 thereon. It should be noted 

that the scales change 
, 
from graph to graph., 
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There are three main conclusions from this experiment. 

Firstly, we stress again that the post-shock oscillation 

occur even when the shock strength is very weak. Fig. 2.7 is 

for Osher's and Roe's schemes with Mach no. 1.2 and SR -0.035 

(SR to be defined later). The oscillations in density, R2, R3 

are obvious while R1 behaves quite well. Because of the graph 

scale the oscillations seem quite large, actually they are very 

small. We can also observe from the pictures that Osher's 

scheme performs better than Roe's. Fig. 2.8 is for Osher's and 

Roe's schemes with Mach no. 20 for SR 0.035. The pictures speak 

for themselves for results from Osher's scheme, therefore we 

will concentrate on Roe's scheme. 

Secondly, the Courant number is not important. In other 

words how many time steps the shock takes to cross a cell is not 

important. We have even tried with Courant not 0.05. 

Thirdly, the relative shock speed is important. If the 

shock moves slowly or fast enough then the oscillations are very 

small. The amplitude of oscillations first increases then 

decreases when the shock speed is increasing or decreasing from 

zero. The maximum amplitude of density oscillations for shocks 

moving from low density to high density region is bigger than 

for shocks moving in another direction, but for entropy 

oscillations the situation reverses. To nondimensionalise the 

shock velocity the shock speed is divided by the (u+a) of the 

right side state. The nondimensionalised shock speed is called 

SR. ' The reason to use (u+a) of right state instead of the 

associated characteristic, speed is simply to avoid the SR value 

becoming too small; nevertheless, it seems to work well. 

Fig. 2.9 gives the maximum amplitude of density oscillation 

versus SR., The SR value which produces maximum oscillation is 
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around +0.035. SR -0.035 with Courant number 0.95 is very close 

to Roberts' test. The peak error for downstream moving shock is 

higher than that of upwind moving shock in Fig. 2.9, which is 

simply due to the parameter we choose. If the SR is plotted 

with respect to entropy error the peak of the upstream moving 

shock will be bigger. The reason to use density is because the 

oscillation level is easier to measure than using other 

variables after the computer output is examined. 

2.5 Results of P Variant and Bell's scheme 

Although Roberts has- pointed out that Osher's P variant does 

not produce as good results as 0 variant. We still try to look 

it again. From our experiment we confirm Roberts' results. We 

also observe one strange behaviour that when the Mach number is 

high and SR is more negative P variant tends to produce a very 

large overshoot, see Fig. 2.10. It. will cause program to stop. 

The result seems to tell the E-0 flux formulation is not the 

main or the only recipe for success. So the secret is not the 

smoothness of the flux function. 

Nevertheless we try further to modify Roe's scheme with a 

view to obtaining properties closer to that of the E-0 flux. 

Bell et al (1989) proposed an approximate Riemann solver to 

general systems of hyperbolic conservation laws. Their higher 

order scheme was basically a PPM approach. It has also been 

extended to problems that were not strictly hyperbolic and 

exhibited local linear degeneracies in the wave fields. However 

no result for Euler equations was given. 

Here we give an outline of their first order scheme. 
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Their scheme can be thought as a simplification of Osher's 

scheme or an enhancement of Roe's scheme. : Instead of 

evaluating the intermediate points Wj+,, 3 and jy+213 , which 

separate different waves, and possible sonic points W1 and W 

see Fig. 2.11, by equations of Riemann invariants in Osher's 

scheme, they are evaluated by eigenvector decomposition and 

interpolation, and natural ordering of wave paths is assumed. 

Or to start with Roe's linear wave decomposition, the u-a or u+a 

waves are not considered as a single wave each and then 

Engquist-Osher flux formula is used in stead of Roe flux 

formula. 

Note that it is not possible to have 0 variant with this 

approach because unphysical intermediate states might occur. 

Assume we have a subroutine of Osher's solver. That is, 

the flux Hl+l/z will be computed from intermediate states wi+t/a 
, 

WI+2/3, and any sonic states that are met with. We only need to 

change few lines to become a subroutine of Bell's solver. First 

we replace the equations for Wi+1/3 
, and Wi+z/3 by 

wi+1/3= Wi + ales 

WI+2/3 = WI+1/3 + ape2 

which involve no expensive exponent calculations. ar and ek are 

simply in term of 0.5(Wt +W1+1). Roe's averaging is not required. 

Since natural ordering of wave paths is used, the eigenvalue, Tj 

wave speed, associated with wave path 1 must be change back to 

u-a and u+a for wave path 3. Finally to replace the equations 

for 'sonic points, ''si and W82, at wave paths 1 and 3, the wave 

speeds Xi-and 7X3 are assumed to vary linearly from W1 to W1+1/3 

and from Wi+z/s to W1+1 
" For example, to find Wsl, we solve 

equations 
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C1 (A1)i+c2=Wi 

Cf (A1)1+1/3+C2 
=Wl+l/9 

to obtain C2 (C1 and C2 are vectors). And at sonic point X1 is 

zero, so wsi"Ca. Again in evaluating the sonic points no 

exponent calculation is needed. Note that Bell used Hermite 

cubic interpolation. This approach is checked by using the 

Lax's shock tube problem, see Fig. 2.12. 

In general the post shock oscillations are reduced but it 

does have another problem. For large Mach no. and negative SR 

it produces a very big overshoot similar to that by Osher's P 

variant, although it is not as large as Osher's P variant. 

The results simply tell that incorporating a contribution 

from the sonic point within a shock is not the sole reason of 

the success of Osher's 0 variant. 

2.6 Roe's Scheme with Harten's Dissipation 

From the above results it is obvious that Osher's scheme is 

better than Roe's for solving slowly moving shocks. However 

Osher's scheme is quite expensive to compute and difficult to 

use on more complicated problems, such as real , reacting gas , 

etc because of the evaluation of the flux integral. 

In contrast Roe's scheme is much cheaper to run'and easier 

to use on complicated problems. Therefore, we are trying to 

modify Roe's scheme to cure its post-shock oscillations. Following 

Colella and Woodward's approach we add some dissipations in 

Roe's scheme explicitly. 
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In Roe's approach, the interface flux is 

HR(WL. WR)= l (FR+FL) -2 
t1X1k11Xkek 

In order to break the unphysical solution from this formula, 

Harten (1983a, 1983b) used 

HH(WL. WR )=2 (FR +FL) -2' 
Ax ý1 Qkakek 
°t 

where 
I Vkl if 

(Vkl >6 
p Rk = Vk= At 

1 vz +a2 ' k°x 
2ä) if I vk) Sö 

at the expense of some deterioration in resolution, especially 

at the shock. 

The post-shock oscillations can be suppressed by this 

dissipation with well-tuned 6 and the solution can match that 

from Osher's scheme. 

One main disadvantage is that 6 needs to adjust for each 

case and it is CFL number dependent. We modify this formula by 

consider Qk as function of Vk, avk and otmax, where AVk is 

the difference of Courant number in the same type of wave and 

atme is the local maximum allowed time step , see Fig. 2.13. 

The modified Qk is given by 

+6 At 
Qk =1` 

v+ k)I 6k. 
Atmax 

ývka ývk 
LI 2 ak 

where 
3. is taken as 0.5 from numerical experiments. This is 

only implemented in the interval which contains the shock point. 

Fig. 2.14 shows side by side comparison of several schemes 

on the Mach 3 shock. Acceptable .- results are obtained with the 

. 
modified dissipation. 
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2.7 Second Order Schemes 

The first order schemes based on Riemann solvers can be 

extended to higher order schemes. Unfortunately the second or 

higher order schemes exhibits oscillations near discontinuity 

even for the linear scalar problems. 

Since Godunov (1959) showed that all monotone linear 

schemes can be at most of first accuracy, the only way around 

the difficulty is to build in some nonlinearity, e. g. 

artificial dissipation and limiter. Limiters were first 

introduced by Van Leer (1973) and independently by Boris and 

Book (1973). 

With the nonlinear limiter present the schemes defies the 

classic Fourier analysis. Fortunately stability can be 

guaranteed by using the TVD (total variation diminishing) 

condition (Harten 1983b). 

The concept of bounded total variation is an important 

property of a scalar conservation law ut+f==0 (Lax 1973) . The 

total variation of any physically admissible solution 

/ý du TV= fI Ox 
I dx 

does not increase in time. The discrete analogy is that the 

total variation in x of a discrete solution to a scalar 

conservation law is defined by 

TV(u)EE Iuº. 
1-u, 

I 

A numerical scheme is said to be total variation diminishing if 

TV(un+'); gTV(n) 
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Harten (1983b) proved that any TVD schemes do not produce 

oscillations and any TVD schemes are stable. However when it is 

generalized to nonlinear system as we have seen even for first 

order scheme it is not true. 

Return to post-shock oscillation problem. Since second 

order scheme is less dissipative than the first order scheme, 

one can expect it will produce larger oscillations. Roberts 

gave a demonstration of 2nd order result with Roe's Riemann 

solver and minmod limiter. Here we attempt to decrease the 

oscillations from the second order or higher order schemes. 

Lax-Wendroff scheme with TVD flux limiter is used, see Roe 

and Pike (1984). The interface flux between i and i+l is 

H1.1/2 = Ist order flux 
k+ k- 

+ O. 5Eßk+ 0(ri 11z) of i i/z 
- 0.5 ßk 0(ri i/z) &f; -l/2 

Icy 1,3 i-1,3 

with k+ °f t+1/Z =akakek for X0 

°f i 1/z =Akakek for X< 0 

°t+ °ik- 
Ica 

f1-1/2 
443,2 kt 

r 1+1/2 - 
ti+ 

rj 
1/2 k- I=1- 

(vi ,2I 

£f4+t/2 °it+1/2 

where IP is the limiter function. A detail account on the flux 

limiter can be found from Sweby (1983). Three popular limiters 

are 

0 if r<0 
minmod : g(r)= r if 0SrS 1 

1 if r> 1 

van Albada : O(r)= 
i+r: 

0ifr; g O 
2r if 0<rä 0.5 

superbee: 0(r)= 1 if 0.5<r;, g 1 
r if 1 <r; g 2 
2ifr>2 

To use Lax-Wendroff scheme we need- to have the average wave 

speed for -each wave family. Roe's scheme provides average 
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speeds but not Osher's. We can take the average wave speed as 

the average of the wave speeds at the start and end of each 

simple wave for Osher's scheme. This approach is verified by 

checking the Sod's shock tube problem, see Fig. 2.15. Note that 

Osher and Chakravarthy (1984) used entropy function to evaluate 

the limiter which is inferior to the current flux gradient 

approach especially on the contact and expansion waves, see 

Fig. 2.16 of Lax's shock tube problem. 

The oscillations for the slow moving shock are obviously 

larger from second order schemes using Osher's scheme, see 

Fig. 2.17. 

I The cure we propose is to check if the interval between 

left and right states contains any sonic point then we switch 

off limiter. Therefore it reduces to first order scheme in the 

shock layer. This proves to work well. The global solution is 

not degraded and the postshock oscillations are decreased 

significantly. The method is especially easy to implement into 

Osher's solver. Note that in the sonic interval g is not 

necessary zero because inside the shock layer the flow is 

smooth. It is only in the corner of the shock profile one can 

be sure that O is zero. 

Note that sonic points include not only the sonic point in 

the compression wave but also the sonic point in the expansion 

wave. It is well known that the numerical sonic flux for the 

expansion wave is not appropriate to simulate the physical 

expansion. Using limiter for the sonic flux will produce worse 

results. Therefore it is reasonable to switch off limiter when 

evaluating the sonic flux. For the 2nd scheme using Roe's 

solver same technique can be applied plus dissipation. The 

result is much improved. Fig. 2.17 give comparisons of results 
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from 2nd order schemes. 

2.8 Concluding Remarks 

We do not have real success in the quest of why Osher's 0 

variant has the best performance on slow moving shocks. The 

dissipation approach for Roe's scheme is not a very good 

solution. Nevertheless some progress has been made to 

understand this problem. The theoretical analysis of discrete 

shock profile for scalar case was made by Jennings (1970) with 

very sophisticated mathematics. To perform similar analysis for 

system is nevertheless far beyond author's ability. 

" To switch off limiter inside the shock layer will reduce 

the noises generation for high order scheme. This should be 

quite useful for the unsteady calculations; however, as we find 

out later, this limiter-off approach is not suitable for 

implicit schemes on the steady state calculations because it 

introduces unsmoothness. 

The dissipation approach is not implemented in later work 

for we understand later that for hypersonic calculation the 

problem to cure the carbuncle phenomenon (see chapter 4) 

outweighs the post shock oscillation problem. 



