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ABSTRACT

The oil and gas industry's goal of developing high performing multiphase flow metering

systems capable of reducing costs in the exploitation of marginal oil and gas reserves, especially

in remote environments, cannot be over emphasised.

Development of a cost-effective multiphase flow meter to determine the individual phase flow

rates of oil, water and gas was experimentally investigated by means of low cost, simple and

non-intrusive commercially available sensors. Features from absolute pressure, differential

pressure (axial), gamma densitometer, conductivity and capacitance meters, in combination

with pattern recognition techniques were used to detect shifts in flow conditions, such as flow

structure, pressure and salinity changes and measured multiphase flow parameters

simultaneously without the need for preconditioning or prior knowledge of either phase.

The experiments were carried out at the National Engineering Laboratory (NEL) Multiphase

facility. Data was sampled at 250 Hz across a wide spectrum of flow conditions. Fluids used

were nitrogen gas, oil (Forties and Beryl crude oil - D80, 33° API gravity) and water (salinity

levels of 50 and 100 gil MgS04) . The sensor spool piece was horizontally mounted on a 4-inch

(102mm) pipe, and the database was obtained from two different locations on the flow loop.

The ability to learn from 'experience' is a feature of neural networks. The use of neural

networks allows re-calibration of the measuring system on line through a retraining process

when new information becomes available. Some benefits and capabilities of intelligent

multiphase flow systems include:

• Reduction in the physical size of installations.

• Sensor fusion by merging the operating envelopes of different sensors employed

provided even better results.

• Monitoring of flow conditions, not just flow rate but also composition of components.

• Using conventional sensors within the system will present the industry with a much

lower cost multiphase meter, and better reliability.
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NOTATION

Symbol Denotes Units

af Film region holdup

afe Local holdup at end of film region

aoaos Oil component fractions (multiphase flow)

as Slug holdup

awaws Water component fractions (multiphase flow)

Ag Cross-sectional area occupied by gas m2

Al Cross-sectional area occupied by liquid m2

Ao Cross-sectional area occupied by oil m2

Ap Pipe cross-sectional area m2

Aw Cross-sectional area occupied by water m2

b Neuron bias

Bo Bond number

Bs Bandwidth Hz

C Distribution parameter (unaerated slug body)

Ce Measured capacitance F

Cm Multiphase fluid mixture capacitance F

Cos Distribution parameter (aerated slug body)

Cp Electrode-pipe wall capacitance F

Cv Critical wave velocity ms-1

Cw Wave velocity ms"

c; Real component of wave velocity ms"

«: Imaginary component of wave velocity -1ms

d Euclidean distance or bubble diameter m



D Pipe diameter m

DgDt Gas / Liquid phase hydraulic diameter m

en Residual error of linear prediction

E Photon energy eV

Ed Objective function for neural network error minimisation

Eq Average quantisation error

Er Neural network output associated relative error %

ER Residual error of linear prediction coefficients

E t Topographic error

ET Total signal energy S-2

Ew Sum of squares of network weights

f Neural network activation function

fi Interfacial friction factor

Is Sampling frequency Hz

F Modified objective function or input vector scale factor

Fe Signal pseudo-frequency

r. Slug Froude number (unaerated slug body)

Frl Slug Froude number (aerated slug body)

g Acceleration due to gravity ms-2

G Conductivity, gain factor or mass flux S.m-1
, - , kg/s.rrr'

Gg Gas mass flow rate kgs"

Go Oil mass flow rate kgs"

Gt Total mass flow rate kgs'

Gw Water mass flow rate kgs"

h Number of hidden nodes



hi Height of liquid m

hlj Height of liquid film m

H Hessian matrix, Time average liquid holdup

Hmax Maximum liquid holdup

tt, Average liquid holdup in slug body

I Current or measured gamma radiation intensity V -1, s

10 Initial gamma radiation intensity -1s

Ig Gamma radiation intensity of gas filled conduit S-1

1[ Gamma radiation intensity of liquid filled conduit S-1

10 Gamma radiation intensity of oil filled conduit -1s

1w Gamma radiation intensity of water filled conduit -1s

If Length of film m

Is Slug length m

lu Total length of slug unit m

L Length, distance between sensors m

m Gradient

me Best matching unit vector

n Number of layers in neural network

N Total number of points in a sampled record

p Neural Network input

p Pressure bar

p(x) Probability Density Function

qgfqgt Gas pickup / gas shedding flux velocities ms-1

qljqlt Liquid pickup / liquid shedding flux velocities ms-1

qm Mass Flow rate kgs"



Qg Gas volumetric flow rate 3 -1ms

QI Liquid volumetric flow rate nr's'

Qo Oil volumetric flow rate m3s-1

Qt Total volumetric flow rate m3s-1

Qw Water volumetric flow rate m3s-1

R Covariance coefficient or input vector range

Re Effective resistance, Reynolds number n -,

Rm Multiphase fluid mixture resistance n

Rxx Autocorrelation function

Rxy Cross-correlation function

s, Interfacial width m

8 Slip ratio or generic signal

81 Salinity 1 (SOg/l MgS0 4 Solution) gil

82 Salinity 2 (100g/l MgS0 4 Solution) gil

t Time or neural network target output s -,

t, Time for the passage of a slug unit s

T Temperature °c

U Topographic error constant

Ub Gas bubble velocity ms'

Vdrt!t Drift velocity -1ms

VFRN Net gas volumetric entrainment rate m3s-1

VFLT Liquid shedding rate m3s-1

Vg Gas phase velocity ms-1

VI Liquid phase velocity ms-1

Vo Oil phase velocity ms-1



Vsg Superficial gas velocity ms-1

Vst Superficial liquid velocity ms'

Vslip Slip velocity ms"

Vw Water phase velocity -1ms

V"t Translation velocity ms"

W Neural network weight

x Mean

XI Liquid pick up rate m3s-1

xCt) Sample time history

x Distance parallel to flow axis (upstream direction) m

X Lockhart-Martinelli number

y Distance normal to flow axis, Neural network output m -,

Z Atomic number

z; Electrical impedance n

a Control parameter in Bayesian regularisation

ag Gas volume fraction

at Liquid volume fraction

as Low void fraction peak

fJ Angle of inclination, Water volume fraction
or control parameter in Bayesian regularization rad

Y Oil volume fraction; linear attenuation coefficient; or
number of effective parameters

Yg Gas linear attenuation coefficient m-1

Yt Liquid linear attenuation coefficient m"

Oil linear attenuation coefficient -1
Yo m

Water linear attenuation coefficient -1
Yw m

l5 Outer layer error



b(x) Boundary layer development profile m

~ Sampling period s

~Pfilm Total film zone pressure drop bar

~Pslug Total slug body pressure drop bar

~Pf Slug body frictional pressure drop bar

sr; Slug body mixing zone pressure drop bar

~Pr Slug body rear pressure drop bar

rjJ Phase inversion point (multiphase flow)

e Angle subtended by liquid film rad

A Insitu water fraction (multiphase flow)

/1g/11 Gas phase / liquid phase viscosities Nm-2

/1o/1w Oil /water component viscosities Nm-2

v Slug frequency Hz

Pg Gas density kgm'

PI Liquid density kgm"

Pm Mixture density kgm'

po Oil density kgm"

Pw Water density kgm"

r Average residence time s

Wave growth rate 3 -1
OJ ms

Q Non dimensional slug frequency

Subscripts
g gas
I liquid
0 oil
d Pipe diameter
w water
m mixture

f film region
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CHAPTER 1

INTRODUCTION

1.1 Background

In upstream oil and gas production operations, multiphase flow measurements i.e.

knowledge of individual fluid (oil/gas/water) flow rates of each producing well is

required for effective reservoir management, field development, operational control,

flow assurance and production allocation, Department of Trade and Industry

(DTI), (2003). The industry needs reliable and accurate multiphase meters as they can

have an enormous impact on cost savings.

The conventional approach offshore often involves using test separation equipment

mounted on fixed or floating platforms. This requires separation of the fluids into

. single-phase oil, gas and water from where the flow rates can be measured using

proven meters such as turbine, positive displacement meters and orifice plates. This

cumbersome and expensive approach is not acceptable for many future developments

such as unmanned satellite platforms and seabed well completions. Instead, novel

metering techniques, employing a variety of technologies have been developed, which

eliminate the need for the deployment of three-phase separators. These multiphase

flow meters (MPFMs) offer substantial economic and operating advantages over their

phase separating predecessors. However, it is widely recognised that no single

measurement technique has proved to be effective over the complete range for all

multiphase metering requirements.

Despite the advances, industrial deployment of this technology remains expensive for

meters that offer acceptable performance. Industry experts have forecasted that

MPFMs will become feasible on an installation per well basis when their capital costs

fall to around $40,000 - 60,000 U.S. Today this cost is in the range of $100,000 ­

500,000 U.S. (varying with onshore/offshore, topside/subsea, physical dimensions

and quantity ordered). Installation of these MPFMs can cost up to 25% of the

hardware cost, and associated operating costs are estimated at between $20,000 and

$40,000 U.S. annually, Scheers et al (2002).
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Deployment of multiphase flow meters remains very low, as this technology is a

nascent sector within the oil and gas industry. It has been suggested that with the

current market climate, a modest target for the oil industry would be to have MPFMs

installed on 1% of the world's wells by 2010, Jamieson (1998).

Thus, there is a clear need for further development of multiphase flow meters within

the oil and gas industry.

Realising the need for reliable and accurate multiphase meters, the oil & gas industry

and government bodies, have supported the development and demonstration of

multiphase metering technology, which is seen as critical for the future economic

development of many offshore reserves.

A recommendation from a previous survey project undertaken by Cranfield University

in the 1996-1999 Flow Programme, funded by the then DTI (now DBERR ­

Department for Business, Enterprise and Regulatory Reform) NMS (National

Measurement System) programme, is the creation of a sensor database for multiphase

flow. Availability of the database will encourage the development of innovative signal

analysis techniques which is the key to the development of cost effective multiphase

meters. In conjunction with NEL, Cranfield University designed and assembled a

sensor spool piece. The response data from the sensor spool piece were collected over

a wide range of oil, water and gas flowrates in NEL' s Multiphase Flow Loop in East

Kilbride, Glasgow. Data were collected under two different salinities of 50 and 100 gil

MgS04. To ensure that the techniques developed are installation independent, the

spool piece was placed at two different locations on the flow loop, where the flow

regime induced by the pipe arrangement and location were expected to be different,

Yeung et al (2002).

ESMER exploits advanced signal processing techniques to determine the individual

phase flow rates of a multiphase flow mixture. The ESMER system comprises two

modular sub-spools: the pressure spool and the impedance spool. The pressure spool

contains a differential device (orificeNenturiN-cone) equipped with differential

pressure and absolute pressure gauges and a temperature sensor. The impedance spool

comprises a capacitance sensor for oil external applications, a conductance sensor for

2



water external applications, or both for full water cut range applications. The spools

are installed in a horizontal orientation.

ESMER is a pattern recognition based meter that establishes the non-linear

relationships between an array of sensor measurements and the individual phase flow

rates by a combination of pattern recognition and neural network training as shown in

Figure 1.1. Toral, et al (1998).

turbulsac
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Figure 1.1 - ESMER Concept Model (Toral et al, 1998)

In 2002, ESMER was field tested by Sarawak Shell Berhad in Malaysia over a 20­

month period, Cai, et al (2004). In a series of well tests, the meter's measurements

were compared against those obtained from a conventional test separator. Good

repeatability and trending of the meter against different production rates and flow

patterns were reported and it was claimed that ESMER measurements matched the

separator measurements to within ±10% for wells which were inside the operating

envelope. However, it was noted that the accuracy of the meter deteriorated in well

tests located at the boundary of the MPFM's operating envelope and with the passage

of time.
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1.2 Thesis Objectives

Owing to the increasing importance in the oil & gas industry for an accurate and cost

effective solutions for multiphase flow measurement and the inherent technical

limitations of the existing technology, this research work was conceived to evaluate

the feasibility of using simple sensors and advanced signal analysis techniques for

measuring three-phase (oil-water-gas) flow. This was as a follow up to the DTI

sponsored Cranfield/NEL NMS project, Yeung et al (2002), as well as extending

previous works carried out by numerous researchers, who have validated various

methods and instrumentation in conjunction with advanced signal processing

techniques for evaluating multiphase flow (mainly two-phase) in horizontal pipes.

This research work aimed at evaluating new techniques of pattern recognition (PR)

methodologies as well as applying those techniques for the first time to three-phase

(oil, water & gas) slug flow in horizontal pipes at different salinity levels and different

locations on the flow loop.

The work is focused on slug flow as this is the main flow regime encountered in

upstream operations, and it should be reasonably straightforward to extend the use of

the system to other flow regimes.

The main objectives of the research work are summarised as follows:

• To review the literature describing components of the multiphase metering

systems, and the application of pattern recognition techniques in multiphase

flow measurements.

• To experimentally collect the response from a range of simple sensors when

subjected to three-phase (oil/water/gas) flow conditions, with operating

conditions covering a wide range of gas and liquid superficial velocities, in a 4

inch (102mm) horizontal pipe, under two different salinities of 50 and 100 gil

MgS04, at two different locations on the flow loop.
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• To analyse features from the sensor signals' characteristics in relation to key

multiphase flow parameters.

• To apply an appropriate pattern recognition model (Neural Network) for the

identification of individual phase flow rates and water-cut.

• To assess the performance of the system, for a range of multiphase flows, and

the effectiveness of the neural network on the different pipe locations as well

as the different salinity levels.

1.3 Layout of the Thesis

The thesis is divided into seven chapters. An overview of the contents (chapters 2-7)

is presented below:

Chapter 2 Reviews multiphase flow measurement, concepts (direct/inferential

methods), techniques and flow patterns. A review of commercial multiphase meters is

also presented in this chapter. Other literature reviews undertaken are: neural

network/applications, signal analysis and feature extraction, salinity effects in MPFM.

Chapter 3 Describes the experimental set up and sensor spool piece. The fluid

properties and separation techniques are discussed. Technical description of the data

acquisition system and sampling frequency are also presented. The flow diagram

indicating the two locations of the sensor spool, experiments carried out, and typical

sensor response is described.

Chapter 4 The Application of Neural Networks in Multiphase flow is presented.

The response of each feature to individual superficial phase velocities is evaluated

Features having individual phase velocity identification capabilities are proposed for

determination of flow. Results of investigations of the effectiveness of feature

dimensionality reduction and sensor fusion are presented. The performance of the

Pattern Recognition (PR) system at test location 2 is evaluated in this chapter.
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Chapter 5 The effect of salinity on phase flow rate is investigated. Salinity

change, flow rate prediction at 50 gil MgS04 and 100 gil MgS04 is identified.

Salinity based sensor discrimination, importance and points of retraining are

evaluated.

Chapter 6 Discussion of research findings is presented, including performance,

and effects of changes in the system (salinity, location). Also included are research

applications and suggestions to improve performance.

Chapter 7 The main conclusions drawn from the research work are summarised

and recommendations for future work presented.
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CHAPTER 2

LITERATURE REVIEW

This chapter presents an overview of the basic concepts and principles of the

multiphase flow phenomenon and its measurements. A review of the current state of

multiphase flow measurement is presented looking at the various concepts and

techniques employed in commercially available meters. The application of neural

network and signal analysis techniques are also reviewed.

2.1 Multiphase Flow Measurement

The requirement for reliable and yet cost-effective multiphase meters has become

increasingly important. Multiphase meters are especially needed in cases when

several operators share the use of production and transportation facilities in the

exploitation of marginal oil and gas reserves from different locations.

The simultaneous flow of oil, water and gas (multiphase) in a pipeline is a complex

phenomenon, making it difficult to understand, predict and model. Well established

single-phase flow characteristics, including boundary layer, velocity profile and

turbulence, are rendered ineffective in describing their nature, Sanderson (2001).

A multiphase flow regime, observed under specific set of flow conditions, depends on

a number of factors, including flow line geometry (size and shape), orientation

(horizontal, inclined or vertical), and flow direction in vertical or inclined flows (up or

down). Further complicating the matter is the physical distribution of the phases in the

pipe and component transport properties (density, viscosity and surface tension). In a

gas-liquid mixture, if there is no heat transfer between the phases, the mass flow rates

(velocities) will increase progressively as the lower density and viscosity of the gas

phase causes it to flow at a higher velocity relative to the liquid phase - a physical

characteristic known as slippage.

When multiphase (oil, water & gas) flow simultaneously in pipes, the flow regime,

pressure and velocity fields are strongly connected. Perhaps the most distinguishing

aspect of multiphase flow is the variation in the physical distribution of the phases in
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the pipe, a characteristic known as the flow regime. Under multiphase flow conditions

in pipes, the flow regime that exists depends on the relative magnitude of the forces

that act on the fluid. Gravity, buoyancy, turbulence, inertia, shear and surface tension

forces vary significantly with flow rates, pipe diameter, inclination angle, and fluid

properties of the phases. Multiphase phase flow regimes may therefore be viewed as a

consequence of the interaction between these forces. To give an indication of the

complexity and interaction between the forces mentioned above during multiphase

flow in pipes, a further review of flow pattern is given in section 2.2.

Figure 2.1 shows the operating envelopes of multiphase meters. It is an approach

commonly used in other disciplines for displaying properties of three component

mixtures.

Gas

LVF 10%
LVF

%
-::=--~f-~_~:o-_~LVF 50%

o Water

Figure 2.1 Multiphase Composition Triangle, Jamieson (1998).

The vertices of the triangle represent single-phase gas, oil and water, while the sides

represent two-phase mixtures and any point within the triangle represents a unique

three-phase mixture. The transition region indicates where the liquid fraction changes

from water-in-oil to oil-in-water. The ranges of common multiphase flow regimes,

which are affected by temperature, pressure, viscosity and flowline orientation, are

indicated at the side of the triangle.

8



2.1.1 Concept/Operating Principles ofMultiphase Measurements

The fundamental function of a multiphase flow meter in the oil & gas industry is to

supply the user with information on the mass flow rate of oil, water and gas

components in a flow. In an ideal situation, a flow meter should simply make direct

measurements of each of these three quantities. Unfortunately, direct mass flow

meters for multiphase flows do not yet exist. The approach of MPFMs to the

challenge of multiphase flow measurement may be classified in the following

categories:

• Phase Separation '
• In-line Multiphase Flow Meters
• Combination of Inline and Partial Separation

As direct mass flow rate measurement in multiphase flow is yet to be achieved, the

above mentioned approach uses inferential methods instead, Thorn and Hammer,

(1997). The multiphase flow metering systems are dependent on primary variables:

• Phase Fractions
• Phase Velocities
• Phase Density

and to some extent secondary variables such as:

• Flow Regime
• Phase Viscosity
• Phase Salinity

Evaluation of the primary variables is a prerequisite in applying the inferential method

for multiphase flow measurement. Determination of the secondary variables is not

strictly required, but could facilitate more accurate measurements if they are taken

into consideration. The flow regime parameter may be considered a primary variable

if a flow regime dependent sensing technique is used in the determination of the core

primary variables.

The inferential method requires the resolution of the instantaneous velocity, cross­

sectional fraction, and density of each component in order to be able to calculate the

individual flow rates and the total mixture flow rate as shown in Figure 2.2.
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Figure 2.2 - Inferential Method of MPFM, Thorn and Hammer (1997)

Density data for all three components is readily available from other parts of the

production process or can be estimated using PVT diagrams. Thus, the problem is to

measure the component velocities and two of the three component volume fractions,

usually the gas phase fraction and the liquid phase water fraction, in order to calculate

the total mass flow.

where it is assumed:

a+f3+r=l

(2.1)

(2.2)

It is common practice to simplify the problem by assuming that the liquid phase

velocity parameters are equal, reducing the number of unknown variables to five.

Homogenisation of the multiphase mixture may be employed to reduce the velocity

parameters to a single uniform mixture velocity, Hewitt (1989).

Current state of the art multiphase flow meters employ a variety of technologies to

determine the multiphase component volume fractions and velocities. These methods

are detailed in subsequent sections along with an overview of some important

computational techniques that could have a significant role in the future development

of multiphase flow meters. A comprehensive review was undertaken by Sanderson

(2001).

2.1.2 Measurement Techniques

In the three classes i.e. phase separation, inline & combination of inline/partial

separation, different measurement techniques and strategies can be used to obtain
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phase fraction and phase velocity information. Some typical examples of these

techniques are shown in Table 2.1, State of the Art Multiphase Flow Metering,

American Petroleum Institute (API) , (2004).

Table 2.1 Measurement Techniques and Devices in MPFM, API 2566, (2004)

Composition Methods
I

Velocity Methods
I

Capacitance
I

Venturi
I

Conductivity/Inductance
I

Positive Displacement Device
I

Microwave/Infrared
I

Coriolis Device
I

Dual Venturi
I

Cross Correlation Techniques
I

Single/Multiple Gamma Ray Acoustic Attenuation

I
Absorption

2.1.2.1

2.1.2.1.1

Phase Volume Fraction Measurement

Electrical Impedance (Capacitance and Conductance) Methods

The basic principle of the impedance method of component fraction measurement is

shown in Figure 2.3. If the electrical impedance (Ze) is measured across two

electrodes, between which an oil-water-gas mixture is flowing, then the measured

resistance (Re) and capacitance (Ce) will be given by:

(2.3)

(2.4)

The resistance (Rm) and capacitance (Cm) of the mixture flowing through the pipe

depends on the permittivity and conductivity of the oil, water and gas components, the

void fraction and water fraction of the flow, and the flow regime. The resistance and

capacitance measured across the electrodes will in tum depend upon Rm, Cm, and the

excitation frequency co of the detection electronics, geometry and materials of the

sensor. For a particular sensor geometry (and hence fixed Cp ) and flow regime, the

measured impedance will be a direct function of the flow 's component ratio .
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Figure 2.3 Capacitance method of component fraction measurement

Capacitance measurement is one of the most widely used techniques in the

measurement of void fraction. The technique is based on the different dielectric

constants of liquid, gas and pipe material. The meter generally consists of a couple of

electrodes, a transducer and an indicator. The electrodes can be installed inwall of the

pipe without obstructing the flow or outwall of the pipe. However, capacitance

composition measurement technologies can only be used in a continuous oil or gas

continuous flow regime because in the presence of continuous water phases, the

capacitance will "short circuit".

