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Chemical cleaning of potable water membranes: the cost 1 

benefit of optimisation 2 

Nicandro Porcelli and Simon Judd, Centre for Water Science, Cranfield University 3 

 4 

Abstract 5 

A study of the variability in chemical cleaning factors on permeability recovery for potable 6 

water microfiltration (MF) and ultrafiltration (UF) systems has been carried out employing a 7 

cost model simulating plant fouling and cleaning regimes. The impact of a range of operating 8 

and cleaning factors on operating cost variation was computed using algorithms describing 9 

operational and cleaning factor relationships with permeability recovery data measured from 10 

bench scale tests on fibres sampled from full-scale operational plants. 11 

 12 

The model proceeded through sequencing of the cleaning and backwashing operations to 13 

generate transmembrane pressure (TMP), and so head loss, transients. A number of cleaning 14 

scenarios were considered for each plant, based on employing either a threshold TMP or 15 

fixed chemical cleaning intervals. The resulting TMP profiles were then converted to 16 

operational costs. The effect of the variability in permeability recovery on annual operating 17 

costs was calculated for each of the simulations. It was evident that significant operating cost 18 

reductions were possible from optimisation of the cleaning protocol. Cost benefit varied 19 

according to facets of plant design and operation; the innate variability in permeability 20 

recovery precluded the correlation of cleaning efficacy with fouling characteristics.  21 

 22 

Key words: membrane cleaning; factorial analysis; hollow fibre; potable water; cost benefit23 
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SYMBOLS AND ABBREVIATIONS 24 

(Cmin), C (Minimum) concentration 25 
(Pmax), P (Maximum) soak period (min) 26 
(Tmin), T (Minimum) temperature (°C) 27 
£op  Overall operational cost (GBP) 28 
£p, £h, £c, £w Cost of pumping, heating, chemicals, and waste (GBP) 29 
£unit  Unit operational cost per volume produced (pence.m-3) 30 
∆h  Head difference for a column of water (m) 31 
µ   Viscosity  (kg.m-1.s-1) 32 
a-f Factors in two-factorial expression for permeability recovery in Eq 2 33 
Am Membrane area (m2) 34 
BBD Box Behnken determination 35 
CEB Chemically enhanced backwash/backflush 36 
Cfc  Unit chemicals cost (GBP/tonne) 37 
Cfe  Unit electricity cost (GBP/kWh) 38 
Cfw Unit waste cost (GBP/kWh) 39 
CIP Clean in place 40 
CT Capillary tubes 41 
Cv  Specific heat capacity (kJ. Kg-1.°K-1) 42 
g  Gravitational constant ( 9.81 m.s-2) 43 
GAC  Granular Activated Carbon 44 
HF Hollow fibres 45 
J  flux (L.m-2.h-1) 46 
Kf, Ki Final, initial membrane permeability from cleaning test (L.m-2.h-1 bar-1) 47 
Kv Virgin membrane permeability (L.m-2.h-1 bar-1) 48 
M Factor in two-factorial expression for permeability recovery (Eq 2) 49 
MF Microfiltration 50 
Nb Number of backflushes per year 51 
Nc Number of chemical cleans per year 52 
PACL  Poly Aluminium Chloride 53 
PES   Polyethersulphone 54 
PP  Polypropylene 55 
PP Polypropylene 56 
PVDF  Polyvinylidene difluoride 57 
Qb  Backwash flow rate (L.s-1) 58 
Qm Filtration flow rate (L.s-1) 59 
r  Ratio of chemical cleanant volume to membrane area 60 
RM, Rf  Membrane, fouling resistance (m-1) 61 
Rv Percentage permeability recovery from cleaning 62 
Rv,max Optimal cleaning recovery (%) 63 
sHF  Submerged Hollow fibres 64 
T  Average Feed Temperature (°C)    65 
tb Period between backflushes, i.e. backflush frequency (min) 66 
tbb Backflush dureation (s) 67 
tc Period between chemical cleans, i.e. chemical cleaning frequency (days) 68 
tcc Clean period (min) 69 
UF  Ultrafiltration 70 
Vm, Vb, Vc Annual volumes: design throughput, backwashing, cleaning (m3) 71 
Vp  Net production of permeate per annum (m3) 72 
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Xa, Xb, Xc Proportion of fouling removed by backwashing, chemical cleaning and 73 
unremoved in Eq 4 (m.min-1) 74 

