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Abstract

A dynamically optimal design is essential for a motion system to perform high speed

operation without compromising its accuracy, settling time and vibration specification.

Good design practice which accounts for dynamic characteristics in the modelling of

a motion system warrants higher performance precision machines and cuts down rede-

velopment effort to ‘patch’ inherent shortcoming of the machine dynamics.

This research aimed to accurately describe the non-linear dynamics of a non-mechanical

contact aerostatic guideway system in order to achieve an accurate FEA model of the

design stage. The single axis aerostatic guideway is comprised of several machine in-

terfaces that impact the dynamic behaviour of the guideway. Modelling each air bear-

ing pad by a single stiffness element is not adequate to predict the guideway modal

behaviour accurately. The aerostatic guideway has been broken down into several key

machine interface elements. In-depth investigation of the air film and the air bearing

mounting mechanism was carried out. A dedicated air film test rig was designed and

built to acquire insight of the air film dynamic characteristics.

It is observed that the mounting mechanism of the air bearing constitutes to a signifi-

cant dynamic effect to the entire air bearing setup. Based on the findings of the mount-

ing mechanism’s stiffness properties, a method was developed to estimate ‘true’ air

gap heights which cannot be easily assessed and measured directly in most aerostatic

guideway carriages. The estimation method enables a more rigorous FE model of the

aerostatic guideway system. The comprehensive dynamic analysis methodology pro-

posed in this research greatly increases the confidence and accuracy of the aerostatic

guideway’s FE model.
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Chapter 1. Introduction

Chapter 1

Introduction

1.1 Background

Higher position accuracy and higher acceleration with minimum transient responses

are increasingly stringent requirements for precision motion systems. This trend can

be easily witnessed in electronics industry, where components become smaller and

yield rate demand increases. One example is the wire bonder machines which need

the bonder to connect pins at smaller than 30 �m pitch with ±2 �m accuracy. To stay

above the competition, machine throughput is also of prime importance, thus pushing

the bonder motion speed higher. The machine tool industry pursues a similar trend.

Higher speed machining and sub-micrometre position accuracy are specifications that

motivate more machine tools builders to revise their motion system design. These re-

quirements have compelled machine manufacturers to take radical design approaches

in order to meet the industry needs.

Due to the ever growing demand on performance and accuracy, the design methodolo-

gies of precision machines remain a widely studied subject. For machines with rapid

response, the characteristics of motion system guideways greatly influence the perfor-

mance of a precision machine, in terms of its speed and accuracy. Consequently, ‘near’

frictionless non-contact guideways for precision motion systems have been gaining in

popularity in the recent years. The use of aerostatic guideways is noticeably more

prevalent in precision machines in order to realise higher motion resolution.

1



1.2 Motivation of Research

1.2 Motivation of Research

For high-speed precision machines, dynamic characteristics dominate performance in

terms of motion system settling time and accuracy. Thus, dynamic analysis becomes

an important aspect of work while designing such precision machines. Today’s com-

mercial modelling software is capable of simulating machine behaviour through Finite

Element Analysis (FEA) and other types of Multi-body Dynamic Engines. The va-

lidity of results obtain from these simulation packages is based on a machine model

defined by the user. Hence, the key to a robust analysis still lies in an accurate model.

Dynamic and static models of structure are well-established. Most of the structural

dynamic behaviour can be accurately computed using FEA. The model for machine

interfaces, such as joints and guideways, is commonly defined using compliance con-

tacts in FEA. These interface models use stiffness and damping parameters that are

often inadequately accurate. Hence in most instances, these models are ineffective in

predicting realistic dynamic behaviour of the machine. Although many design method-

ologies have adopted the Mechatronics integrated design approaches (to be discussed

in Chapter 2), a dynamic modelling method for machine guide systems is yet to be

established.

It is possible that having a unified modelling method for a wide range of different guide

systems may not be feasible. However, a systematic model identification method is es-

sential in achieving accurate model to enable a realistic machine modelling during the

design phase. A robustly identified dynamic model of the machine enhances the rigour

of the design process, thus allowing substantial cost saving and increases competitive-

ness (to be discussed in Chapter 3).

1.3 Research Objectives

The main objective of this research is to accurately describe the non-linear dynamics

of a non-contact guideway system in order to achieve a good FEA model in the design

stage. This objective can be broken down into the following sub-objectives:

2



Chapter 1. Introduction

Identification of key interfaces in the guideway system A guideway system can

be made up of several serially connected interfaces that may contribute to the overall

dynamic behaviour of the system. Many of these connected interfaces create coupling

effects, which are difficult to model. It is important to identify these key interface

elements and evaluate their individual significance in influencing the accuracy of the

entire dynamic model of the guideway system.

Formulate a systematic identification method to obtain an accurate set of dy-

namic model parameters Most machine interfaces can be described analytically

by model parameters such as stiffness and damping. Some of these interfaces possess

non-linearity, which presents difficulties in identification. This non-linearity issue also

leads to problems in dynamic analysis of the guideway system, in particular, using

FEA.

Validation of design methodology that incorporates interfaces dynamics A case

study of a precision motion system using a non-contact guide will be employed as a

demonstrator for the proposed design methodology. This will provide insight into the

method and the importance of dynamic modelling of machine interfaces.

1.4 Thesis Overview

This EngD research aims to address the issues of precision machine design method-

ology, in particular, the incorporation of machine interfaces dynamic model within an

FEA environment. To understand the dynamics of a non-contact guideway, the re-

search narrowed down its focus to the investigation of the aerostatic bearing guideway

system (the rational for the choice of aerostatic guideway is discussed in Chapter 2

and 5). In the course of this research, a complex problem of dynamic modelling for

the aerostatic guideway was broken down into several aspects for investigation. The

subsequent chapters of this thesis present the work in achieving the above aim, and are

organised as follows:

3



1.4 Thesis Overview

Chapter 2 presents broadly the state-of-the-art approaches in precision machine de-

sign, mainly using the Mechatronic design approach. This review leads to the research

arena of machine dynamic modelling methods and an in-depth discussion in modelling

of machine interfaces. Particular attention was paid to the analytical modelling meth-

ods for an aerostatic bearing.

Chapter 3 is included as part of the differentiating element of an EngD to a PhD

programme. An EngD programme carries out research work with a certain busi-

ness/industrial agenda. The industrial context and motivation for this research work

is articulated in this chapter. It is important that research outcome can be transferred

to the industry in a strategic manner. Various technology adoption methods of the

research outcome are discussed and suggested here.

Chapter 4 gives a broad overview of the theory and application of dynamic/modal

analysis of machines. This chapter is useful in understanding the analytical and exper-

imental work that will be presented in the remaining part of the thesis.

Figure 1.1 gives a summarised illustration of the flow of chapters from 5 to 7, which

corresponds closely with the actual research work. The illustration gives an account of

the flow of work carried out in this research.

Chapter 5 discusses how a complex aerostatic guideway system is broken down into

various aspects of interfaces that contribute to the dynamic behaviour of the system.

A systematic experimental methodology to analyse the dynamic behaviour of an aero-

static guideway system is deliberated. The individual interfaces need to be dealt with

separately. Thus, a dedicated air bearing test rig is designed to carry isolated and con-

trolled investigation of the air film. The design consideration and outcome of this test

rig is discussed and presented.

Chapter 6 focuses on the dynamic analysis of solely the aerostatic bearing pads,

using the developed dedicated air bearing test rig. Insight into the air film dynamics is

observed using the dedicated test rig. A thorough analysis and investigation to identify

4
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the air film dynamics parameters is illustrated in this chapter.

Chapter 7 discusses the work of synthesising the findings from the above two chap-

ters, and validates the dynamic identification and modelling methodology using the

existing aerostatic guideway, which initiated the investigation in Chapter 5.

Chapter 8 presents an overall discussion pertaining to the findings and contributions

of this research.

Chapter 9 concludes this research programme and suggests further work aiming

to close up more gaps between research and industrial implementation in dynamic

modelling of machine interfaces.
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Chapter 2. Literature Review

Chapter 2

Literature Review

2.1 Introduction

A major attribute to stay competitive in the industry is to cut down design flaws, thus

reducing the cost involved in patching and/or redevelopment. The first-time-right ap-

proach in precision machine design requires a rigorous modelling effort in the design

phase. Prediction only of machine’s static or kinematic performance has long been

viewed inadequate in designing high speed precision machines. The modelling of pre-

cision machines needs to be approached in totality. That is to say, the controller per-

formance of the motion system needs to be taken into consideration during the design

stage. In addition, accurate dynamic model of the motion system needs to be formu-

lated to benefit from this integrated design approach. The following sections will cover

a literature review of the various design approaches for precision machines, as well as

relevant modelling techniques adopted.

2.2 Mechatronic Approach to Machine Design

The ‘first-time-right’ machine design approach warrants a more integrated prediction

of the different aspects of the machine. These include the behaviour of the machine

mechanical structure, motion system, controller, as well as sensors. In fact, the ma-

chine characteristics form a typical Mechatronic problem. Many proposed works for

Mechatronic system attempts to solve the problem after the machine has been built,

7
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by means of identifying and modelling the motion system behaviour [1–5] or by com-

pensating for any unknown systematic behaviour within the control scheme [6–9]. A

substantial amount of effort and time is thus spent on achieving an optimal performing

motion controller. Although these methods were able to achieve some good results,

the performance was always limited by the machine inherent shortcomings, thus the

motion control results were always less than optimal. Many of these machine char-

acteristics exhibit non-linear dynamic behaviour, which is difficult to compensate for.

Therefore, it is useful at the design phase to develop the mechanical system that is

optimised for a simple controller, i.e. both mechanical and controller aspects are eval-

uated simultaneously. The key notion is that a badly designed mechanical system is

hard to achieve good performance even by using the most sophisticated controller [10].

During the late eighties, the European Union-sponsored Industrial Research and De-

velopment Advisory Committee (IRDAC) working group came up with following def-

inition for Mechatronics:

“Mechatronics is the synergetic combination of precision engineering, elec-

tronic control technology and systems thinking in the design of products

and processes.”

Van Brussel [11] has proposed a definition of Mechatronics that is more relevant to this

thesis context:

“Mechatronics encompasses the knowledge base and the technologies re-

quired for the flexible generation of controlled motion.”

Not every electronically controlled mechanical system is a Mechatronic system be-

cause in many cases the control is just an add-on to the mechanical system in a sequen-

tial design procedure. A real Mechatronic approach requires that an optimal choice be

made with respect to the realisation of the design specifications in the different do-

mains, i.e. mechanical, electronic and computer-based control system [10, 12]. Bond

graph [13] modelling method was one of the earlier modelling techniques for dynamic

systems. The modelling method simplifies complex dynamic systems into components

connected by multiports of energy transfer. It provides a starting platform for many

8
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later works in the area of dynamic system modelling. However, many of the bond

graph based modelling techniques do not handle classification of system components

well [14]. De Varies et al. [10, 12, 14, 15] proposed a concept, named polymorphic

modelling which resolved this classification limitation. The concept of polymorphic

modelling is useful, because [16, 17]:

∙ It enables the component library to be organised in a kind-of hierarchy, such that

components are specialised incrementally downwards

∙ It improves classification of components by means of generic as well as specific

types

∙ It improves understanding of models by separating essential and incidental char-

acteristics

∙ It supports the iterative and evolutionary nature of modelling more directly

∙ It improves the possibilities for creating and maintaining (mutually consistent)

alternative models

Bond graph and the later polymorphic modelling techniques provide a systematic mod-

elling approach for multi-domain dynamic systems. However, these methods do not

facilitate the process to identify key characteristics of the system, which dominate

machine performance. These may lead to overlooking of significant dynamic effects

within machine components that may contribute to the machine motion behaviour.

Hence, a unified methodology is still lacking in offering more insight into the various

machine components and their contributions to the overall system characteristics.

As mentioned, it is good practice to start the development of the controller concur-

rently with the machine structure design. Finite element modelling of the machine

structure is commonly used to compute the structural characteristic parameters such as

stiffness and damping. These parameters will form part of the transfer function in the

design of the control loop. Coupled modelling of structural dynamics and control loop

[18] were considered a unified way of designing a Mechatronic system. The coupled

simulation can be generally classified into two types: model parameters exchange and

co-simulation [19, 20]. In both of these types, Computer Aided Design (CAD) pack-

9



2.2 Mechatronic Approach to Machine Design

ages with Finite Element Analysis (FEA) are popular and key simulation tools. Figures

2.1(a) and 2.1(b) show illustrations of the two approaches of coupled simulations.

plant model

In Out

Sum 1Sum Output

Pos

Kp

Kp

Ki

Ki

Integrator

1
s

Desired Pos

Finite Element Analysis (FEA) System Model[Mass], [Stiffness], [Damping]
Mathematical Simulations

(a) Model Parameter Exchange

Force

1

Sum

Desired Pos

Contoller

f(u)

Pos
1

Finite Element Analysis (FEA)Force Input
Position

Mathematical Simulations
(b) Co-Simulation

Figure 2.1: Two types of Coupled Simulation (After [19, 20])

The approach of model parameter exchange usually involves two or more simulation

tools for different modelling aspects of the system. Model parameters are obtained

from one simulation and transferred to the other, with each of the simulations running

separately. In the context of a Mechatronic system, the predicted machine structural

dynamic parameters such as the mass, stiffness and damping are transferred and used

in the mathematical formulation of the controller scheme. The controller performance

is evaluated and improvements can be made to the mechanical system to achieve an

optimal design. In [21, 22], the transfer functions from motor torque to the tool dis-
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placement for different spatial configurations of the machine tools were computed.

Using these transfer functions, a sliding mode control scheme was designed to handle

the tool motion control for all configurations. The authors [21, 22] also proposed a

dynamic model reduction scheme. Each axis of a three-axis mill machine was anal-

ysed separately using FEA. The proposed scheme was presented using a mill machine

as a case study. The machine information in terms of the transfer function allows the

designer to adjust and optimise the individual axis spatial properties, i.e. mass, stiff-

ness and damping. This assumes that the axes are the main components that influence

the motion performance of the machine. It may be valid for a heavy machine tool,

which the structural characteristics constitute the bulk of the machine dynamics. In the

cases of fast responding machines or lighter positioning systems, the study of its over-

all system transfer function may not be adequate to isolate key dynamic elements that

affect the machine behaviour. Identifying and modelling the key dynamics elements

becomes an apparent phase of precision machine design which is currently lacking.

Many Mechatronic design approaches used Modal Analysis as the fundamental tech-

nique to model mechanical dynamic behaviour of the system. Rankers [23] used Modal

Decomposition method to break down the system into various machine elements. He

considered the following key dynamics that may affect the machine motion perfor-

mance as:

∙ actuator flexibility,

∙ guiding system flexibility, and

∙ limited mass and stiffness of stationary part of a machine.

Rankers’ work proposed how a system could be decomposed into the above key dy-

namics which are represented in simpler series of mass-spring-damper systems in order

to carry out modal analysis. The various machine elements were combined to predict

the overall system modal model, and later derived into their state-variable representa-

tion of relevant modes and degrees of freedom. The relevant dynamic properties in the

form of a state-variable representation are exported to control system modelling tools,

such as MATLAB/SimulinkⓇ. In Rankers’ doctoral thesis, modelling and validation

of the major dynamic elements such as the actuator and guiding system flexibility
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were not dealt with in depth. Although a general modelling technique using modal

decomposition was proposed, the individual elements still require further investigation

in order to realise a more accurate dynamic model for the system. Many commercial

computer aided engineering (CAE) packages such as ADAMSⓇ, DADSⓇ, and Recur-

DynⓇ are able to provide multi-physics and multi-body dynamic solutions. However,

engineers are still unable to model the dynamics of precision machine accurately. This

is largely due to the lack of insight of the individual machine interfaces dynamics and

hence the poorly defined models used in such CAE software.

The recent growing interest in Adaptronic components development for machine tool

has witnessed more Mechatronic design approaches being applied. In a design of an

Adaptronic drill tool axes, Brecher et al. [24] adopted the model parameter exchange

technique to model and simulate the control performance. The author calculated the

static and dynamic model using FEA simulation and used these parameters to formu-

late the linear state-space model equations for the control.

Model Parameters Exchange is probably the more commonly used method for coupled

simulations. This may due to its simple implementation, whereby there are minimum

issues of software and parameter compatibility between simulation tools. However,

such simulation techniques do not handle machine element non-linearity well. Most

machine dynamic behaviour obtained from FEA results assumes that the system is lin-

ear about a particular operating point. Hence, the controller designed, which is based

on this linearised model may not be able to perform well over the entire workspace

of the system. Co-simulation approaches on the other hand are carried out simulta-

neously, and in a more integrated manner. The simulation output of the mechanical

system is linked to another mathematical software that computes the controller out-

put. Both the simulations run together synchronously in time domain. Brecher et al.

[25, 26] used a Computer Aided Control Engineering (CACE) environment to cou-

ple the multi body simulation of a z-slider structure to a control block diagram in

MATLAB/SimulinkⓇ. Figure 2.2 shows an illustration of how the structural dynamic

and control simulations are linked. In [25, 26], the dynamic behaviour of the mechan-

ical structures are simulated in FEA environment.
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z-slider structure inmulti body simulation CACE interface∆φ at TCPCompensation ForcesProcess forces Excitation at the TCP
Control blockSimulation in MATLAB/Simulink®

Linear piezo actuator modelTCP
Figure 2.2: Coupled Simulation - Co-Simulation (Source: Brecher et al [26])

In the proposed Mechatronic design approaches, we observed that the connections of

rigid structures by guideway and bearings were modelled as spring and damper sys-

tems. The stiffness and damping of these machine elements were verified empirically

to achieve a good correlation between the FEA simulation and the results of the metro-

logical investigation. However, this may not be possible in most design phases of a

machine, as the machine components may not be available for such model verification

process. The mechanical structural behaviour of a machine can be generally consid-

ered as linear. Their FE-models are well established and verified. The FEA static and

dynamic simulation results are usually very close to the actual behaviour of the struc-

ture. Conversely, machine elements such as guideways and bearings usually exhibit

some form of non-linearity and are common weak links within a machine (This shall

be discussed and verified in more depth in Chapter 7). This forms a ineffective model

within the FE-model of the entire machine. The following section presents the review

of the state-of-the-art in modelling of machine interfaces.

2.3 Dynamic Modelling of Machine Interfaces

Section 2.2 described various proposed work in Mechatronic design to simulate ma-

chine mechanical behaviour using FEA. Much of the proposed work reduces the over-

all machine simulation to a subsystem or component level to ease the FEA computa-
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tion. A typical motion system for a precision machine is comprised of the following

components: structure/frame, machine bed, guideways, actuators, and transmission (if

actuators are not direct-drive). In this thesis, the connections between these machine

components are referred to as machine interfaces. The characteristics of these machine

interfaces are very different, and can be generally categorised into three types, as listed

below:

∙ Structural joints, for example, bolted, welded and adhesive based, as shown in

Figure 2.3(a)

∙ Moving contact interfaces, for example, sliding contact and rolling element bear-

ings, as shown in Figure 2.3(b)

∙ Moving non-contact interfaces, such as, hydrostatic, aerostatic and magnetic lev-

itation bearing, as shown in Figure 2.3(c).

The characteristics of structural joints have been studied by many researchers in the

field of machine simulation and design over the past few decades [27–30]. For struc-

tural joints, the stiffness and damping parameters can be described by the material

strength of the joining components. For instance, the effective stiffness of a single

bolted joint can be described by the model shown in Figure 2.4, in terms of the com-

bined stiffness of its flange compression, flange shear, bolted base shear, the bolt itself

as well as the joint interface stiffness [28, 29]. This can be simply estimated by:

K = Kinterface +
1

Kflangecompress. +Kflangesℎear +Kbasesℎear +Kbolt

(2.1)

To obtain the joint stiffness and damping matrices of structural joints, Lee [30] pro-

posed a dynamic modelling technique by using modal testing, condensation method

of FE Model and sensitivity analysis. The author has carried out thorough dynamic

modelling and experimental work on structures with bolted and bearing joints. Good

validation of his modelling method was achieved.

There is also considerable research effort in the modelling of moving contact inter-

faces. Moving contact interfaces deal with the mechanical interaction between rel-

atively moving parts, such as sliding contacts and rolling elements. Differing from
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Photo by Yannick Trottier

Bolted Joint Welded Joints

(a) Examples of Structural Joints

(b) Examples of Moving contact interfaces

Aerostatic bearing(Source: Suss MicroTec) Aerostatic bearing(Source: ABTech inc) Magnetic levitation bearing(Source: Kim & Trumper, MIT)
(c) Examples of Moving contact interfaces

Figure 2.3: Types of Machine Interfaces

Kflange comp Kflange shear Kbase shear Kbolt Kinterface
Figure 2.4: Spring model of bolted joint (Slocum [29])
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structural joints that constrain all degrees of freedom (DOFs), the moving contact in-

terfaces attempt to free some DOFs and constrain the rest. Theoretically the freed

DOFs can be assumed to have negligible stiffness and damping, however, this is not

true in real interfaces with mechanical contacts, particularly in contact interfaces with

higher friction such as sliding guideways. Owing to this consideration, Chlebus [31]

modelled the sliding contact using FEA as a “third body” between the two sliding ele-

ments. This “third body” element was made up of a set of “normal” and “tangential”

rod elements. These rods simulate the stiffness of the interface normal and tangent to

the sliding direction, respectively. The proposed modelling method provides a more

valid and simple way of evaluating the static performance of the sliding guideway. The

dynamic characteristics of the interface, especially the tangential stiffness may differ

significantly while the system is in motion. The dynamic aspect of the interface was

not discussed in [31]. The dynamic characteristic parameters of an interface in a ma-

chine structure, namely the stiffness and damping, are determined by several factors,

such as the material of the interfaces, lubricative state on the interface surfaces, ma-

chining method of the interface surfaces, etc [32]. The normal and tangential dynamic

stiffness and damping of the guideway interface can be obtained experimentally based

on the above factors [32, 33]. Figure 2.5 illustrates how Zhang [32] modelled the ma-

chine interfaces as elastic beams and complex springs. The measured and computed

dynamic results were very close. This is mainly due to the fact that most of the joint

stiffness and damping characteristics were obtained experimentally and employed in

the analytical computation. In the context of a machine design phase, one may not

have the luxury to obtain stiffness and damping characteristics of the machine inter-

faces experimentally. A general set of machine interface models in the form of finite

elements would be very useful in achieving a more realistic machine model. Unfortu-

nately, these elements are not available in most commercial FEA software packages.

There are extensive literatures in the area of static and dynamic modelling of rolling

element bearing [34–39]. A rolling bearing simulation model called BEAST (BEAring

Simulation Tool) [35] has been developed by SKF and used daily by their engineers to

improve their insight into the bearing dynamic behaviour, thus enhancing the design

process. Like sliding contact guideways, rolling element interfaces are often modelled
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Figure 2.5: Left: ANC profile-machining centre and right: dynamic model of the tool-
side structure (Zhang [32])

as spring elements in FEA. Ohta et al. modelled the ball bearing in a recirculating

linear guideway carriage as two spring elements and a point mass [37]. As illustrated

in Figure 2.6, each ball within the load zone lL, was described by a point mass, mb,

corresponding to the mass of the ball. The interface between the ball and the carriage,

and between the ball and the guide rail were represented by spring elements KC and

KR, respectively. The FEA results were compared with an experimental modal test.

The rigid-body natural frequencies agreed with the experimental results (with approx-

imately 8-13% agreement).

Modal analysis, a Frequency Response Function (FRF) based method, is considered

to be an effective method to evaluate dynamic models of machine interfaces. The

common procedure for dynamic model parameter identification of machine interfaces

can be summarised by Figure 2.7. Sharmine et al. [36] used this model identification

scheme to determine dynamic model parameters of rolling element bearings in ma-

chine tools. A similar model identification approach was adopted in this work, and

Chapter 5 shall present the detailed analytical and experimental procedures carried out

in this research. Despite the fact that dynamic model parameters can be identified using

various proposed approaches as discussed above, it is essential to understand that most

machine interfaces behave in a non-linear fashion which are very much influenced by
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Figure 2.6: Finite Element Model of Ball Bearing (Ohta [37])

factors such as pre-loading, guide surface quality, assembly quality (alignment), etc.

However, the fundamental modal analysis approach assumes the system to be linear

[40]. This assumption can be relatively crude for some machine interfaces. Although

there are several proposed methods [41–45] to address non-linearities in modal anal-

ysis, the practice of accounting for them in dynamic model identification is still not

wide spread. This may be due to the demanding mathematical formulation involved.

Figure 2.7: Flowchart of FRF-based Identification Scheme (Sharmine [36])
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Moving contact interfaces such as those guideways discussed formed a significant

number found in motion systems of precision machines. Nonetheless, in recent years,

more non-mechanical contact type of guideways was used to achieve sub-micrometre

precision. These type of non-mechanical contact guideways constitute to the type of

moving non-contact interfaces. Some examples of non-contact interfaces found in

precision machines are hydrostatic, aerostatic and magnetic levitational bearings. A

substantial amount of attention has been given to modelling of structural joints and

moving contact interfaces over the past decades. Conversely, the understanding in dy-

namic modelling of non-contact interfaces was lacking. For instance, the earlier and

more common non-contact guideways used in precision machine, particularly in ma-

chine tools, are hydrostatic bearings. Many good references over the last three decades

have discussed the design and modelling of hydrostatic bearing guideways [29, 46–

48]. Still, discussions on the dynamic characteristics of such guideways were scarce.

For this reason, one of the work scopes for this research was to carry out in-depth in-

vestigation of dynamic modelling of these non-contact interfaces. Chapter 5 discusses

how and why an aerostatic bearing guideway was chosen as an experimental set up for

this research work. The following section shall discuss some of the related work in

static and dynamic characterisation of aerostatic bearings.

2.4 Aerostatic Bearing Static and Dynamic Characteristics

In recent years, the term ‘air bearing’ has been used loosely and referred generally to

as any type of air-lubricated bearing. However, the application and characteristics of

the different type of air-lubricated bearings vary considerably. Air-lubricated bearings

can be classified into three main types [49], as shown in Figure 2.8.

Aerodynamic bearings use a similar mechanism of viscous shearing as with hydrody-

namic oil bearings. The air lubrication happens when two surfaces move relative to

each other and generate a pressure between convergences of the two surfaces. In the

case of a squeeze film as shown in Figure 2.8(b), the pressure is generated by one of

the surface vibratory motion normal to itself. This vibration, normally at several kHz is

produced by electro-mechanical or piezo-electric actuators. Due to its low load carry-
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Figure 2.8: Types of air bearing (Powell[49])

ing capacity, squeeze film air bearings are more commonly used in low mass carrying

applications such as hard disk drives and precision motion systems for wafer steppers.

The study of squeeze films has been carried since 1950’s [50]. It is receiving more

attention in recent years due the development of Micro-Electro-Mechanical Systems

(MEMS) [51, 52], hard disk drive read-head [53] and Tribology of air fluid [54–58].

Aerostatic bearings are also known as ‘externally pressurised’ air bearings owing to

the fact that unlike the above two air bearings, external air supply is required to create

the air film between the two sliding surfaces. Due to high load carrying capacity, aero-

static bearings are the most widely used among the three types of air bearing systems.

For this reason, this research has focused investigation on aerostatic bearing systems.

In recent years, aerostatic bearings have gained in popularity in precision linear motion

systems. Aerostatic bearings possess several characteristics that make them popular.

