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Abstract

Visible light emitting diodes of three different colors have been used to detect an absorbing compound

(potassium permanganate) in trace quantities in aqueous solution. Photothermal absorption in a closed cell

caused deflection of a water meniscus held at a small pinhole. The displacement was monitored using

optical fiber interferometry. The technique was limited by LED emission intensities and environmental

acoustic noise, giving minimum detectable absorption coefficients of 210-4 cm-1 at 478 nm and 658 nm,

and 310-4 cm-1 at 524 nm. The magnitude and form of meniscus deflection signals were shown to be in

good agreement with theory.

1 Introduction

The measurement of optical absorption in water is a well-known analytical technique, used to determine the

concentration of a dissolved absorbing compound. Water has a transmission window in the visible and

ultraviolet, enabling spectroscopic determination of a number of compounds. Measurands of interest

include residual chlorine, the visible color of the water (for aesthetic quality) and the general level of

organic compounds (total organic carbon). Many detectors of metal ions and some recently developed pH

meters use colorimetric methods involving reactive dyes. Potassium permanganate, chosen for this work as

a representative absorption standard, is also sometimes used for disinfection of treated water.

Photothermal detection of trace chemicals in water has a number of advantages over conventional

transmission spectroscopy, chiefly a high signal to noise ratio and relative insensitivity to light scattering

within the sample [1,2]. However, much recent work has involved the use of high power cw or pulsed lasers,
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the latter to remove window noise by time gating the signal [3]. The use of light emitting diodes (LEDs) as

low-cost, reliable light sources has so far been restricted to solid samples[4,5] and gases[6]. These sources

may be electronically modulated over a wide range of frequencies, avoiding the additional acoustic noise at

the modulation frequency which would be expected when using a mechanical chopper. In this paper we

report, as an example, the photothermal detection of potassium permanganate (KMnO4) in aqueous solution

using three visible LEDs.

2 Experimental

A novel closed-cell photothermal detector has been designed, suitable for measurement of aqueous samples

using low power, cw light sources. The system has been described in greater detail[7], but the essential

characteristics are presented here. The stainless steel cell had a cylindrical internal bore of length 50mm and

radius 10mm. A flat, horizontal water meniscus was employed as a sensor, constrained by surface forces at

a 200m radius pinhole in nickel foil. Photothermal absorption of modulated light resulted in periodic

pressure changes in the cell, which caused the meniscus to be deflected like a thin diaphragm, its curvature

varying with the excess pressure in the cell. Vertical movement of the centre of the meniscus was detected

using fiber optic interferometry. A schematic diagram of the apparatus is shown in Figure 1.

Figure 1. Schematic diagram of the system used for photothermal detection.

Zero mean pressure difference across the meniscus was maintained by a slow hydraulic leak to an outside

reservoir, which equalised internal and external pressures at frequencies of less than ~5Hz, much lower

than the photothermal modulation frequency. This arrangement kept the meniscus approximately flat, with

small deflections from the mean position. An expanded view of the 400m diameter meniscus and the
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125m diameter cleaved optical fiber end, which together formed the interferometer cavity, is shown in

Figure 2. A distance of approximately 60m was maintained between the two, to prevent accidental

contact. While this reduced the coupling efficiency of the reflected light into the fiber, the sensitivity of the

photothermal measurements was not affected.

Figure 2. Interferometer formed by the cleaved optical fiber and the meniscus.

The full interferometer system is shown in Figure 3. Phase quadrature was maintained in the interferometer

using a piezoelectric bimorph element (Quantelec EB-T-320), which moved the cleaved fiber end in

relation to the meniscus. A feedback control circuit maintained a predetermined dc output from the

interferometer receiver by applying a variable voltage to the bimorph, thus mechanically tracking an

interference fringe edge. The photodiode at (2) was connected to a transimpedance amplifier, giving a

voltage signal v which was converted to a displacement d using the formula;

The value of the scale factor A (in volts) was determined by observation of the full-height fringes formed by

large changes of optical phase.

