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Nomenclature 
a   surface crack depth 
c   surface crack half length 
C   Paris law coefficient 
COD   crack opening displacement 
K   stress intensity factor (SIF) 
m   Paris law exponent 
MRS   multiple reference states 
RMS   root mean square 
T   specimen thickness 
WF   weight function 
 
Abstract. This paper discusses the problem of stress intensity factor determination in 
surface cracks.  In particular, the concept of root mean square stress intensity factors (RMS 
SIF) is discussed for the general class of semi-elliptical surface cracks.  The weight 
function SIF derivation method is considered problems with the existing techniques are 
highlighted, and a novel technique for the derivation of the RMS SIF weight functions for 
surface cracks is presented and results are compared with numerical solutions for a variety 
of loadings and geometries. 
 
1. Introduction 
 
Surface cracks account for the majority of structural fatigue failures.  Cracks usually initiate 
from surface defects, which then develop into a part-through crack.  Several observations 
have shown that these cracks are usually semi-elliptical in shape and that in flat specimens 
these cracks tend to retain a semi-elliptical shape during their growth [1, 2].  Like edge 
cracks, the stable growth stage of surface cracks accounts for a considerable portion of the 
propagation life, which fortunately makes their inspection more likely. 
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Linear Elastic Fracture Mechanics has been successfully applied to quantify growth rates of 
cracks under cyclic loads. The Paris law [3] can be applied to edge cracks and is also used 
for surface cracks. Traditionally these cracks are modelled using the Paris law where the 
size of the crack is determined by two (or more) apparently independent characteristic 
dimensions.  These dimensions can be the depth and half length of the crack, or several 
characteristic dimensions for which Paris law is applied separately for each point.  This has 
been expressed mathematically in terms of the surface and the deepest points: 
 

    ( )m
DPDP KC

dN
da

∆=    ;  ( )m
SPSP KC

dN
dc

∆= .            (1) 

 
However, as early as the 1970s it was observed that the two material constants DPC  and 

SPC  are not equal [4].  This can be attributed to the fact that the stress state in these cracks 
varies from plane strain at the deepest point to plane stress and the surface and that the 
plastic zone is larger at the surface points. 
 
Cruse and Besuner [5] were the first to utilise the concept of an integrated average of the 
stress intensity factor in what is now known as the Root Mean Square (RMS) Stress 
Intensity Factor (SIF).  RMS SIF is defined, for the two principal growth dimensions, as: 
 

    ( )∫∫∆∆
=

xA
x

x dAsK
A

K 22 1  and ( )∫∫∆∆
=

Ay
y

y dAsK
A

K 22 1                         (2) 

 

where xyx aaA ∆=∆ π
2
1  and yxy aaA ∆=∆ π

2
1 .  These parameters are shown in Fig. 1.  K(s) 

is the value of the SIF at a point s on the crack front and the integration is taken on the 
infinitesimal crack extension surface along the crack front ( xA∆  or yA∆ ).  xK  and yK  are 
the RMS SIF values in the x and y directions, respectively, and are different from the SIF 
values at the deepest or surface points. 
 
Their method involves definition of a number of characteristic dimensions (usually two) for 
a crack; the crack propagation being described by keeping track of these dimensions.  For 
the crack shown in Fig. 1, these parameters are xa  and ya  which denote crack lengths in 
the two perpendicular dimensions, as shown.  Cruse and Besuner [5] assumed that the 
coefficients of the Paris law for this type of analysis are the same as for when normal stress 
intensity factor values (i.e. K) are used. 
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Fig. 1:  Two characteristic growth dimensions 

 
Hence the Paris law for surface crack growth can be written as: 
 

    ( )mARMSA KC
dN
da

,∆=   and   ( )mBRMSB KC
dN
dc

,∆= .                      (3) 

 
Unlike the multi-point approach, it is experimentally observed by various authors that, in 
many cases BA CC = . For example see the works of Mahmoud [6, 7]. 
 
2. Stress Intensity Factor Calculation for Surface Cracks 
 
For the cases of surface cracks appearing on plates under cyclic tensile or bending loads, 
Newman and Raju [8] have derived an empirical formula for the spatial variation of stress 
intensity factor based on a large set of three-dimensional finite element analyses.  It is, 
however, sometimes the case that surface cracks should propagate in stress fields that are 
not uniform or linear; residual stress fields are a good example for this. 
 