Some of the advantages of aerostatic bearing as compared to contact type bearings and

even hydrostatic bearings can be summarised as follows [49]:

1. Extremely low friction;

2. Capability of operating at very high speeds;

3. Precise axis definition and good averaging;

4. Little or no need for periodic maintenance;

5. Performance is less sensitive to operating temperatures; and

6. Low noise and vibration levels;

Aerostatic bearings basically utilise pressurised air to separate two sliding surfaces.

The small air gaps (ranging from 5 to 10 �m) between the air bearings and the guide
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Figure 2.9: Schematic diagram of an orifice air bearing

surface enable the levitated carriage to slide along the guide surface in a “near-frictionless”

manner. Two main types of aerostatic bearings are available commercially, namely the

orifice type and porous media type.

The earlier form of ‘externally pressurised’ air bearings are mainly the orifice type.

The orifice types of aerostatic bearings are made up of one or more small and precise

holes through a bearing enclosure, as illustrated by the schematic diagram in Figure

2.9. Air at pressure Ps is supplied through the orifice and the air pressure, P in the

pocket or groove regulate a stable air gap between the bearing and guide surfaces. The

designs of the bearing’s orifices and pockets configuration was studied by [49, 59–

61]. The static characteristics and performance of orifice aerostatics bearings were

also investigated in depth by many researchers [49, 59, 61–66]. In essence, the air

film in the gap is modelled as flow between two parallel surfaces, where viscous flow

exists in this region. Reynolds’ theory of thin fluid film flow is used here to compute

the performance of these orifice aerostatic bearings. The Reynolds equation is the

differential equation governing the pressure distribution in the air film. This equation

can be derived from the Navier-Stokes equation and the continuity equation under the

following assumptions [49, 54]:

1. Newtonian flow and air acts as an ideal gas

2. Laminar and isothermal flow

3. Smooth surfaces

4. The gas film thickness is much smaller than the bearing dimensions so that the

velocity gradients in the radial and tangential direction are negligible compared

with the velocity gradients in the normal direction.
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For a compressible isothermal air film of constant gap height in an aerostatic bearing,

the Reynolds equation can be expressed as [60, 62]:

∂2p2

∂x2
+
∂2p2

∂y2
= 0 (2.2)

which is the Laplace field equation of p2, where p is the air film pressure and x and y are

the perpendicular coordinates in the plane of the film. Most of the proposed methods

solve the air film pressure p, numerically, using iterative methods [60, 62]. The static

characteristics such as the loading capacity and stiffness can be obtained by integrating

the pressure drop across the bearing surface or air film area. The load capacity, W , and

static stiffness, K, of a porous aerostatic bearing air film can be expressed in terms of

its air film pressure, p and ambient pressure, pa [49, 62]:

W =

∫
A

(p− pa)dA (2.3)

where A is the surface area of the porous media that is sliding along the guide surface;

and

K = −dW
dℎ

(2.4)

where ℎ is the height of the air film. The analytical predictions were acceptable when

compared with experimental results. Figure 2.10 shows the comparison of the load-lift

curve (mass vs air gap) between the theoretical and experimental results obtained by

Boffey [60].

The porous media aerostatic bearings work in a similar way except that instead of

using orifice as the air pressure restrictor, porous material is used. Figure 2.11 shows

a typical porous aerostatic bearing. The porous type of aerostatic bearings is more

popular than the orifice type, due to their superior performance and characteristics.

One major strength of porous air bearings is that the pressure within the air film is

more evenly distributed. A comparison of air pressure distribution among a number of

orifice type air bearings and a porous air bearing is presented in Figure 2.12.

There are more advantages of porous air bearings over conventional orifice types, such
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Figure 2.10: Experimental and theoretical comparison of the mass vs air gap curve
(Boffey [60])

as the improved load capacity, simple construction, less sensitive to air cleanliness, as

well as the superior stiffness and damping characteristics [67–70].

More research work was later directed towards the static characterisation of the porous

media aerostatic bearing. Static performance such as the air film load capacity and

stiffness of porous carbon aerostatics can be predicted using the pressure p of the air

film, similar to the method used for orifice type of bearings. The earlier work was

proposed by Rao and Majumdar et al [63, 71]. Several improvements and variations of

the technique [72–77] were established after Rao and Majumdar’s work. The primary

target of the modelling method was to compute the pressure build up at the air film

region. The pressure drop of the air supply across the porous media of the bearing is
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Guide Surface
FHh pspsPorous Media with air pressure p’Air film with pressure, p Atmospheric pressure, ps

Figure 2.11: Schematic diagram of a porous aerostatic

Figure 2.12: Comparison of air pressure distribution of orifice and porous type air
bearings (from [67])
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computed by Darcy’s Equation. In addition, the air flow within the thin air gap (which

is governed by the Reynolds Equation) from the porous surface to the atmosphere is

also taken into consideration. This air flow modelling is illustrated in Figure 2.11.

In the computation of air pressure for a porous aerostatic bearing, Equation (2.2) is

modified to take into account the flow through the porous media, i.e. the pressure

drops from supply pressure ps to p′ as it enters the porous media, then to p in the air

film, and finally out to the atmosphere at pressure pa. The pressure distribution in the

porous media can be described by Darcy’s Law,

kx
∂2p′2

∂x2
+ ky

∂2p′2

∂y2
+ kz

∂2p′2

∂z2
= 0 (2.5)

where kx,y,z is the permeability coefficients of the porous material in x, y and z direc-

tions respectively. The modified Reynolds equation governing the pressure in the air

film can be expressed as:

∂

∂x

(
ℎ3
∂p2

∂x

)
+

∂

∂y

(
ℎ3
∂p2

∂y

)
= 12kz

∣∣∣∣∂p′2∂z

∣∣∣∣
z=H

(2.6)

By defining some boundary conditions for the model, the solution for p is solved nu-

merically using iteration method [71, 73]. Like orifice type of bearings, the load capac-

ity, W and static stiffness, K of a porous aerostatic bearing air film can be expressed in

terms of its air film pressure, p and ambient pressure, pa, as shown in Equations (2.3)

and (2.4).

A slightly different approach for porous to compute the air film pressure, p was pro-

posed by Plante et al [78]. Plante uses generalised one dimensional air flow method to

predict the pressure distribution of circular aerostatics. As compared to former meth-

ods using Darcy’s Law and Reynolds equation [63, 71–77], this method is much effi-

cient and fast in computing the pressure p needed to evaluate the air film characteristics.

Hence, Plante’s method is adopted here in the air film modelling. More elaborated dis-

cussion of this method is presented in Chapter 6.
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2.5 Discussion

The proposed work establishes the methods to predict static behaviour of aerostatic

bearings. However, investigation of dynamic properties of an air bearing and its influ-

ence on the entire guide system behaviour is lacking. A linear motion system using

non-contact aerostatics was developed in Massachusetts Institute of Technology [79].

Cortesi modelled the air film as a simple disc element in ANSYS. Though his analyt-

ical and experimental comparisons may not seem very scientific and conclusive, the

work did, however, suggest a preliminary and practical approach to modelling porous

aerostatic using FEA in a simple manner. This simple FEA model of the air film was

evaluated in the preliminary stage of this EngD research. The prediction results of an

aerostatic bearing guide system using Cortesi FEA model were not satisfactory. This

evaluation is discussed in Chapter 7.

2.5 Discussion

This chapter has reviewed the previous work in the field of precision machine design,

and showed the need for a Mechatronic approach in the design methodology. The

need to take into account machine dynamics during the machine design phase were

emphasised by prominent researchers [18, 22, 23, 25] in the field of precision engi-

neering. It was considered that machine interfaces substantially influence the dynamic

behaviour of machine system. References on modelling of various types of machine

interfaces were discussed. The review progressed to focus on non-contact machine in-

terfaces modelling. These non-contact interfaces were considered to be more complex

and comprise of significant non-linearity that were more difficult to predict. A number

of papers on aerostatic bearings were also presented. Several weaknesses and technol-

ogy gaps were observed within the above mentioned literature review. The following

statements summarise the major observations.

∙ Mechatronic design approach which incorporates machine dynamics is of paramount

importance in developing fast responding precision machines. The success of

these design methodologies warrant a general set of valid machine interface

models in order to accomplish an optimal design.
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∙ Non-contact type machine interface models are not commercially available us-

ing finite elements, thus engineers are unable to achieve realistic model of their

machines.

∙ A significant number of techniques [27–30, 32, 33, 35–37] have been proposed

for static and dynamic modelling of joints and contact type of machine inter-

faces within the academics/research community. However, many researchers

still choose to obtain the dynamic model of such interfaces experimentally rather

than analytically.

∙ Due to the demand for higher resolutions, level of accuracy and operating speeds

in motion systems, non-contact type guideways such as aerostatic bearings have

become widely used.

∙ Static modelling of non-contact aerostatic bearings have been proposed [72–77],

but the dynamic modelling work in such interfaces is lacking.

∙ The technology gap in dynamic modelling of non-contact interfaces exists and

the challenges lie in the modelling and prediction of non-linear dynamic charac-

teristics of aerostatic bearings.

It would be difficult to address all the issues of the above findings within this EngD

research. Therefore this research mainly focuses on dynamic investigation of non-

contact air bearings interfaces. This work aims to develop a valid aerostatic interface

model that can be used to improve the accuracy of machine FEA models, so as to

achieve a dynamically optimal design. The dynamic effects of an aerostatic guideways

within a motion system are discussed in detail in Chapter 7. The dynamic modelling

and validation of the interfaces model are presented in Chapter 6 and 7.
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Chapter 3

Industrial Context and Technology

Adoption Issues

3.1 Background of Precision Engineering in Singapore

Precision engineering (PE) was identified as the main manufacturing cluster in Sin-

gapore [80]. Singapore’s PE industry began in the 1970s as a capability to support

the first manufacturing investments. The PE industry is made up of manufacturers

of precision components and machinery, as well as providers of related manufactur-

ing services. It is a key supporting pillar to a wide range of industry sectors such as

electronics, aerospace and medical technology. In 2005, the PE industry generated an

output of S$20 billion and contributed to 12% of manufacturing value add. It is also

one of the largest contributors of manufacturing employment, accounting for one out

of every four jobs in the sector. The industry is expected to generate an output of S$28

billion and double its value added to S$10 billion by 2018.

To achieve this target, one of the major efforts is to boost research and development

in PE technologies [80]. This is heavily undertaken by the 10 government-supported

research institutes under the Agency for Science, Technology and Research (A*STAR)

and a cohort of research departments within the national universities.

The Singapore Institute of Manufacturing Technology (SIMTech), one of A*STAR’s
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research institutes, is committed to enhancing Singapore’s competitiveness through the

generation and application of advanced manufacturing technologies. Its core compe-

tencies range from precision mechatronics, real-time control and signal processing, to

product design/development and manufacturing processes. SIMTech has made good

progress in developing leading edge technologies. Its Mechatronics Group is continu-

ously acquiring new capabilities, especially in the area of high precision motion system

for equipment manufacturers. The end-user applications are high precision motion ap-

plications, such as wafer inspection in the semiconductor industry, high-speed wire

bonding machines in electronics industry and micro-arraying in the medical industry.

Motion accuracy in precision machines has been one of the core issues in the PE in-

dustry. In this thesis, precision machines refer to machines which are able to achieve

an accuracy of at least 5 �m and resolution in the nanometre scale. These machines

range from the macro type for grinding and diamond turning functions, instruments

for diagnosis and lithography applications (such as wafer inspection) to the miniature

”Feynman” machines for Fibre Bragg Grating applications. Figure 3.1 shows some

examples where motion or positioning systems are used in high precision machines.

Although the motion system of the above mentioned precision machines vary in terms

of their actuation and measurement system, their design methodology and control are

very much similar.

Over the last decade, advancement in technologies, such as laser interferometery,

direct-drive linear motors, and higher bandwidth controllers have enabled most preci-

sion positioning system in the industry to achieve sub-micrometre accuracy. However,

moving to the next phase of ultra-precision technology, achieving higher accuracy over

a longer range of travel becomes the order-qualifying1 capabilities of most manufac-

turers. These are especially needed in the Gen-102 large flat-panel display operation,

manufacturing of the next generation large telescope optics, as well as the increasing

semiconductor wafer size. The ever demanding manufacturing industry continues to

1Order-qualifying is a term coined by Hill to describe essential criteria an organisation required to
stay in the industry [81].

210th Generation LCD display which measure 2,850 x 3,050mm, or 50 to 65 inch range.
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Coordinate Measurement Machine Wafer Inspection Stage Diamond Turning Machine
Off Axis Grinding Machine ( OAGM2500)

Figure 3.1: Examples of high precision machines

push their machine’s performance indicator limit such as Unit-per-Hour (UPH) beyond

its current capability. Inevitably, this desires the machine’s motion system to travel at

higher acceleration and velocity, yet maintaining short settling time of the end-effector

tools. In order to achieve the above capabilities for precision motion system, a prag-

matic approach to precision machine development is essential.

3.2 Proposed Approach to Precision Machine Design

3.2.1 Current Industrial Practice

Precision Machine Design has a long history and the process is considered very estab-

lished, particularly in the machine tool industry. Most precision motion systems were

designed based on their functional and performance specifications. Some of these de-

sign considerations are listed [29]:

1. Geometry: What is the overall size and footprint? Should consideration be sep-

arated into macro and micro geometry?
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2. Kinematics: What are the required maximum speed, repeatability, accuracy and

resolution?

3. Dynamics: What forces are generated? What type of machining or operation?

What are their potential effects on the system and its components? How rigid

must the machine be to resist processing forces while maintaining surface finish

and part accuracy?

4. Power requirement: What types of actuators can be used, and what systems are

needed to control the operating environment (e.g. cleanroom facilities)?

5. Sensory capability: What is the resolution and accuracy? This often correspond

to the cost of investment.

6. Control: What type of control system and control scheme are we using? This

factor is very much related to the kinematic and dynamics of the system, which

the report will discuss in the later sections.

The majority of precision motion systems are predominantly mechanical, i.e. with the

above design considerations in mind, the mechanical engineer will be the key person

who starts the process on the drawing board. Besides ensuring the motion system meets

the geometric and kinematic requirements, such as range, speed, accuracy and resolu-

tion, dynamics (which consists of the amount of forces that will be generated) are also

considered. The common practice is to ensure that the structure is able to within the

reaction forces created by the acceleration of carriage and workpiece. The structure

should also be rigid enough so that its first natural frequency is above the machine op-

erating bandwidth. Many of Singapore’s machine builders, especially those belonging

to the small and medium enterprises (SMEs) do not have sufficient capabilities and

resources to carry out extensive analytical work on their machine during the designing

phase. Simple structural modelling using commercial FEA packages is usually carried

out. The simple FEA helps the engineers to identify the structural stress and deforma-

tion, as well as its modal behaviour. However, as discussed in Chapter 2 many of these

FE-models are not accurate, as models of the machine interfaces are either not consid-

ered or invalid. Through experience, most engineers are aware of this problem, and

over-designing the system to accommodate for the uncertainties is a straight forward
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solution.

Though this mechanically conservative approach of developing precision machines

may achieve acceptable performance, it introduces issues that affect the developed ma-

chines as well as the company’s long term competitiveness. The following summarises

some of these problems.

Excessively Bulky Machine As discussed, due to the need for higher UPH perform-

ing machines, thus higher acceleration, the machine structure is required to withstand

higher reaction force. To avoid excitation of the resonance frequencies of the motion

system during machine operation, machine structure and interfaces are designed to be

stiff in the required DOFs. The ‘brute force’ approach is to select a stiffer material

and guideways; and increase the moment of inertia for the structure design in the re-

quired DOFs. This designing method usually results in larger-than-essential machine.

Factory space is expensive in most developed countries like Singapore. Bigger ma-

chine footprint means less space for other machinery and activities. More companies,

especially those in the semiconductor and electronics industries, are seeing smaller

machine footprint as an added advantage.

Motion Control Issue System modelling is essential in motion controller tuning.

Lack of consideration of the motion controller capabilities during the design stage,

commonly leads to an inaccurate system model. Much effort has been spent on de-

veloping and tunning the motion controller, after the machine (mainly the mechanical

components) has been built. A simple controller in many cases is not sufficient to com-

pensate for the poorly-modelled machine interfaces dynamics. Undesirable time and

resources are spent on achieving good motion performance.

Cost Incurred Uncertainties in machine performance impacts the initial budget al-

located for the developmental work. Unforeseen motion control issues clearly con-

tribute to the additional cost when time and resources are consumed to tackle these

unmodelled machine dynamics. During development of the motion controller, partic-

ular machine behaviour may warrant some major changes in the mechanical design
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of the system. In some cases, it may even require better or more advanced controller

system, or additional devices such as anti-vibration device in order to realise the de-

sired motion/positioning performance. All these additional cost in development are

commonly underestimated.

Time-to-Market In this era of a fast moving computing and electronics world, Time-

to-Market becomes an essential indicator for a product manufacturer to stay above the

competition. Time-to-Market is the time taken for a product from being conceived until

its being available for sale. Time spent on a poorly planned machine development will

usually translate to longer time to commercialise it. To achieve faster Time-to-Market,

some companies may resolve to commissioning a less superior machine that inherent

some performance deficiency, and attempt to patch them after sale. Many iterate their

machine design cycle and reintroduced improved version of their existing machines.

These in many ways, affect the companies long term competitiveness and reputation.

A ‘first time right’ mindset in machine development is important to ensure the com-

pany sustainability in this ever demanding knowledge-based economy. The subsequent

subsection briefly presents a holistic approach of machine design and modelling, which

takes into consideration key dynamics of the machine which will influence the motion

system performance.

3.2.2 Potential Solution

A mismatch in the precision machine development process exists between the me-

chanical design phase and the controller design phase. The aim of this EngD research

project is to develop a method to model the key machine dynamics of a precision

motion system, so as to bridge the gap between design and control of a mechatronic

system. The research outcomes and proposed methodologies from this doctoral project

are summarised in Chapter 8. These results lays the foundation to enable a design tool

for analysing complex precision systems. The design tool shall facilitate engineers to

model and predict accurately machine dynamic behaviour in a FEA environment.
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The technology gap is in dynamic modelling of non-contact machine interfaces, as dis-

cussed in Chapter 2. Though research effort was in pursue to address this knowledge

gap, many research outcomes are still not implemented in industry. The main difficulty

is that many modelling techniques are considerably mathematical, thus creating some

resistance among engineers. There is a need for a mechatronic design tool, which inte-

grates with commercial FEA packages. Moreover, a unified and comprehensive design

tool that consider all aspects of machine interfaces dynamics is difficult to realise and

may not be feasible. A specific level of knowledge in machine dynamics and modelling

is still required of the design engineers in order for him to find this proposed design

tool useful. From a pragmatic standpoint, development of this technology though chal-

lenging, the adoption and diffusion of it in a company and through an industry posts

equally tricky issues. The following section shall discuss the issues in and methods of

technology adoption.

3.3 Technology Adoption

Manufacturing facilities are moving out of Singapore and attracted to lower cost coun-

tries within the Asia region. Essentially, this implies that Singapore manufacturing

industry needs to direct its focus on high value added activities and competencies.

These activities ought to be knowledge-base. However, Singapore industry, in particu-

lar SMEs companies have been slow in adopting cutting-edge technologies. Research

and Development (R&D) effort is also not considered as an essential investment. The

following subsections shall investigate the subject of technology adoption, and discuss

how a systematic adoption methodology can be applied for the proposed mechatronic

design tool. The methodology can be broadly grouped into: planning, acquisition

and assessment. These groups are generally carried out in sequence and in most case

iterative in nature.

3.3.1 Planning

In order to gain sustainable competitive advantage, companies have to continuously

identify, build and renew its own unique core competencies. For a precision ma-
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chine/equipment builder this is of utmost importance. The process of technology adop-

tion becomes a growing interest among academics as well as industrial practitioners.
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Figure 3.2: Benefits Dependency Network for an HR IT management plan

Technology adoption should be a holistic approach in gaining technological advantage

to stay competitive. Consequently the technology adoption process should involve

problem or objective definition, technology sourcing, implementation, monitoring and

auditing. A good technology adoption process usually combines a few techniques to

address the wide spectrum of issues - from problem definition, to solution formulation

and implementation. From the management point of view, technology adoption should

be aligned to the organization’s mission and objectives. Ward et al. [82, 83] proposed

a framework called Benefits Dependency Network (BDN) for adopting IT solution for

businesses. Although Figure 3.2 shows a BDN for IT applications proposed for HR

management, one can easily apply this directly to a machine manufacturer environ-

ment. This can be done by replacing the visionary purpose with objectives such as

reduce cost per unit machine, increase product quality and increase time-to-market.

Subsequently, the organisation shall identify and propagate the network from right to

left the Quantified Benefits, Process/ Function, Business Redesign that link to the adop-
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tion of the new technology. The BDN allows the management to have a clear overview

of how the technology adoption is linked with its business function, and how it benefits

the organisation in achieving its vision.

A very common method to support technology strategy and planning is the technology

roadmapping approach. The approach was originally developed by Motorola more

than 25 years ago, to support integrated product-technology planning. Since then the

technique has been adapted and applied in a wide variety of industrial contexts, at

the company and sector levels (for example, the International Semiconductor and UK

Foresight Vehicle technology roadmaps). Technology roadmaps can take many forms,

but generally comprise multi-layered time-based charts that enable technology devel-

opments to be aligned with market trends and drivers [84].

3.3.2 Acquisition

The above two approaches are considered as technological gap analyses or planning,

which allow companies to gain understanding of what technologies they need to em-

bark on. The next phase is naturally technology sourcing, which also involves the

common make-or-buy question. Lanctota et al. [85] and Cho et al. [86] both sug-

gested similar consideration factors that will influence the decision making of internal

technology development or external technology acquisition. Figure 3.3 summaries the

relationship between the various influencing factors as well as the mode of acquisition

[86].

The implementation, monitoring and auditing of the (internally/externally) acquired

technology is the next major phase after the decision have been made. Baines et al.

[87] proposed a nine-step technology acquisition process, which includes the imple-

mentation and post-investment audit steps. This phase of performance assessment of

the newly acquired technology is important. It should be an iterative and ongoing pro-

cess to continue the technology enhancement of the company competencies. There

seems to be a lack of in-depth discussion in this area of technology adoption. This

offer a misguided suggestion that structured and sound decision making phase is suffi-
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Figure 3.3: Relationship between factors and modes

cient to warrant a successful technology adoption.

Although much research has been done in the field of technology adoption or acquisi-

tion process, these structure frameworks are not widely practised in the manufacturing

industries. Most companies have a rather implicit process when acquiring new tech-

nology. This implicit practice is common in the Singapore precision machine manu-

facturing industry.

3.3.3 Assessment

In order for this proposed mechatronic design tool to realise a successful adoption in

the industries, one should recognise the adoption criterion for this technology. This

section shall discuss about these criterion and the development guidelines to ensure a
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more promising industrial adoption.

Many research institutes and R&D centres within multi-national companies employ an

assessment method called the Technology Readiness Level (TRL). TRL was initiated

and used by NASA to assess the maturity of their developing/developed technologies

[88]. The original definition only consisted of seven readiness levels, and later ex-

panded to nine levels. The nine TRLs include:

1. Basic principles observed and reported

2. Technology concept and/or application formulated

3. Analytical and experimental critical function and/or characteristic proof of con-

cept

4. Component and/or breadboard validation in laboratory environment

5. Component and/or breadboard validation in relevant environment

6. System/subsystem model or prototype demonstration in a relevant environment

7. System prototype demonstration in a real environment

8. Actual system completed through test and demonstration

9. Actual system through successful mission operations

These different levels allow the researchers and/or developers to have a clear assess-

ment of the technology progression. It helps to direct the focus towards realising prac-

tical application, rather than just striving for scientific outcomes. However, that does

not mean that the developed design tool will be readily adopted by the industry after

level 6 or 7. Several factors still need to be put in place during the development of

the mechatronic design tool. The tool should contribute to attaining the objective(s)

defined by the end user or task(s). Speser [89] described this contribution as utility,

i.e. the more contribution, the higher the utility. The metrics that define utility of a

technology can be broadly categories as performance and ease-of-use.

Besides attempting to fulfil the functionality or performance of the design tool to pre-

dict unmodelled dynamics in precision motion system, the researcher should not lose
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sight of the ease-of-use characteristics of the technology. We can have a rough sense

of utility of the technology by giving weight to both performance and ease-of-use to

reflect their importance to end users. This can be understood by the following equation

[89]:

Performance(Σp1...n × w1...n) + Ease of Use(Σe1...n × w1...n) = Utility(u) (3.1)

where w is the weighting, and there can be multiple metrics of performance, p and ease

of use, e.

The weighting system can be rather subjective. It is very important that the researcher

does not merely based on personal judgement to infer the weight of these metrics. An

industrial survey should be carried out to sample the actual metrics variable and values.

Characteristics of the design tool that contributes to utility value can be incorporated

into the developmental work at different TRL of the technology. The researcher devel-

oping this technology should understand the concept of matching scientific outcome

with industrial and end user expectations.

Within SIMTech, Research Planning Exercise (RPE) is carried out yearly to chart the

research direction for individual research groups. As a research institute, most of the

new technologies are internally acquired (as described by Baines et al. [87]). The RPE

process is a combination of a technology roadmapping approach and a TRL assessment

method. This allows the research group to visualise and track the research direction

and progression over a period of time, usually within 3 to 5 years.

3.4 Conclusions

Precision Engineering is an important pillar in Singapore’s manufacturing industry.

The country needs to develop high value added activities and competencies in order

to stay ahead of the stiff competition in Asia. The initial part of this chapter discusses

the deficiencies in the practice of precision machine design in the industry. The main
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knowledge gap is in the prediction of machine dynamics, in particular machine in-

terfaces. The rest of this thesis (particularly, Chapter 5 to 8) addresses the technical

challenges and discusses various potential solutions to bridge the technological gap.

However, it is recognised that scientific solutions alone do not always guarantee a suc-

cessful industrial adoption of the technology. In view of that, this chapter investigates

potential technology adoption methodologies that could be use to drive the develop-

ment of this work and even beyond the EngD research.

Technology adoption process can be done systematically in the following phases: plan-

ning, acquisition and assessment. The widely used Technology Roadmapping approach

is suggested for the planning phase. Although there are several proposed methods of

decision making for technology acquisition mode, these methods are yet to be widely

practised. It is observed that decision-making mechanisms in many organisations re-

main rather implicit. Assessment is essential to ensure that the technology develop-

ment and adoption is carried out rigourously and effectively. TRL is one of the most

well-established and recognised standard in assessing the readiness level of a technol-

ogy. In most situations, the above 3 phases are carried out iteratively. To sum up, a

good technology transfer mindset is required to be in place, even at the early stage of

the research work.
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Chapter 4

Theory and Application of Modal

Analysis

4.1 Basic Concept of Modal Analysis

The dynamic modelling and analysis work carried out in this research was based on

the modal analysis technique. Modal analysis is a methodology to investigate the dy-

namic characteristics of a (mechanical) system. The earlier work and objectives of

modal analysis were primarily intended for the analysis of structural (in terms of their

shapes, construction and material properties) behaviour; and many of the established

texts were also written mainly covering aspects pertaining to it. The field of modal

analysis were later extended to the area of machine tool design to better understand the

dynamics of these machines. Nevertheless, the fundamental theory governing struc-

tural and machine dynamic behaviour is almost identical. This chapter shall establish

some basic theoretical background of modal analysis which are applicable to dynamic

analysis of machine interfaces. Many of the discussions here are represented within a

number of established texts [40, 90–92].