-23- 

CHAPTER 3: EFFECTS OF MESH SIZE CHANGE ON SHOCKS 

3.1 Introduction 

For the zonal method, it allows local grid refinement to 

obtain better local flow resolution. Here we investigate two 

possible problems due to the mesh size change. The main purpose 

is to see the effects of mesh size change and to provide 

suggestions on choosing the mesh ratio. We try to explain the 

problems due to mesh size change but not to cure them. 

Firstly, we apply Ist order flux difference splitting 

schemes (Roe's and Osher's) for the moving shock problem on 

nonuniform grid in one dimension. For simplicity, the grid 

consists of two nonoverlapped uniform zones with different mesh 

sizes. 

The main purpose is to investigate how the mesh size change 

influences the solutions when shocks passing the zone boundary 

and hopefully to gain some insight for explaining similar 

problems on two dimensions. 

Pike (1987) showed that ist order schemes degraded to zero 

order schemes and 2nd order schemes became 1st order accurate on 

irregular grids. First and 2nd order schemes on irregular grids 

were developed, however no extension to multidimension was 

proposed. In this work, we only consider the original first 

order schemes. 

Osher's scheme is used for most tests because it has least 

post-shock oscillations. If Roe scheme is used we might have 

difficulty to separate the post-shock oscillations and noises 

generated at zone boundary. We will also show that with 
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additional dissipations in Roe's scheme it will produce as good 

results as Osher's. 

The other problem we investigate here is the case that the 

steady shock lies on two different uniform grids in two 

dimension. The motivation of this work is from Berger and 

Colella's paper (1989). They reported considerable degradation 

at interfaces where the shocks were not aligned with the mesh. 

Again first order scheme is used. To save the CPU time mainly 

Roe's scheme is used instead of Osher's since in the oblique 

shock case two schemes perform quite similarly due to the shock 

smearing. 

In section 3.2 we discuss the test cases for the moving 

shock in one dimension. The results are discussed in section 

3.3. Section 3.4 is for oblique shock results. Concluding 

remarks are given in Section 3.5. 

3.2 Test Cases for the Moving Shock in One Dimension 

By exchanging the mesh sizes of left and right zones and 

letting the shock move in either positive or negative directions 

four tests, A, B, C and D, can be done for a certain Mach number 

and shock speed (see Fig. 3.1). 

In the graph for each test case, six shock positions, P1, 

P2, P3 P4 P5 and P6, are monitored, see Fig. 3.2. Because the 

initial data, which has no intermediate shock point, is not the 

form that a progressing wave would take in the numerical scheme, 

a starting -error_appears immediately, after one time step. Pl is 

where the shock just travels, across one cell. This is for 

seeing the starting error. P2 is where the shock position is 

just cone or two cells from the zone boundary. It is for 

checking if the starting error has nearly vanished. In most 
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graphs, P3 is approximately where the noises generated by shock 

crossing zone boundary reaches its maximum and P4 is just little 

away from P3. P3 and P4 are for observing the mesh size change 

effect. P5 is where the shock position is a little away from 

the zone boundary and P6 is further away from the zone boundary. 

From P5 and P6 we can see how the noises are dissipated and 

propagated. 

3.3 Results and Discussion of the Moving Shock 

Fig. 3.3 is for Mach no. 20 shock and mesh ratio 5: 1 with 

SR ±0.035, and Fig. 3.4 is for SR=+0.28, for all four cases. We 

can observe that in cases A and D for which shocks move from 
" 

coarse to fine zone bumps in density are created, and in case B 

and 
.C 

for which shocks move from fine to coarse zone depressions 

in density are generated, especially for SR+0.28. It is also 

obvious that these noise magnitudes increase when SR increases 

which is different from the post shock oscillation problem. 

Some tests on intermediate SR values support this observation. 

As we might expect the noises increase when the mesh size 

difference and Mach number increase. 

Fig. 3.5a is for case A, Mach no. 20, SR 0.035 and mesh 

ratio 5: 1 for Roe's scheme. The post-shock oscillation effect 

is mixed with the effect of noises induced by mesh size change. 

Fig. ' 3.5b is also for= Roe's scheme but with Harten's 

dissipation. It is nearly as good as Fig. 3.3 since the 

post-shock oscillation is suppressed once the dissipation is 

added appropriately. Fig. 3.5c is for Roe's scheme with SR 

0.28. The results is quite the same as Fig. 3.4 from Osher's 

scheme because the post-shock oscillation is nearly removed at 

such SR. 
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Now we present a explanation for some computed results. It 

is simply based on the shock resolution characteristics of 1st 

order FDS scheme. 

The number of mesh points needed by FDS schemes to resolve 

shocks depends mainly on the shock speed. Therefore if the 

shock is resolved on coarse grid by N points it will also be 

resolved by N points on fine grid. But the shock transition 

lengths are different. 

For shock move from zone 1 with mesh spacing DX1 to zone 2 

with mesh spacing DX2, the shock transition length change is 

equal to N(DX1-DX2). The length change increases when DX1-DX2 

or N increase. In other words, it increases when mesh ratio or 

shock speed increases (because ist order FDS scheme is quite 

dissipative the N value increases with shock speed). This 

explain the results that relative noise magnitude increases when 

mesh ratio and shock speed increase. 

Second order schemes will be less sensitive to shock speed 

change since they are less dissipative, but they will still 

suffer from mesh size change. 

The bump or depression feature is not easy to explain. It 

is perhaps because in the case that shock moves from coarse to 

fine grid part of the shock profile is suddenly forced to 

steepen and in the case that shock moves from fine to coarse grid 

it is suddenly flattened. 
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3.4 Test Cases and Finite Volume Scheme 

for the Oblique Shock 

The test case is a two dimensional steady oblique shock. 

One can imagine it is the flow past a wedge and the 

computational domain is rotated with respect to the free stream 

flow direction. Therefore we can have arbitrary shock to grid 

angle but keep the shock strength unchanged, see Fig. 3.6. 

First order finite volume upwind scheme (not operator 

splitting) is used. The initial condition can be either the 

free stream or postshock condition. The initial shock will 

appear at the bottom/left boundary if the initial condition is 

the freestream/postshock condition then it will move to its 

steady state position. We choose the flow conditions and 

computational domain such that we have always supersonic flow 

boundaries. At inflow boundaries the exact boundaries are 

prescribed and at the outflow boundaries zero order 

extrapolation is used. 

Fig. 3.7 is for a Mach number 20 oblique shock in single 

uniform grid. The flow properties are slightly below the right 

values at post-shock position. The computed shock is slightly 

curved. These problems are due to boundary conditions and 

narrow computation domain. 

By changing the grid spacing we can do some tests on two 

zones by using the programme for one zone. Fig. 3.8 is for the 

shock to grid angle 70 degree. Because the shock has more 
inclination towards the Y direction mesh refinement in Y 

direction has nearly no effect on the solution. Mesh refinement 
in X direction improves the shock resolution but induces 
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overshoot. 

For the more general grid boundary, a simple treatment on 

the interface fluxes is adopted. For example, see Fig. 3.9, the 

interface flux at 1-2 is H12(Wo, W, ) and at 2-3 is H23(WQ. We). 

To update the coarse cell we need H13, H13 is simply taken as 

the sum of H12 and Hr3. 

Coarse zone and fine zone perform one iteration each to 

count for one iteration for whole domain. 

If the fine zone is on the top, we can observe big 

overshoot at post shock position; however, if the coarse zone is 

on the top there is no overshoot , see Fig. 3.10 and 3.11. The 

explanation for this is that the coarse zone on the bottom 

provides a bad boundary condition for the fine zone on the top. 

One can see quite clearly from the cross section density plot in 

Fig. 3.11 the shock transition in the first row of fine zone is 

staircaselike. On the contrary if the fine zone is on the 

bottom the transition is smooth. This could influence global 

solution in practical zonal applications. 

We try further two types of interface flux evaluation based 

on one dimensional interpolation, see Fig. 3.12. For method 3 

we can obtain smooth transition at the first row; however, the 

overshoot is still produced eventually, see Fig. 3.13. This is 

because it still does not provide correct boundary condition to 

produce a shock on fine grid despite the transition is smooth. 

While the above results are from grids with integer 

spacing. For grid with noninteger spacing it does not seem to 

produce extra problem. Fig. 3.14 is for same grid ratio but 

discontinuous grid lines and Fig. 3.15 for different grid ratio. 
The results are very similar to the integer spacing cases. 
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The process of shock evolution is quite smooth for 

freestream as initial condition, but much harder for post shock 

condition as initial condition and for local time stepping. We 

can see from the Fig. 3.16 that very big noises are generated 

during the evolution process. Fortunately they propagate out of 

the computational domain very quickly. 

3.5 Concluding Remarks 

We now understand that for shock 

different grids, large disturbances 

Fortunately this phenomena does not hamper 

they propagate out of the boundary quickly. 

will happen if the noise is trapped in ac 

It might take time to dissipate. 

moving across two 

can be generated. 

the convergence if 

We do not know what 

omputational domain. 

From the oblique shock results we suggest that where shocks 

are likely to be present large mesh ratio, say more than 2, 

should be avoided even for steady state calculation. 
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CHAPTER 4: THE IMPLICIT SCHEME FOR SINGLE ZONE 

4.1 Introduction 

The explicit scheme, especially the TVD scheme, needs 

thousands of iterations to reach convergence due to the CFL rule 

restriction. Implicit schemes escape the CFL rule in theory. 

Although most implicit schemes cannot converge as fast as theory 

suggests, they still converge faster than explicit schemes in 

terms of iteration number and CPU time. 

To prepare for the next chapter on the implicit zonal 
" 

method, we investigate the implicit scheme here with emphasis on 

inviscid hypersonic flow, which is much more difficult to 

compute than transonic flow. 

Section 4.2 introduces the explicit operator and the 

carbuncle phenomenon. The implicit operator is discussed in 

section 4.3. Several methods for solving the matrix equation 

generated by the implicit scheme are briefly described in 

section 4.4. Explicit and implicit boundary conditions are 

explained in section 4.5. Section 4.6 presents the results from 

various solvers of section 4.4. The experience on linear and 

nonlinear GMRES is describes in section 4.7. Finally concluding 

remarks are given in section 4.8. 

4.2 The Explicit Operator and the Carbuncle Phenomenon 

The scheme we use is a 2nd order accurate finite volume 

scheme with TVD flux limiter and Roe's Riemann solver is 

adopted. There are, several reasons behind this choice. 
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The finite volume approach is most natural to preserve 

conservation in the nonoverlapped composite grid. As we will 

demonstrate in next chapter it is easier to implement than the 

finite difference approach. 

The order of accuracy is another issue. First order is not 

accurate enough. The so called 3rd order schemes are only true 

in one dimension; besides, in the zonal calculation we need to 

store more data of the neighbourhood of the interface due to the 

wider stencils of 3rd order schemes. Thus the 2nd order schemes 

are preferred. In the 2nd order scheme category we can have at 

least three choices, fully upwind, Lax-Wendroff and central 

difference. However fully upwind and Lax-Wendroff are not 2nd 

order accurate in two/three dimensions without resorting to 

operator splitting or predictor-corrector method. The only 

choice left is the central difference scheme with TVD limiter. 

Th explicit operator was first proposed by Osher and 

Chakravarthy (1984) and later used by Rai (1986); however, its 

property was not well understood. Roe (1987) gave a clearer 

insight of this operator with emphasis on Navier-Stoke 

equations. We will only give a brief description here. 

The Euler equations in two dimension are given by 
OW OF aG 

where p pu pv 

W= pý 
, F= puv+p 

' G= pvv+ 

e u(e+p) v(e+p) 

p=(y-1)[e-0.5p(u2+VY] 

The semidiscrete finite volume form for a quadrilateral cell i, j 
is, see Fig. 4.1, ' 

Aw aW14 
+ Hi+t/2J -HI-t/zJ +H w+i/z -H w-1/z =0 
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where A is the cell area and H is the interface flux. For the 

latter use we define 

R(Wu) =( H1+1124 -Hl-1/2J +H u+l/E -H u-1/p ) 

For first order scheme we have, for example, 

H1+1/24= 0.5 (F1+1j + FLf ) E`1+1/2J + 0.5 (Gt+i4 + Gij ) s'1+1/2, ß 
4 

- 0.5 EI Xk 
Ia 

ek si+1/2j 
k-1 

_ IIi+1/2j 

where Ak, ak , and ek are obtained from one dimensional wave 

decomposition along the normal of the segment ab. The normal is 

given by 
si+t/2j =si+1/2. f 

1+ 
sl+1/2J1 

s 
i+t/2, j =Ya-Yb "º 

siy+1/zJ Xb-xI 
si+1/2. f -I 5i+1/z, j 

l 

a 

Define the interface flux Jacobian as 

JI+1i2J (WI+lJ -Wu) = (Fi+ta - Fw ) ? I+t/2J + (Gi+, 
j - Gu ) si+ßi2,1 

and J1+1/za = (RDL)i+117 

where J, R, D and L are 4x4 matrices. R is the matrix of right 

eigenvector ek .D is a diagonal matrix with X01+1/2. j as 

diagonal entry. L is the matrix of left eigenvector fr. The 

formulae for R, D and L can be found in Chakravarthy and Osher 

(1985) for 2D case and Chakravarthy (1987) for 3D case. The 
wave strength ak is given by 

ak' tk(Wa. i. -Wu) 

Therefore we have 

4 

ak ekSI+i/xj =i Fi+i4 - Fu) s'`t+1/2J +i GG+1j - Gu) s'i+i/$J k-I 

The wave speeds Xk are 

Al= V. +a 
I 

Vil A4= V. 
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where Vo is the interface velocity normal to the cell boundary. 

