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Abstract

The Blended Wing Body (BWB) aircraft offers a number of aerodynamic perfor-

mance advantages when compared with conventional configurations. However, while

operating at low airspeeds with nominal static margins, the controls on the BWB

aircraft begin to saturate and the dynamic performance gets sluggish. Augmenta-

tion of aerodynamic controls with the propulsion system is therefore considered in

this research. Two aspects were of interest, namely thrust vectoring (TVC) and flap

blowing. An aerodynamic model for the BWB aircraft with blown flap effects was

formulated using empirical and vortex lattice methods and then integrated with a

three spool Trent 500 turbofan engine model. The objectives were to estimate the

effect of vectored thrust and engine bleed on its performance and to ascertain the

corresponding gains in aerodynamic control effectiveness.

To enhance control effectiveness, both internally and external blown flaps were sim-

ulated. For a full span internally blown flap (IBF) arrangement using IPC flow, the

amount of bleed mass flow and consequently the achievable blowing coefficients are

limited. For IBF, the pitch control effectiveness was shown to increase by 18% at low

airspeeds. The associated detoriation in engine performance due to compressor bleed

could be avoided either by bleeding the compressor at an earlier station along its ax-

ial length or matching the engine for permanent bleed extraction. For an externally

blown flap (EBF) arrangement using bypass air, high blowing coefficients are shown

to be achieved at 100% Fan RPM. This results in a 44% increase in pitch control

authority at landing and take-off speeds. The main benefit occurs at take-off, where

both TVC and flap blowing help in achieving early pitch rotation, reducing take-off

field lengths and lift-off speeds considerably. With central flap blowing and a lim-

ited TVC of 10◦, the lift-off range reduces by 48% and lift-off velocity by almost 26%.

For the lateral-directional axis it was shown that both aileron and rudder control

powers can be almost doubled at a blowing coefficient of Cu = 0.2. Increased roll

authority greatly helps in achieving better roll response at low speeds, whereas the

increased rudder power helps in maintaining flight path in presence of asymmetric

thrust or engine failure, otherwise not possible using the conventional winglet rudder.

i



ii



Acknowledgments

I would like to dedicate this thesis to my parents who worked tirelessely throughout

their lives and are still making all efforts to support me and my family in every

possible way. I am here at this stage of my carrier only because of them. It would

be very hard for me to pay them back for what they have done, probably the best

way would be to try and match what they did for us, for our children.

My deepest acknowledgments to my supervisor and mentor Dr. James F. Whid-

borne who guided me throughout my research and made this thesis possible. I

am greatly indebted to him. In addition, it would not be fair not to mention Dr.

Alastair K. Cooke whom I bothered many a times to seek guidance with regards

to flight dynamics and aerodynamic model building. I found his NFLC Jetstream

model very valuable in understanding flight dynamics in an entirely new perspective.

Last but not the least, I would like to thank my wife, Zahra, and my kids, Sarah

and Saad, for their patience, understanding and support during the last three years.

I hope I would be able to give more time to them after my studies.

My time here at Cranfield has been memorable, except for the cold British weather

I have enjoyed every aspect of this country. Once again, I would like to thank, ev-

erybody who helped me finish this work and made this Cranfield experience a most

pleasurable one.

Naveed ur Rahman.

May, 2009

iii





Contents

Abstract i

Acknowledgments iii

Contents v

List of Tables x

List of Figures xii

Abbreviations and Symbols xxi

1 Introduction 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Literature Review 7

2.1 Literature Review - Tailless Aircraft . . . . . . . . . . . . . . . . . . . 7

2.1.1 A Historical Perspective . . . . . . . . . . . . . . . . . . . . . 8

2.1.2 Tailless Aircraft and Longitudinal Stability . . . . . . . . . . . 11

2.1.3 Tailless Aircraft and Lateral-Directional Stability . . . . . . . 17

2.2 A Literature Review on Jet-Flaps . . . . . . . . . . . . . . . . . . . . 22

2.2.1 Past and the Present . . . . . . . . . . . . . . . . . . . . . . 22

v



CONTENTS

2.2.2 Jet-Flaps and Mechanism of High Lift . . . . . . . . . . . . . 23

2.2.3 Achievable Lift Coefficients . . . . . . . . . . . . . . . . . . . 26

2.2.4 Some Blown Flap Arrangements . . . . . . . . . . . . . . . . 27

2.3 A Review on Propulsion/Controls Integration . . . . . . . . . . . . . 28

2.3.1 MD-11 Propulsion Controlled Transport Aircraft . . . . . . . 28

2.3.2 Boeing - Propulsion/Flight Control System . . . . . . . . . . . 30

2.3.3 Propulsion Control for F-15 Aircraft . . . . . . . . . . . . . . 31

2.3.4 Hunting H-126 - Jet Flap Research Aircraft . . . . . . . . . . 33

2.3.5 UAV Flight Control through Circulation Control . . . . . . . . 34

2.3.6 Embedded Wing Propulsion (EWP) . . . . . . . . . . . . . . . 35

2.4 Conclusions - Literature Review . . . . . . . . . . . . . . . . . . . . . 35

3 Identification of Control Problems 37

3.1 Control Authority Analysis . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1.1 Longitudinal Control Power and Trim . . . . . . . . . . . . . . 37

3.1.2 Lateral-Directional Control Power and Trim . . . . . . . . . . 41

3.2 Variation in Dynamic Modes . . . . . . . . . . . . . . . . . . . . . . . 45

3.2.1 Variation in Dynamic Modes - Longitudinal Axis . . . . . . . 46

3.2.2 Varition in Dyanmic Modes - Lateral Directional Axis . . . . . 49

3.3 BWB - Handling Qualities Assessment . . . . . . . . . . . . . . . . . 52

3.3.1 Longitudinal Handling Qualities (BWB) . . . . . . . . . . . . 52

3.3.2 Lateral-Directional Handling Qualities (BWB) . . . . . . . . . 57

3.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4 Transient Engine Model and Effects of Controls Integration 63

4.1 A Hybrid 3 Spool Turbofan Engine Model . . . . . . . . . . . . . . . 66

4.1.1 Engine Stations and State Vector . . . . . . . . . . . . . . . . 66

4.1.2 Calculation of Pressure Derivatives - (Ṗi) . . . . . . . . . . . . 67
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F.2.7 Evaluation of Rotational Acceleration (Ṅ) . . . . . . . . . . . 255
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Abbreviations and symbols

Aircraft Notation

af Lift curve slope for vertical fin

at Lift curve slope for horizontal tail

aw Lift curve slope for wing

b Reference, Wing span

c Mean aerodynamic chord

cf Flap chord

CL Lift coefficient, L/(q̄S)

CLf
Lift coefficient of vertical fin

CLt
Lift coefficient of horizontal tail

CLw
Lift coefficient of wing
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Cnδr Variation in yawing moment coefficient with rudder deflection, (∂Cn/∂δr)
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Cnr Variation in yawing moment coefficient with yaw rate, (∂Cn/∂r)/(b/Vt)

CY Side force coefficient, Y/(q̄S)

CY β Variation of side force coefficient with side slip, (∂CY /∂β)

CY δa Variation in side force coefficient with aileron deflection, (∂CY /∂δa)
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CZu Variation in Z force coefficient with forward velocity, (∂CZ/∂u)/(c̄/Vt)

g Acceleration due to gravity, (m/sec2)

Ixx Inertia about X Body axis, (kg.m2)

Iyy Inertia about Y Body axis, (kg.m2)

Izz Inertia about Z Body axis, (kg.m2)

h Altitude

h Non-dimensional distance b/w CG and tip of mean aerodynamic chord
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l Rolling moment about CG
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M Mach number
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◦

Mu Pitch moment variation with forward velocity, q̄Sc̄(2Cm − Cmαα)
◦
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M δe
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N Yaw moment about CG
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◦

N δr
Yaw moment variation with rudder deflection, q̄SbCnδr

p Roll rate

pn Position north

pe Position east

q Pitch rate

q̄ Dynamic pressure, (1/2ρVt
2)

r Yaw rate

S Wing reference area

Tθ2
Time constant of numerator zero of (q/δe) transfer function

Tγ Flight path angle delay

Vt True Airspeed

U, u X body Velocity, perturbation velocity

V, v Y body Velocity, perturbation velocity

W,w Z body Velocity, perturbation velocity

W Aircraft Weight

S Wing reference area

St Tail reference area

Sf Vertical fin reference area

X X body force
◦

Xu X force variation with forward velocity, ρUSCX + (q̄S/U)(2Cx2CZ − Cx1)CZαα
◦
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◦
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Xδe
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Y Y body force
◦

Y v Y force variation with side velocity
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Y p Y force variation with roll rate, q̄SCYp
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◦

Y r Y force variation with yaw rate, q̄SCYr
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◦

Y δa
Y force variation with aileron deflection, q̄SCYδa
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◦

Lr Roll moment variation with yaw rate, q̄SbClr/(Vt/b)
◦

Lδa
Roll moment variation with aileron deflection, q̄SbClδa

◦

Lδr
Roll moment variation with rudder deflection, q̄SbClδr

α Angle of attack

β Angle of side slip

γ Flight path angle

Λ Wing Sweep back angle

ωsp Short period mode natural frequency

ωph Phugoid mode natural frequency

ωD Dutch roll mode natural frequency

τR Roll mode time constant

τS Spiral mode time constant

ǫ Downwash angle on horizontal tail

φ, θ, ψ Aircraft roll, pitch and yaw angles

θn Nozzle pitch deflection angle

ρ Air density

δa Aileron deflection

δe Elevator deflection
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Abbreviations and Symbols

Engine Notation

A9 Core Nozzle exit area

A19 Bypass nozzle exit area

cp Specific heat at constant pressure

gc Proportionality constant, gc = 1 in SI Units

hi Specific enthalpy at ith station, (J.Kg/K)

Is Spool inertia, (kg.m2)

HVfuel Heating value of fuel

ṁi Mass storage rate at ith volume, (kg/s)

N Shaft rotational speed, RPM

NL Physical, Low pressure compressor shaft rotational speed

NI Physical, Intermediate compressor shaft rotational speed

NH Physical, High pressure compressor shaft rotational speed

N∗

c Corrected, compressor speed, (N/
√

Tin/Tstd)

N∗

t Corrected, turbine speed, (N/
√
Tin)

Pa Ambient pressure

Pi Total pressure at station number i

Pr Pressure ratio

Pd Total pressure in bleed duct

Pstd Standard pressure at sea level

R Gas constant, (J/Kg/K)

Si Entropy at ith station

Td Total temperature in bleed duct

Ti Total temperature at station number i

Tstd Standard temperature at sea Level

TC Core or main nozzle thrust

TB Bypass nozzle thrust

Tx X component of vectored thrust
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Chapter 1

Introduction

1.1 Introduction

The flying wing design is a very attractive configuration due to the aerodynamic

performance advantages it offers over its conventional counterpart [1]. However, the

omission of horizontal and vertical stabilizers leads to stability and control authority

issues. Consequently very few tailless aircraft have been designed and flown suc-

cessfully. This is especially true for the civil aerospace sector where the technical

advantages associated with this design are easily outweighed by the requirements

on safety and degradation in handling qualities.

The blended wing body (BWB) is a special kind of tailless aircraft which has gained

renewed interest despite the stability and control deficiencies inherent in its de-

sign [2]. This aircraft has been aimed towards the more challenging civil aerospace

sector with the following benefits in mind.

• Absence of a horizontal stabilizer and a cylindrical fuselage implies lesser wet-

ted area and therefore less drag. From the aerodynamics point of view this

means lesser power required at cruise condition and therefore potentially fewer

engines for the same payload. From an environmental perspective, it means

lesser emissions per passenger or a greener aircraft.

• Low landing speeds are desirable for all types of aircraft. In the blended wing

body concept, the fuselage also produces a significant amount of lift in addition

to the outboard wings. Therefore at low airspeeds it might not be necessary

to use high lift devices which add weight and complexity in the system.

• Another concept that has been gaining interest is to mount the engines above

the Fuselage Reference Line (FRL). The blended fuselage could then act as
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a noise shield, reflecting most of the energy away from ground [3]. This has

led to a revolutionary new BWB design developed under the Silent Aircraft

Initiative [4], a joint project between MIT & Cambridge. Although still in its

infancy, it is already considering new control strategies such as thrust vectoring

to provide additional pitch control authority to this aircraft [5].

Despite these benefits, the BWB concept has many technical challenges [6] which

have to be overcome before it becomes a reality.

1.2 Problem Description

Some of the challenges faced by the BWB aircraft designers are,

• Optimization of the planform for attainment of a significantly higher lift to

drag ratio than conventional configurations.

• Structural design of a non-cylindrical pressurized fuselage.

• Provision of adequate control authority over the full flight envelope.

• A low emission, low noise propulsion system.

This particular thesis however will focus just on the stability and control aspects,

the aim being to see if they can be modified/improved by help from the propulsion

system.

1.3 Objectives

The research objectives were grouped as, (i) to quantify the flight control system

performance of a representative BWB aircraft [7] and (ii) to augment it by means

of propulsion and aerodynamic controls integration. This extends the role of the

propulsion system in providing control in addition to provision of thrust. The re-

search methodology was therefore set so as to model both the aerodynamics and the

propulsion system as accurately as possible and achieve optimum stability mar-

gins/handling qualities, without significantly compromising the efficiency of the

propulsion system. In this context, the following candidate concepts for controls

and propulsion system integration were evaluated,
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• Use of Jet-Flaps - Conventional trailing edge flaps on the aerodynamic

surfaces are used to generate a force that can be applied about a given axis to

generate a control moment. This provides an efficient mechanism to control the

aircraft in all three axes. With an increase in flap deflection, the flap efficiency

decreases due to boundary layer growth and adverse pressure gradient on the

upper trailing edge of the airfoil. At higher flap deflections, the flow may

eventually separate and the flap efficiency is drastically reduced. If a certain

amount of air from a pressure source such as the engine compressor is blown

onto the upper trailing edge of the airfoil, it re-energizes the boundary layer

and the airfoil has the potential to be used at much larger deflection angles [8].

If the amount of blown air is increased to an extent that the thin film of

jet sheet extends beyond the physical flap limits then the system behaves as

pneumatic or air flap, more commonly called the jet-flap. Englar [9] states

that this concept has the potential of generating lift comparable to that of

the mechanically complex high lift configurations. Since the BWB aircraft has

limited moment arms for both the pitch and yaw axis, a problem of control

authority exists. The jet-flap concept can be applied here, making the flaps

more effective and hence provide better control authority to the aircraft.

• Thrust Vectoring - An alternate option is the use of thrust vectoring by

the limited motion of the jet exhaust of the engine. Thrust vectoring pro-

vides the necessary control force by deflection of the exhaust jet but with a

corresponding loss in net axial thrust.

• Control Allocation - The third concept is that of control allocation which is

based on the proper utilization of control surfaces that span the entire extent

of the trailing edge for the BWB. By means of control allocation it may be

possible to allocate a control surface to more than one axis without knowledge

to the pilot. This would be done automatically by the flight management

system, translating pilot commands to appropriate control surfaces depending

on the flight condition.

• Circulation Control - In the circulation control concept [10], the mechanical

flaps are omitted altogether and the thin jet sheet of air is deflected by means

of a special arrangement from the trailing edge of the airfoil. In this research,

the flapless circulation control concept is not considered as it will be shown

later that controls/propulsion augmentation is necessary only under low speed

flight conditions. Under high speed flight the control force from mechanical

flaps is adequate to control the aircraft in all three axis.

The final solution however may be a hybrid or a combination of the above.
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1.4 Methodology

The BWB planform used in this research has been derived from a previous PhD work

by Castro [7] at Cranfield University. This research therefore may be considered

as a continuation of earlier efforts. The BWB aircraft has been the subject of

active research in the industry and academia and therefore an adequate aerodynamic

database exists. The methodology adopted for the implementation of propulsion

and flight control systems integration on this aircraft was analytical and was broken

down into the following aspects.

• Identification of Control Problems - As a first step, it was considered

necessary to ascertain the longitudinal and lateral-directional stability and

control properties for this aircraft. This included, (i) trim and linear analysis

under different flight conditions, (ii) evaluation of handling qualities for all

three axis and (iii) the design of a stability augmentation system. This exer-

cise clearly identified the areas where controls/propulsion integration could be

applied and found useful.

• Turbofan Transient Performance Modeling - Two key elements that

form the building blocks of any propulsion/controls integration concept are

the propulsion system and the airframe. Propulsion system transient perfor-

mance modeling was therefore considered an important aspect of this work.

The requirement was to evaluate the performance of a turbofan engine under

variable bleed conditions, effect/extent of thrust vectoring necessary and inter-

action of aerodynamic controls with engine dynamics. Variable engine bleed

was required to cater for an internally blown flap arrangement whereas thrust

vectoring was considered for pitch control. In the literature, two approaches

have been traditionally considered for transient performance modeling of en-

gine dynamics, namely, (i) an iterative approach and (ii) the inter-component

volume approach. The iterative approach is accurate but not well suited for

real-time applications whereas the inter-component volume approach is sim-

pler to implement, is therefore faster but less accurate. After a detailed assess-

ment of both the methods, a novel hybrid approach was adopted to model a

three spool turbofan engine in a real-time environment. The benefits incurred

were both speed and accuracy. The model was validated against the Cranfield

University’s gas turbine simulation program, TURBOMATCH [11], and the

NASA’s DYNGEN [12] iterative engine simulation code.

• Development of a BWB Model with Blown Flaps - The next logical

step was to develop an aircraft model in which the effects of an internally or
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externally blown flaps could be simulated. The BWB planform that has been

considered had variable twist along the span and different sweep back angles

for the inboard and outboard wing sections. In addition, it had an aerody-

namic camber section profile which varied from reflexed camber for the inboard

sections, nearly symmetric for the mid span and super-critical for the outboard

wing. The aerodynamic model for this BWB configuration was developed us-

ing a combination of Engineering Sciences Data Units (ESDUs) and a vortex

lattice code called TORNADO [13]. The model was then validated against a

reference BWB aircraft [7], of similar planform. The effect of blown flaps was

included using the jet-flap theory as initially developed by Spence [14] and

Williams [15] and later on extended/validated by many other researchers.

• Controls and Propulsion Integration - With the propulsion and aero-

dynamic models in place, it was now possible to incorporate the aerodynamic

influence of blown flaps and its effect on engine performance. Slot widths of

appropriate dimensions were allocated above the trailing edge of the flaps and

then a bleed source selected from either the LP, IP or HP compressor stages

of the three spool turbofan. Each of the slots now acted as nozzles to supply a

mass flow at a certain jet velocity. The primary aerodynamics effects were an

increased sectional lift curve slope, CLα, and a greater flap effectiveness. The

blown flap arrangement was also implemented for the vertical fins which was

later found to be crucial for an asymmetric thrust or engine failure condition.

• Integrated Model Evaluation - The propulsion and airframe models were

implemented in a full six degree of freedom non-linear flight simulation. Lat-

eral and longitudinal flight control systems were designed and implemented

to simulate various flight conditions including take-off, approach and landing.

Control modes included, pure thrust vector control (TVC), pure aerodynamic

flight control (AFC) , AFC + TVC and blown flap arrangements at different

blowing momentum coefficients (Cu). The detrimental effect of engine blowing

and thrust vectoring was assessed whereas the advantages gained in aerody-

namics were recorded. These are presented in the results and conclusions

section.

1.5 Thesis Outline

Following this introduction, a detailed literature review is presented in Chapter 2.

The literature review section covers aspects such as the development of tailless
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aircraft and their generic stability problems. It also includes a discussion of the jet-

flap concept and mentions of some aircraft that have attempted to use propulsion

and flight control systems integration. Chapter 3 presents in detail the stability,

control and handling qualities aspects of the considered airframe and identifies the

major problem areas. Chapter 4 and 5 cover the hybrid engine and the BWB aircraft

model with blown flaps respectively. Chapter 6 discusses the propulsion and controls

integration aspects of the above models, whereas Chapter 7 presents the results of

various flight conditions with propulsion and controls model integrated in a non-

linear flight simulation environment. Chapter 8 concludes this research, identifies

limitations and sets directions for further research work on the subject.
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Chapter 2

Literature Review

By virtue of the nature of the research topic involving both tailless aircraft and

propulsion/flight control systems integration, the literature review is sub-divided

into the following sections, (i) tailless aircraft and their stability analysis, (ii) jet-

flaps and their applications and (iii) a brief review of a few propulsion controlled

aircraft that have used either thrust vectoring or jet-flaps or a combination thereof.

2.1 Literature Review - Tailless Aircraft

In this section, tailless aircraft are first considered in general, their historical de-

velopment in the UK, US and Europe along with some of the recent developments.

The longitudinal and lateral-directional aerodynamic properties of the tailless de-

signs are then highlighted to emphasize upon the underlying reasons related to poor

controls and handling qualities performance.

Figure 2.1: Lt. John W. Dunne in his flying wing [16]
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2.1.1 A Historical Perspective

Developments in the UK and Germany - Some of the earliest contributions to

flying wings came from Lt. John W. Dunne [17] of UK between the period 1907-1914.

He started his work from a tailless glider and followed it up by a series of powered

bi-planes. Even at this early stage of development, he had realized the advantage of

wing sweep to increase the effective tail length. He also incorporated wash out or

twist at the wing tips to counteract the premature tip stall characteristics, that are

inherent in swept wing designs. One of his many works is shown in Figure 2.1.

Figure 2.2: Horten IX [18]

Reimar and Walter Horten [18] were two brothers who served in the German army

during the second world war. There extensive work on tailless airplanes finally cul-

minated in the design of a twin turbojet bomber named the Horton IX (Figure 2.2).

The design was in certain aspects similar to the Northrop [19] designs of the same

period. It was flight tested in the year 1945. In its first flight test, Horton IX

achieved a maximum level speed of 497 mph. Unfortunately this aircraft crashed

during landing and was totally destroyed.

Developments in the US - In the US, the most significant contributions toward

the design of tailless aircraft came from Northrop [19]. One of his earlier designs

the Northrop N-1M flew in 1940s. After the war, Northrop built a piston powered

flying wing bomber called the YB-35. With the advent of turbojet engines, Northrop

converted this to the jet-powered YB-49. The YB-49 aircraft flew well initially but

the prototype also crashed during landing. The pilot, Glen Edwards was killed. The

Edwards Air force Base was then named after him. The Northrop YB-49 flying wing

bomber never went into production. Figure 2.3 shows a YB-49 at take-off.
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Figure 2.3: YB-49 at take-off [20]

With the advent of modern fly-by-wire technology, the flying wing bomber B-2 was

built and finally brought into production by Northrop Grumman in the late 1980s.

The primary benefit offered by the flying wing design was that of stealth and better

payload carrying capability. The flight handling characteristics were much improved

by the fly-by-wire system. The flight control system of B-2 is developed by General

Electric and is quadruple redundant with a set of primary and back up control laws.

By virtue of its flight controls technology the Northrop B-2 shows Level 1 flying

qualities throughout its flight envelope.

Figure 2.4: Northrop B2 Spirit [20]

Since the 1990s, renewed interest in a special type of tailless aircraft has emerged.

Named as the Blended Wing Body (BWB) it has a wing that blends smoothly into

a wide flat tailless fuselage. With the marked increase of composite use in air-

craft structures such non-cylindrical shapes are now considered feasible. Significant

benefits in terms of speed, range and internal volume are envisaged. Designed by

Boeing Phantom Works and manufactured at Cranfield Aerospace England, the X-
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48B blended wing body went through extensive wind tunnel tests at NASA Langley

and the first flight test was carried out in July 2007.

Figure 2.5: X-48B undergoing wind tunnel testing at NASA [21]

Another development that has gained momentum is the Silent Aircraft Initiative [4]

(Figure 2.6). The aircraft has a blended wing type airframe and a distributed

propulsion system [22]. The design objectives include reduced aircraft noise and low

emissions [23]. In order to meet these objectives, the design of the planform and the

placement of the engines is a radical departure from the conventional. From this

initial design it seems apparent that this design will not fly without some level of

thrust vectoring incorporated in the pitch axis. The development team at MIT and

Cambridge predicts that first prototype is expected to be in service in a 20 to 30 years

time frame. This estimate is not unrealistic keeping in view the technical challenges

that need to be overcome in addition to convincing the aircraft manufacturers about

the advantages associated with such a design. Considering the fact that the Boeing-

747 aircraft first flew in the 1970’s, the next generation of large civil air transport

is already long overdue.

Figure 2.6: Silent Aircraft experimental design SAX-40 [4]
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2.1.2 Tailless Aircraft and Longitudinal Stability

This section presents a review on some of the important longitudinal stability param-

eters as applicable to tailless designs. These include the pitch stiffness parameter,

Cmα , the pitch damping derivative, Cmq and the elevator control power, Cmδe . It

also includes a brief review of the influence of static margin, Kn, and wing sweep,

Λ, on the longitudinal stability of such aircraft.

2.1.2.1 Tailless Aircraft and Static Pitch Stability (Cmα)

A discussion on the underlying equations that govern the longitudinal stability of

tailless designs is considered. An appreciation of this aspect is important as it leads

the aircraft designer to shape the wing so that it provides both lift and control at

the same time. McCormick [24] suggests that for static pitch stability,

Cmα < 0 (2.1)

Cm0 > 0 (2.2)

Here angle of attack (α) is referenced from the zero lift line of the aircraft. Equation

(2.1) states that for the aircraft to be statically stable in pitch, the variation in

pitching moment with alpha must be negative. Therefore an increase in angle of

attack will generate a negative pitching moment about the CG, bringing the aircraft

back to its trim condition. From the second condition (2.2), it is evident that for

α = 0, the value of pitching moment about CG (Mcg) must be positive. The aircraft

will then need to generate a certain value of α > 0 to sustain the weight of the

aircraft. It is assumed that for the normal range of angle of attack the variation in

Mcg is linear, therefore the aircraft can only trim at positive α if Mcg > 0 at α = 0.

0
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αtrim
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Cm0
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< 0
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Figure 2.7: Variation of pitching moment with angle of attack
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In Figure 2.7 the aircraft is in trim at a certain positive value of angle of attack,

where the total pitching moment about the centre of gravity is zero. If the angle

of attack is now slightly increased from its trim value, the pitching moment about

CG varies almost linearly with alpha. For the line marked Cmα < 0, the increment

in pitching moment is negative. Thus a nose down moment is introduced which

for a given elevator setting, δe, brings the aircraft back to αtrim. In contrast, if the

variation of pitching moment marked with line Cmα > 0 is considered, the increment

in pitching moment with angle of attack is positive. This shall further increase the

angle of attack and the aircraft would quickly diverge in the pitch axis.
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Figure 2.8: Forces and moments on wing and horizontal tail

Now consider the case of static moment balance for a conventional aircraft as shown

in Figure 2.8. The pitching moment about the CG can be written as the sum of

individual moments due to wing lift, tail lift and the moment about the aerody-

namic centre of the wing. For this simple analysis, the moments generated by the

propulsion system and that due to the drag on the tail have been neglected. It is

also assumed that angle of attack is small so that cos(α) ≈ 1. The pitching moment

about CG is given as,

Mcg = Mac + (h− h0)cLw − (ht − h)cLt (2.3)

Non-dimensionalizing the above equation by qSc gives,

Cmcg = Cmac + (h− h0)CLw − (ht − h)
St
S
CLt (2.4)

Defining a linear variation of tail lift coefficient, CLt, as below

12



2 Literature Review

CLt = at[α

(

1 − dǫ

dα

)

− it] (2.5)

where at is the tail plane lift curve slope and the remaining term is the effective angle

of attack seen by the tail. It is less than the wing angle of attack, α, by the wing

down-wash effect, dǫ/dα, and the tail incidence angle, it. The wing lift coefficient

can also be expressed by a linear relationship

CLw = awα (2.6)

where aw is the lift curve slope of the wing. Equation (2.4) can now be written as

Cmcg = Cmac + (h− h0)awα− (ht − h)
St
S
at

[

α

(

1 − dǫ

dα

)

− it

]

(2.7)

Equation (2.7) is the basic relationship for the pitching moment about CG for an

aircraft with a tail. Defining the following,

Cm0 = Cmac + (ht − h)
St
S
atit (2.8)

Cmα = (h− h0)aw − (ht − h)
St
S
at

(

1 − dǫ

dα

)

(2.9)

Equation (2.7) can be re-written as

Cmcg = Cm0 + Cmαα (2.10)

From Equation (2.2) we have argued that for positive pitch stability Cm0 > 0.

Examining Equation (2.8) it can be seen that for a tailed aircraft, Cm0 has two

parts. One due to wing, Cmac, and other due to the fixed incidence of the tail. For

positively cambered airfoils, Cmac is invariant with α and is negative. Overall Cm0

is then made positive by the second term (due to the tail) on the right hand side

of Equation (2.8). The tail setting angle, it, is defined positive downwards and the

distance between the tail aerodynamic centre and the CG, ht−h, is also positive. So

the contribution of the tail towards Cm0 is positive and helps to achieve the desired

condition of Cm0 > 0. For a tailless aircraft, Equation (2.8) reduces to

Cm0 = Cmac (2.11)

The Cm0 is then made positive by incorporating a reflex at the trailing edge of the

wing (Figure 2.9). This however comes at the cost of a reduction in the value of
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achievable lift coefficient.
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Figure 2.9: Trailing edge reflex for tailless airplanes

Referring to the expression for Cmα as given by Equation (2.9), it can be seen that it

also has two parts, one given by the wing and the other by the tail. From Equation

(2.1) it is known that for positive pitch stability, Cmα < 0. The second part (due

to the tail) on right hand side of Equation (2.9) provides most of the negative

component of Cmα. The first part (h − h0)aw, which is due to the wing is usually

positive with (h− h0) being positive. This means that the CG can be located aft of

the aerodynamic centre of the wing. For a tailless aircraft however, Equation (2.9)

reduces to

Cmα = (h− h0)aw (2.12)

The only way in which Cmα can now be be made negative is by setting (h−h0) < 0.

That is by locating the CG ahead of the aerodynamic centre of the wing. This

severely restricts the available CG range for tailless aircraft as compared to a con-

ventional configuration.

2.1.2.2 Tailless Aircraft and Pitch Damping (Cmq)

For aircraft with horizontal stabilizers, most of the pitch damping is contributed by

the horizontal stabilizer. However Jones [25] points out that as long as the aircraft

has a positive static margin, a lower value of Cmq associated with tailless airplanes

is not a serious disadvantage. Northrop [19] further explains that although the value

of Cmq is low for tailless airplanes, the short period oscillation is well damped. This

is due to the vertical damping parameter, CZw, that absorbs most of the energy of

oscillation.
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Donlan [26] further suggests that a reduced or a negative static margin for tailless

aircraft may result in an uncontrolled dynamic instability called tumbling. Tum-

bling consists of a continuous pitching rotation about the lateral axis of the airplane.

Conventional control surfaces are almost rendered useless once the tumbling motion

is initiated. Donlan [26] continues to state that to avoid this tumbling dynamic

mode, the centre of gravity of a tailless airplane should never be permitted under

any condition to reach a position behind the aerodynamic centre of the wing. Fre-

maux [27] however argues that a positive static margin is not a guarantee against the

tumbling phenomenon for tailless aircraft. The absence of the horizontal stabilizer

and thus reduced pitch damping, Cmq, is a big drawback in this context.

2.1.2.3 Tailless Aircraft and Elevator Control Power (Cmδe)

The type of longitudinal control usually employed for tailless aircraft consists of

an elevator (or flap) placed at the trailing edge of the wing. For the same static

margin, the elevator of a tailless airplane usually must be deflected considerably

more than that of a conventional airplane to produce the same change in pitching

moment coefficient Cm. Donlan [26] also analyzes the control power required for

take-off conditions. At take-off, the longitudinal control besides supplying a pitching

moment to trim the aircraft, must also be able to provide the additional pitching

moment necessary to counteract:

• Pitching moment of the weight of airplane about the point of ground contact.

• Pitching moment created by friction force on wheels.

It appears likely that if some scheme of enhancing the elevator control power (Cmδe)

is not provided the nose wheel would not lift off, especially for tailless aircrafts with

large static margins.

2.1.2.4 Tailless Aircraft and Static Margin (Kn)

For a tailless aircraft, the static margin is simply the non-dimensional distance

between the aerodynamic centre (AC) of the wing and the CG location. It is positive

if CG is ahead of AC toward nose. The longitudinal control power and dynamic

stability problems severely restrict the CG range for tailless airplanes. Donlan [26]

suggests an ultimate static margin range of 0.02 to 0.08 for such aircraft. Castro [7]

also states that due to the limited control power the positive static margin has to be

limited to lower values than those of conventional aircraft. Northrop [19] however
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argues that an unstable configuration augmented with the power of a digital fly-by-

wire flight control system provides the best design option for a tailless aircraft. The

final range of static margin for any aircraft can however only be ascertained after a

full dynamic and static stability analysis throughout its flight envelope.

2.1.2.5 Effect of Wing Sweep (Λ) on Tailless Aircraft

It was noted by Thorpe [28] that sweep-back gives the wing an effective tail length

and is therefore especially adaptable for tailless airplanes. High lift flaps can then

be placed at the centre of the wing where their lift increments produce only mi-

nor changes in pitching moment about the centre of gravity. Flaps for longitudinal

control can be located near the wing tips to produce the requisite pitching moment

for trim. Furthermore, he adds that sweep-back introduces the undesirable effect of

premature tip stall, which can be avoided by use of wash out or wing twist. This

lowers the angle of attack of the tip section.

Another effective method advocated by Donlan [26] to overcome tip stall was the

use of leading edge slats. He states that if this method is properly implemented,

it could delay tip stall by 10◦. Thorpe [28] further states that use of wing sweep

enhances the elevator control power but introduces a worse problem of tip stall due

to lateral growth of boundary layer over the swept wing. This, if left untreated, may

result in wing drop and loss of control due to lack of flow over the control surface.

Northrop [19] also concludes that sweep back provides probably the best way to

enhance longitudinal control power for tailless designs.
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2.1.3 Tailless Aircraft and Lateral-Directional Stability

The review on lateral directional stability includes discussion on some of the impor-

tant stability parameters as applicable to tailless designs. These are the directional

stiffness, Cnβ , roll stiffness, Clβ , rudder control power, Cnδr and adverse yaw, Cnδa .

2.1.3.1 Tailless Aircraft and Directional Stability (Cnβ)
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Figure 2.10: A tailless aircraft in positive sideslip

Consider a tailless aircraft with vertical side fins as shown in Figure 2.10. The

airplane is undergoing positive sideslip, β. The velocity component along the y

body axis is non-zero and positive. Since the velocity vector, V , does not lie in

the plane of symmetry a yawing moment, N , is produced by the fuselage and the

vertical fin. By definition, the airplane will possess positive directional stability if,

∂N

∂β
= Nβ > 0 (2.13)

With the controls fixed, a positive sideslip, β, generates a yawing moment N . For

positive yaw stiffness, this yawing moment will be restoring (N > 0) and causes

the aircraft’s nose to turn into the wind, minimizing sideslip. Generally the yawing
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moment from the fuselage is de-stabilizing however the contribution from an aft-

placed vertical fin is stabilizing. This yawing moment may be expressed as

N = qSbCn (2.14)

where Cn is the yawing moment coefficient, S is the reference area, b is the charac-

teristic length and q is the free stream dynamic pressure. The lift from the vertical

fin is

Lfin =
1

2
ρVt

2SfCLf (2.15)

If the distance of the mean aerodynamic centre of the vertical fin and the centre of

gravity of aircraft is xf , then the yawing moment generated by the fin is

Nf = Lfinxf =
1

2
ρVt

2SfCLfxf (2.16)

But CLf = af (1− dǫ
dβ

)β, where af is the vertical fin lift curve slope and dǫ/dβ is the

down wash factor of fuselage and wing on the vertical fin. Therefore (2.15) becomes,

Nf =
1

2
ρVt

2Sfafxf (1 − dǫ

dβ
)β (2.17)

Non-dimensionalizing by q̄Sb and taking partial derivative w.r.t β gives,

Cnβfin =
Sf
S

xf
b
af(1 − dǫ

dβ
) (2.18)

From the above equation, it is evident that directional stiffness parameter Cnβ is a

function of the vertical fin area Sf and fin moment arm xf . For flying wings it is

usual practice to place the vertical fins at the wing tips. Structurally it becomes

difficult to provide a large fin area using such an arrangement. The fin moment

arm, xf , is also reduced significantly. Directional stability will thus start depending

upon on the contribution from the wing/fuselage combination. This may be diffi-

cult to calculate theoretically but can be measured quite accurately in a wind tunnel.

Donlan [26] in his report has mentioned about the difficulty in achieving the accept-

able values of Cnβ for flying wings. During a series of wind tunnel tests conducted

at NASA Langley it was noted that achievable values of Cnβ are less than one third

to that of airplanes with tails. This poses a significant challenge in achieving the

desired value of weather-cock stability for flying wings.
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It is further stated that swept-back wings provide a certain degree of directional stiff-

ness which increases at higher angles of attack. However at high speeds or low values

of angle of attack, the directional stiffness provided by the swept-back wing alone

seemed inadequate. Fuselage and nacelles have a destabilizing effect comparable in

magnitude to the stabilizing effect of the wing alone. It is therefore necessary for

tailless airplanes to provide some alternate method of supplying directional stiffness.

2.1.3.2 Tailless Aircraft and Lateral Stability (Clβ)

Unlike the restoring moments generated in the pitch and yaw axis, there is no sim-

ilar mechanism in the roll axis to keep wings level. If the gravity vector is omitted,

the aircraft will fly equally well into any roll orientation into the direction of the

incoming airflow. In a generic sense it can be said that aircraft possess neutral static

stability in roll.

Mclean [29] states that although airplanes have no first order aerodynamic roll stiff-

ness, stable airplanes do have an inherent tendency to fly with wings level. They do

so because of the dihedral effect. This is due to interaction of gravity and derivative

Clβ (rolling moment due to sideslip) which exists primarily because of the wing dihe-

dral. When the aircraft rolls to an angle, φ, there is a weight component mg sin(φ)

in the y-body axis. This induces a sideslip velocity, v, to the right and sideslip β > 0.

If the value of Clβ < 0, a restoring rolling moment ∆l = Clββ is generated which

brings the aircraft back to wings level. The value of Clβ may be positive or negative

depending upon the aircraft configuration, however it is usually kept small otherwise

strong yaw-roll coupling exists. The lateral static stability for tailless aircraft is not

much different to that of a conventional configuration and good roll damping and

stiffness can be achieved using standard design practice.

2.1.3.3 Tailless Aircraft and Yaw Control Power (Cnδr)

Castro [7] states that the yaw control power requirement is determined by one of

the following,

• Asymmetric thrust due to engine failure

• Crosswind

Engine Failure - An off-axis engine failure will result in a yaw disturbance moment,

∆N . Under steady state flight conditions the yaw and roll moment balance is given
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as,

∆N = q̄Sb(Cnββ + Cnδaδa+ Cnδrδr) (2.19)

Cl = 0 = Clββ + Clδaδa+ Clδrδr (2.20)

The cross derivatives namely yawing moment due to aileron deflection, Cnδa, (ad-

verse yaw) and rolling moment due to rudder deflection (adverse roll), Clδr, also

appear in the above equations. Assuming zero sideslip (β = 0), the above reduces to

a system of two equations and can be solved analytically for two unknowns (δa, δr).

The rudder deflection will be required to counteract the disturbance in yaw and the

aileron deflection will be required to counteract adverse roll generated by the rudder.

Cross wind - For the cross wind case, the sideslip is not zero and the equations

can be simply re-written as

tan β =
v

Vt
(2.21)

Cn = 0 = Cnββ + Cnδaδa+ Cnδrδr (2.22)

Cl = 0 = Clββ + Clδaδa+ Clδrδr (2.23)

where v is the wind component in the y-body axis. The net rolling and yawing

moment coefficients are considered zero. The above equations can be solved analyt-

ically for the aileron and rudder deflections required for steady state side slipping

flight.

Castro [7] analyzes four blended wing configurations for assessment of rudder power

under these conditions. For the engine failed case with β = 0 it was found that

the aircraft with maximum control power, Cnδr, required the minimum amount of

rudder deflection to trim the engine moment. This was as expected. However under

cross-wind conditions (β 6= 0) the same aircraft had the maximum deflection re-

quired to trim since directional stiffness, Cnβ, was also large for that aircraft. High

directional stiffness though desirable therefore becomes a problem under severe cross

wind conditions especially at landing.

Various kinds of rudders were tested by Northrop [19] in his early designs. The most

successful design was that of the double split flap drag rudder shown in Figure 2.11.

Split flaps generate yawing moment by the differential drag on the split flaps and

by virtue of their long moment arm (approximately half span) from the centre of
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gravity. By the use of a flight control system it is possible to sense sideslip or lateral

acceleration and apply the stabilizing yawing moment by use of split flaps. This is

an ingenious method of providing directional stiffness to the airplane at the cost of

increased drag.

Figure 2.11: B-2 split flap rudders deployed on ground [20]

2.1.3.4 Tailless Aircraft and Adverse Yaw (Cnδa )

Both conventional and tailless airplanes suffer from adverse yaw. Adverse yaw is

due to the yawing moment produced by the differential drag on the ailerons. When

ailerons are deflected differentially the drag on them is not equal. The down going

aileron sees more drag than the up going one. When the pilot deflects the ailerons

to initiate a turn he also applies a bit of rudder to counteract the adverse yaw.

This maintains the turn direction as desired. Autopilots incorporate this feature by

employing a so-called ARI : Aileron to Rudder Interconnect between the lateral and

directional axis.

Donlan [26] suggests that while designing ailerons for flying wings special care must

be taken to minimize the differential drag upon aileron deflection. In addition it is

also suggested to keep the thrust line as close as possible to the centreline, so as to

minimize the control power requirement in asymmetric thrust conditions.
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2.2 A Literature Review on Jet-Flaps

This section will review the jet-flap concept. The focus will be on the mechanism

of lift generation through such an arrangement and a description of its theoretical

principles. An application of this technology to aircraft for control purposes will be

covered in the next section. Figure 2.12 shows the concept.

qqqqqqq

qqqqqqq

qqq

Figure 2.12: The jet-flap concept

2.2.1 Past and the Present

In the UK, jet-flap studies started as early as 1953 at the National Gas Turbine

Establishment (N.G.T.E). This included exploration of the basic jet-flap concept by

Davidson [30] and Stratford [31] and two-dimensional pressure plot experiments by

Dimmock [32]. Williams [15] extended these to three-dimensional sections to include

the effects of finite aspect ratio of wings. In 1958, Spence [14] at the Royal Aircraft

Establishment (RAE) presented his pioneering work on the theoretical derivation

of lift coefficient (CL) of a jet-flapped wing. Spence derived the expressions for lift

coefficient as a function of flap deflection, angle of attack and blowing momentum

coefficient (Cu). Many of these experiments were used to support the design of a

jet-flap research aircraft called Hunting H-126 [33], unfortunately this aircraft never

went into production. Lately, re-newed interest in flapless unmanned vehicles have

stirred up research in this area and the work of Frith and Wood [34] on using circu-

lation control for flight control is an example in point.

Similar experiments were conducted in the US and many references could be made.

One such example is Englar [9], who at the Georgia Tech Research Institute con-

ducted a series of experiments on jet-flaps and circulation control trailing and leading

edge devices for lift enhancement. ∆CL/Cu > 80 have been reported resulting in
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lift coefficients comparable to or better than most complex mechanical flap systems.

Englar further analyzes the application of these concepts to a representative model

of Boeing 737-100 during take-off and landing. Take-off performance was verified

against a 50 ft obstacle. Using analytical studies it was shown that the take-off

distance could reduced by more than 50% and the landing speed be reduced up to

40% due to blowing from the trailing edge of the airfoil. The bleed mass flow from

the engine was restricted to 5% of the overall fan inflow resulting in a appoximately

5% loss in thrust. For cruise, climb or descent, jet-flaps were not used.

