
CRANFIELD UNIVERSITY

MARINA MENSHIKOVA

UNCERTAINTY ESTIMATION USING THE MOMENTS METHOD

FACILITATED BY AUTOMATIC DIFFERENTIATION IN MATLAB

DEFENCE COLLEGE OF MANAGEMENT AND TECHNOLOGY

PhD

CRANFIELD UNIVERSITY

DEFENCE COLLEGE OF MANAGEMENT AND TECHNOLOGY

DEPARTMENT OF ENGINEERING SYSTEMS AND MANAGEMENT

PhD THESIS

Academic Year 2009-2010

Marina Menshikova

Uncertainty Estimation Using the Moments Method Facilitated by

Automatic Differentiation in Matlab

Supervisor: Dr. S. Forth

January 2010

c© Cranfield University 2010. All rights reserved. No part of this publication may be

reproduced without permission of the copyright owner.

Abstract

Computational models have long been used to predict the performance of some ba-

seline design given its design parameters. Given inconsistencies in manufacturing,

the manufactured product always deviates from the baseline design. There is cur-

rently much interest in both evaluating the effects of variability in design parameters

on a design’s performance (uncertainty estimation), and robust optimization of the

baseline design such that near optimal performance is obtained despite variability

in design parameters. Traditionally, uncertainty analysis is performed by expensive

Monte-Carlo methods. This work considers the alternative moments method for un-

certainty propagation and its implementation in Matlab.

In computational design it is assumed a computational model gives a sufficiently

accurate approximation to a design’s performance. As such it can be used for esti-

mating statistical moments (expectation, variance, etc.) of the design due to known

statistical variation of the model’s parameters, e.g., by the Monte Carlo approach. In

the moments method we further assume the model is sufficiently differentiable that

a Taylor series approximation to a model may be constructed, and the moments of

the Taylor series may be taken analytically to yield approximations to the model’s

moments.

In this thesis we generalise techniques considered within the engineering commu-

nity and design and document associated software to generate arbitrary order Taylor

series approximations to arbitrary order statistical moments of computational models

implemented in Matlab; Taylor series coefficients are calculated using automatic dif-

ferentiation. This approach is found to be more efficient than a standard Monte Carlo

method for the small-scale model test problems we consider. Previously Christianson

and Cox (2005) have indicated that the moments method will be non-convergent in

the presence of complex poles of the computational model and suggested a partitio-

ning method to overcome this problem. We implement a version of the partitioning

method and demonstrate that it does result in convergence of the moments method.

Additionally, we consider, what we term, the branch detection problem in order to

ascertain if our Taylor series approximation might only be valid piecewise.

i

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Uncertainties . 4

1.3 Errors . 5

1.4 Literature review . 6

1.4.1 Simulation methods . 7

1.4.2 Integration methods . 7

1.4.3 Stochastic differential equations and polynomial chaos 9

1.4.4 Moments method . 10

1.5 Thesis outline . 12

2 Statistical and mathematical background 14

2.1 Distributions and PDFs . 14

2.1.1 Expectation . 16

2.1.2 Variance . 17

2.1.3 Moments of the distribution . 17

2.1.4 Normal distribution . 20

2.1.5 Two or more random variables . 21

2.2 Taylor series . 23

2.3 Combinatorics . 25

ii

CONTENTS

2.3.1 Permutations . 26

2.3.2 Combinations . 27

3 Introduction to automatic differentiation 30

3.1 Automatic differentiation of quadrature 33

3.1.1 Rectangle Rule . 34

3.1.2 General Form . 36

3.1.3 Results . 37

3.2 Psychometric models using automatic differentiation 40

3.3 Conclusions . 42

4 Taylor series for moments estimation 43

4.1 First approach . 44

4.1.1 Single variable case . 44

4.1.2 Multiple variable case . 49

4.2 Second approach . 52

4.2.1 Uncorrelated inputs . 53

4.2.2 Correlated inputs . 56

4.3 Convergence of the method . 56

4.3.1 Partitioning approach . 57

4.3.2 Gaussian function . 80

4.3.3 Error estimation . 87

4.4 Convergence test . 89

4.5 Uncertainty propagation test cases . 90

4.6 Conclusions . 99

5 Algorithm and software for moments estimation 102

5.1 Uncorrelated case . 103

5.1.1 Programming the algorithm . 111

5.2 Correlated case . 113

iii

CONTENTS

5.3 Comparison of the algorithms . 114

5.4 Test . 116

5.5 Conclusions . 120

6 Branch detection 122

6.1 Motivation . 123

6.2 Dealing with branches . 125

6.2.1 Global variable MADBRANCHES . 126

6.2.2 Overloading of comparison functions 130

6.2.3 Accessing branch data . 132

6.3 Tests . 133

6.4 Branch detecting in MADMoments . 137

6.5 Conclusions . 139

7 Conclusion and future work 140

7.1 Summary of results . 140

7.2 Future work . 143

Appendices 148

A Calculations for expectation and variance 149

A.1 First approach . 150

A.2 Second approach . 161

iv

List of Tables

2.1 Probability density functions, where µX and σX are mean and standard

deviation, respectively. 15

2.2 Skewness for some distributions. 18

2.3 Kurtosis for some distributions. 19

3.1 Error in the derivative
∂ I

∂ a
of the integral I =

∫ b

a

�

1+ e−x cos4x
�

d x

for a = 0 and b = 1 when differentiating the rectangle rule. 38

3.2 Numerical results for differentiating midpoint rule. 39

3.3 Numerical results for differentiating Simpson’s rule. 39

3.4 Two samples of British military personnel, classified by inoculation (yes

or no) and disease status (yes or no). 41

3.5 Defining the parameters pa,pb,pc and pd for Cudeck’s test case. 42

4.1 Comparison of the expectation for the function g =
1

1+ x2 with x ∈

N(0, 1), computed by using the quadrature rule, with the expectation

approximation based on pth order Taylor expansion. 57

4.2 Comparison of the results for the function g =
1

1+ a2 x2 for a = 1 on

the interval [−10, 10], x ∈ N(0,1), p is the order of Taylor series, m is

the odd number of subintervals. 62

v

LIST OF TABLES

4.3 Comparison of the results for the function g =
1

1+ a2 x2 for a = 1 on

the interval [−10, 10], x ∈ N(0,1), p is the order of Taylor series, m is

the even number of subintervals. 63

4.4 Comparison of the results for the function g =
1

1+ a2 x2 for a = 0.5 on

the interval [−10, 10], x ∈ N(0,1), p is the order of Taylor series, m is

the odd number of subintervals. 66

4.5 Comparison of the results for the function g =
1

1+ a2 x2 for a = 0.5 on

the interval [−10, 10], x ∈ N(0,1), p is the order of Taylor series, m is

the even number of subintervals. 67

4.6 Comparison of the results for the function g =
1

1+ a2 x2 for a = 2 on

the interval [−10, 10], x ∈ N(0,1), p is the order of Taylor series, m is

the odd number of subintervals. 68

4.7 Comparison of the results for the function g =
1

1+ a2 x2 for a = 2 on

the interval [−10, 10], x ∈ N(0,1), p is the order of Taylor series, m is

the even number of subintervals. 69

4.8 Comparison of the results for the function g =
1

1+ bx + a2 x2 for a = 1,

b = 1, on the interval [−10, 10], x ∈ N(0, 1), p is the order of Taylor

series, m is the number of subintervals. 72

4.9 Comparison of the results for the function g =
1

1+ bx + a2 x2 for a =

0.5, b = 0.5, on the interval [−10,10], x ∈ N(0,1), p is the order of

Taylor series, m is the number of subintervals. 73

4.10 Comparison of the results for the function g =
1

1+ bx + a2 x2 for a = 1,

b = 1, on the interval [−10.5, 9.5], x ∈ N(0, 1), p is the order of Taylor

series, m is the even number of subintervals. 74

4.11 Comparison of the results for the function g =
1

1+ bx + a2 x2 for a = 1,

b = 1, on the interval [−10.5, 9.5], x ∈ N(0, 1), p is the order of Taylor

series, m is the odd number of subintervals. 75

vi

LIST OF TABLES

4.12 Comparison of the results for the function g =
1

1+ bx + a2 x2 for a =

0.5, b = 0.5, on the interval [−10.25,9.75], x ∈ N(0, 1), p is the order

of Taylor series, m is the even number of subintervals. 76

4.13 Comparison of the results for the function g =
1

1+ bx + a2 x2 for a =

0.5, b = 0.5, on the interval [−10.25,9.75], x ∈ N(0, 1), p is the order

of Taylor series, m is the odd number of subintervals. 77

4.14 Comparison of the results for the function g =
1

1+ d x + c2 x2+ b3 x3+ a4 x4

for a4 =
1

4
, b3 =

1

4
, c2 =

3

4
, d =−

1

2
, on the interval [−6,6], p is the

order of Taylor series, m is the number of subintervals. 80

4.15 Comparison of the results for the function g(x) = ae−
(x−b)2

2c2 on the inter-

val [−6,6], p is the order of Taylor series, m - the number of subintervals. 84

4.16 Comparison of the results for the function g(x) = ae−
(x−b)2

2c2 on the inter-

val [−6,6], p is the order of Taylor series, m - the number of subintervals. 85

4.17 Comparison of the results for the function g(x) = ae−
(x−b)2

2c2 on the inter-

val [−6,6], p is the order of Taylor series, m - the number of subintervals. 86

4.18 Comparison of the second and third order moments methods using first

approach for computing first two statistical moments for the function

g = cos x . 91

4.19 Comparison of the MC simulation and MM(p) performances for com-

puting the expectation of the function g = cos x , N = 100,000, where

ε is an error of the method to the quadrature. 94

4.20 Comparison of the MC simulation and MM(p) performances for com-

puting the variance of the function g = cos x , N = 100,000, where ε is

an error of the method to the quadrature. 94

4.21 Expectation estimation. 99

4.22 Variance estimation. 100

5.1 All terms of 4-th order for g(x) = g(x1, x2, x3). 106

vii

LIST OF TABLES

5.2 The memory requirements for storing the statistical moments of input

variables. (1Mb = 1048576 Bytes) . 115

5.3 The performance of the Monte Carlo method for the function g(x) =

x3 + 2x2 − 3x − 4, when µx = 0, σx = 1, and N is a number of MC

iterations. 118

5.4 CPU time comparison with increasing the number of input variables n

for the cubic polynomial vector function g. 120

6.1 The combination of the branch operation type and corresponding ope-

ration command as used in MADSetBranches. 128

viii

List of Figures

1.1 Propagation of uncertainties in mathematical modelling according to

Oberkampf et al. [2]. 2

4.1 Graphical representation of the function g(x) =
1

1+ a2 x2 59

4.2 Partitioning approach for the function g(x) =
1

1+ x2 . For the intervals

[x2, x3] and [x4, x5] the radius of convergence exceeds the interval half

width. For the interval [x3, x4] it does not. 60

4.3 Partitioning approach for the function g(x) =
1

1+ x2 . The circles of

convergence for intervals [x4, x5], [x5, x6], [x6, x7], [x7, x8] contain

the respective intervals entirely. Analogously, the same is valid for the

remaining intervals, i.e. [x1, x2], [x2, x3], [x3, x4], [x8, x9], [x9, x10],

and [x10, x11]. 61

4.4 Graphical representation of the function g(x) =
1

1+ bx + a2 x2 70

4.5 Partitioning approach for the function g(x) = 1
1+x+x2 . On the interval

[x3, x4] function diverges since the radius of convergence r3 = r does

not create the circle of convergence that would cover the corresponding

interval. 71

4.6 Partitioning approach. Illustration of the improved radius of conver-

gence for the function g. 78

4.7 Gaussian function "bell curves" with variation of the parameter a. . . . 81

ix

LIST OF FIGURES

4.8 Error estimation for the function g(x) =
1

1+ x2 89

4.9 The influence of the choice of the standard deviation on the accuracy

of the statistical moments approximation using moments method. . . . 92

4.10 The prediction of the expectation µg for the function g(x) = cos x with

increasing the standard deviation σx , when µx = 0. 92

4.11 The prediction of the variance µg for the function g(x) = cos x with

increasing the standard deviation σx , when µx = 0. 93

4.12 The prediction of the expectation µg for the function g(x) = cos x with

increasing the standard deviation σx , when µx = 0.01. 95

4.13 The prediction of the variance µg for the function g(x) = cos x with

increasing the standard deviation σx , when µx = 0.01. 95

4.14 Comparison of the Monte Carlo results with the moments method of

the order 12 for the function g(x) = cos x , when µx = 0 and σx = 0.5,

as the number of iterations for MC increases. 96

4.15 Comparison of the Monte Carlo results with the moments method of

the order 12 for the function g(x) = cos x , when µx = 0 and σx = 0.5,

as the number of iterations for MC increases. 96

4.16 Comparison of the Monte Carlo results with the moments method of

the order 12 for the function g(x) = sin x , when µx = 0 and σx = 0.5,

as the number of iterations for MC increases. 97

4.17 Comparison of the Monte Carlo results with the moments method of

the order 12 for the function g(x) = sin x , when µx = 0 and σx = 0.5,

as the number of iterations for MC increases. 97

6.1 The summary of branch detection results in html form. 135

6.2 The summary of branch detection results in html form. 137

6.3 The summary of branch detection results in html form. 138

x

Chapter 1
Introduction

1.1 Motivation

The traditional engineering approach to problem solving is to logically design and

implement systems, coupled with continual assessment of performance and failure

modes. This leads to future improvements of the original design. With the develop-

ment of computers and technical software, engineers became able to simulate com-

plex models of engineering systems. This allowed them to determine weak points of

the system via simulation, then eliminate or ameliorate them, so reducing the costs

of implementation, or ownership, or costs associated with failure.

While facing design problems, engineers normally systematise the process into

several steps. One of these classifications is described by Ayyub, [1].

• First, one should identify the problem.

• By identifying the problem, one must define the objectives. All the known and

unknown variables must be stated.

• The next step is to develop possible solutions of the problem and evaluate them,

choosing the most appropriate one. While doing that, one should consider the

associated uncertainties and be able to assess the array of possible outcomes.

1

1.1. Motivation

Simulator
(analytical model
or computer code)

Inputs
(uncertainty re-
presentation)

Outputs

Further Analysis
sensitivity analysis;

model updates;
additional experiments

Analysis
satisfies

requirements?

Analysis complete

no

yes

Mathematical model of a physical system

Figure 1.1: Propagation of uncertainties in mathematical modelling according to Oberkampf et al. [2].

• Finally, the best alternative gets implemented.

Probability and statistics play a very important role in ensuring that every task is

handled properly.

In the paper by Oberkampf et al. [2] the engineering design problem process is

described via the diagram, see Figure 1.1.

Engineering decision problems are subdivided into single- or multiple-objective

problems. Multidisciplinary design optimisation is a methodology for the design of

systems in which strong interactions between disciplines motivates designers to si-

multaneously manipulate variables in several disciplines. It involves the coordination

of analysis techniques from several disciplines to realise more effective solutions du-

ring the design and optimisation of complex systems.

The inputs of such analysis for a given problem (single-/multiple-objective) are

often assumed to be precisely known. And the studies of such cases are called deter-

2

1.1. Motivation

ministic analysis. However, a major difficulty arises when solving problems where

the inputs are uncertain.

If we look, for example, at the simulation of an aeroplane wing during flight,

engineers must know how much deformation is likely to occur. This can be calculated

using a finite element analysis. However, to use such an analysis, there are a number

of inputs required, such as the elastic modulus and surface roughness of the wing

materials. While these are known for specific materials, they are likely to vary slightly

as a result of manufacturing processes. To account for that, all calculations should

include some measure of the uncertainty. Ultimately, this will allow for confidence to

be placed in the figures provided by the software, and to determine if the values fall

below the accepted factor of safety.

This example of the aeroplane wing over-simplifies the scenario. There are of

course many other important factors that need to be considered and determined to

ensure that the wing is optimally designed. In order to ensure that wing satisfies

its purpose in an optimal way the following parameters must be incorporated. The

primary objective of the wing is to achieve lift. The amount of lift determines the

load that the plane can carry. However, lift is fundamentally interlinked with factors

like wing shape, cruising speed and air density. The idea of wing design is to test

the smallest number of different wing shapes and to obtain a balance between lift

and weight while minimising the drag of the aeroplane and maintaining structural

integrity of the wing. (Drag is the force that resists the aeroplane’s forward motion.)

With small drag, the size of the engines can also be reduced enabling weight reduction

so diminishing the required lift and thrust. Smaller engines consume less fuel, thus

the fuel tank size can also be reduced, so reducing the required wing volume and

thus changing its weight. One can vary all these parameters to obtain an optimal

aeroplane design.

3

1.2. Uncertainties

1.2 Uncertainties

In the process of developing the model for some given problem, decisions about which

aspects of it to include and which to exclude must be made. There are many other

factors due to which some other aspects of the system might also be unknown, for

example, due to conflicting information, human errors, etc. Therefore, the uncer-

tainty level of the model is growing.

Uncertainties in engineering models are normally assigned to ambiguity in des-

cribing and defining the parameters of the system and their relations. The sources

of such components are normally classified as cognitive and noncognitive, [1]. The

cognitive types of uncertainty, which are also known as subjective, or epistemic un-

certainties, represent a mind-based reflection of the reality, which is subjective and

imprecise. Cognitive sources can be, for example, environmental consequences of

projects, the current state of existing structures, non comprehensive understanding of

the complex processes, skills and experience of construction workers and engineers,

and other human factors, as well as the defining relations between the parameters,

especially in the case of complex systems. In other words, these are the uncertain-

ties based on lack of knowledge. Probability and statistics do not properly model the

uncertainties arising from such sources. By increasing knowledge in a subject one

can reduce or even eliminate completely from the problem this type of uncertainty.

Noncognitive sources of uncertainty are generally those which can be dealt with

by using the theories of probability and statistics. These can be: uncertainties due

to limited information for estimating their characteristics - statistical uncertainties;

uncertainties due to idealization and/or simplification of assumptions in modelling

- model uncertainties; and physical unpredictable and/or random behaviour. These

uncertainties are also called statistical, or aleatory. The noncognitive uncertainties

are the ones considered in this work.

4

1.3. Errors

1.3 Errors

The process of engineering modelling inevitably leads to the creation of a number of

errors as one moves from one step to the next.

1. Firstly, no mathematical model can perfectly describe the real world. Thus

the transition from the real world into mathematical model causes some errors

known as the modelling errors.

2. The next step of modelling is to convert, typically, the continuous mathematical

model into something that can be interpreted by a computer, in other words

adapting the mathematical model for numerical evaluation. This usually in-

volves discretisation. An example of this can be seen when structures are si-

mulated in finite element packages as meshing takes place. The solution is

normally obtained a number of times with smaller and smaller mesh sizes such

that the discretisation error is reduced and convergence is observed.

3. Another possible source of error is in the computer realisation. This error is cal-

led the round-off error. It results from the numeric limitations of the computer,

i.e. rounding errors, machine precision, etc.

4. The final source of error is human implementation error. This ranges from the

incorrect choice of algorithm, poor execution of the mathematical model or

simply the use of bad practices in the coding of the computer program.

In this thesis we only consider uncertainties due to statistical variation of model

parameters, and work under the assumptions that

• there are no cognitive inputs,

• the modelling errors are negligible,

• there are no discretisation errors,

5

1.4. Literature review

• the computer code is implemented perfectly.

For modelling uncertain systems, uncertain parameters may be considered as ran-

dom variables that acquire some appointed distribution of values instead of a single

value. These can be distributions such as those provided by statistical books (e.g. nor-

mal distribution, etc.), or even unknown distributions that can only be approximated.

Furthermore, there are a lot of probabilistic methods, such as stochastic finite-element

methods, reliability methods, probabilistic engineering mechanics, and others, which

have been developed and are used for these cases.

It must also be appreciated that a crucial role in engineering analyses is played

by the computer code realisation of the engineering model. Usually, this part is com-

putationally expensive. Despite a rapid growth of computing speed and power, the

complexity of codes seems to increase as well. While the idea of this work deals with

supplying a design variable’s vector - input - X and receiving the response vector -

output - Y , the present solution is acceptable for small problem size and becomes

inappropriate as size increases.

1.4 Literature review

For many applications it is sufficient to represent a model outputs’ uncertainties in

terms of their expectation and variance. Such an approach is sufficient if we require

estimates of expected cost and performance. It is not appropriate however when

considering rare events such as probability of failure.

In mathematical terms, let us represent a model as a function y = g(x), where

g : Rn −→ Rm. In deterministic problems, y is evaluated for given x ∈ Rn. In stochas-

tic problems, x is taken from a random distribution Fx , and one must calculate the

expectation µ, variance σ2
x and perhaps higher order moments of Fy , the probability

density function of y . There are several possible ways to perform this tasks.

6

1.4. Literature review

1.4.1 Simulation methods

The most straight forward approach for computing moments is to use a Monte Carlo

(MC) simulation, e.g. [3, 4], etc. It is based on the use of random numbers and

statistics for investigating a problem and the basic algorithm proceeds as follows.

• A random number generator provides a set of values x = {x1, . . . , xN} from the

given distribution Fx.

• The model yi = g(x i) is evaluated for all x i ∈ x, i = {1, . . . , N}.

• The computation of the mean and the variance of Fy based on all yi, i = 1, . . . , N

is performed. The mean and variance of the distribution Fy is then approxima-

ted as the mean and variance of the sample yi, i = 1, . . . , N .

One of the problems one can face while using Monte Carlo simulation techniques

is that the randomly generated points may not be well spread on the relatively large

design, or probability, space. To maximize the accuracy of the resulting measures the

number of simulation evaluations N should be increased. The convergence rate of

Monte Carlo method is only O(N−1/2). By raising the number of evaluations one will

improve the accuracy but, obviously, increase the computation time.

The Monte Carlo method is one of the most commonly used ones, if not as a main

technique, then as a technique for comparison.

1.4.2 Integration methods

Analytically, statistical moments are defined by an integral. For example, the expec-

tation µg of the function g(x) can be written as

µg =

∫ +∞

−∞
g(t) fx(t)d t, (1.1)

where fx is a probability density function (pdf). More details on this matter are given

in Chapter 2. However, on inspection of (1.1) one’s first instinct might be to apply a

7

1.4. Literature review

numerical quadrature rule to approximate the integral.

For example, in the paper by Brookes and Wise, [5], the authors use the trape-

zoidal rule - one of the simplest numerical integration methods with error O(N−3),

where N is the number of subintervals. Thus, to improve the accuracy of the approxi-

mation it is necessary to increase the number of subintervals. The convergence order

can be improved by choosing a different quadrature scheme. For integrating (1.1)

Guassian quadrature [6, 7], or its variant Gauss-Hermite quadrature [8], are known

to perform best.

Gaussian quadrature is defined by

I =

∫

D
g(t)W (t)d t ≈

N
∑

i=1

wi g(x i), (1.2)

where D ⊂ R, and W is a so-called weight function such that
∫

D
W (t)d t = 1. When a

vector of random variables x = (x1, . . . , xn), with every variable x i defined over Di ⊂

R, i = 1, . . . , n, and distributed with pdf fx i
(x i), and further assuming the statistical

independence of elements of x, the first statistical moment, the expectation, becomes

µg = M1 =

∫

D1×...Dn

g(t1, . . . , tn) fx1
(t1) . . . fxn

(tn)d t1 . . . d tn

≈
N1
∑

i1=1

· · ·
Nn
∑

in=1

wi1 . . . win g(x i1 , . . . , x in). (1.3)

In the same way higher order moments can be estimated:

Mk =

∫

D1×...Dn

�

g(t1, . . . , tn)
�k fx1

(t1) . . . fxn
(tn)d t1 . . . d tn

≈
N1
∑

i1=1

· · ·
Nn
∑

in=1

wi1 . . . win

�

g(x i1 , . . . , x in)
�k, (1.4)

where k is the order of the considered statistical moment M . The requirement for

independent inputs can be relaxed, but then the component pdfs fx i
, i = 1, . . . n, must

be replaced by the joint pdf fx = fx(x1, . . . , xn). The application of the quadrature

8

1.4. Literature review

rule to multiple integrals to obtain (1.4) is possible due to Fubini’s theorem, [9],

that allows one to change the order of the integral from multiple to repeated single-

dimensional ones.

The use of quadrature for approximating statistical moments is not only highly

dependent on the convergence order of the particular rule, it also can turn out to

be very computationally expensive as the values of the function g(x) are computed

N1×· · ·×Nn times. This demand for computer resources can become a major problem

as the dimension of the model increase.

There are a number of improved quadrature methods. For example, in the papers

by Padulo et al., [7] and [10], the authors suggest using the Sigma-Point technique

that relies on reduced quadrature rule. The efficiency of this method is justified by

comparison with low order moments method based on first order Taylor series; the

Sigma-Point approach produces the same, or higher, order accurate results for the

expectation and the variance as the moments method. It also does not require de-

rivative computations, thus it can handle even discontinuous functions as well as

functions dependent on discrete variables.

1.4.3 Stochastic differential equations and polynomial chaos

Another possible way to deal with uncertainties is by using stochastic differential

equations, [3]. While building a mathematical model of the physical reality one di-

rectly incorporates the uncertainties into the associated equations. This approach can

be very efficient and inexpensive, but relies heavily on the engineers’ skills and know-

ledge. For a simple first order stochastic pde the Karhunen-Loeve expansion is often

used, [11, 12]. Many of the stochastic pde solvers are based on the polynomial chaos

expansion [13]. According to Wiener, who first introduced this concept, polynomial

chaos is a method that uses polynomials as a basis for representing stochastic pro-

cesses. Another way to tackle stochastic pde problems is to use the stochastic finite

element method [12]. There are many publications on the subject in the recent years.

9

1.4. Literature review

However, stochastic pde solvers appear underdeveloped, therefore the technique is

not yet practical for practicing engineers.

1.4.4 Moments method

A further alternative to these approaches is the moments method. It is relatively

easy to perform, provided derivatives can be computed, and may produce results

with less consumption of computational time than methods like Monte Carlo. It gives

an approximation to the moments of the distribution, expectation and variance in

particular. The idea of the moments method is to approximate the distribution of the

output function y in terms of its derivatives by using a Taylor series. Moments of the

Taylor approximation then yield approximation of the first, the second and possibly

higher order statistical moments. Any improvements in the accuracy of this method

require computation of higher order derivatives, which becomes possible due to new

developments in the field of automatic differentiation.

In this work we consider the moments method in more details. There are only

a few papers that consider this subject, although the results of those papers were

already summarised in the books by Keane and Nair [3] (p.337-338) and Papoulis

and Pillai [14] (p.150), and are widely used for engineering modelling.

The basic approach for the moments method is considered in the conference pa-

per of Ghate and Giles [4], where the authors derived the moments method based on

a single-variable Taylor series with no given assumptions for the input distribution.

Therefore, the resulting formulas are obtained in general univariate form. Based on

the first and second order Taylor expansions there are first and second order mo-

ments methods presented, respectively. They also mentioned that the second order

Taylor approximation does not guarantee second order of accuracy for the variance

approximation. The details of this statement are considered in more detail in Section

4.1.1. As test examples trigonometric functions, sin x and cos x , were chosen. Further

analysis of the results of their experiments is considered as we shall see in Chapter 4.

10

1.4. Literature review

Although Ghate’s work [4] has been reviewed first, that paper was fully grounded

on the more general and comprehensive work of Putko et. al. [15]. They first used

the moments method for uncertainty propagation in aerospace design.

The authors did not make any restrictions on the dimension of the problem, but

assumed random, statistically independent and normally distributed inputs. This al-

lowed them to simplify algebraic computations by neglecting the inputs’ covariance

matrix and skewness (which are zero for normal distribution) terms. With these as-

sumptions, the authors developed the first and second order moments methods by

using multivariate Taylor series of first and second order.

As a demonstration example they apply these methods to estimate the influence

of uncertainty in CFD input parameters. The analysis is implemented with the quasi

1D Euler equation and boundary conditions (stagnation enthalpy, inlet entropy, outlet

static pressure) describing subsonic flow through a variable area nozzle. They consi-

der two different behaviours of the moments method depending on what parameters

were defined to be the random input variables. By setting geometric shape parameters

to be statistically independent random input variables they predict the Mach number,

compare the results with CFD solutions and Monte Carlo simulation analysis, and find

good agreement between the first order moments method and Monte Carlo simula-

tion for the outputs mean and variance. Though if the free-stream Mach number and

back pressure are reassigned to be independent random input, the output function

is more nonlinear in their neighbourhood. In this case the second order moments

method produces better agreement with Monte Carlo simulation.

The main problem all described works were facing is computing higher order deri-

vatives, which are required for higher order moments methods, but which are difficult

to obtain without using AD tools.

The most general and advanced case was considered in the conference paper by

Bruce Christianson and Maurice Cox [16]. The authors subdivide the task and look at

the following cases: linear and nonlinear output functions, correlated/uncorrelated

11

1.5. Thesis outline

and single/multiple inputs. They also point out some directions for future research

related to convergence of the Taylor series and singularities of the output functions.

We consider their analysis and results in more details in Chapter 4.

1.5 Thesis outline

Due to development of automatic differentiation (AD) tools for different program-

ming languages, it has became possible to obtain the higher order derivatives requi-

red for computing Taylor coefficients. Thus, in this work we develop a higher order

moments method to those considered in the published sources [3, 4, 15, 10], gene-

ralise it upto an arbitrary order of the Taylor expansion, implement it not only for

first and second statistical moments but also extend it for skewness (third) and kur-

tosis (fourth) with the possibility of computing even further moments. The computer

implementation makes use of AD in Matlab [17].

In Chapter 2 of this thesis we provide the mathematical background required for

adequate understanding of the whole work. Subjects related to statistical distribu-

tions, Taylor series and the basics of the combinatorial theory are considered in de-

tails.

Chapter 3 introduces the fundamentals of automatic differentiation theory and its

implementation. We also demonstrate its use by applying it to numerical integration

schemes and overloading the quadrature routine in Matlab quad. The results are

tested and compared to those in published work.

Following from this, we familiarise the reader with the moments method by re-

peating the results obtained in both [4] and [15], confirmed by [7] and [10]. The

ways of deriving the moments method are subdivided into two approaches, and the

differences between are presented. Particular attention is paid to the convergence of

the method and implementing the partitioning approach advised by Christianson and

Cox [16] for the cases when the radius of convergence for Taylor series is finite. Va-

12

1.5. Thesis outline

rious examples are given to demonstrate the validity of the moments method as well

as the partitioning approach itself. All of this work can be found in Chapter 4.

The implementation of the moments method in Matlab is closely considered in

Chapter 5 with a detailed description of every step of the developed algorithm.

Chapter 6 deals with changes in control-flow. In other words, we consider what

happens if the model function contains branches, and thus the derivatives computa-

tion varies depending on the values of the input parameters and their changes. The

results of the analysis are implemented in the branch detection package for Matlab.

The final chapter, Chapter 7, summarises all the experimentation carried out

throughout this body of research. In addition, potential ideas for further work are

also proposed.

Because the details of all the computations performed are extensive, it was decided

to gather these together in the Appendices section.

13

Chapter 2
Statistical and mathematical background

In order to prepare the reader for the next chapters, here we present various defi-

nitions of probability and the statistical background. The references used as a main

source of information for this subject were the books of Ayyub and McCuen [1], Drew

and Wampold [18], Barr and Zehna [19], Hines and Montgomery [20], Ingram [21].

2.1 Distributions and PDFs

A random variable is a function which maps from a possibility space into a set of

numbers. Random variables can be classified into two types, discrete and continuous.

A continuous random variable is a random variable that takes on an infinite number of

values; furthermore, between any two specified values the random variable assumes

a value. A discrete random variable is a random variable that takes numerical values

from a finite or countably infinite range. Depending on the type of the random va-

riable we are dealing with, the function describing the behaviour of the distribution is

called the probability density function (pdf) or probability mass function (pmf). Since

we are not considering here discrete cases, from now on we refer only to continuous

random variables and their associated distributions, and pdfs.

Probability density functions specify how the values x of a random variable X are

distributed. Such functions are said to give the distribution of X . The pdf, f (X), for

14

2.1. Distributions and PDFs

a random variable is a function that assigns a probability density to each value of the

random variable. Specifically, the probability that the random variable X lies within

the interval [x1, x2] is given by

P
�

x1 ≤ X ≤ x2

�

=

x2
∫

x1

f (t)d t. (2.1)

Any pdf satisfies the following two conditions:

f (X)≥ 0 for all values of X , and (2.2)
∞
∫

−∞

f (t)d t = 1. (2.3)

In Table 2.1 we introduce pdfs for several distributions commonly used in science

and engineering.

Distribution Density function

Laplace Distribution
1

2b
exp
�

−
|X −µX |

b

�

, where b > 0 - scale parameter

Log Normal Distribution
exp
�

− (ln X−µX)2

2σ2
X

�

XσX

p
2π

Normal Distribution
1

σX

p
2π

exp

�

−
1

2

�

X −µX

σX

�2
�

Student’s t-Distribution
Γ
�

ν+1
2

�

p
νπΓ

�

ν

2

�

�

1+
X 2

ν

�− ν+1
2

, where ν = n− 1,

n - number of independent random variables,

and Γ(z) =
+∞
∫

0

tz−1e−t d t is the Gamma function

Table 2.1: Probability density functions, where µX and σX are mean and standard deviation, respecti-

vely.