For central-difference TVD scheme the interface flux is 

k+ k- 

HI+1/2. j = hi+i/z4 + 0.5 
1.4 

( +i/zýý 0.5 
k-I 

. ýo(r1 
i/2J) °f i+t/z. 

1 

where qi 1/zJ Xk ak ek st+t/zJ for Xt J0 

°ft+t/EJ- Xkak erst+t/QJ for Ak <0 

r+ 
ii/zd 

rk- 
°f 

°f k+ 1+1/2j' °fi 1/2.1 

is the limiter function, see section 2.7. One can see 

immediately that if when the flow is smooth g is about 1 then 

this scheme becomes central difference. 

9 
The semidiscrete form can be approximated to high order of 

accuracy in time by using Runge-Kutta scheme. To preserve the 

TVD property in time not all classes of Runge-Kutta scheme can 

be used, see Shu (1988) for more details. The TVD preserving 

R-K scheme can not increase the time step size. With minmod and 

superbee limiter the CFL number allowed are only 2/3 and 1/2 

respectively for this central-difference TVD scheme. 

The above scheme does not satisfy entropy condition, thus 

it might produce nonphysical solution. Yee's method [1987], 

which is derived from Harten's method-, is the most popular solution 

for breaking nonphysical expansion shocks. Here Yee's formula 

is adopted. The Q(? k), which replaces , 
Ar, is given by 

I'kI>ak Xk if 

Q(Xk) =2( sign() 
ý2a 

+ ýr ) it rr) sak k 
where 

ak =ar(IvfI+MI +a) 
Va; iVs, and a are the normal velocity, the tangential velocity 

with respect to the grid interface, and the interface sound 
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speed respectively. Note that a more appropriate extension of 

Harten's dissipation in section 2.6 is to use 

6k=ät(IQ +a) 

The dissipation is not necessary for V. waves for breaking 

expansion shocks; however, in the hypersonic blunt body 

calculation we do need it for the V. waves. It has been observed 

by some people that Roe's and Osher's Riemann solvers produce 

instability when they are used to compute supersonic flow over 

blunt bodies, see Fig 4.2. During the shock evolution there is 

no problem. It is when shock reaches its final position the 

instability begins to appear although in Fig. 4.2 the residuals 

are not small. The cause is not clear. For the 2nd order 

scheme, we have to set the dissipation coefficient for V, waves 

to a quite large value to overcome this instability. The 

convergence rate is quite dependent on the magnitude of the 

dissipation. With ONERA's IAPYX2 code (Borrel and Montagne 

1985) which uses Van Leer's flux vector splitting, we find that 

no extra dissipation is required. As it is known flux vector 

splitting is very dissipative for the \/ waves, this explains why 

it works. We need larger number for ä2 and ä3 than that for 

the symmetric TVD used by Yee. The symmetric TVD is also quite 

dissipative in the M. waves. 

It is after one year since we finished the work contained 

in this and next chapters that we discovered the paper of Peery 

and Imlay (1988) which could be the first to report this 

instability in the literature. According to them this 

instability was called "carbuncle phenomenon" by the researchers 

at NASA. Peery' and Imlay also 'reported, the, flux vector 

splitting of Steger-Warming has no such. problem. They suggested 

another formula for this problem, which we will discuss it 
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together with our modification later in section 6.7. Another 

interesting paper by Pfitzner et al (1989) reported that even 

for the ist order scheme the är has to be greater than 0.25, 

which agrees with our results, although 0.25 seemed to be 

the limit value Yee (1987) employed. Lastly, we would like to 

draw readers' attention to the paper by Muller (1989), who 

reported considerable problems in computing hypersonic flow over 

ramp. 

To add dissipation to the V. waves is not a good idea 

especially for viscous calculation. We will demonstrate this 

point in section 6.6. 

a 
The other problem associated with hypersonic calculations 

is the evaluation of r. The equation we mentioned previously 

is appropriate for transonic calculation. Nevertheless to have 

monotone shock transition in hypersonic cases we have to scale 

it by square of sound speed, as suggested by Yee (1987). Thus 

it becomes 
k+ 

.2 
k- 

k+ 
°f I-1/2 4a t-1/2.1 

k- 
°f 

i+3/2, J aE 3/2 j 
r 

t+l/2J s 
k+ 2 

r1+ 
1/2a k_ 

t+t/2j ß t+ t/2.7 °f1+1/2J a1+t/2a 

which is in effect proportional to pressure gradient. 

4.3 The Implicit Operator 

Since we are only interested in steady state calculations 

we only consider first order Euler implicit equation, 

where jAj WZ*' -WZ + IAj RýWij+i _0 
°tw 
AW 

After linearisation it'becomes 

(I+ lý 
OR (W 

d, 
WW 

=r -P R(WW) where n+i n ow. aWw = Ww -W, a 

Follow Yee's work, two approximations for aR/aw can be made, 
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I 

nonconservative and conservative forms. The "conservation" here 

is for the time conservation which is not important for steady 

state calculation. 

The nonconservative form is 

-14.1 Ji iyx. 13W&-tj -! kj Jid-t/26Ww-t +tkj Ji+1/2JöW1+tj +/AjJW+t/xäWW+t 

+[I+ Ns. l (Ji t/2J- 4+1/2j+ JW-t/2- J+i, Z) 
a W, =-p R(WW ) 

where 
J+1+i 1/! J _ (RD+L)1+t/24 Ji+t/ej a (RD L)I+i/xj 

D+ and D" contain the positive and negative entries of D 

respectively. 

The conservative form is 

-0.5/kj(31'ij+IJi-i/zjl)öWi-1j -O. 5Pij (ýU-, +l Ju-i/z I) 6WU-1 

+0.5Ikj (J; +, 
j-I Ji+1/zj 1) öWt. id +0.5thi (J"W+i-I JW+1/2I) awtj+1 

+[1+ 0.5/, LLj(IJi-1/2JI+IJIft/zJI+ IJ112 I+IJw+1/EI) dWw= -/LR(WL, ) 

where 
J! EF J- Jr 1/z, t 

+ Jisi t/2 
Jü ° JiSi i/sý + Jssi t/sd IJI= R(D" -D-)L 

JW = it ! "LJ+1/2 + Jssy+i/= Jt SU-i/z + Js Ü-t/a ' il= 
8W Js äw 

Initially our experience was on the nonconservative form, 

later we switch to conservative form. The convergence speed, as 

stated by Yee, is much improved for hypersonic flow application. 

Both forms can be cast as 
Mi-id 6WI-tj + MW-i 6WW-t + Mt+tj öWi4u + MU+ aWUf i 

+ Du 6Wu a-N,, R(Ww ) 

Using this form we solve the matrix' equation once then update 
the solutions. With small modifications one can choose to do 

several subiterations inside every time step to obtain time 

accuracy. -Since we only want steady state solutions, we do not 
consider. the subiteration approach here. _ 
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The pentadiagonal matrix equation is too expensive to solve 

directly. There are some options to solve it approximately. 

Several methods are tested. 

4.4 Different Solvers 

The backward and forward line Gauss-Seidel line relaxation 

can be expressed as 

Backward sweep : 

kj-i aww-1 + Dja 6w1. ß + Mw+i öWW+i =- lAj R(WW) - Mi+i. 1 öWi+1. j 

Forward sweep : 

Kj-t öW, 4-1 +Dw öWj + Mj4+jöW +j I14 R(W, 4) - M«, j ö Wi+i. l - Mi-ij 6Wi-l. 1 

I LU scheme is a symmetric Gauss-Seidel relaxation. It can 

be expressed as 

n,, ÖW =- KjR(Wl4) - Mº-,, 6w, _1j - K., -l 5W 1 
D14 aw, 

J =- /4jR(W1,4) - M, 
_, 4 ow, -, j- K_1 öwU-t - M1 1 öW, +Ij- M+1 öWW+i 

The sweep is along i+j=constant. 

The most widely used is perhaps the approximate 

factorisation scheme (AF) or ADI scheme: 

i sweep : 

Mi-ta öW, _I j+ DÜ ÖWw + Mi+ij 6Wi4l4 /4 R(Ww 

j sweep . 

Mw-, a WL, -1 + D' a W, j + Mu+i 6W1.1", =a Ww 
where DT/D' contains only th'e-Jacobians in the i/j direction. 

The other AF scheme by Lombard (1983) called DDADI 

(diagonal dominant ADI) is: 

i sweep 

MI-Ij oWI-1j + D11 ÖWJ +M«ij6Wi, ij = -PjR(Wu) 

j sweep : 
M41-t ö Wa-, + Dw ö Ww + M1 1ö Ww;, =D 6W' 
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Unlike AF there is no three dimension extension of DDADI. 

The last scheme we will explain immediately later does not 

belong to the approximate solver category. It is essentially 

quite different from the above four methods. 

For all the above schemes the values of W are not 

updated until the sweeps complete. We can also choose to update 

the W immediately One of these approaches by Bardina and 

Lombard (1985) and Chakravarthy (1987) is 

back/forward marching: 

Ml_l j öWi-ij + Did öW, j + Mi+i4 dWi+i j= -kj R(wid ) 

for/backward marching: 

MI-,, aw, -jj + D,, 6W, j +M, +ß, 6W, +tj _ -IAjR(Wij) 
The marching direction is usually chosen as the streamwise 

direction. Here we call one single sweep as one iteration. The 

matrix equation is only tridiagonal, which can be solved 

exactly. This method is usually used with AF or DDADI in three 

dimension calculation. AF and DDADI are used on the cross plane 

while this method is used on the streamwise direction. The 

advantage is that one can work with three/five planes at one 

time for Ist/2nd scheme. The core memory is easier to manage, 

see Bardina and Lombard (1985) and Chakravarthy (1987) for more 

details. Since different researchers tend to call this method 

by, different names we will, call it as method 5 for later 

reference. 
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4.5 Boundary Conditions 

For the supersonic inflow we put halo cells in the inflow. 

The values of halo cells are fixed for explicit part, therefore 

the change 6W for the implicit part is zero. For the supersonic 

outflow we set the flow values in the halo cell equal to the 

values upstream, thus the Jacobian M is zero. M 6W is therefore 

zero. For subsonic inflow and outflow farfield we can set the 

values of halo cells to the free stream, since the interface 

fluxes obtain from upwind scheme are automatically 

characteristics based. Because we fix the halo cell the change 

6W is zero. 

For the solid wall we use simple reflected boundary 

condition, the -halo cell is assigned to have same but negative 

normal momentum to the boundary cell. The change öW in the halo 

cell is 

ap ap 
-öpVV dpVV 

dpVt dpVt 
de halo de inside 

From the above relation we can work out apu and dpv. This is 

only first order accurate which is consistent with the implicit 

operator. Without this boundary condition the implicit scheme 

converges much slower. For the explicit part we need a better 

interface flux,. we simply extrapolate the pressure from the 

interior to the boundary. This can be further refined. 
C' 
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4.6 Results from Different Solvers 

Before we present the results we would like to discuss the 

definition of residual. The residual is defined as 
fmaxjmaz 

Residual =[F? I R(p )I /Aw ]/(imax. jmax) 

This is better than 
tmazjmst 

Residual =[ EEI dplj I /nt 
1j ]/(imaxe jmax) 

1-1 1-1 

The residual defined by the second equation could be misleading 

if large CFL number is used. Although we advance solution by a 

certain time, the flow does not evolve so fast due to the errors 

from linearisation and approximate solver. The residual 

evaluated from the second equation is normally smaller than that 

from the first equation. The residual from the first equation 

reflects the state of the flow and it is independent of the time 

step size. For example if the CFL number is increased suddenly 

during the iterations the residual should go up instead of going 

down suddenly. In this situation the first definition gives the 

right residual jump while the second definition gives the wrong 

residual jump. 