2.2.2 Jet-Flaps and Mechanism of High Lift

Figure 2.13: Flow control through a trailing edge blown flap [8]

There are two fundamental methods to change the lift coefficient of the airfoil. These

are, (i) to adjust the angle of attack of the airfoil relative to the incoming airflow

or (ii) to deflect the trailing edge flap i-e change its geometry. As the angle of

attack is increased or the flaps are deflected to higher values, flow separation sets

in. This occurs either at the wing tip or close to flap hinge. The frictional losses

in the boundary layer causes the flow to loose much of its kinetic energy and in the

presence of adverse pressure gradient it eventually separates. This puts an upper

limit on the achievable lift coefficients [8]. The flow separation can be overcome by

either

• Removing the low energy fluid from boundary layer through suction

• Re-energizing the boundary layer through blowing
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This particular work uses the later approach for its application to the blended wing

body. The blown flap arrangement for boundary layer control/lift enhancement is

shown in Figure 2.13.

The blown flap causes the flow to remain attached with the upper trailing edge of the

airfoil, however the blowing intensity needs to be increased up to a certain minimum

(Cucrit) level to avoid flow separation completely [8] and achieve the theoretical limit

of lift as predicted by potential theory [35]. However after a certain upper limit of

angle of attack, the flow starts to separate from the leading edge of the airfoil and

trailing edge blowing is not effective.

Within nominal limits of angle of attack, increased blowing above the minimum

level required for boundary layer control causes the jet of high velocity to extend

beyond the physical flap limits, behaving like an extended flap. This phenomenon

has been named as super-circulation or the jet-flap effect. Thus for low values of

blowing momentum, the lift is produced by boundary layer control and for high

values it is produced by super-circulation. The increase in lift coefficient (CL) as

a function of blowing coefficient (Cu) is shown in Figure 2.14. The reduction in

slope (∆CL/Cu) after the critical momentum coefficient can be noted, indicating

the change in mechanism of lift generation at higher blowing coefficients.

Figure 2.14: Lift increment vs blowing momentum [36]

Many researchers have shown jet-flaps to be a mechanism for producing high lift

by blowing air from the trailing edge of an airfoil. By controlling the direction of
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the exitting mass flow, it is theoretically possible to produce control moments in

all three axes of the aircraft. Englar [9] applied this idea to a Boeing B737-100, he

however dispensed with the conventional controls completely in favor of differential

blowing for control on all three axis.

The jet-flap is a prime example of integrated aerodynamics and propulsion system,

since it can provide the necessary high lift at low speed flight and can meet the flight

requirements by optimum selection of required jet momentum flux and jet deflection.

Its disadvantage lies in the bleed necessary from the engine or the requirement for

a separate gas generator. A non-dimensional parameter, the blowing momentum

coefficient, Cu, is generally used to express the strength of momentum flux on the

blown flap. It is given as,

Cu =
ṁjVj
qS

(2.24)

where ṁj is the jet mass flow, Vj is the jet velocity, q is the free stream dynamic

pressure and S is the reference area . Defining exit area and air density as Aj and

ρj respectively, (2.24) becomes

Cu =
(ρjAjVj)Vj

1
2
ρ∞V 2

∞
S

(2.25)

The jet velocity Vj and density ρj can be calculated using isentropic expansion

calculations. Englar [9] gives an expression for jet velocity Vj ,

V 2
j =

2γRTd
(γ − 1)

[1 − (
P∞

Pd
)
γ−1
γ ] (2.26)

where Td and Pd represent total conditions in the blowing duct. Englar [9] further

states that a jet expansion to actual static pressure just outside the jet slot would

yield higher jet velocities Vj and therefore Cu. Nothing prevents the exitting jet

velocity to be supersonic unless the down-shock causes flow interference on the

blown surface.
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2.2.3 Achievable Lift Coefficients

Figure 2.15: Lift coefficients with trailing edge flap blowing [8]

Based on his experimental results, Williams [15] gives an expression of lift coefficient

for a two dimensional thin airfoil as,

CL = τ

(

∂CL
∂τ

)

+ α

(

∂CL
∂α

)

(2.27)

where τ is the flap deflection and α is the angle of attack. For the trailing edge

blowing case (cf/c→ 0), where cf/c is flap chord to main chord ratio, the derivatives

on the right hand side of Equation (2.27) are expressed as,

∂CL
∂τ

=
[

4πCu(1.0 + 0.151Cu
1/2 + 0.139Cu)

]1/2

(2.28)

∂CL
∂α

= 2π(1.0 + 0.151Cu
1/2 + 0.219Cu) (2.29)

Similar results were achieved by Spence [14] theoretically. Figure 2.15 shows some

of the results from Williams [15] experiments indicating lift coefficients in excess of

2.0 with blowing coefficients (Cu) of the order 0.05. The effect of high ∆CL/Cu at

low values of blowing coefficient is evident. The above results are further discussed

in Chapter 5 where these equations are applied to the case of a BWB aircraft.
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2.2.4 Some Blown Flap Arrangements

Figure 2.16 shows some of the possible blown flap arrangements. They can broadly

be categorized as,

• Internally blown flaps, or

• Externally blown flaps

In Figure 2.16, the two arrangements shown on the left are examples of internally

blown flaps. The ducting for the air has to be made either part of the fixed wing or

the movable flap. If the supply source is the compressor of the propulsive system then

the amount of air that can be bled from it is limited. This limits the achievable

blowing momentum coefficient with such an arrangement. On the right side of

Figure 2.16, two externally blown flap arrangements are shown. With such an

arrangement very high blowing momentum coefficients can be achieved as all the

engine mass flow can be made to impinge upon the blown flap externally, either

above or below the wing. The other advantage is that the compressor is not bled

so the engine operating point does not change. Both these approaches have been

explored for the BWB, as discussed in later chapters.

Figure 2.16: Internal and external blown flap arrangements [37]
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2.3 A Review on Propulsion/Controls Integration

In this section, efforts made by various researchers to use the propulsion system for

flight control purposes is reviewed. This can broadly be categorized as,

• Use of propulsion system for emergency/secondary control

• Use of propulsion system as primary controls

Historically various aircraft designers have attempted to use the propulsion sys-

tem for control force generation in addition to its normal function of providing

thrust. Such aircraft in which the propulsion system is used directly to generate

control moments are called Propulsion Controlled Aircraft or PCA. PCA may use

the propulsion system as secondary control in the event of primary aerodynamic

controls failure or as primary controls in the form of thrust vectoring or jet-flaps.

Although jet-flaps are a mechanism for providing high lift in absence of complex

multi-element flaps, it holds a special significance for the blended wing body. In the

absence of a horizontal stabilizer and reduced moments arms for the pitch and yaw

axis, the blown/jet-flap concept can make the controls more effective and prevent

control saturation. Not many studies are available for propulsion/controls integra-

tion for the BWB aircraft, however this literature review includes a preliminary

study conducted by NASA on an embedded wing propulsion (EWP) concept which

considers distributed propulsion for an 800 passenger BWB aircraft. A discussion

on some of the propulsion controlled aircraft follows.

2.3.1 MD-11 Propulsion Controlled Transport Aircraft

Burken et al. [38] did extensive work on the use of propulsion system to control a

multi-engine transport aircraft MD-11 (Figure 2.17). Control of both the longitu-

dinal and the lateral-directional axis was considered. The MD-11 airplane is a long

range, three engine, wide body transport. The airplane is 202 feet long and has

a wing span of 170 feet. The focus of his work was to control the airplane in the

event of partial or complete loss of primary control surfaces. Based on his research,

Burken [38] proposed the following control strategy,

• MD-11 - Longitudinal Control

For the longitudinal axis, the magnitude and the direction of the velocity vec-

tor was to be controlled. This means control of the flight path angle and
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Figure 2.17: Mcdonald Douglas MD-11 transport aircraft [38]

airspeed. Burken [38] allocated individual control tasks to separate engines

available on the aircraft. Collective thrust changes on the wing engines were

used to implement flight path angle control and the tail engine was used to

implement speed control. A flight path error was formed which was passed

through a limited P+I network to generate a pitch angle demand. Pitch angle

and pitch rate feedback was then used to form collective commands for the

left and right engines. The use of pitch angle and pitch rate feedback ensured

adequate phugoid and short period damping. For speed control, Burken [38]

used the tail engine and a conventional auto-throttle speed control system.

• MD-11 - Lateral-directional Control

Lateral-directional control was obtained by using differential throttle inputs

to generate yaw, resulting in roll caused by the dihedral term, Clβ. The pri-

mary parameter to be controlled was aircraft heading. A heading error was

generated, which was used to generate a bank angle demand. Roll angle, roll

and yaw rates were used in the inner loops to control and damp the roll angle.

The differential thrust command was then transmitted to the left and right

wing engines. This was an intelligent way of obtaining roll control by use of

the dihedral effect.

This control strategy was later flight tested on an actual airplane. The aircraft was

successfully landed with the primary control surfaces locked at the neutral position.
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2.3.2 Boeing - Propulsion/Flight Control System

Various studies have been carried out for propulsion and controls integration on

the Boeing aircraft. Two of these are presented here for the Boeing-747 and the

Boeing-737 aircraft respectively.

• Boeing-747 - Thrust Vectoring Control (TVC)

Hareförs [39] at the University of Leicester recently conducted a study in col-

laboration with Volvo Aero Corporation on the design of an integrated propul-

sion and flight control system for a Boeing-747 aircraft. Both differential thrust

management and thrust vectoring control (TVC) were considered. The study

concludes that such aircraft can be effectively controlled by use of differential

and collective thrust only. To obtain control in all three axes, thrust vectoring

was implemented along y and z axes of the aircraft. The vectoring angles

(δy, δz) were limited to 45◦ and the slew rate limit on the nozzle actuators was

set at 60◦/s. The thrust components in the x, y and z aircraft axes are given

as

Tx = T cos δy cos δz

Ty = T sin δy cos δz

Tz = T cos δy sin δz

In this study, thrust vectoring was used on all four engines of the Boeing-747

to obtain control moments in three axes. Deflection in the x-z plane generates

a Tz force. This force, when used differentially on outboard engines, is most

effective in producing roll moment. The motion of the nozzle in the x-y plane

produces a Ty force which can be used to generate a yawing moment. The

pitching moment is generated by a contribution from the Tx force and that of

a Tz force due to the collective thrust vectoring in the x-z plane. Hareförs [39]

concludes that effective control can be achieved with differential thrust for lat-

eral control and collective thrust for longitudinal control. The flying qualities

however using PCA alone are not as good as those obtained by use of aero-

dynamic control surfaces, but when PCA and TVC are combined, excellent

flying qualities were achieved for the lateral axis. For the longitudinal axis,

the TVC+PCA combination still falls short of the flying qualities achieved by

use of the horizontal stabilizer.

30



2 Literature Review

• Boeing-737 : Jet-Flaps/Circulation Control for High Lift

An analytical/experimental research program was conducted by Englar [9]

and his research team in order to conduct a feasibility study of circulation

control devices for application to advanced subsonic transport aircraft. The

experimental part of the program was concerned with testing two-dimensional

airfoils/wing section with an internally blown flap and circulation control ar-

rangements. In the circulation control concept, the movable flap is omitted

altogether and the exiting mass flow is made to follow a rounded trailing edge

in a manner analogous to a pure trailing edge flap by using the so called

Coanda Effect. The aerodynamic benefits incurred are a significant increase in

sectional lift coefficient as a function of blowing momentum coefficient (Cu).

In the absence of a full 3D model with blowing arrangements, the 2D sectional

data was corrected for wing sweep, taper and finite aspect ratio. The bleed

mass flow was limited to 5% of Fan flow and accounted for almost 5% loss in

axial thrust assuming zero thrust recovery after blowing. Analytical studies

indicated a 70-80% reduction in take-off and landing distances and 2.5 to 3.0

times increase in the maximum achievable lift coefficient.

2.3.3 Propulsion Control for F-15 Aircraft

Burcham [40] developed and flight tested a propulsion based flight control system

for an F-15 airplane at the NASA Dryden Flight Research Centre. The principles

used were as follows,

Figure 2.18: F-15 aircraft modified for propulsion control [40]
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• Roll Control using Differential Thrust

Differential thrust generates sideslip that through the dihedral effect results

in roll rate. Roll rate is controlled to establish a bank angle that results in

a turn and a change in aircraft heading. Full differential thrust for the F-15

airplane yields a roll rate of approximately 15◦/sec at a speed of 170 kts. With

throttles-only flight control, bank is controlled by yaw and the turns were typ-

ically not coordinated.

• Longitudinal Control using Collective Thrust

Burcham [40] states that a thrust increase will cause an increase in speed that

results in greater lift. With the lift being more than the weight, the flightpath

angle will increase, causing the airplane to climb. If allowed to continue, this

effect will be oscillatory (phugoid mode). The degree of change to the flight-

path angle is proportional to the difference between the initial trim airspeed

and the current airspeed. Hence, the flightpath angle tends to increase as

speed or throttle increases.

If the thrust line is inclined nose up to the flightpath, an increase in thrust will

increase the vertical component of thrust. This increased vertical component

of thrust will cause a direct increase in vertical velocity (that is, rate of climb)

and a resulting increase in flightpath angle. For a given aircraft configuration,

this effect will increase as angle of attack is increased or the speed is lowered.

Burcham [40] states that for the F-15 airplane, the combination of the above

thrust effects is to produce a nose up flightpath angle rate response. This rate

response peaks at approximately 2◦/sec for an increase in throttle for level

flight to intermediate power on both engines at 170 kts.

Burcham [40] concludes that the PCA pitch and roll control provided adequate

up-and-away flight control. In addition, PCA system was used for landings and

was found adequate for safe runway landings in good weather. Pitch control was

sluggish but very stable. Approximately 10 seconds were required to achieve a

commanded flight path change. Bank angle control was positive but lagged inputs

by approximately 3 seconds. On approaches, the pilots spent most of their time

making bank angle corrections.
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2.3.4 Hunting H-126 - Jet Flap Research Aircraft

The Hunting H-126 jet-flap research aircraft [33] was clearly ahead of its time. It was

built by Hunting Corporation under a contract with British Ministry of Aviation

for jet-flap research at the Royal Aircraft Establishment (RAE). The primary aims

for building such an aircraft were, (i) to complement the wind tunnel [15] and

theoretical [14] studies done at that time and (ii) also to investigate the handling

qualities for such an arrangement. Figure 2.19 shows the aircraft with its internal

ducting. A general description of the aircraft along with some its stability and

control features are discussed here briefly.

Figure 2.19: Hunting corporation H-126 jet-flap research aircraft [33]

• Jet Efflux Distribution

At that time a decision was made to use the Orpheus turbojet engine as bypass

engines were not yet developed. Instead of bleeding the compressor stages, the

main jet efflux was used. The engine was de-rated from 5000 to 4300 lbf to

keep the exhaust/duct metal temperature below 620◦ C. The distribution of

jet efflux was as follows,

– 50% for jet-flaps on the wings

– 35% for direct thrust nozzles

– 5% respectively for each of the pitch/roll/yaw control nozzles
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• Stability and Control Problems

Early in the design stage, it was revealed that the jet-flapped wing in addition

to producing large values of lift-coefficients (in excess of 6.0) also produced a

large nose down pitching moment. This resulted in a loss of trim lift coeffi-

cient due to large trim elevator deflections. This problem was alleviated by

using direct thrust nozzles (using approximately 35% of jet efflux) which were

placed so as to generate a positive pitching moment that compensated for the

jet-flap negative pitching moment. This problem was also noted in this work

for the BWB aircraft, even more so due to the absence of a horizontal stabilizer.

The H-126 aircraft project gave valuable information with regards to achiev-

able lift coefficients with a jet-flap arrangement. In addition, novel ways of

controlling pitch, roll and yaw axis with TVC nozzles were actually tested in

flight. The project however was discontinued due to financial restrictions and

lack of interest in the jet-flap scheme at that time.

2.3.5 UAV Flight Control through Circulation Control

Recent interest in designing flapless unmanned aircraft, primarily for maximizing

stealth characteristics has resurrected the jet-flap/circulation concepts for flight con-

trol purposes. Frith et. al. [34] at the University of Manchester recently performed

an experimental investigation on a totally flapless aircraft by use of circulation con-

trol technology. Lift augmentation (∆CL/Cu) of approximately 20 was achieved by

use of trailing edge blowing only. Experiments were also conducted to achieve roll

control by differential blowing on the wings. Rolling moments comparable to that

of conventional flaps were reported. In the pitch axis it was further verified that

the aircraft could be trimmed adequately well by use of blown air. Increased blow-

ing moment coefficient, Cu, resulted in greater pitching moment about the centre

of gravity. Frith further reports that useful lift increments (∆CL > 0.1) can be

achieved with Cu values of the order of 0.005, equivalent to those of existing flaps.

Frith concludes that more experimental/theoretical work is needed to realize the full

potential of circulation control for application to this new class of aircraft. Pulsed

jets may also be used to provide similar increments yet at a lower mass flow rate [41].
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2.3.6 Embedded Wing Propulsion (EWP)

This last part of the literature review briefly discusses the distributed propulsion

work done at NASA. The propulsion-airframe integration efforts have culminated

into the so called Embedded Wing Propulsion (EWP) [42] concept. EWP is based

on a blended wing body and utilizes a large number of relatively smaller engines

embedded within the inboard wing structure. The leading edge forms the intake

and the trailing edge as the exit for the engine mass flow. The trailing and the

leading edge could be deflected to achieve high lift coefficients for take-off and land-

ing. Thrust vectoring was also considered for a 2D case using computational fluid

dynamics. The author concludes that EWP concept can be adapted for a variety of

missions with aerodynamics performance advantages. Figure 2.20 shows a notional

concept for the EWP.

Figure 2.20: The EWP concept for an 800 passenger BWB [42]

2.4 Conclusions - Literature Review

The literature review section has discussed at some length the tailless aircraft, jet-

flaps and some propulsion/controls integration concepts. Many more examples could

be given but have been omitted due to space limitations. Important conclusions can

be made from this review,

• Propulsion and flight control systems integration has been done on a number

of aircraft, more so for the conventional configuration. Tailless aircraft in

service are few and those with propulsion and controls integrated even less.
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With emerging new configurations such as the blended wing body, the jet-

flap/blowing concepts for lift generation and flight control has gained renewed

interest.

• Large increments in lift coefficients can be achieved using the jet-flap scheme,

however it is accompanied by a significant nose down pitch moment. This

pitch moment has to be countered without a loss in trim lift coefficient before

the full potential of a blown flap arrangement can be utilized.

• Last but not the least, the supply of compressed air from any engine would

be limited and would result in a loss of thrust depending upon the percent-

age bleed. Any mechanism that utilizes the jet efflux directly without the

use of internal ducting and accompanying pressure losses would be therefore

preferred.
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Chapter 3

Identification of Control Problems

It is important to identify the control problems of the baseline BWB configura-

tion [7], before attempting to solve them. The following aspects are considered,

• Estimation of control authority.

• Dynamical analysis of the linear airframe model.

• Evaluation of longitudinal and lateral-directional handling qualities.

Design of a stability/command augmentation system was a priori requirement to

carry out the above tasks. At the end, this exercise clearly identified the areas where

controls/propulsion integration could be applied and found useful.

3.1 Control Authority Analysis

The purpose of the control authority analysis was to identify if the roll, pitch and

yaw axis control powers are adequate, especially for low speed flight conditions.

The analysis was done separately for the longitudinal and lateral-directional axis.

The flap deflection ranges and the aerodynamic data is based on a previous BWB

aerodynamic model [7], which will be referred to as the baseline. Details of this

aerodynamic model can be found in Appendix A.

3.1.1 Longitudinal Control Power and Trim

The longitudinal control power for steady state non-manoeuvring flight was assessed

through longitudinal trim analysis. For a straight and level flight (γ = 0) all the

state derivatives are assumed zero except the north and east position derivatives,

37



3 Identification of Control Problems

(ṗn, ṗe), which are allowed to vary. The MATLAB trim utility was then used to

solve the equations of motion with the above constraints. The body rates (p, q, r)

and the side slip angle, β, were also set to zero, this decouples the longitudinal and

lateral-directional dynamics. From reference [43], the equations of motion for the

longitudinal axis are,
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Ẇ
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ḣ

















=

















(X + Tx)/m+ (rV − qW )/m− g sin θ

(Z + Tz)/m+ (qU − pV )/m+ g cos θ

M/Iyy − pr(Ixx − Izz)/Iyy − (p2 − r2)Ixz/Iyy

q cosφ− r sin φ

U sin θ − V cos θ sin φ−W cos θ cosφ

















(3.1)

With the addition of the gravity components, the body axis accelerations (U̇ , Ẇ )

are simple expressions for Newtons second law of motion with addition of acceler-

ation terms due to body rates (rV, qW, qU, pV ). If the roll and yaw rates are zero

(p, r = 0), as a for steady wings level flight, the pitch acceleration term (q̇) becomes

a rotational equivalent of Newtons second law with, q̇ = M/Iyy. With zero bank

angle (φ = 0), the rate of climb derivative (ḣn) is a transformation of the body

axis velocities (U,W ) on to the inertial axis. The terms Tx and Tz represent the

components of the thrust vector along the X and Z body axis respectively.
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Figure 3.1: Variation in trim alpha with airspeed and CG position

Figure 3.1 shows that in order to sustain the weight of aircraft, the trim angle of
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attack increases as the flight speed is reduced. However in the absence of a high lift

configuration for the BWB, the increase in angle of attack with decrease in airspeed

is significant. In addition to this, and contrary to the conventional tailed aircraft

configurations, the BWB aircraft shows a strong influence of CG position on trim

angle of attack. At an airspeed of 160 kts, as the CG is moved back by 4 m, the

trim angle of attack decreases by almost 8◦.
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Figure 3.2 further elucidates this point. The graph shows the variation in lift coef-

ficient with angle of attack and elevator deflection. To a close approximation,

CL = CL0 +

(

∂CL
∂α

)

α+

(

∂CL
∂δe

)

δe (3.2)

The influence of the elevator, (∂CL/∂δe), on lift coefficient is both significant and

detrimental. For instance from Figure 3.2, it can be seen that at an angle of attack

of 10◦, the wing looses almost 40% of its lift generation capability when the elevator

deflects by -20◦. This loss of lift is undesirable. In a tailless configuration such as

the BWB, the elevators are incorporated on the main lifting surface and for nominal

CG locations, they deflect in the negative direction to trim the aircraft, resulting in

a significant loss of lift.

Figure 3.3 illustrates the trim elevator requirement. The required elevator deflection

increases at lower airspeeds and increasing static margin. Again the CG position
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strongly influences the trim elevator deflection, which gets close to saturation for

nominal/forward CG locations and lower airspeeds. Figure 3.4 shows the corre-

sponding trim throttle requirement. At lower airspeeds the trim throttle is higher

due to higher values of induced drag. The trim throttle plot shows that due to

its unique configuration, the BWB aircraft operates on the back side of the power

required curve even for significantly higher values of airspeeds.
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3.1.2 Lateral-Directional Control Power and Trim

The purpose of this analysis is to estimate the amount of aileron and rudder (δa, δr)

deflections necessary to trim the aircraft under asymmetric flight conditions. In a

straight and level zero sideslip flight, the parameters that usually effect the trim

state are aircraft speed, altitude and CG position. If the aircraft is symmetric and

there are no moments generated by propulsion system, the variation of trim param-

eters such as speed and altitude effects the longitudinal controls (δe, δt) only. Trim

lateral controls, i-e aileron and rudder (δa, δr), shall nominally be zero. However

rudder/aileron deflections are necessary under asymmetric flight conditions, such as

port/starboard engine failure, crosswinds or if any roll/yaw moments are generated

by the propulsion system in normal operation. The lateral-directional trim analysis

was based on the following equations of motion from reference [43],













V̇

ṗ

ṙ

φ̇













=













Y/m+ (pW − rU)/m− g cos θ sin φ

L/Ixx + qr(Iyy − Izz)/Ixx + Ixz(pq + ṙ)/Ixx

(N +NE)/Izz + pq(Ixx − Iyy)/Izz − Ixz(qr − ṗ)/Izz

p+ (q sinφ+ r cosφ) tan θ













. (3.3)

The equation for the lateral body acceleration (V̇ ) is an expression for Newtons sec-

ond law with addition of gravity and acceleration terms (pW, rU). These terms exist

due to the angular rotation rate of the body in the inertial frame. The expression for

body axis roll acceleration (ṗ) includes the additional rotational acceleration term

(qr) which couples pitch rate into roll axis on account of yaw rate. Similarly for

yaw acceleration (ṙ), the acceleration term (pq) couples roll rate into yaw axis on

account of pitch rate. Thus the roll and yaw equations of motion are coupled. The

Euler rotation rate (φ̇) is a simple projection of body rates (p, q, r) on the (φ̇) axis

and is a kinematic relationship. The east position and heading states (pe, ψ) are not

presented as they do not effect the lateral-directional dynamics.

The term NE represents the yawing moment produced by the engine about the

CG position in case of asymmetric thrust. Nominally if all the three engines are

operating at the same thrust level this yawing moment component should be zero.

However in the event of a starboard or port engine failure, a significant yawing

moment will be generated, which will have to be catered for by the rudder deflection.

To estimate the rudder control power requirements, two trim cases were considered

• Engine failure (asymmetric thrust)

• Engine failure with crosswinds
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3 Identification of Control Problems

The engine failure case will first be considered independently and then in combina-

tion with cross winds. Presence of strong cross winds and asymmetric thrust can

put severe demands on both lateral (roll) and directional (yaw) controls.

Rudder Requirements for Starboard/Port Engine Failure - For the present

analysis it is assumed that three engines are used and they are mounted on top of

the centre body. In case of a port or starboard engine failure, rudder deflection will

be necessary to maintain direction and zero out any sideslip. The amount of rudder

deflection will further depend on the throttle setting and the aircraft speed.
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Figure 3.5 illustrates that at lower airspeeds and for a lateral engine offset of 5 m,

the rudder deflection to achieve zero sideslip reaches very high values. Clearly the

rudder control power of the baseline BWB configuration is inadequate. Also shown

in Figure 3.6 are the required trim aileron deflections to counter the adverse rolling

moment generated by the rudder. At lower airspeeds, the aileron requirement just

to counteract this adverse roll is also excessive.

Trimming under Cross Winds and Engine Failure - A similar trim analysis

was performed for the cross wind case. Depending upon the direction of crosswind,

the amount of rudder deflection can increase or decrease. If both the yawing moment

generated by the asymmetric thrust and the cross wind act in the same direction the
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amount of rudder deflection will increase and vice versa. This is shown in Figure 3.7.

As per MILSTD 8785C [44] both Easterly and Westerly cross winds of 30 kts under

an asymmetric thrust condition were simulated.
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Also shown in Figure 3.8 is the trim aileron deflection. In the presence of crosswinds

the rolling moment due to sideslip, Clβ, also comes into play and may adversely ef-

fect the aileron deflection depending on wind direction.

To summarize, the presence of crosswinds and a starboard/port engine failure, puts

severe demands on the winglet rudder. The winglet rudders as shown in Figure 3.9

are not powerful enough to maintain the desired aircraft direction. It seems that the

rudder control authority has to be increased at least 3 to 4 times than the current

design or an alternate source of yaw control such as drag flaps or lateral thrust

vectoring may be used.

Figure 3.9: A CAD model of baseline BWB configuration with winglet rudders
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3.2 Variation in Dynamic Modes

The purpose of this section is to estimate the effect of airspeed and static margin on

the longitudinal and lateral-directional dynamics of the BWB aircraft. A derivation

of linear dynamics for the BWB aircraft is considered in Appendix B. The relation-

ship of CG position and static margin for the BWB is considered first.

Static Margin and CG Position for the Baseline BWB - Reference [43] gives

an expression for the static margin, Kn, as the ratio of the slope of the pitching

moment and lift coefficient with angle of attack.

Kn = −Cmα
CLα

(3.4)

Whereas the lift curve slope, CLα, is positive within normal limits of angle of attack,

the parameter, Cmα, which is a strong function of CG position must be negative for

positive static margins (Kn > 0).
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Figure 3.10 shows the variation in static margin with CG position for the baseline

BWB. The static margin decreases as the CG moves aft and goes negative at xcg =

31.65 m, which is the neutral point. Due to the limitations of available aerodynamic

data, the neutral point and also the static margin plot are shown to be relatively

insensitive to variations in airspeed. In practice however, the neutral point does

shift aft at higher Mach numbers.
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3.2.1 Variation in Dynamic Modes - Longitudinal Axis

Figure 3.11 shows the pole locations for longitudinal axis for an xcg variation of 29.0

to 32.0 m and up to a speed of 500 kts. The short period and the phugoid poles are

marked. The phugoid poles being slow are clustered near the origin while the short

period dynamics show significant variation. Following points can be observed.
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Figure 3.11: Variation in Longitudinal Modes with Static margin and Airspeed

• The short period frequency (ωsp) increases with airspeed and forward CG

positions. Thus at higher speeds and stable CG positions the short period

dynamics will be fast which is desirable from handling qualities point of view.

• The short period damping (ζsp) decreases with increasing static margin and is

almost insensitive to airspeed.

• Short period mode goes unstable at negative static margins.

• The phugoid poles also go unstable for negative static margins specially at

lower airspeeds. At higher airspeeds the phugoid mode remains stable but

poorly damped.

The effect of airspeed/CG position on natural frequency and damping for the short

period and phugoid mode will now be considered.
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Variation in Short Period Mode - Figures 3.12 and 3.13 show the variation in

short period mode with static margin and airspeed. At a fixed airspeed, the short

period natural frequency, ωsp, shows an almost linear variation with static margin.

The effect of increased airspeed is to increase the frequency of the short period mode

and vice versa. The short period damping, ζsp, is unaffected by changes in airspeed

but increases with decreasing static margin. Based on this variation in short period

dynamics, a static margin (Kn > 0.1) is considerd desirable, however it is possible to

operate at lower static margins with a well designed stability augmentation system.
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Variation in Phugoid Mode - Figures 3.14 and 3.15 show the variation in

phugoid mode with static margin and airspeed. The phugoid frequency, ωph, is not

sensitive to variations in static margin, however it decreases with increase in air-

speed. The phugoid damping, ζph, is however relatively less sensitive to static mar-

gin but decreases with increase in airspeed. Thus at higher airspeeds, the phugoid

will be less damped and slower. At airspeeds of less than 200 kts and low static

margins, the phugoid mode goes unstable and the damping is negative.
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3.2.2 Varition in Dyanmic Modes - Lateral Directional Axis

Figure 3.16 shows the open loop pole zero map for lateral dynamics for an xcg

variation of 29.0 to 32.0 m and upto a speed of 500 kts. The roll subsidence, spiral

and dutch roll poles are marked. Following points may be observed.
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• The roll subsidence pole is fast and varies with airspeed. It determines the

speed of response for the roll motion to aileron controls . As the airspeed

is increased the dimensional derivative Lδa i-e roll moment due to aileron

deflection increases. For a constant roll axis inertia (Ixx), the roll acceleration

increases with airspeed and hence a faster roll subsidence mode. However the

roll mode is relatively insensitive to variation in xcg position.

• The spiral mode remains stable but gets faster at slower airspeeds. A fast and

divergent spiral mode is undesirable from handling qualities perspective.

• The dutch roll mode remains slow for all airspeeds and gets unstable at a

certain combination of low airspeeds and negative static margins.

The effect of airspeed/CG position on natural frequency or damping for each the

roll subsidence, spiral and dutch roll mode is discussed next.
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Variation in Roll and Spiral Modes - Figures 3.17 and 3.18 show the variation

in roll and spiral modes with static margin and airspeed. The roll time constant, τr,

is less sensitive to CG position, but gets slower as the airspeed is reduced. The roll

mode is within the MIL-STD-8785C [44] Level 1 requirements up to a speed of 200

kts. The spiral mode time constant, τs, on the other hand shows strong influence

of both CG position and airspeed. For static margins (Kn > 0.1), the spiral time

constant is high, however it gets unfavourably faster at lower airspeeds.
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Variation in Dutch Roll Mode - Figure 3.19 shows the variation in dutch roll

frequency with static margin and airspeed. Although higher airspeeds and static

margins tend to increase the dutch roll natural frequency, ωdr, but it still falls short

of acceptable limits. For all combinations of speeds and CG positions the dutch

roll mode is slower than the Level 1 requirements. The dutch roll damping, ζdr, in

Figure 3.20 remains within Level 1 limits when the static margin Kn > 0.1, however

it deteriorates rapidly as the static margin is reduced any further.
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3.3 BWB - Handling Qualities Assessment

In this section, the handling qualities of the baseline BWB configuration both with

and without a stability augmentation system (SAS) are considered, the purpose

being to identify controls related handling qualities limitations if any.

3.3.1 Longitudinal Handling Qualities (BWB)

Many criteria exist to assess the longitudinal handling qualities of aircraft. The

following two will be used for the baseline BWB to see if they give consistent results.

• The Control Anticipation Parameter (CAP) criteria [45].

• The Neil Smith criteria [46].

3.3.1.1 CAP Assessment - Open Loop

CAP may be defined in terms of short period natural frequency (ωsp) and the normal

acceleration derivative w.r.t angle of attack (Nα) or as the ratio of instantaneous

pitch acceleration to steady state normal acceleration [43],

CAP =
q̇(0)

Nz(∞)

=
ω2
sp

Nα

(3.5)

where

ωsp =
√

MqZw −Mw(Zq + Ue) (3.6)

Nα = −ZwUe/g (3.7)

where Ue is the steady state speed in x-body axis. CAP may be evaluated graphically

or through the evaluation of the parameters (ωsp, Nα). Step responses were obtained

for [Nz, q̇, q, θ, γ] using reduced order models for short period dynamics and are

shown in Figure 3.21. The corresponding CAP parameters are,

Parameter Value Units

Control Anticipation Parameter (CAP) 0.216 -
Short period frequency (ωsp) 1.139 rad/s
G’s per alpha (Nα) 5.986 g/rad

Table 3.1: CAP parameters at (V = 200 kts, Alt = 5000 ft, Kn = 0.1)
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Figure 3.21: CAP Assessment - Longitudinal response to step elevator
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Figure 3.22: CAP Assessment - Short period characteristics

Figure 3.22 shows the location of the CAP parameter on a log-log plot. Level 1

and Level 2 regions are shown for a category C (Take-off/Landing) flight phase. For

the airspeed and altitude combination under consideration, the BWB aircraft shows

marginal Level 1 flying qualities. The short period frequency (ωsp = 1.1 rad/s) is

still however at the lower limit. A higher short period frequency (ωsp = 2.0 rad/s)

would have been desirable.
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3.3.1.2 Neil Smith Assessment - Open Loop

The Neil Smith criteria [46], includes the pilot in evaluation of the pitch response. It

assumes that to accomplish a given task, a pilot acts as a controller thus introducing

pilot gain and phase in the forward path. The amount of gain and phase (lead/lag)

needed by the pilot to achieve a certain close loop bandwidth (ωBW ) determines the

handling qualities of the aircraft. The criteria requires that the close loop phase lag

at the bandwidth frequency be -90◦ and the close loop low frequency droop be -3

dB. For this analysis the pilot’s neuromuscular delay is assumed fixed at 0.3 seconds.

-θ/δeθD Kpe
0.3s

(

1+sτ1

1+sτ2

)

-
θ

-
θe

Pilot

6

Σ-

Aircraft

δe

+

-

Figure 3.23: Pilot and aircraft close loop system model

Using the linearization procedure as outlined in Appendix B, a reduced order θ/δe

transfer function is obtained at V=200 kts, Alt = 5000 ft and Kn = 0.1,

θ

δe
=

1.7676(s+ 0.5813)

s(s2 + 0.8747s+ 1.296)
(3.8)

It now remains to find the pilot transfer function which gives a close loop phase lag

of -90.0◦ at bandwidth frequency of ωBW = 3.0 rad/s and in addition a close loop

low frequency droop of -3.0 dB. The pilot’s transfer function is represented by

Gp(s) = Kp exp−τs

(

1 + sτ1
1 + sτ2

)

= KpDp(s)Pp(s) (3.9)

where Kp is the pilot gain, Dp(s) is the pilot time delay of τ seconds and Pp(s) is

the pilot’s phase compensation. The resulting Neil Smith parameters are

Neil Smith Parameters Value Units

Pilot gain Kp 0.565 -
Pilot phase [+ve for lead] +74.05 deg
Phase at ωBW of 3.05 rad/s -90.11 deg
Low frequency Droop -3.103 dB
Close loop resonance 5.045 dB

Table 3.2: Neil Smith parameters at (V = 200 kts, Alt = 5000 ft, Kn = 0.1)
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Figure 3.24: Neil Smith Assessment at [V = 200 kts, Alt = 5000 ft]
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Figure 3.25: Neil Smith Assessment at [V = 200, 300 kts, Alt = 0 to 30000 ft]

Figure 3.24 shows Level 2 flying qualities for the current flight condition of V = 200

kts and Alt = 5000 ft. Figure 3.25 shows the variation in Neil Smith parameters with

changes in altitude and airspeed. At constant speed and with increase in altitude,

the aircraft tends to get more sluggish, hence requiring greater pilot compensation.

However the resonance peak drops indicating greater damping in pitch oscillations.

At a lower airspeed of V=200 kts, the system is sluggish with Level 2 flying qualities.

For a higher speed of V=300 kts, the system is less sluggish but more oscillatory

with a strong PIO tendency. Hence Level 3 flying qualities.
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3.3.1.3 Longitudinal Handling Qualities - SAS Engaged

A longitudinal stability augmentation system (SAS) with alpha and pitch rate feed-

back was designed as per MILSPEC 8785C requirements on short period dynamics.

The design of the SAS is detailed in Appendix C. Figure 3.26 shows the CAP as-

sessment both with and without the SAS engaged. With an increased short period

frequency by use of alpha feedback, the system is now well inside the CAP Level 1

handling qualities requirements.

10
0

10
1

10
2

10
−1

10
0

10
1

10
2

 0.16

 2.50

 0.096

 10.0

N
α
 (/ rad)

S
ho

rt
 p

er
io

d 
fr

eq
ue

nc
y 

 (
ω

sp
) 

[r
ad

/s
ec

]

Level 1 − Category C
Level 2 − Category C

ω
sp

 = 1.13 rad/s 

Level 2

Level 1

Nα = 6.0 g/rad 

ω
sp
2 /N

α
 

V = 200 kts, Alt = 5000 ft

SAS 

ω
sp

 = 1.86 rad/s 

Open Loop

Figure 3.26: CAP Assessment with SAS
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Figure 3.27: Neil Smith Assessment with SAS

Figure 3.27 shows the Neil Smith assessment with SAS engaged. The improvement
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in short period frequency from 1.13 to 1.86 rad/s (due to SAS) causes a reduction in

the pilot compensation to achieve a close loop bandwidth of ωBW = 2.0 rad/s and

the improved damping reduces the close resonance peak.

3.3.2 Lateral-Directional Handling Qualities (BWB)

MILSPEC 8785C [44] conveniently expresses the lateral-directional handling qual-

ities requirements in terms of lateral-directional pole positions. In addition, refer-

ence [45] specifies the manoeuvre requirements. Table 3.3 summarizes the Level 1

lateral-directional requirements for a Class III (Heavy Transport) aircraft.

Parameter Cat. A Cat. B Cat. C Units

Roll mode time constant (τR) 1.40 1.40 1.40 sec
Dutch roll frequency (ωdr) 0.50 0.50 0.50 rad/s
Dutch roll damping (ζdr) 0.19 0.08 0.08 -
Dutch roll parameter (ζdrωdr) 0.35 0.15 0.1 -
Spiral (time to double bank angle) (t2) 12 20 12 sec
Time to reach 30◦ bank angle 1.5 2.0 3.0 sec
Adverse sideslip βadv 6k 10k 10k -
Proverse sideslip βpro 2k 3k 3k -
Roll rate (p) limit at first minimum 60 25 60 % of pmax
Change in bank Angle - - - as control

Table 3.3: MILSTD 8785C - Class III - Level 1 - Lateral-directional requirements

pmax Maximum roll rate for a given control deflection

βadv Adverse sideslip (right roll command causes right(+) sideslip)

βpro Proverse sideslip (right roll command causes left(-) sideslip)

k Time taken to reach 30◦ bank/time specified (above) to reach 30◦ bank

3.3.2.1 Handling Qualities Assessment - Open Loop

The roll mode time constant, the dutch roll mode and the spiral modes have already

been considered earlier in Section 3.2. It was shown that the dutch roll frequency,

ωdr, is very low due to poor directional stiffness, Cnβ , and does not meet the Level

1 requirements stated above. The dutch roll damping, ζdr, however meets these

requirements as long as the static margin Kn > 0.1. This section will now focus on

the lateral-directional manoeuvre requirements.

Roll rate (p) and Roll Angle (φ) Manoeuvre - The Level 1 requirement on roll

rate is that the second roll rate peak should be of the same sign and not less than a
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certain percentage of the first peak. Figure 3.28 shows the roll rate response due to

step aileron at various airspeeds. Since there is a very strong roll/yaw coupling, the

second roll rate peak is of opposite sign from the initial or intended direction. The

open loop response is clearly not Level 1. Figure 3.29 shows the corresponding roll

angle, which also settles in the opposite direction. Due to this dynamic behavior,

the adverse/proverse yaw measurements were made after engagement of a lateral-

directional SAS system. The SAS system is of conventional design with washed out

yaw rate feedback for dutch roll damping, sideslip feedback for increasing the dutch

roll frequency, roll rate feedback to speed up the roll mode and an aileron to rudder

inter-connect (ARI) for turn co-ordination.
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Figure 3.28: Roll rate (p/δa) step response - Open loop

3.3.2.2 Handling Qualities Assessment - SAS Engaged

The design of the lateral-directional employing washed-out yaw rate, roll rate feed-

back, sideslip suppression and an aileron to rudder interconnect is discussed in Ap-

pendix C. The lateral-directional handling qualities are now considered with the

stability augmentation system operating, these include, (i) roll rate manoeuvre, (ii)

time to reach 30◦ bank angle and (iii) Adverse yaw.

Roll Rate Manoeuvre - SAS Engaged - Figure 3.30 shows the close loop roll

rate to aileron (p/δa) step response. The first peak and the first minimum after it

are highlighted. With the SAS, the BWB aircraft meets the Level 1 requirements
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Figure 3.29: Roll angle (φ/δa) step response - Open loop

above speeds of 200 kts. The results for the roll rate manoeuvre are summarized in

Table 3.4. Note that k is the ratio of first minimum to first peak in roll rate.
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Figure 3.30: Comparison - roll rate/angle response with SAS

Roll Angle Manoeuvre (Time for 30◦ Bank) - SAS Engaged - This require-

ment varies according to the phases of flight (Category A/B/C). Figure 3.31 shows

that the system does not meet the minimum Level 1 requirements of reaching the re-
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Airspeed kts First peak First min. Ratio (k) Level 1 req. Level 2 req.