15

2.1. Distributions and PDFs

2.1.1 Expectation

The mathematical expectation, E(X), or µX , is one of the measures of location of a

distribution - it defines its centre. Or, in terms of random variables, it defines measure

of average. The intuitive way to describe such an average mathematically is known

as the arithmetic expectation and written as

E(X) =
1

n

n
∑

i=1

x i,

where X = {x1, . . . , xn} is a discrete random variable. For a continuously distributed

random variable X with pdf f (X) the expected value µX = E(X) is defined by

E(X) =

+∞
∫

−∞

t f (t)d t. (2.4)

Similarly, the expected value of an arbitrary function of X , G(X), with respect to the

probability density function of X, f(X), is given by

E(G(X)) =

+∞
∫

−∞

G(t) f (t)d t. (2.5)

Some useful properties of the expectation are all readily obtained from (2.3)

and (2.5):

E(a) = a, (2.6)

where a is a constant. It means that if a random variable assumes only one value a

with probability 1, then the expectation is also only a.

E(aX) = aE(X). (2.7)

E(X + a) = E(X) + a. (2.8)

E(X + Y) = E(X) + E(Y). (2.9)

16

2.1. Distributions and PDFs

We will use these properties when deriving formulas for the moments method in

further sections.

2.1.2 Variance

The variance σ2
X is a measure of dispersion of a distribution and is defined as follows:

σ2
X = E

�

(X −µX)
2
�

. (2.10)

Using (2.5) we can see that

σ2
X =

+∞
∫

−∞

(t −µX)
2 f (t)d t =

+∞
∫

−∞

(t2− 2µX t +µ2
X) f (t)d t

=

+∞
∫

−∞

t2 f (t)d t − 2µX

+∞
∫

−∞

t f (t)d t +µ2
X

+∞
∫

−∞

f (t)d t

= E(X 2)− 2µX E(X) +µ2
X = E(X 2)− E(X)2. (2.11)

The positive square root of the variance is called the standard deviation of X and is

denoted by

σX =
p

E
�

(X −µX)2
�

. (2.12)

2.1.3 Moments of the distribution

For any positive integer p, X ’s p-th central moment is defined as

E
�

(X −µX)
p�=

+∞
∫

−∞

(t −µX)
p f (t)d t. (2.13)

We can see from the definition of mean that E
�

(X −µX)1
�

= 0 and that the variance

σ2
X = E

�

(X −µX)2
�

is given by the second central moment (p = 2).

17

2.1. Distributions and PDFs

Skewness

The third central moment E
�

(X −µX)3
�

measures the symmetry of the distribution

of X about its mean. In some references E
�

(X −µX)3
�

is termed the skewness. But

we will follow the notation of Ingram [21] and define the skewness S(x) as a third

normalized moment (later called simply the third moment):

S(X) =
E
�

(X −µX)3
�

σ3
X

. (2.14)

If the distribution is symmetric about µX then necessarily S(X) is zero. When S(X) is

negative the distribution is skewed to the left; positive S(X) indicates X ’s distribution

is skewed to the right. Skewness on the left or right implies a long tail on the left

or right, respectively. Table 2.2 lists the skewness for a number of commonly used

distributions.

Distribution Skewness S(X)

Laplace Distribution 0

Log Normal Distribution
p

eσ2 − 1
�

2+ eσ
2�

Normal Distribution 0

Student’s t-Distribution 0

Table 2.2: Skewness for some distributions.

Kurtosis

The kurtosis K(X) can be thought of as the degree of “peakedness” of the probability

distribution of a real-valued random variable X . In a similar way to the skewness

case, we define kurtosis as a normalized form of the fourth central moment

K(X) =
E
�

(X −µX)4
�

σ4
X

. (2.15)

18

2.1. Distributions and PDFs

To determine the “peakedness” of a distribution using K(x) the normal distribution is

used as a standard. For a normal distribution, K(x) = 3, therefore an excess kurtosis

γ is defined

γ=
E
�

(x −µx)4
�

σ4 − 3= K(x)− 3.

The reader should note that in some references the term “kurtosis” is used for the

excess kurtosis γ or even for the fourth central moment, E
�

(X −µX)4
�

.

Distributions with γ = 0 are called mesokurtic. The normal distribution is meso-

kurtic, regardless of the value of its parameters. A few other well-known distributions

can be mesokurtic, depending on parameter values. For example, the binomial distri-

bution is mesokurtic for p = 1
2
±
Æ

1
12

. If γ < 0, then the distribution is “less-peaked”

than the normal distribution, and is called platykurtic. An example of a platykur-

tic distribution is the Bernoulli distribution with p = 1
2
. A distribution that is “more

peaked” than the normal distribution, γ > 0, is termed leptokurtic. Examples of

leptokurtic distributions include the Laplace distribution and the logistic distribution.

The kurtosis for some commonly used distributions is listed in Table 2.3.

Distribution Kurtosis K(X)

Laplace Distribution 6

Log Normal Distribution e4σ2
+ 2e3σ2

+ 3e2σ2
− 3

Normal Distribution 3

Student’s t-Distribution
3(n− 2)

n− 4

Table 2.3: Kurtosis for some distributions.

Note that using the binomial expansion,

E
�

(X −µX)
p�= E





p
∑

i=0

�p

i

�

X p(−µX)
p−i



=
p
∑

i=0

�p

i

�

E(X p)(−µX)
p−i, (2.16)

19

2.1. Distributions and PDFs

where
�p

i

�

=
p!

i!(p− i)!
. Therefore, similar to the variance computation (2.11), we

may rewrite (2.14) and (2.15) in the alternative forms

S(X) =
E(X 3)− 3µX E(X 2) + 2µ3

X

σ3 , (2.17)

K(X) =
E(X 4)− 4µX E(X 3) + 6µ2

X E(X 2)− 3µ4
X

σ4 . (2.18)

In many natural processes, random variation conforms to a particular probability

distribution known as the normal distribution, which is the most commonly observed

probability distribution and is described more fully in the next section.

2.1.4 Normal distribution

The general formula for the probability density function of the normal distribution is

f (X) =
exp
�

−(X−µ)2

2σ2

�

σ
p

2π
, (2.19)

where µ is the location parameter and σ is the scale parameter. The case where µ= 0

and σ = 1 is called the standard normal distribution. The pdf for the standard normal

distribution is

f (X) =
exp
�

− X 2

2

�

p
2π

. (2.20)

The shape of the normal distribution resembles a bell (see Fig.1), so it is often

referred to as the “bell curve”. The normal distribution is symmetric; unimodal (of

one peak); and satisfies the condition

+∞
∫

−∞

f (t)d t = 1 (2.21)

and it extends from −∞ to +∞.

20

2.1. Distributions and PDFs

Any normal distribution can be completely described by its mean and variance.

With both parameters known one can get information about every point in the data

set.

2.1.5 Two or more random variables

It is common to deal with two or more random variables at the same time when

solving engineering problems. Let X and Y both be continuous random variables.

Now the distribution of X and Y determine their separate statistics. In [14] it is

called marginal statistics. However, to compute their bivariate, or joint, statistics

we need to consider the relations between these two random variables.

In other words, to deal with X and Y separately we use the pdfs fX (X) and fY (Y),

but to take them both into account in the same problem, we require the joint pdf

f (X , Y). If the random variables X and Y are independent, then

f (X , Y) = fX (X) fY (Y). (2.22)

Thus the probability that the random variables X and Y are within the intervals

[x1, x2] and [y1, y2] respectively is

P
�

x1 ≤ X ≤ x2; y1 ≤ Y ≤ y2

�

=

∫ x2

x1

∫ y2

y1

f (tX , tY)d tX d tY . (2.23)

When integrating the joint pdf f (X , Y) over R2, the probability always equals 1, i.e.

P (−∞≤ X ≤+∞;−∞≤ Y ≤+∞) =
∫ +∞

−∞

∫ +∞

−∞
f (tX , tY)d tX d tY = 1. (2.24)

If Z = g(X , Y) is another random variable, the expected value of it is given by

µZ = E(Z) = E
�

g(X , Y)
�

=

∫ +∞

−∞

∫ +∞

−∞
g(tX , tY) f (tX , tY)d tX d tY . (2.25)

21

2.1. Distributions and PDFs

The second moment of two random variables is called the covariance and is defined

as

CX Y = E
�

(X −µX)(Y −µY)
�

. (2.26)

Analogously to (2.11), it can be rewritten as

CX Y = E(X Y)− E(X)E(Y). (2.27)

When X = Y the covariance becomes CX X = E(X 2)− E(X)2 = σ2
X .

The covariance matrix contains variances on the diagonal and covariances below

and above the diagonal. Since CX Y = CY X , the covariance matrix is symmetric:

C =









CX X CX Y

CY X CY Y









=









σ2
X CX Y

CX Y σ2
Y









. (2.28)

The correlation coefficient ρX Y is defined as the ratio

ρX Y =
CX Y

σXσY
. (2.29)

It lies in the range between −1 and 1 and is also known as a normalised covariance

with respect to the standard deviations σX , σY .

Two random variables X and Y are called independent if their covariance CX Y is

equal to 0:

C =









σ2
X 0

0 σ2
Y









. (2.30)

Therefore the correlation coefficient ρX Y is also 0. Independent random variables are

also often called uncorrelated, implying ρX Y = 0. However, in practice the absence

of correlation does not necessarily indicate the absence of covariance. Thus in this

work we are careful in distinguishing the definitions of uncorrelated and independent

22

2.2. Taylor series

variables.

For independent variables E(X Y) = E(X)E(Y) = µXµY and the covariance matrix

includes only diagonal elements.

Extending these definitions for multiple random variables X = (X1, . . . , Xn), the

expectation is defined as

E(Z) = E
�

g(X)
�

=

∫ +∞

−∞
. . .

∫ +∞

−∞
g(t1, . . . , tn) f (t1, . . . , tn)d t1 . . . d tn. (2.31)

Then the covariance matrix is

C =





















σ2
X1

CX1X2
. . . CX1Xn

CX2X1
σ2

X2
. . . CX2Xn

...
...

. . .
...

CXnX1
CXnX2

. . . σ2
Xn





















. (2.32)

Higher order moments are defined in a similar manner. For example, the third order

moment is an (n× n× n) array M3 with the entries given as

M3
X i X j Xk

= E
�

(X i −µX i
)(X j −µX j

)(Xk −µXk
)
�

, (2.33)

where i = 1, . . . , n, j = 1, . . . , n, k = 1, . . . , n. When i = j = k, the corresponding third

order moment becomes skewness as defined in (2.14):

M3
X i
= E
�

(X i −µX i
)3
�

.

2.2 Taylor series

In this section we introduce the main definitions regarding power series including

Taylor series. This information is essential for understanding the idea of the moments

method, which is based on using the Taylor approximation, and consequently the

23

2.2. Taylor series

convergence issues that arise together with the definition of the series. The main

source for this material are the books by Adams [22] and Spiegel [23].

A series of the form

∞
∑

i=0

ai(x − c)i = a0+ a1(x − c) + a2(x − c)2+ . . . (2.34)

is called a power series about the point c; a0, a1, a2, . . . are the coefficients of the

power series.

Depending on the value of x , the power series (2.34) may or may not converge.

For values of x , for which the series converges, the sum (2.34) defines a function

of x . The point c is called the centre of convergence of power series, meaning the

series (2.34) definitely converges at that point.

For any power series (2.34), the series converges either

• only at point c, or

• everywhere on the space of real numbers, or

• everywhere if |x − c| < r, where r is a positive real number, and diverges if

|x − c| > r. In this case the power series may or may not converge at the

endpoints c− r and c+ r. The number r is called the radius of convergence.

Therefore, the interval of convergence of (2.34) has one of the following forms:

• the isolated point c, r = 0,

• the entire space of real numbers R, r =∞,

• the finite interval: [c− r, c+ r], [c− r, c+ r), (c− r, c+ r], or (c− r, c+ r).

When the power series has the radius of convergence r > 0, then the sum of

the series defines a function g on the interval of convergence (c − r, c + r), and the

coefficients of (2.34) ai =
g(i)(c)

i!
for i = 0, 1,2,

24

2.3. Combinatorics

If g(x) is continuously differentiable at point x = c, then the series

g(x) =
∞
∑

i=0

1

i!
g(i)(c)(x − c)i = g(c) + g ′(c)(x − c) +

1

2!
g ′′(c)(x − c)2+ . . . (2.35)

is known as the Taylor series of function g about x = c.

For the Taylor series (2.35) the radius of convergence is the distance from the

point c to the nearest singularity of the function g. A point at which the function g is

undefined is a called singular point, or singularity.

If the function has the form

g(x) = ap1
(x− c)p1+ · · ·+a1(x− c)+a0+a−1(x− c)−1+ · · ·+a−p2

(x− c)−p2 , (2.36)

then x = c is called a pole of order p2.

When the (p+ 1)st derivative of the function g exists, and the Taylor polynomial

of degree p is constructed about x = c, then the remainder for Taylor expansion can

be written as

Rp+1 =

∫ x

c

1

p!
(x − t)p g p+1(t)d t. (2.37)

A Taylor series allows close approximations to an arbitrary differentiable function

on an interval by using partial sums of the series - polynomials. However, power series

are not well suited for periodic functions, since polynomials are not periodic, [22].

The function g is called periodic with period T if g(t + T) = g(t) for all t ∈ R. This

may influence the results for moments method based on Taylor approximation used

with periodic functions. Thus, periodic functions are worth particular attention when

testing methods considered in this work.

2.3 Combinatorics

To deal with the sets of indices used in Chapter 5 the basics of combinatorics are

essential. In this section the main definitions of combinations and permutations are

25

2.3. Combinatorics

given. We also stress the attention on the difference between them, which allows us

to determine the coefficients in Chapter 5 correctly.

2.3.1 Permutations

Definition 2.3.1. A permutation is an ordered arrangement of things.

There are two types of permutations:

• permutations with repetitions;

• permutations with no repetitions.

Example 2.3.1. What are the ways of choosing all ordered sets of 2 elements from the

set of 3 elements A= {1,2, 3}? If the repetitions are allowed, meaning every element

of A can be chosen more than once, the permutations with repetitions are

(1, 1) (1,2) (1, 3)

(2, 1) (2,2) (2, 3)

(3, 1) (3,2) (3, 3)

(2.38)

On the other hand, when the repetitions are not used, the permutations without re-

petitions are written below.

(1,2) (1, 3)

(2, 1) (2,3)

(3, 1) (3,2)

(2.39)

Let the set A = {a1, . . . , an} contain n elements. An r-permutation with repetition

of a set A is the number of ways to choose r elements from A with repetition allowed,

[24]. Analogously, an r-permutation without repetition of a set A is the number of

ways to choose r elements from A when repetitions are not allowed.

26

2.3. Combinatorics

To calculate the permutations with repetitions, the number of choices for every i th

position, i = 1, . . . , r, is n, thus

n× n× · · · × n
︸ ︷︷ ︸

r-times

= nr . (2.40)

For permutations without repetitions however the number of choices for the i th posi-

tion decreases by i− 1,

n× (n− 1)× (n− 2)× · · · × (n− r + 1) =
n!

(n− r)!
. (2.41)

In the Example 2.3.1, when n= 3, r = 2, the number of permutations with repetitions

is 32 = 9, and the number of permutations with no repetitions is
3!

(3− 2)!
= 6.

2.3.2 Combinations

Definition 2.3.2. A combination is an unordered permutation. In other words, r-

combination of a set A is a subset of size r, [24]. Similarly to permutations, there

are combinations with and without repetitions.

Example 2.3.2. We can alter all permutations with repetitions in example 2.3.1 so that

the order does not matter,

(1, 1) (1,2) (1, 3)

(2,2) (2, 3)

(3, 3)

(2.42)

and obtain all combinations with repetitions. But when repetitions are not allowed,

the combinations without repetitions are

(1,2) (1, 3)

(2, 3)
(2.43)

In this case the permutations have three times as many possibilities.

27

2.3. Combinatorics

To compute the number of all combinations without repetitions all permutations

without repetition are required to be reduced by the number of ways the objects could

be ordered:








n

r









=
n!

(n− r)!
×

1

r!
=

n!

(n− r)! r!
. (2.44)

In the example above we found three ways to choose two elements without repetitions

from the set A= {1, 2,3}. Using (2.44),
�n

r

�

=
�

3

2

�

=
3!

2! 1!
= 3.

To explain the formula for computing the number of combinations with repetitions

the example with ice cream scoops is often used, [24].

Example 2.3.3. How many different triple-scoop ice cream cones are possible giving

that there are n flavours available? Several scoops of the same flavour are permitted,

and the cones with reordered scoops are considered to be the same.

| a1 | a2 | a3 | . . . | an |
︸ ︷︷ ︸

n ice cream containers

We put one star in the i th container every time that the i th flavour appears in the cone.

For example,

| ?
︸︷︷︸

a1

| ? ?
︸︷︷︸

a2, a2

| | . . . | |

corresponds to a cone with one scoop of a1 and two scoops of a2. This way to order

the desired flavours we skip containers with the ice cream we don’t want and scoop

from those we like, aiming for three scoops in total. Moving from 1st container to

nth requires (n− 1) steps, scooping corresponds to 3 steps. Thus the number of all

possible ice cream cones with three scoops is the number of all possible variations

of skips-and-scoops, when there is n − 1 skips and 3 scoops. That is to say that

the number of such variations is equal to the number of ways to choose r distinct

positions for the scoops in a string of n+ r−1 skips and scoops, which is the number

of r-combinations without repetitions of a set with n+ r − 1 elements.

28

2.3. Combinatorics

Therefore, the number of all r-combinations with repetitions is









n+ r − 1

r









=
(n+ r − 1)!

�

(n+ r − 1)− r
�

! r!
=
(r + n− 1)!
(n− 1)! r!

. (2.45)

Now when we considered all the necessary statistical and mathematical back-

ground required throughout the work, we can get to introducing the automatic diffe-

rentiation techniques.

29

Chapter 3
Introduction to automatic differentiation

Automatic differentiation (AD) is the scientific field concerned with calculating de-

rivatives of a function defined by a computer program efficiently and accurately with

minimal programmer intervention. The solution of many mathematical problems re-

quires knowledge of the gradient, Jacobian or Hessian matrices of given functions.

AD techniques provide the automatic computation of derivatives of any such general

function, based on use of the chain-rule for evaluating derivatives with respect to the

input function’s arguments. AD differentiates computer coded functions of any com-

plexity, assuming that the composition of the elementary functions forming the main

function is finite.

There are many sources available describing automatic differentiation tools in full

details. For the introduction in this thesis the book of Griewank [25], and articles by

Verma, [26], and Forth, [17], in particular, were used.

There are two basic modes of computing derivatives with AD: forward and reverse.

They are both considered on the following example.

Consider the function, which computes g(x) = x2 + ax + b, where a and b are

some constants. An AD tool internally breaks this function into a form known as an

evaluation trace (or code list) [25] such as

function y = g(x)

v1 = x ∗ x;

30

Chapter 3. Introduction to automatic differentiation

v2 = a ∗ x;

v3 = v1+ v2;

y = v3+ b;

end

where v1, v2 and v3 are called intermediate variables.

The forward mode of AD propagates derivatives throughout the computation using

the chain rule in step with each intermediate variable computation.

function (y,∇y) =∇g(x ,∇x)

v1 = x ∗ x;

∇v1 = 2 ∗ x ∗∇x;

v2 = a ∗ x;

∇v2 = a ∗∇x;

v3 = v1+ v2;

∇v3 =∇v1+∇v2;

y = v3+ b;

∇y =∇v3;

end

where ∇x , ∇vi, and ∇y are directional derivatives.

We now can systematise the derivative calculation into the matrix form



























−1 0 0 0 0

2x −1 0 0 0

a 0 −1 0 0

0 1 1 −1 0

0 0 0 1 −1



























∗



























∇x

∇v1

∇v2

∇v3

∇y



























=



























−1

0

0

0

0



























,

or, in other words, J∇X = R, where the matrix J is called the extended Jacobian.

Setting x = 2, a = 3, b = 4, and ∇x = d x
d x
= 1, we get results

v1 = x ∗ x = 2 ∗ 2= 4;

31

Chapter 3. Introduction to automatic differentiation

∇v1 = 2 ∗ x ∗∇x = 2 ∗ 2 ∗ 1= 4;

v2 = a ∗ x = 3 ∗ 2= 6;

∇v2 = a ∗∇x = 3 ∗ 1= 3;

v3 = v1+ v2 = 10;

∇v3 =∇v1+∇v2 = 7;

y = v3+ b = 10+ 4= 14;

∇y =∇v3 = 7.

The reverse mode of AD calculates the derivatives backwards through the com-

putation. Therefore it is more complicated and requires a double run through the

computer code, once forward, once in reverse. The entire information from the first

run, when the function values are computed, needs to be stored for the derivative

computation on the second run. Hence, it causes the memory cost to increase. In

terms of matrices, reverse computation of derivatives for the same example is deter-

mined by solving the linear system J T A = P, where PT = [0 0 0 0 − 1], and A is a

vector of adjoint variables ȳ , v̄i, x̄ that are defined as

ȳ =
∂ g

∂ y
,

v̄i ≡
∂ g

∂ vi
,

x̄ =
∂ g

∂ x
.

Hence, the function calculating derivatives by using the reverse mode of AD is

function (x̄) = ḡ(x , ȳ)

v1 = x ∗ x;

v2 = a ∗ x;

v3 = v1+ v2;

y = v3+ b;

% Reverse mode for derivatives computation

v̄3 = ȳ

32

3.1. Automatic differentiation of quadrature

v̄2 = v̄3

v̄1 = v̄3

x̄ = 2x v̄1+ av̄2

end

where ȳ = 1.

The main reasons for using AD tools are to calculate derivatives faster and more

accurately than, for example, the finite differences approximation. The improvements

in AD accuracy are normally compared to finite differences methods, which incur

truncation errors, while AD computes the derivatives up to the machine precision.

3.1 Automatic differentiation of quadrature

As an example of automatic differentiation we investigate AD for quadrature algo-

rithms. We consider the automatic differentiation of prototypical methods in order

to give conditions for their convergence and expected errors and to make the imple-

mentation of quadrature in AD packages efficient. The background information on

numerical integration can be found, for example, in [27] or [28].

The integral

I =

b
∫

a

g(x)d x (3.1)

has the well-known derivatives

∂ I

∂ a
= −g(a), (3.2)

∂ I

∂ b
= g(b). (3.3)

Such derivatives may be used directly in an AD package for a language such as Matlab

which has its own quadrature routines: quad and quad4. We will show that the

direct, automatic differentiation of an arbitrary quadrature scheme leads to the same

33

3.1. Automatic differentiation of quadrature

results (3.2), (3.3) up to the order of accuracy of the quadrature.

The simplest quadrature is the rectangle rule.

3.1.1 Rectangle Rule

The composite left rectangle rule for approximating (3.1) is written

IR = h
n−1
∑

i=0

g(x i), (3.4)

where h= b−a
n

, and x i = a+ ih= b− n−i
n
(b− a). Differentiating (3.4) with respect to

a gives

∂ IR

∂ a
= −

1

n

n−1
∑

i=0

g(x i) + h
n−1
∑

i=0

g ′(x i)
n− i

n

= −
1

n

n−1
∑

i=0

�

g(x i)− hg ′(x i)(n− i)
�

= −
1

n

n−1
∑

i=0

�

g(x i)− g ′(x i)(b− x i)
�

= −
1

b− a
h

n−1
∑

i=0

g(x i) + h
n−1
∑

i=0

g ′(x i)
b− x i

b− a
. (3.5)

Let us define Θa(x) =
b−x
b−a

, this simplifies (3.5) to,

∂ IR

∂ a
=−

1

b− a
h

n−1
∑

i=0

g(x i) + h
n−1
∑

i=0

g ′(x i)Θa(x i). (3.6)

Now consider the rectangle rule applied to the two integrals

∫ b

a

g(x)d x = h
n−1
∑

i=0

g(x i) + ER
g (3.7)

and
∫ b

a

g ′(x)Θa(x)d x = h
n−1
∑

i=0

g ′(x i)Θa(x i) + ER
g ′Θ, (3.8)

34

3.1. Automatic differentiation of quadrature

where Eg and Eg ′Θ are the truncation errors associated with the two approximate

integrals. We see that we may rewrite (3.6) as

∂ IR

∂ a
=−

1

b− a

∫ b

a

g(x)d x +
1

b− a
ER

g +

∫ b

a

g ′(x)Θa(x)d x − ER
g ′Θ. (3.9)

Defining

ER
g,a =

1

b− a
ER

g − ER
g ′Θ, (3.10)

and using integration by parts for the integral of (3.8),

∫ b

a

g ′(x)Θa(x)d x =

∫ b

a

g ′(x)
b− x

b− a
d x

=
�

g(x)
b− x

b− a

�
�

�

�

�

b

a

+
1

b− a

∫ b

a

g(x)d x

= −g(a) +
1

b− a

∫ b

a

g(x)d x , (3.11)

we get

∂ IR

∂ a
= −

1

b− a

∫ b

a

g(x)d x − g(a) +
1

b− a

∫ b

a

g(x)d x + ER
g,a

= −g(a) + ER
g,a. (3.12)

Comparison with (3.2) shows that (3.12) has truncation error ER
g,a =

1
b−a

ER
g − ER

g ′Θ.

Similarly we find,
∂ IR

∂ b
= g(b) + ER

g,b, (3.13)

where ER
g,b =−

1
b−a

Eg + Eg ′Θ =−Eg,a.

Now let us consider the truncation error in more detail. The truncation error for

the rectangle rule is

ER
g =

g ′(η∗)h(b− a)
2

,

for some η∗ ∈ [a, b], providing g ′ is continuous on [a, b].

35

3.1. Automatic differentiation of quadrature

Similarly for ER
g ′Θ, using g → g ′(x)Θ(x), we require d

d x

�

g ′(x)Θ(x)
�

and hence

g ′′ to be continuous, and obtain

ER
g ′Θ =−

g ′′(η∗∗) b−η∗∗

b−a
(b− a)h

2
−

g ′(η∗∗)h
2

=−
g ′′(η∗∗)(b−η∗∗)h

2
−

g ′(η∗∗)h
2

, (3.14)

for some η∗∗ ∈ [a, b]. Therefore,

ER
g,a =−ER

g,b =
1

b− a
ER

g − ER
g ′Θ

=
g ′(η∗)h

2
+

g ′(η∗∗)h
2

+
g ′′(η∗∗)(η∗∗− b)

2

=
h

2

�

g ′(η∗) + g ′(η∗∗) + g ′′(η∗∗)(η∗∗− b)
�

= O(h). (3.15)

So we see that direct automatic differentiation of the rectangle rule gives deriva-

tives with respect to the end points which are correct to the same order of accuracy

as the original quadrature rule within truncation error O(h). As might be expected

we require one degree higher differentiability of the function, i.e. continuous second

derivatives instead of first, to ensure convergence of the derivative of the integral.

3.1.2 General Form

Using the same approach as for the rectangle rule to the general composite form for

approximating the integral (3.1)

I =
n−1
∑

i=0

n
∑

j=1

ω j g(x i + ν jh), (3.16)

we get the following derivatives of I with respect to a and b

∂ I

∂ a
= −

1

n

n−1
∑

i=0

n
∑

j=1

ω j g(x i + ν jh) + h
n−1
∑

i=0

n
∑

j=1

ω j g
′(x i + ν jh)

�

n− i

n
− ν j

1

n

�

36

3.1. Automatic differentiation of quadrature

= −
1

n

n−1
∑

i=0

n
∑

j=1

ω j g(x i + ν jh) +
h

n

n−1
∑

i=0

n
∑

j=1

ω j g
′(x i + ν jh)(n− i− ν j)

= −
1

n

n−1
∑

i=0

n
∑

j=1

�

ω j g(x i + ν jh) + hω j g
′(x i + ν jh)(−n+ i+ ν j)

�

= −
1

n

n−1
∑

i=0

n
∑

j=1

�

ω j g(x i + ν jh) +ω j g
′(x i + ν jh)(x i − b+ hν j)

�

= −
n−1
∑

i=0

n
∑

j=1

hω j g(x i + ν jh)
1

b− a
−

n−1
∑

i=0

n
∑

j=1

hω j g
′(x i + ν jh)

x i + ν jh− b

b− a
,

where ωi and νi are the weights. Providing that g and g ′Θ have continuous deriva-

tives,

∂ I

∂ a
= −

1

b− a

∫ b

a

g(x)d x −
∫ b

a

g ′(x)Θ(x)d x +
1

b− a
Eg − Eg ′Θ

= −g(a) + Eg,a, (3.17)

where Eg , Eg ′Θ are defined as the truncation errors for the quadrature applied to
∫ b

a
g(x)d x and

∫ b

a
g ′(x)Θ(x)d x respectively.

Similarly,
∂ I

∂ b
= g(b) + Eg,b, (3.18)

where

Eg,b =−Eg,a. (3.19)

To guarantee convergence of the differentiated numerical integration scheme, the

function must be one more degree continuously differentiable than is required for

convergence of the quadrature scheme itself.

3.1.3 Results

We have differentiated the Matlab numerical quadrature quad. The developed tool

is called quadMAD and has the same parameters as the standard Matlab integration

routine. The function is available from the accompanying CD.

37

3.1. Automatic differentiation of quadrature

Consider the integration of the function g(x) = 1+ e−x cos px , where p = 4 over

the fixed interval [a, b] = [0,1] applying various quadrature rules and estimating the

truncation error.

The analytical result of the integral is

∫ 1

0

g(x)d x =

∫ 1

0

�

1+ e−x cos 4x
�

d x

=
�

x +
4sin 4x

17ex −
cos4x

17ex

�
�

�

�

�

1

0

= 1+
4sin 4

17e
−

cos 4

17e
+

1

17
= 1.00745963139791 . . .

and analytic derivatives w.r.t. a and b are

∂

∂ a

∫ b

a

g(x)d x

!

= −g(a) =−2,

∂

∂ b

∫ b

a

g(x)d x

!

= g(b) = 0.75953795003142 . . .

N
∂ I

∂ a
error εN =

∂ I

∂ a
+ g(a)

εN

ε2N

2 -2.362212 -0.36221 1.59402

4 -2.227232 -0.22723 1.79387

8 -2.126673 -0.12667 1.89996

16 -2.066667 -0.06667 1.95113

32 -2.034170 -0.03417 1.97629

64 -2.017294 -0.01729 1.98736

Table 3.1: Error in the derivative
∂ I

∂ a
of the integral I =

∫ b

a

�

1+ e−x cos4x
�

d x for a = 0 and b = 1

when differentiating the rectangle rule.

From (3.12) and (3.15) the error in the computation of ∂ I
∂ a

behaves as for rectan-

gular rule, O(h). Consequently, the error on a mesh of N points should asymptotically

38

3.1. Automatic differentiation of quadrature

be twice that of a mesh of 2N points. In Table 3.1 we see that εN

ε2N
is approaching 2 as

predicted.

Similarly, we can show that the results obtained by differentiating the midpoint

rule are accurate to order O(h2); and consequently εN

ε2N
→ 4. Results confirming this

behaviour are shown in Table 3.2.

For Simpson’s rule the order of convergence for the integral’s derivatives is O(h4),

and so εN

ε2N
→ 16 as N →∞ as shown in Table 3.3.

N
∂ I

∂ a
error εN =

∂ I

∂ a
+ g(a)

εN

ε2N

2 -2.09225 -9.2252 x 10−2 3.53266

4 -2.02611 -2.6114 x 10−2 3.92061

8 -2.00666 -6.6607 x 10−3 3.98200

16 -2.00167 -1.6727 x 10−3 3.99574

32 -2.00042 -4.1862 x 10−4 3.99904

64 -2.00003 -1.0468 x 10−4 3.99957

Table 3.2: Numerical results for differentiating midpoint rule.

N
∂ I

∂ a
error εN =

∂ I

∂ a
+ g(a)

εN

ε2N

2 -1.99553388 4.4661 x 10−3 22.44948

4 -1.99980106 1.9894 x 10−4 17.49692

8 -1.99998863 1.1370 x 10−5 16.36796

16 -1.99999931 6.9465 x 10−7 16.09178

32 -1.99999996 4.3168 x 10−8 16.02257

64 -1.99999999 2.6942 x 10−9 16.00642

Table 3.3: Numerical results for differentiating Simpson’s rule.

39

3.2. Psychometric models using automatic differentiation

3.2 Psychometric models using automatic differentia-

tion

This example is taken from the article of Cudeck [29]. Following the main steps of

the paper, but replacing derivative calculations by using quadMAD we aim to repeat

the results generated in Cudeck’s article.

Consider the problem of computing the tetrachoric correlation, ρ, for dichotomous

variables, y1 and y2, assuming a bivariate normal distribution for the corresponding

latent variables. The estimated tetrachoric correlation, ρ̂, is the root of

h(ρ) = (p1p2− p00) + I(ρ) = 0. (3.20)

The algorithm cycles through three phases

I(ρ) =
ρ

2

∑

ωq g
�

1

2
ρ(νq + 1)

�

- quadrature rule, (3.21)

h(ρ) = p1p2− p00+ I(ρ), (3.22)

ρk+1 = ρk − h(ρk)/h′(ρk). (3.23)

Equation (3.23) is Newton’s method.