Through out this work local time step is used for 

convergence acceleration. The Optimum CFL number is about 

10-20, which is quite modest. The initial conditions are always 

the free stream conditions. For. 'the hypersonic blunt body 

calculations the shock appears initially at the solid wall, 

which usually causes programs to generate. negative pressure. 

Some researchers use-the initial condition . which contains a 

detached shock. ". A trick we found works very well is to set the 

CFL number at a smaller value and the är at"a higher value then 

gradually adjust'. to their final values. in about 50 time steps. 

s -t .-`ý--.. 
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There are four different test cases. The M=0.85 GAMM bump 

is used as transonic flow test. The bump height is 0.042 chord, 

channel height is 2.073 chords, the length from inflow to 

leading edge is 1.5 chord, and the length from trailing edge to 

outflow is 2.5 chords. The grid used is 72x21 nodes with 41 

nodes on the bump. The reentry body grid is provided by ONERA. 

The slope tangent to the blunt nose is 30 degree. This is used 

for Mach 5 flow test. The quarter cylinder is used for Mach 2 

and 20 flow test. 

For Ist order scheme all solvers works reasonably well, we 

will not discuss the Ist order results here. 

9 For the GAMM bump test, the line Gauss-Seidel and LU 

schemes have difficulty to drive residual down for the second 

order scheme. For blunt body it is worse. We will not discuss 

these scheme anymore. 

In general method 5 and DDADI perform quite well, but for 

AF we have problem at high Mach number flow. 

The CPU time required for Method 5 depends on the grid size 

and marching direction. If the grid has more cells in i 

direction than in j direction then marching in i direction 

implies solving the matrix, equation in j direction. In this 

case CPU time required is_smaller than DDADI., If it marches in 

j direction then the CPU time required, will be much longer. Our 

codes are not optimised,. especially for. the method 5, therefore 

no exact comparison of CPU time will be 
,. given. The data 

management. method mentioned in section 4.4 is not used since we 

can afford to store all, data in small, calculations. This method 

works well except that for blunt body calculations it generates 

negative pressure at the shock apex if the radial direction is 
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chosen as the marching direction. 

DDADI is able to converge with nonconservative implicit 

operator but not with conservative implicit operator. To be 

able to converge with conservative operator we found the sweep 

directions need to be changed alternatively. More precisely for 

odd iterations we use i sweep then j sweep and for even 

iterations we use j sweep then i sweep. 

At low Mach number AF works quite well. But for higher 

Mach number the performance of AF begins to degrade. It needs 

extra dissipation to push residual down. In contrast to the 

excellent results of AF by Yee (1987) our AF is not successful 

for high Mach number. We suspect the difference might come from 

boundary conditions and blunt nose instability problem. 

Van Albada's limiter gives slightly better convergence rate 

than minmod. All the results shown later are from using van 

Albada's limiter. Some researchers have difficulties to drive 

the residual down when using implicit scheme with nonsmooth 

limiters such as minmod and superbee. We do not have this 

problem. As we are aware the explicit operator of Sorrel and 

Montagne (1985) which uses a direct MUSCL approach has such 

problem. We assume this problem is related to the explicit 

operator. With the direct MUSCL approach the flow data is 

preprocessed to piecewise linear data. The slope of linear 

variation is directly decided by one value of the limiter 

function. In contrast with our flux limiter approach each wave 

has its own limiter values. It is rare that all the values that 

the limiters operate, are just in the discontinuity points thus 

the flux, limiter is less susceptible to the discontinuity of the 

limiters. 
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Fig. 4.3,4.4,4.5 and 4.6 show results of Mach 0.85,2,5, 

and 20 flows from various solvers. The convergent speed is 

reasonable when compared with other researchers' results. 

4.7 Experience with GMRES Solver 

The linear GMRES (generalised minimal residual algorithm) 

solver by Saad and Schultz (1986) is a conjugate gradient-like 

method for solving linear systems of equations. Since we only 

solve the matrix equation approximately and the factorisation 

error is not small, we could possibly solve it with same or more 

accuracy by GMRES with only few iterations. From the numerical 

experiments only a few subiterations inside GMRES for each 

iteration are required initially, however when residual reduces 

by three orders of magnitude the subiterations required increase 

very quickly. We conclude that to use linear GM2ES as 

approximate solver is not competitive. If we solve the matrix 

equation very accurately at the expanse of long CPU time only 

few hundred iterations is able to drive the residual to machine 

zero. This incidently indicates our boundary conditions are 

sufficient good at least for DDADI. 

To better use high accurate approximate or exact solvers 

one should use Newton method which could possibly reach 

convergence in few iterations (Venkatakrishnan 1990). The 

objection of using direct solver in our study is that the 

convergent rate in term of iterations can be too fast for zonal 

calculation, see Chapter 5 for the reason. 

The nonlinear GMRES by Brown and Saad (1985) is a clever 

combination of inexact Newton method and linear GMRES for 

solving the nonlinear systems of equations. According to 

Wigton (1985), with any solvers such as AF as preconditioner, 
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the nonlinear GMRES will help convergence in the difficult case 

and help to stabilise scheme. In our experience we are not able 

to have any gain. We need to do more works about the use of 

nonlinear GMRES. 

4.8 Concluding Remarks 

The hypersonic flow calculation turns out to be much more 

difficult than we thought and extra dissipation is usually 

needed. 

Several approximate matrix solvers are tried but not all 

reach the success other researchers have in transonic 

calculations and when the flux vector splitting scheme, instead 

of the flux difference splitting scheme, is used on both 

explicit and implicit operators. 

Nevertheless we have produced basic implicit codes by DDADI 

and method 5 for hypersonic calculations. Although we are not 

successful with AF we believe our implicit codes provide a 

reasonable start for our next objective of investigating zonal 

methods. 
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CHAPTER 5: THE IMPLICIT ZONAL METHOD 

5.1 Introduction 

To ease the grid generation difficulty in three dimension 

and to improve the grid quality the most flexible approach 

except unstructured grid is to use overlapped arid. The biggest 

obstacle to use the overlapped grid is to maintain the flux 

conservation. As pointed out by Berger (1987a) it is extremely 

difficult to achieve exact conservation. A gocd example of bad 

result from nonconservative interpolation algorithm was given by 

Benek et al (1983). 

Nevertheless it is perhaps not necessary to have EXACT flux 

conservation, if the flux conservation is met to certain degree 

of accuracy. The approach suggested by Thomas et al (1988) 

seems to meet this condition. They conserved the conservative 

variable times cell area, A"W, instead of interface flux. Their 

results on nonoverlapped composite grid were quite encouraging. 

Moon and Liou (1989) made significant refinement on this 

technique and applied it to overlapped grid in two dimension 

showing very promising result. One inherent problem of this 

approach is that the complexity of programming and computing 

overhead is larger than nonoverlapped approach especially in 

three dimension. 

Here we only pursue the nonoverlapped grid approach, that 

is grids with common boundaries. 
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We first categorise the zonal boundaries, see Fig. 5.1. 

Type B1 has continuous grid lines, it can be either continuous 

or discontinuous in slopes. Type B2 has integer grid spacing, 

while type B3 has noninteger grid spacing. 

The composite grid can be classified as two types. Type Gl 

is globally structured, therefore the zonal boundaries can only 

be the B1 type. Type G2 is globally unstructured which is more 

realistic in practice I thus the zonal boundaries consist of all 

three types. One important advantage of G2 type grid is that it 

allows local grid refinement. For the flow solvers, we can have 

either explicit (Si) or implicit (S2) solver. The explicit 

solver uses only local grid data to march in time, while the 

implicit scheme needs all data in the computational domain to 

march in time. This difference has important implication on the 

zonal method. 

For data management we assume the data stores in both the 

primary and secondary memories, which is the situation for 

realistic 3D calculation. Type M1 uses the data in the primary 

and secondary memory at the same time, see Fig. 5.2. The time 

spent on the data access is in general too long. Type M2 uses 

only the data in the main memory, the data in the main memory 

and secondary memory exchanges periodically. Type M2 is the 

usual case. 

Combine the grid, solver, and data management we have 

several options. 

M1/M2+S1+G1 is simply.. the case for -single zone grid. 

M1+S1+G2 is easy in the finite volume formulation. M2+S1+G2 

adds some problems on the data exchange. Ml+S2+G1, is trivially 

they case for single zone. : M1+S2+G2 can be done but the matrix 
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from implicit scheme becomes unstructured, for which no 

efficient solver is available. The most challenging combination 

is M2+S2+G1/G2. The matrix is structured for using G1 grid for 

which efficient approximate solver can be used; however, the 

order of the matrix equation is very large. One does not wish 

to solve it as a whole. The situation for G2 grid is even more 

difficult since the matrix is not only very large but also 

highly unstructured. One will prefer to form the matrix 

equation and solve it zone by zone. But with this approach the 

implicit scheme now can not receive all the data, which violate 

the underlying principle of implicit scheme. This will be the 

centre issue of our research. 

Section 5.2 reviews some works which we consider are more 

related to our experiences. Section 5.3 and 5.4 describe the 

treatment of explicit and implicit operators at the zonal 

boundaries respectively. The results and discussion are 

presented in section 5.5. Section 5.6 describes possible 

problems in three dimension. Section 5.7 concludes the chapter. 

5.2 Selected Literature Review 

There are so many papers about the zonal method that an 

complete review is impossible. Here we only concentrate on some 

works. 

Rai (1986) used AF finite difference scheme on G2 type 

grid. We consider his, treatment on the conservation is more 

complicated due to the finite difference setting. The implicit 

zonal .. 
boundary 

. condition he 
. used - was not . stable for one 

subiteration, however by relaxation method one subiteration was 

stable --(Rai 1985). The-, implicit zonal boundary condition he 

chose was simply to set the 6W in the other zone to zero. Mach 
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2 was the maximum tested Mach no. 

Belk and Whitfield (1987) used LU finite volume scheme on 

G1 type grid. The implicit zonal boundary condition was either 

to set the aW =0 in the other zone or took the aWaew = Mid 
j, 

where the Mold was the 6W from previous iteration. With the M2 

case one can choose to use the old data or to use the newest 

data available from the other updated zone. They named the 

synchronisation (SYN) as using only the old data and 

unsynchronisation (UNSYN) as using the newest available data. 

The test problem was transonic flow past -a wing. The main 

conclusion from their work was that the convergence speed in 

order is UNSYN+ aW =0 first, SYN+ 6W =0 second, and 

UNSYN+ ÖW, ld =0 last. The SYN+ öWold =0 approach was not stable. 

Morice (1988) used a noncentred finite volume scheme on G1 

grid. The test case was M=0.85 GAMM bump. His implicit 

characteristic boundary condition is perhaps the most reasonable 

among others in our opinion. However it is still not genuinely 

implicit because of intrinsic restriction of the M2 case. He 

showed a striking result that two-zone calculation could have 

the same convergent rate as one zone case. 

' Kathong (1988) first applied Ramshaw's algorithm (1985) to 

find the overlapped areas in the 3D block boundary. This point 

will be addressed later. 

Eriksson and Rai (1988)-gave the first numerical stability 

analysis of the Jameson type scheme and upwind scheme. They 

concluded the upwind scheme was superior in stability for all 

B1, B2, B3'type zonal boundaries. For nonupwind schemes extra 

dissipation was required for using B2'and B3 type boundaries. 
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5.3 The Explicit zonal boundary condition 

As we stated earlier the explicit part calculation only 

needs local data therefore there is basically no difficulty in 

theory. With the finite volume and the flux limiter approach 

one can assume the flow is locally uniform inside the 

computational cell. With reference to Fig. 5.3 one can work out 

the ist order flux across ab by simply solving the Riemann 

problem with W1 and Ws as the left and right states. For the 

2nd order flux, we need to compare of k- at mit with ef. k- at ab to 

obtain rk-. When the rkt is evaluated we scale the ejk=. The r"p 

for limiter function is therefore equal to 

t+ 2 k- `2 
k 

ýfde ade Sab Afinnama 
. 

Sab 

r rk- - ab k+ z ab k_ E tf ab ah 
.S de ýf 

ab a ab S ma 

After all interface fluxes are found the R(W) for cell 1 is 

equal to Hab+Hba-Hde+Haa Hie 

In the above approach we assume there is a common boundary 

running through different zones. One needs a table of the data 

at the neighbourhood of zone boundary. The table is most 

convenient to produce during the grid generation stage. In the 

grid generator one first establishes all the boundaries, such as 

solid boundaries, far field boundaries, and zonal boundaries 

etc. These boundaries are usually represented in parametric 

from. In two dimension one parameter is enough. By comparing 

the number of the parameter one can establish the table quickly. 

Three dimension case will be discussed in section 5.6. 