400 -0.252 -0.2080 0.825 0.60 0.25
300 -0.143 -0.1170 0.818 0.60 0.25
200 -0.0786 -0.0469 0.596 0.60 0.25

Table 3.4: Roll rate at first minimum as percentage of roll rate at first peak (k)

quired bank angle of 30◦ for both category B and C flight phases. Table 3.5 presents

the data numerically against the requirements. Clearly it can be inferred that roll

angle performance deteriorates with airspeed. In fact at 200 kts, the time to reach

30◦ bank with full control deflection is 18.4 seconds. Comparing this with a category

C flight phase requirement of 3.0 seconds, it seems that either the control power is

too less or the roll inertia is too high. The roll subsidence mode frequency cannot

be improved further as it would saturate the controls. The roll control power needs

to be enhanced especially at low airspeeds in order to meet Level 1 requirements.
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Figure 3.31: Roll angle response - SAS engaged

Airspeed (kts) Cat. A Cat. B Cat. C Time for 30◦ bank Units

500 1.50 2.00 3.00 4.20 sec
400 1.50 2.00 3.00 5.44 sec
300 1.50 2.00 3.00 9.06 sec
200 1.50 2.00 3.00 18.4 sec

Table 3.5: Time to reach 30◦ bank angle - SAS engaged
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Adverse Yaw - SAS Engaged - McLaughlin [47] suggests that the level of

aileron cross coupling can be estimated by the parameter (ωφ/ωdr)
2. This is the ra-

tio of the squares of natural frequencies appearing in the roll angle to aileron (φ/δa)

transfer function. If (ωφ/ωdr)
2 = 1, the yaw or sideslip disturbance is minimal. If

(ωφ/ωdr)
2 > 1, the induced yaw is in the proverse direction and if (ωφ/ωdr)

2 < 1,

it is in the adverse direction. In the following analysis this parameter is considered

both with and without the aileron to rudder inter-connect (ARI).

Figure 3.32 shows the sideslip generated for a -25.0◦ step aileron input. Flight speeds

were from 400 to 200 kts at an altitude of 10,000 ft. The figure shows that positive

slip is generated in all three cases hence the sideslip/yaw angle are adverse. Table 3.6

presents a summary. The parameter k as defined in Section 3.3.2 is also listed. Only

category C flight phase requirements are considered. Table 3.6 shows that sideslip

is reduced significantly with the aileron to rudder interconnect. The system still has

residual slip which can be of annoyance to the pilot especially at lower airspeeds.
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Figure 3.32: Adverse yaw due to aileron deflection - SAS engaged

Airspd kts k Cat C (10k) β βARI (ωφ/ωdr)
2 (ωφ/ωdr)

2
ARI

400 5.44/3 = 1.81 18.1 +7.0 +2.4 0.40 0.81
300 9.06/3 = 3.02 30.2 +6.4 +2.2 0.31 0.75
200 18.4/3 = 6.13 60.1 +5.7 +2.4 0.07 0.47

Table 3.6: Adverse/proverse yaw measurements
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3.4 Chapter Summary

A summary of control problems for the baseline BWB is presented in Table 3.7.

No Parameter Remarks

1.0 Pitch Con-
trol

At lower airspeeds (V < 200 kts) and nominal static margins
(Kn > 0.15) the baseline BWB aircraft shows limited pitch control
power. As shown later this proves to be a serious limitation dur-
ing the take-off rotation phase. However for lower static margins
(Kn < 0.1) the actuator limits are not exceeded.

2.0 Yaw Control A trim analysis was carried out for asymmetric flight conditions
with starboard/port engine fail and crosswinds. For asymmetric
thrust, the small rudders on the winglets saturate very quickly
at landing and take-off speeds. If cross winds are added, it may
further exacerbate the situation depending on wind direction. It
seems that rudder power needs to be enhanced 3 to 4 times to
make this a practical design.

3.0 Roll Control The roll control power was assessed by the time required to reach
30◦ bank angle. By virtue of the planform shape, the roll axis
inertia is large and with only inboard ailerons operating, the BWB
aircraft fails to meet Level 1 requirements at airspeeds below 300
kts. Control allocation may be used at low airspeeds by assigning
outboard flaps for additional roll control, but this will be done at
the expense of a further reduction in pitch control authority.

4.0 Longitudinal
Dynamics

To assess the longitudinal dynamics, both linear airframe and han-
dling qualities analysis were conducted. Below static margins of
Kn < 0.1, the short period mode gets slower and eventually be-
comes unstable at Kn = 0.0. A stability augmentation system
(SAS) with alpha and pitch rate feedback was necessary to bring
the system to Level 1 requirements. Without the SAS the base-
line BWB barely meets CAP or Neil Smith handling qualities re-
quirements but with SAS engaged both criteria are satisfied. The
longitudinal dynamics were found to be satisfactory with a gain
scheduled SAS.

5.0 Lateral Dy-
namics

The lateral-directional dynamics were very poor. The dutch roll
mode is too slow at all combinations of airspeeds and CG positions.
Sideslip feedback was necessary to speed up the dutch roll and high
gain values had to be used, straining the already weak rudder. An
aileron to rudder inter-connect (ARI) was required to counteract
adverse sideslip. However even after the full SAS engaged there is
considerable residual sideslip. A weak rudder and poor directional
stiffness are considered to be the main causes. The system will be
very difficult to fly without a well designed lateral-directional SAS.

Table 3.7: Summary of BWB stability and control problems
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Chapter 4

Transient Engine Model and

Effects of Controls Integration

In the previous chapter, the BWB aircraft was analyzed from a stability and con-

trols point of view and certain problem areas were identified. In this context, various

control methodologies were highlighted in Chapter 1, where the propulsion system

could be used to augment the control characteristics of the BWB aircraft. These

included, (i) thrust vectoring to supplement the aerodynamic flight controls for the

longitudinal and lateral-directional axis and (ii) the use of blown flaps to improve

flap effectiveness and hence provide better control authority.

Thrust vectoring on its own does not directly affect the engine operating point or the

steady state running line. The loss in axial thrust due to vectored thrust can be re-

claimed by adjustment of throttle position. However in a blown flap arrangement, if

the bleed mass flow is taken from an engine compressor stage, then this disrupts the

mass flow for engine components downstream. The engine operating point shifts and

may adversely affect critical engine parameters such as the turbine entry temperature

(TET), the specific fuel consumption (SFC) and thrust. It is therefore considered

necessary to a have a real-time transient model of the propulsion system that could

be integrated with a BWB aircraft with a blown flap controls arrangement. In this

context this chapter will cover,

• The development of a transient engine model.

• Model validation.

• Engine performance under variable bleed conditions.

• Engine performance under thrust vectoring.
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Various techniques have been used in the literature for propulsion system modeling.

The usual approach is to represent different engine subsystems using performance

maps and then interlink each individual component to get an overall engine model.

These can further be categorized as,

• The Inter-component Volume Method

This method assumes that during a transient operation, flow mismatch occurs.

The amount of mismatch is used to calculate pressure derivatives at various

stages (volumes) inside the engine. The pressure derivatives can then be in-

tegrated to get pressures using numerical integration techniques. Fawke [48]

used this approach to model single and two spool turbojet engines and verified

his results to a reasonable accuracy with experimental data. Behbahani [49]

at the Air force Research Laboratory (Wright Patterson Air force Base) has

reported to develop a two spool turbofan engine model using the component

volume approach in Matlab/Simulink.

Figure 4.1: The AMT Olympus single spool turbojet [50]

During the initial part of this research, the inter-component volume method

was used to simulate a small single spool turbojet called the AMT Olym-

pus [50]. This engine is shown in Figure 4.1 and can generate a thrust of up to

180 N. Experimental bleed data for this engine was also available which was

used to validate the simulation results. Since later on for the BWB, a three

spool turbofan engine was to be used, therefore the details of the single spool

turbojet are not presented here, however this engine model forms the basis of

the more complicated three spool turbofan, discussed next. Results for the

single spool turbojet were published [51] and are provided in Appendix F for

future reference.
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• The Iterative Method

This method uses an iterative approach such as the Newton Raphson method [52]

to satisfy or minimize a set of error variables given certain engine parameters

as inputs. The method starts with an initial guess of the engine state vector

and computes error variables that need to satisfy steady state constraints. A

pass through the engine calculations is made and the errors or mismatch across

engine components are calculated. The error values are used to calculate a new

and improved guess for the state vector. The process is repeated till the error

variables are less than a specified tolerance.

Sellers [12] used the iterative approach to model the transient performance

of various engine configurations. An engine simulation program by the name

of DYNGEN was written by Sellers and later updated it by DYGABCD. The

DYGABCD was also capable of producing A,B,C,D matrices (linear model) at

a given engine operating point. Lately, Parker [53] at the NASA’s Glenn Re-

search centre has developed a turbofan engine simulation in Matlab/Simulink.

The program is called MAPSS (Modular Aero Propulsion Simulation Soft-

ware) and is based on an iterative procedure.

The DYNGEN program had transient capability and could simulate a three

spool turbofan with inter-stage bleeds. It was accurate and could easily handle

design point calculations. It was used extensively for the initial assessment of

the three spool turbofan. Its only draw back was that it used an iterative ap-

proach, a three spool turbofan would require nine state variables and as many

iterations to reach a converged solution. Thus it was not suitable for real-time

implementation. On the other hand, the non-iterative inter-component volume

approach when expanded to a three spool turbofan started giving increasing

errors across high pressure engine stages. To solve this problem a hybrid ap-

proach was adopted which combined the two methods thus providing both

speed and accuracy. This approach was applied to the three spool turbofan

and shall form the subject for the rest of this chapter.
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4.1 A Hybrid 3 Spool Turbofan Engine Model

This section presents a transient three spool turbofan engine simulation model that

was developed as an integral part of this research work. It uses a combination

of inter-component volume and iterative techniques, or the so called hybrid ap-

proach. The engine model runs in real time and has been implemented in MAT-

LAB/Simulink environment. The main advantage of the hybrid approach is that it

preserves the accuracy of the iterative method while maintaining the simplicity of

the inter-component volume method. The inter-component volume method is used

to calculate the mass flow accumulation inside each volume and the iterative ap-

proach is used to solve the thermodynamic algebraic equations associated with each

engine component. The rate of change of mass flow in the volume is used to calcu-

late pressure derivatives which are integrated to get pressures. With a knowledge of

instantaneous spool speeds in addition to these pressures, the compressor/turbine

mass flows and efficiencies are calculated using static component maps. This allows

the engine state vector to be updated at each pass through the engine calculations.

This technique was applied on the Rolls Royce Trent 500 three spool turbofan engine

and the results were compared with an iterative method such as the DYNGEN [12].

4.1.1 Engine Stations and State Vector

A simplified schematic for a three spool turbofan is shown in Figure 4.2. Various

engine stations have been designated by following aerospace standard AS755D [54].
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Figure 4.2: Three-spool turbofan schematic
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Station Description

1 Inlet - Entry

2 Inlet - Exit

2.1 LPC - Low pressure compressor outlet

2.2 IPC - Intermediate pressure compressor outlet

3 HPC - High pressure compressor outlet

4 CMB - Combustor outlet

4.1 HPT - High pressure turbine outlet

4.2 IPT - Intermediate pressure turbine outlet

5 LPT - Low pressure turbine outlet

9 Nozzle - Main outlet

19 Nozzle - Bypass outlet

With reference to Figure 4.2, the mass flow into the system is from the low pressure

compressor, wLP , and the main burner fuel flow input, wf . The mass flow exits

from the three exhaust nozzles, these are the core exhaust nozzle mass flow, wcore,

the bypass nozzle mass flow, wbypass, and the bleed mass flow from the intermediate

compressor to the wing duct, wwing. To simulate the turbofan, the following choice

of state vector, X, and control vector, u, was made,

X = [P2.1, P2.2, P3, P4.1, P4.2, P5, NL, NI , NH ]

u = [wf ]

where Pi are the total pressures at the ith station, NL, NI , NH are the physical shaft

speeds of the low pressure, the intermediate pressure and the high pressure rotors

respectively and wf is the main burner fuel flow rate.

4.1.2 Calculation of Pressure Derivatives - (Ṗi)

The three-spool engine was simulated by calculation of the state derivatives, Ẋ. The

estimation of these state derivatives for pressures and spool speeds will therefore be

considered. When the engine is running in a steady state condition, the net mass flow

into the system equals the net mass flow out of the system. However as the engine

accelerates or decelerates a transient state occurs and there will be accumulation or

depletion of mass at various stages/volumes inside the engine. From the gas law, the

rate of change of mass is proportional to rate of change of pressure and temperature,

Ṗ =
R

V
(Tṁ+mṪ ) (4.1)
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The above equation has two derivatives, the terms ṁT andmṪ . Bates and Fawke [48]

have shown that the temperature derivative can be neglected in comparison to the

mass derivative term. Thus to calculate the pressure derivatives, the mass flow

errors inside the control volumes are required. The pressure derivatives are based

on engine component maps as outlined in Appendix E and have been obtained as

follows,

4.1.2.1 Mass Flow Error at LPC/Fan exit - (ṁ2.1)

With reference to Figure 4.4, an inter-component volume, V2.1, is placed at the fan

exit and the entry of the intermediate compressor and the bypass duct. The mass

flow, wcl, entering into this volume is from the low pressure (LP) compressor which

is a function of LPC corrected shaft speed, NLC
∗ = NL/

√

T2/Tstd, and fan pressure

ratio, P2.1/P2. With the assumption of zero bleed from the LPC stage we have,

wLP = wcl = f(
P2.1

P2

, NLC
∗)MAP (4.2)

where wLP is obtained using an LP compressor map given in Appendix E, with LPC

pressure ratio, P2.1/P2, and corrected LPC shaft speed, NLC
∗, as inputs.

wbypasswLP

V2.1

Fan/LPC

-

-
wcl wIP

ṁ2.1

P2.1, T2.1

P1

P2

IPC-

P2.2, T2.2

-
wci

-

Pa

Figure 4.3: Inter-component volume, V2.1, between Fan and IPC/bypass nozzle

The mass flow exiting from the control volume, V2.1, goes into the intermediate

pressure (IP) compressor and the bypass nozzle. The mass flow ingested by the

intermediate compressor, wIP , is a function of the intermediate compressor pressure

ratio, P2.2/P2.1, and the IPC corrected shaft speed, NIC
∗ = NI/

√

T2.1/Tstd. A
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certain percentage of IP compressor mass flow, φIP , may be drawn for flow control

or turbine cooling purposes and the reduced mass flow at IP compressor exit is wci.

The mass flow ingested by the IP compressor in terms of percentage bleed and IPC

exit mass flow is given as,

wIP =
wci

1 − φIP
= f(

P2.2

P2.1
, NIC

∗)MAP (4.3)

The bypass nozzle mass flow is a function of the bypass nozzle pressure ratio, P2.1/Pa,

and the bypass nozzle area, A19, besides some other gas parameters,

wbypass =
A19P2.1

R

(

P2.1

Pa

)

−1/γ

√

√

√

√

2gccp
T2.1

(

1 −
(

P2.1

Pa

)

−R/cp
)

(4.4)

The mass flow error inside the control volume is therefore,

ṁ2.1 = wcl − wIP − wbypass (4.5)

In this analysis, it is assumed that there is no bleed off-take from the LP compres-

sor. Further in Equation 4.4, the pressure ratio (P2.1/Pa) is limited to the choking

pressure ratio if the bypass nozzle operates choked.

4.1.2.2 Mass Flow Error at IPC Exit - (ṁ2.2)

IPC
wIP

V2.2

-

Bleed

HPC

- φIPwIP

wci

-
wHP

φHPwHP

-

P2.2, T2.2 P3, T3

P2.1, T2.1

-
wch

-Bleed

- Combṁ2.2
wth

P4, T4

-wf

ṁ3

V3

Figure 4.4: Inter-component volumes, V2.2 and V3

With reference to Figure 4.4, an inter-component volume, V2.2, is placed between

IP compressor exit and the high pressure (HP) compressor entry. The mass flow

entering this volume is the reduced mass flow after bleed extraction from the IPC
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stage and is referenced as wci. The mass flow, wHP , exiting from this volume is that

ingested by the HP compressor. A certain percentage, φHP , of this HP mass flow is

bled for turbine cooling purposes and the net mass flow exiting from the HP stage

is wch. Thus

wHP =
wch

1 − φHP
= f(

P3

P2.2
, NHC

∗)MAP (4.6)

Where the HPC mass flow, wHP , itself is a function of pressure ratio, P3/P2.2, and

the HP compressor corrected shaft speed, NHC
∗ = NH/

√

T2.2/Tstd. The mass flow

being accumulated inside the control volume is therefore

ṁ2.2 = wci − wHP (4.7)

4.1.2.3 Mass Flow Error at HPC Exit - (ṁ3)

The inter-component volume, V3, was placed at the HP compressor exit and com-

bustor entry. The mass flows entering this volume are the main burner fuel flow,

wf , and the mass flow exiting from the HP compressor stage, wch. The mass flow,

wth, exiting from this volume is that extracted by the HP turbine. Thus the mass

flow accumulated inside this volume is

ṁ3 = wch + wf − wth (4.8)

The HP turbine mass flow, wth is a function of HP turbine pressure ratio, P4/P4.1,

and HP turbine corrected shaft speed, NHT
∗ = NH/

√
T4 and is obtained from a

turbine map. Thus

wth = f(
P4

P4.1

, NHT
∗)MAP (4.9)

Since a fixed percentage of total pressure loss is assumed inside the combustor, there-

fore the pressure derivative at HP turbine entry, Ṗ4, is proportional to combustor

entry, Ṗ3, and no inter-component volume is required to calculate P4.

4.1.2.4 Mass Flow Errors at HPT, IPT and LPT Exit - (ṁ4.1, ṁ4.2, ṁ5)

In Figure 4.5, the inter-component volume, V4.1, accepts mass flows from the HP

turbine and also the cooling mass flow, φHPwHP , from the HP compressor stage.

The mass flow, wti, exiting from volume V4.1 is that ingested by the IP turbine stage

and is a function of IP turbine pressure ratio P4.1/P4.2 and the IPT corrected shaft

speed, NIT
∗ = NI/

√
T4.1.

wti = f(
P4.1

P4.2

, NIT
∗)MAP (4.10)
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HPT

P4, T4

V4.1

wti
- ṁ4.2

P4.2, T4.2

wti
-

wth
IPT LPT

-

φHPwHP
V4.2 V5

-

P5, T5

ṁ4.1
wtl

P4.1, T4.1

Cooling

ṁ5
--

wcore
-

wtl

Core
Nozzle

Pa

-

Bleed

Figure 4.5: Inter-component turbine volumes [V4.1, V4.1, V5]

From Figure 4.5, the accumulated mass at the HP, IP and LP turbine exits are

ṁ4.1 = wth + φHPwHP − wti (4.11)

ṁ4.2 = wti − wtl (4.12)

ṁ5 = wtl − wcore (4.13)

The mass flow, wtl, into the LP turbine is a function of LP turbine pressure ratio,

P4.1/P4.2, and LP turbine corrected shaft speed, NLT
∗ = NL/

√
T4.2, and is obtained

from the LP turbine map,

wtl = f(
P4.2

P5

, NLT
∗)MAP (4.14)

and the mass flow through the convergent core nozzle is

wcore =
A9P5

R

(

P5

Pa

)

−1/γ

√

√

√

√

2gccp
T5

(

1 −
(

P5

Pa

)

−R/cp
)

(4.15)

where the pressure ratio (P5/Pa) is limited to the choking pressure ratio. This

completes the calculation of the mass flow errors inside the control volumes. The

pressure derivatives can now conveniently be obtained using Equation 4.1. For the

inter-component volumes associated with the compressors we have,

˙P2.1 =
RT2.1

V2.1
(wcl − wIP − wbypass) (4.16)

˙P2.2 =
RT2.2

V2.2
(wci − wHP ) (4.17)

Ṗ3 =
RT3

V3

(wch + wf − wth) (4.18)

71



4 Transient Engine Model and Effects of Controls Integration

and similarly for the volumes associated with the turbines,

˙P4.1 =
RT4.1

V4.1
(wth + φHPwHP − wti) (4.19)

˙P4.2 =
RT4.2

V4.2
(wti − wtl) (4.20)

Ṗ5 =
RT5

V5
(wtl − wcore) (4.21)

Now if the initial pressures are known, then from the knowledge of the initial state

vector, X0, the subsequent time history of Pi can be obtained by convenient numer-

ical integration methods.

4.1.3 Calculation of Speed Derivatives - (Ṅ)

The remaining derivatives of the state vector i.e. the rotational acceleration deriva-

tives ṄL, ṄI , ṄH can be calculated by estimating the difference in torque generated

by the turbine and that required by the compressor,

Ṅ =
dN

dt
=

(ηmτturb − τcomp)

Is
(4.22)

The turbine torque, τturb, or the compressor torque, τcomp, can be expressed in terms

of turbine and compressor work and physical spool speeds. In addition, if there is

a fraction of bleed (φ = wb/wc) taken from a non-dimensional axial location (x/l)

along the compressor, then the torque required by the compressor is

τcomp =
60

2πN
wccp∆Tc

(

(1 − φ) + φ
x

l

)

(4.23)

From reference [55], ∆Tc is,

∆Tc =
1

ηc
T1

(

(

P2

P1

)
γ−1
γ

− 1

)

(4.24)

Here subscripts 1 and 2, represent inlet and outlet conditions respectively, and do

not relate to the three spool turbofan station designation. The problem with Equa-

tion (4.24) is that it is implicit, and the values of parameters like γ and cp are in

turn dependent upon exit conditions, [T2, P2]. Fixed values of these parameters had

to be assumed. This was later found to introduce significant errors in high pressure

stages. It was therefore decided to solve these equations iteratively using specific

enthalpy, h, rather than total temperature. In terms of enthalpy change, the torques

72



4 Transient Engine Model and Effects of Controls Integration

for the compressor stages are,

τLPC =
60

2πNL
wLP (h2.1 − h2) (4.25)

τIPC =
60

2πNI
wIP (h2.2 − h2.1)

(

(1 − φIP ) + φIP
x

l

)

(4.26)

τHPC =
60

2πNH
wHP (h3 − h2.2)

(

(1 − φHP ) + φHP
x

l

)

(4.27)

and for the turbines,

τHPT =
60

2πNL

wth(h4 − h4.1) (4.28)

τIPT =
60

2πNI

wti(h4.1 − h4.2) (4.29)

τLPT =
60

2πNH

wtl(h4.2 − h5) (4.30)

No bleed is taken from the LP compressor stage and it is assumed that the cooling

mass flow into the HP or the IP turbine stages does not contribute toward turbine

work. For the calculation of speed derivatives, it now remains to calculate the

enthalpy change across each of the compressor or the turbine stages. This requires

an iterative solution of algebraic thermodynamic equations and is discussed next.

4.1.4 Iterative Solution of Compressor Thermodynamics

Comp- T2, P2, h2, S2
-

ηc

T1, P1, h1, S1

Figure 4.6: Thermodynamic conditions for the compressor

Figure 4.6, shows a compressor stage with input conditions [T1, P1, h1, S1] and exit

conditions [T2, P2, h2, S2]. The inter-component volume approach provides the pres-

sure derivative and hence pressure at the compressor exit stage, therefore the exit

pressure P2 is known. From a knowledge of current spool speed, N , and the com-

pressor pressure ratio, compressor efficiency, ηc, and mass flow, wc, can be calculated

from component maps. It is now desired to calculate exit temperature, T2, specific

enthalpy, h2, and entropy, S2, for the compressor stage. Figure 4.7 shows the iter-

ative process that was used to solve the thermodynamic algebraic loop. The steps

involved are detailed below and the computer code is listed in Appendix E.
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T2 = T1(P2/P1)
(γ−1)/γ

Initial guess for T2

[S2, h2] = f(T2, P2)

ηc, ηt = 1

?

?
From gas properties

Assume isentropic

?

process

T2 = T2/e∆Si/cp

-

?

∆Si ≈ 0�

New guess for T2

No

Yes

iterate

Actual exit enthalpy

ηc, ηt < 1

[S2, T2] = f(h2, P2)

?
From gas properties

End

?

Start

?

∆hi = h2 − h1

∆Si = S2 − S1



















h2 = h1 + ∆hi/ηc

h2 = h1 − ηt∆hi

For compressor

For turbine

........................................

Figure 4.7: Iterative solution for compressor/turbine thermodynamics.

1. An initial guess for the exit temperature, T2, is made using an estimate for

compressor exit temperature as given by Saravanamutto [55].

2. Assuming the process to be isentropic (ηc = 1), the isentropic exit enthalpy,

h2, and entropy, S2, are calculated using thermodynamic properties of air.

3. The difference in entropy, ∆Si, is noted and a new guess for T2 is made using

the Gibbs Equation [56] for a calorically perfect gas.

4. The process is repeated until an exit temperature T2, is found for which the

process is nearly isentropic, i.e. ∆Si ≈ 0.

5. The isentropic rise in enthalpy, ∆hi is divided by the compressor efficiency to

get the actual change in enthalpy across the compressor stage.

6. Once the exit enthalpy is known, the corresponding exit temperature, T2, is

obtained iteratively by solving for exit enthalpy, h2, and exit entropy, S2, as

function of temperature from gas tables.
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4.1.5 Iterative Solution of Turbine Thermodynamics

Turb- T2, P2, h2, S2
-

ηt

T1, P1, h1, S1

Figure 4.8: Thermodynamic conditions for the turbine

Figure 4.8 outlines a corresponding turbine stage. The turbine exit pressure, P2, and

therefore pressure ratio is known from the mass flow accumulation in the component

volumes, hence the turbine efficiency, ηt, and mass flow, wt, can be calculated from

turbine maps. Since the turbine extracts energy from the flow there is a drop in

pressure and temperature across the turbine stage.

The turbine exit parameters, T2, h2 and S2 can be calculated using a similar approach

as described for the compressor in Figure 4.7 except in this case the turbine pressure

ratio, P2/P1, is less than 1.0 whereas for the compressor stage the converse was true.

With the assumption that the turbine process is isentropic, the turbine exit enthalpy,

h2, is calculated iteratively. The isentropic process assumption implies that the drop

in enthalpy would be higher, i.e. the turbine would be able to extract more work

from the flow. This isentropic drop in enthalpy, ∆hi, is multiplied by the turbine

efficiency to get the actual drop in enthalpy across the turbine stage. Once the

exit enthalpy, h2, is known, the corresponding exit temperature, T2, is obtained by

iteratively solving the equation h = f(cp(T ), T ) for the current value of the fuel to

air ratio. The exit entropy, S2, is then obtained as for the compressor.

4.1.6 Matlab Implementation

A MATLAB/Simulink model was developed based on the above formulation. The

main structure is shown in Figure 4.9 and details are covered in Appendix E.
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4.2 Model Validation

The hybrid approach presented above was validated on the three spool Rolls Royce

Trent 500 turbofan engine. Engine manufacturers usually keep the engine param-

eters proprietary and it is difficult to obtain real engine data. However, given the

design point or nominal operating conditions, the DYNGEN program by Sellers [12]

was used to automatically generate representative compressor and turbine maps for

the Trent 500.

4.2.1 Design Point Validation

Stat. ID M.Flow (kg/s) Pressures (Atm) Temperatures (K)

DGen DGen Hybrid ICV DGen Hybrid ICV

1 Entry 902.55 1.000 1.000 1.000 288.15 288.15 288.15
2 Inlet 902.55 0.990 0.990 0.990 288.15 288.15 288.15
2.1 LPC 902.55 1.504 1.504 1.482 330.55 330.49 328.75
2.2 IPC 120.65 8.730 8.692 8.591 580.67 579.78 578.09
3 HPC 096.52 39.02 38.96 38.18 913.63 913.14 909.30
4A Comb 099.16 36.68 36.62 35.89 1788.5 1788.2 1798.9
4 Comb 123.29 36.68 36.62 35.89 1632.5 1632.3 1642.9
4.1 HPT 123.29 14.23 14.15 13.74 1352.0 1351.5 1337.2
4.2 IPT 123.29 6.560 6.531 6.253 1148.3 1148.5 1114.4
5 LPT 123.29 2.005 1.992 1.895 885.75 885.96 838.94

Table 4.1: Rolls Trent 500 design point parameters validation

The engine model was initialized from a state X0 and was then allowed to reach

a steady state condition with the fuel set to the design point value of 2.6399 kg/s.

Table 4.1 presents the resulting engine parameters at different engine stations. Three

sets of data are presented for comparison purposes. These are,

1. The design point iterative solution from DYNGEN, which is considered most

accurate and will be taken as reference.

2. The hybrid solution using the inter-component volume (ICV) method for pres-

sures and the iterative method for subsystem thermodynamic parameters.

3. The third approach also uses the ICV method for pressures but the tempera-

ture rise across the compressor and the temperature drop across the turbine

are calculated following standard relationships from Walsh [57],
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∆Tc =
1

ηc
T1

(

(

P2

P1

)(γ−1)/γ

− 1

)

(4.31)

∆Tt = ηtT1

(

1 −
(

P2

P1

)(γ−1)/γ
)

(4.32)
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Figure 4.10: Percent errors in pressures and temperatures at design point

Table 4.1 shows that there is a good match between the iterative and hybrid ap-

proaches, whereas the pure ICV approach, which uses Equations 4.31 and 4.32

respectively, shows significant errors in the pressures and temperature calculation.

Figure 4.10 illustrates these errors as a percentage of the reference iterative method

values. Most of the errors in the hybrid approach are less than 0.5% and can be

attributed to the fact that the component maps are represented by only 10 discrete

points per line and linear interpolation is used for curves that are more adequately

represented by 2nd or higher order polynomials. In addition, the net thrust gener-

ated by the hybrid method at the design point fuel setting is 278.2 kN in contrast

to 264.6 kN from the ICV method. The thrust from iterative code (DYNGEN) was

278.6 kN.

4.2.2 Validation of Engine Transients

Transient response of the three spool turbofan was validated by a sudden reduction

in fuel flow from 2.6399 kg/s (design point) to 2.0 kg/s. A fuel flow reduction rate

of -5.0 kg/s2 was assumed, so that it takes approximately 0.2 seconds to reach the

new fuel setting. The response of the hybrid approach was compared with that

of the iterative method. Figures 4.11 to 4.13 show the transient response on the

compressor maps.
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4.2.2.1 Transients on Compressor Maps
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Figure 4.11: Transient on LPC map with step reduction in fuel

Figure 4.11 shows the LP compressor/Fan map with corrected mass flow on the

x-axis and fan pressure ratio on the y-axis. The design point is indicated by DP.

When the fuel flow is suddenly reduced to 2.0 kg/s from its initial design point value,

the LP compressor slows down to its new steady state value on the running line.

Two transient response plots are shown, Path DP to A is the response obtained with

the hybrid approach and the Path DP to B with the iterative approach, DYNGEN.

Both paths are almost identical indicating a good transient and steady-state match

between the two approaches. It may be noted that although a substantial step in

fuel flow was initiated, the transient response of the LP compressor remains almost

entirely on the steady running line.

Figure 4.12 shows the locus of the transient on the IP compressor map. During

the transient, the operating point moves up towards the surge line and then settles

down on the running line corresponding to the new fuel setting. The hybrid and

the iterative methods give consistent behavior during the transient and on the new

steady state point.
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Figure 4.13 shows the HP compressor map. As the fuel flow is reduced, the operating

point on the HP compressor moves away from the surge line and takes a curved path

before settling down on the steady running line of the HP compressor. Here again,

the transient response is quite consistent between the two methods, however the

steady state operating point of the hybrid method (point A) is marginally offset

from that of iterative method (point B). The reason for this offset is attributed to

the fact that the turbine maps of the iterative method use enthalpy work function

(∆h/T ) as function of turbine corrected speed and turbine flow. The hybrid method

however uses turbine pressure ratio as function corrected speed and turbine flow.

The enthalpy work function turbine maps were converted to turbine pressure ratio

form using the following relationship from Seldner [58],

P2

P1
=

(

1 − 1

ηtcp
(
∆h

T1
)

)
γ
γ−1

(4.33)

For the map conversion process, the design point turbine entry temperatures were

used. The matching of design point (DP) or the starting point of the transient is

therefore very accurate, however for off-design conditions the operating point on the

corresponding compressor maps settles down at a slightly offset location from that

of the iterative method. This effect is pronounced for the high temperature stages

and is almost negligible for the LP stages.

4.2.2.2 Validation of Pressure Derivatives

Figure 4.14 shows the transient response of the pressure derivatives evaluated in

Section 4.1.1. The plot shows six pressure derivatives from the compressor to the

turbine stages. Larger pressure changes are observed in the HP stages and vice

versa. The transient response of the pressure derivatives from the hybrid and the

iterative techniques show a good match.

It may be mentioned here that the simulation step size chosen for the hybrid ap-

proach was 5 msec whereas that of the iterative approach was set at 25 msec. The

iterative method showed convergence problems below this time step and hence is

limited in capturing very fast changes in pressure. All the pressure derivatives show

consistent results with both approaches.

4.2.2.3 Validation of Thrust, Temperature and Pressures

Figure 4.15 shows the thrust plots. Both the bypass and the core thrust from the hy-

brid and iterative approaches are consistent at the design point, during the transient
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Figure 4.14: Pressure derivatives with step reduction in fuel

and at the off-design point. The integration of the pressure derivatives in Figure 4.14

yields the pressure at each engine station. An iterative technique was then applied

to solve the thermodynamic algebraic equations and find out respectively the tem-

peratures and enthalpies for each of the compressor and turbine exits. Figure 4.16

shows the temperature and pressure plots during the transients. Results from both

the hybrid and iterative approaches are plotted and are in good agreement.

4.2.2.4 Limitations of the Method

• Selection of Component Volumes and Simulation Step Time

One limitation of the component volume method is the selection of volumes for

various stages along the engine length. Recalling the expression for pressure

derivatives as given by Equation (4.1),

Ṗ =
R

V
(Tṁ+mṪ ) (4.34)

Thus for a smaller component volume, V , the corresponding pressure deriva-

tive, Ṗ , will be high and vice versa. If the value of component volume is

small enough and the corresponding simulation step time is large, then the in-
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stantaneous pressure derivative may get very large and can lead to numerical

instability. Thus an appropriate approach would be to select a small simula-

tion step time and select a component volume that gives the best match with

experimental results. Once the pressure derivatives are matched, the step time

may be increased progressively to increase simulation speed. In this work, a
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fixed step Euler numerical integration technique was used, with a step time of

5 msec. The selection of component volumes however affects the transient op-

eration only, the equilibrium or the steady state condition remains un-affected.

• Limitation of Component Maps

Engine components such as the compressor and the turbine may consist of

more than one stages. For example a typical high pressure compressor (HPC)

may have more than eight stages. In this simulation, component interstage dy-

namics were not simulated and single component maps were used to represent

each engine subsystem.
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4.3 Thrust Vectoring and Engine Performance

With the engine model in place, it is now desired to evaluate the performance of

the Trent 500 engine in presence of thrust vectoring, IPC bleed extraction or both.

Various performance parameters may be of interest, however for the present analysis,

the following are considered; (i) the turbine entry temperature (T4 or TET), (ii) the

specific fuel consumption (SFC), (iii) the net engine thrust and (iv) the physical

spool speeds.

4.3.1 Thrust Vectoring and Engine Transients

When the engine uses thrust vectoring or nozzle deflection, θn, for control purposes,

the available axial thrust, which is the sum of bypass thrust, wing bleed thrust and

core nozzle thrust, decreases. In an actual flight, the auto-throttling system or the

pilot would adjust/increase the throttle to maintain desired thrust. However for

the isolated engine case and purposes of the present analysis, a control system was

designed to maintain constant axial thrust by controlling the LP shaft speed. The

control architecture is presented in Figure 4.17.
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Figure 4.17: Control scheme for constant axial thrust in presence of TVC

Although a separate flow turbofan is simulated here, it would have been more per-

tinent to simulate a mixed flow turbofan for TVC analysis. However it is assumed

that when the nozzle deflects, both the bypass and core streams are deflected. Upon

nozzle deflection, the net axial thrust drops and the thrust control loop increases

the shaft speed demand to maintain constant axial thrust.

At sea level static (SLS) conditions, for the Trent 500, almost 25% of design thrust

is generated by the core and the rest is contribued by the bypass duct. This ratio

however varies with flight speed and altitude. Results of the engine and its control

system to a step nozzle deflection of +20◦ are presented in Figure 4.18.
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Initially the engine is allowed to reach a steady state with the fuel flow set so that the

engine settles at the design point. At this stage, the nozzle is given a step deflection

of +20◦. The thrust drops immediately and the axial thrust controller increases the

speed demand to regain the lost thrust. The system regains its nominal thrust in

approximately 1.5 seconds. The corresponding values of specific fuel consumption

and turbine entry temperature are shown. All figures are normalized to their design

point values before the transient. The following observations can be made,

• The rise in RPM to compensate for loss in thrust is about +1.8%.

• The rise in SFC is almost +4.6%. This rise is quite significant considering four

engines are used. However this will not effect the overall aircraft performance

as thrust vectoring may only be required for terminal flight phases.

• The rise in turbine entry temperature (TET) is about +4.0%. For a design

point TET of 1632K, this approximates to a rise of about +66K. This may not

be a problem at landing when the thrust requirement is less, however at take-

off, this rise in TET can be quite significant as the engine is already operating

at a maximum throttle setting.
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Figure 4.18: Nozzle deflection of +20◦ at constant axial thrust
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4.3.2 Thrust Vectoring and Steady State Performance

The transient engine performance with a thrust vectoring nozzle was analyzed in

the previous section. In this section a steady state analysis will be carried out.

The same control scheme is used as in the previous section. The controller acts to

maintain constant axial design point thrust. The nozzle deflection is varied from

0 to +30 degrees. At each step the engine is allowed to stabilize before the nozzle

deflection angle is incremented. Normalized results are plotted in Figure 4.19.
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Figure 4.19: Engine performance with TVC at constant axial thrust

Following points may be highlighted,

• The controller maintains the axial thrust at its design value of 275 kN, up to

a nozzle deflection of +25◦, when the fuel flow limit is reached. Both SFC and

turbine entry temperatures increase, with the normalized SFC being slightly

higher than the TET. The Fan RPM also increases but at a lower rate.

• It can be inferred from above that the TET would be the parameter that will

limit the nozzle deflection and hence the allowable pitching moment that can

be generated using thrust vector control.

• Below a nozzle deflection of +15◦ the variation in all the engine performance

parameters is less than 2.5%. Thus lower nozzle deflection ranges will be

desirable from an engine performance point of view.
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Finally it is pertinent to note that thrust vectoring does not affect the steady state

running line of the engine, therefore stall and surge margins on the compressor

section are not violated. Since thrust vectoring occurs downstream of the gas path,

the engine operating point will always settle on the steady running line. The RPM

however will be higher to compensate for loss in axial thrust.

4.4 Effect of Engine Bleed on its Performance

In this section, the effect of engine bleed on its performance is analyzed. For the

Trent 500 about 20% bleed is extracted from the HPC stage for cooling of the high

pressure turbine. The HP compressor is designed to handle this constant bleed at

the design point. Keeping this in view, it was decided to bleed the intermediate

pressure compressor or the IPC stage. However the final location would be depen-

dent on wing duct pressure and temperature requirements.

When the engine is bled for lift/controls augmentation, the bleed air is actually

made to discharge through very fine nozzles on or above the trailing edge of the

wing. It has been argued by Englar [9], that most of thrust from the air bled in this

way is actually recovered, hence the loss in net axial thrust is minimal. The bleed

analysis can therefore be conducted with the following two options, (i) 100% thrust

is recoverable from bleed nozzles. (ideal case) or (ii) 0% thrust is recoverable from

bleed nozzles. (worst case). For the following analysis, a worst case is assumed and

0% thrust is available from bleed nozzles.

4.4.1 Transient Engine Performance with Step Bleed

This analysis is also broken down into two parts, transient and steady state. The

same engine performance parameters will be used so that comparison could be made

with the thrust vectoring case. However engine bleed has additional effects on the

engine as the gas path is disturbed upstream at the IP compressor stage, this affects

the mass flow and work balance for components downstream. The engine behavior

under IPC bleed is first considered for the case of constant axial thrust and then

that for a constant RPM.
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Engine Transient with Bleed - At Constant Axial Design Thrust

Figure 4.20 shows the results of 10% bleed extraction from the IPC stage. The bleed

is applied as a step with the assumption that zero thrust is contributed by the wing

nozzle. From Figure 4.20, the following can be observed:

• Upon bleed extraction there is an initial drop in axial thrust. The axial thrust

controller subsequently adjusts the RPM demand by +0.55% to maintain the

same level of thrust.

• The SFC increases by +8.0% and the TET by +5.0%.

Since 0% thrust recovery is assumed, the above analysis is conservative. If this con-

straint is relaxed, the rise in fuel consumption and TET to maintain the same level

of thrust will be less. This will be further investigated after establishing the exact

bleed requirements for landing and take-off. Consequently, if the bleed requirements

are high, the contribution of wing nozzle can be a significant portion of the net

thrust generated.
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Figure 4.20: Engine performance with 10% IPC bleed at constant axial thrust
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Engine Transient with Bleed - At Constant Fan (LPC) RPM

Figure 4.21 shows the results of the second case. The RPM is now held constant

and the axial thrust is allowed to vary. Upon 10% bleed extraction from the inter-

mediate compressor, the thrust drops by 2.0%. The SFC rises as the engine now

has to maintain a higher turbine entry temperature as it is working with a reduced

mass flow. The rise in TET of +3.8% is substantial and amounts to +62K at 1632K.

On the speed plot, a non-minimum phase behavior can be observed. Upon sudden

bleed extraction, the LPC shaft initially shows a rise in RPM and then subsequently

the RPM drops, which is then brought to its nominal value by the speed loop. From

Figure 4.21 it can be observed that although the LPC/Fan speed is kept constant

the IPC and HPC stages actually have to run on a higher RPM to generate the

same amount of work for the LPC stage which is still operating with a full mass

flow. The HPC shaft speed is of interest as it initially drops down and then rises

under the action of increased fuel flow into the engine. These transients are due to

the mass flow disruption and work imbalance upon sudden bleed extraction.
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Figure 4.21: Engine performance with 10% IPC bleed at constant RPM
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4.4.2 Engine Performance under Steady State Bleed

IPC Bleed and Engine Performance - From Figure 4.22, it is clear that the

axial thrust control holds the thrust constant up to 20% IPC bleed, after which the

fuel flow was limited. Both the thrust and RPM start to fall. This illustrates that if

upon bleed extraction the control input is not adjusted, the engine will not be able

to maintain the same level of RPM or thrust. The SFC and TET also rise almost

linearly with bleed extraction, unlike the nozzle deflection case in which small nozzle

deflections had minimal effect on engine performance. The rise in TET of about

+15% amounts to almost +244K. Clearly this will be very damaging for the high

pressure turbine stage. In contrast, the rise in TET at +25◦ nozzle deflection was

about +8%. The rise in SFC is also significant, but since it is expected that bleed

requirement will be limited to low flight speeds such as landing and take-off, the

limiting parameter is therefore the rise in turbine entry temperature.
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Figure 4.22: Engine performance with bleed at constant axial thrust

IPC Bleed and Engine Operating Point - Figure 4.23 shows the IP compressor

map under steady state bleed extraction. The operating point starts for 0% bleed

at the design point, DP, and ends at point, X, at 25% bleed. The operating point

shifts away from the surge line and is at a higher corrected speed, higher corrected

mass flow and a reduced pressure ratio, P21/P22. The surge margin is increased and

the compressor efficiency is reduced. The IP compressor would now require greater

energy input for the same temperature and pressure rise.
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Figure 4.24: HP compressor map with IPC bleed at constant axial thrust

The results on HP compressor map, Figure 4.24, are quite the opposite. The oper-

ating point on the high pressure compressor map shifts towards the surge line. If

some sort of surge protection measure is not taken, the HP compressor will almost

surge upon 25% bleed extraction. Needless to say that this region is also of reduced

efficiency, but more critical is the fact that if IPC bleed is not limited, the HPC

surge margin limits can be violated quite easily.
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4.5 Chapter - Summary

Development of a 3 Spool Turbofan Hybrid Engine Model - Two candi-

date methods have been identified for propulsion/control integration, namely, (i)

thrust vectoring and (ii) lift/control enhancement using bleed air from the engine.

