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Abstract 

 

Prior to this study, there has yet to be a clear demonstration of an artificial control of 

antibody affinity via photochromic dyes. The research described in this thesis sets out 

to address this by investigating photochromic dyes and their subsequent applications 

with high affinity biomolecules - primarily to photomodulate the functions of 

biomolecules. The main avenue of investigation explored the conjugation of 

photochromic dyes (spiropyrans) to proteins (an enzyme and five different 

antibodies), to achieve reversible photomodulation of protein function for possible 

applications in biosensor technology (such as the development of reagentless bio-

reversible sensing systems). A secondary aim involved the investigation of the 

feasibility of antibody-antigen binding in the presence of ionic liquids. Ionic liquids 

have recently experienced growing interest as replacements for traditional organic 

solvents in a number of industrial applications. The practicability of spiropyrans in 

ionic liquids was also investigated (with the future possibility of photomodulated 

antibody-antigen interactions in ionic liquids to deliver a variety of improved 

analytical performances). 

 

The synthesis and photoswitching properties of an appropriate range of spiropyran 

dyes are reported. The spiropyran dyes are synthesised to possess a carboxyl group to 

aid carbodiimide mediated conjugation to lysine amino groups of proteins. The 

photochromic behaviour of the spiropyran dyes in various solvents, temperature and 

pH ranges were observed. Conjugation of carboxylated spiropyran dyes to an 

enzyme: horseradish peroxidise, was initially observed to aid development of 

experimental protocol for the target study group i.e. antibodies. Photomodulation of 

the modified horseradish peroxidase was found to demonstrate ~ 60 % decline in 

enzyme activity, an effect which was reversible as a result of the photoswitching 

capabilities of the attached spiropyran dyes. The five different antibodies; anti 

Atrazine, anti GroEL, anti Phytanic Acid, anti FITC and anti Staphylococcus aureus 

were modified with spiropyran dyes as with horseradish peroxidase. Reversible 

antibody affinity photomodulation was observed via their reaction in an ELISA which 
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yielded a decline of ~ 15 %, ~ 40 %, ~ 50 %, ~ 55 % and ~ 65 % in binding signal 

respectively. A fatigue assessment was conducted on the photoswitching capabilities 

of both the conjugated and the unconjugated spiropyran dyes.  This was expressed as 

ten photoswitching cycle experiments, the first evenly spaced over ten days and a 

second over ten weeks. The initial results suggested dye degradation increased with 

consecutive photoswitching cycles of the conjugated spiropyran dyes. It was observed 

that the level of degradation for the unconjugated spiropyran dyes was independent to 

the timing interval between photoswitching cycles, suggesting storage stability of the 

compound. However the level of degradation for the conjugated spiropyran dyes was 

dependent to the timing interval between photoswitching cycles, suggesting storage 

instability. 

 

A subsequent study involved the demonstration of the feasibility of antibody-antigen 

binding in ionic liquids for the first time. Various combination ratios of ionic liquids 

with aqueous phosphate buffered saline were employed. Initial experimentation of 

antibody-antigen binding showed that use of solutions with an ionic liquid content of 

50 % and below, produced identical results to that of the standard aqueous phosphate 

buffered saline. At 95 % ionic liquid content, a lower level of binding activity was 

observed. The possibility of a photomodulated antibody-antigen interactions in ionic 

liquids did not produce a significant result on this occasion with the observation of 

spiropyran dyes failure to photoswitch in solutions with as low as 10 % ionic liquid 

content. 

 

In summary, although the development of a reagentless bio-reversible sensing system 

continues beyond the period of this PhD thesis, significant progress has been made 

with regards to photochromic antibodies as possible candidates for further studies and 

applications, also the establishment of antibody-antigen binding in various ionic 

liquids can serve as ways to further enhance the applicability of such reactions under 

different environmental conditions. 
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1 Introduction and Literature Review 

1.1 Overview 
 

The notion of synthetic molecular switching is not a novel concept. Terms such as pH 

indicators and transitions lenses are common to the non-scientific individual. pH 

indicators (such as litmus paper) are one of the oldest classical forms of synthetic 

molecular switches; they display distinct colours based on the pH environment they 

are subjected to.  Plastic photochromic (transitions) lenses are an example of synthetic 

optical molecular switches. The lenses darken when exposed to ultraviolet (UV) rays 

from sunlight, and revert to normal when the UV rays are absent. Both of these 

concepts rely on the capability of action modulation by a stimulus; i.e. whether by 

chemicals or photons or other phenomena. 

 

Photochromic materials have attracted much attention recently because of their 

potential applications as optical filters, optical switches, optical memories and other 

similar molecular devices (Grofcsik et al., 2002). They are compounds that are able to 

exist in very distinctive isomerisable forms; they can change their form following 

illumination at different ranges of wavelength (i.e., visible [700-400nm] and UV 

[>390-200 nm]).  This unique property renders them a potential core element in 

synthetic optical molecular switching technology (Pieroni et al., 2001). Thus, 

photochromic materials are promising materials for applications in devices in which 

photomodulated functions are appropriate.  

 

The binding technique of antibody-antigen technology has found widespread 

acceptance in the biomedical, biochemical and biotechnological communities. Its use 

has extended from quantitative analysis of hormones, drugs, proteins and enzymes to 

applications in infectious disease, food industries, agricultural products, and 

environmental toxicology. This is primarily attributed to the high affinity binding 

constants and specificity of antibody-antigen interactions, and the simplicity of the 

analytical technologies involved. However, as with most technology, improvements 

are usually made based on the shortfalls encountered, one of these being regeneration 

of antibody for re-use. Antibodies themselves are expensive, and current regeneration 
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processes after antibody-antigen complex formation are known to have an adverse 

effect on the functions of the antibodies over time. This limits the number of 

successive uses of antibodies, making their application less cost effective (Kress-

Rogers, 1996; van der Gaag et al., 2003). In spite of the fact that various antibody 

regeneration processes have been employed or considered, the idea of a 

photomodulated antibody affinity control highlights an alternative approach.  

 

Photochromic materials (molecules) conjugated to polypeptides have demonstrated 

their potential as “smart” biological materials that switch on and off. The photo-

isomerisation effect (of the photochromic molecules) can induce conformational 

changes of the entire macromolecule; bringing about a reversible switching 

mechanism (Mecheri et al., 2003). Thus, photomodulation of antibody affinity may 

significantly assist in improving the regeneration process, in essence decrease or 

eliminate some of the harsh mechanisms currently employed. The possibility of a non-

damaging regeneration step of antibody-antigen technology may also advance the 

application of related technologies, i.e. light regulated molecular switches that 

reversibly control biomolecular function. This can provide new opportunities for 

controlling activity in diagnostics, affinity separations, bioprocessing, therapeutics, 

and bioelectronics applications (Shimoboji et al., 2002).  

 

Ionic liquids are salts with poorly coordinated ions, resulting in them being liquids at 

temperatures below 100° C (some even at room temperature). These solvents have a 

low melting point, effectively zero vapour pressure, amongst other properties (Yang et 

al., 2005). The proposed application is to use ionic liquids as solvents with zero 

vapour pressure which will eliminate the instability caused by the rapid evaporation of 

traditional water based solvents, and possibly as solvents that will allow biomolecules 

to function in stable thin solvent films. An example of a potential benefit is enabling 

application of antibody-antigen technology under extreme environmental conditions 

such as outside the earth's atmosphere (due to the zero vapour pressure of ionic 

liquids). This application is focused on delivering a variety of improved analytical 

performance of the antibody-antigen technology, which can be further applied to a 

photomodulated antibody-antigen interaction. 
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1.1.1 Structure of Thesis 
 

The body of work presented in this thesis begins with an introduction to 

photochromism, photochromic dyes and photomodulation, and its existence in nature. 

With a varying scope of published work exploiting photomodulation; a selection of 

such previous investigations is presented. These range from in vitro applications of 

photomodulation in biological systems, to its application in non biological systems. 

The synthesis and characterisation of a specific group of photochromic dyes involved 

in this study is then presented. This also includes investigations on the properties and 

conditions for photoswitching. 

 

The photomodulation experimental sections are divided into two main parts.  The first 

section involves the development of protocol to photomodulate a protein (horseradish 

peroxidase) activity in a predominantly aqueous environment. The second focuses on 

the establishment of photochromic antibodies under the same environmental 

conditions, monitoring the modulation of antibody affinity by light.  

 

The concluding secondary part involves an introductory environmental investigation 

on antibody-antigen binding activity in ionic liquids (possible alternatives to 

traditional solvents) and subsequently the potential in photochromic antibodies 

activity in ionic liquids.  
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1.2 Introduction to Photomodulation  

1.2.1 Photochromism and Photochromic Dyes  
 

Photochromism can simply be defined as a light-induced reversible change of colour; 

however Bouas-Laurent et al., (2001) gave a more precise definition:  

 

“Photochromism is a reversible transformation of a chemical species 

induced in one or both directions by absorption of electromagnetic 

radiation between two forms, A and B, having different absorption 

spectra. The thermodynamically stable form A is transformed by 

irradiation into form B.” 

 

The “chromic” phenomenon can be induced by various external stimuli. As also 

explained by Bouas-Laurent et al., (2001), multi-mode chromism can occur in 

complex systems triggered alternatively by two or more different external stimuli, 

such as light, pH, temperature, salts, etc. Photochromism as the name suggest is 

triggered by light (photons). Thermochromism is triggered by the change in 

environmental temperature. Solvatochromism depends on the polarity of the solvent 

present. Electrochromism is induced by the gain and loss of electrons. Some of these 

effects will be briefly revisited in later chapters. 

 

Photochromic dyes are substances that undergo reversible colour changes when 

exposed to light of an appropriate wavelength.  These dyes can undergo structural 

changes and as such display changes in their absorption spectra. The dyes revert to 

their original form or colour when placed in the dark or upon irradiation of an 

appropriate wavelength. This reversible change in structure of the dye is known as 

photoswitching (Pieroni et al., 2001). The photochromic behaviour is due to the 

ability of these compounds to exist in two different states, with relative concentrations 

dependent on the wavelength of the incident light. Examples of some photochromic 

dyes are illustrated in Figure 1.1. 
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Figure 1.1 : Examples of Photochromic Dyes with their Corresponding Isomers.  

2

radical.  

In these examples the thermally stable isomer is on the left, hence hv  denotes the 
longer illumination wavelength, usually between 700-400 nm, and hv1 the shorter 
wavelength between 390-200 nm. However the wavelengths at which 
isomerisation occur depends on the particular structure of the dye and the 
environmental condition of the compound. Some of these dyes can also undergo 
multi-chromism denoted by ∆, a change in stimulus other than illumination.  
With regards to the violgens example, M denotes metals and   denotes a free 
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Photochromic dyes can be further described (based on colour change) as positive or 

negative photochromic systems. When the less thermodynamically stable form of the 

dye is deeper coloured, the system is referred to as “positive” (or normal) 

photochromic system; otherwise it is acknowledged as a “negative” (or inverse) 

photochromic system (Zhou et al., 1995). These acknowledgements can however be 

ambiguous (exampled with Spiropyrans: when structurally modified with a carboxyl 

group; change from being a positive photochromic system to negative photochromic 

system). This observation further confirms the uniqueness of photochromic 

compounds. 

 

Applications of photochromic dyes include: use as filters, in displays, in eye-

protective laser goggles, in transition lenses and in self-developing photography. 

More recently these molecules have been applied in the photomodulation of enzyme 

activity; fluid flow visualisation; reversible holographic systems; as chromophores in 

3-D optical data storage and as a means to photocontrol ion permeation through 

biological membranes (Khairutdinov et al., 2001; Willner 1997; Berkovic et al., 2000; 

Kawata et al., 2000; Schomburg et al., 2001). 

 

General applications of photochromism can be divided into two categories (Bouas-

Laurent et al., 2001): 

a) Those directly related to the change in absorption or emission spectra such 

as variable transmission optical materials, optical information storage, 

cosmetics and authentication systems. 

b) Those related to other changes in physical or chemical properties such as 

refractive index, dielectric constant, electric conductivity, phase transitions, 

solubility, viscosity, surface wettability and secondary effects on 

biomolecules. 

 

The principal motivation for the continued consideration of photochromic dyes for 

potential practical applications is the dye’s ability to reversibly change structural 

forms. The use of photochromic dyes associated with proteins to modulate protein 

function has been limited. 
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1.2.2 Naturally Occurring Examples of Photomodulation 

 

Photomodulation is simply a process of manipulating or regulating activity or function 

using optical wavelengths i.e. light source. Light is essential to life and most 

organisms are known to respond to it. Animals, plants and microorganisms benefit 

from the perception of light as a key to their environment (Hug et al., 1991). 

 

In nature, photochromic molecules represent the basic molecular triggers for many 

important biological photoreceptors, which recognise the intensity (quantity) and the 

avelength (quality) of light in the environment. Many biological systems are 

 amount, main direction and spectral 

omposition of the light available (Hug et al., 1991). 

chromophores into proteins has been inherent in nature as far 

back as

led to s

al., 20 ng biological proteins that undergo 

photom

electro

protein

open-chain-tetrapyrrole proteins, and the xanthopsins found in eubacteria such as 

cothiorhodospira halophila (Ipe et al., 2003). 

nated retinal-Schiff’s base complex which naturally lies in 

w

photochromic, but few retain their photochromic properties when isolated from the 

living cell of which they are part. Photo-chemical and photo-physical reactions are 

fundamental to the interaction between light and organisms, triggering responses to 

light conditions through the modulation. In animals, light is a medium for conveying 

information on position, movement, shape and colour. In plants light is not only an 

information medium, but also used in photosynthesis and therefore of interest in itself; 

plants therefore obtain information about the

c

 

The incorporation of 

 early primitive plant species; consequent alterations and developments have 

ystems such as photosynthesis, photoreceptors and ultimately vision (Renner et 

06). Among these naturally occurri

odulation (with absorption spectra within the visible light range of the 

magnetic spectrum), the more extensively studied biomolecules include retinal 

s (from rhodopsins in higher organisms to sensory rhodopsins in halobacteria), 

E

 

Naturally occurring photomodulation such as rhodopsin is highlighted in Figure 1.2. 

Rhodopsin is a protein in the membrane of the rod photoreceptor cell in the retina of 

the eye. It contains a proto
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the intermembrane pocket formed by seven trans-membrane α-helical receptors. The 

hromophore is bound to a protein via a lysine through the protonated Schiff base. c

Upon light detection rhodopsin undergoes a photochromic change from 11-cis to all-

trans retinal (Figure 1.2). 

 

N
R

H

Nhv12 11 13
1

all-trans-retinal11-cis-retinal

13 12Δ H

R

 

Figure 1.2 : The Photochromic Cycle of Rhodopsin.  

The photochromic change from 11-cis to all-trans retinal. When the molecule is 
exposed to high intensity of light of a high wavelength (hv1), the equilibrium shift 
favours the conversion to all-trans retinal. The reverse reaction takes place in the 
dark and is slow.  
 

Photo-excited rhodopsin triggers an enzymatic cascade process resulting in the 

hydrolysis of Guanosine monophosphate (GMP). This in turn closes cation-specific 

hannels within the rod cell membrane, which are naturally open to allow influx of c

Na+ in the dark. The resulting hyperpolarisation causes the inner synaptic body to 

send a nerve impulse to other neurons in the retina aiding vision. Conversely there is a 

light-induced lowering of calcium ion levels within the nerve which aids recovery/ 

repolarisation of the excited neurons back to a passive "dark" state; the cycle begins 

again upon detection of light. It has also been observed that when rats are moved from 

a dark to a light environment, dopaminergic neurons are stimulated leading to 

activation of tyrosine hydroxylase resulting in enhanced dopamine synthesis. It is the 

light exposure which increases the formation of dopamine metabolites (Hug et al., 

1991). 
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Another example can be observed in plants. Phytochrome (P) controls the 

photomorphogenesis of plants. Chemically, phytochrome is comprised of a 

chromophore consisting of an open chain of four pyrrole rings bonded to the protein 

moiety which can exist in two conformations know as Pr and Pfr.  

 

N
H

N HN N
H

O

CO2HCO2H

O

S

-[-Cystein (321)-]-

hv1
hv2

Pr (660nm) Pfr (730nm)

r = red, absorbing in the red
fr = far-red, absorbing in the far-red

Structure of Pfr isomer (730nm)

N
H

N HN

CO2HCO2H

O

S

-[-Cystein (321)-]-

HN

O

Structure of Pr isomer (660nm)  

Figure 1.3 : The Photochromic change Phytochrome from Pr to Pfr. 

 

The change in absorbance is caused by the photochromic change of phytochrome 
from Pr to Pfr. The red-absorbing form changes to the far-red absorbing form 
when it absorbs red light (660 nm) and back again when it absorb far-red light 

30 nm). (7
 

Pfr is formed by irradiation of phytochrome with red light. Since daylight contains 

large amount of red light, during the day phytochrome is mostly converted to Pfr. At 

night, phytochrome will slowly convert back to the Pr form (Figure 1.3).  Many 

flowering plants utilise this process to regulate the time of flowering based on the 

length of day and night (photoperiodism) and also to set circadian rhythms (roughly-

24-hour cycle behavioral processes of living beings). It also regulates other responses 

including the germination of seeds; elongation of seedlings; the size, shape and 

number of leaves; the synthesis of chlorophyll and the straightening of the epicotyl or 

hypocotyl hook of dicot seedlings (Bouas-Laurent et al., 2001; Hug et al., 1991). 
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The general mechanism of action of naturally occurring photomodulation is 

characterised by the following salient common features (Ipe et al., 2003; Pieroni et 

al., 2001):  

(a) They contain a photochromic molecule attached to a macromolecular 

protein matrix.  

(b) On irradiation, the photochromic moiety undergoes reversible 

stereochemical rearrangements between two or more isomeric forms, the 

reaction direction being determined by the wavelength of the incident light.  

(c) This primary photo chemical reaction induces a conformational change in 

the attached protein matrix, the “photosignaling state”, which finally leads to 

the physiological response. 

 

to duplicate the naturally occurring examples of photomodulation has been 

f interest for decades. This involves the artificial design of proteins linked to 

itro 

onfiguration of such systems and the mechanism of photomodulation, various 

ostulations have been put forward in various studies. For example, photomodulated 

nzymes: Concanavalin A and Papain via photochromic dye groups; azobenzenes and 

piropyrans have been hypothesised to be via path c) of Figure 1.4 (Willner et al., 

991; 1992). Likewise photomodulation of the enzyme horseradish peroxidase is 

assumed to take path d) of Figure 1.4 (Weston et al., 1999; Sesay, 2003). 

 

1.2.3 Designing Reversible Protein Photoswitches 

 

The ability 

o

photochromic dyes (photoswitches), whose activity can be reversibly photomodulated 

as biological systems with a switch. Over the past 3 decades, a limited number of 

artificial examples of photomodulation have been demonstrated; however the 

mechanism of action has just been hypothesised. Figure 1.4 (an adaption of Matt 

Volgraf’s presentation: Switchable Proteins and Channels [2007]) presents a summary 

of some of the proposed mechanism of action during an artificial action of 

photomodulation.  

 

Since there is not yet an experimental procedure that confirms the exact in v

c

p

e

s

1
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    Active State Inactive State 

a) 

 
 

b)

 

13

 

 
 

c) 

 
d) 

Photochromic Dyes     

Protein 

Protein Substrate 

 

Figure 1.4 : Designing Reversible Protein Photoswitches. 

Adapted from Matt Volgraf’s presentation: Switchable Proteins and Channels 
(2007). These are representations of possible modes of molecular photo switch 
configurations and possible mechanism of modulation. 
 



1.2.4  Photomodulation of ems via Photochromic 

Dyes 

1.2.4.1 Introduction 

 

This section describes a number of artificial examples of biological systems that can 

be photomodulated via photochromic dyes. Photoregulation and photomodulation are 

 terms used interchangeably by researchers to describe the photo-control of 

biological activity. A number of research groups have utilised photochromic 

molecules to modulate a variety of biological systems. As a result, in recent years, 

research in the area of photochromism has become increasingly important in 

connection with phenomena other than mere colour change. The occurrences of two 

different structures which can be reversibly interconverted by means of an external

ulus are exploited as molecular switches triggered by light aimed to affect an 

action. Presented are some of the limited examples of photomodulation of biological 

systems via photochromic dyes, however an extended spiropyran related examples of 

photomodulation is presented with the spiropyran dye section (Section 1.5.2), 

 

1.2.4.2 Photomodulation of Enzyme Activity 

Willner et al. conducted a number of enzyme-activity modulation by light. Their work 

in the 1990s involved the chemical modification of enzym

groups which were able to modulate the activity of the enzyme by light. Their 

findings concluded that when the dye-protein complexes are exposed to appropriate 

wavelength illumination, they inhibit or promote the enzyme activity. For example, 

the enzyme Concanavalin A was chemically attache iophenefulgide (a 

hotochromic dye) (Wilner et al., 1991). The authors were able to alter the enzymes 

association with 4-nitrophenyl α-D-mannopyranoside, which resulted in ~ 2 fold 

. The same enzyme was 

t) from the Fab (variable 

agment) in antibodies, was covalently attached to azobenzene moieties via the 

antibody’s lysine residues. A change in illumination altered the catalytic activity of 

 Examples of  Biological Syst

two

 

light stim

 

es with photochromic dye 

d to th

p

change in the binding constant upon appropriate illumination

also studied with tethered spiropyrans and similar results were attained. Papain, a 

cysteine protease that cleaves the Fc (constant fragmen

fr
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the enzyme. Other successful similar modulation of enzyme activity was possible w

horseradish peroxidase, Ba

ith 

mHI, and RNase S (Nakayama et al., 2005; James et al., 

1999; Hamachi et al., 1998), whereby the photoswitching 

apabilities of the attached photochromic dyes resulted in a reversible change in the 

ersation 

etween the cis and trans azobenzene isomers modulated the antibody – hapten 

odulation of the antigenic activity 

sing photochromic antigens (photochromic dyes that were also antigens in the 

2001; Weston et al., 

c

enzyme activity. In summary a limited variety of enzyme activities have been 

reversibly photomodulated thus far i.e. via chemical modification of the enzyme with 

photochromic dyes. In other words there has been a successful demonstration of the 

direct modulation of enzyme activity by previous researchers.  

 

1.2.4.3 Photomodulation of other Biological Systems 

 

Other biological systems have been photomodulated via photochromic dyes. This 

section presents examples of photomodulation of biological system other than enzyme 

activity modulation. Sisido et al., (1998) demonstrated a photomodulated antibody – 

hapten binding reaction. This involved a photochromic hapten, azobenzene, and an 

anti–trans azobenzene antibody. Upon appropriate illumination, the conv

b

complex formation. This study observed photom

u

complex formation). 

 
Photomodulation has also been observed in a modified of E. coli by Bose et al., 

(2006). Azobenzene was attached to an amino acid to form a complex (AzoPhe). 

AzoPhe was then introduced into the E. coli catabolite activator protein (CAP). CAP 

regulates a number of catabolite sensitive operons in E. coli Binding of cathelicidin 

antimicrobial peptide to CAP resulted in conformational changes in the protein that 

increased its binding affinity to its promoter; it resulted in enhanced transcription 

from CAP-dependent promoters. The binding affinity of CAP was reduced in the 

presence of AzoPhe upon conversion from trans- to cis- isomers of the dye. It was 

also suggested that the genetic incorporation of AzoPhe into proteins could be useful 

to temporarily regulate a variety of biological processes, both in vitro and in vivo. 
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The influence of spiropyrans on the transportation of amino acids across cell 

membranes was studied by Sunamoto et al., (1982). Their findings demonstrated the 

first example of the photo-controlled transportation of an amino acid across lipid 

membranes, using a spiropyran embedded in liposomal bilayers of egg 

phosphatidylcholine. In the presence of light there was a rapid rate of transfer of 

amino acid across the lipid bilayer. Upon UV irradiation the rate of movement was 

slowed (reverted back normal rate of transfer). 

 

Muramatsu et al., (2006) demonstrated that genetically and chemically engineered 

nical gates at the entrance 

arts of its cylindrical cavity, serves as a semi biological molecular machine with an 

achinery but also for integration into the design of 

ecured drug release systems. 

ose 

xisting in proteins, such as the α-helix and β-sheet. When photochromic molecules 

chaperonin azo-GroEL, bearing photoresponsive mecha

p

implemented “AND” logic gate capable of controlling the folding process of proteins 

in response to ATP and light as input stimuli.  This engineered chaperonin trapped 

denatured green fluorescent protein (GFPdenat) and prohibited its refolding. However 

hosting azo-GroEL simultaneously detects ATP and UV light, and hence quickly 

releases GFPdenat to allow its refolding. A 1 min exposure of visible light induced the 

cis- to trans- isomerisation of the azobenzene groups and a notable retardation of the 

release of GFPdenat was observed. Muramatsu et al., (2006) believe that such logic 

gate conceptions based on nanobiotechnologies are important not only for the 

advancement of molecular m

s

 

Jurt et al., (2006) also demonstrated that a peptide capable of adopting different 

tertiary structures can be constructed by inserting an azobenzene linker into the 

polypeptide backbone; a simple transformation (irradiation or heating) can then be 

used to switch from one form to the other. Their approach complements related efforts 

to control helix conformation through azobenzene-based photo-crosslinkers between 

appropriately spaced cysteine side chains. 

 

From the point of view of molecular structure, polypeptides are quite special polymers 

as they can exist as both disordered and as regularly folded structures typical of th

e
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such as spiropyran units are attached to the macromolecular chains, polypeptides 

appear to respond to light giving large photo induced structural changes (Shimoboji et 

al., 2002). 

 

1.2.5 Examples of Photomodulation of Non-Biological Systems via 

Photochromic Dyes 

1.2.5.1 Introduction 

 

Photochromic behaviour as previously stated has also attracted a great deal of interest 

with regards to possible applications in non-biological systems. Like biological 

systems, synthetic polymers, copolymers and other non biological containing 

photochromic moieties undergo reversible variations in their structure and 

conformation upon exposure to different illumination conditions which may also lead 

to modulation (Pieroni et al., 2001). Presented are some of the limited examples of 

photomodulation of non-biological systems via photochromic dyes, however an 

extended spiropyran related examples of photomodulation is presented with the 

spiropyran dye section (Section 1.5.2),  

 

1.2.5.2 Solubility regulation via Photochromic Dyes  

 

Solubility regulations by photochromic dyes have been more than once been 

onstrated to be feasible. Ito 

e was easily and 

ifugation.  Light irradiation caused a reversal of this 

modulation. 

dem et al., (1999) demonstrated that photomodulation of 

subtilisin solubility can be regulated by a photo-responsive copolymer, a copolymer 

that carries spiropyran groups on its side chains. Spiropyran-carrying methacrylate 

covalently attached to subtilisin (= hybrid subtilisin) was found to be completely 

soluble in toluene and it efficiently catalyzed transesterification. After UV irradiation, 

the hybrid subtilisin formed a precipitate. The hybrid enzym

quantitatively recovered by centr

effect. Hybrid subtilisin can be repeatedly and reproducibly cycled through 

solubilisation and precipitation steps without a loss of activity. This study was 

essentially based on the recovery of the enzyme in a solution rather than its activity 
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A similar observation of photoregulation of solubility of polymers containing 

photochromic moieties was also studied by Arai et al. 1996. They linked 

photochromic spiropyran dye to methyl cellulose to form a complex. Their findings 

oncluded that solubility of the complex in benzene and the contact angle of the 

UV light and 

Ciardelli et al., (2001) demonstrated that photochromic vinyl polymers, such as 

opyran moieties, can undergo photo-induced variations in 

om aqueous solution using organic liquid 

embranes into which spiropyran dye are dissolved. The merocyanine form of the 

 to attract certain metal 

ns. This method of chelation extractions is photo reversible (Garcia et al., 2000).  

c

complex film with water were reversibly regulated by irradiation with 

subsequently with visible light. 

 

polyacrylates containing spir

their viscosity influencing its solubility. They stated that since the viscosity of a 

polymer system is partly a reflection of polymer conformation, the “photo viscosity 

effects” were generically attributed to photo-induced conformational changes of the 

macromolecules. 

 

1.2.5.3 Other Non-Biological Systems Examples 

 

There has been some interest in the use of photochromic dyes as chemical separation 

agents. Metal ions can be extracted fr

m

spiropyran dye is charged and consequently has the ability

io

 

The photo-reversibility of the photochromic dye spiropyran charge has also been 

applied in metal ion sensors. The development of an optical method to detect and 

monitor aluminum ions, both clinically and industrially, has been successfully 

demonstrated by Ren et al., (2007). 

 

Maurer et al., (2005) illustrated another example of photomodulation applied in the 

concept of a memory device. They developed a photo-chemically controlled photonic-

crystal material by covalently attaching a spiropyran derivative to polymerised 

crystalline colloidal arrays (PCCAs). These PCCAs consisted of colloidal particles 

that self-assembled into crystalline colloidal arrays (CCAs) when embedded in cross 
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linked hydrogels. These materials diffract light in UV, visible, or near-IR spectral 

regions. Excitation of the spiropyran using UV light caused a red-shift diffraction of 

the PCCAs. Conversely irradiation with visible light caused a blue-shifted diffraction. 

Thus, this material acts as a memory storage material where information is recorded 

by illuminating the PCCA and information is recalled and read out by measuring the 

photonic-crystal diffraction wavelength. The diffraction shifts are resultant from 

hanges in the energy from mixing the PCCA system, as the spiropyran is photo-

 reversible changes in wettability when irradiated with UV and 

isible light. The magnitude of the changes achieved in the contact angle using light 

-sensitive coating, applied to the 

side walls of capillaries, allowed the flow of water to be induced by light of specific 

.3.1 Overview 

c

excited to its different stable forms. 

 

Rosario et al., (2002) explored the design of a photo sensitive surface whose wetting 

characteristics could be changed by the use of light. A coating of photo-responsive 

spiropyran molecules covalently bound to a glass surface, along with a mixture of 

silanes, exhibited

v

was found to be between 11 ° and 14 °. This photo

in

wavelengths i.e. manipulating a microchannel or capillary surface properties using a 

readily controlled external stimulus. 

 

1.3 Spiropyran Dyes 

1
 

An ideal photochromic dye for modulating high-affinity biomolecules function would 

have the following desirable general characteristics (Hug et al., 1991; Bouas-Laurent 

et al., 2001):  

 

a) Its photoswitching capability must occur on a relatively faster time scale 

compared to the observed or monitored reactive nature of the biomolecule.  

b) The photochromic dye must have a high quantum yield i.e. the measure of the 

efficiency with which absorbed light produces some effect.  
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c) The isomers of the photochromic dye must have contrasting physico-chemical 

properties to aid more definitive switching i.e. the chemical / physical 

properties of the isomers should have distinctively varying effects on the 

biomolecule and not just a mere colour change.   

d) The dye, biomolecule and dye-biomolecular complex should be 

thermodynamically stable during irradiation with desired wavelength of 

illumination; they should also be stable at room and at the bimolecular storage 

temperatures.   

e) The dye and the complex formed should have zero or minimal chemical 

roperties, opening a wealth of exploitable 

pportunities, and have also been well studied (Banghart et al., 2006).  These 

advantageous properties include: 

al structure of the two isomers of spiropyran dyes are also very 

distinct, almost appearing as two different molecules. Photochromism of 

rans also display the same photoswitching properties as seen in 

azobenzenes but also have an increase in polarity (dipole moment) upon 

he 

 

degradation (fatigue) after use; they should also not be fatigued during 

photochromic-biomolecule complex formation.  

 

As evident in Section 1.2.4, the incorporation of azobenzenes in the photomodulation 

of biological system has been significantly exploited, largely because of their change 

in length (∆ length ~ 7Å); geometrical structure upon trans- to cis- 

photoisomerisation; their simplicity of structure; and to a lesser extent due to their 

change in dipole moment (∆µ ~3 D) (Banghart et al., 2006). However, spiropyran 

dyes also have very attractive p

o

 

• The chemic

azobenzenes show less differential cis- and trans- properties compared to 

opened and closed spiropyran dyes. 

• Spiropy

photo-induction opening of the electrocyclic ring to create the merocyanine 

form (∆µ ~15 D); This is anticipated to significantly contribute to t

modulation phenomena by amplifying the photomodulation effect.  
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1.3.2 Photochemistry of Spiropyran Dyes 

 

Among many types of organic photochromic compounds, the chemistry of spiro-

photochromic compounds has been extensively investigated with special regards to 

arity difference and conductivity change 

their physicochemical properties. Particular attention has been focused on spiropyrans 

due to their potential applications in the industrial fields (Li et al., 2004). Spiropyran 

dyes are unique and have intriguing photochromic proprieties; the isomers undergo 

colour change, geometrical change, pol

(electronic structure) when irradiated with appropriate wavelengths of light (~350mn 

and > 500nm). 

 

N

C2H2COOH

N NO2

C2H2COOH

Opened Merocyanine formClosed Spiropyran form

Dark or UV

Visible Light

O

O NO2

C(3) C(3)

 

 

Figure 1.5 : Schematic of the Photo Isomerisation of the Spiropyran Dye.   

he visible light (>500nm) illumination of a carboxylated spiropyran dye (1'-(2-

 should be noted that the dark reaction 

orthogonal 

rientation; as such the absorption spectrum of the compound is essentially the 

uperimposition of the two constituent chromophores (Ernsting et al., 1990).  

T
carboxyethy1)-3',3'-trimethyl-6-nitrospiro[2H-1-benzopyran-2,2'-(2H)-indole]) 
(SP-COOH)  in ethanol solution displays a colourless spiropyran closed form. 
Upon UV illumination (~350nm) or in the dark, the merocyanine opened form is 
experienced which is highly coloured red. The isomers can be switched back and 
forth with the appropriate illumination. It
is a slow conversion rate.    
 