The dynamic characteristics in the context of this research refer to the natural frequen-

cies, damping factor and mode shapes of a system, which is also referred to as the

Modal Model. The system model can be generally represented in the form of mass,

stiffness and damping; and is referred to as the Spatial Model. Modal analysis encom-
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passes two processes: theoretical formulation and experimental testing. The theoreti-

cal formulation, also known as the analytical process, involves the identification of the

system’s Spatial Model. The properties of the Spatial Model can be represented in the

form of a partial differential equation. The solution of the equation provides the Modal

Model, i.e. the natural frequencies and mode shapes of the system. Based on the solu-

tion, the relationship of the system responses under given force excitation conditions

are explicitly described using frequency domain expression. This relationship is com-

monly known as the Response Model of the system. The Response Model consists of

a set of Frequency Response Functions (FRFs) within a specified range of frequency.

The experimental testing, also referred to as modal testing, is basically the process

to obtain the Modal Model of an existing mechanical system experimentally. Experi-

mental modal testing can be understood as the reverse of the above analytical process.

Using a set of force and motion (accelerometers or other displacement probe) trans-

ducers, the FRFs of the system can be measured. Numerical analysis methods are used

to derive the modal properties of the system from measured FRF by means of curve

fitting. The detailed experimental process is presented in Chapter 5.

4.1.1 Single Degree of Freedom (SDOF) System

Almost all practical mechanical systems exhibit multi-degree of freedom (MDOF) be-

haviour. However, it is important to establish the fundamental understanding of a

SDOF system before embarking on MDOF systems. The system model can be gener-

ally classified into: undamped and damped systems.

4.1.1.1 Undamped Systems

Figure 4.1 shows a classical undamped mass and spring system. f(t) and x(t) are time-

varying force and displacement variables, and the spatial model here only consists of

a mass (m) and a spring (k).

Using Newton’s second law of motion, the SDOF system can be described in the form:

mẍ+ kx = f(t) (4.1)
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Figure 4.1: A simple SDOF mass and spring system

Applying Laplace transformation, Equation (4.1) can be rewritten in the form of a

transfer function of the system, as:

G(s) =
X(s)

F (s)
=

1

ms2 + k
(4.2)

and the response model can be derived in the same way as Equation (4.2) in the form

of a frequency response function (FRF) H(!).

H(!) = �(!) =
X

F
=

1

−m!2 + k
(4.3)

When excitation force is not present, i.e. f(t) = 0, the modal model becomes a simple

solution of the natural frequency, !0 of a free undamped vibration.

!0 =

√
k

m
(4.4)

Note that the natural frequency of a simple SDOF system is the ratio of its mass and

stiffness, and its FRF in Equation (4.3) is independent of the excitation. The response

parameter X above represents displacement of the mass. FRF with displacement re-

sponse is also known as Receptance. The term receptance is more commonly used

in the study of structural behaviour. From the perspective of machine design, a more

common and well-understood term to use would probably be compliance. Thus, this

thesis shall adopt the term compliance. Compliance of a system is usually represented

by �(!), and H(!) is more of a general FRF representation. Depending on the ap-

plication of analysis, the response may also be presented in the form of velocity or

acceleration, whereby the FRFs are referred to as Mobility (V/F ) or Inertance (A/F ),

respectively. Table 4.1 shows the different variation of FRFs and their corresponding
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Response Parameter, R Standard FRF, R/F Inverse FRF, F/R
(unit) (unit) (unit)

Displacement Receptance Dynamic Stiffness
(m) Dynamic Compliance (N/m)

Dynamic Flexibility
(m/N)

Velocity Mobility Mechanical Impedance
(m/s) (m/Ns) (Ns/m)

Acceleration Accelerance Apparent Mass
(m/s2) Inertance (Ns2/m)

(m/Ns2)

Table 4.1: Definition of Frequency Response Functions (after [40])

SI units. Figure 4.2 shows the frequency plots of the three different types of FRFs. For

a SDOF system, the fundamental natural frequency is where the maximum response

occurs. One can easily identify the natural frequency by locating the peak of the curve.

Note that these frequency plots can provide useful information about the mass and

stiffness of the SDOF system by superimposing the relationship between the FRF and

its spatial model properties (i.e. Equation (4.3)) onto the (log-log scale) plot.

4.1.1.2 Damped Systems

Damping exists in all mechanical systems in the form of friction, structural properties

and/or energy dissipating dampers. The more commonly used damping model is the

viscous damping. This section shall confine the discussion to viscously damped sys-

tems1.

Figure 4.3 shows a mass, spring and damper system. Now, the equations of motion

that govern this system has an additional viscous damper term, c.

mẍ+ cẋ+ kx = f(t) (4.5)

If no excitation force is present, i.e. f(t) = 0, the system will correspond to a free

1The study of other damping models such as the hysteretic and structural damper are beyond the
scope of this thesis, thus will not be covered here. More elaborated discussions on damping models can
be found in [40, 93–95].
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(a) Receptance or Compliance FRF

(b) Mobility FRF

(c) Inertance FRF

Figure 4.2: FRF plots of undamped SDOF system (from [40])
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Figure 4.3: A SDOF mass, spring and damper system

damped system, expressed as:

mẍ+ cẋ+ kx = 0 (4.6)

To solve Equation (4.6), a solution can be assumed of the form:

x(t) = Xest (4.7)

where s is complex, and by substituting Xest into the equation, Equation (4.6) can be

expressed in an algebraic form.

(ms2 + cs+ k) = 0 (4.8)

Thus, the solution will consist of two roots:

s1,2 = − c

2m
±
√( c

2m

)2
− k

m
(4.9)

When a system is critically damped, the critical damping coefficient can be represented

by the term c0, whereby

c0 = 2m

√
k

m
= 2
√
km (4.10)

It is common to express damping in terms of the critical damping coefficient in a

nondimensional variable, known as the damping ratio, � .

� =
c

c0
=

(
c

2
√
km

)
(4.11)
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Hence, Equation (4.9) can be rewritten as:

s1,2 =
(
−� ± i

√
1− �2

)
!0 (4.12)

By substituting Equation (4.12) into (4.7), the general solution for the equation of

motion for free damped vibration becomes:

x(t) = Xe−!0�te
i
(
!0

√
1−�2

)
t (4.13)

This general modal solution has a complex natural frequency which contains the imag-

inary oscillatory part of frequency, !′0 = !0

√
1− �2, and a real decay part of damping

rate, a = �!0, as illustrated in Figure 4.4.

-5
0X toXe ζω−

x(t)
t

2
00 1' ζωω −=

Figure 4.4: Free Damped Oscillation

Using a similar approach of Laplace transformation as carried out on an undamped

system, the compliance FRF can be expressed as:

H(!) = �(!) =
X

F
=

1

(−m!2 + k) + i(c!)
(4.14)

H(!) is now a complex function, which comprises of both magnitude and phase infor-

mation.

Subsections 4.1.1.1 and 4.1.1.2 discussed the mathematical relationship between the

spatial properties (mass, stiffness and damping) and the modal properties, natural fre-

quencies and mode shapes. It would be useful to understand how the spatial properties
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of a system influence its frequency response (FRF) plot. Figure 4.5 shows how the

increased of the individual spatial properties: mass, stiffness and damping affects the

frequency response of a SDOF system. Figure 4.5(a) shows that by increasing the mass

without changing the other properties, the peak (i.e. the natural frequency) of the FRF

curve shifted to the left, indicating a decreased in natural frequency. Note that the use

of the superimposed mass line as discussed above and shown in Figure 4.2(a) was also

illustrated by the two parallel black dashed mass lines. Figure 4.5(b) demonstrates that

by increasing the stiffness, the natural frequency is increased as well. A similar use

of the superimposed lines was also shown in the plot, where the horizontal black lines

represent the stiffness of the system. Damping does not have any effect on the natu-

ral frequency of the system. However, the response magnitude will be reduced if the

system has higher damping, as illustrated in Figure 4.5(c). This interpretation method

of the FRF plots help to perform a quick evaluation of a simple system by inspect-

ing its measured FRFs. As the system becomes more complex (with higher DOFs

and non-linearity effects), understanding the system through visual inspection of its

FRFs becomes much harder. The subsequent section shall extend the above theoretical

formulations to MDOF systems.

4.1.2 Multi-degree of Freedom (MDOF) Systems

Section 4.1.1 introduced the concept of dynamic analysis in SDOF systems. However,

almost all practical mechanical systems are multi-degree-of-freedom. Like a SDOF

system, the fundamental elements in a MDOF system are still its mass, stiffness and

damping. The principle of analytical procedure is very much similar to the SDOF

system as well. The only major difference is that the system is now a combination, and

in many cases, coupled effect of multiple inertia, stiffness and damping corresponding

to each degree of freedom. The description of the dynamics of such systems would

inevitably be in matrix form.
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Figure 4.5: Effect on FRF plots by changing spatial properties of the system. (Blue
solid lines indicate original FRF and red dashed lines indicate FRF with increased in
property value)
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4.1.2.1 Undamped Systems

An undamped MDOF system, with n degrees of freedom can be described in the same

way as a SDOF system, using the equations of motion.

[M ]{ẍ(t)}+ [K]{x(t)} = {f(t)} (4.15)

Note that in a MDOF case, the mass, [M ] and stiffnes, [K] are n × n (symmetric)

matrices. The time-varying displacement, x(t) and force, f(t) delimited by the braces

{} are n×1 vectors. In order to obtained the natural modal properties of the system, the

free vibration solution shall be taken, i.e. {f(t)} = {0}, and by assuming a solution

of {x(t)} = {X}ei!t, the equation of motion will become:

(
[K]− !2[M ]

)
{X}ei!t = 0 (4.16)

Based on linear algebra, for a homogeneous equation, like Equation (4.16), the non-

trivial solutions only exists if and only if its determinant is zero. Hence, this will lead

to a set of n numbers of undamped natural frequencies, !r2, and a corresponding set

of mode shapes, {Ψ}r. The equation of motion can thus be expressed as an eigenvalue

problem: (
[K]− !r2[M ]

)
{Ψ}r = {0} (4.17)

where !r2 are the eigenvalues and {Ψ}r are the corresponding eigenvectors. Note that,

attributable to the Orthogonality properties of the modal model, the eigenvalues matrix

can also be obtained from: [!r
2] = [mr]

−1[kr], whereby modal mass, mr and modal

stiffness, kr are defined respectively as follow:

[Ψ]T [M ][Ψ] = [mr] (4.18a)

[Ψ]T [K][Ψ] = [kr] (4.18b)

Modal mass matrix, [mr] and modal stiffness matrix, [kr] can be understood as a set of

SDOF spatial models for a given r mode of the MDOF system. Effectively, a MDOF

system can be ‘decomposed’ and analysed numerically as n number of SDOF systems

which corresponds to the individual modes of the MDOF system.
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To establish the response model of the undamped MDOF system, a set of sinusoidal

forces {f(t)} = {F}ei!t are considered to be acting on the system. These harmonic

forces are assumed to have the same frequency, !, but with different amplitudes and

phases. Equation (7.7) can be simply rewritten as:

(
[K]− !2[M ]

)
{X}ei!t = {F}ei!t (4.19)

or may be written in this form:

{X} = [�(!)]{F} (4.20)

where the response model, [�(!)] for this system is a n × n compliance matrix.

[�(!)]−1 or ([K]− !2[M ]) are also known as the dynamic stiffness matrix of the

MDOF system. It is useful to note that both the dynamic stiffness matrix and the

compliance FRF matrix are symmetrical. This describes the reciprocity characteristic

of a linear MDOF system. The compliance FRF matrix can be broken down into each

element to have a clearer interpretation of this physical meaning. A response element,

Xj at coordinate j can be interpreted as:

Xj = �(!)j1F1 + �(!)j2F2 + ...+ �(!)jnFn (4.21)

Assuming only one force, Fk is applied to the system, then Equation (4.21) will be

simplified to:

�(!)jk =
Xj

Fk
; Fr = 0, r = 1, 2, ..., n and r ∕= k (4.22)

Thus, the reciprocity nature of a linear MDOF system suggests that a response at co-

ordinate, j due to a single force input at coordinate, k is the same as the response at

coordinate, k due to the same force input at coordinate, j. It would not be difficult

for one to realise that the values for the compliance matrix [�(!)] can be obtained by

substituting the frequency values of interest into the inverse of the dynamic stiffness

matrix, ([K]− !2[M ]). However, this has several drawbacks, namely [40]:
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∙ it is computationally costly for large-order degrees of freedom systems;

∙ it is inefficient if only a few FRF expressions are required;

∙ it provides no insight into the form of the various FRF properties.

A more effective method of deriving the various FRF parameters is to use the system’s

modal properties, rather than the spatial properties, i.e. the dynamic stiffness matrix.

To achieve that, the dynamic stiffness matrix is used as the basis.

(
[K]− !2[M ]

)
= [�(!)]−1 (4.23)

By inserting [Φ]T ...[Φ] to both sides of the equation, Equation (4.23) can be rewritten

as:

[Φ]T
(
[K]− !2[M ]

)
[Φ] = [Φ]T [�(!)]−1[Φ] (4.24a)

or [
(
!r

2 − !2
)
] = [Φ]T [�(!)]−1[Φ] (4.24b)

resulting in [�(!)] = [Φ]
[(
!r

2 − !2
)]−1

[Φ]T (4.24c)

where [Φ] is the mass-normalised mode shape of the system, i.e.

[Φ] = [Ψ][mr]
−1/2 (4.25)

Again, [�(!)] is symmetric, thus agreeing to the principle of reciprocity, as mentioned

above. From Equation (4.24c), any single compliance FRF element can be obtained as

follow:

�jk(!) =
�j1�k1
!1

2 − !2
+

�j2�k2
!2

2 − !2
+ ...+

�jn�kn
!n

2 − !2
(4.26)

Equation (4.26) is more meaningful and informative than Equation (4.22). The FRF is

now expressed in terms of the system’s modal parameters, and reveal its composition

of all the individual modes. The FRF equation can be further simplified in the form:

�jk(!) =
N∑
r=1

rAjk
!r

2 − !2
(4.27)

where rAjk is referred to as the Modal Constant, and sometimes also known as the
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Residue. The formulation discussed in this sub-section established the basis for the

next section on damped MDOF systems.

4.1.2.2 Damped Systems

Like mass and stiffness properties, damping of a system is an important aspect in a

practical analysis of a mechanical system. Unfortunately, in most cases, damping can-

not be modelled in a straightforward manner like mass and stiffness [96–98]. Propor-

tional damping was considered to be an acceptable means to carry out damped MDOF

systems analysis [40, 90–92]. In the context of modal analysis, incorporating propor-

tional damping into the analysis of a damped MDOF system becomes apparent as the

resulting modal properties are very similar to an undamped system, in particular the

mode shapes.

Proportional Viscous Damping The general equation of motion for an MDOF sys-

tem is expressed in the same way as Equation (4.5), but in matrix form. The viscous

damping term is denoted as matrix [C], as shown in Equation (4.28).

[M ]{ẍ(t)}+ [C]{ẋ(t)}+ [K]{x(t)} = {f(t)} (4.28)

To enable the modal analysis of damped MDOF systems, using the same methodol-

ogy of undamped system, Rayleigh [99] assumed that the viscous damping is propor-

tional to the inertia and stiffness properties of the system (hence the name, proportional

damping). This damping model has been widely accepted and used extensively in the

area of vibration and modal analysis [40, 90–92, 97, 98]. Therefore, the damping ma-

trix can be expressed as:

[C] = [M ] + �[K] (4.29)

Similar to the properties of the spatial model in an undamped system, defined in Equa-

tion (4.18), the modal damping matrix can also be defined in the same way as follow:

[Ψ]T [C][Ψ] = [cr] (4.30)
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where [cr] is also a diagonal matrix, like [mr] and [kr].

Considering a free damped system, and pre and post multiplying Equation (4.28) with

[Ψ], the equation of motion for a damped MDOF system can be rewritten as:

[mr]{ẍp}+ [cr]{ẋp}+ [kr]{xp} = {0} (4.31)

where {xp} = [Ψ]−1{x}. As mentioned in the above subsection 4.1.2.1, this form

of equation which is expressed in terms of modal mass, stiffness and damping can

be analysed as a set of decoupled SDOF systems. Thus, it has a complex natural

frequency that can be described in the similar way as a SDOF system (shown in Figure

4.4), whereby the imaginary oscillatory part, !′r is expressed as:

!′r = !r

√
1− �r2 (4.32a)

where its damping ratio, �r =
cr

2
√
krmr

=


2!r
+
�!r

2
(4.32b)

and the real decay part is ar = �r!r =
 + �!r

2

2
(4.33)

Since the above derivation from Equation (4.30) to (4.33) are based on eigenvector of

the undamped system, [Ψ], the assumption of proportionally damped system will still

hold, i.e. the damped and undamped system mode shapes are identical.

For the same reason, the forced response analysis of a proportionally damped MDOF

system can also be performed in a similar method as an undamped MDOF system.

Hence, alike Equation (4.23), the general compliance FRF equation can be written in

this form:

[�(!)] =
[
K + i!C − !2M

]−1 (4.34)

and each of the FRF elements becomes a complex function, depicted as:

�jk(!) =
N∑
r=1

rAjk
!r

2 − !2 + i2�!!r
(4.35)
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Proportional Hysteresis Damping A practical damping modal that is also com-

monly used is the hysteresis or structural damping model. Besides the internal mate-

rial characteristics of structure, this hysteretic behaviour also found in machine motion

system in the form of contact friction, e.g. sliding contacts and roller element bearings

[29, 100–102]. Instead of proportional to the velocity like viscous damping, hysteresis

damping is described by a force that is proportional to the displacement. This damping

force is in phase with the velocity. Thus, the general equations of motion that include

the proportional hysteresis damping will be depicted as:

[M ]{ẍ}+ ([K + iD]) {x} = {f} (4.36)

where [D] is the proportional hysteresis damping matrix, which also has the same

‘proportional’ nature as [C], whereby

[D] = �[K] + [M ] (4.37)

Again, due to its proportionality of the damping effect, the system shares the same

eigenvectors with its equivalent undamped system. However, the hysteretically damped

system has eigenvalues, �r2 which are complex and are described as:

�r
2 = !r

2(1 + �r) (4.38a)

where �r = � +


!r
2 (4.38b)

�r is defined as the damping loss factor of the system at rth mode.

The force response solution for the hysteretically damped MDOF system follows through

the same method as the above undamped and viscously damped MDOF system. Con-

sequently, the general compliance FRF element results in an expression of this form.

�jk(!) =
N∑
r=1

rAjk
!r

2 − !2 + i�r!r
2 (4.39)
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Non-proportional Hysteresis Damping Most would prefer the system to comprise

of proportional damping, however in most instances machine damping comprising of

various type of interfaces do not behaviour proportionally. It would be essential to

employ a more general term for hysteresis damping in mechanical system. Due to

its non-proportional nature, the complex eigenvalue equation yields a set of eigenval-

ues that are different from the undamped eigenvalue solution (refer to the previous

undamped systems discussion in the beginning of subsection 4.1.2.1). Therefore, the

eigenvalue �r2 is now a complex function of the natural frequency !r, instead of !r.

Note that the overline on !r denotes an undamped natural frequency.

�r
2 = !r

2(1 + i�r) (4.40)

Consequently, the problem will lead to a FRF equation that is similar to Equation

(4.39), but using a general natural frequency term, !r. The compliance FRF elements

of a non-proportional hysteretically damped MDOF system is expressed as:

�jk(!) =
N∑
r=1

rAjk
!r2 − !2 + i�r!r2

(4.41)

and in matrix form

[�jk(!)] =
(
[K] + i[D]− !2[M ]

)−1 (4.42a)

or [�jk(!)] = [Φ]
[(
�r

2 − !2
)]−1

[Φ]T (4.42b)

The above give a broad but thorough overview of the theoretical formulation of modal

analysis of SDOF and MDOF systems under both undamped and damped conditions.

As mentioned, the analysis is consisted of two processes: analytical and experimental.

The theory of system modal behaviour will be useful in the modal parameters extrac-

tion which will be carried out during experimental modal testing. The procedure and

methods for modal testing is introduced in the next section.
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4.2 Modal Testing

Modal Testing as mentioned earlier, is an experimental process to obtain the actual

modal characteristics of a system. This involves measurement of the frequency re-

sponse of the system and post processing to extract the modal parameters, such as the

natural frequencies and mode shapes. The modal testing procedure can be broadly di-

vided into three main steps, namely, Preparation, Measurement and Post Processing.

The following subsections briefly discuss each of these steps.

4.2.1 Preparation and Test Planning

Test planning for modal testing is a wide subject area, especially for large complex

structures. For the modal testing performed in this research, elaborated test planning

is not required. However, it is useful to have some form of plan in order to obtain

sufficient measurements that describe all the dynamic behaviour which of interest to

the analysis. Below are some considerations to make before the test:

∙ The numbers and placement of response points (position of accelerometers) are

crucial in acquiring accurately the ‘expected or interested’ mode shapes.;

∙ The range of frequency and resolution for the measurement.;

∙ The size and measurement range of the impact hammer is dependent on the size

and stiffness of the system.

∙ The hardness/softness of the impulse hammer head. This will determine the

range of frequency that will be excited by impulse hammer.;

∙ The location of the impact point. Although it is useful to choose an impact

location where impact force can be directed in three DOFs (X, Y and Z axis), it

is more important that the location is effective in exciting all the response points.

Based on the above consideration of measurement points, a wireframe model was con-

structed in the software, which corresponds to the actual geometry of the test system

(in this case, a guideway structure as shown in Figure 5.3(b)). Figure 4.6 shows the

model geometry which consists of the determined measurement points.
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Figure 4.6: Model geometry with measurement points of the guideway structure

4.2.2 Measurement Process

The measurement steps basically obtain the frequency response of the test system. In

essence, a frequency response function is the ratio between the response of a system

when subject to an excitation force, normally presented and analysed in the frequency

domain. There are two major class of sensors used for measuring the responses of a

system, namely: acceleration transducer (accelerometer) and laser transducer. These

transducers primarily measure the displacement, velocity or acceleration of the re-

sponse over a specific time period. The excitation force information is obtained by

means of a force transducer embedded either in a impact hammer or a shaker. This

work adopted the impact testing experimental scheme with the use of a impact ham-

mer (for force measurement) and accelerometers (for response measurements). Figure

4.7 shows a schematic of a typical experimental setup for modal impact testing.

The impact hammer excitation method is a simple and quick-to-setup experiment, and

that was the main reason it was chosen for this work. In the setup as shown in Figure

4.7, three accelerometers were attached to the structure by thin layer of adhesive wax.

The accelerometers were placed in locations which were considered to measure suf-

ficient number of points so that the mode shapes can be uniquely described. A more

comprehensive discussion of sensors placement for modal testing can be found in [40].

The simple illustration in Figure 4.7 shows the impact hammer exciting the structure at
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Structure
Data Acquisition UnitComputer with Modal Testing Software

Accelerometer
Impact Hammer Point 3Point 2Point 1
Figure 4.7: A typical modal impact testing setup

point 1 in a single (vertical) direction. In most cases, the test rig is usually hit in more

than one direction in order to excite all the possible modal responses, ideally in all the

three degree-of-freedoms (DOFs). The position of impact is set as the reference point.

In this research, the interest is not too much in the structural deformation modes, but

rather in the rigid body modes under the influence of interfaces stiffness. For example,

the test setup in Figure 4.7 may display these three rigid body modes as shown in

Figure 4.8 that are of more interest in this investigation. The springs in the above

example may represent the stiffness of a guideway interface.

Titling Motion Vertical Motion Horizontal Motion
Figure 4.8: Three possible rigid body modes due to the spring stiffness
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Impact force and response acceleration information were captured by a data acquisition

unit at a specified sampling time, i.e. in time domain. The measured time data were

sent to a computer with modal testing software. The software evaluated various signal

processing algorithms on the measured data, such as averaging, antialiasing filtering

as well as windowing. The software then transforms the processed force and response

data from time domain to frequency domain by applying Fast Fourier Transformation

(FFT), producing the force signal, F (!), and response signal, X(!), respectively, as

illustrated by Figure 4.9. The frequency response function, F (!) having the following

force and response relationship was computed.

H(!) =
X(!)

F (!)
(4.43)
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Figure 4.9: Force and acceleration time data to frequency response function.

4.2.3 Post-processing - Modal Parameters Extraction

The main aim of this modal experimental process was to understand the dynamic be-

haviour of the system. This can be done by analysing the modal parameters: the num-
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ber, r, of natural frequencies [!r], their corresponding mode shapes [ r] and damping,

� . Hence the post-processing of the measured FRFs is carried out compute these modal

parameters. This post-process is known as modal parameter extraction. Modal param-

eter extraction is commonly done using curve fitting methods. There are a wide range

of curve fitting methods to tackle different types of FRF signals [40, 90, 103]. The

detailed discussion of these algorithms is beyond the scope of this work. Furthermore,

in recent years, commercial modal analysis software packages have produced semi-

automated module to compute and extract these parameters. However, it is still useful

to explain briefly in this subsection how the modal parameters can be interpreted from

the FRFs.

The simplest and fastest way to have a rough idea of the modal behaviour of a test

rig using its measured and computed FRFs is by SDOF Peak-picking method (Figure

4.10). This method picks the rth numbers of peaks in the FRF plot and considered

them as the harmonics or modes of the system. The frequency at which the maximum

responses happen are identified as its natural frequency, !r, i.e. at ∣�r(!)∣max.

Receptance (α) |)(| rωα

2

|)(| rωα

Figure 4.10: Peak picking method

The frequency bandwidth in the vicinity of the local maximum response, ∣�r∣, can be

defined by the bound of the half-power points, !b and !a, at response level ∣�r∣/
√

2.

The damping ratio and damping loss factor can then be estimated using this frequency

bandwidth by:

�r =
!2
a − !2

b

2!2
r

(4.44)

�r =
�r
2

(4.45)
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From Chapter 4, we know that the FRF of a damped N DOFs system is a complex

function, and the response model can be expressed as:

�jk(!) =
N∑
r=1

rAjk
�2r − !2

(4.46)

where the eigenvalues, �2r , of the damped system takes the complex form:

�2r = !2
r(1 + i�r) (4.47)

rAjk is the Modal Constant, whereby rAjk = �jr�kr. Thus, we can relate rAjk to

the r mode shape by some scaling factor. It is difficult to visualise the mode shapes

from the Modal Constant matrix. However, the imaginary plot of the FRF gives a

better visualisation of the mode shape. This is its imaginary part of the FRF versus the

frequency. For a damped MDOF system, the imaginary part is computed analytically

using Equation (4.46):

Im(�jk(!)) = Imag

(
N∑
r=1

rAjk
�2r − !2

)
(4.48)

We can use the setup shown in Figure 4.7 as an illustration example. Assuming the

three accelerometers are uni-axial. Therefore, they are only capable of sensing the tilt-

ing and vertical oscillation mode, as shown in Figure 4.8 (ignoring the structural mode

shapes, if any). If the impact position is point 1 and in the vertical direction, three

imaginary plots of the modal test may be obtained as shown in Figure 4.11. Each of

the imaginary plots represents the responses measured by the individual accelerome-

ters when subjected to an impact excitation force at point 1.