The initial value for ρ0 is

ρ0 = cos
�

π
�

1+
p

papd/pbpc

�−1/2
�

, (3.24)

where pa = p00, pb, pc, and pd are the simple joint proportions of the 2 x 2 table. It is

important to note that pa = p00, not pd = p00, as it was given in Cudeck’s paper, since it

crucially influences computational results. The marginal probabilities are p1 = pa+pc,

p2 = pa + pb; and z1, z2 are normal deviates. The function g is defined as following

g(y) =
exp(t(y))

2π
p

1− y2
, (3.25)

40

3.2. Psychometric models using automatic differentiation

where

t(y) =
−
�

z2
1 + z2

2 − 2z1z2 y
�

2(1− y2)
, (3.26)

and standard error estimation se(ρ) is defined by Hamdan’s formula,

se(ρ) =
1

p
ng(ρ̂)

�

1

pa
+

1

pb
+

1

pc
+

1

pd

�−1/2

. (3.27)

Here, another error was made in the original article, which showed
p

ng(ρ̂) in the

denominator of (3.27).

In an AD implementation of the process when h(ρ) is computed, h′(ρ) is simulta-

neously available simplifying the implementation of Newton’s method.

Inoculated Not Inoculated Totals

Army in India

Escaped 10,798 109,034 119,832

Cases 84 1,475 1,559

Totals 10,882 110,509 121,391

Ladysmith Garrison

Escaped 1,670 9,040 10,710

Cases 35 1,489 1,524

Totals 1,705 10,529 12,234

Table 3.4: Two samples of British military personnel, classified by inoculation (yes or no) and disease

status (yes or no).

Considering the first example of Cudeck’s paper [29], Army in India, pa, pb, pc

and pd are defined in Table 3.5.

The army in India table gave

Cudeck’s result ρ̂ = 0.100 se(ρ̂) = 0.02

Our result ρ̂ = 0.0994 se(ρ̂) = 0.0186

The difference can be explained by the rough rounding of Cudeck’s results. The La-

dysmith Garrison produced

41

3.3. Conclusions

Inoculated Not Inoculated Totals

Army in India

Escaped 10,798 = pa 109,034 = pb 119,832 = p2

Cases 84 = pc 1,475 = pd 1,559

Totals 10,882 = p1 110,509 121,391

Table 3.5: Defining the parameters pa,pb,pc and pd for Cudeck’s test case.

Cudeck’s result ρ̂ = 0.447 se(ρ̂) = 0.03

Our result ρ̂ = 0.415 se(ρ̂) = 0.0189

Though there is a significant difference between results which does not look like a

problem of rounding, there are still doubts about the absolute reliability of Cudeck’s

article and his results. It might be just another mistake. Similarly, we run the same

program for data from [30] for the final test. The 2 x 2 table gives pa = 0.3, pb = 0.1,

pc = 0.2, and pd = 0.4.

Bonett’s result ρ̂ = 0.6071

Our result ρ̂ = 0.6055

This difference was expected and can be a result of simple substitution of quadrature

rule for computation of (3.21).

3.3 Conclusions

In this chapter we introduced the general definitions of the AD theory and applied

them to the differentiation of the numerical integration scheme. The algorithm for

numerical integration differentiation is implemented in Matlab as quadMAD routine,

that is available from the CD accompanying this work.

42

Chapter 4
Taylor series for moments estimation

We assume x is a random vector with n independent random components

x= {x1, . . . , xn} of known probability distribution, i.e. mean µx = {µx1
, . . . ,µxn

}, stan-

dard deviation σx = {σx1
, . . . ,σxn

}, and higher order moments are known. Further,

let g be any smooth function that represents our model.

The idea of the moments method is to approximate the distribution of y = g(x)

in terms of its derivatives by using Taylor approximations of the statistical moments.

There are several ways of doing it.

The most straight forward and well-known ([4],[15], etc) approach is to apply

the expectation operator to the Taylor expansion of the function g(x). This way one

obtains the expectation for the function g. By squaring it and subtracting from the ex-

pectation of the squared Taylor approximation of the same function g(x) one satisfies

the definition of the variance (2.11). Depending on the prescribed input distributions

and properties of the output function, the first and second order moments methods

may become inaccurate. To improve the precision, higher order approximations are

required. Therefore, higher order derivatives must be evaluated. This can be done by

using automatic differentiation. Although it sounds simple, the mathematical imple-

mentation of such method faces computational difficulties.

On the other hand, one can compute the expectation the same way as it is done

in the first approach, but for the variance avoid squaring the Taylor series by squaring

43

4.1. First approach

the function instead, and rewriting the expectation of g(x) as the expectation of g2(x).

In this chapter we consider both ways of computing statistical moments for the

function g(x) in details, validate already published results, generalise the approach,

and investigate convergence issues of the method.

4.1 First approach

4.1.1 Single variable case

For the simplification of the analytical calculation process we first consider the case

where n= 1. One must then obtain the expectation µg and variance σg of the known

output function g(x) for given µx and σx of the scalar input x .

The Taylor expansion of y = g(x) at µx is

g(x) = g +
∂ g

∂ x
(x −µx) +

1

2!

∂ 2 g

∂ x2 (x −µx)
2+ . . . , (4.1)

where all evaluations of function g and its derivatives are made at µx .

Using the definition (2.4) and properties (2.6)-(2.9) the first moment of g(x) can

be approximated by

µg = E
�

g(x)
�

= E
�

g
�

+
∂ g

∂ x
E(x −µx) +

1

2!

∂ 2 g

∂ x2 E
�

(x −µx)
2�+ . . . (4.2)

Then, since

E(x −µx) = E(x)− E(µx) = µx −µx = 0, (4.3)

the moments method for expectation gives

µg = g +
1

2!

∂ 2 g

∂ x2σ
2
x + . . . (4.4)

According to [4], the i th order moments method is the method that corresponds

44

4.1. First approach

to a derivation of the moments approximation based on an i th order Taylor series.

Therefore, the first order moments method approximation for expectation is

µg = g +O(σ2
x), (4.5)

and second order moments method is

µg = g +
1

2!

∂ 2 g

∂ x2σ
2
x +O(σ3

x). (4.6)

These results are identical to the ones obtained by Ghate and Giles [4].

We now can use (4.6) and the definition of the variance (2.11) to obtain the

second order moments method approximation for variance as in [4]. First, we square

the second order Taylor approximation of the function g(x):

g2(x) ≈ g2+ 2g
∂ g

∂ x
(x −µx) +

�

g
∂ 2 g

∂ x2 +
�

∂ g

∂ x

�2
�

(x −µx)
2

+
∂ g

∂ x

∂ 2 g

∂ x2 (x −µx)
3+

1

4

�

∂ 2 g

∂ x2

�2

(x −µx)
4 (4.7)

By taking the expectation of (4.7), as we did for (4.2), we get:

E
�

g2(x)
�

= g2+

�

g
∂ 2 g

∂ x2 +
�

∂ g

∂ x

�2
�

σ2
x

+
∂ g

∂ x

∂ 2 g

∂ x2 S(x)σ3
x +

1

4

�

∂ 2 g

∂ x2

�2

K(x)σ4
x , (4.8)

where S(x) is skewness, and K(x) is kurtosis, as defined in (2.14)-(2.15). Kno-

wing (2.11) and using µg from (4.6), the second order moments method approxi-

mation for the variance is

σ2
g =
�

∂ g

∂ x

�2

σ2
x +

∂ 2 g

∂ x2

∂ g

∂ x
S(x)σ3

x +
1

4

�

∂ 2 g

∂ x2

�2
�

K(x)− 1
�

σ4
x . (4.9)

The order of error for the variance in (4.9) can be demonstrated by taking a 3rd order

45

4.1. First approach

Taylor expansion. Subtracting from

Ẽ
�

g2(x)
�

= g2+

�

g
∂ 2 g

∂ x2 +
�

∂ g

∂ x

�2
�

σ2
x

+

�

1

3
g
∂ 3 g

∂ x3 +
∂ g

∂ x

∂ 2 g

∂ x2

�

S(x)σ3
x

+

1

3

∂ g

∂ x

∂ 3 g

∂ x3 +
1

4

�

∂ 2 g

∂ x2

�2!

K(x)σ4
x

+
1

6

∂ 2 g

∂ x2

∂ 3 g

∂ x3 M5(x)σ
5
x +

1

36

�

∂ 3 g

∂ x3

�2

M6(x)σ
6
x , (4.10)

where M5 and M6(x) are the fifth and the sixth moments, respectively, as defined

in (2.13), the squared third order moments method for the expectation is

µ̃2
g = g2+ g

∂ 2 g

∂ x2σ
2
x +

1

3
g
∂ 3 g

∂ x3 S(x)σ3
x +

1

4

�

∂ 2 g

∂ x2

�2

σ4
x

+
1

6

∂ 2 g

∂ x2

∂ 3 g

∂ x3 S(x)σ5
x +

1

36

�

∂ 3 g

∂ x3

�2

S2(x)σ6
x . (4.11)

The third order moments method for variance then is

σ̃2
g =

�

∂ g

∂ x

�2

σ2
x +

∂ g

∂ x

∂ 2 g

∂ x2 S(x)σ3
x +

1

4

�

∂ 2 g

∂ x2

�2
�

K(x)− 1
�

σ4
x

+
1

3

∂ g

∂ x

∂ 3 g

∂ x3 K(x)σ4
x +O(σ5

x). (4.12)

When we compare (4.9) and (4.12), the missing terms in (4.9) at 4th order are revea-

led:

|σ2
g − σ̃

2
g |=

1

3

∂ g

∂ x

∂ 3 g

∂ x3 K(x)σ4
x . (4.13)

Thus (4.9) is only 3rd order accurate, since the 4th order term is incomplete.

It proves that by following this approach, and despite the fact that an i th order

Taylor approximation gives an i th order moments method for expectation with error

O(σi+1), an i th order Taylor series does not produce an i th order error for variance. In

particular, the order of error for (4.9) is O(σ4
x).

46

4.1. First approach

In the case when the function has more than one output y =
�

g1(x), . . . , gm(x)
�

,

one must compute the covariance matrix

Cy =





















σ2
g1

Cg1 g2
. . . Cg1 gm

Cg2 g1
σ2

g2
. . . Cg2 gm

...
...

. . .
...

Cgm g1
Cgm g2

. . . σ2
gm





















, (4.14)

where the diagonal elements can be computed using (4.12). Since

Cgi g j
= E
�

(gi −µgi
)(g j −µg j

)
�

= E(gi g j)− E(gi)E(g j), (4.15)

we now need to approximate E(gi g j) instead of E(g2
i) as for the variance. Using

the second order Taylor series for both gi and g j, the Taylor approximation for gi g j

becomes

gi g j ≈ gi g j + gi

∂ g j

∂ x
(x −µx) + g j

∂ gi

∂ x
(x −µx)

+gi

1

2!

∂ 2 g j

∂ x2 (x −µx)
2+ g j

1

2!

∂ 2 gi

∂ x2 (x −µx)
2

+
∂ gi

∂ x

∂ g j

∂ x
(x −µx)

2+
�

1

2!

�2 ∂ 2 gi

∂ x2

∂ 2 g j

∂ x2 (x −µx)
4

+
1

2!

∂ gi

∂ x

∂ 2 g j

∂ x2 (x −µx)
3+

1

2!

∂ g j

∂ x

∂ 2 gi

∂ x2 (x −µx)
3. (4.16)

By applying the expectation operator to (4.16) we get E(gi g j) for (4.15):

E(gi g j) = gi(µx)g j(µx) +

�

1

2
gi

∂ 2 g j

∂ x2 +
1

2
g j

∂ 2 gi

∂ x2 +
∂ gi

∂ x

∂ g j

∂ x

�

σ2
x

+
1

2

�

∂ gi

∂ x

∂ 2 g j

∂ x2 +
∂ g j

∂ x

∂ 2 gi

∂ x2

�

S(x)σ3
x

+
1

4

∂ 2 gi

∂ x2

∂ 2 g j

∂ x2 K(x)σ4
x . (4.17)

47

4.1. First approach

Thus the covariance Cgi g j
is

Cgi g j
=

∂ gi

∂ x

∂ g j

∂ x
σ2

x +
1

2

�

∂ gi

∂ x

∂ 2 g j

∂ x2 +
∂ g j

∂ x

∂ 2 gi

∂ x2

�

S(x)σ3
x

+
1

4

∂ 2 gi

∂ x2

∂ 2 g j

∂ x2 (K(x)− 1)σ4
x . (4.18)

It is obvious that the formula for the covariance (4.18) is the same as the one for the

variance (4.9) when i = j.

Similarly to the moments method comparison for the variance when using the

second and the third order Taylor approximations to reveal the missing terms of the

4th order, we use the third order Taylor series to compute the difference for the cova-

riance. Therefore, by subtracting from

Ẽ(gi g j) = gi(µx)g j(µx) +

�

1

2
gi

∂ 2 g j

∂ x2 +
1

2
g j

∂ 2 gi

∂ x2 +
∂ gi

∂ x

∂ g j

∂ x

�

σ2
x

+
1

6

�

gi

∂ 3 g j

∂ x3 + g j

∂ 3 gi

∂ x3

�

S(x)σ3
x

+
1

2

�

∂ gi

∂ x

∂ 2 g j

∂ x2 +
∂ g j

∂ x

∂ 2 gi

∂ x2

�

S(x)σ3
x

+
1

6

�

∂ gi

∂ x

∂ 3 g j

∂ x3 +
∂ g j

∂ x

∂ 3 gi

∂ x3

�

K(x)σ4
x

+
1

4

∂ 2 gi

∂ x2

∂ 2 g j

∂ x2 K(x)σ4
x +

1

36

∂ 3 gi

∂ x3

∂ 3 g j

∂ x3 M6σ
6
x

+
1

12

�

∂ 2 gi

∂ x2

∂ 3 g j

∂ x3 +
∂ 2 g j

∂ x2

∂ 3 gi

∂ x3

�

M5(x)σ
5
x (4.19)

the multiplied Ẽ(gi) and Ẽ(g j) that are also based on the third order Taylor series, the

third order moments method for the covariance then becomes

C̃gi g j
=

∂ gi

∂ x

∂ g j

∂ x
σ2

x +
1

2

�

∂ gi

∂ x

∂ 2 g j

∂ x2 +
∂ g j

∂ x

∂ 2 gi

∂ x2

�

S(x)σ3
x

+
1

4

∂ 2 gi

∂ x2

∂ 2 g j

∂ x2 (K(x)− 1)σ4
x

+
1

6

�

∂ gi

∂ x

∂ 3 g j

∂ x3 +
∂ g j

∂ x

∂ 3 gi

∂ x3

�

K(x)σ4
x +O(σ5

x). (4.20)

48

4.1. First approach

Hence the missing term of the 4th order for the covariance is

|Cgi g j
− C̃gi g j

|=
1

6

�

∂ gi

∂ x

∂ 3 g j

∂ x3 +
∂ g j

∂ x

∂ 3 gi

∂ x3

�

K(x)σ4
x . (4.21)

4.1.2 Multiple variable case

In the case of x ∈ Rn, the Taylor series expansion for the output function g(x) about

the expectation µx is

g(x) = g +
n
∑

i=1

∂ g

∂ x i
(x i −µx i

)

+
1

2!

n
∑

i=1

n
∑

j=1

∂ 2 g

∂ x i∂ x j
(x i −µx i

)(x j −µx j
)

+
1

3!

n
∑

i=1

n
∑

j=1

n
∑

k=1

∂ 3 g

∂ x i∂ x j∂ xk
(x i −µx i

)(x j −µx j
)(xk −µxk

)

+ . . . (4.22)

In a similar manner to the single variable case, for vector inputs the expectation is

given by:

µg = E
�

g(x)
�

= E
�

g
�

+
n
∑

i=1

∂ g

∂ x i
E(x i −µx i

)

+
1

2!

n
∑

i=1

n
∑

j=1

∂ 2 g

∂ x i∂ x j
E
�

(x i −µx i
)(x j −µx j

)
�

+
1

3!

n
∑

i=1

n
∑

j=1

n
∑

k=1

∂ 3 g

∂ x i∂ x j∂ xk
E
�

(x i −µx i
)(x j −µx j

)(xk −µxk
)
�

+O(σ4
x). (4.23)

After taking into account the assumption of uncorrelated inputs

E
�

(x i −µx i
)(x j −µx j

)
�

=







σ2
x i

, if i = j,

0, otherwise,
(4.24)

49

4.1. First approach

and applying the same sequence of actions as for the single variable case, the second

order moment approximations to the expectation and variance are

µg = g +
1

2!

n
∑

i=1

∂ 2 g

∂ x2
i

σ2
x i
+O(σ3

x), (4.25)

and

σ2
g =

n
∑

i=1

�

∂ g

∂ x i

�2

σ2
x i
+

n
∑

i=1

∂ 2 g

∂ x2
i

∂ g

∂ x i
S(x i)σ

3
x i

+
1

2

n
∑

i=1

n
∑

j=1
j 6=i

�

∂ 2 g

∂ x i∂ x j

�2

σ2
x i
σ2

x j
+

n
∑

i=1

n
∑

j=1
j 6=i

∂ 3 g

∂ x2
i ∂ x j

∂ g

∂ x j
σ2

x i
σ2

x j

+
1

4

n
∑

i=1

�

∂ 2 g

∂ x2
i

�2
�

K(x i)− 1
�

σ4
x i
+O(σ4

x), (4.26)

respectively. When the function y = g(x) =
�

g1(x), . . . , gm(x)
�

is a vector function,

the second order moment is defined as a covariance matrix

Cy =





















σ2
g1

Cg1 g2
. . . Cg1 gm

Cg2 g1
σ2

g2
. . . Cg2 gm

...
...

. . .
...

Cgm g1
Cgm g2

. . . σ2
gm





















, (4.27)

where Cgp gq
= E(gp gq)− E(gp)E(gq). The second order moment approximation for

the covariance is

Cgp gq
=

n
∑

i=1

∂ gp

∂ x i

∂ gq

∂ x i
σ2

x i
+

1

2

n
∑

i=1

∂ gp

∂ x i

∂ 2 gq

∂ x2
i

S(x i)σ
3
x i

+
1

2

n
∑

i=1

∂ gq

∂ x i

∂ 2 gp

∂ x2
i

S(x i)σ
3
x i
+

1

4

n
∑

i=1

∂ 2 gp

∂ x2
i

∂ 2 gq

∂ x2
i

�

K(x i)− 1
�

σ4
x i

+
1

2

n
∑

i=1

n
∑

j=1
j 6=i

∂ 2 gp

∂ x i∂ x j

∂ 2 gq

∂ x i∂ x j
σ2

x i
σ2

x j
, (4.28)

where p, q = 1, . . . , m. Now the variance approximation (4.26) is a partial case

50

4.1. First approach

of (4.28) when p = q.

The incompleteness of the fourth order term in both (4.26) and (4.28) can be

demonstrated by considering the third order moments approximations. The details

of these computations are given in Appendix A. In summary, the moments method

based on the third order Taylor series for the covariance and its partial case, variance,

is

C̃qp gq
=

n
∑

i=1

∂ gp

∂ x i

∂ gq

∂ x i
σ2

x i
+

1

2

n
∑

i=1

∂ gp

∂ x i

∂ 2 gq

∂ x2
i

S(x i)σ
3
x i

+
1

2

n
∑

i=1

∂ 2 gp

∂ x2
i

∂ gq

∂ x i
S(x i)σ

3
x i
+

1

6

n
∑

i=1

∂ gp

∂ x i

∂ 3 gq

∂ x3
i

K(x i)σ
4
x i

+
1

6

n
∑

i=1

∂ gq

∂ x i

∂ 3 gp

∂ x3
i

K(x i)σ
4
x i
+

1

2

n
∑

i=1

n
∑

j=1
j 6=i

∂ gp

∂ x i

∂ 3 gq

∂ x i∂ x2
j

σ2
x i
σ2

x j

+
1

2

n
∑

i=1

n
∑

j=1
j 6=i

∂ gq

∂ x i

∂ 3 gp

∂ x i∂ x2
j

σ2
x i
σ2

x j
+

1

2

n
∑

i=1

n
∑

j=1
j 6=i

∂ 2 gp

∂ x i∂ x j

∂ 2 gq

∂ x i∂ x j
σ2

x i
σ2

x j

+
1

4

n
∑

i=1

∂ 2 gp

∂ x2
i

∂ 2 gq

∂ x2
i

�

K(x i)− 1
�

σ4
x i

(4.29)

and

σ̃2
g =

n
∑

i=1

�

∂ g

∂ x i

�2

σ2
x i
+

n
∑

i=1

∂ g

∂ x i

∂ 2 g

∂ x2
i

S(x i)σ
3
x i

+
1

2

n
∑

i=1

n
∑

j=1
j 6=i

�

∂ 2 g

∂ x i∂ x j

�2

σ2
x i
σ2

x j
+

n
∑

i=1

n
∑

j=1
j 6=i

∂ g

∂ x i

∂ 3 g

∂ x i∂ x2
j

σ2
x i
σ2

x j

+
1

4

n
∑

i=1

�

∂ 2 g

∂ x2
i

�2
�

K(x i)− 1
�

σ4
x i
+

1

3

n
∑

i=1

∂ g

∂ x i

∂ 3 g

∂ x3
i

K(x i)σ
4
x i

(4.30)

respectively. Thus the errors in second order approximations are

|Cgp gq
− C̃gp gq

| =
1

2

n
∑

i=1

n
∑

j=1
j 6=i

∂ gp

∂ x i

∂ 3 gq

∂ x i∂ x2
j

σ2
x i
σ2

x j
+

1

2

n
∑

i=1

n
∑

j=1
j 6=i

∂ gq

∂ x i

∂ 3 gp

∂ x i∂ x2
j

σ2
x i
σ2

x j

+
1

6

n
∑

i=1

∂ gp

∂ x i

∂ 3 gq

∂ x3
i

K(x i)σ
4
x i
+

1

6

n
∑

i=1

∂ gq

∂ x i

∂ 3 gp

∂ x3
i

K(x i)σ
4
x i

, (4.31)

51

4.2. Second approach

and

|σ2
g − σ̃

2
g |=

n
∑

i=1

n
∑

j=1
j 6=i

∂ g

∂ x i

∂ 3 g

∂ x i∂ x2
j

σ2
x i
σ2

x j
+

1

3

n
∑

i=1

∂ g

∂ x i

∂ 3 g

∂ x3
i

K(x i)σ
4
x i

(4.32)

for the covariance and the variance respectively.

Performing the analyses of this sort becomes more and more algebraically challen-

ging with increasing the order of Taylor series. For previous authors, for whom higher

order derivatives of the function were difficult to obtain, the issue of deriving higher

order moments method did not have a priority. With the current rapid improvements

in automatic differentiation techniques, we can now acquire higher order terms. The-

refore, the second approach to compute moments based on Taylor approximation we

suggest in this work becomes necessary.

4.2 Second approach

To confirm the results we can use a slightly different approach. To evaluate the mo-

ments approximation for function g, one can simply substitute the squared function

g2 on the place of g in (4.22) instead of squaring the Taylor series of g for computing

E(g2) . Thus the Taylor approximation for g2 can be rewritten as following

g2(x) = g2(µx) +
n
∑

i=1

2g
∂ g

∂ x i
(x i −µx i

)

+
1

2!

n
∑

i=1

n
∑

j=1

2

�

∂ g

∂ x i

∂ g

∂ x j
+ g

∂ 2 g

∂ x i∂ x j

�

(x i −µx i
)(x j −µx j

)

+
1

3!

n
∑

i=1

n
∑

j=1

n
∑

k=1

2

�

∂ g

∂ x i

∂ 2 g

∂ x j∂ xk
+
∂ g

∂ x j

∂ 2 g

∂ x i∂ xk

+
∂ g

∂ xk

∂ 2 g

∂ x i∂ x j
+ g

∂ 3 g

∂ x i∂ x j∂ xk

�

×

× (x i −µx i
)(x j −µx j

)(xk −µxk
) + . . . (4.33)

52

4.2. Second approach

Using this approach the i th order Taylor series produces i th order moments method

with error O(σi+1) for all statistical moments approximations.

4.2.1 Uncorrelated inputs

Applying the expectation operator to (4.33) and assuming uncorrelated input condi-

tion (4.24) we get

E(g2(x)) = g2+
1

2!

n
∑

i=1

2

�

�

∂ g

∂ x i

�2

+ g
∂ 2 g

∂ x2
i

�

E
�

(x i −µx i
)2
�

+
1

3!

n
∑

i=1

2

�

3
∂ g

∂ x i

∂ 2 g

∂ x2
i

E
�

(x i −µx i
)3
�

+ g
∂ 3 g

∂ x3
i

E
�

(x i −µx i
)3
�

�

+ . . .

That is equivalent to

µg2 = g2+
n
∑

i=1

�

g
∂ 2 g

∂ x2
i

+
�

∂ g

∂ x i

�2
�

σ2
x i

+
n
∑

i=1

�

1

3
g
∂ 3 g

∂ x3
i

+
∂ g

∂ x i

∂ 2 g

∂ x2
i

�

S(x i)σ
3
x i
+ . . . (4.34)

To compute the 3rd order approximation for the variance using (2.11) we require the

squared 3rd order approximation of expectation. The 3rd order approximation for

expectation is

µg = g +
1

2!

n
∑

i=1

∂ 2 g

∂ x2
i

σ2
x i
+

1

3!

n
∑

i=1

∂ 3 g

∂ x3
i

S(x i)σ
3
x i
+O(σ4

x). (4.35)

After squaring (4.35) and neglecting 4th and higher order terms, we get

µ2
g = g2+ g

n
∑

i=1

∂ 2 g

∂ x i
σ2

x i
+

1

3
g

n
∑

i=1

∂ 3 g

∂ x3
i

S(x i)σ
3
x i

. (4.36)

53

4.2. Second approach

Subtracting (4.36) from the 3rd order Taylor series for the squared function (4.33)

gives

σ2
g =

n
∑

i=1

�

∂ g

∂ x i

�2

σ2
x i
+

n
∑

i=1

∂ 2 g

∂ x2
i

∂ g

∂ x i
S(x i)σ

3
x i

. (4.37)

Using this approach, the resulting moments method has the order of error O(σp+1
x),

where p is the order of Taylor series. This way we can get the results from the sec-

tion 4.1.2, verify them and reveal if there are possibly any missing terms. Following

the same steps, the 4th order approximation for the variance is

σ2
g = E(g2)− E(g)2 =

n
∑

i=1

�

∂ g

∂ x i

�2

σ2
x i
+

n
∑

i=1

∂ 2 g

∂ x2
i

∂ g

∂ x i
S(x i)σ

3
x i

+
n
∑

i=1

n
∑

j=1
j 6=i

∂ 3 g

∂ x i∂ x2
j

∂ g

∂ x i
σ2

x i
σ2

x j
+

1

2

n
∑

i=1

n
∑

j=1
j 6=i

�

∂ 2 g

∂ x i∂ x j

�2

σ2
x i
σ2

x j

+
1

3

n
∑

i=1

∂ 3 g

∂ x3
i

∂ g

∂ x i
K(x i)σ

4
x i
+

1

4

n
∑

i=1

�

∂ 2 g

∂ x2
i

�2
�

K(x i)− 1
�

σ4
x i

+O(σ5
x). (4.38)

The details of these calculations are given in Appendix A. When comparing the va-

riance representation obtained in Section 4.1.2 and (4.38) we reveal that the third

order approximation (4.30) has the order O(σ5
x), as there are no derivatives of the

fourth order in (4.38):

|σ2
g − σ̃

2
g |= O(σ5

x). (4.39)

Currently, the only record of generalised moments method with no assumptions

on the input distributions in the case of independent inputs variables is available in

the paper by Christianson and Cox [16], where it is written as

E
�

(g − E(g))2
�

=
n
∑

i=1

�

g(i)
�2+ 2Si g

(i)g(ii)+ (Ki − 1)
�

g(ii)
�2+ 2Ki g

(i)g(iii)

+
n
∑

i< j

�

g(i j)�2+ 2g(i)g(i j j)+ 2g(ii j)g(j)+ . . . (4.40)

54

4.2. Second approach

Since y (i), y (i j), y (i jk), etc. are declared as Taylor coefficients, the substitution

y (i) =
∂ g

∂ x i
σx i

, (4.41)

y (i j) =
1

2!

∂ 2 g

∂ x i∂ x j
σx i
σx j

, (4.42)

y (i jk) =
1

3!

∂ 3 g

∂ x i∂ x j∂ xk
σx i
σx j
σxk

, (4.43)

etc.

into (4.40) leads to our formula (4.38).

In a similar manner we compute the moments method for the covariance of the

vector function g(x) =
�

g1(x), . . . , gm(x)
�

. Based on the 4th order Taylor approxima-

tion, the second order moments method for the covariance is

Cgp gq
= E(gp gq)− E(gp)E(gq)

=
n
∑

i=1

∂ gp

∂ x i

∂ gq

∂ x i
σ2

x i
+

1

2

n
∑

i=1

�

∂ gp

∂ x i

∂ 2 gq

∂ x2
i

+
∂ 2 gq

∂ x2
i

∂ gq

∂ x i

�

S(x i)σ
3
x i

+
1

6

n
∑

i=1

�

∂ gp

∂ x i

∂ 3 gq

∂ x3
i

+
∂ 3 gp

∂ x3
i

∂ gq

∂ x i

�

K(x i)σ
4
x i

+
1

4

n
∑

i=1

∂ 2 gp

∂ x2
i

∂ 2 gq

∂ x2
i

�

K(x i)− 1
�

σ4
x i

+
1

2

n
∑

i=1

n
∑

j=1
j 6=i

∂ gp

∂ x i

∂ 3 gq

∂ x i∂ x2
j

+
∂ 2 gp

∂ x i∂ x j

∂ 2 gq

∂ x i∂ x j
+

+
∂ 3 gp

∂ x i∂ x2
j

∂ gq

∂ x i

!

σ2
x i
σ2

x j
. (4.44)

The comparison of the moments method for the covariance (4.29) based on the

third order Taylor series obtained using the first approach and the fourth order mo-

ments method (4.44) using the second approach again demonstrates the complete-

ness of (4.29):

|Cqp gq
− C̃gp gq

| = O(σ5
x).

55

4.3. Convergence of the method

4.2.2 Correlated inputs

Whenever the condition for uncorrelated inputs (4.24) does not hold, in other words,

the input variables are dependent, the input variance vector must be substituted by

the covariance matrix (2.32). The same thing happens to the higher order statistical

moments of the input variables. From now on they are defined by k× k× · · · × k
︸ ︷︷ ︸

k−t imes
arrays

{M k}=
n

M k
i1,...,ik

o

=
n

E
�

(x i1 −µx i1
) . . . (x ik −µx ik

)
�o

, (4.45)

where k is the order of the moment, i j = 1, . . . , n for any j = 1, . . . , k. Therefore,

applying the expectation operator to (4.22), the expectation of the function g(x)

becomes

µg = E
�

g(x)
�

= g(µx) +
1

2!

n
∑

i=1

n
∑

j=1

∂ 2 g

∂ x i∂ x j
M2

i, j

+
1

3!

n
∑

i=1

n
∑

j=1

n
∑

k=1

∂ 3 g

∂ x i∂ x j∂ xk
M3

i, j,k + . . . (4.46)

Analogously to (4.37) and (4.38), the formulation of the variance can be obtained.

4.3 Convergence of the method

It is important to be able to determine the correct order of the Taylor series required

to obtain the accurate approximation of the moments for the given function g. As

we will see in this section, if the function g(x) has finite radius of convergence then

using too many Taylor terms can cause the series to diverge, and too few may not be

enough for convergence.

Here we demonstrate the significance of Taylor order choice by considering the

test function from Christianson’s paper [16] in detail.

Example 4.3.1. The function

g(x) =
1

1+ x2 (4.47)

56

4.3. Convergence of the method

is always finite, and has a Taylor series for any finite x ∈ R. The Taylor polynomial of

g(x) about x = 0 is given by

g(x) = 1− x2+ x4− x6+ x8− . . . (4.48)

For |x | ≥ 1 the series does not converge. Based on that fact, the approximation of the

statistical moments using Taylor series can not be trusted either. Table 4.1 illustrates

the divergence of the expectation approximation for the function (4.47) when the

number of Taylor terms p is increasing.

Quadrature p µg

3.1243 2 -2.2204e-16

4 3

6 -12

8 93

10 -852

Table 4.1: Comparison of the expectation for the function g =
1

1+ x2 with x ∈ N(0,1), computed by

using the quadrature rule, with the expectation approximation based on pth order Taylor expansion.

4.3.1 Partitioning approach

To deal with the finite radius of convergence caused by imaginary poles of the func-

tion (4.47), Christianson and Cox [16], citing personal communication with Harley

Flanders, suggested the so-called partitioning approach. Although the idea of the me-

thod was published, it has to the best of our knowledge never been implemented.

For simplification, in this work we consider the partitioning approach for the one

dimensional case, meaning a single input variable results in a single output.

To start with, we subdivide the space of input parameter into subintervals in the

way that only a finite number of subintervals have an associated non-negligible pro-

57

4.3. Convergence of the method

bability. Probabilities P(x < x1) and P(x > xm+1) are sufficiently small as to be

ignored.

When subdividing, it is important to make sure that the distance from the centre

of each partition x̄ i =
x i+1− x i

2
, for all i = 1, . . . , m, to any pole of the function g is

larger than the length of the corresponding subinterval. This is because the distance

between the centre point x̄ i and the pole of the function g is the radius of convergence

ri of the function around x̄ i. Consequently, the smaller the length of the i th subinterval

in comparison to ri, the faster the function g converges.