α  Specific Cake resistance (m.kg-1) 75 
ΔP or TMP Transmembrane pressure   (m H2O, bar.g or kPa) 76 
ΔT  Difference between ambient temperature and reagent temperature (°C) 77 
η   Conversion efficiency (%) 78 
ρ   Density (kg.m-3) 79 
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Chemical cleaning of potable water membranes: the cost 80 

benefit of optimisation 81 

Nicandro Porcelli and Simon Judd, Centre for Water Science, Cranfield University 82 

Introduction 83 

Studies into cleaning sequencing and its impact on operating costs require experimental 84 

fouling data to provide head loss information. Whilst abundant fouling data is available, as 85 

well studies of the impact and/or optimisation of physical cleaning for fouling amelioration 86 

(Lodge and Judd, 2004; Katsoufidou et al, 2005; Smith et al., 2006, van der Ven, 2008), 87 

studies of chemical cleaning of membranes in the municipal water sector are much less 88 

common. 89 

Early studies into optimisation of membrane cleaning qualitatively modelled the relationship 90 

between cleaning regime and recovery for single foulants (Bartlett et al.  1995). These studies 91 

were developed from Hermia’s blocking model, where foulants form resistance layers 92 

(Belfort et al., 1994).  Further studies into quantifying the effects of chemical cleanants have 93 

been used predominantly in food and industrial applications  (Shorrock and Bird, 1998, 94 

Blanpain-Avet et al., 2004). Observations of cleaning effects with surrogate foulants in 95 

laboratory experiments show differences in cleaning effects and efficiencies for different 96 

solutions (Field et al.  2008). Dead end hollow fibre (HF) membrane cleaning studies on 97 

fibres from a single field source showed the impact of cleaning reagents to be dependent on 98 

foulant character (Strugholtz et al., 2005). Recently models have been developed 99 

investigating dynamic cleanant performance on membranes fouled with surface waters at 100 

high organic loads (Zondervan and Roffel, 2007). Economic simulations based on 101 

ultrafiltration (UF) have suggested that optimising the number of cleaning cycles does not 102 

reduce operating costs, and that cleaning should instead be optimised to control fouling 103 

(Lodge and Judd, 2004; Zondervan and Roffel, 2008b).  104 

Factorial analysis using analysis of variance has been shown to identify and optimise 105 

cleaning with proprietary reagents, specifically on spiral wound ultrafiltration and reverse 106 

osmosis membranes fouled from wastewater recovery duties (Chen et al., 2003). Recent 107 

chemical cleaning optimisation studies based on hollow fibre UF and MF (microfiltration) 108 

membranes sampled from full scale potable water treatment plants have quantified optimum 109 

permeability recovery from chemical cleaning of hollow fibre (HF) and capillary tube (CT), 110 
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respectively representing shell-side to lumen-side and lumen-side to shell-side flow, 111 

submerged and pumped membranes (Porcelli et al, 2009ab). The method for these latter 112 

studies was based on three factorial analyses using a response surface methodology, Box 113 

Behnken Determination (BBD), and has yielded algorithms quantifying the variation in 114 

permeability recovery from cleaning as a function of the key cleaning parameters of 115 

concentration (C), temperature (T) and soak period (P).  The experimental method (Porcelli et 116 

al, 2009a) has allowed optimum values of C, P and T to be identified for membranes 117 

pertaining to a range of plants, cleaning protocols, operating conditions and feed qualities 118 

(Porcelli et al, 2009b). 119 

In the following paper the results from a cost model based on the simplest representation of 120 

fouling, as resistances in series (Belfort et al., 1994; Zondervan et al., 2008), are presented 121 

based on previously published data (Porcelli et al, 2009b).  The model has been applied to 122 

four full-scale, established MF/UF potable plants selected to provide a range of membrane 123 

material types and configurations, water sources, pre-treatment, fouling conditions and 124 

corresponding operation and maintenance conditions, with the latter particularly relating to 125 

the chemical cleaning regimes.  126 

Methodology 127 

Sampled membrane plants 128 

Cost models for a number of cleaning operational scenarios were built from cleaning factor 129 

relationships generated from permeability recovery data from laboratory cleaning 130 

optimisation tests (Porcelli et al, 2009ab). Figure 1 shows the information flows to a transient 131 

headloss (∆P) or Trans Membrane Pressure (TMP) model built from site and laboratory data. 132 

The factorial algorithms from cleaning experiments allowed four cleaning scenarios to be 133 

explored for four membrane potable water treatment sites (A-D, Table 1) with another four 134 

scenarios for variation in operational strategy, yielding 64 data in all. Operational costs over a 135 

year were calculated from energy and chemicals consumption and waste generation. 136 

