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Abstract. The value of an intrusion detection sensor is often associated
with its data collection and analysis features. Experience tells us such
sensors fall under a range of different types and are diverse in their
operational characteristics. There is a need to examine some of these
characteristics to appreciate the value they add to intrusion detection
deployments. This paper presents a model to determine the value derived
from deploying sensors, which serves to be useful to analyse and compare
intrusion detection deployments.

1 Introduction

The value of an intrusion detection sensor is often associated with its data col-
lection and analysis features. This is inevitable since so many of the sensors are
designed with such characteristics in mind. Experience tells us such sensors fall
under a range of different types and are diverse in their operational character-
istics, some of which have been little studied. They offer a range of analytical
abilities, with varying levels of efficiency, and incur a variety of costs. Hence,
there is a need to examine these characteristics to appreciate the real value they
add to sensor deployments.

We present a model to help determine the benefit derived from deploying
intrusion detection sensors at various locations in a network. The aim is to de-
ploy sensors at locations in a systematic fashion such that maximum cumulative
benefit is derived at a minimum cost. This builds on a broad characterisation of
sensors identified in earlier work [1, 2] which looks at sensor interaction abilities,
locations in a network where such sensors could be placed, and costs involved
in deploying and monitoring. Network locations are also characterised in terms
of monitoring load incurred due to the amount of activity processed and cost of
disruption due to extra installation required.

The paper is organised as follows. Section 2 presents a characterisation of
networks. Section 3 presents a characterisation of sensors. Section 4 presents the
main contribution of this paper: a deployment value model to determine the
benefit derived from placing a sensor at a location and a strategy to optimise
the deployment of multiple sensors. Section 5 illustrates this using a case study.
Section 6 discusses some related work and section 7 concludes the paper.
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2 Characterising the network

We present network characteristics that help us to characterise the various de-
ployment locations available in a network. Such locations are distinguished ac-
cording to a variety of factors which affect sensor deployment.

2.1 Location type

We specify three types of locations for sensor deployment: hosts (H), segments
(S) and backbone (B) links. Each type provides different opportunities for plac-
ing a sensor and collecting some unique data:

- Backbone links are the most commonly used location for this purpose where
network traffic between hosts and parts of the network is monitored.

- Segments allow such traffic to be monitored but are more useful for moni-
toring traffic within the same segment and link layer activity.

- Hosts refer to clients or servers where process and application data is mon-
itored. This is useful for detecting malicious code, including worms and
viruses, system files, memory and processor utilisation, and logs.

We use the three types of locations to classify sensors accordingly. Ly and Ap
denote type for location L and sensor A respectively, and range over a given set
of locations, Ly, At : {H, S, B}. Sensor A can be deployed over location L only
if A7 = L. This ensures that sensors are deployed on compatible locations.

2.2 Load factor

We specify load factor to denote the amount of processing due to monitoring
involved at a location. For network links this corresponds to capacity and usage.
Hosts are characterised by processing load in terms of processor and memory
usage. Network locations where a high load factor is typical include

- backbone links due to the amount of traffic that passes through,

- network and application servers given the amount of processing involved
both in offering services to a number of clients, and processing of data,

- segments attached to busy servers or a large number of clients, and

- gateways that serve to link the network to the outside world.

We express load factor LF for a location L as LF(L) and restrict it to a range
of values [1,10] to express relative load for different locations in a network.

2.3 Risk profile

Chivers [3] introduces risk profiles for system components to characterise the
risks to which a system is exposed to if the component is compromised. The
notion could be applied to network nodes to denote the level of risk exposure
for the network if particular nodes are compromised. This takes into account



the value of a node as an asset, its location and the type of access it provides
to penetrate further in a network, and the likelihood of intrusions targeting it.
Risk profiles serve to highlight, for example, that web servers, critical to the
operation of an organisation engaged in electronic commerce and likely to have
more access to critical information, are at a higher risk than ordinary clients.
We extend the notion to apply to segment and backbone links. A link provides
an opportunity to detect compromise and a risk profile for a link is essentially
a representation of the significance of such an opportunity. Calculation of risk
profile also takes into account any preventative measures deployed to reduce risk
exposure in parts of the network; the calculation includes

- the aggregate risk profile of nodes attached,
- the aggregate risk profile of other links attached, and
- the risk reductive effect of any preventative measures deployed on the link.