The method shown in Figure 4.11 provides an evaluation of the mode shapes of a

system. Note that there is only one peak in the imaginary plot of response 2, which

corresponds to the vertical oscillation mode. This is due to the fact that point 2 is lo-

cated at the node of the tilting mode, hence no or minimum response was measured

in this mode. The evaluation of the FRF Imaginary Plots allows one to have a quick

visualisation of the key mode shapes of the system. However, in complex machines
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Titling Motion Vertical Motion

FrequencyFrequencyFrequency
Impact 1, Response 1
Impact 1, Response 2Impact 1, Response 3

1 2 21 33
Figure 4.11: Imaginary plots obtained from the three accelerometers and one impact
(reference) point

with high damping and noisy FRF data, this simple visualisation method may be in-

sufficient. As mentioned many commercial software are able to accurately compute

the mode shapes based on the selected natural frequencies. The software also provides

tools to facilitate easier selection of the natural frequencies.
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Chapter 5

Experimental Methodology, Procedure

and Equipment

5.1 IntroductionBreaking down the complex problem in Chapter 5

Dedicated dynamic analysis of air bearings in Chapter 6Synthesised modelling and validation of method using existing aerostatic guideway in Chapter 7 
Figure 5.1: Flow of chapter 5 to 7.

This research aims to develop a valid air bearing interface model that can be used to

improve the accuracy of machine FEA models, so as to achieve a dynamically optimal

design. In order to realise this objective, the dynamic behaviour of air bearing based
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motion systems needs to be investigated in a systematic and rigorous manner. This

chapter discusses how a complex aerostatic guideway system is been broken down into

various aspects of interfaces, which influence the dynamic behaviour of the system. A

systematic experimental methodology to analyse the dynamic behaviour of an aero-

static guideway system is deliberated. The dynamic characteristics of the aerostatic

guideway system are contributed by several interfaces. Various analysis and experi-

ments are set up to investigate the individual interfaces in a controlled environment.

This process leads to the design of a dedicated air bearing test rig which was targeted

to carry out the isolated and controlled investigation. The design consideration and

outcome of this test rig is discussed and presented in this chapter. The process of

identifying/designing the experiments and analyses for the various interface elements

forms the initial stage of this research as illustrated in Figure 5.1. This chapter also

aim to set the scene for the subsequent two chapters, and at the same time gives a good

representation of the flow of work carried out in this research, which has been illus-

trated in Figure 1.1.

Chapter 4 presents the theory of the analytical process for dynamic modelling a general

system. It discussed how modal and response models (i.e. the dynamic characteristics

and performance) of a system can be computed using the system’s spatial model which

comprises of the mass, stiffness and damping variables. Therefore, the key dynamic

parameters that need to be developed is a set of stiffness and damping which can be

used to accurately describe the behaviour of the air bearing interfaces. The stiffness

and/or damping models will be developed as elements (in FEA) which represent the

interfaces within the machine. The modal parameters of the machine will be computed

in FEA, incorporating the various spatial models of the interface elements.

In order to validate the above analytical spatial model developed, experimental data of

the real system need to be used. Experimental modal tests were carried out to obtain

the actual dynamic behaviour of the interfaces. The modal testing process is presented

in this chapter. The validation process compares the modal parameters, i.e. the nat-

ural frequencies and mode shapes obtained from the analytical and experimental pro-

cesses. Perfect agreement between the experimental and analytical results is evidently
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impossible. The discrepancies between the two results are analysed to explore poten-

tial improvements to be made to the analytical model and/or the experimental setup.

Therefore, this forms an iterative and decomposition experimental process to achieve

a robust and reliable dynamic model for the machine interfaces. Figure 5.2 illustrates

a single validation scheme of the process described above, in the form of a flow chart.Build entire FEA model incorporation interface modelsFormulate System/interface spatial model Modal analysis in FEA to compute modal modelExperimental modal testing to obtain response modelof system Is discrepancies acceptable?Accurate interface dynamic modelYes
Experiment and analytical (modal model) results validationModal extraction process to obtain modal modelAnalyse and explore improvement No

Figure 5.2: Modal Analysis Validation Process

Note that the iterative and breaking down of the experimental process are not depicted

in this flow chart. The following sections shall detail the progress of decomposing

a ‘more’ complicated experimental setup to isolated experiments to understand the

various interfaces behaviour of an aerostatic bearing setup. In Chapter 7, the findings

pertaining to the various identified interfaces are consolidated and utilised to formulate

the dynamic FE model for the entire aerostatic guideway. The detailed analysis and

model validation of the guideway system are also discussed.

5.2 Experimental Methodologies

This research aims to develop a valid dynamic model for non-contact type machine

interfaces to realise an accurate FEA machine model. It is common and logical to

start by studying a simpler experimental set up and progressively expanding the inves-

tigation towards a more complicated system. However, for a non-mechanical contact
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guideway, e.g. an aerostatic guideway, it is difficult to pinpoint and justify an initial

investigation of a specific feature or aspect within the system. Hence, it was decided

upon to choose to commence experimental work with a relatively simple (which later

appear to be otherwise) single axis non-mechanical contact guide system. The purpose

of this attempt is to appreciate the machine interface overall behaviour and its influence

on the motion system; and to categorise the various characteristics of the experimental

results. By doing so, the dynamic problem of the single axis motion system is broken

down into smaller isolated issues and analysed separately in a methodically manner.

The discussion in the following subsections will detail the procedures and its rationale

of this experimental approach.

5.2.1 The Experimental Platform

As mentioned above, the aim is to gain an initial overall appreciation of the dynamic

behaviour of a non-contact type interface based motion system. Though starting from

a system perspective, it is still useful to begin with a relatively simple motion system.

The following are selection criteria for an experimental platform based on practical

and analytical reasons:

∙ The test rig shall be a single axis motion system

∙ The motion system shall be guided by aerostatic bearings, which use a common

or manufacturer recommended setup.

∙ The motion system configuration shall be kept minimal, i.e. components/parts

not relevant to the investigation will be removed.

∙ The motion system shall be of manageable size, due to practical reasons for

the experimental process. Equipments and sensors used in this research will be

introduced in the later part of this chapter, and the practical rationale will become

apparent.

A single axis air bearing based motion system was selected as the experimental plat-

form to understand machine interfaces dynamics. Figure 5.3 shows the experimental

platform, which used air bearings in its axis guiding system.
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Linear motor
2 axis piezo-flexure stage

Air bearing carriage
Interferometer encoders

(a) Original three axis system

(b) Single axis aerostatic guideway system

Figure 5.3: Aerostatic guideway system as the experimental platform

The motion system shown in Figure 5.3(a) was originally a three axis system, with

one macro DOF motion, guided by the air bearings, and two micro DOFs from a

piezo-actuated flexure stage. For simplicity, the motion system was reduced to the

minimum, which only comprises of the relevant components. The major components

of the scaled-down system are the guideway structure, the air bearing carriage and the

structural base. Figure 5.3(b) shows the scaled-down single axis aerostatic guideway.
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5.2.2 Assessment of System Interfaces

The air bearing carriage is made up of ten 25 mm diameter air bearing pads from New

WayⓇ Air Bearings, as shown in Figure 5.4. The air bearing uses a porous carbon

graphite material as their air flow restrictor [67, 104]. A schematic diagram of the

construction of a porous air bearing was shown in Chapter 2, Figure 2.11. The porous

media restrictor offers a nearly even air pressure distribution within the air gaps, as

discussed in Section 2.4. Technical specifications and drawings of the 25 mm porous

air bearing can be found in Appendix A.

Figure 5.4: 25 mm diameter New Way Air Bearing

Figure 5.5: Air bearing layout used in this test rig (from [104])

The air bearing layout configuration is based on one of the manufacturer’s recommen-

dation (page 34 of [104]). It was made up of two sets of opposing bearings directly
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Air bearings positionsAir bearings positions
Figure 5.6: Air bearings layout and enclosure assembly

across each other in the horizontal and vertical plane. Three air bearings established a

plane and two established a line, hence comprising of ten air bearings in this layout.

Figure 5.5 illustrates the above described bearings configuration. The air bearings en-

closure is consists of four aluminium blocks, with pockets to hold the air bearings and

ribs to route the air tube. The left of Figure 5.6 shows the 3D CAD model in exploded

view of the enclosure and on the right shows two perpendicular blocks (half of the

encloure) exposing the air bearings and the tubing assembly. The 2D CAD drawing of

the air bearing enclosure can be found in Appendix A. Note that the air bearings layout

was over constrained and non-kinematic [29], but this type of layout offers a higher

stiffness in terms of the guideway configuration.

Similar to the concept of a structural loop [29] in machine design, stiffness chains

[105, 106] are often used to evaluate machine interface compliance. The major struc-

tural components are separated and connected by a set of interfaces (with a certain

stiffness and damping properties) that are perceived to possess identifiable extent of

compliance. Using the single axis air bearing guideway as an example, Figure 5.7 il-

lustrates how the chain can be constructed.

The left side of the diagram shows the CAD model of the simplified guideway and the

air bearing carriage. Ten 25mm diameter round air bearing pads were used, and were
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arranged in a configuration to create opposing preload as shown in (top left of) Figure

5.7. The right side of the diagram shows a schematic illustration of the stiffness chain

of the system. Each interface is represented by a spring and damper system, which is

the spatial model of the system. To estimate these spatial parameters of the air bearing

guideway, dynamic modelling and testing were carried out on the guideway system.

The details of the dynamic analysis and experiments of this air bearing guideway are

discussed in Chapter 7. An initial assessment identifies several issues and queries

concerning the FE modelling of the aerostatic guideway. These issues/queries provide

the basis for further in-depth investigation into the various static and dynamic aspects

of the air bearing interfaces. Experiments were designed to address each of the key

issues/queries. This permits a more in-depth research into the various aspects of the

guideway which contribute to the dynamic behaviour of the system. Consequently,

these isolated analyses could be synthesised to derive a more comprehensive analytical

model for the entire air bearing system. The subsequent sections discuss the key issues

and the experimental methodologies to acquire more insight of the various interfaces.

5.2.2.1 Coupling of Structural and Air Bearing Interface Dynamics

Structural joints are considered as one of the common weak interfaces in machines.

For simplicity, the joints in machine structures are usually modelled as rigid bonding

in the FEA. Their contributions to the model prediction errors are often not very sig-

nificant. This will be evidenced in the later chapters. However, it is still essential to

characterise the deficiency of the analytical model through experimental validation of

such structural interfaces. This was carried out by performing modal tests separately on

just the structures (without the air bearings influence) and the entire air bearing guide-

way. The model test results are analysed and the dynamic behaviour of the structure

and the air bearings are differentiated. The experimental setup and equipment used for

modal testing is presented in Section 5.3.1. The same modal testing equipment is used

throughout this research to obtain the frequency response measurement of various test

setups.
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Slide Structure

Opposing Air Bearings Carriage

Mass / Carriage

Air Film

Bearing mounting

Unmodelled Interfaces

Structural Interfaces

Figure 5.7: Stiffness chain of the air bearing guideway

Air Supply
Threaded Stud for presetting of air gapsMoving Carriage Structure Porous PadAir FilmImpermeable Fixed Surface of Guide

Half spherical joint allowing bearing face to become parallel with guide when air supply is on K1K2K3
Figure 5.8: Porous Air Bearing Mounting Mechanism
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5.2.2.2 Effect of Air Bearing Mounting

The air bearing pads were mounted to the carriage by threaded studs, and a ball joint

to ensure the parallelism between the sliding surfaces and the air bearing pad surfaces,

as illustrated in Figure 5.8. In many air bearing guideway modelling [79, 107–110],

this interface was often neglected, or assumed to be as stiff as the structural joints.

However, this research found that this assumption may not be acceptable. Realistically,

the air bearing is made up of several interfaces, which contribute to the overall stiffness

of a single bearing system. This can be considered as a number of linear or non-linear

springs connected in series, as illustrated in Figure 5.8, .i.e. the overall stiffness will be

substantially smaller (depending on the other interfaces stiffness) than that of only the

air film. Two experiments were carried out to find out the static stiffness of ball-socket

mounting of the air bearings: 1) Purely ball and socket, and 2) ball in threaded stub.

The detail of the experimental setup is presented later in this Chapter and results will

be elaborated in Chapter 6.

5.2.2.3 Uncertainty of Air Gap Height

The carriage (which was also the air bearings enclosure) hovered on air films that

were between the slide structure surface and the air bearing pad surfaces, creating a

“near frictionless” guide in the motion axis. Due to the construction of the carriage

and mounting mechanism as discussed in the previous paragraph, the confidence on

the actual air gaps within the carriage was not high. Although displacement can be

measured using the top of the threaded stub (which is exposed on the surface of the

carriage), it is considered to be an indirect measurement. The procedure for air gap

setting and measurement via the threaded stub is presented in Appendix B. An air gap

height measurement/identification method is essential to provide a more deterministic

value, so as to increase the confidence of the air film model parameters and a more

rigorous validation process.
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5.2.2.4 Inadequacy of Air Film Model

Air film dynamics are the least understood characteristics in this guideway test setup.

Numerous research works had been carried out in characterising the static behaviour

of air bearings, but there is little on the dynamic behaviour. Some of these works

have been discussed in the literature review of Chapter 2. To analyse an air bearing

accurately in FEA, a valid stiffness and/or damping model of the air film need to be

established. Therefore, experiments were performed to measure the stiffness of the air

film. In order to study the air film dynamic behaviour in a controlled environment, it is

essential to design a test rig that allows dedicated investigation of the air film dynamics.

5.2.2.5 Other Unmodelled Interfaces

There are always some interfaces characteristics, which are not modelled and/or not

considered. One example of such unmodelled interface is the joining between the air

bearing porous material and its aluminium case. Some of the interfaces are highly

non-linear, and are very difficult to include in a FEA model. Many commercial FEA

tools do not consider non-linearity of elements in their modal analysis, i.e. non-linear

elements are linearised to a specific set point in the computation of the modal param-

eters. It is therefore important to be aware of such unmodelled interfaces in a system,

and appreciate their contribution to the discrepancies of the experimental validation.

Chapters 6 and 7 will discuss these issues.

The next section presents the setup and equipment for the experiments designed to

investigate all the above key issues.

5.3 Experimental Setup and Equipment

5.3.1 Modal Testing Equipment

Modal testing methods are well established technique in the field of structural vibra-

tion analysis. In the industry, they are classified under a common area called Noise,

Vibration and Harshness (NVH). NVH testing equipment is commercially available. It
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varies mainly in terms of signal processing and data post processing capabilities. The

three major NVH testing equipment suppliers1 are Brüel & Kjær (B&K), LMS and

National Instruments (NI) [111]. In this work, Brüel & Kjær and LMS modal test-

ing equipment was used. These gave consistent frequency response results. B&K do

not come with a post processor or modal analysis software. The measured data were

exported to a third-party modal analysis software called ME’scopeVES by Vibrant

Technology Inc2. The modal analysis of ME’scopeVES uses the imported FRF data

to extracts the modal parameters of the measured system, i.e. modal shapes, natural

frequencies and damping ratios, as discussed in Section 4.2.3. On the other hand, LMS

test equipment is bundled with modal analysis software. This allows direct analysis of

the FRF measurements in a seamless manner. LMS uses a patented frequency domain

method to extract modal parameters from FRF data, named PolyMax. PolyMax or

polyreference least-square complex frequency-domain (LSCF) modal parameter esti-

mation method offers a more robust and accurate estimation as compared to classical

methods employed in other modal analysis software packages [112]. Its modal param-

eters estimation method is able to clearly identify the stable poles of a highly-damped

and/or noisy system. Due to the better post processing features of LMS and for con-

sistency, it was used in most of the experimental modal tests.

As discussed in Section 5.2.2.1, the dynamic characteristics of the structure and the

air bearing interfaces were evaluated separately to isolate their behaviour and prevent

coupling effect between them. Hence, Figure 5.9 shows the experimental modal test-

ing setup of just the guideway structure without the air bearing carriage. Table 5.1

summarises the equipment used for a typical modal test.

The LMS data acquisition system was connected to a computer laptop through Ether-

net. The laptop was loaded with LMS Test.Lab[114], the bundled modal testing and

analysis software which was mentioned above. Tri-axial accelerometers were used in

most of the experiments, as they were able to acquire three DOF acceleration infor-

1B&K - http://www.bksv.com, LMS - http://www.lmsintl.com/ and NI - http://www.ni.com/nvh

2http://www.vibetech.com
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Figure 5.9: Modal Testing Setup of Guideway Structure

Device Model Datasheet
Data Acquisition System LMS 16 channels SCADA Mobile SCM05 [113]
Modal Analysis Software LMS Test.Lab [114]
Accelerometers Kistler PiezoBeamⓇ Triaxial Accelerometer, 50g [115]
Impact Hammer Kistler Impulse Force Hammer [116]
Computer Lenovo Thinkpad T61 Laptop

Table 5.1: Equipment used for Modal Testing

mation simultaneously. The impact hammer shown in Figure 5.9 is used to introduce

the impulse force excitation to the system. Due to the limitation of 4 accelerometers

available, several sets of force-response measurement were required to cover all the

measurement points. In the case of the above guideway structure test, 16 measurement

points were determined (refer to Figure 4.6), hence 4 sets of force-response measure-

ment were required.

5.3.2 Stiffness Testing Equipments

Experiments to obtain the static stiffnesses of the air bearing mounting were proposed.

The experiments were carried out using an Instron (4505) Mechanical Testing Ma-
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Figure 5.10: Instron 4505 with 1 kN load cell 
65mm diameter air bearing Mahr probes 

Load Cell Load Cell Digital Meter Supply Pressure Valve & Digital Meter 
Threaded stud for loading adjustment. 

Figure 5.11: Test setup for air film stiffness
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chine, with a 1 kN load cell (as shown in Figure 5.10) and two sets of Mahr Linear

variable differential transformer (LVDT) probes (1318 Mahr-LVDT [117]) for dis-

placement measurement.

Despite the fact that a load-lift curve of the air bearing was provided in the manu-

facturer’s datasheet, a verification of the actual static stiffness of the air bearing was

desirable to increase the confidence of the entire investigation. A similar experiment

was set up to obtain the load versus air gap displacement relationship. Figure 5.11

shows the setup of this experiment. Besides evaluating the static stiffness of the air

film, more experiments were required to acquire insight to the dynamic behaviour of

the air film.

5.4 Dedicated Air Bearing Test Rig

5.4.1 Design Consideration of the Air Bearing Test Rig

Dynamic (modal testing) and static experiments using the various test setups provided

understanding to the various aspects of interfaces within the aerostatic guideway sys-

tem. Despite the fact that dynamic analysis was performed on the guideway, many is-

sues and limitations exist. These issues create uncertainties that hindered the research

work. A much customised test rig was required to acquire further understanding of

an isolated dynamic system, in particular the air film. An accurate air film model was

needed to be developed in order to construct a realistic dynamic model for the entire

guideway system.

Before the design of this test rig, it would be valuable to list a few criteria of the test

rig:

∙ The test rig has to be able to maintain an accurate and parallel air gap of an air

bearing to 1 �m accuracy.

∙ The air bearing has to be rigidly mounted, i.e. eliminating ’weak’ interfaces such

as those discussed in Section 5.2.2.1.
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∙ The air gap must be measurable and deterministic.

∙ The test rig structure has to be relatively rigid as compared to the air film.

∙ For simplicity seek, the degree-of-freedoms (DOFs) for the key measured com-

ponents has to be kept minimum, preferably not more than three DOFs.

5.4.2 Design of the Opposing Air Bearing Test Rig

A dedicated air bearing test rig was designed. Figure 5.12 shows the CAD assembly

of the test rig and the major components of the assembly are annotated. An opposing

air bearing system was adopted as the main concept of the test rig. This would pro-

vide a closer yet isolated representation of the current guideway system. Furthermore,

opposing air bearings systems are commonly found in many commercial linear guides

and an in-depth understanding of such system will benefit future design of air bearing

linear guides. Top Block
Base Block3 x Supporting ColumnsCentre Mass

2 x 65mm circular air bearings
3 x Flexure mechanisms

Figure 5.12: Dedicated air bearing test rig

The (green) centre mass shown in Figure 5.12, constrained between the two opposing

air bearings is the main component to be investigated. The dynamic behaviour of this

centre mass, which is predominantly influenced by the air film dynamics, is measured
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in this experimental setup. Ideally, the centre mass should display the first few har-

monics of the system. Numerous design and functional aspects of the test rig were

incorporated to comply with the criterion, as set in Section 5.4.1. The following are

summarised key features in the test rig:

1. Two deterministic air gaps, top and bottom of the mass will be established by

the geometry of the structure, as illustrated in Figure 5.13.

Figure 5.13: Determination of air gap heights

2. The centre mass has three ledges to accommodate the mounting of the accelerom-

eters, as shown in Figure 5.14.

Location of accelerometers
Figure 5.14: Centre Mass

3. Three leaf-spring flexure mechanisms connect the side of the mass to the three

supporting columns, as shown in Figure 5.15. The aim is to deter lateral motion

of the mass, thus constraining it to only vertical motion and tilting. More detail

on the design of the flexure will be given.
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Figure 5.15: Leaf-spring flexure mechanism

4. The critical surfaces such as the interfaces between the supporting column and

the two blocks, as well as the air bearings back and the two blocks were diamond

turned to ensure precise parallelism and flatness.

5.4.3 Flexure Mechanism

The flexure mechanism was chosen to constrain the lateral motion of the mass, as its

static and dynamic characteristics are almost linear and deterministic within the ma-

terial elastic zone [118, 119]. The flexure is a leaf spring type using a 0.02mm thick

shim clamped at both ends, with one end to the mass and the other to the support col-

umn. Figure 5.16 shows the schematic drawing of the deflection behaviour of each leaf

spring under the loading F, of the mass, when the air supply is off. When the air supply

is turn on, there should be minimum deflection, i.e. the mass is ‘held in space’ by the

opposing air bearings.

The stiffness, maximum deflection of the flexure and the first mode natural frequency

of the mass can be easily calculated using classical static and dynamic mechanics the-

ory. Since the analysis is focused on the air film dynamics, the dynamic effect of the

flexure on the centre mass should be as minimum as possible. The flexure should not

exert too much constraint on the vertical motion of the mass, i.e. the stiffness and the

natural frequency caused by the flexure mechanism ought to be as low as possible. A

0.02mm thick x 12.7mm wide shim was used. The distance L between the clamping
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Figure 5.16: Schematic of a leaf spring flexure mechanism

blocks need to be determined to ensure a low stiffness of the flexure mechanism which

meets the above requirement.

Based on initial dynamic assessment of the aerostatic guideway and previous works

[79, 108, 120], an aerostatic carriage of approximately 3 kg under normal air bearing

operating conditions should exhibit a first mode frequency above 100 Hz. In the case

of this dedicated test rig, the estimated stiffness (of air films) to mass (of centre mass)

ratio is relatively high, thus the natural frequencies are expect to be much higher than

the aerostatic guideway (approximately in the magnitude of a thousand Hz). To ensure

that the flexure mechanisms contribute minimum dynamic effects on the centre mass,

the estimated natural frequencies for the mass held only by the flexure mechanisms

should be less than 20 Hz. This is a rather crude but safe target. Based on the 20 Hz

natural frequency target, a suitable length, L of the flexure is approximated to be 4

mm. Using the 4 mm flexure length, a brief calculation was carried out to estimate the

natural frequencies of the centre mass held by only the flexure mechanism (without the

air bearings).

Since the three flexure mechanisms constrain the lateral motion of the centre mass,

the expected mode shapes of the mass under the influence of the flexures are the tilt

and vertical translation. Figure 5.17 shows a schematic mass spring system which

illustrates the potential modal behaviour of the 0.18 kg centre mass under the constraint

of three flexure with stiffness, Kflex.

Using the beam deflection equation, the deflection of a fixed-fixed end beam system
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Centre mass
0.18 kg

Tilt mode

Vertical
translation
mode

Kflex

Kflex

Kflex

Figure 5.17: Schematic mass spring model of the centre mass held by three flexure
mechanisms

like the flexure shown in Figure 5.16 can be obtained by the following equation [118].

△ =
FL3

12EI
(5.1)

and therefore the stiffness of each flexure Kflex can be expressed as

K =
12EI

L3
(5.2)

The shim is a grade304 stainless steel with Young’s Modulus, E of 200GPa, and based

on its cross section of 0.02 mm by 12.7 mm, the second moment of inertia, I is com-

puted as 8.5 × 10−6 mm4. Using Equation (5.2), each flexure would have a stiffness

value, Kflex of 319 N/m. The natural frequencies of the vertical translation, ftrans and

tilt, ftilt modes can be calculated by classical undamped vibration equation, as shown

below, respectively.

ftrans =

√
3Kflex

M
/2� and ftilt =

√
3Kflexl2

Im
/2� (5.3)

where l = 37 mm, is the distance between the centre of the mass to the centre of the

flexure mechanism. Im = 1 × 10−4 mm, is the mass moment of inertia for the centre

mass and should not be confused with the above second moment of inertia, I . M is the

mass weighing at 180 grams. Thus, the vertical translational and tilt modal frequencies
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(ftrans and ftilt) are 12 and 18 Hz, which are both less than 20 Hz. This verified the

appropriateness of the flexure dimension chosen, and its stiffness properties (for the

requirement of the dedicated test rig).

5.4.4 Fabrication, Assembly and Other Practical Issues

The critical surface flatness of the joints for the test rig were diamond fly cut to less

than 1 �m accuracy to ensure the determinism of its geometry. These include the back

of the air bearing pad. These components are shown in Figure 5.18. Note that all the

fly cut surfaces are shinier than the rest of the surfaces. This geometrical accuracy is

important, as the two air bearings will be rigidly bolted to the top and bottom plates

(refer to Figure 5.18). Any discrepancy in the flatness and parallelism between the crit-

ical surfaces may introduce an uneven air gap between the air bearing porous surface

and the centre mass surface.

Figure 5.18: Parts and air bearings for the test rig
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Figure 5.19: Flexure mechanisms on three sides of the centre mass

Figure 5.20: Assembled test rig
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Figure 5.21: Measurement software screen-shot of the top plate surface

The assembly of the flexure mechanism is shown in Figure 5.19. Figure 5.20 shows

the complete assembled test rig, with the two opposing 65mm diameter air bearings.

All the critical surfaces were measured using a Zygo GPI Laser Interferometer [121] to

verify the machined surface flatness. All the critical surfaces that are diamond fly cut

are all within the tolerance of 1 �m. Figure 5.21 shows one of the software screen-shots

of the top plate surface, which shows a peak-to-valley measurement of 0.61 �m.

5.4.5 Height Measurement of the Air Gaps

In order to investigate the air bearing behaviour under different air gaps conditions, 5

�m steel shims were placed in between the structure joints to achieve the desire air

gap heights. Ideally, the air gap heights can be worked out by the test rig geometry

and taking into consideration the shim thicknesses. This is not a robust way to obtain

the true height. Despite the fact that the critical joints of the parts were machined to a

precise tolerance, the assembled components may induce geometrical errors of a few

micrometre due to different tightness of the screwed joints and the placement of the

shims.

The test rig design allows direct measurement of the lift caused by the air bearings.

This is done by measuring the vertical displacement of the centre mass when the air
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supply is turned on and off. Two Mahr LVDT probes were placed on the surfaces of

two ledges of the centre mass, as shown in Figure 5.22. The readings of the probes

determine the air lift height caused by the bottom air bearing when the air supply is

turned off then on. The two probes are shifted to other locations within the three ledges

of the centre mass and the displacement measurements are repeated. This step is re-

peated five times to obtain ten probe readings. The average air gap height caused by

the bottom air bearing is computed from these ten readings.

Figure 5.22: Measurement of air gaps using two Mahr LVDT probes

It is important that the mass is held in between the two air bearings by equal upward

and downward forces, so that the investigation and analysis will be simpler. That means

both the top and bottom air gaps should be approximately identical, thus, the top air

gap also has to be measured. To do that, the centre mass was forced upward against

the surface of the top air bearing when (both top and bottom) air supply is switch

off. This was done by putting three soft springs below the mass to create that upward

force, as shown in Figure 5.23. The spring stiffness is much smaller than the air film

stiffness, so that they can be neglected from the measurement. Each soft spring has

stiffness of approximately 125 N/m, and the combined spring force is just sufficient
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3 x Soft springs

Figure 5.23: Three soft springs were used to push the mass upward when air is turn off

to push the 180 g mass upward. The stiffness effects of the springs are negligible to

the measurement of the air gap. The downward displacement caused by turning on the

air supply is measured by the two Mahr LVDT probes in a similar manner as the up-

ward lift. Both the top and bottom average air gaps were approximately 8 �m,± 1 �m.