Now for every subinterval we compute the expectation around its centre, and

accumulate all the results into the final approximation of the expectation.

Example 4.3.2. To demonstrate the partitioning approach in details, consider the func-

tion

g(x) =
1

1+ a2 x2 , (4.49)

which corresponds to that of Example 4.3.1 for a = 1. See Figure 4.1.

The distribution for the input x is set to be normal with expectation µ = 0 and

variance σ2 = 1. The poles for such function are �x =±i/a, and the radius of conver-

gence is the distance from the point about which the Taylor series is expanded to the

nearest pole,

r =
p

Re(�x − c)2+ Im(�x − c)2. (4.50)

When c = 0, the radius of convergence r =
1

a
.

Applying the partitioning approach, we first subdivide the x-space [−10, 10] into

subintervals, assuming that the probability outside that region is negligible. The size

of the subintervals must be sufficiently small to guarantee the convergence of all

58

4.3. Convergence of the method

Figure 4.1: Graphical representation of the function g(x) =
1

1+ a2 x2 .

Taylor series used in the expectation operator.

For example, allow us to set a = 1, thus the radius of convergence about x = 0 is

r = 1. When the number of equal partitions is m = 5, the set of centre points x̄ i is

{−8,−4,0, 4,8} and the length of the subintervals is l = 4. To obtain the convergence

on every interval [x i, x i+1], i = 1, . . . , 5, the radius of convergence around x̄ i, denoted

as ri, must create a circle of convergence containing the i th subinterval completely. It

means, the radius ri must be not smaller than a half of the length l:

ri ¾
l

2
= 2. (4.51)

By Pythagoras’ rule ri =
p

Re(�x − x̄ i)2+ Im(�x − x̄ i)2, then since Im(x̄ i) = 0,

r2
i = Re(�x − x̄ i)

2+ Im(�x)2 ¾ 4. (4.52)

59

4.3. Convergence of the method

Figure 4.2: Partitioning approach for the function g(x) =
1

1+ x2 . For the intervals [x2, x3] and

[x4, x5] the radius of convergence exceeds the interval half width. For the interval [x3, x4] it does

not.

In this particular case Re(�x) = 0, Im(�x) = 1, therefore x̄2
i ¾ 3:

x̄ i ∈ (−∞,−
p

3]∪ [
p

3,+∞)≈ (−∞,−1.7321]∪ [1.7321,+∞), (4.53)

which is true for x̄ i when i = 1,2, 4,5, but not i = 3. For the interval [x3, x4], the

radius r3 = 1<
l

2
= 2. See Figure 4.2.

On the other hand, if m= 10, l = 2, and { x̄ i}= {−9,−7, . . . ,−1,1, . . . , 7, 9}, then

ri =
p

Re(�x − x̄ i)2+ Im(�x)2 ¾ 1. (4.54)

Hence the condition for the centre of i th subinterval is x̄ i ∈ R\{0}, which is valid for

all x̄ i, i = 1, . . . , 10. See Figure 4.3.

In Tables 4.2 and 4.3 results for the function (4.49) when a = 1 are given. Table

4.2 is created for odd m. One can see that there is no convergence of the results

for m = 5 and m = 7, but increasing the number of subintervals m sorts the pro-

blem out and improves computations. Already for m = 9 the expectation computed

using partitioning approach starts to slowly converge to the expectation determined

60

4.3. Convergence of the method

Figure 4.3: Partitioning approach for the function g(x) =
1

1+ x2 . The circles of convergence for

intervals [x4, x5], [x5, x6], [x6, x7], [x7, x8] contain the respective intervals entirely. Analogously,

the same is valid for the remaining intervals, i.e. [x1, x2], [x2, x3], [x3, x4], [x8, x9], [x9, x10], and

[x10, x11].

by using quadrature. Results in Table 4.3 though, constructed for even m, are always

convergent. In other words, for this particular example we can always observe the

convergence for even m. However, for odd m to obtain convergent results, one must

ensure that the length of partitions is less than double the radius of convergence at

the point µx = 0 for the function g(x).

Similarly, generalising the convergence condition for any function g(x), one must

ensure that when subdividing the input variable space, the length of all partitions li

is at most twice the distance from the centre point x̄ i to the imaginary pole �x to avoid

the dependence on the function’s pole location.

61

4.3. Convergence of the method

a Quadrature p m Partitioning approach Error

1 0.655679542418802 4 5 1.574576910429300 9.1890e-001

7 0.915851509969488 2.6017e-001

9 0.733340863691872 7.7661e-002

11 0.682121596314070 2.6442e-002

13 0.666045646602571 1.0366e-002

15 0.660295154363698 4.6156e-003

6 5 -1.728559443582948 2.3842e+000

7 0.279528048487026 3.7615e-001

9 0.585316849121551 7.0363e-002

11 0.639573355262032 1.6106e-002

13 0.651306902163210 4.3726e-003

15 0.654304468395577 1.3751e-003

8 5 7.573160834964647 6.9175e+000

7 1.244977734186994 5.8930e-001

9 0.723992702236952 6.8313e-002

11 0.666346854125417 1.0667e-002

13 0.657794060055278 2.1145e-003

15 0.656182552544450 5.0301e-004

10 5 -20.855246952065400 2.1511e+001

7 -0.316879359582553 9.7256e-001

9 0.586402749475115 6.9277e-002

11 0.648382951039756 7.2966e-003

13 0.654636733510136 1.0428e-003

15 0.655490192944368 1.8935e-004

12 5 70.710291197465594 7.0055e+001

7 2.318806159771613 1.6631e+000

9 0.728196490486604 7.2517e-002

11 0.660824232783849 5.1447e-003

13 0.656207078137631 5.2754e-004

15 0.655751417616606 7.1875e-005

Table 4.2: Comparison of the results for the function g =
1

1+ a2 x2 for a = 1 on the interval [−10, 10],

x ∈ N(0,1), p is the order of Taylor series, m is the odd number of subintervals.

62

4.3. Convergence of the method

a Quadrature p m Partitioning approach Error

1 0.655679542418802 4 4 0.668310940693024 1.2631e-002

8 0.700203273677766 4.4524e-002

16 0.654230866057646 1.4487e-003

32 0.655654197292376 2.5345e-005

64 0.655679515086225 2.7333e-008

100 0.655679540610278 1.8085e-009

6 4 0.755677244881720 9.9998e-002

8 0.657679466340704 1.9999e-003

16 0.655379806212782 2.9974e-004

32 0.655682548158247 3.0057e-006

64 0.655679542643579 2.2478e-010

100 0.655679542420513 1.7104e-012

8 4 0.748666564416940 9.2987e-002

8 0.645773548303815 9.9060e-003

16 0.655812462822065 1.3292e-004

32 0.655679313961582 2.2846e-007

64 0.655679542404234 1.4569e-011

100 0.655679542418793 9.5479e-015

10 4 0.699584919623698 4.3905e-002

8 0.653115686016219 2.5639e-003

16 0.655668013596968 1.1529e-005

32 0.655679552092654 9.6739e-009

64 0.655679542419680 8.7785e-013

100 0.655679542418795 7.6605e-015

12 4 0.653402873399573 2.2767e-003

8 0.657785894068247 2.1064e-003

16 0.655674408215680 5.1342e-006

32 0.655679542530159 1.1136e-010

64 0.655679542418759 4.3188e-014

100 0.655679542418795 7.7716e-015

Table 4.3: Comparison of the results for the function g =
1

1+ a2 x2 for a = 1 on the interval [−10, 10],

x ∈ N(0,1), p is the order of Taylor series, m is the even number of subintervals.

63

4.3. Convergence of the method

Algorithm 4.3.1. Partitioning approach

• Partition the distribution of the input into subintervals: [x1, x2, . . . , xm+1], m is

a number of subintervals, let x̄ i =
x i+1− x i

2
be the centres of the subintervals.

• For every subinterval [x i, x i+1] compute the expectation Ei(g) separately by

constructing the Taylor approximation for function the g around x̄ i.

• Sum up all Ei(g):

E(g) =
m
∑

i=1

Ei(g). (4.55)

In other words, using the definition of the Taylor series (2.35) with the remain-

der (2.37) around the centre point x̄ i

g(x) =
p
∑

j=0

1

j!

∂ j g

∂ x j (x̄ i)(x − x̄ i)
j + Rp+1, (4.56)

the expectation of the function becomes

E(g) =

∫ +∞

−∞
g(x) f (x)d x

∼=
m
∑

i=1

∫ x i+1

x i

p
∑

j=0

1

j!

∂ j g

∂ x j (x̄ i)(x − x̄ i)
j f (x)d x

=
m
∑

i=1

p
∑

j=0

1

j!

∂ j g

∂ x j (x̄ i)

∫ x i+1

x i

(x − x̄ i)
j f (x)d x . (4.57)

Tables 4.2-4.7 show the results of comparing the partitioning method and nume-

rical quadrature for the function (4.49) depending on the choice of parameter a, as

well as the number of subintervals m and the order of the Taylor series approximation.

The tables for odd m (i.e. Tables 4.2, 4.4, and 4.6) indicate the change in convergence

when the chosen number m provides the sufficiently small subintervals.

To select the smallest odd m for which the result is convergent one can use the

64

4.3. Convergence of the method

relation (4.51), where l =
xm+1− x1

m
. Thus the following must hold

m¾
xm+1− x1

2 mini=1,...,m ri
. (4.58)

Since the closest point from R to the imaginary pole �x is x = Re(�x), the smallest ri is

min
i=1,...,m

ri = Im(�x). (4.59)

Therefore,

m¾
xm+1− x1

2 Im(�x)
. (4.60)

Considering again the case with the function (4.49) on the interval [−10,10] when

a =
1

2
, the poles are �x = ±2i. Hence m must be not smaller than 5. Similarly, when

a = 2, the number of subintervals m ¾ 20. The corresponding tables confirm it. Ho-

wever, in Table 4.6 a slow convergence is observed even for m= 19. One can explain

this fact by taking into account that the proof of convergence we present here does

not prove the divergence as well. It means that the convergence condition provides

accurate results. But if convergence condition does not hold, the convergence of the

resuls still might be observed.

One can see that the smaller a is, the larger the radius of convergence of the

function g is. Therefore, when a→ 0 the expectation of g as a→ 0 is

E
�

g(x)
�

=

∫ +∞

−∞
lim
a→0

1

1+ a2 x2 N(0,1)d x =

∫ +∞

−∞
N(0, 1)d x = 1 (4.61)

due to the integral property of the normal distribution (2.21). The radius of conver-

gence approaches infinity.

65

4.3. Convergence of the method

a Quadrature p m Partitioning approach Error

0.5 0.842738458576110 4 3 0.930395279647364 8.7657e-002

5 0.873501971537361 3.0764e-002

7 0.850330253158174 7.5918e-003

9 0.845016935722775 2.2785e-003

11 0.843531559136205 7.9310e-004

13 0.843015374911965 2.7692e-004

6 3 0.727396332061593 1.1534e-001

5 0.821941179407435 2.0797e-002

7 0.840098709075598 2.6397e-003

9 0.842308916407815 4.2954e-004

11 0.842634226775850 1.0423e-004

13 0.842704889381763 3.3569e-005

8 3 1.028217895798460 1.8548e-001

5 0.858250117758056 1.5512e-002

7 0.843813031783956 1.0746e-003

9 0.842840624919204 1.0217e-004

11 0.842751885907989 1.3427e-005

13 0.842741220872408 2.7623e-006

10 3 0.502154798599100 3.4058e-001

5 0.830481150937550 1.2257e-002

7 0.842287687589311 4.5077e-004

9 0.842710877356778 2.7581e-005

11 0.842736034286216 2.4243e-006

13 0.842738181693419 2.7688e-007

12 3 1.396221437233889 5.5348e-001

5 0.852835356310040 1.0097e-002

7 0.842932306264022 1.9385e-004

9 0.842745743474252 7.2849e-006

11 0.842738927383430 4.6881e-007

13 0.842738499071885 4.0496e-008

Table 4.4: Comparison of the results for the function g =
1

1+ a2 x2 for a = 0.5 on the interval

[−10,10], x ∈ N(0,1), p is the order of Taylor series, m is the odd number of subintervals.

66

4.3. Convergence of the method

a Quadrature p m Partitioning approach Error

0.5 0.842738458576110 4 4 0.927672822957566 8.4934e-002

8 0.840831832970346 1.9066e-003

16 0.842636077791186 1.0238e-004

32 0.842737980799533 4.7778e-007

64 0.842738451037514 7.5386e-009

100 0.842738458055547 5.2056e-010

6 4 0.847244014761711 4.5056e-003

8 0.841738152582329 1.0003e-003

16 0.842746392825047 7.9342e-006

32 0.842738462422852 3.8467e-009

64 0.842738458588409 1.2299e-011

100 0.842738458576458 3.4761e-013

8 4 0.823406287923583 1.9332e-002

8 0.843035689566326 2.9723e-004

16 0.842738037287821 4.2129e-007

32 0.842738458498839 7.7271e-011

64 0.842738458576093 1.6986e-014

100 0.842738458576109 9.9920e-016

10 4 0.837521080046281 5.2174e-003

8 0.842729620219046 8.8384e-006

16 0.842738463801623 5.2255e-009

32 0.842738458579393 3.2833e-012

64 0.842738458576110 3.3307e-016

100 0.842738458576109 7.7716e-016

12 4 0.846465018425702 3.7266e-003

8 0.842723419268354 1.5039e-005

16 0.842738460334232 1.7581e-009

32 0.842738458575984 1.2590e-013

64 0.842738458576110 5.5511e-016

100 0.842738458576109 7.7716e-016

Table 4.5: Comparison of the results for the function g =
1

1+ a2 x2 for a = 0.5 on the interval

[−10,10], x ∈ N(0,1), p is the order of Taylor series, m is the even number of subintervals.

67

4.3. Convergence of the method

a Quadrature p m Partitioning approach Error

2 0.438182228226860 4 11 1.239257618408874 8.0108e-001

13 0.775295093552342 3.3711e-001

15 0.592741346077874 1.5456e-001

17 0.514335571966556 7.6153e-002

19 0.478092937347386 3.9911e-002

21 0.460261731608494 2.2080e-002

6 11 -1.482063338100518 1.9202e+000

13 -0.148966981657659 5.8715e-001

15 0.233766539902159 2.0442e-001

17 0.359185014676319 7.8997e-002

19 0.404940961029994 3.3241e-002

21 0.423172608030217 1.5010e-002

8 11 5.395692286199993 4.9575e+000

13 1.532844840177975 1.0947e+000

15 0.726276650096417 2.8809e-001

17 0.525338525522329 8.7156e-002

19 0.467704123139761 2.9522e-002

21 0.449161301127540 1.0979e-002

10 11 -12.983846962087647 1.3422e+001

13 -1.696275163261215 2.1345e+000

15 0.014446462867118 4.2374e-001

17 0.338063726650696 1.0012e-001

19 0.410970655724911 2.7212e-002

21 0.429883664098910 8.2986e-003

12 11 37.976720642833413 3.7539e+001

13 4.730568019580059 4.2924e+000

15 1.080243222567627 6.4206e-001

17 0.556580566063321 1.1840e-001

19 0.463994602597341 2.5812e-002

21 0.444635865749501 6.4536e-003

Table 4.6: Comparison of the results for the function g =
1

1+ a2 x2 for a = 2 on the interval [−10, 10],

x ∈ N(0,1), p is the order of Taylor series, m is the odd number of subintervals.

68

4.3. Convergence of the method

a Quadrature p m Partitioning approach Error

2 0.438182228226860 4 4 0.252133481135809 1.8605e-001

8 0.444510639679177 6.3284e-003

16 0.458311796334639 2.0130e-002

32 0.437273930907543 9.0830e-004

64 0.438172468021303 9.7602e-006

100 0.438182190481077 3.7746e-008

6 4 0.346965565889904 9.1217e-002

8 0.489915356554571 5.1733e-002

16 0.437499886180888 6.8234e-004

32 0.438112387096965 6.9841e-005

64 0.438183569446338 1.3412e-006

100 0.438182233183903 4.9570e-009

8 4 0.421511187058821 1.6671e-002

8 0.485732306153244 4.7550e-002

16 0.433358363189148 4.8239e-003

32 0.438242060033157 5.9832e-005

64 0.438182113427429 1.1480e-007

100 0.438182227777993 4.4887e-010

10 4 0.473599030173376 3.5417e-002

8 0.460339664078416 2.2157e-002

16 0.437341392721561 8.4084e-004

32 0.438173573280758 8.6549e-006

64 0.438182234265902 6.0390e-009

100 0.438182228254417 2.7556e-011

12 4 0.502648087318382 6.4466e-002

8 0.435794316934630 2.3879e-003

16 0.439299794059562 1.1176e-003

32 0.438180650624674 1.5776e-006

64 0.438182228145466 8.1395e-011

100 0.438182228224600 2.2607e-012

Table 4.7: Comparison of the results for the function g =
1

1+ a2 x2 for a = 2 on the interval [−10, 10],

x ∈ N(0,1), p is the order of Taylor series, m is the even number of subintervals.

69

4.3. Convergence of the method

Example 4.3.3. Consider a more complicated case of a function with poles,

g(x) =
1

1+ bx + a2 x2 , (4.62)

where a, b ∈ R. The poles are �x =
−b±

p

b2− 4a2

2a2 , and the radius of convergence

about the point x = c is r =
p

Re(�x − c)2+ Im(�x − c)2.

Figure 4.4: Graphical representation of the function g(x) =
1

1+ bx + a2 x2 .

If [a, b] = [1, 1], the poles are �x =−
1

2
± i

p
3

2
. Therefore, the radius of conver-

gence about the origin is r = 1. When [a, b] =
�

1

2
,
1

2

�

, the poles are �x =−1± i
p

3,

the radius of convergence about the origin is r = 2. For these two cases the function

is plotted in Figure 4.4. The partitioning approach is demonstrated by Figure 4.5.

Tables 4.8 and 4.9 show the influence of the size of the partitioning for the interval

[−10,10] on the result of computations. The assumption for m to be odd or even as

in Example 4.3.2 is not applicable anymore, unless the function is considered on an

interval symmetric around Re�x , in which case for even m one can always observe the

70

4.3. Convergence of the method

convergence of the results. However, the previously obtained general condition (4.60)

for choosing m to guarantee convergence always holds. Therefore, on the interval

[x1, xm+1] = [−10, 10] results for function (4.62) are expected to be convergent for

m¾
20
p

3
≈ 11.54> 11 when [a, b] = [1,1], and for m¾

20

2
p

3
≈ 5.77 > 5 when

[a, b] =
�

1

2
,
1

2

�

.

In Tables 4.8 and 4.9 for insufficient partitioning size divergence is observed: the

results converge for m ¾ 12 and m ¾ 6. Though insignificant fluctuation might occur

for higher Taylor order and/or larger number of subdivisions. These slight changes

are likely due to accumulated machine errors.

Figure 4.5: Partitioning approach for the function g(x) = 1
1+x+x2 . On the interval [x3, x4] function

diverges since the radius of convergence r3 = r does not create the circle of convergence that would

cover the corresponding interval.

On the other hand, the function (4.62) is symmetric (see Figure 4.4) around its

maxima at x =−
a2

2b
. Therefore, it is logical to consider the function on the inter-

val symmetric around the maxima point as well. Hence the interval [−10,10] is

transformed into [−10− 0.5, 10− 0.5] = [−10.5, 9.5] for [a, b] = [1, 1], and into

[−10− 0.25, 10− 0.25] = [−10.25,9.75] for [a, b] = [0.5, 0.5]. Now one expects

the convergent results for all even m, and for odd m only if m> 11 or m> 5, respec-

tively. Tables 4.10-4.13 demonstrate the predicted behaviour.

71

4.3. Convergence of the method

[a, b] Quadrature p m Partitioning approach Error

[1, 1] 0.762826343373264 4 10 0.698211061281502 6.4615e-002

11 0.730336267522099 3.2490e-002

12 0.729602861197111 3.3223e-002

13 0.752521270533596 1.0305e-002

25 0.762350652674096 4.7569e-004

50 0.762825992214978 3.5116e-007

6 10 0.763623552319840 7.9721e-004

11 0.771756377732378 8.9300e-003

12 0.784381312732329 2.1555e-002

13 0.764755250233345 1.9289e-003

25 0.762880316839346 5.3973e-005

50 0.762826379544399 3.6171e-008

8 10 0.803541044538194 4.0715e-002

11 0.771162239018585 8.3359e-003

12 0.755990625794147 6.8357e-003

13 0.764492770039113 1.6664e-003

25 0.762823999344900 2.3440e-006

50 0.762826340308498 3.0648e-009

10 10 0.728396286104334 3.4430e-002

11 0.753170532823711 9.6558e-003

12 0.760460066334792 2.3663e-003

13 0.761466498552278 1.3598e-003

25 0.762825916450474 4.2692e-007

50 0.762826343559841 1.8658e-010

12 10 0.763763556764697 9.3721e-004

11 0.765648429784355 2.8221e-003

12 0.768431530728445 5.6052e-003

13 0.763066901848099 2.4056e-004

25 0.762826486802571 1.4343e-007

50 0.762826343364356 8.9083e-012

Table 4.8: Comparison of the results for the function g =
1

1+ bx + a2 x2 for a = 1, b = 1, on the

interval [−10, 10], x ∈ N(0, 1), p is the order of Taylor series, m is the number of subintervals.

72

4.3. Convergence of the method

[a, b] Quadrature p m Partitioning approach Error

[0.5,0.5] 0.935403999437389 4 4 0.954221358048837 1.8817e-002

5 0.895604534833013 3.9799e-002

6 0.864859451345101 7.0545e-002

7 0.928118980590299 7.2850e-003

25 0.935406802387182 2.8029e-006

50 0.935404013467034 1.4030e-008

6 4 0.681031580386082 2.5437e-001

5 0.947139745575656 1.1736e-002

6 0.974929717374682 3.9526e-002

7 0.936257433918614 8.5343e-004

25 0.935403752619203 2.4682e-007

50 0.935403999350188 8.7201e-011

8 4 1.006672665535302 7.1269e-002

5 0.946961858945584 1.1558e-002

6 0.926892454033017 8.5115e-003

7 0.936240980608903 8.3698e-004

25 0.935404016531876 1.7094e-008

50 0.935403999437682 2.9265e-013

10 4 1.163408584116051 2.2800e-001

5 0.919157829076105 1.6246e-002

6 0.927080618603155 8.3234e-003

7 0.934839392919981 5.6461e-004

25 0.935403998524944 9.1245e-010

50 0.935403999437386 2.6645e-015

12 4 0.823664564832794 1.1174e-001

5 0.941515532937906 6.1115e-003

6 0.947959137937857 1.2555e-002

7 0.935488382462601 8.4383e-005

25 0.935403999476326 3.8937e-011

50 0.935403999437388 1.4433e-015

Table 4.9: Comparison of the results for the function g =
1

1+ bx + a2 x2 for a = 0.5, b = 0.5, on the

interval [−10, 10], x ∈ N(0, 1), p is the order of Taylor series, m is the number of subintervals.

73

4.3. Convergence of the method

[a, b] Quadrature p m Partitioning approach Error

[1, 1] 0.762826343373264 4 8 0.827962509668094 6.5136e-002

10 0.795105621158395 3.2279e-002

12 0.773560716128379 1.0734e-002

14 0.764290888518840 1.4645e-003

24 0.762220658944241 6.0568e-004

48 0.762825123462876 1.2199e-006

6 8 0.782101271063672 1.9275e-002

10 0.758913943921443 3.9124e-003

12 0.757234966982609 5.5914e-003

14 0.759834148971611 2.9922e-003

24 0.762876325421314 4.9982e-005

48 0.762826497297243 1.5392e-007

8 8 0.751186586283063 1.1640e-002

10 0.755819075522386 7.0073e-003

12 0.761511152502485 1.3152e-003

14 0.763071122818182 2.4478e-004

24 0.762831094510658 4.7511e-006

48 0.762826329990353 1.3383e-008

10 8 0.752426839925630 1.0400e-002

10 0.762830834757915 4.4914e-006

12 0.763759820744462 9.3348e-004

14 0.763128157889076 3.0181e-004

24 0.762824222215708 2.1212e-006

48 0.762826344174237 8.0097e-010

12 8 0.762579937390889 2.4641e-004

10 0.764483524340984 1.6572e-003

12 0.763010595833514 1.8425e-004

14 0.762755827864436 7.0516e-005

24 0.762826650294834 3.0692e-007

48 0.762826343339104 3.4160e-011

Table 4.10: Comparison of the results for the function g =
1

1+ bx + a2 x2 for a = 1, b = 1, on the

interval [−10.5,9.5], x ∈ N(0,1), p is the order of Taylor series, m is the even number of subintervals.

74

4.3. Convergence of the method

[a, b] Quadrature p m Partitioning approach Error

[1, 1] 0.762826343373264 4 7 1.485203506894798 7.2238e-001

9 0.971994528548443 2.0917e-001

11 0.832968521769950 7.0142e-002

13 0.789787002591585 2.6961e-002

15 0.774531180436274 1.1705e-002

17 0.768455837104585 5.6295e-003

6 7 -0.638202390836922 1.4010e+000

9 0.509552991276576 2.5327e-001

11 0.705168630194878 5.7658e-002

13 0.747071355190383 1.5755e-002

15 0.757851715835312 4.9746e-003

17 0.761051164894892 1.7752e-003

8 7 3.704047155574289 2.9412e+000

9 1.090770708480060 3.2794e-001

11 0.813460088444060 5.0634e-002

13 0.772870547169571 1.0044e-002

15 0.765242346218336 2.4160e-003

17 0.763500378442864 6.7404e-004

10 7 -5.733954157612054 6.4968e+000

9 0.318771114331293 4.4406e-001

11 0.716609776954344 4.6217e-002

13 0.756235707752046 6.5906e-003

15 0.761629261844706 1.1971e-003

17 0.762563166713559 2.6318e-004

12 7 15.619207765699979 1.4856e+001

9 1.383148177907660 6.2032e-001

11 0.806287144570025 4.3461e-002

13 0.767278314140032 4.4520e-003

15 0.763434216990932 6.0787e-004

17 0.762930287447307 1.0394e-004

Table 4.11: Comparison of the results for the function g =
1

1+ bx + a2 x2 for a = 1, b = 1, on the

interval [−10.5, 9.5], x ∈ N(0,1), p is the order of Taylor series, m is the odd number of subintervals.

75

4.3. Convergence of the method

[a, b] Quadrature p m Partitioning approach Error

[0.5,0.5] 0.935403999437389 4 2 1.069344546267774 1.3394e-001

4 1.042269083111542 1.0687e-001

6 0.895354955299605 4.0049e-002

8 0.924605395595643 1.0799e-002

24 0.935406102533304 2.1031e-006

48 0.935404017322437 1.7885e-008

6 2 1.327726139384357 3.9232e-001

4 0.815966562636295 1.1944e-001

6 0.938321286721154 2.9173e-003

8 0.940919180949776 5.5152e-003

24 0.935403904039433 9.5398e-008

48 0.935403999315657 1.2173e-010

8 2 1.323044099732943 3.8764e-001

4 0.873678739328930 6.1725e-002

6 0.949169808439427 1.3766e-002

8 0.933568258933700 1.8357e-003

24 0.935404001396319 1.9589e-009

48 0.935403999437920 5.3046e-013

10 2 1.167649560846725 2.3225e-001

4 1.030996927940963 9.5593e-002

6 0.924968924352961 1.0435e-002

8 0.935758844937587 3.5485e-004

24 0.935403999479191 4.1802e-011

48 0.935403999437382 7.3275e-015

12 2 0.987359504420506 5.1956e-002

4 0.989834673535083 5.4431e-002

6 0.937454800335328 2.0508e-003

8 0.935449196498683 4.5197e-005

24 0.935403999432914 4.4752e-012

48 0.935403999437389 3.3307e-016

Table 4.12: Comparison of the results for the function g =
1

1+ bx + a2 x2 for a = 0.5, b = 0.5, on

the interval [−10.25,9.75], x ∈ N(0, 1), p is the order of Taylor series, m is the even number of

subintervals.

76

4.3. Convergence of the method

[a, b] Quadrature p m Partitioning approach Error

[0.5,0.5] 0.935403999437389 4 3 0.875912849935714 5.9491e-002

5 0.910539481055221 2.4865e-002

7 0.929429591115569 5.9744e-003

9 0.934069172323019 1.3348e-003

11 0.934715878551792 6.8812e-004

13 0.934928344125073 4.7566e-004

6 3 1.157293141199919 2.2189e-001

5 0.974536440839733 3.9132e-002

7 0.940477508422501 5.0735e-003

9 0.936071679991049 6.6768e-004

11 0.935501692047711 9.7693e-005

13 0.935453734413980 4.9735e-005

8 3 0.523996297142851 4.1141e-001

5 0.905652751886234 2.9751e-002

7 0.933521061025043 1.8829e-003

9 0.935225581348432 1.7842e-004

11 0.935395983151581 8.0163e-006

13 0.935404018209513 1.8772e-008

10 3 1.319266029531639 3.8386e-001

5 0.942832823073624 7.4288e-003

7 0.935537709674896 1.3371e-004

9 0.935413869136310 9.8697e-006

11 0.935403793397566 2.0604e-007

13 0.935403119330794 8.8011e-007

12 3 1.706924328635746 7.7152e-001

5 0.950533229152008 1.5129e-002

7 0.935734553039233 3.3055e-004

9 0.935416989883433 1.2990e-005

11 0.935404465928422 4.6649e-007

13 0.935404161780014 1.6234e-007

Table 4.13: Comparison of the results for the function g =
1

1+ bx + a2 x2 for a = 0.5, b = 0.5, on the

interval [−10.25,9.75], x ∈ N(0,1), p is the order of Taylor series, m is the odd number of subintervals.

77

4.3. Convergence of the method

Example 4.3.4. Now consider a function with several pairs of poles. Take

g(x) =
1

1+ d x + c2 x2+ b3 x3+ a4 x4 . (4.63)

with coefficients [a4, b3, c2, d] =
�

1

4
,
1

4
,
3

4
,−

1

2

�

. We get two sets of poles�x1 =
1

2
± i

p
3

2
and �x2 =−1± i

p
3. As we approximate the function with Taylor series about x = 0,

the distance between x and the poles is �r1 = 1 and �r2 = 2, respectively. Thus the

radius of convergence for the function (4.63) is

r =min
i=1,2
(�ri) = 1.

Figure 4.6: Partitioning approach. Illustration of the improved radius of convergence for the function

g.

Analogously to the examples 4.3.2 and 4.3.3, we use the condition (4.60) for

selecting the number of partitions m. However this time we are dealing with two sets

of poles. Hence, to guarantee the convergence the choice of m must depend on both

of them:

m¾max
i=1,2

xm+1− x1

2 Im(�x i)
. (4.64)

For the considered values of parameters, m¾maxi=1,2 mi >max{3, 6}= 6. Table 4.14

78

4.3. Convergence of the method

shows the influence of the decision made for m: the results are convergent for all

m¾ 7.

[a4, b3, c2, d] Quadrature p m Partitioning approach Error
�

1

4
,
1

4
,
3

4
,−

1

2

�

0.6659675265755 4 4 0.8298049209129 1.6384e-001

5 0.5636764390915 1.0229e-001

6 0.6393657765981 2.6602e-002

7 0.6491838674496 1.6784e-002

8 0.6509597778278 1.5008e-002

9 0.6634528205650 2.5147e-003

6 4 0.6489171748634 1.7050e-002

5 0.7740029907115 1.0804e-001

6 0.6440333080138 2.1934e-002

7 0.6746093693735 8.6418e-003

8 0.6748551329045 8.8876e-003

9 0.6668814504819 9.1392e-004

8 4 0.4986578240164 1.6731e-001

5 0.6602788632495 5.6887e-003

6 0.7021951513609 3.6228e-002

7 0.6668503593796 8.8283e-004

8 0.6622649933331 3.7025e-003

9 0.6660067140612 3.9187e-005

10 4 0.6452946503425 2.0673e-002

5 0.5294102222152 1.3656e-001

6 0.6502785721216 1.5689e-002

7 0.6624579747187 3.5096e-003

8 0.6667333178217 7.6579e-004

9 0.6657947308223 1.7280e-004

12 4 0.8617786172175 1.9581e-001

5 0.8432932130027 1.7733e-001

6 0.6536576261412 1.2310e-002

7 0.6678395704270 1.8720e-003

Continued on the next page...

79

4.3. Convergence of the method

...continued from the previous page

[a4, b3, c2, d] Quadrature p m Partitioning approach Error

8 0.6664536507282 4.8612e-004

9 0.6660247374852 5.7211e-005

Table 4.14: Comparison of the results for the function g =
1

1+ d x + c2 x2 + b3 x3 + a4 x4 for a4 =
1

4
,

b3 =
1

4
, c2 =

3

4
, d =−

1

2
, on the interval [−6,6], p is the order of Taylor series, m is the number of

subintervals.

An option of adjusting the interval [x1, xm+1] to be able to assume the convergence

for all even m for examples with more than one set of imaginary poles is not applicable

any longer.