A risk profile for a location L is denoted as R(L) and expressed as a ratio
relative to other locations within a network; the higher the R(L) the better the
value of deploying a sensor at L. We restrict R(L) to a specific range [0,10].

2.4 Disruption cost

We identify disruption cost for locations to estimate the cost of deploying sen-
sors. There are two factors to consider here. First, the cost of disruption at the
location due to installation. This includes changes to configuration that may be
necessary as a result of additional software or hardware deployed. Secondly, the
critical importance of the location to the overall operation of the network. This
represents the cost of disruption to the normal operation during installation.
Such a cost is likely to manifest itself in terms of downtime, and a loss of ser-
vices as a result. We denote disruption cost as D(L) for a location L and restrict
it to a specific range [1,10], with a minimum such cost of 1.

3 Sensor characteristics

We specify interaction abilities and efficiency, both of which are crucial to the
capability of a sensor. Costs are also critical to assess the efficiency of a sensor.

3.1 Interaction abilities

Individual sensors are represented in terms of their interaction abilities. This is
the ability to understand and interact with protocol characteristics at various
layers of the network. It may be limited to a single layer or span multiple service
layers where at each layer a sensor may interact

- to perform analysis using a range of data analysis techniques,
- if need be, generate response to detect suspicious events, and
- if possible, provide defense against such events.

We use a range of values [1,10] to denote interaction A; for a sensor A. For each
of the four service layers (Physical, Network, Transport and Application) it is
assigned out of 2.50; Aj is the cumulative total of values for each layer.



3.2 Efficiency

Whereas interaction abilities are important to detecting various types of attacks,
equally important is the performance of sensors to accurately detect events of
interest. This could be expressed in terms of the likelihood of false positives and
negatives. So, for example, a higher rate of false positives lowers the efficiency.
We denote sensor efficiency Ag for a sensor A as a fraction and restrict it to
a particular range [0.1,1]. Since it serves to influence the interaction ability of a
sensor, we use it to introduce a capability metric. Such a metric represents the
effective monitoring capability of a sensor denoted as Cap(A) = A; x Ag.

3.3 Costs

We take into account two different costs, deployment costs and monitoring costs.

Deployment cost is a sum of both the cost Cpep(A) of installing, configuring
and maintaining a sensor A, and the cost D(L) of disruption at a location L.
Network based sensors generally require minimal changes to network configura-
tion; sensors placed inline require some rearrangements and may therefore be
costlier. Host-based sensors are likely to be most costly to deploy given the dis-
ruption. Cost of deploying A over L is denoted Costp(A,L) = Cpep(A) + D(L),
where Cpep(A) is restricted to a specific range [1,10].

Monitoring costs are to do with the use of a sensor to detect potentially sus-
picious events. For a given sensor A such costs include the human cost Cyon (A)
of manual engagement required for monitoring, and the load factor LF (L) for
a location L monitored. Manual judgements required differs from sensor to sen-
sor. Such effort is dependent on the load factor: the busier the location, the
higher the levels of activity monitored, and therefore bigger the effort. The cost
of monitoring using A at L is denoted Costa(A,L) = Crron(A) x LF(L), where
Chon(A) is restricted to a specific range [1,10].

4 Deployment value model

We present a deployment value model for deploying a sensor in a network and
present a strategy to optimally deploy a number of such sensors.