Table 1 Operational and membrane data from Sites A-D 137 
 138 
Figure 1 Cleaning variation cost model methodology  139 

The HF membranes sampled from the primary stage of each of the four sites were 140 

polyethersulphone (PES) ultrafiltration; polypropylene (PP) pumped system microfiltration 141 

and polyvinyldiethylene (PVDF), with one site having a submerged configuration and the 142 
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other pumped. Modules were extracted in a fouled state, prior to on-site backwashing and 143 

chemical cleaning, and transported wet to the laboratory. Storage and autopsy of the modules 144 

and permeability testing and chemical cleaning efficacy of the extracted fibres was as 145 

described in Porcelli et al (2009a). 146 

Generation of cleaning parameter algorithm  147 

A bespoke rig was constructed to measure permeability at constant head of ultrapure water 148 

(Porcelli et al, 2009a). Permeability was recorded before and after cleaning to allow 149 

calculation of permeability recovery (%Rv) according to: 150 

%Rv = 100(Kf - Ki)/(Kv – Ki)        (1) 151 

where Ki and Kf are the measured initial and final permeability in L.m-2 h-1. bar-1, and Kv is 152 

the virgin membrane permeability.  153 

Fouled fibres extracted from modules taken from full-scale potable water membrane plants 154 

were rinsed before assembly into bench scale modules for cleaning and recovery 155 

measurement (Porcelli et al, 2009ab). Fifteen trials were conducted in total, and %Rv 156 

measured for a range of values of C, P and T (Table 2). The data were then used to generate 157 

site-specific algorithms from least square optima based on a two factorial model (Porcelli et 158 

al., 2009b). The aim was to quantify the responses for each factor. 159 

A 23-1 experiment with fifteen tests varying factor conditions was performed to a response 160 

surface Box Behnken design (Myers et al.  1989). Cleaning parameters were varied in the 161 

matrix in equal proportions, with the central points of each parameter repeated three times. 162 

The factorial multipliers (Table 3) from the computed responses from the CPT ranges given 163 

in Table 2 generated two-factorial expressions specific to each plant: 164 

%Rv = M + a*C + b*P +c*T + d* C.P + e*C.T + f*P.T     (2) 165 

Table 2 Cleaning factor ranges for BBD experiments 166 
 167 
Table 3 Factorial algorithm components for sites A, B, C and D 168 
 169 

Cost model basis and operation. 170 

Using the algorithms determined from the cleaning response experiments (Table 3) a simple 171 

cost model was built to compute the impact of the cleaning factor envelope for each site. An 172 
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Excel spreadsheet time incremented fouling while sequencing optimised recovery from 173 

backwash and cleaning operations, generating a TMP transient from the Darcian relationship: 174 

             (3) 175 

where RM and Rf are the membrane and fouling resistance, ΔP the TMP, µ the viscosity and J 176 

the flux. Foulant deposition was assumed to follow the resistance in series model (Belfort et 177 

al.  1994) which can be used for sequencing cleaning cycles in dead end membrane systems 178 

(Zondervan et al., 2008a) : 179 

)( cbaf XXXR ++=α          (4) 180 

where Xa, Xb and Xc are the proportions of the resistance from foulants, contributing to the 181 

overall specific cake resistance α, which comprise cake deposits which completely removed 182 

by backwashing (Xa), pore deposits removed by chemical cleaning (Xb) and non removable 183 

(Xc)  (Huang et al.  2009). The factor Xb was iterated such that the model permeability 184 

recovery replicated the experimentally determined value represented in the two factorial CPT 185 

algorithms summarised in Table 3. Historical TMP decline data from the full-scale plants 186 

(Fig.2) were used to estimate the average annual rate of foulant build up between backwashes 187 

and chemical cleans in place (CIPs) for the MF plants (B, C and D) and chemically enhanced 188 

backwashes (CEBs) for the UF plant (A).  189 

For each of the four sites the model generated the classic TMP “saw-tooth” transient (Fig. 3) 190 

through appropriate scheduling of backwashing and cleaning and adjustment of Rf to match 191 

reported site conditions. Following every backwash Xa was returned to zero whereas both Xa 192 

and Xb were returned to zero following a chemical clean. Chemical cleaning was initiated in 193 

the model either at fixed time intervals or on reaching a threshold TMP. The pore fouling Xb 194 

component was iterated such that the permeability recovery (%Rv) equalled the 195 

experimentally-determined value generated from Equation 2 for each site (Table 3). The 196 

model provided a TMP transient over a one-year period as a function of cleaning efficacy, 197 

which in turn was a function of the C, P and T values for optimum recovery in each plant’s 198 

experimentally-derived cleaning performance algorithms. The model’s recovery was iterated 199 

to replicate the optimal cleaning conditions and scenario driven operational costs calculated. 200 