When the liquid phase water cut is above 60-70%, capacitance measurements must be

replaced by conductivity measurements as the fluid transforms from oil to water

continuous. Typically, the conductivity will be measured by injecting a controlled

electrical current into the flow and measuring the voltage drop between the electrodes

along an insulated section of the pipe as shown in Figure 2.4.

I
L

1
Figure 2.4 - Conductance Method for Component Fraction Measurement
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Electrical current can be injected using contact electrodes or non-contact electrodes

(inductive mode). Applying Ohm's law, the effective resistance (Re) offered by the

multiphase flow can be determined by dividing the measured voltage drop by the

current injected (1). Since the distance between the electrodes is also known (L), this

resistance measurement can be expressed in terms of conductivity (G). Electrical

impedance methods have two limitations that have to be considered: flow regime

dependence and measurement discontinuity over the full component fraction range.

Switching between capacitance and conductivity measurements is used to overcome

the latter although measurement difficulties can occur around the inversion point if

the fluid oscillates between oil and water continuous.

Furthermore, to remove the uncertainty obtained in electrical impendence owing to its

flow regime bias, two techniques are commonly exploited:

• Homogenisation of the multiphase mixture prior to measurement.

• Modification of electrode design to reduce bias.

Several modified electrode designs have been reported such as helical, Abouelwafa

and Kendall (1979), and rotating fields, Merilo et al (1977). These sensor designs

ameliorate the metering performance within identified flow regimes. Nevertheless,

impedance sensors are still not suitable for use in applications where the flow regime

is unknown or unstable.
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2.1.2.1.2 Gamma Radiation Attenuation

Gamma radiation attenuation techniques can be used to resolve two-component

mixture phase fractions using a single-energy gamma source or three-component

mixtures using a dual-energy gamma source , Abouelwafa and Kendall (1980) .

A collimated gamma ray beam is directed at the prpe with a sensor placed

diametrically opposite the source on the other side of the pipe as shown in Figure 2.5.

Liner

GAS

OIL

WATER

Collimator Source~

IJ\~--~Vs

Figure 2.5 - Gamma Attenuation Measurement

The intensity of the gamma beam decays approximately exponentially as it passes

through matter flowing in through the pipe measurement section. A gamma ray beam

will be attenuated to different degrees by materials according to their density: a more

dense material will attenuate the electromagnetic radiation to a greater extent than a

less dense material. If the gamma source employed has two distinct energy levels, this

can be exploited to determine the volumetric fractions of oil, water and gas in a three­

phase mixture as the atomic attenuation coefficients depend not only on the density of

a material but also on the energy of the gamma beam itself.

2.1.2.1.3 Microwave Sensor

Microwave sensors are used to distinguish between water and oil in the liquid phase

of a multiphase flow. Water and oil have distinctly different dielectric constants and

conductivities and it is this difference that allows a microwave sensor to determine the

water content of a water-oil mixture.
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Table 2.2 - Typical Properties of Gas, Oil and Water Components
Property Oil Gas Water

Density Kg/m3 10 840 998

Dielectric Constant 0 2 75

(Dimensionless)

Conductivity uScm" 1 10-b 10

There are three different microwave sensor operation principles, Nyfors and

Vainikainen (1989).

• Transmission sensor and measurement on a single frequency:

A probe is used to transmit microwave radiation through the multiphase medium

to a receiving probe. Caution must be exercised to prevent reflections in the

pipe/sensor and a guided wave sensor may be deployed to prevent against this.

The microwave-receiving sensor may be configured to output the attenuation of or

the phase change in the transmitted microwave radiation.

• Transmission sensor and measurement on a varying frequency:

Owing to the large attenuation of water continuous liquid phases on high

frequency microwaves, it may be beneficial to employ a varying frequency

method where the frequency of microwave radiation transmitted is a function of

the dielectric properties of the fluid. This can be implemented by monitoring the

change of phase such that the meter can determine the frequency where the phase

change is constant.

• Resonator sensor:

The meter measures the dielectric properties of the mixture using the resonant

cavity method. A resonant cavity comprises a metal structure which confines an

electric field, causing it to reflect back and forth within the cavity. By matching

one of the dimensions of the cavity to the wavelength of the electromagnetic

radiation, a standing wave is produced. When this cavity is filled with a specific

fluid, the resonant frequency of the cavity will shift in direct proportion to the

dielectric constant of the fluid present. As a result, by measuring the resonant
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frequency and peak width, the dielectric properties of fluid can be determined.

The system can be calibrated to give the water cut.

In practice, microwave sensors use a combination of techniques, using the resonating

cavity principle for oil continuous flows and the varying transmission frequency for in

water continuous. A microwave sensor would be used in tandem with either electrical

impendence or gamma attenuation technique to obtain the gas volume fraction of the

multiphase flow.

2.1.2.2.1 Phase Velocity Measurement

2.1.2.2.2 Positive displacement meter

The meter is based on a mechanism to segregate the multiphase flow into small

incremental packages (partial separation type), such that in their transit through the

device, the phases are temporarily confined without relative slip. By measuring the

densities in packages, the mass flow rate of the multiphase fluid is obtained by

multiplying the package volume flow rate by the density. Volumetric flow rates are

obtained by a pulse generating and detection system monitoring rotor revolutions. The

mass flow rates of individual phase liquids can be measured from sample properties

such as oil density, gas density and water-cut. Representative liquid samples are taken

from the meter's central chamber. Field tests of the meter showed up to 10% and 20%

measurement error for volumetric and mass flow rates respectively, Tuss et al (1996).

The main disadvantage of the meter is its intrusive nature. Also, mechanical parts of

the meter, which require continuous maintenance, may fail under severe flow

conditions.

2.1.2.2.3 Differential Pressure Measurements

In instances where a multiphase flow is sufficiently mixed, differential pressure-based

flow measurement techniques such as Venturi and orifice sections can be utilised to

determine the flow velocity and also measure the mixture flow rate, Olsen (1993).

The pressure drop measured across these sections can be expressed as a function of

the fluid flow rate and vice versa. The Venturi and orifice meter operating principles

are well-established and well-understood single-phase flow measurement methods.

Full descriptions of their technical designs are detailed in ISO 5167:2003.
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Figure 2.6 illustrates the geometry of the Venturi and orifice inserts and their

characteristic flow profiles. In the Venturi section, the reduction in the flow area

results in increased fluid velocity and, consequently, reduced fluid pressure. The small

angle of the downstream cone facilitates large pressure recovery by minimising

frictional losses . In contrast, the abrupt reduction in flow diameter in the orifice plate

results in the creation of regions of fluid recirculation and the downstream pressure

recovery is hindered by the disturbed flow pattern induced by the restriction.
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Figure 2.6 - Differential Pressure Measurement Systems (a) Venturi, (b) Orifice
Taken from Blaney (2008)

The use of orifice plates tends to be restricted to wet gas measurements owing to their

poor pressure recovery properties. The gas phase flow rate can be determined from

the two-phase mixture pressure drop through the application of either the Murdoch

(1962) or Chisholm (1967) correlation.
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Murdoch:

Chisholm:

Q
Qg = 1+1.26X

Q = Q
g ~l+CX+CX 2

(2.5)

(2.6)

where, Q denotes the wet gas flow rate derived from the orifice plate pressure drop

and C is the Chisholm constant and X is the Lockhart-Martinelli parameter:

( J
O.25 ( JO

.
25

C = PI + Pg

Pg P
(X <1) (2.7)

(2.8)

In order to determine the flow rate of the homogeneous gas-liquid mixture using a

Venturi, an experimentally determined corrected differential pressure formula must be

applied, such as that proposed by Hammer and Nordvedt (1991): i.e. the volumetric

liquid flow rate can be obtained from a measured pressure drop (LIP) for a known gas

volume fraction and liquid density.

(2.9)

The Venturi method has many advantages including low cost, good pressure recovery,

familiarity, and simple operation. Furthermore, high accuracy velocity measurements

(relative error <1%) can be obtained as long as the multiphase flow mixture maintains

homogeneity. On the other hand, the multiphase flow will require pre-conditioning in

order to induce a state of homogeneity. In addition, the differential pressure lines of

the Venturi meter require regular purging and scale formation can yield excessively

high pressure drops.

2.1.2.2.4 Cross-Correlation

The cross-correlation method is a common technique, used for velocity measurement

of multiphase flows, Beck and Plaskowski (1987). The principle of this technique is
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shown in Figures 2.7 a-c. An upstream and a downstream sensor are mounted a

distance L apart, producing the flow signals x(t) and yet) respectively. The cross­

correlation function is given by:

1 T
Rxy(r) =- fx(t)y(t-r)dt

To
(2.10)

where Rxy(z) is the value of the cross-correlation function when the upstream signal

yet) has been delayed by a time 'to T is the duration of the sensor data.

The transit time of the flow between the two sensors is found by the time lag t at

which the cross correlation function is a maximum. The velocity of the flow V can be

found from:

v=~
*r

(2.11 )

The accuracy of this method depends on the validity of the relationship used to

connect the velocity inferred from the correlation function's peak position to the mean

velocity of the flow. Some general procedures for obtaining good cross-correlation

accuracy are outlined in Beck and Plaskowski (1987).

1. B, (sensor bandwidth) should be very large to enhance the flow noise

turbulence (cross-correlation of white noise leads to a perfectly narrow

correlation peak).

2. L (sensor separation) should be minimised to reduce the possibility of flow

evolution between sensors. However, this separation should not be reduced

too much to avoid relative spacing uncertainty (Ax/x), signal quantisation

errors, and signal crosstalk errors.

Also Ong and Beck (1975), suggested the optimum sensor separation for

homogeneous flow, was of the order of3 to 4 pipe diameter.

There are a number of disadvantages with the cross-correlation method, including,

• Dedicated computer hardware is usually required, to evaluate the

discrete form of the equation on continuous basis.

• The measurement errors will occur if the phases are travelling at

different velocities.
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•

To overcome this problem, a simultaneous measurement for more than one phase

velocity must be achieved. And this measurement can be achieved, through a careful

sensor design, e.g. capacitance, Olsvik et al (1995).
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Figures .2.7 a-c - Cross- Correlation Principles Taken from Stewart (2002)

Figure 2.7 shows cross-correlation velocity measurement: (a) system components; (b)

the ideal sensor output and the normalised function Pxy; (c) the actual sensor output

and function Pxy' due to spatial filtering and flow evolution effects Stewart (2002).

2.1.2.2.5 Coriolis mass flow meters

The main components of a coriolis meter are; a U-shaped pipe and a T-shaped leaf

string with a magnetic detector. When fluid passes through the meter, the momentum

change causes an angular deflection of the tube proportional to the mass flow rate,

which is sensed by a magnetic detector. The meter depends upon the detection of

vibration amplitude, it is not suitable for use at high void fraction where mechanical

vibration caused by slugs can introduce significant errors.
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Figure 2.8 - Coriolis Flow Meter, taken from Meinold (1984)

Although Coriolis meters are traditionally used for liquid flow measurements, most

manufacturers now offer them for, gas applications. The meters are calibrated with

water and the calibration is used for gas flow as well. Due to their ability to directly

measure the mass flow rate, there is a particular interest to evaluate Coriolis

performance in wet gas flow conditions. The results reported by Wood (2002)

indicate that the Coriolis meter showed a clear pressure dependency in dry gas

conditions, with the error becoming increasingly negative with increasing pressure.

The meter also exhibited even greater errors in wet gas flow conditions. At all liquid

fractions tested, the meter under-predicted the reference gas mass flow rate with

measurement errors reaching as high as 50% in higher liquid loading.

The above results showed that the Coriolis meter under-predicted the actual gas

density in both dry and wet conditions, leading to the meter under-estimating the gas

mass flow rate. According to previous research work on general two-phase flow,

Wood (2002), the meter can function up to 10% gas entrainment provided the two­

phase gas-liquid flow remains homogenised within the small vibrating tubes of the

Coriolis meter.

2.1. 4. 2. 5 Turbine flow meters

Turbine flow meters (Figure 2.9) measure the volumetric flow of the flowing fluid

(liquid or gas). The unit consists of a multiple-bladed rotor, housed in a non-magnetic

body mounted with a pipe, perpendicular to the liquid flow. The rotor spins as the

fluid passes through the blades. The rotational speed is a direct function of flow rate

and can be sensed by magnetic pick-up, photoelectric cell, or gears. These instruments
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operate linearly with respect to the volume flow rate. Because there is no square-root

relationship (as with differential pressure devices), their rangeability is greater. Baker

(1998) gave an extensive coverage of the considerable range of turbine designs

together with a review of their principle operations.

Figure 2.9 - Turbine Flow Meter, taken from Stewart (2002)

Stewart (2002), described a series of wet gas tests on a 6-inch Instromet gas turbine

meter at the NEL (as part of the DTI sponsored project). The presence of even small

quantities of liquid produced a significant effect on turbine meter readings at

Reynolds numbers below 5 x 106
• At higher Reynolds numbers the liquid appeared to

have little effect on the meter. The author concluded that additional testing, preferably

on more than one model of turbine meter would be required to provide a better

examination of turbine meters in wet gas conditions.

2.1.4.2.6 Vortex Flow Meters

Vortex meters make use of a natural phenomenon that occurs when liquid flows

around a bluff object. Eddies or vortices are shed alternately downstream of the

object. The frequency of the vortex shedding is directly proportional to the velocity of

the liquid flowing through the meter, Figure 2.10. The three major components of the

flow meter are a bluff body strut-mounted across the flow meter bore, a sensor to

detect the presence of the vortex and to generate an electrical impulse, and a signal

amplification and conditioning transmitter whose output is proportional to the flow

rate. Sanderson (1998), gave a review of vortex shedding flow meters.
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Figure 2.10 - Vortex Flow Meter, Sanderson (1998)

Vortex meters are normally used for processed natural gas and steam flow. A typical

quoted accuracy in these applications for an uncalibrated meter is of the order of ±

1.5% of reading and ± 1.25% for calibrated flows, Sanderson (1998).

A 4-inch Fisher-Rosemount vortex meter was tested by the NEL in a horizontal

orientation in wet gas at 15, 30 and 60 barg, Stewart (2002). The results showed that

the meter over-estimated the reference gas flow rates with a relative error ranging

from 0 to 30%, which was dependent on liquid volume fraction and gas velocity.

These results indicated that if vortex meters are used for unprocessed natural gas,

large measurement errors can be expected as the presence liquid causes the meter to

over-estimate the actual gas flow rates.

2.1.2.3 Artificial Neural Networks

Application of neural networks (ANNs) is nascent to multiphase flow measurement.

A neural network is a data processing paradigm that was inspired by the way the

biological nervous system processes data. The real strength in the application of

neural networks to multiphase flow measurement problems lies in their ability to

represent both linear and non-linear relationships and their capability to learn these

relationships directly from the data being modelled, Brown (2002). A more detailed

discussion of ANNs, and other pattern recognition methods, as applied to multiphase

flow measurement, is given in section 2.5.

2.1.2.4 Tomography Systems

Electrical capacitance tomography (ECT) is a non-intrusive technique for obtaining

distribution data of the contents of closed conduits by measurement of the variations

in the dielectric properties of the fluid inside the conduit, Ismail et al (2005). Typical
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information yielded includes cross-sectional images of the conduit contents and the

measurement of the phase fraction and velocities of the contents of pipes for

multiphase flows. A basic ECT system comprises a capacitance sensor, a capacitance­

measuring unit and a control computer. The pipe cross-section to be imaged is

surrounded by one or more circumferential sets of capacitance electrodes and the

electrical capacitances between all combinations of the electrodes within each set are

recorded. These data can then be used to build an image of the pipe contents enclosed

by the sensors, based on variations in the permittivity of the material inside the

measurement area.

2.2 Flow Pattern

Multiphase flows can distribute themselves in an infinite number of ways. Flow

regimes are classifications that have been developed to describe, in general terms, the

multiphase flow geometry. The flow regime adopted by a multiphase flow is dictated

by a number of parameters including operating conditions, fluid properties, flow rates,

pipe geometry, and pipe orientation.

Although many flow regime classifications exist, they can all be broadly classified

into dispersed flow, separated flow, intermittent flow or a combination of these.

D Liquid Phase

D Gas Phase

Ls
Disj:Jersed Flow

Figure 2.11 Classes of Multiphase Flow Regime, Blaney (2008)

A dispersed flow regime (Lb=O) is defined by a uniform phase distribution across both

the radial and axial directions. The separated flow regimes (Ls=O) are distinguished by

the fact that they comprise a non-continuous phase distribution in the radial direction

but a continuous phase in the axial direction. The final group of multiphase flow

regimes is the intermittent flow, which tend to display localised unsteady behaviour
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due to a non-continuous phase in the axial direction . Liquid-liquid interactions in a

multiphase system usually exhibit less significant influence, when compared to the

gas-liquid interactions, on the flow regime. In such cases, the liquid-liquid portion can

be modelled as a dispersed flow although it should be noted that the liquid mixture

properties can be highly dependent on the volumetric ratio of the two components

present.

Researchers have reported a number of experimental-based methods to rationalise

flow regime identification. Data from sensors have been analysed using techniques

such as template matching , Darwich et al (1989), statistical analysis of signal

responses, Stapelberg and Mewes (1990), fractal analysis, Franca et al (1991), and

neural networks, Wu et al (2001). While these techniques enable general classification

of flows operating within particular regimes, describing the boundaries between flow

regimes remains somewhat subjective as these are sensitive transitional areas rather

than clear-cut boundaries . Accordingly, multiphase flows that lie close to regime

boundaries still cannot be definitively established. Flow regimes maps are graphical

charts that are used to predict the different types of flow patterns that will occur for a

particular system. Baker (1954), was among the first to publish horizontal flow

regime maps that enabled the flow pattern to be predicted upon knowing the mass

velocities of the liquid and gas phases and the fluid properties. Other researchers ,

Nicklin et al (1962), Hewitt (1978), Spedding and Nguyen (1980), Spedding and

Spence (1994), have all studied flow patterns , employing their own modified

parameters to describe the gas and liquid flows. Mandhane et al (1974), published a

set of multiphase flow maps that were able to predict the flow regime present in a

pipe, based on the superficial phase velocity parameters. Taitel et al (1980), exploited

superficial phase velocities to produce a model describing the flow regime transitions

in vertical flow. Following its publication, the Taitel-Dukler map was found to define

the transition between different flow regimes more accurately than other models.

Flow regime maps plotted using the superficial phase velocity parameters are widely

used in the oil and gas industry owing to their comparative simplicity.

A few detailed studies of oil, water and gas systems have been undertaken. These

have reported the existence of similar flow regimes to those witnessed in standard

two-phase flow systems but with particular emphasis being placed on identification of
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the dispersed and continuous components in the liquid phase, Acikgoz et al (1992),

Oddie et al (2003). However, certain key discrepancies have been reported between

two- and three-phase flow patterns. At low flow velocities, the liquid density

difference may be sufficient to induce separation of the oil and water phases. In

vertical flow this can result in the production of alternating oil and water slugs while

in the liquid phase substantial slip between the liquid phases has been reported, Brill

and Arirachakan (1992). Furthermore, at low gas flow rates, near vertical multiphase

flows have been shown to have significant differences when compared to flows

contained in a purely vertical pipe, Spedding et al (2000).

2.2.1 Vertical Pipe Flow Regimes

Multiphase flow is fairly common in oil well pipelines despite the fact that the well

pressure at the bottom can exceed the bubble point of the oil. The pressure drop

experienced by the oil as it is transported from the seabed to the surface can result in

gas liberation from the liquid oil phase. The flow regimes witnessed in vertical risers

are usually fully developed and essentially axial-symmetrical. Generally, the

multiphase flow features presented vary with well age, with older wells exhibiting a

larger gas vapour fraction. Figure 2.12 illustrates a generic multiphase flow map,

based on gas and liquid superficial velocities, for a vertically upward multiphase flow

in a vertically orientated pipeline, Dykesteen et al (2005).
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Figure 2.12 Multiphase Flow Regime Map for Vertical Flow, From Handbook of
Multiphase flow Metering, Dykesteen et al (2005).
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The vertical flow regimes are commonly categorised into four main classifications:

Bubble (including finely dispersed bubble): At low gas flow rates, a continuous liquid

phase is formed with the gas phase producing discrete bubbles within the continuum.

The gas bubbles may coalesce to form larger bubbles or slugs.

Slug: Increased gas flow rates increase bubble coalescence until the bubble diameter

eventually approaches that of the pipe diameter. The resulting flow alternates between

high-liquid and high-gas composition.

Churn : Somewhat similar to slug flow, but more chaotic in nature owing to the larger

gas flow rates. The slug bubbles have become distorted to form longer, narrow

structures and the flow adopts a random oscillatory nature. The liquid flow occurs

mainly at the pipe wall but a significant proportion is vigorously mixed with the

gaseous core.