4.1 Deployment value

Our characterisation of sensors and networks allows us to determine the value of
sensors operating at particular locations in a network. The higher the capability
deployed to mitigate the maximum risk, the higher the value of a deployment.
For a sensor A and location L, assuming Ar = L1, we denote deployment value
V(A,L) for placing A over L as V(A, L) = (Cap(A) x R(L))/Costr(A, L) where
Costr(A,L) denotes the total cost as a sum of deployment costs and monitoring
costs for such a deployment Costr(A, L) = Costp(A, L) + Costar(A, L). Such
a deployment is considered effective if V(A,L) > 1, else it is deemed not to



justify the costs involved. Note that the maximal value (120) for the total cost
Costr(A,L) outweighs the maximal possible (100) for Cap(A) x R(L). This is
acceptable since either the capability or the risk profile for a deployment should
justify deployment costs at a minimum.

4.2 Deployment strategy

We propose a deployment strategy to maximise deployment value of a set of
sensors. We define a set of n sensors as SENSORS = {a; | 0 < i < n} and a set
of m locations as LOCATIONS = {l; | 0 < j < m}. For some a € SENSORS
and | € LOCATIONS we represent each placement, where a is placed at [, as
a couple < a,l >. Given n sensors and m locations, a deployment is a set DEP
of all such placements where the total number is equal to the lower of n and m.

The challenge here is to determine the deployment value of a composition
of sensors such that they are placed optimally, which, assuming all sensors are
compatible with the location deployed at, ensures that placement is prioritised
in terms of the maximum deployment value possible, while avoiding duplication
of sensor capabilities at a location. Formally,

DEP:{<ai,lj> |V’L,] °
Qip = le/\ai ¢ {al, ...,ai_l}/\lj ¢ {ll, ...,lj_l}/\V(ai,lj) < V(ai_l,lj_l)}

The construction of DEP ensures that for every placement

- location types of a; and [; are compatible a;,. = [,
- sensor a; has not been deployed in a prior placement a; ¢ {a1,...,a;—1},
- location I; does not appear in a prior placement, I; ¢ {l1,...,1;_1}, and
- deployment value of placing a; over [; is less than the deployment value of

the previous placement V(a;,l;) < V(a;—1,l;-1)}.

The set DEP results in a list of compatible sensor-location pairings, all of which
are unique and in descending order of deployment value. We check whether each
individual deployment is of value 1 or more. A deployment value less than 1
represents an ineffective deployment where costs exceed the benefit. To factor it
in we calculate the loss of benefit for each such deployment and offset it from the
total deployment value. The deployment value operator is overloaded to extend
over sets as V(DEP) and represents the cumulative total value of all individual
sensor placements such that if V(a,l) > 1 then V(DEP) = V(DEP) + V(a,l),
or if V(a,l) <1, then V(DEP) = V(DEP) — (1 — (V(a,l)).

5 Case study

We present an example network to demonstrate our model. Three different sensor
deployment scenarios are chosen to reflect various host and network based sensors
available. A list of sensors in Table 1 serves as a good variety some of which we
use. It draws upon a characterisation of sensors from our earlier work [1,2],
assigning capability and costs based upon use and experience.



Table 1. A list of intrusion detection sensors

Sensor (A) Type (Ar)|Cap(A)|Cpep(A)|Crron(A)
Cisco IOS Port Security S 1.92 5 5
HP Virus Throttling H 6.39 8 2
Tripwire H 1.2 7 5
Auditd H 3.36 9 8
Snort S,B 6.72 8 3
Honeyd S,B 3.5 8 5
Nepenthes S,B 1.54 8 5
OSSEC H 4.32 10 3
IPFirewall (IPFW) S,B 2.8 6 4
Arpwatch S 0.48 2 5
Wireshark(Ethereal) S,B 2.75 2 9
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Fig. 1. An example network