First introduced by Beuckner in 1970 [9], the concept of weight functions has since been a 
well established tool for SIF calculation for edge and through-cracks under arbitrary loads.  
Beuckner showed that for a two-dimensional crack problem, the stress intensity factor can 
be expressed as a function of the applied stress as: 
 

    ( ) ( )∫=
a

dxxahxK
0

,σ                (4) 

 
Where ‘a’ is the crack length and h is the weight function.  Rice [10] showed that the stress 
intensity factor can be expressed in terms of a reference stress intensity factor and the 
spatial derivative of the corresponding displacement field as: 
 

  

∆Ay ∆
ya  

ya  

2
xa  2

xa  ∆
xa  

ya

∆Ax 
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aK

Hxa
∂
∂

=
uh

2
),(                  (5) 

 
Where H is an elastic constant.  This technique requires numerical differentiation of the 
crack-face displacement field, which as demonstrated by Petroski and Achenbach [11] and 
Fett [12], can be troublesome as differentiation of discrete numerical values is both 
cumbersome and can lead to unstable results. 
 
Therefore, in order to reduce the number of computations needed to obtain the weight 
functions, Ojdrovic and Petroski [11] assumed the derivative of the crack profile to be in 
the form of a series: 
 

    ( ) ∑
=

−
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20

d
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By knowing a number of reference stress intensity factor values known as Multiple 
Reference States (MRS), a number of the unknown coefficients can be derived. In other 
words, assuming that M stress intensity factors are known for a particular geometry under 
M symmetric loading states, from Eq. 4 and Eq. 5 the following can be derived: 
 

    ( ) ( ) ( ) ( )∫ =
∂

∂a

ii aKaKdx
a

xauxH
0 1

1 ,
σ              (7) 

 
Where i=1,…,M. By substituting Eq. 6 into this equation, a system of M equations with M 
unknowns is formed which can be solved to give the coefficients jc in Eq. 6.  Brennan [13] 
has given a more portable form of the Multiple Reference States method in the form of a 
matrix equation. 
 
In his classic paper on weight functions [10], Rice points out that there are cases for which 
knowledge of an integrated average of the intensity factor is sufficient for the calculation of 
the weight function.  However, for arbitrary loadings, the RMS stress intensity factor 
calculation for surface cracks is extremely complicated. With drawing analogy with Rice’s 
work [10], Besuner [14] used the energy balance principle for an increment of the crack 
growth to calculate the weight function and derived the following expression for the 
average stress intensity factor: 
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This equation requires that for a reference crack face loading ( *
zzσ ), the corresponding 

crack face displacement field be known ( *q ) [14].  However, since unlike the one-
dimensional case, there are no exact solutions for the crack face displacement of surface 
cracks, accurate derivation of weight functions is problematic.  This means that recourse 
has to be made on the existing SIF values for constructing the weight functions. 
 
3. Derivation of weight functions for surface cracks 
 
Fett [15] suggested a method for deriving an approximate RMS SIF weight function based 
on an approximation of the crack profile and a number of reference solutions.  It is in direct 
analogy with the work of Ojdrovic and Petroski [11], though the unknown coefficients are 
derived in a somewhat more complicated manner.  A few problems with this method of WF 
derivation are mentioned here: 
 
1) The weight functions are complicated functions and the numerical calculations of the 
coefficients are extremely cumbersome. 
 
2) Comparison of the two and three term weight functions (i.e. using one and two reference 
solutions respectively) for the width direction ( ch ) for the same crack shows a great 
difference between the two.  For o90=ϕ , the two term weight function gives negative 
values for the weight function, which is not possible and shows an error which can not be 
neglected [15]. 
 
3) Studies show that the deviation between the two-term and three-term weight function 
becomes greater for larger aspect ratios.  Fett [15] does not give any comparison between 
the two-term and three-term weight functions for the surface direction. 
 
Therefore a novel approach using the MRS technique for the evaluation of weight function 
in surface cracks is presented here.  One important aspect of the MRS technique in one-
dimensional cracks is that the process of crack opening displacement (COD) derivation is 
circumvented and a series representation of the derivative of the COD is assumed.  
However, the COD field of a one-dimensional crack is mathematically simpler than that of 
a two-dimensional one.  Moreover, it should not be forgotten that the one-dimensional 
MRS technique, though implicitly, relies upon having a plane strain or generalised plane 
stress state.  This is a further reason for using the RMS concept for life predictions when 
using the two-dimensional weight function.  Starting from 
 

    ( ) ( )∫ ∫∆ ∆
∆

=
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0 1σ                                                                          (9) 

 
And defining the average stress intensity factor as 
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∆

=
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And therefore for the reference case, the average SIF would be 
 

    ( ) ( )∫∆ ∆
∆

=
AS A

A
A SdK

S
K φ2

0
2

0
1 .             (11) 

 

Now by defining Am as ( )A
A S

u
K
Hm

∆∂
∂

= 0

0

 Eq. 10 becomes 

 

    ∫=
S An

A
nA dSKm

K
K 0

0

1 σ  

 
for the ‘A’ direction, and the same could be derived for the ‘B’, or surface direction. So 
again from Eq. 9, for the ‘A’ direction, it follows: 
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∆
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0
0 22
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           (12) 

 
where the following geometric relations can be derived: 
 