Spiropyran molecules are bicyclical compounds with one atom that is common to 

both rings.  They consist of an extended pyran moiety; and a second moiety which is 

held in an orthogonal orientation by a common spiro carbon atom (C (3)). The π-

electron systems of both constituent halves do not interact because of their 

o

s

 

21



The spiropyran form is a resonance hybrid of a zwitterionic structure and a neutral 

tructure. When illuminated with UV radiation of about 350nm bond cleavage takes 

he overall structure of the merocyanine form, as seen in the neutral 

tructure; also the aromaticity of the oxygen-bearing ring is lost. Thus, the molecules 

may be switched from closed to open forms with UV light, or thermally when in polar 

solvents; They can conversely be switched from open to closed forms of the dye with 

visible light, or thermally in non polar solvents, and the stereogenic centre at C (3) is 

formed again (Eggers et al., 1999).  

 

Spiropyrans have non-polar groups but when converted to merocyanine isomer of the 

dye they become polar (Ito et al., 1999). The dipole moment of the most stable

onformer of the open photo-isomer is known to be about twice the size of the closed 

duced 

d 

wer water solubilities (Garcia et al., 2000). 

ound is 

s

place; the molecule then reconfigures itself into a near planar merocyanine structure. 

Irradiation of the spiropyran form with UV light causes the formation of an extended 

π-conjugation merocyanine form by heterolytic cleavage of the spiro C-O bond at the 

oxygen molecule adjacent to spiro carbon (Shao et al., 2005; Lin, 2003). When this 

happens the stereogenic spiro centre is lost. This merocyanine form of the dye absorbs 

light in the visible region of the spectrum due to their extensively conjugated π-

electron cloud (Hobley et al., 1999). The zwitterionic structural component is a major 

contributor to t

s

 

c

form (Cottone et al., 2000). Some spiropyrans can withstand repeated light in

cycling, up to 30,000 cycles in certain cases. They also show good quantum yields for 

isomerisation (between 10% and 50%), resulting in efficient energy utilization an

fewer side reactions. They do not generate free radicals, unlike some other 

photochemically active molecules (Rosario et al., 2002). Spiropyrans, in their closed 

form, are soluble in a wide range of organic solvents and generally have relatively 

lo

 

In non-polar solvents spiropyran molecules generally exhibit normal photochromism 

and are colourless to pale yellow solutions becoming highly coloured when irradiated 

with UV radiation; they then revert back to the colourless/pale yellow spiropyran 

form upon irradiation with visible light.  The spiropyran form is a lightly coloured 

neutral hydrophobic compound, whereas the opened merocyanine comp
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deeply coloured and is more hydrophilic. The position of the established complex 

equilibrium also depends on many factors; solvent polarity, the nature of the 

substituent on the molecule, and the concentration of the solution. Although 

spiropyrans generally show positive photochromism as described, a few spiropyrans, 

especially those with free hydroxyl, carboxyl or amine groups, exhibit negative 

photochromism (Zhou et al., 1995). 

 

Since the discovery of photochromic reactions of spiropyrans in 1952 by Fisher and 

Hirshberg, researchers have investigated spiropyrans for various possible applications 

a few examples of which were mentioned in section 1.2.4 and in Table 1.1. The 

transition from spiropyrans to merocyanines has been studied by various groups and 

has been determined to occur within a time frame of pico- to nano-seconds; thus it is 

fairly fast compared to the reaction rate of antibodies and enzymes. The mechanism of 

conversion between isomers has been extensively looked into over the past 50 years 

and there has been a large volume of research into the conversion of the spiropyran 

olecule into the merocyanine form.  In principle, eight merocyanine conformations m

are possible, which correspond to different values of the three dihedral angles α, β, 

and γ describing the rotations around the C8–C10 (N-C=C–C), C10–C11 (C=C–

C=C), and C11–C12 (C–C=C–CO) bonds respectively. However, only conformations 

with a central trans- segment (i.e. β = 180°) correspond to local energy minima, hence 

there are only four potentially stable conformations (see Figure 1.6) The equilibrium 

composition of these four conformations is dictated by the thermodynamics of the 

solvent system being used (Cottone et al., 2000; Hobley et al., 1999).     

 

23



NO2

N O

R

N

R Open form

Closed form

hv1

hv2  orNO2 Δ

 (TTC)

O

N NO2

R

O

hv1

hv1

N

NO2

R

O

N

R

O

Open for

hv2  or Δ

β γ

α

m (TTT)

hv1 hv2  or Δ

Open form (CTT)

Open fo

NO2

hv2  or Δ

 
 

Figure 1.6 : Schematic of the Merocyanine Isomers. 

Adapted from Hobley et al., (1999). Formation of the proposed four isomers of 
the merocyanine forms. T and C denote trans and cis isomerism. 

rm (CTC)

 

 

Only conformations with a central trans- segment (i.e. β = 180°) correspond to local 

energy minima (Cottone et al., 2000). It has been suggested that merocyanine form of 

the spiropyran dye, can potentially exist as any one of the four isomers in Figure1.6 

which are all trans- about the central β-bond on the methane bridge, having an 

equilibrium composition dictated by the thermodynamics of the solvent system being 

used (Hobley et al., 1999). Merocyanine isomers which are cis- about the central β-

bond are high energy isomers and do not significantly contribute to the equilibrium 

isomeric mixture.  
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Therefore in theory (as a result of molecular modelling) the most stable merocyanine 

conformation based on thermodynamics in polar solvents is trans–trans–cis or TTC, 

characterised by α = 180°, β ≈ 180°, and γ = 0° with CTT, characterised by α = 0°, β ≈ 

180°, and γ = 180°. However devising another theoretical modelling using a semi-

empirical method (Cottone et al., 2000), it was found out that CTT was the most 

stable with TTC being the least. The cis-merocyanine and trans-merocyanine form are 

both considered to be stable, but the conformer distribution may depend significantly 

on the solvent and substituent attached; as such, there is no general agreement on 

which structure is the most stable form (Gorner et al., 1998).  

 

 

25



1.4 Immunoaffinity Biosensors 
 

“Biosensors are analytical devices incorporating  a biological material 

(e.g. tissue, microorganisms,  organelles, cell receptors, enzymes, 

antibodies, nucleic acids, natural products, etc.), a biologically derived 

material e.g. recombinant antibodies, engineered proteins, aptamers, etc) 

or a biomimic (e.g. synthetic catalysts, combinatorial ligands, imprinted 

polymers) intimately associated with or integrated within a 

physicochemical transducer or transducing microsystem, which may be 

optical, electrochemical, thermometric, piezoelectric, magnetic or 

micromechanical” (Biosensors & Bioelectronics, 2005).  

 

Biosensors are available in two main formats; biocatalytic and bioaffinity which 

involve enzyme catalytic technology and immunoaffinity technology respectively. 

Affinity-based biosensor technology, with its high sensitivity, wide versatility and 

high throughput, plays a significant role in basic research, pharmaceutical 

development, and in food and environmental sciences. Likewise, the increasing 

popularity of biosensors has prompted manufacturers to develop novel 

instrumentation for recently developed dedicated applications (Baird et al., 2001). The 

biosensors that have been earmarked for large scale production have generally utilised 

cheap disposable sensors, which are external to the electronics needed to process the 

signal (Cass et al., 1984). However, developing a wide range of disposable sensors 

has its limitations; not all affinity based sensors can be made available cheaply.  

 

Commercially developed immunosensors, specifically detect analyte in a sample by 

using an immunoaffinity layer, which is usually the removable component of the 

device, and are sometimes referred to as sensor chips. Immunoaffinity layers are made 

by immobilising antibodies or antigens, against a target analyte, on a transducer (a 

device that converts one type of energy or physical attribute to another for various 

purposes including measurement or information transfer; which may be 

electrochemical, optical, magnetic, etc) that produces a detection signal.  
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Bioreceptor  Analyte 
(affinity or 

 
Figure 1.7 : Schematic of Biosensor Technology. 
 
A simplified version of how biosensor technology is generally achieved. Analytes 
are detected by a specific bioreceptor which is liked unto a transducer. A 
response or signal is produced which is usually detected electronically. 
 

 

Affinity-based biosensors have sparked a revolution in the science of biomolecular 

interaction analysis. The inherent recognition properties of these biomolecules convey 

a high sensitivity and selectivity to the biosensors. A key advantage of biosensors is 

that data may be collected in real time, providing detailed information about a bi

catalytic) 

nding 

action (Baird et al., 2001). This technology forms the heart of an immunosensor 

ns to disrupt 

re

device; in order to use immunoaffinity biosensors for successive measurements, the 

surface has to be free of bound substances. 

 

1.4.1 Immunoaffinity Biosensors Regeneration 
 

For a sensor to be used continuously in situ or near point source, the issue of surface 

regeneration is an important one which must be addressed. Antigen-antibody 

complexes are highly stable and often require stringent buffer conditio

binding. 
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Various regeneration methods to remove bound analyte have been reported. Hitherto 

different regeneration strategies have been used; the most commonly used methods 

involve extreme pH buffers, high concentration of surfactants, saturated salt solutions, 

urea, strong solvents such as 85% ethanol in water and chelating agents Andersson et 

al., (1999). The use of these “wash” buffers is often unpleasant and aggressive by 

nature as they are required to disrupt naturally occurring binding events. The 

regeneration process of the immunoaffinity layer generally results in loss of activity 

and sensitivity of the layer. This is due to the damage caused by the regeneration 

buffer used to decouple the affinity complex and / or also as a result of incomplete 

dissociation of the binding of the detection molecule to its analyte. The use of 

proteases for regeneration have been reportedly used to regenerate surfaces effectively 

over 600 thout loss o we tems have re

as 10% decrease in sensitivity  with every regeneration of the sensor surface 

(Wijesuriya et al., 1994). Generally the methods used for renewal of recognition 

ressive towards sensors as well as 

inding level rather than the type of reagent used; i.e. development of other means of 

ontrolling binding affinity. Therefore developing a technology that has the ability to 

e properties of photons. Photons can be 

pplied using extreme spatial and temporal resolutions employing modern laser and 

perfectly clean as photons do not 

ave a residual contamination and, in direct contrast to matter, they do not interact 

 times wi f activity; ho ver other sys ported as much 

molecules have been both imprecise and overly agg

the analyte. Andersson et al., (1999) suggested a possible solution to the problems 

faced by the sensing surface during regeneration, which involved tackling the surface 

b

c

reversibly bind to its affinity partner, via a non-invasive manner, would be highly 

welcomed. 

 

Light is a naturally occurring stimulus that many biological functions can respond to, 

depend on and are not necessarily damaged by, at reasonable intensities.  Light can 

offer many advantages, as a means of manipulating systems of either microscopic or 

macroscopic size, primarily because of th

a

light emitting diodes (LEDs) techniques. They are 

le

with each other at moderate intensities thus allowing for multiplexing. For these 

reasons use of molecular assemblies with optical triggers would be an ideal system for 

the study of molecular processes, as well as the construction of photo-molecular 

 

28



devices (Renner et al., 2005). Control by light can be manipulated very precisely. For 

example, with the use of lasers and microscopes, rapid jumps in the concentration of 

the active forms of molecule are possible, while maintaining exact control of the area, 

time, and dosage. 

 

In 1994 Hohsaka et al. were able to demonstrate a reversible association between 

azobenzene photochromic dye group with monoclonal antibody and an unnatural 

amino acid. Their findings concluded that the azobenzene group, when in the trans- 

form, binds to the antibody. When the dye is photo-isomerised to the cis- form the 

binding ceases and the antibody is released. Kagner et al., (1999) demonstrated the 

feasibility of regenerating a surface plasmon resonance (SPR) biosensor involving 

antibody – hapten interactions by immobilising a photochromic hapten, 

dinitospiropyran (DNP) dye, on an SPR surface. The binding of a soluble anti-DNP 

antibody was modulated by changing the wavelength of surface illumination, which 

induced conformational changes in the immobilised DNP hapten. This is a simplistic 

demonstration of a true non-invasive regeneration of bio-sensing system. Both of 

these findings, although ground breaking with respect to the concept of this study, do 

not demonstrate a typical photomodulation of an antibody in an active biological 

system. This is because the photochromic dye represents the antigen in the antigen-

antibody complex formation modulation hence its use is limited. 

 

The field of commercial optical affinity biosensors is rapidly evolving, with new 

systems and detection methods being developed frequently. The possible 

incorporation of photons, as a driving force, and of photochromic dyes, as molecular 

switch components, with regards to regeneration in immunoaffinity biosensors 

elucidates the practicality of nil or minimal side effects of this proposed method. 
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1.5 Biological Systems to be Employed in Current Study 

1.5.1 Introduction 
 

To date the technology of photo-control of antibody affinity via photochromic dyes 

piropyrans) is yet to be fully exhausted. Although there have been various 

in with the dye. A 

istory of successful modulation of protein function by spiropyran dyes was looked 

llow 

 general trend; as in which dye isomer promotes modulation; however details of 

some experimental conditions were unknown and this may have a significant effect on 

the photoswitching mechanism of the attached dye.  

(s

approaches to photomodulate other biological functions as mentioned in section 1.2.4, 

none of these attempted to apply the phenomenon to antibodies. One possible reason 

could be because typical antibodies have a molecular weight of approximately 150 

kDa; hence they may seem relatively large to photomodulate, especially considering 

the size of a spiropyran dye (~ 380 mwt) and the number of lysine residues (~ 90: 

according to entry in structure 1hzh in the RCSB Protein Database) available for 

coupling on the antibody. Nonetheless, a review of spiropyran related 

photomodulation may give some insight on the feasibility of control of protein 

activity. 

 

1.5.2 Published Results of Photomodulation of Some Protein Systems via 
Spiropyran Dye Derivatives 

 

There has been a limited number of applications of spiropyran dyes to photomodulate 

the activity of proteins via chemical modification of the prote

h

into, in an attempt to establish trends in biological systems modulation by the 

spiropyrans.  In addition to the generic examples of photomodulation described in 

section 1.2.4, photomodulation of proteins via spiropyran dyes is illustrated in Table 

1.1. It is important to note that the illustration in Table 1.1 shows that 

photomodulation of protein activity, aided by spiropyrans, does not necessarily fo

a
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Table 1.1 : Published Results of Photomodulation of Some Protein Systems. 

s of photomodulation of proteins via spiropyran dye 
ein and it molecular weight is shown for comparison, also 

e coupling chemistry and how irradiation affects modulation. 

These are example
derivatives. The prot
th
 

Coupling 
Chemistry 

Protein / 
Molecular 

Weight 
(kDa) 

Solvent Irradiation 
Condition 

Modulation 
Details Reference

EDC/NHS 
Subtilisin / 

 ~ 27 

During coupling, 
Dye is in 
Toluene and 
Protein is in 
water. 
 

Activity of 
modified 

UV 

& 

Visible Light 

UV (dye: 
merocyanine form) 
= modified protein 
becomes insoluble 
 

Visible Light (dye: 
spiropyran form) = 

Ito  

(1999) 

 

enzyme reaction 
in an unspecified 
organic solvent 

modified protein 
becomes soluble 

Coupling in 

UV (dye: 

EDC/NHS 
Glucose 

Oxidase /  

~ 150 

(pH 6.5) 
 

Experiment in 
Water/Ethanol 
(1:10) 

UV 

& 

Visible Light 

native activity  
 

Visible Light (dye: 
spiropyran form) =  
modified protein 
process lower 
enzyme activity  

Willner 
(1997)  

Hepes Buffer 

merocyanine form) 
=  modified protein 
is restored near 

EDC/NHS 
HRP /  

~ 44 
MES (pH 6.0) / 
Ethanol (5:1) 

UV 

& 

Visible Light 

UV (dye: 
merocyanine form) 
=  modified enzyme 
activity is restored 
near native activity  
 

Visible Light (dye: 
spiropyran form) =  
decrease in 

Weston 
(1999) 
 

Sesey   
(2003) 

modified enzyme 
activity  
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Coupling 
Chemistry 

Protein / 
Molecular 

Weight (kDa) 
Solvent Irradiation Modulation 

Condition Details Reference 

 
Po
Glu cid) 
/ ~ 40 

Hexafluoro-2-
propanol & 

Visible Light 

orm) 
= decrease of the 
helix content and 
recovery of the 
original disordered 
con
 

Visible Light (dye: 
spiropyran form) =  
Resulted in a α-

ed 

ified protein 

(1989)  
 

Pieroni 
(2002) 

Dark (dye: 
merocyanine f

formation 

helix order
structure of 
polypeptide 
 

mod
exhibit negative 
photochromism 

Ciardelli 
ly (L-
tamic A

(HFP) 

Dark 

DCC Amylase / ~ 96 
Unspecified Dark 

& 

Visible Light 

) 
= decrease in 

me 

) =  

ity is restored 

Aizawa 
(1977) 
 

Namaba 
(1975) 

Organic 
Solvent 

Dark (dye: 
merocyanine form

modified enzy
activity 
 

Visible Light (dye: 
spiropyran form
modified enzyme 
activ
near native activity 

PPDs/ 
DMAPN 

Chymotrypsin /   
~ 25  

UV 

& 

Visible Light 

) 

ity is restored 

Willner 
(1993) 

UV (dye: 
merocyanine form
= decrease in 
modified enzyme 
activity 
 

Visible Light (dye: 
spiropyran form) = 
modified enzyme 
activ
near native activity 

EDC Concanvalin A 
/ ~ 37 

Phosphate 
buffer, 0.1 M 
(pH= 8) 

 

UV 

& 

Visible Light 

me 
activity 
 

Visible Light (dye: 
spiropyran form) = 
modified enzyme 
activity is restored 
near native activity 

Zahavy 
(1994) 

 

Willner 
(1993) 

UV (dye: 
merocyanine form) 
= decrease in 
modified enzy
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The results of the published work in Table 1.1 demonstrate the effect of 

photomodulation varies from protein to protein. A typi strating this 

variation is the work undertaken by Shimoboji et al., (2002); in this a change in 

incorporated polymer type resulted in an inversion of the lation  i.e.  

the form of dye responsible for one effect (solubility) in one polymer was responsible 

for the opposite effect (insolubility) when the polym

cal example, illu

 photomodu effects

er associated was slightly 

Coupling Protein / 
Molecular Irradiation Modulation Solvent Reference Chemistry Weight (kDa) Condition Details 

Direct (Dye 
embedded in 

bilayer) 

Liposomal 
bilayers of egg 
phosphatidylcholi

Apolar 
solvents 
used 
(hexane and 

Dark 

& 

Visible Light 

) 

le 

Sunamoto 

ne / n/a octanol 
buffered at 
pH 6.0) 

Dark (dye: 
merocyanine form
= Protein was not 
permeable in 
modified bilayer 

 

Visible Light (dye: 
spiropyran form) = 
Protein permeab
in modified bilayer 

(1982) 

Thiol 
coupling 

Polymer-Protein 
1 

 

Protein: 
Streptavidin / ~ 
53 
 

Polymer: N,N-
dimethylacrylami
de (DMA)-co-4-
phenylazophenyl 
acrylate (AZAA)  

Ethanol / 
Dimethylfo
rmamide 
(DMF) 

UV 

& 

Visible Light 

erocyanine form) 

is 

m) = 
- 

 insoluble 

Shimoboji 
(2002) 

UV (dye: 
m
= modified 
polymer - protein 
soluble 

 

Visible Light (dye: 
spiropyran for
modified polymer 
protein is

Thiol 
coupling 

 
 

Protein: 
Streptavidin / ~ 
53 
 

Polymer: DMA-
co-N-4-
phenylazophenyl 
acrylamide 
(AZAAm)

Ethanol / 
Dimethylfo
rmamide 
(DMF) 

UV 

& 

Visible Light 

 

m) = 
- 

 soluble 

Shimoboji 
(2002) 

Polymer-Protein

  

UV (dye: 
merocyanine form) 
= modified 
polymer - protein is
insoluble 

 

Visible Light (dye: 
spiropyran for
modified polymer 
protein is
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changed. This implies that the dye can react differently to different target molecules, 

e  are s

Additionally some research groups stated that the modulation can be driven by a dye-

protein complex under UV i tion and reversed by visible light irradiation 

a o sa); oth s failed entio ion and opted 

 a bl hanis f pho switching. Dark adaptation 

is known to be a slower mech ho n  considered 

that some photoswitching mechanisms were only viable via dark adaption and visible 

light illumination (Sunamoto et al., 1982; Ciardelli et al., 1989). 

 

The medium tion also varied with some expe nducted in 

organic medium aken in aqueous medium, with further 

ex ts  out bin dia at varying ratios. A 

speculative reason for solvent choice may be that certain solvents favoured 

photoswitching of attached dye under UV/visible light i ite possible 

denaturation of the protein). 

 

On the basis of protein molecular size, it can be ted (w  of Glucose 

oxidase modulation by Willn 1997)) at no

average size of an antibody (150 kDa); however the modul

signifies that the size of the protein may not necessa  a factor as 

previously thought, and possibly the availability of lysine groups for coupling that 

ill aid photomodulation. With regards to coupling chemistry, it is thought that the 

ariation in choice was probably dependant on preference within each group; however 

are not cheap hence it would be ideal to set up experimental procedures with a cheap 

ven if they

 

imilar. 

llumina

er group

e light mec

anism of p

pplication (

for the dark

r vice ver

daptation / visi

 to m n UV illuminat

m o to

tomodulatio ; hence it may be

 of reac

 while others were undert

riments being co

perimen being carried  in a com ation of both me

llumination (desp

 no ith the exception

ne quite are as large as the er et al., ( , th

ation of Glucose oxidase 

rily be as major

w

v

most utilised carboxyl-lysine group coupled via carbodiimides.  
 

1.5.3 Reason Behind Choice of Biological Systems to be Studied  
 

This study aims to develop a chemically modified antibody (by spiropyran dyes) 

whose affinity can be controlled by the irradiation with photons. However, antibodies 
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protein and apply the finding on the antibodies. HRP was chosen not only for ease of 

exploitation, i.e. to aid the set up of an adaptable experimental protocol for antibody 

hotomodulation since HRP has been previously modulated by others (Weston et al., 

mannosamine, and galactosamine depending upon the 

pecific isozyme. Its molecular weight is ~ 44 kDa (Zollner, 1993; Shannon et al., 

 solution. It can also 

tilize chemi-luminescent substrates such as luminol and isoluminol and fluorogenic 

nyl acetic acid 

chomberg et al., 1993). HRP is however inhibited by the following compounds: 

p

1999; Sesay, 2003); HRP was also chosen as it is a readily available enzyme and its 

activity can be assayed using colourometric reagents readily available. Additionally 

HRP has a molecular size similar to an antibody fragment (~ 44 kDa). This further 

exploitation may also give an insight into whether it is the size of protein or number 

of available lysine groups that has a significant effect on photomodulation.  

 

1.5.4 Horseradish Peroxidase 
 

Horseradish peroxidase (HRP) is isolated from horseradish roots (Amoracia 

rusticana) and belongs to the ferroprotoporphyrin group of peroxidases. Its full 

nomenclature is: hydrogen-peroxide oxidoreductase, EC 1.11.1.7. HRP is a single 

chain polypeptide containing four disulfide bridges. It is a glycoprotein containing 

18% carbohydrate. The carbohydrate composition consists of galactose, arabinose, 

xylose, fructose, mannose, 

s

1966; Welinder, 1979). It possesses ~ 12 lysine residues, according to the entry in 

structure 3atj in the RCSB protein database. This is relevant with respect to its 

application in the study in which lysine residues will be utilised in coupling 

carboxylated spiropyran dyes to carboxyl groups. 

 

HRP readily combines with hydrogen peroxide (H2O2) and the resultant complex 

[HRP–H2O2] can oxidize a wide variety of chromogenic hydrogen donors. HRP 

produces a distinctive colour when exposed to an appropriate

u

substrates such as tyramine, homovanillic acid, and 4–hydroxyphe

(S

sodium azide, cyanide, L–cystine, dichromate, ethylenethiourea, hydroxylamine, 

sulfide, vanadate, p–aminobenzoic acid, Cd2+, Co2+, Cu2+, Fe3+, Mn2+, Ni2+, Pb2+ 

(Schomberg et al., 1993). The optimum pH of HRP activity is in the range of 6.0 to 
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6.5; activity at pH 7.5 is 84% of the maximum. The enzyme is most stable at pH 

within the range of 5.0 to 9.0 (Deshpande, 1996). HRP has a vast number of applied 

uses including being a label for antibody-antigen complexes, a cytochemical marker 

in immunohistochemical staining and as a tracer to follows the course of individual 

neurons as it is transported by most neural pathways (Deshpande, 1996).  

 

1.5.5 Antibody 

1.5.5.1 Antibody Structure   
 

Antibodies are glycoproteins that are found in blood and tissue fluids, as well as many 

ther secretions. Structurally they are globulins (in the γ-region of protein 

lass of antibody; these chains are 

und in IgA, IgD, IgE, IgG, and IgM antibodies, respectively.  

o

electrophoresis).  An antibody can be monomeric (the basic structure represented 

below), dimeric, trimeric, tetrameric, pentameric, etc. The monomer is a "Y"-shape 

molecule (Figure 1.8) that consists of two identical heavy chains and two identical 

light chains connected by disulfide bonds (Muyldermans, 2001). Antibodies are 

produced by a kind of white blood cell (B cell). There are several different types of 

antibody heavy chains and several different kinds of antibodies, which are grouped 

into different isotypes based on which heavy chain they possess. Five different 

antibody isotypes are known in mammals which perform different roles and help 

direct the appropriate immune response for each different type of foreign object they 

encounter (Market et al., 2003). These five isotypes of heavy chain are γ, δ, α, μ and 

ε. The type of heavy chain present defines the c

fo
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Figure 1.8 : Structure of an IgG Antibody.   

Relative positions of the variable domains of the light (VL) and heavy (VH) chains 
which together make an Fv region. Digestion with papain enzyme breaks the IgG 
molecule in the hinge region before the H-H inter-chain disulfide bond results in 
the formation of Fab region which has two identical fragments that contain the 
light chain (VL and CL domains) and the heavy chain (VH and CH1). The 
remainder of the two heavy chains each containing a CH2 and CH3 domain make 
up the Fc region. The complementarity determining region (CDR) is located at 
the tips of the variable domains. Carbohydrates (not shown in this diagram) are 
attached to the CH2 domain in most immunoglobulins. However, in some cases 
carbohydrates may also be attached at other locations. 
 

Heavy chains α and γ have approximately 450 amino acids; while μ and ε have 

approximately 550 amino acids (Pier et al., 2004; Janeway et al., 2005). Each heavy 

chain has a constant region, which is the same by all immunoglobulins of the same 

lass; and a variable region, which differs between immunoglobulins of different B 

cells, but is the same for all immunoglobulins produced by the same B cell. Heavy 

chains γ, α and δ have the constant region composed of three domains but have a 

hinge region; the constant region of heavy chains μ and ε is composed of four 

domains. The variable domain of any heavy chain is composed of one domain. These 

domains are about 110 amino acids long. There are also some amino acids between 

constant domains. There are only two types of light chain: λ (lambda) and κ (kappa). 

In humans, they are similar, but only one type is present in each antibody. Each light 

chain has two successive domains: one constant and one variable domain. The 

approximate length of a light chain is from 211 to 217 amino acids. Additionally the 

c
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tip of the variable domain is extremely reactive, allowing millions of antibodies with 

slightly different structure of the tip to exist. This region is known as the 

hypervariable region (or complementarity determining region, CDR). Along with 

class switching, random combinations of gene segments that encode different antigen 

binding sites allows production of a large number of diverse antibodies. 

 

1.5.5.2 Antibody Function 
 

Antibodies function to eliminate the antigen that elicited their production, usually 

independently of the particular class of antibody. These functions reflect the antigen 

binding capacity of the molecule as defined by the variable region and CDR. For 

 prevent that toxin from entering host 

phagocytosis (Pier et al., 

example, an antibody might bind to a toxin and

cells where its biological effects would be activated. Similarly, a different antibody 

might bind to the surface of a virus and prevent that virus from entering its host cell. 

In contrast, other antibody functions are dependent upon the immunoglobulin class. 

These functions are contained within the constant regions of the molecule. For 

example, only IgG and IgM antibodies have the ability to interact with and initiate the 

complement cascade. Likewise, only IgG molecules can bind to the surface of 

macrophages via Fc receptors to promote and enhance 

2004). 

 

1.5.5.3 Monoclonal Antibodies   
 

Monoclonal antibodies are identical antibodies produced by the same type of immune 

cell, derived from clones of a single parent cell. It is, theoretically, possible to create 

monoclonal antibodies, to almost any substance, that specifically bind to that 

substance; they can as such be used to detect or purify that substance. Monoclonal 

antibodies enable perpetual production of antibodies which react with a single specific 

epitope. They have become an important tool in biochemistry, molecular biology and 

medicine since they became widely available in the 1980’s (Pier et al., 2004). 
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Monoclonal antibodies are highly specific - due to their nature of originating from one 

parent clone. Monoclonals recognise only one epitope of the antigen, and thus will 

usually give substantially less background. When compared to the heterogeneity of 

polyclonal antibodies, the homogeneity of monoclonal antibodies is very high. If 

experimental conditions are kept constant, using monoclonal antibodies will make 

sults consistently reproducible between experimental replicates due to the clonal 

dies. Their specificity also makes them extremely 

fficient for the binding of antigen within a mixture of related molecules, such as in 

, hence this batch of antibodies may be less specific when compared to 

onoclonals.  

olyclonals are inexpensive to produce when compared to the cost of monoclonal 

re

nature of monoclonal antibo

e

the case of affinity purification. 

 

1.5.5.4 Polyclonal Antibodies 
 

In contrast to monoclonal antibodies, polyclonal antibodies are antibodies that are 

derived from many different cells or cell lines, similar to the mixture of antibodies 

found in sera. Polyclonal antibodies are therefore a mixture of different specificities. 

This is in contrast to monoclonal antibodies which are derived from one clone. 

Polyclonal antibodies are derived simply from the injection of an antigen into an 

animal (typically but not exclusively mouse, rabbit, goat or sheep) Janeway et al., 

2005).  The result is a mix of antibodies reacting to, perhaps, several epitopes on the 

antigen

m

 

P

antibody technology. In addition, large quantities of polyclonal antibodies (~10 

mg/ml) can be produced from the serum of an immunised animal. There are also 

advantages to the use of polyclonal antibodies from a scientific perspective. Because 

polyclonal antibodies contain the entire antigen-specific antibody population, they 

offer a statistically relevant glimpse into the overall picture of an immune response 

(Janeway et al., 2005). 
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1.5.6 Antibody Fragments 
 

Genetic engineering of intact immunoglobulins permits the expression of recombinant 

antibody fragments, made up of only the variable regions of both the heavy and light 

chains (Strachan et al., 1998). Antibody fragments produced by proteolytic digestion 

have proven to be very useful in elucidating structure/function relationships in 

immunoglobulins (Xiang et al., 2007). Recombinant antibodies application in 

biotechnology and medicine are on the increase. This may be because the active 

molecules can offer significant advantages over whole antibodies such as lower 

verall COGs (cost of goods); target specificity with greater flexibility; avoid 

ion and specific multivalent species can be easily 

ine red. A variety of antibody formats have been employed, which reflect 

 Fab fragment (VH, CH1, VL, CL) interact through a large interface 

etween the chains (VH/VL and CH1/CL) and a small one between the variable and 

scherichia coli, and retain a binding capacity similar to that of 

e parent antibody molecule. In addition, antibody fragments can also be made and 

xpressed in eukaryotic systems, including transgenic plants (Strachan et al., 1998). 

 

o

undesirable effects of the Fc reg

ng ee

differences in the production method as well as the intended use (Worm et al., 2001). 

 

The Fab fragment of an antibody is a structurally independent unit that contains the 

antigen-binding site; it is thought that its stability is not influenced by the Fc region, 

as it is separated by the hinge region (Figure 1.8). In some cases a fragmented 

antibody can be made that binds to an antigen but does not mediate the effector 

functions of antibodies. These are F(ab')2. They are divalent and during preparation 

the Fc region of the molecule is digested into small peptides by pepsin. The four 

domains of the

b

constant domains (VH/CH1 and VL/CL) of each chain (Worm et al., 2001). Hence 

covalent fusion has been engineered to increase stability. 

 

Due to the much smaller size of the antibody fragment in comparison to the intact 

antibody, antibody fragments provide a means of more efficient binding and capturing 

of small molecular weight organic targets. They can be easily made in a suitable 

microbial host such as E

th

e
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Figure 1.9 : Schematic Representation of Antibody Fragments. 

The structural definitions are linked with the general antibody structure in 
Figure 1.8. Fragments are formed via enzyme cleavage of the variable regions of
both the heavy and light chains and in some cases (Fab fragments), part of the

 
 

onstant chains.  

holm

in antibody expression levels in the bacterial system was 

ent, scFv-kappa, has an approximate molecular mass of about 44 

, 

c
 

 
The antigen binding ability of an antibody is usually conserved, even when only the 

VH and VL domains are used. Single-chain Fv antibodies (scFv) have been reported to 

be more stable than Fab antibody fragments when intracellularly expressed in 

eucaryotic cells. However, when positive Fab clones from a Fab-antibody 

combinatory library was changed into the scFv format, very low expression levels 

were experienced (Fred  et al., 1996). One production method by Fredholm et al., 

(1996) and Hayhurst et al., (1996) established that when the antibody format for one 

clone was changed, by the addition of the C kappa domain downstream of the original 

scFv, a substantial increase 

noted.  The fragm

kDa. 

 

This method of production, second generation, single chain antibody fragment scAbs 

are sometimes classified as fusion proteins since tags and makers can also be linked 

with the antibody fragment as desired, illustrated in Figure 1.9. These second 

generation single chain antibodies can be produced rapidly in Escherichia coli
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providing valuable reagents without the need for animal immunisation (Goldman et 

al., 2003). 