5.1 Example network

The network shown in Figure 1 comprises of two servers, on segment S7, and
two clients, on segment S2. The backbone link B connects the two segments
and the link B; serves as the connection to the outside world. The two servers
are labelled FT'P and WWW to reflect the services they offer. They are the
most significant asset to the network operator providing profitable services and



incurring an expensive downtime, and are more likely to be targeted by intruders.
As shown in Table 2, we assign a risk profile of 5 to both servers and a 1 to both
clients. The servers incur a disruption cost of 8 compared to the 1 for clients.
The relative load factor for servers is also high, assigned a 7 to a 1 for clients. We
assign a risk profile of 9 to Bj relatively higher to a 7 for By considering that B
is exposed to externally sourced traffic which can potentially target servers or
clients. Risk profiles 4 and 2 assigned to the two segments S; and S5 respectively
are due to the value of the hosts residing on them. The disruption costs 9 and
7 for B; and B; respectively reflect the level of disruption likely, while the load
factor for the two locations has a similar ratio of 9 and 6 respectively.

Table 2. Risk, load and disruption cost assignments
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5.2 Deployment scenarios

We consider three possible deployment scenarios. Scenario 1 focuses on host-
based IDS solutions. Open Source Host-based Intrusion Detection System (OS-
SEC) is an open source solution that provides host-based intrusion detection
and prevention. A total of four OSSEC clients are chosen to deploy at the four
locations as shown in Table 3. Total deployment value adds up to -2.28. Sensors
placed on the two servers add almost double the deployment value than the
sensors placed on clients; such value is justified given that the servers are at a
higher risk than clients despite higher costs. Deployment value indicates high
costs of deploying an entirely host-based solution.

Table 3. Deployment for Scenario 1

L A |R(L)|Cap(A)|Costr| V(A,L)
FTP |OSSEC| 5 4.32 39 (0.55 [-0.45
WWW|OSSEC| 5 4.32 39 ]0.55 [-0.45
Cy OSSEC| 1 4.32 14 ]0.31 [-0.69
Co OSSEC| 1 4.32 14 ]0.31 [-0.69




Table 4. Deployment for Scenario 2

L A R(L)|Cap(A)|Costr| V(A,L)
B Snort 7 6.72 33 1.43
B: Snort 9 6.72 44 1.37

S1 |Cisco I0S Port Security| 4 1.92 46 10.17 [-0.83]

Table 5. Deployment for Scenario 3

L A |R(L)|Cap(A)|Costr|V (A, L)
B2 Snort | 7 6.72 33 1.43
FTP |(HP VT| 5 6.39 30 1.07
WWWHP VT| 5 6.39 30 1.07

Scenario 2 focuses on network-based solutions. As shown in Table 4, two
Snort sensors are deployed on the two most significant locations along with a
switch port security mechanism on one of the segments. The total deployment
value adds up to 1.97. The two Snort sensors are deployed on backbone links B
and Bs, and the port security mechanism is deployed at S7 given the higher risk
profile. The deployment value is significantly better than the first scenario. The
second scenario benefits from a high capability sensor such as Snort deployed on
the two most critical locations providing both near maximum visibility of the
network at Bs, and monitoring traffic to and from the external gateway at Bj.

Scenario 3 combines both types of sensors. As shown in Table 5 the two
host-based sensors are deployed on the two servers and a single Snort sensor is
placed on the most significant link serving all externally sourced (and bound)
traffic. The total deployment value is 3.56. Both backbone links are critical for
monitoring both all traffic headed to and from the servers, and traffic passing in
and out through the external gateway. While B; provides visibility of all external
traffic to and from the servers, it does not suffice as it fails to cover traffic between
the internal segments. Bo provides good coverage but fails to offer any view of
external traffic in and out of the clients on S5. The Snort sensor is deployed on
B given the better value compared to Bj; this is primarily due to the higher
cost incurred for deploying on B; even though the risk profile for such a location
is higher. The deployment value for the third scenario is almost double the value
for second scenario. The deployment is designed such that the efficient host-
based sensors are chosen for the two most valuable assets (servers), along with
a single network-based sensor. The choice of deploying Snort on By over Bj is
indicative of the costs involved with respect to the risk profile.