4.3.2 Gaussian function

Some might not be completely convinced that the divergent results for the func-

tion (4.49) are caused by its poles and their positioning about the radius of conver-

gence recreated around the centre point of every partition. Does the function shape

have any influence on the choice of the number of partitions required to get accurate

results? Is the "peakedness" of the function the main cause of convergence incon-

sistencies when the larger number of partitions required to approximate its sharp

segments is used?

To answer these questions we consider here another "bell curved" function, this

time with no poles - the Gaussian function itself.

The function of the form

g(x) = ae−
(x−b)2

2c2 , (4.65)

where a, b, c ∈ R+,is called a Gaussian function. In statistic, this function is known

as the probability density function for the normal distribution when a =
1

σ
p

2π
, b =

µ, and c = σ.

80

4.3. Convergence of the method

Figure 4.7: Gaussian function "bell curves" with variation of the parameter a.

The integral of the Gaussian function on the real plane R is called the Gaussian

integral and can be evaluated exactly using a polar coordinate transformation, even

though the indefinite integral

∫

ae−
(x−b)2

2c2 d x does not have elementary functions re-

presentation.

Theorem 4.3.1. The Gaussian integral can be evaluated analytically and

I =

∫ +∞

−∞
ae−

(x−b)2

2c2 d x = ac
p

2π. (4.66)

Proof: In polar coordinates the position of any point X in the space is defined by the

pair [r,θ]. Here, r is the distance from the pole O, an origin of the polar system, to

the point X . r is known as the radius. And θ is the angle that OX makes with the

polar axis, a ray extending from O horizontally to the right.

Take the integral

I =

∫ +∞

−∞
ae−

(x−b)2

2c2 d x , (4.67)

81

4.3. Convergence of the method

and square it to give

I2 =

∫ +∞

−∞
ae−

(x−b)2

2c2 d x ×
∫ +∞

−∞
ae−

(y−b)2

2c2 d y

=

∫ +∞

−∞

∫ +∞

−∞
a2e−

1
2c2 ((x−b)2+(y−b)2)d xd y

=

∫ +∞

−∞

∫ +∞

−∞
a2e−

1
2c2 (x̃2+ ỹ2)d x̃d ỹ , (4.68)

when x̃ = x−b, ỹ = y−b. We transform to polar coordinates, x̃ = r cosθ , ỹ = r sinθ ,

thus x̃2+ ỹ2 = r2 on the planeR, and d xd y = rdrdθ . The radius r is always positive,

and the angle θ is changing from 0 to 2π. Therefore,

I2 = a2

∫ 2π

0

∫ +∞

0

e−
1

2c2 r2

rdrdθ

= a2

θ

∫ +∞

0

e−
1

2c2 r2

rdr

!2π

0

= 2πa2

∫ +∞

0

e−
1

2c2 r2

rdr

= 2πa2

∫ +∞

0

−c2e−
1

2c2 r2

d
�

−
1

2c2 r2

�

=−2πa2c2
�

e−
1

2c2 r2
�+∞

0

≈ −2πa2c2(0− 1) = 2πa2c2. (4.69)

As a result, we get that I = ac
p

2π. �

Since the product of several Gaussian functions is still a Gaussian function, we can

compute the expectation of (4.65) analytically. Assuming normal distribution N(0, 1)

82

4.3. Convergence of the method

and coefficients for the function b = 0, c = 1, when varying a, the expectation µg is

µg = E(g) = a
1
p

2π

∫ +∞

−∞
e−x2

d x . (4.70)

It is again the Gaussian integral with coefficients [ã, b̃, c̃] =
�

a
p

2π
, 0,

1
p

2

�

. Hence,

µg =
a
p

2π

1
p

2

p
2π=

a
p

2
. (4.71)

We now can compare the exact solution with the results produced by the par-

titioning approach. Tables 4.15, 4.16, and 4.17 illustrate the convergence of the

partitioning approach with a =
1
p

2
,

1

5
p

2
, and

1
p

2π
, respectively.

It certainly is important to choose a large enough number of partitions to embrace

all more or less abrupt changes in behaviour of a function to get accurate results.

However, insufficient partitioning does not cause the divergence of the computations

as we observed for the function with poles.

83

4.3. Convergence of the method

[a, b, c] Analytical solution p m Partitioning approach Error
�

1
p

2
,0, 1

�

1

2
= 0.5000 4 5 0.504704314460094 4.7043e-003

10 0.499939634379945 6.0366e-005

20 0.499999342477803 6.5752e-007

40 0.499999989486882 1.0513e-008

80 0.499999999834786 1.6521e-010

6 5 0.499503149265141 4.9685e-004

10 0.500002491554100 2.4916e-006

20 0.500000003972523 3.9725e-009

40 0.500000000016043 1.6043e-011

80 0.500000000000063 6.3116e-014

8 5 0.500030758876817 3.0759e-005

10 0.499999903487286 9.6513e-008

20 0.499999999981460 1.8540e-011

40 0.499999999999981 1.9151e-014

80 0.500000000000000 1.6653e-016

10 5 0.499998599219173 1.4008e-006

10 0.500000003259818 3.2598e-009

20 0.500000000000071 7.0777e-014

40 0.500000000000000 2.2204e-016

80 0.500000000000000 1.6653e-016

12 5 0.500000139345288 1.3935e-007

10 0.499999999907990 9.2010e-011

20 0.500000000000000 3.3307e-016

40 0.500000000000000 2.2204e-016

80 0.500000000000000 1.6653e-016

Table 4.15: Comparison of the results for the function g(x) = ae−
(x−b)2

2c2 on the interval [−6, 6], p is

the order of Taylor series, m - the number of subintervals.

84

4.3. Convergence of the method

[a, b, c] Analytical solution p m Partitioning approach Error
�

1

5
p

2
,0, 1

�

1

10
= 0.1000 4 5 0.100940862892019 9.4086e-004

10 0.099987926875989 1.2073e-005

20 0.099999868495561 1.3150e-007

40 0.099999997897377 2.1026e-009

80 0.099999999966957 3.3043e-011

6 5 0.099900629853028 9.9370e-005

10 0.100000498310820 4.9831e-007

20 0.100000000794505 7.9450e-010

40 0.100000000003209 3.2088e-012

80 0.100000000000013 1.2546e-014

8 5 0.100006151775363 6.1518e-006

10 0.099999980697457 1.9303e-008

20 0.099999999996292 3.7079e-012

40 0.099999999999996 3.8025e-015

80 0.100000000000000 9.7145e-017

10 5 0.099999719843835 2.8016e-007

10 0.100000000651964 6.5196e-010

20 0.100000000000014 1.4169e-014

40 0.100000000000000 2.7756e-017

80 0.100000000000000 1.1102e-016

12 5 0.100000027869057 2.7869e-008

10 0.099999999981598 1.8402e-011

20 0.100000000000000 4.1633e-017

40 0.100000000000000 2.7756e-017

80 0.100000000000000 1.1102e-016

Table 4.16: Comparison of the results for the function g(x) = ae−
(x−b)2

2c2 on the interval [−6, 6], p is

the order of Taylor series, m - the number of subintervals.

85

4.3. Convergence of the method

[a, b, c] Analytical solution p m Partitioning approach Error
�

1
p

2π
, 0, 1

�

0.2820947917739 4 5 0.2847489169900 2.6541e-003

10 0.2820607341198 3.4058e-005

20 0.2820944208067 3.7097e-007

40 0.2820947858425 5.9314e-009

80 0.2820947916807 9.3212e-011

6 5 0.2818144737647 2.8032e-004

10 0.2820961974827 1.4057e-006

20 0.2820947940151 2.2413e-009

40 0.2820947917829 9.0516e-012

80 0.2820947917739 3.5416e-014

8 5 0.2821121456118 1.7354e-005

10 0.2820947373224 5.4451e-008

20 0.2820947917634 1.0460e-011

40 0.2820947917739 1.0658e-014

80 0.2820947917739 1.1102e-016

10 5 0.2820940014679 7.9031e-007

10 0.2820947936130 1.8392e-009

20 0.2820947917739 3.9913e-014

40 0.2820947917739 0.0000e+000

80 0.2820947917739 1.6653e-016

12 5 0.2820948703910 7.8617e-008

10 0.2820947917220 5.1911e-011

20 0.2820947917739 1.6653e-016

40 0.2820947917739 0.0000e+000

80 0.2820947917739 1.6653e-016

Table 4.17: Comparison of the results for the function g(x) = ae−
(x−b)2

2c2 on the interval [−6, 6], p is

the order of Taylor series, m - the number of subintervals.

86

4.3. Convergence of the method

4.3.3 Error estimation

For the error analysis of the partitioning approach we require the (p+1)th Taylor term

Ri =

∫ x i+1

x i

1

(p+ 1)!
g(p+1)(ξi)(x − x̄ i)

p+1 f (x)d x , (4.72)

where x i ≤ ξi ≤ x i+1. Assuming x is normally distributed with µx = 0 and σ2
x = 1,

then

f (x) = N(0, 1) =
1
p

2π
e−x2/2. (4.73)

Therefore, on each interval

Ri =
g(p+1)(ξi)
(p+ 1)!

∫ x i+1

x i

(x − x̄ i)
p+1 f (x)d x

=
1
p

2π

g(p+1)(ξi)
(p+ 1)!

∫ x i+1

x i

(x − x̄ i)
p+1e−x2/2d x . (4.74)

The Taylor series for the exponential function in (4.74) at the interval centre point x̄ i

is

e−x2/2 = e− x̄2
i /2− x̄ ie

− x̄2
i /2(x − x̄ i) + (4.75)

Because of that, (4.74) becomes

Ri =
e− x̄2

i /2

p
2π

g(p+1)(ξi)
(p+ 1)!

∫ x i+1

x i

�

1− x̄ i(x − x̄ i) + . . .
�

(x − x̄ i)
p+1d x

≈
e− x̄2

i /2

p
2π

g(p+1)(ξi)
(p+ 1)!

∫ x i+1

x i

(x − x̄ i)
p+1d x

−
e− x̄2

i /2

p
2π

g(p+1)(ξi)
(p+ 1)!

x̄ i

∫ x i+1

x i

(x − x̄ i)
p+2d x . (4.76)

Let Ci =
e− x̄2

i /2

p
2π

g(p+1)(ξi)
(p+ 1)!

and hi = x i+1− x i, then

Ri ≈ Ci

�

(x − x̄ i)p+2

p+ 2

�x i+1

x i

− Ci x̄ i

�

(x − x̄ i)p+3

p+ 3

�x i+1

x i

87

4.3. Convergence of the method

=
Ci

p+ 2

�

�

hi

2

�p+2

−
�

−
hi

2

�p+2
�

−
Ci x̄ i

p+ 3

�

�

hi

2

�p+3

−
�

−
hi

2

�p+3
�

. (4.77)

That is equivalent to

Ri ≈







2
p+2

Ci

�

hi

2

�p+2
, if p is odd;

− 2
p+3

Ci x̄ i

�

hi

2

�p+3
, otherwise.

(4.78)

Taking into account that R=
m
∑

i=1

Ri, we consider cases for odd and even order of

Taylor series separately.

For odd p

|R| ≤
m
∑

i=1

|Ri|=
2

p+ 2

m
∑

i=1

�

hi

2

�p+2

|Ci|. (4.79)

Assuming h= max
1≤i≤m

hi ≈
xm+1− x1

m
, then m≈

xm+1− x1

h
. As a result,

|R| ≤
2

p+ 2

�

h

2

�p+2 xm+1− x1

h
max
1≤i≤m

|Ci|

=
1

p+ 2

�

h

2

�p+1

(xm+1− x1) max
1≤i≤m

|Ci|= O(hp+1). (4.80)

Similarly, when p is even,

|R| ≤
2

p+ 3

m
∑

i=1

�

hi

2

�p+3

|Ci| x̄ i

≤
2

p+ 3

�

h

2

�p+3� xm+1− x1

h

��

xm+1− x1

2

�

max
1≤i≤m

|Ci|

=
1

2(p+ 3)

�

h

2

�p+2

(xm+1− x1)
2 max

1≤i≤m
|Ci|= O(hp+2). (4.81)

88

4.4. Convergence test

Since h∝
1

m
, the resulting relation for the remaining term R is

R=







O
�

�

1
m

�p+1
�

, if p is odd;

O
�

�

1
m

�p+2
�

, otherwise.
(4.82)

4.4 Convergence test

The demonstration of the order of convergence summarised by (4.82) can be perfor-

med on the results for the function (4.47). To do so, we plot the number of subdivi-

sions m against the error in computations using a logarithmic scale.

Figure 4.8: Error estimation for the function g(x) =
1

1+ x2 .

The estimated error on Figure 4.8 is compared to the corresponding so-called

89

4.5. Uncertainty propagation test cases

convergence lines. One can see that the results for computations using Taylor order

p = 3 are convergent as O(h4). Analogously, for p = 4 and p = 5 the convergence

order is O(h6), and for p = 6, p = 7 the order of the error is O(h8), that corresponds

to the theory derived before in Section 4.3.3. The order of convergence estimated

by (4.82)is only true for large m, therefore the nonlinear behaviour on Figure 4.8 can

be explained by insufficient choice of m for which the error estimation formula can

not be applied.

4.5 Uncertainty propagation test cases

As an initial check we verify the results of Section 4.1 using previously published test

cases, like the one in the paper by Ghate and Giles [4]. By repeating their experiments

we can demonstrate the difference between the results.

Example 4.5.1. For the given output function y = cos x we assess the performance of

the moments method for the scalar normally distributed input with µx = 0 comparing

it to the Monte Carlo simulation results. The values of the standard deviation σx are

increasing from 0 to π/8. A sample size for each Monte Carlo simulation is taken to

be 100,000.

The second order Taylor expansion provides second order of accuracy for the mo-

ments method for the expectation, but only first order of accuracy for the variance.

The moments method for the expectation (4.6) completely agrees with the result

of Ghate’s paper [4]. Assuming that g(x) = cos x and µx = 0, we get

µg = cos (0)−
1

2
cos (0)σ2

x = 1−
1

2
σ2

x .

To obtain second order convergence for the variance, the third order Taylor ap-

proximation is required. The second order moments method for the variance, i.e. the

moments method obtained from the second order Taylor approximation, according

90

4.5. Uncertainty propagation test cases

to [4], is

σ2
g =
�

∂ g

∂ x
σx

�2

+
∂ 2 g

∂ x2

∂ g

∂ x
S(x)σ3

x +
1

4

�

∂ 2 g

∂ x2σ
2
g

�2
�

K(x)− 1
�

and differs from (4.12) by one term.

Moreover, by choosing the trigonometric functions like sin x or cos x and conside-

ring their expansion in µx = 0 one might easily miss out the distinction because of

the properties of the chosen functions - the important terms providing higher order

of accuracy in (4.12) vanish for µx = 0, as it does for example for g(x) = cos x:

σ2
g = sin2 (0)σ2

x + sin (0) cos (0)S(x)σ3
x

+
1

4
cos2 (0)

�

K(x)− 1
�

σ4
x −

1

3
sin2 (0)K(x)σ4

x

=
1

4

�

K(x)− 1
�

σ4
x .

However, the slight shifting of µx away from the zero-point results in an immediate

numerical change, as can be seen in Table 4.18.

µx σx First approach Numerical

MM(2) MM(3) quadrature

0 1 0.500000 0.500000 0.199788

0.5 0.031250 0.031250 0.024465

0.1 0.000050 0.000050 0.000049

0.1 1 0.500050 0.499950 0.199812

0.5 0.031272 0.031266 0.024482

0.1 0.000051 0.000051 0.000051

Table 4.18: Comparison of the second and third order moments methods using first approach for

computing first two statistical moments for the function g = cos x .

The size of the standard deviation of the input x also influences the accuracy of

the approximation produced by the moments method. In other words, the smaller the

91

4.5. Uncertainty propagation test cases

standard deviation σx , the less Taylor terms are required to get a better precision for

the statistical moments approximation (see Figure 4.9). Figures 4.10-4.13 show that

Figure 4.9: The influence of the choice of the standard deviation on the accuracy of the statistical

moments approximation using moments method.

for smaller standard deviation even lower order moments method produces accurate

result. As an accuracy measuring results to compare to we consider the moments

obtained by numerical integration in Matlab, using adaptive Simpson quadrature.

Figure 4.10: The prediction of the expectation µg for the function g(x) = cos x with increasing the

standard deviation σx , when µx = 0.

92

4.5. Uncertainty propagation test cases

Figure 4.11: The prediction of the variance µg for the function g(x) = cos x with increasing the

standard deviation σx , when µx = 0.

Tables 4.19 and 4.20 compare the Monte Carlo and moments method results and

their efficiency∗ to the numerical integration result.

µx σx εMC CPUMC εM M(10) CPUM M(10) εM M(12) CPUM M(12)

time(s) time(s) time(s)

0 1 1.2459e-03 1.20 2.0382e-05 0.17 1.3197e-06 0.81

5.6610e-04 1.20

2.2133e-03 1.20

0.5 2.8314e-04 1.20 2.9275e-09 0.20 8.2257e-09 0.79

3.2411e-04 1.20

3.2354e-04 1.23

0.1 1.1720e-05 1.20 6.3297e-09 0.17 6.3297e-09 0.81

1.8564e-05 1.20

1.3492e-05 1.20

0.01 1 3.8715e-05 1.95 2.0282e-05 0.18 1.4181e-06 0.80

0.0023e-03 1.25

2.6983e-03 1.34

0.5 4.4582e-04 1.23 3.7320e-09 0.17 9.0299e-09 0.81

1.5999e-04 1.20

Continued on the next page...
∗CPU time was obtained using Intel Core 2 Duo 2.66GHz machine with 2GB RAM

93

4.5. Uncertainty propagation test cases

...continued from the previous page

µx σx εMC CPUMC εM M(10) CPUM M(10) εM M(12) CPUM M(12)

time(s) time(s) time(s)

3.4590e-04 1.22

0.1 2.9989e-05 1.22 3.0484e-07 0.19 3.0483e-07 0.77

1.6012e-05 1.23

1.6621e-05 1.23

Table 4.19: Comparison of the MC simulation and MM(p) performances for computing the expectation

of the function g = cos x , N = 100,000, where ε is an error of the method to the quadrature.

µx σx εMC CPUMC εM M(10) CPUM M(10) εM M(12) CPUM M(12)

time(s) time(s) time(s)

0 1 8.5913e-04 1.97 3.4310e-06 1.13 1.0108e-08 8.95

1.6655e-03 2.00

4.7669e-04 2.02

0.5 3.1033e-05 2.03 1.0122e-05 1.13 7.1951e-07 9.00

2.8447e-04 2.06

1.0168e-04 2.03

0.1 2.0719e-07 1.98 7.1942e-09 1.13 7.1942e-09 9.00

1.5657e-07 2.00

1.4829e-07 2.02

0.01 1 1.7371e-03 2.00 3.4303e-02 1.12 1.0106e-02 9.09

1.8694e-03 2.01

7.6781e-04 1.98

0.5 1.3615e-04 1.98 1.0121e-05 1.14 7.1800e-07 9.01

7.2823e-05 2.01

6.9334e-06 1.97

0.1 1.4544e-06 2.06 2.9067e-07 1.13 2.9067e-07 9.05

2.8487e-07 2.06

8.3846e-07 2.02

Table 4.20: Comparison of the MC simulation and MM(p) performances for computing the variance

of the function g = cos x , N = 100,000, where ε is an error of the method to the quadrature.

94

4.5. Uncertainty propagation test cases

Figure 4.12: The prediction of the expectation µg for the function g(x) = cos x with increasing the

standard deviation σx , when µx = 0.01.

Figure 4.13: The prediction of the variance µg for the function g(x) = cos x with increasing the

standard deviation σx , when µx = 0.01.

The comparison of the moments method results for the expectation and the va-

riance with the Monte Carlo simulation results for an increasing number of iterations

N can be seen in Figures 4.14-4.17.

95

4.5. Uncertainty propagation test cases

Figure 4.14: Comparison of the Monte Carlo results with the moments method of the order 12 for the

function g(x) = cos x , when µx = 0 and σx = 0.5, as the number of iterations for MC increases.

Figure 4.15: Comparison of the Monte Carlo results with the moments method of the order 12 for the

function g(x) = cos x , when µx = 0 and σx = 0.5, as the number of iterations for MC increases.

96

4.5. Uncertainty propagation test cases

Figure 4.16: Comparison of the Monte Carlo results with the moments method of the order 12 for the

function g(x) = sin x , when µx = 0 and σx = 0.5, as the number of iterations for MC increases.

Figure 4.17: Comparison of the Monte Carlo results with the moments method of the order 12 for the

function g(x) = sin x , when µx = 0 and σx = 0.5, as the number of iterations for MC increases.

97

4.5. Uncertainty propagation test cases

The resulting formula for the variance (4.38) computed based on fourth order

Taylor approximation matches the one published in the paper by Padulo et al. [7].

However, when testing the moments method in [7] the authors ignore those terms

with the derivatives higher than third order. Due to AD tool development in Matlab

we do not stop on low order derivatives and are ambitious to use the moments method

for arbitrary order p of the Taylor series.

Example 4.5.2. In this example we consider the same functions as tested in [7] to

show the importance of the extended approximations for moments:

g1(x) = sin(x1− 0.21) sin(x2− 0.21); (4.83)

g2(x) = 0.5x2
1 − 1.5x1+ 0.7x2

2 − 1.2x2+ 1.05; (4.84)

g3(x) = 1.7x3
1 + 1.3x2

1 − 2.4x1− 0.5x3
2 + 3.2x2

2 − 1.6x2

+0.1x2
1 x2− 0.2x1 x2

2 + 1.6x1 x2− 12.8; (4.85)

g4(x) = 0.4x2
1 + 0.7x1+ 0.5x3

2 − 1.1x2
2 − 0.9x2− 1.3x2

2 x1. (4.86)

The input variables are always normally distributed about the mean µx = (µx1
,µx2
) =

(1, 1).

In Tables 4.21 and 4.22 we compute the expectation and the variance using the

moments method based on the second approach. As the distribution is assumed to

be normal, the odd order p moments method has the same order of convergence as

the one with the order (p− 1). One can see that the more non-linear the function is,

the more Taylor terms are required to obtain an accurate approximation of statistical

moments. For the polynomial functions g2, g3 and g4 we can obtain the exact values

of the expectation and the variance if the correct Taylor order is chosen. For example,

the g2 is two times continuously differentiable. Thus to obtain the exact expectation

the second order Taylor expansion is required. However, for computing the exact

variance, the Taylor order must be equal to four. Since the errors in Tables 4.21

and 4.22 are based on comparison to the Monte Carlo method, where the number of

98

4.6. Conclusions

iterations is N = 106, the non-zero entries in corresponding to exact values columns

in fact demonstrate MC errors.

It is also often the case that the errors for those moments computed based on

smaller values of standard deviation have a better order of accuracy. If this condition

does not hold (according to the data in Tables 4.21 and 4.22), it still can be obtained

by repeating the MC simulation a number of times, as MC is based on the random

number generator and thus results vary from run to run.

Test function σx Difference between MM and MC (N = 106)

p = 4 p = 6 p = 8

g1 0.05 4.974106e-04 4.962071e-04 4.962073e-04

0.2 2.928814e-03 1.999219e-03 1.997759e-03

0.5 1.357095e-03 1.673573e-03 1.720264e-03

g2 0.05 3.653767e-06 3.653767e-06 3.653767e-06

0.2 2.461048e-04 2.461048e-04 2.461048e-04

0.5 1.205029e-04 1.205029e-04 1.205029e-04

g3 0.05 4.127466e-04 4.127466e-04 4.127466e-04

0.2 1.443245e-03 1.443245e-03 1.443245e-03

0.5 4.553740e-03 4.553740e-03 4.553740e-03

g4 0.05 7.195205e-05 7.195205e-05 7.195205e-05

0.2 1.292212e-03 1.292212e-03 1.292212e-03

0.5 2.041427e-05 2.041427e-05 2.041427e-05

Table 4.21: Expectation estimation.

4.6 Conclusions

In this chapter we have derived the moments method for the expectation by standard

application of the expectation operator to the Taylor series of the required order. For

the variance we have introduced two different approaches for obtaining the moments

method: one is based on squaring the Taylor series of the function g when computing

99

4.6. Conclusions

Test function σx Error of MM with respect to MC (N = 106)

p = 4 p = 6 p = 8

g1 0.05 1.025592e-04 1.015295e-04 1.015295e-04

0.2 1.913518e-02 9.367547e-02 9.389113e-02

0.5 8.343380e-04 9.907470e-04 1.024517e-03

g2 0.05 6.173291e-07 6.173291e-07 6.173291e-07

0.2 2.270066e-05 2.270066e-05 2.270066e-05

0.5 2.345744e-04 2.345744e-04 2.345744e-04

g3 0.05 1.082186e-04 1.098100e-04 1.098100e-04

0.2 3.418763e-03 7.268363e-03 7.268363e-03

0.5 7.430478e-01 6.648347e-02 6.648347e-02

g4 0.05 1.872665e-06 1.685477e-06 1.685477e-06

0.2 1.236548e-03 1.004868e-03 1.004868e-03

0.5 9.802677e-05 9.821395e-05 9.821395e-05

Table 4.22: Variance estimation.

the E(g2) term in (2.11), while the other one uses the Taylor approximation of the

squared function g2 instead. Cases with single and multiple inputs are considered.

Furthermore, both correlated and uncorrelated types of multiple inputs are examined.

Since the main idea behind the moments method is the use of the Taylor series,

the convergence issue is raised. For polynomial functions the order of Taylor series

required to obtain an accurate moments approximation is precisely known and is

the order of differentiability of the function. For other continuously differentiable

functions the accuracy can be improved by increasing the Taylor series order, unless

the function g has finite radius of convergence, or by reducing the standard deviation

values for the input variables, if applicable. Finite radius of convergence may cause

the divergence of the Taylor series. The alternative, partitioning approach, to deal

with divergent series is developed and demonstrated on a number of examples.

We have also tested some of the functions previously used in related papers (i.e.

[7, 4]) to verify the results as well as to make evident the advantages of using higher

100

4.6. Conclusions

order moments methods.

101

Chapter 5
Algorithm and software for moments

estimation

To implement the moments computation upto an arbitrary order in Matlab we are

using the approach based on the approximation of the expectation as described in

Section 4.2:

µg = g +
1

2!

n
∑

i=1

∂ 2 g

∂ x2
i

σ2
x i
+

1

3!

n
∑

i=1

∂ 3 g

∂ x3
i

S(x i)σ
3
x i
+ (5.1)

By substituting the function g i in the place of g in (5.1) and exploiting the rela-

tion (2.13) for computing higher order moments

Mi(g) =
E
�

(g −µg)i
�

σi
g

, (5.2)

where i is the order of the moment, arbitrary order moments can be obtained.

For example, to compute the variance,

σ2
g = M2(g) = µg2 −µ2

g , (5.3)

one requires a tool that computes the expectation of the function g given that the ex-

pectation, the variance, and the distribution type for all input parameters are known.

Our tool for doing this is known as MADMean, where MAD stands for Matlab Automa-

102

5.1. Uncorrelated case

tic Differentiation. This routine then can approximate both the expectation of the

function g and the expectation of the function g2. When subtracting the squared

expectation of g from the expectation of g2, one gets the variance σ2
g .

Analogously, MADMean can be used for computing the expectation of g i, i =

3, 4, . . . , necessary to acquire moments of order i.

Thus by developing MADMean we simultaneously solve the problem of approxima-

ting higher order moments as well. What do we need to successfully implement the

MADMean tool?

5.1 Uncorrelated case

The pth order moments method for the expectation is based on the consecutive sum-

mation of p terms obtained by applying the expectation operator to the pth order

Taylor series:

µg = E
�

g(x)
�

= E
�

g
�

+
n
∑

i=1

∂ g

∂ x i
E(x i −µx i

)

+
1

2!

n
∑

i=1

n
∑

j=1

∂ 2 g

∂ x i∂ x j
E
�

(x i −µx i
)(x j −µx j

)
�

+
1

3!

n
∑

i=1

n
∑

j=1

n
∑

k=1

∂ 3 g

∂ x i∂ x j∂ xk
E
�

(x i −µx i
)(x j −µx j

)(xk −µxk
)
�

+ (5.4)

The kth term Tk of the moments approximation in (4.23) is

Tk =
1

k!

n
∑

i1=1

· · ·
n
∑

ik=1

∂ k g

∂ x i1 . . .∂ x ik

E
�

(x i1 −µx i1
) . . . (x ik −µx ik

)
�

. (5.5)

Of course, every term contains partial derivatives. Therefore we must have an efficient

approach to access them. Associated with each partial derivative ∂ k g
∂ x i1 ...∂ x ik

in (5.5) is

what we refer to as an index vector of kth order (i1, . . . , ik), k = 1, . . . , p, specifying

103

5.1. Uncorrelated case

the partial input variables for that term. Here, p is the order of the requested Taylor

approximation. Every single term in the summation of (5.5) can be written as

T c
k =

∂ k g

∂ xq1
i1

. . .∂ x
q j

il

E(x i1 −µx i1
)q1 . . . E(x il −µx il

)q j , (5.6)

with c = 1, . . . , nk - running for all possible permutations of indeces in the index

vector; q1+ · · ·+ q j = k, 1≤ l ≤ k, where qi is termed the multiplicity.

Here we consider uncorrelated inputs,

E
�

(x i −µx i
)(x j −µx j

)
�

=







σ2
x i

, if i = j,

0, otherwise.
(5.7)

Hence some of the terms in (5.4) disappear. The index vector, where i j 6= il , for any

j, l = 1, . . . , k, j 6= l, meaning i j appears in the index vector uniquely, corresponds

to a zero term of the moments approximation. In other words, when any qi = 1,

i = 1, . . . , j, the respective term of (5.6) is a zero term.

To identify the derivatives included in all non-zero terms of the moments approxi-

mation, we collect all possible index vectors and omit those corresponding to zero

terms.

Example 5.1.1. Consider the function of three input arguments g(x) = g(x1, x2, x3).

To get the 4th order moments method for the expectation one requires partial deriva-

tives of g upto the order p = 4. Let us take a closer look at some examples of index

vectors for the 4th term of the expectation approximation

T4 =
1

4!

3
∑

i1=1

3
∑

i2=1

3
∑

i3=1

3
∑

i4=1

∂ 4 g

∂ x i1∂ x i2∂ x i3∂ x i4

E
�

(x i1−µx i1
)(x i2−µx i2

)(x i3−µx i3
)(x i4−µx i4

)
�

.

For the index vector (i1 i2 i3 i4) = (1 1 2 2) we have a term

T 6
4 =

∂ 4 g

∂ x1∂ x1∂ x2∂ x2
E(x1−µx1

)E(x1−µx1
)E(x2−µx2

)E(x2−µx2
)

104

5.1. Uncorrelated case

=
∂ 4 g

∂ x2
1∂ x2

2

E(x1−µx1
)2E(x2−µx2

)2.

The term does not satisfy the zero term definition, hence we must retain it for the

moments approximation. In contrast, index vector (1 1 1 2) produces a zero term

T 2
4 =

∂ 4 g

∂ x3
1∂ x2

E(x1−µx1
)3E(x2−µx2

),

thus needs to be eliminated, since E(x2−µx2
) = 0.

Table 5.1 shows the relations between the index vectors and terms of the moments

approximation for n= 3 and k = 4. �

Ordered

combinations Corresponding terms Classification

of indices

1 1 1 1
∂ 4 g

∂ x4
1

E(x1−µx1
)4 non-zero

1 1 1 2
∂ 4 g

∂ x3
1∂ x2

E(x1−µx1
)3E(x2−µx2

) zero

1 1 1 3
∂ 4 g

∂ x3
1∂ x3

E(x1−µx1
)3E(x3−µx3

) zero

1 1 2 2
∂ 4 g

∂ x2
1∂ x2

2

E(x1−µx1
)2E(x2−µx2

)2 non-zero

1 1 2 3
∂ 4 g

∂ x2
1∂ x2∂ x3

E(x1−µx1
)2E(x2−µx2

)E(x3−µx3
) zero

1 1 3 3
∂ 4 g

∂ x2
1∂ x2

3

E(x1−µx1
)2E(x3−µx3

)2 non-zero

1 2 2 2
∂ 4 g

∂ x1∂ x3
2

E(x1−µx1
)E(x2−µx2

)3 zero

1 2 2 3
∂ 4 g

∂ x1∂ x2
2∂ x3

E(x1−µx1
)E(x2−µx2

)2E(x3−µx3
) zero

1 2 3 3
∂ 4 g

∂ x1∂ x2∂ x2
3

E(x1−µx1
)E(x2−µx2

)E(x3−µx3
)2 zero

1 3 3 3
∂ 4 g

∂ x1∂ x3
3

E(x1−µx1
)E(x3−µx3

)3 zero

Continued on the next page...

105

5.1. Uncorrelated case

...continued from the previous page

Ordered

combinations Corresponding terms Classification

of indices

2 2 2 2
∂ 4 g

∂ x4
2

E(x2−µx2
)4 non-zero

2 2 2 3
∂ 4 g

∂ x3
2∂ x3

E(x2−µx2
)3E(x3−µx3

) zero

2 2 3 3
∂ 4 g

∂ x2
2∂ x2

3

E(x2−µx2
)2E(x3−µx3

)2 non-zero

2 3 3 3
∂ 4 g

∂ x2∂ x3
3

E(x2−µx2
)E(x3−µx3

)3 zero

3 3 3 3
∂ 4 g

∂ x4
3

E(x3−µx3
)4 non-zero

Table 5.1: All terms of 4-th order for g(x) = g(x1, x2, x3).