5.5 Conclusions

In the course of this research the air bearing guideway problem was decomposed into

smaller elements to facilitate in-depth investigations of individual interfaces dynamic

behaviour. The decomposition of the problem can be carried out in a more systematic

approach by adopting the concept of stiffness-chain, as illustrated in Figure 5.7. Stiff-

ness chain approach gives a clear perspective of the separate areas that require more

insight. It also allows the individual areas to be view as building blocks for the overall

motion system, which their static and dynamic model are synthesised to construct the

overall air bearing interfaces dynamic model. The eventual aim is to bring together all

the experimental findings in a unified manner to construct a more realistic analytical

model for the air bearing guideway in FEA.
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Air film dynamic behaviour remains one of the most complex investigation of this

work. The investigation warrants a dedicated test rig to isolate the air film character-

istics from the other interfaces dynamics, such as the structure and bearing mounting

mechanism. It also serves as a more confident experimental platform, by reducing un-

certainties in the air gaps and parallelism between the porous and guideway surfaces.

The consideration, design and fabrication of the dedicated air bearing test rig was dis-

cussed in detail in the last section of this chapter.
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Chapter 6

Dynamic Analysis of Aerostatic

Bearing Interfaces

6.1 IntroductionBreaking down the complex problem in Chapter 5

Dedicated dynamic analysis of air bearings in Chapter 6Synthesised modelling and validation of method using existing aerostatic guideway in Chapter 7 
Figure 6.1: Flow of chapters 5 to 7.

This chapter focuses on the dynamic analysis of solely the aerostatic bearing pads. In

order to isolate potential dynamic effects of the other interfaces of the air bearing setup,

a dedicated air bearing test rig was designed. Insights into the air film dynamics are

90



Chapter 6. Dynamic Analysis of Aerostatic Bearing Interfaces

gained through the dynamic analysis of the dedicated test rig. A thorough analysis and

investigation to identify the air film dynamics parameters is illustrated in this chapter.

The subsequent sections will discuss the work to achieve a better understanding of the

air film dynamics. The discussions include the following:

1. Analytical modelling of air film.

2. FEA results obtained using the analytical model.

3. Experimental modal testing results of the dedicated test rig.

4. Error estimations of the experimental setup.

5. Discussion of the correlation between the analytical and experimental results,

and the error estimates.

6.2 Static Stiffness of Air Film

6.2.1 Stiffness Modelling of Air Film

As mentioned in Chapter 2, Plante et al.’s work [78] was adopted here to model the

pressure distribution within the air film. This is due to its faster and more efficient

computational performance as compared to the conventional method originally pro-

posed by Majumdar [62, 63]. Figure 6.2 illustrates how a porous air bearing problem

can be reduced to a one-dimensional flow and presented as trapezoidal control volume

of differential elements.

The generalised one dimensional flow theory is an equation between the derivative of

the air flow Mach number, M and selected relevant flow effects, i.e. effect of area

change, dA/A, mass flow addition, dṁ/ṁ and friction, 4fc(dr/Dℎ) [122]. The flow

equation is expressed as follows:

d(M2)

M2
=

2dM

M
= C1

dA

A
+ C24fc

dr

Dℎ

+ C3
dṁ

ṁ
(6.1)
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Figure 6.2: 1D generalised air flow from the physical system to the 1D model differ-
ential element (Plante et al [78])

and the coefficients C1, C2 and C3 are given by

C1 =
2
(
1 + −1

2
M2
)

1−M2
, C2 =

M2

2
C1, C3 = (1 + M2)C1 (6.2)

Equation 6.1 provides the basis for an iterative process to obtain the Mach number from

node i to node i+1, as illustrated in Figure 6.2. This leads to an integral relationship to

compute each successive pressures, Pi, with the control volume [122]. The relationship

between the properties can be expressed as:

Pi+1

Pi
=
ṁi+1

ṁi

Ai
Ai+1

Mi

Mi+1

√
i+1

Ti
i (6.3)

The load capacity, W and static stiffness, K of a porous aerostatic bearing air film can

be expressed in terms of its air film pressure, P , and ambient pressure, Pa [49, 62].
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W =

∫
A

(P − Pa)dA (6.4)

where A is the surface area of the porous media that is sliding along the guide surface;

and

K = −dW
dℎ

(6.5)

The overall load capacity curve of a 65mm diameter aerostatic porous bearing was

computed using the above one dimensional flow method. Figure 6.3 shows the com-

puted curve superimposed on the loading capacity curve provided by the manufac-

turer’s datasheet. The computed curve matches closely with the curve provided by the

manufacturer’s datasheet. The stiffness of the air bearing at a specified air gap can be

computed by numerically differentiating this force versus air gap data. The resulting

stiffness versus air gap curve is shown in Figure 6.4
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Figure 6.3: Comparison between computed curve and manufacturer data of a 65mm
diameter aerostatic porous bearing at 5.5bar

93



6.2 Static Stiffness of Air Film

0

20

40

60

80

100

120

140

0 5 10 15 20 25

S
ti

ff
n

e
ss

(N
/ µµ µµ

m
)

Air gap (µµµµm)

Figure 6.4: Stiffness curve of a 65mm diameter aerostatic porous bearing at 5.5bar

6.2.2 Experimental Results for Air Film Stiffness

Despite the fact that load-lift curves of the aerostatic bearings were provided by the

manufacturer, it is still desirable to verify the data with actual measurement, so as to

increase the confidence of this investigation. The stiffness test was done on a same

65mm diameter aerostatic bearing. The air film stiffness test setup is mentioned in

Chapter 5. Figure 5.11 shows the test setup, which comprised of a load cell, two Mahr

LVDT probes, and an adjustable threaded stub to apply the load. To better illustrate

the concept of the test, a schematic of the setup is shown in Figure 6.5.

Two stiffness tests were carried out, one at 5.5 bar supply pressure, and the other at

4.5 bar supply pressure. Figure 6.6 shows the raw experimental data collected for the

above two tests. This load-lift curve is very different from the 1D formulation com-

putation and the manufacturer’s data sheet published before 2008. Revised data sheets

were published by the air bearing manufacturer sometime early 2008. The load-lift

curves in some of their new data sheets are different from the old ones. Figure 6.7

shows the load-lift curves from the data sheet published before and during 2008, the

1D formulation computed curve, and the average curve obtained from the above stiff-
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Mahr probe measurement point Mahr probe measurement pointLoad Cell65 mm diameter porous air bearing
Threaded stub to adjust position, hence loading on the air bearing

Ball in socket spherical joint Granite table
Figure 6.5: Schematic diagram of the air film stiffness test setup
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ness test results, all at 5.5 bar supply pressure. It is observed that the measured load-lift

capacity of the air bearing is generally lower than the rest of the curves obtained ana-

lytically and from the manufacturer’s datasheet.

020040060080010001200140016001800

0 5 10 15 20 25
Force (N)

Air gap (µµµµm)

1D FormulationMeasuredManufacturer's data before 2008Manufacturer's data after 2008

Figure 6.7: Different Load-lift Curves of 65mm diameter air bearing at 5.5 bar supply
pressure

6.3 Dynamic Analysis of the Dedicated Air Bearing Test Rig

6.3.1 Dynamic Modelling of Air Film Test Rig Using FEA

A FE model of the air film is constructed based on the air film stiffness computed

using the 1D flow formulation. It is more realistic to describe the variation of stiffness

due to the pressure profile across the area of the air film. The air film is discretised

into 120 non-linear spring elements, 12 slices of 10 segments, as illustrated in Figure

6.8. Each spring element represents a segment of air film. The pressure, P ℎ
i within

each segment is computed numerically based on Equation 6.3 of 1D flow formulation.

The superscript ℎ of the pressure, P , denotes the height of the air gap which is used

in the pressure computation. Thus, the non-linear springs of segment 1 to 10 can be
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represented by load versus displacement relationships expressed in the form of the

stiffness Equation 6.5, where the loading capacity, W ℎ at a specific air gap height, ℎ is

expressed as:

W ℎ =

∫
A

(P ℎ
i − Pa)dA (6.6)

Figure 6.9 shows the 10 load-lift curves computed using the method described above.

Each load-lift curve corresponds to each segment of air film. In the FE model, each

segment of the air film is modelled as a non-linear spring element with load versus

displacement curves of seg-1 to seg-10, as shown in Figure 6.9. Essentially, the air

film is made up of 120 non-linear spring elements with 10 different stiffness profiles

according to their radial positions in the air gap. The non-linear springs are represented

as element COMBIN39 in ANSYS. The element description is in Appendix C.1 [123].

Segment 1 with P
h

1

Segment i with P
i

h

Segment 10 with P
10

h

Figure 6.8: Air gap model using 10 different non-linear springs based on their radial
positions

The 120 non-linear spring elements connect the structural elements of the top and

bottom air bearings to the centre mass top and bottom surfaces, respectively. The

modal parameters of the combined FE model for the structural assembly and the air

bearings are computed using the FEA modal analysis solver. The FEA modal results is

shown in the next section as a comparison against the experimental modal test results.

The next section describes the impact modal testing of the dedicated air bearing test

rig and presents the experimental results.
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Figure 6.9: Load-lift curves of 10 segments of the air film slice

6.3.2 Experimental Modal Testing Results of the Dedicated Test Rig

Three single-axial accelerometers were mounted on the three corners of the centre

mass, and four tri-axial accelerometers on the top plate (then bottom plate) of the test

rig, as shown in Figure 6.10(a). As shown in Figure 6.10(b), three surfaces were cre-

ated on the Modal Testing software geometry: one triangular surface representing the

centre mass, and two square ones representing the top and bottom plates. A impact

point was used as the reference point for the modal testing, impact force was applied

in the -Z direction on the tope plate, and in X direction on the side of the top plate (de-

noted by the red arrow in Figure 6.10(a)). The average FRFs were obtained with four

impact forces applied to each impact directions. The average impact force measured

was approximately 350 N, ± 70 N.

Two major modal analyses are carried out on the dedicated air bearing test rig: 1) with

normal operating air supply and air gaps of most aerostatic guideway system; 2) with a

‘less stiff’ air film so as to separate the air film dynamics further away from the struc-

98



Chapter 6. Dynamic Analysis of Aerostatic Bearing Interfaces

(a) Actual modal test setup

(b) Modal test software geometry

Figure 6.10: Sensors setup and impact points for the modal testing

tural dynamics. The former used normal operating parameters, which comprised 11

�m air gap and 5.5 bar air supply. The latter reduces the stiffness of the air film by
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setting 20 �m air gap and 4.5 bar air supply. FEA computation as described in Section

6.3.1 was also carried out using the above two sets of operating parameters. The com-

parison of the analytical and experimental results of these two main modal analysis are

presented in Tables 6.1 and 6.2.

It can be observed from the results in Table 6.1 and 6.2 that the structural dynamics

of the test rig exhibited in Mode 3 and 4 have close agreement between the analytical

modelling results and the experimental modal testing results. However, the structural

dynamics of the test rig are not the key interest in this investigation. The main concern

here is the FE model accuracy of the air film which is displayed in Mode 1 and 2 of

the modal results. Mode 1 exhibits a tilting mode shape of the centre mass under the

influence of the two opposing air bearings, and Mode 2 shows a vertical oscillation of

the centre mass. As shown in Table 6.1, under normal air bearing operating parameters

of 11 �m air gaps and 5.5 bar air supply, the FEA modal results for Mode 1 and 2

do not match well with the experimental ones (with Mode 1 having 56 % agreement

and Mode 2, 68 % agreement). On the other hand, under the ‘less stiff’ operating

parameters of 20 �m air gaps and 4.5 bar air supply, the percentage agreements of

Mode 1 and 2 achieve better results. This could be due to the different in sensitivity of

the model to error under varying operating parameters. The subsequent sections will

investigate the potential geometrical errors and analytical uncertainties involve in the

test rig as well as this analysis.
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Mode

No.

FEA mode shape & fre-

quency

Experimental mode

shape & frequency

Percentage

agreement

1

Tilting of centre mass

(air film dynamics) at

2257 Hz

Tilting of centre mass

(air film dynamics) at

1260 Hz

56 %

2

Vertical oscillation of

centre mass (air film

dynamics) at 3218 Hz

Vertical oscillation of

centre mass (air film

dynamics) at 2200 Hz

68 %

3

Structural assembly

deformation at 2483 Hz

Structural assembly

deformation at 2269 Hz

91 %

4

Structural assembly

deformation at 2811 Hz

Structural assembly

deformation) at 2549 Hz

91 %

Table 6.1: Comparison of analytical and experimental modal results for 11 �m air gap

and 5.5 bar air supply
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Mode

No.

FEA mode shape & fre-

quency

Experimental mode

shape & frequency

Percentage

agreement

1

Tilting of centre mass

(air film dynamics) at

1067 Hz

Tilting of centre mass

(air film dynamics) at

806 Hz

76 %

2

Vertical oscillation of

centre mass (air film

dynamics) at 1577 Hz

Vertical oscillation of

centre mass (air film

dynamics) at 1514 Hz

96 %

3

Structural assembly

deformation at 2483 Hz

Structural assembly

deformation at 2262 Hz

91 %

4

Structural assembly

deformation at 2782 Hz

Structural assembly

deformation) at 2533 Hz

91 %

Table 6.2: Comparison of analytical and experimental modal results for 20 �m air gap

and 4.5 bar air supply, i.e. lower air film stiffness
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6.3.3 Error Estimates of the Test Rig Dynamic Analysis

6.3.3.1 Potential Errors in Air Gap

One of the main purposes of the dedicated test rig was to increase the confidence of

the air gap height. Section 5.4.5 discussed a method to measure the air gap height.

It is therefore realistic to have knowledge of the potential errors associated with the

accuracy of the air gaps. The following are four possible error sources that may con-

tribute to the inaccuracy of the air gaps within the assembled test rig. The subsequent

paragraphs discuss how these errors are determined:

1. Flatness of the top and bottom ‘fly-cut’ surfaces of the centre mass.

2. Flatness of the two air bearing porous surfaces (top and bottom).

3. Parallelism between the top and bottom ‘fly-cut’ surfaces of the centre mass.

4. Parallelism between the two air bearing porous surfaces (top and bottom).

Flatness of the critical surfaces (errors 1 & 2) The flatness measurement of the

critical surfaces has been discussed in Section 5.4.4. Using a Zygo GPI Laser Inter-

ferometer, all the critical surfaces as mentioned in the error source 1 and 2, i.e. the

two porous surfaces of the air bearings and two ‘fly-cut’ surfaces of the centre mass,

possess flatness of less than or approximately 1 �m peak-to-valley. Screen snapshots

of the interferometer measurement software for each surface are included in Appendix

D. Table 6.3 shows the results obtained using the interferometer flatness measurement.

Surface Flatness (peak-to-valley)
Top surface of centre mass 0.939 �m
Bottom surface of centre mass 0.815 �m
Porous surface of top air bearing 1.269 �m
Porous surface of bottom air bearing 0.888 �m

Table 6.3: Flatness of critical surfaces

Parallelism between the ‘fly-cut’ surfaces (error 3) Knowledge of the parallelism

between the two critical surfaces of the centre mass is essential to determine the extent
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of non-uniformity in the air gap height over the area of the air film or porous surface.

Parallelism measures the tolerance of a plane parallel to a reference plane, as illustrated

in Figure 6.11. The parallelism of the centre mass critical surfaces was measured using

a coordinate measuring machine (CMM). The CMM1 has a resolution of 0.05 �m with

maximum permissible error of 0.95 �m. A granite block with surface flatness of less

than a micrometre was used as the reference plane. Using the CMM, 60 random points

are measured on the granite surface over an area of approximately 80 mm by 80 mm.

A plane is constructed using the 60 coordinate points. The centre mass was then placed

on the above measured area of the granite surface, with the bottom critical surface in

contact with the granite. 50 coordinate points were measured on top critical surface

of the mass, and a plane is constructed. The CMM software computed the parallelism

deviation between the reference plane and top surface plane. The above described

measurement was repeated 5 times to obtain an average parallelism error of 2.8 �m

between the two critical surfaces of the centre mass. It is important to note that this

parallelism error between the surfaces includes the flatness errors of each surface as

presented in Table 6.3, as illustrated schematically in Figure 6.12.Parallelism error/tolerance with respect to reference plane
Reference plane

50 points measured60 points measured

Figure 6.11: Parallelism measurement between the two fly cut surfaces

1The CMM is a Werth Fixed Bridge VideoCheckⓇ IP - http://www.werthinc.com
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Parallelism error to reference planeReference plane
Figure 6.12: The flatness error contributes to the parallelism error.

Parallelism between two air bearing surfaces (error 4) It is not possible to mea-

sure the parallelism of the two air bearing surfaces directly using CMM, as done for

the centre mass (for error 3). A valid measurement of this parallelism error can only be

obtained with the test rig assembled. This poses practical difficulties in measurement.

The dedicated air bearing test rig when fully assembled comprises of the centre mass

suspended by the three flexure mechanisms as shown in Figure 5.20. Using the shims

(as discussed in Section 5.4.5), the top and bottom air gaps were set to approximately

11 �m each. The proposed method here is to use the deviation of the air gap measure-

ment as an indication of the parallelism error, as illustrated in Figure 6.13.

Deviation/parallelism error
Air Bearing
Air Bearing

Centre MassMeasurement probe
Measurement probe
Air suction
Air suction

Figure 6.13: Estimating the parallelism error from deviation of air gap measurement

To measure the pre-set gaps between the air bearings and the centre mass, the cen-
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tre mass was forced to displace across the two air bearing porous surfaces. This was

done by connecting one of the air supply inlet of the bearings to a vacuum pump.

The top and bottom bearings were connect to the vacuum pump via a 3 port, 2 way

mechanically-controlled pneumatic valve. Therefore only bearing was connected to

the vacuum pump at any one time. For instance, if the 2 way valve links the pump

to the top air bearing and when the vacuum pump was switched on, the centre mass

would be ‘pulled’ upward by the vacuum suction and in contact with the top air bear-

ing porous surface. The two LVDT measurement probes (1318 Mahr-LVDT [117])

were placed on the ledges of the centre mass in the similar way as described in Section

5.4.5. The control valve was then toggled to switch the vacuum suction to the bottom

air bearing and cut off the connection to the top bearing. This forced the centre mass to

be displaced downward and in contact with the bottom porous surface. This displace-

ment of the centre mass caused by the switching of the vacuum connection to the air

bearings was measured by the LVDT probes. Similar to the air gap measurement dis-

cussed in Section 5.4.5, the displacement measurements were repeated 20 times. This

was done with the probes placed at different locations on the ledges. From the 20 dis-

placement readings, the maximum deviation of 4.3 �m was obtained. This was taken

as the estimated maximum parallelism error between the two air bearing surfaces. This

measurement inevitably encompasses both the parallelism errors of the centre mass as

well as the air bearing surfaces.

The various flatness and parallelism errors that directly influence the accuracy of the

air gap heights were critically examined. From the above error measurements, the

maximum possible error in the (top and bottom) air gap heights were evaluated. Table

6.4 summarises the various potential errors and the maximum possible error of the air

gap height. Note that when the air supply for both the top and bottom air bearings were

turned on, the centre mass is assumed to maintain at an equilibrium position. The total

maximum error was assumed to be distributed equally between the top and bottom air

gaps, i.e. the maximum possible error in each air gap is half of the total maximum

possible error.
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Error source Potential
error

Flatness of top surface of centre mass 0.9 �m
Flatness of bottom surface of centre mass 0.8 �m
Flatness of porous surface of top air bearing 1.3 �m
Flatness of porous surface of bottom air bearing 0.9 �m
Parallelism error between two air bearing surfaces 4.3 �m
Total maximum possible error 8.2 �m
Maximum possible error in each air gap 4.1 �m

Table 6.4: Maximum possible air gap error

6.3.3.2 Potential Errors in Analytical Modal Frequencies

The above air gap errors provide an indication of the discrepancy of the modelled air

film, which were initially assumed to be parallel and uniform through the entire air

film area. Based on the air gap errors estimation, the possible error in the analytical

modal frequencies can be determined. The modal parameters of this air bearing sys-

tem were computed numerically using FEA. The stiffness of the air film is known to be

non-linear, hence it is not easy to compute a unique error value of modal frequency that

corresponds directly to the air gap errors shown in Table 6.4. The potential errors in the

analytical modal frequencies associated with the above air gap errors can be shown in

the form of potential error spans, i.e. with an upper and lower bound frequency value.

To appreciate the potential error in the analytical dynamic modelling of the test rig,

the dynamic analysis carried out using 11 �m air gaps (discussed in Section 6.3.2

and shown in Table 6.1) was examined. As presented in Section 5.4.5, the initial

measurement condition was by forcing the surface of the centre mass in contact with

the air bearing porous surface, then measured the centre mass displacement created by

the air pressure. Thus, considering that the LVDT measurements were accurate, it was

unlikely that the air gap would be smaller than the measured gap (of 11 �m). Therefore,

the lower bound of the frequency error span is computed based on an estimate of 15 �m

air gaps, i.e. 11 �m measured gap l+ 4.105 �m of possible error; and the lower bound

is simply the original analytical results shown in Table 6.1, which is based on zero

air gap error. Thus, the FE model is reconstructed based on the maximum potential
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air gaps of 15 �m, and the upper bound modal frequencies was computed using FEA.

Table 6.5 shows the lower and upper bound of the modal frequencies for Modes 1 and

2, caused by the potential air gap errors. Modes 3 and 4, which are mainly dominated

by the structural dynamics are not of interest in the investigation here.

Mode
No.

Modal Frequency
(Lower bound)

Modal Frequency
(Upper bound)

Potential
error

1 1626 Hz 2257 Hz 631 Hz
2 2357 Hz 3218 Hz 861 Hz

Table 6.5: Potential error range of the modal frequencies based on measured 11 �m air
gaps

6.3.3.3 Potential Errors in Experimental Modal Frequencies

Several areas in a experimental modal testing may lower the quality of the measured

data, and are worth paying attention to during a modal test. These areas include [40]:

∙ Signal quality

∙ Signal fidelity

∙ Measurement repeatability

∙ Measurement reliability

∙ Measured data consistency

These quality issues of measured data have been discussed extensively in (Chapter 3

of) [40], hence will not be reiterated here. However, some of the issues that are more

relevant to this work will be assessed and discussed.

All the accelerometers used in this work have been checked using an accelerometer

calibrator1. The calibrator embodies an electromagnetic exciter driven by a crystal os-

cillator at a frequency of 159.15 Hz. Four triaxial and three uniaxial accelerometers

were checked. The acquisition system records the measured acceleration time data

1Brüel and Kjær Type 4294 accelerometer calibrator [124]
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obtained using the accelerometers, and modal analysis software converts the time data

into frequency domain data using FFT. These accelerometers were attached to the os-

cillating head of the calibrator, and the frequency of the oscillation were measured.

The error between the measured frequencies of the above sensors and the calibrator’s

frequency of 159.15Hz were extremely small, with a maximum error of ±0.03 Hz

among the seven accelerometers. The signal and sensory data quality is certainly sat-

isfactory with negligible errors.

One of the problems pertaining to impact excitation test is the difficulties of main-

taining the exact same impact force, position and orientation normal to the test rig

surface. Another excitation problem is the double impacts or “hammer bounce” com-

monly happened in impact testing. This produces varying input excitation, resulting

in varying FRFs for every measurement. Hence, measurement data consistency and

repeatability were also checked during the modal testing. To reduce statistical vari-

ance due to varying excitation characteristics, averaging is performed over a set of 5

impact measurements. The modal frequencies percentage errors between two identi-

cal measurements (i.e. using the same excitation position/direction and accelerometer

reading, but measured at different time) are usually less than 1 %. The measurement

data was rejected if a considerable error was observed between two identical measure-

ments, usually resulting from poor impact method.

Another potential measurement reliability error source commonly encountered is the

transducer mass loading effect. This effect is more significant with lighter test rigs,

where the mass difference between the transducers and test system is small. This is

worsened when the transducers are placed at or near the anti-nodal location. There are

no established guidelines on mass ratio between the transducers and test system per-

taining to the mass loading effects in modal testing. For the modal test carried out in

this work, it is worthwhile to evaluate the mass loading effects on the test rig. To appre-

ciate this effect, the same analytical modal FEA of the test rig (as shown in Table 6.1)

was repeated with the mass of the accelerometers taken into account. The revised FEA

modal analysis produced an approximation of the potential errors due to accelerom-

eters mass loading effect. Table 6.6 shows the modal frequencies comparison of the
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FEA between the original results (without the accelerometer masses) and the results

which included the accelerometer masses. It can be observed from Table 6.6 that the

effect of the accelerometers mass is more apparent in mode 1 and 2, where the centre

mass is the key component of these two mode shapes. Each uniaxial accelerometer has

a mass of 5.5 grams, and each triaxial accelerometer weights 11.2 g. The mass ratio of

the three uniaxial accelerometers to centre mass was approximately 7.7 % (16.5 g/214

g), and the ratio of the four triaxial accelerometers to the assembly structure was about

1.8 % (44.8 g/2539 g).

Mode No. Modal frequencies for
FEA w/o accelerometers

Modal frequencies for
FEA with accelerometers

Potential
error

1 2257 Hz 2088 Hz 169 Hz
2 3218 Hz 3100 Hz 118 Hz
3 2483 Hz 2447 Hz 36 Hz
4 2811 Hz 2766 Hz 45 Hz

Table 6.6: Comparison of modal FEA results between analytical model with and with-
out taking accelerometer masses into account

6.3.4 Corrected Analytical Model of Test Rig

Section 6.3.3 provides a thorough review of the various potential errors that contribute

to the discrepancies between the analytical and experimental modal frequencies. The

analytical dynamic model discussed in Section 6.3.1 assumed an ideal test rig. The

above error analysis of the test rig has ascertained that the ‘ideal test rig’ assumption

is inaccurate. In this section, the FE model of the dedicated test rig is reconstructed,

which takes into account all the possible errors mentioned in the previous sections.

It is impractical to consider the worst case error of the air gap to be 4 �m (as shown

in the maximum possible error in Table 6.4). A more appropriate practice is to use the

Root-Mean-Square (RMS) of the air gap error. The RMS of the air gap error cannot

be computed using the flatness and parallelism errors shown in Table 6.4, as they do

not represent the same statistical data. A more suitable method is to assume evenly
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distributed errors within the air gaps and estimate the RMS based on the maximum

possible error, i.e. Errormax/
√

2, which results in an RMS error of 3 �m. The ac-

celerometer masses were also placed at the respective locations in the same way as

described in Section 6.3.3.3.

The two modal analyses in Section 6.3.2 are reevaluated using the corrected FE model

of the test rig. The upper and lower bound of the potential modal frequencies were

computed. In this reevaluation, only the relevant modes (Mode 1 and 2) are considered.

Table 6.7 shows the comparison between the analytical and experimental modal results

using normal air bearing operating parameters of 11 �m air gap and 5.5 bar air supply.