Both of these approaches have potential implications on engine performance and

require to be investigated. The Rolls Royce Trent 500 Engine model in the 275

kN thrust class was selected as a candidate engine. After the development of an

initial theoretical framework for a hybrid engine model, design point and transient

simulations were performed. The design point calculations reveal that the results

of the hybrid approach are in good agreement to that of the iterative method. The

non-iterative method showed increasing errors across the HP stages. The transient

results of the hybrid method were also in good agreement with the iterative approach

Engine Performance under Thrust Vector Control (TVC) - When the

core/bypass nozzle streams are deflected a loss in total axial thrust results. Under

TVC, the engine consequently trims at a higher RPM and fuel flow to maintain

constant axial thrust. Both transient and steady state engine performance were

analyzed. The steady state analysis was performed for a nozzle deflection range of

0 to +30 degrees. For a nozzle deflection of +25◦ while maintaining constant axial

thrust, the SFC increases by +8.0%, the TET by +6.9% and RPM by +2.5%. The

rise in TET amounts to +112K, which is very significant if the engine is already

operating its maximum RPM or near its TET limit. At +15◦ TVC, the rise in TET

is less than +2.5% or +40.8K, thus lower TVC angles are desirable.

Engine Performance under IPC Bleed - The IP compressor was bled to provide

mass flow for the wing nozzle. The wing nozzle discharges this mass flow through

trailing edge flaps for lift/controls enhancement. Transient and steady state analysis

were carried out up to a maximum bleed of 25% of the IPC mass flow. The steady

state results at constant axial thrust were as follows, the SFC increases by +18.0%,

the TET by +15.0% and the RPM by almost +1.5%. The rise in TET amounts

to more than 200K, which is unacceptable. In addition, unlike the thrust vectoring

case in which the engine does not shift away from its steady running line, upon

25.0% IPC bleed the HP compressor almost surges and the IP compressor almost

chokes. It may be concluded that the bleed requirements must be minimized. If IPC

bleed exceeds nominal limits then the engine components have to be matched for

permanent IPC bleed, to ensure supply of additional mass to the wing nozzle. This

would be further investigated in Chapter 6, on propulsion and controls integration.
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Chapter 5

A BWB Model with Blown Flaps

5.1 Introduction

A significant part of this work went into the development and validation of a BWB

aircraft model with blown flaps. This was a difficult task due to the complex nature

of the aerodynamics problem and due to the absence of any previous aerodynamic

data for such a configuration. Various approaches were possible to accomplish this

task, these included, (i) building a three-dimensional wind tunnel model with blown

flap capability and then performing a series of wind tunnel tests; limited time and

resources did not allow such an approach, (ii) to build a CFD model and then try to

estimate the blown flap effects computationally or (iii) to build an analytical aero-

dynamic model based on available databases such as the Engineering Sciences Data

Units (ESDU) and then validate/fine tune this model with panel method codes

and an earlier BWB aerodynamic model [7]. All three approaches were deliber-

ated upon and the third approach was chosen owing to its flexibility in selection of

airfoil/planform parameters and its implementation within the available resources.

This aerodynamic model was subsequently used for trimming analysis and non-linear

flight simulations. The method however is based on estimations, in order to improve

upon its accuracy, CFD and wind tunnel experiments would be necessary.

This chapter explains the development of this aerodynamic model and covers aspects

such as the general description of aircraft, the wing airfoil geometric characteris-

tics/variation along the span, estimation of the wing forces and moments, aerody-

namic contributions due to the vertical fins on wing tips and finally model validation.

The development of this model was greatly facilitated by Cooke’s work on the NFLC

Jetstream [59] and by Amrane’s work on the high performance sailplane [60].
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5.2 General Description

At the start of this research, the best available aerodynamic data for the BWB air-

craft was from a previous PhD work by Castro [7]. Castro actually compared several

BWB configurations from different sources and in most of the cases the aerodynamic

properties were estimated using computational techniques. This particular model

however did not have any blown flaps, but proved to be valuable in model valida-

tion and the design of FCS. In continuation of the previous research efforts, it was

decided that the planform geometry and the mass properties would be kept the same.

A general layout of the BWB aircraft is shown in Figure 5.1. The engines are located

on top of the fuselage to enhance noise shielding [61] and also possibly to ingest the

boundary layer on the upper surface [62]. The control surfaces are on the trailing

edges of the wing and on the winglets.
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Figure 5.1: Blended wing body tailless aircraft with 15 control surfaces

A maximum take-off weight (MTOW) of 371,280 kg was assumed, whereas the max-

imum landing weight (MLW) was set at 322,599 kg. Design point cruise is at Mach

0.85 at an altitude of 10,059 m and the approach is at 150-160 kts at sea-level. The

CG variation is from 29.4 to 33.4 m, with neutral point (NP) being at approximately

31.6 m. Further description of this model is given in Appendix A.
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5.3 Building the BWB Aircraft Model

This section considers the development of a representative aerodynamic model for

the BWB aircraft with blown flap effects, using ESDU data sheets and correlations.

The conventional ESDU approach is to break down the whole aircraft into individual

parts, such as the wing, the fuselage, the horizontal stabilizer, the vertical fin etc.

Aerodynamic contributions from each of these components can then be estimated

using specific ESDU data sheets and then summed up.

For the BWB aircraft however, there are only two significant airframe components,

the blended-wing and the winglet rudders. In order to apply the ESDU estimation

to the blended wing, an equivalent wing with no change in section sweep had to be

considered. The lift/pitching moment estimates for flap deflections would now be

for the equivalent wing and not the original. To cater for this limitation and in order

to accommodate a variable section and twist profile along the span, it was decided

that instead of considering the wing as a single unit, the wing may be divided into a

number of sections/strips. The contributions of each strip to lift, drag and pitching

moment could now be calculated using ESDU correlations and transformed to the

centre of gravity. To cater for 3D effects, such as wing sweep, finite aspect ratio and

wing taper, corrections were applied to the spanwise lift distribution using a panel

method code, TORNADO [13].

5.3.1 The BWB Planform and Wing Sections

The blended wing was divided into a number of sections as shown in Figure 5.2.

Each of the sections (1 to 6) corresponds to either a new section profile, a change in

section sweep or a start of a new control flap. Data corresponding to each of these

wing sections is presented in Table 5.1.

Parameters Section 1 Section 2 Section 3 Section 4 Section 5 Section 6

Section Span 10.0 3.00 4.50 6.00 10.00 5.25
Sweep (Λ1/4) 56.76 56.76 20.00 30.70 35.13 35.13
Dihedral (Γ) 0.00 2.00 1.500 1.500 3.00 3.00
Taper 0.576 0.7804 0.6464 0.663 0.6278 0.6888
Inner airfoil REF SYM SYM SC1 SC2 SC2
Outer airfoil SYM SYM SC1 SC2 SC2 SC2

Table 5.1: Section characteristics for the BWB model
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For the centre-body section a reflexed (REF) camber airfoil has been used, which

provides positive pitching moment (Cm0 > 0) at the cost of reduction in sectional

lift coefficient. From y = 0 to 10 m, the reflexed profile is diminished linearly to a

nearly symmetric (SYM) one, which is then maintained up till y = 13 m. Further

out along the span, two different super-critical section profiles (SC1 and SC2) are

used for high speed aerodynamic performance.
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Figure 5.2: Wing partitions/sections for the BWB

With reference to Figure 5.2, it was possible to define arbitrary number of strips for

each section, however in the final model a strip width of 1m was chosen. Reducing

the strip width any further did not help in improving accuracy, thus for a wing span

of approximately 78.5 m, 76 strips were used. As the section profile changes along

the span, the sectional lift, drag and pitch moment characteristics also change. Thus

for each pass through the aerodynamics calculations, 76 iterations were necessary.

This slowed down the aerodynamics calculations when implemented in MATLAB,

however when coded in C language this was not a limitation and real-time perfor-

mance was easily achieved.
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5.3.2 Validation of BWB Airfoil profiles

As a first step in the development of this model, it was considered important that

2D aerodynamic properties for different sections along the span be verified. It was

noted in Table 5.1 that at least four different types of airfoil sections have been used

on the BWB in an attempt to optimize the aerodynamic performance and trimming

characteristics of the aircraft. These airfoil sections have been obtained from Qin

et. al. [63] and are considered representative of a BWB configuration.

5.3.2.1 Sectional Geometry

The airfoil sections selected for validation were, (i) the reflexed camber airfoil at the

root section or mid of centre-body, (ii) the symmetric airfoil at y = 13 m or tip of

centre-body, (iii) a super-critical airfoil for the inner wing at y = 17.5 m and (iv) a

thin super-critical airfoil section for the outer wing at y = 23.5 m. Figure 5.3 shows

all of the four airfoil sections considered.
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Figure 5.3: Centre-body : inner and outer wing section profiles [63]

Coefficients of lift, drag and pitching moment about the quarter chord position were

calculated w.r.t variation in angle of attack. Results for Mach = 0.2, Reynolds num-

ber = 3×108 and transition at 20% of chord length are presented in the next section.
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5.3.2.2 Sectional Aerodynamic Characteristics

The sectional aerodynamic parameters such as the inviscid lift curve slope (CLα),

position of aerodynamic center (xac) along the chord length and zero lift angle of

attack (α0) were calculated using ESDU 72024 [64] and corrected for the effects of

viscosity by ESDU 97020 [65]. Compressibility or effect of Mach number was also

taken into account. The VGK CFD program [66], which performs a 2D computa-

tional solution, was then used to validate the ESDU calculations.
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Figure 5.4: Centre-body : sectional lift, drag and pitching moment, Mach = 0.3

Figure 5.4 shows the lift, drag and pitching moment characteristics for the reflexed

and symmetric (REF and SYM) airfoil sections of the centre-body. Due to the re-

flexed camber design at the wing root, the lift coefficient at α = 0 is negative and

the pitch moment at quarter chord is positive. Thus at zero angle of attack, this

part of the wing generates almost no lift but positive pitching moment, which will

later be shown of great value in trimming the BWB aircraft in the longitudinal axis.

At the tip of the centre-body (y = 13 m), the profile is symmetric hence zero lift

and pitch moment at zero angle of attack. Also shown are the drag polars for the

airfoil sections, the VGK results show a drag bucket at low CL values. The same

is not visible in ESDU drag coefficient approximation which is essentially a sum of
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profile drag and lift dependent drag. Nevertheless, the results of both VGK and

ESDU show good consistency.
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Figure 5.5: Inner and outer wing : sectional lift, drag and pitch moment, Mach =
0.3

Figure 5.5 shows similar results for the inner and outer wing super-critical airfoil

sections (SC1 and SC2). The sectional pitching moment at quarter chord is negative

and the lift is positive at zero alpha. Results for the both the inner and outer wing

cases are consistent with the VGK and the ESDU methods.
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5.3.3 Wing Forces and Moments

In this section, the methodology adopted for calculating the body axis forces (X, Y, Z)

and the moments (L,M,N) about the center of gravity is presented. This has been

broken down into the following steps, (i) setting up the wing geometry, (ii) estima-

tion of sectional lift, drag and pitch moment, (iii) transformation and summation

of forces from wind to body axis and (iv) calculation of body axis moments due to

forces on individual strips about the center of gravity.

5.3.3.1 Setting Up the Geometry
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Figure 5.6: BWB strip elements : geometry setup

A geometry setting up module was implemented to set up the various geometri-

cal parameters that are required to calculate sectional aerodynamic characteristics.

These included parameters such as sectional chord lengths, lateral position of the

center of each strip from the wing root, ystrip, area of each strip, Sstrip, quarter chord

position from the datum, flap chord size and deflection etc. Some of these parame-

ters like the flap deflections are variable and could be changed in real time, the rest

of the airfoil parameters relating to its geometry were kept fixed. Although not done

as part of this research, the sectional profile of airfoil could also be changed in real

time to simulate structural changes and aerodynamic interaction. Figure 5.6 shows

a sample output from the geometry setting up module showing 76 airfoil sections.
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5.3.3.2 Effective Angles of Attack and Sideslip

The net wing lift shall be a summation of contributions from each of the individual

strips, however the dynamic pressure and the local angle of attack for each of these

strips can be different. The dynamic pressure varies as the effective velocity seen by

each strip depends upon its position and its linear velocity along the span.
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Figure 5.7: Effective forward velocity : Ue

Consider an element, dy, at a distance, y, along the span, as shown in Figure 5.7.

As the aircraft goes through a positive rotation rate, r, along the z-body axis, the

element, dy, sitting on the starboard wing, sees a net reduction in relative velocity.

A similar element on the port wing will see a net increment in x-body velocity. Thus

the effective forward velocity, [Ue]y, along the span will vary on account of yaw rate.
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Figure 5.8: Effective vertical velocity: We

Similarly in Figure 5.8, as the aircraft goes through a positive rotation rate, p, along

the x-body axis, the starboard wing sees a relative increase in vertical velocity by
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an amount, py. The port wing however sees a relative decrease in vertical velocity.

Thus the effective vertical velocity, [We]y, along the span will vary on account of

roll rate. With positive roll rates, the starboard wing generates greater lift and thus

causes resistance to rolling. For each of the strip elements the net relative velocity,

angle of attack and side slip is given as,

[V t]y =
√

U2
e + v2 +W 2

e (5.1)

[α]y = tan−1(
We

Ue
) (5.2)

[β]y = sin−1(
v

V t
) (5.3)

5.3.3.3 Lift Estimates with Blowing

The lift coefficient on each of the wing strips was calculated using Equation 5.4, the

effect of flap blowing has also been incorporated.

[CL]y = [CL0B ]y +K1CLα(αy + ∆αΓ + ∆αtwist) + ∆CL0flap + ∆CL0Cu
(5.4)

The terms are explained below.

• CL0B

This is the basic lift coefficient at zero alpha for the clean airfoil with no flap

deflection. For a viscid lift curve slope, CLα , and inviscid zero lift angle of

attack, α0i, the lift coefficient at zero alpha is given as,

CL0B = −CLαα0i (5.5)

where CLα and α0i are obtained using ESDU 72024 [64] and 97020 [65].

• ∆CL0flap

The increment in lift coefficient due to flap deflection is obtained using ESDU

94028 [67]. In case of elevators, the flap deflections are symmetric and generate

a net change in lift and pitching moment. If the flap deflects asymmetrically,

as in the case of an aileron, there is a difference in lift on starboard and port

wings and a rolling moment is produced.

• ∆CL0Cu

If the flap is blown and is also deflected, then depending upon the sectional

blowing momentum coefficient, Cu, the flaps generate an additional lift force.
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This increment is based on 2D experimental results by Williams [15] and also

verified theoretically by Spence [14]. For a 2D section,

∆CL0Cu
= CLδδ (5.6)

CLδ = [4πCu(1 + 0.151C1/2
u + 0.139Cu)]

1/2 (5.7)

where δ here is the flap deflection. Figure 5.9 shows the result graphically.
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Figure 5.9: ∂CL/∂δ for a 2D airfoil with flap blowing [15]

• K1

The factor, K1, was incorporated to simulate effect of increase in lift curve

slope with blowing. Williams [15] suggests that the lift curve slope of a thin

2D flat plate with trailing edge blowing is given by,

(

∂CL
∂α

)

= 2π(1.0 + 0.151C1/2
u + 0.219Cu) (5.8)

Thus under the influence of blowing the lift curve slope increases by a certain

factor, above its nominal value of 2π for a thin flat plate. Williams [15] then

applies a correction factor for the finite thickness to chord ratio (t/c) of the

airfoil. These have already been accommodated in the calculation of lift in-

viscid/viscid lift curve slopes for the airfoil by use of methods ESDU 72024

and 97020. The increase in lift curve slope with trailing edge flap blowing was

incorporated as,

K1 = (1.0 + 0.151C1/2
u + 0.219Cu) (5.9)

Graphically this is illustrated in Figure 5.10.
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Figure 5.10: Increase in lift curve slope for a 2D airfoil with flap blowing

• ∆αΓ

The effective angle of attack for each strip along the span is modified by local

dihedral (Γy) on account of side slip. The change in local angle of attack due

to side slip and wing dihedral is given by Mclean [29] as,

[∆α]Γ = βΓ (5.10)

• ∆αtwist

Lastly, the twist distribution is shown in Figure 5.11 and has been obtained

from reference [63]. Positive twist means that the leading edge is rotated

upwards. However for the BWB aircraft considered here, the centre-body and

the outer wing are rotated downwards with respect to the inner or central part

of the wing. The reason for the wash out (reduction in angle of attack) on

the outer wing is to reduce the lift coefficient on that section and so prevent

a tip stall. For the centre-body the wash out may help in reducing the lift

coefficient and achieve an overall elliptical lift distribution profile.

5.3.3.4 Correction for 3D Effects

The strip theory formulation as presented above is essentially a two-dimensional

approach. However wing planform parameters such as the wing finite aspect ratio

(A), the taper ratio (λ) and the wing sweep (Λ) introduce three dimensional effects

that modify the spanwise lift distribution. Effectively, depending upon the planform

shape, a particular wing section may be more loaded (operating at higher lift coeffi-
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Figure 5.11: Twist distribution for BWB planform [63]

cient) than other parts of the wing, although the geometric angle of attack may be

the same for all wing sections. This phenomenon or the variation in spanwise lift

distribution occurs because the the trailing edge vortices may either induce a down-

wash or an upwash along the lifting line of the wing as given by Prandtl theory [35].

A downwash (ǫ) reduces the effective angle of attack of a given wing section whereas

an upwash increases it. Thus some parts of the wing may actually stall earlier than

rest of the wing. The effective angle of attack (αe) as seen by the local airfoil section

on a wing of finite span, is simply given by

αe = α− ǫ (5.11)

where the downwash (ǫ) may vary along the span. Figure 5.12 shows this effect

graphically.
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Figure 5.12: Downwash effect on the local flow over an airfoil section of a finite wing
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For the considered blended wing body planform, the effective downwash was es-

timated using the spanwise lift distribution obtained from a vortex lattice code

solution [13]. A symmetrical airfoil section was used for the whole span and it was

assumed that there is no twist and no flap deflection, so that the lift distribution is

only affected by the planform shape. The spanwise lift distribution thus obtained

was normalized w.r.t to the geometric angle of attack results from strip theory. Fig-

ure 5.13 shows the results. From Figure 5.13, it may be seen that the downwash

effect is very significant on the inboard section and this section therefore operates

relatively unloaded, however for the outboard wing sections there is an upwash effect

and the effective angle of attack exceeds the geometric angle of attack.
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Figure 5.13: Variation in effective to geometric angle of attack across span

Thus in the 2D strip element model the local geometric angle of attack is modified

by the downwash effect as shown in Figure 5.13. Once this correction is applied the

spanwise lift distribution from the vortex lattice code matches with the strip theory

approach. The strip theory approach however allows for a calculation of sectional

blown flap effects using Spence’s Jet Flap theory [14], which is otherwise not possible

with the available panel method code. It may be noted that the downwash effect

computed here is a function of planform shape. If the planform shape is modified,

this downwash correlation will also change and hence have to be recomputed.
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5.3.3.5 Drag Estimates

The sectional drag coefficient is calculated as a sum of two parts, (i) the profile drag

coefficient (CD0) and (ii) the drag due to lift or vortex drag (CDv). Thus

[CD]y = CD0 + CDv = CD0B
+ ∆CD0flap

+KC2
L (5.12)

The profile drag coefficient of a clean airfoil CD0B
is obtained using ESDU 00027 [68].

Profile drag comprises of pressure drag + skin friction drag. The ESDU method

however does not attempt to separate the two. The profile drag was approximated

by the following expression.

CD0 = KcKmCDthick (5.13)

where Kc accounts for the effect of camber, Km accounts for the effect of compress-

ibility and CDthick is the profile drag due to thickness distribution. The increment in

profile drag due to flap deflection, ∆CD0flap
was estimated using ESDU 87005 [69]

and is a function of flap chord length and flap deflection. The lift dependent drag

term, K, was approximated using the drag polar obtained from VGK CFD runs.

5.3.3.6 Pitching Moment Estimates

The pitch moment characteristics are important as they contribute to trim and

control characteristics of the aircraft. For the BWB aircraft they become even more

important as trailing edge flap deflections not only affect the pitch control but also

the trimmed lift coefficient. Large negative flap deflections result in a loss of lift and

the aircraft has to trim at a higher angle of attack to sustain the aircraft weight.

The sectional pitch moment coefficient about the quarter chord position is given as,

[Cmc/4 ]y = [Cm0i]c/4 + [∆Cm0]flap − (CL − CL0B − ∆CL0flap)h1 (5.14)

This is illustrated in Figure 5.14 and explained briefly as follows,

• [Cm0i]c/4

This is the pitching moment about the quarter chord position for a clean airfoil

at zero alpha. It is calculated using ESDU 72024 [64] and is given as,

[Cm0i]c/4 = [Cm0i]AC − CL0Bh0 (5.15)
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Figure 5.14: Sectional pitch moment at positive alpha

where [Cm0i]AC is the pitching moment about aerodynamic center, CL0B is the

lift coefficient at zero alpha and h0 is the distance between aerodynamic center

and quarter chord position, taken through α = 0.

• [∆Cm0]flap

This is the increment in pitching moment at zero alpha due to the deflection

of a plain trailing edge flap and is calculated using ESDU 98017 [70].

• ∆h1

The variation in the location of center of lift, ∆h1, due to angle of attack and

flap deployment, aft of c/4 position is calculated using ESDU 03017 [71]. Note

h1 = h0 + ∆h1.

Using the above, it was possible to obtain the sectional pitching moment coefficient

about the quarter chord position for each strip. In addition, the lift acting on each

element generates a pitching amount about the center of gravity (CG) position. For

positive lift and for wing sections where the quarter chord position is ahead of the

CG position, the pitching moment due to lift will be positive and vice versa.

5.3.3.7 Forces and Moments in Body Axis

The forces and moments acting on each element of the wing were defined in the

wind axis. Since body axis equations of motion were used these were required to

transformed to body axis using a wind to body axis transformation. The elemental

lift and drag forces when converted to body axis generate elemental [Xy, Yy, Zy]

forces in body axis distributed along the span.
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Each of these forces can now be summed up to generate the net X, Y, Z force in

body axis due to wing alone. The net force can be considered acting at the CG if

the moments generated by these forces are computed about that point. Thus,
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Similarly the elemental pitching moment about c/4 position was transformed from

wind to body axis [Ly,My, Ny],
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Figure 5.15: Forces and moments on the BWB wing

Figure 5.15 shows two elements 1 and 2, with the body axis forces acting ahead and

behind the center of gravity respectively. For point 1, an upward Z force generates

a positive pitching moment and a negative rolling moment. Similarly for point 2,
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an upward Z force shall generate a negative pitching moment and a negative rolling

moment. The net moments about the CG were calculated as the sum of moments

for each of these strip elements.

Net Roll Moment - For positive span (starboard wing), positive Z force (down),

generates a positive rolling moment about the CG.

lcg =
n
∑

1

(ly + Zyy) (5.19)

where Ly is the rolling moment acting on a given strip, Zy is the normal force on that

strip and y is the lateral distance of that strip from centerline, positive starboard.

Net Pitch Moment - If xmrp is the distance of the moment reference point or the

CG from the nose datum, being positive aft and xposc/4 the position of quarter chord

position for each given strip, then positive Z force shall generate a nose down or

negative pitch moment if (xmrp − xposc/4) is positive. Thus

Mcg =

n
∑

1

(My − Zy(xmrp − xposc/4)) (5.20)

where My is the pitching moment about the quarter chord position for each strip.

Note that in Figure 5.15, the distance (xmrp− xposc/4) is simply referred as x1 or x2,

with x1 > 0 and x2 < 0.

Net Yaw Moment - For a positive span, y, towards right or starboard wing, a

positive X force on the starboard wing will generate a negative yaw moment and

vice versa. Similarly a positive Y force will generate positive yaw moment about

CG if (xmrp − xposc/4) is positive.

Ncg =

n
∑

1

(Ny −Xyy + Yy(xmrp − xposc/4)) (5.21)

This completes the calculation of wing forces and moments.
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5.3.4 Vertical Fin Forces and Moments
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Figure 5.16: Vertical fin on BWB wing tips

Figure 5.16 shows one of the two winglets or vertical fins for the BWB aircraft.

Unlike the blended wing the winglets are not treated as strip elements, but are con-

sidered as a single lifting surface. These fins also contribute significantly toward the

forces and moments on the BWB aircraft and this section discusses it briefly.

Parameter Value Parameter Value

Fin Airfoil NACA 0012 t/c ratio 0.12
Root chord 4.0 m Tip chord 1.35 m
Fin height 5.0 m Sweep(Λ0) 28.0◦

Fin area (Sfin) 10.0 m2 Fin aspect ratio (Afin) 3.73
Rudder chord ratio 0.25 Fin taper ratio 0.6

Table 5.2: Geometrical parameters for the BWB winglet

The fin side force, Yfin, the rolling moment, Lfin and the yawing moment due to

fin, Nfin, are computed as follows,

Yfin = q̄S

(

Yv(
v

Vt
) + Yr(

rb

Vt
) + Yp(

pb

Vt
) + Yδrδr

)

(5.22)

Lfin = q̄bS

(

Lv(
v

Vt
) + Lr(

rb

Vt
) + Lp(

pb

Vt
) + Lδrδr

)

(5.23)

Nfin = q̄bS

(

Nv(
v

Vt
) +Nr(

rb

Vt
) +Np(

pb

Vt
) +Nδrδr

)

(5.24)

The side velocity derivatives (Yv, Lv, Nv) were computed using ESDU 82010 [72].
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These are in turn a function of the fin lift curve slope, a1fin , which was esti-

mated using ESDU 70011 [73]. Fin contributions due to yaw rate, (Yr, Lr, Nr), and

contributions due to roll rate, (Yp, Lp, Np) were computed using ESDU 82017 [74]

and 83006 [75] respectively. The control derivatives (Yδr, Lδr, Nδr) were estimated

through ESDU 87008 [76]. The above derivatives are in the wind axis and were

transformed into body axis before addition to the main wing forces and moments.

5.3.4.1 Effect of Flap Blowing on Vertical Fin

As suggested by reference [15], for a wing with a finite aspect ratio, A, and full or

partial span jet flaps, the two-dimensional values (∂CL/∂δ)2D and (∂CL/∂α)2D can

be corrected for 3D effects as,

CL = F

[

(1 +
t

c
)

{

λδ

(

∂CL
∂δ

)

2D

+ να

(

∂CL
∂α

)

2D

}]

− t

c
Cu(δ + α) (5.25)

where λ and ν are part span correction factors to incorporate the effects of lift

increments due to jet deflection, δ and wing incidence, α. For a full span blown flap

rudder as in our case both λ and ν can be taken as unity. Factor, F , is a function

of the wing aspect ratio and the blowing momentum coefficient and is given as

F = f(Cu, A) =
A + (2Cu/π)

A + 2 + 0.604(Cu)1/2 + 0.876Cu
≈ A

A + 2
for small Cu (5.26)
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Figure 5.17: Factor F as function of Cu for A = 3.73

Figure 5.17 shows a plot of factor, F , as a function of Cu and aspect ratio A = 3.73.

It is evident that this lift slope reduction factor is a weak function of Cu and almost
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entirely depends upon A, hence F was approximated by A/(A+ 2). The thickness

to chord ratio factor (1 + t/c) accounts for increment in lift slope due to thickness

for a baseline value of 2π for a 2D flat plate. Lastly for a small thickness to chord

ratio, t/c, and low values of Cu, the last part of Equation (5.25) can be neglected in

comparison to the first. Thus Equation (5.25) reduces to

CL = F

[(

1 +
t

c

){

δ

(

∂CL
∂δ

)

2D

+ α

(

∂CL
∂α

)

2D

}]

(5.27)

where for a 2D thin flat plate,

(

∂CL
∂α

)

2D

= 2π(1.0 + 0.151C1/2
u + 0.219Cu) = 2πK1 (5.28)

we have,

CL = F

(

1 +
t

c

)

δ

(

∂CL
∂δ

)

2D

+ F

(

1 +
t

c

)

2πK1α (5.29)

In the calculation of a1fin by ESDU 70011, the wing aspect ratio and thickness to

chord ratio are already taken into account, thus replacing (F (1 + t
c
)2π) by a1fin we

have,

CL = F

(

1 +
t

c

)

δ

(

∂CL
∂δ

)

2D

+ a1finK1α (5.30)

Thus for a blown winglet fin, the fin lift curve slope a1fin was multiplied by a factor,

K1 where K1 = f(Cu) and is greater than 1.0. The first part of the equation which

represents the component of lift due to a blown flap deflection was implemented as

such and added to the baseline component Yδr , where (δ = δr) or rudder deflection

for the case of a winglet fin and (∂CL/∂δ) is given by Equation (5.7).
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5.4 Model Validation

The ESDU model was validated against a baseline aerodynamic model [7] and wher-

ever possible with the panel code [13], for a BWB aircraft with similar planform.

This section therefore covers, (i) some results of the panel method code, (ii) the

spanwise lift and pitch moment distributions, (iii) the effect of flap deflections and

body rates (p, q, r) on aerodynamic forces/moments and (iv) the the increments in

lift and pitching moment at different blowing momentum coefficients, Cu.

5.4.1 Tornado Results

Figure 5.18 shows the pressure distribution results of the panel method at a flight

speed of 200 m/s and an angle of attack of 4◦. Prandtl Gaurret’s compressibility

correction [35] was not applied and the flap settings/body rates were initialized at

zero. The planform was kept similar to that used for the ESDU model.
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Figure 5.18: Tornado results : pressure distribution at V =200 m/s, α = 4◦

Figure 5.19 shows the corresponding forces and moments computed by the panel

code. Since the body rates are zero and there is no side slip (β = 0), the lateral

directional forces and moments are zero. It may be noted that the lift to drag ratio,

(CL/CD = 0.2246/0.0034 = 66) is very high, suggesting that the drag prediction

of this method is not accurate. This was further verified when the drag data was

compared with the strip element aerodynamic prediction in the next section.
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Tornado Computation Results 

Reference area: 1431.9049

Reference chord: 27.2088

Reference span: 87.5

Reference point pos: 29.3            0            0

Center of gravity  : 29.3            0            0

Net Wind Forces: (N)

Drag: 121388.863

Side: 6.0936e−011

Lift: 7879444.1648

Net Body Forces: (N)

X: −428549.0741

Y: 6.0936e−011

Z: 7868717.8938

Net Body Moments: (Nm)

Roll: −5.7637e−009

Pitch: −33271802.8248

Yaw: −1.6553e−010

CL 0.2246

CD 0.0034602

CY 1.737e−018

CZ 0.2243

CX −0.012216

CC 1.737e−018

Cm −0.034857

Cn −5.3924e−020

Cl −1.8776e−018

STATE: 

alpha: 4

beta: 0

Airspeed: 200

Altitude: 0

P: 0

Q: 0

R: 0

PG Correction: 0

Flap setting [deg]: 0  0  0  0  0  0  0

Figure 5.19: Tornado results : forces and moments at V =200 m/s, α = 4◦
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Figure 5.20: Tornado results : spanwise lift coefficient at V =200 m/s, α = 4◦

Figure 5.20 shows the variation in spanwise lift coefficient for the BWB planform.

Due to the very high sweep back angle of the centre-body and the large variation in

root to tip chord, the lift coefficient values in the middle of the wing span are quite

low, however the outer wing is much more highly loaded, which is typical of sweep

back wing designs with low taper ratios.
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5.4.2 Validation of Spanwise Lift and Pitching Moment

Various cases were considered with angle of attack varying from 2 to 8 degrees.

Figure 5.21 shows the results of spanwise lift coefficient distribution, indicating a

good match between the panel code and the ESDU model.
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Figure 5.21: Validation : Spanwise lift coefficient
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Figure 5.22: Validation : Spanwise lift

Figure 5.22 shows the corresponding spanwise lift distribution. Although the center

section is operating at a lower lift coefficient, but due to its larger surface area, the
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overall lift distribution profile is more or less elliptical. At higher angles of attack

the lift distribution profile shows marginal errors as compared to the panel method

code, however these were considered to be within acceptable limits.
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Figure 5.23: Spanwise pitching moment about CG

Figure 5.23 shows the results of spanwise pitching moment distribution about the

center of gravity for the ESDU model. Spanwise pitching moment distribution data

was not available for the panel code. For the centre-body section, up to a span of

about 12 m the pitching moment contribution about the CG is positive. Thus an

increase in lift for the centre-body causes a positive pitching moment as the center

of lift is ahead of the center of gravity. Further out along the span, (y > 12 m),

the lift force causes a negative pitching moment about the center of gravity. Thus

the centre-body destabilizes and the outer wing stabilizes. For the aircraft to be in

trim, the sum of all these moments (the area under the curve) must be zero.

Figure 5.23 also shows the reason why a reflexed camber profile is so important

for the BWB. It causes the aircraft to generate a positive pitching moment thus

reducing trim elevator deflections. In addition, the sweep back or the position of the

outer wing with respect to the center of gravity brings an inherent pitch stability to

the aircraft.

119



5 A BWB Model with Blown Flaps

5.4.3 Validation of Aero Derivatives w.r.t Air Angles

In this section, the variation in aerodynamic forces and moments with respect to

angle of attack (α) and angle of side slip (β) will be considered. Wherever possible

comparison is made between the baseline, the panel method and the strip element

ESDU models. The baseline aerodynamic model which relies on previous research

work and collection of aerodynamic databases [7] uses the same planform as the

panel method and the strip element models, however the exact airfoil profile and

twist distribution for the baseline model was not available. In the absence of any

other data this was considered to be the best available reference.

5.4.3.1 Variation with Angle of Attack (α)
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Figure 5.24: Z force coefficient (CZ)

Z Force w.r.t alpha - (CZα) - Figure 5.24 shows the variation in the Z force

coefficient with respect to angle of attack. A body axis notation has been adopted

in which the z-axis points downwards, y-axis towards the starboard wing and x-axis

towards the nose. Two points may be noted in the figure. Firstly, at zero angle of

attack the coefficient, CZ , is almost zero or positive, indicating almost zero or nega-

tive lift at zero angle of attack. The reason for this is the reflexed camber/symmetric

airfoils for the centre-body and inner wing respectively. Secondly, the slopes of the

curve CZα match well. It may be pointed out further that in the baseline model

the compressibility effect was not included, the same has been done for the strip

element and panel codes. When the compressibility effect is added the normal force

coefficient slope increases with Mach number.
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Figure 5.25: Pitching moment coefficient (Cm) with xcg = 29.4 m

Pitch Moment w.r.t alpha - (Cmα) - Pitching moment variation with angle of

attack is a strong function of CG position. For positive pitch stiffness it must be

negative (Cmα < 0). Figure 5.25 shows the pitching moment variation for a forward

CG location, (xcg = 29.4 m). All three models give the correct slopes, with the

panel method at a slightly greater negative offset, than the other two methods.
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Figure 5.26: X force coefficient (CX)

X Force w.r.t alpha - (CXα) - The X force depends primarily on the drag

of the aircraft and a component of the lift in the positive X direction. Both the

panel method and the strip element ESDU method predicted far lower values of

drag as compared to the baseline model. The baseline model considers the X force
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coefficient, CX , as a 2nd order polynomial of the normal force coefficient, CZ ,

CX = −
(

Cx0 − Cx1CZ + Cx2C
2
Z

)

(5.31)

where Cx0, Cx1 and Cx2 are constants. An alternate option was to simply use a

higher value of K in the expression (CD = CD0 + KC2
L) to match the baseline

drag coefficient, however it was decided that the simple expression for X force in

Equation (5.31) would be used for the ESDU model as well.

5.4.3.2 Variation with angle of sideslip (β)

The presence of sideslip not only generates a yawing moment, Cnβ, but also a rolling

moment, Clβ, on account of the wing dihedral, Γ, and an asymmetrical flow distri-

bution on starboard and port wings. If vertical fins are present, a significant amount

of side force is also generated. For the BWB aircraft in particular these forces are

difficult to determine as the size of winglet fins is small and the relative size of side

force and consequently the yawing moment is less.

0 2 4 6 8 10

−0.19

−0.18

−0.17

Beta [deg]

C
Z

 −
 Z

 F
or

ce
 C

oe
ff

0 2 4 6 8 10
−0.06

−0.04

−0.02

0

Beta [deg]

C
Y

 −
 Y

 F
or

ce
 C

oe
ff

 

 

0 2 4 6 8 10

−0.012

−0.008

−0.004

0

Beta [deg]

C
l −

 R
ol

l M
om

en
t C

oe
ff

0 2 4 6 8 10
−1

0

1

2

3

4
x 10

−3

Beta [deg]

C
n 

−
 Y

aw
 M

om
en

t C
oe

ff

ESDU ESDU 

ESDU 

ESDU 

Panel 

Panel 

Panel 

Panel 
Baseline 

Baseline Baseline 

Baseline 

Fin 

Fin 

No Fin 

No Fin 

ESDU
Panel
Baseline

Figure 5.27: Variation in aerodynamic coefficients with sideslip (β)
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Side force with sideslip - (CY β) Figure 5.27 shows that the main contribution to

side force comes from the winglet fins. Unlike the wing, the ESDU method considers

the winglet as a single unit rather than strip elements and matches very well with

panel method prediction.

Yawing moment with sideslip - (Cnβ) The yawing moment from the baseline

model is much less than what is indicated by ESDU and the panel methods, which

match very well. This is counter intuitive, as in the presence of a bigger side force for

the baseline model, the yawing moment must also be relatively large. One possible

explanation of this effect is the de-stabilizing contribution from the fuselage section

in front of the center of gravity. Due to the unconventional planform shape, this

de-stabilizing fuselage contribution is difficult to predict analytically and requires a

CFD solution or an experimental setup for accurate prediction. Figure 5.27 shows

that the vertical fin is the main stabilizing contributor towards yawing moment.

Rolling moment with sideslip - (Clβ) The rolling moment prediction with side

slip was much better. With the baseline prediction falling in the middle of ESDU

and the panel method. Presence of vertical fin has little effect on rolling moment,

as the main contribution comes from the wing dihedral and wing sweep.

5.4.4 Validation of Aero Derivatives w.r.t Body Rates (p, q, r)

A well designed aircraft should have positive damping in all three axes. The main

contribution in damping for the roll axis comes from the wing itself, with the wing

resisting any rate of roll (Clp < 0). In Figure 5.28, the ESDU prediction matches

quite well with the baseline, the panel method however predicts slightly lower values

of roll rate damping. The damping in the yaw axis due to yaw rate, Cnr , also shows

a good match, with the ESDU method now being on the lower side.

For a conventional aircraft the pitch damping derivative, Cmq is mainly determined

by the distance of the horizontal tail from the center of gravity (CG) and the size

of the tail itself, while contributions from the wing are usually neglected. For the

BWB aircraft however there is no tail and pitch damping comes the wing alone. In

the presence of pitch rate, the wing sees an asymmetrical flow distribution, with

the leading edge and trailing edge seeing opposite components of vertical velocity,

w, due to rate of rotation about the CG. Figure 5.28 shows a good match between

ESDU and panel methods however the baseline prediction is much lower. Since the

baseline prediction is based on CFD methods it is considered to be more accurate.
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Figure 5.28: Variation in aerodynamic coefficients with body rates (p, q, r)

5.4.5 Validation of Control Derivatives

This section reviews the effect of flap deflection on normal force coefficient, CZδf
and pitching moment, Cmδf , in case the flap is being used for pitch control and on

rolling moment, Clδf , in case it is being used as aileron.

Flap 1 - Mid Body Section - (δf1)

Figure 5.29 shows the location and extent of Flap 1. It is being used for pitch

control and strongly affects the normal force and pitching moment of the aircraft.

The spanwise lift coefficient distribution from the ESDU model is also shown for

0 and ±5◦ of flap deflection. The change in normal force and pitching moment

match very well for the baseline and the ESDU model. The panel method results

are not shown as it was not possible to define a flap of fixed chord length in the

TORNADO [13] program for the centre-body. The flap effectiveness starts to reduce

with increasing flap deflections in the ESDU model, therefore a slight curvature can

be seen in ESDU results. No such effect was present in the baseline model.
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Figure 5.29: Normal force (CZ) and pitch moment (Cm) variation with δf1
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Figure 5.30: Normal force (CZ) and roll moment (Cl) variation with δf3
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Flap 3 - Inner Wing Section - (δf3)

Figure 5.30 shows the location of Flap 3 which was used as an inboard aileron. It

spans from 13.5 to 17.5 m on the starboard and and port wings and consists of a

super critical airfoil section. The lift distribution profile, the normal force coefficient

and the rolling moment produced by these inboard flaps is shown. The normal force

coefficient or lift shows little or no effect of differential deflection of this flap. The

rolling moment correlation between the ESDU and baseline models was found to be

very good.

Besides the derivatives discussed above, there were other control derivative terms for

the remaining flaps and some cross derivatives. Limited space restricts the discussion

of all of these. The purpose of this section was to establish the validity of the ESDU

model with reference to the baseline. It now remains to discuss the effects of trailing

edge blowing in the ESDU model using the jet flap theory [14].

5.5 Effect of Blown Flaps on Aero Derivatives

This section considers the effect of flap blowing on the BWB aircraft aerodynam-

ics. As discussed earlier, the extent of blowing is determined by a non-dimensional

parameter, Cu, called the blowing momentum coefficient. It is defined as,

Cu =
ṁVjet
q̄S

(5.32)

where ṁ is the jet mass flow rate, Vjet the jet velocity, q̄ the free stream dynamic

pressure and S is the reference area. Thus at a lower dynamic pressures or low

airspeeds, higher Cu values are possible for the same values of mass flow rate and jet

velocity. This section reviews the effect of Cu on, (i) the spanwise lift distribution

and pitching moment, (ii) the change in net lift and pitching moment coefficients

with flap blowing and flap deflection and (iii) the relative effectiveness of individual

flaps in terms of lift generation and pitching moment per unit span.

5.5.1 Effect on Spanwise Lift and Pitch moment

Figure 5.31 shows the spanwise variation in lift distribution and pitching moment at

an angle of attack of 4◦ and a nominal CG position corresponding to a static margin

of Kn = 15%. The effect of blowing on trailing edge flaps is to increase the lift curve
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Figure 5.31: Spanwise CL with blown flaps (Cu = 0.05, δf = +20◦)
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Figure 5.32: Spanwise CM with blown flaps (Cu = 0.05, δf = +20◦)

slope and flap effectiveness in lift generation when deflected. In Figure 5.31, the

lift generated is increased significantly with all flaps blown at Cu = 0.05, however

the downside is the corresponding large increase in negative pitch moment with flap

blowing. This is indicated by shifting of the pitch moment curve on the negative

side in Figure 5.32.

On a conventional aircraft the tail plane is usually much more powerful and can

provide the necessary positive pitching moment to trim the aircraft. On the BWB

aircraft however, if blown flaps are to be used for high lift, this negative pitching
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5 A BWB Model with Blown Flaps

moment has to be overcome by some alternate arrangement. For example on the

Hunting 126 aircraft [33], this negative pitching moment associated with blown flaps

was overcome by directing some of the thrust in the vertical direction, ahead of the

center of gravity.

5.5.2 Lift and Pitch moment (CL, Cm) with Flap Blowing
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Figure 5.33: Effect of flap blowing (Flaps 1,2,4 and 5) on pitch axis

For the BWB aircraft, the controls have been allocated so that Flap 3 which is at a

spanwise location from 17.5 to 23.5 m is used as an inboard or high speed aileron.

The remaining flaps on the mid-body section and outer wing are used as elevators.

Figure 5.33 shows the net lift coefficient, CL, and pitching moment coefficient, Cm,

at Cu values of 0.1 and 0.2 respectively. A constant flap deflection of +20◦ is as-

sumed on all flaps except Flap 3 which is being used as an aileron. Two points

can be noted from Figure 5.33, (i) the change in lift with increasing Cu values is

not constant and (ii) the negative increment in pitching moment is significant. Also
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5 A BWB Model with Blown Flaps

shown for the unblown flap case, the results of the baseline model [7], to reflect upon

the accuracy of the strip element ESDU model.