Because the assumption of common, boundary the-cells at the 

boundaries are not, quadrilateral in general. In our 

calculation, for example, the area of the cell abcde is assumed 

to have the same area of abcd. Note that we still keep flux 
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conservation. The error will be insignificant if the zonal 

boundary is quite straight with respect to each cell. If one 

decides to use exact area it is most conveniently supplied 

from the grid generator. 

5.4 The Implicit Zonal Boundary Condition 

With the M2 data management and the basic implicit scheme 

we use in chapter 4 there will be no real implicit zonal 

boundary condition if one does not want to solve the complete 

matrix equation. With this understanding we believe the success 

of implicit zonal schemes come from the coupling of explicit 

part. 
I 

Since the implicit schemes still need hundreds of 

iterations to reach convergence in single grid calculation, 

during the iteration process the explicit boundary condition can 

couple different zones effectively. Therefore we adopt the 

simplest 6W =O approach. 

All the works mentioned in section 5.2 were quite obscure 

about how they treated the diagonal term D. We find the 

diagonal term D has to treated properly especially when the G2 

grid is used. 

Use similar approach as in the explicit part we can work 

out the interface Jacobian. Take the conservative form for 

example the diagonal term for cell abcde, see Fig. 5.4, is 

D=I+0.5µ (IJ. bI +IJbJ +IJ4. I +IJ. dl +IJoeI) 

A try which does not include the Jacobian in the zonal interface 

turns out to be unstable. - 
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5.5 Results and Discussion 

Before the results are presented we have to explain how to 

view our contour plottings. Since we use finite volume 

formulation the flow data is cell-centred. We plot the contours 

zone by zone and inside each zone we do not try to extrapolate 

the contour lines. Therefore at the zona_ boundary the contour 

lines are not connected. Sometimes the appearance generated is 

a little unusual, e. g. Fig. 5.9 and Fig. 5.18 where the noses 

of bow shocks just lie on the zonal boundaries, but in all case 

the actual solution is well behaved. Nevertheless it is easy to 

use imagination to connect the lines. 

Various positions of zonal boundary will be presented to 

see what sort of situation . 
is difficult. The results are 

presented from low to high Mach number range. Most results are 

obtained using conservative DDADI schemes unless specified. 

Fig. 5.5 is the Morice's GAM bump test with zonal boundary 

covering subsonic and supersonic regions using UNSYN and SYN 

approaches. The convergent rate of UNSYN approach is as good as 

single zone calculation and the SYN approach is only slightly 

slower. Fig. 5.6 is again for the GAMM bump but with the zonal 

boundary lying inside the shock. The convergence speed is not 

influenced at all. 

Fig. 5.7 shows the results for Mach 2 flow past quarter 

cylinder with two different kinds of zonal boundary using DDADI 

and UNSYN and SYN approaches. The convergent speed is again not 
degraded at all. The AF scheme was unstable without using 

subiteration approach according to Rai (1986); however, our AF 

(result not shown)" has no such problem. We believe the 
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difference comes from the treatment of diagonal term. 

Fig. 5.8 to 5.13 are for Mach 5 flow past reentry body. 

The zonal boundary in Fig. 5.8 is away from the bow shock. 

The convergent rates are obviously slower in Fig. 5.8 when 

compared with Fig 4.5, especially for SYN, which might due to 

the narrow domain near the body. 

Fig. 5.9 and 5.10 have zonal boundaries inside the nose of 

bow shock. The zonal boundary of Fig. 5.10 is one more cell 

away from the body then that of Fig. 5.9. Fig. 5.9 also shows 

the convergent history with method 5. In these cases which 

shocks lie on the zonal boundaries SYN approach are UNSTABLE for 

CFL no. 10. Lower CFL no. has to be used. 

Fig. 5.11 has small shock to zonal boundary angle. 

Fig. 5.12 has zonal boundary in the supersonic region. 

Fig. 5.12 is by method 5 with marching in the streamwise 

direction and the zonal boundary is perpendicular to the bow 

shock. Of these results shock positions do not seem to produce 

problems with UNSYN approach. The SYN approaches are not 

tested. 

Fig. 5.13 is for the integer grid spacing case with mesh 

ratio 2 using UNSYN approach. The convergence speed can not be 

compared with one zone result. - 

Fig. 5.14 to 5.18 are examples for Mach 20 flow past 

quarter cylinder using UNSYN approach. 

.. The convergent' speed-is-'quite-good in Fig. 5.15. Fig. 5.15 

and 5.16 have noninteger grid spacing. -The convergence is 

exceptionally fast in Fig. 5.16 because the grid which contains 
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the shock is very coarse. 

Fig. 5.17 and 5.18 have shock close to zonal boundary with 

CFL number 10 and 20. For Fig. 5.17 the residual can not go 

down at CFL number 20. For Fig. 5.18 with the boundary inside 

the shock using CFL number 20 shows faster convergence than 

using CFL number 10. The test in Fig. 5.17 is perhaps too 

severe for the whole bow shock lies at the boundary of left 

zone. 

Some general observations can be made from above results. 

Firstly, the UNSYN approach converges faster and is more 

robust than the SYN approach especially when there is a shock 

in/near the zonal boundary. The first reason might be that in 

the UNSYN approach the number of explicit coupling DOUBLES. If 

the solutions in different zones do not match each other the 

UNSYN approach can tolerate such difference while the SYN 

approach, which does not use the newest data, needs the 

solutions to be compatible. 

Secondly, low Mach number flow is easier to compute. This 

might be because the change at shock layer is not much bigger 

than that in the smooth flow. 

Thirdly, shock following the zonal boundary will cause 
problem when Mach number increase especially for SYN approach. 

This is due to the fact that most change is on the same row near 

the zonal boundary. ' If shock crosses zonal boundary it does not 

seem to a problem. This is because that near the' boundary the 

big change due to the shock is in a small region. 
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We believe the reason that the dW=O method works well is 

partly due to the optimum CFL number of our implicit codes is 

quite modest and also the diagonal dominant characteristics of 

upwind implicit scheme allow us to discard the off-diagonal 

terms if the diagonal term is treated properly. 

Although our explicit operator is a central-difference 

operator with TVD limiter, we believe other explicit operators 

can be used if the 1st order implicit operator is treated as 

before. 

A benefit from using the implicit zonal method is that the 

size of matrix equation reduces. If the overhead from doing the 

extra calculation for the zonal boundary is not counted the 

overall computing cost should decrease because of smaller size 

of matrix equation to solve. 

5.6 Generalisation to Three Dimension 

The method we use can be generalised to 3D in principle. 

To keep the conservation we need to have the overlapped 

areas on the zonal plane. If the zone boundary is a straight 

plane Ramshaw's conservative re-zoning algorithms can be 

implemented efficiently, e. g. Kathong (1988). However the zone 

boundary is generally a curved plane no efficient method exists 

to the author's knowledge. One possible solution is to apply 

Ramshaw's technique on (s, t) parameter plane after the curved 

boundary is parameterised, see Fig. 5.19, and this should be 

integrated to grid generation procedure. 
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To compute the volume of multiface cell abutting on the 

zonal boundary extra effort is required. If the boundary is 

quite straight, one can again calculate the cell volume as if it 

is a hexahedron. Some of the cell surfaces intersecting the 

zonal boundaries might have more than four edges. The area 

vector of these surfaces is required for the finite volume 

scheme. Again if the zonal boundary is quite straight we can 

calculate it as a four-edge surface. 

Another problem associated in a 3D patched-grid was 

addressed in Thomas et al (1989). Near a solid wall the grid 

could be unable to match each other especially for highly 

stretched mesh for thin-layer N-S calculation, see Fig. 5.20. 

We will prefer to avoid this situation. 

5.7 Concluding Remarks 

In this chapter we have demonstrated a robust and simple 

finite volume approach for using the implicit scheme in the 

zonal setting. The convergent rates are quite satisfactory for 

most test cases. Proper treatment of the diagonal Jacobian 

turns out to be crucial for stability while the unsynchronised 

approach which uses the newest data helps convergence. 

Although promising result is obtained in 2D three 

dimensional test still, has to be done. ` 
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CHAPTER 6: VISCOUS CALCULATIONS AND ITS GRID ADAPTION 

6.1 Introduction 

After studying the inviscid calculation in previous 

chapters we move to viscous calculations. The main concern is 

on the grid adaption for viscous computation. Two problems with 

Roe's Riemann solver are also examined in viscous flow. 

A general discussion on the Navier-Stokes calculation and 

grid adaption are given at sections 6.2 and 6.3 respectively. 

The linear advection-diffusion equation is studied at section 

6.4. Section 6.5 gives some suggestions on the grid adaption of 

viscous flow. The dissipation effect on the numerical boundary 

layer thickness is examined at section 6.6. A better cure for 

the carbuncle phenomenon is proposed at section 6.7. Section 

6.8 discusses the pressure kink problem first observed by 

Venkatakrishnan (1990). Section 6.9 concludes this chapter. 

6.2 General Discussion of Navier-Stokes Calculations 

Adding the viscous terms to the Euler equations of section 

4.1 we obtain the Navier-Stokes equations, 

ýw+ax+ äýLG +6x+ äy 
=o y 

with 
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_ 
1+C T. C=110.4°K , 

T=-yM_P/p 
(T+C/T-) ' 

In the above equations the velocity, density, temperature, and 

viscosity are nondimensionalised by their free stream values, 

and x, y, z by the characteristic length L. For more details see 

Anderson et al. (1984). 

The inviscid terms can be discretised as before by the TVD 

schemes. The viscous terms are usually discretised by using 

central difference. The semidiscrete finite volume scheme for 

the cell i, j is therefore 

AtJ 
öWt. j + H1+112., -H 1-1/2j +H tJ+1/2 -H tJ-1/2 

+Ht+t/zj -ý/z4 +H" , I/Z-H, ý-t/2=0 

The viscous interface flux is, for example, 

H1.1+1ý2 =FiJ+t/asiJ+t/a+Gºa+t/astj+i/i 

To calculate Fjj+112 and GJ+1/2 we need to evaluate the derivatives 

of/ax, of/ay at the cell interfaces (f=u, v, and T). For 

example to evaluate derivatives at (i, j+l/2) we construct an 

auxiliary cell centered at (i, j+l/2), see Fig. 6.1, using the 

Gauss law we have, 
Of I 
T -+ a14.1,2 t1234 f dY 

i _+ aIJ+i/Z 
(fi+1/zj+1/z°Y12+fib+s°Y23+ft-t/2J. s/x°Y34+fu°Y41) 

Of 1 
fdx ay A1J+1/2 1234 

aW+i/z 
(f 

i+1/zj+1,28; x +fL+ h 3+f t- /zj+, /z&xu+f )4, ) 

with 
£xab=ab-xa , £Ysb=Yb-YY All+ljz=0.5(AW+1+AI, 

J) , 
f, +1i2a++i2=0.25(f, ß+f, +14+fia+i+f, +IJ+1 

) 

This is 
.a 

standard finite volume technique, see Peyret and 

Taylor (1983) for more discussions. 
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For the high Reynolds number computation the viscous 

diffusion parallel to the wall can be neglected without losing 

much accuracy if there is no massive flow separation. Dropping 

the viscous terms along the wall we obtain the thin layer 

Navier-Stokes equations first, proposed by Steger (1978). For 

example the Hiiz4 and terms are discarded if the i 

direction is parallel to the wall. To further exploit the thin 

layer concept we can simplify the evaluation of derivatives by 

neglecting the fi+, /2, +t/z and fi-t/2J+I/2 contributions since both 

terms are relative small in the case of high aspect mesh and low 

streamwise diffusion. In fact this is equivalent to the finite 

difference approach which works on body conformed coordinates. 

The finite volume approach is slightly more accurate; 

however, the finite difference approach is good enough with the 

thin layer assumption. The finite difference approach is easier 

to implement, especially in the zonal setting. To evaluate 

derivatives at zonal boundary, see Fig. 6.2, FV approach will 

need interpolation to find fl+, /zj+l/z while for FD approach the 

stencils do not involve the data from the other zone. 

The implicit schemes for the Euler equations in Chapter 4 

are used as bases for Navier-Stokes equations. For constructing 

implicit part of viscous terms the linearisation suggested by 

Steger (1978) is used in_our study. Only the DDADI conservative 

scheme is tested on viscous problems. Its performance we found 

depends critically on the aspect ratio of the mesh near the 

body. The allowed CFL number compared with inviscid calculation 

reduces significantly if the mesh aspect. ratio is greater than 

50. More experiences on viscous calculations using different 

schemes are required. 
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6.3 General Discussion of Grid Adaption 

It has been widely demonstrated that by attracting the grid 

lines to the high error regions (moving grid point approach) or 

by refining the meshes locally in such regions (embedded grid 

approach) one can gain great accuracy with economy, see 

Fig. 6.3. The combination of both approaches has also been 

demonstrated. 