Figure 2 Example SCADA analysis for flux decline TMP Vs Time: 9/07 to 4/08: Showing the annotations 201 
for a MF module on plant B. 202 
 203 

J
PRR fM .μ

Δ
=+
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Figure 3 Typical model output TMP transient, Site A, highlighting an hourly backwash and a cleaning 204 
events. Profile is for 2 days of operation (day 31 through 33 of 365). 205 
 206 

Model input data from plant operation 207 
 208 
Operational variables used to generate the TMP profiles for each site are given in Table 4. 209 

The annual design throughput volume (Vm) includes volumes for backwashing (Vb) and 210 

cleaning (Vc), such that net permeate production rate is:  211 

)( cbmp VVVV +−=          (5) 212 

The rate of fouling and the backwash and chemical cleaning intervals, which respectively 213 

relate inversely to the number of backwashes (Nb) and cleans (Nc) performed annually, 214 

determine the mean TMP. Nb and Nc also determine the volume of water wasted, the total 215 

energy demanded for cleaning (primarily for heating) and the chemical demand. Hence, 216 

whilst increasing the cleaning frequency maintains a higher TMP, this is to some extent offset 217 

by the decreased production and pumping energy demand from membrane “downtime” and  218 

reagent heating.  219 

For each plant the model parameter values (Table 4) were collected from site and plant 220 

design information. The specific cake resistance and fouling rates were determined by 221 

iteration of the variables separately to replicate the average flux decline rate as reported from 222 

site data over an annual cycle.  223 

Scenarios  224 

Four cleaning scenarios based on CPT variation were computed for each site. These 225 

represented the optimum permeability recovery (Rv,max), as determined from the bench-scale 226 

tests (Porcelli et al, 2009b), plus three other scenarios representing ranges of CPT variation: 227 

minimum cleanant concentration (Cmin); maximum soak period (Pmax) and minimum 228 

(ambient) temperature (Tmin). These were used in the algorithm (Equation 2) along with the 229 

design and operation data (Table 4) to generate the TMP transient. Results for the four 230 

cleaning scenarios are given in Table 5. 231 

Table 4 Design and operational variables, Sites A-D 232 
 233 
Table 5 Cleaning factors for CPT variation, Scenarios I-IV, for Sites A- D 234 
 235 
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Each of the four cleaning scenarios was run for four operational strategy variations based on 236 

fixed high-level and low level threshold TMPs and chemical cleaning intervals. The average 237 

TMP, and thus the pumping energy demand, was thus dictated by the cleaning frequency and 238 

permeability recovery. Table 6 gives the operating envelopes for the four operational 239 

strategies adopted for modelling each site, for which four the CPT scenarios were applied. 240 

  241 
Table 6 Operational “Strategies” 1-4 for Sites A-D 242 
 243 

Operating cost calculations 244 
Determination for operational costs (£op) in for each of the sixteen scenarios (Figure 3) on the 245 

four sites were expressed in GBP from the individual costs of pumping energy (£p), heating 246 

(£h), chemicals (£c) and waste (£w), using the baseline cost factors given in Table 7: 247 

£op  = £p +£h + £c +£w        (6) 248 

Table 7  Baseline cost factors   249 
 250 
 251 
Pumping energy costs were derived from the flow rate Qm, the average TMP and the 252 

mechanical and electrical power conversion efficiency η (Table 7), with the total water 253 

production modified for loss of product through downtime and backwash: 254 

      255 

 

 ( ) ( )( )[ ]bbcccmop tNbtNxQPCfe
avg ..105.31.£ 6 −−Δ=

η                                                      (7) 256 

where Cfe is the unit cost of electrical energy, tcc and tbb the cleaning and backwash durations, 257 

and Qb the backwash flow. Heating costs are proportional to the summation of the gross 258 

energy required to heat the cleaning solutions (kWh), and is therefore a function of the 259 

difference ΔT between the ambient temperature and the reagent temperature: 260 

 261 

£h = ⎟
⎠
⎞

⎜
⎝
⎛ Δ

3600
)( ρ

η
cve VTCCf         (8) 262 

 263 

where Cv is specific heat capacity (4.2 kJ.Kg.K-1), ρ is the density and Vc the volume of 264 

cleanant, which is a function of the membrane area Am and the number of chemical cleans. 265 