Table 6.8 shows a similar comparison but with the ‘less stiff’ air film using 20 �m air

gap and 4.5 bar air supply. In both evaluations, the analytical results are presented in

a range of possible modal frequencies due to the potential RMS error in the air gaps

as discussed above (i.e. 3 �m RMS). Using the lower and upper bound of the range

of possible analytical modal frequencies, the uncertainty1 of the analytical results can

be evaluated. Using a Type “B” uncertainty evaluation (which is a/
√

3, where a is the

half-width of error) [125], the standard uncertainties for each of the analytical modes

are presented in the tables as well.

Mode
No.

Range of analytical
modal frequency

Standard
uncertainty

Experimental modal
frequency

Percentage
agreement

1 1628 to 2082 Hz 131 Hz 1260 Hz 61 to 78 %
2 2457 to 3096 Hz 184 Hz 2200 Hz 71 to 90 %

Table 6.7: Comparison of analytical and experimental modal frequencies using the
normal air bearing operating parameters of 11 �m and 5.5 bar air supply

6.3.5 non-linearity of the Air Film Model

The stiffness of the air film varies with air gap, as can be seen in the plot of Figure

6.4. Despite that the air film is modelled as a set of non-linear spring elements, the

1The definition of uncertainty by UK National Physical Laboratory (NPL), is a quantification of the
doubt about the measurement result. It is a parameter, associated with the result of a measurement, that
characterises the dispersion of values that could reasonably be attributed to the measurand [125].
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Mode
No.

Range of analytical
modal frequency

Standard
uncertainty

Experimental modal
frequency

Percentage
agreement

1 790 to 985 Hz 56 Hz 806 Hz 82 to 98 %
2 1227 to 1522 Hz 85 Hz 1514 Hz 77 to 99 %

Table 6.8: Comparison of analytical and experimental modal frequencies using the
‘less stiff’ air film operating parameters of 20 �m and 4.5 bar air supply

FEA modal analysis solver does not fully utilise the non-linearity. During the compu-

tation of the modal parameters, the FEA solver picks the initial displacement values

and computes a constant stiffness for each non-linear spring, thus resulting in a set of

modal parameters which belongs to a linearised system [123]. The fundamental modal

analysis (as presented in Chapter 4) assumes system linearity. This assumption has a

few implications [40]:

1. Increasing the input force results in a proportionally increased response in a

linear fashion,

2. If two or more excitation patterns are applied simultaneously, the response pro-

duced will be equal to the sum of the responses caused by each excitation when

applied individually, and

3. The natural frequency of the system is independent of the input force.

Modal analysis for non-linear systems remain a challenging research area. Some

promising non-linear modal analysis methods have been proposed [41, 43, 45, 126].

However, this subject is beyond the focus of this research project, thus will not be the

elaborated in detail. These proposed methods are yet to be well-established, and thus

the main reason for its exclusion from FEA software solution.

It is important to recognise that the modal parameters results of the above linearised

system may differ from the actual modal behaviour of the non-linear system. To eval-

uate the non-linearity effect or variation of the resulting analytical modal frequencies,

a mathematical simulation of a simplified system was undertaken. The simplified sys-

tem consists of a centre mass suspended in between two springs, as illustrated in Figure

6.14(a). This simplified model mimics one DOF or Mode 2 of the dedicated test rig.
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The simulation uses the air bearing condition and stiffness parameters similar to that

of the normal air bearing operating parameters of 11 �m and 5.5 bar air supply (see

Section 6.3.2). Figure 6.14(b) shows the control block diagram of the simulation. Four

sets of transient time data were computed in this simulation, with an impulse force

input of 200 N. In the first set, both springs had a constant stiffness corresponding

to an 11 �m air gap. The rest of the simulations use the non-linear spring stiffness

computed using the 1D flow formulation (in Section 6.2.1) and an initial displacement

condition of 11 �m. For the non-linear stiffness simulation, three transient time data

were computed with three input forces of increasing magnitude, 200 N, 400 N and 600

N. The centre mass in the simulation has a weight of 0.18 kg. The displacement time

data output, x(t) was differentiated twice to obtain the response acceleration, a(t), so

as to mimic the test rig dynamic analysis input/output condition. Both the force and

response time domain data were transformed into frequency domain, Fei!t and Aei!t

respectively, using a Fast Fourier Transform (FFT) routine written in MATLAB. Conse-

quently, the accelerance FRF, A(!) of the above simulated system is obtained, which

takes the form of

A(!) =
A

F
= −!2�(!) (6.7)

Figure 6.15 shows the FRFs of the four frequency response accelerances, i.e. the linear

stiffness system and the three non-linear stiffness system with increasing input force.

It is observed that the natural frequencies of the non-linear system vary with increasing

input forces. This further reveals the non-linearity behaviour of the three systems. With

smaller excitation force, the non-linear system exhibits modal properties that are closer

to a linear system. This can be appreciated by the notion that smaller excitation force

induces smaller range of displacement oscillation, thus lower degree of non-linearity

within that small range. The experimental modal tests discussed in Section 6.3.2 were

subjected to excitation forces of less than 400 N. Therefore, it is worthy to note that

the analytical modal frequencies of the non-linear air film model obtained by the FEA

possess potential error of approximately 200 Hz or standard uncertainty of 57 Hz, if the

maximum input force is assumed to be 400 N. Hence, the analytical uncertainty caused

by the non-linearity is considered to be insignificant as compared to the geometrical

error.
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Figure 6.14: Computing transient time data of an opposing springs and centre mass
system
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Figure 6.15: FRFs obtained from the linear spring system comparing against the non-
linear ones with varying input force

6.4 Discussion on Modal Analysis of the Dedicated Test Rig

6.4.1 Dynamics of the Test Rig

From the dynamic analysis carried out in Section 6.3.1 and 6.3.2, it is clear that the

dynamics of the structure can be easily predicted using FEA. The structural dynamics

are also decoupled from the air film dynamics, as the modal behaviours of the structure

(exhibited in mode 3 and 4) are not affected by the changes of air bearing operating

parameters, as shown in Table 6.1 and 6.2. Hence in this discussion the focus will be

on mode 1 and 2 which is primarily influenced by the air film dynamics.

The dynamic modelling carried out in Section 6.3.1 assumes the test rig to be ‘per-

fect’. Although employing the same dynamic modelling method, the results of the two

analyses (in Table 6.1: normal air bearing operating parameters, and 6.2: ‘less stiff air

film’ setup) shows significant inconsistency. The modal analysis using the ‘less stiff
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air film’ setup produced a much better correlation between the analytical and experi-

mental results. The FEA using the computed non-linear springs is able to predict the

natural frequencies corresponding to mode 1 of centre mass tilting and mode 2 of ver-

tical motion to an accuracy of 76% and 96%, respectively. However, under normal or

higher stiffness air film condition, the prediction of centre mass behaviour is not satis-

factory. It is observed that the analytical prediction for the tilting mode is less accurate

than the vertical oscillation mode (for both analyses), this may due to the ‘squeeze-

out’ effect of the air at the edge of the bearing thus weakening the stiffness of the air

film at the edge. The achievable prediction accuracy for the tilting mode is dependent

on and is worsened by the parallelism error between the air bearing porous surfaces

and the centre mass surfaces. This parallelism issue of the air bearing and its tilting

modal behaviour will be reiterated in the overall discussion of next chapter, and further

understanding is realised.

6.4.2 Errors and Uncertainties of the Analysis

A thorough error analysis was carried out and discussed in Section 6.3.3. Based on

the investigation of the various errors and uncertainties, a corrected analytical model

was reevaluated in Section 6.3.4. The various errors considered in Section 6.3.3 should

not be neglected in the analytical modelling of the test rig. From Table 6.7 and 6.7,

it can be seen that the air gap height errors contribute to an approximately 16 to 22%

of analysis uncertainties (estimated from the span of percentage agreement column).

It is extremely difficult to maintain high precision in the air gap height, especially in

an assembled test rig. The dismantling and assembly of the test rig create undesirable

parallelism errors that are not repeatable. Although parallelism errors can be reduced

with painstaking adjustment of the test rig using steel shim, the flatness of the centre

mass critical surfaces and the air bearing porous surfaces are inevitable. The accuracy

of analytical model becomes more sensitive to the air gap errors as the air film stiffness

increase, i.e. as the operating air gap becomes smaller. This is worsened by the fact

that the air film stiffness is non-linear.
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Chapter 7

Dynamic Analysis of an Aerostatic

Guideway System

7.1 IntroductionBreaking down the complex problem in Chapter 5

Dedicated dynamic analysis of air bearings in Chapter 6Synthesised modelling and validation of method using existing aerostatic guideway in Chapter 7 
Figure 7.1: Flow of chapters 5 to 7.

This chapter discusses the comprehensive approach in identifying and modelling the

key interfaces which impact the dynamic behaviour of the aerostatic guideway. In

Section 5.2.1, a single axis aerostatic guideway, which was used as an experimental
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platform for the bearing interface analysis has been described. The analysis of the

guideway system was broken down into smaller isolated and focused investigations,

which also led to a design and analysis of a dedicated air bearing test rig. This Chapter

demonstrates the overall dynamic modelling methodology as discussed in Chapter 5

and 6, using this existing aerostatic guideway as a validating case study.

Using the insights obtained from the investigation of the air bearing, as discussed in

previous chapter, some of the key potential error and/or uncertainties will be high-

lighted and quantified. The chapter also presents the FE modelling scheme used to

represent the guideway air bearing interfaces. The accuracy of the guideway system

FE model is evaluated with modal test results obtained from the actual aerostatic guide-

way. The chapter concludes with a discussion of the correlation between the analytical

and experimental results.

7.2 Key Potential Errors in Modelling

Some aspects of errors and uncertainties in the application of aerostatic bearing pads

have been discussed in Chapters 5 and 6, hence the detail may not be reiterated here.

Key potential errors which are directly relevant to the aerostatic guideway will be high-

lighted and quantified in this section.

7.2.1 Errors and Assumptions in the Mounting Mechanism

Besides the air film compliance, there are two other interfaces within the air bearing

setup that may ‘weaken’ the overall stiffness of the air bearing. These are the threaded

stud which is used to adjusted the air bearing gap and the ball-in-socket spherical joint,

which maintains parallelism between the porous surface and the guideway surface, as

illustrated in Figure 5.8.

7.2.1.1 Stiffness of the Threaded Joint

The threaded stub was machined out of a 15mm diameter steel stub and threaded with

a small pitch of 0.5 mm for precise setting of the air gap. The backlash in the threaded
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interface generates a complex stiffness behaviour that is difficult to model and incor-

porate into the overall air bearing stiffness FE model. The backlash is reduced by

adding locking nuts at both ends of the threaded stud, to preload them against each

other [2]. Figure 7.2 shows the air bearing manufacturer’s recommended mounting

method, by adding the locking nuts at both ends of the adjusting stud, which provides

a preloading effect on the threads. However, these locking nuts are only possible and

applicable to certain types of air bearing layout and setup. The existing air bearing

setup in the carriage as seen in Figure 5.8 do not allow the use of these locking nuts.

This is mainly due to the ‘opposing pads’ design of the air bearing carriage (as shown

in Figure 5.6 and 5.5), and also to permit easy adjustment of each bearing pad’s air gap.Lock nutsRetainer clip Spherical seat gimbals, allowing bearing face to become parallel with the guide
Moving stage

Figure 7.2: Aerostatic Bearing Mounting Mechanism (Source:
http://www.newwayairbearings.com)

Depending on the machining accuracy of the tapped hole and the threaded stud, a

lightly loaded threaded stud will probably have very small contact area within the

thread, thus very low stiffness. As the loading increases, the number of contact area

increases, and finally the full screw thread is completely in contact after a certain load-

ing threshold. Thus before the threaded joint is completely in contact, the stiffness

characteristics of the joint is extremely non-linear and practically challenging to model.

Apparently, an ideal threaded joint is one that is well preloaded with all the threaded ar-

eas completely in contact. This type of ‘perfect’ threaded joint theoretically possesses

superior stiffness and exhibits dynamic behaviour, which is near structural or bolted
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joints dynamics. The stiffness value Kt of such ideal threaded joint can be estimated

using a modified bolted joint stiffness equation [28, 29, 127].

Kt =
AtE

′

p
× np (7.1)

where At is the contacting threaded area, p is the pitch of the thread, and np is the

number of pitch subjected to the load or in contact with the tapped hole. E ′ is the

elastic modulus of two contacting/interacting elements, commonly known as effective

Young’s Modulus in contact mechanics. In this context, the two elements are the bolt

and the tapped part (or nut). The effective Young’s Modulus, E ′, for the two contacting

elements with different materials is defined as:

1

E ′
=

1− �12

E1

+
1− �22

E2

(7.2)

where E1 and E2 are the Young’s Modulus, and �1 and �2 are the Poisson ratio for the

two contacting elements.

Using the above calculation for bolted joint stiffness, a perfect threaded joint based on

the same geometry of the above 15mm threaded stud used in the air bearing mounting

mechanism here, produces a stiffness in the magnitude of tens of KN/�m. A 25mm air

bearing pad has a stiffness ranging from a few N/�m to below 30 N/�m depending on

the air gap height, (which will be discussed later in this chapter). Ideally, the interface

behaviour of a preloaded threaded joint will have minimum influence on the dynamic

characteristics which is of interest here. At this stage, the model shall assume that

the threaded joint is well preloaded by the forces of the opposing air bearings.

The effect of this assumption will be deliberated and discussed during the validation

of the model with the modal test results.

7.2.1.2 Stiffness Modelling of the Spherical Joint

In order to maintain parallelism between the air bearing porous face and the guide-

way surface, a ball-in-socket spherical joint was employed in this aerostatic bearing

mounting mechanisms. Theoretically, a spherical object when in contact with a sur-
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face under no load, forms a point contact. A very small area of contact is created

under a finite loading between the two contacting surfaces, where finite deformation

of the two contacting objects occur. The stiffness of this contact interface can be mod-

elled using classical Hertzian contact theory. Hertzian contact theory [77, 128] is often

used to describe such ‘spherical object to surface’ contact type of mechanical interface.

The Hertzian contacts formulae are derived on the basis of 1) elastic deformation, 2)

that the stress distribution below the surface is not affected by finite dimensions of the

contacting bodies, and 3) the surfaces are assumed to be frictionless such that the sur-

faces are only subjected to only a normal force [77, 128].

r r

R1

R2

F

Figure 7.3: Typical Hertzian contact of a sphere on a curve surface

Consider a contact (as shown schematically in Figure 7.3) between a sphere with radius

R1 and a surface with curvature radius R2, subjected to a loading force F . The two

surfaces form a concentrated contact area with a radius r which can be computed by

the following formula [77, 128].

r =

(
3FR′

4E ′

)1/3

(7.3)

where E ′ is the effective Young Modulus of the two contacting elements and R′ the

effective radius related to R1 and R2, defined by:

1

R′
= 2

R1 −R2

R1 ×R2

(7.4)
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where R1 and R2 are the radius of curvature as shown in Figure 7.3. A more general

form of the Hertzian contact formulation can be found in [128].

Based on the above equations, the relation between the force F and the contact area

indentation �, i.e. the stiffness Kmm of the interface can be derived

F =
4

3
E ′
√
R′�3, Kmm =

dF

d�
= 2E ′

√
R′� (7.5)

Using the above equations, the load versus displacement curve of the contact interface

can be computed analytically. The computed curve is plotted in Figure 7.4(b) together

with the experimental data. The next subsection presents the work to validate the

computed curve against actual measured stiffness of the spherical joint.

7.2.1.3 Experimental Stiffness Results of the Spherical Joint

The stiffness test was carried out using an Instron (4505) Mechanical Testing Ma-

chine, as described in Section 5.3.2 and shown in Figure 5.10. In order to isolate all

other potential interfaces within the mounting mechanism and achieve a more practical

evaluation, the following two experimental setups were employed.

Test Setup 1: Solely ball and socket interface Two circular air bearings were

placed back to back, and a steel ball was ‘sandwiched’ in between two sockets, as

shown in Figure 7.4(a). Slots were milled away from the aluminium case of the two

air bearings to provide access for the Mahr LVDT probes. One probe was placed in

contact with the bottom air bearing and the other in contact with the top air bearing.

The setup was subjected with a increasing compressive force. The difference obtained

from the two LVDT probes readings was the displacement of the two ball-socket inter-

faces. This measured displacement was solely contributed to by the compliance of the

two assumedly identical top and bottom ball-socket (spherical) joint interfaces. The

increasing compressive force with the corresponding displacement was recorded. If

based on this assumption that both top and bottom interfaces are having identical stiff-

ness characteristics, then it is equivalent to a system with two equal stiffness springs in
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series. Hence, a single spherical joint interface (either top or bottom) will have double

the stiffness of the above measured load and displacement relationship. Figure 7.4(b)

shows the comparison of three load versus displacement curves for test Setup 1. The

red curve shows the actual measured load and displacement relationship of the above

‘sandwiched ball’ experiment, i.e. effect of two spherical joint in series. Thus, for a

single spherical joint, the stiffness is doubled. The blue curve shows a modified curve

from the original measured data with the load increased to twice the original value.

This should be a good approximation of how a single spherical joint will behave under

static loading. Finally, the green curve is a computed curved based on the Hertzian

formulation presented in the previous subsection.

Test Setup 2: Ball in threaded stud interface The threaded ball-end stud used in

the mounting mechanism here is made up of a steel thread stud with a conical cav-

ity at the end, and a steel ball (same as the one used in Test Setup 1) attached inside

the cavity by epoxy adhesive1. One may assume that this spherical joint have similar

stiffness properties as the one evaluated in Test Setup 1. Test Setup 2 is designed to

verify this assumption. This experimental setup uses the same threaded ball-end stud

as those used for the actual mounting mechanism in the aerostatic guideway. A washer

is rigidly attached to the stud to allow placement of the LVDT displacement probe, as

shown in Figure 7.5(a). The forced applied on the top of the stud and the corresponding

displacement between the washer and the top of the air bearing are measured. The red

curve in Figure 7.5(b) shows the plot of the above measured force and displacement

relationship. The green curve is the same computed curve as the plot in Figure 7.4(b),

i.e. based on a single ball and socket Hertzian contact. The considerable difference

in the experimental (red) curve and the computed (green) curve invalidates the above

assumption of the stiffness similarity between spherical joint in Setup 1 and 2. Note

that the steel ball in the actual spherical joint is attached to the threaded stud by epoxy

adhesive. This implies that potentially there is a thin film of epoxy between the ball

and the conical cavity at the end of the stud. If the same Hertzian contact formulation

1Loctite Hysol 3430 structural adhesive
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Figure 7.4: Stiffness testing for Test Setup 1

is used to approximate the stiffness of the contact interface between the steel ball and

the epoxy ‘socket’, a force-displacement relationship can be obtained, and shown as

the blue curve in Figure 7.4(b). It can be observed from the plot that if the computed
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Figure 7.5: Stiffness testing for Test Setup 2

(green) curve for the single ball and socket interface is shifted to the right by approxi-

mately 20 �m, the measured curve matches relatively closely to a combination of the

shifted green and the blue curve.
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7.2.2 Discussion on Errors Contributed by the Mounting Mechanism

The characteristics of air bearing mounting mechanism are neglected in most work in-

volving aerostatic guideway modelling [79, 108, 120]. The above analysis realised that

the mounting mechanism may contribute to the dynamic behaviour of the entire aero-

static guideway system. This is due to the relatively ‘weak’ and non-linear stiffness,

particularly in the spherical joint, which ranges from approximately 2 to 30 of N/�m,

depending on the force applied. The stiffness characteristics of a single spherical joint

can be estimated using the classical Hertzian contact equation. However, the stiffness

prediction accuracy may vary according to the surface and machining quality of the

steel ball and the aluminium socket of the air bearing.

Due to the design of the air bearing carriage of the guideway system investigated here,

the spherical joint uses a threaded stud with a steel ball attached at the end. This de-

sign has added an undesirable interface within the mounting mechanism, i.e. the cured

epoxy film used to bond the ball to the stud. However, the stiffness characteristics

can also be estimated using a similar contact equation between the steel ball and the

epoxy film. It is important to note that the estimation method assumes a finite thin film

of epoxy between the ball and the conical cavity of the stud. For the case of the ball

stud used in Test Setup 2, one can nearly deduce from the plot shown in Figure 7.5(b)

that the film of epoxy is approximately 20 �m thick. Beyond the 20 �m point, the

measured curve begins to follow the stiffness trend of the computed curve for ball and

socket contact. Realistically, the thickness of the epoxy film may vary among the 10

ball studs used in this aerostatic guideway system, inevitably varying individual load

versus displacement curve. It is not practical to identify and model each of the individ-

ual ball studs within the guideway system.

This work shall assume that all the spherical joint of the air bearing mounting

mechanism within this system possess similar stiffness characteristics as the one

identified in Test Setup 2. The effect or consequence of the above assumption shall

be discussed during the validation of the dynamic modelling for the entire guideway

system.
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7.2.3 Potential Geometrical Error in the Air Bearing

Flatness error of the bearing porous surface From the work carried out on the

dedicated air bearing test rig, it is known that the flatness of the porous surface may

not be of very high tolerance relative to the normal operating air gap height ranging

from 5 to 8 �m. Hence, it is useful to quantify the porous surface flatness quality of

these 25 mm diameter air bearings. Using the same Zygo GPI Laser Interferometer as

mentioned in Section 6.3.3, the surface flatness for the air bearings are obtained. The

flatness errors range from 0.8 to 1.7 �m peak-to-valley. Figure 7.6 shows one of the

measurement screenshots of a 25 mm diameter air bearing porous surface.

Figure 7.6: Interferometer flatness measurement of a 25mm diameter air bearing
porous surface

Parallelism between the porous surface and the guideway surface Unlike the

dedicated air bearing test rig, whereby the air bearings are rigidly mounted to estab-

lish geometric certainty, the air bearing pads in this guideway system are installed

using the mounting mechanism discussed. Although the spherical joint enables a self-

parallelism feature, it is practically difficult to have a realisable measurement of the

parallelism errors for each bearing porous surface with respect to the guideway sur-

face. Another assumption of the air bearing is that the spherical joint is perfectly

smooth, and when the air supply for the bearing is switched on, the joint ensures

perfect parallelism between the porous surface and the guideway surface.
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7.2.4 Air Gap Height Measurement and Estimation

Appendix B describes the procedure to adjust the bearings’ air gap height. However,

the procedure presented in Appendix B does not consider any potential errors that may

produce an inaccurate or misleading height reading. It provides an indirect measure-

ment of the air gap, which assumes perfectly rigid connecting components/structures

between the threaded stud and the air bearing, and strictly speaking, the air film. It is

practically difficult to measure the actual air film height. Probably the most reliable

indirect measurement of the air gap is to position the displacement probe on top of

the air bearing itself, and as near to the centre as possible, as illustrated by Probe B

in Figure 7.7. This probing position is only possible for other air bearing setup, but

not applicable for the carriage design used in this work. Thus the only practical prob-

ing position for this aerostatic guideway is position Probe A as illustrated in Figure 7.7.Threaded studProbe A
Probe B

Air gap height, hafImpermeable guideway barAir bearing
Carriage structureSpherical joint displacement, hmm

Figure 7.7: Schematic illustration of air gap measurement methods

Theoretically, if the mounting mechanism is perfectly rigid, Probes A and B should

obtained the same displacement reading when the air supply is switched on. From

Section 7.2.1, it is identified by the analytical and experimental work that the mounting

mechanism possesses relatively low stiffness (in the same magnitude as air film stiff-
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ness). This creates a deceiving measurement of the actual air gap height if the reading

is obtained by Probe A. Probe A measures the resultant displacement contributed by

the carriage, mounting mechanism as well as the air bearing lift due to the air supply

pressure. However, the actual air bearing displacement within the carriage may differ

considerably from the probe reading, as illustrated by the dashed line in Figure 7.7.

This ‘internal’ displacement of the air bearing is a function of the compliance from the

various interfaces within the mounting mechanism (as discussed in Section 7.2.1).

It is possible to estimate the actual displacement of the air bearing (or Probe B displace-

ment) based on the stiffness characteristics of the spherical joint (from Section 7.2.1.2

and 7.2.1.3) as well as the air film (from Section 6.2.1). Conceptually, by adjusting

smaller air gaps using Probe A, larger ‘internal’ displacement of the mounting mech-

anism/air bearing socket may occur, and vice-versa. This is due to the force exerted

by the air film pressure. This force is transferred to the interfaces within the mounting

mechanism, causing displacement which is not picked up by Probe A. If the mounting

mechanism and the air film stiffnesses are linear, the air bearing displacement can be

easily approximated by the ratio of the two stiffnesses. Since, these interfaces have

non-linear stiffnesses (furthermore, the air film stiffness is computed numerically), the

actual air bearing displacement can only be estimated graphically.

The following explanation of the graphical air gap estimation uses a 5 �m Probe A

reading as an example, i.e. the threaded stud is adjusted to produce a displacement

reading of 5 �m from Probe A. The plot in Figure 7.8 shows the interaction between

the stiffness of the spherical joint and the force induced by the air film with varying air

gap. The black dashed curve is the computed load versus air gap curve (based on the

method discussed in Section 6.2.1) for a 25 mm diameter air bearing. The red curve

shows a computed relationship between the load and displacement of a spherical joint,

which assumes the first 20 �m of the joint compliance is mainly contributed by the ball

and epoxy film contact. Note that the plot for the spherical joint curve is offset to the

right and aligned with the 5 �m air gap. As mentioned, if the mounting mechanism

is perfectly rigid, the air gap will be 5 �m when the threaded stud is adjusted to pro-

duce a 5 �m displacement. The 5 �m air gap location can be perceived as the initial
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Figure 7.8: Graphical method for estimation of actual air bearing displacement

condition or location of the spherical joint, thus the offset. The air film creates an up-

ward/outward thrust force which causes a corresponding displacement in the spherical

joint interfaces. This interaction between the spherical joint and the air film is ex-

pressed by the intersection of the red and black dashed curves. The vertical axis value

at the intersection gives the estimated air gap, ℎaf . The spherical joint is subjected to

a corresponding displacement of ℎmm. The intersection point can be understood as an

interaction equilibrium between the air film force and spherical joint stiffness. Figure

7.7 also show these displacements, ℎaf and ℎmm, using the air bearing setup.

7.3 Analytical Dynamic Modelling and Results

The FE model for the aerostatic guideway system incorporates all the findings dis-

cussed in the previous section. The analytical model for the guideway is also broken

down to separate the dynamic behaviour of the air bearing interface and the structural

dynamics. This will enhance the understanding of the combined dynamics, which will
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be discussed. Before discussing the dynamic FE modelling of the aerostatic guideway,

it is useful to recap some of the assumptions established in Section 7.2. The following

are the summarised assumptions:

1. The threaded joint of the air bearing mounting mechanism is well preloaded

by the forces of the opposing bearings configuration, thus is considered to be

substantially stiff and is assumed to be a rigid connection within the model.

2. All the threaded ball studs have a thin film of epoxy between the steel ball and the

conical cavity of the studs. The film of epoxy has a thickness of approximately

15 to 20 �m.

3. All the spherical joints of the mounting mechanism have small variation in their

stiffness properties. The stiffness characteristics computed using the method

discussed in Sections 7.2.1.2 and 7.2.1.3 are representative of average stiffness

characteristics of the 10 air bearings used in this guideway.

4. The flatness of the air bearing porous surfaces vary from 0.8 to 1.7 �m. It is

not practical and efficient to map this flatness errors to the individual air bearing

during modelling, thus an average of 1.2 �m flatness error is considered for all

the bearing used in this guideway modelling.

5. It is assumed that the spherical joints enable perfect parallelism between the

bearings’ porous surfaces and the guideway surface.