The main difference between both approaches is that the 

former approach tries to obtain most accurate result for a fixed 

cost and the latttCtries to attain a fixed accuracy for a 

minimum cost (Berger 1987a). Note that for the embedded grid 

approach the cost is not known beforehand. For the 3D 

calculation the computing resources required are so large that 

one usually can only afford the first approach. The latter 

approach is usually used in 2D unsteady calculations for complex 

gas dynamics problems. It also has been used on steady state 

solutions but it generally prevents one from using some 

acceleration technique, such as implicit schemes. 

Here we will only discuss the first approach. There are 

several review papers available, for recent ones see Thompson 

(1985), and Eiseman (1987). 

The first step of grid adaptionx`is' to obtain error 

estimate. Knowing where the large error is, we can move the 

grid lines to such region. The most popular approach is to use 

the equidistribution- concept, i. e., redistribution of grid 

points such that a positive weight function, W,, is equally 

distributed over a grid line 

wjas, =const. 

where 6i is the grid interval and Wa the weight function which 
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should be proportional to the error estimate. The problem of 

choosing the weight function will be discussed in later section. 

After a suitable weight function is obtained one can then 

choose either the smoothness or spring analogy approach to 

generate a new grid, see the text book by Thompson (1985). With 

smoothness approach the grading function is simply 

t(s)=fswdt/. C'°°"wdt 

where s is the arc length along the grid line. If the grid 

point index J ranges between 1 and N we have the relation 

J=(N-1)t+1 

To extend this idea to two or three dimension, one often 

need to consider the smoothness and orthogonality of grid. To 

extend one dimensionalapproach to higher dimensions the simplest 

choice is to do adaption along one coordinate and interpolate 

the solution to the new grid then use the same procedures for 

the other coordinates. Usually the final grid needs to be 

smoothed. More sophisticated algebraic adaption techniques have 

also been developed, see Eiseman (1987). Recently 

Anderson (1986) showed the equidistribution law can be seen as 

an elliptic equation with a forcing term. He integrated the 

equidistribution law into the elliptic grid generator and also 

developed a method with cell area control (Anderson 1987). With 

variational formulation an optimum grid with respect to weight 

function, smoothness, orthogonality and volume variations can be 

obtained at relative'high cost. ' Here -we doý not intend to 

consider the grid quality problems. 

The mesh size can be out of control if the weight function 

is not properly scaled. Nakahashi and Deiwert (1986) showed one 

can control the RATIO of maximum and minimum spacings by 
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adjusting the weight function. If the original weight function 

is called M using the relation 

AssmasWmin =ASmI. Wm. x 

the new weight function is 

R=1+cM 

where R-1 R_ asmax 
r Mms: -Mm, nR 

°smsn 

They (1987) also showed one can control exactly the specified 

minimum and maximum specified mesh spacings. Their weight 

function was 

R=1+af1 

a can be computed directly but b needs to be adjusted 

iteratively. 

The above two methods can be used if one has only one 

variable to adapt with. If one wants to use two or more 

variables, e. g. density and temperature gradients, an immediate 

problem is how to scale them since they are not of the same 

physical dimensions. This multivariable adaption problem can be 

solved by using the fraction control technique. Dwyer (1984) 

first suggested to use 

"v=1+awi +bw2 

where a and b can be adjusted to obtain the specified weight on 

Wl and-W2. His method needs iterations to find a and b. It is 

however easier to work directly 
ton 

the grading function (Eiseman 

1987). Eiseman's formula was used by Abolhassani (1987) for 

multivariable adaption.,; 



-62- 

The fraction control technique uses a linear weight 

function 

W=Co +C 1 W1 +c, 2 W2 +... +c nwn 

The c's are adjusted such that 

/'smnz c0dt. -J0 
f smý 

Wdt. 
JO 

/'Smax C1 wt dt fIf 
. 

Sm"' 
wdt 

do 

" 

('Smas c wn dt °f8 
fSmn 

wdt JO 

E(fo+A+. fz+... +A)=1.0 

With the fraction f specified the grading function can be 

defined without knowing the values of c's. It is 
n 

(s) = sa. - 
[1_ E-fJ ] +EfJ F (ý, 

nz ) 
where 

Fj (s)=J wJ dt 

6.4 Study on the ' model Equation 

In this section we use the linear advection-diffusion 

equation to validate some ideas. We first produce an implicit 

scheme. It is used to test different limiters on uniform grid. 

A modification on nonuniform grid is then attempted. Finally we 

try to find a good criterion for grid stretching. 

The linear advection-diffusion equation 

UU +aU. '=bU 

with boundary conditions 

. 
U=UL at x=O 
U=Ux at x=L 

is used as a model equation for studying the viscous and grid 
adaption problems. 'The 'exact solution for the steady equation 
aUr =bUlz is Use(&) -UR (UR -UL)e(a=/b) U= 

e(aL/b) _1+ e(°w°) -1 



-63- 

which has a boundary-layer-like profile if b is much smaller 

than a. 

We will introduce the notation v= AX and R= 
bX where v 

is the CFL number and P. is the mesh Reynolds number. 

One way to solve it is by using the FTCS scheme which uses 

forward-time and centre-space difference. The resulting scheme 

is 
UI ýI-Ur Ui*1-U 1 Ui«, -2Ui +Ui t 

of 
+a 2X =b (&X) 2 

Using the Fourier analysis the stability bound is 

2v<R<2/v 

It is also well known that for 2 SRS2/v one obtains oscillatory 

exponential solution. This can be analysed by using the normal 

mode analysis. 

If one uses TVD schemes on the convection term, aU,, and 

central difference on diffusion term, bUa, the stability bound 

is not clear since TVD condition does not imply stability in 

this situation and the limiter involved prevents the Fourier 

analysis. For the oscillatory solution problem Roe (1987a) 

managed to show that it will not occur if limiters are used. 

This is confirmed by numerical experiments, see Fig. 6.4 for a 

mesh Reynolds number 4 result. 'Since the explicit scheme is 

bound to have very small time step size, f ollowln3 what We did for 

the Euler equations an implicit scheme. is used in this study. 

The semidiscrete finite volume scheme is 

dUj 
+X (Iii. 

The interface flux, for a>0, is 

Hi+t/i =e1ýUi +1$ (Uýýi-vi-t)ý-b Uiat-Uº-t 
2 0.5 (°x4. i +°xj 
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where ip is the limiter function. The implicit scheme is 

U` +t+XL iH+ , 
z-H° 

1/2 J-Uº 

After some manipulations we have 
2b 2b 

-ý°X2 ax, -, 
ýöUi-i (1-f-aý, +Xt( 

Ax +°XI-i 
+ 

axt+axi+i 
)öU1 

2b 
+ -fit °xtý'°Rý+i)bUj+t 

-Xt(Ht+t/z-Hi-t/z) 

where dU=U°"-U` 

which can be solved directly by a scalar tridiagonal matrix 

solver. Numerical tests show it is unconditionauystable. 

The theory suggests superbee limiter should gives the best 

result among other limiters. Numerical experiments confirms 

superbee limiter is as accurate as pure central difference. 

Since stretched grid is usually used in viscous calculation 

we try to improve the evolution of advection and diffusion terms 

on nonuniform grid. For the advection term a simple 

modification is made. For the diffusion we first evaluate U= 

and then fit a parabola locally for U= therefore the U. value 

at the grid interface is obtained by differentiating the 

parabola, see Fig. 6.5. Numerical experiments with this method 

on stretched grid show both worse and better results than those 

with original scheme.. The results are proved disappointing. 

Now we turn to grid adaption. To find a good error 

estimate or weight function is the first difficulty with mesh 

adaption. To use the truncation error as weight function is not 

practical in more general cases. The usual choice is to use 1st 

derivative, 2nd derivative or curvature of the solution. 

Thompson suggested to use 1+b"lkl 1r where k is the 

curvature, which combines gradient and curvature of solution. 

However all the possible 'combinations have constantstobe adjusted 
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and no universal constants can be given. 

It is more reasonable that the weight function should also 

depend on the numerical schemes used. Carey and Dinh (1985) 

responded to this by posing the best interpolation for U: for 

a given fixed N determine the mesh 14, i=0,1,2,... N such that 

the associated interpolant of U is optimum in some sense. For 

using piecewise linear interpolation with respect to minimum le 

norm the weight function is simply U. 6 

Numerical experiments with this weight function show very 

good result on the model problem. Especially the I error norm 

is quite close to Li norm despite U. is optimum in Lq norm. 

With the weight function suggested by Thompson after fine tuning 

the constants the result is also quite good but the L, and 1, 

norm cannot be so close. Fig. 6.6 shows an example from using 

this weight function. 

Carey and Dinh derived their formula by using the Fourier 

series. It is very easy to follow their approach to derive the 

formula for obtaining minimum error for two or more variables. 

The resulting weight function is 

[E (U. )a] " 

As a final note initially we consider the gradient U141-Ul 
used for the limiter function could be a good candidate for 

setting up a weight function. The magnitude of weight function 

depends on how far r deviate from 1.0. The idea is that if one 

can obtain a grid such that r is very close to 1 at every cell 

interface one should obtain a very good. solution. The other 

advantage is that r is 
-nondimensional' and one :.. can possibly 

generalise this to system of equation. Nevertheless numerical 

experiments proved disappointing. 
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6.5 Grid adaption of viscous solution 

The results from the model equation are not quite 

applicable to the complex Navier-Stokes equations. Again the 

problem of choosing the right weight function comes first. What 

variables should' we use? The thickness of thermal boundary 

layer is about 1/N/pr times the thickness of viscous boundary. 

For air Pr=0.72 the thermal boundary is thicker! Should we 

treat the adiabatic wall and isothermal wall differently? These 

problems can not be answered by studying the simple linear 

advection-diffusion equation. 

The other problem which is not encountered in Euler 

adaption is that the grid scale difference is very large for 

inviscid and viscous regions. If the grid scale change by the 

order of 3 the value of weight functions should also have such 

variation to preserve the fine grid near wall. Our experience 

shows none of the mesh size control techniques mentioned in 

sections 6.3 and 6.4 are capable of generating reasonable grid. 

Some researcher (Nakahashi 1986, C. Rsu 1987, and A. Hsu 

1989) have recognised this difficulty and solved it by 

essentially changing the basic equidistribution law to 

osi w, /c, =const 

where cc is the original grid spacing. One can understand the 

original weight function is now scale by the original grid. A 

more general formula was given by Hsu (1989). 

It is possible to combine the technigties of controlling 

ratio of spacing and fraction of, variables and the scaled 

equidistribution law together to provide more control of mesh. 
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One can obtain an approximate formula for the grading function, 

which is 
/ 

J-1 A J-L A J-l 
t lJ) ^'. fo +LW 1(k) +... +°EW. (I') N-i E ýIfl(k) k-2 W°(k) k-2 

k-2. N-1 k-2. N-1 

where Weis control by the specified ratio Rý. 

As an example Fig. 6.7 shows the pressure contours of 

viscous flow past quarter cylinder with free stream Mach number 

2 on a 35x51 grid. We could not afford to study the accuracy 

problem, i. e. to decide how to choose the best weight function. 

We will only demonstrate the mesh size control technique. 

Pressure gradient is used as the basic weight function, M, to 

cluster the grid around the bow shock. The adaption is done 

along the radial grid lines only. The weight function is 

w=1+c, wI 
R, -1 

where w, =1+cIM I ct= M. - R1 

with fractions, fa and fl and ratio of M, R,, to be specified. 

With fo=0.5 , fi=0.5 and R, =10 and the unscaled equidistribution 

law the grid near the wall becomes unreasonably coarse, see 

Fig. 6.8, while with the scaled law the fine grid near the wall 
is able to retain (Fig. 6.9). Since the pressure gradient is 

evaluated with respect to the arc length it is relative small 

around the shock near the outflow. '' This can be improved by 

evaluating the pressure gradient with respect to the grid index, 

for example the M at point J can be set to 

max{ jP,., -P11, IPI-P, 
-11 

I" Using this the grid in, the shock region r 

is better clustered (Fig. 6.10). The grid quality of Fig. 
. 

6.8 

to 10 can be further improved by one or two passes of a 1 
smoothing operator. 
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Since the value of weight function is proportional to the 

inverse of mesh spacing the mesh spacing produced by above 

simple method can be used as input for more sophisticated 

methods using original equidistribution law. 

For more complex flow the embedded mesh approach is 

obviously a much safer approach. In our opinion if one wish to 

do adaption covering both viscous and inviscid regions it will 

need heavy human intervention to guarantee the adapted grid is 

reasonable. 