The cleanant volume per clean was taken from site chemical usage data from which the ratio 266 

r of chemical cleanant volume to membrane area ratio was derived  (Table 4).  267 
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 268 

Chemical costs were assumed as delivered with no supplementary handling costs. The 269 

volumes used in tonnes per annum were calculated based on the volume used per CIP/CEB 270 

event over the year: 271 

 272 

£c = Cfc C Nc Vc         (9) 273 

 274 

where Cfc is the reported UK unit chemicals cost in £/tonne (IChemE, 2002) adjusted to 2008 275 

values from government data (NSO-UK, 2008). A common notional waste disposal route was 276 

assumed based on backwashing and cleaning waste volumes which were converted to energy 277 

demand using a common waste energy cost factor Cfw, adapted from (Zondervan and Roffel, 278 

2008) and based on waste neutralisation and returning to the head of works: 279 

 280 
£w = Cfw (((Nc Vc) + ( QbNbtbb)) ρ g Δh) / η               (10) 281 

 282 

The cost variation in contribution from each cost group was compared for the different CPT 283 

envelope responses (Rv,max, Cmin, Pmax, Tmax). By converting total operating costs to relative 284 

costs per cubic metre of water produced it was possible to compare costs across the different 285 

sites. The deviation from the optimum cleaning scenario for each of the operational scenarios 286 

could also be compared. 287 

Results 288 
Costs for each site were categorised according to headloss pumping, cleanant heating energy, 289 

chemical consumption, backwash pumping and waste treatment. These are presented as 290 

percentage of total operational costs, indicating the differences that each operational 291 

“Strategy” provides, in Table 6. The operational cost of each operational “strategy” at 292 

optimal permeability recovery are shown in Figure 3; where error bars indicate the minimum 293 

and maximum operational costs according to different CPT envelope “scenario” responses (I 294 

Rv,max, II Cmin, III Pmax, and IV Tmax). The percentage component contribution to the operating 295 

cost, based on optimum cleaning recovery, is given in (Table 8) for a number of cleaning 296 

“scenarios”. It can be seen that the cost associated with the TMP headloss represents the 297 

primary component in all cases and that, despite optimisation of cleaning, there is significant 298 

variation in calculated operational costs. 299 

 300 
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Figure 4 Chart showing how optimal cleaning recovery (Rvmax) influences relative costs/m3 of water for a 301 
variation in operational scenario (1-4, Table 6) The error bars show how this varies across the cleaning 302 
factor envelope (II-IV, Table 5).  303 
 304 
Table 8 Percentage contribution to operational costs based on optimum cleaning protocol (I) for the four 305 
sites and the four operational  scenarios 306 
 307 

The influence of the cleaning factor envelope variations on the unit cost (Figure 4) shows the 308 

relative cost variation across the ranges of recovery attained from the four cleaning scenarios 309 

applied to the four operational “strategies” chosen for the four sites. The calculated variation 310 

in the plant life operating costs for each of the “scenarios” (Table 9) includes data for cash 311 

flow using a discount rate of 10% and a 15 year plant life. For all the models the range of 312 

variation from treatment factors is seen to have cost implications which vary with operational 313 

strategy. The MF membrane sites (B, C, D) indicate increasing costs under optimal cleaning 314 

conditions as the “strategy” proceeds from a high fixed TMP (1) to a long fixed interval 315 

cleaning cycle (4). For the UF plant (Site A) the wider range of costs for a fixed low TMP 316 

“strategy” indicates that frequency of cleaning operations together with the optimisation of 317 

the cleaning factors has the largest impact on operational costs.   318 

 319 
Figure 5 Chart showing relative operational costs (p, or £ x 0.01, per m3) for the four cleaning factor 320 
“scenarios” (Rvmax, Cmin, Pmax, Tmax) for each of the four Operational Scenarios (1-4) on Sites A-D.  321 
 322 
 323 
Table 9 Difference between best and worst case operational costs with cleaning factor envelope for sites 324 
A-D for each of the operational scenarios 1-4: (i) operational cost savings  from variations in cleaning 325 
factors, with (ii) the equivalent capital cost for 15 year amortisation period at 10%. 326 
 327 