 

1.5.6.1 Antigen-Antibody Interactions 
 

An antigen (Ag) may be described as a molecule which elicits a specific immune 

response when introduced into an animal. More specifically, antigenic (immunogenic) 

substances are:  

 

• Generally large molecules (>10,000 Daltons in molecular weight),  

ntibodies (Ab) are specifically produced in response to an antigen and bind to it via 

e to the variable region (CDR) of both the heavy and light immunoglobulin 

hains. These interactions are analogous to those observed in enzyme-substrate 

• Structurally complex (proteins are usually very antigenic),  

• Accessible (the immune system must be able to contact the molecule), and  

• Foreign (not recognizable as "self").  

 

A

non-covalent interactions. Antigen binding by antibodies is the primary function of 

antibodies and is their role in the protection of their host organism. 

The antigenic determinant/ epitope (a unique part of the antigen recognised by an 

antibody) allows antibodies to identify and bind only their unique antigen in the midst 

of other different molecules in a medium. Some antibodies can bind to few closely 

related antigens which all contain the same epitope e.g. a group of related targets with 

a common structural feature. The valency of an antibody (the number of antigenic 

determinants that an individual antibody molecule can bind) is known to be at least 

two and in some instances more.  

 
Interactions between antigen and antibody involve non-covalent binding of the 

epitop

c

interactions and they can be defined similarly. To describe the strength of the antigen-

antibody interaction, one can define the affinity constant (Ka) as: 
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Affinity Ka = 
[Ab - Ag] 

 

[Ab] x [Ag] 
= 104 to 1012 L/mol 

 the interaction between antigen and antibody was completely random, it would be 

 

If

expected the concentrations of free antigen, free antibody and bound Ag-Ab complex 

to be equivalent. In other words,  

 

Affinity Ka =
1 

 = 100 L/mol 
1 x 1 

 

Therefore, the greater the value of Ka, the stronger the affinity between antigen and 

ntibody.  a
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1.6 Ionic Liquids 

 

nic liquids are novel materials that have a number of unique but important 

quids within a broad temperature window 

iquid window of up to 300 ºC enabling wide kinetic control) (Yang et al., 2005; 

Abbott et al., 2001). Generally they are organic salts, which are liquid at ambient 

temperature, and solub um  of c ch as organic solvents 

(especially when they are polar, e.g. di ethane and tetrahydrofuran), inorganic 

olvents and polymeric compounds (Kaar et al., 2003).  

ds or sometimes referred to as room temperature molten salts, when 

miscible, can form biphasic systems with classical solvents (Mori et al., 2005). 

They can also be used as non-aqueous polar alternatives for phase transfer processes. 

These ambient temperature ionic liquids have been proposed as possible solvents for 

many applications including electrodeposition, synthesis and batteries. (Welton, 1999; 

Wasserscheid et al., 2003). 

 

In contrast to traditional solvents, ionic liquids are composed of ions. They are 

viscous, denoted by the strength of the Van der Waals interactions, and have the 

tendency to form hydrogen bonding as a result of dipole-dipole interactions that can 

exist between its electronegative atoms and nearby hydrogen atom or other cation 

(Yang et al., 2005). A major advantage of ionic liquids, which is not the main subject 

matter of this current study, is the ability to fine tune ionic liquids by altering the 

cation, anion and attached constituents to manipulate the solvent’s physical and 

chemical properties. 

  

Ionic liquids are generally based on quaternary ammonium salts, with the majority of 

previous work being carried out on imidazolium and pyridinium cations. A range of 

large anions have been used and these can be classified as either metal containing, e.g. 

Al2Cl7
-, or non-metal containing e.g. PF6

- or (CF3SO2)2N-. The principle behind the 

Io

properties such as high polarity, non-flammability, low melting point (<100 °C), 

chemical and thermal stability, negligible vapour pressure, consist of loosely co-

ordinating bulky ions and remain as li

(l

ilise a great n ber ompounds su

chlorom

s

 

Ionic liqui

im
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low freezing point of the salts is that the ions are large and non-centrosymmetric and 

therefore pack less easily into a lattice.  

ixture 

 as 12 °C. The physical properties such as viscosity, 

ents in chemical reactions. Its zero vapour pressure is a 

desired property for exploitation in biological systems. The charged components of 

tion when associated with surface layers and where the surfaces 

ct with bulk aqueous media but with gaseous media. The feasibility of 

 

Deep Eutectic Solvent (DES) is a class of ionic liquids which are exploited in this 

study. DES are ambient temperature ionic liquids formed by a mixture of quaternary 

ammonium salts with hydrogen donors such as amines and carboxylic acids, that 

result in low freezing point much lower than either of the individual components, 

rendering them effectively simple eutectics. The deep eutectic phenomenon was first 

described by Abbott et al., (2001) which involved 1:2 molar mixture of choline 

chloride (2-hydroxyethyl-trimethylammonium chloride) and urea. Choline chloride 

has a melting point of 302 °C and that of urea is 133 °C. The eutectic m

however melts as low

conductivity, and surface tension of these DES are similar to ambient temperature 

ionic liquids. 

 
1.6.1 Ionic Liquids and Biological Systems 
 

Over the past decade, ionic liquids have been increasingly employed as substitutes for 

the traditional organic solv

ionic liquids result in a strong charge interaction that effectively results in a zero 

vapour pressure, hence ionic liquids do not evaporate and are even stable as liquids in 

a vacuum. To date, biological applications of ionic liquids have been limited to 

demonstration of enzyme activity in such solvents. Enzyme reactions studied in ionic 

liquids and have shown to enhance activity, stability and selectivity for a number 

enzymes (Yang et al., 2005).  Antigen-antibody interactions are yet to be performed 

in an ionic liquid environment.  In a growing number of situations it is desirable for 

biomolecules to func

are not in conta

biological function such as antigen-antibody interactions will pave the way for new 

technologies as well as widen the scope of antigen-antibody application.  
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1.7 Conclusions Drawn from the Literature Review 

 

Affinity-based biosensors face an issue with regeneration of antibodies employed. The 

on of enzymes, however, spiropyran dyes seem to have a number of 

dvantages over azobenzenes, in particular that they can exist in two very distinctive 

ty properties (Ciardelli et al., 2001). 

hese added benefits are believed to have a more substantial effect, with regards to its 

current regeneration strategies commonly used, such as extreme pH buffers, high 

concentration of surfactants, saturated salt solutions, detergents, chelating agents, etc. 

are unpleasant and aggressive. They can disrupt the binding environment resulting in 

loss of activity and sensitivity of the immunoaffinity layer. Generally the methods 

used to date for renewal of recognition molecules have been both imprecise and 

overly aggressive towards sensors. 

 

Photochromic dyes have been utilised to photomodulate biological systems and non-

biological systems for over three decades. This has prompted the study of a number of 

photochromic dyes. Currently azobenzenes have been exploited with regards to 

photomodulati

a

definite ordered structures with varying polari

T

application in biological system photomodulation. 

 

Artificial photomodulation of antigen-antibody reactions has been attempted by 

limited number of researchers. Kagner et al., (1999) demonstrated how an 

immobilised photochromic dye (dinitospiropyran), acting as an antigen component to 

a Surface Plasmon Resonance (SPR) gold surface. Sisido et al., (1998) also 

demonstrated photomodulation of antigen activity in an antigen-antibody coupling 

reaction. Hohsaka et al., (1994) demonstrated the reversible association of azobenzene 

photochromic dye group with a monoclonal antibody against an unnatural amino acid. 

However, the modification of an antibody whose affinity could be photomodulated 

has yet to be established. The development of a photochromic antibody, whose 

affinity can be controlled via photons, will result in a less aggressive antibody 

regeneration technique when applied to an affinity based biosensors.  
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Ionic liquids, as an alternative to traditional solvents, have very interesting properties 

at gives them some advantages in certain extreme. Currently, enzymatic reactions 

ain aim of this project is to establish the feasibility of “artificial antibody 

 

•

 

•

•

velopment and 

evaluation of the application of spiropyran dyes as optical switches for antibodies 

may contribute towards advancement in biosensor technology. 

th

are the only biological systems known to be feasible in ionic liquids. The 

incorporation of antigen-antibody reactions into ionic liquids will aim to widen the 

application of antigen-antibody reactions. This will ultimately be of additional benefit 

if also applicable to photochromic antibodies.  

 

1.8 Aims and Objectives 
 

The m

affinity control by illumination” (i.e. “on and off” switchable photochromic

antibodies) and to attempt to develop an understanding of the mechanism of affinity 

modulation.  

 

 The primary objective is to synthesize photochromic dyes (spiropyrans) which are 

capable of being covalently conjugated to proteins, via a carbodiimide mediated 

reaction. Dye characterisation and its physicochemical properties in various 

environments are also to be observed. 

 The next objective is to utilise the synthesised dye to photomodulate Horseradish 

peroxidase (HRP). As a model system, the technologies for fabricating an optical 

molecular switch for the enzyme (HRP) will be used to develop methods.  

 

 The third objective is to develop chemically modified antibodies whose affinity can 

be influenced i.e. controlled by the effect of different wavelengths illumination. 

This is be achieved by covalently attaching the synthesised spiropyran dyes to the 

antibodies. The reversible property / structural change experienced by spiropyran 

dyes upon exposure to different wavelengths illumination is anticipated to 

reversibly distort and recover the structure of the attached protein and as a result, 

have an influence on its affinity as a switch. The overall de
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 The final objective is to ascertain the feasibility of antigen-antibody reactions in 

ionic liquids and assess the potential in obtaining photochromic antibodies in ionic 

liquids. 

•
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Chapter 2 
 
SYNTHESIS AND CHARACTERISATION OF 
CARBOXYLATED SPIROPYRAN DYES 
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2 Synthesis and Characterisation of Carboxylated Spiropyran Dyes 

2.1 Introduction 

he main objective of the work reported in this chapter is the synthesis and 

aracterisation of spiropyran dyes. Spiropyrans dyes as described in section 1.3.2 are 

otochromic dyes. The base structure of a spiropyran dye molecule (1',3'-dihydro-

,3',3'-trimethyl-6-nitrospiro[2H-1-benzopyran-2,2'-(2H)-indole]) is illustrated in 

 of the dye which can be commercially 

rchased, hence forth will be referred to as SP-Sigma in this literature.  

o covalently attach the dye to an amine group of a protein, further modification is 

quired, specifically the synthesis of a carboxylated version of the core spiropyran 

treating 2,3,3-

2-carboxyethyl)-2,3,3-

imethylindolenium iodide (CE-TMI-I), and subsequent treatment of the CE-TMI-I 

ith 5-nitrosalicylaldehyde in the presence of piperidine gives 1'-(2-carboxyethy1)-

',3'-trimethyl-6-nitrospiro[2H-1-benzopyran-2,2'-(2H)-indole, the carboxylated 

piropyran dye denoted as SP-COOH in this thesis (see Table 2.1) – figure 2.1 shows 

 schematic representation of the synthesis of the carboxylated spiropyran dye. The 

arboxylic acid side chain allows the use of water soluble conjugation chemistry such 

s EDC-NHS to enable straightforward conjugation of proteins with spiropyrans. 

hanging the substituents on the chromophore of the spiropyran dye is known to lead 

 altered wavelength sensitivity and also may affects the thermal stability and extent 

f photo conversion between isomers. For this reason, a significant challenge remains 

 designing a photoswitch that performs to its maximum potential (Banghart et al., 

006). As a result a variety carboxylated spiropyran dyes were considered. The 

SP-COOH-Me and SP-COOH-Br) (see Table 

ical intermediates needed for 

method of synthesis was very similar SP-COOH. Methoxy 

ubstituents are known to generally increase aqueous solubility of the compound 

 

T

ch

ph

1'

Table 2.1. This is also the basic form

pu

 

T

re

molecule. Aizawa et al., (1977) first established the method of 

trimethylindolenine with 3-iodopropionic acid to obtain l-(

tr

w

3

s

a

c

a

 

C

to

o

in

2

inclusion of derivatives of SP-COOH (

2.1) were selected because of readily available chem

synthesis; likewise the 

s

 

50



attached to it. They are also electron-donating groups and can cause an organic 

 less acidic.  compound to become

 

Table 2.1 : Derivatives of Spiropyran Dyes in Current Study. 
 
Structural representation of the spiropyran dyes synthesised or obtained in this 
study.  
 
 

1'-(2-carboxyethy1)-3',3'-trimethyl-6-
nitrospiro[2H-1-benzopyran-2,2'-(2H)-
indole  

N O

C2H2COOH

NO2

 
SP-COOH 

(Synthesised for Study) 

N O

C2H2COOH

NO2

Br

1'-(2-carboxyethy1) -8-bromo-3',3'-
trimethyl-6-nitrospiro[2H-1-
benzopyran-2,2'-(2H)-indole  
 
 
 

SP-COOH-Br 
(Synthesised for Study) 

N O

C2H2COOH

NO2

OCH3

1'-(2-carboxyethy1) -8-methoxy-3',3'-
trimethyl-6-nitrospiro[2H-1-
benzopyran-2,2'-(2H)-indole  
 
 
 
 

SP-COOH-Me 
(Synthesised for Study) 

N O

H

NO2

1',3'-Dihydro-1',3',3'-trimethyl-6-
nitrospiro[2H-1-benzopyran-2,2'-(2H)-
indole] 
 

SP-Sigma 
(Purchased for Study) 
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2.2 Chemicals, Materials and Equipment 
 

The following chemical consumables were purchased from Sigma Aldrich, UK:        

lindolenine (Sigma 

ode: T76805), 5-Nitrosalicylaldehyde (Sigma Code: 55967), 3-Methoxy-5-

a 

ode: 652784), 1′,3′-Dihydro-1′,3′,3′-Trimethyl-6-Nitrospiro[2H-1-benzopyran-2,2′-

H)-indole] (SP-Sigma) (Sigma Code: 2736 e: 

110264), Piperidine (Sigma Code: 411027 , 

Methanol (Sigma Code:179337), Methanol-12 gma Code: 296775), Potassium 

Bromide (Sigma Code: 221864), HEPES (Sigma Code: H3375), Chloroform (Sigma 

Code: 437581), Ethyl acetate (Sigma Code: 319902), Tetrahydrofuran (THF) (Sigma 

Code: 360589), Acetone (Sigma Code: 17912 de: 

360457), 2-Propanol  (Isopropanol) (IPA) (Sig  Buffered 

Saline (Sigma Code: P4417), MES Sodium S t (Sigma Code: M5057-100g), HEPES 

Buffer Salts (Sigma Code: H7523). Whatm n® qualita

(Sigma Code: Z240516), Silica gel on TLC-plate (S re also 

obtained from Sigma Aldrich UK. Toluene ( d 

from Fischer Scientific, UK.  LEDs components were acquired from Roithner Laser 

Technik, Austria; White LEDs, Based on GaN 27-33 Cd (

Code: 5w4hca-H20-Ultra), UV LEDs (Roithner Laser Technik Code: NS360L-

5RLO). IR, UV-Vis and 1H NMR spectra were recorded on an Avatar 370 E.S.P. FT-

IR Spectrometer System (Thermo Nicolet), UV-Vi -2100 

(Shimadzu), and FT-NMR System (JNM  

respectively. 

 

 

 

 

3-Iodopropionic Acid (Sigma Code: I10457), 2,3,3-Trimethy

C

Nitrosalicylaldehyde (Sigma Code: 434086), 3-Bromo-5-Nitrosalicylaldehyde (Sigm

C

(2 19), 2-Butanone  (MEK) (Sigma Cod

), Ethanol (Sigma Code: 277649-1l)

C,d4 (Si

4), Acetonitrile (MeCN) (Sigma Co

ma Code: 190764), Phosphate

al

a tive filter paper, Grade 4 

igma Code: 60768) we

Fischer Code: T/2306/15) was obtaine

Roithner Laser Technik 

s Spectrophotometer UV

-ECX Series - Delta V4.3) (Jeol)

 

 

 

52



2.3 Synthesis of Carboxylated Spiropyran Dyes 

 

igure 2.1 : Schematic Reaction Sequence of SP-COOH Synthesis. 

 

The method applied here is a duplication of Kirkham (1996) and Sesay (2003), which 

is an adaptation of the method developed by Aizawa et al., (1977). With regards to the 

method for synthesising the SP-COOH derivatives (SP-COOH-Me and SP-COOH-

Br): a further adaptation to Kirkham (1996) and Sesay (2003) was applied. Figure 2.1 

shows the reaction scheme for the synthesis of spiropyran dyes using 

2,3,3,trimethylindolenine and iodopropionic acid as starting materials, and adding 5-

nitrosalicylaldehyde in the presence of piperidine to syntheisis SP-COOH. 

  

N

2,3,3-Trimethylindolenine

+ O

OH

I

3-Iodopropionic acid

N

O
OH

CE-TMI-I

+

OH

O

N+O

O-

5-Nitrosalicylaldehyde

80 °C under reflux for initial 3 hours. 

Followed by 100 °C under reflux for a further hour in 20 % v/v ethanol in toluene. 

+ 2-Butanone  (MEK), + Piperidine. 

Under reflux at 110 °C 

 

F

N

C2H2COOH

O
C(3)

NO2
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2.3.1 Synthesis of l-(2-carboxyethyl)-2,3,3-trimethylindolenium iodide (CE-
TMI-I)  

by vacuum 

ltration, and the solution (filtrate) was retained and stored at 4 °C for a further re-

crystallisation. This was to make sure there was high yield of product at each stage.  

The purple crystals collected were crushed using a glass pestle and mortar then 

washed with 5% ethanol in toluene under vacuum filtration. (The subsequent filtrate 

was also retained for further crystallisation at 4 ºC over night and washed with 5% 

ethanol in toluene to ensure high yield). 

 

In order to attain a pure substance, the washed off purple crystals obtained were 

refluxed at 100 °C in fresh toluene, using sufficient ethanol to dissolve all the material 

(approx. 5-10%). This was left overnight at 4 °C to re-crystallise.  The crystals were 

filtered off under vacuum and dried to give a yellow crystalline product.  The solid 

(yellow crystalline) product was again heated under reflux in toluene at 100 °C.  

Ethanol was added drop wise until the solid was fully dissolved.  The solution was 

then taken off the heat to cool at room temperature, and then left over night at 4 °C to 

re-crystallise.  The resultant white crystalline solid (CE-TMI-I) was filtered, dried and 

stored in the dark at 4 °C. 

 

2.3.2 Synthesis of Carboxylated Spiropyran Dye (SP-COOH) 
 

The resultant white crystalline solid CE-TMI-I from Section 2.31 was suspended in 2-

Butanone (MEK) (500 mg of solid in 600 µl of MEK) in a round bottom flask.  To aid 

) was added to the suspension, allowed to dissolve and 

10 °C until all solid was in solution (~ 5 minutes). 

 

An equimolar mixture of 3-Iodopropionic acid (7.55 g) and 2,3,3-Trimethylindolenine 

(6.00 ml) was heated at 80°C under reflux in a round bottom flask for 3 hours. 

93 ml of 20% v/v ethanol in toluene was added to the mixture.  The resulting solution 

was heated at 100°C under reflux for a further hour and then taken off the heat to cool 

to room temperature. The resulting product was left over night (~ 12 hours) at 4 °C to 

re-crystallise. The filtrand, a purple crystalline precipitate, was collected 

fi

solubility, piperidine (125 µl

heated under reflux at 1
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The reaction mixture was taken off the heat and allowed to cool at room tempera

g of 5-Nitr

ture. 

osalicylaldehyde was dissolved in 2 ml of MEK and the mixture was 

owever the following step which involved 5-

itrosalicylaldehyde component was substituted with 3-Methoxy-5-

250 m

added to the reaction mixture in the round bottom flask. The mixture was then 

reheated under reflux at 110 – 120 °C for 5 minutes.  The reaction mixture was left 

overnight at room temperature to allow the carboxylated spiropyran dye to precipitate.  

The precipitate (SP-COOH) was filtered and washed under a vacuum with 50 ml of 

deionised water and left to dry. The resultant reddish solid (SP-COOH) 380.36 mwt. 

(based on proposed chemical formula) was stored in the dark at 4 °C ready for use. 

The percentage product yield was 67%. 

  

2.3.3 Synthesis of 8’-Methoxy Derivative of SP-COOH (SP-COOH-Me) 
 

From Section 2.3.1 the resultant white crystalline solid CE-TMI-I was suspended in 2-

Butanone  (MEK), dissolved by the addition of piperidine and heated under reflux at 

110 °C until all solid was in solution. H

N

Nitrosalicylaldehyde and the method was just as in section 2.3.2. The resultant solid 

(SP-COOH-Me), dark red in colour, molecular weight of 411 (based on proposed 

chemical formula) was stored in the dark at 4 °C ready for use. The percentage 

product yield was 59%. Figure 2.2 shows the reaction scheme for the synthesis of SP-

COOH-Me using 2,3,3,trimethylindolenine and iodopropionic acid as starting 

materials and adding 3-methoxy-5-nitrosalicylaldehyde in the presence of piperidine 

to syntheisis SP-COOH-Me. 
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N

2,3,3-Trimethylindolenine

+ O

OH

I

3-Iodopropionic acid

 

Figure 2.2 : Schematic Reaction Sequence of SP-COOH-Me Synthesis. 
 

2.3.4 Synthesis of 8’-Bromo Derivative of SP-COOH (SP-COOH-Br) 
 

The synthesis of SP-COOH-Br, was conducted as in Section 2.3.2 however 3-Bromo-

5-Nitrosalicylaldehyde was used in place of 5-Nitrosalicylaldehyde. A dark brown 

solid, molecular weight of 460 (based on proposed chemical formula) was collected. 

Product percentage yield of 64%. Figure 2.3 shows the reaction scheme for the 

synthesis of SP-COOH-Br using 2,3,3,trimethylindolenine and iodopropionic acid as 

starting materials and adding 3-bromo-5-nitrosalicylaldehyde in the presence of 

piperidine to syntheisis SP-COOH-Br. 

 

N

O
OH

CE-TMI-I

+

OH

O

+NO

O-

3-Methoxy-5-Nitrosalicylaldehyde
H3CO

N

C2H2COOH

O NO2

C(3)

OCH3

80 °C under reflux for initial 3 hours. 

Followed by 100 °C under reflux for a further hour in 20 % v/v ethanol in toluene. 

+ 2-Butanone  (MEK), + Piperidine. 

Under reflux at 110 °C 
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N

2,3,3-Trimethylindolenine

+ O

OH

I

3-Iodopropionic acid

 

Figure 2.3 : Schematic Reaction Sequence of SP-COOH-Br Synthesis. 
 

 

 

 

 

 

 

 

 

N

O
OH

CE-TMI-I

+

OH

O

N+O

O-

3-Bromo-5-Nitrosalicylaldehyde
Br

N

C2H2COOH

O NO2

Br

80 °C under reflux for initial 3 hours. 

Followed by 100 °C under reflux for a further hour in 20 % v/v ethanol in toluene. 

+ 2-Butanone  (MEK), + Piperidine. 

 Under reflux at 110 °C
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2.4 Characterisation of Synthesised Spiropyran Dyes 

2.4.1 Introduction 
 

The confirmation of the identity of the synthesised product is essential prior to further 

application or/and analysis. T ethods namely Thin Layer 

Chromatography (TLC), and 

Infrared Spectroscopy (IR) are used in this study. Spiropyrans are known to be soluble 

in ethanol, methanol and other similar organic solvents, hence during characterisation, 

these solvents were used where applicable. However the effect for solvent choice and 

other environmental conditions on the photoswitching properties of the dyes are 

further studied in subsequent sections within this chapter.    

 

2.4.2 Thin Layer Chromatography Analysis 
 

TLC is known to be a simple, quick, and inexpensive procedure that gives information 

on how many components are in a m nique can also give information 

on the relative pureness of a compound. To determine the successful synthesis of the 

carboxylated dyes, the reaction components, the end products and control (SP-Sigma) 

were analysed.  

 

9% ethanol 

s the mobile liquid phase to determine the relative purity.  A solution of the reaction 

omponents, the end products and control were dissolved in 100 % ethanol and 25 µl 

potted onto the TLC plates. All of the reaction compounds used for the dye synthesis 

as spotted at concentration of 1 mg/ml.  The resulting positions of compounds were 

iewed in ambient light (i.e. silica oxide plate) and under UV light (245 nm) (for 

luminium oxide plates) and the positions measured. The Rf values were determined 

s the distance of the compound leading edge divided by the solvent front distance. 

able 2.2 shows the Rf values. 

hree analysis m

Nuclear Magnetic Resonance Spectroscopy (NMR) 

ixture. This tech

TLC was observed using silica plates and aluminium oxide plate using 99.

a

c

s

w

v

a

a

T
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Table 2.2 : TLC Mean Rf Values of Dye Synthesis Components and Products. 

nts of the reactant components for the synthesis of the 
r xylated spiropyran dyes.  

Rf value measureme
a boc

 

Plate Key Component Name Mean Rf Value 

A 3-Iodopropionic Acid 0.39; 0.87 

B 2,3,3-Trimethylindolenine 0.94 

C CE-TMI-I 0.48; 0.78 

D 5-Nitrosalicylaldehyde 0.94 

E 3-Bromo-5-Nitrosalicylaldehyde 0.94 

F 3-Methoxy-5-Nitrosalicylaldehyde 0.94 

G SP-COOH 0.80 

H SP-COOH-Me 0.76 

I SP-COOH-Br 0.85 

J SP-Sigma 0.79 

 

With regards to purity testing via TLC using silica plates, the most polar compounds 

are expected to have a stronger interaction with the silica plate; therefore they will be 

more capable to dispel the mobile phase from the binding places. Consequently, the 

ss polar compounds are expected to move higher up the plate (resulting in a higher 

band at Rf 0.80, 0.76, 0.85, 0.79 respectively, which 

ere highly coloured when illuminated in UV and faded quickly when exposed to 

visible light. Comparing the Rf values of the synthesised dyes with SP-Sigma, it can 

be concluded that the synthesised dyes were pure. The sizes of the spots were also 

le

Rf value). Within Table 2.2 Rf values for 3-Methoxy-5-Nitrosalicylaldehyde, 3-

Bromo-5-Nitrosalicylaldehyde, 5-Nitrosalicylaldehyde and 2,3,3-Trimethylindolenine 

were 0.94 which suggests that these components rapidily moved through the mobile 

liquid phase. However, CE-TMI-I had considerably different (Rf 0.48 and 0.78) 

profile values than the either 3-Iodopropionic Acid (Rf 0.39 and 0.87) which migrated 

along with the solvent line and 2,3,3-Trimethylindolenine (Rf 0.94). The band at Rf  

0.48 is believed to be CE-TMI-I, with the band at Rf 0.78 being impurities in the 

product.  The spiropyran dyes product SP-COOH, SP-COOH-Me, SP-COOH-Br, SP-

Sigma produced a clear single 

w
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used to confirm this. These results give an initial indication of successful synthesis of 

2.4.3 gnetic Reso
 

NMR spectroscopy is one of the principa ical, 

electronic and structural in 1H NMR spectroscopy was 

observed for the synthesised dyes and SP-Sigma with deuterated m t 

choice; deuterated acetonitrile was initially ethanol gave better defined 

spectrum peaks.  10 m ated

600 µl) and er of 

tissue pape  filter).  The fi  transferred in  NMR tube 

to a depth of ~ 5 cm (which is equivale

summary of the results (JACS fo e 1H NMR spectra (g vailable in 

ppendix). 

(SP-Sigma) 1H NMR (400 MHz, ACETONITRILE-D3 ) δ 8.11 – 7.92 (m, 2H), 7.21 

dye. 

 

Nuclear Ma nance Spectroscopy Analysis 

l techniques used to obtain chem

formation about molecules. 

ethanol as solven

used but m

g of the test sample was dissolved in deuter

sing a glass pasteur pipette, tip covered with

 acetonitrile (~ 

 filtered (u  a thin lay

r as the ltered sample was then to an

nt to ~ 600 µl of solution). Below is a 

rmat) of th raph a

A

– 6.98 (m, 3H), 6.88 – 6.76 (m, 1H), 6.71 (dd, J = 0.5, 9.0, 1H), 6.57 (d, J = 7.8, 1H), 

5.92 (d, J = 10.4, 1H), 2.70 (s, 3H), 2.13 (s, 6H), 1.92 (dt, J = 2.5, 4.9, 3H), 1.24 (s, 

3H), 1.18 – 1.05 (m, 3H). 

(SP-COOH) 1H NMR (400 MHz, ACETONITRILE-D3 ) δ 8.09 – 7.90 (m, 16H), 

7.22 – 6.96 (m, 25H), 6.80 – 6.65 (m, 17H), 6.57 (d, J = 7.7, 9H), 5.93 (d, J = 10.4, 

9H), 3.18 – 3.10 (m, 1H), 2.93 – 2.85 (m, 1H), 2.72 (s, 24H), 2.49 – 2.51 (m, 1H), 

2.04 – 1.84 (m, 70H), 1.19 (t, J = 30.0, 51H), 1.04 – 0.96 (m, 1H). 

(SP-COOH-Me) 1H NMR (400 MHz, ACETONITRILE-D3 ) δ 8.09 – 7.90 (m, 16H), 

7.22 – 6.96 (m, 25H), 6.89 – 6.65 (m, 17H), 6.57 (d, J = 7.7, 9H), 5.93 (d, J = 10.5, 

9H), 3.18 – 3.10 (m, 1H), 2.93 – 2.85 (m, 2H), 2.72 (s, 24H), 2.79 – 2.51 (m, 1H), 

2.04 – 1.84 (m, 70H), 1.19 (t, J = 30.0, 51H), 1.04 – 0.96 (m, 1H). 

(SP-COOH-Br) 1H NMR (400 MHz, ACETONITRILE-D3 ) δ 7.12 (d, J = 21.6, 2H), 

7.02 (d, J = 10.4, 1H), 6.84 (s, 1H), 6.67 (dd, J = 8.4, 28.1, 2H), 5.95 (d, J = 10.4, 

1H), 2.56 – 2.48 (m, 1H), 1.91 (dt, J = 2.5, 4.9, 14H), 1.25 (s, 2H), 1.13 (s, 2H). 
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The NMR data accounted most 1H, however 1H of the synthesised dye for the carbon 

chain linking COOH to the entire molecule was not accounted for. This was however 

peated with deuterated methanol but was still no spectral data for the proton. The 

a IR spectroscopy.   

w any indication of a carboxyl group. 

re

next logical step was to conduct the functional group analysis vi

 

2.4.4 Infrared Spectroscopy Analysis 
 

Following the characterisation via TLC and NMR analysis, IR spectroscopy was used 

to analyse the presence for the carboxyl (functional) group attached to the compounds 

synthesised. 1 mg solid dye was first crushed in a marble mortar with a pestle. 60 mg 

of fine potassium bromide (to remove scattering effects from large crystals) was 

added and the mixture was mechanical pressed at 10 tons to form a translucent pellet 

through which the absorption spectra were observed. As a control SP-Sigma IR 

analysis was compared to the results attained, since this compound (SP-Sigma) is not 

expected sho

 

C-O in carboxylic acid 

 
 

Figure 2.4 : IR Spectrum of SP-COOH. 

The carboxyl functional group is indicated on the graph between 1690 and 1750 
wavenumber (cm-1). 
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C-O in 
carboxylic 

 
 

Figure 2.5 : IR Spectrum of SP-COOH-Br. 
 
The carboxyl functional group is indicated on the graph between 1690 and 1750 

avenumber (cm-1). 
 
w

acid 

C-O in 
carboxylic 
acid 

 

Figure 2.6 : IR Spectrum of SP-COOH-Me. 

 

The carboxyl functional group is indicated on the graph between 1690 and 1750 
wavenumber (cm-1). 
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No Peak 

 

o indication of a carboxyl functional group on spectrum between 1650 and 1750 

 

Figures 2.4, 2.5 and 2.6 show the IR absorption spectra of SP-COOH, SP-COOH-Br 

and SPCOOH-Me respectively. An absorption peak at around 1720 cm-1 in the spectra 

is assigned to the C-O in carboxylic acid functional group. In the case of the SP-

Sigma (Figure 2.7), as expected, there was no suggestion of the presence of C-O 

bonds. Following these results, it is evident that each of the synthesised dyes 

possesses a carboxyl functional group. 

 

 

 

 

 

Figure 2.7 : IR Spectrum of SP-Sigma. 

N
wavenumber (cm-1) as observed with the other synthesised dyes Figures 2.4, 2.5 
and 2.6.  
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2.5 Photoswitching of Synthesised Dyes 

2.5.1 Introduction  
 

Reversible, photo induced, colour change of spiropyrans in solution were first 

described in 1926 (Tinland et al., 1973). When spiropyrans dissolved in ethanol are 

exposed to different wavelenghts of light (visible light and UV light) or placed in the 

dark, photochromism occurs which involves the two photo isomers, the neutral closed 

spiro form and the zwitterionic opened merocyanine form. This change is 

characterised by large differences in geometry and polarity. The formation of the 

merocyanine form involves the C–O bond cleavage, resulting in the molecule 

becoming metastable and amphoteric as explained in section 1.3.2. Due to the change 

in polarity of the isomers during photoswitching, the polarity of the environment (i.e. 

ponent in the switching capabilities of the 

hotoswitching).   

 is to reduce any controllable limiting factors 

uch as heat energy) in this study and as such the use of Light Emitting Diodes 

EDs) as light sources would accomplish that.  Stitzel et al., 2006 and Radu et al., 

007 have also shown the use of LEDs as light sources in the photoswitching of 

hotochromic dyes. LED sources require significantly less power, emit less heat and 

re inexpensive alternatively to other light sources such as the arc lamps.  