A possible way to avoid the above problem is to separate 

the flow region into two. The one near the wall uses fine grid 

while another one away from the wall uses coarse grid. The 

adaption is done in the individual grid. However it is not 

clear if the sudden mesh size change will bring any problem and 

if, this approach needs more grid points. 

6.6 Dissipation effect on numerical boundary layer thickness 

It is well known that Roe's Riemann solver, which includes 

informations about all waves, can give very accurate 

representation of boundary layers in quite coarse mesh while Van 

Leer's flux-vector splitting, which ignores the linear waves, 

; badly diffuses the boundary layer (Van Leer et al 1987). 

As we pointed out in Chapter 4'the formula suggested by Yee 

(1987) introduces large dissipation into the linear waves which 

might degrade the solution significantly' for viscous 

calculations. 

a ý. ý -, .. 
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An easy demonstration is to check the numerical boundary 

thickness on a flat plate. A numerical scheme with more 

dissipations will give thicker numerical boundary layer. 

The test Mach number is 0.5 with Reynolds number 10668 and 

adiabatic wall condition. Along the streamwise direction there 

are ten cells before the leading edge and 20 cells on the plate 

with uniform mesh spacing. The residuals are reduced by 10 orders 

of magnitude after 1000 iterations for all meshes used. 

Fig. 6.11 shows the velocity profiles at the last column cells 

on the plate from first order and second order schemes on three 

different grids. The coarse grid result is very close to fine 

grid result even for first order scheme; however, with 62,3 =0.25 

the calculated boundary layer is unacceptable even on the fine 

grid. Although in this case we do not need to use dissipation 

any boundary layers must have such low Mach number region in 

high Mach number viscous flow. 

We therefore do not recommend Yee's dissipation for viscous 

calculations and any methods proposed for curing the blunt nose 

instability should pass this test case. 

`There are two more interesting things' we can learn from 

this simple boundary layer calculation. The singularity at the 

leading edge can never be resolved'by refining' the meshes and 

the'grid near the Z. E. should be very fine; however, one does not 

obtain bad solutions downstream of the, ', L. E. '. This implies the 

singularity is not very important. The other thing is that the 

worse region of the solution is where the curvature of velocity 

profile is large, i. e. near the edge of boundary layer. The 

velocity profile near the wall is very accurate. This might 

justify the use of simple forms of stretched grids in viscous 
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calculations if one only needs the viscous stress. 

6.7 The carbuncle phenomenon revisit 

As demonstrated in section 6.6 the formula of Yee is not 

suitable for viscous calculation. This problem was also 

understood by Peery and Imlay (1988). They proposed a formula 

which uses pressure gradient to tune the magnitude of 

dissipation. They changed the eigenvalues (wave speeds) to 

1_ +E_ lit =2 Et 

where m 
1.2(JV. I+a)+ 

4p 
V_ in i direction 

CIA = 
0.2(IV, ) +a)+ 4p 

V_ in j direction 

V. I +a + 4p 
V_ in i direction 

EU= 
pV_ in j direction 

in their words, acp is a second difference of pressure averaged 

at the cell face, p is an averaged local pressure, and V. is the 

free stream total velocity. They used a Mach 2 flow past a flat 

plat to demonstrate their formula is suitable for viscous 

calculation if the j direction is normal to the wall. 

Nevertheless their formula is still not suitable for viscous 

blunt-body calculation because the i direction, which has bigger 

dissipation, is normal to the body. Another problem of their 

formula is that, again in their words, the 
. 

shock was captured 

with approximately three internal points, although the outer two 

points were nearly equal'to the conditions at the edges of the 

shock. This is due to the excessive dissipation at supersonic 

part of flow. 
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Their idea of using pressure gradient to tune the 

dissipation seems to a good idea. We still uses the Q(Xk) in 

section 4.2 but change the dt. Our modification is 

61. "=( Iv. l +a)(Ic, +)c .) 
o =( Iv. 1 +a)(sc. '. ) 

kT is similar to mp. The k. at interface (i+1/2, j) for 

example is equal to the average of kp at (i+l, j) and (i, j) . The 

k. at (i, j) is chosen as 

(Kp)4=0.5( p,. lj-2Pu+P, -Ij + Pu. t-2Pu+Pi-t 1p,., 
j+2Pu+P*ul 

I 
Pu. t+2Pu+Pu"sI 

and if the local Mach number at cell U, j) is greater than 1.0 

the kp is divided by the Mach number. 

Our modification removes the direction dependency of Peery 

and Imlay's formula and decreases the dissipation at supersonic 

region. 

There are at most most two internal points in the shock 

layer with our formula. Fig. 6.12 shows the result for Mach 8 

calculation with ki=0.25, k==0, and k1=15 with CFA. no. 5. Fig. 6.13 

is obtained with ks=5. Fig. 6.14 and 6.15 show the results 

for Mach 20 using same parameters of Fig. 6.12 and 6.13 

respectively. From these graphs the solutions converge better 

with ks=5. The optimum CFI, no. is lower than using Yee's 

formula, which is more dissipative in the smooth flow. 

Using this formula the magnitude of'k, is about the order 
4 

of 10 in smooth flow, which is quite`"small'. 
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6.8 The grid-dependent characteristic of current upwind schemes 

The scheme which is based on one dimensional Riemann solver 

can only partially model the physics in multidimensional flow. 

This is because the Riemann solvers only consider the flow 

normal to the cell interfaces. 

Roe (1986b) gave some examples that how the important 

physics can be totally missed and suggested a discrete model 

which better mimicked the physics. Hirsch (1987) also proposed 

a similar scheme. Powell and Van Leer (1989) designed a third 

order scheme which utilises Hirsch's method. Overall the 

so-called genuinely multidimensional upwind scheme is still 

under development. 

Such grid dependent Riemann solvers not only can miss the 

important physics but even give abnormal interface conditions. 

For example choose a set of data which meet the condition shown 

in Fig. 6.16a the usual Riemann solver gives lower pressure in 

the interface while in Fig. 6.16b it gives higher pressure. 

Although the usual upwind scheme has its theoretical 

deficiency it works very well generally and no obvious problem 

appears from using it until recently Venkatakrishnan (1990) 

showed the pressure contours exhibited kinks from the laminar 

calculation of NACA 0012 at Mach number 0.5 and Reynolds number 

5000 with adiabatic wall--, conditions.., - The flow separated at 

81.4% cord according to Swanson and Turkel (1987) using a very 

fine grid. Venkatakrishnan also, -showed that with 

central-difference scheme the kink disappeared.,, However he was 

not -. sure, the reason it, occurred for upwind schemes. 
- 

He was in 

favor of. false, viscous effect due to the, truncation error of 
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viscous term despite it can not explain the pure central 

difference scheme on the advection term generats no kinks. 

We tend to consider it is due to mesh dependent problem of 

current Riemann solvers, i. e. the inviscid term is the cause. 

our results are shown in Fig. 6.17,18 and 19 for pressure 

contours, streamlines and density contours respectively. The 

flow and mesh conditions before trailing edge are similar to 

Fig. 6.16a and after the trailing edge are similar to Fig. 6.16b; 

however, the pressure kinks point to the left above the 

trailing edge and to the right after the trailing edge 

(Venkatakrishnan did not observe this behind the trailing edge). 

Since the pressure is increasing from the left to the right we 

should obtain kinks pointed to opposite directions. 

The pressure kinks can be altered by changing the grid 

locally between 80% and 100%chord region such that we can have 

the Fig. 6.16b case. Fig. 6.20 shows the pressure kinks now 

point to right after 80% cord. From this example one can 

expect if the grid line follow very closely with the streamlines 

the pressure kinks should disappear. 

Venkatakrishnan also showed the kinks disappeared with 
fine grid. This can also be explained since the conditions 

between two cells are closer the pressure difference from the 

Riemann becomes very smaller. 

The results are obtained using minmod limit, 

a 101X33 C mesh with 66 points on the. aerofoil. 

by using the author's grid generator which is 

method of Eagle code (Thompson 1987a and 1987b). 

capable to generate an elliptic grid with surface 

only transfinite interpolation solution 

: r. The grid is 

It is generated 

based on the 

Although it is 

normal control 

with Hermite 
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interpolation normal to the wall is used. The flow in Fig. 6.17 

separates at 85% chord while it separates at 80% chord in 

Fig. 6.20. The second grid is slightly finer than the first 

grid near the aerofoil. 

6.9 Concluding remarks 

We have studied the Tnodel equation extensively to 

validate some ideas although the results are unfortunately not 

directly applicable to Navier-Stokes equations. A simple method 

which combines three mesh control techniques suitable for 

multivariable adaption on viscous flow is proposed and 

demonstrated. We consider the moving grid point approach needs 

heavy human intervention to produce a better adaptive grid 

especially for viscous problems. 

The dissipation effect on the boundary layer calculation is 

shown to be undesired. We also show a better formula to cure 

the carbuncle phenomenon, which is based on pressure gradient. 

Finally we are able to demonstrate the grid-dependent 

characteristic of current Riemann solver. 
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APPENDIX :A CELL-VERTEX TVD SCHEME 

A. 1 Introduction 

In the search for effective numerical solution techniques 

for the compressible Euler equations (or any other set of 

equations having the same mathematical form) significant 

differences arise from taking different views as to what the 

computations mean. 

In the cell-centre approach (Fig. a) the solution is 

sought as AVERAGE values of the conserved variables WITHIN each 

computational cell. The flux between two cells is assumed to 

be 0.5(W1+W2) which is likely to be inaccurate if the two cells 

are of very different size. 

In the cell-vertex approach (Fig. b) the solution is 

sought as POINT values of the conserved variables at NODES of 

the computational mesh. The flux through an edge is assumed to 

be 0.5(W. +W`)which is accurate regardless of mesh distortion. 

Fig., b c. u-.. rt": 

These simple considerations incline one to assume that 

cell-vertex schemes should be more accurate than cell-centre 

(finite volume) schemes on distorted grids, and more -detailed 

mathematical analysis (Roe 1987b, Paisley 1986).. and numerical 

experiments (Lin 1987)-support this view. 

Fig. a cell-centre 
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In the previous chapters we use a TVD scheme which 

approximates the cell-centre scheme of Jameson (1981) without 

artificial dissipation in smooth flow. We hope to developed a 

cell-vertex TVD scheme which gives cell-vertex residual in 

smooth flow. 

Powell and Van Leer (1987) proposed a third order 

cell-vertex scheme based on multidimensional upwinding; 

however, their scheme was not TVD. 

A. 2 A cell-vertex TVD scheme 

Take the control volume for point 0 as Ao, Jameson (1986) 

proposed a cell vertex scheme, see Fig. c, 

awo +1 FI(Fr+Fk-1)(Yýyk-ý)-(Gk+G, 
-, 

)(Xk-Xr-t)i=0 ,, it 2 r-t 

which is equivalent to 

A ät 0+ (Fk F'o)°Yk-(Gk Go)°xk I=0 
k-I 

where 
aXk= Z 

(xk+l 
-Xk-1) AYk- 2 `Yk+l Yk-1 ) k=1.8 

For later use we define 

axo =2 (X1-xs) &Y"- Z 
(Yl-Y6 ) k=0 

703 

Fig. d 

Fig. c 

To make this scheme TVD the main difficulty is the 

stencil's involved 
.9 points. ", -However we can at-least make it 

TVD. in -f our directions'. 7->3, l-451,8-4, and 2-*6. Take 7->3 

for. example,, let, -. 
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p37;: = (F3-Fo)°Y3-(G3-Go)ax3 + (F7 Fo )°y., -(G7-Go)ax7 

if &y3 =-, &y,, and ox3=-ax7 we have 

937= (F3-F7)Ay3-(G3-G7)ox3 

which is simply central-differencing. 

For one dimensional cell-centre central difference TVD 

scheme we have, refer to Fig. d, 
k+ k- 

°X dwo +2 I[F3+Fo F, (0-1)°F3ö ýE (0-1)°F3" ] 

k+ k- 

-[ F7+Fo+E (0-1)°Fä+ _E (0-1»Föi ]} =0 k-1.3 k-1.3 

Denote the terms involved with limiter c as $3o and x'07 we 

have 
lox 

äw0 
+(F3 -Fo)+(Fo -FT)+4ý -for=O 

Similarly for cell-vertex scheme we can add $3o-tor to g37. 