Figure 3. Low finesse fiber Fabry-Perot interferometer, used to detect the relative position of the meniscus.
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The interferometer was used to measure the relative meniscus displacement with an rms noise floor at 70

Hz of 10 pm Hz-1/2, which was a factor of 10 above the noise floor of an interferometer formed by the same

cleaved fiber end and a firmly bonded silica test plate. This implies that the noise floor was due to random

deflections of the meniscus itself, believed to be a result of environmental acoustic noise.

A piezoelectric element on the side of the cell, made of lead zirconate titanate (PZT) was used to modulate

the cell volume for test purposes (Morgan Matroc PZT-5A, 0.48mm thick, 10mm square, bonded to a 6mm

diameter hole in the cell wall). Applying a voltage across the cell PZT resulted in a large meniscus

deflection, whose magnitude was proportional to the applied voltage.

The plastic lens on the front of each LED was polished flat, as close as possible to the LED chip itself. The

back and sides of each package were painted black to reduce stray light. Otherwise, spurious signals could

have resulted from stray light hitting and being absorbed by the cell walls. The light output was coupled

into the photothermal cell using an f/3.2 lens. Each LED was driven using a square-wave voltage from a

signal generator (Thurlby Thandar TG220) with a 220 resistor in series to give a peak drive current of

30mA. 70Hz was chosen as the preferred modulation frequency because the measurement signal to noise

ratio was a maximum at this frequency. Signals from the interferometer were passed through a high pass

filter / amplifier (EG&G model 5113, amplification 10 for frequencies > 1Hz, 12 dB / decade roll-off filter

for lower frequencies). A lock-in amplifier (EG&G model 5210) in R, mode with a 100s integration time

was used to detect signals synchronous with the modulation. A digital storage oscilloscope (Hitachi VC-

6175) was used to record the shapes of photothermal signals.

LED emission intensity was measured using a large area silicon photodiode (Centronic OST100/7CQ) in

the position normally occupied by the cell. The photodiode current was related to the incident light

intensity, using the manufacturer’s quoted responsivity at each wavelength with an estimated absolute error

of 15%. The quoted responsivity at 780nm was checked using a commercial fiber optic power meter

(Megger OTP 510, also incorporating a silicon photodiode).

The measured peak-to-peak modulated light intensities and peak absorbed wavelengths of each LED are

shown in Table 1. The peak absorbed wavelength may be displaced slightly from the peak emitted

wavelength because of the shape of the permanganate absorption spectrum. For the purpose of estimating

the magnitude of the photothermal signal, it was assumed that the LED emission was all at the peak

absorbed wavelength.
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Table 1. Measured emission of the three LEDs used for photothermal detection.

Intensity /

mW

Wavelength Reference

Blue 0.750.11 478 nm Marl 110106

Green 0.500.08 524 nm Marl 110104

Red 0.880.13 658 nm LED Technology

LURR3000G3

The relative emission spectrum from each LED each is shown in Figure 4, with the absorption spectrum for

potassium permanganate in solution, determined using a diode array spectrometer (HP 8452A) with a 4cm

pathlength cell against a deionised water blank. KMnO4 is known to be a good standard for use as a

photothermal absorber, because it doesn't fluoresce, phosphoresce or undergo photochemical reactions

when excited in the visible, and therefore delivers absorbed energy quickly to the solvent as heat[8].
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Figure 4. Absorption spectrum of 5ppm KMnO4 in solution (solid line), with the normalized emission

spectra of blue, green and red LEDs superimposed (dashed lines) all determined using a diode array

spectrometer.