6 Related work

Related work can be broadly divided in two categories: cost-benefit analysis of
sensors taking into account efficiency and costs with disregard for the network
deployed on [4-6], and placement of sensors in a given network characterised
using system vulnerabilities but ignoring characteristics of sensors [7—9].



Lee et al [5] present a cost-benefit model deployments to evaluate data min-
ing approaches to classifying and responding to intrusions in network traffic
streams. They use various costs including intrusion damage, the type of re-
sponse launched, and time and computational resources required for processing,
to present a decision model for executing response to intrusions, where the lower
the total cost the better the value. Factors such as detection efficiency and sever-
ity of configuration are not explicitly modelled; they are likely to impact response
costs which determine consequential costs.

Noel and Jajodia [7] present an approach for optimal sensor placement. They
use attack graphs to represent possible paths taken by potential intruders to at-
tack a given asset. Such graphs are constructed in a topological fashion taking
into account both vulnerable services and applications that allow intruders to
exploit nodes and use them as launch pads for further penetration, and protec-
tive measures such as firewalls deployed to restrict connectivity between nodes.
Deployments are devised to monitor all paths using least number of sensors. This
is dealt with as a set cover problem and a greedy algorithm is used: each router
node allows for monitoring of certain graph edges and the challenge is to find a
minimum set of routers that cover all edges. A vulnerability-driven approach [7]
to deploying sensors overlooks factors such as traffic load on nodes. As a result
the deployment is optimised such that the more paths that go through a node
the more likely it is chosen for placement. The focus is limited on network-based
sensors and sensor efficiency or costs are not modelled.

Sheyner et al [9] present another approach based on attack graphs. They
model networks as finite state machines and construct attack graphs using a
symbolic model checker representing attacks as simple state transitions. Attack
graphs produced in this way allow a network model to be automatically checked
for a particular safety property given a set of permissible attacks. Minimisation
techniques are used to deduce what attacks go undetected, what attacks should
be prevented for the safety property to be satisfied, and using probabilistic in-
formation what is the likelihood of detecting particular attacks. The model [9]
does not characterise the network or sensors; deployment value then becomes
merely a measure of the likelihood of events being detected and prevented.

Rolando et al [8] introduce a formal logic-based approach to describe net-
works, and automatically analyse them to generate signatures for attack traflic
and determine placement of sensors to detect such signatures. Their notation to
model networks is simple yet expressive to specify network nodes and intercon-
necting links in relevant detail. While there are advantages to using a formal
model, such an approach may not be scalable. The formal notation allows for a
more coarse-grained specification but it is not clear whether the resulting sensor
configurations are even likely to be feasible for real environments. Moreover, the
notation does not allow for modelling any system-level location or sensor char-
acteristics. The approach is demonstrated for a limited class of attacks for which
the logical predicates are simple to express. More complicated attacks will not
be as simple to express and likely to incur considerable computational resources.



7 Discussion

The deployment value model and strategy presented in this paper have been
implemented using simple exhaustive search. Early results are promising for
large scale deployments.

Means to reason and compare intrusion detection sensor deployments are
important to judge the ability of such sensors to make a difference individually
or in combination. Our aim is to represent the complex relationship between the
sensor and network characteristics in as simple a model as possible. The approach
presented here has characterised a variety of features of sensors, and along with
risk profiling and load characterisation for networks, such characteristics provide
a system-smart view of sensor deployments. Work is underway to analyse large
real deployments that serve to reflect on these aspects of the model. The current
deployment strategy, adopted in Section 4.2, is designed to place sensors with a
goal to maximise deployment value. Alternative strategies could be designed to
emphasise risk reduction by improving the design of the network.
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