6. The method developed to estimate the actual air gap as discussed in Section 7.2.4

is assumed to be adequately robust in estimating the air gap for the FE model.

The following discussion will be centred around the modal behaviour of the carriage

and the entire guideway system. Hence, it is useful to adopt a consistent coordinate

and orientation convention to describe the various degrees of freedom of the system.

Figure 7.9 presents the 3D CAD drawing of the guideway and carriage, as well as a

schematic 2D representation of the 10 air bearings layout within the carriage. Note

that when the air supply is switch on, the aerostatic carriage is able to slide along the

X axis freely. The carriage is constrained by the 10 air bearings in 5 degrees of free-

dom, namely, Z translation,Y translation, roll, pitch and yaw, as illustrated in the 2D
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Figure 7.9: Carriage coordinate and orientation convention

schematic.

In the following analysis, two setups are used in the evaluation. Setup 1 set the 10 air

bearings to 5 �m air gap, and Setup 2 to 9 �m air gap. Both setups use air supply

pressure of 5 bar.
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7.3.1 Stiffness Model of the Air Bearing

Using the same 1D formulation for air flow as discussed in Section 6.2.1, the stiffness

model for the 25 mm diameter air bearing was computed. The 1D formulation assumes

the following air bearing and operating parameters:

∙ Air supply pressure: 5.5 bar

∙ Porous media permeability: 1.25× 1015 m2

∙ Porous media thickness: 5 mm

The static test to verify the actual air film stiffness for the 25 mm diameter air bear-

ing was carried out using the same experimental setup in Figure 6.5 and as discussed

in Section 6.2.2. Figure 7.10 shows the comparison between the load versus air gap

curve obtained from the 1D formulation method, the manufacturer’s data and the exper-

imental results from the static stiffness test. Though some discrepancies are observed

between the three curves, these stiffness characteristics for the 25 mm diameter air

bearing are relatively close to each other, unlike those obtained for the 65 mm diame-

ter bearing as shown in Figure 6.7.

7.3.2 Dynamic FE Model of the Air Bearing

The stiffness of the overall air bearing setup comprises not only of its air film, but

also its mounting mechanism. Thus, the FE model of a single air bearing is repre-

sented by a set of 40 non-linear springs corresponding to the air film (similar to those

in Section 6.3.1) and a single non-linear spring in series, representing the mounting

mechanism stiffness. The FE model the air bearing setup is illustrated in Figure 7.11.

The non-linear spring elements represented in ANSYS is COMBIN39 (Appendix C.1).

The single blue spring as illustrated in Figure 7.11 is connected to the set of 40 black

springs by a 3 DOFs rotary joint, which mimics the behaviour of the actual spheri-

cal joint in the mounting mechanism. The force and displacement relationship of the

air film, Kaf and mounting mechanism, Kmm is used as the input for element COM-

BIN39. Note that both Kaf and Kmm are not constant values, they are a function of
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Figure 7.10: Comparison of the computed, experimental and manufacturer’s load ver-
sus air gap curve for 25 mm diameter air bearing

the air gap and contact displacement, respectively. The relationship of these two stiff-

nesses are depicted in Equations (2.4) and (7.5), respectively.

Nonlinear spring element 

(COMBIN39) for mounting 

mechanism, Kmm

Nonlinear spring elements 

(COMBIN39) for air film, Kaf

Figure 7.11: FE Model of a single air bearing pad

As discussed in Section 7.2.4, adjustment of the mounting mechanism’s threaded stud

for each air bearing creates a displacement in the spherical joint and a ‘true’ air gap

height. The air gap height can be estimated by the above stiffness models, Kaf and
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(a) Actual air gap and joint displacement estimation for 5 �m stud setting
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(b) Actual air gap and joint displacement estimation for 9 �m stud setting

Figure 7.12: Actual air gap and joint displacement estimation
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Kmm, and the resultant displacement measured at the top of the stud. Figure 7.12

(which are similar to Figure 7.8) shows the graphical estimation of the air gap / dis-

placement and the corresponding air film and spherical joint stiffness for 5 and 9 �m

threaded stud settings (Setup 1 and 2, respectively). The air gap and joint displace-

ment obtained from the graphs were used as the initial displacement condition for the

non-linear springs in FEA, which can also be understood as an initial compressive con-

dition for both the interfaces. The constant stiffness value obtained from the graph is

not applicable to the FE modelling. The FE solver will compute the stiffness value of

the interface elements based on the initial condition of the non-linear spring element

input (see Appendix C.1). However, the constant stiffness values are useful for the

calculation of the undamped modal frequencies, which will be discussed later.

7.3.3 Isolated Dynamics of the Air Bearing Carriage

To gain better insight of the overall aerostatic guideway system, it is worthwhile to

isolate the air bearings (carriage) dynamics from the structural dynamics. Hence, the

analysis can be broken down into the modelling of the air bearing carriage and the

structure (which comprises only the base plate and guideway bar). It is simpler and

more efficient to analyse structural dynamics using FEA, as most structures are con-

sidered to exhibit linear characteristics, and in most cases give better correlation to the

real system. As structural dynamics are not the main interest in this investigation, a

brief assessment of its modal characteristics was carried out. A FE model of the struc-

ture, comprising only of the base plate and guideway bar was constructed. To increase

the efficiency of the FE computation in the modal analysis of this structure (and later

in the air bearing carriage), the structure elements have been simplified as SHELL ele-

ment, and represented as SHELL93 element in ANSYS (see Appendix C.2). The mode

shapes and its modal frequencies results of the structure are presented Figure 7.13.

Note the mode names used in the figure (i.e. Mode SB for structure bending, SL for

structure lateral and ST for structure twisting), which will be referred to later in the

discussion.

The FE model of the air bearing carriage is also constructed in a similar way using the
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Figure 7.13: FE computed structural mode shapes

SHELL93 element as the enclosure structure for the 10 air bearing installation. The

difference of the air bearing carriage analysis from the above structural one is the addi-

tion of the air bearing FE models (as shown in Figure 7.11). Ten of these air bearing FE

models were modelled as attached to the respective air bearing locations as illustrated

in Figure 7.9. The initial condition or displacement of these air bearing FE models are

obtained using the air gap and displacement estimation method discussed above. To

confine the modal analysis of the carriage to only the effect of the air bearing dynam-

ics, the set of 40 air film non-linear springs are attached to 2 DOFs-constrained nodes

in space (the other unconstrained DOF of the node is along X axis where the carriage

slides freely), instead of the guideway bar. The primary interest here is the 5 rigid

body modes exhibited by the carriage, as a result of the above boundary conditions.

Theoretically, the other 1 DOF rigid body mode of the carriage will have a frequency

of 0 Hz [40], thus having no significance in this analysis. Figure 7.14 shows the 5

mode shapes of the carriage, namely: CR, CP, CY, CV and CL for carriage roll, pitch,

yaw, vertical translation and lateral translation, respectively, obtained using the above

FE model. The corresponding frequencies for these mode shapes are shown later in
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Tables 7.1 and 7.2.
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Figure 7.14: Expected isolated carriage mode shapes

Besides obtaining the modal parameters of the carriage using FEA, the undamped nat-

ural frequencies of the 5 rigid body modes can also be calculated based on the fun-

damental of an undamped MDOF system, as presented in Chapter 4. The calculation

enables a better understanding of the system modal behaviour. In addition, it acts as

a verification of the FEA results before validating it with experimental results. A few

assumptions need to be established in order to scale the problem down to a manageable

solution. The following are the assumptions.

1. The carriage is assumed to be a rigid and homogeneous lump mass of 2.88 kg.

2. Each air bearing is a point contact, thus the carriage is constrained by 10 springs.

3. The 10 springs are linear with equal and constant stiffness of Ke.

4. The four springs normal to the X-Y plane and the six springs normal to the Z-X

plane do not have any interaction (refer to Figure 7.9). Hence, the DOFs of the
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carriage can be decoupled into two planes as illustrated in Figure 7.15, and be

dealt with separately.

ll

Pitch

Z

X

Z

Y

X

lw lw

ll

Yaw

Roll

S2S1

S3 S4

S9

S10

S7

S8

S6

S5

Figure 7.15: Simplified model of air bearing carriage into two decoupled planes

As mentioned, all the springs have a constant effective stiffness, Ke. Ke is a serially

combined spring stiffness of the instantaneousKaf andKmm obtained using the graph-

ical method shown in Figure 7.12 for the 5 and 9 �m stud setting. Thus, the effective

stiffness, Ke for each spring is simply:

Ke =
1

Kaf
−1 +Kmm

−1 (7.6)

An undamped MDOF system like the one shown in Figure 7.15 can be described by

the equations of motion, in matrix form as

[M ]{ẍ(t)}+ [K]{x(t)} = {f(t)} (7.7)

Since it is assumed that there is no coupling between the 5 DOFs, the mass matrix,

[M ] and stiffness matrix, [K] are both square diagonal matrices in the following DOF

sequence: Y, Z, roll, pitch and yaw. Hence, the mass matrix, M can be expressed as:

[M ] = diag(mc, mc, Ixx, Iyy, Izz) (7.8)

where mc is the mass of the carriage, and Ixx, Iyy, and Izz are the moment of inertia
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about the X, Y and Z axes, respectively. The stiffness matrix, [K] takes the form of

[K] = diag(6Ke, 4Ke, 6Kel
2
w, 4Kel

2
l , 4Kel

2
l ) (7.9)

where lw and ll are the perpendicular distances of the springs to the centre of the car-

riage, about where it rotates, as illustrated in Figure 7.15. Note that the translational

stiffness when multiply by the square of the perpendicular distance to the rotational

axis gives the rotational stiffness. As mentioned in Section 4.1.2.1, the equation of

motion (7.7) can be rewritten as Equation (4.16). Equation (4.16) is assumed a homo-

geneous system and its solution is considered non-trivial. Based on linear algebra, a

non-trivial solution exists if and only if its determinant is zero, whereby

det∣[K]− !2[M ]∣ = 0 (7.10)

Substituting Equations (7.8) and (7.9) into Equation (7.10), produces the following 5

eigenvalues, or the square of natural frequencies, !r, which can be also be expressed

as a 5 × 5 diagonal matrix.

[!r
2] = diag

(
6Ke

mc

,
4Ke

mc

,
6Kel

2
w

Ixx
,

4Kel
2
l

Iyy
,

4Kel
2
l

Izz

)
(7.11)

Note that frequency in Hz is !/2�.

The air bearing carriage has the following mass properties.
mc = 2.88 kg

Ixx = 0.0117763 kgm2

Iyy = 0.0151621 kgm2

Izz = 0.0104617 kgm2

As mentioned above, two setups are analysed here, 5 and 9 �m threaded stud setting.

For Setup 1 with 5 �m stud setting and based on the graphical estimation in Figure

7.12(a), each air bearing has stiffness properties of
Kaf = 4.9 N/�m

Kmm = 6.5 N/�m
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which results in an effective stiffness, Ke = 2.8 N/�m. Table 7.1 shows the modal

frequencies results obtained using Equation (7.11) against the FEA results for the 5

�m stud setting.

Mode Shapes Calculated frequencies FEA computed frequencies
Mode CR 198 Hz 200 Hz
Mode CP 270 Hz 298 Hz
Mode CV 314 Hz 316 Hz
Mode CY 325 Hz 349 Hz
Mode CL 384 Hz 395 Hz

Table 7.1: Manually calculated and FEA computed modal frequencies results of the
isolated air bearing carriage for 5 �m setting

For Setup 2 with 9 �m stud setting and based on the graphical estimation in Figure

7.12(b), each air bearing has stiffness properties of
Kaf = 2.5 N/�m

Kmm = 5.5 N/�m

which results in an effective stiffness, Ke = 1.7 N/�m. Table 7.2 shows the modal

frequencies results obtained using Equation (7.11 against the FEA results for the 9 �m

stud setting.

Mode Shapes Calculated frequencies FEA computed frequencies
Mode CR 154 Hz 155 Hz
Mode CP 211 Hz 234 Hz
Mode CV 245 Hz 246 Hz
Mode CY 254 Hz 273 Hz
Mode CL 299 Hz 308 Hz

Table 7.2: Manually calculated and FEA computed modal frequencies results of the
isolated air bearing carriage for 9 �m setting

The above results demonstrate the close match between the manually calculated and

the FEA computed modal frequencies. Minor discrepancies are observed in the pitch

and yaw modes of the carriage. This is considered to be due to assumption (2). The

manually calculated scheme assumes that each bearing is a single spring or contact

point. This implies that the dynamics contributed by the tilting modes of individual air
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bearings are neglected. As seen in Section 6.3, Mode 1 (tilting of the centre mass) ex-

hibit more compliance in the air film than Mode 2 (vertical translation of centre mass).

The FEA models the air film as a set of non-linear springs across the area of the air

bearing pad, thus enable the computation of the tilting dynamics of an individual air

bearing. This results in slightly higher modal frequencies computed by the FEA than

the calculated values in the pitch and yaw mode shapes. This is particularly apparent

in yaw mode, which the calculation scheme totally ignore the air bearings or springs

S9 and S10 illustrated in Figure 7.15. However, the discrepancies are considered to be

minor, as the overall shows very closely agreed results. In general, the FEA achieves

a more realistic results, as it accounts for all the bearings characteristics (without ne-

glecting any) when computing the entire system dynamics, as discussed above. The

next subsection presents the FEA modal results of the entire aerostatic guideway. The

FE model of the aerostatic guideway is constructed with the air bearing carriage at-

tached to the guideway bar structure via the air film non-linear springs.

7.3.4 Analytical Modal Results of the Overall Aerostatic Guideway

To be more realistic, the FE model should comprise of the air bearing carriage attached

to the guideway structure. To compute the system dynamics, the set of 10 non-linear

springs that represent the air film of the air bearing are now linked to the structural

elements of the guideway bar. Modal analysis using FEA was performed on the recon-

structed FE model of the ‘entire’ aerostatic guideway. As in the previous analysis, the

FEA used two setups: 5 and 9 �m threaded stud setting. Figures 7.16 and 7.17 show

the FEA results for the 5 �m and 9 �m stud settings, respectively.

Note that only the first 7 modes are selected for the discussion here, as the higher har-

monics (beyond Mode 7) are mainly structural dynamic in nature, which are not the

interest of this analysis. For Setup 1 (in Figure 7.16), it can be observed that Modes 1,

4 and 5 correlate very closely with Modes CR, CP and CY, respectively, in the isolated

analysis of the carriage (refer to Table 7.1), in terms of their mode shapes and modal

frequencies. This computed results imply that the above three modes have minimum

coupling or interaction between the air bearing interfaces and the structure. On the
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Figure 7.16: FEA results of overall aerostatic guideway for Setup 1: 5 �m stud setting

other hand, the other modes (2, 3, 6 and 7) exhibit various levels of interaction be-

tween the air bearing interfaces and the structure. These are known as coupled DOFs

or coordinates in modal analysis of coupled structure [40]. It can be observed that

Mode 2 is a combination of Mode SL and CL of the isolated structure and air bearing
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Figure 7.17: FEA results of overall aerostatic guideway for Setup 2: 9 �m stud setting

carriage. Both the base plate bending mode (Mode SB) and the vertical oscillation

of carriage (Mode CV) are excited in Modes 3 and 6, with varying degree of dynam-

ics contribution from the structure and the air bearing interfaces. Although Mode 7

exhibits mostly structural twisting of the base plate, a slight yaw rotation can be ob-
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served in the carriage. A general observation is that the coupled DOFs modes occur

when the natural frequencies of the two isolated systems are near to each other and

they share the same DOFs of mode shapes.

For Setup 2 (in Figure 7.17), similar modal behaviour to Setup 1 can be seen. A no-

table difference observed is the marginally less interaction between the structure and

the air bearing carriage, in particular, Modes 3, 6 and 7 of Setup 2. This is mainly due

to the less stiff air bearing interface at 9 �m stud setting. The proximity of the natural

frequencies between the isolated air bearing carriage and structure are relatively larger

than the previous case in Setup 1, hence coupled DOFs modes are less prominent in

this case.

The above isolated and combined analytical modelling of the aerostatic guideway give

a comprehensive understanding of the dynamic behaviour of the guideway in terms of

its structure and interface interactions. This modelling scheme allows machine design-

ers to identify and quantify the weaknesses in the stiffness chain of a machine before

fabrication/building. The next section shall validate the robustness of the modelling

scheme discussed in this section against experimental modal testing results.

7.3.5 Uncertainties in Analytical Modal Results of the Guideway

The modal behaviour can be computed using FEA with the estimated air bearing pa-

rameters which are assumed to be accurately acquired. Realistically, uncertainties exist

in these parameters, thus the computed results. The parameters used in the FEA pos-

sess potential errors. The following section discuss a summarised error estimation

from the error sources mentioned in Section 7.2 and 6.3.3.

Geometrical error in air gap height It is seen that the accuracy of the air gap height

is crucial in predicting the air film stiffness, thus its dynamic behaviour. The main

error sources that contribute to the accuracy of the air gap height has been discussed in

Section 7.2. These errors include the flatness of the air bearing porous and guideway

surfaces, the parallelism between the bearing porous surface and the guideway surface,
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and the accuracy of the LVDT displacement probe used to measure the displacement of

the stud. The error values are summarised in Table 7.3. Note that it is assumed that the

spherical joints enable perfect parallelism between the bearing porous surfaces and the

guideway surface, as mentioned in the beginning of this section, thus the parallelism

error is considered to be near 0 �m. The total potential error in the air gap height is

3.2�m.

Potential error sources Error
Maximum flatness of each porous surface 1.7 �m
Maximum flatness of guide surface over a 50×50 mm area 0.5 �m
Maximum parallelism ∼0 �m
LVDT displacement probe accuracy 1 �m
Total potential geometrical error for each air bearing 3.2 �m

Table 7.3: Potential geometrical error for each air bearing

Other modelling parameters There are other parameters that may also affect the

accuracy of the FE model. The major errors include the mass of the accelerometers

that are not considered in the analytical model and the accuracy of the air supply pres-

sure. 4 triaxial accelerometers are used for the experimental modal testing. The triaxial

accelerometers used are the same as those used for the dedicated test rig modal testing

(in Chapter 6), which weigh 11.2 g each. The air supply pressure regulator1 has an

accuracy of± 0.5 %. The uncertainty in the air supply pressure accuracy is considered

to be negligible.

Another FE model of the aerostatic guideway is constructed using the above potential

maximum errors, and the modal parameters are computed using FEA. Tables 7.4 and

7.5 show the comparison of the modal results between a ‘perfect’ FE model and one

which account for the maximum potential errors for Setup 1 and 2, respectively. Based

on Type ”B” uncertainty evaluation [125], the standard uncertainties for each of the

modes are presented in the tables as well.

1CKD R1000 pneumatic pressure regulator
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Mode
Shape

Modal frequency
with perfect mea-
surement

Modal frequency
with potential
error

Maximum
error

Standard
uncertainty

Mode 1 194 Hz 170 Hz 24 Hz 6.9 Hz
Mode 2 261 Hz 251 Hz 10 Hz 2.9Hz
Mode 3 281 Hz 255 Hz 26 Hz 7.5 Hz
Mode 4 297 Hz 256 Hz 41 Hz 11.8Hz
Mode 5 343 Hz 300 Hz 43 Hz 12.4 Hz
Mode 6 369 Hz 353 Hz 16 Hz 4.6 Hz
Mode 7 430 Hz 428 Hz 2 Hz 0.6 Hz

Table 7.4: Analytical modal results uncertainties for Setup 1: 5 �m stud setting

Mode
Shape

Modal frequency
with perfect mea-
surement

Modal frequency
with potential
error

Maximum
error

Standard
uncertainty

Mode 1 153 Hz 126 Hz 27 Hz 7.8 Hz
Mode 2 234 Hz 190 Hz 44 Hz 12.7 Hz
Mode 3 237 Hz 198 Hz 39 Hz 11.3 Hz
Mode 4 242 Hz 219 Hz 23 Hz 6.6 Hz
Mode 5 271 Hz 223 Hz 48 Hz 13.8 Hz
Mode 6 347 Hz 339 Hz 8 Hz 2.3 Hz
Mode 7 429 Hz 427 Hz 2 Hz 0.6 Hz

Table 7.5: Analytical modal results uncertainties for Setup 2: 9 �m stud setting

It can be seen that the standard uncertainty values are inevitably smaller for those

modes that are mainly dominated by the structural dynamics, whereby the above dis-

cussed potential errors have less significance in their dynamic properties. On the other

hand, those modes that exhibit isolated carriage mode shapes, influenced mainly by

the air bearings (see Figure 7.16 and 7.17) experience higher uncertainties.

7.4 Validation using Experimental Modal Testing Results

7.4.1 Experimental Modal Testing Setup for the Aerostatic Guideway

This subsection will provide a brief overview of the modal test carried out on the

overall aerostatic guideway. Previous chapters have sufficient discussion on the modal

testing equipment and procedure, thus the general information of modal testing will no
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be reiterated here. The section shall focus on discussion directly related to the test on

the guideway system.

Accelerometers and 

their sensing positions
Geometry representation constructed 

based on accelerometers positions

Reference or impact position

Figure 7.18: Accelerometers positions

Sixteen response or accelerometer positions are selected on the entire aerostatic car-

riage. These response positions are considered to give sufficient modal information

of the system to visualise the mode shapes that are of interest in this analysis. Figure

7.18 shows the sixteen positions of the responses to be measured. The left diagrams

shows the 3D CAD model of the aerostatic guideway and the right shows the geo-

metrical representation in the modal testing software, constructed using the identified

accelerometers positions. As mentioned in previous chapters, since there are only

four triaxial accelerometers available, the modal test employs the roving transducers

method. Four sets of roving accelerometers readings are obtained in this experiment,

i.e. (16 response positions)/(4 accelerometers). The reference or impact location is

also shown in Figure 7.18. Three directions (in X, Y and Z axis) of excitation force

are applied on the impact position. Each triaxial accelerometer acquires the same three

axes of response data.
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Mode Shapes Analytical modal fre-
quencies

Experimental modal
frequencies & damp-
ing

Percentage
agreement

Mode SB 333 Hz 294 Hz, 0.18 % 88 %
Mode SL 347 Hz 324 Hz, 0.15 % 93 %
Mode ST 429 Hz 425 Hz, 0.07 % 99 %

Table 7.6: Comparison of analytical and experimental modal results of the structure

7.4.2 Experimental Results and Validation of the Guideway Structure

It is useful at this stage to first assess the structural modal results (shown in Figure

7.13) before discussing the overall guideway system. In order to validate the structural

modal results computed by FEA, the modal test is carried out with the air bearing car-

riage removed. In this case only twelve response positions are required for this test,

instead of sixteen, i.e. the four response positions on top of the carriage are apparently

not included. Table 7.6 compares the analytical modal results of the structure obtained

by the FEA against the experimental modal testing results. It is unsurprising that the

analytical and experimental results are closely correlated. As mentioned in previous

chapters, FEA and element models for structural static and dynamic prediction is rel-

atively established and accurate. Slightly lower natural frequencies are computed by

the FEA as compared to the experimental results. This is mainly due to the assumption

of perfectly rigid joints in modelling the bolted joints of the actual structure assembly.

7.4.3 Experimental Results and Validation of the Overall Guideway

The experimental modal tests are carried out using the same two setups as the analyt-

ical modelling, i.e. 5 and 9 �m stud settings. The 10 air bearings were all adjusted

to the desired threaded stud setting using the procedure described in Appendix B. The

setting of these stud/air bearing heights have an average uncertainty of approximately

±1 �m. In this modal testing experiment, all the sixteen accelerometer positions are

used, thus acquiring a total of 144 FRFs (16 responses× 3 DOFs× 3 reference DOFs).

Tables 7.7 and 7.8 show the comparison between the analytical modal results and the

experimental results obtained in these experiments for the 5 and 9 �m stud settings,

respectively.
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Mode
Shapes

Analytical modal
frequencies

Experimental
modal frequen-
cies & damping

Percentage
agreement

Remarks &
similar isolated
modes

Mode 1 193 Hz 207 Hz, 1.03 % 93 % CR @ 200 Hz
Mode 2 261 Hz 254 Hz, 0.16 % 97 % Coupled DOFs
Mode 3 281 Hz 263 Hz, 0.62 % 94 % Coupled DOFs
Mode 4 297 Hz 312 Hz, 3.40 % 95 % CP @ 298 Hz
Mode 5 343 Hz 391 Hz, 3.27 % 86 % CY @ 349 Hz
Mode 6 369 Hz - - SB @ 333 Hz
Mode 7 430 Hz 429 Hz, 0.53 % 99 % ST @ 429 Hz

Table 7.7: Comparison of analytical and experimental modal results of the overall
guideway system for Setup 1: 5 �m threaded stud setting

Mode
Shapes

Analytical modal
frequencies

Experimental
modal frequen-
cies & damping

Percentage
agreement

Remarks &
similar isolated
modes

Mode 1 153 Hz 137 Hz, 2.93 % 90 % CR @ 155 Hz
Mode 2 234 Hz 180 Hz, 5.36 % 77 % CP @ 234 Hz
Mode 3 236 Hz 222 Hz, 1.56 % 94 % CV @ 246 Hz
Mode 4 242 Hz 244 Hz, 0.46 % 99 % Coupled DOFs
Mode 5 271 Hz 305 Hz, 3.99 % 87 % CY @ 273 Hz
Mode 6 347 Hz 319 Hz, 1.17 % 92 % SB @ 333 Hz

(Coupled DOFs)
Mode 7 429 Hz 425 Hz, 0.10 % 99 % ST @ 429 Hz

Table 7.8: Comparison of analytical and experimental modal results of the overall
guideway system for Setup 2: 9 �m threaded stud setting

Besides showing the analytical and experimental comparisons in Tables 7.7 and 7.8,

the last column of the tables also provide some remarks pertaining to the similarity of

modes to the isolated structure and carriage analysed in the previous section. Damping

ratios for the individual modes obtained through the modal testing are also shown in

the experimental results. From the large number of FRFs obtained from the modal

testing, Figure 7.19 presents three of the more relevant FRFs of Setup 2: one Z and

one Y axis FRFs from a corner on the carriage, and one Z axis FRF from a corner of the

base plate (refer to Figure 7.18 for accelerometer positions). The vertical axis of the
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Figure 7.19: FRFs from two carriage responses in Z and Y axis, and one base plate
response in Z axis

FRFs plotted here shows the Response Function in terms of acceleration response over

force input. The 7 modes as presented in Table 7.8, are also indicated on the FRFs.

The mode shapes screenshots of the experimental modal test are shown in Appendix

E.

7.5 Discussion on Experimental Results and Validation

The aim of the experimental modal testing on the aerostatic guideway system is to val-

idate the robustness and accuracy of the FE dynamic model for air bearings developed

in this work. This section discusses the experimental results presented in the previous

section, as well as the validation of the FE dynamic model. A brief assessment of the

percentage agreements for both setups shows promising results in the correlation of

the analytical and experimental modal characteristics. The air gap height and spherical

joint displacement estimation method discussed in Section 7.2.4 enables a more accu-
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rate FE model of the air bearing interfaces.

Most of the mode shapes computed by the FEA can be found in the experimental re-

sults, with one exception in Setup 1. The dynamics exhibited by Mode 6 of Setup 1

does not exist in the actual aerostatic guideway. The coupled DOFs effects in some

of the guideway dynamics observed in the analytical results also occur in the experi-

mental results. It is not easy to quantify the dynamic interaction between the structure

and the air bearing interfaces (or the carriage). However, using the natural frequencies

found in the isolated system, one can have a good indication on the dynamic coupling

effect between the structure and the air bearings. For instance in Setup 1, Modes 1, 4

and 5 of the experimental results possess comparable modal frequencies as those com-

puted for Modes CR, CP and CY of the analytically isolated carriage.