 

 

the solvent dissolved in) is a pivotal com

dyes. However to display the photoswitching competence of the synthesised dyes, 

ethanol was used (as it is the most frequently used solvent in spiropyran dyes 

p

 

It was ideal to also set up the form of illumination to be implemented through out this 

study since light source is the activators of photochromism. To date, literature reports 

on spiropyrans switching has involved the use of high power light sources such as 

mercury arc lamps and lasers. The high powered light source sometimes emits heat 

energy which is crucial to the fatigue phenomenon and thermochromism (later looked 

into in a subsequent section). The aim

(s

(L

2

p

a
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2.5.2 Photochromic Activity 
 

otochromic activity of the synthesised dyes, two experiments 

ere performed. The first involved the photoswitching of dyes under UV and visible 

t present), the absorption spectra were observed between 400 and 

00 nm. To ensure the dye reverted back to the spiropyran form, the solution was 

To demonstrate the ph

w

light. The second involved the dark adaptation switching of the spiropyran form to the 

coloured merocyanine form as carboxylated spiropyrans are known to exhibit 

negative (or reverse) photochromism as explained in Chapter 1.  

 

0.25 µg/ml of the synthesised dyes and the control dye were prepared in ethanol at 20 

°C. The solution was initially exposed to the white LED (27-33 cd @ 30mA) which 

triggered the conversion to the spiropyran (colourless, closed) form within 30 

seconds. 1 ml was placed in a quartz cuvette (path length: 1 cm). With appropriate 

solvent (ethanol) as the blank, the dye solutions absorption spectra were observed 

between 400 and 700 nm using a UV-Vis Spectrophotometer. With the solution still 

located in the UV-Vis Spectrophotometer, UV illumination via a UV LED (360nm 

1.2 -1.8 mW @ 20mA) was exposed to the solution for 10 minutes (with minimum 

ambient visible ligh

7

exposed to white LED lights and the absorption spectra were observed between 400 

and 700 nm. 

 

The dark adaptation experiment was observed. This was conducted by ensuring the 

dye was in the spiropyran form by initial exposure to white LED light, and observing 

the absorption spectra in the UV-Vis Spectrophotometer (dark environment) every 15 

minutes for 2 hours. 
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Figure 2.8 : UV/Vis Absorption Spectrum of SP-COOH in Ethanol. 
 
Sample contained 0.25 µg/ml (6.6 x 10-6 M) of dye in ethanol at 20 °C. 
Illumination was conducted with the use of UV LED (360nm) for 10 minutes and 
white LED for 30 seconds.  
 

 

Figure 2.9 : Dark Adaptation Photoswitching of SP-COOH. 
 
Photoswitching of the spiropyran form to the merocyanine form. Sample 
contained 0.25 µg/ml (6.6 x 10-6 M) of dye in ethanol. Initial illumination with 
white LED for 30 seconds, then placed in the UV-Vis Spectrophotometer (dark 
environment), and scanned every 15 minutes for 2 hours at 20 °C. 
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Figure 2.10 : UV/Vis Absorption Spectrum of SP-COOH-Br in Ethanol. 

at 20 °C. Sample contained 0.25 µg/ml (6.1 x 10-6 M) of dye in ethanol 
Illumination was conducted with the use of UV LED (360nm) for 10 minutes and 
white LED for 30 seconds.  

 

Figure 2.11 : Dark Adaptation Photoswitching of SP-COOH-Br. 

Sample 
ith 

k 

Photoswitching of the spiropyran form to the merocyanine form. 
contained 0.25 µg/ml (6.1 x 10-6 M) of dye in ethanol. Initial illumination w
white LED for 30 seconds, then placed in the UV-Vis Spectrophotometer (dar
environment), and scanned every 15 minutes for 2 hours at 20 °C. 
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Figure 2.12 : UV/Vis Absorption Spectrum of SP-COOH-Me in Ethanol. 

 20 °C. Sample contained 0.25 µg/ml (6.2 x 10-6 M) of dye in ethanol at
Illumination was conducted with the use of UV LED (360nm) for 10 minutes and 
white LED for 30 seconds.  

 

Figure 2.13 : Dark Adaptation Photoswitching of SP-COOH-Me. 

 form. Sample 
umination with 

Photoswitching of the spiropyran form to the merocyanine
contained 0.25 µg/ml (6.2 x 10-6 M) of dye in ethanol. Initial ill
white LED for 30 seconds, then placed in the UV-Vis Spectrophotometer (dark 
environment), and scanned every 15 minutes for 2 hours at 20 °C 
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Figures 2.8 to 2.13 confirmed that all three synthesised dyes (SP-COOH, SP-COOH-

Br and SPCOOH-Me) were photochromic and could readily be inter converted 

between isomers with LEDs.  

 

Spiropyran compounds are known to exhibit normal photochromism, which implies 

that they are colourless to pale yellow solutions becoming highly coloured when 

irradiated with UV light and then reverting back to the colourless spiropyran form 

upon irradiation with visible light or via dark adaptation when left in the dark.  

However the presence of the carboxylic group of the dye makes them exhibit negative 

photochromism which means the thermodynamically stable form is the merocyanine 

form, hence the dye are still colourless to pale yellow solutions becoming highly 

coloured when irradiated with UV light and then reverting back to the colourless 

cyanine form was evident in the dark and the inter 

conversion rate from spiropyran to merocyanine in the dark was slow but feasible. 

The variation in spectra peaks (absorption maxima) was the main observable 

difference between the dyes. This was accounted for by the bromine and methoxy 

substituent although this did not interfere with photoswitching. 

 

2.6 Solvent Effect on Synthesised Spiropyran Dyes 

2.6.1 Introduction 
 

Spiropyrans dyes are known to also under-go solvatochromism which is the variation 

of the electronic spectroscopic properties (absorption) of a chemical species, induced 

by solvents. In this section the effect of photochromism based on a variety of solvents 

 

 shift of the 

spiropyran form upon irradiation with visible light, but during dark adaptation the dye 

exhibit the coloured merocyanine form. All three synthesised dyes exhibited negative 

photochromism as the mero

on the synthesised dyes was observed.  

Minkin, (2004) stated that the solvatochromic behaviour of spiropyrans; shows itself 

as pronounced changes in the position and intensity of their UV/Vis absorption bands. 

 the medium (solvent-dye), relates to theThe variation in the polarity of

 

69



equilibrium (between spiropyran and merocyanine form). Solvatochromism is also 

related to differences in solute-solvent interactions in solvents of different polarity. 

 

The study here is to establish whether the synthesised dyes are subjected to the 

solvatochromic behaviour.  Polar environment would be expected to stabilize the 

zwitterionic structure of the open merocyanine form and with increasing solvent 

polarity; the absorption band would be expected to undergo a hypsochromic (or blue) 

shift. The blue shift is seemingly caused by the extra interaction between polar 

solvents and ionic merocyanine (Lin, 2003). The synthesised spiropyran dyes were 

observed in the various solvent shown in Table 2.3 

 

Table 2.3 : Organic Solvents in which Photochromism was Observed 

Solvents details include their boiling point and polarity expressed in dielectric 
constants.  
 

Solvent Chemical formula Boiling point Dielectric constant

Non-Polar Solvents 

Toluene C6H5-CH3 111 °C 2.4 

Chloroform CHCl3 61 °C 4.8 

thyl acetate CH3-C(=O)-O-
CH2-CH3 

77 °C 6.0 E

Polar Aprotic Solvents 

Tetrahydrofuran 
HF) 

CH2-CH2-O-CH2-
CH2 

66 °C 7.5 (T

Acetone CH3-C(=O)-CH3 56 °C 21.0 

Acetonitrile CH3-C≡N 82 °C 37.0 

Polar Protic Solvents 

Isopropanol CH3-CH(-OH)-CH3 82 °C 18.0 

Ethanol CH3-CH2-OH 79 °C 24.0 

Methanol CH3-OH 65 °C 33.0 
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In addition to these solvent, the dyes were also observed in the aqueous buffers shown 

in Table 2.4, since these will be the applicable environment in which the end use of 

ye-protein will be observed.   d

 

Table 2.4 : Aqueous Buffers in which Photochromism was observed 

 

S

O

O

HO

N N

OH  

4-(2-Hydroxyethyl)piperazine-1-
ethanesulfonic acid, 0.1 M  
 

 

 

HEPES (Buffer) 

Phosphate buffered saline, 0.1 M 

P-O O-

O

O-

 

 

PBS (Buffer)  

2-(N-morpholino)ethanesulfonic acid, 0.1 M 

S OH

O

O

O N

 

 

 

 

 

 

MES (Buffer) 

 

 

2.6.2 Non Polar So ct on Dye Photosw g 
 

 wa e, chlorofor

s were treate in the photochromic activity study, i.e. solutions were 

xposed to t 7-33 cd @ ) for 30 seconds. Of this 

l was placed in a quartz cuvette (path length: 1 cm). With priate 

solvents as blanks, the dye solution was observed between 400 and 700 nm using a 

trophoto  were then exposed to the UV LED (360nm 

mW @ 20m epoxy) for 1 tes and the pea rption 

 were obs ure 2.14 displays the relationship between the peak 

adsorption wavelengths with solvent types.  

 

lvents Effe itchin

0.25 µg/ml of dye

solution

s prepared in toluen

d as 

m and ethyl acetate at 20 °C. The 

initially e he white LED (2  30mA

solution 1 m  appro

UV-Vis Spec meter. The solutions

1.2 -1.8 A, 5 mm clear 0 minu k adso

wavelength erved. Fig
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SP-COOH
SP-COOH-Br
SP-COOH-Me

Figure 2.14 : Non Polar S lvents Effect on Dye Photos

0.25 µg/ml of dye solutions at 20 °C w
light and the peak adsorption wavelength was noted (under UV illumination). 

 

2.6.3 Polar Protic Solvents Effect on Dye Photoswitching 

ith regards to polar solvent effect assessment on photochromism of the synthesised 

otic. Protic solvents were 

rst assessed. Protic solvents generally contain dissociable H+ (the molecules of such 

o witching. 

ere exposed to visible light and then UV 

 

W

dyes, the polar solvents were sub classed into protic and apr

fi

solvents can donate a proton). 0.25 µg/ml of dye was prepared in isopropanol, ethanol 

and methanol (20 °C). The solutions were treated as in the photochromic activity 

study, i.e. solutions were initially exposed to the white LED (27-33 cd @ 30mA) for 

30 seconds. Of this solution 1 ml was placed in a quartz cuvette (path length: 1 cm). 

With appropriate solvents as blanks the dye solution was scanned between 400 and 

700 nm using a UV-Vis Spectrophotometer. The solutions were then exposed to the 

UV LED (360nm 1.2 -1.8 mW @ 20mA) for 10 minutes and the peak adsorption 

wavelengths were observed. Figure 2.15 displays the relationship between the peak 

adsorption wavelengths with solvent types.  
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SP-COOH
SP-COOH-Br
SP-COOH-Me

Figure 2.15 : Polar Protic Solvents Effect on Dye Photoswitching. 

0.25 µg/ml of dye solutions at 20 °C were exposed to visible light and then UV 
light and the peak adsorption wavelength was noted (under UV illumination). 
 

2.6.4 Polar Aprotic Solvents Effect on Dye Photoswitching 
 

0.25 µg/ml of dye was prepared in tetrahydrofuran, acetone and acetonitrile (20 °C). 

The solutions were treated as in the photochromic activity study, i.e. solutions were 

initially exposed to the white LED (27-33 cd @ 30mA,) for 30 seconds. Of this 

solution 1 ml was placed in a quartz cuvette (path length: 1 cm). With appropriate 

solvents as blanks the dye solution was scanned between 400 and 700 nm using a UV-

Vis Spectrophotometer. The solutions were then exposed to the UV LED (360nm 1.2 

-1.8 mW @ 20mA) for 10 minutes and the peak adsorption wavelengths were 

observed. Figure 2.16 displays the relationship between the peak adsorption 

wavelengths with solvent types.  
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SP-COOH
SP-COOH-Br
SP-COOH-Me

Figure 2.16 : Polar Aprotic Solvents Effect on Dye Photoswitching. 

t and then UV 

 Aqueous Buffers (HEPES, PBS and MES) Effect on Dye Photoswitching 

ased on the eventual application of the dyes (i.e. in conjunction with proteins in 

uced to white LED to established reversibility of 

witching, and scanned. However, the dyes failed to photoswitch upon exposure to the 

hite LED and UV LED, they remained in a fixed state as evident in Table 2.5. 

 

0.25 µg/ml of dye solutions at 20 °C were exposed to visible ligh
light and the peak adsorption wavelength was noted (under UV illumination). 
 

2.6.5
 

B

aqueous buffer solutions), the spiropyran ability to photoswitch in these solvents was 

observed. The dyes were attempted to be prepared in HEPES, PBS and MES (all at 

pH 7 and molar concentration of 0.1 M) but due to solubility limitation, the 

spiropyran dyes were eventually dissolved in ethanol and made up to the mass 

concentration of 0.25 µg/ml at a solvent ratio of ethanol: aqueous buffer (1: 9). The 

solutions were exposed to the white LED (27-33 cd @ 30mA) for 30 seconds and 

scanned between 400 and 700 nm using a UV-Vis Spectrophotometer.  The solutions 

were then exposed to the UV LED (360nm 1.2 -1.8 mW @ 20mA) for 10 minutes and 

scanned. This was then re-introd

s

w
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Table 2.5 : Dye Photoswitching via UV/Vis Illumination in Aqueous Buffers.  

0.25 µg/ml (6.6 x 10-6 M) of dye solutions at 20 °C were exposed to visible light 
and UV light and then back in vis  The absorption maxima were noted. 
 

ible light. 

Solvent (pH 7) Visible Light UV Light Visible Light 
Spiropyran 

Ethanol : Buffer Absorption Absorption Absorption Dye 
(1 : 9) maxima (nm) maxima (nm)  maxima (nm) 

HEPES - - - 

PBS - - - SP-COOH 

MES - - - 

HEPES 550 550 550 

PBS 550 550 550 SP-COOH-Br 

MES 550 550 550 

HEPES 580 580 580 

PBS 580 580 580 SP-COOH-Me 

MES 580 580 580 
 
 

As evident in Table 2.5, the synthesised dyes were locked in one isomer form or the 

 light 

timulus, they would hence forth be excluded from the remainder of the study. 

other. SP-COOH remained in the spiropyran form regardless of illumination. SP-

COOH-Br and SP-COOH-Me however remained in the coloured merocyanine form 

regardless of illumination. The UV LEDs light source was replaced by a higher 

intensity UV light source (Ultra Violet 350nm - Compact Fluorescent L Type 18 Watt 

2g11 4 Pin Cap with suitable filter) in anticipation that the dye would photoswitch. It 

was however observed that the alternative UV irradiation was of no advantage. The 

dyes remained in the spiropyran form. Conversely, when the dark adaptation 

experiment was conducted on the same set of samples, SP-COOH showed indications 

of photoswitching. However the rate of change was slow as evident in Figures 2.17 

and 2.18.  SP-COOH-Br and SP-COOH-Me failed to switch isomer forms regardless 

of dark adaptation incubation period. The presence of water seems to have had an 

effect on the photoswitching properties of SP-COOH-Br and SP-COOH-Me. It was 

then concluded that if SP-COOH-Br and SP-COOH-Me can not be triggered by

s
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Figure 2.17 : Dark A tion Photosw ing of SP-CO  Over 2 Hou

Photoswitching of iropyran f to the me nine form. ple 
contained 0.25µg/ml (6.6 x 10-6 M) of dye in ethanol : HEPES (1: 9). Initial 
illumination with ED for 3 nds, then placed in the UV-Vis 

meter  environmen

 

dapta itch OH rs. 

the sp orm rocya  Sam

white L 0 seco
Spectrophoto
hours at 20 °C. 

(dark t), and scanned every 15 minutes for 2 

 
 

Figure 2.18 : Dark Adaptation Photoswitching of SP-COOH (~ 12 Hours)  

Photoswitching of the spiropyran form to the merocyanine form. Sample 
contained 0.25µg/ml (6.6 x 10-6 M) of dye in ethanol : HEPES (1: 9). Initial 
illumination with white LED for 30 seconds, placed in the dark (at room 
temperature) overnight (~12 hours) and then scanned in the UV-Vis 
Spectrophotometer (without it being exposed to ambient light). 
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The PBS and MES buffers also displayed very similar results to the HEPES. Figures 

2.19, 2.20, 2.21, 2.22 represent the dark adaptation experiment results at a ratio of 

ethanol to aqueous buffers maintained as 1:9. 
 

 

Figure 2.19 : Dark Adaptation Photoswitching of SP-COOH Over 2 Hours. 

Photoswitching of the spiropyran form to the merocyanine form. Sample 
ontained 0.25µg/ml (6.6 x 10-6 M) of dye in ethanol : PBS (1: 9). Initial 

illumination with white LED for 30 seconds, then placed in the UV-Vis 
Spectrophotometer (dark environment), and scanned every 15 minutes for 2 
hours at 20 °C. 
 

c

 

Figure 2.20 : Dark Adaptation Photoswitching of SP-COOH (~ 12 Hours)  

Photoswitching of the spiropyran form to the merocyanine form. Sample 
contained 0.25µg/ml (6.6 x 10-6 M) of dye in ethanol : PBS (1: 9). Initial 
illumination with white LED for 30 seconds, placed in the dark (at room 
temperature) overnight (~12 hours) and observed in the UV-Vis 
Spectrophotometer (without it being exposed to ambient light). 
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Figure 2.21 : Dark Adaptation Photoswitching of SP-COOH Over 2 Hours. 

Photoswitching of the spiropyran form to the merocyanine form. Sample 
contained 0.25µg/ml (6.6 x 10-6 M) of dye in ethanol : MES (1: 9). Initial 
illumination with white LED for 30 seconds, then placed in the UV-Vis 

for 2 Spectrophotometer (dark environment), and scanned every 15 minutes 
hours at 20 °C. 
 

 

Figure 2.22 : Dark Adaptation Photoswitching of SP-COOH (~ 12 Hours)  

Photoswitching of the spiropyran form to the merocyanine form. Sample 
contained 0.25µg/ml (6.6 x 10-6 M) of dye in ethanol : MES (1: 9). Initial 
illumination with white LED for 30 seconds, placed in the dark (at room 

V-Vis 

, 5:1 and 9:1 was 

temperature) overnight (~12 hours) and then scanned in the U
Spectrophotometer (without it being exposed to ambient light). 

 

Having established the behaviour of the aqueous buffer on the synthesised dyes, an 

extended study of varying the ratio of ethanol to buffer 1:9, 1:5, 1:1
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performed to observe the change. HEPES was the chosen buffer of study (because of 

availability during study) observed in figure 2.23. 

 

Figure 2.23 : Dark Adaptation Photoswitching at varying Ethanol: HEPES 
ratios. 

Photoswitching of the spiropyran form to the merocyanine form. Sample 
contained 0.25µg/ml (6.6 x 10-6 M) of dye at various ethanol : HEPES ratios after 
2 hours dark adaptation incubation. Ratios range through 1: 9, 1: 5, 1: 1, 5: 1 
and 9: 1 of ethanol: HEPES respectively. 
   

The peak adsorption shift as well as the optical wavelength in Figure 2.23 helps to 

establish the how solvent has a significant effect on the photowitching properties of 

the spiropyran dye. 

  

Generally, the dark reaction is much slower which eliminates one of the properties 

desired; rapid switching. Nonetheless, the photoswitching capability of the SP-COOH 

dye was still functional although it seems that the dye absorption maxima underwent a 

hypsochromic shift from 565nm (ref. Figure 2.9) to 540nm most likely to have been 

caused by the interaction between the net polarity of the solvent components and the 

merocyanine. This effect is also visible in Figure 2.23. 
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From the observation within this study, in organic solvents such as ethanol, SP-

COOH photochromically behaved as follows: 

• Dark or UV illumination = Merocyanine form 
• Visible light illumination = Spiropyran form 

 
In aqueous buffer (ethanol: 0.1M, pH7, aqueous buffer) SP-COOH photochromincally 

behaved as follows:  

• Dark = Merocyanine form 
• Visible light or UV illumination = Spiropyran form. 

 

2.7 Temperature and pH Effect on Synthesised SP-COOH 

2.7.1 Introduction 
 

Spiropyrans are known to also undergo thermochromism i.e. the thermally induced 

it is appropriate to analyse to what extent 

sly explained; hence, it was also ideal to know the extent of 

gradation (if any) by temperature on the synthesised spiropyran dye. 

nated form and the conjugate 

ase of the compounds have distinctly different absorption spectra (exampled by 

henols and aromatic amines) (Bouas-Laurent et al., 2001). However with regards to 

hotochromic dyes, this phenomenon can occur in addition to solvatochromism - 

hence the pH factor also help define conditions of use. Halochromism denotes the 

reversible colour change (Bouas-Laurent et al., 2001). Investigating this phenomenon 

not only helps confirm that the dyes are behaving as expected but more importantly 

having established the relationship between photochromism and solvent properties, 

(and having decided to involve the incorporation of ethanol: HEPES mix rather than 

t ethanol for the remainder of this study) jus

or limitations the solvent effect have with regards to thermochromism. Furthermore 

the formation of merocyanine form of the dye is caused by the cleavage of covalent 

bonding as previou

de

 

Likewise, pH variation is known to have an influence on a number of chemical 

reactions. Photochromism of spiropyrans are also suggested to be influenced by 

change in pH of the solvent (or the addition of an acid or base to the solvent). On pH 

change the dyes are thought to experience acidichromism and/or halochromism. 

Acidichromism phenomenon is defined when the proto

b

p

p
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colour change of a dye on addition of acids or bases. Its phenomenon is caused by the 

formation of new chromophores, as in acid-base indicators (Bouas-Laurent et al., 

: HEPES (1: 9) by 

rst dissolving the dye in appropriate amount in ethanol then 0.1M, pH 7, HEPES 

was initially exposed 

to the white LED for 30 seconds to ensure spiropyran conversion. 1 ml was placed in 

length: 1 cm). The dye solution was observed at 540 nm using a 

2001). 

 

2.7.2 Temperature Effect on Synthesised Dye 
 

Within this experiment, 0.25 µg/ml of dye was prepared in ethanol

fi

buffer was added. This was prepared in triplicate.  Each solution 

a quartz cuvette (path 

UV-Vis Spectrophotometer. The solution was then placed in a water bath (at known 

temperature range: 20, 30, 40 50, 60, 70 and 80 °C) which was sealed off from 

ambient light and the solution was incubated 30 seconds. The solution was observed 

at 540 nm using a UV-Vis Spectrophotometer. 

 

 

Figure 2.24 : SP-COOH Thermoswitching. 

Thermoswitching of the SP-COOH at 20, 30, 40 50, 60, 70 and 80 °C.  0.25 µg/ml 
(6.6 x 10-6 M) of dye was in ethanol: HEPES (1: 9) observed OD at 540 nm. 
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Figure 2.24 is a plot of the OD observed at 540 nm at each specific pH and from the 

results attainted, it is evident (by the formation of the merocyanine form of dye), that 

thermochromism occurred with the synthesised dye and in the solvent ethanol: 

EPES (1: 9). However, signs of degradation of the dye was also evident with further 

yran conversion. 1 ml was placed in a 

uartz cuvette (path length: 1 cm). With appropriate solvents as blanks, the dye 

solution was the peak adsorption was observed at 540 nm using a UV-Vis 

Spectrophotometer. The samples were then placed in a dark environment at 20 °C 

overnight (~ 12 hours) to allow merocyanine conversion and observed at 540 nm 

using a UV-Vis Spectrophotometer. 

 

H

increase in temperature above 70 °C. 

 

2.7.3 pH Effect on Dye Photoswitching 
 

This study was set up to observe the nature pf pH effect on dye. The solvent pH was 

varied and the allowed to convert to the merocyanine form and OD observed. The OD 

represented the concentration of merocyanine present. 0.25 µg/ml of dye was 

prepared in ethanol: HEPES (1: 9) just as in the temperature related experiment.  The 

solutions were then pH adjusted with HCl or NaOH to attain net solution pH values of 

2, 3, 4, 5, 6, 7, 8, 9 appropriately (in triplicate). The solutions were initially exposed to 

the white LED for 30 seconds to ensure spirop

q
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Figure 2.25 : pH Effect on Dye Photoswitching. 

Photoswitching of the SP-COOH at pH values of 2, 3, 4, 5, 6, 7, 8, 9.  0.25 µg/ml 
(6.6 x 10-6 M) of dye was in ethanol: HEPES (1: 9) observed at 540 nm. 
 
 
From Figure 2.25, it is observed that the dye at lower pH favoured the spiropyran 

form to the merocyanine form i.e. the dye remained in the spiropyran form of the dye 

regardless of illumintation. However increase in pH gradually restores the 

hotochromic effect (i.e. the conversion into the two isomers state when illuminated 

appropriately). It was also noted that any further increase in pH (7 and above) did not 

have any further effect on the conversion of isomer state, i.e. when normal 

photochromism is attained at pH 7, further increase in pH did  not have any 

(favourable or adverse) effect on photochromism.  

 

2.8 Photodegradation (Fatigue) Assessment 

2.8.1 Introduction 
 

Photochromism (a non-destructive process), involves cleavage of covalent bonds and 

re-assembling of structure, however side reactions can occur during photoswitching 

p
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and as a result, loss of switching performance over time can lead to chemical 

degradation of the compound. This effect is also referred to as “fatigue”. In 

comparison to material science, fatigue is the progressive and localised structural 

damage that occurs when a material is subjected to cyclic loading.  

 

Despite the photoswitching stability of spiropyrans being improved by the 

introduction of a nitro group at the 6 position of the benzopyran moiety of the 

structure, spiropyrans are still subjected to photodegradation when in solution. The 

photo stability of the photochromic compounds has been widely studied in various 

literature but photochromic dyes are used under various conditions and states, hence it 

seems ideal to examine photodegradation of the synthesised dye under the intended 

environmental conditions (i.e. in solution of ethanol: HEPES ratio of 1: 9, pH 7).  

hotodegradation process is one of the major limiting factors for photochromic dyes 

in industrial applications (Baillet et al., 1994). 

o assess whether the synthesised dye showed any degradation when constantly being 

 the dye was observed at 540 nm. 

he samples were then places in a dark environment at 20 °C for 12 hours to allow 

0 nm. This concluded the first cycle. 

The subsequent cycles were observed on the same batch of samples. Figures 2.26, 

e fatigue relations with photoswitching cycles. 

P

 
2.8.2 Photodegradation (Fatigue) Assessment of SP-COOH 
 

T

changed form one isomer to another, SP-COOH was initially put through 10 cycles 

(of spiropyran / merocyanine conversion) spaced by 12 hour intervals (to allow dark 

adaptation to the merocyanine form). A second assessment which involved a longer 

stability assessment whereby SP-COOH was put through 10 cycles spaced by 1 week 

intervals. 0.25 µg/ml of dye was prepared in ethanol: HEPES (1: 9) just as in previous 

studies in triplicate. The samples were initially exposed to the white LED for 30 

seconds to ensure spiropyran conversion. 1 ml was placed in a quartz cuvette (path 

length: 1 cm). The peak adsorption wavelength of

T

merocyanine conversion and scanned again at 54

2.27 and 2.28 shows th
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Figure 2.26 : Photodegradation of SP-COOH Over 10 Cycles (5 Days). 

0.25µg/ml of dye in appropriate solution (ethanol: HEPES at 1: 9) was put 
through 10 cycles (of spiropyran / merocyanine conversion) spaced by 12 hour 
intervals (to allow dark adaptation to the merocyanine form) and scanned at 540 
nm. 

      Vis   Dark  Vis  Dark Vis  Dark Vis  Dark  Vis  Dark  Vis Dark Vis Dark  Vis Dark  Vis  Dark Vis Dark 

  

 

  

Figure 2.27 : Photodegradation of SP-COOH Over 10 Cycles (10 Weeks) 

0.25µg/ml of dye in appropriate solution (ethanol: HEPES at 1: 9) was put 
through 10 cycles (of spiropyran / merocyanine conversion) spaced by 1 week 
intervals and scanned at 540 nm. This was a longer stability assessment.  
 

Since the intended use with protein involves storage at 4 °C, the lo

        Vis Dark  Vis  Dark Vis  Dark Vis  Dark  Vis  Dark  Vis Dark Vis Dark  Vis Dark  Vis  Dark Vis Dark 

  

ng time fatigue 

wer temperate of 4 °C to certify if there would be any 

significant difference between storage at 20 °C and 4 °C. 

analysis was conducted at the lo
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        Vis Dark  Vis  Dark Vis  Dark Vis  Dark  Vis  Dark  Vis Dark Vis Dark  Vis Dark  Vis  Dark Vis Dark 

  

Figure 2.28 : Photodegradation of SP-COOH Over 10 Cycles (10 Weeks) @ 4 °C. 

that the length of time between 

photoswitch cycles of the dye has no significant effect on fatigue. Although the test 

could have been prolonged to observe even longer term effect, it can be assumed that 

within this thesis, the synthesised dyes do not significantly undergo fatigue. 

 

0.25µg/ml of dye in appropriate solution (ethanol: HEPES at 1: 9) was put 
through 10 cycles (of spiropyran / merocyanine conversion) spaced by 1 week 
intervals at 4 °C and scanned at 540 nm.  

 
From figures 2.26, 2.27 and 2.28, it observed 
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2.9 Discussion 

2.9.1 Synthesis, Characterisation and Photoswitching of Carboxylated 
Spiropyran Dyes 

 

The synthesis of the carboxylated spiropyran dyes were analysed by various means to 

check authenticity as well as purity.  

 

With regards to characterisation via TLC analysis, the results indicated that the 

synthe

identity of the synthesised dye, showed similarity (in Rf values) when compared to the 

tructure were accounted for by NMR, however not all were obvious. This then 

 however 

ouas-Laurent et al., (2001) that 13C NMR was not feasible within their 

analysis. IR spectroscopy was able to detect the C=O in the carboxyl functional group 

of the synthesised dye.  

 

The set up of photochromic activity in ethanol involving the use of LEDs as 

illumination source was an avenue that was earnestly considered due to the 

advantages of LEDs consisted of compared to high power light sources such as 

mercury arc or tungsten lamps. The use of LEDs was to eliminate one major factor of 

heat energy been accompanied by visible light illumination, which was associated 

with factors that contribute to photodegradation. The initial results of photochromism 

of synthesised dyes in ethanol with LEDs as light source showed expected and 

successful photoswitching. 

 

 

sised dyes were of relatively high purity, and as the initial confirmation of the 

commercially available spiropyran dye (SP-Sigma). 1D 1H NMR study also 

confirmed the identity of the dye based on the number of hydrogen atoms present on a 

dye molecule. The hydrogen atom on the benzene rings of the spiropyran dye 

s

indicated that the purity of the dye was not as high as initially deduced from the TLC 

analysis.  13C NMR could not however be completed on dyes. Initial trial analysis 

indicated the amount dyes needed to give significant detections was be at the expense 

of other experimental times and resources hence was not completed. It was

stated by B
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2.9.2 Solvent Ef
 

fect on Synthesised Spiropyran Dyes 

 have an 

spiropyran dyes. Generally spiropyran are 

n form) in non polar organic solvents.  In polar 

rganic solvents, depending on the polarity of the solvents, the dyes may display 

ing unstable and hence will either transform into the trans 

tructure or revert to spiropyran depending on the light and solvent conditions.  

d to be dominant.  

Environmental conditions such as the solvent compositions and polarity can

ffect on the photochromic activity of the e

expected to display normal photochromism (the most thermodynamically stable 

isomer of the dye being the spiropyra

o

negative photochromism (the most thermodynamically stable isomer of the dye being 

the merocyanine form). However the carboxylated dye is known to display negative 

photochromism in solution because of the presence of the COOH functional group, 

and this was evident in the dark adaptation reaction – i.e. the dye was 

thermodymically stable in the merocyanine form in the dark.  

 

The polarity of the solvent affected the photoswitching profile of the synthesised dye. 

As stated by Lin (2003) - with increasing solvent polarity, the absorption band would 

be expected to undergo a hypsochromic shift because there would be extra interaction 

between polar solvents and ionic coloured merocyanine form. This was also evident 

with the results attained, i.e. as the dielectric constant increased within grouped 

organic solvent type, the hypsochromic shift was observed regardless. As theoretically 

established in Chapter 1, merocyanines may be cis (C) and/or trans (T) forms of the 

isomer. The cis form be

s

However the results attained in this study did not necessarily agree with Lin, (2003) 

theoretical explanations neither did it give more insight on which form of the 

merocyanine form is present in each solvent. Lin, (2003) concluded that in a polar 

solvent, the maximum absorbance occurs at lower energy, causing a Bathochromic 

(red) shift.  As a results of these hypothesis, in a non-polar solvent as well as aprotic 

solvent, (in reference to the proposed isomer configuration in the merocyanine – 

section 1.3) TTC and TTT are acticipated to be dominant, whereas in protic solvent, 

CTT and CTC are acticipate
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Aqueous buffer effect of the dye however gave results that influenced the approach of 

e dye application. HEPES, PBS and MES buffers of choice observed. HEPES and 

hoton was not met with 

e introduction of aqueous solvents as mediums. The only option of dark adaptation 

 se as did in photochromism. However 

e dye degraded rapidly with thermochromism. This is also a problem when it comes 

 proteins (the intended application), heating at such high temperature will cause 

denaturing.  The stability of the dye is highly influenced by thermochromism. But in 

th

MES can be applied in EDC-NHS reactions and PBS is the base medium in which 

most antibodies are presented although not an exclusive solvent since its isotonic 

properties is its main advantage.  Nevertheless, the synthesised dyes failed to easily 

dissolve in these solvents and as results the dyes had to been initially dissolved in 

ethanol then further made up with the aqueous buffer. The use of UV LEDs and 

higher intensity UV light source were noted as innaporpriate when the aqueous buffer 

were involved as solvent types.  