KMnO4 solutions were prepared by dilution of a known quantity of the solid. Signals from a range of

solutions strengths were recorded for excitation by each LED. The diode array spectrometer was used to

measure the absorption of KMnO4 in each sample, at each of the LED peak wavelengths. The five weakest

solutions had too low an absorption coefficient at 478nm and 658nm to be accurately measured in this way,

so the absorption was calculated by reference to that measured at 530nm, corresponding to an absorption

peak.
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The experimental procedure was as follows. The cell was filled with a test solution and the interferometer

aligned by eye to the center of the meniscus using an xyz stage. A sinusoidal voltage of approximately 10V

peak-to-peak was applied to the cell PZT in order to modulate the cell volume. The resulting periodic

meniscus displacement produced interference fringes which were used to align the fiber more precisely to

the position of maximum meniscus movement. The interference fringes were also used to determine the

correct quadrature setpoint for the phase controller.

Two scale factors were recorded for each measurement, namely the interference fringe depth and the

voltage required, across the cell PZT, to move the meniscus by two interference fringes (783nm). The latter

provided an approximate measure of the response of the system to a given volume change and proved

useful in detecting the undesirable presence of large air bubbles in the cell, which would have reduced the

signal. It would also account for any changes in the surface tension of the water at the meniscus, due for

example to the presence of impurities such as surfactants. Finally, the sinusoidal voltage across the cell

PZT was removed and the system was ready to make measurements.

Photothermal signals have a strong temperature dependence in water, which was expected to be

approximately linear over our working range (20-25C), falling to zero at 4C [1]. The ambient temperature

was measured during each measurement. It was assumed that the KMnO4 solutions had reached thermal

equilibrium with the surroundings, and that any temperature increase during each measurement was

negligible.

The voltage measurements were converted to a meniscus displacement in nm, using the measured fringe

depth and assuming that phase quadrature was maintained. The results were further normalized for

differences in ambient temperature and in the cell responsivity, as measured by finding the voltage applied

across the cell PZT which was required to move the meniscus by a known distance.

3 Results and discussion

3.1 Magnitude and form of photothermal signals

The green LED, whose emission corresponded approximately to an absorption maximum of KMnO4, was

used with a strongly absorbing solution to investigate the frequency response of the system and the form

and magnitude of photothermal signals. The shape and magnitude of the modulated emission waveform

from the LED were found to be constant over the frequency range of these experiments. The shapes of the
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photothermal signals at various frequencies were recorded using the digital storage oscilloscope as averages

over 256 traces, and are shown in Figure 5.
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Figure 5. Photothermal signals resulting from absorption of light from a green LED in a 50ppm solution

of KMnO4.

The expected shape and size of the meniscus displacement, for a given energy input, have been

calculated in the Appendix. For a KMnO4 concentration of 310-4 M, it was expected that over 99.7%

of the light would be absorbed, over the fwhm range of LED emission. A sawtooth meniscus deflection

was predicted by equation (7) for square wave excitation, giving a displacement per unit absorbed

energy of h = 410-4 m J-1. The predicted photothermal signal has been calculated from the measured

LED emission, with an estimated error of 15%. That and the actual signal recorded by a digital storage

oscilloscope (averaged over 256 traces) are shown in Figure 5 (b). They are in good agreement.
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The frequency response of photothermal signals, from the same solution, is shown in Figure 6. For

photothermal signals, a 1/f response is predicted. The results are in good agreement with this, except for a

distinct resonance observed at 700Hz. There was no observed gain in signal to noise ratio associated with

modulation at 700Hz, because the noise level was also increased at the resonant frequency. The precise

origin of the resonance was not determined, but it was experimentally confirmed to be associated with the

water meniscus, the water in the cell and the cell PZT.
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Figure 6. Frequency response for photothermal signals produced when modulated light from a green

LED was absorbed by a 50ppm solution of KMnO4.

The resonant signal in Figure 5 (c) is clearly different from that of the lower frequency signals, in that it is

sinusoidal and has undergone a phase shift of approximately -90 with respect to the lower frequency

signals. The same resonance can also be seen, at lower frequency modulation, as a small ripple in Figure 5

(b). The form of Figure 5 (a) indicates a degree of high pass filtering, with a time constant of the order of

20ms, which is too small to have been caused by either the hydraulic leak, the phase controller, or the high

pass filters used on both the oscilloscope and the EG&G filter / amplifier. However, the combination of all

four filters could have created an effective 3dB cut-off at a higher frequency.