Annular: At very high gas flow rates, the liquid phase is forced to flow up the pipe

wall as a liquid film while the gas flows in the centre. The interface between the

phases is typically wavy. The wavy interface enables liquid entrainment in the

gaseous core. When the quantity of entrained liquid becomes significant, the flow is

described as having an annular mist regime.

2.2.2 Horizontal Pipe Flow Regimes

As with vertical flow, flow regime transitions in horizontal pipes are functions of

parameters such as pipe diameter, interfacial tension, and phase densities. However,

the flow patterns exhibited in horizontal regimes are not axially symmetrical and a

pipe length equivalent to at least 100 pipe diameters is required to establish fully

developed flow.

Multiphase flow maps based on superficial phase velocities are also readily available

for horizontal flows as shown in Figure 2.13, Dykesteen et al (2005). However, a

multiphase map like this will only supply valid flow regime predictions for a specific

pipe, pressure and fluid system. The flow regimes observed for horizontal flows will

tend to be more complex than their vertical counterparts due to gravity induced

asymmetries. The heavier phase will be inclined to accumulate at the bottom of the

pipe,
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Horizontal flow regimes are commonly categorised into six main classifications:

Bubble: The gas phase exists as discrete bubbles within a liquid continuum. The gas

bubbles will tend to flow in the upper section of the pipe. However, with larger gas

flow rates, a uniform bubble distribution across the pipe cross-sectional area may be

witnessed.

Plug: Reducing the liquid flow rate will enable the gas bubbles to coalesce into larger

bubbles or plugs which will occupy the upper section of the conduit.

Stratified: Further reductions to both the gas and liquid flow rates will result in phase

stratification whereby the two phases flow separately with a relatively smooth

interface. The liquid phase will occupy the lower section of the pipe due to gravity.
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Figure 2.13 - Multiphase Flow Regime Map for Horizontal Flow, From Handbook of
Multiphase flow Metering, Dykesteen et al (2005).

Wave: Increasing the gas flow rate of a stratified system will produce a less stable

phase interface as a result of the increased turbulence. The interface between the

liquid and gas phases will be irregular and wavy in nature although good separation

between phases will be maintained.

Slug: Increasing the liquid flow will produce waves of a much larger magnitude until

the liquid is increased to such a point where the wave occupies the whole of the pipe

cross-section. This facilitates the propagation of a high velocity fluid slug down the

pipe.

Annular/Mist: At very high gas flow rates, the liquid phase is forced to flow up.
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2.2.3 Flow Regime Identification Methods

Several flow pattern recognition techniques have previously been employed for

multiphase flow measurement and analysis. The most prominent work in this field

documented in published literature is the pioneering research work by Imperial

College researchers in developing the ESMER multiphase measurement system.

Darwich (1989), proposed that time-varying characteristics of multiphase flow are

reproducible and this fact could be exploited to determine the inherent hydrodynamic

and sensor behaviour in different flow regimes and thereby infer the individual phase

flow rates of a multiphase flow.

Signal analysis techniques such as PDF, which is a complete probabilistic description

of the instantaneous values of the sensor signals data, yields the probability density

function. It describes the probability that at a given time the signal will have the value

within some defined range.

Statistical analysis of sensor signals for multiphase flow allows the time average cross

sectional void fraction and the void probability density function (PDF) to be inferred.

The slug flow is associated with a twin peaked PDF, where the low void fraction peak

is pertinent to slug passage, and the high void fraction peak is associated with the

stratified phase regions. Goudinakis (2004), investigated the feasibility of using an

MLP neural network for flow regime identification in a horizontal pipeline. Stratified

smooth, stratified wavy, bubble and slug flow regime classifications were identified

using raw time-series.

2.3 Commercial Multiphase Flow Meters (MPFMs)

There are a number of commercial multiphase meters available in the market that

have been deployed in the field. These meters employ a diverse range of measurement

principles and solutions. Certain types of meter perform better in certain applications

than others. Thus, a detailed comparison and selection process is needed to determine

the MPFM best suited to a particular application. A review of current commercially

available multiphase meters was undertaken as part of this research work. The

information presented was compiled from published papers, sales documentation,

third party test reports, and the author's enquiries to the vendors. However, access to
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details of research undertaken pertaining to the development of the measurement

technologies was limited owing to its commercial sensitivity. (Appendix A)

2.3.1 Phase Separation MPFMs

A methodology to measure high gas volume fraction, multiphase streams has been to

utilise existing operational technology for part of the stream, which can handle low

GLR and divert the remainder of the gas through a gas measurement leg of the

system. Existing MPFMs that use this approach include those of Abbon Flow Master

(AFM) 300C, Accuflow AMMS, Agar MPFM, Jiskoot-Starcut, Kvaemer-CCM,

Megra, and WellComp.

2.3.2 In-Line Multiphase Flow Meters

These are further subdivided into two categories: those that utilise static mixers and

those that do not have static mixers in their set up.

2.3.2.1 MPFMs with Static Mixers

The principal suppliers of operational multiphase meters, utilising this technology

include: Jiskoot-Mixmeter, Schlumberger-Framo, TEA-Lyra and ISA-Multistream,

Falcone et al (2002).

2.3.2.2 MPFMs without Static Mixers

The commercially available MPFMs that do not require flow conditioning (i.e. neither

inline mixer nor separation) prior to metering include Schlumberger-VX, Roxar­

Fluenter, Roxar-MFI, Kvaemer-DUET, FlowSys and ESMER.
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Table 2.3 Commercial Multiphase Flow Meters

Concept Metering System System Designation

Phase Separators Vortex, Ultrasonic, Coriolis Accuflow AMMS

FFD, Venturi, Microwave Agar MPFM

Dual Energy Gamma, Kvaemer-CCM
X-Corr

Corio lis, Vortex, Infrared REMMS

Inline with Static Mixers FFD, Acoustic Detection Abbon FM 3001

Dual Energy Gamma, Cross- Jiskoot-Mixmeter
Correlation

Dual Energy Gamma, Venturi Schlumberger-Framo

Venturi, Orifice, Impedence, TEA-Lyra
Gamma.

Coriolis, Microwave CCMmeter

Inline without Static Acoustic Detection Abbon FM 300C
Mixers

Dual Energy Gamma, Venturi Schlumberger-VX

Capacitance, Conductance, X-
Corr, Gamma Roxar-Fluenta

Dual Gamma, X-Corr Kvaemer-DUET

Capacitance, Conductance, FlowSys
Venturi

Orifice,Venturi,V-cone, ESMER
Impedence (Cap. & Cond.)

Combination of Inline Venturi, Dual Energy Gamma Haimo
and Partial Separation

Venturi, Nozzle, Orifice, TEA LYRA
Impedence, Gamma
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2.4 Pattern Recognition Techniques in Multiphase Flow Measurement

Fluid flow measurement accuracy is often limited by our understanding of the

fundamental laws governing flow processes and is further exacerbated by the complex

nature of multiphase flow, which does not fully lend itself to conventional fluid

modelling techniques. The responses from instruments do however inherently contain

all the information they have gathered about the process.

The following sections present an introduction to varIOUS signal processmg and

pattern recognition techniques relevant to the current research work, that relates to

previous studies.

Pattern recognition aims to classify data (patterns) based on either a prior knowledge

or on statistical information extracted from the patterns. The patterns to be classified

are usually groups of measurements or observations, defining points in an appropriate

multidimensional space. A complete pattern recognition system consists of three

major steps: 1) a sensor that gathers the observations to be classified or described; 2) a

feature extraction mechanism that computes numeric or symbolic information from

the observations; and 3) a classification or description scheme that does the actual job

of classifying or describing observations relying on the extracted features. Thus, a

pattern recognition model has to be able to map the relationship between input

features and the target outputs.

There are several pattern recognition techniques available to implement the mapping

process including: artificial neural networks; statistical models; fuzzy logic; and

expert systems. Although these models are distinguishable from each other, there is a

certain amount of overlap between them: artificial neural networks can be thought of

as an extension of conventional statistical pattern recognition techniques and fuzzy

logic employs similar types of logical rules that can be found in expert systems.

2.4.1 Signal Processing

Signal processing involves the design, analysis and implementation of systems that

extract information of interest from existing data signals. The continued progress of

digital technology and information theory has stimulated the development of
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sophisticated signal processing techniques that are exploited in many different fields,

including speech recognition, audio signal processing, digital communications and

analysis and control of industrial processes.

Most sensor outputs comprise a continuously varying analogue voltage waveform. In

order to use the signal in further mathematical signal processing techniques on a

computer system, it must first be digitised with an analogue-to-digital converter.

Analogue signals are digitised employing a technique known as sampling. Sampling

is executed in two stages: discretisation and quantisation. In discretisation, the space

of a signal is partitioned into a series of equivalence classes. The quantisation process

then allocates approximated representative signal values to each of the partitions from

a set of finite values.

The Nyquist-Shannon sampling theorem is a fundamental theorem in the field of

information theory which stipulates the constraints for accurately constructing a signal

from a sampled version of itself. It states that the sampling frequency f, must be

strictly greater than twice the signal's bandwidth B; i.e. the difference between the

maximum and minimum frequencies of its sinusoidal components, Jackson (1991).

f > 2Bss
(2.12)

Failure to satisfy the criterion set out in the Nyquist-Shannon theorem results In

overlapping frequencies, whereby frequencies above half the sampling rate will

appear as frequencies below half the sampling rate. This phenomenon is known as

aliasing as the high frequencies are said to be "under an alias".

A classical example of aliasing can be seen when filming rotating objects, such as

wheels and aeroplane propellers. The film 'sample' is at a fixed rate, while a wheel

can rotate at different speeds. As the wheel exceeds the Nyquist frequency it appears

to rotate backwards.

2.4.2 Feature Extraction

Given a digital representation of the signal, various parametric representations can be

derived. In applications with time-varying signals, in order to exploit all the available
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data, it may be possible to use all the sampled data points in the pattern recognition

analysis. However, this may not be practical with systems that have long

measurement times and/or high sampling frequencies where the number of data points

is too large to be efficiently manipulated by a pattern recognition system. In these

instances, a set of features that are capable of describing the signal 's characteristics

may be employed.

Selection of an appropriate feature set to represent raw data signals is crucial if feature

extraction is to be employed successfully. Effective feature selection can be difficult

as it necessitates the selection of a feature set that will distinguish between different

data class volumes, and there are an infinite number of features and feature

combinations from which to select. If too many features are included in the feature

set, there is a tendency for the pattern recognition model to become over-complex and

this will result in a reduced generalisation capability. In practice, a pattern recognition

or data visualisation analysis will be conducted on the training data, using the selected

feature set, in order to analyse its effectiveness.

The features employed to represent a signal can come from a variety of information

domains, e.g. time, frequency, cepstrum or wavelet. The most effective domain

depends on the problem being modelled. The goal of feature extraction is to reduce a

large complex signal into a small number of manageable parameters that conserve the

key features of the original signal.
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Figure 2.14 - Feature Vector in Multidimensional Space, Darwich et al (1989)
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2.4.2.1

2.4.2.1.1

Moments ofAmplitude Distributions

PDF

The Probability Density Function defines the probability that a sampled signal will

assume a particular value within some range at any instant time. The probability

density function, P(x) can be defined as follows:

P(x) = lim prob[x < x(t) < x + LU]
Ax~O LU

P(x) = lim _1 (lim Tx
)

Ax~O LU T~oo T

(2.13)

(2.14)

where P(x) represents the PDF of sample time history record x(t) , T, is the total

time during which the signal will assume a value between x and LU .

However, distribution of a signal is not a unique property and no information about

signal structure or spectrum is given. Instead a set of properties known as moments of

distribution function is obtained to describe the signal.

2.4.2.1.2 Mean

The mean (x), is the arithmetic average value of the data points, and it estimates the

value around which a central clustering occurs. The first moment, known as the mean

value, is given by:

(2.15)

where x is the amplitude value of the ith point and N is the number of points in the

sampled record.
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2.4.2.1.3 Standard Deviation

The standard deviation is the root mean square of the amplitude deviations from the

arithmetic mean and is a measure of the dispersion of the data. The standard

deviation, SD, is defined as:

SD=

N _

L(x
i

- X)2
i=l

N-l
(2.16)

2.4.2.1.4 Coefficient ofVariance

The coefficient of variance measures the scatter in the data distribution in relative

terms by dividing the standard deviation by the mean of the data. The coefficient of

variance, CV, is expressed as:

CV= SD

x
(2.17)

2.4.2.1.5 Coefficient ofSkewness

The third moment, which is the measure of symmetry of distribution around its mean

value, is known as skewness. A positive coefficient corresponds to a distribution with

a greater number of large values for the parameter than would be expected for a

Gaussian distribution. Conversely, a negative value for the coefficient implies a

higher occurrence of smaller values. For a Gaussian distribution, the coefficient of

skewness is zero. The coefficient of skewness is given as:

N _

L(x
i

_X)3
CS = --,--i=--=--l _

(N -1)SD3 (2.18)

2.4.2.1.6 Coefficient ofKurtosis

Kurtosis, which is the measure of peakedness of a distribution, is the fourth moment

of probability density function. A positive coefficient corresponds to a distribution

with a greater extent of 'peakedness' than a normal distribution. On the other hand, a

negative value for the coefficient implies a lesser degree of 'peakedness'. For a
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Gaussian distribution, the coefficient of kurtosis IS zero . Mathematically, the

coefficient of kurtosis (CK) can be expressed as:

(2.19)

It should be noted that both the skewness and the kurtosis of a distribution are non­

dimensional moments, unlike the mean and the standard deviation which have the

same dimensions as the measured parameter.

2.4.2.1.7 Signal Energy

The signals ' total energy is not related to the probability density function but is

another useful amplitude feature that can be extracted from the signal time-series. In

several applications, the signals being examined are directly related to physical

quantities capturing energy in a physical system. The total energy in a discrete-time

signal x(n) over a time interval ~ ~ n ~ N is defined as:

N

I(Xn )2
E =_n=_n1_ _

T N

2.4.2.2 Linear Prediction Coefficients (LPCs)

(2.20)

Linear prediction modelling is one of the common speech coding techniques; it

exploits the redundancies of a speech signal by modelling the speech signal as a linear

filter , excited by a signal called the excitation signal. The excitation signal is also

called the residual signal. Speech coders process a particular group of samples, called

a frame or waveform. The speech encoders find the filter coefficients and the

excitation signal for each frame . The filter coefficients are derived in such a way that

the energy at the output of the filter for that frame/waveform is minimised. In physical

terms, LP coefficients contain unique information on the spectral content of the

waveform, which is generated by a physical process (speeches, multiphase flow , etc)

and capture the variations in energy and spectral characteristics in a short time
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interval. Since LP coefficients provide a simple and effective method of representing

different signals in terms of small number of parameters, they can be used not only as

a way of data compression but also as a supply for different statistical features for

different signal conditions, Makhoul (1975).

The linear prediction is modelled in the time-domain by minimising the sum of the

squared differences (over a finite time interval) between the actual signal samples and

the linearly predicted ones resulting in a residual error. In doing so, a set of unique

predictor coefficients, which are the weighting coefficients used in the linear

combinations are determined.

The present signal sample x(n) is modelled as a linear combination of the past outputs

and the present and past inputs. This relationship is expressed in Equation (2.21):

p q

x(n) = 'LGkx(n - k) + G'Lb/u(n -I)
k=] /=0

(2.21)

Where bo =1, G is a gain factor, G
k

and b, are the filter coefficients of an unknown

input u.; The variable p denotes the number of past output samples being considered

by the model, which is also representative of the order of the linear prediction

function. By applying a z-transform, the transfer function of the system can thus be

expressed:

(2.22)

where, X(z) denotes the z-transform of x(n), U(z) is the z-transform of u(n) and

H(z) is the transfer function of the system, which is the general pole-zero model.

Two special cases exist for the general pole-zero models. Firstly, when b, = 0, for 1 ~

1 ~ p, H(z) reduces to an all pole model known as the autoregressive model. The

other special case occurs when G
k

= 0, for 1 ~ k <p, H(z) transforms to an all-zero or

moving average model.
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The autoregressive model is commonly employed due to its comparative simplicity

and computational efficiency. The autoregressive model only requires a set of linear

equations to be solved. The residual error e(n) is a by-product of the linear prediction

technique and is the difference between the actual signal and the predicted signal.

Accordingly, the following relationship holds:

p

e(n) = x(n) - Lakx(n - k)
k=l

(2.23)

A simple test to obtain the optimal linear predictor order p is to check the variation of

the residual error with the predictor order, which will almost be flat for p > P ,where
o .

p is the optimal linear predictor order.
o

Autocorrelation and covanance are two widely used methods employed in the

estimation of LPCs, Golub and Loan (1989). Both these methods select the short-term

filter coefficients in such a way as to minimise the residual error using the least­

squares technique. The autocorrelation method involves the generation of a Toeplitz

matrix, a matrix in which all the elements along a given diagonal are equal, which

guarantees the stability of the filter. This permits the application of the Levinson­

Durbin recursion algorithm to solve the set of linear equations produced by the least­

squares procedure.

Correlation is a measurement of the average dependency between two random signals.

The correlation between pairs of a single signal's samples is known as autocorrelation

(AC). The autocorrelation function, Rxxof a signal yields an average measurement of

its time domain properties.

1 T
Rxx(r) = lim- fx(t)x(t+r)dt

T~(fJ 2T
-T

(2.24)

(2.25)

The difference between auto-correlation and cross-correlation IS that while auto­

correlation is applied to a signal with its shifted version, the cross-correlation is

applied to two different signals. The cross-correlation function is a time averaged

measure of shared signal properties, therefore it is suitable for signals comparison.

The cross-correlation function relating two - x(t) and yet) - is defined as:

1 T

R (r) = lim- fx(t)y(t + r)dt
xy T~(fJ 2T -T
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where Rxy is a cross-correlation function and "C is a time shift or lag imposed upon one

of the signals. The cross-correlation function has many important applications

including measurement of time delays, and detection and recovery of signals noise.

2.4.2.3 Line Spectral Frequencies (LSFs)

LPCs have a multitude of other representations: Line Spectral Frequencies (LSFs),

Reflection Coefficients (RCs), Log Area Ratio (LAR), Arcsine of Reflection

Coefficients (ASRCs), etc. These parameters all have a direct relationship with the

LPCs and will preserve all information contained within the LPCs.

Publications have reported that LSFs are computationally efficient and have good

quantisation and interpolation properties, facilitating improved system approximation.

Compared to other transmission parameters, the line spectral frequencies have been

found to encode speech spectral data much more efficiently, Deller et al (1993). This

enhanced efficiency is attributed to the close relationship between the LSFs and the

formant frequencies. Furthermore, the line spectral frequencies naturally lend

themselves to frame-to-frame interpolation, with smooth spectral changes, owing to

their frequency domain interpolation.

The linear prediction analysis filter can be expressed in terms of LPCs, G k , using the

following equation:

p

A(z) =1- LGkZ-
k

k=l

(2.26)

where p is the order of the function A(z). The path (p+1yh order symmetric and

antisymmetric polynomials P(z) and Q(z) can be obtained from A(z):

P(z) = A(z) + Z _Cp+l) A(Z-l) (2.27)

Q(z) = A(z) - Z-Cp+l) A(Z-l) (2.28)

The roots of the two polynomials lie on a unit circle and they form the LSFs. Kabal

and Ramachandran (1986), published an algorithm that enables the LSFs to be

extracted from the LPCs using the Chebyshev polynomial root finding method.
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2.4.2.4 Data Pre-Processing

There are number of feature pre-processing techniques available in the literature. One

method is to normalise the input features to the pattern classifier so that they fall in

the range of [-1, 1]. Another normalisation technique is to equalise the magnitude and

variation of each feature by applying zero mean and unit-variance normalisation to the

feature vectors. Here the data values are centred (i.e. subtract the mean values from

the data values in order to obtain centred anomalies) and then divided by their

standard deviations to obtain a normalised data having zero mean and unit variance.

In certain situations, further feature pruning may be necessary, where the extracted

and normalised features require dimensionality reduction. The process of selecting

and extracting features from high dimensional data that can be used to discriminate

the underlying classes, or identify the target from non-targets IS referred to as

dimensionality reduction. The motivation behind performing a dimensionality

reduction is usually to remove the redundant information present in the data and

reduce the computational complexity.

There are many different dimensionality reduction techniques, which may be broadly

classified into two categories. In the first case, the relevant features are selected from

the raw data in their original domain based on some discriminatory criterion. From a

classification perspective, the objective of this criterion is to select those features that

have a higher discriminatory capability of the system. The feature contour map

superimposed on two-dimensional system variables used to guide the feature selection

process is an example of this category.

In the second case, the features are transformed into a new feature domain, where they

can be arranged in order of their importance, which is application-specific. The

transformation techniques include Linear Discriminate Analysis (LDA), Webb

(1999), Discrete Wavelet Transforms (DWT), Mallat (1989), and Principal

Component Analysis (PCA), Jackson (1991). Amongst these, the PCA is commonly

used in a wide range of applications, including document analysis, data mining,

content-based image retrieval, face recognition, speech analysis and spectral remote

sensing.
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PCA is used to reduce a high dimensional vector to a low dimensional vector by

exploiting the correlation existing in the data. PCA uncorrelates the resulting

components, and the lower-order components are discarded.