 

The desired characteristic of photochromic dyes; possession of zero or minimal 

internal filtration mechanism to inhibit efficacy of activation p

th

switching (reliance on the negative photochromic nature to switch to merocyanine 

form in the dark) was only applicable to SP-COOH dye. The remaining derivatives 

SP-COOH-Br and SP-COOH-Me were discarded for the remainder of the study since 

they failed to change form regards of illumination or dark adaptation incubation 

period. Varying the ratio of ethanol to HEPES resulted in a hypsochromic shift. In 

comparison to Gorner et al., (1998) observation, they also noted that the addition of 

water to the spiropyran dye (in acetone) resulted in blue shift of from 580 to 540 nm.  

Collectively, this shows that the photo induced structural changes depend on solvent 

composition; hence the photo response can be modulated by a combined action of 

light and solvent composition. HEPES, MES and PBS all behaved identically. 
 

2.9.3 Temperature and pH Effect on Synthesised Spiropyran Dye 
 

Temperature effect (thermochromism) on the synthesised dye was as expected. As 

temperature increases more merocyanine became present in the solution denoted by 

the deep colouration with time. The solvent choice i.e. the use of ethanol: Hepes (1: 9) 

did not have any effect on thermochromism per

th

to
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the general context of thermochromism, SP-COOH in desired solvent composition 

(ethanol: Hepes (1: 9)) displayed the effect as expected.  

 

Gallot et al., (1997) stated that when spiropyrans are treated with acids they are 

converted into spiropyran salts which exhibit the photochromic behaviour. Keum et 

al., (1994) also reported that treatment of the spiropyran form in an organic solvent 

with HCL to decrease the pH causes a protonated spiropyran form of the dye to ring 

open to give a protonated merocyanine form. Treatment of the latter with a tri-n-

butylamine solution as base in a stopped-flow apparatus resulted in ring closure to 

piropyran reconversion. This was however not so in this current study. The pH 

hotodegradation of the synthesised dye in ethanol: HEPES (1: 9) at pH 7 was 

hing the dye 

omeric states over ten cycles at 20 °C bearing in mind that UV illumination to aid 

s

change exposed the near opposite and slightly different effect possibly based on the 

solvent involved (ethanol: HEPES at 1:9).  At lower pH, the dye is immediately 

converted to the spiropyran form and does not respond to photo or thermo chromism. 

The dye remains locked in that form regardless of the external stimuli. With the 

addition of a base to increase the pH of the solution, the photochromic nature is 

restored i.e. the system responds to change in illumination (Photochromism). Hence 

once again collectively the photo induced structural changes depend on solvent 

composition and its environmental conditions such as pH and temperature. Hence 

these results help to define the synthesised dye photochromic activity based on its 

intended application. 

 

2.9.4 Photodegradation (Fatigue) Assessment of Spiropyran Dyes 
 

P

observed under three conditions. The first being immediate switc

is

switching  was no longer feasible. The dye in such solvent composition rendered slow 

dark conversion rate from the spiropyran form to the merocyanine form which was 

possible within 12 hours. The second observed condition was in the context of 

stability of the dye over time. The ten cycles switching of the dye over 10 weeks (~ 3 

months) period showed that  after the fifth week, the dye began to show some form of 

degradation although not very drastic. The third observed condition took on board the 

possible storage condition of the dye in solution (at 4 °C) when it is applied on 
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proteins, and the stability of the dye over time was observed. The results however did 

not differ from the stability test over time at 20 °C.  

 

These results however confirm the synthesised dye in ethanol: HEPES (1: 9) at pH 7 

did not show degradation within 10 completed cycles or after 5 weeks of storage.  

They also contrast reported results on the stability of photochromic property in 

spiropyran dye as relatively poor. However it must be noted that habitually these 

results stated are with respect to dye–protein complexes which will be later looked 

into in subsequent chapters. 

 

2.10 Summary of Dye Synthesis, Dye Characterisation, Dye Photoswitching 
Conditions and Fatigue 

 

 Spiropyran dye synthesis to possess a carboxyl group has been successfully 

completed. 

 The synthesised dye illustrated photochromism and was structurally confirmed with 

TLC, NMR and IR analysis. 

 Photochromic behaviour of the dye in various polar and non polar solvents 

confirmed variance in photochromism with respect to environmental conditions. In 

aqueous solvents (proposed application environment) the photochromic nature of 

the dye was affected and as a res

•

•

•

ult the dye had to forgo its rapid switching 

photochromic property, also photoswitching was triggered by visible light and the 

•

 

reverse reaction by dark adaptation. 

 The synthesised spiropyran dye was relatively stable (when stored in solution for 

more than a month) and did not show fatigue with within 10 cycles of 

photoswitching. 
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Chapter 3 
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3 Photomodulation of Horseradish Peroxidase Activity Modified with 
Spiropyran Dyes 

1 Introduction and Overview 

his chapter first of all describes the conjugation of horseradish peroxidase (HRP) to 

e synthesised carboxylated spiropyran dyes (SP-COOH) (of Chapter 2). This is then 

llowed by characterisation of the spiropyran modified HRP (SP-HRP). Within this 

apter, the results of the conjugation reaction between HRP and SP-COOH will be 

esented in the characterisation sections and not the conjugation section. This is 

ctions were conducted in a way to assist the characterisation of 

e modified enzyme. 

fully studied by a 

1, Section 1.2.4.2 

n et al., (1999) reported the greatest degree of 

hotomodulation of HRP (greater than 90% reduction in enzyme activity under visible 

ompared to UV illumination). The hypothesis put forward by Weston et al., (1999) 

tates: spiropyran dyes attached to the enzyme HRP alters physicochemical properties 

f the entire molecule upon appropriate irradiation; which has the potential to disrupt 

e tertiary structure of the protein, thus possibly inducing a subsequent change in the 

onfiguration of the binding or active site of the protein.  

s established as part of the aims and objectives within this thesis, HRP is studied 

ere as a model system to develop and demonstrate the approach to be later applied 

odulation of antibodies. This includes observing a conjugation reaction 

ethod accredited by the number of spiropyran dyes effectively attached to the 

e; observing photomodulation of the enzyme activity under experimental 

i.e. in an aqueous environment); and observing 

hotoswitching capabilities (including fatigue) of the spiropyran dye on the modified 

nzyme. HRP was chosen as it is a well studied and readily available enzyme. Its 

activity can be simply assayed using colorimetric reagents. In addition, HRP has a 

3.
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The concept of photomodulating enzyme activity has been success

small number of research groups (examples presented in Chapter 

and Table 1.1), of these, Westo

p
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molecular size similar to an antibody fragment (~ 44 k Da); a candidate included

antibody study. 

 in 

ithin this current study (based on the findings related to photoswitching feasibility 

photoswitching properties on the spiropyran dye [Chapter 2]). 

he most applied conjugation method of coupling photochromic molecules to 

(Sigma Code: 424331), 

a Code: P4417), HEPES Buffer Salts (Sigma Code: 

Eclipse Fluorescence Spectrophotometer (Varian) respectively. 

 

W

of spiropyrans in predominantly aqueous solvents [Chapter 2]), it was established and 

concluded that UV illumination can no longer be an effective stimulus for switching 

spiropyrans dyes to the merocyanine form, the dark adaption mechanism was 

henceforth applied. Likewise, the choice of aqueous buffer used through out 

experimentation was HEPES (simply because of availability; having also established 

and concluded that HEPES, PBS and MES buffers did not have any significant 

differing effect on the 

T

proteins: carbodiimide mediated coupling chemistry was used as with other research 

groups (Chapter 1; Table 1.1).  
 

3.2 Chemicals, Biological Compounds, Materials and Equipment 
 

The following chemical consumables were purchased from Sigma Aldrich, UK: 

Peroxidase from Horseradish (Type II) (Sigma Code: P-8250), N-

Hydroxysulfosuccinimide Sodium Salt (Sigma Code: 56485), 1-(3-

Dimethylaminopropyl)-3-Ethylcarbodiimide, Polymer-Bound 

Phosphate Buffered Saline (Sigm

H7523), 3,3’,5,5’–Tetramethylbenzidine (TMB) Tablets (Sigma Code: T 5525). 

Pierce Fluoraldehyde™ Reagent Solution (Pierce code: 26025) was purchased from 

Pierce, UK. The following were obtained from Fischer Scientific, UK: Centrifugal 

Concentrator Millipore Microcon YM-10 green 10,000 NMWL 0.5mL (Fischer Code: 

Fdr-561-030u) and Syringe Filter Non Sterile SFCA membrane green 25mm diameter 

0.45µm pore size NALGENE (Fischer Code: Fdm-345-020k). LEDs were acquired 

from Roithner Laser Technik, Austria; White LEDs, based on GaN 27-33 Cd 

(Roithner Laser Technik Code: 5w4hca-H20-Ultra). UV-Vis spectra and protein 

assays were recorded on UV-Vis Spectrophotometer UV-2100 (Shimadzu), and Cary 
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3.3 Covalent Coupling of SP-COOH to HRP 

3.3.1
 

 Introduction 

s solution at room temperature, which simplifies the 

ide mediated 

a tion. 

ufficiently stable but 

hydrolyse within hours or minutes, depending on the water-content and pH of the 

To test the feasibilty of HRP activity photomodulation, the carboxyl group of the 

synthesised spiropyran dye is initially coupled to the accessible lysine amine groups 

of the HRP molecule. This is achieved via covalent coupling. Water-soluble 

carbodiimides are often used as zero-length cross-linkers in organic chemistry or 

peptide synthesis for; attaching haptens to carrier proteins to form immunogens, to 

label nucleic acids and for the immobilization of different biological molecules on 

solid supports, amongst other applications Wrobel et al., (2002). In principle the 

carbodiimide molecule reacts with the carboxyl group of a molecule, producing a 

highly reactive O-acylisourea intermediate, which then further reacts with 

nucleophiles such as primary amines to form an amide (peptide) bond.  The reaction 

can be performed in an aqueou

procedure. Figure 3.1 shows a schematic representation of the carbodiim

cre

 

Over the years, 1-(3-Dimethylaminopropyl)-3-Ethylcarbodiimide (EDC) has emerged 

as the carbodiimide reagent of choice for amide coupling reactions. EDC has a very 

short hydrolysis half-life, it is also highly reactive but unstable. If its reactive 

intermediate O-acylisourea (during an amide coupling reaction) does not encounter an 

amine, it hydrolyzes and regenerates the carboxyl group. However in the presence of 

N-hydroxysulfosuccinimide (Sulfo-NHS), carboxyl groups react with Sulfo-NHS (in 

the presence of EDC) resulting in a semi-stable Sulfo-NHS ester, which may then 

react with primary amines to form amide cross-links (Figure 3.1). Sulfo-NHS 

presence stabilises the intermediate product and greatly enhances coupling efficiency 

Wrobel et al., (2002). EDC and Sulfo-NHS are soluble in aqueous and organic 

solvents. However, the incorporation of Sulfo-NHS also preserves and increases 

water-solubility of the modified carboxylated molecule. The inclusion of Sulfo-NHS 

makes the coupling reaction a two-step process; the first being an activation step, and 

the second being the joining step. Sulfo-NHS esters are s
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reaction solution (NHS esters have a half-life of 4-5 hours at pH 7, 1 hour at pH 8, 

and only 10 minutes at pH 8.6.). Hence, within this study, the reaction during the first 

t medium (HEPES) at pH 4. The pH was then raised to 7 

n, providing a cleaner, faster and easier method of coupling Desai et al., 

993). P-EDC was used during the coupling reaction in this study. 

step contained a solven

during the second step and the NHS-activated molecules were quickly reacted with 

the amine containing target. 

 

Furthermore, during an EDC/Sulfo-NHS coupling reaction, a by-product isourea is 

required to be separated from the reactant and product mix. This usually involves 

extraction of the by-product into an acidic aqueous phase, which may or may not have 

an effect on the product. This aqueous work-up can be avoided by employing EDC 

attached to a large polymer. The commercially available polymer bound EDC (P-

EDC) (Figure 3.2), behaves similarly to EDC in solution, but the by-products of the 

reaction would remain on the polymer. The product, therefore, can be isolated simply 

by filtration and evaporation of the filtrate. Hence one of the benefits of P-EDC is that 

work-up of the reaction can be reduced to simple techniques such as filtration and 

evaporatio

(1
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Figure 3.1 : Schematic of EDC/Sulfo-NHS Reaction. 

EDC reacts with a carboxyl group on molecule #1, forming an amine-reactive O-
acylisourea intermediate. This intermediate may directly react with an amine on 
molecule #2 (not shown in diagram), yielding a conjugate of the two molecules 
joined by a stable amide bond. However the inclusion of Sulfo-NHS (as 
conducted in this study) stabilises the amine-reactive intermediate by converting 
it to an amine-reactive Sulfo-NHS ester, thus increasing the efficiency of EDC-
mediated coupling reactions. 
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Figure 3.2 : Structure of Polymer Bound EDC. 

everal agents can be classified as polymeric beads which are attached to EDC to 
es are polymer linked nitrophenol 

eriva polystyrene-attached 1-hydroxy-2-pyrrolidinone, polymer coupled 8-
cyloxyquinolin, polymer carrying N-ethoxycarbonyl-2-ethoxy-1,2-
ihydroquinoline functional group, polymer attached to triphenylphosphine, etc. 
n this study the polymeric beads attached to EDC is chloromethylated 
oly(styrene-1% divinylbenzene) r

.3.2 Methodology: Covalent Coupling of SP-COO

Within this thesis, water based coupling of spiropyran dyes to protein molecules was 

o-NHS reaction described in Section 3.3.1. This general 

rocedure was followed during all spiropyran dye to enzyme coupling. Detailed 

rotocol is as follow: 

• EDC and Sulfo-NHS were initially equilibrated to room temperature.  

• 1 mg of carboxylated spiropyran dye (SP-COOH) was weighed and initially 

n made up to a volume of 10 

s) and allowed to react for 15 minutes at room 

temperature (~ 20 °C).  

• The solution was then filtered with a non sterile syringe filter (SFCA 

membrane, 25 mm diameter 0.45 µm pore size) to remove all by-products 

from the mixture.  

Polymer 

S
form the polymer bound EDC. Exampl
d tives, 
a
d
I
p esin. 
 

3 H to HRP 
 

achieved using the EDC/Sulf

p

p

 

dissolved in 1 ml ethanol. The solution was the

ml with freshly prepared 0.1M Hepes buffer in ethanol (ethanol:HEPES; 1:9, 

at pH 4).  

• 20 mg of P-EDC (0.5 mol/g of load contained EDC) and 5 mg of Sulfo-NHS 

(both these in molar excess quantities) were added to the dye solution (under 

ambient light condition
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• The pH of the solution was raised to 7 with NaOH and 1 mg of HRP was 

added and reacted for 2 hours (the length of time was varied in a rate of 

conjugation test later described). 

• To quench the reaction, the solution was passed through a centrifugal 

concentrator (Millipore microcon 10,000 NMWL 0.5mL) with a molecular 

weight cut-off of 10 kDa and spun to dryness at 10,000 rpm for 15 minutes.  

• The membrane surface of the centrifugal concentrator (which retained the 

modified HRP molecules) was reconstituted with a solution of 1:9 

(ethanol:HEPES at pH 7) to collect the spiropyran dye labelled HRP (SP-

HRP). 
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3.4 Characterisation of SP-HRP 

3.4.1 Overview 

 

To characterise the modified enzyme (SP-HRP), the following were observed: 

determination of the number of spiropyran dyes immobilised onto the enzyme 

expressed in molar ratios; photomodulation of the modified enzyme’s activity; the 

r of Spiropyran Dyes Attached to HRP (SP-COOH:HRP Ratio) 

3.4.2.1 Introduction 

 

In an attempt to understand the nature of coupling with regards to the number of 

spiropyran dyes attached to HRP, two investigations were carried out. The first study 

was to determine whether the reaction time during EDC/Sulfo-NHS coupling reaction 

had any significant effect on the amount of dye covalently attached to the protein. The 

second was to investigate whether the structural form of the dye (i.e. the spiropyran or 

merocyanine form) had any significant effect to the nature of coupling, because the 

two forms merocyanine and spiropyran are known to have two distinct structures and 

vary in properties  (described in Chapter 1). 

 

Characterisation by the number of spiropyran dyes immobilised onto the enzyme 

involved protein content assay and spiropyran dye concentration determination. Pierce 

FluoraldehydeTM protein/peptide assay is employed in the protein content study. This 

method uses an o-phthalaldehyde-based reagent developed to detect minute amounts 

of protein and peptides. Fluoraldehyde reactions are completed in less than one 

minute with sensitivity down to 50 ng/ml protein concentration. The procedure also 

requires as little as 50 μl of the sample for use in an opaque microtitre assay plate; 

saving valuable sample and analysis time. Fluoraldehyde assay requires an excitation 

wavelength of 340 nm and emission wavelength of ~ 455 nm. It has been suggested 

that merocyanine form of the spiropyran dye is subjected to fluorescence emission at 

610 nm whereas spiropyrans are not (Mecheri et al., 2003).  Pierce FluoraldehydeTM 

correlation between photoswitching properties of the attached spiropyran dye (to the 

enzyme) and photomodulation; and spiropyran dye fatigue assesement.  

 

3.4.2 Numbe
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protein/peptide assay employed does not involve fluorescence emission measurements 

er, in order to rule out any ambiguity in the protein assay results 

ithin this study, the solution samples were all analysed in the spiropyran form; i.e. 

late the dye’s 

oncentration. 

cation SP-COOH & HRP 

• With a calibration (standard) curve analysed beforehand, the molar extinction 

at 610 nm. Howev

w

the samples were exposed to white LEDs for 3 minutes prior to analysis. Spiropyran 

dye concentrations were observed in the coloured merocyanine state because it shows 

strong absorption of radiation in the visible light spectrum region.  The absorption 

maxima of the spectrum were used to provide the dye’s molar extinction coefficient 

via a standard curve. The molar extinction coefficient was used to calcu

c

 

3.4.2.2 Methodology: Quantifi

 
The spiropyran dye concentration of the modified protein was quantified as follows: 

 

• SP-HRP sample was ensured to be in the merocyanine state (therefore pre-

stored in a dark environment at 4 °C for 12 hours) (as described in Chapter 2, 

Section 2.5). 

• The sample (SP-HRP) was observed under visible light absorption spectrum 

between 400 and 600 nm using a UV-Vis Spectrophotometer. (The absorption 

maximum was noted). 

coefficient (ε) was calculated for the dye in solution and used to determine the 

spiropyran dye concentration of SP-HRP. In this study ε = 4 x 104 M-1cm-1 (at 

510 nm in ethanol:HEPES [1:9]) 

 

Protein assay (Pierce FluoraldehydeTM protein/peptide assay) was conducted as 

follows:  

 

• SP-HRP sample was exposed to white LEDs light (as described in Chapter 2, 

Section 2.5) for 3 minutes to ensure spiropyran form conversion. 

• 50µl of SP-HRP sample plus 50µl of Pierce FluoraldehydeTM reagent (1:1 

ratio) were pipetted in an opaque microtitre plate.  
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• The contents were mixed for 5 minutes and read on the Cary Eclipse 

Fluorescence Spectrophotometer after being excited at 340 nm, the emission 

spectra reading was between 450 and 460 nm. The results were compared to a 

calibration (standard) curve also previously analysed.  

 
3.4.2.3 Experimental: EDC/Sulfo-NHS Rate of Coupling 

 

Covalent coupling of SP-COOH to HRP was carried out as described (in Section 

3.3.2); however this analysis involved the observation of the number of spiropyran 

ye attached to enzyme in different EDC/Sulfo-NHS reaction time. All reactions were 

ed to observe whether 

action time had any significant effect on number of dyes coupled to the enzyme. 

f 

piropyran dye to enzyme in the conjugated SP-HRP (Table 3.1). 

bodiimide-mediated covalent coupling of SP-

d

in triplicates and averaged. The investigation was intend

re

The results of these were espressed as reaction time versus the molar ratio o

s

 

Table 3.1 : Rate of Formation of SP-HRP in an EDC/Sulfo-NHS Reaction.  

Effect of reaction time on the car
COOH to HRP; expressed as reaction time versus the molar ratio of spiropyran 
dye to enzyme in the conjugate SP-HRP. Reaction time monitoring excluded the 
centrifugation step of 15 minutes during the reaction termination step (as 
described in Section 3.3.2). 
 

Reaction time (minutes) HRP:SP-COOH (molar ratio) 

5 1: 6.3 (± 0.3) 

20 1: 8.2 (± 0.2) 

40 1: 9.1 (± 0.4) 

60 1: 10.1 (± 0.2) 

90 1: 10.3 (± 0.1) 

120 1: 10.3 (± 0.1) 
 

 

Table 3.1 shows that as the reaction time increased the number of moles of spiropyran 

dye per enzyme increased. It was however noted that after a 60 minutes reaction 

 

102



period, the number of moles of dyes immobilised on the HRP enzyme did not 

significantly increase much further. Based on the fact that a HRP molecule possesses 

12 lysine amine groups (as stated in Chapter 1; Section 1.5.4), a molar ratio of 1:12 

would imply 100% SP-COOH immobilisation on the enzyme. However an initial 

eduction from thes results implies that, despite HRP possessing 12 lysine amine 

 and the carbodiimide-

ediated reagent involved in the reactions were all in molar excess to ensure reaction 

able 3.2 : Non-specific Binding  Analysis Between HRP and SP-COOH. 

r the 

d

groups, not all may be accessible, since the spiropyran dye

m

completion. 

 

Another batch of conjugation under the same conditions but without EDC/Sulfo-NHS 

and in triplicates were conducted to investigate evidence of non-specific binding 

between HRP and SP-COOH. The results were also expressed as a function of time 

reaction.  

 

T

Non-specific binding was assessed via mixing HRP with SP-COOH unde
same conditions as the carbodiimide mediated reaction but without EDC/Sulfo-
NHS. Results expressed as the molar ratio of enzyme to immobilised dye after 
coupling process. Reaction time stated below excludes the centrifugation step of 
15 minutes to terminate the reaction. 
 

Reaction time (minutes) HRP:SP-COOH (molar ratio) 

5 1: 2.2 (± 0.1) 

20 1: 2.5 (± 0.1) 

40 1: 2.6 (± 0.1) 

60 1: 2.4 (± 0.1) 

90 1: 2.4 (± 0.1) 

120 1: 2.7 (± 0.1) 
 

esults from Table 3.2 indicated that there may be some evidence of the presence of 

 

R

SP-COOH after the reaction, suggestion non-specific binding. It was however not 

verified via appropriate analysis whether the dyes were physically attached to the 
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enzyme or just present in the sample solution as a result of experimental error. 

Nevertheless, for an accurate representation of a covalently coupled reaction, the 

results attained in Table 3.1 were adjusted by subtracting the results from Table 3.2 to 

give Table 3.3.  

 

Table 3.3 : Adjusted results of Table 3.1. 

The molar ratio values of Table 3.1 minus the molar ratio values of Table 3.2, 
were used to construct this table.  
 

Reaction time (minutes) HRP:SP-COOH (molar ratio) 

5 1: 4.1 (± 0.3) 

20 1: 6.3 (± 0.2) 

40 1: 7.5 (± 0.4) 

60 1: 7.7 (± 0.2) 

90 1: 7.9 (± 0.1) 

120 1: 8.0 (± 0.1) 
 

 

It was conluded that, the despite these adjustments, the initial results in Table 3.1 

ould be referenced through out this chapter, however the results in Table 3.3 will be 

presented in rk

 
3.4.2.4 Experimentation: Merocyanine and Spiropyran Effect on Coupling 

Reaction 
 
Covalent coupling of S OH to HRP was also observed by the state of the dye 

during coupling, i.e. the ocyanine or the spirop

and visible light reactions respectively. The merocyanine dye was pre-incubated in the 

ark for 12 hours before application of the EDC/Sulfo-NHS reaction, whilst the 

piropyran form of the dye was illuminated with white LEDs for 3 minutes to ensure 

w

this thesis should future wo  clarify these observation. 

P-CO

 mer yran form, marked by dark reaction 

d

s

isomer conversions. The coupling reactions were carried out in the dark and another 

in the presence of visible light from white LEDs. Since it has been established and 

confirmed in Section 3.4.2.3 that after 60 minutes of reaction the number of dye 
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attached to the enzyme did not significantly increase, the analysis was conducted till 

the 60 minutes mark. All reactions were in triplicates and averaged. Table 3.4 shows 

the reaction observed as dye isomer state versus reaction time versus the molar ratio 

of spiropyran dye to enzyme in the conjugated SP-HRP. 

ffect on Coupling Reaction. 

s the result of molar ratio of enzyme to 
mobilised dye. Reaction time excluded the centrifugation step of 15 minutes 

uring reaction termination. 
 

 

Table 3.4 : Merocyanine and Spiropyran E

Effect of dye’s isomer state on the carbodiimide-mediated covalent coupling of 
SP-COOH to HRP expressed a
im
d

Dye’s Isomer State Reaction time (minutes) HRP:SP-COOH (molar ratio) 

5 .1 (± 0.1) 1: 6

20 .0 (± 0.3) 1: 8

40 .9 (± 0.1) 1: 8
Spiropyran 

60 .2 (± 0.2) 1: 10

5 .0 (± 0.2) 1: 6

20 1: 8.7 (± 0.1) 

40 1: 9.4 (± 0.2) 
Merocyanine 

60 1: 9.8 (± 0.1) 
 

 

he result shown in Table 3.4 implies that the nature of the dye isomer (i.e. either 

ling 

ilar to those of Table 3.1 implying good 

T

spiropyran or merocyanine) does not have any significant effect during the coup

action. These results were also simre

reproducibility of results. 
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3.4.3 Photomodulation of SP-HRP 
 
3.4.3.1 Introduction 
 

This section studies photomodulation of the modified enzyme (SP-HRP).  The 

reaction is in predominately acqueous solution. The activity of the modified enzyme 

 substrate.  

itor the effect of photomodultation. The unmodified 

ative) HRP reaction with TMB was used as a control. 

 

3.4.3.2 Methodology and Experimentation: Photomodula P  
 

The concentration of native and mo d HRP was 10 ng/ml. HRP was modified with 

SP-COOH via the EDC/Sulfo-NHS reaction established (Section 3.3.2). The 

conjugation reaction time varied as was as in Section 3.4.2.4. The resulting 

dye: rom the rate of coupling analysis (6:1, 8:1, 9:1 and 10:1) were 

obtained and subsequently stored in ethanol:HEPES; 1:9, in the dark for 12 hours at 4 

°C to allow sufficient equilibrium e for dark merocyanine adaptation. 1 ml of 

olution (10ng/ml) was placed in a quartz cuvette (ensuring that the sample was not 

xposed to light). 0.5 ml of TMB solution (prepared by dissolving 1 tablet of TMB in 

e solution exposed to white LEDs for 3 minutes and 

anned as above for 2 minutes. The same procedure (dark and light TMB reaction) 

as carried out using native HRP for comparisons. All of the measurements were 

erformed in triplicates. 

 

was observed using 3,3’,5,5’–tetramethylbenzidine (TMB) as an enzyme

TMB reacts with HRP to form a blue coloured product, which can be monitored real-

time with a spectrophotometer at a wavelength of 650 nm. The rate of colour 

formation will be used to mon

(n

tion of SP-HR

difie

protein ratios f

 tim

s

e

10 ml of 0.05 M Citric Phosphate per Borate buffer) was added and read at every 0.2 

seconds for 2 minutes at 650 nm using a UV-Vis Spectrophotometer. The reaction 

was observed in triplicates. A repeat of the TMB reaction was observed an was a 

second batch of modified enzym

sc

w

p
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3.4.3.3 Results: Observed Photomodulation of SP-HRP 

-HRP was expressed as optical density (OD) signal versus 

me. This was observed for the four dye:protein molar ratios from the rate of coupling 

 

Photomodulation of SP

ti

analysis (6:1, 8:1, 9:1 and 10:1) and in triplicates (Figure 3.3). 

 

 

Figure 3.3 : Effect of Illumination on Native and SP-HRP Activity. 

TMB reacted with modified and native HRP at concentration of 10 ng/ml. White 
LED illumination and dark adapted represent the spiropyran form and the 
merocyanine form of the dye attached to the protein respectively. The data 
points at 650 nm absorption measurements represent Native HRP and modified 
HRP (at dye : protein molar ratios of 6:1, 8:1, 9:1 and 10:1). Raw data points 
were plotted. 

 

The results of Figure 3.3 indicated the native HRP displayed similar activity profile 

gardless of illumination, therefore implying that the control was valid. The modified 

e:protein molar ratios of 6:1, 8:1, 9:1 and 10:1) when illuminated with 

white LED light (to achieve the spiropyran form of the dye) all displayed similar 

ignificantly decreased activity; whilst the dark adapted (merocyanine form of the 

re

HRP (at dy

s
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dye) showed activity almost identical to the native HRP. These results confirm that 

hotomodulation of SP-HRP is feasible and the number of dye attached did not p

significantly show any difference in results. From these results a linear regression plot 

was used to calculate the specific enzyme activity of the native and modified HRP 

under different illuminations (Figure 3.4). 

 

 

Figure 3.4 : Specific Enzyme Activity of Native and Modified HRP. 

Specific enzyme activity of the native and modified HRP protein under two 
different conditions (visible light and dark adapted). Error bars represent the 
standard deviation of three repeats. 
 
 

These results shown in Figure 3.4 indicate that the enzyme activity for the 

immobilised Native HRP is still conserved. Modified HRP when illuminated with 

white LED light (to achieve the spiropyran form of the dye) showed ~60 % decrease 

in specific enzyme activity rate when compared to the dark adapted (merocyanine 

form of the dye).  
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3.4.4 Photoswitching of SP-HRP 

3.4.4.1 Introduction and Methodology 

 
In order to establish whether the photoswitching properties of the spiropyran dye on 

the SP-HRP was responsible for photomodulation, the photoswitching properties of 

e dyes were observed under various illuminations. The correlation between 

photoswitching and photomodulation was established.  

 

To assess this, SP-HRP was dark adapted for 12 hours at 4 °C to allow sufficient 

equilibrium time for dark merocyanine adaptation. 1 ml of solution (10ng/ml) was 

placed in a quartz cuvette (ensuring that the sample was not exposed to light). With 

appropriate solvents as blanks the SP-HRP solution was observed between 400 and 

600 nm using a UV-Vis Spectrophotometer. The solution was then exposed to white 

LEDs illumination for 3 minutes and then same experiment was observed. 

 

3.4.4.2 Results: Photoswitching of SP-HRP 
 

The photoswitching of SP-HRP was observed in visible white light and in dark 

adaptation. These include the modified HRP at dye:protein molar ratios of 6:1, 8:1, 

9:1 and 10:1. The spectra of the SP-HRP between 400 and 600 nm was observed 

(Figure 3.5).  From theses results, the dye:protein ratio was reflected the in Vis spectra 

as the ratio of dye:protein increases, the absorption maxima increases (which 

th

- 

indicates the merocyanine concentration). 

 

109



  

Figure 3.5 : Observed Dye Photoswitching of in SP-HRP. 

P is represented. The solution was 
ark adapted to allow merocyanine conversion and observed between 400 and 

3.4.5 Photodegradation (Fatigue) Assessment (SP-HRP: Dye Photoswitching) 
 

To assess whether the coupled dye on SP-HRP was subjected to degradation while 

repeatedly being changed form one isomer to another, SP-HRP (dye:protein ratio of 

10:1) underwent fatigue analysis as in Chapter 2; Section 2.8, whereby the solution 

mixture was initially put through 10 cycles (of spiropyran / merocyanine conversion) 

spaced by 12 hours intervals (to allows dark environment conversion to the 

merocyanine form at 4 °C). The second assessment involved a longer assessment in 

which SP-HRP was put through 10 cycles spaced by 1 week intervals. 

 

Photochromism of SP-COOH attached to HR
d
600 nm. The spiropyran form was also scanned after exposure to white LEDs.  
 

Figure 3.5 shows that relative composition of spiropyran dye on the modified HRP.  

It can also be established that the change of dye form reflects the modulation observed 

in Section 3.4.3.3.   
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The samples of SP-HRP were initially exposed to the white LED for 3 minutes to 

ensure spiropyran conversion. 1 ml was placed in a quartz cuvette. Using appropriate 

solvents as blanks, the SP-HRP solution optical density (OD) measurement was 

observed at 510 nm. The samples were then placed in a dark environment at 4 °C for 

12 hours to allow merocyanine conversion and OD was observed again at 510 nm. 

The cycle was repeated 9 more times (evenly spaced over 5 days). The second 

assessment of 10 cycled experiment was conducted just as the first but evenly spaced 

over 10 weeks. The SP-HRP solution was stored at 4 °C between each cycle. The OD 

values were plotted against the corresponding switch and graph showing OD and 

number of switches over time was obtained (Figures 3.6 and 3.7). 

 

 

igure 3.6 : Photodegradation of  Dye in SP-HRP Over 10 Cycles (5 Days). 

) 
paced by 12 hours intervals (to allow dark adaptation to the merocyanine form 

       Vis   Dark  Vis  Dark Vis  Dark Vis  Dark  Vis  Dark  Vis Dark Vis Dark  Vis Dark  Vis  Dark Vis Dark

  

F

SP-HRP was put through 10 cycles (of spiropyran / merocyanine conversion
s
at 4 °C) and scanned at 510 nm.  

 

The switching cycles of Figure 3.6 indicates that there is a ~ 25 % gradual 

degredation of the dye over 10 cycles spread over 5 days. This was observed as the 

concentration of merocyanine converted in the dark over 12 hours. Spiropyran 

conversion are more rapid hence these results assume equilibrium is reached during 

the merocyanine conversion. 
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      Vis   Dark  Vis  Dark Vis  Dark Vis  Dark  Vis  Dark  Vis Dark Vis Dark  Vis 

  
 

Figure 3.7 : Photodegradation of  Dye in SP-HRP Over 10 Cycles (10 Weeks). 