Shown in Figure 5.34 is a map of change in net lift coefficient and pitch moment

with flap blowing and deflection. ∆CL of greater than 1.0 can be easily achieved at

a flap deflection of +20◦ and Cu values of close to unity. The corresponding increase

in negative pitch moment is also shown.
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5.5.3 Increase in Roll moment (Cl) with Flap Blowing
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Figure 5.35: Effect of blowing on Flap 3 (roll axis)

Figure 5.35 shows the increase in roll control power with blown flaps. The roll power

almost doubles for a blowing momentum coefficient of Cu = 0.2. This will later be

shown to be of great advantage as the handling qualities analysis in Chapter 3,

showed that the inboard aileron alone is inadequate to achieve the required roll

rates at landing and take-off speeds. If the outboard wing flaps are allocated for

roll control to increase the roll power during such conditions, the pitch axis control

power gets reduced significantly. Blown flaps at lower airspeeds may be the answer

to this roll control power/allocation problem.

5.5.4 Increase in Yawing moment (Cn) with Flap Blowing

Figure 5.36 shows how the rudder effectiveness is almost doubled at a blowing co-

efficient of Cu = 0.2. Correlation with the nominal or the baseline is shown. As

mentioned earlier in Chapter 3, that under cross winds or asymmetric thrust con-

ditions, the nominal rudder control power proves to be insufficient. Rudder control

power has to be increased by some means to trim the aircraft in the directional

axis. Other options to enhance rudder power are to, (i) increase the vertical fin area

by incorporating conventional vertical fins on the centre-body, which in turn means

increased profile drag and weight or, (ii) to use Flap 4 or 5 on the outboard wings

as split flap drag rudders but this again results in a loss of control power for the

pitch axis. Blown flaps seems to be an attractive option to solve this problem.
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Figure 5.36: Effect of blowing on rudder (yaw axis)

5.5.5 Relative Flap Effectiveness

Lastly, a brief analysis was carried out to investigate which flap is the best candidate

for blowing, so that it contributes the maximum change in lift with a minimum

change in pitching moment coefficient. The parameter of interest was (∆CL/∆Cm).

Figure 5.37 shows the results. It turns out that Flap 1 which has the maximum

extent of ±13 m and is located on the centre-body produces the maximum change

in lift coefficient, however the corresponding change in pitching moment is also

higher. The graph on the right gives the same results per unit span and reveals that

Flap No. 2 and 3 are the best candidates for achieving maximum (∆CL/∆Cm) per

unit span in a blown flap arrangement. These two sections generate the minimum

pitching moment as they are close to the center of gravity of the aircraft.
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5.6 Chapter - Summary

A BWB aerodynamic model using strip element techniques and Engineering Sci-

ences Data Units (ESDUs) was developed. The effect of trailing edge blowing and

the corresponding increase in lift coefficient was incorporated in the model. The

following points may be observed,

• For the longitudinal axis, flap blowing causes a significant increase in lift coef-

ficient along with a corresponding increase in negative pitching moment. For

a high lift configuration, usually required at take-off or landing, this negative

pitching moment has to be overcome before the full potential of flap blowing

can be realized.

• Although for the BWB, a high lift configuration may be difficult to achieve

due to the negative pitching moment, the flap effectiveness with blowing shows

a major improvement. More effective flaps i-e a high ∆CL/δf value, means

reduced trim elevator deflections or greater control authority. Having short

moment arms both for the pitch and yaw axes, flap blowing seems to be an

attractive option to achieve greater control effectiveness without increasing the

physical flap size or reducing the static margin.

• For the lateral-directional axis, the control power was doubled at a blowing

momentum coefficient of Cu = 0.2 for the both the inboard aileron and the

winglet rudder. This proved to be of significant value as revealed later by

the lateral (roll) axis handling qualities analysis and trimming in directional

(yaw) axis with small winglet rudders under asymmetric thrust/cross wind

conditions.
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Chapter 6

Propulsion and Controls

Integration

In the preceding chapters, a BWB model with blown flaps and a three spool turbofan

engine model were developed. In this chapter some results of the integration of these

two models are presented. The following aspects will be covered,

• Allowable bleed and achievable lift/pitch moment

The questions to be answered here are, (i) what is the most appropriate loca-

tion for bleed off-take, LPC, IPC, HPC or directly from the main exhaust, (ii)

what are the optimum bleed slot heights, (iii) how much bleed can be taken

from a particular arrangement and how much blowing coefficient (Cu) can be

achieved and (iv) what are the increments in lift and pitching moment.

• Controls performance with blowing

A particular value of blowing momentum coefficient would be assumed and

dynamic responses in roll, pitch and yaw axis would be presented. Results

would indicate handling qualities improvements if any.

• Controls performance with thrust vectoring

A comparison of longitudinal control responses for pure aerodynamic flight

control (AFC), thrust vector control (TVC), and AFC + TVC would be made.

• Trim results with flap blowing and thrust vectoring

Trim results with flap blowing and TVC would be presented at different air-

speeds.
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6 Propulsion and Controls Integration

6.1 Engine Bleed and Lift/Pitching Moment

As pointed out earlier, for a blown flap arrangement, the lift and pitching mo-

ment characteristics can be modified by adjusting the blowing momentum coeffi-

cient (Cu). This section explores that how much Cu can be achieved for the BWB

by either bleeding the engine or using the main exhaust directly, as for an embed-

ded wing/distributed propulsion concept [42]. It is possible to get this bleed from

the low pressure (LP), the intermediate pressure (IP) or the high pressure (HP)

compressor stages depending upon the wing duct pressure requirements. However

for the three spool turbofan considered, 20% of the HP compressor mass flow is

already used for HP turbine cooling and the wing nozzle pressure requirements for

flap blowing purposes are usually less, it was therefore decided not to bleed the HP

stage further. This discussion will therefore consider only the intermediate (IPC)

and the low pressure compressor (LPC) stages for flap blowing.

6.1.1 Internally Blown Flaps (IBF) - Using IPC Bleed

Figure 6.1 shows bleed off-take from the intermediate pressure compressor (IPC).

Since internal wing ducts are used, this is a case of internally blown flaps. In such an

arrangement, a number of parameters would effect the achievable blowing coefficient

(Cu), these include, (i) the slot height that sets the actual wing nozzle exit area, (ii)

the bleed off-take location, which sets the total pressure and temperature [P,T] of

the source reservoir in combination with the throttle setting and (iii) airspeed. IPC

bleed will therefore be considered in context of these parameter variations.

6.1.1.1 Internally Blown Flaps - Effect of IPC Bleed Slot Height

Variation in flap slot height directly controls the wing nozzle exit area and hence

the mass flow or bleed from a given compressor stage. To see the effect of slot height

on strip-wise blowing momentum coefficient, [Cu]y, consider

[Cu]y =
ṁjetVjet
q̄Sy

(6.1)

where ṁjet is the exiting mass flow for each strip, Vjet is the jet velocity, q̄ is the

free stream dynamic pressure and Sy is the local strip area. Substituting for (ṁjet =

ρjetAjetVjet), (Ajet = wh) and (Sy = wcy), where w is the strip or slot width and h

is the slot height we have,
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[Cu]y =
ρjetAjetVjet

2

q̄Sy
=
ρjetwhVjet

2

q̄wcy
=
ρjethVjet

2

q̄cy
(6.2)

Thus for a constant slot height, h, the spanwise blowing momentum coefficient will

vary with local chord, cy. In order to achieve the same blowing momentum coef-

ficient along the span the slot height has to be made variable so that (h/cy) is a

constant or the local jet velocity has to be adjusted. However for the current work,

a constant slot height is assumed and the blowing momentum coefficient is allowed

to vary along the span.

The following analysis presents results for IPC bleed slot height variation at a flight

speed of 200 kts and an altitude of 1000 ft. The purpose being to quantize the effect

of bleed slot height variation on various engine parameters such as rotor speeds, sta-

tion temperatures, compressor delivery pressures etc. and the resulting increments

in lift and pitching moment coefficients. The angle of attack and flap deflections

were fixed at +8.0 and -10.0 degrees respectively, typical of a low speed approach
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6 Propulsion and Controls Integration

flight condition. Flap number 3 which spans from 13.0 to 17.5 m is used as the

inboard aileron and operates at zero flap deflection (δa = 0◦). It is assumed that

bleed is extracted from the end of the intermediate pressure compressor (IPC), thus

wing nozzle entry pressure and temperature [P,T] are relatively high. Full span flap

blowing is considered and 4 × 275 kN Trent 500 engine configuration is used.

Figure 6.2 shows the actual value of bleed flow (kg/s) and the corresponding jet

velocity. At 3 mm slot height, IPC bleed corresponds to approximately 45 kg/s

which equals 40% of the net IPC mass flow.
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Figure 6.2: Effect of bleed slot height on jet velocity, thrust and mass flow

Rotor Speeds and IPC Bleed Slot Height - Figure 6.3 shows the speeds of the

three rotors as the bleed slot height is increased from 0 to 3 mm. Initially, the three

spool engine was allowed to reach a steady state at 4300 RPM under the control of

the Fan/LPC RPM control loop. This corresponded to a normalized speed of 0.86,

against a design speed of 1.0 at 5000 RPM. As the bleed is extracted from the engine

by adjusting the slot height (h), the fan speed was kept constant at 4300 RPM, to

simulate a fixed throttle setting. The engine was allowed to reach a steady state

before adjusting the slot height at 30 second intervals. The RPM control loop holds

the low speed rotor speed constant whereas the intermediate and the high speed

rotors settle at higher speeds as more and more bleed is extracted from the engine.
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Compressor Delivery Pressures and IPC Bleed Slot Height - In Figure 6.4

as the Fan/LPC speed is kept constant, therefore the Fan exit pressure, P2.1, is

almost constant. However the IPC and HPC delivery pressures start to fall as the

engine settles to its new equilibrium state with increasing IPC bleed. Thus both

the IP/HP stages deliver less pressure whereas their corresponding rotor speeds are

137



6 Propulsion and Controls Integration

increasing. This is counter intuitive as the compressor delivery pressure normally

rises with RPM, however the unaccounted bleed off-take from IPC exit disrupts the

thermodynamic balance/matching across engine components and causes the com-

pressors to shift away from their nominal steady state running lines.
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Figure 6.5: Effect of bleed slot height on station temperatures

Station Temperatures and IPC Bleed Slot Height - Figure 6.5 shows the

significant rise in turbine entry temperature (TET) as the slot height is increased

from 0 to 3 mm. As more and more bleed is extracted, the TET(T4) almost hits an

upper limit of 1800K at a reasonably lower throttle setting of 4300 RPM. Pilidis [77]

explains that upon bleed extraction the downstream turbines have to operate with

a lower mass flow and if the speed is kept constant, the turbine has to produce

the same work required by the compressor. This results in a higher turbine entry

temperature (T4) and therefore higher exhaust gas temperature. The turbine is

designed to operate choked even at relatively reduced mass flows, therefore the

non-dimensional mass flow (wt
√
T 4/P4) through the turbine is constant. To keep

the non-dimensional mass flow constant, the turbine entry pressure (P4) will drop.

This implies that compressor pressure ratio will fall. The steady state running

line will shift toward choke with a corresponding reduction in compressor efficiency.

Pilidis [77] further suggests that when the non-dimensional bleed (φ) is small, the
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decrease in compressor pressure ratio due to bleed extraction is approximated as

(

P2

P1

)

bleed

≈
(

P2

P1

)

nobleed

√

1 − φ (6.3)

where subscripts 1,2 represent compressor entry and exit conditions. The corre-

sponding increase in turbine entry temperature (T4) is

(T4)bleed ≈ (T4)nobleed
1

(1 − φ)
(6.4)

Compressor Transients and IPC Bleed Slot Height - Figures 6.6 through 6.8

show the transients on the LP, IP and HP compressors. Since the bleed is extracted

from the IP stage and the Fan or the LPC stage is still made to run at the constant

RPM of 4300 under RPM control, the operating point on the fan map does not

change. On the IPC stage however (Figure 6.7) the operating point moves progres-

sively away from the steady state/equilibrium running line away from surge and in

an area of reduced compressor efficiency. Points marked A,B,C,D indicate the steady

state points on the map as the slot height is adjusted from 0 to 3 mm.
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Figure 6.6: Transients on LPC map with variation in bleed slot height

Figure 6.8 shows the high pressure compressor map, which is now receiving less and

less mass flow at its inlet and tends toward surge. This shift in operating line both
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for the intermediate pressure (IP) and the high pressure (HP) compressor stages is

absolutely critical in determining in engine performance and its reliable operation.

Optimally the running line should be as close as possible to the surge line, while
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maintaining reasonable surge margin during steady state and transient operation.

Any such variations in the running line or equilibrium conditions due to bleed ex-

traction therefore has to be minimized, either through incorporation in the initial

engine design or minimizing the bleed requirements.

Blowing Momentum Coefficient and IPC Bleed Slot Height - Figure 6.9

shows the achievable blowing momentum coefficients as given by Equation (6.2).

When the slot height is zero (h = 0 mm), there is no bleed and hence zero blowing

momentum coefficient (Case A). As the slot height is increased the spanwise blow-

ing coefficient increases. On the centre-body section, by virtue of the high value

of local chord the blowing coefficient is low, however as the local chord decreases

along the span, the blowing coefficient increases to a certain maximum value. As

per Figure 2.14 from Section 2.2, the likely values of blowing coefficient for high lift

are above 0.1 and the critical value of blowing coefficient (Cucrit) for potential flow

lift is of the order 0.02 to 0.03. From Figure 6.9 we see that these critical values of

Cu are achieved on the outboard wing sections for a slot height of 2 to 3 mm.

−40 −30 −20 −10 0 10 20 30 40
−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

span y [m]

B
lo

w
in

g 
C

oe
ffi

ci
en

t −
 C

u y

 

 

A = slot 0 mm

B = slot 1 mm

C = slot 2 mm

D = slot 3 mm

StarboardPort

A

B

C

D

Increasing C
u

No Bleed

C
u

crit

≈ 0.02

Figure 6.9: Effect of bleed slot height on spanwise blowing coefficient

For this analysis full span (≈ 80m) flap blowing is assumed. If only selected flaps

are blown, like the aileron or the rudder, much higher blowing coefficients can be

achieved with relatively better engine performance. In addition, the Trent 500 en-

gines were not designed for permanent IPC bleed extraction. In order to improve

engine performance it is possible to re-design the engine with a built in high IPC
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bleed-off capability. This aspect will be covered in detail later in this chapter.

Lift and Pitching Moment Coefficients and Slot Height - Figure 6.10 shows

the spanwise lift coefficient with variation in slot height. Flap 3 which is used as

an inboard aileron is undeflected (δa = 0◦) and the remaining flaps which are used

elevators are deflected at a negative value (δflap = −10◦) to provide pitch trim.

Figure 6.10 shows that the undeflected aileron section generates significantly higher

lift as compared to rest of the wing section. This is indicative of a strong loss in

wing lift due to negative flap deflections.
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Figure 6.10: Effect of bleed slot height on spanwise lift coefficient

The effect of blowing appears as increased flap effectiveness (∆CL/∆flap), since the

flaps are deflected negative to provide pitch trim and not high lift, the decrement in

lift coefficient is higher for the blown flap case. Four cases A,B,C and D are consid-

ered for variation in slot heights from 0 to 3 mm. Due to the non-linear relationship

between CL and Cu as discussed earlier, the increase in flap effectiveness is greater

from A to B (at small values of Cu) and is then almost constant from B to C and C

to D (for higher values of Cu).

Figure 6.11 shows the corresponding increase in pitching moment coefficient about

the local quarter chord point for each strip. As the slot height/blowing momentum

increase, the pitching moment about the quarter chord point also increases. The

final effect would be a net reduction in trim flap deflection with almost little or no
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Figure 6.11: Effect of bleed slot height on spanwise pitch moment coefficient

change in angle of attack. This will be discussed in further detail later in the trim

analysis section. Finally the very high negative pitching moment contribution due

to undeflected aileron section may be noted. This negative pitching moment has to

be catered for by the rest of the wing section at the expense of loss in net lift.

No Slot ht ∆TET P2.2 T2.2 ṁjet Vjet Cu ∆CL/∆flap ∆Cm/∆flap

mm K Atm K kg/s m/s Average Relative Relative

1 No bleed 0 6.57 528 0 0 0.000 1.000 1.000
2 1.0 114 5.44 506 19.1 411 0.006 1.095 1.122
3 2.0 241 4.72 495 33.4 407 0.010 1.119 1.159
4 3.0 341 4.24 487 45.4 404 0.014 1.143 1.183

Table 6.1: Engine/airframe parameters and slot height variation

Table 6.1 summarizes the results obtained for bleed off-take from the end of the

intermediate compressor. Increments in the lift and pitching moments are presented

relative to the unblown case. With a slot height of 3 mm and full span flap blowing,

the IPC bleed is 45.4 kg/s per engine. The relative flap effectiveness for pitching

moment is 1.183 or an increase of 18.3%. The jet velocities are almost constant as

the wing nozzle is choked due to high IPC exit pressure and temperature [P2.2, T2.2].

The rise in TET is +341K is very high, however it may be tolerated at lower throttle

settings such as during approach or landing.
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6.1.1.2 Internally Blown Flaps - Effect of Bleed off-take Location
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In this section, the effect of IPC bleed location is investigated. The bleed slot height

is kept fixed at h = 2 mm and the bleed location, x, is varied along the compressor

length, l. Specifically, the non-dimensional bleed locations of (x/l = 0.5) or IPC(0.5)

and IPC(0.25) are compared with IPC(1.0).
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IPC Bleed Location and Pressures/Temperatures - As the bleed location is

moved at an earlier location along compressor length, both the wing nozzle deliv-

ery pressure pressure and temperature [P,T] drop, correspondingly reducing the jet

mass flow, ṁjet and velocity, Vjet. The blowing momentum coefficient, Cu, being a

function of these two parameters also decreases. Figures 6.12 and 6.13 shows the

results for pressures and temperatures for shifting the IPC bleed location aft, while

keeping the slot height fixed. Both the HPC and IPC pressures recover, whereas the

turbine entry temperature (TET) in Figure 6.13 shows a major improvement. For

an IPC bleed location variation of 1.0 to 0.25, the rise in TET reduces from +241K

to just +39K, which is significant.

IPC Bleed Location and Compressor Transients - Figures 6.14 and 6.15

show the corresponding transient paths on the intermediate and high pressure com-

pressors. Point A marks the steady state operating point for zero IPC bleed, point

B corresponds to IPC(x/l = 1.0) with 2mm slot height, C for IPC(0.5) and D for

IPC(0.25). The intermediate paths between these points indicates engine transients.
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On the IPC map (Figure 6.14), as the bleed location is moved aft, the the engine

starts to recover from point B and back towards the equilibrium running line at

point D, although still away from it. The major improvement, however, appears on

the HPC map (Figure 6.15) where the HP compressor shifts from an almost surged

position at point B back to the steady state running line at point D.
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IPC Bleed Location and Effect on Blowing Coefficient - Figure 6.16 shows

the effect of IPC bleed location on spanwise blowing momentum coefficient. The

curve marked as B represents the IPC(1.0) bleed case. Cases C and D represent

IPC(0.5) and IPC(0.25) respectively. As the bleed location is moved aft and the jet

mass flow reduced, the blowing momentum coefficient also decreases. For IPC(0.25)
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or curve D, the bleed mass flow and jet velocity both decrease as compared to

IPC(1.0) or curve B, correspondingly the blowing momentum coefficient is also re-

duced.

IPC Bleed Location and Lift/Pitching Moment Coefficients - Figures 6.17

and 6.18 show the spanwise lift and pitching moment coefficients. On Figure 6.17

the lift curves for a 2 mm slot height and bleed locations IPC(1.0), IPC(0.5) and

IPC(0.25) are grouped quite close together and the change in lift coefficient, ∆CL,

is not in proportion to relatively larger change in blowing coefficients. This indi-

cates that even relatively small blowing coefficients for IPC(0.25) or IPC(0.5) may

also produce a significant change in flap effectiveness with lower penalties on engine

performance. A similar picture can be seen for the pitching moment curve on Fig-

ure 6.18. Table 6.2 summarizes these results.
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From Table 6.2, it may be seen that with an IPC bleed location of x/l = 0.25, the

jet mass flow reduces to 21.1 kg/s per engine and the rise in TET is just +39K. The

wing nozzle pressure and temperature [P,T] are also much lower than the IPC(1.0)

case. The conclusion that can be drawn here is that if the wing nozzle pressure and

temperature requirements are lowered or the IPC bleed location is moved aft, the

adverse effects on engine performance can be drastically reduced. For the three spool

turbofan considered, IPC bleed locations from 0.25 to 0.50 are enough to sustain

147



6 Propulsion and Controls Integration

−40 −30 −20 −10 0 10 20 30 40
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

span y[m]

P
itc

h 
M

om
en

t C
oe

ffi
ci

en
t −

 C
m

y

 

 
No Bleed

Bleed Loc = 1.0

Bleed Loc = 0.50

Bleed Loc = 0.25

StarboardPort

No bleed

IPC Bleed
Location

moved back

α = +8.0°
δ

flap
 = −10.0°

fixed slot height = 2mm

δ
a
 = 0°

Aileron

∆C
M

Figure 6.18: Spanwise pitching moment coefficient and IPC bleed location

No Bleed Loc ∆TET P2.2 T2.2 ṁjet Vjet Cu ∆CL/∆flap ∆Cm/∆flap

(x/l) K Atm K kg/s m/s Average Relative Relative

1 No bleed 0 6.57 528 0 0 0.0000 1.000 1.000
2 1.00 241 4.71 495 33.4 407 0.0103 1.119 1.159
3 0.50 100 3.52 418 27.1 374 0.0078 1.107 1.135
4 0.25 39 2.58 371 21.1 352 0.0057 1.092 1.116

Table 6.2: Engine/airframe parameters and IPC bleed location at 4300 RPM

high jet velocities (374 to 352 m/s) and mass flows (27.1 to 21.1 kg/s) at 4300 Fan

RPM. The average blowing coefficient is reduced from 0.0103 to 0.0057, however the

relative flap effectiveness is still 11.6% higher than the unblown case.

6.1.1.3 Internally Blown Flaps - Effect of Airspeed

The reduction in dynamic pressure while keeping the jet velocity and mass flow

constant, causes an increase in the spanwise blowing momentum coefficient, Cu. Ta-

ble 6.3 shows the results of corresponding increase in flap effectiveness at fixed design

RPM of 5000, IPC(x/l = 0.25) and a fixed slot height of 2 mm. From Table 6.3 it

can be seen that the blowing coefficient almost doubles from 200 kts to 140 kts and

the flap effectiveness increases by 18.5% relative to the unblown value of 200 kts.

The rise in TET of +72K is constant as the bleed conditions are unchanged. The
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values of the wing duct pressure and temperature (P2.2, T2.2) are kept constant so as

to simulate a fixed throttle setting and only the airspeed or the dynamic pressure

is allowed to vary. For the case of a level flight at low airspeeds, the throttle set-

ting will however be higher due to an increase in the amount of induced drag and

P2.2, T2.2 will consequently rise and therefore also the blowing momentum coefficient.

No Airspeed ∆TET P2.2 T2.2 ṁjet Vjet Cu ∆CL/∆flap ∆Cm/∆flap

(kts) K Atm K kg/s m/s Average Relative Relative

1 No Bleed 0 8.77 581 0 0 0 1.000 1.000
2 200 +72 3.14 394 25.0 363 0.0070 1.014 1.129
3 180 +72 3.14 394 25.0 363 0.0088 1.111 1.144
4 160 +72 3.14 394 25.0 363 0.0112 1.124 1.162
5 140 +72 3.14 394 25.0 363 0.0146 1.141 1.185

Table 6.3: Engine/airframe parameters and airspeed variation with IPC(0.25)

6.1.1.4 Internally Blown Flaps - Effect of Throttle Setting

Table 6.4 shows IPC bleed results for a higher throttle setting. For higher throttle

settings the flap effectiveness and the IPC bleed mass flow were slightly higher due

to higher wing nozzle source pressure and temperature. However, it was not possible

to bleed the end of IPC compressor IPC(x/l = 1.0) for a slot height of 2 mm as the

turbine entry temperature limit was hit and the RPM control was not able to hold

the demanded speed. Table 6.4 therefore presents results only for the IPC(0.50) and

IPC(0.25) case at a higher Fan speed of 5000 RPM.

No Bleed Loc ∆TET P2.2 T2.2 ṁjet Vjet Cu ∆CL/∆flap ∆Cm/∆flap

(x/l) K Atm K kg/s m/s Average Relative Relative

1 No bleed 0 8.75 581 0 0 0.0000 1.000 1.000
2 0.50 +147 4.43 452 32.9 389 0.0097 1.118 1.151
3 0.25 +72 3.14 394 25.0 363 0.0069 1.100 1.128

Table 6.4: Engine/airframe parameters at 5000 Fan RPM
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6.1.2 Externally Blown Flaps (EBF) - Using LPC/Fan Bleed

The bleed mass flow from the LP compressor stage can either be blown over the full

span as in the case of a distributed propulsion concept, or the full exhaust including

the bypass and the core mass flow can be blown over selected flaps directly, without

the need for internal wing ducting. For the blended wing body, some researchers are

already proposing to embed the engines within the fuselage to enhance noise shield-

ing [78]. This means that the engine’s vertical offset from the Fuselage Reference

Line (FRL) would be small and it is theoretically possible to place a rectangular

engine exhaust just before the trailing edge flap, specifically Flap 1 which has a span

of 26m. This will result in an externally blown flap arrangement for the centre-body

section. Such a configuration is shown in Figure 6.19.
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(ṁjet)
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? ??
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Engines burried

Flap 1

CG
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Figure 6.19: Flap 1 in a fully blown external flap arrangement

Consider the design point calculations for the Trent 500 in Table 6.5. At the design

point, the bypass flow is 781.9 kg/s, a jet velocity of 267.3 m/s and a bypass nozzle

design area of A29 = 2.44 m2. If the bypass flow from an N × 275 kN engine

configuration is made to flow above Flap 1 on the centre-body section, then for

N = 4, the required slot height (h) would be,

h =
NA29

L1

=
4 × 2.44

26.0
= 0.375m (6.5)
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Station F.A.R. Mass Flow PTotal Ttotal Vel. Area. Designation
kg/s Atm K m/s m2 Exit

2 0.0 902.55 0.990 288.15 *** *** INLET
21 0.0 902.55 1.504 330.55 *** *** LPC
22 0.0 120.65 8.730 580.67 *** *** IPC
3 0.0 096.52 39.026 913.63 *** *** HPC
4 0.0218 123.29 36.685 1632.96 *** *** CMB
4.1 0.0218 123.29 14.238 1352.48 *** *** HPT
4.2 0.0218 123.29 6.564 1148.79 *** *** IPT
5 0.0218 123.29 2.007 886.25 *** *** LPT
9 0.0218 123.29 2.007 886.25 540.82 0.4497 CORE NOZ
29 0.0 781.89 1.489 330.55 267.29 2.4437 BYPS NOZ

Net Thrust = 278.75 kN, SFC = 0.034 kg/h/N

Table 6.5: Design point calculations for the Trent 500

where N are the number of engines and L1 is the flap length. If a mixed flow exhaust

is used then this slot height would increase sightly to accommodate the additional

mass flow from the main nozzle. It is also interesting to note that when using LP

compressor mass flow for flap blowing, the engine operating point does not change

and the engine performance is not compromised. With the flight speed fixed at 200

kts and the altitude at 1000 ft, the centre-body flap was externally blown using the

LP mass flow at different throttle settings, the results follow.
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Figure 6.20: Spanwise blowing coefficient - Externally blown centre-body flap

Figure 6.20 shows the increase in blowing coefficient, Cu, for Flap 1 due to external

flap blowing using bypass air. At 100% throttle setting and with a 4 × 275 kN
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engine configuration, the average value of Cu for Flap 1 is approximately 0.2. This

may seem to be a little low keeping in view that the full bypass air is blown over

the flaps. However, the local chords for the centre-body section area are large (48

m for the root section) which makes it difficult to achieve high blowing coefficients.

In addition, Flap 1 has a length of 26 m which reduces the mass flow per unit span.
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Figure 6.21: Spanwise lift coefficient - Externally blown centre-body flap
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Figure 6.21 shows the corresponding spanwise lift coefficient for an angle of attack

of +8.0◦ and spanwise flap deflection of −10◦. The aileron section was kept at zero

deflection. The increase in flap effectiveness due to blowing for the centre-body are

obvious. Similar results can be seen for spanwise pitching moment coefficient on

Figure 6.22. Flap 1 is now able to make a significant contribution to the nose up

pitching moment as compared to the unblown case.

No RPM Thrust BFlow CFlow BVel. CVel. [Cu]F1 ∆CL/∆flap ∆Cm/∆flap

kN kg/s kg/s m/s m/s Average Relative Relative

1 Idle - - - - - 0 1.000 1.000
2 Idle 47.5 523.4 54.8 182.0 220.0 0.0734 1.248 1.264
3 50% 116.0 683.4 88.6 238.7 386.2 0.1262 1.317 1.352
4 100% 238.5 840.5 135.1 297.2 567.8 0.1930 1.385 1.442

B = Bypass, C = Core

Table 6.6: External blown centre-body flap using bypass flow

The results have been summarized in Table 6.6. Even at idle throttle settings the

increase in flap effectiveness is +26.4% relative to the unblown case. At full throt-

tle, this increases to +44.2%. In this analysis only the centrebody flaps are blown,

the flap effectiveness is however considered for the full span or the overall moment

generated about the centre of gravity and not for individual flaps, which is consid-

erably higher and is illustrated in Figure 6.22. The addition of core flow increases

the flap effectiveness figure from +44.2% to +51.0%. Lastly, these results are for

an airspeed of 200 kts, at reduced airspeeds such as those required during take-off

or landing, better results are expected due to relativey higher values of achievable

blowing momentum coefficient.

Another possible advantage of the externally blown flap arrangement is that the

deflection of Flap 1 can automatically generate a deflection of thrust in the pitch

axis. As will be shown in the next chapter, that deflected thrust or TVC gives a

clear advantage in achieving early pitch rotation during take-off and therefore a net

reduction in take-off distances. Further work using CFD or experimental methods

will however be necessary to ascertain the amount of thrust deflection that can be

achieved with such an arrangement.
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6.1.3 Engine Matched for Additional Bleed at Design Point

It was mentioned in Section 6.1.1 that IPC bleed is very expensive in terms of rise

in turbine entry temperature and loss of thrust. Up to 45 kg/s of IPC bleed was

extracted from the Trent 500 engine for flap blowing purposes in an effort to en-

hance flap effectiveness. This amounts to more than 30% of the net IPC mass flow

of 120.2 kg/s at design point. Upon such values of bleed extraction the HP and IP

compressors shift from their nominal running lines either towards choke or surge.

This section briefly presents results of a redesigned Trent 500 Engine matched for

additional bleed at design point. The turbine entry temperature was kept fixed at

1788K, and the net mass flow into the engine was increased. The bypass duct flow

was kept constant at 781.92 kg/s but the IPC compressor now ingests a flow greater

than 120.2 kg/s (design point flow with no bleed). Bleed is then extracted from

an appropriate station along the length of IP compressor and was varied from 0

to 50 kg/s from stations IPC(1.0) and IPC(0.5) respectively. Three cases of thrust

recovery from the wing duct nozzle were assumed, 0%, 50% and 100%. Thrust

specific fuel consumpiton (SFC) and turbine entry temperatures were recorded. A

modified DYNGEN [12] program was used for these design point caluclations.
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Figure 6.23: Thrust at design point for engine matched for IPC bleed

Figure 6.23 shows the achievable design point thrust while holding the turbine entry

temperature constant in all design cases. As the bleed extraction is increased the
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design point thrust decreases. In addition, IPC bleed location has a significant effect

in improving the design point thrust, for example for the IPC(0.5) case i-e IPC bleed

location at x/l = 0.5, the loss in design point thrust is much lower. Although the

engine diameter may have to be increased slightly to accommodate the additional

mass flow (approximately 50 kg/s in this case) into the system.

0 5 10 15 20 25 30 35
0.95

1

1.05

1.1

1.15

% IPC Bleed

S
F

C
 (

N
or

m
al

iz
ed

)

Thrust Rec = 0% 
Thrust Rec = 50% 
Thrust Rec = 100% 

IPC(1.0) 

IPC(0.5) 

IPC(1.0) 

IPC(1.0) 

TET = 1788 K Nominal SFC = 0.034 kg/s/N 

Figure 6.24: SFC at design point for engine matched for IPC bleed

Figure 6.24 shows the corresponding specific fuel consumption results. As the design

point thrust drops and the the TET kept constant at 1788K, the thrust specific fuel

consumption increases. Again the effect of aft bleed location is to bring the SFC

back to its nominal value of 0.034 kg/h/N. Table 6.7 summarizes these results.

No IPC Bleed LPC Flow Thrust (kN) SFC (kg/h/N)

kg/s % Net kg/s 100%R 50%R 0%R 100%R 50%R 0%R

1 0 0 902.5 277.8 277.8 277.8 0.0340 0.0340 0.0340
2 10 7.65 912.5 278.2 274.8 271.4 0.0340 0.0344 0.0348
3 20 14.22 922.5 278.3 271.6 264.8 0.0340 0.0348 0.0357
4 30 19.91 932.5 277.5 267.4 257.3 0.0340 0.0353 0.0367
5 40 24.90 942.5 275.2 261.6 248.1 0.0343 0.0361 0.0381
6 50 29.30 952.5 270.2 253.5 236.4 0.0350 0.0373 0.0400

R = Thrust Recovery of Wing Nozzle

Table 6.7: Trent 500 matched for permanent IPC bleed at constant TET
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6.2 Controls Performance with Flap Blowing

This section analyzes the effect of flap blowing on controls performance. Tradition-

ally, blown flaps have been used for generation of high lift at low speeds, however

for the BWB aircraft, blown flaps are implemented in an attempt to improve con-

trols effectiveness and compensate for the absence of a horizontal stabilizer and a

conventional rudder. All three, pitch, roll and yaw axes are considered separately.

6.2.1 Control of Pitch Axis with Blown Flaps

It was shown in the previous section that using full span blowing the achievable

blowing coefficient using IPC bleed was limited in case the engine is not designed

or matched for large bleed off-takes. Alternatively the main + bypass exhaust from

the engines buried in the fuselage can be made to flow over the centre-body flap

(±13m) in an externally blown flap arrangement. Blowing coefficients of (Cu > 0.2)

were shown to be achieved easily in this case. In the following results, the externally

blown centre-body flaps were used to enhance pitch control, whereas the IPC bleed

was used selectively on inboard aileron and winglet rudder to improve roll and yaw

control effectiveness respectively.
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Figure 6.25: Pitch control with externally blown centre-body flaps at 300 kts

Figure 6.25 illustrates the improvement in pitch response for a bandwidth limited

pitch angle demand. The pitch angle response (θ2) for the blown flap case is slightly

faster than the unblown case (θ1), along with a reduction in trim elevator deflection
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(δe2). The gains of the pitch control loop were kept constant in both cases. The

angle of attack reduces only slightly, as the flaps although more effective than before

are still deflected in the negative direction to maintain pitch trim. Before initiating

the pitch angle step demand, the BWB aircraft was trimmed for a straight and level

flight at an altitude of 5000 ft, airspeed of 300 kts and a CG location of 29.4 m.
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Figure 6.26: Pitch control with externally blown centre-body flaps at 175kts

Figure 6.26 shows similar results but for a much reduced airspeed of 175 kts. The

reduction in trim elevator deflection is evident. In this case however, the straight and

level trim condition is maintained, with flap blowing initiated at 50 seconds. The

angle of attack shows only a marginal improvement of about 4%. It was illustrated

in Section 3.1.1 that at reduced airspeeds the trim elevator deflection reaches close to

saturation. Reduction of these elevator deflections to almost half using flap blowing,

without increasing the control surface area seems to be an obvious advantage.

6.2.2 Roll Control and Blown Flaps

In Section 3.3.2, the open loop lateral-directional dynamics of the baseline BWB

configuration were found to be very poor at low airspeeds. The dutch roll dominates

the roll angle response and a lateral-directional stability augmentation system (SAS)

was found to be necessary to achieve satisfactory performance. Even with the SAS

in place, the system falls short of meeting the handling qualities requirements at low

airspeeds. In particular, at speeds below 300 kts, the time to reach 30◦ bank angle
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was too high. The limited control power of the inboard aileron, coupled with large

roll damping and high roll axis inertia were the underlying reasons.
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Figures 6.27 and 6.28 shows the improvement in roll response obtained with an

internally blown inboard aileron at a blowing coefficient of Cu = 0.2. In particular

the roll angle response (φ2) is faster and the aileron (δa2) does not saturate. The roll
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rate (p2) with flap blowing is also higher. The time to reach −30◦ bank angle at a

speed of 200 and 300 kts with full aileron deflection of +25◦ is also greatly improved,

but still falling short of Category B and Category C flight phase requirements for a

large transport aircraft.

6.2.3 Directional Control and Blown Flap Rudder

Handling of high crosswinds, asymmetric thrust and suppression of adverse yaw

through an aileron to rudder interconnect puts severe demands on the small winglet

rudders of the BWB. If conventional rudders are to be avoided, it is desirable to

make the winglet rudders as effective as possible. By virtue of their location, in-

creasing the fin surface area is not an option. Alternatively blown flaps may be used

to enhance control effectiveness. To evaluate the effects of a blown flap rudder the

flight control system shown in Figure 6.29 was used.
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Figure 6.29: Lateral FCS loop structure used for non-linear simulation

Table 6.8 shows the schedule of FCS gains as a function of dynamic pressure. Very

high values of gains for aileron to rudder interconnect may be noted, with KARI

exceeding 1.0 at low dynamic pressures. At low speeds the BWB aircraft requires

almost the same amount of rudder as aileron to ensure a coordinated turn.

To evaluate the effects of flap blowing on rudder control, the BWB aircraft was

trimmed at a height of 5,000 ft and an airspeed of 200 kts. The initial off track

distance (y) was set at -1000 m. Negative off track distance means that the aircraft
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q̄ Kw Kβ Kp [Kp]φ KARI

5,000 -3.771 0.561 -1.512 -2.804 1.558
10,000 -2.841 0.961 -0.680 -2.080 0.876
15,000 -2.230 0.934 -0.224 -1.651 0.575
20,000 -1.829 0.680 -0.039 -1.391 0.493
25,000 -1.530 0.404 -0.022 -1.175 0.464

Table 6.8: Lateral FCS - Gain schedule

is to the left of the navigation track and vice versa. The off-track control system

causes the aircraft to bank to the right and brings the aircraft on a zero off-track

within 100 secs. Figure 6.30 shows the time history.

0 20 40 60 80 100 120 140

−1000

−500

0

O
ff

 T
ra

ck
 (

m
)

0 20 40 60 80 100 120 140
−5

0

5

10

15

S
id

e
 S

lip
 (

d
e

g
)

0 20 40 60 80 100 120 140
−10

0

10

20

R
o

ll 
A

n
g

le
 (

d
e

g
)

0 20 40 60 80 100 120 140
−40

−20

0

20

 R
u

d
d

e
r 

(d
e

g
)

Time (sec)

Port Engine Fail 

y
1
 

β
1
 

φ
1
 

δ
r1

 

y
2

β
2
 

φ
2
 

δ
r2

 

y
3
 

β
3
 

φ
3
 

δ
r3

 

1 − Nominal
2 − UnBlown + Engine Fail
3 − Blown Rudder + Engine Fail 

C
u
 = 0.2 

Alt = 5000 ft, V = 200 kts 

Figure 6.30: Yaw axis response with flap blowing on rudder at Cu = 0.2

With the sideslip suppression system operative, a port engine failure was simulated

at 30 seconds. The asymmetric thrust generated by the starboard engine causes

a negative yawing moment. The aircraft starts to generate a positive sideslip. In

order to suppress this sideslip a negative rudder deflection is generated by the FCS.
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On Figure 6.31 three time histories are plotted. Case 1 is the nominal case with

no engine failure or flap blowing. Very little sideslip is noted and the only rudder

deflections necessary are in the first 30 seconds for turn coordination.

Case 2 shows the results for the unblown case with port engine failure. The rudder

quickly saturates at −30◦ and the sideslip is not suppressed. Although not shown

this large of amount of sideslip (β2) also generates a significant roll moment caus-

ing a non zero trim aileron deflection. Under a high enough sideslip, the aircraft

may diverge in both the roll and yaw axis simultaneously. However in this case the

aircraft eventually recovers from saturation and back onto the reference trajectory.

Figure 6.31 shows the XY path taken by the aircraft.

Case 3 is similar but now with the rudders blown at Cu = 0.2. The sideslip is ef-

fectively suppressed to less than 2◦ even at the onset of port engine failure. Unlike

the previous case, the trim rudder deflection (δr3) never hits the saturation limit

and the flight path on Figure 6.31 shows a nominal behavior, except for a constant

offtrack error at the end of flight path at point B, due to the presence of a constant

negative yawing moment from the starboard engine about the centre of gravity.
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For this analysis, the starboard engine was assumed to be located at an offset of 5

m from the centreline. In practice higher offsets are likely, hence the sideslip and

the resulting drift from nominal trajectory are expected to increase. To sustain level

flight, a trim thrust value of 320 kN was required from each of the centreline and

the starboard engines. A 3×440 kN engine configuration was assumed, so the thrust

from the 275 kN Trent 500 engine was upscaled to simulate this flight condition.

6.3 Controls Performance with Thrust Vectoring

Thrust vectoring is an alternate method to enhance controls performance. However

its implementation for a commercial civil transport has never been implemented. For

the blended wing body case however, absence of a horizontal stabilizer has renewed

interest in this option. Researchers at the Silent Aircraft Initiative [4] are already

suggesting some level of thrust vectoring in their designs [5]. Trim results with pure

TVC follow.
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Figure 6.32: Trim Nozzle deflections for pure TVC

Figures 6.32 and 6.33 show the required nozzle deflection and trim throttle as func-

tion of calibrated airspeed in the pure TVC mode . Various CG positions were

considered. It is observed that with a TVC moment arm of 25 m and xcg = 29.4 m,

the required nozzle deflections exceed 30◦ above 200 knots. Thus implementation

of a pure TVC scheme is improbable, rather it would be much more feasible to use

TVC in combination with Aerodynamic Flight Control (AFC), especially in those
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Figure 6.33: Trim Throttle for pure TVC

parts of the flight envelope where the AFC is weak, such as at take-off or landing.

Results for pure TVC control and TVC+AFC are now presented. Figure 6.34 shows

switching from pure AFC to pure TVC at an altitude of 5000 ft and an airspeed

of 200 kts. The inner stability augmentation loops are still under AFC control,

primarily due to the higher bandwidth of the elevator servos, only the pitch angle

control or trim is maintained by the vectored thrust. In the pure TVC mode, the

trim angle of attack is reduced by almost 20% and the trim elevator to almost zero.

The system is able to hold both speed and altitude by use of vectored thrust.

Figure 6.35 illustrates the corresponding engine parameters. The trim nozzle deflec-

tion settles at almost +30◦ as predicted. The loss in axial thrust is compensated

automatically by the FCS through an 8% increase in throttle setting. The rise in

TET is +75K. From Figure 6.35 it is noted that at all times the throtte setting was

above 80% and therefore there was always an adequate amount of thrust available

for the pure TVC mode. However as soon as the net axial thrust drops either due to

an increase in altitude or a decrease in throttle setting, the pure TVC mode is not

able to maintain pitch trim and aerodynamic control is necessary. Thrust vectoring

would be thus be most effective at take-off, when throttle is at a maximum.

Another possible option is to augment the aerodynamic controls by limited TVC.