PCA involves generating a new set of variables, called principal components. The

first step in PCA is to calculate the data covariance matrix L :

p

L = L (x P - J.l)(xP - J.l) T
p=l

(2.29)

Where P is the number of vectors in the data set and f1 is the mean vector for the data

set. The eigenvectors and eigenvalues of L are then calculated and ordered according

to their variance. The eigenvectors corresponding to the largest eigenvalues are

retained, and the input feature vectors are subsequently projected onto these

eigenvectors to give the components (Principal Components) of the transformed

vectors in the dimensional space. An orthogonal basis is extracted from the original

feature vectors, which comprise the input space; hence all the principal components

are orthogonal to each other. By having the vectors with the greatest information

content (variability) ranked first , it is possible to decide when there is no benefit in

extracting more vectors.

2.4.3 Pattern Recognition Models

Once a set of features has been selected, the next problem to be solved is to find a

mapping from the components selected to the desired targets. The exact form of this

mapping is to be determined from a data set of labelled examples. The procedure for

constructing such a mapping is facilitated by the use of a particular pattern

recognition model , which is the discussion of the next subsections. Many techniques

are currently in use for solving pattern recognition problems. The best known of these

are:

• Artific ial Neural Networks (ANNs)

• Statistical Models

• Fuzzy Logic

• Expert Systems
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2.4.3.1 Artificial Neural Networks

An artificial neural network (or neural network) is a mathematical computing

paradigm that is based on the operation of a biological neural system: functions are

executed collectively and in parallel by nodes, instead of there being a specific

delineation of sub-tasks to which various nodes are assigned. The advent of neural

networks facilitated the development of advanced pattern recognition systems with

non-linear decision boundaries, through the implementation of simple training

algorithms, to model complex multivariate relationships.

A neural network system will learn to classify inputs through a training process in

which the network is presented with a series of inputs and target outputs. Based on

this training data, the neural network will generate a map between the inputs and

outputs. Subsequent input data will then be processed using the relationship derived

using the training process to produce corresponding output variable values.

There are many classes and sub-classes of neural networks that are widely used in

engineering applications. These have been described extensively in published

literature, e.g. Lippmann (1987), Bishop (1995a), Hagan et al (1996). The most

widely used neural network classes and subclasses are summarised in Table 2.4.

Three major learning paradigms can be applied in neural network modelling:

• Supervised learning

• Unsupervised learning

• Reinforcement learning

Pattern recognition and regression problems employ a supervised learning paradigm

whereby a set of example inputs and targets is presented to the network and the aim of

the learning process is to determine a function that describes the relationship between

the variables. In unsupervised learning, the network training is entirely data driven

and no target results for the input data vectors are provided. The Back-Propagation

Neural Network (BPNN) is the core supervised learning technique employed in feed­

forward neural networks. In the research work undertaken, the application of BPNN

was examined.
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Table 2.4 Neural Network Classes and Subclasses

NEURAL NETWORK SUB-CLASS

CLASS

Feed Forward Multilayer Perceptron

Radial Basis Functions

Kohonen Self-Organising Feature Map (KSOFM)

Recurrent Simple Recurrent Network

Hopfield Network

Stochastic Boltzmann Machine

Modular Committee of Machines

Associative Neural Networks

2.4.2.1.1 Multi Layer Perceptrons (MLP)

All types of neural network stem from the description by McCulloch and Pitts (1943),

of a processing model comprising a building block known as a neuron and a

networked interconnection. Rosenblatt (1958) expanded on this concept to investigate

the computation of the eye and developed the first type of neural network which was

known as a perceptron. However, Minsky and Papert (1969) showed that a single­

layer perceptron neural network was limited to modelling linearly separable patterns

and was unable to describe exclusive disjunction (XOR) functions and conjectured

(incorrectly) that the same would be true of multilayer perceptrons . Grossberg (1973)

later demonstrated that multilayer perceptron models could indeed resolve XOR

problems.
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Figure 2.15 - Multi Layer Perceptron, taken from MATLAB

As shown in Figure 2.15, every input variable is represented by an input node, which

is connected to all nodes in the hidden layers. Through training, these connections are

assigned with independent weighting factors. The input to each node is multiplied by

its associated weighting factor and then summed with the product of each of the other

input nodes and their respective weighting factors. An activation threshold is then

subtracted from this sum, and the result is processed by a non-linear transform

function within the node.

It was shown in the 1960s that a single layer of perceptron could not learn how to

compute the parity of a binary input pattern, Tarassenko (1998). It was then

recognised that having several perceptrons operating in parallel could solve the

problem. The output of one perceptron would become the input to another perceptron,

i.e. by adding a second layer to the network and creating a multi layer perceptron.

Each input (Pi) is connected to all nodes in the first hidden layer. If successive hidden

layers are employed, all outputs from the preceding layer are input to each node in the

successive layer. For all nodes in the MLP, the inputs are summed (s), and after

having been multiplied by their respective weights (w) , a bias (b) is added to this total.

The resulting value is used as the input to an activation function (f). Hence, the first

hidden layer output (yl.h) from each processing node in the MLP system with (1) inputs

can be expressed by:
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Yl,h = jl(t(wI"hPi +bi'h)J (2.30)

Accordingly, the outputs (yoj) from a two layer system (n=2) can be determined from

the expression:

(2.31)

Defining the network architecture is a key stage in neural network analysis. In most

applications, the number of input and output neurons is fixed ; thus , the problem of

network architecture specification is reduced to the selection of layer function types ,

the number of hidden layers and the number of neurons therein.

It has been demonstrated that a two layer MLP with sigmoid non-linearity can

approximate any function with arbitrary accuracy, Hornik et al (1989). Consequently,

the only remaining parameter to be defined is the number of nodes to deploy in the

hidden layer. There are no rules for the selection of the number of hidden nodes but,

generally, the more complex the function one is attempting to model, the greater the

number of hidden nodes required.

However, specifying the number of hidden nodes is a delicate balancing act: if too

many nodes are used the network training data will simply be memorised and the

system will exhibit poor generalisation; nevertheless, too few hidden nodes will result

in a system with insufficient parameters to model the underlying function and severe

underfitting will be experienced, Doan and Liong (2004).

2.4.3.1.2 MLP Neural Network Training Techniques

The purpose of MLP training algorithms is the iterative adjustment of the network

weights and biases in order to minimise the network performance function. All

training algorithms use the derivative of the performance function to determine the

weight values that will minimise the performance function. Several different types of

algorithm have been reported and exploited, Table 2.5:
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Table 2.5 MLP Neural Network Training Techniques

Acronym Algorithm Optimisation Approach
GDM Gradient Descent with Momentum Modified Back-propagation

ODX Variable Learning Rate Modified Back-propagation
RP Resilient Back-propagation Modified Back-propagation
SCG Scaled Conjugate Gradient Numerical Optimisation Technique
CGB Conjugate Gradient with Powell/Beale Numerical Optimisation Technique

Restarts

COF Fletcher-Powell Conjugate Gradient Numerical Optimisation Technique
CGP Polak-Ribiere Conjugate Gradient Numerical Optimisation Technique
OSS One-Step Secant Numerical Optimisation Technique
LM Levenberg-Marquardt Numerical Optimisation Technique
BFGS Quasi-Newton Numerical Optimisation Technique

2.4.3.1.3 Back-propagation

Back-propagation (BP) is the core supervised learning technique employed in feed­

forward neural networks. The errors propagate backwards from the output nodes to

the inner nodes. The error for an output variable is calculated as the difference

between the network outputs.

The basic characteristics of BP are the ability to form a mapping between sets of

inputs and outputs by using activations extracted from input patterns, and the ability

to generalise a situation since it learns how to respond to activations as the network is

trained with different examples. The activation of each neuron in hidden and output

layers are calculated from the sigmoid transfer (activation) function, Figure 2.16,

Lippman (1987).

(2.32)

where;

X~ is the output of the /h node of hidden layer

Xi is the input value in ith node of input layer

W if is the weight from input to hidden layer

N is number of nodes in input layer

N 1 is number of nodes in hidden layer
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e is threshold value which is fixed for each neuron

f( OJ) is sigmoid transfer function which is

(2.33)

Similarly, activations in output layer neurons are calculated by using the activation of

neurons in the hidden layer. The weights are adjusted after each trial using the total

mean square error between actual and calculated output values until the weights

converge. This criterion is known as the Generalised Delta Rule.

The main disadvantage of BP is the requirement of a long training time. The design of

the network structure is also important for obtaining high performance. Optimisation

of structure and reduction of training time are other research areas of back­

propagation neural networks.

One of the most important configuration parameters of the back-propagation network

is the selection of the right number of hidden layers. Two hidden layers for

computation were suggested Lippman (1987) for any decision boundary.

The other important parameter in structure design is the selection of the number of

neurons in hidden layer(s). lfthe number of neurons is too small, the convergence of

weights becomes difficult during training. However, keeping the number of neurons

at a minimum reduces the training time.
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Figure 2.16 - The sigmoid transfer function of back-propagation neural network

The Generalised Delta Rule of BP always results in the mean square error decreasing

if infinitesimal changes are made to the weights. However, this may take up too much

time in training the network. The "learning rate" and "momentum term" are two

parameters, which can reduce training time. A large "learning rate" speeds up training

but causes oscillations in mean square error. Beginning with a large "learning rate"

and then decreasing it when oscillations in error start is the best method of application

of the "learning rate". The weights with "learning rate" are adjusted.

(2.34)

where, 1] is "learning rate" and OJ is an error term for neuron} which is given by

if neuron} belongs to output layer and

OJ =x~(1-X~')LOkWjk
k
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if neuron j belongs to hidden layer. In above equations

OJ is desired output

Yj is calculated output

k is the neuron over all neurons in the layers above neuron j

"Momentum term" is another parameter to speed up training without causing

oscillations. This term decides the amount of the effect of previous weight changes on

current weight change. The weight of the next connection by using both "learning

rate" and "momentum term" is then obtained, Lippmann (1987).

(2.37)

Where tp is "momentum term" and 0 ::; tp ::; 1.

2.4.3.2 Avoiding Over-fitting

Bad generalisation by a neural network can stem from over exposure of the network

to the training data set. This problem is known as over-fitting. Deciding when to end

the training algorithm can have a major influence on the ability of the trained network

to generalise new data sets. Training algorithms are nominally terminated when a

local minimum has been attained or when the convergence rate is insignificantly low,

i.e. improvement between successive iterations is zero or negligible after exposure to

the training set for a certain number of epochs (cycles).

Different types of technique have been introduced to improve generalisation to avoid

the over-fitting problem. Two of the widely used methods are cross-validation,

otherwise known as early stopping, and Bayesian regularisation.
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2.4.3.2.1 Cross-Validation

Cross-validation (or 'early-stopping') involves dividing the available data into three

groups instead of two. In addition to the conventional training and test data sets, a

validation set is produced. During the training process, the training data set is used to

compute the network weights and biases. Simultaneously, the validation set is used to

produce a validation error for the network configuration. The validation error is

monitored and when the validation error continuously increases for a specified

number of iterations, the training process will be terminated and the weights and

biases present at the minimum validation error will be implemented for testing with a

test data set. Although good results can be obtained using cross-validation, it is not

particularly suited to applications with limited data. As not all of the data are used to

train the model, and the training is terminated before attaining the minimum training

error, the information contained in the selected data is not optimal and the network

may suffer from under-constrained training.

2.4.3.2.2 Bayesian Regularisation

Another method of improving generalisation is by using the Bayesian MLP Neural

Network, otherwise known as Bayesian Regularisation. Bayesian methods use

probability to quantify uncertainty in inferences and the result of Bayesian learning is

a probability distribution expressing our beliefs regarding how likely the different

predictions are. A practical problem with MLPs is in controlling the complexity of the

model (i.e. how to select the right number of neurons in the hidden layer, and control

the weights and biases of the network). The Bayesian approach offers efficient tools

for avoiding over-fitting and has become a viable alternative to the older, error

minimisation-based approaches, MacKay (1992) and Bishop (1995b). In this method

the performance function is complemented by additional terms that consist of the

mean of the sum of squares of the network weights and biases as follows:

(2.38)

where, a and ~ denote control parameters which are to be optimised within the

Bayesian framework of MacKay (1992) which has been successfully applied to a

number of practical engineering problems.
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Employing the modified performance function, described in Eq. (2.38) will yield a

network with smaller weights and biases, thus forcing a smoother network response

that is less likely to over-fit. It is assumed that the weights and biases are random

variables with a Gaussian distribution. The regularisation parameters are related to the

unknown variances associated with these disturbances. Analysis has shown that the

optimal regularisation technique requires the determination of the Hessian matrix

which necessitates intensive computation.

Alternative approximation techniques which are less calculation-intensive have been

developed, such as Bayesian regularisation with the use of the Levenberg-Marquardt

(LM) algorithm, Foresee and Hagan (1997). The key steps in this algorithm are:

1. Initialisation of the a and Bcontrol parameters, network weights, and biases.

2. Execute a single iteration of the LM algorithm to minimise the objective

function described in Eq. (2.38).

3. Determine the effective number of parameters (y) using the Gauss-Newton

approximation to the Hessian matrix available in the LM algorithm.

r = N -2aTr(H) -1 (2.39)

where, N denotes the number of parameters and H denotes the Hessian matrix.

4. Calculate new estimates for the objective function control parameters a and B.

(2.40)

(2.41)

5. Repeat steps 2-4 until convergence is attained.
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The following factors should be checked during training for model performance:

• If r is very close to N, then the network may be too small. Add more hidden

layers and retrain.

• If the larger network has the same final r , then the smaller network was large

enough.

• Otherwise increase the number of hidden neurons.

• If the larger network is sufficiently large, then a larger network will achieve

compatible values for r .ED and Ew.

The benefits of a regularisation technique together with the Bayesian Framework are

summarised below:

• Regularisation improves generalisation.

• Bayesian Framework provides a measure of how many network parameters

(weights and biases) are being effectively used by the network.

• Bayesian Framework eliminates the guesswork required in determining the

optimum number of hidden neurons and consistently leads to good networks

that are not over-trained.

• Hessian matrix calculation is required.

• Gauss-Newton approximation can be used to approximate the Hessian matrix.

• Computational overhead is minimal when using Levenberg-Marquardt

training algorithm, as it is 10 to 100 times faster than other training

algorithms.

• If either sum of the square weights or total number of effective parameters

become the same two successive epochs, training may be terminated.

• Applications to practical problems demonstrate feasibility of the technique,

MacKay (1992).

2.4.4 Kohonen Self-Organising Feature Maps (KSOFMs)

The unsupervised learning technique involves the use of self- organising feature maps

to classify data, Kohonen (1982). The objective of a KSOFM network is to map the

natural structures inherent in the input data vectors, of an arbitrary dimension N, onto

a discrete map with just 1 or 2 dimensions as shown in Figure 2.17.
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Input Layer

Figure 2.17 - Kohonen Self-Organising Feature Map, taken from Blaney (2008).

Patterns exhibiting similarities in the input space should be topographically arranged

close to one another in the output map. These networks are particularly useful where

complex high dimensional data needs to be presented in an understandable format.

The Kohonen Self Organising Feature Maps have been successfully applied to a

number of practical engineering applications, Kohonen et al (1996). The KSOFM

learning process comprises the following stages:

1. Initialisation of output node weights.

2. Looping of the following stages until node weights converge:

2.1 For each data point:

2.1.1 Present the input feature vector

2.1.2 Calculate the similarity

2.1.3 Determine the winning output node

2.1.4 Locate all nodes in the neighbourhood of the winner

2.1.5 Update the weight vectors of neighbourhood nodes

2.2 Reduce the size of the neighbourhood (if required)

3. End learning process.

Similarity of a data point is normally determined by calculating the Euclidian distance

between the input pattern and the weight vector. The network weights are exploited in
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a different manner to that experienced in the Back Propagation Neural Networks : the

weights are not multiplied with the input vector.

Thus, the Euclidean distance (d i ) is calculated for an input vector P and each lh

output node which has a corresponding weight vector Wi.

(2.42)

The winning output unit, or best matching unit (BMU), is simply the unit with the

weight vector that has the smallest Euclidean distance to the input pattern, i.e. the

most similar.

The neighbourhood of a node is defined as all nodes within a specified distance of the

node on the grid. For example, in a square geometry grid, if the size of the

neighbourhood is 1 then all units no more than 1 either horizontally or vertically from

any unit fall within its neighbourhood. The weights of every node in the

neighbourhood of the winning node, including the winning node, are updated

according to Eq.2.43 thus, moving each node in the neighbourhood closer to the input

data point.

Wi ~Wi +ry(p-wi )

Where, 11 denotes the step size.

(2.43)

As time progresses , the learning rate and the neighbourhood size are reduced. If the

parameters are well chosen the final network should capture the natural clusters in the

input data.

2.4.5 Application of PR Techniques to MPFM

Some of the foregoing pattern recognition techniques have previously been applied

for multiphase flow measurement and analysis . The most prominent of the literature

dealing with multiphase flow measurements using pattern recognition techniques is

perhaps that conducted by the pioneering research work at Imperial College, London.

This concept was first proposed by Darwich (1989). Here it was suggested that if the
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turbulence characteristics of multiphase flow conditions are reproducible, then the

flow rates of individual phases can be determined by identification of these

characteristics. Using this approach a set of features was derived from the turbulent

pressure signals, and pattern recognition methods were used for the identification and

measurement of the individual phase flow rates in a two-phase flow. A statistical

technique known as template matching was used as the pattern classifier model. A

software package called ESMER was built as a result.

A 2-inch horizontal measurement spool piece comprising radially mounted pressure

transducers and axially mounted capacitance and conductance sensors was

constructed to perform two-phase tests with air and water. It was determined that

eight features were effective in characterising the multiphase flow: three amplitude

features (standard deviation, skewness and kurtosis) and five linear prediction

coefficients. All eight features were extracted from pressure transducer signals but

only the amplitude features were found to be discriminatory for the

conductance/capacitance sensors. Template matching was employed as the pattern

recognition method whereby the individual phase flow rates were identified by

matching measured vectors to those in a reference database. A measurement accuracy

of ±10% was reported for each of the individual phase flow rates with a confidence

level of 90%.

Toral et al (1990) introduced an orifice plate to the horizontal spool piece set up by

Darwich, described above, to study its ability to produce effective features for

multiphase flow classification. It was reported that the presence of the orifice plate led

to the production of enhanced discriminability for the extracted features.

Beg (1998) built upon previous work undertaken by Darwich using radially and

axially mounted absolute and differential pressure transducers in 2-, 3-, and 4-inch

horizontal multiphase flows. A new feature set was employed comprising the mean

and variance from the amplitude domain, and five features from the Cepstrum

domain. Template matching was the pattern recognition technique applied and it was

reported that 100% of liquid phase and 93% of gas phase measurements could be

obtained to within ±10 % through feature combinations. Comparisons made between
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the feature maps for the different prpe SIzes revealed that different turbulence

signatures were obtained for the same flow conditions. Accordingly , a method of

scaling was proposed based on the hydrodynamic coordinates and feature vectors.

Measurement accuracy with the scaling technique was reported to be poorer than that

obtained through in situ calibration. He also incorporated a gamma densitometer

device into the measurement spool piece for the resolution of oil, water and gas flow

rates in a multiphase flow. However, the gamma densitometer was just one of an array

of sensors employed with the system: pressure, conductance and capacitance sensors

were also exploited to predict flow regimes and individual phase flow rates in 3" and

16" diameter multiphase pipes. From each sensor, 24 feature vectors were extracted.

However, these were limited to the mean, variance, minimum, maximum and a 20-bin

amplitude histogram of each sensor.

Accuracies of ±10% were reported employing the gamma densitometer and ±18%

from the pressure sensor for horizontal gas and liquid flows.

Akartuna (1994) undertook an experimental campaign with a 2-inch horizontal

measurement spool piece with strip type capacitance sensors and pressure transducers

in the slug flow regime for both two and three-phase flows. Two additional features

were employed to those originally studied by Darwich: slug frequency and slug

length. The template matching classification technique was compared and contrasted

with a Multi Layer Perceptron neural network employing the SCG training algorithm.

Akartuna reported that the MLP neural network system yielded superior classification

properties when pressure and capacitance sensor fusion was employed: 97% of water

cut, 90% of air velocity, and 90% of liquid velocity measurements were predicted to

within ±10% relative error.

Cai (1995) proposed the development of a flow regime specific pattern recognition

model using a Kohonen self-organising feature map to classify data point flow

regimes and then employing a separate MLP neural network for flow rate

determination for each 53 flow regimes. An F-ratio feature saliency technique was

applied to facilitate the selection of an effective feature set. Phase flow rate

measurement accuracies for the multi-level hierarchical system were reported to be

±5% for 100% of oil continuous data points and 95.2% of water continuous samples.
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In terms of superficial velocity determination, 99.3% of gas and 100% of liquid phase

superficial velocities were calculated to within ±9%.

Toral et al (1998) and Wood (2002) have described the commercial version of the

ESMER multiphase flow meter developed through the aforementioned studies.

Stochastic features are extracted from three differential pressure sensors (one top

axial, one bottom axial and another radially mounted), impedance sensors (axially

mounted on top) and a temperature sensor and input to an MLP neural network. The

neural network system is trained and then validated, using the cross-validation

technique to avoid over-fitting, before being subjected to tests. The individual phase

flow measurements made by the ESMER meter were reported to match those yielded

by the test separators to within ±10%.

A number of pattern recognition studies in multiphase flow measurement have been

conducted outside of the ESMER development programme.

Goudinakis (2004) investigated the feasibility of using an MLP neural network for

flow regime identification in a horizontal pipeline and an S-shaped riser for air-water

flow using capacitance sensors and pressure transducers respectively. Stratified

smooth, stratified wavy, bubble and slug flow regime classifications were identified

using raw time-series data (fixed length window) as the input to the system. The S­

shaped system was determined to accommodate long severe slugging flow cycles up

to 230 seconds; while the horizontal system cycles did not take more than 10 seconds.