SP-HRP was put through 10 cycles (of spiropyran / merocyanine conversion) 
spaced by 1 week intervals at 4 °C and scanned at 510 nm.  
 

Figure 3.7 indicates that the 10 cycled switch over a longer period of 10 weeks 

displayes a ~ 40 % degradation. This showed that the dye significantly degraded over 

the 10 weeks. It implies that the spiropyran dye attached to a protein may not be very 

stable.  

 

3.4.6 Freeze – Thaw Effect 

 after 12 hours (and allowed to thaw) the 

the protein remained active. This was 

Dark  Vis  Dark Vis Dark 

 

In order to make sure that the modified protein did not lose activity over time, SP-

HRP was stored at 4 °C. However in the attempt to store the dye at a freeze-

temperature of -18 °C, it was observed that

spiropyran dye failed to photoswitch, although 

confirmed with the same observation over 3 separate SP-HRP samples. The Vis -

spectra was observed between 400 and 600 nm (Figure 3.8) 
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Figure 3.8 : Freeze – Thaw Effect  on Photoswitching of SP-HRP. 
Photochromism of SP-COOH attached to HRP after storage at -18 °C for 24 

as dark adapted and white light illuminahours. The solution w
m

ted to allow 
erocyanine and spiropyran conversion respectively and scanned between 400 

ighlighted by Yoshida et al., (1994) with the statement “some spiropyrans 

xhibit irreversible photochromism at very low temperatures” and there has yet to be a 

t.   

and 600 nm.  
 

Figure 3.8 shows that the dye remained in the spiropyran form and failed to switch 

forms regardless of illumination after storage at very low temperature. This effect was 

briefly h

e

formal explanation of this effec

 

 

113



3.5 Discussion 

3.5.1 Conjugation and Characterisation of SP-HRP 
 

The conjugation of SP-HRP via the carbodiimide mediated reaction (EDC/Sulfo-NHS 

reaction) was successful. The incorporation of polymer bound EDC (P-EDC) was 

found to simplify the steps, since the dye and the protein were exposed to fewer 

numbers of chemicals such as 2-mercaptoethanol used to inactivate the EDC. Also the 

inclusion of the P-EDC eliminates the use of a desalting column to recover the 

fraction containing the activated protein. P-EDC ensures the by-products of the 

reaction remain on the polymer and can be isolated by filtration which makes the 

conjugation process much simpler and cleaner. 

etween the number of dyes attached to the protein and incubation period during the 

irmed to be evident, however since the number of 

ye attached to the protein did not significantly after magnitude of modulation – it 

could hypothesised that the dye associates itself to the matrix of the protein and a 

slight change is affected throught the molecule. HRP is ~ 44 kDa and the dye is about 

380 mwt hence the difference in size could facilitate this association and support this 

statement.  

 

3.5.2 Photomodulation of SP-HRP 
 

Photomodulation of covalently conjugated spiropyran-proteins has been demonstrated 

a number of times as shown in Chapter 1. The aim of the section was to assess if 

photomodulation was still observable under the environmental conditions that will 

 

Having established photoswitching of the dye in a solution of (1: 9) ethanol: HEPES, 

the inclusion of this solvent during EDC/Sulfo-NHS conjugation reaction, was known 

not to interfere with photochromism. With regards to if there was a correlation 

b

EDC/Sulfo-NHS coupling reaction, it was evidenced that after an hour of reaction, the 

number of dyes did not increase any further implying that the dye had fully covalently 

attached itself to all lysine groups that were accessible on the protein. 

 

Non-specific binding was not conf

d
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also favour protein activity (i.e. antibody activity). Despite loss of UV illumination to 

switch the dye, in aqueous solution such as HEPES, MES and PBS solution, the dark 

e rapidness linked with 

o modulation. Modulation was about 

0% when the SP-HRP is allowed to dark adapt (i.e. the dye in the merocyanine 

other proposals 

plying photoregulation activity of such proteins may have been attributed to 

to convert to its most thermodynamically stable form at such low 

mperature, and in the process this might have interfered with the intermolecular 

 on the protein. The study was carried out also 

n an un-conjugated dye and the same effect was recognised. Hence, this possibly 

adaptation was applied in this instance; hence losing th

photochromism. SP-HRP photomodulation has been previously conducted but not 

under the same environmental conditions defined in this study. Nonetheless, it was 

observed that photomodulation was still applicable under these conditions and the 

amount of dye attached to the protein did not significantly affect photomodulation. A 

plausible explanation is that, the number of dyes needed to affect the binding activity 

of the protein is probably not significantly high; or that the easily accessible lysine 

groups were located near the active site of the protein which via direct steric effect or 

via local distortion of the protein contributed t

6

form), which is lower than the results published by Weston et al., (1999) of 92%; 

most probably this might be due to the medium in which the study was performed. 

 

The effect of photo induced isomerisation of the spiropyran dye on protein structure 

has not been fully defined. There have been proposed mechanisms such as structural 

changes in the protein backbone that would affect the binding properties of the 

enzyme toward the substrate Willner et al., (1991).  There have been 

im

alterations in hydrophilicity-hydrophobicity of the protein microenvironments 

resulting from the neutral zwitterionic photochromic forms of spiropyrans.  

 

With regards to the freeze – thaw effect, deactivation the dye’s photochromic nature 

on SP-HRP when stored at -18 °C for 24 hours may have been due to the dye 

attempting 

te

interactions of the deposited SP-COOH

o

confirms a limitation with spiropyran photoswitching at very low temperatures. 
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3.5.3 Photodegradation (Fatigue) Assessment (SP-HRP: Dye Photoswitching)   
 

Fatigue assessment of the SP-HRP compound was carried out to investigate whether 

the carbodiimide mediated reaction affected the spiropyran dye after the coupling 

reaction and also to determine if the covalently attached dye to the protein influences 

the photoswitching and stability of the dye. Photodegradation of the synthesised dye 

solely in ethanol: HEPES (1: 9) at pH 7 (section 2.9.4) indicated that the dye was not 

significantly subjected to fatigue after 10 completed cycles or following 5 weeks of 

storage. Photoswitching fatigue of the dye in SP-HRP showed 8% degradation after 

10 completed cycles without rest intervals (apart from the 12 hours dark adaptation 

period). Extending the 10 cycle study to over 10 weeks however displayed a 56% 

degradation of the dye photoswitching capabilities. This stability assessment has not 

been reported by other groups. The general observation showed that after the coupling 

of dye the protein, the level of degradation slightly increased, possibly due to the 

action conditions and presence of the protein group on the dye.  However due the 

modulate 

ntibodies and the results attained indicated that the conditions (i.e aqueous buffer 

re

dark adaption period of 12 hours which extended the study period to 5 days, this 

observation could have influenced the results since the extended 10 weeks stability 

assay showed significant fatigue of the dye. 

 

3.6 Summary of HRP Photomodulation 
 

HRP Photomodulation studied in this section re-comfirmed the finding; the purpose 

of this was to establish the protocol to employ when attempting to photo

a

medium: ethanol at a ratio of 9:1, conjugation reaction, and characterisation steps) 

may be regarded favourable to photochromic antibodies. 
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Chapter 4 
 
PHOTOMODULATION OF ANTIBODY BINDING 
ACTIVITY MODIFIED WITH SPIROPYRAN DYES 
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4 Photomodulation of Antibody Binding Activity Modified with 
Spiropyran Dyes 

1 Introduction 

otomodulation of antibody binding activity has yet to be successfully demonstrated. 

he study within this chapter attempts to investigate the feasibility of antibody 

finity photomodulation. The study concerns the conjugation of 5 different types of 

tibodies to SP-COOH (based on the methods developed in Chapter 3), and 

he spiropyran modified antibodies. 

ntibodies usually function well in aqueous solutions and as established from the 

s, and the 

ere is in 

; 1:9). Antibodies are specific 

ioactive molecules that are extensively applied in commercial systems particularly in 

iosensing equipment that involved Enzyme-Linked ImmunoSorbent Assay (ELISA) 

nd Surface Plasmon Resonance (SPR). As mentioned in Chapter 1, Section 1.4, 

generation of antibodies in immunoaffinity biosensors is commonly achieved via 

eatments that lead to loss of antibody activity. The incorporation of a reversible 

hotochromic modulation applied to antibodies to control antigen binding represents 

n alternative approach over existing methods.  

he work presented in Chapter 3 demonstrates a photomodulation system (SP-HRP) 

 an aqueous system. The degree of photomodulation of enzyme activity (~ 60 %) in 

ese environmental conditions implies that the technique presented in Chapter 3 can 

ossibly be applied to an antibody-antigen system. Although there have been previous 

te antibody-antigen interactions by some research groups 

(Chapter 1; Section 1.2.4), none have taken this approach. The initial study involves 

the attempt to modify an antibody fragment of ~ 44 kDa (similar in size to HRP – the 

reason being this these two protein are of similar size, there maybe some correlation 

between size of protein and photomodulation), and other whole IgG molecules of ~ 

150 kDa, and assess their performance under different illuminations. The antibodies 

4.
 

Ph

T

af

an

photomodulation of t

 

A

pervious chapters (Chapters 2 and 3 – the solvent effect on spiropyran dye

feasibility of SP-HRP in aqueous solvents), all the related work presented h

predominantly aqueous solution (ethanol:HEPES

b

b

a

re

tr

p

a

 

T

in

th

p

attempts to photomodula
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involved in this study are: a recombinant scAb Anti Atrazine Fragment, P

Anti GroEL, Polyclonal Anti Phytanic Aci

olyclonal 

d, Monoclonal Anti Staphylococcus Aureus 

i FITC (Fluorescein Isothiocyanate). 

 Code: ab51309), 

abbit) UV-inactivated Staphylococcus Aureus cells (mouse monoclonal IgG, kappa 

ell Suspension (Sigma Code: S2014), 

urified Recombinant GroEL produced in E. Coli. (Sigma Code: G6532), N-

and Monoclonal Ant

 

4.2 Chemicals, Biological Compounds, Materials and Equipment 
 

The following biological compounds comsumables were purchased from Abcam, UK: 

Mouse Anti-FITC (Fluorescein) Monoclonal Antibody, (Unconjugated) (Abcam code: 

ab2327), Albumin, Fluorescein Isothiocyanate Conjugate Bovine (FITC-albumin) 

(Abcam code: ab47846), Phytanic Acid - BSA Conjugate (Abcam

(R

light chain) (Abcam code: ab20002). Donkey Anti-mouse Secondary Antibody IgG-

HRP (Cruz marker compatible secondary antibody) (Autogen Bioclear code: Sc-2318) 

was purchased from Autogen Bioclear and Polyclonal Goat Anti-rabbit Fc - HRP 

labelled (Stratech Scientific code: NB7179) from Stratech Scientific. BSA-Atrazine 

recombinant scAb was required from the University of Aberdeen (Haptogen).   

The following comsumables were purchased from Sigma Aldrich, UK: Goat Anti-

Rabbit IgG (whole molecule)–Peroxidase Antibody (Sigma Code: A6154), Anti-

Mouse IgG (whole molecule)–Peroxidase Antibody Produced in Sheep (Sigma Code: 

A6782), Anti-Human Kappa Light Chains (Bound and Free)-Peroxidase Antibody 

Produced in Goat (Sigma Code: A7164), Atrazine (Sigma Code: 45330), GroEL 

(Sigma Code: C7688), Staphylococcus Aureus c

P

Hydroxysulfosuccinimide Sodium Salt (Sigma Code: 56485), 1-(3-

Dimethylaminopropyl)-3-Ethylcarbodiimide, Polymer-Bound (Sigma Code: 424331), 

Phosphate Buffered Saline (Sigma Code: P4417), HEPES Buffer Salts (Sigma Code: 

H7523), 3,3’,5,5’–Tetramethylbenzidine (TMB) Tablets (Sigma Code: T 5525). 

Pierce Fluoraldehyde™ Reagent Solution (Pierce code: 26025) was purchased from 

Pierce, UK. The following were obtained from Fischer Scientific, UK: Centrifugal 

Concentrator Millipore Microcon YM-10 green 10,000 NMWL 0.5mL (Fischer Code: 

Fdr-561-030u) and Syringe Filter Non Sterile SFCA membrane green 25mm diameter 

0.45µm pore size NALGENE (Fischer Code: Fdm-345-020k). LEDs were acquired 

from Roithner Laser Technik, Austria; White LEDs, based on GaN 27-33 Cd 
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(Roithner Laser Technik Code: 5w4hca-H20-Ultra). UV-Vis spectra and Protein 

assays were recorded on UV-Vis Spectrophotometer UV-2100 (Shimadzu), and Cary 

Eclipse Fluorescence Spectrophotometer (Varian) respectively. The ELISA plate was 

ad off with Lab Systems iEMS Reader MF microtitre plate reader. 

ration 

re

 

4.3 Covalent Coupling of Spiropyran Dye to Antibody via EDC/Sulfo-NHS 
Reaction 

4.3.1 Introduction 
 

Conjugation was just as for SP-HRP (Chapter 3: Section 3.3.2), however prior to 

conjugation of the carboxylated spiropyran dye and antibody, competitive binding 

Enzyme-Linked ImmunoSorbent Assay (ELISA) was performed on each antibody 

with a known amount of antigen (ranging from 1μg/ml to 10μg/ml) to determine the 

IC50 (inhibitory concentration 50%, Figure 4.2) Figure 4.1 displays the colouration 

change in an ELISA – the blue colouration indicates the binding signal intensity when 

the immobilised protein reacts with the labelled substrate, the yellow colou

indicates the end of reaction when quenched (stopped) by the addition of dilute 

sulphuric acid (H2SO4). 

 

 
 

 

Figure 4.1 : Microtitre Plate During an ELISA.  

An illustration of various concentrations of the antibody in an ELISA. End of 
reaction denoted by the yellow colouration after H2SO4 addition. 
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Total 
binding

50 % 
binding

 

Figure 4.2 : ELISA Competitive Binding Curve. 

The top plateau of the curve is equal to antibody completing binding with all 
available antigen, the bottom of the curve is a plateau equal to nonspecific 
binding (at low antibody concentration). The concentration of antibody that 
produces binding half 

Nonspecific 
binding 

Log (IC50) 

way between the upper and lower plateaus is the IC50 
(inhibitory concentration 50%) or EC50 (effective concentration 50%). 

 
The ELISA carried out for each antibody was via the following protocol: 
 

• Immulon 4 ELISA plate was coated with 100 μl/well of a 1 μg/ml or 10 μg/ml 

antigen in 1x PBS and Incubate for 1 hour at 20 ˚C. 

• The wells emptied by flip-flap motion and blocked with 200 μl 1x PBS 

containing 1% (w/v) skimmed milk (Marvel) for 1 hour at 20˚C. 

• The plate was then washed twice with 200 μl 1x PBS containing 0.1% Tween 

20 (PBST) followed by one time 1x PBS. 

triplicate and incubated for 1 hour at room temperature. 

0.1% Tween 20 

(PBST) followed by one time 1x PBS. 

 

• 100 μl of antibody at various concentrations was added to the wells in 

• The plate was washed twice with 200 μl 1x PBS containing 
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• The labelled secondary antibody was incubated for an hour at room 

tem e and washed as before. 

• 1 TMB tablet was dissolved in 10ml 0.05 M citric phosphate per borate buffer 

of which 100 μl  was added per well and allowed to develop to desired 

intensity (within 2 minutes) at room temperature. The reaction was quenched 

(stopped) with 50 μl/well of 1M H2SO4 and read at 450 nm with Lab Systems 

iEMS Reader MF microtitre plate reader and the IC50 was deduced. 

• Table 4.1 decirbes in the component for each antibody of study for the ELISA. 

 

Table 4.1 : Antibody with Corresponding Antigen in ELISA. 

Table elaborates the antibody and corresponding antigen and secondary 
antibody involved in current study ELISA. 
 

peratur

Antibody Type AntigImmunogen en  Secondary Antibody (Antibody) (for coating) 

Anti Atrazine 
Fragment (scAb) 

Recombinant 
scAb BSA-Atrazine 

Anti-Human Kappa Light 
Chains (Bound And Free) 

- Peroxidase Antibody 
Produced In Goat 

Purified Anti-Rabbit IgG (W
Recombinant Anti 

GroEL Produced In 
Rabbit 

Polyclonal IgG GroEL 

hole 
Molecule) - Peroxidase 
Antibody Produced in 

at E. Coli. Go

Anti Phytanic Acid – 
BSA Conjugate 

Rabbit 
Polyclonal IgG BSA 

Conjugate 
- Peroxidase Antibody 

Phytanic Acid - Polyclonal Anti-Rabbit Fc 

Produced in Goat 

UV-Inactivated Anti 
Staphylococcus 

Aureus Cells 

Mouse 
Monoclonal 

IgG 

Staphylococcus 
Aureus Cell 
Suspension 

Molecule) - Peroxidase 
Antibody

S

Anti-Mouse IgG (Whole 

 Produced in 
heep 

Anti IgG FITC - 
BSA Conjugate, 

from Rabbit Serum 

Mouse 
Monoclonal 

IgG 

FITC- 
Alb

Anti-Mouse IgG - 

umin Peroxidase Antibody 
Produced in Donkey 
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4.3.2 SP-Ab Coupling 
 

SP-COOH was coupled to each antibody IC50 (inhibitory concentration 50%) via the 

same EDC/Sulfo-NHS involving P-EDC involved with the formation of SP-HRP in 

section 3.3. EDC and Sulfo-NHS were equilibrated to room temperature. Mass of SP-

COOH, based on a equimolar of dye to antibody ratio required as a result of the IC50 

for each antibody  was weighed, dissolved in 1 ml ethanol and made up to a solution 

mols/g of loading) and 5 mg of Sulfo-NHS (both in excess quantities) were added to 

the dye solution (in ambient light conditions) and allowed to react for 15 minutes at 

a non sterile syringe 

ution was raised to 7 with NaOH and 

ntibody (at a predetermine volume which measured up to IC50 in reaction mix) of 

each ntibo  ad d fo  

the HRP analysis). The solution was passed through a centrifugal concentrator

(millipore microcon 10,000 NMWL 0.5 mL ie

co ne was w  with a solution of 1: 9 (et

collect belled HRP. 

 
4  a ffect on Coupling R
 

D fe w ni

form effect during the SP-HRP coupling reaction, this was once investigated on the 

g al., ( bserv an

azob tibody f the rans  

pho ding to y. The conjugation was carried out to ensure that 

dye  form yanin n the H

 

of 10 ml 1: 9 (ethanol : 0.1M HEPES at pH 4). 20 mg of Polymer Bound EDC (0.5 

room temperature (~ 20 °C). The solution was then filtered with 

filter (SFCA membrane, 25 mm diameter 0.45 µm pore size) to remove all by-

products from the mixture. The pH of the sol

a

 antibody (or a dy fragment) was de ted and reac r 1 hour (as noted from

 

ve cut-off of 10 kDa. The 

hanol : PBS) at pH 7 to 

) which has a s

ncentrator membra ashed

the dye la

.3.2.1 Merocyanine nd Spiropyran E eaction 

espite no obvious ef ct being noted ith the merocya ne form and spiropyran 

rounds of Sisido et 

enzene and an

1998) o

, the state o

ation:  that in 

 dye (i.e. t

 experiment involving 

or cis) influenced the

tochromic dye bin

 was in spiropyran

 antibod

 or the meroc e form as i RP study. 
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4.4 Characterisation of SP-Ab 

 SP-COOH : Ab Ratio 

rotein complex (results not shown), the molar ratio of these were calculated and used 

lity of the 

sultant conjugate to demonstrate antibody binding photomodulation. 

4.4.1
 

After coupling of the dye to the protein, the protein characterisation was conducted 

via Pierce FluoraldehydeTM protein/peptide assay as in the HRP study. The SP-Ab 

solution samples were all analysed in the spiropyran form by being initially exposed 

to white LEDs for 30 seconds. 50µl of modified protein sample plus 50µl of Pierce 

FluoraldehydeTM reagent (1:1 ratio) were pipetted into a translucent microtitre plate. 

The content were mixed for 5 minutes and read on the Cary Eclipse Fluorescence 

Spectrophotometer after being excited at 340 nm and emission spectra between 450 

and 460 nm.  

 

Dye concentration of the modified protein was also analysed by ensuring the solution 

was in the merocyanine form (i.e. pre-stored in a dark environment at 4 ° C for 12 

hours) and observed between 400 and 600 nm using a UV-Vis Spectrophotometer. 

The OD maximum were used to calculate the molar concentration of the dye coupled 

to the protien with the molar extinction coefficient (ε) of 4 x 104 M-1 cm-1 (at 510 nm 

in ethanol: PBS (1: 9)). 

 

Having determined the molar concentrations of the protein and the dye of the dye-

p

to define the molar relationship between the spiropyran dye and the antibodies – 

Tables 4.2 and 4.3. The ratio of the number of dye molecules attached per antibody 

molecule during conjugation reactions was determined to (i) see if the specific nature 

of individual antibody preparations influence the number of attached dyes and (ii) to 

investigate if the isomeric form of the dye during the conjugation reaction had any 

influence on the number of dyes attached and / or the subsequent abi

re
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Table 4.2 : Ab : SP-COOH Ratio. 

e (merocyanine and spiropyran effect) on the 
arbodiimide-mediated reaction as well as the ratio of SP-COOH to Ab 

Effect of dye’s isomer stat
c
expressed as the result of molar ratio of protein to immobilised dye after 60 
minutes of reaction. 
 

Dye’s Isomer 
State Immunogen (Antibody) (Ab) Ab : SP-COOH 

(molar ratio) 

SP-A (Modified Anti Atrazine, scAb) 1: 6.0 (± 0.4) 

SP-G (Modified Anti GroEL) 1: 8.9 (± 0.4) 
SP-P (Modified Anti Phytanic Acid, BSA 
conjugate) 1: 12.2 (± 0.3) 

 

 

The results shown in Table 4.2 indicated that: (i) for whole IgG molecules (MW ~ 

150 kD) the degree of conjugation ranges from 8.2 to 13 dyes per antibody molecule 

and for the significantly smaller recombinant antibody fragment (MW ~ 40 kD) a 

smaller value of 6.0 to 6.7 dyes per antibody fragment and (ii) there is no apparent 

significant difference in the ratio for a given antibody for conjugation performed with 

the SP-COOH in either the SP or MC isomeric forms. 

SP-S (Modified Anti Staphylococcus 
Aureus Cells) 1: 8.4 (± 0.5) 

Spiropyran 

SP-F (Modified Anti FITC, BSA 
conjugate) 1: 13.0 (± 0.2) 

SP-A (Modified Anti Atrazine, scAb) 1: 6.7 (± 0.2) 

SP-G (Modified Anti GroEL) 1: 10.1 (± 0.3) 
SP-P (Modified Anti Phytanic Acid, BSA 
conjugate) 1: 11.8 (± 0.1) 

SP-
Aur

S (Modified Anti Staphylococcus 
eus Cells) 1: 8.2 (± 0.1) 

 Merocyanine 

SP-F (Modified Anti FITC, BSA 1:12.4 (± 0.3) conjugate) 
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Table 4.3 : Non-specific Binding Between Ab and SP-COOH.   

Non-specific binding was assessed via mixing Ab with SP-COOH under the same 
conditions as the carbodiimide mediated reaction but without EDC/Sulfo-NHS. 
Results expressed as the molar ratio of protein to immobilised dye after coupling 
process.  
 

Immunogen (Antibody) (Ab) 
Ab:SP-COOH  

(molar ratio) 

SP-A (Modified An 1ti Atrazine, scAb) : 2.1 (± 0.1) 

SP-G (Modified An 1ti GroEL) : 2.8 (± 0.1) 

SP-P nt 1 (Modified A i Phytanic Acid, BSA conjugate) : 3.1 (± 0.1) 

SP-S (Modified Ant 1: 2.7 (± 0.1) i Staphylococcus Aureus Cells) 

SP-F (Modified Ant njugate) 1: 2.2 (± 0.1) i FITC, BSA co

 

Table 4.3 indicates nd bind  the 

method employed, the despite the  the 

init b s c  the 

results in Table 4.3 should future work clarify 

these observation. 

  

.4.2 Freeze – Thaw Effect   

that there may be additional backgrou ing signal with

however it was conluded that, se adjustments,

ial results in Ta le 4.2 would be referenced through out thi hapter, however

 will be presented within this thesis 

4

 

Some antibodies are stored at – 18 °C to decrease their rate of denaturation hence the 

sub-zero (0) °C effect phenomenon observed during the SP-HRP investigation was 

observed on these SP-Ab. The samples (dye-proetin complex) were stored the at a 

freeze temperature of -18 °C, and after 24 hours the dye photoswitching capabilities 

were analysed (Figure 4.3).  

 

126



 

Figure 4.3 : Freeze - Thaw Effect  on Photoswitching of SP-Ab

hotochromism of SP-COOH attached to Ab after storage at -18 °C for 24 hours. 

in the spiropyran form and failed to switch forms regardless of 

umination after storage at very low temperatures. This further re-confirms the 

 modified HRP which also highlights Yoshida et al., 

 spiropyrans are exposed to extreme conditions such 

as low temperatures exhibit irreversible photochromism. 

The conjugated SP-Ab complexes (ten different antibody samples comprising the 

samples from the conjugation of each of the five antibodies to the SP-COOH in the 

two different photoisomeric forms) plus as controls, the five native (un-modified) 

antibody samples  were used in an ELISA to determine the antibody binding 

properties of each of the samples under two different illumination conditions. The 

. 

P
The solutions were dark adapted and white light illuminated to allow 
merocyanine and spiropyran conversion respectively and scanned between 400 
and 600 nm. 
 

Figure 4.3 shows similar results of the dye-HRP analysis (Chapter 3, Figure 3.8) that 

the dye remained 

ill

observation with the spiropyran

e(1994) findings that when som

 

4.5 Photomodulation via ELISA format of Modified Antibodies 

4.5.1 Overview  
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ELISA’s were performed under two different illumination conditions and comprised 

(i) with visible illumination using white LEDs and (ii) in the dark. Visible 

illumination resulted in any spiropyran dyes being in the SP isomeric form and 

placement in the dark resulted in any spiropyran dyes being in the MC isomeric form. 

To ensure all dyes were in the appropriate isomeric form prior to starting the 

ELISA’s, appropriate pre-exposure to the illumination conditions was performed. The 

primary objective of the study was to determine if  changes in illumination (from 

visible illumination to removal of illumination – i.e. in the dark) would modulate the 

binding ability of SP-COOH modified antibodies (SP-Ab) using an ELISA. Also to 

analyse whether the attached photochromic spiropyran dyes had not lost their 

photoswitching properties after conjugation as well as a verification tool to ascertain 

that the attached dyes were responsible for modulation, an adsorption visible spectrum 

le illuminations 

adation can lead to loss of switching performance over time. To assess 

ation  (fatigue) when constantly being 

verall the results presented consist of the ELISA of the five antibodies under two the 

 isomeric form 

of the dye during conjugation, - condition (ii) antibodies modified with the MC 

during conjugation, - condition (iii) native (un-modified) 

was observed between 400 and 600 nm on each SP-Ab under the visib

and after a period of adaptation in the dark. Finally during photochromism of the 

spiropyran dyes, side reactions can occur during photoisomerisation and as a result, 

chemical degr

whether the conjugated dyes showed any degrad

switched form one isomer to another, the antibody molecules containing the 

covalently attached photochromic molecules SP-Ab were initially put through 10 

cycles (of spiropyran / merocyanine conversion) spaced by 12 hour intervals (to allow 

dark adaptation to the merocyanine form). A second assessment, which involved a 10 

cycles spaced by 1 week interval was also observed.  

 

O

different illuminations - condition (i) antibodies modified with the SP

isomeric form of the dye 

antibodies observed as controls. Thus, the observed binding signal (optical 

absorption) obtained at 450 nm after the ELISA - represented the degree of antibody 

binding of the modified antibodies and native (un-modified) antibodies under the two 

different illuminations (visible illumination [SP form of the dye] and removal of 
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illumination – i.e. in the dark [MC form of the dye]). Also dye photoswitching profile 

for each conjugated dye and well as fatigue analysis is presented. 

 

4.5.2 Modified Anti Atrazine Fragment (SP-A) 

 

 

Figure 4.4 : Observed ELISA involving Modified Anti Atrazine Fragment (SP-A)  

Native (unmodified) anti Atrazine and modified anti Atrazine were observed in 
an ELISA under the two different illumination. The extent of antigen-antibody 
complex formed was a measure of antibody activity.  The study was conducted in 
triplicates and also taking on the board the spiropyran (SP) and merocyanine 
(MC) coupling conditions. 
 

Figure 4.4 shows that the spiropyran modified anti-atrazine antibody fragments (the 

only recombinant scAbs in this study) was subject to photomodulation, i.e. under 

condition (i) (antibodies modified with the SP isomeric form of the dye during 

conjugation) - removal of illumination (dark adaptation) during the ELISA displayed 

similar binding signal as the control (un-modified antibody), whilst ELISA in visible 

light illumination displayed ~ 15% decrease in antibody binding signal. Similar 

results were attained under condition (ii) (antibodies modified with the MC isomeric 

form of the dye during conjugation).   The native form of the dye as the control 

functioned as normal regardless of the illumination state. The photochromic nature of 
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the dye on the antibody fragment was observed (Figure 4.5). Likewise fatigue was 

observed as illustrated in Figures 4.6 and 4.7. 

 

 

Figure 4.5 : Observed Dye Photoswitching on SP-A. 

Photochromism of SP-COOH attached to SP-A. The solution was dark adapted 
to allow merocyanine conversion and scanned between 400 and 600 nm. The 
spiropyran form was also scanned after exposure to white LEDs.  

n. 

 

Figure 4.5 shows that for SP-A conjugates the photochromic spiropyran dyes retained 

their photoisomerisation ability and were able to photoisomerise from the coloured 

MC isomeric form under dark adapted conditions to the colourless SP isomeric form 

under white LED illuminatio
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Figure 4.6 : Photodegradation of  Dye in SP-A Over 10 Cycles (5 Days). 

SP-A was put through 10 cycles (of spiropyran / merocyanine conversion) spaced 
by 12 hours intervals (to allows dark adaptation to the merocyanine form at 4 
°C) and scanned at 510 nm.  
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Figure 4.7 : Photodegradation of  Dye in SP-A Over 10 Cycles (10 Weeks). 

SP-A was put through 10 cycles (of spiropyran / merocyanine conversion) spaced 
by 1 week intervals at 4 °C and scanned at 510 nm. 
 
 

The attached dye experiences degradation with time as well when illuminated. The 

degradation during the 10 weeks was more or less a gradual degradation over time 

(storage) whereas the immediate switching of dye forms seems to prevent fatigue for 

the first 4 cycles after which degradation begins.  

      Vis   Dark  Vis  Dark Vis  Dark Vis  Dark  Vis  Dark  Vis Dark Vis Dark  Vis Dark  Vis  Dark Vis Dark 
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4.5.3 Modified Anti GroEL (SP-G) 
 

Figure 4.8 shows that the spiropyran modified anti-GroEL antibodies also displayed 

photomodulation. However, under condition (i) (antibodies modified with the SP 

isomeric form of the dye during conjugation) - removal of illumination (dark 

adaptation) during the ELISA displayed ~ 46% decrease in antibody binding signal 

when compared to the binding signal of the control (un-modified antibody), whilst 

ELISA in visible light illumination displayed ~ 68% decrease in antibody binding 

signal 

n) where 

on 

ntibody binding signal when compared to the binding 

ignal of the control. It was also noted that the degree of modulation measured by 

binding signal difference between the visible illumination and removal of illumination 

during the ELISA was observed at ~ 40% for both condition (i) and condition (ii). 

This therefore highlights the fact that the interaction between anti GroEL and the dye 

in its different isomers has a significant effect, prior to the modulation mechanism. 

The antigen (GroEL) undergoes complex mechanisms, during mediation of protein in 

cells, it folds involves multiple rounds of binding and encapsulation. It possesses 

hydrophobic and hydrophilic segments which may have some influence. The 

photochromic nature of the dye on the antibody fragment was observed (Figure 4.9). 

Likew

when compared to the binding signal of the control. Results of condition (ii) 

(antibodies modified with the MC isomeric form of the dye during conjugatio

observed as - removal of illumination (dark adaptation) during the ELISA displayed 

similar binding signal as the control whilst ELISA in visible light illuminati

displayed ~ 38% decrease in a

s

ise fatigue was observed as illustrated in Figures 4.10 and 4.11. 
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Figure 4.8 : Observed ELISA involving Modified Anti GroEL (SP-G).  

Native (unmodified) anti GroEL and modified anti GroEL were observed in an 
ELISA under the two different illumination. The extent of antigen-antibody 
complex formed was a measure of antibody activity. The study was conducted in 
triplicates and also taking on the board the spiropyran (SP) and merocyanine 
(MC) coupling effect. 

 

 

Figure 4.9 : Observed Dye Photoswitching on SP-G. 

Photochromism of SP-COOH attached to SP-G. The solution was dark adapted 
to allow merocyanine conversion and scanned between 400 and 600 nm. The 
spiropyran form was also scanned after exposure to white LEDs.  
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Figure 4.9 shows that for SP-G conjugates the photochromic spiropyran dyes retained 

their photoisomerisation ability and were able to photoisomerise from the coloured 

MC isomeric form under dark adapted conditions to the colourless SP isomeric form 

under white LED illumination. 
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Figure 4.10 : Photodegradation of  Dye in SP-G Over 10 Cycles (5 Days). 

SP-G was put through 10 cycles (of spiropyran / merocyanine conversion) spaced 
by 12 hours intervals (to allows dark adaptation to the merocyanine form at 4 
°C) and scanned at 510 nm.  
 

 

Figure 4.11 : Photodegradation of  Dye in SP-G Over 10 Cycles (10 Weeks). 