Discussion 328 
Evidence provided from the analysis (Figs. 3-4, Table 9) indicates a significant impact of 329 

both the plant operating protocol (i.e. the basis chosen for applying the chemical clean) and 330 

the degree of optimisation of the chemical clean (i.e. the attainable permeability recovery and 331 

energy/consumables expenditure) on overall operating costs.  For example, for Plant C the 332 

spread of the unit operating costs (£unit, in pence per m3) arising from operation across the 333 

range of the cleaning “scenario” ranges (maximim to minimum CPT values) is calculated to 334 

be as high as 0.2 pence.m-3 above an optimum of 0.3p.m-3 for a strategy of less frequent CIPs 335 

(Fig. 4).  If the operating “strategy” is changed to more frequent CIPs the operating costs 336 

decrease by around 10% and its cost variation for operation across the CPT envelope is 337 

reduced by a third. As the cleaning “scenario” is changed, the impact of the cleaning 338 

envelope is also changed, with the largest impact - from 0.08 to 0.23 pence.m-3 as measured 339 
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for Plant D (a submerged MF plant) on changing from operation at fixed high threshold TMP 340 

to operation at less frequent CIPs (Fig. 5).  Moreover, there is a distinct difference in the 341 

pattern of behaviour between the UF plant (Plant A) and the microfiltration plants (Plants B-342 

D), according to Figure 4. 343 

 344 

It has previously been observed (Zondervan and Roffel, 2008) that optimisation of cleaning 345 

cycles has little impact on the lifetime cost, based on models built for a UF plant scenario 346 

with varied cycle time for a particular set of parameter data. The current study, conducted 347 

across a range of plants, showed the cleaning response to vary greatly. This variation yielded 348 

changes in annual operational costs, relating primarily to energy and consumables, ranging 349 

from below £20k to over £170k for a UF plant challenged with pre-treated groundwater 350 

(Table 4, Site A). This has implications regarding existing and proposed control strategies for 351 

backwash frequency and cleaning cycle control based on neural networks (Veerapaneni et al.,  352 

2004, Oh et al.,  2004) based on cleaning efficacy attained on site. Such approaches, using 353 

heuristic data for feedback control, are necessarily constrained by the operating envelope 354 

used on site, whereas the approach used in the current study allows a much larger envelope to 355 

be explored and the optimum cleaning conditions precisely identified, though the approach is 356 

constrained by the necessity for ex-situ tests.  357 

Conclusions 358 
The effects of actual variable cleaning recoveries for different membrane fibres fouled on full 359 

scale plants were appraised using a simple fouling model to generate a transient TMP trend 360 

with variable backwash and cleaning cycles. The effect of cleaning factor “scenario” 361 

variations on recovery from experimental data was incorporated into the model along with 362 

plant operating “strategies”, and the model used to quantify their impact on operating cost. 363 

The study revealed:  364 

• Differences in cleaning factor performance, as determined by the values for the cleanant 365 

concentration C and cleaning temperature T and soak period P, were significant and have 366 

a bearing on the design of a process, and in particular the range of operating flux which 367 

determines the fouling rate and so cleaning cycle times. 368 

• Optimisation of permeability recovery has a measurable impact on operational costs, with 369 

the difference in annual operating cost between the most and least optimal chemical clean 370 
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being as little as £5 to as high as £74 p.a. per l/s of flow depending upon the plant 371 

operating protocol. 372 

• The extent of the operational cost reduction for an optimal cleaning regime is dependent 373 

on both the operational strategy, with respect to the basis for scheduling the chemical 374 

cleans, and the membrane type (ultrafiltration vs. microfiltration) and/or configuration 375 

(hollow fibre vs. capillary tube). 376 

Results indicate that the innate variability in cleaning efficacy appears likely to eclipse any 377 

possible correlation of permeability recovery with fouling characteristics. Clearly this aspect 378 

demands further study, given the wealth of scientific information on fouling mechanisms and 379 

linked with foulant physicochemistry and biochemistry. 380 
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Table 1 Operational and membrane data from Sites A-D 

1PES = polyethyl sulphone; PVDF = polyvinylidene difluoride; PP = polypropylene 
2Configuration: (s)HF = (submerged) hollow fibre; CT = capillary tube 
 
 
Table 2 Cleaning factor ranges for BBD experiments 
Site Cleaning agent Strength  

 (C, mol.L-1 ) 
Soak Time 
(P, min) 

Temperature 
(T, °C) 