It was reported that a delay window of 200 inputs (20 seconds of data at 10 Hz) was

required for horizontal pipe regime classification, while 100 inputs (100 seconds of

data at 1 Hz) was adequate for identification of the S-shaped riser's flow pattern.

Nevertheless, it was identified that the excessive training time required to enable

classification would prevent this technique from being suitable for practical

applications.

lama (2004) reported on the use of pattern recognition techniques using absolute and

differential pressure signals from a Venturi meter to measure wet gas flow rates. A

Bayesian MLP network was implemented using feature extraction from the pressure

sensor signals. It was reported that by employing cross-sensor data fusion of
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amplitude features, all test data points predicted the gas and liquid superficial

velocities to within ±5% relative error.

Wylie et al (2006) proposed the use of an electromagnetic cavity resonator-based

sensor to determine multiphase flow rates. Low power radio frequencies were

transmitted across a pipeline carrying a multiphase flow and the phase fractions

calculated by monitoring the shift in the resonant frequencies with different fluid

properties. Neural networks were exploited to overcome the modelling complications

induced through the application of the system to different flow velocities,

temperatures, pressures, installations etc. Measurement accuracies of ±10% for phase

fractions were reported and a measurement repeatability of 4% was claimed based on

the experimental data presented.

Sheppard and Russell (1993) investigated the ability of a neural network to classify

horizontal gas and liquid flow rates from the response of a gamma densitometer. No

information was provided on the gamma densitometer system employed but it is

reported that standard statistical parameters were extracted from the raw signals for

use as the system inputs. The neural network was trained on 12 time-series covering a

range of flow regimes. The pattern recognition model was firstly evaluated using

unseen data from the 12 time-series used to train the network and produced gas and

liquid flow rates to within a root mean square error of 13%. A second phase of

analysis was undertaken using data from previously unseen flow rates; the

classification accuracy was reduced to a root mean square error of 15%.

Bishop and James (1993), and Bishop (1995b), proposed a technique using gamma

attenuation based on the use of three vertical and three horizontal dual-energy gamma

densitometer beams installed in a parallel configuration across a pipe section. The

input features to the neural network were the six path lengths measured by the gamma

densitometers, and the target outputs were the volume fractions of the oil and water

phases. The Quasi-Newton training algorithm was employed in these studies. It was

concluded that a neural network technique based on gamma attenuation could provide

a practical solution in determining component phase fractions from the gamma

densitometer data.
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Abro et al (1999) documented their findings using an americium-241 source and a

multibeam configuration with a neural network to identify the flow regime and the

void fraction. A computer simulation model of the gamma emission and detection

system was employed to create training data sets for the neural network. The input to

the network was an energy spectrum for the photon range 30 to 68 keY (i.e. 38 bins of

1 keV) for single sensor investigations and an energy spectrum for the photon range

55 to 64 keY for the multi-detector experiments. Test data was collected on an 8 em

aluminium pipe using a 14 mCi americium-241 source and a CZD detector from eV

Products Inc. Using a single detector position at 180° to the source, an average error

of 15.8% was obtained for the void fraction measurements with a standard error

deviation of 8%. Using a multi -detector setup, the inputs were parts of spectra at

detector positions of 180°, 156°, and 140°. The multi-detector configurations yielded

average void fraction errors of just 3% and a reduced standard error deviation of

4.2%.

Blaney (2008) reported the analysis of the use of pattern recognition techniques to

correlate gamma densitometer data with the individual phase superficial velocities and

the water cut with two neural network models (a single multilayer-perceptron and a

multilayer hierarchical flow regime dependent model). The pattern recognition

systems were trained to map the temporal fluctuations in the multiphase mixture

density with the individual phase flow rates using statistical features extracted from

the gamma count signals as their inputs. Initial results yielded individual phase flow

rate predictions to within ±10% based on flow regime specific correlations.
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2.4.6 Salinity Effects on Multiphase Flow Measurements

The term "Salinity" refers to the amount of dissolved salts that are present in water

(Kg/m3). Sodium and Chlorides are the predominant ions in sea water, and the

concentrations of Magnesium, Calcium and Sulphate ions are also substantial.

Increased oil recovery by water injection causes changes in the produced water, since

the injected water and the formation water have different salinity. There may also be

horizontal and/or vertical gradients in the formation water salinity across the

reservoirs, and this may cause sudden changes in the salinity of the produced water in

the case of "water breakthrough", McCoy et al (1994). This problem is of increasing

importance since new technology has made it economically feasible to produce

marginal wells with more than 80% water content, with varying salinity levels.

Both electromagnetic and nuclear sensors exhibit changes in their response when

confronted with a change in water salinity. Recalibration can usually solve the

problem, but is often not convenient especially for a subsea meter; furthermore, the

change in salinity needs first to be detected, Scheers and Slijkerman (1996) showed

that water salinity could change significantly in a short period of time as shown in

Figure 2.18.
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Figure 2.18 - The Salinity's of various wells from the North Sea, Scheers and

Slijkerman (1996)
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The salinity's of various wells from one North Sea field as ·measured in January and

June 1993. The formation water salinity is 160 kg/m3 and the sea water salinity is 35

kg/m3. Salinity changes gradually from the formation water salinity to sea water

salinity.

Johansen and Jackson (2000), used a dual mode densitometry method to measure the

gas volume fraction in gas/oil/water pipe flows independent of the salinity of the

water component. They applied this method to homogeneous and annular flows

making use of the different responses in photoelectric attenuation and Compton

scattering to changes in salinity.

The dual mode densitometry method used by Johansen and Jackson detects changes in

salinity using one gamma-ray energy and two detectors. A traditional detector located

outside the pipe is used to find the total attenuation coefficient. A second detector

positioned between the source and transmission detector is used to measure the scatter

response.

Results of the work showed that it is possible to measure the gas void fraction in

homogeneously mixed multiphase flows using the dual modality densitometry

principle independent of the salinity of the water. For the annular flow, the gas void

fraction measurement was dependent on the salinity of the water due to the

densitometer being less sensitivity to changes farther away from the source side of the

pipe.

The salinity of most oil reservoir water can be as high as 30000 PPM. Some research

has been conducted to investigate the effect of salinity on WC measurement with

analysis of IR spectrum, Abdel-Mohsen et al (2003). He considered the interaction of

NaCI ions and water molecules and its effect on fluid conductivity, specific gravity,

surface tension as well as the overall effect on water fraction measurement.

Considering the hydrogen bonding which is prevalent in water, the interaction

between water molecules and increasing salt concentration destroys this hydrogen

bonding by ionic interaction, thus forming unstable concentration of HCL and NaOH

as shown below.
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The conductivity of water increases due to the formation of more polar substances

such as HCl. This may also account for the increase in the dielectric constant of the

mixture. With increase in the dielectric constant of the mixture, WC measuring meters

such as the Microwave and Capacitance based meters are likely to read higher WC

than present. Increased salinity increases the mass of the mixture, as a result, the

specific gravity of the mixture increases. The increase in specific gravity implies

increase in the density of water, which results to a corresponding increase in dielectric

constant of the mixture.

63





3.4.6.3 Conductance Sensor Response

Figure 3.13 presents a typical maximum value feature response for a conductance

sensor for multiphase oil, water and gas flow. The sensor 's performance is severely

impaired in an oil continuous flow as shown.
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3.4.6.4 Gamma Amplitude Features

u........-.....•

Figures 3.14 a-f - Amplitude Features Contour Maps of Gamma Signal
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3.5 Notes on Experiment and Database

It is worth stating that the sensor signal database was collected as part of the Flow

Programme Work for the United Kingdom Department of Trade and Industry (DTI)

now called Department of Business Enterprise and Regulatory Reform (DBERR).

In conjunction with the National Engineering Laboratory (NEL), Cranfield University

designed and assembled the sensor spool piece. The response data from the sensor

spool piece was collected over a wide range of oil, water and gas flow rates in NEL's

Multiphase Flow Loop in East Kilbride, Glasgow. Data were collected under two

different salinities of 50 and 100 gil MgS04.

It must be noted that the differential pressure data in test numbers MU0601 to

MU0616 were corrupted and appeared random and negative. (These data sets were

excluded for the purpose of this research work). During subsequent tests /calibrations

(MU0617 - 44), which were conducted by the author at both NEL and Cranfield

University facilities, a number of techniques were used to ensure that the data

collected were valid and that the sensors correctly responded to flow conditions.

Sensor response as a function of time was plotted and monitored online. Test

parameters such as superficial gas/liquid velocities, water cut, gas volume fraction etc.

were analysed and validated through comparisons with reference conditions at regular

intervals.

The author was also involved with the sensor database creation (preliminary data

analysis, design of sensor signal template, report preparation etc.) at Cranfield

University, through the final stages of the project.

Please refer to Appendix C for additional information on the data acquisition system.
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CHAPTER 3

EXPERIMENTAL SET-UP

The recommendation of a previous survey project undertaken by Cranfield in the

1996-1999 Flow Programme, funded by the DTI's NMS programme, was the creation

of a sensor database for multiphase flow. The rationale behind this was that the cost

of collecting sensor responses to multiphase flows under representative conditions is

high and beyond the means of research institutions and small innovative companies.

Yeung et al (1998).

3.1 Sensor Spool Piece

In conjunction with NEL, Cranfield University designed and assembled the sensor

spool piece. The response data from the sensor spool piece were collected over a

wide range of oil, water and gas flow rates in NEL's Multiphase Flow Loop in East

Kilbride, Glasgow. Data were collected under two different salinities of 50 and 100

gil MgS04• To allow researchers to ensure that the techniques developed were

installation independent, the spool piece was placed at two different locations in the

flow loop where the flow regime induced by the pipe arrangement and location was

expected to be different.

3.1.1 Selection Criteria

There is a wide range of sensors (both commercial and laboratory) used to study

multiphase flows. They can be intrusive or non-intrusive. For better reliability and

easier maintenance, non-intrusive sensors are more desirable as they are less prone to

erosion, corrosion or excessive pressure drop problems. Non-intrusive sensors

include:

1. absolute pressure

11. temperature

iii. differential pressure

iv. conductance

v. capacitance

VI. gamma and x-ray

vii. microwave
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Vll1. ultrasound

IX. infra red

The pressure and temperature sensors are primarily used to determine the average

conditions at the measurement point for the estimation of fluid properties such as

density, viscosity and surface tension.

In the selection of sensors to be used in the sensor array, the following criteria were

considered:

1. known behaviour in oil/water/gas flows

ii. frequency (or dynamic response)

111. complexity of sensor output processing

IV. commercial availability

v. cost

VI. non-intrusive design

Vll. reproducibility

Vll1. ruggedness/complexity

The above criteria were then rated A, B or C with A representing the best and C being

the worst as shown in Table 3.1.

Table 3.1 Sensor Selection Matrix, Yeung et al (2002)

CRITERIA

SENSOR I ii iii iv v vi vii viii

Absolute pressure A A A A A A A A

Differential pressure A A A A A A A A

Conductance A A A B B A A A

Impedance A A A B B A A A

Gamma A B A A B A A B

X-ray A B B B C A A B

Ultrasonic B B B B B A B B

Microwave B B B B B A B B

Infrared/Optical B C C B B A B B
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3.1.2 The Sensor Array

Using the consideration mentioned above, a combination of sensors was selected. All

the sensors and equipment are commercially available. The sensors are generic in nature

and thus their response should be similar to sensors of other makes. This means that the

signal analysis techniques developed by the user of the database should be applicable to

other similar sensors and thus their efforts will not be restrained and restricted.

The multiphase sensor spool as shown in Figure 3.1 below comprises sensors in the

following order:

Sensor

1. Gamma ray densitometer

2. Capacitance sensor 1

3. Conductance sensor 1

4. Capacitance sensor 2

5. Conductance sensor 2

6. Absolute pressure transducer

7. Differential pressure transducer 1

8. Differential pressure transducer 2

9. Thermocouple

Distance from Densitometer

o
590mm

1060 mm

1500 mm

1960 mm

2330 mm

2640mm

2740 mm

2840 mm

1 1 em

-- --- -----~~

l':' ,".'n

___ --"', ;; I Ll. I~

Figure 3.1 - Schematic of Sensor Spool Piece, Yeung et al (2002).

Length of spool piece is about 3.43m and weighs about 400 kg
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Figure 3.2 - Sensor Spool Piece mounted at NEL Test Facility, Yeung et al (2002).

The temperature and absolute pressure transducers are used to determine the properties

of the mixture. The gamma ray densitometer provides a measurement of the mixture

density. The capacitance and conductance sensors are needed to cope with oil

continuous and water continuous flows respectively. Together with the gamma ray

densitometer, the three sensors should be able to give the relative composition of the

three phases. The differential pressure sensors indicate the liquid holdups and response

to flow regime changes. The use of two capacitance sensors, two conductance sensors

and two differential pressure transducers, allows cross correlation between the sensors

to determine phase velocity, Figure 3.2 shows a picture of the sensor spool piece

mounted on the 4" flow loop at NEL.

Once the whole sensor spool piece was assembled, the sensors were calibrated for

water and then oil for holdup , as well as for the height of the liquid in the pipe. The

sensor spool piece was bench calibrated (removed from the flow loop). This bench

calibration involved blanking both ends of the sensor spool piece with calibrated

transparent flanges and gradually filling the sensor spool piece at height intervals of 1

or 2mm and recording the signals from all sensors. This method is, however, deficient

considering flow pattern effects and errors generated with, say, bubbly flow etc.
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3.1.2.1 Gamma Ray Densitometer

The gamma ray density gauge supplied by Ronan Engineering consists of a shielded

source holder containing a radioactive Caesium137 source, a detector unit and a signal

processing box. The source has strength of 185 MBq.

The source holder and the detector are mounted directly opposite each other across a

stainless steel pipe. During operation, a beam of gamma ray is shone through the

complete cross sectional area of the pipe and the process material inside it, onto the

surface of the detector. The absorbed radiation is directly related to the density (or

mass) of the material it went through while the transmitted radiation is inversely

related to that density (or mass).

The gamma densitometer had to account for the radiation absorbed by the pipe

material as well as the background radiation count. Calibration was carried out using

water and air as the media, in accordance with the operating procedure supplied by the

manufacturer as shown in Figure 3.3 below. Although the output signals (i.e. 4 to 20

rnA) can be assumed to be linear with the calibrated densities, the output signals are

not linear to the radiation counts rates registered by the counter.

Density Gauage Reading vs True Height of Water in Pipe
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Figure 3.3 - Calibration Data for Gamma Densitometer, Yeung et al (2002).
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3.1.2.2 Capacitance Sensors

The capacitance sensors are supplied by Siemens Milltronics Process Instruments

B.V. in the Netherlands. Each system comprises an MFT300 flow sensor and an

MFT200 detector module.

The MFT300 flow sensor is an assembly of flow-through electrodes with an attached

electronics module, "the driver". The driver circuit generates the measurement signal

and compensates for parasitic capacitances in sensor and cabling.

The output signals must be tuned on site for air and water so that OV (or alternatively

4mA) will correspond to air, and 5V (or alternatively 20mA) will correspond to water.

Details can be found in the instruction manual supplied by Milltronics. For

simplicity, the signals were converted through the data acquisition system to show 1

for a pipe full of water and 0 for an empty pipe.

As the output signal is not linear, the performance of the sensor must then be

calibrated to relate the signals to various liquid holdups. The device is capable of

. following the dynamic changes in the process up to 1000 samples/sec. It responds

both for water and oil, although its response for the latter is much lower in signal

output. Figures 3.4 a-c shows calibration curves for the capacitance meter.
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Figures 3.4a - Calibration Data for Capacitance Meter, Yeung et al (2002).
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Figures 3.4 band c - Calibration Data for Water and Oil Holdup for Capacitance 1

70



3.1.2.3 Conductance Sensors

The conductance sensor model MGT9500, is supplied by Siemens Milltronic Process

Instruments B.V. in the Netherlands and is suitable for products with high

conductivity. It uses a 60kHz signal with a current source output to allow a very small

current through the product. A pair of ring electrodes applies the signal to the product

and across the resistive part of the product; a voltage then builds up. This voltage is

measured and used to drive the current loop signal.

The output signals from the devices are tuned to a fixed range by the supplier. Hence,

a local calibration check is necessary to record the output data for water, air and also

various liquid holdups. As the output signal is not linear, the performance of the

sensor must be calibrated to relate the signals to various liquid holdups. The

conductance sensor does not work with oil. The sensors were set to give a signal of

between 7.5V and 8.2V for a pipe full of clean water and 1V for an empty pipe. This

enables a clear visualisation of the two sensors and allows for cross referencing.

Figures 3.5 a-c shows calibration curves for the conductance meter.
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Figures 3.5a - Calibration Data for Conductance Meter, Yeung et al (2002).
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3.1.2.4 Differential Pressure Transducer

The differential pressure transducers model PMP 4110, supplied by Druck, are of the

silicon diaphragm type. They have a range of 0.7 bar with a voltage signal from 0 to

5 Volts. They incorporate corrections for thermal induced errors, and Non-Linearity

and Hysteresis of +/- 0.08%. Figures 3.6 a-c shows calibration curves for the

differential pressure transducers.
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They are installed to measure the differential pressure between the top and bottom of

the pipe. When in gas/liquid stratified flows, they give the height of the liquid layer

in the pipe. The distance between the two differential pressure transducers was set at

one pipe diameter apart.

Due to the installation using fitting and connecting stainless steel tubes, the actual

position of the transducers is about 95 to 105mm below the inside surface of the pipe.

Hence, the transducer would measure 95 to 105mm H20 for an empty pipe when the

stainless steel tubes are filled with water. Therefore, the reading on the data

acquisition system has to be reset to zero for an empty pipe. This can be achieved by

inserting a zero offset in the data acquisition system.
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Figures 3.6 a and b - Calibration Data for Water and Oil Holdup for Differential
Pressure Transducer1
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3.1.2.5 Absolute Pressure Transducer

The absolute pressure transducer model PMP 4010- a silicon diaphragm type, was

supplied by Druck. It has a range of 20 bar and an output voltage of 0 to 5V D.C. It

incorporates corrections for thermal induced errors, and Non-Linearity and Hysteresis

of +/- 0.08%.

3.1.2.6 Temperature Transducer

A T-type thermocouple was used to measure the temperature in the pipe. The

temperature transmitter connected to the thermocouple outputs a linear response from a

voltage of OV for O°C to 5V for 100°C. The thermocouple has a range of -200 to

400°C and its signal response is of the order of 1 Hz.

3.2 Signal Conditioning and Data Acquisition System

The instrumentation is wired into a signal processing console/cabinet, which

processes and conditions the instrument outputs into voltage signals (from 0 to 5V).

The unit is custom built to house all the power supplies and individual signal

conditioners for the instruments. It allows individual signal conditioners to be

accessed for tuning or adjustment.

All the conditioned signals from the signal processing console are linked to an

analogue-to-digital converter card through a signal distribution box. This card

converts and inputs all the signals into a dedicated computer. The data acquisition

software chosen for the above function is LABVIEW (from National Instruments).

The data files created by LABVIEW can be input into or opened by any spreadsheet

software for data analysis.

A data acquisition system was set up to monitor signals from a number of different

sensors and save them to a data file at a chosen rate. During the data acquisition

process, LABVIEW read a run identifier string generated by NEL's SCADA system,

which was transmitted over a serial link. This identifier string triggered the start/stop

of the data a~quisition process.
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3.2.1 Data Acquisition Software

The software controlling the data acquisition was written in LABVIEW version 6i.

The software is supplied in the form of an executable file. A LABVIEW program

(called a VI, or Virtual Instrument) consists of several sub-VIs. These comprise a

front panel and a diagram. The front panel is made up of controls and indicators

whose function is to control the flow of data into and out of the VI. Every sub-VI

executes during each loop of the main program. A MENU allows the user to view the

front panel of key VI's during program execution. Some of these contain controls

that may be operated to perform certain functions.

3.2.2 Data Acquisition System Hardware

The DAQ hardware comprises of a 16-channel analogue-to-digital converter (AID

converter) card and a timer/counter card. Both of these are installed in PCI slots in

the computer chassis Figure 3.7 shows the data acquisition system hardware, while

Figure 3.8 illustrates the data cable connection. Their outline specifications are as

follows:

A/D converter

Type:

No. channels:

Speed:

Input Range:

Timer/Counter

Type:

No. Counters:

Speed:

Input Range:

PCI-MIO-16E-4

16 Single-ended or 8 differential (selectable)

250 kS/s in single channel operation

±10V

PCI6601

4

10MHz

±10V
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Figures 3.7 - Test area at NEL Facility showing the DAQ System, Yeung et al (2002).

BNC 2090
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+ve to pin 2 (Source 0)
-ve to pin 36 (GND)

"GATE"
+ve to pin 3 (GATE 0)
-ve to pin 39 (GND)

Link GND's to case.

Figure 3.8 - Data cable connection for Data Acquisition System, Yeung et al (2002).
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The details in Table 3.2 below relate to the information the data acquisition program

interprets:

Table 3.2 Voltage Output for Measured Parameters

~easured paratneter Sensor output

Temperature 0-5VD.C.

Absolute pressure 0-5VD.C.

Differential Pressure 1 0-5VD.C.

Differential pressure 2 0-5VD.C.

Capacitance 1 0-5VD.C.

Capacitance 2 0-5VD.C.

Conductivity 1 0 -5VD.C.

Conductivity 2 0-5VD.C.

Gamma densitometer 2 TTL-type pulses (typically 4V peak)

The response of the temperature sensor is of the order of 1 Hz. That of the 'Gamma

densitometer l' output is 8 Hz (internal circuitry gives a minimum response time of

125 ms). The response of the rest of the sensor group is of the order of several kHz.