Practically, it is more efficient to deal with ordered combinations of indices instead

of permutations. In this case, we apply the check (n+k−1)!
k!(n−1)!

times only instead of nk, and

then multiply the corresponding successful index vectors terms by the number of its

entries in the moments approximation.

One can summarise the algorithm for identifying the non-zero terms by manipu-

lating index vectors and formulate it in general terms.

Algorithm

Let Λ = ; be an empty set; Θ = {θ c = (θ c
1 , . . . ,θ c

i), c = 1, . . . , (n+k−1)!
k!(n−1)!

} - the set

of all ordered combinations, combinations with repetitions, of k indeces from 1

to n.

For every θ c we form the difference vector ∆θ c = (1, θ c
2 −θ

c
1 , . . . , θ c

k −θ
c
k−1, 1).

The differences between neighbouring elements θ c
i+1 and θ c

i of the index vector

106

5.1. Uncorrelated case

can either be zero, indicating that i-th index appears in θ c more than once, or

non-zero, signifying a change. Therefore, two successive non-zeroes in a row

specify that the index vector corresponds to a zero term.

The operation of adding ones at the beginning and at the end of the vector we

call padding. It is necessary for detecting the changes of indices on the edges of

θ c.

If ∆θ c does not contain two successive non-zeroes then add θ c to the set Λ.

for k = 2 : p

for c = 1 : (n+ k− 1)!/k!(n− 1)!

check = TRU E;

∆θ c = (1, θ c
2 − θ

c
1 , . . . , θ c

k − θ
c
k−1, 1);

for i = 1 : k

if ∆θ c
i 6= 0 and ∆θ c

i+1 6= 0 then

check = FALSE;

end

end

if check then

Λ = {Λ; θ c}

end

end

end

Here the parameter check is an indicator of logical type, the value of which

indicates whether the respective index vector corresponds to a non-zero term

and needs to be saved in Λ. The number of indices k runs from 2 to p since here

we are interested only in partial derivatives of order ¾ 2.

107

5.1. Uncorrelated case

Example 5.1.2. As before consider the function g(x) = g(x1, x2, x3) which is de-

pendent on three input variables. Initially the set of non-zero terms is empty: Λ = 0.

Applying the algorithm for this function, we will get the set of all indices correspon-

ding to non-zero terms.

When k = 2, the number of all ordered combinations of indices is

(n+ k− 1)!
k!(n− 1)!

=
(3+ 2− 1)!
2!(3− 1)!

= 6.

And the set of all indices is

Θ=

























1 1

1 2

1 3

2 2

2 3

3 3

























.

Now for all c = 1 : 6 we form padded difference vectors∆θ c and check if∆θ c defines

a non-zero term in (5.1). Thus,

∆Θ=

























1 0 1

1 1 1

1 2 1

1 0 1

1 1 1

1 0 1

























.

When c = 1, the given θ 1 = (1 1) corresponds to T 1
2 =

∂ 2 g

∂ x2
1

σ2
x1

. The corresponding

padded difference vector∆θ 1 = (1 0 1). It does not contain any successive non-zeros,

therefore we update our Λ:

Λ = [1 1].

If c = 2, θ 2 = (1 2) corresponds to T 2
2 =

∂ 2 g

∂ x1∂ x2
E(x1−µx1

)E(x2−µx2
), where both

E(x1 − µx1
) and E(x2 − µx2

) are zeros as in (4.22). Hence θ 2 is expected to be

108

5.1. Uncorrelated case

excluded. When checking its padded difference vector ∆θ 2 = (1 1 1) we see three

consecutive non-zeros. Therefore this term is indeed zero and so at this step Λ remains

unchanged.

By proceeding with the same algorithm for all index vectors when k = 2, Λ be-

comes

Λ =











1 1

2 2

3 3











.

Similarly, let k = 4. The set of all
(n+ k− 1)!
k!(n− 1)!

=
(3+ 4− 1)!
4!(3− 1)!

= 15 ordered combina-

tions is

Θ=

























1 1 1 1

1 1 1 2

1 1 1 3

1 1 2 2
...

...
...

...

3 3 3 3

























.

The padded difference vectors for this Θ are

∆Θ=

























1 0 0 0 1

1 0 0 1 1

1 0 0 2 1

1 0 1 0 1
...

...
...

...
...

1 0 0 0 1

























.

Thus when c = 1, θ 1 = (1 1 1 1) corresponds to T 1
4 =

∂ 4 g

∂ x4
1

K(x1)σ
4
x1

. It is a non-zero

term, therefore we expect ∆θ 1 not to contain any successive non-zeros. Since ∆θ 1 =

(1 0 0 0 1) satisfies the condition of identification of non-zero terms, we add θ 1 to Λ.

The same happens for c = 4, θ 4 = (1 1 2 2) that defines the term T 4
4 =

∂ 4 g
∂ x2

1∂ x2
2
σ2

x1
σ2

x2
.

It is a non-zero term, and the padded difference vector ∆θ 4 = (1 0 1 0 1) confirms

this. The terms coinciding with index vectors in between, i.e. c = 2, c = 3, are zeroes

109

5.1. Uncorrelated case

and need to be eliminated. As a final result, the set of all indices that create non-zero

approximation terms are

Λ =



































































1 1

2 2

3 3





















1 1 1

2 2 2

3 3 3



































1 1 1 1

1 1 2 2

1 1 3 3

2 2 2 2

2 2 3 3

3 3 3 3

















































































. �

Now we know which coefficients are required for non-zero terms of (5.4) and

because we represent those coefficients as ordered arrangements, permutations, we

also want to know the number of times the corresponding element occurs in the

approximation. For example, the single index vector (1 1 2 2) represents (1 1 2 2),

(1 2 1 2), (1 2 2 1), (2 1 1 2), (2 1 2 1), (2 2 1 1). This problem, classified as a

problem of combinatorial algebra, applies to every index vector of Λ.

Let us assume that every vector entry λ of the size k from Λ is a vector constructed

from the elements of the set A= {a1, . . . , an} = {1, . . . , n}, with n still a dimension of

the problem. Every element ai = i, i = 1, . . . , n, occurs in λ ki ¾ 0 times,
n
∑

i=1

ki = k.

What is the number of all possible arrangements of r elements of the set A, taking into

account that each i th element is repeated exactly ki times? In [24] such arrangements

are refered to as permutations with limited repetitions.

Example 5.1.3. Let A = {1,2}, k1 = 2, k2 = 2. We first create a new set Ã where

every element of A is repeated corresponding number of times: eA = {1,1, 2,2}. The

110

5.1. Uncorrelated case

number of (k1 + k2) permutations without repetitions for elements of eA is defined by

(2.41): (k1 + k2)! = 4!. However, in this case both ea1 = 1 and ea2 = 1 are considered

to be distinct elements of eA. We account for (ea1 ea2), but need to avoid (ea2 ea1) since

in principle (ea1 ea2) = (ea2 ea1) = (1 1). There are k1!= 2! ways to compute all possible

k1-permutations without repetitions for them. Thus

(k1+ k2)!
k1!

=
4!

2!
(5.8)

defines the number of (k1+k2)-permutations of all elements of eA when repetitions are

not allowed and ea1, ea2 are considered to be the same. Analogously, for ea3 = ea4 = 2

we reduce (5.8) by all possible k2-permutations without repetitions:

(k1+ k2)!
k1! k2!

=
4!

2! 2!
=

4× 3× 2

2× 2
= 6. (5.9)

Generalising the simple case considered in Example 5.1.3 for A = {a1, . . . , an}

the number of all permutations of the set A, where i th element is repeated ki times,

i = 1, . . . , n, is
(k1+ k2+ · · ·+ kn)!

k1! k2! . . . kn!
. (5.10)

5.1.1 Programming the algorithm

With all the details cleared now, the final algorithm for the implementation using the

programming language is summarised in this section.

The input arguments required to perform the expectation approximation using

the moments method are the modeling function g(x), the order of Taylor series ex-

pansion p desired for the moments method approximation, the expectation µx =
�

µx1
, . . . ,µxn

�

, the standard deviation σx =
�

σx1
, . . . ,σxn

�

, where n is the number of

input variables for the modeling function g, and the reference to the function that

111

5.1. Uncorrelated case

computes the statistical moments for the input variables x1, . . . , xn.

First we compute the derivatives of the function g upto order p:

∆g = cell(1,p+ 1);

[∆g{:}] = MADHigherDerivs(@g,µx,[],extraargs{:});

Then we initialise the computation of the expectation by computing it using the

first order moments method:

µg = g(µx)

Depending on the order of the Taylor series expansion requested, the following

holds:

% for every i th element of the vector function g

for i = 1:dimension(g)

% compute Taylor coefficients

for j = 2:p

% compute non-zero indices Λ of order j

Λ =
�

. . .
�

;

sp = 0; % spare element

for every λ ∈ Λ

% compute the number of distinct elements in every λ

% N∆θ is the number of non-zero elements in corresponding ∆θ

k̃ = N∆θ - 1;

% compute the number of repetitions of every index in λ

kλ1,. . .,kλ
k̃
= . . .;

% compute corresponding kth
l moments of the given distribution

Mλ
k1
,. . .,Mλ

kk̃
= . . .;

l = length(λ);

sp = sp +

�

kλ1 + · · ·+ kλ
k̃

�

!

kλ1 ! . . . kλ
k̃
!
∗∆g(λ) ∗

�

Mλ
k1
∗ · · · ∗Mλ

kk̃

�

∗
�

σλ(1) ∗ · · · ∗σλ(l)
�

;

112

5.2. Correlated case

end

µg(i) = µg(i) +
1

j!
∗ sp;

end

end

The most computationaly expensive step of this algorithm currently is the one that

computes the derivatives in Matlab, MADHigherDerivs. The produced derivatives

are stored in cell arrays, where the array corresponding to the pth order derivatives is

of the size m× np, m is the dimension of the function g(x), and n is the dimension of

the vector of input variables x= (x1, . . . , xn).

5.2 Correlated case

Assuming that the modeling function g(x) as well as the statistical moments up to

an order p for the input variables x = (x1, . . . , xn) are given, the implementation of

the correlated case of the moments method becomes very straight forward as there

is no longer any explicitly zero terms. With no such assumption, we must consider

every element of the approximation as the one that has possible non-zero impact on

the accuracy of the moments computations. Thus the algorithm for computing the

expectation approximation of order p is

1. compute all required derivatives upto an order p;

2. initialise the expectation computation by computing the moments method of

order 1:

µg = g(µx);

3. for all p arrays of derivatives, update the expectation of the modeling function

as

µg = µg +
1

j!

∑
�

∂ j g × corresponding moment(s)
�

,

where j = 2, . . . , p, and the sum is over all derivatives of the order j.

113

5.3. Comparison of the algorithms

5.3 Comparison of the algorithms

The algorithm for uncorrelated inputs is in fact a partial case of the one for correlated

inputs. A simple restructuring of the vectors with statistical moments for x into the

arrays of the corresponding dimensions with zeros in place of the correlations allows

us to use the more general algorithm for computing the statistical moments of the

function g(x), where all elements of x are statistically independent.

The anticipation however would be that the memory required to run the algorithm

increases as the space for storing the large arrays with the values for the statistical

moments increases exponentially. In other words, to store a 1× n vector of values

in Matlab there are 8× n bytes in use, so to store the accordingly modified n j array

of values, where j is the order of the statistical moment considered, 8× n j bytes is

required. Thus, for example, for a simple problem with only two input variables, to

store their statistical moments up to the order 16 one would use 1Mb of the memory

instead of 256 bytes when keeping them in vector form. Table 5.2 demonstrates the

change in memory requirements when one switches from the vector representation of

the statistical moments to the multidimensional array form.

Number The order Bytes Bytes

of input variables of Taylor expansion in vector form in multidimensional

array form

2 15 240 524272 ≈ 0.50Mb

16 256 1048560 ≈ 1.00Mb

3 10 240 708576 ≈ 0.68Mb

11 264 2125752 ≈ 2.03Mb

4 8 256 699040 ≈ 0.67Mb

9 288 2796192 ≈ 2.67Mb

5 7 280 781240 ≈ 0.75Mb

8 320 3906240 ≈ 3.73Mb

10 4 320 88880 ≈ 0.08Mb

6 480 8888880 ≈ 8.48Mb

Continued on the next page...

114

5.3. Comparison of the algorithms

...continued from the previous page

Number The order Bytes Bytes

of input variables of Taylor expansion in vector form in multidimensional

array form

8 640 888888880 ≈ 847.71Mb

Table 5.2: The memory requirements for storing the statistical moments of input variables. (1Mb =

1048576 Bytes)

Consequently, the running time increases as well, since the computational loop

expands. Even though we still deal with highly sparse cell arrays of large dimen-

sions that store the derivatives, when computing the moments using the uncorrelated

case we access only those derivatives that potentially produce the non-zero affect on

achieving the final result. For the correlated case however we force the program to

run through all derivatives as there is no way of knowing which one would influence

the computation.

Example 5.3.1. For the function g(x) = g(x1, x2, x3) calculation of the expectation

using 4th order moments method requires only 6 derivatives of the order 4 that cor-

respond to the non-zero terms:

¨

∂ 4 g

∂ x4
1

,
∂ 4 g

∂ x2
1∂ x2

2

,
∂ 4 g

∂ x2
1∂ x2

3

,
∂ 4 g

∂ x4
2

,
∂ 4 g

∂ x2
2∂ x2

3

,
∂ 4

∂ x4
3

«

We do not even need to repeatedly accumulate these derivatives through all possible

combinations of indices when they occur, since we simply compute their coefficients

by using (5.10). Instead of accessing those derivatives directly when knowing their

indices as it is done in the case of independent inputs, the correlated algorithm calls

for them 34 = 81 times. It is not difficult to calculate how many times the loop

is increased by when increasing the order of the moments method as well as the

dimension of the problem.

115

5.4. Test

5.4 Test

To demonstrate how the newly developed software functions, in this section we consi-

der several examples.

Example 5.4.1. As a simplest test, let us consider a polynomial function of a single

input variable

g(x) = x3+ 2x2− 3x − 4. (5.11)

The analytical results for this function with the µx = 0 andσx = 1, when x is normally

distributed are

(

µg = − 2.0000;

σ2
g = 14.0000.

The function is 3 times continuously differentiable, thus to compute accurate expec-

tation the Taylor series of the third order is required. Using MADMoments function we

get:

>> [Eg,Vg] = MADMoments(Func,3,0,1,'Normal')

Eg = -2.0000

Vg = 5.0000

Even though the third order Taylor approximation produces the exact result for the

expectation, for the variance the expectation of the squared function g2 is required

to be computed. This necessitates the sixth order Taylor series for the exact variance

approximation. Our approach makes use of the arbitrary order Taylor series giving

accurate results, limited only by the efficiency of the underlying AD tool.

>> [Eg,Vg] = MADMoments(Func,6,0,1,'Normal')

Eg = -2.0000

Vg = 14.0000

The accuracy of the result depends not only on the Taylor order, but the input’s stan-

dard deviation as well. For sufficiently small standard deviation fewer Taylor terms

116

5.4. Test

are required to get higher order accuracy in moments approximation. Analytically,

when µx = 0, σx = 0.5, the first two statistical moments for the function g are

(

µg = − 3.5000;

σ2
g = 1.8594.

The results using the third order moments method produces the following results:

>> [Eg,Vg] = MADMoments(Func,3,0,0.5,'Normal')

Eg = -3.5000

Vg = 2.0000

As well as when for µx = 0 and σx = 0.05 analytical integration results in

(

µg = − 3.99500;

σ2
g = 0.02244,

and the moments method simulation produces

>> [Eg,Vg] = MADMoments(Func,3,0,0.05,'Normal')

Eg = -3.99500

Vg = 0.02247

To obtain these results for such simple example using the third order moments

method, the computer takes virtually no run time (0.01 s and 0.03 s for the third

and the sixth order moments method, respectively). For comparison in Table 5.3 we

provide the CPU time∗ required to get similar results using the Monte Carlo method.

N Analytical MC expectation Analytical MC variance CPU

expectation error variance error time (s)

100,000 -2.000000 0.012851 14.000000 0.905540 1.94

0.023412 0.693269 1.92

0.009497 0.552186 1.91

1,000,000 0.000295 0.029438 21.52

0.001907 0.007149 21.53

Continued on the next page...
∗CPU time was obtained using Intel Core 2 Duo 2.66GHz machine with 2GB RAM

117

5.4. Test

...continued from the previous page

N Analytical MC expectation Analytical MC variance CPU

expectation error variance error time (s)

0.003163 0.209460 21.70

10,000,000 0.001865 0.022720 217.61

0.000902 0.010637 218.73

0.001081 0.003364 216.58

Table 5.3: The performance of the Monte Carlo method for the function g(x) = x3 + 2x2 − 3x − 4,

when µx = 0, σx = 1, and N is a number of MC iterations.

One can see that even after over 3 mins of running the Monte Carlo method with

10,000,000 iterations the approximation may still be considered insufficiently accu-

rate depending on the purposes of this computation.

Example 5.4.2. Let us now consider a vector function g(x) of the multiple input va-

riables

g1(x) = x1+ x2 x3− 2;

g2(x) = x1 x2+ x3+ 1;

g3(x) = x1 x2 x3.

It is a polynomial of the third order, thus we can obtain the exact values for the statis-

tical moments when choosing the right Taylor order. To compute the expectation and

the variance accurately, we require sixth order Taylor expansion. The input variables

are assumed to be statistically independent distributed around µx = (0.1,0.1, 0.1)

using normal distribution with the standard deviationsσx = (σx1
,σx2

,σx3
) = (1.0, 0.5,0.2).

We can show the change in CPU requirements when running the moments method

through the uncorrelated and correlated modes. The first one in 1.04 s† produces

>> Ex = [0.1,0.1,0.1];% the vector of expectations

†CPU time was obtained using Intel Core 2 Duo 2.66GHz machine with 2GB RAM

118

5.4. Test

>> SDx = [1,0.5,0.2]; % the vector of standard deviations

>> [Eg,Vg] = MADMoments(Func,6,Ex,SDx,'normal')

Eg =

-1.89000000000000

1.11000000000000

0.00100000000000

Vg =

1.01290000000000 0.10650000000000 0.01129000000000

0.10650000000000 0.30250000000000 0.02665000000000

0.01129000000000 0.02665000000000 0.01312900000000

For the comparison, the results obtained by MC simulation are

µg =











−1.89424208317729

1.11134506559027

0.00030327304238











,

σ2
g =











1.01466584179149 0.10608962403285 0.01110260074542

0.10608962403285 0.29975838193223 0.02651170606261

0.01110260074542 0.02651170606261 0.01319065605791











.

Providing that the higher order moments for the input variables with joint normal

distribution are known and given when calling the correlated case of the moments

method implementation, the software obtains identical results to the one for uncor-

related case within the average of 1 s‡.

Here one must keep in mind, that the general representation of the moments

method implementation does not compute statistical moments for the input variables,

and requires them to be provided as input parameters when calling the MADMomets.

It is also more difficult to obtain the general form for the statistical moments of the

known joint distribution. Thus the use of the correlated mode of the MADMoments

tool is limited by the data provided.

‡CPU time was obtained using Intel Core 2 Duo 2.66GHz machine with 2GB RAM

119

5.5. Conclusions

By increasing the number of the input variables for the function g(x) preserving

its complexity, an average CPU time for the moments method implementations re-

sembles the similar behaviour, as shown in Table 5.4. Thus when deciding which

n Average CPU time(s)

correlated uncorrelated

3 1.00 1.04

4 1.03 1.12

5 1.23 1.32

6 1.40 1.56

7 2.04 2.54

8 3.27 4.24

9 5.86 7.12

10 10.39 12.61

Table 5.4: CPU time comparison with increasing the number of input variables n for the cubic polyno-

mial vector function g.

implementation mode to use for independent input variables case one must consider

the data format available, as well as take into account the complexity of the problem

and available memory.

5.5 Conclusions

In this chapter we considered the details essential for the implementation of the mo-

ments method using Matlab. The generalised version of the algorithm deals with

both dependent and independent types of input variables. However, it requires the

manipulation of the form of the representation of the data for the independent inputs

to transform it from the intuitive vector form to cell arrays. This is coupled with an

increase in the memory and run time requirements. The algorithm for uncorrelated

inputs is also implemented separately. It is more complicated in its implementation,

but compensates in the overall computational efficiency. Therefore, if the input va-

120

5.5. Conclusions

riables are independent, this approach performs better.

The software that implements both of these techniques is available on the accom-

panying CD.

121

Chapter 6
Branch detection

So far we did not put any conditions onto the mathematical model represented by

computer code in Matlab. Except, in order to be able to compute accurate derivatives,

the function has to be continuously differentiable. However, in practice very often the

mathematical model may contain branches that can cause inadequate results even

though on every branch the function is still continuous. How can this happen?

Let us assume that the function g+(x) holds for all x > 0, while for x < 0 it is

described by g−, and if x = 0 the model triggers g0:

y =







g+, if x > 0;

g0, if x = 0;

g− otherwise.

(6.1)

When building the Taylor series, we compute the derivatives of the function only once.

However, in process the active variables may change, and so may the function. How

substantial these changes are can only be decided by the model developer. Even so

the reality is that the changes of the function cause the changes in Taylor coefficients,

thus the expected results of the simulation are actually differ from those produced

by MADMoments software. Moreover, the Taylor series is only valid for one interval

associated with the particular branch. Thus assuming a single representation of the

Taylor series for the function that contains branches results in an unreliable outcome

122

6.1. Motivation

of the MADMoments. Thus when computing the expectation for the function (6.1) one

must keep in mind that

∫ +∞

−∞
y(t) f (t)d t =

∫ 0

−∞
g−(t) f (t)d t +

∫ +∞

0

g+(t) f (t)d t. (6.2)

It means that for computing the correct expectation of the function (6.1) Taylor series

for both g+ and g− are required. However, using the moments method approach,

as described in Chapter 4, the Taylor series is only constructed for that branch of

the function the expectation of the input parameters belong to. The derivatives and

Taylor coefficients are computed just once.

The ideal solution for this kind of problem would be the ability to compute the

derivatives on the whole space of input variables and then call for the correct ones

whenever it is required. However implementation of this technique in Matlab might

only be possible using source transformation. It goes beyond the bounds of our work:

limited to the overloaded AD implementation means we are unable to prevent bran-

ching of the code. But we still can signal to the user if there are potential risks in his

model by testing it thoroughly for the presence of branches and collecting detailed

data about their location in the code. Based on the information we provide he can

make a decision on the importance of the branches and possibly change the model

by eliminating them or run the computation several times and combine the results

manually.

In this chapter of our work we define branch detection problem when dealing with

computer coded models and implement it as a part of the tool for statistical moments

computation.

6.1 Motivation

To motivate studying branches in the computer code, we consider several examples

from different areas of applications.

123

6.1. Motivation

Example 6.1.1 (Sparsity estimation for Jacobian). A function’s Jacobian is the matrix

of all first-order partial derivatives of the function of m equations g= g(x1, . . . , xn):

J =

















∂ g1

∂ x1

∂ g1

∂ x2
. . . ∂ g1

∂ xn
∂ g2

∂ x1

∂ g2

∂ x2
. . . ∂ g2

∂ xn

.
∂ gm

∂ x1

∂ gm

∂ x2
. . . ∂ gm

∂ xn

















.

Let us consider protopypical some function g that contains a branch.

function g = g(x1, x2, x3)

if x1 > 0

g = [x1; x2 x3]

else

g = [x1 x2; x3]

end

Analytically computing the Jacobian for such a function we get

J =























1 0 0

0 x3 x2



 , if x1 > 0;




x2 x1 0

0 0 1



 , if x1 ¶ 0.

(6.3)

Therefore, the corresponding sparsity pattern SJ for (6.3) actually also has two pos-

sible evaluations:

SJ =























1 0 0

0 1 1



 , if x1 > 0;




1 1 0

0 0 1



 , if x1 ¶ 0.

(6.4)

It is clear that the sparsity pattern for both branches differ from each other. Whenever

one refers to the Jacobian or its sparsity matrix now, it is important to know whether

or not the correct values for the triggered branch were used.

Example 6.1.2. One of the ways to implement the reverse mode for the AD requires

124

6.2. Dealing with branches

recording mathematical operations used to describe the function. For the function

function g = g(x1, x2, x3)

if x1 > 0

g = x1+ x2× x3

else

g = x1+ x2+ x3

end

there are two tapes of operations



























× x2 x3 v

+ v x1 g
, x1 > 0;

+ x1 x2 v

+ v x3 g
, x1 ¶ 0.

(6.5)

Here, the first column corresponds to the operation types, the second and third ones

store the operation’s arguments, and the last column contains the result of the opera-

tion.

One can see that the branch detection problem is raised not only for computating

Taylor series coefficients. When disregarding information about the structure of the

mathematical model, one risks analysing the results by executing the incorrect branch

of the function. Needless to say, the cases when such mistakes happen can cause

critical errors in application.

6.2 Dealing with branches

Summing up all of the above, one can define branch detection as a detection of

data-dependent control flow.

To tackle the problem of branch detection in Matlab, we overload the main com-

parison functions and introduce a new global variable that is assigned for storing all

125

6.2. Dealing with branches

the collected information about the branches in the code. However, not every branch

in the code leads to the problems with derivatives computation. Thus when overloa-

ding comparison functions, we only overload those that deal with active variables,

meaning the comparison functions of the class fmad.

6.2.1 Global variable MADBRANCHES

The draw back of any overloading operation is the fact that the code and therefore

the functionality of the function get modified. By overloading fundamental functions

of the certain class one has to take into account the impact on the whole library.

Indeed one has to respect the interface of the function, such as the number of input

parameters, the type of the arguments and the returned values. Therefore, the simple

mechanism that allows to alter the behaviour of the function by adding to it the

required functionality is needed. When calling for function only arguments and global

variables can access and influence the function return. Avoiding any changes in input

arguments, the only solution is to use a global variable.

In the case of the comparison functions, we do not want them to produce the

branch related information by default every time they are used. Supplementary

functionality achieved via using global variables may influence the computational ex-

pense. And clearly it is not always necessary to conduct the branch detection. There

are plenty of tasks for automatic differentiation tool when branching can be neglec-

ted.

The global variable, we call it MADBRANCHES, gathers the information required

for the user to make an adequate decision about the importance of the branches in

the function code. In Matlab we define MADBRANCHES as a structured variable that

contains four fields

.switch

The switch component is of the logical data type. It can possess the value

of TRUE or FALSE and its purpose is to indicate whether or not the branch

126

6.2. Dealing with branches

detection is required. Due to this field, the overridden functions do not ac-

tually trigger the modified areas of the code unless it is required to do so, i.e.

MADBRANCHES.switch = TRUE.

.new

This field is an actual branch tape. In other words, it is a vector of values of

logical type that corresponds to the comparison results: whenever the compari-

son holds true, the value recorded on the tape is TRUE, otherwise it is FALSE.

For example,

c = x > y;

MADBRANCHES.new = [MADBRANCHES.new; c(:)];

This tape allows the user to analyse the behaviour of the function when hitting

the branch.

.info{:, 1:5}

It contains all the information about the hit branches that can be collected

using the Matlab instruction dbstack('-completenames'). dbstack re-

turns file - the file in which the function appears, name - the name of the

function within the file, and line - the line number within the function. The

first parameter of .info corresponds to the sequence number of the branch, the

second one accommodates five strings of the information: file name, function

name, line number, operation type and the number of times the branch is hit.

.old

Whenever it is necessary to consider the results of several different function

runs, this field allows us to store the previous branch tape available for compa-

rison and analysis.

Clearly, the global variable MADBRANCHES does not exist by default. The function

is required to determine the user’s request for branch detection as well as the structure

of MADBRANCHES preparing it for future use. We call this function MADSetBranches.

127

6.2. Dealing with branches

Branch operation type Corresponding operation commands

BranchDetection 'on' – turns the branch detection on;

'off' – switches the branch detection off, but does not
clear the global branch variable;

'clear' – clears the global branch variable and turns the
detection off;

'again' – records the information about the previously
detected branches by copying the branch tape
into MADBRANCHES.old.

Table 6.1: The combination of the branch operation type and corresponding operation command as

used in MADSetBranches.

It has two inputs, branch operation type and branch operation command. Table 6.1

contains permitted values for these two inputs. The algorithm for MADSetBranches

written in pseudo-code is presented here. The functioning Matlab code can be found

on the CD supplied with this work. As an output it creates or removes structured

MADBRANCHES.

function MADSetBranches(operation_t ype, operation_command)

global MADBRANCHES;

if operation_t ype == 'BranchDetection'

if operation_command == 'on' then

% creates a field to store the new branch tape

MADBRANCHES.new = [];

% creates a field to store the branches information

MADBRANCHES.info = [];

% creates a field to count the number of branches in the code

MADBRANCHES.i = 1;

% creates table for sorted information about branches

MADBRANCHES.info{1,1} = ’File Name’;

MADBRANCHES.info{1,2} = ’Function Name’;

128

6.2. Dealing with branches

MADBRANCHES.info{1,3} = ’Line Number’;

MADBRANCHES.info{1,4} = ’Operation Type’;

MADBRANCHES.info{1,5} = ’Number of Hits’;

% activates the use of the branch detection

MADBRANCHES.switch = t rue;

end

if operation_command == 'off' then

% deactivates the use of the branch detection

MADBRANCHES.switch = f alse;

end

if operation_command == 'clear' then

% clears the global variable

clear global MADBRANCHES;

end

if operation_command == 'again' then

% copies branch tape of the previous run for further comparison

MADBRANCHES.old = MADBRANCHES.new;

% repeats the processes as for operation_command = ’on’

MADSetBranches('BranchDetection','on');

end

end

Although the function MADSetBranches has the ability to activate the branch

detection process, it does not have the functionality for obtaining and recording in-

formation about the branches.

129

6.2. Dealing with branches

6.2.2 Overloading of comparison functions

Whenever MADSetBranches receives input operation type 'on' or 'again', it sets

up the structured global variable. Yet the structure is not filled with the information:

it is empty but ready to accept the data. We now need to establish the connection

between the comparison functions and variable MADBRANCHES.

There are six comparison functions in fmad.

Comparison: == >= > <= < ∼=
Function name in Matlab: eq.m ge.m gt.m le.m lt.m ne.m

Let us consider the equality function eq.m in detail and demonstrate the changes

made by overriding.

function y = eq(a, b)

y = getvalue(a) == getvalue(b);

MADStoreBranches(a, b, y,'eq');

In this function either a, or b, or both a and b are active, i.e. have derivatives. When

comparing two variables of fmad type, only their values are compared, not the va-

lues of their derivatives. The function getvalue returns the value of the variable.

Function MADStoreBranches updates the information on branch detection stored in

MADBRANCHES.

function MADStoreBranches(a, b, y, op)

global MADBRANCHES;

% checks if the branch detection is switched on

if MADBRANCHES.switch

% adds comparison outputs to the branch tape

MADBRANCHES.new = [MADBRANCHES.new; y];

% get information of the function call stack

f unct ion_in f o = dbstack('-completenames');

% number of branch locations detected

i = MADBRANCHES.i;

130

6.2. Dealing with branches

% detector if this branch was detected before

check = FALSE;

for all j - branches detected by now

if current branch has been seen before, i.e. matches the branch j

% increase the number of hits for j th branch by 1

MADBRANCHES.info{ j, 5} = MADBRANCHES.info{ j, 5}+1;

% note that this location has been seen before

check = TRUE;

end

% if the location has not been seen before, save it as a new one

if check == FALSE

% update the number of branches detected in the code

i = i+ 1

% record the branch information into the specialised fields

MADBRANCHES.info{i, 1} = f unct ion_in f o(3).file;

MADBRANCHES.info{i, 2} = f unct ion_in f o(3).name;

MADBRANCHES.info{i, 3} = f unct ion_in f o(3).line;

MADBRANCHES.info{i, 4} = op;

MADBRANCHES.info{i, 5} = 1;

MADBRANCHES.i = i;

end

end

end

Thus we obtain detailed information about branches which is kept as a set of

values in MADBRANCHES. However, the structure of the global variable is multidimen-

sional, and as a result not easily accessible.

131

6.2. Dealing with branches

6.2.3 Accessing branch data

To be able to analyse and compare the information stored in MADBRANCHES without

getting into the details of the whole branch detection implementation a specified

routine for allocating different sets of data is developed. The options for the output

include

- the newly recorded branch tape - MADBRANCHES.new;

- previously recorded branch tapes - MADBRANCHES.old;

- all recorded branch tapes, new and old ones, simultaneously;

- detailed information about the locations, types and frequencies of the branches

occurred in the computer coded model - MADBRANCHES.info.

The function to access all of these outputs is called MADGetBranches. It contains a

single argument that indicates the type of the information required:

'Branches' – provides most recently recorded branch tape;

'OldBranches' – reproduce previously recorded branch tapes;

'AllBranches' – prints out all recorded branch tapes;

'HTML' – creates HTML page with the table containing file and function

names, line numbers, types of branches and the number of

their hits.

As it is clear where the branch tapes are coming from and it is easy to systematise the

output, there is no command in Matlab for the straight forward presentation of the

data in HTML format. Therefore, to implement that option in the routine we create

the .html file and fill it in with the required HTML code.