A NaOH 0.050 – 0.175 30 – 90 10 - 40 
B NaOH 0.188 – 0.405 30 – 90 5 - 35 
C Citric acid 0.003 – 0.009 30 – 90 5 - 35 
D NaOCl varied then H2SO4 at pH 

2.0, 15°C, 60 min 
0.001 – 0.002 30 – 90 5 - 35 

 
 
Table 3 Factorial algorithm components 
Site M a b c d e f 
A 34.577 -65.346 0.019 -0.156 0.379 1.716 0.000 
B 9.463 -3.830 0.042 0.187 0.029 0.127 -0.005 
C 125.822 -55.799 -0.950 -2.587 0.435 2.124 0.014 
D 29.755 -0.078 -0.151 0.540 0.001 0.001 -0.014 
 

Site Water Type Membrane1 Config.2 Pre-treatment 
A Groundwater: single 

borehole. pH = 7.1, 
turbidity <5 NTU 

UF - PES CT Coagulation (PACl 4 mg L-1), 
clarification, GAC, pre-
chlorination 

B Upland surface-impounded 
reservoir. pH = 6.9, 
turbidity = 0.71 NTU 

MF - PP HF Microstrainer (30 µm) 
  

C Upland surface-impounded 
reservoir. pH = 5.5 – 5.8, 
turbidity < 2 NTU 

MF - PVDF HF pH correction, pre-coagulation 
(PACl 2 mg L-1), primary 
pressure filtration, pre-
chlorination, 2nd stage 
pressure filtration 

D Groundwater: single 
borehole.  
pH = 7.1.  turbidity < 0.2 
NTU 

MF - PVDF sHF Microstrainer, 
pre-chlorination 
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Table 4 Design and operational variables 
Model variable  Site: A B C D 
Design throughput Qm L.s-1 417 752 62.5 440 
Membrane area,  Am m2 17640 20092 2806 11192 
Clean water resistance,  Rm m-1 2.5 2.5 1.25 2.5 
Design flux,  J L.m-2.h-1 109 68 80 142 
Backwash flux; rate  Jb  L.m-2.h-1  250 60 120 60 
Backwash interval   tb  minutes 55 60 60 60 
Backwash duration tbb seconds 50 20 20 20 
Cleaning   interval  tc days Variable 
Cleaning  duration tcc minutes Variable 
Cleanant Ratio    R m3.m-2 1.83E-04 1.53E-03 1.53E-03 1.53E-03 
Average Feed °C    Tf °C 10.0 10.4 6.0 6.0 
Cake fouling rate, as a function of (Equation 4): from d(TMP)/dt data, 

Cake deposits Xa m.min-1 1.01.E+01 7.40.E-02 2.50.E+00 2.50.E+00 
Pore deposits  Xb m.min-1 2.01.E-01 6.89.E-06 2.33.E-02 2.33.E-02 

Non Removable deposits  Xc m.min-1 6.89.E-06 1.15.E-03 5.00.E-09 6.89.E-06 
Specific cake resistance α m-2 1.43.E-03 8.66.E+00 1.25.E-03 1.25.E-03 

 
 
Table 5 Cleaning factors for CPT variation, Scenarios I-IV,for Sites A- D 
   CPT VARIATION  SCENARIO 
   I II III IV 
SITE A   %Rv,max Cmin Pmax Tmin 
Caustic Soda C   mol.L-1 0.175 0.050 0.175 0.175 
 P  minutes 89 89 30 89 
 T °C 37 37 37 10 
 Rv  % 52.0 36.0 35.8 24.4 
SITE  B        
Caustic Soda  C   mol.L-1 0.405 0.188 0.405 0.405 
 P  minutes 30 30 90 30 
 T °C 35 35 35 10 
 Rv  % 14.8 13.5 10.4 8.4 
SITE C        
Citric Acid  C   mol.L-1 0.009 0.009 0.009 0.003 
 P  minutes 90 30 90 90 
 T °C 35 35 10 35 
 Rv  % 97.0 78.0 35.0 28.0 
SITE D        
Hypochlorite C   mol.L-1 0.002 0.002 0.002 0.001 
 P  minutes 30 90 30 30 
 T °C 35 35 5 35 
 Rv  % 26.6 26.6 16.1 5.6 
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Table 6 Operational “Strategies” 1-4 for Sites A-D 
SITE STRATEGY 
 1 2 3 4 
 Fixed maximum 