SP-G was put through 10 cycles (of spiropyran / merocyanine conversion) spaced 

  

by 1 week intervals at 4 °C and scanned at 510 nm.  
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The photoisomerisation cycles of Figures 4.10 and 4.11 indicates that there is ~ 40 % 

gradual degradation of the dye over the 10 cycles spread over 5 days. The 10 cycled 

isomerisation over a longer period of 10 weeks displayed a ~ 50 % gradual 

degradation implying that, fatigue was evident under both conditions; however the 

 respect to the longer interval period 

between photoswitching. 

 

degree of degradation was 10 % greater with
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4.5.4 Modified Anti Phytanic Acid (SP-P) 
 

Spiropyran modified anti-phytanic acid antibodies also displayed photomodulation of 

binding signal. Figure 4.12 shows under condition (i) (antibodies modified with the 

SP isomeric form of the dye during conjugation) - removal of illumination (dark 

adaptation) during the ELISA displayed ~ 63% decrease in antibody binding signal 

hen compared to the binding signal of the control, whilst ELISA in visible light 

illumination displayed similar binding signal as the control. Results of condition (ii) 

(antibodies modified with the MC isomeric form of the dye during conjugation) were 

as follows - removal of illumination (dark adaptation) during the ELISA displayed ~ 

33% decrease in antibody binding signal when compared to the binding signal of the 

control, whilst ELISA in visible light illumination displayed similar binding signal as 

the control. These results indicated that, an illumination condition (e.g. dark 

adaptation as observed in SP-A and SP-G)  does not only trigger decrease in binding 

signal as in this example (SP-P), visible light illumination triggers photomodulation. 

The photochromic nature of the dye on the antibody fragment was observed (Figure 

4.13). Likewise fatigue was observed as illustrated in Figures 4.14 and 4.15. 

w

 

Figure 4.12 : Observed ELISA involving Modified Anti Phytanic Acid (SP-P). 

Native (unmodified) anti Phytanic acid and modified anti Phytanic acid were 
observed in an ELISA under the two different illuminations. The extent of 
antigen-antibody complex formed was a measure of antibody activity.  The study 
was conducted in triplicates and also taking on the board the spiropyran (SP) 
and merocyanine (MC) coupling conditions. 
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Figure 4.13 : Observed Dye Photoswitching on SP-P. 

Photochromism of SP-COOH attached to SP-P. The solution was dark adapted 
to allow merocyanine conversion and scanned between 400 and 600 nm. The 
spiropyran form was also scanned after exposure to white LEDs.  
 

Figure 4.13 shows that for SP-P conjugates the photochromic spiropyran dyes 

retained their photoisomerisation ability and were able to photoisomerise from the 

coloured MC isomeric form under dark adapted conditions to the colourless SP 

isomeric form under white LED illumination. 
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Figure 4.14 : Photodegradation of  Dye in SP-P Over 10 Cycles (5 Days). 

SP-P was put through 10 cycles (of spiropyran / merocyanine conversion) spaced 
by 12 hours intervals (to allows dark adaptation to the merocyanine form at 4 
°C) and scanned at 510 nm.  
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Figure 4.15 : Photodegradation of  Dye in SP-P Over 10 Cycles (10 Weeks). 

cyanine conversion) spaced 
by 1 week intervals at 4 °C and scanned at 510 nm.  

there is ~ 35 % 

cles spread over 5 days. The 10 cycled 
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SP-P was put through 10 cycles (of spiropyran / mero

 
The photoisomerisation cycles of Figures 4.14 and 4.15 indicates that 

gradual degradation of the dye over the 10 cy

isomerisation over a longer period of 10 weeks displayed a ~ 45 % gradual 

degradation implying that, fatigue was evident under both conditions; however the 

degree of degradation was 10 % greater with respect to the longer interval period 

between photoswitching. 
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4.5.5 Modified Anti Staphylococcus Aureus (SP-S)  
 

Photomodulation of the spiropyran modified anti-Staphylococcus aureus (SP-S) 

indicated the largest degree of modulation within this study (~ 65 % decrease in 

antibody binding signal) (Figure 4.16). Under condition (i) (antibodies modified with 

the SP isomeric form of the dye during conjugation) - removal of illumination (dark 

adaptation) during the ELISA displayed similar binding signal as the control (un-

modified antibody), whilst ELISA in visible light illumination displayed ~ 70% 

decrea

he 

 

Figure 4.16 : Observed ELISA involving Modified Anti Staph. Aureus (SP-S).  

Native (unmodified) anti Staphylococcus aureus and modified anti 
Staphylococcus aureus were observed in an ELISA under the two different 
illumination. The extent of antigen-antibody complex formed was a measure of 
antibody activity.  The study was conducted in triplicates and also taking on the 
board the spiropyran (SP) and merocyanine (MC) coupling conditions. 
 

 

se in antibody binding signal. Similar results were attained under condition (ii) 

(antibodies modified with the MC isomeric form of the dye during conjugation). T

photochromic nature of the dye on the antibody fragment was observed (Figure 4.17). 

Likewise fatigue was observed as illustrated in Figures 4.18 and 4.19. 

 



 

Figure 4.17 : Observed Dye Photoswitching on SP-S. 

Photochromism of SP-COOH attached to SP-S. The solution was dark adapted 
to allow merocyanine conversion and scanned between 400 and 600 nm. The 
spiropyran form was also scanned after exposure to white LEDs.  
 

Figure 4.17 shows that for SP-S conjugates the photochromic spiropyran dyes 

retained their photoisomerisation ability and were able to photoisomerise from the 

coloured MC isomeric form under dark adapted conditions to the colourless SP 

isomeric form under white LED illumination. 
 

 

Figure 4.18 : Photodegradation of  Dye in SP-S Over 10 Cycles (5 Days).

      Vis   Dark  Vis  Dark Vis  Dark Vis  Dark  Vis  Dark  Vis Dark Vis Dark  Vis Dark  Vis  Dark Vis Dark

  

 

as put through 10 cycles (of spiropyran / merocyanine conversion) spaced 
y 12 hours intervals (to allows dark adaptation to the merocyanine form at 4 

°C) and scanned at 510 nm.  

 

SP-S w
b
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Figure 4.19 : Photodegradation of  Dye in SP-S Over 10 Cycles (10 Weeks). 

cyanine conversion) spaced 

there is ~ 40 % 

h respect to the longer interval period 

between photoswitching.           
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SP-S was put through 10 cycles (of spiropyran / mero
by 1 week intervals at 4 °C and scanned at 510 nm.  
 
The photoisomerisation cycles of Figures 4.18 and 4.19 indicates that 

gradual degradation of the dye over the 10 cycles spread over 5 days. The 10 cycled 

isomerisation over a longer period of 10 weeks displayed a ~ 50 % gradual 

degradation implying that, fatigue was evident under both conditions; however the 

degree of degradation was 10 % greater wit
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4.5.6 Modified Anti FITC (Fluorescein Isothiocyanate) (SP-F) 
 

Figure 4.20 indicated that spiropyran modified anti-FITC antibodies under condition 

(i) (antibodies modified with the SP isomeric form of the dye during conjugation) - 

removal of illumination (dark adaptation) during the ELISA displayed ~ 55% 

decrease in antibody binding signal when compared to the binding signal of the 

control, whilst ELISA in visible light illumination displayed similar binding signal as 

the control. Similar results were attained under condition (ii) (antibodies modified 

with th

ent was observed (Figure 4.21). Likewise fatigue was 

e MC isomeric form of the dye during conjugation). The photochromic nature 

of the dye on the antibody fragm

observed as illustrated in Figures 4.22 and 4.23. 

 

 

Figure 4.20 : Observed ELISA involving Modified Anti FITC (SP-F). 

Native (unmodified) anti FITC and modified anti FITC were observed in an 
ELISA under the two different illumination. The extent of antigen-antibody 
complex formed was a measure of antibody activity.  The study was conducted in 
triplicates and also taking on the board the spiropyran (SP) and merocyanine 
(MC) coupling conditions. 
 

Figure 4.21 shows that for SP-F conjugates the photochromic spiropyran dyes 

retained their photoisomerisation ability and were able to photoisomerise from the 
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coloured MC isomeric form under dark adapted conditions to the colourless SP 

omeric form under white LED illumination. is

 

 

Figure 4.21 : Observed Dye Photoswitching on SP-F. 

Photochromism of SP-COOH attached to SP-F. The solution was dark adapted 
to allow merocyanine conversion and scanned between 400 and 600 nm. The 
spiropyran form was also scanned after exposure to white LEDs.  
 
 
The photoisomerisation cycles of Figures 4.22 and 4.23 indicates that there is ~ 20 % 

gradual degradation of the dye over the 10 cycles spread over 5 days. The 10 cycled 

isomerisation over a longer period of 10 weeks displayed a ~ 30 % gradual 

degradation implying that, fatigue was evident under both conditions; however the 

degree of degradation was 10 % greater with respect to the longer interval period 

between photoswitching. 
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Figure 4.22 : Photodegradation of  Dye in SP-F Over 10 Cycles (5 Days). 

SP-F was put through 10 cycles (of spiropyran / merocyanine conversion) spaced 
by 12 hours intervals (to allows dark adaptation to the merocyanine form at 4 
°C) and scanned at 510 nm.  
 

 

Figure 4.23 : Photodegradation of  Dye in SP-F Over 10 Cycles (10 Weeks). 

P-F was put through 10 cycles (of spiropyran / merocyanine conversion) spaced 
by 1 week intervals at 4 °C and scanned at 510 nm.  
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4.5.7 Summary of Photomodulation of SP-COOH Modified Antibodies in an 
ELISA 

 

In summary of the photomodulation analysis shows results of a range of different 

types of antibody, their degree of modulation and the illumination condition that 

triggers modulation. One salient observation of the studied modified antibodies is that 

all underwent photomodulation. However, the degree of modulation varied with each 

antibody as well as the illumination which triggered modulation. 

he conjugation of spiropyran modified antibodies (SP-Ab) via the carbodiimide-

mediated reaction (EDC/Sulfo-NHS reaction) was also successful. However, taking 

into account that an antibody contains ~ 90 lysine residues (according to entry in 

structure 1hzh in the RCSB Protein Database), it can be suggested that not all the 

lysine groups were modified during conjugation as the molar ratios of SP-COOH to 

Ab reflects this (Table 4.2) – maximum of 13 out of a possible 90 moles of spiropyran 

dyes were covalently attached to an antibody. This observation may have been as a 

result of inaccessibility of lysine groups due to their location and/or multiple folded 

protein nature (tertiary and quaternary structures) of the antibody molecule. In the 

case o

size of he full IgG molecule), fewer lysine groups were expected to be available for 

 4.2). 

on and as such, the number of 

yes involved in photomodulation was significantly low.  

 

In the attempt to establish whether the two different dye isomeric forms employed 

during the conjugation reaction had an effect on the number of dye covalently 

 

4.6 Discussion 

4.6.1 Conjugation and Characterisation of SP-Ab 
 

T

f the antibody fragment (anti-atrazine), taking into account its size (~ ¼ of the 

 t

coupling and was confirmed with the lower molar ratio of dye to protein (Table

These observations also suggests that only a small fraction of the conjugated 

photochromic spiropyran dyes triggered photomodulati

d
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attached to the antibodies and its overall effect on the photomodulation study, it was 

s, 

gnificant difference for both conjugation conditions (i) and (ii). [i.e. 

ondition (i) - implies antibodies modified with the SP isomeric form of the dye 

quire storage below 4 °C, ideally -18 °C (deep freezer temperature) 

is preferred; however the sub-zero °C effect phenomenon, whereby the spiropyran 

d to room temperature), casts a 

hadow on further applications with regards to its use after low temperature storage. 

chromic spiropyran dyes to 

ntibodies with the anticipation of that under appropriate illumination; one of the two 

observed that; with respect to number of moles of dyes coupled to the antibodie

there was no si

c

during conjugation, and  condition (ii) - implies antibodies modified with the MC 

isomeric form of the dye during conjugation]. The observation whether the two 

different dye isomeric forms employed during the conjugation reaction had any effect 

on the photomodulation study is addressed within the photomodulation of SP-COOH 

modified antibodies in an ELISA (SP-Ab) discussion section. 

 

Most antibodies re

fails to photoswitch (after it being thawed and rewarme

s

The phenomenon experienced could be due to distortion of the intermolecular forces 

of the dye. Spiropyran dye switching is dependant on the form which is 

thermodynamically stable as a result of the environmental or illumination conditions; 

hence the establishment of the frozen solvent may prevent any further changes in the 

dye form which possibly leads to distortion in its molecular structure in an attempt to 

aid configuration. 

 

4.6.2 Photomodulation of SP-Ab 
 

Photomodulation of spiropyran modified antibodies in an antibody-antigen binding 

reaction has not been successfully demonstrated until now - it is reported here for the 

first time, citing a maximum of ~ 65 % photomodulation of antibody binding signal. 

The inclusion of various antibody types (single chain fragments, monoclonals and 

polyclonals) was to establish photomodulation among a diverse assortment of 

antibodies. The approach was to covalently attach photo

a

photoisomers of the dye will have an effect on (modulate) the binding affinity of the 

modified antibody. 
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Anti-atrazine single chain fragments was a key candidate antibody since its molecular 

size (~ 40 kDa) was very similar to spiropyran modified HRP - a proven 

photomodulated system established in Chapter 3. It was contemplated that the size of 

an antibody (~ 150 kDa) may prove to be too large a molecule to photomodulate its 

binding function, hence a smaller size molecule i.e. antibody fragment was anticipated 

to display a substantial degree of modulation. However, the modified antibody 

fragment represented the smallest degree of modulation (~ 15 %) whilst the largest 

modified antibody anti-Staphylococcus aureus IgG displayed the largest modulation 

f ~ 65 %. The degree of modulation may be linked with the number of moles of 

r 

rophobic, whereas the MC isomer of the dye is a more hydrophilic, 

witterionic compound with delocalised charged electrons. These fundamental 

operties could imply variation in the mechanism 

ffect on the overall modified antibody binding 

tion of the antibodies involved in this study). This highlights the 

fact that generally, photomodulation of modified antibody binding affinity is feasible 

o

spiropyran dye attached to the antibodies with the antibody fragment possessing fewer 

dyes than the whole IgG antibody. Having already established that the overall number 

of dyes covalently attached to the antibody was significantly low for all antibody 

types, it can also be contemplated the number of dyes may not be the only facto

linked with the degree of modulation but also the position of the dyes on the 

antibodies (not investigated within the scope of this study). Another factor that may 

have affected modulation but only evident with the modified anti-GroEL antibody 

(SP-G) (Figure 4.8) is the photoisomeric state of the spiropyran dye during its 

conjugation with the antibody. It is known that that SP isomer of the dye is neutrally 

charged and is hyd

z

molecular differences in chemical pr

of action, and as such have an e

activity. 

 

Concerning the illumination condition responsible for modulation, anti-atrazine 

fragment, anti-GroEL and anti-Staphylococcus aureus were modulated by visible 

illumination i.e. the SP form of the attached dye triggered a reduction in antibody 

binding signal.  The removal of illumination (i.e. the MC form of the attached dye) 

triggered the modulation of anti-phytanic acid and anti-FITC (Table 4.4 – summary of 

the observed modula
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but there are variations in the reactive nature of the modified antibodies and ultimately 

the mode of photomodulation. This observation needs further experimental support to 

aid understand the mechanism of modulation. For example, examination of the 

positions of conjugated dye on the antibody before, during and after the 

photomodulation phenomenon, and the structural changes the antibody undergoes 

during these conditions.  

 

Table 4.4 : Summary of Antibody Photomodulation within this Study.   

Tabular comparison of the mode and degree of photomodulation of the 
antibodies in this current study. 
 

Immunogen 
(Antibody) Antibody Type Average Degree 

Of Modulation 

Dye Form 
Responsible For 

Modulation 

Anti Atrazine 
Fragment (scAb) 

Recombinant 
scAb ~ 15 % Spiropyran Form 

Purified 
Recombinant Anti 

GroEL Produced In 
E. Coli. 

Rabbit 
Polyclonal IgG ~ 40 % Spiropyran Form 

Anti Phytanic Acid – 
BSA Conjugate 

Rabbit 
Polyclonal IgG ~ 50 % Merocyanine Form 

UV-Inactivated Anti 
Staphylococcus 

Aureus Cells 

Mouse 
Monoclonal 

IgG 
~ 65 % Spiropyran Form 

Anti IgG FITC - 
BSA Conjugate, 

from R

Mouse 
Monoclonal ~ 55 % Merocyanine Form 

abbit Serum IgG 
 
 

From the results presented in this chapter, the following hypothesis is proposed: the 

degree of photomodulation of antibodies varies from antibody to antibody since the 

mechanism of antigen-antibody complex formation also varies between antibodies. 

The presence of BSA conjugates on a whole IgG molecule influences the isomeric 

form of the dye that causes modulation. 
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4.6.3 Photodegradation  (Fatigue)  Assessment  (SP-Ab : Dye Photoswitching)    
 

Fatigue of the dye was experienced throughout all applications, although the extent of 

fatigability varied among the various modified antibodies. These results were similar 

to the fatigue experienced by the spiropyran modified HRP in the previous chapter. 

The immediate switching seems to be fairly stable during the first 3 to 4 switches 

tly noticeable degradation. This may be because the mode of 

switching takes on an additional time effect (incubation time for merocyanine 

rocess of 

ber of weeks stored at 4 °C. This may not be that 

icant with regards to the intended application – antibodies may not be kept at 4 

°C a er a d atio e 

antibody.  In comparison to the unconjugated dye (Chapeter 2), fatigue is negligible. 

This suggests that fatigue with respect to SP-CO ugated to e 

due to: njugation reaction treatment, and/or (ii) the molecular instability of 

the spiropyran dye after it wa d to the ant

 

followed by a significan

conversion), the dye may also be subjected to storage stability effect in the p

immediate switching analysis. The long storage stability test reveals that the dye’s 

performance decreases with the num

signif

nd reused ov 3 month period ue to the denatur n occurring in th

OH conj  antibodies may b

 (i) the co

s couple ibody. 

 

149



 
 
 
 
 
 
Chapter 5 
 
ANTIBODY-ANTIGEN BINDING AND SPIROPYRAN 
DYES PHOTOSWITCHING IN IONIC LIQUIDS 
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5 Antibody-Antigen Binding and Spiropyran Dyes Photoswitching in Ionic 

Liquids 

1 Overview 

his chapter presents the introduction of antibody-antigen binding in ionic liquids. 

his innovative study involves the investigation of the feasibility of antibody-antigen 

nding in 3 different types of ionic liquids within the same class (deep eutectic 

oride derivatives). The aim of this study is to use ionic liquids (as 

ional organic solvents replacement) to deliver improvements in 

e performance of analytical methods. The nature of this investigation is based on a 

 of 

also 

ified proteins 

.2 Relevance of Ionic Liquids to Current Study 

iomolecules that exhibit binding functions such as antibodies (and their 

orresponding antigens) find a diverse range of applications in modern biotechnology. 

 is common practice given that in most cases, the presence of an appropriate solvent 

e. water, is required to allow biomolecule function; the removal of water will result 

 the cessation of biological function. Antibody-antigen binding requires the presence 

f bulk quantities of water – either with the biomolecules in aqueous solution or 

ssociated with surfaces that are in contact with bulk aqueous solutions. The use of 

iomolecules in applications that require contact with strongly evaporative media will 

sult in the rapid removal of water by evaporation. Conditions where the water 

rated (high gas/liquid surface area to volume ratio) 

can be regarded as extreme environments for biological function.  

 

5.

 

T

T

bi

solvents; choline chl

candidates for tradit

th

modified ELISA technique, which allowed inclusion of various concentrations

ionic liquids in the assay process. Spiropyran dye photoswitching properties were 

investigated, with the intention of observing photomodulation of the mod

studied (in Chapters 3 and 4) in ionic liquids. 
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Ionic liquids as previously described in Chapter 1, Section 1.6 are a class of mater

that have recently attracted a growing intere

ials 

st as replacements for traditional organic 

solvents in a number of industrial applications. The recent interest surrounding ionic 

rds to “green chemistry” has largely been as a result of the fact that 

nic liquids have very low vapour pressure (in contrast to traditional solvents), and 

s; in situ detection of micro-organisms 

osphere and therefore at low pressure [Sims et al., 2005]), may be 

feasible with the use of ionic liquids as solvents. Other immediate beneficiaries of the 

ts potential applications in gas 

hase sensing, which may include airborne microbial detection. 

liquids with rega

io

hence, emit little or no volatile organic compounds. Biomolecules such as enzymes 

have been studied in ionic liquids and have shown to enhance enzyme activity, 

stability, and selectivity (Yang et al., 2005). However, application of an antibody-

antigen binding technology in ionic liquids has yet to be established. The use of ionic 

liquids with very low vapour pressure may eliminate instability caused by the rapid 

evaporation of traditional water based solvents of an antibody-antigen technology in 

extreme environments. The idea of antibody-antigen technology in applications to 

detect volatiles, in operation in icy environments relevant to understand life in such 

conditions, fluid handling and assay in low pressures (e.g. operation at Martian 

atmospheric pressures in planetary application

in the high atm

use of ionic liquids in sensor technology includes i

p

 

In view of the fact that ionic liquids applications are generally aimed at improving 

technologies, the approach within this study is to apply ionic liquids in an antibody-

antigen binding system, with a subsequent intention to incorporate ionic liquids in a 

photomodulated antibody-antigen system. This is aimed at increasing versatility 

within the biotechnology described in this thesis. In general, the use of ionic liquids 

with very low vapour pressure will be beneficial to diverse applications in 

bioanalytical systems, in situations where current use in gaseous media including 

ultra-low pressures is not possible or is technically challenging.  
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5.3 Ionic Liquids: Deep Eutectic Solvents 

 
The ionic liquids used within this study are further classified as Deep Eutectic 

Solvents (DES). As briefly mentioned in Chapter 1, Section 1.6, DES are types of 

ionic liquids whose mixture components result in melting point much lower than 

either of the individual components, rendering them effectively simple eutectics. DES 

can be formed between a variety of quaternary ammonium salts and carboxylic acids. 

The deep eutectic phenomenon was first described by Abbott et al., (2001; 2003) 

which involved 1:2 molar mixture of choline chloride (2-hydroxyethyl-

trimethylammonium chloride) and urea. Choline chloride has a melting point of  

302 °C and that of urea is 133 °C; the eutectic mixture however melts as low as 12 °C. 

The 3 types of ionic liquids (DES) used are: Glyceline 200 (a mixtures of glycerol and 

choline chloride [2:1 molar ratio]), Ethanline 200 (a mixture of ethane-diol and 

choline chloride [2:1 molar ratio]), and Maline 100 (a mixture of malonic acid and 

choline chloride [1:1 molar ratio]). These liquids were formed by heating the two 

components together at 100 oC until a homogeneous fluid formed (Abbott et al., 

2003). Some of the physical properties of the 3 ionic liquids used are shown in Table 

5.1. The term ionic liquids (instead of DES) will however be maintained throughout 

this thesis. 

   

 

Table 5.1 : Ionic Liquids Involved in this Current Study.   

Physical properties of the ionic liquids involved within study. Properties other 
than melting points were observed at 25 oC (Abbott et al., 2003). 
 

Name Composition 
Density 

(g cm-3) 
Viscosity 

(cP) 
Melting 

Point (oC) 

Glyceline 200 
Glycerol (66.66%) 

Choline chloride (33.33%) 
1.20 259 -5 

Ethanline 200 
Ethane-diol (66.66%) 

1.12 36 
Choline chloride (33.33%) 

-20 

Maline 100 
Malonic acid (50%) 

Choline chloride (50%) 
1.25 942 10 
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5.4 Chemicals, Biological Compounds, Materials and Equipment 

sity of Leicester).  

 Liquids 

his study aimed to demonstrate for the first time the functioning of antibody-antigen 

binding in ionic liquids (G Ethanline M  T

this, the use of a standard microtitre plate based ELISA format, with the antigen 

i th the antibody to bind in the liquid phase was 

employed. The ELISA for odified to allow only this key step (the 

reaction of the solub  the immobilised antigen] in the liquid 

phase) to be perform . The appropriate control of the water 

co der dy activ f cruc portanc as 

observed (i.e. reactions were not observed in 100% ionic liquids). 

 

All consumables (with the exception of the ionic liquids), biological compounds, 

materials and equipment were obtained as in previous chapters (Chapters 2, 3 and 4): 

Phosphate Buffered Saline  (PBS) (Sigma Code: P4417-50tab), 3,3’,5,5’–

Tetramethylbenzidine (TMB) Tablets (Sigma Code: T 5525), Anti-Human Kappa 

Light Chains (Bound and Free)-Peroxidase Antibody Produced in Goat (Sigma Code: 

A7164), Atrazine (Sigma Code: 45330), Mouse Anti-FITC (Fluorescein) Monoclonal 

Antibody (Unconjugated) (Abcam code: ab2327), Albumin, Fluorescein 

Isothiocyanate Conjugate Bovine (FITC-Albumin) (Abcam code : ab47846), BSA-

Atrazine recombinant scAb (University of Aberdeen/Haptogen), Donkey Anti-Mouse 

Secondary Antibody IGg-HRP (Cruz Marker Compatible Secondary Antibody) 

(Autogen Bioclear Code: Sc-2318), Immulon 4 ELISA plate, White LEDs, Based on 

GaN 27-33 Cd (Roithner Laser Technik Code: 5w4hca-H20-Ultra), UV LEDs 

(Roithner Laser Technik Code: NS360L-5RLO), Quartz Cuvette. The ELISA plate 

and UV-Vis spectra were read off Lab Systems iEMS Reader MF microtitre plate 

reader and UV-Vis Spectrophotometer UV-2100 (Shimadzu) respectively. The ionic 

liquids: Glyceline 200, Ethanline 200 and Maline 100 were obtained from ScioniX 

Ltd (Univer

 

5.5 Experimentation: Antibody-Antigen Binding in Ionic

5.5.1 Introduction 
 

T

lyceline 200,  200 and aline 100). o illustrate 

mmobilised to e solid phase and 

mat was slightly m

le antibody [binding to

ed with ionic liquids

ntent, in or  to maintain the antibo ity, o ial im e, w
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Ionic liquids in general (including those involved in this study) are known to be 

iscous, hence an initial study to assess whether the viscosity of the ionic liquids 

tigen were removed from the plate’s wells by a flip-

slap emptying motion (i.e. holding the plate initially over a sink with the plate 

motion of the 

own on a dry clean surface covered with absorbent paper 

(Kimwipe) to remove residual liquid content). 

motion) */** 

v

employed had any influence on the rate of antibody binding in an ELISA. This was 

observed with a nominated antibody of study; Anti-Atrazine antibody fragment 

because of availability. Ionic liquid viscosity was not varied directly but via changes 

in the ratios of ionic liquid to an aqueous buffer (PBS). The ELISA procedure 

involved also varied the incubation period concerned with the antibody antigen 

binding step to observed effect on the rate of binding. 

 

5.5.2 Methodology: ELISA 
 

The binding ELISA involved within this chapter follows the same core steps of the 

ELISA described in Chapters 4; however some specific key steps are modified to aid 

ionic liquids inclusion analysis. The detailed protocol is as follow: 

 
• Immulon 4 ELISA microtitre plate was coated with 100 μl/well of 10 μg/ml 

antigen in 1x PBS and incubated for 1 hour at 20 ˚C to immobilise antigen to 

the solid phase. 

• The excess unbound an

upside down in a rapid flipping motion, followed by a slapping 

plate upside d

• The microtitre plate wells were blocked with 200 μl 1x PBS containing 1 % 

(w/v) skimmed milk (Marvel®) for 1 hour at 20˚C. (The removal of microtitre 

plate well content was via the flip-slap emptying motion) 

• The plate was then washed twice with 200 μl 1x PBS containing 0.1 % Tween 

20 (PBST) followed by a final wash with 1x PBS. (The removal of microtitre 

plate well content was via the flip-slap emptying motion) 

• 100 μl of antibody at desired concentrations was added to the wells in 

triplicate and incubated for 1 hour at room temperature. (The removal of 

microtitre plate well content was via the flip-slap emptying 
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• The plate was washed twice with 200 μl 1x PBS containing 0.1 % Tween 20 

(PBST) followed by a final wash with 1x PBS. (The removal of microtitre 

plate well content was via the flip-slap emptying motion) 

• 100 μl of an HRP labelled secondary antibody (to the primary antibody 

initially incubated) was added to the wells and incubated for 1 hour at room 

temperature. (The removal of microtitre plate well content was via the flip-

slap emptying motion)  

• The plate was washed twice with 200 μl 1x PBS containing 0.1 % Tween 20 

(PBST) followed by a final wash with 1x PBS. (The removal of microtitre 

ia the flip-slap emptying motion) 

• 1  3,3’,5,5’-tetramethylbenzidine (TMB) tablet was dissolved in 10 ml of 0.05 

nd read at 450 nm 

with Lab Systems iEMS Reader MF microtitre plate reader. 

quids to an aqueous buffer (PBS).   

 with 100 μl/well of 10 μg/ml 

plate well content was v

M Citric Phosphate per Borate buffer of which 100 μl was added per well and 

allowed to develop (within 2 minutes) a blue colouration at room temperature.  

• The reaction was quenched with 50 μl/well of 1M H2SO4 a

 

*This step was modified to allow the antibody to be presented into the microtitre plate 

wells at various ratios of ionic li

** The incubation period was varied with regards to the rate of binding analysis. 

 

Competitive Inhibition ELISA detailed protocol is as follow: 

 
• Immulon 4 ELISA microtitre plate was coated

antigen in 1x PBS and incubated for 1 hour at 20 ˚C to immobilise antigen to 

the solid phase. (The removal of microtitre plate well content was via the flip-

slap emptying motion) 

• The microtitre plate wells were blocked with 200 μl 1x PBS containing 1 % 

(w/v) skimmed milk (Marvel®) for 1 hour at 20˚C. (The removal of microtitre 

plate well content was via the flip-slap emptying motion) 

• Another set of wells of the microtitre plate were blocked with 200 μl 1x PBS 

containing 1 % (w/v) for 1 hour at 20˚C. (The removal of microtitre plate well 

content was via the flip-slap emptying motion) 
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• 100 μl/well of varying concentration of antigen were placed in the solely 

blocked wells in triplicate. 

• 100 μl of antibody at a known fixed concentration was added to the wells 

 0.1 % Tween 20 

(PBST) followed by a final wash with 1x PBS. (The removal of microtitre 

 in 10 ml of 0.05 

and 

allowed to develop (within 2 minutes) a blue colouration at room temperature.  

SO4 and read at 450 nm 

with Lab Systems iEMS Reader MF microtitre plate reader. 

containing the antigen and allowed to react for 12 hours at room temperature.* 

• The reaction was transferred to the initial antigen coated well and allowed to 

react for 1 hour. (The removal of microtitre plate well content was via the flip-

slap emptying motion) 

• The plate was then washed twice with 200 μl 1x PBS containing 0.1 % Tween 

20 (PBST) followed by a final wash with 1x PBS. (The removal of microtitre 

plate well content was via the flip-slap emptying motion) 

• 100 μl of an HRP labelled secondary antibody (to the primary antibody 

initially incubated) was added to the wells and incubated for 1 hour at room 

temperature. (The removal of microtitre plate well content was via the flip-

slap emptying motion)  

• The plate was washed twice with 200 μl 1x PBS containing

plate well content was via the flip-slap emptying motion) 

• 1  3,3’,5,5’-tetramethylbenzidine (TMB) tablet was dissolved

M Citric Phosphate per Borate buffer of which 100 μl was added per well 

• The reaction was quenched with 50 μl/well of 1M H2

 

*This step was modified to allow the antibody to be presented into the microtitre plate 

wells at various ratios of ionic liquids to an aqueous buffer (PBS).   
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5.5.3 Ionic Liquids Effect on the Rate of Binding in an Antibody-Antigen 
Binding Reaction 

 

One of the central assumptions to the analysis of antibody binding data is that the data 

is gathered after equilibrium is reached between the receptor (antibody) and ligand 

(antigen). This may take anything from minutes or several hours. Hence before a 

meaningful binding experiment can be done, the incubation time necessary to reach 

me to equilibrium. 

and assessment of a near pure ionic liquid 

ithin this study, the 

 in Section 5.5.2) 

with varied antibody-antigen binding incubation period (over 24 hours), at a single 

 liquid present in 

BS [50 % and 95 % and 0 %/control]) to Atrazine–BSA conjugate (antigen). The 

sultant observation was noted in figure 5.1. 

equilibrium was determined.  Due to the high viscosity of ionic liquids, it is apparent 

that a standard ELISA protocol with the primary antibody incubation step of 1 hour at 

room temperature, may not allow the binding reaction to co

Although the ionic liquids employed in this study had varying viscosities, their 

viscosity effect were observed at ratios of 5 %, 50 % and 100 % of PBS content in the 

ionic liquid/PBS mix. This choice was to allow a control (100%), assessment of a 

mixed ionic liquid / aqueous solution (50%) 

(5%) with the small water content to ensure constant solution properties during 

experimentation due to the hygroscopic nature of the ionic liquids chosen. The 

incubation (binding reaction) time for most assays is the time required for 90 % of the 

ligand to bind (Tramontano et al., 1986; Ochola et al., 2002). W

incubation time was varied by incubating a low concentration of the ligand (well 

below the presumed affinity constant [Kd]) with the receptor and observing the 

amount of ligand bound over time.   

 

The experiment performed involved a modified ELISA (as described

antibody concentration of Anti-Atrazine antibody fragment (2.5 x 10-6 M), in the 

presence of 3 ionic liquids available (with different ratios of ionic

P

re
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Figure 5.1 : Ionic Liquids Effect on the Rate of Antibody-Antigen Binding 

Ionic liquids effect on the antibody-antigen rate of binding in a modified ELISA 
to assess binding properties, denoted by optical density (OD) readings at the end 
of reaction. The analysis also included various ratios of ionic liquid to an aqueous 
buffer (PBS). 
 