132

6.3. Tests

6.3 Tests

To demonstrate the functionality of the branch detection algorithms implemented in

Matlab, we consider here several coded functions with active variables - variables

with derivatives. The branches in Matlab are usually given by the executive state-

ments with certain conditions holding. These are if and while. We do not consider

branches caused by case since case should only be used for comparing discrete and

hence non-differentiable values.

Example 6.3.1. Let us consider the function that contains both if and while.

function y = func(a, b, c)

v = a+ b;

if v > 2

y = 2 ∗ c;

else

y = v. ∗ c;

end

while a > 1

y = y + 1;

a = a./2;

end

We first give values to the arguments of the function. Let them be

>> a = 1;

>> b = 2;

>> c = -0.5;

The function with these inputs gets the value y =−1:

>> y = func(a,b,c)

y =

-1

133

6.3. Tests

We now want to differentiate the function with respect to a, b, and c. In fmad format

in Matlab the variables are then given as

>> a = fmad(1,[1,0,0]);

>> b = fmad(2,[0,1,0]);

>> c = fmad(-0.5,[0,0,1]);

When running the function for these inputs, we now can also obtain the derivatives

at the specified points:

>> y = func(a,b,c);

>> yvalue = getvalue(y)

yvalue =

-1

>> yderivs = getderivs(y)

yderivs(:,:,1) =

0

yderivs(:,:,2) =

0

yderivs(:,:,3) =

2

However these are the derivatives computed with respect to the branches triggered

in the code. Certainly, once we change input values the derivatives change as well.

But when we are dealing with a case like constructing Taylor series, a discontinuity

of the function and its derivatives results in sharp changes of the Taylor coefficients.

Thus let us test the function for the purpose of detecting possibile discontinuities in

the code.

>> MADSetBranches('BranchDetection','on');

>> y = func(a,b,c);

At this point we can call for data about branches in two ways.

>> branches = MADGetBranches('Branches')

134

6.3. Tests

branches =

1

0

We can see that there are two branches being hit: on the first one the condition is

fulfilled, thus the value of the branch is TRUE, the second one does not hold and the

value recorded on the tape is FALSE. Instead of looking through the code searching

for branches we call

>> MADGetBranches('HTML')

that produces the html table as in figure 6.1. It is documented that the branches are

Figure 6.1: The summary of branch detection results in html form.

on the lines 4 and 9 of the function func.m, both of them are for the operation of

comparison gt, greater, and are triggered only once.

The necessity of the warning on the created HTML page is caused by Matlab com-

pilation of code containing the while command. Let us change the values of the

input parameters:

>> a = fmad(12,[1,0,0]);

>> b = fmad(-11,[0,1,0]);

>> c = fmad(1,[0,0,1]);

The branch tape for this function differs from the previous one.

>> MADSetBranches('BranchDetection','again');

135

6.3. Tests

>> y = func(a,b,c);

>> branches = MADGetBranches('AllBranches')

branches =

[2x1 double] [6x1 double]

Now the first cell array of branches contains the old branch tape, when the second

one corresponds to the new one.

>> branches{1}

ans =

1

0

>> branches{2}

ans =

0

1

1

1

1

0

The change in number of elements in the tapes is due to the multiple hits of the while

command this time. However, when calling for the HTML data display

>> MADGetBranches('HTML')

the three branches listed are potentially confusing (see figure 6.2). When debugging

the program in Matlab, we do not get the third branch record. Instead, the number

of hits on the line 9 is 5. But the compiler assigns the comparison repetitions on that

line to the end of the cycle. Thus we produce the notice at the bottom of the HTML

document that warns the user about this peculiarity of the Matlab compiler. In fact,

to get the correct number of hits for the while cycle one must add together the result

for the line with the while and the line with the corresponding end.

136

6.4. Branch detecting in MADMoments

Figure 6.2: The summary of branch detection results in html form.

6.4 Branch detecting in MADMoments

We have integrated the branch detection tool into our package for computing statisti-

cal moments MADMoments. MADSetBranches, MADGetBranches and

MADStoreBranches are combined in our MADBranchDetection package, and to-

gether with overloaded comparison functions are available as an update for the fmad

tool, we now only need to add an extra option for the MADMoments function to acti-

vate branch detection whenever it is required and displaying the outcome of the test

as a HTML document. It makes sense to limit the output options for branch detection

used in MADMoments to avoid the risk of overdoing the complexity of the statistical

moments package. When the users receive warning information with the necessary

summary about the presence of the branches in his/her code, it is upto them to test

the code using the other options provided for branch detection beyond MADMoments.

Thus, to call MADMoments one must add the combination of two extra argu-

ments - branch operation type and corresponding operation command, as described

in Table 6.1.

Example 6.4.1. Let us consider a function that contains active branch:

function y = Func(x1, x2, x3)

137

6.4. Branch detecting in MADMoments

if x3 > 0

y = x(3)*
�

sin
�

x(1)
�

+cos
�

x(2)
�

�

;

else

y = sin
�

x(1)
�

-cos
�

x(2)
�

;

end

We assume the statistical independency of the input variables. When running the mo-

ments method for such function we expect different results depending on the value

of x3.

>> Ex = [0.1,0.2,-1]; % the expectation of the input variable x

>> SDx = [0.1,0.1,0.3]; % the standard deviation of the input variable x

>> p = 8; % the order of the Taylor series expansion

>> [Ey,Vy] = MADMoments(@Func,p,Ex,SDx,'normal',. . .

. . . 'BranchDetection','on')

The branch detection is switched on.

Please, make sure you use one of on/clear/off/again commands

for every new run of the function!

Ey = -0.875842979987688

Vy = 0.010239170380712

The program also produces the branch report as shown in Figure 6.3.

Figure 6.3: The summary of branch detection results in html form.

138

6.5. Conclusions

By tracing the branch and changing the value of x3 accordingly

>> Ex = [0.1,0.2,1]; % the expectation of the input variable x

we obtain the results based on the Taylor series expansion for the other branch of the

function:

>> [Ey,Vy] = MADMoments(@Func,p,Ex,SDx,'normal')

Ey = 1.074513970795767

Vy = 0.115059310430860

6.5 Conclusions

Branches in modeling functions can be the cause of serious errors in the final results.

Without being able to detect and analyse them, the user may unknownly obtain non-

reliable outcomes of the simulation.

In this chapter, we developed the tool that helps the user discover and collect the

information on branches in the computer coded model that may have a potentially

harmful affect on the result of the modeling. Our tool can function as a part of the

moments computation package as well as on its own when required.

The developed software is available on the accompanying CD as an independent

tool as well as an integrated option in the MADMoments package.

139

Chapter 7
Conclusion and future work

7.1 Summary of results

In this work we gave detailed consideration to one of the tools for the uncertainty

estimation - the moments method. Due to the rapid improvements in the field of

automatic differentiation, it was deemed appropriate to investigate the moments me-

thod in order to expand its capability and as a result its area of applicability. The

technique is based on the use of the Taylor series of the function described by the

computational model. Thus, due to the inability (or limited ability) to differentiate

computer coded modelling function, the importance of the moments method has not

been fully appreciated until recently.

Since the moments method implementation requires the understanding and the

use of the automatic differentiation tool, we started the work by taking a closer look

at the AD background and made a modest advance in this area by developing the nu-

merical quadrature for Matlab, quadMAD. We have also proved that applying an AD

tool to determine sensitivities with respect to the limits of integration for an arbitrary

quadrature scheme gives approximations to the analytic derivatives with order of ac-

curacy commensurate with that of the underlying quadrature provided the integrand

is sufficiently differentiable. The software has been tested on the previously published

example of [29] proving itself to be a more accurate tool for the task.

140

7.1. Summary of results

In Chapter 4 we tried two different approaches to automatically apply the mo-

ments method for statistical moments of order greater than two. The first, which for

the variance involves squaring the function’s Taylor series and then taking the expec-

tation, gets algebraically very complicated with increasing Taylor series order. The

second, in which we determine the Taylor series of the square of the function and

then take the expectation, allows us to compute the moments approximations up to

an arbitrary order of the Taylor expansion. Such a technique allows the user to adapt

the order of approximation based on the particular properties of the function defined

by the computational model.

While developing the moments method implementation in Matlab we have mana-

ged to take into account not only independent inputs for the scalar modelling func-

tion, as by previous authors [3], [4], [15], etc., but extended it in Chapter 4 for vector

functions with correlated input variables: the user also has the freedom to choose the

required distribution from either those that are well-known and published or those

specially developed for their particular modelling problem.

As a result of the conducted work, the main constraints on the efficiency of the

moments method currently are those related to the higher order derivatives computa-

tions required. Our present Matlab implementation is unable to take advantage of the

symmetry of higher order derivatives, e.g. ∂ 2 g/∂ x1∂ x2 = ∂
2 g/∂ x2∂ x1 as has been

done using other AD tools in C++, [25]. Presently we have not taken advantage of

reverse mode for cases when the number of output variables is small compared to the

number of inputs. It also is unable to deal with sparsity in the derivatives’ represen-

tation. Thus the CPU time required to differentiate the function upto any requested

order takes up the major share of the overall running time. Depending on the size

of the modelling problem, the storage of the derivatives can also excessively demand

large amounts of memory. As a result our run time and memory costs are higher than

strictly necessary for an AD-based technique. Nevertheless, when comparing the mo-

ments method implemented in Matlab to the most common tool for such tasks, Monte

141

7.1. Summary of results

Carlo simulation, the use of MADMoments is undoubtedly the way to go for small pro-

blems, those with only a handful of input variables. The examples in Chapters 4 and 5

compare the MC and moments methods. The moments method allows us to obtain

accurate results as the properties of the function can be accounted for by an adequate

choice of the Taylor order. The moments method outperforms Monte Carlo not only

in run time, but also in terms of accuracy as well. When increasing the number of in-

put parameters in the modelling function or the function’s computational complexity,

the computational expenses for both methods increases as well. Computing variance

using moments method approximations for non-linear functions, can often be less ef-

ficient than Monte Carlo simulations, as MC gets similarly accurate results with less

run time. However, the MC results are obtained using a random number generator,

thus vary from run to run, and therefore the precision varies as well. With higher run

time requirements the moments method results are still more consistent, thus more

reliable. Moreover, with future development of AD tools in Matlab, we expect the

moments method to decidedly break forward, ahead of MC method, since as it was

already mentioned, today the derivative computation is the main run time consumer.

There are many restrictions on the use of the Taylor series that cause correspon-

ding problems when implementing the moments method. Discontinuous functions

require multiple evaluations of the Taylor coefficients which is currently not possible

in Matlab. However we considered one such case, that when a function’s discontinuity

is represented in the computer code as a branch. Even though we are still unable to

deliver the moments approximation that accounts for the changes in control flow, in

Chapter 6 we have developed a tool for detecting and collecting the information about

branches. This leaves it upto a user to decide whether or not the discovered branches

influence expected results.

Convergence issues are considered in Chapter 4. As a tool for dealing with loss

of convergence caused by imaginary poles, the partitioning approach, suggested by

Christianson and Cox [16], was developed. Presently, it has only been developed for

142

7.2. Future work

the one-dimensional case, thus can not yet be used for general problems.

The experiments presented in this thesis can easily be repeated using the MADMoments

tool available on the accompanying CD and the necessary guidance notes throughout

the work.

Different parts of this thesis were presented at several conferences and workshops,

such as Fifth, Sixth and Seventh European AD Workshops, Fifth International AD

Conference and First African Conference on Computational Mechanics. We have not

yet published any articles on the subjects considered in this work. However, we hope

to do so shortly after the thesis submission.

7.2 Future work

While working on this thesis some issues and questions have been raised. In this

section we summarise them as possible options for future work.

When the modelling function has fewer outputs than inputs, the forward mode

of the automatic differentiation is no longer considered efficient, as the number of

the derivatives for computing Taylor coefficients grows and consequently so do the

corresponding costs. According to Neidinger [31], the cost of the forward AD mode

roughly can be estimated as 3n+ 1 function evaluations, where n is the number of

inputs. However, the reverse AD mode cost does not depend on the the number of

inputs, but the number of outputs instead, which is sufficiently small in comparison

to the inputs. Thus, one of the possible ways to improve the efficiency of the mo-

ments method for such cases would be to implement the reverse mode for derivatives

computations.

We also still do not know how to choose the order of the Taylor series to obtain

the desired accuracy of the approximation. Corliss et al., [32, 33], used Taylor series

for solving ordinary differential equations, dealing with the singularities issues and

automating the choice of Taylor order. This analysis might be adapted for use in

143

7.2. Future work

the moments computation. This should allow us to improve the moments method’s

efficiency, as one would be able to reduce the order of the derivatives to compute,

and thus to reduce the computation time and memory requirements.

There are many difficulties coupled with the use of Taylor series. In this work we

successfully dealt with convergence issues associated with imaginary poles. Howe-

ver, the partitioning approach that takes care of such problems is so far considered

only for simple one-dimensional problems. Can this approach be extended to higher

dimensional inputs?

Branches in computer coded modelling functions can also raise problems with the

results’ reliability. Even though we developed a tool that can identify and locate po-

tential problems, the neat way to deal with branches would be the ability to compute

and store Taylor coefficients for all possible changes in control flow.

Due to all the issues associated with Taylor series, the use of moments method is

often questioned, as in [7, 10] for example. What are the reasonable alternatives?

Would the use of Gauss-Hermite quadrature methods be more fruitful for computing

the statistical moments of the function when the input variables are normally distri-

buted, as suggested by [8]?

When developing and testing the software for computing statistical moments, we

have not had access to any engineering data. Tests related to real world problems are

still needed.

144

Bibliography

[1] Bilal M. Ayyub and Richard H. McCuen. Probability, statistics, and reliability for

engineers. CRC Press, 1997.

[2] William L. Oberkampf, Jon C. Helton, Cliff A. Joslyn, Steven F. Wojtkiewicz, and

Scott Ferson. Challenge problems: Uncertainty in system response given uncer-

tain parameters. Reliability Engineering and System Safety, 85:11–19, 2004.

[3] Andy J. Keane and Prasanth B. Nair. Computational approaches for aerospace

design. The pursuit of excellence. John Wiley and Sons, 2005.

[4] D. Ghate and M.B. Giles. Inexpensive Monte Carlo uncertainty analysis, pages

203–210. Tata McGraw-Hill, New Delhi, 2006.

[5] Michael C. Brooks and William R. Wise. Quantifying uncertainty due to ran-

dom errors for moment analysis of breakthrough curves. Journal of Hydrology,

303:165–175, 2005.

[6] Bruno Sadret and Imane Cherradi. Quadrature method for finite element relia-

bility analysis. In 9th International Conference on Applications of Statistics and

Probability in Civil Engineering, 2003.

[7] Mattia Padulo, Michele Sergio Campobasso, and Marin Dimitrov Guenov. Com-

parative analysis of uncertainty propagation methods for robust engineering

design. In International Conference on Engineering Design. ICED’07, 2007.

145

BIBLIOGRAPHY

[8] Jr Richard V. Field, Thomas L. Paez, and John R. Red-Horse. Utilizing gauss-

hermit quadrature to evaluate uncertainty in dynamic system response. In Pro-

ceedings of the 17th International Modal Analysis Conference, volume 3727(2),

pages 1856–1861, 1999.

[9] L.D. Kudryavtsev. Encyclopedia of Mathematics. Kluwer Academic Publishers,

2001.

[10] Mattia Padulo, Shaun A. Forth, and Marin D. Guenov. Robust aircraft conceptual

design using automatic differentiation in matlab. Lecture Notes in Computational

Science and Engineering, 64:271–280, 2008.

[11] M.M.R. Williams. Polynomial chaos functions and stochastic differential equa-

tions. Annals of Nuclear Energy, 33:774–785, 2006.

[12] George Stefanou. The stochastic finite element method: Past, present and fu-

ture. Comput. Methods Appl. Mech. Engrg., 198:1031–1051, 2009.

[13] T. Lovett, F. Ponci, and A. Monti. A polynomial chaos approach to measurement

uncertainty. In International Workshop in Advanced Methods for Uncertainty Es-

timation in Measurement, AMUEM 2005, 2005.

[14] Athanasios Papoulis and S. Unnikrishna Pillai. Probability, random variables, and

stochastic processes. McGraw-Hill, 4th edition, 2002.

[15] Michele M. Putko, Perry. A. Newman, Arthur C. Taylor III, and Lawrence. L.

Green. Approach for uncertainty propagation and robust design in CFD using

sensitivity derivatives. In 15th AIAA Computational Fluid Dynamics Conference,

AIAA, pages 2001–2528, Anaheim, CA, 2001.

[16] Bruce Christianson and Maurice Cox. Automatic propagation of uncertainties.

In H. M. B, editor, Automatic Differentiation: Applications, Theory, and Implemen-

146

BIBLIOGRAPHY

tations, Lecture Notes in Computational Science and Engineering, pages 47–58.

Springer, 2005.

[17] Shaun A. Forth. An efficient overloaded implementation of forward mode auto-

matic differentiation in MATLAB. ACM Transactions on Mathematical Software,

32(2):195–222, jun 2006.

[18] Bruce E. Wampold and Clifford J. Drew. Theory and application of statistics.

McGraw-Hill, 1990.

[19] Donald R. Barr and Peter W. Zehna. Probability: Modelling uncertainty. Addison-

Wesley, 1983.

[20] William W. Hines and Douglas C. Montgomery. Probability and statistics in engi-

neering and management science. John Wiley and Sons, 3rd edition, 1990.

[21] Olkin Ingram, Leon J. Gleser, and Cyrus Derman. Probability models and appli-

cations. Macmillan College Publishing Company, 2nd edition, 1994.

[22] Robert A. Adams. Calculus, a complete course. Addison-Wesley, 4th edition,

1999.

[23] Murray R. Spiegel. Schaum’s outline of theory and problems of complex variables

with an introduction to conformal mapping and its applications. Schaum publi-

shing company, 1964.

[24] Albert Meyer and Radhika Nagpal. Course notes 9: Permutations

and combinations, 2002. http://ocw.mit.edu/NR/rdonlyres/Electrical-

Engineering-and-Computer-Science/6-042JMathematics-for-Computer-

ScienceFall2002/41E2F2B7-03BB-4956-9A5B-3BBCAE245073/0/ln9.pdf

Last accessed on 05 August 2009.

[25] Andreas Griewank. Evaluating derivatives. Principles and techniques of algorith-

mic differentiation. SIAM, 2000.

147

BIBLIOGRAPHY

[26] Arun Verma. An introduction to automatic differentiation. Current Science,

78(7):804–807, 2000.

[27] S.D. Conte and Carl de Boor. Elementary Numerical Analysis - An Algorithmic

Approach. McGraw-Hill, 3rd edition, 1981.

[28] G.M. Phillips and P.J. Taylor. Theory and applications on numerical analysis.

Academic Press, 1989.

[29] Robert Cudeck. Fitting psychometric models with methods based on automatic

differentiation. Psychometrica, 70(4):599–617, 2005.

[30] Douglas G. Bonnet. Comments, conjectures and conclusions: A new algorithm

for the tetrachoric correlation. Journal of Statistical Computation and Simula-

tion, 76(8):737–740, 2006.

[31] Richard D. Neidinger. Introduction to automatic differentiation and Matlab

object-oriented programming. Davidson College, October 15, 2009.

[32] George Corliss and Y.F. Chang. Solving ordinary differential equations using

taylor series. ACM Transactions on Mathematical Software, 8(2):114–144, 1982.

[33] George Corliss and Gabriela Kirlinger. On implicit taylor series methods for

stiff odes. In Proceedings of SCAN’91: International Symposium on Computer

Arithmetic and Scientific Computing, 1991.

148

Appendix A
Calculations for expectation and

variance

This section of the work includes all necessary details for understanding the resulting

formulas in Chapter 4 when deriving the statistical moments using first approach.

Section 4.1.1 follows well explained steps when obtaining the expectation and the

variance using Taylor series of a single variable. However, the extension of the method

for the Taylor series with multiple variables requires more insight.

When x ∈ Rn, the Taylor series expansion of the function g(x) about µx is

g(x) = g +
n
∑

i=1

∂ g

∂ x i
(x i −µx i

) +
1

2!

n
∑

i=1

n
∑

j=1

∂ 2 g

∂ x i∂ x j
(x i −µx i

)(x j −µx j
)

+
1

3!

n
∑

i=1

n
∑

j=1

n
∑

k=1

∂ 3 g

∂ x i∂ x j∂ xk
(x i −µx i

)(x j −µx j
)(xk −µxk

)

+ . . . (A.1)

Applying the expectation operator to (A.1)we get

µg = E
�

g(x)
�

= E
�

g
�

+
n
∑

i=1

∂ g

∂ x i
E(x i −µx i

)

+
1

2!

n
∑

i=1

n
∑

j=1

∂ 2 g

∂ x i∂ x j
E
�

(x i −µx i
)(x j −µx j

)
�

149

A.1. First approach

+
1

3!

n
∑

i=1

n
∑

j=1

n
∑

k=1

∂ 3 g

∂ x i∂ x j∂ xk
E
�

(x i −µx i
)(x j −µx j

)(xk −µxk
)
�

+ . . . (A.2)

In Section 4.1.2 we assume statistical independence of the variables, meaning

E
�

(x i −µx i
)(x j −µx j

)
�

=







σ2
x i

, if i = j,

E(x i −µx i
)E(x j −µx j

) = 0, otherwise,
(A.3)

thus taking into account that E(x i −µx i
) = 0, (A.2) becomes

µg = g +
1

2!

n
∑

i=1

∂ 2 g

∂ x2
i

σ2
x i
+

1

3!

n
∑

i=1

∂ 3 g

∂ x3
i

S(x i)σ
3
x i
+ . . . (A.4)

A.1 First approach

We are now trying to compute variance using the 2nd order moments method accor-

ding to Ghate and Giles, [4], thus only the 2nd order expectation approximation is

required:

µg = g +
1

2!

n
∑

i=1

∂ 2 g

∂ x2
i

σ2
x i
+O(σ3

x). (A.5)

Taking into account that the variance is σ2
g = E(g2)−E(g)2, we need to square the

expectation approximation as well as Taylor series of the function g before applying

the expectation operator to it.

The squared approximation of (A.5) is

E(g)2 = g2+ g
n
∑

i=1

∂ 2 g

∂ x2
i

σ2
x i
+

1

4

n
∑

i=1

�

∂ 2 g

∂ x2
i

�2

σ4
x i

+
1

4

n
∑

i=1

n
∑

j=1
j 6=i

∂ 2 g

∂ x2
i

∂ 2 g

∂ x2
j

σ2
x i
σ2

x j
. (A.6)

150

A.1. First approach

When squaring the Taylor series of 2nd order for function g we get

g2(x) = g2(µx) +

n
∑

i=1

∂ g

∂ x i
(x i −µx i

)

!2

+

1

2!

n
∑

i=1

n
∑

j=1

∂ 2 g

∂ x i∂ x j
(x i −µx i

)(x j −µx j
)

!2

+2× g(µx)
n
∑

i=1

∂ g

∂ x i
(x i −µx i

)

+2×
1

2!
g

n
∑

i=1

n
∑

j=1

∂ 2 g

∂ x i∂ x j
(x i −µx i

)(x j −µx j
)

+2×

n
∑

i=1

∂ g

∂ x i
(x i −µx i

)

!

×

1

2!

n
∑

i=1

n
∑

j=1

∂ 2 g

∂ x i∂ x j
(x i −µx i

)(x j −µx j
)

!

. (A.7)

We now apply the expectation operator to (A.7) simplifying some of the notations on

the way due to the assumed input variables independency (A.3). Thus,

E(g2) = E
�

g2(µx)
�

+
n
∑

i=1

�

∂ g

∂ x i

�2

E
�

(x i −µx i
)2
�

+
�

1

2!

�2 n
∑

i=1

�

∂ 2 g

∂ x2
i

�2

E
�

(x i −µx i
)4
�

+
�

1

2!

�2 n
∑

i=1

n
∑

j=1
j 6=i

∂ 2 g

∂ x2
i

∂ 2 g

∂ x2
j

E
�

(x i −µx i
)2(x j −µx j

)2
�

+2×
�

1

2!

�2 n
∑

i=1

n
∑

j=1
j 6=i

�

∂ 2 g

∂ x i∂ x j

�2

E
�

(x i −µx i
)2(x j −µx j

)2
�

+2×
1

2!
g

n
∑

i=1

∂ 2 g

∂ x2
i

E
�

(x i −µx i
)2
�

+2×
1

2!

n
∑

i=1

∂ 2 g

∂ x2
i

∂ g

∂ x i
E
�

(x i −µx i
)3
�

= g2(µx) +
n
∑

i=1

�

∂ g

∂ x i

�2

σ2
x i
+

1

4

n
∑

i=1

�

∂ 2 g

∂ x2
i

�2

K(x i)σ
4
x i

151

A.1. First approach

+
1

4

n
∑

i=1

n
∑

j=1
j 6=i

∂ 2 g

∂ x2
i

∂ 2 g

∂ x2
j

σ2
x i
σ2

x j
+

1

2

n
∑

i=1

n
∑

j=1
j 6=i

�

∂ 2 g

∂ x i∂ x j

�2

σ2
x i
σ2

x j

+g
n
∑

i=1

∂ 2 g

∂ x2
i

σ2
x i
+

n
∑

i=1

∂ 2 g

∂ x2
i

∂ g

∂ x i
S(x i)σ

3
x i

(A.8)

By subtracting (A.6) from (A.8) we get the 2nd order moments method for the va-

riance:

σ2
g = E(g2)− E(g)2

=
n
∑

i=1

�

∂ g

∂ x i

�2

σ2
x i
+

n
∑

i=1

∂ 2 g

∂ x2
i

∂ g

∂ x i
S(x i)σ

3
x i

+
1

2

n
∑

i=1

n
∑

j=1
j 6=i

�

∂ 2 g

∂ x i∂ x j

�2

σ2
x i
σ2

x j

+
1

4

n
∑

i=1

�

∂ 2 g

∂ x2
i

�2
�

K(x i)− 1
�

σ4
x i

(A.9)

Assuming that x ∈ R it is easy to see that both (A.5) and (A.9) are transformed into

the 2nd order moments method for single variable case (4.6) and (4.9), respectively.

Analogously, we now obtain the 3rd order moments method. For expectation it is

µg = g +
1

2!

n
∑

i=1

∂ 2 g

∂ x2
i

σ2
x i
+

1

3!

n
∑

i=1

∂ 3 g

∂ x3
i

S(x i)σ
3
x i
+O(σ4

x) (A.10)

as follows from (A.4). To get E(g)2 we square (A.10):

E(g)2 = g2(µx) +
�

1

2!

�2 n
∑

i=1

�

∂ 2 g

∂ x2
i

�2

σ4
x i

+
�

1

2!

�2 n
∑

i=1

n
∑

j=1
j 6=i

∂ 2 g

∂ x2
i

∂ 2 g

∂ x2
j

σ2
x i
σ2

x j

+
�

1

3!

�2 n
∑

i=1

�

∂ 3 g

∂ x3
i

�2

S(x i)
2σ6

x i

+
�

1

3!

�2 n
∑

i=1

n
∑

j=1
j 6=i

∂ 3 g

∂ x3
i

∂ 3 g

∂ x3
j

S(x i)S(x j)σ
3
x i
σ3

x j

152

A.1. First approach

+g
n
∑

i=1

∂ 2 g

∂ x2
i

σ2
x i
+ 2×

1

3!
g

n
∑

i=1

∂ 3 g

∂ x3
i

S(x i)σ
3
x i

+
1

3!

n
∑

i=1

∂ 2 g

∂ x2
i

∂ 3 g

∂ x3
i

S(x i)σ
5
x i

+
1

3!

n
∑

i=1

n
∑

j=1
j 6=i

∂ 2 g

∂ x2
i

∂ 3 g

∂ x3
j

S(x j)σ
2
x i
σ3

x j
. (A.11)

The squared Taylor series of order 3 is

g2(x) = g2(µx) +

n
∑

i=1

∂ g

∂ x i
(x i −µx i

)

!2

+
�

1

2!

�2

n
∑

i=1

n
∑

j=1

∂ 2 g

∂ x i∂ x j
(x i −µx i

)(x j −µx j
)

!2

+
�

1

3!

�2

n
∑

i=1

n
∑

j=1

n
∑

k=1

∂ 3 g

∂ x i∂ x j∂ xk
(x i −µx i

)(x j −µx j
)(xk −µxk

)

!2

+2×
1

2!

n
∑

i=1

n
∑

j=1

∂ 2 g

∂ x i∂ x j
(x i −µx i

)(x j −µx j
)

!

×

×
1

3!

n
∑

i=1

n
∑

j=1

n
∑

k=1

∂ 3 g

∂ x i∂ x j∂ xk
(x i −µx i

)(x j −µx j
)(xk −µxk

)

!

+2× g
n
∑

i=1

∂ g

∂ x i
(x i −µx i

)

+2×
1

2!
g

n
∑

i=1

n
∑

j=1

∂ 2 g

∂ x i∂ x j
(x i −µx i

)(x j −µx j
)

+2×
1

3!
g

n
∑

i=1

n
∑

j=1

n
∑

k=1

∂ 3 g

∂ x i∂ x j∂ xk
(x i −µx i

)(x j −µx j
)(xk −µxk

)

+2×
1

2!

n
∑

i=1

∂ g

∂ x i
(x i −µx i

)

!

n
∑

i=1

n
∑

j=1

∂ 2 g

∂ x i∂ x j
(x i −µx i

)(x j −µx j
)

!

+2×
1

3!

n
∑

i=1

∂ g

∂ x i
(x i −µx i

)

!

×

×

n
∑

i=1

n
∑

j=1

n
∑

k=1

∂ 3 g

∂ x i∂ x j∂ xk
(x i −µx i

)(x j −µx j
)(xk −µxk

)

!

(A.12)

As in (A.8), we again assume statistical independence of the input variables and apply

153

A.1. First approach

expectation operator to (A.12) simplifying some of the notations straight away. For

simplicity we also neglect terms of order higher than σ4
x. Therefore,

E(g2) = g2(x) +
n
∑

i=1

�

∂ g

∂ x i

�2

E
�

(x i −µx i
)2
�

+
�

1

2!

�2 n
∑

i=1

�

∂ 2 g

∂ x2
i

�2

E
�

(x i −µx i
)4
�

+2×
�

1

2!

�2 n
∑

i=1

n
∑

j=1
j 6=i

�

∂ 2 g

∂ x i∂ x j

�2

E
�

(x i −µx i
)2(x j −µx j

)2
�

+
�

1

2!

�2 n
∑

i=1

n
∑

j=1
j 6=i

∂ 2 g

∂ x2
i

∂ 2 g

∂ x2
j

E
�

(x i −µx i
)2(x j −µx j

)2
�

+g
n
∑

i=1

∂ 2 g

∂ x2
i

E
�

(x i −µx i
)2
�

+
1

3
g

n
∑

i=1

∂ 3 g

∂ x3
i

E
�

(x i −µx i
)3
�

+
n
∑

i=1

∂ g

∂ x i

∂ 2 g

∂ x2
i

E
�

(x i −µx i
)3
�

+
1

3

n
∑

i=1

∂ g

∂ x i

∂ 3 g

∂ x3
i

E
�

(x i −µx i
)4
�

+2× 3
1

3!

n
∑

i=1

n
∑

j=1
j 6=i

∂ g

∂ x i

∂ 3 g

∂ x i∂ x2
j

E
�

(x i −µx i
)2(x j −µx j

)2
�

= g2(x) +
n
∑

i=1

�

∂ g

∂ x i

�2

σ2
x i
+

1

4

n
∑

i=1

�

∂ 2 g

∂ x2
i

�2

K(x i)σ
4
x i

+
1

2

n
∑

i=1

n
∑

j=1
j 6=i

�

∂ 2 g

∂ x i∂ x j

�2

σ2
x i
σ2

x j

+
1

4

n
∑

i=1

n
∑

j=1
j 6=i

∂ 2 g

∂ x2
i

∂ 2 g

∂ x2
j

σ2
x i
σ2

x j

+g
n
∑

i=1

∂ 2 g

∂ x2
i

σ2
x i
+

1

3
g

n
∑

i=1

∂ 3 g

∂ x3
i

S(x i)σ
3
x i

+
n
∑

i=1

∂ g

∂ x i

∂ 2 g

∂ x2
i

S(x i)σ
3
x i
+

1

3

n
∑

i=1

∂ g

∂ x i

∂ 3 g

∂ x3
i

K(x i)σ
4
x i

+
n
∑

i=1

n
∑

j=1
j 6=i

∂ g

∂ x i

∂ 3 g

∂ x i∂ x2
j

σ2
x i
σ2

x j
. (A.13)

After neglecting O(σ5
x) and higher order terms in (A.11) and subtracting it from (A.13)

154

A.1. First approach

the approximation of variance takes the form

σ̃2
g =

n
∑

i=1

�

∂ g

∂ x i

�2

σ2
x i
+

n
∑

i=1

∂ g

∂ x i

∂ 2 g

∂ x2
i

S(x i)σ
3
x i

+
1

2

n
∑

i=1

n
∑

j=1
j 6=i

�

∂ 2 g

∂ x i∂ x j

�2

σ2
x i
σ2

x j
+

n
∑

i=1

n
∑

j=1
j 6=i

∂ g

∂ x i

∂ 3 g

∂ x i∂ x2
j

σ2
x i
σ2

x j

+
1

4

n
∑

i=1

�

∂ 2 g

∂ x2
i

�2
�

K(x i)− 1
�

σ4
x i
+

1

3

n
∑

i=1

∂ g

∂ x i

∂ 3 g

∂ x3
i

K(x i)σ
4
x i

. (A.14)

Again, assuming x ∈ R the equation (A.14) transforms into (4.26). The comparison

of (A.9) and (A.14) also reveals several missing terms of order O(σ4
x)

|σ2
g − σ̃

2
g |=

n
∑

i=1

n
∑

j=1
j 6=i

∂ g

∂ x i

∂ 3 g

∂ x i∂ x2
j

σ2
x i
σ2

x j
+

1

3

n
∑

i=1

∂ g

∂ x i

∂ 3 g

∂ x3
i

K(x i)σ
4
x i

. (A.15)

However, in case when the function g(x) is in fact a vector function y = g(x), its

second statistical moment is defined as the covariance

Cy =



























σ2
g1

Cg1 g2
. . . Cg1 gm

Cg2 g1
σ2

g2
. . . Cg2 gm

...
...