The damping of machine interfaces and joints are known to be relatively higher as

compared to structural damping [29]. The squeeze film damping ratio of a air film can

be as high as 20 % (of the critically damping value) depending on the air gap and air

pressure [63, 66, 129]. Thus, a check on the modal damping ratio suggests whether a

mode shape has more contribution from the machine interfaces (i.e. the air bearings)

or the structure. Modes with damping ratio less than 1 % are mostly dominated by

structural dynamics, as observed in Modes 2, 3 and 7 of Setup 1, and Modes 4 and 7

of Setup 2.

In general, the FE model developed in this work is able to predict the dynamic be-

haviour of the air bearing interfaces, in terms of mode shapes and modal frequencies,

within 77 % accuracy, and an average accuracy of above 85 %. These results are con-

sidered to be significantly promising taking into account the various uncertainties in

the experimental setup, as discussed in Section 7.2.

The dynamic prediction of the dedicated air bearing test rig presented in the previous

chapter appears to be less accurate than those achieved in the analysis of a more com-

plicated aerostatic guideway. This results seem to be counterintuitive. However, this

outcome can be comprehended by a few factors.
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Parallelism The issue of parallelism between the air bearing porous surface and the

guideway surface has been substantially reduced with the self-aligning capability of

the air bearing mount mechanism’s spherical joint. As mentioned in the beginning of

this modelling discussion, the parallelism error of the air bearing within the guideway

setup is assumed to be negligible. On the other hand, the dedicated test rig is subjected

to a known parallelism error of approximately 2 to 3 �m. In the dedicated test rig,

it is an important feature to rigidly mount the air bearing to the structure to eliminate

undesirable effects from other interfaces compliance (like the mounting mechanism as

discussed). Nevertheless, this consideration creates an inevitable geometrical error in

the dedicated test rig.

Constraint of air bearing tilt mode There are two major modes of the centre mass

under the influence of the opposing air bearings: the tilt and vertical oscillation. From

the analysis of the aerostatic guideway, it is observed that the individual air bearing

tilt mode is essentially absent. All the five mode shapes of the carriage (which include

the rotational types) are mainly dominated by linear displacement of the air bearing

compliances. Using a simple schematic representation of one of the carriage rotational

mode, Figure 7.20 illustrates this argument. Due to the layout as well as the mount-

ing mechanism of the air bearings within the guideway carriage, the tilting mode of

individual air bearings are constrained. From Chapter 6, the analytical results of the

vertical translation modal behaviour correlate better with the experimental results, as

compared to the tilting mode. It is also found that the analytical prediction accuracy

of the tilting mode properties of the air bearing is highly dependent on the parallelism

error between the air bearing porous surface and the guide surface (in the case of the

dedicated test rig, the centre mass surface). Thus, with minimised parallelism errors as

mentioned above and constrained air bearing tilt mode, the entire dynamic behaviour of

the carriage encompasses mainly the linear translation of individual air bearing setup.

Consequently, this condition increases the accuracy of the FEA prediction by reducing

the sensitivity of the model caused by a difficult to model modal characteristic. This

can also be appreciated from the analytical model of the isolated carriage illustrated in

Figure 7.15, and further verified by the correlation between the dynamic characteristics

of the isolated carriage and the entire guideway.
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Effect of spherical joints

Linear
displacement Linear

displacement

Rotational modes

Figure 7.20: Schematic representation of a rotational mode of the guideway carriage

Averaging effect The dedicated test rig has two rigidly mounted opposing air bear-

ings. The two (top and bottom) air gaps of the test rig were subjected to the inherent

potential errors due to fabrication and assembly, thus leading to the achievable accu-

racy of the analytical modal results. The carriage of the aerostatic guideway is held

by a configuration of 10 air bearings. Despite the fact that the aerostatic guideway is

subjected to similar errors, the higher number of air bearings reduces the significance

of individual errors based on averaging effect among the bearings.
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Chapter 8

Overall Discussion

8.1 Breaking Down the Problem

The concept of a stiffness chain is essential in the decomposition of a complex machine

interface problem. A stiffness chain is commonly used in evaluating the errors of end

mills which are held by the tool holder and spindle [105, 106]. The work here extends

the application of this concept in the evaluation of machine interfaces, in particular,

aerostatic bearings/guideways, as shown in Figures 5.7 and 5.8.

In this research, some form of initial hypothesis was needed to identify the key in-

terfaces within the stiffness chains that are significant to the dynamics of an aero-

static guideway. The structure and mechanical contact interfaces (discussed in Section

2.3), which possess relatively high stiffnesses are not considered to be of interest here.

The key interfaces within the aerostatic bearing are identified, namely the air film, the

spherical joint and the threaded stud to set the air gap. The static stiffness of each of

these interfaces were computed using their respective stiffness models (as discussed in

Sections 5.2.2.4, 7.2.1.1 and 7.2.1.2). The computed stiffnesses were validated with

experiments, except for the threaded joint, which was assumed to have relatively high

stiffness under proper preloading. The model and assumption prove to be valid as the

dynamic modelling of the aerostatic guideway achieved good correlation with experi-

mental results.
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This work demonstrated a systematic and comprehensive methodology that breaks

down a complex aerostatic guideway into key interface elements, and identifies

their parameters which contribute to the system dynamic behaviour. The practice

of this machine dynamic modelling approach in the precision engineering industry will

enhance the design process and address some of the issues discussed in Section 3.2.1.

However, this may require further work in this area in order to increase the adoption of

this approach in the industry, i.e. automation of this design approach through software

module.

8.2 Dedicated Air Film Dynamic Analysis

The breaking down of the various stiffness elements within the aerostatic guideway

leads to a dedicated and in-depth investigation of the air film dynamic effects. Most of

the earlier work in air bearing analysis has focused on the static characteristics of the

air film [49, 59, 61–66]. Some recent modal analysis work was carried out on aerostatic

guideway system, as a whole, [79, 120], which lacks the insight into the individual air

bearing dynamic behaviour.

In this research, a dedicated air bearing test rig, which allowed in-depth and iso-

lated analysis into the bearing dynamic characteristics was designed. The test rig

(which comprised of two rigidly mounted opposing air bearings and a centre mass sus-

pended in between the bearings by flexure mechanisms) enabled the study of the air

film dynamic effect on the centre mass in a controlled and deterministic environment,

as opposed to a guideway system with various interfaces and uncertainties. Using the

dedicated test rig, a comprehensive study on the dynamic characteristics of the air film,

the non-linearity effect as well as the impact of the air gap geometry on the accuracy

of the analytical modal parameters was carried out. Due to the non-linear stiffness of

the air film, the air gap height accuracy is found to be crucial in achieving an accurate

modal behaviour of the centre mass (which was held in between two air films).

Although the dedicated air film test rig provides a good platform to investigate the

air film dynamics, it is important to note that the operating condition (in terms of
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bearing mounting method, mass loading and thus range of natural frequencies) may

not correspond to most practical situations. Hence, it was essential to validate the

findings in Chapter 6 with actual aerostatic guideway system, as discussed in Chapter

7.

8.3 Minimising the Uncertainties

Due to the non-linearity of the air film stiffness and the mounting mechanism, the ac-

curacy of the FE model which leads to the results of the dynamic behaviour is highly

dependent on the accuracy of the air gap height. A substantial amount of attention was

placed in achieving accurate information about the air gap parameters in this thesis.

Few papers place emphasis on determining the error within an aerostatic guideway.

One relevant work found in the investigation of error within aerostatic guideways is

by Ekinci et al [130]. Ekinci et al gave a detail account of how the stiffness of an

orifice type of aerostatic bearings guideway are modelled and validated the model ex-

perimentally. However, their work considered the stiffnesses of the air bearing setup

to be constant, which differs to the findings in this thesis and many other references.

Section 6.3.3 provides an in-depth understanding of the typical errors that are expected

from a porous air bearing. One of the key geometrical errors of an air bearing is the

flatness of the porous surface which range from a fraction of a micrometre to approx-

imately 1.7 �m peak-to-valley. The parallelism of the porous surface to the guideway

surface which is greatly associated to the quality/smoothness of the spherical joint also

contributes to the air gap height accuracy. For practical reasons, these errors are often

assumed to be negligible. This may be acceptable when a number of air bearings is

used within one setup or one axis of guideway, whereby the above geometrical errors

are considered to be averaged out among the air bearings. However, this error averag-

ing hypothesis is not applicable to the dedicated test rig which only comprises of a set

of (two) rigidly mounted opposing air bearings, thus a comprehensive error analysis

was needed. This error analysis for the dedicated test rig also examined the analytical

shortcoming in terms of accounting for the accelerometers mass loading on the test rig

during modal testing. The above error analysis established in this research allowed
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understanding of the various errors that impact the achievable accuracy of its

analytical dynamic prediction.

8.4 Accurate FE Model for Dynamic Simulation

As mentioned, static stiffness modelling of air film is well established with several

variants from the original proposed method [49, 62, 63]. Most use iterative methods

to obtain the air film pressure profile, which can be used to compute the overall load-

ing capacity of the bearing, thus its stiffness. A 1D flow formulation method [78],

which can be computed numerically is employed in this research to calculate the stiff-

ness model of the air bearing. This method was chosen for its ease and flexibility in

implementation using Mathematical programs, such as MATLAB, and its efficiency in

computation as compared to other modelling methods. The air film forms a pressure

profile across the area of the air bearing porous surface, thus a variation of stiffness

across the area of the air film. A single spring element, which is commonly used to

model the air bearing within a guideway [79, 120] may not be adequate to describe the

air film dynamic behaviour accurately in this test rig setup. Hence, a set of non-linear

spring elements to form the FE model of the air film was proposed in Section 6.3.1.

When air bearings were setup in a guideway system and installed with mounting mech-

anisms that facilitate parallelism of the porous surface to the guideway surface, more

elements of uncertainty were introduced. The common opposing air bearings layout

often encloses the bearings within the carriage or some supporting structure. This often

hinders the possibility for direct measurement of the air bearing lift or actual air gap

created by the air supply pressure and/or through some gap presetting mounting mech-

anisms. Nevertheless, some of these uncertainties can be modelled and estimated. One

of the main contributions in Section 7.2, is the estimation of the air gap and spherical

joint displacement. Through the stiffness model and the force interactions between the

air film and the spherical joint, the ‘actual’ air gap height can be estimated based on

displacement measurement of the threaded stud. This is favourable to the accuracy

of the air film model as the misinterpreted air gap by the stud displacement measure-

ment can be notably different from the ‘actual’ air gap, as shown in the plot of Figure
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7.12. This estimation of air gap height through joint and air film stiffnesses for

unaccessible air bearing mounting setup increases the robustness and accuracy of

aerostatic guideway dynamic model.

To illustrate the significance of this air gap height estimation and using the case of

Setup 1 of Section 7.3.2 (5 �m stud setting) as an example, Table 8.1 presents the

computed stiffnesses of a single air bearing setup within the guideway using three

different schemes, as described below.

1. Scheme A: Stiffness obtained merely from the air bearing load-lift curve and

considering the stud displacement as the air gap height.

2. Scheme B: Stiffness calculated based on the combined compliances of the air film

in series with the mounting mechanism and considering the stud displacement

as the air gap height.

3. Scheme C: Effective stiffness, Ke computed based on the proposed air gap esti-

mation method, as discussed in Section 7.2.4

A single air bearing stiffness based on
Scheme A Scheme B Scheme C
23 N/�m 6.9 N/�m 2.8 N/�m

Table 8.1: Computed air bearing stiffnesses based on three different schemes

From Table 8.1, it can be seen that the method used in obtaining the air bearing stiffness

will result in a substantially different dynamic characteristic prediction of an aerostatic

guideway system. If a design engineer is to take it for granted that the mounting mecha-

nism of an air bearing setup is sufficiently rigid such that it can be ignored, and chooses

to employ Scheme A to obtain the air bearing stiffness, an erroneous FE model will

be constructed. The resulting dynamic characteristics of his/her aerostatic guideway

design will be severely misled. As discussed in Section 3.2.1, time-to-market is crit-

ical to ensure the manufacturer/company stays above the competition. The ‘first time

right’ mindset in precision machine development is important to warrant the company

sustainability in this ever demanding knowledge-based economy. In this thesis, the

significant dynamic effect of air bearing mounting interfaces has been reviewed.
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A comprehensive air bearing FE model has been developed that take into consid-

eration the non-linearity in the air film as well as its mounting mechanism.

non-linear modal analysis remains a challenging research area. Many positive research

outcome has been proposed by [41, 43, 45, 126], which are mathematically and com-

putationally challenging. The implementation of non-linear modal analysis in an FEA

environment is still a technology gap. The non-linear air film FE model proposed in

Section 6.3.1 provides a more accurate representation of the air film behaviour. How-

ever, in order to fully exploit this FE model, the FEA software package should incor-

porate non-linear modal analysis capabilities, which is currently lacking. Although the

non-linear modal parameters of this air film model can be computed using the time-

domain method, either in FEA environment or numerically using MATLAB (as shown

in Section 6.3.5), it is computationally inefficient, especially when the system becomes

more complex and with more DOFs. Potentially, this becomes a motivation for further

work of this research, which will be discussed in the next chapter.

160



Chapter 9. Conclusion and Further Work

Chapter 9

Conclusion and Further Work

9.1 Research Overview and Contributions

The Engineering Doctorate (EngD) programme aims to equip research engineers with

rigorous research capabilities in an industrial or business context. This EngD research

project identified the weaknesses in current industrial practice of precision machine

design, in particular, the robustness of dynamic modelling of machine interfaces during

the design phase. With this motivation, the main aim of this research was to accurately

describe the non-linear dynamics of a non-contact (in this case, an aerostatic) guideway

system in order to achieve a good FEA model in the design stage. The main aim was

broken down into sub-objectives as follow:

1. Identification of key interfaces in the guideway system

2. Formulate a systematic identification method to obtain an accurate set of dy-

namic model parameters

3. Validation of design methodology that incorporates interfaces dynamics

The research has fulfilled the above objectives, which were established at the begin-

ning of the programme. Chapter 8 gives a broad overview on how a complex aerostatic

guideway is broken down into key interface elements using the concept of stiffness

chain, and the methodology to identify the various interface parameters that lead to an

accurate dynamic model of the guideway. The identification of the aerostatic guideway

characteristics leads to in-depth studies of the air bearing’s air film behaviour as well
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as its mounting mechanism. The findings of the air bearing dynamic characteristics

were validated using the aerostatic guideway system. Good correlation between the

analytical modelling and the experimental modal testing was achieved. The case study

on the guideway gives further insight into the stiffness interaction between the air film

and the bearing mounting mechanism.

The contributions of this research are consciously entrenched (in bold) within the dis-

cussion of Chapter 8. They can be summarised as fol lows:

1. Development of a systematic and comprehensive methodology that breaks down

a complex aerostatic guideway into key interface elements, and identifies their

parameters which contribute to the system dynamic behaviour.

2. Design of a dedicated air bearing test rig which allows in-depth and isolated

analysis into the bearing dynamic characteristics.

3. Understanding of the various errors that impact the achievable accuracy of an an-

alytical dynamic prediction through an error budget of the dedicated air bearing

test rig and aerostatic guideway.

4. An estimation method for air gap height for inaccessible air bearing mounting se-

tups which increases the robustness and accuracy of the overall aerostatic guide-

way dynamic model.

5. The significant dynamic effect of air bearing mounting interfaces has been re-

viewed. A comprehensive air bearing FE model has been developed that take

into consideration the non-linearity in the air film as well as its mounting mech-

anism.

This research project set out to develop a solution to improve precision machine de-

sign in the industry. The thesis marks a milestone in the understanding of aerostatic

guideway dynamic behaviour. However, to produce a design tool ready for industrial

adoption, findings from this research required further development and close collab-

oration with FEA software manufacturers to increase its Technology Readiness Level

(TRL, as discussed in Section 3.3.3). The above contributions shall lay the foundation
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and enable a design tool for analysing complex precision systems. The next section

suggests some further work to increase the TRL of this research work.

9.2 Further work

The following summarises some of the potential further work for this research.

non-linear modal analysis for FEA Not all commercial FEA software packages

consider non-linearity in their modal analysis solver. Fundamental modal analysis

theory assumes linearity of system. Most machine interfaces exhibit non-linearity in

different extent. Although linearisation and assumption of linear behaviour within an

operating region enable the the non-linear system to be predicted with certain level of

accuracy, the solution is usually not generic and unified enough to easily implemented

on different system. Research outcome in the field of non-linear modal analysis pro-

posed by [41, 43, 45, 126] are mostly mathematically and computationally challenging.

As the proposed methods are not yet well-established, implementation of such methods

in FEA is still a research gap.

Squeeze film damping and its effect on air bearing dynamics In this research,

the modelling focus has been directed to the stiffness of the air bearing interfaces.

The key interest here is to achieve accurate modal parameters, i.e. mode shapes and

its corresponding natural frequencies, using the modal analysis solver in FEA. It is

considered that modal frequency is mainly dependent on the system stiffness property.

The damping property generally influences the magnitude of the response. The thin

air film produced by aerostatic bearings is known to exhibit significant squeeze film

damping [70]. This damping property of the air film may reduce the significance of

some of the mode shapes by lowering its vibration magnitude. Hence, the next step to

acquire a complete picture of air bearing dynamic behaviour, is to study the squeeze

film damping and its effect on air bearing dynamics.

Mechanism or method for efficient and accurate setting of air gap height From

the work discussed in Chapter 5 to 7, one would realise the difficulties and issues
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9.2 Further work

related to the current method in setting the air gap height of an aerostatic bearing.

There may be a potential for a radical mechanism design or method for air bearing

installation, such that air gap height setting can be performed more efficiently and

accurately.

Integrating dynamic model of guideway with controller design The ultimate aim

for a robust dynamic modelling using FEA is to develop a dynamically optimal pre-

cision machine or motion system. Dynamic modelling and prediction of the motion

system forms a portion of the design process. Incorporating the dynamic character-

istics of the guideway or the whole motion system into a simulated control scheme

forms a more holistic design approach. This is the concept of Mechatronic design or

“Design-for-Control” approach, discussed in Section 2.2. The work here shall bene-

fit the advancement of this design approach by providing a more comprehensive and

robust dynamic modelling methodology for aerostatic guideway.
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Appendix A. Technical data of New Way Air Bearing

A.1 Specifications of 25 mm Diameter Air Bearing

Input Pressure .41 MPa

(60psi)
Ideal Load N (lbs) 80 (18)

Stiffness N/micron (lbs/u in)1 18 (0.10)

Flow NLPM (SCFH)1 0.53 (1.2)

Fly Height1 5 microns

SPECIFICATIONS: 25mm   #S102501

Bearing Size 25mm

Bearing Height mm (in) 13  (0.52)

Bearing Weight grams (oz.) 14 (0.5)

Housing Material/Finish Aluminum/Anodized

Porous Media Material Carbon

Bearing Face Surface Size - Carbon mm (in) 24mm (0.940) φ
Flatness mm (in) 0.0005 (0.00002)

Ball Socket Size 13mm 

Pressure Port Thread M3 X 0.5

Viable Pressure Range .414-.552MPa  (60psi -  80psi)

Maximum Allowable Pressure Supply .689 MPa  (100psi)

Resolution3 Infinite

Maximum Speed4 50m/sec

Common Guide Surfaces Granite, hard-coated aluminum, ceramics, 

glass, stainless steel, plated steel

Suggested Guide Surface Finish5 16 RMS

Figure A.1: New Way air bearing 25 mm diameter specification (Source:
http://www.newwayairbearings.com)
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A.2 Load lift curves of 25 mm Diameter Air Bearing

A.2 Load lift curves of 25 mm Diameter Air Bearing
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Figure A.2: New Way air bearing 25 mm diameter manufacturer’s load-lift curve
(Source: http://www.newwayairbearings.com)
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A.3 Engineering drawings of 25 mm Diameter Air Bearing

A
S

T
O

N
, P

A
   1

9
0
1
4

P
R

O
P

R
I
E

T
A

R
Y

 I
T

E
M

:

Figure A.3: New Way air bearing 25 mm diameter engineering drawing (Source:
http://www.newwayairbearings.com)
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A.4 Specifications of 65 mm Diameter Air Bearing

A.4 Specifications of 65 mm Diameter Air Bearing

Input Pressure .41 MPa

(60psi)
Ideal Load N (lbs) 666 (150)

Stiffness N/micron (lbs/u in)1 87 (0.50)

Flow NLPM (SCFH)1 1.4 (2.9)

Fly Height1 5 microns

SPECIFICATIONS: 65mm   #S106501

Bearing Size 65mm

Bearing Height mm (in) 20 (0.79)

Bearing Weight grams (oz.) 151 (5.3)

Housing Material/Finish Aluminum/Anodized

Porous Media Material Carbon

Bearing Face Surface Size - Carbon mm (in) 63 (2.48) φ
Flatness mm (in) 0.0005 (0.00002)

Ball Socket Size 13mm 

Pressure Port Thread M5 X 0.8

Viable Pressure Range .414-.552MPa  (60psi -  80psi)

Maximum Allowable Pressure Supply .689 MPa  (100psi)

Resolution3 Infinite

Maximum Speed4 50m/sec

Common Guide Surfaces Granite, hard-coated aluminum, ceramics, 

glass, stainless steel, plated steel

Suggested Guide Surface Finish5 16 RMS

Figure A.4: New Way air bearing 65 mm diameter specification (Source:
http://www.newwayairbearings.com)
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A.5 Load lift curves of 65 mm Diameter Air Bearing
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Figure A.5: New Way air bearing 65 mm diameter manufacturer’s load-lift curve
(Source: http://www.newwayairbearings.com)
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A.6 Engineering drawings of 65 mm Diameter Air Bearing

A.6 Engineering drawings of 65 mm Diameter Air Bearing
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Figure A.6: New Way air bearing 65 mm diameter engineering drawing (Source:
http://www.newwayairbearings.com)
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Appendix B. Air gap height measurement procedure

Appendix B

Air gap height measurement

procedure

LVDT displacement probe

LVDT digital scope

Figure B.1: Air Gap Measurement Setup

Figure B.1 shows the measurement setup of the air bearings carriage. The guideway

bar was removed from the base plate, so that the carriage’s surface with the air bearings

to be measured can be orientated facing up. The steps to obtain the air gap measure-

ment of each air bearing are as follow.

1. Make sure the air supply to all the air bearings are turned on to the desired
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Appendix B. Air gap height measurement procedure

operating pressure.

2. Adjust all the air bearing gap via the threaded stud to random height, so long as

the carriage can be moved effortlessly.

3. Choose one bearing to start with, and place the carriage in an orientation whereby

the screw slot for the measuring bearing is facing up, as shown in Figure B.1.

Ensure that the carriage can still slide freely.

4. Turn off the air supply to the bearing and let the bearing settle such that it is in

contact with the guide bar surface. Make sure the carriage cannot be moved, i.e.

the air bearing is pressing on the bar surface.

5. Place the tip of the measuring probe on the threaded stud setting screw of the

bearing mounting mechanism, and zero the probe.

6. Turn the air supply back on to the operating pressure.

7. The measurement reading should indicate the lift of the air bearing in micrometre

scale.

8. Redo step 1 to 4 for about five times to obtain the average.

9. Slide the carriage to other position on the bar and perform step 1 to 4 again to

make sure that the air gap is consistent throughout the length of the guideway.

10. Repeat step 2 to 10 on all the air bearings until all have been adjusted to the

desired air gap height.
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Appendix C. ANSYS Element Description

Appendix C

ANSYS Element Description

The information in this appendix is extracted from ANSYS reference manual [123].

C.1 COMBIN39 Element Description

COMBIN39 is a unidirectional element with non-linear generalized force-deflection

capability that can be used in any analysis. The element has longitudinal or torsional

capability in 1-D, 2-D, or 3-D applications. The longitudinal option is a uniaxial

tension-compression element with up to three degrees of freedom at each node: trans-

lations in the nodal x, y, and z directions. No bending or torsion is considered. The

torsional option is a purely rotational element with three degrees of freedom at each

node: rotations about the nodal x, y, and z axes. No bending or axial loads are consid-

ered.

The element has large displacement capability for which there can be two or three de-

grees of freedom at each node.

See COMBIN39 in the ANSYS, Inc. Theory Reference for more details about this

element. The element has no mass or thermal capacitance. These may be added by us-

ing the appropriate elements (see MASS21 and MASS71). A bilinear force-deflection

element with damping and gaps is also available (COMBIN40).
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C.2 SHELL93 Element Description

Figure C.1: COMBIN39 Geometry

The geometry, node locations, and the coordinate system for this element are shown

in Figure 39.1: ”COMBIN39 Geometry”. The element is defined by two (preferably

coincident) node points and a generalized force-deflection curve. The points on this

curve (D1, F1, etc.) represent force (or moment) versus relative translation (or rota-

tion) for structural analyses, and heat (or flow) rate versus temperature (or pressure)

difference for a thermal analyses. The loads should be defined on a full 360 basis for

an axisymmetric analysis.

C.2 SHELL93 Element Description

Shell elements are a special class of elements that are designed to efficiently model thin

structures. They take advantage of the fact that the only shear on the free surfaces is

in-plane. Normals to the shell middle surface stay straight, but not necessarily normal.

As a result, the in-plane strain variation through the thickness cannot be more complex

than linear.

SHELL93 is particularly well suited to model curved shells. The element has six de-

grees of freedom at each node: translations in the nodal x, y, and z directions and

rotations about the nodal x, y, and z-axes. The deformation shapes are quadratic in

both in-plane directions. The element has plasticity, stress stiffening, large deflection,
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Appendix C. ANSYS Element Description

and large strain capabilities. See SHELL93 in the ANSYS, Inc. Theory Reference for

more details about this element.

Figure C.2: SHELL93 Geometry

xIJ = Element x-axis if ESYS is not supplied.

x = Element x-axis if ESYS is supplied.

The geometry, node locations, and the coordinate system for this element are shown

in Figure C.2. The element is defined by eight nodes, four thicknesses, and the or-

thotropic material properties. Midside nodes may not be removed from this element.

A triangular-shaped element may be formed by defining the same node number for

nodes K, L and O.

189



Appendix D. Flatness Measurement of Critical Surfaces using Interferometer

Appendix D

Flatness Measurement of Critical

Surfaces using Interferometer

Figure D.1: Flatness of Top Air Bearing Porous Surface
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Appendix D. Flatness Measurement of Critical Surfaces using Interferometer

Figure D.2: Flatness of Bottom Air Bearing Porous Surface

Figure D.3: Flatness of Centre Mass Top ‘Fly-cut’ Surface

Figure D.4: Flatness of Centre Mass Bottom ‘Fly-cut’ Surface
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Appendix E. Experimental results of guideway modal testing

Appendix E

Experimental results of guideway

modal testing
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Appendix E. Experimental results of guideway modal testing

Mode 1 at 207 Hz Mode 2 at 254 Hz

Mode 3 at 263 Hz Mode 4 at 312 Hz

Mode 5 at 391 Hz Mode 7 at 429 Hz

Figure E.1: Experimental modal testing results of overall aerostatic guideway for Setup
1: 5 �m stud setting
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Appendix E. Experimental results of guideway modal testing

Mode 1 at 137 Hz Mode 2 at 180 Hz

Mode 3 at 221 Hz Mode 4 at 244 Hz

Mode 5 at 305 Hz Mode 6 at 319 Hz

Mode 7 at 425 Hz

Figure E.2: Experimental modal testing results of overall aerostatic guideway for Setup
2: 9 �m stud setting
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