Figures 6.36 and 6.37 show some interesting results for AFC+TVC mode, with
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Figure 6.35: Pure TVC Mode : Trim throttle and nozzle deflection, xcg = 29.4 m

δnoz = δe. Trim elevator deflections reduce by almost 30% and angle of attack by

4.6%. Interestingly, the effect on throttle position and TET was negligible, primarily

due to the reduction in angle of attack and corresponding trim drag. Similar results

were achieved if fixed and limited TVC (< 10◦) is used. The AFC+TVC mode in
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Figure 6.36: AFC + TVC Mode (δnoz = δe) : Pitch control at 200 kts, xcg = 29.4 m
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combination with flap blowing has the potential to provide a solution to the controls

saturation problem. The following trim analysis shall look into this in more detail.
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6.4 Trim Results with Flap Blowing and TVC

This chapter is concluded by presentation of trim results in presence of flap blowing

and TVC. Fixed values of TVC and blowing momentum coefficients will be assumed.

The aim is to reduce the trim elevator deflection, angle of attack and throttle setting.

Augmentation of aerodynamic controls with TVC is considered first.

6.4.1 Trimming with AFC + Fixed TVC

Consider the trim angle of attack results with a range of fixed thrust vectoring angles

in Figure 6.32. A straight and level flight condition was assumed. For the nominal

case with (TVC = 0◦), the trim angle of attack at an airspeed of 150 kts reaches

+16.8◦, which may lead to flow separation. Vectored thrust at 10, 20 and 30 degrees

provides the necessary pitching up moment and recovers some of the lost trim lift

coefficient. Although 30◦ of thrust deflection may be difficult to implement, even

with a TVC of 20◦, the trim angle of attack is reduced to a more acceptable level

of +14.6◦, though still on the high side. At higher speeds of more than 200 kts, the

angle of attack is only weakly influenced by thrust vector control.
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Figure 6.38: AFC + Fixed TVC (δnoz = 10◦) : Trim angle of attack, xcg = 29.4 m

The corresponding trim elevator deflections for the AFC + TVC configuration are

presented in Figure 6.39. For 10◦ of TVC, the trim elevator deflection is −6.2◦,
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recovering from −20.8◦ with no TVC. Thus vectored thrust strongly influences the

trim elevator deflections. From the above results it seems that a good and practical

TVC range for the BWB is between 10 and 20 degrees.
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The benefits of reduction in trim angle of attack and elevator deflections by thrust

vectoring comes at a cost. The loss in net available axial thrust by vectored thrust

is compensated for by an increase in throttle setting. Figure 6.40 shows the results.

What however is encouraging is that up to 10◦ of TVC the increase in trim throttle

is minimal (< 4%). Beyond this range the thrust loss becomes significant.

6.4.2 Trimming with Blown Flaps

It was shown in Section 6.1 that either full span flap blowing using IPC bleed air

or blowing just the central flaps with exhaust (main + bypass) air in an externally

blown flap arrangement can improve flap effectiveness and reduce trim deflections.

Trim results for the central flap blowing case are now presented.
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Figure 6.41: AFC + Central flap blowing (Cu = 0.2) : Trim angle of attack, xcg =
29.4 m

The gains achieved in terms of reduction in angle of attack by flap blowing (Fig-

ure 6.41) are relatively less than the vectored thrust case. However, the trim elevator

deflections are strongly influenced by flap blowing as shown in Figure 6.42. For a

blowing coefficient of Cu = 0.2 on the central body flaps (spanning an extent of 26

m) the elevator deflections reduce from −20.8◦ to −9.6◦. This means better control

saturation margin, lesser gains on the controllers and faster response. The trim

angle of attack however is only marginally improved. The reason for this is that

although the flap deflections are reduced, the loss in lift coefficient is still almost
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Figure 6.42: AFC + Central flap blowing (Cu = 0.2) : Trim elevator, xcg = 29.4 m

the same and requires an almost similar angle of attack to sustain the weight of the

aircraft.
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6 Propulsion and Controls Integration

The trim throttle also reduces in proportion with reduction the trim angle of attack

and is illustrated in Figure 6.43. Trim results for flap blowing and thrust vectoring,

at an airspeed of 150 kts are put together in Table 6.9 for comparison purposes.

No AFC with Central Flap Blowing AFC + TVC

Cu [α]trim [δe]trim [δT ]trim δNoz [α]trim [δe]trim [δT ]trim

1 0.0 16.80 -20.8 0.97 0.0 16.8 -20.8 0.97
2 0.05 16.49 -14.1 0.96 10.0 15.9 -6.2 1.01
3 0.10 16.25 -12.0 0.95 20.0 14.6 +5.9 1.10
4 0.20 15.80 -9.6 0.94 30.0 12.8 +21.0 1.20

Table 6.9: Trim results with central flap blowing and TVC at 150 kts CAS

6.5 Chapter Summary

Various aspects of propulsion and controls integration for the BWB were covered in

this chapter. The results may be summarized as follows.

• Adjustment of slot height and the wing nozzle pressure and temperature [P,T]

establishes the mass flow and jet velocity through the slots on the wing trailing

edge. Slot heights of up to 3 mm were tested. Bleeding from the end of

intermediate compressor IPC(1.0) at 4300 Fan RPM causes almost 40% of IPC

net mass flow to be bled and significant deterioation in engine performance.

If the engine is not matched for permanent IPC bleed and full span blowing

is to be incorporated, slot height has to be limited to keep bleed mass flow

within acceptable limits. The rise in TET, IPC choking and HPC surge can be

avoided by bleeding the IPC at an earlier station along its axial length. Even

with IPC(0.25) the gains in flap effectiveness were not highly compromised.

• Higher throttle settings provide higher blowing coefficients and greater flap

effectiveness. Similarly lower airspeeds or reduced dynamic pressures increase

the blowing momentum coefficient.

• At design engine speed, with 2 mm bleed slot height and an IPC bleed location

of x/l = 0.25, approximately 20% increase in flap effectiveness can be achieved

with a +72K rise in TET.

170



6 Propulsion and Controls Integration

• The rise in TET due to IPC bleed can be avoided by bleeding the LPC stage or

matching the engine for permanent IPC bleed. Both these options can provide

much higher blowing coefficients without affecting engine performance.

• Both thrust vectoring and flap blowing have the potential to increase flap

effectiveness. Elevator deflections were shown to be reduced to half with a

central flap blowing coefficient of 0.2. Similar results were achieved for the

aileron and the rudder.

• To keep the blowing duct diameter small, it is suggested that minimal bleed

be taken from the intermediate compressor. To achieve this, only selective

flaps such as aileron and the winglet rudders may be blown at lower airspeeds.

For the longitudinal axis, it is suggested to use external flap blowing directly,

thus not only providing larger blowing coefficients, but also a mechanism to

deflect thrust, thus eliminating the need for special thrust vectoring nozzles.

The amount of thrust deflection that can be actually achieved with such an

arrangement shall however requires further CFD/experimental work, and can

be made part of future research.
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Chapter 7

Landing and Take-off Performance

7.1 General Description

This chapter may be considered as a continuation of the previous chapter on propul-

sion and controls integration, however it considers the longitudinal axis only and

takes a closer look at the landing and take-off phases. The aim is to expand upon

the results obtained earlier and investigate the benefits of thrust vectoring or flap

blowing for these particular low speed flight conditions.

To achieve the above objective, a non-linear six degree of freedom flight simula-

tion was programmed in the C Language in which both the strip element airframe

and the engine models were simulated in real time. Body axis equations of motion

were used for the aircraft and the engine model was implemented using the hy-

brid approach developed earlier. The atmospheric properties were simulated using

the international standard atmospheric (ISA) model. The simulation runs in real

time with 76 strip elements and provides a visual environment to study both air-

craft dynamics and engine responses simultaneously. Blowing coefficients can be user

specified or set by means of adjusting the slot height and specifying a bleed location.

A flight control system (FCS) was also designed that provided control with both

AFC and TVC modes. The design of this FCS is covered in Appendix C. Figure 7.1

shows a snapshot of the simulation showing a graphical representations of the engine

and the aircraft.
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7 Landing and Take-off Performance

Figure 7.1: BWB and engine simulation output window
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7 Landing and Take-off Performance

7.2 Landing with TVC and Flap Blowing

Various parameters are important in the approach and landing task, these include

the approach speed, the maximum landing weight, the approach attitude or pitch

angle and control deflections. For a conventional aircraft, both take-off and land-

ing are performed with a high lift configuration, so that the take-off and landing

speeds are low and the pitch attitude is usually not more than 5-7 degrees. For

the BWB aircraft however, a high lift configuration is difficult to use as there is no

horizontal stabilizer to trim the resulting negative pitching moment from the wing,

consequently for nominal static margins, the approach attitude and trim elevator

deflections are unusually high.

The landing task considers a BWB aircraft making a runway approach from an

initial lateral offset of 1 km and a down-range of 10 km. An approach airspeed of

160 kts was to be maintained at a glide slope of −2.5◦. Results for AFC + TVC =

10◦ and with addition of central flap blowing at Cu = 0.2 are presented. The aim of

TVC and flap blowing is to reduce the landing performance parameters (approach

attitude and trim elevator) stated above. For simplicity, the under-carriage model

and the ground effects were not simulated, however ground friction and braking were

included. Figure 7.2 shows the approach trajectory from point A to B under FCS

control.
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Figure 7.2: Glide slope coupler with an initial lateral offset of -1000m
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7 Landing and Take-off Performance

7.2.1 Landing with Fixed TVC

Figure 7.3 shows the time histories for approach/landing task with and without

TVC. Case A is the nominal configuration under pure aerodynamic flight control

(AFC) whereas case B is with addition of fixed thrust vector control of 10◦. The CG

position was set at a nominal value of 29.4 m corresponding to a static margin of 18%.

A forward CG location was selected so as to ascertain the benefits of TVC or flap

blowing for flight cases when aerodynamic controls on the BWB are near saturation.

For the pure AFC (case A), the trim elevator deflections are high (−17.2◦) along

with an angle of attack of +11.3◦. When TVC is activated at 75 seconds, the trim

elevator deflections reduce to −9.8◦ and the angle of attack reduces by 4.5%. The

throttle however increases by 1.0% due to loss of net axial thrust, which is not a

significant price to pay. The reduction in angle of attack is marginal as compared

to reduction in trim elevator deflection as the vertical component of thrust acts

downwards and takes away a significant portion of lift. Thus to sustain the weight

of the aircraft, the angle of attack remains high.
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7.2.2 Landing with Fixed TVC + Flap Blowing

In Figure 7.4, the addition of flap blowing to TVC has similar effects, except the

trim throttle reduces by 5.0% for a blowing momentum coefficient of 0.2 on the

central flaps. The angle of attack, the trim elevator and the pitch attitude reduce

further. The reduction in trim throttle could be explained by the fact that with flap

blowing the reduction in angle of attack causes a net reduction in trim drag and

hence the thrust required to maintain flight. The net reduction in angle of attack is

now 10% which is significant. Table 7.1 summarizes these results.
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Figure 7.4: Landing with TVC = 10◦ + Central flap blowing at Cu = 0.2

No TVC Cu ∆α (%) ∆δe (%) ∆δT (%)

1 0 0 0 0 0
2 10.0 0 -4.50 -46.0 +0.62
3 10.0 0.05 -6.26 -61.3 -1.12
4 10.0 0.10 -7.75 -66.3 -2.45
5 10.0 0.15 -9.07 -69.8 -3.67
6 10.0 0.20 -10.4 -72.4 -4.82

Table 7.1: Approach/Landing performance with TVC and central flap blowing
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7.3 Take-off Performance

7.3.1 Description of Take-off Phases

Before considering the take-off performance for the BWB, it is pertinent to review

some of the basic definitions and requirements for the take-off phase. These are

illustrated in Figure 7.5 and explained below.

h = 500ft

V2 � h = 50ft
VLOFVROT

ClimbTransition

? ?V = 0

Ground Run Rotation

Figure 7.5: Take-off phases

• Ground Run - During the ground-run phase the aircraft accelerates from

V = 0 to VLOF in Tg seconds. The distance covered during this phase is Rg.

The angle of attack remains constant as determined by the landing gear ge-

ometry and the velocity vector remains parallel to the runway.

• Rotation - After the aircraft has built up sufficient speed for aerodynamic

controls to become effective, the aircraft is rotated to a higher angle of attack.

At this moment the aircraft speed is

V = VLOF = k1Vstall (7.1)

where

Vstall =

√

W

1/2ρSCLmax
(7.2)

and k1 = 1.1 or 1.15 depending upon the type of aircraft. The trouble with

the BWB is that the lift coefficient is a strong function of elevator deflection.

As soon as the flaps are deflected negative (upwards) the lift coefficient drops.

The result is that a higher lift-off speed is needed so that the flaps are more

powerful and need to be deflected less to achieve the desired nose rotation.
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7 Landing and Take-off Performance

• Transition - From the time the aircraft breaks ground until it reaches an

altitude of 50 ft and a speed of V2 = 1.2Vstall or greater, it is considered to be

in transition phase. The total horizontal distance traveled by the aircraft from

start of ground-run to the end of transition phase (clearance of 50 ft obstacle)

is the take-off field length.

7.3.2 Forces and Moments on BWB During Take-off

Consider a BWB aircraft in take-off run in Figure 7.6. During the take-off phase

additional forces and moments come into play, such as ground friction and reaction.

In addition, the pitch rotation takes place about the main landing gear and not the

centre of gravity. This means that the weight of the aircraft along Z-body axis,

Zg and the Z-axis aerodynamic force, Za, also exert a moment about the landing

gear. The distance of the CG from the main landing gear, l1, thus becomes an

important consideration. In addition the axial thrust, XE also exerts a negative

pitching moment about the main landing gear. Since the engines are assumed to

be embedded within the fuselage, the perpendicular distance of thrust line from the

ground, h, has to be kept to a minimum. This all is bad news for the BWB as the

elevators have already been shown to be less effective at low airspeeds, overcoming

these additional pitching moments during take-off therefore becomes an issue.
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Figure 7.6: Forces and moments on the BWB during take-off

The pitching moment equation used for take-off analysis is given below. The reaction

force from the nose landing gear has been neglected.

MLG = Ma − (Za + Zg)l1 − (Xa +XE)h+ ZEl2 (7.3)

Here Ma represents the aerodynamic moments about the CG including the blown

flap effects and the term ZEl2 represents the positive pitching moment due to vec-

tored thrust. For the current analysis, l1 was set at 4.0 m, l2 at 16.0 m and the

perpendicular distance of thrust line from main landing gear, h, was set at 3.0 m.
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7.3.3 Nominal Un-Assisted Take-off

For take-off simulations, following assumptions were made, (i) ground friction co-

efficient was taken as 0.016 as per reference [7] and is typical of rolling friction

coefficients for hard rubber on concrete, (ii) a maximum take-off weight (MTOW)

of 371,280 kg and (iii) a nose gear pitch setting angle, θLG = 0◦.
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Figure 7.7: Take-off simulations for BWB aircraft, (No TVC or flap blowing)

Figure 7.7 shows the range, speed and altitude profiles during the take-off phase.

No TVC or flap blowing was applied. The nose rotation speed, VROT , was adjusted

from 160 kts for case A to 200 kts for case B. With minor variations, the lift-off

speed, VLOF , was approximately 253 kts and the lift-off range, RLOF , was 2.59 km.

With reference to Figure 7.8, at about 20 seconds or an airspeed of 160 kts, the

elevator deflection is set at −25◦ (max) by the FCS in an attempt to bring the aircraft

nose up to a pitch demand of +12.5◦. The nose however does not start to rotate

until about 30 seconds and the lift-off occurs above 250 kts when sufficient angle of

attack has built up. These take-off characteristics for the BWB can be explained by

the breakdown of pitching moment about the main landing gear (Figure 7.8).
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Figure 7.8: Pitch moment break down about the main landing gear

• ZEl2 - Since no thrust vectoring is assumed this component is zero.

• (XE +Xa)h - When XE > Xa i-e thrust greater than aerodynamic drag, the

pitching moment about main landing gear due to these forces is negative.

• (Za + Zg)l1 - At low airspeeds and small angle of attack Zg > Za, i-e the

weight of the aircraft is much higher than lift and since the CG is ahead of the

main landing gear by distance l1, the pitch moment due to these Z-axis forces

is again negative or nose down. Only at a higher airspeed and angle of attack

during the pitch rotation phase does this component reverse and act upwards.

• MaCG - The only nose up pitching moment comes from the elevator, which gets

stronger as the airspeed is built up. At a certain airspeed, the net moment

about the landing gear (MLG) becomes positive and the nose begins to rotate.

Various parameters strongly affect these take-off simulation results, such as the

distance of main landing gear from the CG (l1 = 4 m), the height of the thrust

line from the ground (h = 3 m), and the nose landing gear pitching offset angle

(θLG = 0◦). However the purpose of this exercise is to establish a worst case baseline

and then evaluate the increments above it due to propulsion/controls integration.
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7.3.4 Take-off Performance with TVC and Flap Blowing

It was observed in the previous section that when the trailing edge flaps on the

BWB are deflected for pitch rotation there is a significant drop in lift or the Z-axis

aerodynamic force, Za. This is a problem specific to tailless designs, due to the dual

role of wing in producing lift and provision of longitudinal controls. The aircraft

thus has to attain a higher dynamic pressure and angle of attack for lift-off. Use of

thrust vectoring is therefore an attractive option to achieve early pitch rotation.

Take-off Performance with TVC - Figure 7.9 shows take-off simulation results

for vectored thrust up to 20◦. For a fixed TVC of 20◦, the lift-off speed reduces

from 253 to 193 kts and the lift-off range reduces to 1413 m. This is a significant

improvement. The TVC however should be applied only when the pitch rotation

is required, after the aircraft enters the climb phase, use of TVC will restrict the

maximum achievable rate of climb. Similar results were achieved by use of the blown

flap arrangement.
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Take-off Performance with TVC and Externally Blown Flaps - Figure 7.10

shows results of TVC of 10◦ and flap blowing on the centre-body at Cu of 0.2. The

results are quite similar to the TVC with 20◦, the lift-off speed is now reduced to

187 kts at lift-off range of 1330 m.

As in Figure 7.11, as soon as the elevator is applied at the rotation speed of 160

kts, the nose of the aircraft begins to rotate. The pitching moment due to vectored

thrust (ZEl2) is now positive and corresponds to a TVC angle of 10◦. The elevator

also does not saturate as in the un-assisted take-off case, and the pitch angle error

is reduced very quickly. The effect of blown flaps appears in the form of increased

aerodynamic pitch moment about the CG. This in combination with the pitching

moment from TVC are enough to rotate the nose even at an airspeed of 160 kts.

It may be mentioned here that these results are representative, in actuality there

are many parameters aerodynamic, geometric or environmental that will affect the

take-off performance. A summary of these results is presented in Table 7.2.
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Figure 7.10: Take-off performance with limited TVC and central flap blowing
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No TVC Cu VROT RLOF ∆RLOF VLOF ∆VLOF

deg kts m (%) kts (%)

1 0 0 160 2590 0 253 0
2 10.0 0 160 1998 -22.86 227 -10.28
3 20.0 0 160 1413 -45.44 193 -23.72
4 10.0 0.20 160 1330 -48.65 187 -26.10

Table 7.2: Take-off performance with TVC and central flap blowing
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Figure 7.11: Pitch moments about main landing gear with TVC and flap blowing

7.4 Chapter Summary

This chapter presented the results of TVC and flap blowing for the landing and

take-off flight phases of the BWB. For the landing task use of TVC/flap blowing

reduces the trim elevator deflections significantly and the angle of attack and trim

throttle settings marginally. Use of limited TVC and central flap blowing for the

take-off phase have very significant benefits in terms of reduction of take-off field

length and lift-off speeds. A careful airframe/propulsion integration and controls

augmentation can result in large pay-offs for these low speed flight conditions.
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Chapter 8

Conclusions and Further Research

This chapter concludes this research work and presents a summary of the main

findings. In addition, it suggests some guidelines for further research on the subject.

8.1 Conclusions

The integration of propulsion and flight control systems for the BWB aircraft is

a multidisciplinary design problem. Excluding structural aspects, it involved at

least three major areas, namely, (i) the propulsion system, (ii) the airframe and

the last but not the least (iii) the flight control system. Thus the basic research

question needed expertise in all these well defined and intricate disciplines. It was

therefore difficult for a single researcher to be able to address all these areas with

equal efficacy, however a humble effort has been made in a limited time frame and

certain conclusions were drawn. These are summarized as follows.

• Control Authority of the Baseline Configuration - Longitudinal trim

analysis reveals that for nominal static margins (Kn > 15%) and low airspeeds

(V < 200 kts), large negative elevator deflections are required to maintain trim

and as a consequence the BWB aircraft looses much of its lift generation capa-

bility. This is contrary to what is desired at take-off and landing speeds when

the required lift coefficient must be high to sustain the weight of the aircraft.

If conventional aerodynamic controls are to be retained it becomes apparent

from longiudinal trim analysis alone that the only efficient way to fly the BWB

aircraft is to fly it either neutrally stable or at a much reduced static margin

(5% < Kn < 10%). A similar analysis for the lateral directional axis shows

that at low dynamic pressures, the small winglet rudders are not sufficient to

maintain direction under an asymmetric thrust flight condition.
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These results however do not come as a surprise since the BWB design neither

has a conventional horizontal stabilizer or a vertical fin. A price has to be

payed in order to achieve the promised high speed aerodynamic efficiency. To

conclude, both rudder and elevator control authority augmentation are con-

sidered necessary at landing and take-off speeds.

• Linear Dynamics and Stability Augmentation - Longitudinal linear

analysis suggests that as soon as the static margin gets below 10%, the short

period mode detoriates rapidly. This is contrary to the longitudinal trim re-

quirements where a lower static margin is desirable. In either case, a stability

augmenation system (SAS) using angle of attack and pitch rate feedback was

designed and implemented, ensuring Level 1 flying qualities throughout the

flight enevelope. This flight control system was found to work adequately well

even with the blown flap and thrust vectored arrangements.

The open loop lateral-directional dynamics were very poor, with strong roll/yaw

cross coupling and high values of adverse yaw. The dutch roll mode is very

slow and poorly damped however it was improved using sideslip and yaw rate

feedback but higher gains had to be used due to limited rudder control power.

The adverse yaw problem was also severe, and large values of aileron to rudder

interconnect were required to maintain coordinated turns. In fact at low air-

speeds, the aileron to rudder interconnect gain (KARI) exceeds 1.0, that is the

same amount of rudder deflection as the aileron. Considering its small size,

both the static and dynamic requirements on the winglet rudder are severe.

The roll axis was also found to be sluggish due to the large roll axis inertia.

The inboard ailerons were not able to meet the handling qualities require-

ments at low airspeeds, necessitating the use of control allocation or use of

additional outboard flaps for the roll control below 200 kts. This means a

further reduction in pitch control authority and strengthening of the earlier

argument for using alternate means of control augmentation for the pitch axis.

• Propulsion and Airframe Models with Blown Flap Effects - A hy-

brid three spool turbofan model using a combination of iterative and inter-

component volume techniques was developed. The model provided valuable

insight into the effects on engine performance due to IPC/LPC bleed, re-

quired for flap blowing or due to thrust vectoring, required for pitch controls
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augmentation. Subsequently a BWB aerodynamic model using strip element

techniques and Engineering Sciences Data Units (ESDUs) was developed and

validated against the baseline [7]. The effect of trailing edge flap blowing and

the corresponding increase in lift coefficient was incorporated in the model

using the Spence’s jet flap theory [14].

Flap blowing causes a significant increase in flap effectiveness (CLδe ) and there-

fore the pitching moment (Cmδe ) produced by it. For positive flap deflections,

usually required for high lift, the change in lift coefficient (∆CLδe ) is positive

and the pitching moment negative. For negative flap deflections, required for

pitch trim, the converse is true. Flap blowing has traditionally been used to

generate high lift, however the accompanying negative pitching moment is a

problem for the BWB. This negative pitch moment has to be overcome ei-

ther by a provision of an additional control surface such a canard, or through

propulsive means, before the full potential of flap blowing for high lift can

be realized. For the BWB aircraft however, the flaps are deflected negative

to maintain pitch trim, the effect of blown flaps appears as reduction in trim

elevator deflections or greater pitch control power.

The increments in lift and pitching moments were evaluated at various blowing

coefficients, Cu, for full span flap blowing. Even for a conservative Cu of 0.2

at +25 deg flap deflection, the increment in lift coefficient (∆CLδe ) exceeds

1.0, but at the same time is also accompanied by a strong nose down pitch

moment. For the lateral-directional axis the control power was doubled at

Cu = 0.2 for both the inboard aileron and the winglet rudder.

• Allowable Engine Bleed and Achievable Blowing Coefficients - With

the engine and airframe models in place, it was now possible to integrate these

models in a non-linear simulation environment. Allowable engine bleeds, suit-

able bleed locations and the achievable blowing coefficients were the first few

questions to be answered.

1. IPC Bleed - Internal Flap Blowing - Bleeding from the end of inter-

mediate compressor IPC(1.0) with a 3 mm slot height at 4300 Fan RPM

causes almost 40% of IPC net mass flow to be bled and a significant

degradation in engine performance. The resulting blowing coefficients

were just below Cucrit = 0.02−0.03, the minimum momentum to prevent
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flow separation. If the engine is not matched for permanent IPC bleed

and full span blowing is to be incorporated, slot height has to be limited

to keep bleed mass flow within acceptable limits. The rise in TET due

to IPC bleed, IP compressor choking and HP compressor surge can be

avoided by bleeding the IPC at an earlier station along its axial length.

Even with an IPC bleed location of x/l = 0.25, the gains in flap effec-

tiveness were not highly compromised. An alternate and more feasible

option is to match the engine for permanent IPC bleed, this however re-

quires freezing the airframe design first to establish bleed requirements.

The airframe and engine designs thus become inter-dependant. Both of

these options can provide much higher blowing coefficients with relatively

lower penalties on engine performance. However to keep the blowing duct

diameters small it is suggested that minimal bleed be taken from the in-

termediate compressor. To achieve this, only selected flaps such as the

aileron or the winglet rudder may be blown at lower airspeeds.

2. LPC Bleed - External Flap Blowing - If the LPC/Fan stage is used

for flap blowing, the Fan exit pressure is generally less and therefore

the jet velocities are low. However there is theoretically no limit on the

amount of mass flow that could be used for flap blowing. A feasible option

is therefore to consider all of the LPC/core mass flow for external flap

blowing for the center body section which has a span of 26 m. Thus all the

mass flow from the engine exhaust impinges upon the center body flaps.

Blowing coefficients in excess of 0.25 were shown to be easily achieved

in this way. For the longitudinal axis or pitch control, it is suggested to

use external flap blowing directly, thus not only providing larger blowing

coefficients, but also a possible mechanism to deflect thrust. The amount

of thrust deflection that can be achieved with such an arrangement shall

however require further CFD/experimental work, and can be made part

of future research.

• Controls Performance with Flap Blowing and TVC Two aspects of

controls augmentation from the propulsion system were considered, namely

thrust vectoring and flap blowing.

1. Thrust Vector Control (TVC) - For nominal static margins, pure

thrust vectoring is able to maintain pitch trim but only under high thrust

conditions. At lower throttle settings, the nozzle deflection exceeds nom-

inal limits. However, thrust vectoring is effective when used in combina-
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tion with aerodynamic flight controls (AFC). For the low speed approach

flight condition at 160 kts and with AFC assisted by just 10◦ of fixed

TVC, the trim elevator reduces by 46%, angle of attack by 4.5% and

accompanied by only a marginal increase in trim throttle setting. The

main benefit occurs in the take-off flight condition, where thrust vector-

ing helps in achieving early pitch rotation, thus significantly reducing the

take-off field lengths and the lift-off speeds. For example with 10◦ of

TVC, lift-off range reduces by 22% and lift-off velocity by almost 10%.

2. Flap Blowing - Utilization of blown flaps had similar effects. Blown

flaps were helpful in reducing trim flap deflections during approach and

landing and reducing lift-off distances during take-off runs. For example

addition of central flap blowing at Cu = 0.2, in addition to 10◦ TVC,

reduces the lift-off distance by another 25% and lift-off velocities by a

further 15%. Similarly, at approach speeds, flap blowing makes the flaps

more efffective, resulting in a reduction of trim flap deflections. This is

accompanied by a marginal reduction in angle of attack, which reduces

induced drag and hence in turn the required thrust to sustain flight. For

an approach case at 160 kts, addition of central flap blowing at Cu = 0.2

in addition to 10◦ of TVC, reduces trim elevator deflections by a further

26% and the throttle setting by almost 5%.

To conclude, both flap blowing and thrust vector control have comparable

advantages in provision of additional of pitch, roll and yaw control powers.

For the BWB aircraft in particular when operating with forward CG locations

at low airspeeds, controls begin to saturate and the angle of attack begins to

increase. Provision of propulsion augmentation to the aerodynamic controls at

these low speed flight conditions has potential benefits if implemented properly.

However a multi-disciplinary design approach has to be adopted to make the

overall integration of airframe, flight control system and the propulsion system

successful.
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8.2 Further Research

With regards to future work on the subject, following suggestions are made,

• Experimental/CFD Aerodynamic Data - The aerodynamic models de-

veloped in this work used both empirical (ESDUs) and vortex lattice methods

(VLM) to predict lift, drag, pitching moment and other aerodynamic charac-

teristics for the BWB. Effect of blown flaps was added using the well estab-

lished jet-flap theory [14]. This aerodynamic model however must be further

improved using either CFD techniques or experimental methods for aerody-

namic prediction. These methods will provide better aerodynamic estimates

for the blown flap configuration and a more accurate control systems analysis

can be carried out.

Trailing edge flap blowing or distributed propulsion concepts have the poten-

tial of reducing the overall drag by re-energizing the low energy wake from the

trailing edge [42]. In the current work, only lift and pitching moment were of

specific interest and no effort was made to evaluate the reduction in aerody-

namic drag due to trailing edge blowing. Any future work must also address

this important aspect of aircraft design.

It has been reported in this work that externally blown trailing edge flaps on

the center section can provide a possible mechanism of thrust deflection. How

much thrust deflection can practically be achieved with such an arrangement

was however not investigated. If feasible, this may provide a simple and effi-

cient way of vectored thrust for the BWB, which was considered to be valuable

during the take-off and landing phases.

• A Higher Thrust Engine Model - At the start of this research work, the

Trent 500 series engine with a sea-level static thrust of 275 kN was selected.

This was done primarily due to availability of the design point information

for this engine and also due to the fact that the Boeing-747, which is of a

similar weight class uses this engine. However later on, as further analysis was

carried out it was found that at reduced airspeeds, specifically at approach,

the induced drag is very high and a 4×275 = 1100 kN engine configuration is

not enough to maintain the desired flight path. The total thrust was scaled up

to 1650 kN both for take-off and landing analysis. Any future research effort

can expand upon the current propulsion model by updating the compressor
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and turbine maps and other associated engine parameters to simulate a higher

thrust engine.

• Structural and Aerodynamic Interaction - The BWB aircraft consid-

ered in this research had a span of approximately 80 m, structures of such

large size are generally not rigid. The aerodynamic model that has been de-

veloped as part of this work considers the aircraft as a rigid structure, however

the strip element approach allows easy integration of any structural changes

under variable aerodynamic loading. This may include wing bending, torsion

or even flutter. Structural/aerodynamic interaction aspects may therefore be

also considered for further research.

• Modifications to the Basic Airframe - Both thrust vectoring and flap

blowing were able to solve the control authority problem, however at lower

airspeeds and high static margins (Kn > 15%) the problem of high angle of

attack remains. A simple an efficient means to solve this problem is to relax

the static margin, which causes significant reduction in both trim angle of at-

tack and elevator deflections. If however, the static margin is to be maintained

as may be desirable for a commercial airliner, an alternate option is to use a

canard arrangement. This has the potential of providing the requisite nose

up pitching moment and reducing the trim angle of attack at low speed flight

conditions. The pros and cons of such a configuration, specifically its effects

on cruise conditions however need to be carefully examined.

The rudder control authority problem for asymmetric thrust conditions was

shown to be improved using a jet flapped rudder. However the size of the rud-

der is still too small and directional stability augmentation gains, specifically

the washout and the aileron to rudder interconnect are too high. If the cruise

drag penalties are not great, it is suggested that conventional twin vertical fins

be incorporated to the basic planform. This will also speed up the dutch roll

by providing natural directional stiffness into the aerodynamic design.

Further research specifically by an aerodynamicist will be required to validate

if the above suggestions are appropriate.
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Appendix A

BWB Data - Baseline

A.1 General Description

This section discusses the geometric, mass and aerodynamic properties for the ref-

erence BWB aircraft, used for model validation and FCS design. The data has been

obtained from a previous work done at Cranfield University by H.D. Castro [7].

Castro actually compared several BWB configurations and in most of the cases the

aerodynamic properties were estimated using computational techniques. Figure A.1

shows the general layout of the aircraft.
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Figure A.1: General layout of the BWB aircraft
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The aircraft has 12 control surfaces numbered from left to right. Two of these

surfaces 6S (starboard) and 6P (port), are on the vertical fins and provide the rudder

function. The remaining 10 control surfaces are located on the trailing edge of the

lifting body and provide for lateral (roll) and longitudinal (pitch) control functions.

It may be noted that nearly all the control surfaces except control surfaces 3S and

3P, are used as elevators. The reason for this unusual control allocation is that a

larger elevator surface is required to compensate for the loss in moment arm caused

by omission of the horizontal tail. Figure A.2 shows the controls convention used.

From reference [7] a maximum flap deflection range of ±30◦ is assumed on all flaps

including the winglet rudder.

+δ
r
 

+δ
e
 

+δ
a
 

X 

Y 

Z 

+δ
r
 = TE Towards Port

+δ
e
 = TE Down

+δ
a
 = Right Aileron Down

Figure A.2: Control convention on the BWB aircraft

A.2 Mass and Inertia Properties

The mass and inertia properties at maximum take-off weight (MTOW) from Ap-

pendix D of reference [7] are listed in Table A.1. The values at maximum landing

weight (MLW) were extrapolated by assuming a reduction in mass from 371,280

to 322,600 kg. From Table A.1, it may be noted that the value of Izz is particu-

larly high, specifically Izz must be less than (Ixx + Iyy), which is not true in this

case. Higher Izz values will cause the lateral directional dynamics to be slower and

therefore difficult to augment, especially in the absence of a conventional rudder.

However noting that Izz values will be on the high side owing to the un-conventional

planform shape and in the absence of any further information on the mass properties
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for this configuration, these inertia values were considered adequate for the initial

control system design and analysis.

Parameter BWB (MTOW) BWB (MLW) Units

Aircraft mass , m 371,280 322,600 kg
Inertia about X axis, Ixx 47.03e+06 40.72e+06 kg-m2

Inertia about Y axis, Iyy 25.06e+06 21.70e+06 kg-m2

Inertia about Z axis, Izz 99.73e+06 86.36e+06 kg-m2

Table A.1: BWB mass and inertia properties [7]

A.3 Geometric properties

The key geometric properties of the baseline BWB aircraft are listed in Table A.2.

Wing Parameter Notation Value Units

Gross area Sgross 1390.6 m2

Wing reference area Sref 841.70 m2

Wing span b 80.00 m
Mean aerodynamic chord c̄ 12.31 m
Trapezoidal aspect ratio AR 7.14 -
Root chord croot 48.0 m
Tip chord ctip 4.0 m

Leading edge sweep ΛLE
Center 63.8 deg
Trapezoidal wing 38.0 deg

Thickness to chord ratio t/c
Centre 16.5%
Maximum 18.0%
Outboard 8.0%

Dihedral Γ
Centre 0.0 deg
Crank 1.5 deg
Outer Wing 3.0 deg

Table A.2: BWB geometric properties [7]

The geometric characteristics of the winglets were not available from Castro’s work,

therefore they were obtained from an alternative source, Qin et. al [63]. These are

given in Table A.3.
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Winglet Parameter Notation Value Units

Fin area Sfin 13.37 m2

Fin aspect ratio Afin 3.73 m
Fin height hfin 5.0 m
Root chord croot 4.0 m
Tip chord ctip 1.35 m
Leading edge sweep ΛLE 28.0 deg
Thickness to chord Ratio t/c 12%

Table A.3: BWB winglet parameters [63]

A.4 Aerodynamic Properties

The aerodynamic coefficients for this model are expressed in the body axis system.

These coefficients are in general a function of body rates (p, q, r), air incidence an-

gles (α, β), geometry changes or controls/flap deflections (δe, δa, δr) and center of

gravity position. The data does not include the effect of Mach and Reynolds num-

ber. The predicted aerodynamic forces and the corresponding longitudinal/lateral

stability characteristics may therefore vary under high-speed flight conditions. The

coefficients CX , CY , CZ represent the force coefficients along the X, Y and Z body

axis whereas roll, pitch and yaw moment coefficients are given by Cl, Cm, Cn.

A.4.1 Normal Force Coefficient, CZ

The normal force coefficient is,

CZ = CZ0 + CZαα +
c

Vt

(

CZqq + CZα̇α̇
)

+ CZδeδe (A.1)

CZ0
CZα

CZδF1
CZδF2

CZδF3
CZδF 4

CZδF5

0.0217 -5.4868 -0.4866 -0.1602 -0.2222 -0.2274 -0.1042

Table A.4: Normal force coefficient (CZ)

XCG (m) 29.4 30.4 31.4 32.4 33.4 34.4

CZq
-1.0787 -0.9678 -0.8568 -0.7459 -0.6351 - 0.5243

Table A.5: Aerodynamic derivative (CZq)

The Z force derivative due to pitch rate, CZq , was a function of CG position, whereas

the derivative due to rate of change of angle of attack, CZα̇, was assumed zero [7].
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Figure A.3: Normal force coefficient (CZ), [all flaps as elevators]

A.4.2 Axial Force Coefficient, CX

The X body force coefficient, CX , is expressed as a 2nd order polynomial of the Z

force co-efficient, CZ , and is analogous to an aircraft’s drag polar.

CX = −
(

Cx0 − Cx1CZ + Cx2CZ
2
)

(A.2)
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Figure A.4: Axial force coefficient (CX)
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Cx0
Cx1

Cx2

0.0117 -0.0200 0.1200

Table A.6: Axial force coefficient polynomial parameters

A.4.3 Side Force Coefficient, CY

For the side force, some of the aerodynamic derivatives CYβ and CYp were expressed

as a function of angle of attack.

CY = CYββ +
b

Vt

(

CYrr + CYpp
)

+ CYδr δr (A.3)

where

CYβ = CYβ0 + CYβαα (A.4)

CYp = CYp0 + CYpαα (A.5)

−10 −8 −6 −4 −2 0 2 4 6 8 10
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

Beta [deg]

S
id

e 
F

or
ce

 C
oe

ffi
ci

en
t −

 C
Y

δ
r
 = −20°

δ
r
 = 0°

δ
r
 = +20°

+δ
r
 = TE towards port = Positive Side Force 

δ
r
 = +20° 

δ
r
 = −20° 

Figure A.5: Side force coefficient (CY ), [p = r = 0]

CYβ0 CYβα
CY p0

CY pα
CY δF1

CY δF2
CY δF3

CY δF4
CY δF5

CYδr

-0.3086 0.4879 -0.0814 2.0666 -0.0092 -0.0060 -0.0088 -0.0154 -0.0184 0.0467

Table A.7: Aero derivatives - side force coefficient (CY )

The Y force derivative due to yaw rate, CYr , was given as a function of CG position.
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XCG (m) 29.4 30.4 31.4 32.4 33.4 34.4

CYr
-0.1555 -0.1655 -0.1675 -0.1750 -0.1800 -0.1940

Table A.8: Aero derivative (CYr)

A.4.4 Roll Moment Coefficient, Cl

Cl = Clββ +
b

Vt

(

Clrr + Clpp
)

+ Clδr δr + Clδaδa (A.6)

where

Clβ = Clβ0 + Clβαα (A.7)

Clp = Clp0 + Clpαα (A.8)

Clr = Clr0 + Clrαα (A.9)

The roll derivative due to yaw rate, Clr , is given as a function of CG position.

Clβ0 Clβα
Clp0

Clpα
ClδF 1

ClδF2
ClδF3

ClδF4
ClδF5

Clδr

-0.0465 -0.3007 -0.3562 0.0735 -0.0274 -0.0230 -0.0442 -0.0644 -0.0396 0.0156

Table A.9: Aero derivatives - roll moment coefficient (Cl)

XCG (m) 29.4 30.4 31.4 32.4 33.4 34.4

Clr0
0.0272 0.0261 0.0250 0.0239 0.0229 0.0218

Clrα
0.5867 0.5797 0.5727 0.5658 0.5588 0.5518

Table A.10: Roll derivative (Clr)

A.4.5 Pitch Moment Coefficient, Cm

The pitching moment coefficient was expressed as,

Cm = Cm0 + Cmαα +
c

Vt

(

Cmqq + Cmα̇α̇
)

+ Cmδe δe (A.10)

The pitching moment derivative (Cmα̇), that exists due to the transient disturbance

in downwash on the tail-plane due to a perturbation in vertical velocity (ẇ) on the

main wing, was assumed zero as there is no tail-plane.
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Figure A.6: Roll moment coefficient (Cl), [p = r = 0, α = 0, δr = 0]

XCG (m) 29.4 30.4 31.4 32.4 33.4 34.4

Cm0
-0.0370 -0.0388 -0.0405 -0.0423 -0.0441 -0.0458

Cmα
-0.9950 -0.5493 -0.1036 0.3422 0.7879 1.2336

Cmq
-0.8799 -0.7809 -0.7001 -0.6374 -0.5929 -0.5665

CmδF1

-0.3562 -0.3168 -0.2771 -0.2375 -0.1981 -0.1585

CmδF2

-0.1046 -0.0916 -0.0786 -0.0656 -0.0526 -0.0396

CmδF3

-0.1432 -0.1252 -0.1070 -0.0890 -0.0710 -0.0530

CmδF4

-0.1944 -0.1760 -0.1574 -0.1390 -0.1206 -0.1020

CmδF5

-0.1238 -0.1154 -0.1068 -0.0984 -0.0900 -0.0814

Table A.11: Aero derivatives - pitch moment coefficient (Cm)

A.4.6 Yaw Moment Coefficient, Cn

The yawing moment coefficient is expressed as,

Cn = Cnββ +
b

Vt

(

Cnrr + Cnpp
)

+ Cnδr δr + Cnδaδa (A.11)

Cnβ = Cnβ0 + Cnβαα (A.12)

Cnp = Cnp0 + Cnpαα (A.13)

Cnr = Cnr0 + Cnrαα (A.14)

This completes the description of aerodynamic coefficients for the baseline BWB.
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Figure A.7: Pitch moment coefficient (Cm), [q = 0, all flaps as elevators]

XCG (m) 29.4 30.4 31.4 32.4 33.4 34.4

Cnβ0
0.0152 0.0114 0.0075 0.0037 -0.0002 -0.0041

Cnβα
-0.2787 -0.2726 -0.2665 -0.2604 -0.2543 -0.2482

Cnp0
0.0134 0.0124 0.0114 0.0103 0.0093 0.0083

Cnpα
-0.8733 -0.8475 -0.8217 -0.7958 -0.7700 -0.7442

Cnr0
-0.0315 -0.0332 -0.0351 -0.0372 -0.0394 -0.0419

Cnrα
0.0867 0.0805 0.0746 0.0690 0.0637 0.0587

CnδF1

0.0016 0.0014 0.0014 0.0012 0.0010 0.0010

CnδF2

0.0012 0.0010 0.0010 0.0010 0.0008 0.0008

CnδF3

0.0014 0.0012 0.0012 0.0010 0.0010 0.0008

CnδF4

0.0028 0.0026 0.0024 0.0022 0.0020 0.0018

CnδF5

0.0042 0.0040 0.0038 0.0036 0.0032 0.0030

Cnδr
-0.0115 -0.0115 -0.0115 -0.0115 -0.0115 -0.0115

Table A.12: Aero derivatives - yawing moment coefficient (Cn)
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Appendix B

BWB Linear Model

This section develops the linear model for the BWB aircraft. Specifically it covers, (i)

the derivation of dimensional derivatives specific to the BWB, (ii) some linearization

results, (iii) validation of the linear airframe model and (iv) variation in longitudinal

and lateral -directional dynamic modes with CG position and airspeed.