Although the instrumentation associated with the gamma densitometer 2 output may

generate pulses with a width of less than 1 !J.S (l MHz), the minimum width observed

in practice was approximately 7.5 !J.S (133 kHz). However, it was not possible to vary

the data acquisition rate for each channel as the hardware used would not allow it and

even if it had been possible, time and keeping the different channels in the data file

would have been difficult. During subsequent analysis, the user must be aware of the

limitations of each sensor.

3.2.3 Data File Structure

The data file is in ASCII format and can be read directly into a spreadsheet. However,

as the sampling rate is 250 Hz, the file is fairly large. Earlier versions of spreadsheet

programs like Microsoft Excel will not be able to display all the 75,000 rows of data.

Only 65,536 rows of data can be displayed. However, the 75,000 rows of data do not

pose any problem for other data editing software or mathematical programs (e.g.

MATLAB etc).
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3.3 Three Phase Facility at NEL

Figure 3.9, below shows the Multiphase facility, with the test section inset.

Pr ssur and flo control

r

Test mt r

liqUid
nitrogen

Figure 3.9: Schematic ofNEL Multiphase Flow Facility

The multiphase facility is based around a 3-phase separator, which contains the

working bulk fluids. The oil and water are recycled around the test facility using two

variable speed pumps. For safety reasons, nitrogen is used as the gas phase and can

be delivered at up to 0.5 kg/s by evaporation of liquid nitrogen on demand. The

delivery pressure of the nitrogen is up to 12 bar at the point of injection. After

passing through the test section, the nitrogen is vented to atmosphere from the

separator, schematic of the NEL Flow loop is shown in Figure 3.9 above.

The different oils and waters used are stored in tanks under the separator and in tanks

kept outside the building. When a fluid change is required the separator is drained

and the new fluid is pumped into the separator. The facility is manufactured entirely

from stainless steel and can thus utilise brine substitutes and dead crudes as the
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working fluids in addition to de-ionized water and refined oils. The oil used for this

test is a mixture of Forties and Beryl crude oil- D80, topped to remove light ends and

increase flashpoint to about 75°C, with kerosene added to restore original viscosity

(approx. 33° API gravity).

At the centre of the facility is a large three-phase gravity separator, which contains

approximately 35m3 of water and 25m3 of oil. This acts as the storage vessel for the

liquids currently under test, in addition to separating the fluids for recirculation.

Across much of the operating envelope of the facility, the liquids can be recirculated

indefinitely, while at high liquid flow rates (especially oil-continuous flows) the

degree of cross-contamination of the oil and water usually means that flow must be

paused for a period to allow settling of the liquids. The separator is equipped with

pumps and piping to allow transfer of settled liquids between the water, oil and

mixture compartments and is additionally equipped with heat exchangers which allow

the temperature of the oil and water to be maintained within ±1 -c over the range of

approximately 10° to 40°C.

The facility operation is controlled by an automated SCADA system, which allows a

single operator to control the entire facility from a PC workstation. The PC is linked

to the PLC and Cranfield's Data Acquisition System via an Ethernet connection,

which permits a response time from command to action of less than one second. The

PLC is linked to all the field instruments on the facility.

A 4" Perspex visualisation section is installed immediately upstream of the sensor

spool piece.

3.3.1 Flow Regime Map

The flow rates of nitrogen, water and oil were varied so that a wide range of water cut

and GVF (gas void fractions) could be obtained for the tests.The first data sets from

the sensor spool piece were obtained from Test Section 1, at a location on the flow

loop where the full flow regime had been generated. The sensor spool piece was then

moved to a location further upstream (Test Section 2), where the flow regime had not

been fully developed before repeating some of the test conditions.
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Figure 3.10 - Flow Regime Map showing the Matrix of Data Collected,

Yeung et al (2002).

Figure 3.10 shows the full test matrix plotted on a flow regime map. This is a flow

regime map ofNEL, typical of flow regimes generated by the flow loop.

Test numbers MU0601 to MU0619 were carried out using a water salinity of 50 gil

MgS04 while test numbers MU0621 to MU0637 were carried out using a water

salinity of 100 gil MgS04 at the first location (i.e, location of fully developed flow

regime). MU0638 to MU0644 were carried out using a water salinity of 100 gil

MgS04 at the second location where the flow regime was not fully developed.
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3.4 Experiments

At the start of each day of tests, the height of liquid in the pipe measured by the

differential pressure transducer was adjusted to zero, under no-flow and dry

conditions. This process was necessary due to drifting of the zero offsets experienced

over time and was achieved by adjusting the offset value of the differential pressure

transducer in the data acquisition system.

The operation of the NEL multiphase facility is computer automated. The requested

flow rates are set through the SCADA system, where a control loop then adjusts the

flow rates according to the input flow rates and measured pressure and temperature at

the point of metering. For each test, when each flow condition was generated, it was

left to stabilise for five minutes to allow the flow regime to fully develop, before any

data were collected.

After the flow had been allowed to stabilise for five minutes, the "start recording" and

"stop recording" signal would be sent from the NEL data acquisition system to the

Cranfield data acquisition system. During the data collection process, NEL's data

acquisition system records the flow conditions while Cranfield University's data

acquisition system records the sensor response. The test files are date and time­

stamped, and individual test points are also time-stamped. The data acquisition

duration for each test condition was five minutes at a frequency of 250Hz.

3.4.1 Data Collection and Raw Data Processing

For each multiphase flow experiment, the data collected were stored simultaneously

into two separate files with two different computers. One of the computers was

storing the outputs from the instruments on the spool piece and the other computer (at

NEL) was storing information of the flow rates for the phases involved, before the

spool piece. Both computers were also recording every time step at which a sample

was recorded.

The data were later merged using a VI on LABVIEW platform to generate single

files, containing the reference measurements with corresponding signals response of

the flow conditions. The data were stored in files with the following file structure:
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The first seven rows form the file header for the reference measurements. The

reference measurement data are split into nine columns A to I:

A. Test Point

B. Number of Records

C. Temperature (T), -c
D. Mean Pressure, bar(g)

E. Oil Flow, lis

F. Water Flow, lis

G. Gas Flow, lis

H. Water cut, %

1. Gas Fraction, %

Rows 9 - 15 form the file header for the test rig signals response, which are split into

10 columns A - J.

3.4.2 "Spool Piece" Signals Responses are as follow:

A. Time in seconds

B. Temperature (Tl), -c
C. Absolute Pressure (P3), bar(a)

D. Differential Pressure 1 (d.p.1), mmH20

E. Differential Pressure 2 (d.p.2), mmH20

F. Capacitance 1 (Cap.1) - 0 for air and 1 for full of water

G. Capacitance 2 (Cap.2) - 0 for air and 1 for full of water

H. Conductivity 1 (Cond.1) - 8.2 for empty and 1 for full of water

1. Conductivity 2 (Cond.2) - 7.5 for empty and 1 for full of water

J. Transmitted Gamma radiation counts, ctr
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3.4.3 Sensor Response Database

A total of 531 test conditions were recorded during the test programme. This included

test conditions carried out mainly in slug flow regimes, different water salinities, and

the two test locations. Overall, there is almost 2.7 GB of data recorded.

Tests numbers MU060 1 to MU0619 were carried out using water with a salinity of 50

gil MgS04 • It must be noted that the differential pressure data in test numbers

MU0601 to MU0616 were corrupted and appeared random and negative. However,

data from all other sensor in the file were unaffected and hence accurate.

Tests MU0621 to MU0637 were carried out with the higher salinity solution of 100

gil MgS04 using the same test matrix.

The last set of data, i.e. tests MU0638 to MU0644, with the new spool piece location,

and where the distance between the sensor spool piece is very close to the supply line

did not have enough time to allow the flow regime to fully develop.

In addition, the database also contains:

1. A <readme.txt> file, which gives a general description of the database.

2. A <TEMPLATE.xls> file, in Microsoft Excel format, a spreadsheet which

contains the full details of all the data files. This template allows the users

to view the summary of any of the data set and to sort and locate any data

in accordance with their preference in terms of any flow conditions, flow

regimes, etc. The file also contains charts specially prepared to allow the

users to view the data and the trends graphically.

3. An <instruction.txt> file, which is a set of simple to follow instructions to

the users to view the data using the graphs in the <TEMPLATE.xls> file
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3.4.4 Reference Measurements

The reference measurements sheet as shown in Table 3.3 contains the following

information for all the tests points:

1. File Name

2. Test Point

3. Number of Records

4. Mean Temperature, -c
5. Mean Pressure, Bar(g)

6. Oil Flow, lis

7. Water Flow, lis

8. Gas Flow, lis

9. Water Cut, %

10. Gas Fraction, %

11. Superficial Liquid Velocity, m/s

12. Superficial Gas Velocity, m/s

13. Flow Pattern

14. Salinity of Water

15. Location of Sensor Spool Piece

3.4.5 Sensor Signals

Sensor signals are displayed in Columns A to I.

Columns M to P display the following computations:

Vs1- Superficial Liquid Velocity, m/s

Vsg - Superficial Gas Velocity, m/s

Vso - Superficial Oil Velocity, m/s

Vsw - Superficial Water Velocity, m/s
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Table 3.3 Abridged Signals Database Reference & Test Measurements indicating

Salinity and Spool Piece Location, Yeung et al (2002).

Refereaee 3.leac.realeDlS
Melin 011 Water G ... Wate:.r ¥ I G ... Spool Piece LocetJon

F ile No. Temp F low F low Fl ow Cut I Fraction
Name Recorda dB C II. lis Ils % %

MU 0601 100 38.35 5.848 0 .058 98.721 0 .99 94.35 SLUG 50gn MgS04
MU0601 100 39.06 6 .299 0.062 50.818 0.98 88.89 SLUG 50011 MgS04
MU0601 100 39.06 11.981 0.112 102.442 : 0.95 84.94 S LUG 50011 MgS04
MU0601 100 39.66 5.121 0.054 3<1.381 0.94 85.61 SLUG 50011 MgS04
MU0601 100 39.79 9 .321 0 .088 22.988 0.93 70.96 SLUG 50011 Mg S04
MU0601 100 40.39 5.992 0 .056 14.350 0.92 70.35 SLUG 500/1 MgS04
MU0601 100 39.49 6 .185 0 .058 21.644 0.92 81.58 SLUG 50gn Mg S04
MU0601 100 39.25 11 .943 0.140 62.765 0.77 77.63 SLUG 50gn MgS04
MU0 6 01 100 38.81 9 .240 0 .069 68.101 0 .75 81 .91 SLUG 50gn MgS04
MU0601 100 31.15 5.140 0.042 143.765 0.73 96.13 SLUG 50gn MgS04
MU0601 100 39.51 8 .858 0 .064 40.363 0.72 81.90 SLUG 50gn MgS04
MU0601 100 39.91 8 .848 0 .062 23.472 0 .70 72.48 S LUG 50gn MgS04
MU0601 100 40.14 9 .018 0 .064 14.223 0 .70 60.81 SLUG 50gn MgS04
MU0602 100· 41 .18 0 .909 7.999 80.094 89.79 89.99 SLUG 50gn MgS04
MU0602 100 40.77 0 .685 5.468 88.923 88.81 93.53 SLUG 50gn MgS04
MU0602 100 40.55 0.694 5.439 151.212 88.69 96.25 SLUG 50gn MgS04
MU0602 100 41.44 13.511 4.931 13.161 26.76 42.72 SLUG 500/1 MgS04
MU060 2 100 40.16 6.914 2.241 63.103 24.31 ' 81.25 SLUG 50gn MgS04
MU0602 100 39.28 4 .615 1.463 124.647 23.83 ' 95.31 SLUG 50gn MgS04
MU0602 20 39.32 4 .839 1.314 81.367 22.11 92.91 SLUG 50gn MgS04
MU0602 100 31.99 4 .651 1.312 139.337 21.98 95.89 SLUG 5OgnMgS04
MU0602 20 42.81 3.741 0.061 0.000 1.60 0.00 SLUG 5OgnMgS04
MU0603 100 41 .87 1.182 16.188 63.429 90.08 77.92 SLUG 5OgnMgS04
MU0603 100 41 .89 4.536 13.453 92.977 14.18 83.79 SLUG 5OgnMgS04
MU0603 100 42.28 2.448 6.718 18.131 13.30 89.50 SLUG 5OgnMgSOt
MU0603 100 41 .23 1 .631 4.408 142.632 12.99 95.94 SUlG 5OgnMgSOt
MU0603 100 41 .1 8 2.531 3 .628 141 .348 58.85 95.82 SLUG 5OgnMgSOt
MU0603 100 43.10 3.721 5.330 19.391 58.85 89.16 SUlG 50gIl MgSOt
MU0603 100 43.30 7.426 10.515 98.029 58.61 84.53 SLUG 5OgnMgSOt
MU0603 100 41.35 9 .953 6.933 87.765 41.06 83.116 SLUG 5OgnMgSOt
MU0603 100 38.76 3.512 2.337 139.871 39.96 95.99 SLUG 5OgnMgSOt

MU0641 1 100 35.62 5 .04 0 .954 8 .156 21 .953 89.53 70.67 1 .106 3 .656 SLUG 1000n MgSOt 2
MU0641 2 100 35.33 4.93 0 .977 8 .283 5 .953 89.45 39.13 1.124 1.129 SLUG 1000n MgS04 2
MU0641 3 100 3 5 .76 5.00 0.968 8 .202 31.233 89.44 80.24 1.114 5 .511 SLUG 1000n MgS04 2
MU0641 4 100 38.43 5.29 6.706 2.418 13.646 26.50 59.93 1.108 1 .951 SLUG 1000n MgS04 2

. MU0641 6 100 37.13 4 .84 9.018 3.243 28.132 26.45 69.64 1 .489 3.810 SLUG 1000n MgS04 2
MU0641 1 100 37.50 5 .35 9.090 3.261 18.583 26.41 r 60.07 1 .500 2.652 SLUG 1000n MgS04 2
MU0641 8 100 38.39 5 .21 6.803 2.431 9 .13<1 26.37 ' 49.71 1.122 1.405 SLUG ' 1 000n MgS04 2
MU0641 9 100 37 .96 4 .23 6.926 2.449 35.326 26.12 79.03 1.138 4 .587 SLUG 1000n MgS04 2
MU0641 10 100 38.34 5 .38 9 .101 2.784 7.521 23.41 38.16 1.444 1 .252 SLUG 1000n MgS04 2
MU0642 1 100 36.12 5.05 2.400 21 .548 2 .706 89.98 10.15 2.9Ol1 2 .945 SLUG 1000n MgSOt 2
MU0642 2 100 31.12 5.05 2.431 21 .413 15.977 89.80 40.12 2.895 4.540 SLUG 1000n MgS04 2
MU0642 3 100 36.57 5.44 1.819 15 .790 11.409 89.67 39.32 2.138 3.303 SLUG 100gn MgS04 2
MU0642 4 100 31.23 4.98 2.470 21 .426 25.231 89.66 51.36 2.902 5.665 SLUG 1000n MgS04 2
MU0642 5 100 36.51 3.28 1.839 15 .841 61.302 89.60 77.62 2.141 9 .367 SLUG 1000n MgS04 2
MU0642 6 100 31.43 5.36 3.109 26.416 3.649 89.41 11.00 3.585 3.651 SLUG 1000n MgS04 2
MU0642 7 100 37.63 5.24 3.185 26.964 20.569 89.44 40.56 3 .661 5 .772 SLUG 1000n MgS04 2
MU0642 8 100 36.65 4.89 1.951 16.303 21.514 89.31 60.12 2.216 5.320 SLUG 1000n MgS04 2
MU0642 9 100 36.36 5 .21 1.941 16 .1 06 6 .141 89.25 25.39 2.191 2 .701 SLUG 1000n MgS04 2
MU0642 1 0 100 38.50 5 .25 13.594 5.112 11.696 27.33 48.61 2.271 2.769 SLUG 100011 MgS04 2
MU0642 11 100 39.11 5 .11 13.586 4 .643 12.084 25.47 39.86 2.214 2.031 SLUG 1000n Mg S04 2
MU0643 1 100 39.67 1 .2 6 3.422 2 .456 '120 .4 3 2 41.78 95.35 0 .714 14.922 SLUG 1000n MgS04 2
MU0644 1 100 4 0.50 2.50 3.533 2.495 15.105 41 .39 92.57 0 .732 9.423 SLUG 1000n MgS04 2
MU0643 2 100 40.03 3.83 5.394 3.802 53.366 ' 41.35 85.30 1 .1 11 6 .942 SLUG 1000n MgS04 2
MU0644 2 100 4 0.20 4 .98 7 .286 5.074 29.139 ' 41.05 70.22 1 .501 4 .154 SLUG :1 000n Mg S04 2
MU0643 3 100 40.46 5 .02 5.382 3.742 3<1.751 41.02 79.21 1.108 4.674 SLUG 1000n Mg S04 2
MU0644 3 100 40.30 5.08 7.305 5.018 18.766 40.72 60.36 1 .4 96 2.888 SLUG 1000n Mg S04 2
MU0643 4 100 40.68 4.60 3.607 2.470 23.939 40.65 79.75 0.738 3.207 SLUG , 1000n MgS04 2
MU0643 5 100 40.38 4.91 1 .133 4 .880 8.114 40.62 40.31 1.459 1 .518 SLUG 1000n MgS04 2
MU0643 6 100 40.72 5 .06 5.428 3.686 13.955 40.45 60.49 1.107 2.142 SLUG 1000n MgS04 2
MU0643 7 100 38.51 4.14 3.494 2.327 13.506 39.98 69.118 0 .707 1 .923 SLUG 1000n gSOt 2
MU0643 8 100 40.58 5 .20 5 .309 3 .526 8.961 39.91 50.35 1.073 1 .516 SLUG 1000n MgS04 2
MU0643 9 100 40.64 4.60 10.541 1.624 29.372 41.97 61.79 2.206 4 .492 SLUG 1000n MgS04 2
MU0643 10 100 40.85 5.29 10.681 1.673 13.024 41.79 41 .50 2.229 2.513 SLUG 100gn MgSOt 2
MU0643 11 100 40.54 5 .50 10.882 1.115 6.088 39.53 25.28 2.185 1 .603 SLUG 1000n gSOt 2
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3.4.6 Typical Sensor Signal Response

Some typical sensor signal's response displaying the differential pressure,

capacitance, conductance, and gamma count are presented in Figures 3.11 - 3.14.

This enabled the visual description of sensor behaviour to flow changes, and provided

the basis for data analysis and neural network application in subsequent chapters.

3.4.6.1 Differential Pressure Transducer

The DP vs time chart displays a plot of the differential pressure signals for the two DP

transducers namely dpl and dp2 in mmH20.

Differential Pressure vs Time

25 0

.....1150
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-30 0
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Figure 3.11 - Plot of Differential Pressure (DP) vs. Time
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3.4.6.2 Capacitance Sensor Response

Capacitance vs. time chart, Figure 3.12a below displays the plot of Capacitances 1 &

2 in typical slug flow conditions. Figure 3.12b shows a calibration curve with water,

the values for the capacitance have been non-dimensionalised, i.e. a capacitance

reading of 0 indicates an empty pipe, and a reading of 1 indicates that the pipe is full

of water.
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Figure 3.12 (a) and (b) - Plots of Capacitance (a) vs. Time, (b) vs. True Height of Water
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3.4.6.3 Conductance Sensor Response

Figure 3.13 presents a typical maximum value feature response for a conductance

sensor for multiphase oil, water and gas flow. The sensor's performance is severely

impaired in an oil continuous flow as shown.
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3.4.6.4 Gamma Amplitude Features
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Figures 3.14 a-f - Amplitude Features Contour Maps of Gamma Signal
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3.5 Notes on Experiment and Database

It is worth stating that the sensor signal database was collected as part of the Flow

Programme Work for the United Kingdom Department of Trade and Industry (DTI)

now called Department of Business Enterprise and Regulatory Reform (DBERR).

In conjunction with the National Engineering Laboratory (NEL), Cranfield University

designed and assembled the sensor spool piece. The response data from the sensor

spool piece was collected over a wide range of oil, water and gas flow rates in NEL's

Multiphase Flow Loop in East Kilbride, Glasgow. Data were collected under two

different salinities of 50 and 100 gil MgS04.

It must be noted that the differential pressure data in test numbers MU0601 to

MU0616 were corrupted and appeared random and negative. (These data sets were

excluded for the purpose of this research work). During subsequent tests /calibrations

(MU0617 - 44), which were conducted by the author at both NEL and Cranfield

University facilities, a number of techniques were used to ensure that the data

collected were valid and that the sensors correctly responded to flow conditions.

Sensor response as a function of time was plotted and monitored online. Test

parameters such as superficial gas/liquid velocities, water cut, gas volume fraction etc.

were analysed and validated through comparisons with reference conditions at regular

intervals.

The author was also involved with the sensor database creation (preliminary data

analysis, design of sensor signal template, report preparation etc.) at Cranfield

University, through the final stages of the project.

Please refer to Appendix C for additional information on the data acquisition system.
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CHAPTER 4

THE USE OF A NEURAL NETWORK FOR MULTIPHASE FLOW

MEASUREMENT

4.1 Feature Analysis

Time series plots from the sensor signals were employed to ensure that the data

collected were valid and that the sensors correctly responded to varying flow

conditions. Sensor responses as a function of time were plotted and monitored online,

so that any sensor malfunctioning could be detected immediately. The reference

measurements are also continuously monitored on the system. The sensor spool piece

has a pair of sensors each for the capacitance, conductance, and differential pressure,

which enabled cross referencing between the sensors to ensure data validity.