Figure 5.1 shows that at 100 % aqueous buffer (control) and 50 % (ionic liquid in 

aqueous buffer) of Glyceline 200 and Ethanline 200, equilibrium is reached within 3 

ic liquid in aqueous buffer) of Maline 100 reached equilibrium at 12 

ry little change in OD signal after 12 

ours but then declines in OD signal after 12 hours of incubation. From these initial 

results it can be suggested that (although some reactions reached equilibrium within 3 

hours), most solvent mixtures reached equilibrium with maximum ODs by 12 hours. 

This supports the necessity of the adjustment of the antibody binding step within the 

modified ELISA to 12 hours for the successive application within this thesis. With 

hours. 50 % (ion

hours but with 50 % less optical density (OD) signal compared to the control. 95 % 

(ionic liquid in aqueous buffer) of Ethanline 200 reached equilibrium at 3 hours but 

also with 50 % less OD signal compared to the control, however, 95 % (ionic liquid in 

aqueous buffer) of Glyceline 200 reached equilibrium at 12 hours with 50 % less OD 

signal but then declines in OD signal after 12 hours of incubation. 95 % (ionic liquid 

in aqueous buffer) of Maline 100 showed ve

h
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regards to OD readings, it may be initially suggested that OD signal is inversely 

proportional to viscosity, however due to the observed decline in OD at some 

concentrations of ionic liquids; it suggests other factors within respective components 

of the employed ionic liquids may affect stability.   

 

5.5.4 Antibody-Antigen Binding Interactions in Mixtures Containing Ionic 

Liquids  

5.5.4.1 Introduction 

 
This study deals with the binding nature of antibody-antigen in ionic liquids. It 

involves assessing the binding performance in ionic liquids with varying water 

content i.e. by 5%, 50% and 100%. To demonstrate to a limited extent the broad 

applicability of antibody-antigen in ionic liquids, two antibody-antigen systems were 

tibody 

ntibodies formats. Taking into consideration the ionic liquids effect on the rate of 

chosen (based mainly on their availability). A recombinant single chain an

fragment (scAb) (Anti-Atrazine antibody fragment) which binds to Atrazine, and a 

monoclonal IgG (Anti-Fluoresceine Isothiocyanate [FITC]) which binds to 

Fluresceine Isothiocyanate, were chosen to demonstrate the applicability of differing 

a

binding (Section 5.5.3), the antigen-antibody binding profiles in the ionic liquids were 

observed in a modified ELISA whereby the antibody-antigen binding incubation step 

was adjusted to 12 hours. 

 

5.5.4.2 Anti-Atrazine Antibody Fragment Binding in Ionic Liquids 
 

Anti-Atrazine antibody fragment binding profile via the modified binding ELISA 

procedure described in Section 5.5.2 was initially observed with all 3 ionic liquids 

(with different ratios of ionic liquid present in PBS [50 % and 95 % and 0 %/control]) 

to Atrazine–BSA conjugate (antigen). Eight antibody serial dilutions were prepared in 

the desired concentration range to assess binding profile, in this instance it was a 2 

fold serial dilution to yield a Kd of ~ 0.6 x 10-4 M (~ 1.0 x 10-6 g/l)). A secondary HRP 

labelled antibody, human C-kappa light chain antibody (diluted by a factor of 1/1000 

in 1x PBS) was used to detect the antibody-antigen complex formed. A log10 curve 
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plot of the mass concentration of antibody against optical absorption at 450 nm was 

observed to show the binding profile (Figure 5.2). 

 

 

Figure 5.2 : Anti-Atrazine Antibody Binding in Ionic Liquids. 

Comparison of IgG Anti-Atrazine fragment in an ELISA at different ratios of 
ionic liquids. 12 hours incubation period was applied within this assay.  
 

Figure 5.2 displays a Microsoft Excel Solver Add-In feature used to determine the 

est-fitting sigmoid curve for the binding assay data. A sigmoid function was selected 

 allowed the 

ntibody dissociation constant (Kd) (which is inversely proportional to the antibody 

b

because this is the typical shape of a binding antibody assay curve.  This

a

binding affinity, Ka) to be measured. The Kd values for the antibodies are stated in 

Table 5.2. The typical range of Kd values for antibody-antigen binding between is 10-4 

to 10-9 M (10-6 to 10-11 g/l) (Garcia et al., 1999).  
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Table 5.2 : Kd values for Anti Atrazine in Ionic Liquids. 

 

Solvent composition Kd (g/l) 

1:1 (PBS:Ethanline) 1.1 x 10-6 

1:1 (PBS:Glyceline) 1.1 x 10-6 

1:1 (PBS:Maline) 4.1 x 10-6 

1:19 (PBS:Ethanline) 1.8 x 10-6 

1:19 (PBS:Glyceline) 1.9 x 10-6 

1:19 (PBS:Maline) 1.1 x 10-5 

100% (PBS) (Control) 1.0 x 10-6 

 

From the binding profile in Figure 5.2 and Table 5.2, there was no significant 

difference in Kd of the control (100 % PBS buffer) and 50 % (ionic liquid in aqueous 

buffer) of Glyceline 200 and Ethanline 200, however 50 % (ionic liquid in aqueous 

 to the control, also 

in 

s with an 

on the antibody binding properties, its effect on the rate 

displayed (which may be as a result 

means such as denaturing of protein, 

viscosity effect or ionic stripping of the microtitre plate wall) it was decided upon to 

leave out further analysis involving Maline 100 within this thesis. The scope of study 

buffer) of Maline 100 show a 4 fold difference in the Kd compared

the OD signal readings was lower than that of the control. 95 % (ionic liquid 

aqueous buffer) of Glyceline 200 and Ethanline 200 showed similar result

equilibrium binding constant 2 folds lower than that of the control and also with a 

lower OD signal (but not as low as the 50 % Maline 100 in aqueous buffer). 95 % 

(Maline 100 in aqueous buffer) displayed a 10 fold difference in equilibrium binding 

constant and the lowest OD signal (50 % lower than the control). A detailed 

explanation for these observations is not apparent at present but these results show 

that high affinity antibody binding is possible in ionic liquids and that the detailed 

nature of the ionic liquid can affect its function.  

 

Due to nature of Maline 100 

binding (section 5.5.3), and the low OD signal it 

of destruction of biomolecules by possible 
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needs to be widened to deliver further investigations, but due to limited resources and 

me available, this was not conducted. 

 

Following the binding profile of Anti-Atrazine in ionic liquids, the next logical step 

was to observe a competitive inhibition ELISA. This was conducted (as described in 

Section 5.5.2) w oncentration of 2.5 x  free Atrazine 

(antigen) concent een 1.4 x 10-4 M and  M. Due to the 

observed Maline 100 effect on the binding of antibody-antigen, only Glyceline 200 

and Ethanline 200 ionic liquids (containing 5%, 50% and 100% of aqueous buffer) 

were involved i 10 ot of the molar conce o  antigen versus 

optical absorptio rved (Figure 5.3). 

 

ti

ith an anti-Atrazine c 10-4 M with

rations ranging betw 1.4 x 10-15

n this study. A log  pl ntration f

n at 450 nm was obse

 
 

Figure 5.3 : Molecular Specificity of Anti Atrazine in Ionic Liquids. 

-4
 
Competitive inhibition ELISA of Anti-Atrazine (2.5 x 10  M) in ionic liquids 
containing 5%, 50% and 100% of aqueous buffer.  
 
The Microsoft Excel Solver Add-In feature was used to determine the best-fitting 

sigmoid curve for this data. The inhibitory concentrations at 50% binding (IC50) 

values (as explained in Chapter 4) for the antibodies are stated Table 5.3. 
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Table 5.3 : IC50 values for Anti Atrazine in Ionic Liquids. 

Inhibitory concentrations at 50% binding (IC50) were obtained from Figure 5.3 
 

Solvent composition IC50 (M) 

1:1 (PBS:Ethanline) 8.0 x 10-8 

1:1 (PBS:Glyceline) 7.1 x 10-8 

1:19 (PBS:Ethanline) 1.8 x 10-9 

1:19 (PBS:Glyceline) 2.9 x 10-9 

100% (PBS) (Control) -83.0 x 10  

 

Figure 5.3 and Table 5.3 shows that the binding profile of ionic liquids of Glyceline 

200 and Ethanline 200. At 50 % (ionic liquid in aqueous buffer) there is ~ 2 ½ fold 

difference in IC50 value compared to the control (100 % PBS buffer).  95 % (ionic 

liquid in aqueous buffer) of Glyceline 200 and Ethanline 200 showed 10 fold 

difference in the IC50 value compared to the control; however the OD signal was 

much lower. The most common problem to deal with in receptor-ligand interactions is 

non-specific binding. This is related to the presence of low affinity binding sites and 

also to binding to a set of identical and independent sites that have an affinity and 

capacity for the ligand in question. The observations within these binding studies 

indicate that there was no significant evidence of non-specific binding via the 

competive ELISA. 

 

5.5.4.3 Anti-FITC Binding in Ionic Liquids 
 

TC was used 

 place of Anti-Atrazine and the binding ELISA profile was observed. This study 

uffer). The binding ELISA assay included FITC-Albumin as the antigen. The 

ed. A log10 

To demonstrate the applicability of differing antibodies formats, Anti-FI

in

involved Glyceline 200 and Ethanline 200 (containing 5%, 50% and 100% of aqueous 

b

antibody (Anti-FITC) was serial diluted to yield a Kd of ~ 0.6 x 10-6 M (~1.0 x 10-8 

g/l). A secondary HRP labelled antibody, Anti-Mouse IgG (diluted by a factor of 

1/1000 in 1x PBS) was used to detect the antibody-antigen complex form
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plot of the molar concentration of antibody versus optical absorption at 450 nm was 

observed to show the binding profile (Figure 5.4). 

 

 

Figure 5.4 : Anti-FITC in Ionic Liquids. 

Comparison of IgG Anti-Fluoresceine Isothiocynate (FITC) in an ELISA at 
different ratios of ionic liquids. 12 hours incubation period was applied within 
this assay.  
 
Figure 5.4 displays a Microsoft Excel Solver Add-In feature used to determine the 

best-fitting sigmoid curve for the binding assay data. A sigmoid function was selected 

hich allowed the experimental Kd to be determined. These Kd values for the w

antibodies are stated Table 5.2. 
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Table 5.4 : Kd values for Anti-FITC in Ionic Liquids. 
 

Solvent composition Kd (g/l) 

1:1 (PBS:Ethanline) 3.1 x 10-8 

1:1 (PBS:Glyceline) 3.2 x 10-8 

1:19 (PBS:Ethanline) 6.0 x 10-8 

1:19 (PBS:Glyceline) 6.1 x 10-8 

100% (PBS) (Control) 3.0 x 10-8 

 

Figure 5.4 and Table 5.4 shows the binding curve with corresponding Kd values of the 

IgG Anti-Fluorescein Isothiocynate (Anti-FITC) in a binding ELISA with ionic 

liquids: Glyceline 200 and Ethanline 200 (containing 5%, 50% and 100% of aqueous 

buffer). At 50 % (ionic liquid in aqueous buffer) of both Glyceline 200 and Ethanline 

200, there was no significant difference in the Kd value compared to the control (100 

% PBS buffer). 95 % (ionic liquid in aqueous buffer) of both Glyceline 200 and 

 the Kd value compared to the control; 

 previously studied Anti-Atrazine antibody fragment (Section 5.5.4.2). 

eneral, the initial experimentation of antibody-antigen 

inding in Glyceline 200 and Ethanline 200 to content of 50 % and below in aqueous 

uffer, produced identical results to that of the standard aqueous PBS (control). At 95 

% ionic liquid content, a lower level of binding activity was observed. The similarity 

of results between the antibody types implies that the observed phenomenon is 

reproducible and may be generic. Further test on other antibodies will certainly need 

to be performed to verify this hypothesis. 

 

Ethanline 200 slowed 2 fold difference in

however the OD signal was ~ 35% lower. These initial results obtained indicate that 

the ionic liquid including an alternative antibody (Anti-FITC) study showed similar 

results to the

 

The work presented in this thesis however does not show a competitive inhibition 

ELISA for Anti-FITC due to limited available resources and therefore needs to be 

considered for future work.  In g

b

b
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5.5.5 Spiropyran Dyes in Ionic Liquids  

5.5.5.1 Introduction  
 

The overall intention within this thesis is to apply ionic liquids as solvents types 

involved in the photom e antibodies. To achieve this, the antibody needs 

be able to function in ionic liquids and just as importantly the photochromic dyes 

needs to also function in ionic liquids. This study aims to o hotoswitching 

properties of the synthesised spiropyran dye (SP-COOH) (from Chapter 2). Since 

Glyceline 200 and Ethanline 200 were the two most favourable ionic liquids that 

supported antibody-antigen binding, photoswitching of SP-COOH was observed in 

ese only. 

he 

onversion to the spiropyran form for 3 minutes. 1.5 ml of this solution was placed in 

odulation of th

bserve the p

th

 

5.5.5.2 Spiropyran Dyes Photoswitching in Ionic Liquids 
 

Spiropyran dyes are soluble in most organic solvents but do not dissolve very well in 

aqueous solutions and, as initial observation shows, also in the ionic liquids employed 

in this study. Therefore this study involved dissolving SP-COOH in ethanol to aid 

solubility and made up with the desired ionic liquid to observe photoswitching. 0.25 

µg/ml of SP-COOH in 1:9 ionic liquid to ethanol was observed for Glyceline 200 and 

Ethanline 200. Photoswitching of the dye was observed as described in Chapter 2 

Section 2.5.2, i.e. the solution was initially exposed to the white LEDs to trigger t

c

a quartz cuvette and with appropriate solvents as blanks, the dye solution was 

observed between 400 and 700 nm using a UV-Vis Spectrophotometer. The samples 

were then placed in a dark environment at 20 °C for 12 hours to allow dark adaptation 

to the merocyanine form of the dye and observed again between400 and 700 nm. 

These were observed in triplicates.  

 

The initial spectrum for photoswitching of SP-COOH in Glyceline 200 and Ethanline 

200 (with 90 % ethanol) is shown in Figure 5.5.  
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Figure 5.5 : Spiropyran Dyes Photoswitching in Ionic Liquids.  

0.25 µg/ml of spiropyran dye in ethanol:ionic liquid (Glyceline 200 and Ethanline 
200) at (9:1) at 20 °C. The solutions were dark adapted and white light 
illuminated to allow merocyanine and spiropyran conversion respectively, and 
observed between 400 and 600 nm. 
 
 

The results attained in Figure 5.5 indicated that the dye failed to switch forms after 

illumination and remained in the colourless spiropyran form even at a high 

concentration of ethanol (90 % ethanol to 10 % ionic liquid).  Repeat analysis showed 

the same results. It was then hypothesised that the ionic properties of the Glyceline 

200 and Ethanline 200 prevents the spiropyran dyes from switching forms, and was 

concluded that on this occasion, inclusion of ionic liquids to a photomodulation 

analysis of a modified protein will not be possible. 
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5.6 Discussion 

5.6.1 Antibody-Antigen Binding in Ionic Liquids 
 

The proposal to utilise ionic liquids (Glyceline 200 and Ethanline 200) as solvents in 

antibody-antigen reaction was confirmed to be feasible.  The results obtained for the 

ELISA analysis of the antibody-antigen interaction in the presence and absence of the 

ionic liquids indicated, fundamentally, the antibody dissociation constant (Kd) of the 

standard profile of the antibodies of study were not any different with up to 50 % 

ionic liquid present during binding reaction. Also at higher an ionic liquid 

concentration (e.g. of 95 % ionic liquids in solvent mix), antibody-antigen binding is 

still feasible but at an decreased optical density (OD) signal - this decrease could 

imply that  the level of water present may regard the environment as near-extreme 

f the solution may 

ith regards to the time taken for the antibody-antigen binding reaction in the 

bility of the antibody over time. 

 

Ionic liquids can be fine-tuned to specificity Abbott et al., (2001), however some 

ionic liquids e.g. Maline 100 (of study) may show the other extreme; imcompatible 

with certain applications. Maline 100 may be a good candidate for other applications 

but not for this study. Nevertheless, it has been successfully demonstrated that 

antibody-antigen binding is feasible in some examples of ionic liquids (Glyceline 200 

and Ethanline 200). The idea of antibody-antigen technology in applications to detect 

conditions (hence affect the biological activity); the ionic nature o

contribute to surface stripping of the immobilised complex formed on the well of the 

microtitre plate; or even so the ionic nature may interfere with the binding capability 

of the antibody and/or antigen.  

 

W

presence of ionic liquids to reach equilibrium, it be can suggested that there is a link 

between the concentration of the ionic liquids to the time taken for reaction to reach 

equilibrium; however it was also observed that the length of time which the antibody-

antigen binding reactions are exposed to ionic liquids may trigger secondary negative 

effects as observed in Section 5.5.3 – the decline in activity may be because of the 

near-extreme condition / ionic stripping described. This could imply that the ions in 

the solutions maybe start to have an effect on the sta
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volatiles, in gas phase sensing, in operation in icy environments, fluid handling and 

assay in low pressures may be feasible with the use of ionic liquids as solvents. In 

plication of ionic 

e percentage of ethanol in solution (90%) compared 

 ionic liquids, it can be suggested that viscosity may not necessarily have that 

summary, this study includes work that has advanced the current ap

liquids in biomolecules. 

 

5.6.2 SP-COOH in Ionic Liquids 
 

Carboxylated spiropyran dyes synthesised failed to photoswitch in a solution (9:1) of 

ethanol in either Glyceline 200 or Ethanline 200.  This mixture was predominantly an 

organic mix (of 90 % ethanol with 10 % ionic liquid) with very low concentration 

ionic liquids. The observed results indicate that the spiropyran dye may be locked in 

one form i.e. the colourless spiropyran from in the smallest amount of ionic liquids. 

As stated in Chapter 1, merocyanines are zwitterionic by structure; hence the ionic 

nature of the net solution may be preventing the formation of the merocyanine form of 

the dye as a result of interactions between the ions. Lin, (2003) stated that formation 

of merocyanine depends greatly on the viscosity and the polarity of the solvent. In the 

context of viscosity, based on th

to

critical a role in influencing photoswitching but rather the polarity (ions present). 

 

The inability to observe photoswitching of SP-COOH in ionic liquids suggests further 

observing experimentation with other forms of ionic liquids, however due to 

insufficient experimental time and resources, this aspect will need to be considered as 

future work.  

 

5.7 Conclusions 
 

Antibody-antigen binding reactions for two antibody types (Anti-Atrazine and Anti-

FITC) have been proven, for the first time, to be feasible in various concentrations of 

ionic liquids (Glyceline 200 and Ethanline 200). Further tests will need to be 

performed to expand these observations on other range of antibodies. The attempt to 

photoswitch spiropyrans dyes in the presence of ionic liquids was not feasible. The 

ionic nature of ionic liquids may have hindered the switching nature of the spiropyran 
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dye. Further tests will need to be performed to confirm these observation since a 

different range of ionic liquids may be better suited. 

 

 

 

 

171



 

 

 
 
 
 
 
Chapter 6 
 
FINAL DISCUSSIONS, CONCLUSIONS AND FUTURE 
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6 Final Discussion, Conclusions and Future Work 

6.1 Final Discussion 

nce the four sections of practical work were carried out and reported as a series of 

periments in which the results of each experiment and implications for subsequent 

ork were discussed throughout Chapters 2 to 5, this final discussion presents a brief 

mmary of the developments made and the relationship each area of work has on the 

nclusion of this PhD work. 

d Characterisation of SP-COOH 

he synthesis of a carboxylated spiropyran dye was a very important step within this 

 

iimide-mediated conjugation to free amine groups present on 

roteins was successful. The procedure employed yielded high product recovery. The 

P-COOH-Me derivative failed to deliver what was expected, since SP-COOH-ME 

as expected to enhance the water solubility of the dye. The immediate 

haracterisation of observing photochromism in ethanol showed rapid conversion rate 

etween isomers. The various characterisation steps taken to authenticate the product 

ynthesised was sufficient, however, 13C NMR analysis characterisation step was not 

asible on this occasion although it was anticipated that the unknown behaviour of 

e dye under the 13C NMR analysis may be have contributed to this observed reponse 

s also stated within the findings by Bouas-Laurent et al., (2001). The stimulus for 

iggering the synthesised spiropyran dye isomeric state had to be adjusted to 

ccommodate the need for the dye in an aqueous environment – it was established that 

V illumination mode of switching was ineffective when the spiropyran dyes were in 

queous buffers such as HEPES, PBS or MES. This resulted to an alternative mode of 

timulus for triggering photochromism i.e. the slow coversion of dye to the 

erocyanine isomeric form in the dark and the rapid coversion of the dye to the 

spiropyran isomeric form in white light.  It may be concluded that the dark adaption 

technique of merocyanine isomer conversion is significantly slow and as such may 

not be ideal for rapid switching application, which is a desired function of dye 
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study. The synthesis of SP-COOH; consisting of a carboxyl terminated alkyl chain

suitable for carbod
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photoswitching. Nonetheless is has been established that the synthesised dye can 

undergo photochromism in 90% aqueous buffers of HEPES, PBS or MES. The 

operties also highlights the need care of application of SP-

ent revealed that stability SP-COOH was not affected 

a trial run to formulate conditions which 

odulation) had been previously observed by 

 observed. Sesay, 2003 also 

behaviour of solvent pr

COOH. Fatigue assessm

significantly. 

 

6.1.2 Photomodulation of HRP Activity 
 

Photomodulation of HRP (which served as 

would favour antibody activity photom

Weston et al., (1999) whereby 92 % modulation was

conducted this investigation and yielded 72 % modulation. Both their mode of 

switching was via visible light and UV illumination. In contrast, this current study 

gave modulation of up to 60 % and illumination was via white LEDs and dark 

adaptation as a result of UV light, which was not producible under the desired 

aqueous conditions (10% ethanol, 90% aqueous buffer). 

 

Carboxylated spiropyran are known to exhibit negative photochromism and this was 

advantageous in ensuring that switching of the two isomers was feasible despite not 

being rapid or activated via UV as desired. The solvent effect on spiropyrans is known 

to vary and is a very important study in its own right. Consequently the behaviour of 

the spiropyran dye in solvent, in favour of its application, needs to recognised within 

each application as evident. Despite the modulation of HRP not being as concretely 

proven as previous work undertaken, the experimental conditions were different, 

hence a possible explanation for the discrepancies and the observed findings. It is 

believed that the change in configuration of the dye has disrupted the structure of the 

protein, thus possibly inducing a subsequent change in shape of the binding or active 

site of the protein which gave the observed findings. 

 

Muranaka et al., (2002) suggested that photomodulation of enzymes such as HRP is 

not based on the environmental change of the polarisation by the cis/trans 

photoisomerisation of the dye. Muranaka et al. suggested it was based on a side chain 
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conformational change that affects the substrate binding site or the entire protein 

conformation.  However with the results attained, bearing in mind that the number of 

dyes attached to the protein did not necessarily influence modulation, it is proposed 

that the environmental changes might have been influential. The ambiguity in 

considering deducing the exact mechanism of modulation therefore remains; this 

ight however be due to the varying mechanism with respect to target proteins. 

.1.3 Photomodulation of Antibody Affinity 

hotomodulation of proteins, 

hemical modification of the protein is employed via non-specific target groups (e.g. 

antibodies modified generally 

tained their activity after conjugation with the dye implying the method of coupling 

m

 

6
 

The main aim of this study, which was to synthesise a photochromic antibody whose 

affinity could be modulated reversibly by photons, has been established. The use of 

spiropyran dye modified HRP to scale up the protocols involved has served its 

purpose. It is reported here with 5 different antibodies whose affinity to their 

respective antigens can be modulated by the aid of photochromism of attached 

spiropyran dyes. Although the degree of modulation varied, the principle remained. 

Lui et al., (1997) stated that within most studies of p

c

lysine groups) that couple many photochromic units (consisting of a carboxyl 

terminated alkyl chain) to undefined sites on the protein (just as described within this 

thesis). Lui et al. suggested that a more rational design of photomodulated protein 

would be to have photochromic dye groups incorporated site-specifically, i.e. at key 

sites on a protein structure. This will henceforth give more insight on how 

photomodulation is achieved and also aid enhancement of the application of 

photochromic dyes in protein function modulation. 

 

The use of covalently attached photochromic spiropyran dyes to proteins (HRP and 

antibodies) has proven its ability to influence a significant degree of activity 

modulation when appropriately illuminated. The 

re

was not overly invasive. These intial results suggest a significant step to towards an 

immunoaffinity assay system implementing photosensitive antibodies. Future 

application in the capacity of regenerating bio-sensing surfaces via these modified 
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antibodies may also be practicable although a reversible photomodulated study may 

need to be completed.  

 

6.1.4 Photodegradation (Fatigue) of SP-COOH 
 

Fatigue assessment of the photoswiching profile of unconjugated dyes (SP-COOH) 

hows low levels of fatigue in comparison to the conjugated dye to proteins (SP-HRP 

was evident throughout all modified 

rotiens. The immediate switching of the conjugated spiropyran dye from the SP to 

y are in. 

liquids. The properties and behavior of the ionic liquid can be adjusted to suit an 

s

and SP-Ab). Conjugated spiropyran dye fatigue 

p

MC form remained stable during the first couple of photoisomerisation analyses, 

however this was followed by a noticeable gradual photodegradation of the 

photochromic nature of the dye in subsequent photoswitching. The conjugated dye 

merocyanine switching was assessed over a 12 hours period to enable conversion 

which is different from an immediate switch with UV light source established by 

others published findings; i.e. a lag incubation period may contribute to fatigue as 

well. The stability testing (fatigue over 10 weeks period) although was much longer 

when compared to the immediate switching analysis showed a higher magnitude 

degradation over time. This could have been influenced by the freshness of the 

solvent (aqueous buffer) such that the possibly microorganism growth could have 

contributed to some form of interference with photoswitching. Overall these results 

attained wtihing this study suggests that fatigue with respect to SP-COOH conjugated 

to antibodies and HRP may be due to: (i) the conjugation reaction treatment, and/or 

(ii) the molecular instability of the spiropyran dye after it was coupled to the antibody 

(iii) and/or the nature of the solvent environment the

 

6.1.5 Antibody-Antigen Binding in Ionic Liquids 
 

The demonstration of antibody-antigen binding in various ratios of ionic solutions was 

confirmed feasible for the first time.  A major advantage of ionic liquids; the ability to 

fine tune ionic liquids by altering the cation, anion and attached constituents to 

manipulate the solvents physical and chemical properties renders  their applications as 

versitle - the application within this study is only based on a few types of ionic 
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individual reaction type; they can truly be described as designer solvents - although 

not within the scope of this study. By choosing the correct ionic liquid, high product 

ields of chemical reaction can be obtained, and a reduced amount of waste can be 

an be recycled, and this leads to a 

duction of the costs of the processes. Within this application, the feasibility of 

odulate 

antibody was successful; it helped provide means of opbserving photomodulation in 

cqeuous buffers.  Antibody affinity control aimed for affinity biosensors seems 

 65 % modulation implies that 

y

produced in a given reaction. Often the ionic liquid c

re

antibody-antigen binding in the available range of ionic solutions was assessed rather 

than the creation of designer solvents. Nonetheless the application of ionic liquids in 

this content has set the precedent with antibody-antigen binding in ionic liquids.  

 

6.1.6 Spiropyran Dyes in Ionic Liquids 
 

Despite the interesting results attained with regards to antibody-antigen binding in 

various ratios of ionic liquids to aqueous buffers, the same cannot be said about 

photochromism of spiropyrans. Spiropyrans are a class of photochromic molecules 

whose structure is zwitterionic (i.e. when in the merocyanine form), hence the 

presence ions in the solution can cause the molecule to behave otherwise, i.e interact 

with the ions of the ionic liquids. It is believed that the ionic nature of ionic liquids 

does not support photochromism of spiropyrans. Spiropyrans are known to behave 

differently in protic, aprotic, non polar and aqueous solvents; hence the behaviour in 

ionic solutions was anticipated to raise concerns as observed. 

 

6.1.7 Summary 
 

The used of HRP to set up protocols to aid asseses the feasibility of photom

a

feasible - despite not observing 100% modulation, ~

less concentration of harsh solvent (wash buffers) can be introduced to the modified 

antibodies during regeneration if applied in biosensors. Despite loss of rapid 

photoswitching due to the solvents employed, optimisation of technique will only 

benefit this observation. It can however be emphasized that photochromic antibodies 

are practicable. The feasibility of antigen-antibody in ionic liquids may not be 
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necessarily be benefitial with respect to photochromism, but this findings can pave the 

way to the manufacture of vacuum biosensor or biological assaying of in space.  
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6.2 Final Conclusion  

6.2.1 Photomodulation of HRP Activity 

Modification of HRP with spiropyran dyes in 90% aqueous buffer and 10 % ethanol 

resulted in a 60 % modulation of protein activity by merocyanine isomer of the dye. 

The activation of the isomers of the dyes was by visible light (with LEDs) and dark 

adaptation resulting to the spiropyran and merocyanine forms respectively. Visible 

light illumination of the dye-protien complex was respondsible for the decrease of 

enzyme activity and dark adapation was responsible for reverting or maintaining the 

enzyme activity at its native level. 

 

6.2.2 Photomodulation of Antibody Affinity 
 

The variety of antibodies modified by spiropyran dyes that can be photomodulated 

ranged from monoclonals, polyclonals and antibody fragments. The extent of 

modulations varied between antibodies, however the BSA conjugated whole IgG 

antibodies were photomodulated by the merocyanine isomer of the dye whiles the non 

BSA conjugated antibodies were modulated by the spiropyran isomer. These findings 

can provide new opportunities for controlling activity in biosensors, diagnostics, 

affinity separations, bio-processing, therapeutics, and bioelectronics applications. 

 

6.2.3 Photodegradation (Fatigue) of SP-COOH  
 

The fatigue effect is a common feature observed among a wide range of organic 

photochromic compounds, and was hypothesised to be caused by photodegradation of 

the dyes under UV irradiation. The finding within this study (which included the 

omission of UV illumination) did not improve circumstances as fatigue was still 

evident. This however suggestes that fatigue is influenced by (i) the conjugation 

reaction treatment, and/or (ii) the molecular instability of the spiropyran dye after it 

was coupled to the antibody. 

 

 

 

 

179



6.2.4 Antibody-Antigen
 

 Binding in Ionic Liquids 

of the antibody-antigen interaction in the 

resence of the ionic fluids indicated a considerably important point of application; 

in ionic liquids. The dye molecules are locked in 

e spiropyran form when in ionic liquids with a concentration as low as 10 % (ionic 

y is 

not feasible. 

The results obtained for the ELISA analysis 

p

i.e. the use of antigen-antibodies technology in low vapour pressure conditions such 

as space assaying. This finding can serve as a basis to build a more significant 

application of ionic liquids in conjunction with the antibodies.  

 

6.2.5 Spiropyran Dyes in Ionic Liquids 
 

Spiropyrans are not photochromic 

th

liquids: ethanol, 1:9). 

 

6.2.6 Summary 
 

• Photomodulation of HRP has been re-confirmed to be feasible in predominatly 

acqeous solution. 

• Photomodulation of 5 different antibodies has been feasible for the first time. 

• Antigen-antibody reaction in various ratios of ionic solutions is feasible. 

• Photochromism of spiropyrans dyes in the ionic liquids witihin this stud
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6.3 Future Work 

6.3.1 Substitution of Spiropyran Dyes with Spirooxazines 
 

Spirooxazines are very similar to spiropyrans in many ways. The only structural 

difference is that the C=C in pyran is replaced by C=N in oxazine (Lin, 2003). 

However one interesting differential feature is fatigue. Spirooxazines have better 

fatigue resistance, as also stated by Baillet et al., (1993), they have attracted 

onsiderable interest because of their good fatigue resistance under a long period of 

erivatives; hence this is something worth 

of Modified Protein after Photomodulation 

did not specifically observed photomodulation of protein function 

ver more than 3 cycles i.e. “on” “off” and “on” again. For future application, such as 

study the reversibilty activity cycle of the photomodulated 

 

ity Biosensors 

espite success with photomodulation of the proteins via spiropyran dyes within this 

tudy, site specific target of dye attachment to protein can help define 

hotomodulation rather than dependance on random coupling via lysine groups 

vailable (which can vary from protein to protein). Key-site photomodulation can also 

elp precisely acknowledge the mechanism of action. 

ffinity biosensors offer real time kinetics observation; this can be an ideal path to 

bserve how photomodulation is achieved on modified antibodies. With regards to the 

the general feasibility of photomodulation of antibodies in a biosensor, an applied 

version of photochromic antibodies in a Surface Plasmon Resonance (SPR) 

c

irradiation in comparison with spiropyran d

looking into in the long term application of photomodulation of antibodies.  

 

6.3.2 Regeneration 
 

This current study 

o

biosensors technology, the renegeration of antibodies is of high significance. Hence it 

may be of importnace to 

modified proteins. This may be achievable with antibodies applied in an SPR system. 

 

6.3.3 Specific Protein Site Photomodulation & Incorporation of the SP-Ab in 
Immunoaffin

 

D

s

p

a

h
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technology as in an immunoaffinity biosensor would be a step closer to the 

establishment for a reagentless biosensor. 
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NMR (SP-Sigma) 1H NMR (400 MHz, ACETONITRILE-D3 ) 
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NMR (SP-COOH) 1H NMR (400 MHz, ACETONITRILE -D3 )
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NMR (SP-COOH-Me) 1H NMR (400 MHz, ACETONITRILE-D3 )  
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NMR (SP-COOH-Br) 1H NMR (400 MHz, ACETONITRILE-D3) 
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