. . .
...

Cgm g1
Cgm g2

. . . σ2
gm



























, (A.16)

where Cgp gq
= E(gp gq)− E(gp)E(gq).

Using second order Taylor approximation for gp and gq, we now compute the

155

A.1. First approach

product of these functions:

gp gq = gp(µx)gq(µx) + gp

n
∑

i=1

∂ gq

∂ x i
(x i −µx i

)

+
1

2!
gp

n
∑

i=1

n
∑

j=1

∂ 2 g

∂ x i∂ x j
(x i −µx i

)(x j −µx j
)

+gq

n
∑

i=1

∂ gp

∂ x i
(x i −µx i

) +

n
∑

i=1

∂ gp

∂ x i
(x i −µx i

)

!

n
∑

j=1

∂ gq

∂ x j
(x j −µx j

)

!

+
1

2!

n
∑

i=1

∂ gp

∂ x i
(x i −µx i

)

!

n
∑

j=1

n
∑

k=1

∂ 2 gq

∂ x j∂ xk
(x j −µx j

)(xk −µxk
)

!

+
1

2!
gq

n
∑

i=1

n
∑

j=1

∂ 2 gp

∂ x i∂ x j
(x i −µx i

)(x j −µx j
)

+
1

2!

n
∑

i=1

∂ gq

∂ x i
(x i −µx i

)

!

n
∑

j=1

n
∑

k=1

∂ 2 gp

∂ x j∂ xk
(x j −µx j

)(xk −µxk
)

!

+
�

1

2!

�2

n
∑

i=1

n
∑

j=1

∂ 2 gp

∂ x i∂ x j
(x i −µx i

)(x j −µx j
)

!

×

×

n
∑

k=1

n
∑

l=1

∂ 2 gq

∂ xk∂ x l
(xk −µxk

)(x l −µx l
)

!

. (A.17)

Applying the expectation operator to (A.17) and taking into account the indepen-

dence of input variables condition (A.3), we get

E(gp gq) = gp(µx)gq(µx) +
1

2
gp

n
∑

i=1

∂ 2 gq

∂ x2
i

σ2
x i

+
n
∑

i=1

∂ gp

∂ x i

∂ gq

∂ x i
σ2

x i
+

1

2

n
∑

i=1

∂ gp

∂ x i

∂ 2 gq

∂ x2
i

S(x i)σ
3
x i

+
1

2
gq

n
∑

i=1

∂ 2 gp

∂ x2
i

σ2
x i
+

1

2

n
∑

i=1

∂ gq

∂ x i

∂ 2 gp

∂ x2
i

S(x i)σ
3
x i

+
1

4

n
∑

i=1

∂ 2 gp

∂ x2
i

∂ 2 gq

∂ x2
i

K(x i)σ
4
x i
+

1

4

n
∑

i=1

n
∑

j=1
j 6=i

∂ 2 gp

∂ x i

∂ 2 gq

∂ x2
j

σ2
x i
σ2

x j

+2×
1

4

n
∑

i=1

n
∑

j=1
j 6=i

∂ 2 gp

∂ x i∂ x j

∂ 2 gq

∂ x i∂ x j
σ2

x i
σ2

x j
. (A.18)

156

A.1. First approach

Taking into account that

E(gp)E(gq) = gp(µx)gq(µx) +
1

2
gp

n
∑

i=1

∂ 2 gq

∂ x2
i

σ2
x i
+

1

2
gq

n
∑

i=1

∂ 2 gp

∂ x2
i

σ2
x i

+
1

4

n
∑

i=1

∂ 2 gp

∂ x2
i

∂ 2 gq

∂ x2
i

σ4
x i
+

1

4

n
∑

i=1

n
∑

j=1
j 6=i

∂ 2 gp

∂ x2
i

∂ 2 gq

∂ x2
j

σ2
x i
σ2

x j
, (A.19)

where E(g) is the approximation based on the 2nd order Taylor series of the function

g, the 2nd order moments method for the covariance is

Cgp gq
=

n
∑

i=1

∂ gp

∂ x i

∂ gq

∂ x i
σ2

x i
+

1

2

n
∑

i=1

∂ gp

∂ x i

∂ 2 gq

∂ x2
i

S(x i)σ
3
x i

+
1

2

n
∑

i=1

∂ gq

∂ x i

∂ 2 gp

∂ x2
i

S(x i)σ
3
x i
+

1

4

n
∑

i=1

∂ 2 gp

∂ x2
i

∂ 2 gq

∂ x2
i

�

K(x i)− 1
�

σ4
x i

+
1

2

n
∑

i=1

n
∑

j=1
j 6=i

∂ 2 gp

∂ x i∂ x j

∂ 2 gq

∂ x i∂ x j
σ2

x i
σ2

x j
. (A.20)

It is easy to see that when p = q, (A.20) is equivalent to the 2nd order moments

method for the variance (A.9).

To demonstrate the error in the term of the 4th order, we also compute the cova-

157

A.1. First approach

riance based on the 3rd order Taylor series. First of all,

gp gq = gp(µx)gq(µx) + gp

n
∑

i=1

∂ gq

∂ x i
(x i −µx i

)

+
1

2!
gp

n
∑

i=1

n
∑

j=1

∂ 2 gq

∂ x i∂ x j
(x i −µx i

)(x j −µx j
)

+
1

3!
gp

n
∑

i=1

n
∑

j=1

n
∑

k=1

∂ 3 gq

∂ x i∂ x j∂ xk
(x i −µx i

)(x j −µx j
)(xk −µxk

)

+gq

n
∑

i=1

∂ gp

∂ x i
(x i −µx i

) +

n
∑

i=1

∂ gp

∂ x i
(x i −µx i

)

!

n
∑

i=1

∂ gq

∂ x i
(x i −µx i

)

!

+
1

2!

n
∑

i=1

∂ gp

∂ x i
(x i −µx i

)

!

n
∑

i=1

n
∑

j=1

∂ 2 gq

∂ x i∂ x j
(x i −µx i

)(x j −µx j
)

!

+
1

3!

n
∑

i=1

∂ gp

∂ x i
(x i −µx i

)

!

n
∑

i=1

n
∑

j=1

n
∑

k=1

∂ 3 gq

∂ x i∂ x j∂ xk
(x i −µx i

)(x j −µx j
)

!

+
1

2!
gq

n
∑

i=1

n
∑

j=1

∂ 2 gp

∂ x i∂ x j
(x i −µx i

)(x j −µx j
)

!

+
1

2!

n
∑

i=1

∂ gq

∂ x i
(x i −µx i

)

!

n
∑

i=1

n
∑

j=1

∂ 2 gp

∂ x i∂ x j
(x i −µx i

)(x j −µx j
)

!

+
�

1

2!

�2

n
∑

i=1

n
∑

j=1

∂ 2 gp

∂ x i∂ x j
(x i −µx i

)(x j −µx j
)

!

×

(A.21)

158

A.1. First approach

×

n
∑

i=1

n
∑

j=1

∂ 2 gq

∂ x i∂ x j
(x i −µx i

)(x j −µx j
)

!

+
1

2!

1

3!

n
∑

i=1

n
∑

j=1

∂ 2 gp

∂ x i∂ x j
(x i −µx i

)(x j −µx j
)

!

×

×

n
∑

i=1

n
∑

j=1

n
∑

k=1

∂ 3 gq

∂ x i∂ x j∂ xk
(x i −µx i

)(x j −µx j
)(xk −µxk

)

!

+
1

3!
gq

n
∑

i=1

n
∑

j=1

n
∑

k=1

∂ 3 gp

∂ x i∂ x j∂ xk
(x i −µx i

)(x j −µx j
)(xk −µxk

)

!

+
1

3!

n
∑

i=1

∂ gq

∂ x i
(x i −µx i

)

!

×

×

n
∑

i=1

n
∑

j=1

n
∑

k=1

∂ 3 gp

∂ x i∂ x j∂ xk
(x i −µx i

)(x j −µx j
)(xk −µxk

)

!

+
1

2!

1

3!

n
∑

i=1

n
∑

j=1

∂ 2 gq

∂ x i∂ x j
(x i −µx i

)(x j −µx j
)

!

×

×

n
∑

i=1

n
∑

j=1

n
∑

k=1

∂ 3 gp

∂ x i∂ x j∂ xk
(x i −µx i

)(x j −µx j
)(xk −µxk

)

!

�

1

3!

�2

n
∑

i=1

n
∑

j=1

n
∑

k=1

∂ 3 gp

∂ x i∂ x j∂ xk
(x i −µx i

)(x j −µx j
)(xk −µxk

)

!

×

×

n
∑

i=1

n
∑

j=1

n
∑

k=1

∂ 3 gp

∂ x i∂ x j∂ xk
(x i −µx i

)(x j −µx j
)(xk −µxk

)

!

. (A.22)

When calculating the expectation of (A.22) under the condition of the independent

inputs (A.3), we also omit the terms that are higher than the order 4 to avoid the

formula looking too bulky, as we do not require those terms for our task anyway:

Ẽ(gp gq) = gp(µx)gq(µx) +
1

2!
gp

n
∑

i=1

∂ 2 gq

∂ x2
i

σ2
x i

+
1

3!
gp

n
∑

i=1

∂ 3 gq

∂ x3
i

S(x i)σ
3
x i
+

n
∑

i=1

∂ gp

∂ x i

∂ gq

∂ x j
σ2

x i

+
1

2!

n
∑

i=1

∂ gp

∂ x i

∂ 2 gq

∂ x2
i

S(x i)σ
3
x i
+

1

3!

n
∑

i=1

∂ gp

∂ x i

∂ 3 gq

∂ x3
i

K(x i)σ
4
x i

+3×
1

3!

n
∑

i=1

n
∑

j=1
j 6=i

∂ gp

∂ x i

∂ 3 gq

∂ x i∂ x2
j

σ2
x i
σ2

x j
+

1

2!
gq

n
∑

i=1

∂ 2 gp

∂ x2
i

σ2
x i

159

A.1. First approach

+
1

2!

n
∑

i=1

∂ 2 gp

∂ x2
i

∂ gq

∂ x i
S(x i)σ

3
x i
+

1

4

n
∑

i=1

∂ 2 gp

∂ x2
i

∂ 2 gq

∂ x2
i

K(x i)σ
4
x i

+
1

4

n
∑

i=1

n
∑

j=1
j 6=i

∂ 2 gp

∂ x2
i

∂ 2 gq

∂ x2
j

σ2
x i
σ2

x j
+ 2×

1

4

n
∑

i=1

n
∑

j=1
j 6=i

∂ 2 gp

∂ x i∂ x j

∂ 2 gq

∂ x i∂ x j
σ2

x i
σ2

x j

+
1

3!
gq

n
∑

i=1

∂ 3 gp

∂ x3
i

S(x i)σ
3
x i
+

1

3!

n
∑

i=1

∂ gq

∂ x i

∂ 3 gp

∂ x3
i

K(x i)σ
4
x i

+3×
1

3!

n
∑

i=1

n
∑

j=1
j 6=i

∂ gq

∂ x i

∂ 3 gp

∂ x i∂ x2
j

σ2
x i
σ2

x j
. (A.23)

The product of the expectation approximations of the third order for two different

functions gp and gq after dismissing the terms of order > 4 is

Ẽ(gp)Ẽ(gq) = gp(µx)gq(µx) +
1

2!
gp

n
∑

i=1

∂ 2 gq

∂ x2
i

σ2
x i
+

1

3!
gp

n
∑

i=1

∂ 3 gq

∂ x3
i

σ3
x i

S(x i)σ
3
x i

+
1

2!
gq

n
∑

i=1

∂ 2 gp

∂ x2
i

σ2
x i
+
�

1

2!

�2

n
∑

i=1

∂ 2 gp

∂ x2
i

σ2
x i

!

n
∑

i=1

∂ 2 gq

∂ x2
i

σ2
x i

!

+
1

3!
gq

n
∑

i=1

∂ 3 gp

∂ x3
i

S(x i)σ
3
x i

= gp(µx)gq(µx) +
1

2
gp

n
∑

i=1

∂ 2 gq

∂ x2
i

σ2
x i
+

1

2
gq

n
∑

i=1

∂ 2 gp

∂ x2
i

σ2
x i

+
1

6
gp

n
∑

i=1

∂ 3 gq

∂ x3
i

S(x i)σ
3
x i
+

1

6
gq

n
∑

i=1

∂ 3 gp

∂ x3
i

S(x i)σ
3
x i

+
1

4

n
∑

i=1

∂ 2 gp

∂ x2
i

∂ 2 gq

∂ x2
i

σ4
x i
+

1

4

n
∑

i=1

n
∑

j=1
j 6=i

∂ 2 gp

∂ x2
i

∂ 2 gq

∂ x2
j

σ2
x i
σ2

x j
. (A.24)

The third order moments method for the variance is then

C̃qp gq
=

n
∑

i=1

∂ gp

∂ x i

∂ gq

∂ x i
σ2

x i

+
1

2

n
∑

i=1

∂ gp

∂ x i

∂ 2 gq

∂ x2
i

S(x i)σ
3
x i
+

1

2

n
∑

i=1

∂ 2 gp

∂ x2
i

∂ gq

∂ x i
S(x i)σ

3
x i

+
1

6

n
∑

i=1

∂ gp

∂ x i

∂ 3 gq

∂ x3
i

K(x i)σ
4
x i
+

1

6

n
∑

i=1

∂ gq

∂ x i

∂ 3 gp

∂ x3
i

K(x i)σ
4
x i

160

A.2. Second approach

+
1

2

n
∑

i=1

n
∑

j=1
j 6=i

∂ gp

∂ x i

∂ 3 gq

∂ x i∂ x2
j

σ2
x i
σ2

x j
+

1

2

n
∑

i=1

n
∑

j=1
j 6=i

∂ gq

∂ x i

∂ 3 gp

∂ x i∂ x2
j

σ2
x i
σ2

x j

+
1

2

n
∑

i=1

n
∑

j=1
j 6=i

∂ 2 gp

∂ x i∂ x j

∂ 2 gq

∂ x i∂ x j
σ2

x i
σ2

x j
+

1

4

n
∑

i=1

∂ 2 gp

∂ x2
i

∂ 2 gq

∂ x2
i

�

K(x i)− 1
�

σ4
x i

.(A.25)

Again, when p = q the covariance moments method (A.25) is transformed into the

moments method for the variance (A.14).

The error in the fourth order term after comparing the second and the third order

moments methods for the covariance is

|Cgp gq
− C̃gp gq

| =
1

2

n
∑

i=1

n
∑

j=1
j 6=i

∂ gp

∂ x i

∂ 3 gq

∂ x i∂ x2
j

σ2
x i
σ2

x j
+

1

2

n
∑

i=1

n
∑

j=1
j 6=i

∂ gq

∂ x i

∂ 3 gp

∂ x i∂ x2
j

σ2
x i
σ2

x j

+
1

6

n
∑

i=1

∂ gp

∂ x i

∂ 3 gq

∂ x3
i

K(x i)σ
4
x i
+

1

6

n
∑

i=1

∂ gq

∂ x i

∂ 3 gp

∂ x3
i

K(x i)σ
4
x i

. (A.26)

In the similar manner one can show that the moments method based on 4th or-

der Taylor series produces the approximation of the variance with the 2nd order of

accuracy.

A.2 Second approach

The idea of this technique differs from the first approach as we do not square Taylor

series any longer. This time we square the function itself. In other words, instead of

squaring Taylor approximation for the function g to obtain the approximation of the

function g2, we expand g2 using Taylor series.

Let us assume that y(x) = g2(x). Therefore, Taylor approximation of (A.1) for g2

can be written as following

y(x) = g2(x) = g2(µx) +
n
∑

i=1

2g
∂ g

∂ x i
(x i −µx i

)

161

A.2. Second approach

+
1

2!

n
∑

i=1

n
∑

j=1

2

�

∂ g

∂ x i

∂ g

∂ x j
+ g

∂ 2 g

∂ x i∂ x j

�

(x i −µx i
)(x j −µx j

)

+
1

3!

n
∑

i=1

n
∑

j=1

n
∑

k=1

2

�

∂ g

∂ x i

∂ 2 g

∂ x j∂ xk
+
∂ g

∂ x j

∂ 2 g

∂ x i∂ xk

+
∂ g

∂ xk

∂ 2 g

∂ x i∂ x j
+ g

∂ 3 g

∂ x i∂ x j∂ xk

�

×

× (x i −µx i
)(x j −µx j

)(xk −µxk
)

+
1

4!

n
∑

i=1

n
∑

j=1

n
∑

k=1

n
∑

l=1

2

�

∂ 3 g

∂ x i∂ xk∂ x l

∂ g

∂ x j
+

∂ 2 g

∂ x i∂ xk

∂ 2 g

∂ x j∂ x l

+
∂ 2 g

∂ x i∂ x l

∂ 2 g

∂ x j∂ xk
+
∂ g

∂ x i

∂ 3 g

∂ x j∂ xk∂ x l

+
∂ 2 g

∂ xk∂ x l

∂ 2 g

∂ x i∂ x j
+
∂ g

∂ xk

∂ 3 g

∂ x i∂ x j∂ x l

+
∂ g

∂ x l

∂ 3 g

∂ x i∂ x j∂ xk
+ g

∂ 4 g

∂ x i∂ x j∂ xk∂ x l

�

×

× (x i −µx i
)(x j −µx j

)(xk −µxk
)(x l −µx l

) + . . . (A.27)

Applying expectation operator to (A.27) under the assumption of statistical indepen-

dency we get E(g2)

E(g2) = g2(µx) +
1

2!

n
∑

i=1

2

�

�

∂ g

∂ x i

�2

+ g
∂ 2 g

∂ x2
i

�

E
�

(x i −µx i
)2
�

+
1

3!

n
∑

i=1

2×
�

3
∂ g

∂ x i

∂ 2 g

∂ x2
i

+ g
∂ 3 g

∂ x3
i

�

E
�

(x i −µx i
)3
�

+
1

4!

n
∑

i=1

2×

4
∂ 3 g

∂ x3
i

∂ g

∂ x i
+ 3

�

∂ 2 g

∂ x2
i

�2

+ g
∂ 4 g

∂ x4
i

!

E
�

(x i −µx i
)4
�

+
1

4!

n
∑

i=1

n
∑

j=1
j 6=i

2× 3

2
∂ 3 g

∂ x i∂ x2
j

∂ g

∂ x i
+ 2

∂ 3 g

∂ x2
i ∂ x j

∂ g

∂ x j
+ 2

�

∂ 2 g

∂ x i∂ x j

�2

+
∂ 2 g

∂ x2
i

∂ 2 g

∂ x2
j

+ g
∂ 4 g

∂ x2
i ∂ x2

j

!

×

× E
�

(x i −µx i
)2(x j −µx j

)2
�

= g2(µx) +
n
∑

i=1

�

∂ g

∂ x i

�2

σ2
x i
+ g

n
∑

i=1

∂ 2 g

∂ x2
i

σ2
x i

162

A.2. Second approach

+
n
∑

i=1

∂ 2 g

∂ x2
i

∂ g

∂ x i
S(x i)σ

3
x i
+

1

3
g

n
∑

i=1

∂ 3 g

∂ x3
i

S(x i)σ
3
x i

+
1

3

n
∑

i=1

∂ 3 g

∂ x3
i

∂ g

∂ x i
K(x i)σ

4
x i
+

1

4

n
∑

i=1

�

∂ 2 g

∂ x2
i

�2

K(x i)σ
4
x i

+
1

12
g

n
∑

i=1

∂ 4 g

∂ x4
i

K(x i)σ
4
x i
+

1

2

n
∑

i=1

n
∑

j=1
j 6=i

∂ 3 g

∂ x i∂ x2
j

∂ g

∂ x i
σ2

x i
σ2

x j

+
1

2

n
∑

i=1

n
∑

j=1
j 6=i

∂ 3 g

∂ x2
i ∂ x j

∂ g

∂ x j
σ2

x i
σ2

x j
+

1

2

n
∑

i=1

n
∑

j=1
j 6=i

�

∂ 2 g

∂ x i∂ x j

�2

σ2
x i
σ2

x j

+
1

4

n
∑

i=1

n
∑

j=1
j 6=i

∂ 2 g

∂ x2
i

∂ 2 g

∂ x2
j

σ2
x i
σ2

x j
+

1

4
g

n
∑

i=1

n
∑

j=1
j 6=i

∂ 4 g

∂ x2
i ∂ x2

j

σ2
x i
σ2

x j
. (A.28)

To obtain the variance we also require squared expectation approximation based on

4th order Taylor series:

µ2
g = E(g)2 =



g(µx) +
1

2!

n
∑

i=1

∂ 2 g

∂ x2
i

σ2
x i
+

1

3!

n
∑

i=1

∂ 3 g

∂ x3
i

S(x i)σ
3
x i

+
1

4!

n
∑

i=1

∂ 4 g

∂ x4
i

K(x i)σ
4
x i
+

1

4!

n
∑

i=1

n
∑

j=1
j 6=i

3
∂ 4 g

∂ x2
i ∂ x2

j

σ2
x i
σ2

x j









2

. (A.29)

Dismissing terms of greater than order 4 the squared expectation approximation be-

comes

E(g)2 = g2+ g
n
∑

i=1

∂ 2 g

∂ x2
i

σ2
x i
+

1

3
g

n
∑

i=1

∂ 3 g

∂ x3
i

S(x i)σ
3
x i

+
1

4

n
∑

i=1

n
∑

j=1
j 6=i

∂ 2 g

∂ x2
i

∂ 2 g

∂ x2
j

σ2
x i
σ2

x j
+

1

4
g

n
∑

i=1

n
∑

j=1
j 6=i

∂ 4 g

∂ x2
i ∂ x2

j

σ2
x i
σ2

x j

+
1

12
g

n
∑

i=1

∂ 4 g

∂ x4
i

K(x i)σ
4
x i
+

1

4

n
∑

i=1

�

∂ 2 g

∂ x2
i

�2

σ4
x i

. (A.30)

Thus, the 4th order variance approximation is

σ2
g = E(g2)− E(g)2 =

n
∑

i=1

�

∂ g

∂ x i

�2

σ2
x i
+

n
∑

i=1

∂ 2 g

∂ x2
i

∂ g

∂ x i
S(x i)σ

3
x i

163

A.2. Second approach

+
n
∑

i=1

n
∑

j=1
j 6=i

∂ 3 g

∂ x i∂ x2
j

∂ g

∂ x i
σ2

x i
σ2

x j
+

1

2

n
∑

i=1

n
∑

j=1
j 6=i

�

∂ 2 g

∂ x i∂ x j

�2

σ2
x i
σ2

x j

+
1

3

n
∑

i=1

∂ 3 g

∂ x3
i

∂ g

∂ x i
K(x i)σ

4
x i
+

1

4

n
∑

i=1

�

∂ 2 g

∂ x2
i

�2
�

K(x i)− 1
�

σ4
x i

. (A.31)

Since there are no derivatives of the fourth order involved in (A.31), we expect the

approximation (A.14) obtained via the first approach using the third order Taylor

series to be complete upto the order 4. By comparing them it is easy to see that this

condition holds as expected:

|σ2
g − σ̃

2
g |= 0. (A.32)

Similarly as before, we now compute the fourth order moments method for the

covariance when y(x) =
�

g1(x), . . . , gm(x)
�

. Thus the Taylor series for the function

gp(x)gq(x) around µx is

gp(x)gq(x) = gp(µx)gq(µx) +
n
∑

i=1

�

gp

∂ gq

∂ x i
+ gq

∂ gp

∂ x i

�

(x i −µx i
)

+
1

2!

n
∑

i=1

n
∑

j=1

�

gp

∂ 2 gq

∂ x i∂ x j
+
∂ gp

∂ x j

∂ gq

∂ x i
+
∂ gq

∂ x j

∂ gp

∂ x i
+ gq

∂ 2 gp

∂ x i∂ x j

�

×

×(x i −µx i
)(x j −µx j

)

+
1

3!

n
∑

i=1

n
∑

j=1

n
∑

k=1

�

gp

∂ 3 gq

∂ x i∂ x j∂ xk
+
∂ gp

∂ xk

∂ 2 gq

∂ x i∂ x j
+
∂ gp

∂ x j

∂ 2 gq

∂ x i∂ xk

+
∂ gp

∂ x i

∂ 2 gq

∂ x j∂ xk
+
∂ gq

∂ x i

∂ 2 gp

∂ x j∂ xk

+
∂ gq

∂ x j

∂ 2 gp

∂ x i∂ xk
+
∂ gq

∂ xk

∂ 2 gp

∂ x i∂ x j
+ gq

∂ 3 gp

∂ x i∂ x j∂ xk

�

×

×(x i −µx i
)(x j −µx j

)(xk −µxk
)

+
1

4!

n
∑

i=1

n
∑

j=1

n
∑

k=1

n
∑

l=1

�

gp

∂ 4 gq

∂ x i∂ x j∂ xk∂ x l
+
∂ gp

∂ x i

∂ 3 gq

∂ x j∂ xk∂ x l

+
∂ gp

∂ x j

∂ 3 gq

∂ x i∂ xk∂ x l
+
∂ gp

∂ xk

∂ 3 gq

∂ x i∂ x j∂ x l

+
∂ gp

∂ x l

∂ 3 gq

∂ x i∂ x j∂ xk
+
∂ 2 gp

∂ x i∂ x j

∂ 2 gq

∂ xk∂ x l

164

A.2. Second approach

+
∂ 2 gp

∂ x i∂ xk

∂ 2 gq

∂ x j∂ x l
+
∂ 2 gp

∂ x i∂ x l

∂ 2 gq

∂ x j∂ xk

+
∂ 2 gp

∂ x j∂ xk

∂ 2 gq

∂ x i∂ x l
+
∂ 2 gp

∂ x j∂ x l

∂ 2 gq

∂ x i∂ xk

+
∂ 2 gp

∂ xk∂ x l

∂ 2 gq

∂ x i∂ x j
+

∂ 3 gp

∂ x j∂ xk∂ x l

∂ gq

∂ x i

+
∂ 3 gp

∂ x i∂ xk∂ x l

∂ gq

∂ x j
+

∂ 3 gp

∂ x i∂ x j∂ x l

∂ gq

∂ xk

+
∂ 3 gp

∂ x i∂ x j∂ xk

∂ gq

∂ x l
+ gq

∂ 4 gp

∂ x i∂ x j∂ xk∂ x l

�

×

×(x i −µx i
)(x j −µx j

)(xk −µxk
)(x l −µx l

). (A.33)

The expectation of (A.33) under the assumption of the statistical independency for

the input variables (A.3) is

E(gp gq) = gp(µx)gq(µx) +
1

2!

n
∑

i=1

�

gp

∂ 2 gq

∂ x2
i

+ 2
∂ gp

∂ x i

∂ gq

∂ x i
+ gq

∂ 2 gp

∂ x2
i

�

σ2
x i

+
1

3!

n
∑

i=1

�

gp

∂ 3 gq

∂ x3
i

+ 3
∂ gp

∂ x i

∂ 2 gq

∂ x2
i

+ 3
∂ 2 gp

∂ x2
i

∂ gq

∂ x i
+ gq

∂ 3 gp

∂ x3
i

�

S(x i)σ
3
x i

+
1

4!

n
∑

i=1

�

gp

∂ 4 gq

∂ x4
i

+ 4
∂ gp

∂ x i

∂ 3 gq

∂ x3
i

+ 6
∂ 2 gp

∂ x2
i

∂ 2 gq

∂ x2
i

+4
∂ gq

∂ x i

∂ 3 gp

∂ x3
i

+ gq

∂ 4 gp

∂ x4
i

�

K(x i)σ
4
x i

+3×
1

4!

n
∑

i=1

n
∑

j=1
j 6=i

gp

∂ 4 gq

∂ x2
i ∂ x2

j

+ 2
∂ gp

∂ x i

∂ 3 gq

∂ x i∂ x2
j

+ 2
∂ gp

∂ x j

∂ 3 gq

∂ x2
i ∂ x j

+
∂ 2 gp

∂ x2
i

∂ 2 gq

∂ x2
j

+ 4
∂ 2 gp

∂ x i∂ x j

∂ 2 gq

∂ x i∂ x j
+
∂ 2 gp

∂ x2
j

∂ 2 gq

∂ x2
i

+ 2
∂ 3 gp

∂ x i∂ x2
j

∂ gq

∂ x i
+ 2

∂ 3 gp

∂ x2
i ∂ x j

∂ gq

∂ x j
+ gq

∂ 4 gp

∂ x2
i ∂ x2

j

!

×

×σ2
x i
σ2

x j
. (A.34)

When multiplying the expectation approximation of the 4th order for the function gp

by the one of the same order for gq and neglecting the terms of order higher than 4,

165

A.2. Second approach

we get

E(gp)E(gq) = gp(µx)gq(µx) +
1

2!
gp

n
∑

i=1

∂ 2 gq

∂ x2
i

σ2
x i
+

1

3!
gp

n
∑

i=1

∂ 3 gq

∂ x3
i

S(x i)σ
3
x i

+
1

4!
gp

n
∑

i=1

∂ 4 gq

∂ x4
i

K(x i)σ
4
x i
+ 3×

1

4!
gp

n
∑

i=1

n
∑

j=1
j 6=i

∂ 4 gq

∂ x2
i ∂ x2

j

σ2
x i
σ2

x j

+
1

2!
gq

n
∑

i=1

∂ 2 gp

∂ x2
i

σ2
x i
+
�

1

2!

�

n
∑

i=1

∂ 2 gp

∂ x2
i

σ2
x i

!

n
∑

i=1

∂ 2 gq

∂ x2
i

σ2
x i

!

+
1

3!
gq

n
∑

i=1

∂ 3 gp

∂ x3
i

S(x i)σ
3
x i
+

1

4!
gq

n
∑

i=1

∂ 4 gp

∂ x4
i

K(x i)σ
4
x i

+3×
1

4!
gq

n
∑

i=1

∂ 4 gp

∂ x2
i ∂ x2

j

σ2
x i
σ2

x j

= gp(µx)gq(µx) +
1

2!

n
∑

i=1

�

gp

∂ 2 gq

∂ x2
i

+ gq

∂ 2 gp

∂ x2
i

�

σ2
x i

+
1

3!

n
∑

i=1

�

gp

∂ 3 gq

∂ x3
i

+ gq

∂ 3 gp

∂ x3
i

�

S(x i)σ
3
x i

+
1

4!

n
∑

i=1

�

gp

∂ 4 gq

∂ x4
i

+ gq

∂ 4 gp

∂ x4
i

�

K(x i)σ
4
x i
+

1

4!

n
∑

i=1

6×
∂ 2 gp

∂ x2
i

∂ 2 gq

∂ x2
i

σ4
x i

+3×
1

4!

n
∑

i=1

n
∑

j=1
j 6=i

gp

∂ 4 gq

∂ x2
i ∂ x2

j

+ 2×
∂ 2 gp

∂ x2
i

∂ 2 gq

∂ x2
j

+ gq

∂ 4 gp

∂ x2
i ∂ x2

j

!

×

×σ2
x i
σ2

x j
. (A.35)

The fourth order moments method for the covariance is then

Cgp gq
= E(gp gq)− E(gp)E(gq)

=
n
∑

i=1

∂ gp

∂ x i

∂ gq

∂ x i
σ2

x i
+

1

2

n
∑

i=1

�

∂ gp

∂ x i

∂ 2 gq

∂ x2
i

+
∂ 2 gq

∂ x2
i

∂ gq

∂ x i

�

S(x i)σ
3
x i

+
1

6

n
∑

i=1

�

∂ gp

∂ x i

∂ 3 gq

∂ x3
i

+
∂ 3 gp

∂ x3
i

∂ gq

∂ x i

�

K(x i)σ
4
x i

+
1

4

n
∑

i=1

∂ 2 gp

∂ x2
i

∂ 2 gq

∂ x2
i

�

K(x i)− 1
�

σ4
x i

+
1

2

n
∑

i=1

n
∑

j=1
j 6=i

∂ gp

∂ x i

∂ 3 gq

∂ x i∂ x2
j

+
∂ 2 gp

∂ x i∂ x j

∂ 2 gq

∂ x i∂ x j
+

166

A.2. Second approach

+
∂ 3 gp

∂ x i∂ x2
j

∂ gq

∂ x i

!

σ2
x i
σ2

x j
. (A.36)

167