Therefore we have 

Aodtw. o +g31+ 40ao ßo7+5; 61+`'sd4oi+9; 48+4)sä doe+9rea+4e0 ß+o2 =0 

If we evaluate "No according to 6x3 and °y, and according 

to ox0 and eyp, usually we would have $30 ßo3 which would make 

this scheme nonconservative. However if these terms are 

evaluated according to± 
2 

(ex, -exo) and ±2 (&. V3 _eyo) we will have a 

conservative scheme (similarly for $oi ' Sao' and "ot 

There are several disadvantages of this scheme. Firstly, 

it needs to compute Riemann problems twice as often than the 

cell-centre scheme does and for three dimension case it will be 

10/3 times more. Second, it needs to evaluate limiter function 

in the diagonal directions. This is not easy to implement near 

the boundary and besides the limiter function is very grid 

dependent. A possible way to cut down the cost is probably to 

estimate qFsö 46+ 066- 0oz as const. ($30 $orý ýbo'ýoý 
" That will 

bring the work down to 
, 
about the same as the cell-centre 
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scheme. We will called this as simplified approach. 

A. 3 Result and discussion 

The Nits bump is chosen as the test problem. The bump 

height is 10 percent chord and Mach number is 0.675. We do not 

test the original approach because even if it works it is too 

expensive to use in practice. Only the simplified one is 

tested. To make it simple the boundary is implemented in the 

first order. Only the interior points are in second order. If 

we set 0 equal 0.0 for the gridwise terms but 0 equal 1.0 for 

the diagonal terms, which is more accurate than 1st order 

scheme but less accurate than 2nd order scheme, the scheme 

converges to the correct solution and no oscillation near the 

shock. However with second order scheme the residual'is unable 

to go down after it is reduced by 3 orders of magnitude. This 

simplified approach is thus pessimistic. 
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Fig. 3.2 Monitored points for the moving shock test 



'1 case A 

6 
f 

y 
"I U) 

... ? 
1:, 

$1 -J 1 5.0% 

I 

ý. ý" ". )ý ". 72 1. ý' 1.55 1.96 2-37 7.70 3.70 3 C f. ý7 

7 

L 

7 

7 

case C 

case B 

-. - .......... 

va. /ovI. D1011110. 

-4.1" 0. I1 ". 17 1.14 I. ä5 1.116 2 
. 

77 7.70 7. » 3 cß -f 

c 

case D 

LJfl 

__I1III 
1. 

S QC MOVING DIRECTION tQt IOVIK 0161CIIM 
F 

+ý ++++ rý+ ý+ -- _ r-? 
") 1 ý. h S)". ýa 1.77 I. C] 2.0.7. "5 T. K 3.7M J. GS 

.Mý 
ý7 ". h ". " 11 1. ý] 1. ýý 7.1] 7. K ]. lý ] 1.9 

Fig. 3.3 Results from Osher's scheme with M=20, SR=±0.035, and 

mesh ratio 5: 1 



Cast I1 

4J 

Soc. rOVIw olncno+ 

li ". )7 ý. ý" 1.11 ý. x ]. l) 7. )w ]. ]" ). Gý .. "] 

i 

c 

2 

case B 

Soc. rC I. oý"ic'I . 

ini cý 
:. 

"f 1. ý" ". )ý " 72 7.1" I. 55 1 . 
l6 2 

. 
37 2 70 

3r 

case D 

yp[t nw1w, DIlCCTIOM 
4OC. 1pY ILL Dl 11 c, IT 

". G1 ". » .r3.26 3.69 f., " i. 67 ". M ". K 1.12 1_C32 H2 "' )K i7a )G1 ". I 

Fig. 3.4 Results from Osher's scheme with t =2O, SR=+O_ 28, and 
-)c r=tin r.. 1 



-4isuap 

H 

L 

r s 
Y 

a 

Y 

p. 

ö 

E' 

rl 

ýy 

I el 

ý 
ýI 

Co N 

O 

II 

X V) 

a) 
to 

U 

U 

r- 
0 

4-+ 

a 

Lrý x 

O 

O 
-t 

II 
- fZ 

U) 
0 
U 

.a 

Ln 
M 

'O 

O 

II 
a 
U) 

ä 
cl) 

- if) 

V 

ro 

LO 

0 
4J 
ra 
s4 

a) E 

0 
N 
II 

4J 

v E 
a) 
U 
U) 

Q1 
O 

E 
0 
w. 

+3 

U) 
v 

rn 

r4 



1 

(10, um O)ssg 40 eißo-, 

n 
ri 
. 

i ö 
J 

O 
W 
f 
ti 
S 

w 

U 

A 

UI 

W 
H 

n 

i 

0 

0 
U 

0 
V) 

a 

O 
V1 r-. 
Q) 

o U. 
E 

c. o 
a "" 

m 
.Z 
a 
(iöi 

U 

O 
N3 

o 
w 

cý 
.= 
-4 

C) 
'L1 

CIO 

0 
V) 
V 

en 
co 
V 

ct, 

U 
O 

N 

u 
O 
U, 

N 
O 

u 

ýn 

rn 
. -1 L, 



M 
N 

rlf ýý i 

7TT 
<10ý04p1sq ju "ibol 

(10,0hm)s"ö 10 0'6o1 

" ., " 
C_ J ý<N 

"0 ^O 

< 
J 

W 
F 

8 

n 
W 
NQ 

J. 
W LL 

U 
h 
n 
N 

y 

ý1I N 
CW 

ýiyl a 

Ud 
NO 

ON 

aä 
V 

Q 
W 
n 

g 
ýN 

I 
J 
<N 

r 

1"1 

ºJ 

äJ 

OW 

hp 

CO 

n 
W 

IU 
. 
I'1 
k 
h II 
hy 

Yh 

ýI N 

(jwCý 

W 

N 

O 
. 

1 

N 



N 

Q 

0 

ro 
a 
0 
N 

ro 

C 
E 
41 
ro 
G) 
N 

4) 
U 

w 
14 
C) 
41 
.,. 4 

U 
-ri N 
ro 

co 

Ol 

M 



", S. 30 

u sN3o 

UmmwQwjm !O 01 Dol 

I 

_ý 

ýý 
.ý 

$ý 

0 

0 

+` 

t7 

ti 
R! wwo++w 

+w. nwo 

-P v 
(A04MO)CiN !O09 DO, 

-- 
-- -- - 

-- 
-- -- -- - 

" 

-- -- -- - -- -- -- 

fix 
x s = t 

a , _ . 

-- -- --- --- -- 
- 

-tM 

O. r 
f. ý-ý' ý ' 

' 

' 
ii i 

r t, 

A8y 
j] 

o"'ho RýrýýO"h"NtAhýp 

0 
z 
0 
U 
J 

z 
N 

Z 
O 
U 
Y 
U 
O 
S 
L9 
w 

i¢ 

ö N 
i 

Z 

0 
1M 

J 

1 LL 
IU 

:U 
io 



m 

O 

C\2 

Q 
O 

H 

V-4 

Cp .., 

N 

to tu) 

M d 
cd 

U 

"--4 .D 

mot' C) 

cd 

U 

-4 10 

O 
CO 
. c0 

02, 

_ý 

ý-+ N CO col co 1D) c t'- I co u 

II II II II 

cr) 

IZ 
It 't -4d4 

ý; 

t -0 

cr I co "'P '41 co c') I to ui 

II I II II x 
-o U 'd 

r 

1 .r 

X 
.ý 

[ý. 

n) 
O 

f/) 
r. 
C4 
R1 

n) 

CI) 

C 0 
., 4 
41 Ri 

u 
rU U 

W 

$4 
0 

W 

N 

0 
-rl 
41 
'0 

F-4 0 

14 a, 
41 
a 

.,, 
N 

0 
.,. r 14 

N 

M 

CT 



Al ISN 30 

C4'! 11 

ucpcoA ft3m io&&Dm 

uQ *io)s , otoo, 

A 
8 

0 

12 

I 
ö 
wý 

S 
Q 

g 

O 

Q 
Q_ 

S 

8 

l 

[ýý 

WH 
ZW 

+ö¢ 

CO 

ZýI O yu 
VZ 

Zö M=C 

-°8 

0 

IL 
J 

O0 

Z 
z0 ov 

J U) 
as 

? 
2Q 
W0 
C) Z 
RO 
ýU 

ý. Y 
xU 
80 

Xg 
WW 

C)- ¢ 
J; a 

m 
0O 
=O 
. 

O_ 

W p! 

30 
2 
U 

0) 
LL 

WV 
QJ 

a 
Q U 

O QJ 

0 
H 
N 

Z 
zO 
0(-) 

v) J 
dQ 

ýo Z 

iN 
tQ 

w 

0Z 
00 

xU 
U0 

N !n 
WW 

Q Od 
J 
co 
00 
Z0 
L 

_0 Qr 
pZ P 

w 

wr 
mJ 

NU 
wJ 
O 

wU O 
pJ 
a 0 
I . - V) 

ro 



"Kula 

I 
8 

ýt 

a 
19 

A 
z 0 0 

Qa 
1-1 

()F 
V' N 

<H 

a v) 
wQ 
n 
OQ 
Nz NO 
EU 

UU 
00 

WH 
N 

00 
Ha 
00 

zo 
ft II 

a a. 
00 
Gu 

a Q z 
C1 

WO 

U 
cn o 

W 11 
Oä 
co x 

as 
94 0: 4 
21, 

O 
M 

H2 
to O 

ý+a H 
U) 

W 

0 
LO 
H 

N 
M 
z 

-"cT91! 1^7 
UOcHmoluN so nom 

a2 13 t, ree""r. "". wr 

w 
"ýt 

YW 
>> 

to 
<ýw 

im: I 

ý1 

w! 3 

wýo 

8 
-ýC 

aq Ww 

OW 

47 
w02 

u2 

wýO wr 

aVrL, tcýr t* :: 2---------- 



U 6M )O 

O 
O 
d' 

II 
H 

0 
N 
11 
z 

4alcm. c em Towson 

1-1. I-TIT 

7p 

rý a1 
VO 

_3ä hQ 
OW 

-<g 

---- ----- ---- 
.Og 

0 

"O OS 

" 
. ja 

.. W4 

-! 
Z 

Y 
r( 

+aj 

Q 

Z7 
SOW 

uz 
Zý 
MW 

zC 

ýög 

e 

R 

8 
z 2 

äý _ý 

39 

U) 
4J 
a 
U) 

ON 

-. 4 
a a 
a) 
U) 
a) 
E 

U 
0 

r-1 
E 
0 

w 

0 
., i 
4-3 
a 

r-1 0 

Q) 

U 
O 

U) 

g 



Fig" 4.1 Grid index system 
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Fig. 5.3 Treatment of explicit zonal boundary condition 

Fig. 5.4 Treatment of implicit zonal boundary condition 
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NO OF ITE RAT I)N S 

MACH COFiTOURS AT 0.1 INTERVALS 
DOTTED LINE MACH NO_1.0 

CONSERVATIVE IMPLICIT OPERATOR WITH DDADI+UNSYN 30X15+30X15 CELLS 

VAN ALBADA LIMITER MACH NO. =20. LOCAL CFL=10 ä,.. =0.25 äi, =0.8 

Fig. 5.14 Two-zone calculation of Mach 20 flow past quarter cylinder (A) 
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VAN ALBARA LIMITER MACH NO. =20. LOCAL CFL=10 6,.. 0.25 6Z3 0. B 

Fig. 5.15 Two-zone calculation of Mach 20 flow past quarter cylinder (B) 
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MACH CONTOURS AT 0.1 INTERVALS 
DOTTED UNE MACH NO=1.0 

CONSERVATIVE IMPLICIT OPERATOR WITH METHOD S+UNSYN 10X20+20X30 CELLS 

VAN ALBADA LIMITER MACH NO-=20. LOCAL CFL=10 6,,. =0.25 d,, =0.8 

Fig. 5.16 Two-zone calculation of Mach 20 flow past quarter cylinder (C) 



conservative implicit operator with DDADI+UNSYN 
11x30+19x30 ce] s van Albzida limiter Mach no. =20. 
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61,4 =0.25 6z, 3 =0.8 

Fig. 5.17 Two-zone calculation of Mach 20 flow past quarter cylinder (D) 
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Fig. 5.18 Two-zone calculation of Mach 20 flow past quarter cylinder (E) 
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-' -- block 2 

fig. 5.20 Mismatch of block boundaries at solid wall 



Fig. 6.1 Control volume for viscous flux evaluation 

zone one zone two 

Fig. 6.2 Ccntrol volume near the zonal boundary 
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Uu to be determined 

U, U2 U3 U4 

Uz, U1H U1c 

U1 evaluate slope of the parabola 

Fig. 6.5 1, =roved method for evaluating diffusion term 
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Fig. 6.6 Adaptive grid using Carey and Dinh's weight function 
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Mach contours at 0.2 intervals 
dotted line Mach no. =1.0 
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Fig. 6.12 Mach 8 calcula-ion with modified dissipation (A) 
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Fig. 6.13 Mach 8 calculation with modified dissipation (B) 
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Fig. 6.14 Mach 20 calculation with modified dissipation (A) 
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Fig. 6.15 Mach 20 calculation with modified dissipation (B) 
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