TMP - HIGH 
Fixed maximum 

TMP - NORMAL 
Fixed # of cleans - 

SHORT 
Fixed # of cleans 

(tc) - LONG 
 ΔPmax, kPa ΔPmax, kPa tc, days tc, days 
A 50 45 0.5 1 
B 150 120 14 28 
C 70 40 14 28 
D 90 60 14 28 
 
 
Table 7  Baseline cost factors   
Cost Factor Value 
Power supply efficiency (η) 0.601 
Pumping and heating energy (Cfe, £/kWh) 0.102 
Waste treatment energy (Cfw, £/kWh) 0.254 

Chemical cleanant cost  (Cfc, £/tonne)3  
  Citric acid 
  Caustic soda (NaOH), 50 wt% 
  Chlorine 

 
9003 
603 
1303 

1Rishel, 2002; 2Holden, 2008; 3IChemE, 2002: 2002 data indexed to 10/2008 from UK national Statistics Office 
Annual Variation Tables, NSO-UK, 2008. 4 Based on Zondervan 2008a 
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Table 8  Percentage contribution to operational costs based on optimum cleaning protocol (I) for the four 
sites (A-D) with four operational scenarios ( 1-4) 
SCENARIO SITE % Scenario Contribution 
 A B C D 
Scenario 1  Fixed maximum TMP- HIGH     
Headloss pumping 75.2 97.2 89.5 96.4 
Cleanant heating energy 18.2 1.9 6.1 2.6 
Chemical consumption 0.3 0.1 1.8 0.1 
Backwash pumping 1.8 0.2 0.7 0.2 
Waste treatment energy 4.5 0.6 1.9 0.6 
Scenario 2 - Fixed maximum TMP – LOW         
Headloss pumping 49.7 95.1 72.9 91.6 
Cleanant heating energy 44.9 3.9 19.4 7.2 
Chemical consumption 0.7 0.2 5.6 0.4 
Backwash pumping 1.3 0.2 0.6 0.2 
Waste treatment energy 3.4 0.6 1.5 0.6 
Scenario 3 Fixed number of cleans- SHORT tc          
Headloss pumping 57.7 95.8 74.7 92.9 
Cleanant heating energy 36.5 3.2 17.9 6.0 
Chemical consumption 0.6 0.1 5.2 0.3 
Backwash pumping 1.5 0.2 0.6 0.2 
Waste treatment energy 3.7 0.6 1.6 0.6 
Scenario 4 Fixed number of cleans - LONG tc         
Headloss pumping 73.2 97.8 87.5 96.5 
Cleanant heating energy 20.3 1.3 7.7 2.6 
Chemical consumption 0.3 0.1 2.2 0.1 
Backwash pumping 1.8 0.2 0.7 0.2 
Waste treatment energy 4.4 0.6 1.8 0.6 
 
 
Table 9 Difference in GBP between best and worst case operational costs with cleaning factor envelope 
for Sites A-D for each of the operational scenarios 1-4: (i) operational cost savings  from variations in 
cleaning factors, with (ii) the equivalent capital cost for 15 year amortisation period at 10%  

Site: A B C D 
Scen. i ii i ii i ii i ii 

1 7,532 55,487 3,531 26,015 1,103 8,123 11,865 87,409 
2 23,386 172,274 6,347 46,754 1,664 12,256 19,402 142,931 
3 9,254 68,170 26,838 197,710 1,412 10,403 27,796 204,766 
4 2,690 19,817 34,897 257,075 1,833 13,503 32,423 238,850 

i  Saving  in £ per annum between worst and best case operational cost with cleaning factor CPT variation. 
ii Annual operational savings in £ as capital amortised for 15 yrs at 10% 
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Figure 1 Cleaning variation cost model methodology  
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Figure 2 Example SCADA analysis for flux decline TMP Vs Time: 9/07 to 4/08: Showing the annotations 
for a MF module on plant B. 
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Figure 3 Typical model output TMP transient, Site A, highlighting an hourly backwash and a cleaning 
events. Profile is for 2 days of operation (day 31 through 33 of 365). 
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Figure 2 Chart showing how optimal cleaning recovery (Rvmax) influences relative costs/m3 of water for a 
variation in operational strategy (1-4, Table 6) The error bars show how this varies across the cleaning 
factor envelope (II-IV, Table 5).  
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Figure 3 Chart showing relative operational costs (p, or £ x 0.01, per m3) for the four cleaning factor 
scenarios (Rvmax, Cmin, Pmax, Tmax) for each of the four Operational Scenarios (1-4) on Sites A-D.  
 