3.2 Detection of KMnO4 in aqueous solution

The three LEDs, modulated at 70Hz, were each used to excite photothermal signals in a range of aqueous

solutions of KMnO4. The signals, converted to rms meniscus displacements, are shown in Figure 7 versus

the absorption coefficients of the various levels of KMnO4 in solution. Three types of behaviour were

expected from equation (7). At very low concentrations of KMnO4, the absorption of the water itself

should dominate. Whether or not the presence of KMnO4 can be determined depends on the repeatability

of the photothermal measurement, because absorption changes smaller than the background water

absorption can only be discerned by subtraction of a blank reference measurement for pure water. At

intermediate absorptions the permanganate should dominate, and the photothermal signal should be

proportional to the concentration of KMnO4. At high concentrations, with values of  above 0.1cm-1 for a
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5cm pathlength, a nonlinear dependence on  should emerge and the photothermal signal should converge

to its maximum possible value. If the photothermal signal is plotted against the fraction of light absorbed, a

linear dependence should be observed above the noise level, even at high KMnO4 concentrations.
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Figure 7. Photothermal signals from KMnO4 solutions (solid line) and from deionised water controls

(dashed line), versus the absorption coefficients and fractional light absorption of KMnO4 at each

wavelength.

In each case the form of the graph is as expected, with an approximately linear increase in photothermal

signal with absorption coefficient for values of  above that of water and below the point of saturation of
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the signal. The main sources of error in the data were as follows. At low absorptions, random noise in the

interferometer signal, estimated to be 10 pm Hz-1/2, gave a 1pm random uncertainty in the results for a 100s

measurement period. Secondly, interference fringe drift resulted in uncertainty in the value of the scale

factor A used to calculate the meniscus deflections using equation (1). This produced an error of

approximately 10% in each result.

The performance of our system in detecting trace levels of absorption in water depended on the

photothermal modulation frequency (70Hz in each case), the limiting noise level, the light power coupled

into the cell from the source and the background level of water absorption. The limiting noise was the

minimum detectable meniscus deflection of 1pm. Equation (8) predicts the resulting minimum detectable

absorption coefficients, which are given in Table 2, for each LED. Also shown is the expected background

level of water absorption, as recorded by Patel and Tam using a pulsed photothermal method[3].

Table 2. Predicted photothermal performance with each LED

Predicted min Water absorption[3]

Blue LED 210-4 cm-1 1.110-4 cm-1

Green LED 310-4 cm-1 1.410-4 cm-1

Red LED 210-4 cm-1 1.410-3 cm-1

The graphical results are consistent with the predicted minimum detectable absorption levels for each LED.

All three LEDs had similar output intensities, and so similar minimum detectable absorption levels were

predicted. However, the absorption coefficient of water itself at 658nm is higher than the predicted

minimum detectable  for the red LED. In this case, the predicted performance could only be achieved by

arithmetic subtraction of the blank reference signal due to deionised water, as shown in Figure 8. An

estimate of the measurement repeatability, the value of one standard deviation in the measured results for

water, is shown as a dashed line.
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Figure 8. Photothermal meniscus deflection results excited by a 658nm LED, following subtraction of

the mean measured meniscus deflection for a deionised water control.

Thus, for each of the three measurements of KMnO4 concentration in deionised water, the meniscus

deflection noise floor of 1 pm limits the minimum detectable absorption. The fact that this limit is

determined by random displacement of the meniscus suggests that improvements may be gained by greater

suppression of environmental acoustic noise. Alternatively, under some circumstances, longer

measurement integration periods might be desirable. Photothermal window noise does not appear to have

been significant, perhaps due to our choice of sapphire as the window material. Sapphire is reported to

have thermal transfer properties which result in lower window noise levels than are produced using other

common window materials, such as silica[1].