    ( ) dxaSd pA ∆=∆ ;  2

2

1
c
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So far no assumption has been introduced. Now if the derivative of the crack face 
displacement is assumed to be approximately expressed by the following finite series 
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then Eq. 9 can be written as 
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Following the MRS methodology as introduced by Ojdrovic-Petroski [16] for the one-
dimensional cracks, by letting 
 

    ( ) ( )∫ ∫−

−=
c

c

a j
iij dydxyxfyxW

0
2
1

0 ,,σσ , and ∫− −=
c

c ii dx
c
xKKp 2

2

0 1          (16) 

 
and using m reference solutions, the following set of simultaneous equations is obtained 
 

    ∑
=

=
m

j
ijij pCW

0
.                                                                                                               (17) 

 
Based on an analogy to the one-dimensional weight function, the following functional form 
has been chosen for f: 
 

    ( ) ⎟⎟
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Now if Newman and Raju solutions [8] for the SIF are taken as reference values, Eq. 17 
could be rewritten, for m=2, as 

    ∑
=

=
2

0j
ijij pCW                  (19) 

    ii
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From which the unknown coefficients are derived as 
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Therefore the weight function is derived as 
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Now the stress intensity factor can be calculated, using the above weight function in the 
Cartesian coordinate system, as 
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            (22) 

Where m is the number of reference solutions; for semi-elliptical surface cracks this is 
usually taken as two as Newman-Raju formulae give two reliable SIF solutions. 

4. Verification of the Weight Function 
 
A wide range of crack aspect ratios for the semi-elliptical surface crack was modelled using 
a three-dimensional Finite Element model.  The relative depth of the crack was kept 
constant ( mmTmma 150,50 == ).  Several different surface half-lengths were used for the 
crack (c).  The half-width of the plate was chosen as 400mm.  Figure 2 shows one of the FE 

meshes that were analysed (here 6.0=
c
a ). 

 

 
Fig. 2 – One of the FE meshes of the surface crack.  Symmetrical boundary conditions have been used 

and therefore a quarter of the specimen has been modelled. 
 
To construct the weight functions, reference solutions were used from the Newman and 
Raju [8] formula for tensile and bending modes.  The procedure to convert these to RMS 
values for the crack depth direction is shown here.  A similar procedure can be used to 
compute the RMS SIF values for the surface direction.  The relevant parameters have been 
shown in Fig. 3. 
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Fig. 3- Geometrical parameters of the crack 
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Now K can be replaced by the Newman-Raju formula [8]. 
 
 
 

2c 

φ

y

∆a 

h(y) 
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In order to derive the RMS SIF values from the FE model, the last equation should be 
discretised into appropriate intervals of φ .  The mesh was created in a way to allow SIF 
calculations at φ  increments of 15 degrees. 
 
For the tensile and bending cases, the weight function results show a near exact match with 
the computed FE RMS SIFs.  This is expected as the tensile and bending cases from the 
solution of Newman-Raju [8] have been used as references in constructing the weight 
function.  For validation purposes, two more types of loading have been used, namely 

2

01 ⎟
⎠
⎞

⎜
⎝
⎛ −

=
a

yaσσ , denoted as loading 1, and 
3

02 ⎟
⎠
⎞

⎜
⎝
⎛ −

=
a

yaσσ , denoted as loading 2.  

These loads are applied directly on the crack faces in the finite element model using a 
Fortran® mesh-generator and a specially developed MATLAB® code to apply the pressure 
fields on the crack face.  All the finite element analyses are carried out in ABAQUS® 
version 6.5-1. 
  
Fig. 4 shows a comparison between the RMS SIF values in the depth direction obtained 
using the weight function and the FE results, for different surface cracks with a fixed T

a  

of 0.3.  As mentioned previously, it is observed that the weight function results for tension 
and bending coincide exactly with the values for RMS SIF from Newman and Raju.  For 

the two other loading cases that have been shown, i.e. 
2

01 ⎟
⎠
⎞

⎜
⎝
⎛ −

=
a

yaσσ  and 

3

02 ⎟
⎠
⎞

⎜
⎝
⎛ −

=
a

yaσσ , a good agreement is observed between the weight function results and 

the results obtained from the finite element method. 
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Fig. 4- Comparison between the weight function and the finite elements results for different loadings: 

Loading 1: 
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=
a
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5. Summary 
 
This paper examined the growth of surface cracks and the use of RMS SIF values for life 
predictions using Paris law.  The concept of Multiple Reference States for weight function 
derivation was discussed and a novel weight function was introduced which is far easier to 
apply than the existing weight functions for the semi-elliptical crack.  Where an 
approximation was made in the process of WF derivation, this was done carefully and 
emphasis was made to point it out.  For a range of crack aspect ratios, the values of the 
RMS SIF obtained from this WF were compared against the FE values for four different 
loading cases and the results showed a high degree of consistency. 
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