The electronics in the signal processing box for the gamma densitometer scan the

transmitted radiation every 125 ms (8 Hz) and calculate an average of the signal for

every second. This characteristic of the instrument makes it unsuitable for certain flow

conditions (e.g. short slug and bubbly flow). Hence, it is more appropriate to use the

raw data from the densitometer before the processing, which gives the radiation

transmitted through the processing material onto the detector in the form of counts or

pulses, which are sampled every 1 msec (1 kHz). These counts can be converted to

density values afterwards.

A more detailed analysis of the sensor signal was carried out to validate and further

ensure that the sensors were functioning correctly to the pre-defined test conditions.

Figure 4.1 is a typical slug flow time domain representation of a capacitance 1 sensor

at 6.01/s liquid flow, 25% water cut, 70 gvf, and Figure 4.2 is also a time series

representation of capacitance 2 under the same conditions. This enabled cross

referencing to ensure data quality.

Similarly, Figure 4.3 shows response of gamma output signal as a function of time

(10 seconds) when subjected to the same flow conditions as the capacitance sensors.
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Identification of density fluctuations in the multiphase flows is obvious from the

series of peaks and troughs in the amplitude of the output signals. For high-density,

liquid-rich, fluid segments, the number of gamma photons absorbed by the fluid

increases. Accordingly, the magnitude of the detector unit's output signal decreases.

Conversely, the signal magnitude will increase for low-density, gas-rich, fluid

segments where the number of photons absorbed by the multiphase mixture decreases.

When analysed over a short period (e.g. 10 - 70 seconds), the raw signal traces

provide a useful visual indication of the flow features present in the multiphase flow

pipeline.

As the gas loading increases, the troughs produced by the passing slug increase first in

amplitude and then in width. The troughs present in the signals' amplitude represent

the passage of slug structures through the measurement section: the lower the

amplitude of the signal trough, the smaller the slug length, with large troughs

inferring a large slug passage. Trough width provides an indication of the slug height:

higher slug structures will induce a wider trough. However, the width of the trough

will also be dependent on the slug velocity.

4.1.1 Feature Extraction

The sheer volume of raw sensor signals data could not be practically handled by a

neural network system. There are two main reasons why the raw signals data could

not be used: in the first instance a neural network with too large a number of input

parameters and corresponding weights and biases would be required to populate the

input space. e.g. measurement period of 5 minutes, a 75,000-dimensional input space

(5 minutes x 60 seconds/minute x 250 Hz) is generated. Secondly, previous studies in

the application of pattern recognition techniques confirmed that the discriminatory

information in multiphase flow measurements lies with the feature extraction

principle. Darwich (1989), Bishop (1995b), lama (2004), and Blaney (2008).

Consequently a feature extraction approach was adopted as part of the initial data

preprocessing. With the help of digital signal processing techniques, there are an

infinite number of features that can be extracted from different information domains.

In the current study a number of features were extracted from time and frequency

domains.
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Statistical parameters from the sensor signals were analysed on the basis of their

relationship with multiphase flow characteristics. The central moments, Linear

Prediction Coefficients (LPCs), and Linear Spectral Frequencies (LSFs) were

evaluated for various test conditions.

These features were extracted from the sensor signals for the two salinity levels ie

SOg/1 MgS04 and 1OOg/1 MgS04, and the two test sections.

A variety of statistical features were also analysed using contour mapping to

determine their discriminability. Contour plotting facilitated visual examination of an

input feature's response to variations in anyone of the target output variables. Table

4.1 lists the features selected for examination.
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Table 4.1 Features Selected for Investigations based on Feature Analysis

Information Domain

Feature Symbol Amplitude LPC LSF

Mean Value AV X

Standard Deviation SO X

Coefficient of Variation CV X

Coefficient of Skewness CS X

Coefficient of Kurtosis CK X

Signal Total Energy ET X

Linear Prediction Coefficient 2 LPC2 X

Linear Prediction Coefficient 3 LPC3 X

Linear Prediction Coefficient 4 LPC4 X

Linear Prediction Coefficient 5 LPC5 X

Linear Prediction Coefficient 6 LPC6 X

Linear Prediction Error ER X

Line Spectral Frequency 1 LSFI X

Line Spectral Frequency 2 LSF2 X

Line Spectral Frequency 3 LSF3 X

Line Spectral Frequency 4 LSF4 X

Line Spectral Frequency 5 LSF5 X

The LP coefficients are obtained from standard linear prediction analysis, based on

blocks of input samples. The autoregressive model is employed due to its comparative

simplicity and computational efficiency. Equation (4.1) below shows how the

residual error ern) is associated with LP coefficients ..

Where:

p

e(n) = x(n) - Lakx(n - k)
k=!

(4.1)

ern) is the residual error, x(n) is the actual signal, p denotes the number of past output

samples being considered by the model, which is also representative of the order of

the linear prediction function and ak is the (k+ 1)th LP coefficient.
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A simple test to obtain the optimal linear predictor order P is to check the variation of

the residual error with the predictor order, which will almost be flat for p > Po' where

Po is the optimal linear predictor order.

There are two widely used methods for estimating the LP coefficients, which are the

autocorrelation and the covariance method, Golub and Loan (1989). Both methods

choose the short-term filter coefficients in such a way that the residual error is

minimised using the least square technique. When the autocorrelation method is used

a Toeplitz matrix, where all elements along a given diagonal are equal is generated

which unlike the covariance method guarantees the stability of the synthesis filter.

This allows the linear equations that arise from the least-squares formulation to be

solved by the Levinson-Durbin recursion algorithm, presented by Golub and Loan

(1989).

The relationship between two random variables called correlation, gives a measure of

the average dependency of the two signals. The correlation between pairs of signal

sample is known as an autocorrelation (AC). The autocorrelation function of a signal

is an average measure of its time domain properties given by:

1' / 2

rxx Cr)= ~~ ~ Jx(t )x(t +r}dt
- 1'/2

(4.2)

Where rxx is autocorrelation function, r is time shift known as lag. When the

autocorrelation technique is used to compute the LP coefficients as described above,

the sample correlation function can be calculated first. There are no requirements to

do extra calculations to obtain the autocorrelation coefficients, AC. This method was

adopted to estimate the LP coefficients 2 - 6 using MATLAB.

Under different flow conditions of gas and liquid, a variation in energy and spectral

characteristics can occur in a short time interval. Therefore there will be a change in

the LP coefficients in consecutive blocks of sensor waveforms. Since LP coefficients

provide a simple and effective method of representing different signals in terms of the
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small number of parameters, they can be used not only as a way of data compression

but also as a supply for different statistical features for different flow conditions. The

feature-set response and variation with respect to specific waveform of differential

pressure, absolute pressure, capacitance, conductance and gamma sensors were

examined by using distribution/contour-mapping techniques. The line spectral

frequencies are a representation of the LP parameters in the frequency domain and

they have a shorter dynamic range of values, and hence have better quantisation

ability than LP parameters. The LSFs were also evaluated for their discriminatory

ability for different flow conditions using contouring techniques.

A number of methods were initially tested for pre-processing the input feature

vectors:

• One method was to normalise the input features to the pattern classifier so that

they fall in the range of [-1, 1].

• Another normalisation technique was to equalise the magnitude and dynamic

range of each feature by applying zero mean and unit-variance normalisation

to the feature vectors. Here the data values are centred (i.e. subtract the mean

values from the data values in order to obtain centred anomalies) and then

divided by their standard deviations to obtain a normalised data having zero

mean and unit variance.

• A third pre-processing technique was to transform the input feature vectors,

which are uncorrelated and orthogonal to each other, into a new feature space

by the use of principal component analysis (PCA). A MATLAB routine

called PREPCA was used for this purpose. Those components, which

contribute only a small amount to the total variance in the data set, can be

eliminated.

The classification accuracies obtained from the above three pre-processing techniques

were compared using feature vectors extracted from each information domain for

each sensor as well as a combination of different feature vectors.
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Reference output target values were obtained from the test facility's reference

measurements. The output targets employed were the gas and liquid superficial phase

velocities (Vsg and Vsl respectively) and the liquid phase water cut (WC).

A Back Propagation Neural Network was constructed to predict the individual phase

flow rates and water cut, and assesses the effects of salinity and test location on the

measurement accuracy of the measurement system.

The results indicated that in terms of normalisation methods, the zero mean and unity

standard deviation technique result in much better classification accuracy than the

simple technique of scaling the data in the range of [-1, 1]. This may be due to the

fact that the former technique ensures that all features are given equal emphasis by

equalising the magnitude and dynamic range of each feature, i.e. by applying zero

mean and unit-variance normalisation to the feature vectors.

It is common practice in many applications to use a principal components analysis

(PCA) method to guide the choice of a subset of features from a larger candidate set.

It was considered necessary to verify its applicability in the current research work,

hence the application of PCA was carried out and its classification accuracies

compared against the above-mentioned normalisation techniques. It transpired that

when PCA was used to orthogonalise the input features so that they were uncorrelated

without feature reduction, its accuracies were compatible to those obtained when the

input features were normalised with zero mean and unity standard deviation. The

second trial of PCA was to employ it in dimensionality reduction mode, such that

those transformed feature vectors that contribute less than a predefined percent

(typically 0.1%) to the overall variability were eliminated. As shown in Figure 4.4,

the dimensionality reduction by PCA reduces the classification accuracies of the

network as those features with the least variance are eliminated. It was observed that

this trend in PCA performance was consistent regardless of the type of sensor(s) and

feature vectors used.
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The preliminary feature pre-processing exercise showed that the decorrelation and

high measures of statistical significance provided by the first few principal component

axes are no guarantees of having the best subset of features. PCA finds feature

combinations that model the variance of a data set, but these may not be the same

features that separate the classes, i.e. the PCA components that model the largest

contributions to the data set variance may work poorly for pattern recognition and

may not be suitable for discriminating between underlying classes as applied to the

current study. It was also seen that the popular practice of ignoring the lower-order

PCA components in order to achieve dimensionality-reduction resulted in losing some

of the discriminatory information in the data.

It can be stated that in applications similar to the current study, wherein features from

the raw data are extracted have been considered useful, the use of PCA processing is

not recommended because of its computational complexity without necessarily

achieving improved classification accuracies. Due to the limitations of PCA

encountered in the current study, it was omitted from the present pattern recognition

system. In certain applications, however, when the input data has high dimensions and
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there are no obvious features which can be extracted from it, the input dimensionality

must nevertheless be reduced in order to limit the number of free parameters in the

pattern classifier; in these cases PCA may be a suitable technique to apply for

dimensionality reduction.

The Zero Mean and Unit-Variance (ZMUV) normalisation procedure was applied to

the input features in this study, as a pre-processing technique feature. This serves to

equalise the magnitude and range for each feature, but leaves the relative overlap

between the different features unchanged.

It is important to visualise each feature's variation over the flow domain of interest.

A useful technique , which facilitates feature trend visualisation, is contour plots. This

technique allows the visualisation of three-dimensional data on two-dimensional

plots. A contour plot of vector Z over (X, Y) plot treats the values in Z as heights

above a plane.

The contours are the level curves of the feature vectors over the intersection grid

values of superficial gas and liquid velocities. This provides the ability to visualise

how each feature is responding to the changes in flow conditions. It is necessary to

select a suitable number of contour levels, as too many contours would render the

technique ineffective for providing the required visualisation, while too few contours

would not capture the overall feature spectrum. Fifteen linearly spaced contour levels

including minimum and maximum of each normalised feature were considered as the

optimum for feature trend visualisation purposes. The contour plots represent the

normalised features, as this will be the input to the neural network.
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4.1.1.1 Gamma Count Signal

Figures 4.5a-f displays the normalised feature distribution maps of the central

moments, of the gamma count signal.

The mean value (MV) gamma count was observed to increase with increasing

superficial gas velocity (Vsg) due to the decreasing average mixture density, Figure

4.5a. At low Vsg the water cut influences the mean count in a manner one would

expect: the lowest water cuts yielding higher mean values. However, at Vsg in excess

of 4 m/s the influence of the water cut on the mean value diminishes as high and low

water cut data points intermingle.

The standard deviation feature increases with increasing superficial liquid velocity,

Figure 4~5b. In general, increasing the water cut led to a decrease in the standard

deviation. It is hypothesised that phase inversion in the liquid phase may induce this

increased variation in the measurements.

The coefficient of variation (CV), Figure 4.5c, feature exhibits a linear decrease with

increased Vsl, but lesser response to Vsg until 3m/s. The feature responds most

markedly with higher liquid loading.

The coefficients of skewness (CS) and kurtosis (CV) features are shown in Figures

4.5d and e. In general, both the skewness and kurtosis decreased with increasing Vsl

and Vsg. The feature response of the total signal energy (ET) starts at superficial gas

velocity above 2.5 m/s below which the feature appears to be flat. From a pattern

recognition viewpoint, this will mean that this feature will not provide discriminatory

ability for the current test conditions below 2.5 m/s Vsg.

The feature distribution maps of the Linear Prediction Coefficients (LPC) of the

gamma count are shown in Figures 4.6a-f.

Increasing superficial liquid velocity had little effect on the magnitude of the LPC2

and LPC3 values but the variation between different data points with the same Vsg

but different superficial liquid velocity diminished. The magnitudes of the LPC2 and
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LPC3 values are a function of Vsl. The data points produced increasing LPC2 and

LPC3 magnitude values for higher V sl. From the data, it was hypothesised that liquid

phases with significant water/oil content were susceptible to phase inversion that

produce a characteristic response to the gamma signal depending on the water cut.

LPC4, LPC5 and LPC6 yielded similar reactions to the different multiphase flows,

Figures 4.6c, d and e. As observed for LPC2 and LPC3, the magnitudes of the LPC4,

LPC5 and LPC6 values displayed no significant dependence on the V sg value but the

variation between the data points for different V sl decreased with increasing

superficial gas velocity.

The linear prediction coefficient error (ER) demonstrated an approximately linear

relationship with the V sg, increasing in magnitude with increasing superficial gas

velocity, Figure 4.6f. The LPC error influences on the V sg indicated increasing

sensitivity from 2.5 m/s V sg.

Figures 4.7a-e displays the feature distribution maps of the Line Spectral Frequencies

(LSF) of the gamma signal. The first line spectral frequency (LSF1) appears to be

influenced by increasing superficial liquid velocity, with most noticeable liquid

dependency seen as superficial gas velocity of 4 m/s (Vsg). The feature has no

significant visible trends associated with higher V sg.. The LSF1 feature is shown to

be strongly sensitive to hydrodynamic flow changes.
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Conductance Features
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Figure 4.8a-f, Amplitude Features Distribution Maps of Conductance Signal
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Another statistical analysis technique employed to visualise and extract features with

discriminatory capabilities to multiphase flow, was to plot the central moments, linear

prediction coefficients (LPCs), and linear spectral frequencies (LSF) against the

superficial gas velocity with varying water cut. Typical plots are presented in Figures

4.11-4.12, showing scatter plots of the conductance signal indicating the responses to

multiphase flow.

The feature responses clearly indicate the sensor functions only at water cuts of 60%

and above. This information is important in excluding the conductance signal features

in subsequent measurements for oil continuous flow conditions.

The standard deviation also increased with Vsg as the measurement range increased.

In general, increasing the water cut led to increases in the standard deviation.

However, the largest standard deviations were obtained for test points with a water cut

of75%.

The skewness and kurtosis exhibited a linear decrease with Vsg until Vsgs of 75% or

greater were attained. In general, both the skewness and kurtosis increased with

increasing water cuts.

Increasing the Vsg had little effect on the magnitude of the LPC2 and LPC3 values.

However, the variation between different data points with the same Vsg but different

water cuts diminished. Figures 4.12a-f also indicate the conductance performance as

a function of water cut.

LPC4, LPC5 and LPC6 yielded similar reactions to the different multiphase flows. As

observed for LPC2 and LPC3, the magnitudes of the LPC4, LPC5, and LPC6 values

displayed no significant dependence on the Vsg value but the variation between the

data points for different water cuts decreased with increasing Vsg. The water cut was

the major influence on the LPC magnitudes, with phase inversion effects being

prominent.

The linear prediction coefficient error (ER) demonstrated an approximately linear

relationship with the Vsg, increasing in magnitude with increasing Vsg.
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A decrease in magnitude of the LSF1 parameter was observed with increasing Vsg,

particularly for Vsgs in excess of 60%, Figure 4.13a. Water cut was observed to

exhibit a significant influence on the LSF1 magnitude.

LSF2 and LSF4 yielded similar responses to the multiphase flows demonstrating no

detectable reaction to variations in the Vsg, Figures 4.13b-d. The variation between

parameter magnitudes with water cut for data points of equivalent Vsgs decreased

with increasing multiphase flow Vsgs.

The LSF3 and LSF5 coefficients decreased in magnitude with increasing Vsg,

Figures 4.13 e and f. In this instance, the variation between data points of different

water and equivalent Vsg was observed to be at a minimum for Vsg >75%.
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4.1.1.2 Capacitance Features

The same techniques were employed for the capacitance sensor to extract features in

both oil continuous and water continuous flow conditions, as the sensor is proven to

function in both conditions, Darwich (1989).

The capacitance signal contains strong information about the dynamic structure of the

flow. The passage of slugs exerts a direct effect on the signal.

In addition to the similar features obtained to the conductance signal, two features

were derived (Appendix B) from the capacitance signals; these features are the "slug

frequency" and "slug length" indicating the physical characteristics of the flow to

which they are roughly related. The numbers of peaks in the signal were counted as

"slug frequency" and the average widths of these peaks in time domain were

calculated as "slug length".

The "slug frequency" of the capacitance signal shows a stable increasing trend with

increasing liquid velocity up to 2.0 mls. Above 2.0 mls liquid velocity, it seems that

the feature is not affected. The "slug length" displays a better trend up to 1.0 mls

liquid and 7.0 mls gas velocity. The feature does not respond to higher liquid

velocities.

The mean value does not carry much information above 1.6 mls liquid velocity. Also,

the liquid velocity lines indicate that this feature is not ' sensitive to gas velocity.

However, the standard deviation presents a decreasing trend with increasing liquid

velocity with the exception of the low liquid velocity region. Unlike other

transducers, the standard deviation feature of the capacitance exhibits a steady trend.

The coefficient of skewness decreases with increasing liquid velocity. However, after

about 3.0 mls velocity, the feature loses its sensitivity to liquid velocity. The

coefficient of kurtosis does not respond to either the liquid or the gas velocity.
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The linear prediction coefficients do not carry too much information about liquid or

gas velocity. At high liquid velocity, the second coefficient shows a decreasing trend

with increasing liquid velocity.

Similarly, a decrease in magnitude of the LSF1 parameter was observed with

increasing Vsg particularly for Vsgs. LSF2 and LSF4 yielded similar responses to the

multiphase flows demonstrating no detectable reaction to variations in the Vsg. The

LSF3 and LSF5 coefficients also decreased in magnitude with increasing Vsg.

4.1.1.3 Differential Pressure

The mean value (MV) feature displays a definite and unbiased response to both gas

and liquid velocities across the whole flow conditions examined. The standard

deviation (SD) feature displays a flat response in the low flow rates, but only up to a

liquid velocity of 2.5 mls. However, at a superficial gas velocity of 3 mis, and as the

liquid velocity is increased beyond 2.5 m/s, which corresponds to the slug flow

regime, the SD feature contours curl upwards and continue with this trend throughout

the slug flow regime. This behaviour suggests that the feature is flow regime

dependent.

The coefficient of variation (CV) feature appears to be more affected by the liquid

loading than by gas velocity. The feature responds most markedly to the

hydrodynamic changes of the slug flow regime.

Both the coefficient of skewness (CS) and coefficient of kurtosis (CK) show a strong

dependency on liquid loading in the slug flow regime as they are seen to attain

higher feature values. The coefficients of skewness and kurtosis show a decreasing

trend with increasing liquid velocity up to 1.0 mls. The coefficient of kurtosis

feature displays a difference at lower liquid flow rates (0.7 mls). The feature at lower

liquid flow rates tends to follow the same trend at flow rates under 6 mls gas

velocities. However, above 6 mls the feature is not effective.

The trend response of the total signal energy (E
T

) starts at a liquid velocity above 1.6

mls. Below this point, the feature does not appear to have any trends which, from a
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pattern recognition viewpoint, will mean that this feature will not provide any

discriminating ability for the current test condition.

The first line spectral frequency (LSF 1) appears to be influenced by the liquid loading

with most noticeable liquid dependency seen in the slug flow. The LSF 1 feature

appears to be strongly sensitive to hydrodynamic flow changes in most flow

conditions.

Both the LSF4 and LSF5 demonstrate similar response behaviors to changes in flow

conditions. These features do not appear to have a traceable response in the area

having liquid velocity between 1.5 and 3 mls.

4.1.1.4 Absolute Pressure

Unlike the differential pressure sensors, the AP sensor measures the absolute pressure

at the test section. It should therefore be expected that some of the features extracted

from this sensor would have a different distribution map to the aforementioned

differential pressure sensors. The amplitude feature distribution maps of the absolute

pressure signal are as would be expected, the MV feature contours increase linearly

with the increase in liquid loading and gas velocity and have a uniform feature

distribution to both gas and liquid superficial velocities across the whole flow

conditions, a trend which is similar to those exhibited by both of the above differential

pressure sensors.

The standard deviation (SD) feature has a flat trend distribution. However, as the

liquid loading is increased above 2.5 mls and in the slug flow, the feature contours

start to curl upwards, and at higher Vsgs, the contours begin to decline and become

flat as the gas velocity is increased beyond 6 m/s. The SD feature distribution is quite

similar to those exhibited by the Differential Pressure.