B.1 Dimensional Derivatives

This section discusses the derivation of X and Z force derivatives specific for the

BWB, and is then followed by the derivation of the linear model (A,B,C,D matri-

ces). This linear model is subsequently validated using a non-linear simulation and

the output of MATLAB <linmod.m> linearization utility.

The small perturbation equations of motion from Cooke [43] are reproduced below.

For control system analysis, it is desirable that the longitudinal motion of the aircraft

be uncoupled from the lateral motion. To achieve this decoupling, it is assumed that

the trim angular velocities are zero, (P1 = Q1 = R1 = 0). In addition, zero side slip

velocity (V1 = 0) and steady wings level flight (φ1 = 0) are assumed. The linearized

uncoupled longitudinal equations of motion are,

mu̇ = (
◦

Xu +
◦

XTu)u+
◦

Xww +
◦

X ẇẇ +
◦

Xqq +
◦

Xδeδe −mgθ cos θ1 −mqW1 (B.1)

mẇ = (
◦

Zu +
◦

ZTu)u+
◦

Zww +
◦

Zẇẇ +
◦

Zqq +
◦

Zδeδe −mgθ sin θ1 +mqU1 (B.2)

Iyyq̇ = (
◦

Mu +
◦

MTu)u+ (
◦

Mw +
◦

MTw)w +
◦

M ẇẇ +
◦

M qq +
◦

M δeδe (B.3)

θ̇ = q (B.4)

ḣ = sin θ1u− cos θ1w + (U1 cos θ1 +W1 sin θ1)θ (B.5)

203



B BWB Linear Model

and for the lateral-directional axis,

mv̇ =
◦

Y vv +
◦

Y pp+
◦

Y rr +
◦

Y δaδa + gφ cos θ1 −mrU1 +mpW1 (B.6)

Ixxṗ = Ixzṙ +
◦

Lvv +
◦

Lv̇v̇ +
◦

Lpp +
◦

Lrr +
◦

Lδaδa (B.7)

Izz ṙ = Ixzṗ+
◦

N vv +
◦

N v̇v̇ +
◦

N pp+
◦

N rr +
◦

N δrδr (B.8)

φ̇ = p+ r tan θ1 (B.9)

ψ̇ = r sec θ1 (B.10)

Each of the force (
◦

X,
◦

Y ,
◦

Z) and moment (
◦

L,
◦

M,
◦

N) derivatives used in the above

expressions can be obtained by the partial derivation with respective state or control

variables and can be readily found in the literature. However for the BWB aircraft,

the X force coefficient, CX , is expressed in an unconventional form as a function of

normal force coefficient, CZ , and some additional derivations were necessary.

B.1.1 Axial Force (X) Derivatives

X force derivative w.r.t forward velocity, (
◦

Xu)

◦

Xu =
∂X

∂U
=

∂

∂U
(q̄SCX) (B.11)

Taking partial derivatives, with reference area (S) as constant,

◦

Xu = CXS
∂

∂U
(q̄) + q̄S

∂

∂U
(CX) (B.12)

For the BWB, the axial force coefficient (CX) is given as a function of normal force

coefficient (CZ), and with zero side slip (V = 0), we have

CX = −(Cx0 + Cx1(−CZ) + Cx2CZ
2)

q̄ =
1

2
ρ(U2 +W 2)

Substituting for CX and dynamic pressure q̄ in Equation B.12 we get,

◦

Xu = CXS
∂

∂U

[

1

2
ρ(U2 +W 2)

]

− q̄S
∂

∂U

[

Cx0 + Cx1(−CZ) + Cx2CZ
2
]

(B.13)

or
◦

Xu = ρUSCX − q̄S
∂

∂U

[

Cx0 + Cx1(−CZ) + Cx2CZ
2
]

(B.14)
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Since (Cx0, Cx1, Cx2) are constants, the above expression simplifies to,

◦

Xu = ρUSCX − q̄S [2Cx2CZ − Cx1]
∂

∂U
(CZ) (B.15)

Now substituting for CZ ,

◦

Xu = ρUSCX − q̄S [2Cx2CZ − Cx1]
∂

∂U

[

CZ0 + CZαα +
c

Vt
(CZqq) + CZδeδe

]

(B.16)

For a steady non-manoeuvring flight, q = 0, and for small angles, α = W/U ,

◦

Xu = ρUSCX − q̄S [2Cx2CZ − Cx1]CZα
∂

∂U

[

W

U

]

(B.17)

Taking partial derivatives w.r.t U and simplifying the above expression yields,

◦

Xu = ρUSCX +
q̄S

U
[2Cx2CZ − Cx1] [CZαα] (B.18)

whereas the terms U,CX , CZ and α are defined for trim conditions and Cx1, Cx2

are constants used in the expression for axial force coefficient. The remaining X

derivatives were obtained in a similar fashion and are given as,

◦

Xw = − q̄S
U

[2Cx2CZ − Cx1]CZα (B.19)

◦

Xq = −q̄S[2Cx2CZ − Cx1]CZq (B.20)
◦

X ẇ = 0 (B.21)
◦

Xδe = −q̄S[2Cx2CZ − Cx1]CZδe (B.22)

B.1.2 Side Force (Y ) Derivatives

Y force derivative w.r.t side velocity, (
◦

Y v)

◦

Y v =
1

Vt

∂Y

∂β
=

1

Vt

∂

∂β
(q̄SCY )

Substituting for CY ,

◦

Y v =
q̄S

Vt

∂

∂β
(CYββ +

b

Vt

(

CYrr + CYpp
)

+ CYδr δr)

Substituting p = r = 0 for steady level flight and taking partial derivatives w.r.t β,
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◦

Y v =
q̄S

Vt
CYβ (B.23)

The remaining Y force derivatives are given as,

◦

Y r =
q̄Sb

Vt
CYr (B.24)

◦

Y p =
q̄Sb

Vt
CYp (B.25)

◦

Y v̇ = 0 (B.26)
◦

Y δa = q̄SCYδa (B.27)
◦

Y δr = q̄SCYδr (B.28)

B.1.3 Normal Force (Z) Derivatives

Z force derivative w.r.t down velocity, (
◦

Zw)

◦

Zw =
∂Z

∂W
=

∂

∂W
(q̄SCZ)

Taking partial derivatives, with reference area (S) as constant,

◦

Zw = CZS
∂

∂W
(q̄) + q̄S

∂

∂W
(CZ) (B.29)

Substituting for CX , and dynamic pressure, q̄, in Equation B.29 we get,

◦

Zw = CXS
∂

∂W

[

1

2
ρ(U2 +W 2)

]

− q̄S
∂

∂W

[

CZ0 + CZαα +
c

Vt
(CZqq) + CZδeδe

]

Replacing α = W/U for small angles and taking partial derivatives we get,

◦

Zw = ρSCZW +
q̄S

U1
CZα (B.30)

The remaining Z derivatives are given as,

◦

Zu = ρSCZU − q̄S

U
CZαα (B.31)

◦

Zq = q̄SCZq/(Vt/c̄) (B.32)
◦

Zẇ = 0 (B.33)
◦

Zδe = q̄SCZδe (B.34)

Again terms U,W,CZ , α now represent trim conditions.
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B.1.4 Roll Moment (L) derivatives

Dimensional derivatives for the rolling moment (L) are expressed as,

◦

Lv =
q̄Sb

Vt
Clβ (B.35)

◦

Lp =
q̄Sb2

Vt
Clp (B.36)

◦

Lr =
q̄Sb2

Vt
Clr (B.37)

◦

Lδa = q̄SbClδa (B.38)
◦

Lδr = q̄SbClδr (B.39)

B.1.5 Pitching moment (M) derivatives

The pitching moment derivatives are,

◦

Mu = q̄Sc(2Cm − Cmαα) (B.40)
◦

Mw = q̄ScCmα (B.41)

◦

M q =
q̄Sc2

Vt
Cmq (B.42)

◦

M δe = q̄ScCmδe (B.43)

B.1.6 Yawing moment (N) derivatives

Similarly for the yaw axis we have,

◦

N v =
q̄Sb

Vt
Cnβ (B.44)

◦

Np =
q̄Sb2

Vt
Cnp (B.45)

◦

N r =
q̄Sb2

Vt
Cnr (B.46)

◦

N δa = q̄SbCnδa (B.47)
◦

N δr = q̄SbCnδr (B.48)
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B.2 Linearization Results

A MATLAB program was written to evaluate the linear model using the formulation

presented in the previous section. Following is a program output for linearization

about a wings level flight at 400 kts and 10,000 ft altitude. Results from MATLAB’s

linearization utility <linmod.m> are also given at the end for comparison purposes.

=================================================================================

. B W B L I N E A R A I R F R A M E R E S U L T S .

=================================================================================

RESULTS FOR: Vtrim = 400 knots, Height = 3048 m

Date and Time: 19/2/2009 - 1:23pm

==============

1. INPUT DATA:

==============

Wing area :S = 841.700 m2

Wing span :b = 80.000 m

Mean chord :c = 12.310 m

Mass :m = 371280 kg

True Air Speed :Vt = 205.640 m/s

Off-Std Temp Inc :DelT = 25.000 K

Air-density :rho = 0.850 kg/m3

Dynamic Pressure :q1 = 17965.84 N/m2

Mach Number :M1 = 0.597

Body axes moment of inertias:

Ixxb: = 4.7032e+007 kg.m2

Iyyb: = 2.5069e+007 kg.m2

Izzb: = 9.9734e+007 kg.m2

Ixzb: = 0 kg*m2

===================

2. TRIM PARAMETERS:

===================

Trim angle of Attack (alpha) = 4.234 deg

Trim sideslip angle (beta) = 0.000 deg

Trim aileron deflection (da) = 0.000 deg

Trim elevator deflection (de) = -6.867 deg

Trim forward vel (body-axes): U1b = 205.079 m/s

Trim side vel (body-axes): V1b = 0.000 m/s

Trim down vel (body-axes): W1b = 15.184 m/s

Trim Roll rate (body-axes): P1 = 0.000 rad/s

Trim Pitch rate (body-axes): Q1 = 0.000 rad/s

Trim Yaw rate (body-axes): R1 = 0.000 rad/s

Trim Yaw angle (body-axes): PS1 = 0.000 deg

Trim Pitch angle (body-axes): THE1 = 4.234 deg

Trim Roll angle (body-axes): PHI1 = -0.000 deg
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Trim lift co-eff. (CL1) = 0.238

Trim drag co-eff. (CD1) = 0.031

Trim side force co-eff. (Cy1) = 0.000

Trim Roll co-eff. (Cl1) = -0.000

Trim pitch co-eff. (Cm1) = -0.000

Trim yaw co-eff. (Cn1) = -0.000

Trim Normal force co-eff (CZ1) = -0.234

Trim x-thrust co-eff. (CTx1) = 0.032

Trim thrust pitch mom co-eff.(CmT1) = 0.000

=============================

3. AERO DATA: NON-DIMENSIONAL

=============================

Longitudinal Non-dimensional derivatives:

CZu: 0.0000 Cmu: 0.0000

CZalf: -5.4868 Cmalf: -0.9950

CZalfdot: 0.0000 Cmalfdot: 0.0000

CZq: -1.0787 Cmq: -0.8799

CZde: -1.2006 Cmde: -0.9222

CZ0: 0.0217 Cm0: -0.0370

Lateral Non-dimensional derivatives:

Cybet: -0.2725 Clbet: -0.0687 Cnbet: -0.0054

Cybetdot: 0.0000 Clbetdot: 0.0000 Cnbetdot: 0.0000

Cyp: 0.0713 Clp: -0.3508 Cnp: -0.0511

Cyr: -0.1557 Clr: 0.0706 Cnr: -0.0251

Cyda: -0.0088 Clda: -0.0442 Cnda: 0.0014

=========================

4. AERO DATA: DIMENSIONAL

=========================

Longitudinal Dimensional derivatives:

Xu: -912.84 Zu: -5284.88 Mu: 66746.68

Xw: -15351.53 Zw: -407184.13 Mu: 66746.68

Xwdot: 0.00 Zwdot: 0.00 Mwdot: 0.00

Xq: -36689.49 Zq: -976463.77 Mq: -9804961.3

Xde: -682163.88 Zde: -18155289.5 Mde: -171668801.6

Xalf: -3117521.9 Zalf: -82970550.3 Malf: -185218744.1

Xalfdot: 0.00 Zalfdot: 0.00 Malfdot: 0.00

Lateral Dimensional derivatives:

Yv: -20041.55 Lv: -404285.40 Nv: -31732.88

Yvdot: 0.00 Lvdot: 0.00 Nvdot: 0.00

Yp: 419617.70 Lp: -165081078.1 Np: -24068908.6

Yr: -915739.16 Lr: 33206434.8 Nr: -11809994.7

Yda: -133072.25 Lda: -53470851.1 Nda: 1685965.9

Ydr: 706190.25 Ldr: 18872065.1 Ndr: -13912099.2

Ybet: -4121345.37 Lbet: -83137249.7 Nbet: -0.0654

Ybetdot: 0.00 Lbetdot: 0.00 Nbetdot: 0.00
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===============================================================================

5. State Space Matrices

[II]xdot = [AA]x + [BB]u

xdot = [A]x + [B]u

where: [A] = inv[II] [AA]

[B] = inv[II] [BB]

===============================================================================

Longitudinal States Dynamics & Controls Matrix :

================================================

<linafm.m> Output

-----------------

State Vector: x = [ u w q theta h ]

Control Vector: u = [ de dt ]

|udot | |-0.00246 -0.0413 -15.3 -9.77 5.38e-005 ||u | |-1.83 0|

|wdot | |-0.01420 -1.1 202 -0.723 0.000930 ||w | |-48.9 0|

|qdot |= | 0.00266 -0.036 -0.391 0 0 ||q | + |-6.84 0||de|

|thedot| | 0 0 1 0 0 ||the| | 0 0||dt|

|hdot | | 0.0738 -0.997 0 206 0 ||h | | 0 0|

<linmod.m> Output

-----------------

|udot | |-0.00244 -0.0411 -15.28 -9.77 5.39e-005 ||u | |-1.837 4.44|

|wdot | | -0.0145 -1.09 202.4 -0.723 0.000930 ||w | |-48.89 0|

|qdot |= | 0.00265 -0.0358 -0.3911 0 9.65e-019 ||q | + |-6.847 0||de|

|thedot| | 0 0 1 0 0 ||the| | 0 0||dt|

|hdot | | 0.0738 -0.997 0 205.6 0 ||h | | 0 0|

Lateral-Directional States Dynamics & Controls Matrix

=====================================================

<linafm.m> Output

-----------------

State Vector: x = [ v p r psi phi ]

Control Vector: u = [ da dr ]

|uvot | | -0.05400 16.3 -208 9.77 0 ||v | | -0.358 1.902|

|pdot | | -0.00860 -3.51 0.706 0 0 ||p | | -1.137 0.401|

|rdot |= | -0.00031 -0.241 -0.118 0 0 ||r | + | 0.017 -0.139||da|

|phidot| | 0 1 0.074 0 0 ||phi| | 0 0||dr|

|psidot| | 0 0 1 0 0 ||psi| | 0 0|

<linmod.m> Output

-----------------

|uvot | | -0.05398 16.31 -207.5 9.77 0 ||v | |-0.3584 1.9020|

|pdot | | -0.00859 -3.51 0.706 0 0 ||p | |-1.1369 0.4012|

|rdot |= |-0.000318 -0.2413 -0.1184 0 0 ||r | +| 0.0169 -0.1394||da|

|phidot| | 0 1 0.0740 0 0 ||phi| | 0 0||dr|

|psidot| | 0 0 1 0 0 ||psi| | 0 0|

< End of Output >
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B.3 Validation of the Linear Airframe Model

The purpose of this section is to validate the linear airframe model obtained in the

previous section with the help of a non-linear aircraft simulation. The longitudinal

and the lateral-directional axis are considered separately.

B.3.1 Longitudinal Axis

The linearized equations of motion can be re-arranged in state space form as,

Eẋ = Ax+Bu (B.49)













1 −
◦

X ẇ 0 0

0 1 −
◦

Zẇ 0 0

0 −
◦

M ẇ 1 0

0 0 0 1























u̇

ẇ

q̇

θ̇











=













◦

Xu

◦

Xw (
◦

Xq −W1) −g cos θ1
◦

Zu

◦

Zw (
◦

Zq + U1) −g sin θ1
◦

Mu

◦

Mw

◦

M q 0

0 0 1 0























u

w

q

θ











+













◦

Xδe

◦

Xδt
◦

Zδe

◦

Zδt
◦

M δe

◦

M δt

0 0













[

δe

δt

]

(B.50)

In the above equation, the dimensional derivatives (
◦

Xẇ,
◦

Zẇ,
◦

M ẇ) that are dependent

on rate of change of Z-axis body velocity, ẇ, are assumed zero. Hence the matrix,

E, on the left hand side of the above equations becomes identity. The subscripted

variables [U1,W1, θ1] represent the state variables at trim conditions and the per-

turbation in state variables from the trim condition is [u, w, q, θ]. Note that the

height state has been omitted as it couples weakly into the longitudinal dynamics,

on account of variation in density with altitude.

Using the linearization program, the dimensional derivatives in Equation (B.50)

were obtained for a straight and level trim condition at an airspeed of Vt = 400 kts,

altitude of h = 10, 000 ft and a stable CG position of xcg = 29.4 m. The resulting

state and controls matrix for elevator control are,











u̇

ẇ

q̇

θ̇











=











−0.0024398 −0.041124 −15.283 −9.7705

−0.014527 −1.0908 202.45 −0.72339

0.0026528 −0.035831 −0.39112 0

0 0 1 0





















u

w

q

θ











+











−1.8373

−48.899

−6.8479

0











[

δe
]
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Figure B.1: Longitudinal response for +1.0◦ step elevator : Open loop

Longitudinal Transfer functions - Using the above linear model, transfer func-

tions for each of the output variables (u, w, q, θ) with respect to elevator control (δe)

were obtained.

u

δe
=

−1.8373(s− 58.42)(s+ 1.509)(s+ 0.3438)

(s2 + 0.01122s+ 0.004312)(s2 + 1.473s+ 7.703)
(B.51)

w

δe
=

−48.8992(s+ 28.74)(s2 + 0.002047s+ 0.001582)

(s2 + 0.01122s+ 0.004312)(s2 + 1.473s+ 7.703)
(B.52)

q

δe
=

−6.8479s(s+ 0.8362)(s+ 0.001885)

(s2 + 0.01122s+ 0.004312)(s2 + 1.473s+ 7.703)
(B.53)

θ

δe
=

−6.8479(s+ 0.8362)(s+ 0.001885)

(s2 + 0.01122s+ 0.004312)(s2 + 1.473s+ 7.703)
(B.54)

The generic open loop pitch rate to elevator (q/δe) transfer function is given as

q

δe
=

Ks(s+ 1/Tθ1)(s+ 1/Tθ2)

(s2 + 2ωspζsps+ ω2
sp)(s

2 + 2ωphζphs+ ω2
ph)

(B.55)
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Hence the short period damping and natural frequency are ωsp = 2.78 rad/s, ζsp =

0.265 respectively, and the corresponding parameters for the phugoid are ωph =

0.0854 rad/s, ζph = 0.0657. The response of the output variables [u, w, q, θ, h]

to a +1.0 deg step elevator are shown in Figure B.1. At a forward CG location

(xcg = 29.4 m) and high speed (V = 400 kts) the short period dynamics are fast

but poorly damped, whereas the phugoid dynamics are slow, stable and oscillatory.

These time histories show conventional dynamics for the BWB and are for one

particular combination of flight speed, altitude and CG position. Both linear and

non-linear results are plotted for comparison.

B.3.2 Lateral-Directional Axis

For the lateral directional axis, the east position state, pE, was omitted while aileron,

δa, and rudder, δr, controls were retained. The linear model for the uncoupled lateral

directional dynamics can be expressed as,

Eẋ = Ax+Bu (B.56)
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(B.57)

Since the derivatives (
◦

Y v̇,
◦

Lv̇,
◦

N v̇) and the cross inertia term Ixz are assumed zero,

the E matrix becomes identity. The terms U1,W1 are steady state X and Z body

velocities, whereas θ1 is the trim pitch angle. Using the linearization program, the

above aerodynamic derivatives were obtained for a straight and level trim condition

at an airspeed of Vt = 400 kts and altitude of h = 10, 000 ft. The resulting state

and controls matrices were
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(B.58)
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Figure B.2: Lateral-directional response for +1.0◦ step aileron : Open loop

Lateral-Directional Transfer functions w.r.t Aileron

Using the above linear model, transfer functions were obtained for each of the output

variables [v, p, r, φ] with respect to aileron and rudder controls [δa, δr] . Transfer

functions w.r.t to aileron are listed below.

v

δa
=

−0.35841(s+ 61.42)(s+ 3.739)(s+ 0.01163)

(s+ 3.463)(s+ 0.03715)(s2 + 0.1824s+ 0.08898)
(B.59)

p

δa
=

−1.1369(s+ 0.3867)(s− 0.2238)(s− 0.003729)

(s+ 3.463)(s+ 0.03715)(s2 + 0.1824s+ 0.08898)
(B.60)

r

δa
=

0.016905(s+ 19.72)(s2 + 0.07705s+ 0.01486)

(s+ 3.463)(s+ 0.03715)(s2 + 0.1824s+ 0.08898)
(B.61)

φ

δa
=

−1.1357(s+ 0.3748)(s− 0.2372)

(s+ 3.463)(s+ 0.03715)(s2 + 0.1824s+ 0.08898)
(B.62)
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From Figure B.2 it may be seen that the dutch roll mode is slow and poorly damped

[ωdr = 0.306 rad/s, ζdr = 0.298]. The roll mode time constant is τr = 0.289sec, which

indicates fast roll dynamics at this flight speed. The spiral mode is stable and slow

with a time constant τs = 26.88 sec.

It should be noted that for the roll rate to aileron transfer function (p/δa), the static

loop sensitivity is negative, i-e positive aileron deflection shall generate a negative

roll rate. At the same time the static loop sensitivity of yaw rate to aileron transfer

function (r/δa) is positive. Thus positive aileron deflections will generate positive

yaw rates. Positive roll rates with negative yaw rates are counteracting and indi-

cate adverse yaw tendency. Figure B.2 shows the step response plots for the output

variables [v, p, r, φ] to a +1.0 deg step aileron.

Note that the bank angle (φ) has developed opposite to the direction intended. The

initial negative roll rate (p) response to positive aileron input is in the correct di-

rection, however soon after the slow and poorly damped dutch roll dominates and

the roll rate goes in the opposite direction and starts a dutch roll oscillation. Simi-

lar oscillations are observed in the yaw rate response. Large side-velocities (v) also

appear in the response, indicating a tendency to side slip.

Lateral-Directional Transfer functions w.r.t Rudder

The open loop transfer functions in response to rudder control are as below,

v

δr
=

1.902(s+ 18.76)(s+ 3.534)(s− 0.007312)

(s+ 3.463)(s+ 0.03715)(s2 + 0.1824s+ 0.08898)
(B.63)

p

δr
=

0.40126(s− 0.8933)(s+ 0.7829)(s− 0.00342)

(s+ 3.463)(s+ 0.03715)(s2 + 0.1824s+ 0.08898)
(B.64)

r

δr
=

−0.161(s+ 4.735)(s2 + 0.08652s+ 0.02114)

(s+ 3.463)(s+ 0.03715)(s2 + 0.1824s+ 0.08898)
(B.65)

φ

δr
=

0.39093(s− 0.9751)(s+ 0.7457)

(s+ 3.463)(s+ 0.03715)(s2 + 0.1824s+ 0.08898)
(B.66)

The yaw rate to rudder transfer function (r/δr) shows negative loop sensitivity,

thus positive rudder deflection (trailing edge towards port) generates negative yaw

rate or positive side slip velocities. This is confirmed by the (v/δr) transfer function.
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The roll rate to rudder transfer function (p/δr) has a non-minimum phase zero and

hence the step response goes initially in the positive direction before settling down

to negative values, this behavior leads to adverse roll behavior which is undesirable

and difficult to control. The open loop time histories in Figure B.3 with respect

to rudder control show similar dutch roll oscillations. The dynamics for the BWB

show conventional behavior except that the dutch roll oscillations are unacceptably

slow. This is due to the absence of conventional rudders that provide directional

stiffness into the aircraft design.
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Appendix C

BWB - Flight Control System

Design

A Flight Control System (FCS) was designed as an integral part of this research. It

proved valuable in system simulation and handling qualities assessment. The FCS

had inner loops for stability augmentation and outer loops for attitude and flight

path control. Both longitudinal and lateral-directional controls were designed sep-

arately. The flight controls design program files are available as <BWBLongFCS.m>

and <BWBLatDirFCS.m> respectively. The longitudinal FCS is considered first.

C.1 Control of Longitudinal Axis

The longitudinal control system architecture is shown in Figure C.1. The inner most

loop with pitch rate and alpha feedback places the short period poles at the desired

locations on the s-plane. The pitch angle loop provides control of the pitch attitude

and also damps the phugoid mode. The outer loops control airspeed and altitude.

C.1.1 Longitudinal Stability Augmentation

Requirements - The MILSPEC 8785C Level 1 requirements on ωsp and ζsp are,

Flight Phase Damping (ζsp) CAP (ω2
sp/Nα)

Category A (rapid maneuvering) 0.35 - 1.30 0.280 - 3.6
Category B (gradual maneuvers) 0.30 - 2.00 0.085 - 3.6
Category C (take-off and landing) 0.25 - 1.30 0.160 - 3.6

Table C.1: MILSTD 8785C - short period mode requirements
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Figure C.1: Longitudinal flight control system architecture

Consider a low speed category-C flight case (V = 200 kts, Alt = 5000 ft). The

reduced order short period dynamics (using the short period approximation) are

given by,

[

α̇

q̇

]

=

[

−0.5960 0.9874

−1.1816 −0.2007

][

α

q

]

+

[

−0.1304

−1.7745

]

[

δe

]

The corresponding angle of attack and pitch rate to elevator transfer functions are,

α

δe
=

−0.13042(s+ 13.64)

(s2 + 0.7968s+ 1.286)
(C.1)

q

δe
=

−1.7745(s+ 0.5092)

(s2 + 0.7968s+ 1.286)
(C.2)

From the above we have,

ωsp = 1.139 rad/s

ζsp = 0.384

Tθ2 = 1.72 sec

CAP = 0.216
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From Table C.1 the Control Anticipation Parameter (CAP) requirements for category-

C flight phase are 0.16 to 3.6. The requirements on short period natural frequency

can be then be derived from these CAP limits as,

ωsp =

√

CAPV0

gTθ2
(C.3)

This results in a desired short period frequency range of 0.98 to 4.68 rad/s. At

the flight condition considered, the BWB aircraft has a short period frequency,

ωsp = 1.13 rad/s, and therefore just satisfies the short period frequency require-

ments. The short period damping, ζsp = 0.384, also satisfies the minimum MIL-

SPEC 8785C damping ratio limit of ζsp = 0.3. However, for a second order system a

short period damping of 0.6 to 0.7 is considered more adequate. To satisfy the MIL-

SPEC 8785C requirements, it was decided to increase the short period frequency

from 1.13 to 1.5 rad/s and damping from 0.384 to 0.9. This high value of damping

reduces the close loop resonance magnitude in the Neil Smith criteria, and the slight

increase in short period natural frequency greatly helps in the reducing the amount

of phase compensation required from the pilot.

Alpha Feedback - Both short period frequency and damping could be improved

by angle of attack and pitch rate feedback respectively. To improve the short period

frequency, angle of attack feedback was necessary.
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Figure C.2: Effect of angle of attack feedback on short period poles
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Figure C.2 shows the effect of the alpha feedback on the short period poles. The

short period frequency increases and damping decreases as the poles move out along

the imaginary axis. Feedback gain of Kα = −0.55 corresponding to a short period

natural frequency of ωsp = 1.5 rad/s was selected. The short period damping, ζsp,

decreased from 0.384 to 0.29. It can be noted that sign of feedback gain, Kα, is

negative. Thus a sudden increase in angle of attack due to a disturbance results in

positive elevator displacement, δe > 0. A positive elevator displacement generates

a nose down moment thus reducing the angle of attack, which is a stabilizing effect.

The pitch rate to elevator transfer with alpha feedback is,

q

δe
=

−1.7745(s+ 0.5092)

(s2 + 0.8655s+ 2.223)
(C.4)

When (C.4) is compared with the open loop transfer function in (C.2), the effect of

alpha feedback become apparent. The short period mode is now faster as desired

but poorly damped, this reduction in short period damping is improved using pitch

rate feedback.
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Figure C.3: Effect of pitch rate feedback on short period damping

Pitch Rate Feedback - To improve the short period damping, a pitch rate

loop is closed with a feedback gain Kq. The corresponding root locus is shown in

Figure C.3. A pitch rate feedback gain of Kq = −1.41 is selected to provide a short

period damping of 0.9. The pitch rate feedback also had the beneficial effect of

increasing the short period frequency from 1.5 to 1.86 rad/s. The new state space

matrix with alpha and pitch rate feedback can be expressed as
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An = A− BKC (C.5)

where the gain matrix K is

K =
[

Kα Kq

]

(C.6)

The step response is plotted in Figure C.4 and shows the improvement in pitch rate

damping by use of pitch rate feedback. Finally it is observed that if the open loop

dynamics had an adequate short period natural frequency then alpha feedback could

have been avoided. However in this case alpha feedback was necessary to speed up

the short period mode to meet the handling qualities requirements.
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C.1.2 Control of Airspeed and Altitude

Reference is made to Figure C.1. Control of airspeed and altitude is further sub-

divided into acquire climb/descent and cruise phases.

Climb/Descent Phase - During climbs or descents it was required to maintain

the speed of the aircraft constant. Therefore the height was controlled with throttle

and airspeed with pitch angle/elevator. Such a control scheme was devised to allow

the aircraft not to stall during climbs or over-speed during descents. The required

pitch angle to maintain a given airspeed is automatically determined by the control

system. As soon as the aircraft reaches the desired altitude window (± 500 ft of

reference altitude) the control switches to the cruise phase.

Cruise Phase - In the cruise phase, the airspeed is maintained with throttle and

the height is controlled with pitch angle. For the control of height, either with

throttle or pitch angle, phase lead compensation was required to bring the stability

margins to the required level. The inner/attitude control loop gains were scheduled

with respect to dynamic pressure and are presented in Figure C.5. The dynamic

pressure range was restricted from 10,000 to 35,000 Pa.
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Figure C.5: Gain schedule for longitudinal control

The pitch loop integral gain, [Ki]θ, was kept at 10% of the proportional gain, [Kp]θ.

The outer loop gains (airspeed and altitude control) were not scheduled and were
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kept fixed. These are presented in the following table.

Airspeed control Height control
With throttle With elevator With throttle With elevator

[Kp]VδT [Ki]VδT [Kp]Vδe [Ki]Vδe [Kp]HδT [Ki]HδT [Kp]Hδe [Ki]Hδe

-0.05 -0.00125 0.00125 0.0000625 0.1 0.005 0.001 0.0005

Table C.2: Longitudinal controller gains

The controllers in Figure C.1 had a PI loop structure and had an integral state

associated with it. For example the PI state associated with the pitch angle loop

is xθ. It was important to initialize this state each time the controller boots up or

switches from acquire to hold mode and vice versa. For example the control equation

for the pitch angle loop is

δec = [Kp]θθerr + [Ki]θxθ − (Kαα+Kqq) (C.7)

From the above, the initial state [x0]θ is easily given by setting δec = δe,

[x0]θ =
1

[Ki]θ
(δe − [Kp]θθerr + (Kαα +Kqq)) (C.8)

The remaining longitudinal controllers were initialized using a similar approach.
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C.2 Control of Lateral-Directional Axis

The lateral-directional control system provides control of the bank and heading

angles along with suppression of sideslip with rudder. The loop structure is shown

in Figure C.6. The innermost stability augmentation uses washed out yaw rate

feedback, roll rate feedback and an aileron to rudder interconnect. The lateral

directional gains were scheduled with respect to dynamic pressure, however at low

dynamic pressures (< 10,000 Pa), the required gains to hold the bank angle were

very high and had to be limited.
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Figure C.6: Lateral-directional FCS architecture

C.2.1 Lateral-Directional - (SAS)

The purpose of the lateral directional stability augmentation system is to increase

the dutch roll natural frequency while maintaining good dutch roll damping. The

BWB aircraft has poor lateral-directional characteristics, therefore the design of the

lateral-directional SAS is considered in slightly greater detail for future reference.

To meet Level 1 requirements, a dutch roll frequency (ωdr > 0.5 rad/s) was consid-

ered appropriate. This was achieved by sideslip feedback while a washed out yaw

rate feedback ensured good dutch roll damping (ζdr > 0.6).
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The system dynamics after addition of aileron and rudder actuators and a washed

out yaw rate are given by Equation (C.2.1). The aileron, rudder and washout

states are [xδa , xδr , xw] respectively. The actuator poles are placed at 15 rad/s and

the washout time constant, τw, is set at 2.5 sec.
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(C.9)

The output equation included the washed out yaw rate, rw, and angle of sideslip, β.
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(C.10)

At a low speed flight condition of V=200 kts, Alt = 5000 ft and a nominal CG

position, xcg = 29.4m, the sideslip to rudder transfer function is,

β

δr
=

0.080225(s+ 12.69)(s+ 2.075)(s− 0.03938)

(s+ 15)(s+ 1.775)(s+ 0.07272)(s2 + 0.2117s+ 0.1051)
(C.11)

From above the roll pole is at 1.775 rad/s and the dutch roll frequency is at 0.324

rad/s, justifying the selection of washout out pole time constant. The spiral pole

is at 0.072 rads/s. The system is non-minimum phase indicating adverse sideslip

tendency.

225



C BWB - Flight Control System Design

−1 −0.8 −0.6 −0.4 −0.2 0 0.2
−0.2

0

0.2

0.4

0.6

0.8

0.1

1

0.9

0.5

0.3

0.1

0.7
0.75

0.5

0.1

0.25

Real Axis

Im
ag

in
ar

y 
A

xi
s

Kβ = 5.57

ω
DR

 = 0.75 rad/s 

Open Loop 

DR 

Figure C.7: Effect of sideslip feedback on dutch roll poles

Sideslip Feedback - In Figure C.7, sideslip feedback causes an increase in dutch

roll frequency and decrease in damping as the poles move out along the imaginary

axis. Feedback gain of Kβ = 5.56 corresponding to a dutch roll natural frequency

of ωdr = 0.75 rad/s was selected. The dutch roll damping decreased to 0.175 from

its open loop value. It can be noted that sign of feedback gain, Kβ, is positive, thus

a sudden increase in sideslip due to any disturbance results in a negative rudder

displacement (δr < 0) causing a reduction in sideslip. The effect of sideslip feedback

on the directional stability is therefore stabilizing, however it comes at the cost of

reduction in dutch roll damping.

Yaw Rate Feedback - The dutch roll damping was improved by a using a washed

out rate feedback on the rudder control. Figure C.8 shows the results. The washout

feedback gain was increased till a dutch roll damping of ζdr = 0.6 was achieved.

For the low speed flight condition considered, the washout gain is very high (Kw =

−8.37) and can easily lead to control saturation.

Figure C.9 shows the yaw rate impulse response with sideslip and washed out yaw

rate feedback. The effect of sideslip feedback is to improve the dutch roll frequency

however the damping is reduced. Washed out yaw rate feedback improves the dutch

roll damping to the desired level. A well damped and fast dutch roll mode also has

a beneficial effect on the roll rate and angle response. Figure C.10 compares the

significant improvement before and after a stability augmentation system (SAS).
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With the SAS, the roll rate and angle are in the direction intended. The roll angle

approximates a pure integrator, but still far away from it. The roll angle response

needs to be improved further.
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Roll Rate Feedback and Aileron to Rudder Interconnect - To maintain a

consistent roll response throughout the flight envelope, it is desired to speed up the

roll rate response using roll rate feedback. At higher airspeeds, the roll mode is

fast and minimal roll rate feedback is necessary, however at lower airspeeds, the roll

mode is sluggish and higher gains are required. The roll rate feedback gain was set

at Kp = −2.26 to achieve a fast roll mode while still keeping the dutch roll frequency

high, ωdr > 0.5 rad/s. However even after roll rate feedback, the roll angle response

was not too much different than Figure C.10 and turn coordination through an

aileron to rudder interconnect had to be used. To incorporate the aileron to rudder

interconnect, the aileron actuator state was added into the output matrix,

y = Cx =
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The control equation including the aileron to rudder interconnect is

u = −Ky = −
[

0 0 Kp 0 0 0

Kβ 0 0 0 Kw −Kari

]
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rw

δa





















(C.13)

and the system dynamics can now conveniently be expressed as,

Ac = A− BKC (C.14)

Where A and B represent the open loop system dynamics including actuators. The

following close loop roll rate to aileron transfer function was obtained from the above

matrix formulation,

p

δa
=

−4.9401(s+ 14.64)(s+ 0.60)(s− 0.018)(s2 + 0.147s+ 0.028)

(s+ 1.57)(s+ 0.722)(s− 0.0156)(s2 + 0.838s+ 0.3574)(s2 + 29.24s+ 219.3)
(C.15)

Equation C.15 shows the roll rate to aileron (p/δa) transfer function with an ARI

gain (Kari = 1.0) and roll rate loop engaged. The following can be observed.

• The actuator pole now forms an oscillatory pair, but is fast and well damped.

• The ARI causes the roll subsidence pole to slow down to 1.573 rad/s from its

open loop value of 1.775 rad/s. This also justifies the use of roll rate feedback,

otherwise the roll mode slows down to below Level 1, when ARI is engaged.

• The aileron to rudder interconnect speeds up the dutch roll mode, which is

almost canceled by numerator zeros, hence a less oscillatory roll rate response.

• A slow but unstable spiral is almost canceled by a numerator zero.

The roll response to aileron control for a flight speed of 200 knots is shown in

Figure C.11. The beneficial effect of aileron to rudder interconnect is evident.

C.2.2 Lateral-Directional Gain Schedule

With the lateral directional stability augmentation in place, the bank angle and

heading control loops were formulated using standard methods, however the final

gains actually used in the non-linear simulation had to be reduced/limited to prevent

controls saturation. Figure C.12 presents the gain schedule.
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C.2.3 Conclusions

The above exercise clearly illustrates the difficulties in augmenting the lateral-

directional dynamics of the BWB aircraft. A slow dutch roll, poor directional stiff-

ness and adverse yaw are some of the troublesome factors. Besides inherently poor

dynamics, the rudder control is severely limited in control authority especially at

lower airspeeds and gains had to be restricted to avoid controls saturation.
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Appendix D

Implementation Details - BWB

Model with Blown Flaps

This section briefly describes the ESDU model subroutines written initially in MAT-

LAB for trim and linear analysis and then in C Language for non-linear simulation

implementation. The C language code for the ESDU aerodynamic model has 76

strips and runs in real time along with the hybrid engine model. The development

of this model was greatly facilitated by Cooke’s model of the NFLC Jetstream [59]

which uses the ESDU methods for aerodynamic estimation and by Amrane [60]

which discusses the development of a sail plane model using a strip element ap-

proach. A listing of the subroutines is presented in Table D.1 along with their brief

description.

The user needs to initialize the model by first calling the <init geometry.m> func-

tion, this will load the <geom> structure with appropriate airfoil geometry profile pa-

rameters along the span. If the user requires to make changes to the BWB planform

or airfoil geometry, it will be required to make appropriate changes in this geometry

initialization file. The next step is to call the function, <get aero wing.m>, with

appropriate inputs such as the values of the current state vector, control inputs and

CG position. This function then returns X, Y, Z body forces and moments L,M,N

about the centre of gravity or the moment reference point. In a similar fashion, the

function <get aero fin.m> returns contributions of the vertical fin to these aero-

dynamic forces and moments in body axis. The wing and fin contributions are then

added up to get the net forces and moments in body axis.

Program listings are available in soft form in a CD accompanying this thesis.
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No Subroutine Description ESDU

1.0 init geometry.m Sets up the static geometry parameters for the
BWB wing in a <geom> global structure. Loads the
airfoil profiles, defines number of sections, allocates
control, calculates strip areas and defines some of
the fixed airfoil geometrical parameters.

-

2.0 get aero wing.m Main subroutine to calculate wing forces and mo-
ments in body axis. Calls the following subroutines.

-

2.1 get controls.m Updates the dynamic part of the <geom> structure
by assigning control deflections to each strip ele-
ment.

-

2.2 atmos AK.m An atmospheric model routine by Dr. Alistair
Cooke.

-

2.3 airdata y.m Calculates spanwise air data parameters such as an-
gle of attack, sideslip, airspeed etc.

-

2.4 CL y.m Calculates spanwise lift coefficient with blown flaps.
2.4.1 CLa inviscid.m Calculates a1i, α0, Cm0i

, xac 72024
2.4.2 CLa viscid.m Calculates a1v 97020
2.4.3 CL max.m Calculates CLmax

84026
2.4.4 CL0 CLmax.m Calculates ∆CL0flap

,∆CLmaxflap
94028

2.5 CD y.m Calculates spanwise drag coefficient.
2.5.1 CD0 airfoil.m Calculates CD0 for the airfoil section 00027
2.5.2 CD0 flap.m Calculates ∆CD0flap

due to flap deflection 87005

2.6 Cm y.m Calculates spanwise pitch moment coefficient. 03017
98017

3.0 get aero fin.m Vertical fin forces and moments

Yv, Lv, Nv derivatives due to side velocity (v) 82010
Yr, Lr, Nr derivatives due to yaw rate (r) 32017
Yp, Lp, Np derivatives due to roll rate (p) 83006
Yδr

, Lδr
, Nδr

derivatives due to rudder deflection
(δr)

87008

3.1 CLa wing.m To calculate the vertical fin lift curve slope a1fin
70011

Table D.1: Description of ESDU strip element model subroutines
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Appendix E

Implementation Details - Hybrid

Turbofan Model

This section covers some additional details of the 3 spool turbofan hybrid engine

model discussed in Chapter 4. Specifically it entails, (i) a brief summary of the model

sub-routines, (ii) a graphical illustration of the compressor and turbine maps used

in the simulation and (iii) some code listings for the iterative part of the program.

The turbofan model was implemented in MATLAB/Simulink as <RR500.mdl> and

consists of the following subroutines.

No Subroutine Description

1 RR500 init.m Specifies the design point inputs for the compressors and the
turbines. It also sets up values for rotor inertias, component
volumes, nozzle areas and values for the initial state vector.

2 inlet calcs.m Performs inlet calculations, establishes inlet exit conditions.

3 cmap LPC.m On the first call, this subroutine loads a reference Fan/LPC
map and scales it according to the design point inputs specified
in <RR500 init.m>. On subsequent calls, it uses the search
routine <search.m> to get compressor mass flow and efficiency,
given compressor speed and pressure ratio.

4 cmap IPC.m Performs a similar function as above, for the IP compressor.

5 cmap HPC.m Loads, scales and searches the high pressure compressor.

6 thcomp.m Iterative subroutine for compressor thermodynamics. It estab-
lishes exit conditions of specific enthalpy, h, temperature, T ,
pressure, P and entropy, S.

Some of the above subroutines, specifically those for iterative solution of compressor
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No Subroutine Description

7 comb calcs.m Performs combustor calculations.

8 cmap HPT.m On the first call, this subroutine loads a reference high pressure
turbine map and scales it according to the turbine design point
inputs specified in <RR500 init.m>. On subsequent calls, it
uses the search routine <search.m> to get turbine mass flow
and efficiency given turbine speed and pressure ratio. It may
be noted that the reference turbine maps were obtained from
the DYNGEN program [12], which uses enthalpy work function
(∆H/T ) instead of turbine pressure ratios. These maps are
therefore internally converted to the turbine pressure ratio vs
mass flow form for use in this simulation.