4 Conclusion

Photothermal detection of trace quantities of potassium permanganate in aqueous solution has been

demonstrated, using three LEDs emitting visible light at different wavelengths. Potassium permanganate is

a good photothermal standard, enabling our results to be transferred to other compounds. The system used

a water meniscus as a pressure sensor, of optimum compliance approximately equal to the bulk compliance

of the water enclosed by the cell. Meniscus deflections were detected using an optical fiber Fabry-Perot

interferometer.

The technique was limited by environmental acoustic noise which gave a noise floor, in terms of rms

meniscus displacement, of 10 pm Hz-1/2. For a measurement integration time of 100s, this limit was

equivalent to a minimum detectable absorbed power of 0.25 W rms. The minimum detectable absorption
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coefficient depended on the emitted power of the light sources; in our case the limit was of the order of

210-4 cm-1.

The magnitude and shape of photothermal signals were found to be in good agreement with theory. The

frequency response of the technique showed a 1/f relationship, with a resonance at approximately 700Hz.

However, the resonance was not exploited during our experiments because the signal to noise ratio was not

enhanced.
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Appendix –Theory of operation

The following assumptions have been made in order to calculate the deflection of the center of the

meniscus, h, as a function of photothermally absorbed energy.

(i) The presence of impurities in the water, including the compound that we wish to detect, has a

negligible effect on its material properties.

(ii) The light emitted by each LED is monochromatic at the peak absorbed wavelength.

(iii) All the light energy absorbed by the solution is converted to heat within the modulation period of the

measurement, and during this period, no heat is lost from the fluid, for example to the cell walls.

(iv) A flat meniscus is used for detection purposes, with small deflections from this equilibrium.

(v) The edge of the pinhole is perfectly sharp (zero radius of curvature).

(vi) The curvature of the meniscus is constant across the pinhole, ie surface forces dominate gravity and

deflections are spherical.

Firstly, the mechanical compliance of the cell is calculated, ie the change in volume caused by an internal

pressure change. This is used to calculate the magnitude of the photothermal response, and the optimum

value of the meniscus radius is found. Finally, the magnitude of the signal from the fiber optic

interferometer is calculated.

The compliances (V/P) of different cell elements are additive, and may be considered one by one. The

compliance of the water enclosed by the cell may be calculated from the definition of its bulk modulus 

and the internal volume of the cell Vc.

The compliance of the meniscus may be found by considering the excess pressure across the curved

meniscus and by calculating the volume of displaced fluid. For small deflections from a flat surface, the

meniscus compliance is approximately linear with respect to , and the expression converges to the

following;

where  is the surface tension of the fluid. When a cylindrical region of fluid lying in the optical path

absorbs a small amount of light energy E, its unconstrained volume increase would be,


cV

=
P

V

water













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4

meniscus

a
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where  is the volume thermal expansion coefficient of the fluid, Cp is its specific heat capacity and  is its

density. The pressure increase in a closed cell on absorption of energy E is thus given by equation (4) and

the total cell compliance.

The displacement of the center of the flat meniscus from its mean position, h, is a function of the excess

pressure across it, which for small pressure changes approximates to the following linear expression;

The change in h with absorbed energy E is then given by;

The optimum meniscus, for maximum displacement response to absorbed energy, has a radius which makes

its compliance equal to the bulk compliance of the water enclosed by the cell. In this case, the optimum

radius is 200m[7], giving a response to absorbed energy of h = 410-4 m J-1.

The absorbed energy is given by Beer’s Law. For small absorption coefficients, E is approximately

proportional to , the absorption coefficient. For square wave modulation of the light at a frequency f, the

absorbed energy takes the form of a sawtooth, plus a ramp component. Since our method subtracts the

ramp component from the signal, we may ignore it. The meniscus deflection then simply takes the form of

a sawtooth, with the peak-to-peak displacement given by the following equation;

where I0 is the peak incident light power, () is the absorption coefficient, in cm-1 at a particular

wavelength  and  is the pathlength of the cell in cm. For small h, the relationship between the

minimum detectable absorption coefficient and the rms minimum detectable meniscus deflection is

approximated by;
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