9 cmap IPT.m Performs a similar function as above for the IP turbine.

10 cmap LPT.m Loads, scales and searches the low pressure turbine.

11 thturb.m Iterative subroutine for turbine thermodynamics. It establishes
exit conditions of specific enthalpy, h, temperature, T , pressure,
P and entropy, S.

12 therm.m Calculates thermodynamic conditions for a fuel to air mixture
using either temperature or enthalpy. Uses <gasprop.m>.

13 gasprop.m Calculates the basic gas properties of air alone or fuel/air mix-
ture based on JP4.

14 search.m Compressor/turbine map linear interpolation search routine.

Table E.1: Description of 3 spool turbofan model subroutines

and turbine thermodynamics are discussed in a greater detail later in this chapter.

E.1 Components Maps

In this section, a graphical illustration of the compressor and turbine maps scaled

to their respective design points is presented. Lines of constant efficiencies and the

design point values are identified on the maps. These maps are automatically gener-

ated by specified design point values in <RR500 init.m> file and may be considered

representative of the Trent 500. The actual component maps are however usually

proprietary and therefore may be different than those presented here. The design

points have been placed at an area of maximum compressor or turbine efficiency.
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E.1.1 Compressor Maps
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E.1.2 Turbine Maps

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

100

200

300

400

500

600

Corrected Turbine Speed − CN − (% Design Speed/sqrt(T))

W
or

k 
Fu

nc
tio

n 
− 

∆H
/T

A − 88% Efficiency 
B − 84% Efficiency 
C − 80% Efficiency 

DP − Design Point 

DP 

A 

B 

C 

TF
1
 

TF
2
 

TF
n
 

TF
10 

TF − Lines of Constant Turbine Flow − W [sqrt(T))/P]

270.9 

2.95 

TF
1
 = 0.00427

TF
2
 = 0.00497  

TF
3
 = 0.00564     

TF
4
 = 0.00625   

TF
5
 = 0.00682    

TF
6
 = 0.00704    

TF
7
 = 0.00725    

TF
8
 = 0.00741 

TF
9
 = 0.00757    

TF
10

= 0.00772    

η
DP

 =  91.5%

Figure E.4: Low Pressure Turbine (LPT) map and design point

236



E Implementation Details - Hybrid Turbofan Model

0 0.5 1 1.5 2 2.5 3 3.5 4
0

50

100

150

200

250

Turbine Speed − CN − (% Design Speed/sqrt(T))

W
or

k 
Fu

nc
tio

n 
− 

∆H
/T

TF
1
 

TF
2
 

TF
n
 

TF
10

A − 88% Efficiency 
B − 84% Efficiency 
C − 80% Efficiency 

DP 

DP − Design Point 

2.719 

185 

A 

B 

C 

TF − Lines of Constant Turbine Flow − W [sqrt(T))/P]

TF
1
 = 0.00185

TF
2
 = 0.00215

TF
3
 = 0.00244

TF
4
 = 0.00271

TF
5
 = 0.00295

TF
6
 = 0.00305

TF
7
 = 0.00314

TF
8
 = 0.00321

TF
9
 = 0.00327

TF
10

 = 0.00334

η
DP

 =  90.9%

Figure E.5: Intermediate Pressure Turbine (IPT) map and design point

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

50

100

150

200

250

300

Corrected Turbine Speed − CN − (% Design Speed/sqrt(T))

W
or

k 
Fu

nc
tio

n 
− 

∆H
/T

TF
1
 

TF
2
 

TF
3
 

TF
n
 

TF
10

 

DP 

A 

B 

C 

A − 88% Efficiency 
B − 84% Efficiency 
C − 80% Efficiency 

216.58 

2.475 

DP − Design Point 

TF
1
 = 0.00106

TF
2
 = 0.00115

TF
3
 = 0.00127

TF
4
 = 0.00130 

TF
5
 = 0.00131

TF
6
 = 0.00132

TF
7
 = 0.00134

TF
8
 = 0.00135

TF
9
 = 0.00136

 TF
10

 = 0.00138

η
DP

 =  88.5%

TF − Lines of Constant Turbine Flow − W [sqrt(T))/P]

Figure E.6: High Pressure Turbine (HPT) map and design point

237



E Implementation Details - Hybrid Turbofan Model

E.2 Code Listings

E.2.1 Iterative Routine for Compressor Calculations

In Chapter 4, a hybrid scheme was adopted for engine simulation, in which the

compressor and turbine thermodynamic conditions are calculated using an iterative

procedure and the pressure derivatives and hence exit pressures using the compo-

nent volume technique. Whereas, other details of the method have been covered

earlier, it was considered important for future reference to list here the subroutines

used for iterative compressor/turbine calculations. The iterative subroutine for the

compressor as listed below is a modified version from the open source reference,

DYNGEN [12]. Figure E.7 shows a Simulink block diagram for the HP compressor

that uses this iterative subroutine to perform stage calculations. The IP and the

LP compressor stages were implemented using a similar procedure.

% =============================================================================

% COMPRESSOR ITERATIVE THERRMODYNAMIC CALCULATIONS .

% =============================================================================

%

% Function Name : [TO,HO,SO,PO] = thcomp(PR,ETA,T,H,S,P,FAR,SI)

% Purpose : Calculates Thermodynamic conditions for the compressor.

%

% Inputs to the program:

%

% PR = Compressor Pressure Ratio [-]

% ETA = Compressor Efficiency [-]

% T = Temperature at Inlet [K]

% H = Specific Enthalpy at Inlet [J/Kg/s]

% S = Entropy at Inlet [J/Kg-C]

% P = Pressure at Compressor Inlet [Pa]

% FAR = Fuel to Air Ratio at Compressor Inlet [-]

%

% Outputs of the program:

%

% TO = Temperature at Compressor Exit [K]

% HO = Specific Enthalpy at Compressor Exit [J/Kg/s]

% SO = Exit Entropy [J/Kg-C]

% PO = Pressure at Compressor Exit [Pa]

%

% Subroutines used :

%

% thermo() : Calculates gas thermodynamic conditions using temperature

% or enthalpy.

%

% Modified From Original reference : DYNGEN[]

% =============================================================================

function [TO,HO,SO,PO] = thcomp(PR,ETA,T,H,S,P,FAR,SI)

CPG = 1048.0; % Specific Heat for Air...[J/Kg/K]
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% Pressure at Compressor Exit

% ---------------------------

PO = P*PR;

% Initial Guess for Exit Temperature

% ----------------------------------

TP = T * PR^0.28572;

% Step 1. Find Exit Enthalpy (H) iteratively, assuming Process to be Isentropic

% -----------------------------------------------------------------------------

for (I=1:25)

% Thermodynamic gas calculations

% ------------------------------

% Inputs - PO, TP (Actual Exit Pressure , Guessed Exit Temperature)

% Output - SP, HP (Exit Entropy Isentropic , Exit Enthalpy Isentropic)

XX1 = 0.0; % Dummy Input

FLAG = 0; % (0) - Use Temperauture for Gas Thermo Calculations

[SP,YY1,HP,YY2] = therm(PO,XX1,TP,FAR,FLAG);

% Difference in Inlet and Exit Entropy

DELS = SP-S;

% Check convergence (Exit Entropy ~ Inelt Entropy)

if (abs(DELS) <= (0.00005 * S)) break; end

% New Guess for Exit Temperature

TP = TP / exp(DELS/CPG);

if (I==25)

disp(’Error - Iterations exceeded in THCOMP’);

end

end

% Step 2. Now Use Compressor Efficiency to find actual exit Enthalpy (HO)

% ----------------------------------------------------------------------

% Note if ETA = 1.0, then HO = HP and process will be isentropic

HO = H + (HP-H)/ETA;

% Step 3. Use Exit Enthalpy (HO) to Calculate Exit Temperature (TO) and Entropy (SO)

% ----------------------------------------------------------------------------------

% Inputs - PO, HO (Exit Press , Exit Enthalpy after including ETA effect)

% Output - SO, TO (Exit Entropy, Exit Temperature)

FLAG = 1; % (1) - Use Enthalpy for Gas Thermo Calculations

[SO,YY1,YY,TO] = therm(PO,HO,XX1,FAR,FLAG);

% <End of File>
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E.2.2 Iterative Routine for Turbine Calculations

The turbine calculations were performed using an iterative procedure similar to

compressors, however in this case the input pressure ratio (PR) is less than 1.0,

whereas for the compressor it was greater than 1.0. However, this makes no difference

in the calculations procedure, only the corresponding exit temperatures are less as

the turbine extracts energy from the flow. In addition, the exit enthalpy is calculated

differently than for the compressor stage, specifically if hi is the inlet enthalpy, and

hp is the enthalpy at the turbine exit assuming the process to be isentropic, then

the actual exit enthalpy is

ho = hi − η∆h = hi − η(hp − hi) (E.1)

where η is the turbine efficiency. Thus if η = 1.0, then the exit enthalpy would be

the same as that for an isentropic process and the turbine would be able to extract

greater energy from the flow. A MATLAB/Simulink subsystem that implements the

turbine calculations is shown in Figure E.8 and the code listing is presented below.

% ===============================================================================

% TURBINE ITERATIVE THERRMODYNAMIC CALCULATIONS .

% ===============================================================================

%

% Function Name : [TO,HO,SO,PO] = thturb(PR,ETA,T,H,S,P,FAR)

% Purpose : Calculates Thermodynamic conditions for the turbine.

%

% Inputs to the program:

%

% PR = Turbine Pressure Ratio [-]

% ETA = Turbine Efficiency [-]

% T = Temperature at Inlet [K]

% H = Specific Enthalpy at Inlet [J/Kg/s]

% S = Entropy at Inlet [J/Kg-C]

% P = Pressure at Turbine Inlet [Pa]

% FAR = Fuel to Air Ratio at Turbine Inlet [-]

%

% Outputs of the program:

%

% TO = Temperature at Turbine Exit [K]

% HO = Specific Enthalpy at Turbine Exit [J/Kg/s]

% SO = Exit Entropy [J/Kg-C]

% PO = Pressure at Turbine Exit [Pa]

%

% Subroutines used :

%

% thermo() : Calculates gas thermodynamic conditions using temperature

% or enthalpy.

% ==============================================================================

function [TO,HO,SO,PO] = thturb(PR,ETA,T,H,S,P,FAR)

CPG = 1048.0; % Specific Heat for Air...[J/Kg/K]
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% Pressure at Compressor Exit

PO = P*PR;

% Initial Guess for Exit Temperature

% ----------------------------------

TP = T * PR^0.28572;

% Step 1. Find Exit Enthalpy (H) iteratively, assuming Process to be Isentropic

% -----------------------------------------------------------------------------

for (I=1:25)

% Thermodynamic gas calculations

% ------------------------------

% Inputs - PO, TP (Actual Exit Pressure , Guessed Exit Temperature)

% Output - SP, HP (Exit Entropy Isentropic , Exit Enthalpy Isentropic)

XX1 = 0.0; % Dummy Input

FLAG = 0; % (0) - Use Temperauture for Gas Thermo Calculations

[SP,YY1,HP,YY2] = therm(PO,XX1,TP,FAR,FLAG);

% Difference in Inlet and Exit Entropy

DELS = SP-S;

% Check convergence (Exit Entropy ~ Inelt Entropy)

if (abs(DELS) <= (0.00005 * S)) break; end

% New Guess for Exit Temperature

TP = TP / exp(DELS/CPG);

if (I==25) disp(’Error - Iterations exceeded in THTURB’); end

end

% Step 2. Now Use Turbine Efficiency to find the new Enthalpy

% -----------------------------------------------------------

DELH_i = H - HP; % isentropic drop in enthalpy

% Note if ETA = 1.0, Then HO = HP and process will be isentropic

HO = H - ETA * DELH_i;

% Step 3. Use Exit Enthalpy (HO) to Calculate Exit Temperature (TO) and Entropy (SO)

% ----------------------------------------------------------------------------------

% Inputs - PO, HO (Exit Press , Exit Enthalpy after including ETA effect)

% Output - SO, TO (Exit Entropy, Exit Temperature)

FLAG = 1; % (1) - Use Enthalpy for Gas Thermo Calculations

[SO,YY1,YY,TO] = therm(PO,HO,XX1,FAR,FLAG);

% <End of File>
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E.2.3 Calculation of Thermodynamic properties of Gas

An important subroutine <therm.m> that was used in the compressor and the

turbine calculations is listed here. This subroutine calculates temperature, given

enthalpy or enthalpy given temperature for a given fuel to air mixture. If the state

of enthalpy is specified for the gas, then the corresponding temperature has to be

found through an iterative procedure. From reference [56], enthalpy, h, is defined

as,

h = f(cp(T ), T ) (E.2)

Thus if enthalpy, h, is known and cp(T ), T are not known, then the value of temper-

ature, T , is found by an iterative method, which satisfies the above equation. An

initial guess for temperature (Tg = h/cp) is made by assuming a nominal value for

cp, and a corresponding guess enthalpy, hg, is calculated using the <gasprop.m>

function. The difference in enthalpy (∆h = h− hg) is used to find a new and better

guess for the temperature. This process is repeated till a temperature value is found

so that error, ∆h, is below a specified tolerance, the procedure normally converges

in a few iterations.

If the temperature value is specified, then an iterative procedure is not required and

corresponding enthalpy can be found directly using gas tables or the <gasprop.m>

routine. This subroutine also returns the state of entropy for the gas. These subrou-

tines may be considered as standard and can be found in engine simulation programs

such as DYNGEN [12], however they are listed here for reference.

% ===============================================================================

% THERMOYDNMAIC PROPERTIES FOR FUEL AND AIR MIXTURE .

% ===============================================================================

%

% function [SX,AMX,HX,TX] = therm(P,H,T,FAR,FLAG)

%

% Purpose : Provides Thermodynamic conditions for a fuel to air mixture using

% either temperature or enthalpy.

%

% Input to the program is:

% P = Pressure

% H = Enthalpy or

% T = Temperature

% FAR = Fuel to Air Ratio

% FLAG = 1, Use Input H, for Gas Properties Calcs

% 0, Use Input T, for Gas Properties Calcs

%

% Output of the program is:

% SX = Entropy

% AMX = Speed of Sound
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% TX = Temperature (IF H is input, FLAG = 1)

% HX = Enthalpy (if T is input, FLAG = 0)

%

% Subroutines used :

%

% gasprop() : Calculates gas thermodynamic conditions using temperature

% or enthalpy.

% Modified From Original reference : DYNGEN[]

% ===============================================================================

function [SX,AMX,HX,TX] = therm(P,H,T,FAR,FLAG)

DEM = 8316.41;

CPG = 1048.00; % Specific Heat of Gas [J/Kg-k]

PSTD = 101325.0; % Standard Pressure [Pa]

FX = FAR; % Fuel to Air Ratio

if (FLAG == 1) % USE H

HX = H;

% Calculate TX (Temperature) Given HX (Enthalpy)

% ----------------------------------------------

% Initial Guess for Temperature

TX = HX/CPG;

for (I=1:15)

% Gas Properties at FX and TX

% ---------------------------

[CS,AK,CP,R,PHI,H] = gasprop(FX,TX);

DELH = HX-H;

if (abs(DELH) <= (0.00001*HX))

break; end

% New Guess for Temperature

TX = TX + DELH/CPG;

if (I==15)

disp(’Error - Iterations Exceeded in Therm’);

end

end

else % (FLAG = 0)

% Calculate HX (Enthalpy) Given TX (Temperature)

% ----------------------------------------------

TX = T;

[CS,AK,CP,R,PHI,HX] = gasprop(FX,TX);

end

SX = PHI - R * log(PX/PSTD); % Entropy

AMX = DEM/R; % Speed of Sound

% <End of File>
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<gasprop.m>

The function <gasprop.m> calculates the basic gas properties based on temperature

and a given fuel to air mixture. From reference [56], for a perfect gas, the properties

(h, cp, φ) are a function of gas temperature (T ) alone and are given by,

cp = A0 + A1T + A2T
2 + A3T

3 + A4T
4 + A5T

5 + A6T
6 + A7T

7

φ = φref + A0loge(T ) + A1T + A2T
2 + A3T

3 + A4T
4 + A5T

5 + A6T
6 + A7T

7

h = href + A0T +
A1

2
T 2 +

A2

2
T 3 +

A3

2
T 4 +

A4

2
T 5 +

A5

2
T 6 +

A6

2
T 7 +

A7

2
T 8

The values of h, cp, φ for air and combustion products can be calculated indepen-

dently given coefficients A0 to A7. For a combined fuel to air mixture (f), the values

of cp, h and φ are given by [56],

cp =
cpair + fcpprod

1 + f

h =
hair + fhprod

1 + f

φ =
φair + fφprod

1 + f

The implementation of the above formulation is as follows,

% =============================================================================

% BASIC GAS PROPERTIES FOR AIR and FUEL & AIR MIXTURE .

% =============================================================================

%

% Function Name : [A,GAMMA,CP,R,PHI,H] = gasprop(FAR,T,SI)

%

% Purpose : Calculates Thermodynamic properties of Air or Fuel

% Air Mixture based on JP4.

%

% Input to the program is:

% FAR = Fuel to Air Ratio - JP4 [-]

% T = Temperature of Air or Fuel Air Mixture [K]

%

% Output of the program in: [SI Units]

% A = Speed of Sound [m/s]

% GAMMA = Ratio of Specific Heats

% CP = Specific Heat at Constant Pressure [J/Kg/K]

% R = Gas Constant [J/Kg/K]

% PHI = integral( cp dT/T) [J/Kg/K]

% H = integral( cp dT ) (Enthalpy) [J/Kg]

% =============================================================================

function [A,GAMMA,CP,R,PHI,H] = gasprop(FAR,T)

% Max Value of FAR is 0.0676 for hydrocarbon fuels of type (CH2)n

% ---------------------------------------------------------------
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if (FAR > 0.067623) FAR = 0.067623; end;

% T must be in degree Rankine for Gas tables

% ------------------------------------------

T = T * 9.0/5.0; % Convert to degree Rankine (R)

if (T < 300.0 ) T = 300.0; end;

if (T > 4000.0 ) T = 4000.0; end;

% AIR PATH - INLET AND COMPRESSOR

% -------------------------------

CPA = (((((( 1.0115540E-25 *T - 1.4526770E-21)*T + 7.6215767E-18)*T -...

1.5128259E-14)*T - 6.7178376E-12)*T + 6.5519486E-08)*T -...

5.1536879E-05)*T + 2.5020051E-01;

HEA =((((((( 1.2644425E-26 *T - 2.0752522E-22)*T + 1.2702630E-18)*T -...

3.0256518E-15)*T - 1.6794594E-12)*T + 2.1839826E-08)*T -...

2.5768440E-05)*T + 2.5020051E-01)*T - 1.7558886E+00;

SEA =((((((( 1.4450767E-26 *T - 2.4211288E-22)*T + 1.5243153E-18)*T -...

3.7820648E-15)*T - 2.2392790E-12)*T + 3.2759743E-08)*T -...

5.1576879E-05)*T + 4.5432300E-02) + 2.5020051E-01 *log(T);

% FUEL AIR PATH - PRODUCTS OF COMBUSTION

% --------------------------------------

if (FAR > 0.0)

CPF = (((((( 7.2678710E-25 *T - 1.3335668E-20)*T + 1.0212913E-16)*T -...

4.2051104E-13)*T + 9.9686793E-10)*T - 1.3771901E-06)*T +...

1.2258630E-03)*T + 7.3816638E-02;

HEF =((((((( 9.0848388E-26 *T - 1.9050949E-21)*T + 1.7021525E-17)*T -...

8.4102208E-14)*T + 2.4921698E-10)*T - 4.5906332E-07)*T +...

6.1293150E-04)*T + 7.3816638E-02)*T + 3.0581530E+01;

SEF =((((((( 1.0382670E-25 *T - 2.2226118E-21)*T + 2.0425826E-17)*T -...

1.0512776E-13)*T + 3.3228928E-10)*T - 6.8859505E-07)*T +...

1.2258630E-03)*T + 6.4833980E-01) + 7.3816638E-02 *log(T);

end

CP = (CPA + FAR*CPF)/(1.0+FAR);

H = (HEA + FAR*HEF)/(1.0+FAR);

PHI = (SEA + FAR*SEF)/(1.0+FAR);

R = 1.986375/(28.97 - 0.946186 * FAR); % Gas constant

GAMMA = CP/(CP - R); % Specific Heat Ratio

A = sqrt(GAMMA * R * T * 25031.37); % Speed of Sound [ft/sec]

% Convert to SI Units

% -------------------

CP = CP * 4185.7666; % Specific Heat [J/Kg-K]

PHI = PHI * 4185.7666; % [J/Kg-K]

R = R * 4185.7666; % Gas Constant [J/Kg-K]

H = H * 2325.4259; % Enthalpy [J/Kg]

A = A * 0.3048; % Speed of sound [m/s]

T = T * 5.0/9.0; % Temperature [deg K]

% < End of File>
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Appendix F

Single Spool Turbojet Model and

Investigation of Bleed Effects

During the initial part of this research, a single spool turbojet engine model was

developed to investigate the affects of engine bleed on its performance. Although

later on for the BWB, a three spool turbofan model was used for propulsion and

flight controls integration, the single spool turbojet model proved to be very valuable

in validation of the numerical simulation, as real engine bleed data was available for

this purpose [79]. The single spool turbojet engine model is therefore presented here

for future reference. It is a simpler model than the hybrid engine model discussed

earlier and uses the inter-component volume approach.

F.1 Introduction

This section presents dynamic modeling of a single spool turbojet engine and its

overall performance under variable bleed conditions. The approach followed is to

model various engine subsystems using performance maps and then interlink each

individual component to get an overall engine performance model. Two approaches

were considered, the inter component volume method [48] and the constraint sat-

isfaction iterative method [53]. However the inter-component volume method was

eventually selected due to its real time performance and simplicity. Both open loop

(fuel flow demand defined by user) and closed loop (fuel flow demand set by RPM

control) responses were simulated. The AMT Olympus single spool turbojet en-

gine [50] was selected as a test case. The simulation results were validated with

data from bleed experiments conducted on the AMT Olympus engine at University

of Manchester [79].
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F.2 The Engine Model
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Figure F.1: Single spool turbojet schematic with inter-component volumes

In order to simulate a dynamic system it is important to specify a set of minimum

number of variables or states, X, that completely define the system dynamics. An

input vector, u, establishes a means of controlling or changing the state of the system.

For a single spool turbojet system as shown in Figure F.1, the compressor and

turbine exit pressures [P3, P5] are important system states. If component efficiencies

and exit pressures are known, then temperatures at various engine stages of the

engine can be calculated using thermodynamic relationships. Shaft rotational speed,

N , is another important parameter that forms part of the state vector. The fuel flow

rate, wf , and nozzle area, An, were used to control the state of the system. Thus,

X = (P3, P5, N)

u = (wf , An)

F.2.1 Intake Model

In this work, a static intake model was incorporated and the flow process was as-

sumed to be adiabatic. With the free stream static pressure and temperature as

p0, t0 and Mach number, M , the total conditions (T1, P1) at the intake face can be

calculated from reference [55],

T1

t0
=

(

1 +
γ − 1

2
M2

)

(F.1)

P1

p0

=

(

T1

t0

)
γ
γ−1

(F.2)
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The total temperature, T1, represents the rise in temperature by bringing air molecules

traveling at Mach number, M , to rest at the intake face. The total pressure at the

intake face is a function of temperature ratio and is given by Equation (F.2). Since

no energy is added in the intake, the total temperature remains constant [80]. How-

ever there is a loss in total pressure as the flow passes through the intake and this

pressure loss is a measure of intake efficiency, ηI . The intake exit conditions are

T2 = T1 (F.3)

P2 = ηI(P1) (F.4)

For the AMT Olympus the intake efficiency is assumed to be 1.0.

F.2.2 The AMT Olympus Compressor Model

0 0.1 0.2 0.3 0.4 0.5
0.5

1

1.5

2

2.5

3

3.5

4

Corrected Mass Flow [kg/s]

P
re

ss
ur

e 
R

at
io

Compressor − Pressure Ratio Vs Mass Flow 

0 0.1 0.2 0.3 0.4 0.5
45

50

55

60

65

70

75

Corrected Mass Flow [kg/s]

E
ffi

ci
en

cy
Compressor − Efficiency Vs Mass Flow

0 0.1 0.2 0.3 0.4 0.5
0.5

1

1.5

2

2.5

3

3.5

4

Corrected Mass Flow [kg/s]

P
re

ss
ur

e 
R

at
io

0 0.1 0.2 0.3 0.4 0.5
0.5

1

1.5

2

2.5

3

3.5

4

Corrected Mass Flow [kg/s]

P
re

ss
ur

e 
R

at
io

0 0.1 0.2 0.3 0.4 0.5
0.5

1

1.5

2

2.5

3

3.5

4

Corrected Mass Flow [kg/s]

P
re

ss
ur

e 
R

at
io

0.88

1.0

0.66
0.77

0.55
0.44

1.1

0.330.220.11

N/N
design

Running
Line

0.11
0.22

0.33 0.44

0.55 0.66

0.77

0.88 1.0 1.11

Figure F.2: Compressor map for the AMT Olympus engine

Representative AMT Olympus engine compressor maps from [81] are shown in Fig-

ure F.2. These maps are a function of non-dimensional compressor speed (N∗

c =

N/
√

T2/Tstd) and the corrected mass flow (w∗

c = wc
√

T2/Tstd/(P2/Pstd)). Using

these definitions, the compressor pressure ratio and corrected speed (P3/P2, N
∗

c )

were calculated using the compressor inlet conditions (T2, P2) and the knowledge of

the state vector, X = (P3, P5, N). A 2D interpolation routine was used to get the

corrected mass flow and efficiency (w∗

c , ηc) from the compressor maps. From [55] the

compressor temperature rise is,

∆T23 =
1

ηc
T2

(

(

P3

P2

)
γ−1
γ

− 1

)

(F.5)
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therefore the total temperature at the compressor exit is,

T3 = T2 + ∆T23 (F.6)

If a fraction of bleed (φ = wb/wc) is taken from the compressor at a non-dimensional

axial location (x/l) along the compressor, then the exit mass flow is

w3 = wc(1 − φ) (F.7)

and with a bleed location of x/l, the torque required by the compressor is

τcomp =
wccp∆T23

Nrad/s

(

(1 − φ) + φ
x

l

)

(F.8)

The above set of equations was used to calculate compressor exit conditions (w3, T3, P3)

and compressor torque, with inlet exit conditions (T2, P2) and the state vector,

X = (P3, P5, N) as inputs.

F.2.3 The AMT Olympus Combustor Model

The AMT Olympus engine uses an annular type combustion chamber. The amount

of energy imparted to the pressurized air depends upon the fuel to air ratio and the

heating value (HV ) of the fuel. Not all the fuel is burnt and a burner efficiency, ηb,

is associated with the fuel burning process. A typical value for burning efficiency is

0.98. Reference [57] gives an expression for combustor temperature rise,

∆T34 = ηb

(

wf
w3

)

HVfuel
cp

(F.9)

The combustor exit temperature is therefore

T4 = T3 + ∆T34 (F.10)

and the net mass flow from combustor,

w4 = wf + w3 (F.11)

With a pressure loss, ∆Ploss, the combustor exit pressure will be

P4 = P3(1 − ∆Ploss) (F.12)

This establishes the combustor exit conditions (w4, T4, P4).
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F.2.4 The AMT Olympus Turbine Model

Like the compressor, the turbine model for the AMT Olympus was also based on

performance maps. The first map relates the corrected turbine mass flow (w∗

t =

wt
√
T 4/P4) with turbine pressure ratio and the second map gives a measure of tur-

bine efficiency. Representative turbine maps for the AMT Olympus turbojet engine

from [81] are shown in Figure F.3. The speed line corresponding to lowest non-

dimensional turbine speed (N∗

t = N/
√
T4) is highlighted.
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Figure F.3: Turbine map for the AMT Olympus engine

Using the state vector X = (P3, P5, N) and 2D interpolation, the non-dimensional

turbine mass flow and turbine efficiency (w∗

t , ηt) are calculated from the turbine

maps. From [55], the temperature drop across the turbine is

∆T45 = ηtT4

(

1 −
(

P5

P4

)
γ−1
γ

)

(F.13)

The turbine exit temperature is therefore

T5 = T4 − ∆T45 (F.14)

and the torque generated by the turbine at a given rotational speed is expressed as

τturb =
w5cp∆T45

Nrad/s

(F.15)

It should be noted that the turbine and compressor speeds are taken as equal since
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they are connected on a common shaft. The turbine exit conditions (w5, T5, P5) are

now established.

F.2.5 The AMT Olympus Convergent Nozzle

The ambient pressure outside the nozzle is taken as, p0, the nozzle pressure ratio is

hence

Prnoz =
P5

p0
(F.16)

The pressure ratio for which the nozzle exit speed reaches the speed of sound is

called the critical pressure ratio and is a sole function of ratio of specific heats [56].

Prcrit =

(

2

1 + γ

)
γ

1−γ

(F.17)

If the nozzle pressure ratio Prnoz > Prcrit, the nozzle will choke and the nozzle

pressure ratio will be limited to Prcrit . For a convergent nozzle with exit area, An,

the mass flow through the nozzle is given by the following expression from [56].

wn =
AnP5

R
P

−1
γ
r

√

2gcp
T5

(

1 − P
−R
cp
r

)

(F.18)

In the above equation, Pr represents the limited value of nozzle pressure ratio which

is less than or equal to the critical pressure ratio Prcrit. The nozzle jet velocity is a

function of nozzle pressure ratio and total nozzle temperature.

Vjet =

√

2gcpT5

(

1 − P
−R
cp
r

)

(F.19)

The net thrust is a sum of momentum and pressure components,

F = wn(Vjet − V0) + An(P6 − p0) (F.20)

where V0 is the aircraft speed and P6 is the pressure at the face of nozzle exit.

F.2.6 Evaluation of Pressure Derivatives (Ṗ3, Ṗ5)

Figure F.4 shows two control volumes for the AMT Olympus single spool turbojet.

The first control volume is associated between the compressor and combustor. The

mass storage in this volume is used to calculate rate-of-change of compressor exit
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Figure F.4: Control volumes on a single spool turbojet

pressure, Ṗ3. The second control volume is between the turbine and nozzle and shall

provide derivative of turbine exit pressure, Ṗ5. For the volume associated with the

combustor chamber and the compressor, the rate of accumulation of mass is

ṁ3 = w3 + wf − wt (F.21)

and similarly for the volume between the turbine and the nozzle the rate of change

of mass is

ṁ5 = wt − wn (F.22)

Taking the time derivative of the ideal gas law and neglecting the temperature

derivative term (mṪ ) as suggested Bates and Fawke [48], gives

Ṗ =
RT

V
(ṁ) (F.23)

which was used to calculate the pressure derivatives (Ṗ3, Ṗ5) inside each control

volume.

F.2.7 Evaluation of Rotational Acceleration (Ṅ)

The rotational acceleration derivative, Ṅ , is evaluated by calculating the difference

in torque generated by the turbine and that required by the compressor.

Ṅ =
dN

dt
=

(ηmτturb − τcomp)

Ispool
(F.24)

This expression was integrated to get shaft rotational speed as a function of time.

Using the above formulation a dynamic model for the AMT Olympus engine was

implemented in MATLAB/Simulink and is shown in Figure F.5.
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F.2.8 RPM Controller

To run the above engine simulation model and test various bleed cases at different

throttle/RPM settings, an RPM control system was designed. The control scheme

is shown in Figure F.6. The controller uses a proportional + integral architecture,

with the maximum fuel limit set by either the maximum allowable fuel flow or the

turbine entry temperature (T4). An anti-windup was used for the integral element

and the input RPM demand was slew rate limited for both engine acceleration and

deceleration. The slew rate limit was set to ±10% of the max RPM. Gain values for

the proportional and integral were set at Kp = 0.05 and Ki = 0.0075 respectively.

The initial integral state (x0) in the RPM controller was set to 50% of maximum

fuel flow rate.

F.3 AMT Olympus Turbojet Engine

The simulation method described above was validated on the AMT Olympus [50]

turbojet engine. It is a small engine that generates up to 190 N of thrust. The

engine has a single stage centrifugal compressor and single stage axial turbine. The

combustor chamber is of annular type. An electronic engine control unit (ECU)

controls the RPM and limits the maximum exhaust gas temperature (EGT). The

basic engine specifications as derived from [50] are presented in Table F.1.

Figure F.5: Simulink model for the AMT Olympus turbojet
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Figure F.6: RPM control system architecture

Figure F.7: AMT Olympus single spool turbo jet engine [81]

Besides the component map data, certain other engine parameters were required to

complete the engine model. These were adjusted to match the experimental results.

A combustion burner efficiency of 0.88 was used, together with combustion chamber

pressure loss of 5%. The intake and mechanical transmission efficiencies were set at

1.0 and 0.92 respectively. A rotor inertia of 0.0004 kg-m2 was assumed. An exact

value of rotor inertia was not available so this was adjusted by observing the time

to reach maximum RPM. An effective nozzle area which is 95% of the geometrical

nozzle area was used to cater for the effect of boundary layer growth in the nozzle.

Two control volumes were needed to calculate the pressure derivatives, these were

selected as 1.0 ft3 and 0.75 ft3 for the volumes associated with compressor/combustor

and turbine/nozzle respectively. The initial state vector was set at

X0 = [P3, P5, N ] = [2.2P2, 1.5P2, 88000] (F.25)

which places the engine operating point at a reasonable location on the compressor

and turbine maps.
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Engine Parameter Value Units

Diameter 130 mm
Length 270 mm
Maximum thrust 190 N
Pressure ratio 4:1
Mass flow 0.4 kg/sec
Maximum rotational speed 112,500 RPM
Nominal EGT 923 ◦ K
Maximum EGT 973 ◦ K
Maximum fuel consumption 0.4 kg/min

Table F.1: Technical data AMT Olympus

F.4 Simulation Description

The engine simulation was divided into pre-transient and transient phases.

F.4.1 Pre-Transient

Keeping a fixed value of fuel inflow, the simulation runs till it reaches a state when

Ẋ = 0 and there is no accumulation of mass in any control volume. This phase is

called the pre-transient and with the control vector u = [wf , An] fixed, the simula-

tion converges to a steady state condition. The pre-transient phase can be avoided

by using the last known converged or steady state values of, X0 and control input, u0

respectively. On Figure F.8, the line from point A to B shows the path followed by

the engine as it settles down to a steady state condition in the pre-transient phase.

Point A represents the initial condition, X0, on the compressor map as specified at

start of the simulation and point B corresponds to a steady state condition reached,

according to the fuel setting specified in u0.
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Figure F.8: Transients on the AMT Olympus compressor map
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F.4.2 Transient

Once the engine has reached a steady state condition at point B, the control vector

u = [wf , An] consisting of fuel flow rate and nozzle area can be varied to initiate a

transient. During a transient, it takes a finite amount of time for the rotor to spool

up or down but the mass flow and therefore pressure changes inside the engine can

be quite rapid. The effect of a sudden increase in fuel flow is to move the compressor

operating point up along the speed line toward surge. A sudden reduction in fuel flow

causes the reverse action and the compressor operating point moves down toward

the choking point. Path B to C on Figure F.8, shows the transient response of the

AMT Olympus engine to a slew rate limited RPM demand. The transient was run

with RPM control engaged. The engine settles down at point C corresponding to

maximum speed demand of 112,500 RPM.

F.5 Simulation Results and Validation

F.5.1 Steady State Results

The steady state experimental values under zero compressor bleed were compared at

maximum speed with RPM control engaged. Values of fuel flow, thrust, compressor

pressure ratio and mass flow were noted. Table F.2, summarizes the steady state

results at maximum engine RPM.

Engine Parameter Exper. Sim % Error

Maximum Thrust, N 193 189.5 +1.81
Pressure ratio 3.55 3.47 +2.25
Maximum fuel, gm/sec 9.10 8.85 +2.75
EGT at max RPM, ◦ K 1035 970 +6.28

Table F.2: AMT Olympus engine steady state comparison at 112,500 RPM

It is evident from above that there is a good match between the experimental and

the simulated values. The percentage errors are less than 3% for most of the param-

eters except the exhaust gas temperature (EGT) error, which is approx 6%. The

simulation predicts lesser values of exhaust gas temperature at max RPM, however

as will be discussed later, at lower RPM values the EGT correlation was much better.

Figure F.9 presents a correlation between static experimental and simulated engine

thrust as a function of RPM. Besides the engine setting, various environmental
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Figure F.9: Validation : Thrust, EGT, fuel and compressor exit pressure

factors affect engine thrust. A higher ambient temperature results in a drop in

thrust and rise in exhaust gas temperature. Whereas a lower ambient pressure

results in a loss in the compressor delivery pressure and thrust. The mean static

correlation for thrust under zero bleed conditions was within 5.0% of experimental

values. The engine mechanical transmission efficiency was adjusted from 0.99 to 0.92

to match the EGT values of the experiments. With higher mechanical efficiency the

simulation predicted lower values of exhaust gas temperature. From Figure F.9, the

EGT correlation is quite good at lower speeds but degrades at higher RPM values,

suggesting that the mechanical efficiency (ηm) may not be constant over the whole

RPM range. The fuel burning efficiency was decreased from 0.98 to 0.88 to match

the excessive fuel consumed by the engine. This could also be attributed to the fact

that the manufacturer uses 5% oil in the fuel for lubrication purposes [50] and a

relatively simple combustor model was used. The fuel consumption as function of

RPM as well as compressor exit pressure is also presented in Figure F.9.
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F.5.2 Bleed Experimentation

The bleed experiments [79] were conducted at the University of Manchester’s Jet

Engine Test Facility. These experiments were done as part of FLAVIIR (Flapless

Aerial Vehicle Integrated Interdisciplinary Research) project which aims at devel-

oping novel technologies for control of future aircraft. The bleed air was extracted

from thirty (30) radially symmetric holes on the AMT Olympus engine’s centrifugal

compressor. The amount of bleed was controlled by a bleed valve and various engine

parameters were recorded by a data acquisition system. At a given throttle setting,

as the amount of bleed is varied the electronic engine control adjusts the fuel flow

in an attempt to keep the RPM constant. However in nearly all bleed cases, the

EGT limit is hit as the bleed reaches approximately 30% of compressor mass flow.

This bleed air from the engine is used to power a (i) Circulation control actuator

and a (ii) Fluidic thrust vectoring system [79]. Experimental testing was considered

necessary to quantify the effect of engine bleed on its performance and to identify

the boundaries of safe engine operation.

F.5.3 Bleed Simulation and Validation

Bleed extraction from the compressor has a degrading effect on engine performance.

It alters the work and mass flow balance on engine components. Pilidis [77] states

that upon bleed extraction the turbine will have to operate with a lower mass flow

to produce the work required by the compressor. This will result in a higher turbine

entry temperature (T4) and therefore higher exhaust gas temperature (T5). The

turbine is designed to operate choked even at relatively reduced mass flows, therefore

the non-dimensional mass flow (wt
√
T 4/P4) through the turbine is constant. To keep

the non-dimensional mass flow constant, the turbine entry pressure (P4) will drop.

This implies that compressor pressure ratio will fall. The steady state running line

will shift towards choke with a corresponding reduction in compressor efficiency.

Pilidis [77] suggests that when the non-dimensional bleed (φ) is small, the decrease

in compressor pressure ratio due to bleed extraction can be approximated as

(

P3

P2

)

bleed

≈
(

P3

P2

)

nobleed

√

1 − φ (F.26)

and the corresponding increase in turbine entry temperature (T4) is

(T4)bleed ≈ (T4)nobleed
1

(1 − φ)
(F.27)

261



F Single Spool Turbojet Model and Investigation of Bleed Effects

0 20 40 60 80 100 120 140
50

100

150

200

 T
h

ru
st

 [
N

]

 

 
Experiment
Simulation

0 20 40 60 80 100 120 140
800 

1000

1200

E
G

T
 [

K
]

 

 
Experiment
Simulation

0 20 40 60 80 100 120 140
0

50

100

%
 F

u
e

l a
n

d
 B

le
e

d

 

 
% Fuel
% Bleed

0 20 40 60 80 100 120 140
−10

0  

10 

%
 E

rr
o

rs

 

 
% Error Thrust
% Error EGT

Time [sec]

40% Throttle 53% Throttle 76% Throttle61% Throttle

Thrust

EGT

Bleed

Fuel

Figure F.10: Validation : Drop in thrust due to bleed at different throttle settings

Mass Flow % Bleed Fuel Flow Thrust(N) EGT (K)
(gm/s) (gm/s) Exp. Sim. % Error Exp. Sim. % Error

336.29 0.00 6.36 133.17 127.57 +4.2 856.51 861.0 -0.5
347.75 7.17 6.41 127.57 121.49 +4.8 877.19 884.9 -0.9
350.05 08.79 6.41 124.79 119.78 +4.0 884.43 890.6 -0.7
354.68 11.29 6.44 123.67 117.91 +4.7 892.92 901.0 -0.9
359.50 15.64 6.47 118.56 112.87 +4.8 909.49 923.9 -1.6
363.92 20.39 6.51 114.18 107.01 +6.3 929.45 954.3 -2.7
370.47 24.33 6.55 109.38 103.14 +5.7 950.21 978.3 -3.0
372.60 26.47 6.56 108.00 100.37 +7.1 967.38 994.1 -2.8
374.95 29.13 6.56 103.05 97.37 +5.5 986.73 1014.6 -2.8

Table F.3: Validation of bleed results - 61% throttle setting

Bleed simulation was performed using the engine simulation program and compared

with experimental results. Four throttle settings were simulated, 40%, 53%, 61%

and 76%. The input for the bleed simulation is the actual experimental fuel and

bleed flow rates. This sets the engine operating point. Once the engine reaches a

steady state for a given fuel and bleed flow the input is changed to the next value.

In this way all the bleed cases were tested in a single simulation run.

Figure F.10 shows that as the bleed flow is increased the thrust decreases and the
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EGT increases. Even at lower throttle settings as the bleed flow is increased, the

EGT hits the upper limit. At this point the fuel or bleed flow cannot be increased

further. Hence there is an upper limit on the amount of bleed that can be extracted

at any given throttle setting or engine RPM. The percentage errors for thrust and

exhaust gas temperature are within 5-10% of experimental values. This variation is

expected since the compressor characteristics change with the amount of bleed flow,

and only steady state compressor maps under no bleed conditions were used for the

simulation. It may also be noted that as the engine bleed is increased the electronic

Engine Control Unit (ECU) tries to adjust the corresponding drop in speed by

increasing the value of fuel flow. Each step in the fuel flow setting corresponds to

a different value of throttle setting. Table F.3 summarizes the experimental and

simulated results for the 61% throttle case.

F.6 Summary

A gas turbine simulation program was written in MATLAB/Simulink and perfor-

mance was compared with experimental values. The results were accurate to within

5.0% for the nominal or zero bleed case and within 10.0% for excessive bleed cases.

The increase in error upon bleed extraction can be attributed to two factors. Firstly,

the location where the bleed is extracted affects the amount of work required by the

compressor and this may also vary non-linearly for the radial compressor of the

AMT Olympus engine. Secondly, the bleed extraction itself may adversely influence

the performance of the compressor and the compressor characteristics may change.

Further work will be required to more accurately model the compressor map with

bleed extraction and improve upon the accuracy of the overall simulation. The com-

pressor/turbine maps were obtained from [81] and the experimental data from [79].

Although both sources refer to the same AMT Olympus engine, the possibility of

statistical variation between the available component maps and the actual engine

under test exists. It is possible to further adjust the component efficiencies in order

to match the experimental results, however this was not considered further. The

simulation method runs in real time and therefore can easily be integrated with

aircraft and active flow control simulation codes.
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