The CV feature of the absolute pressure sensor is responding most markedly to the

liquid loading, particularly above 4.5 Vsg, and 3 mls Vsl, where, similarly to the SD

feature, the contours curl upwards. As with the SD feature, the CV feature also has

most of its high feature values in the same flow conditions. The CS and CK features
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display a rather scattered distribution over the flow domain, and it is not possible to

draw any definitive conclusions from their trend behaviour. The feature distribution

maps of the total signal energy (ET) are quite similar to those of the MV feature, and

unlike the differential pressure sensors, the AP sensor has a uniform sensitivity

distribution across the whole flow test conditions.

4.2 Multiphase Flow Parameters Prediction

In this study, features derived from pressure, capacitance, conductance and gamma

sensors were used as input nodes of the network. Superficial liquid and/or gas

velocities and water cut (three-phase flow) corresponding to each feature vector were

employed as output nodes. The identification scheme applied in this study is shown in

Figures 4.14a-c.

There are currently many neural network software packages available including both

commercial packages and public domain software. These packages range from a

simple demonstration of introductory software to large commercial packages

supporting a range of network architecture and training algorithms. Many of the

commercial packages interface with standard spreadsheets from which they obtain

their input data. This provides a flexible environment for designing, training and

testing the neural network without requiring a heavy investment in software

development. An example of such software, which is used in this research, is

MATLAB.

An added advantage of MATLAB is that it is an integrated technical computing

environment that combines data acquisition, signal processing, statistical techniques,

neural networks, high level of programming Ianguage, and many more

functionalities. The open architecture makes it easy to use MATLAB and companion

products to explore data and create custom tools that provide early insights and

competitive advantages. The version of MAT LAB that was used for this work is 7.1
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4.2.1 Overview of PR Workflow and Approach to Multiphase Metering

Once an effective number of features have been identified, the next step is to map

these features from the feature vectors to the superficial gas and liquid velocities

(volumetric flow rates). The exact form of this mapping is to be determined from a

data set of reference measurements.

Figure 4.14a shows a generic workflow of the main elements involved in the pattern

recognition approach for the multiphase flow metering involved in this work.

n i ll crcntlsl P rcsxu rc s

MV SO CV CS CK LPC LSF

Figure 4.14a Pattern Recognition Approach to Multiphase Flow Metering
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The data was sub-divided into training and test data. Having trained the systems with

some correct examples of system inputs and desired outcome, the performance of the

network had then to be appraised by independent test data, not seen previously by the

network. The available data were classified into training and test set, Figure 4.14b.

Some data were reported corrupted, please refer to 3.4.2, thus limiting available data

for evaluation of the salinity effects under the same operating conditions. However,

the availability of a pair of sensors for the differential pressure, capacitance and

conductance, enabled the use of one data set for training and another for testing. Since

the data corruption was only limited to the differential pressure sensors (signals for

DP sensors appeared random and negative), signals from all the other sensors from

the file runs were available for investigations with the 50g/1 MgS04 solution.

The work described here is for the higher salinity case, i.e. 100g/1 MgS04 solution.

Preliminary investigations demonstrated that 89 training points and 37 test points

provided an appropriate training to test the data
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Figure 4.14b Training (Calibration) and Test (Measurement) Data
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Figure 4.14c illustrates the mechanism conceived and applied to design, train, and
then test the Back Propagation Neural Network's generalisation performance with
previously unseen data.

System Specification

Feature/Target
Selection

Data Pre-processing
and Normalisation

Configure Network
Architecture

Initialise Weights

Network Training

Test & Validate
with new Data

Model Complete

Reinitialise
Weights

No

No

Repeatability
Testing

Yes

Reproducibility
Testing

Figure 4.14c Neural Network Design, Training, and Testing Scheme
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Choosing the number of neurons in the hidden layer depends on the complexity of the

underlying function, which the neural network is attempting to approximate. If there

are too many hidden neurons, the danger exists that the training set is simply

memorised, while on the other hand a neural network with too few hidden neurons

will not generalise well to new data sets. In most of the applications involving a

neural network, the network configuration is found by trial and error, starting with a

small number of neurons and different sets of random, initial weight values.

However, in this study, the Bayesian regularisation technique was evaluated and

found to successfully optimise the number of hidden neurons needed for classification

in an automated manner.

The Levenberg-Marquardt (LM) algorithm was found to give the best classification

results. This training algorithm minimises a combination of squared errors and

weights to determine the best configuration for network generalisation.

However, it was noticed that when new data, previously unseen by the network was

introduced, the generalisation ability of this algorithm was badly affected. This

problem is commonly referred to as over-fitting,

Different types of technique have been introduced to improve generalisation to avoid

the over-fitting problem. The two most widely used methods are cross-validation,

otherwise known as early stopping, and regularisation. Both of these techniques were

tested during the current research study. Although cross-validation was found to

improve generalisation, its performance was significantly inferior to the Bayesian

regularisation technique. A contributing factor to the poor performance of the cross­

validation technique could be attributed to the fact that sub-dividing the available data

into three sub-sets (training, validation and testing) results in a reduced training set.

Hence the information contained in the selected samples is not optimally used and the

risk of under-constrained training increases. Furthermore the cross-validation

technique involves many trial and error runs to optimise the number of neurons in the

hidden layer. For these reasons, the Bayesian regularisation technique is preferred for

this study.
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One feature of the Bayesian regularisation technique is that it provides a measure of

how many network parameters (weights and biases) are being effectively used by the

network. As seen in Figure 4.15, the final trained network uses approximately 124

parameters, i.e. weights and biases in the neural network.

This effective number of parameters should remain approximately the same, no matter

how large the total number of parameters in the network becomes. (This assumes that

the network has been trained for a sufficient number of iterations (epochs) to ensure

convergence).

It is clear that the algorithm has truly converged if the Sum Squared Error (SSE) and

Sum Squared Weights (SSW) are relatively constant over several iterations, which is

true in this case as shown in Figures 4.15a and 4.15b respectively. When this occurs,

a decision may be made to terminate the training and retain the weights and biases for

network testing

When the network's repeatability accuracy is satisfactory, then the network is used for

measurement of new data. Figure 4.16 shows the repeatability performance of the

neural network trained with amplitude features extracted from all the sensors. The

plots are a linear regression fit between the experimentally measured velocities and

the neural network prediction results. The linear regression fit shows that the network

achieves excellent repeatability results and therefore can be used for the measurement

of the new data.
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Figure 4.15 Neural Network Training and Optimisation

Prior to testing the network on new and previously unseen data, it is important to

evaluate its repeatability capabilities (i.e. test the network on the same data that it is

being trained with).
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4.2.2 Network Architecture Definition

The final network architecture was defined as [n - 10 - 3]. This denotes the number

of neurons in each of the layers:

• n - the number of input feature vectors (variable)

• 10 - the number of neurons in the hidden layer (fixed)

• 3 - the number of output neurons i.e. one each for the target (fixed)

However, for phase velocity determination using the individual and/or combination of

the sensor signal features, the water cut output node was simply removed and

preliminary investigations revealed that the network performance remained

unchanged.

4.2.3 Test Parameters

At the preliminary testing stage, it was observed that the neural network performance

varied as a function of the number of input features, i.e. the more input features

presented, the higher the quality of the network prediction in terms of accuracy. There

were a vast number of input vector permutations possible with the 85 extracted

features for all the five sensors, plus the additional 51 features, for other pairs of

sensors.

Previous work on the use of feature extractions with multiphase flow observed that an

efficient method of feature vector construction was obtained through combining

features of each of the information domains and this was verified through preliminary

investigations, lama (2004). This method provides a systematic methodology for

comparing the discriminatory abilities of the various information domains across the

different spectra, Table 4.2.
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Table 4.2 - Input Feature Vector Sets for Analysis (One Sensor)

No. Feature Domain Training Data Test Data

Amplitude Features 6 x 89 6 x 37

Linear Prediction Coefficients (LPC) 6 x 89 6 x37

3 Line Spectral Frequencies (LSF) 5 x 89 5 x 37

4 All (Amplitude + LPC + LSF) 17 x 89 17 x 37

The 126 signal data points collected were divided so that 89 were utilised for neural
network training and the remaining 37 were exploited for testing purposes, Figure
4.17.
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Figure 4.17 - Test Data Matrix

Target accuracy in this work was set at ±5% for each of the target outputs. The
measurement error was calculated as a relative error over the range of measurement
defined as:

E = Yi(predicted) - Yi(measured) x l 00%
r

Yrange

(4.3)

Where, Yi denotes the variable of interest and Yrange denotes the measurable range, i.e.

Ymax - Ymin. This method for calculating the relative error has been widely used to

express the classification performance of several pattern recognition based multiphase

flow measurement systems Darwich (1989), Beg (1998), lama (2004).
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4.2.4 Multiphase Flow Measurement Results

The predictions of the neural network for determination of liquid and gas superficial

velocities from the information domain using the features shown in Table 4.2, as well

as water cut from the features of the pair of capacitance and conductance sensors and

the single gamma densitometer are discussed below. Table 4.3 contains a summary of

the flow rate and water cut prediction performance, utilising the best performing

feature for each of the sensor signals.

4.2.4.1 Absolute Pressure

Flow rate measurement results obtained for both the liquid and gas velocity

predictions with Absolute Pressure Features are presented in Figures 4.18 - 4.21.

(a) Liquid Superficial Velocity

For the liquid phase measurements, the amplitude feature vectors and the feature

fusion case do well on determining the liquid superficial velocity by achieving 88 and

100% of the test points to within ±5% error band. Results for DP pressure and fusion

of all pressure sensor features are shown and will be discussed in section 4.2.4.6.

(a) Gas Superficial Velocity

Figure 4.20 presents the gas superficial velocity measurements from the neural

network models, derived by the Absolute Pressure Features. The results indicate that

gas superficial velocity measurement accuracies were significantly poorer than those

obtained for the liquid phase.

The line spectral frequency (LSF) feature vectors resulted in the best measurement

accuracy, with 65% measurement accuracy.

While the network was trained successfully for liquid velocity, most of the

prediction errors for gas velocity appeared at the higher liquid velocity extremities of

the flow.
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4.2.4.2 Differential Pressure

(a) Liquid Superficial Velocity

Figure 4.22 shows a summary of the flow rate measurement performance by different

feature vectors of the differential pressure signals. The results obtained were within

the target accuracy (±5%) for the liquid superficial velocity measurements. It can be

seen that the measurement variable's performance is described by three sets of plots,

one for DP1, and another for DP2, and a third showing the results for All i.e. both

DP1 and DP2 signal features (This will be discussed in section 4.2.4.6). Results

demonstrated that feature fusion input vectors from DP1 provided the strongest

discriminatory abilities for liquid superficial velocity determination. The amplitude

features showed strong liquid velocity classification capabilities for the DP2 signal. In

general, the DP1 features produced better liquid superficial velocity predictions than

those ofDP2.
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Figure 4.22 - Percentage Measurement Accuracy for Superficial Liquid Velocity for
DP Feature Vectors

The contrast in measurement error distribution obtained by different feature vectors is

indicative of the fact that different features respond differently to the same flow

conditions as explained previously and therefore their combination should lead to

better measurement accuracies, as confirmed by Figure 4.22.

Two subset plots are used for the visualisation of the network classification results.

The first subset plots the measurement errors as a function of gas volume fraction

(GVF). The second is a plot of the actual test matrix (used for testing the network)

with superficial gas velocity on the x-axis and superficial liquid velocity on the y-axis.

The data points on the plots show the exact locations of the measurements and the

measurement error at those locations.

Figure 4.23 (a) displays the error distribution plot as a function of the gas void

fraction for the feature fusion input vectors. The best overall performance was

obtained from the vector comprising feature fusions of All the Differential Pressure

features: 97% of test data points were predicted within ±5% of their target values.
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Figure 4.23 (b) illustrates the test conditions for the outlying data point; test point 28

from DP2 has the highest error, with a prediction error of +18%. The error is not

significant in comparison to the results obtained for the other test points and cannot be

attributed to anyone particular systematic source 'and must therefore be inherent in

the network. It is anticipated that increasing the quantity of training data utilised

during the training phase would lead to an increase in the liquid velocity

determination accuracy.
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(h) Gas Superficial Velocity

Figure 4.24 presents the gas superficial velocity measurements obtained from the

neural network models. Gas superficial velocity measurement accuracies were

significantly poorer than those obtained for the liquid phase.

With the gas velocity measurements, the linear prediction coefficients and feature

fusion provided the best discriminatory properties for gas velocity determination. 69%

of all gas superficial phase velocities were resolved to within ±5% for DP1 signal

LPCs and feature fusion of the DP1 signal features. However, the DP2 LSF exhibited

a slightly superior classification prowess than other features, as 65% of gas velocities

were calculated to within ±5%.

Figure 4.25 (a) depicts the gas superficial velocity error distribution as a function of

GVF for the LPC input vectors. The best overall performance was obtained using the

DP1 LPCs. The data points lying outside the target accuracy have been identified on

the plot. Figure 4.25 (b) shows the location of the erroneous test points on the test

matrix.
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Figure 4.24 - Percentage Measurement Accuracy for Superficial Gas Velocity for DP
Feature Vectors
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The performance of different feature vectors is clearly different in the gas phase. It is

interesting to see that the feature fusion vector for the combined DP1 and DP2

features performs poorly on the gas velocity measurement with 39% measurement

accuracy. This indicates that the intuitive approach of 'bigger the feature dimension

the better the pattern classifier' accuracy does hold true here, or perhaps the network

did not converge and just displaying results for the local minimum. These results

show generally when comparing the measurement accuracy obtained by different

feature vectors, the feature fusion vectors perform best for both liquid and gas

velocity measurements for single DP transducer features.

From the above discussion, it may be concluded that if only a single differential

pressure sensor is available for phase flow measurements on the spool piece, then

feature fusion vectors for the single transducer should be used for the liquid and gas

volumetric measurements. This also underlines the fact that neural network

generalisation performance is heavily influenced by the type of feature vectors used

and that the formation of a large calibration database in terms of feature vectors does

not necessarily lead to improved measurement accuracy.

4.2.4.3 Capacitance

(a) Liquid Superficial Velocity

Figure 4.26 presents a summary of the liquid superficial velocity measurements

obtained from the neural network models for both capacitance 1 and capacitance 2

features. The amplitude and feature fusion features provided the best discriminatory

properties for liquid velocity determination. 78% of all liquid superficial phase

velocities (Vsl) were resolved to within ±5% for amplitude features of capacitance 1,

and 74% VsI with feature fusion signal features of capacitance 2.

(b) Gas Superficial Velocity

Figures 4.27 summarises the results obtained within the target accuracy (±5%) for the

gas superficial velocity measurements.
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Figure 4.26 - Percentage Measurement Accuracy for Superficial Liquid Velocity for
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Results demonstrated that feature fusion input vectors provided the strongest

discriminatory abilities for gas superficial velocity determination for capacitance 1.

The LPC features also showed strong gas velocity classification capabilities for

capacitance 2. The results obtained using an input vector comprising feature fusion

features were: 71% of the data points were predicted within the ±5% target for

capacitance 1, and 67% predicted within ±5% for capacitance 2 LPC features .

(c) Water Cut

The water cut measurement performance obtained from the input feature and signal

permutations examined are summarised in Figure 4.28. In this instance, the amplitude

features and the feature fusion input vectors were found to provide the optimal output

responses for capacitance 1 and capacitance 2 respectively.
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Figure 4.28 - Percentage Measurement Accuracy for Water cut Prediction­
Capacitance Feature Vectors

It can be seen that prediction error increases as water cut increases. The testing of the

neural network models showed that 65% were predicted within the target accuracy of

±5% with amplitude features of capacitance 1, and 72% accuracy with feature fusion

vectors of capacitance 2.
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When liquid and gas velocity information was checked at points where the highest

prediction error occurred, it was observed to lie at the low liquid velocities and high

water cut - see Figure 4.29.
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Figure 4.29 - Outlying Test Point Matrix Location for Feature Fusion Errors ­
Capacitance 2 (Water cut Determination)

4.2.4.4 Conductance

(a) Liquid Superficial Velocity

Figure 4.30 presents the liquid superficial velocity measurements obtained from the

neural network. Liquid superficial velocity measurement accuracies were significantly

poorer than those obtained for the capacitance features, especially at water cut :::;60%.

The linear prediction coefficients and feature fusion provided the best discriminatory

properties for liquid velocity determination for conductance 1 and conductance 2

respectively. 69% of all liquid superficial phase velocities were resolved to within

±5% for the LPCs features of conductance 1, and the feature fusion results for

conductance 2 signal features Vsl predictions was 67%, i.e. within the ±5% target.

Figure 4.31 depicts the liquid superficial velocity error distribution as a function of

GVF for the LPC input vectors for conductance 1. The data points lying outside the
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target accuracy have been identified on the plot and have been observed to be in high

liquid, low water cut flow conditions. (This confirms the conductance's poor

performance in oil continuous flow multiphase conditions.)
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(b) Gas Superficial Velocity

Figure 4.32 summarises the results obtained within the target accuracy ±5% for the

gas superficial velocity measurements. The measurement variable 's performance is

described in the plot below.

Results demonstrated that LSF input vectors provided the strongest discriminatory

abilities for gas superficial velocity determination for conductance 1 meter. However,

for conductance 2, feature fusion vectors showed stronger gas velocity classification

capabilities . Similar to the liquid predictions , the conductance features produced

poorer gas superficial velocity predictions than capacitance signal features.
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(c) Water Cut

Performance obtained for water cut measurement from the input feature and signal

permutations examined are summarised in Figure 4.33. In this instance, the LPC

features and the feature fusion input vectors were found to provide the optimal output

responses for conductance 1 and conductance 2 respectively.

It can be seen that prediction error decreases as water cut increases. Testing of the

neural network showed that 78% were predicted within the target accuracy of ±5%

with LPC features of conductance 1, and 82% accuracy with feature fusion vectors of

conductance 2.

When liquid and gas velocity information was checked at points where the highest

prediction error occurred, they were observed to lie at the high liquid velocities and

low water cut, see Figure 4.34, indicating the test points at which water cut

measurement errors occurred.
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4.2.4.5 Gamma

(a) Liquid Flow Rate Measurement

Figure 4.33 shows a summary of all the measurements obtained from the neural

network model from the gamma feature vectors.

Liquid superficial velocity measurement accuracies indicated 71% of the data points

were best predicted with the LSF feature vectors within the target accuracy of±5%.

(b) Gas Flow Rate Measurement

Gas flow rate prediction results demonstrated that amplitude feature input vectors

provided the strongest discriminatory abilities for gas superficial velocity

determination. In general, the results obtained produced the best predictions so far for

Vsg measurements within the target of ±5% compared to results from all individual

sensors.

(c) Water Cut Measurement

The water cut measurement performances obtained from the input features examined

are presented below; the amplitude feature input vectors were found to provide the

best output accuracies, with 81% of the test data points meeting the specified target

within±5%.
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4.2.4.6 Gas Void Fraction

Besides the velocity and water cut measurements , the neural network predicted the

Gas Void Fraction (GVF) using the same methodology. The GVF was simply

obtained by removing the water cut node and replacing it with GVF as the target

output. The Capacitance, Conductance and Gamma Feature vectors were trained and

tested for GVF measurements; Figures 4.36 (a) and (b) show a summary of the

results obtained.
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Table 4.3 - Summary of Sensor Prediction Performance

Sensor(s) Best Performing Feature e~5% (%) 5% < e ~ 10% (%) 10% < e ~ 20% (%)

I [ Vsl I Vsg ~F~I Vsg Iwe IGVF [VS!IVsg Iwe IGVF ~I Vsg rwc-IGVF

I AP I FF I LSF r-=-lroorsr-=-IIOj32r-=-IIO~~1
IDPI I FF I LPC r-=-lrlT68r-=-1f19~r-=-IIOi8~1

IDP2 I Amp. I LSF r-=-1f75rsr-=-If20~r-=-Ij5fil~1
ICapacitance I I Amp. I FF IAmp. ~rsj71rsrorsj29j26ro~IO~fl7

I Capacitance 2 I FF I LPC ~1j74j67f71If22roPIi6~~1

IConductance I I LPC I LSF [LPCIAmp. f69i62f78j51pf33f20rsi3r-s-i2fil
I Conductance 2 I FF I FF ~1j67rs[82lrsrsf17Ir-s-fl7~1

IGamma I LSF I Amp. IAmp. ~j71j97j81f76f27~roll9rz-IO~r-s-
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4.2.5 Comparison of Sensor-Feature Prediction Performance

The superficial liquid and gas velocity measurement performance of each sensor , and

water cut predictions from the capacitance and conductance sensors have been

presented. There were varying levels of measurement accuracy achieved by the

different information domains of the six sensors. A summary of the forgoing results

and analysis has been presented in Table 4.3 and Figures 4.37 - 4.39. The accuracies

provided here are the overall measurement accuracies for the multiphase flow

conditions at 100 gil MgS04 salinity level , at test section 1. As shown in Figure 4.37,

the fused feature vectors of the absolute pressure achieved the best measurement

accuracy on the prediction of the liquid flow rate. The same fusion feature vectors of

the differential pressure 1 and conductance 1 sensors follow this lead.

On the gas flow rate measurement results, Figure 4.38, the amplitude features of the

gamma sensor accomplished the highest measurement accuracy. From the above

results it may be concluded that when comparing the six sensors, the fusion and

amplitude feature vectors achieve the best flow rate classification accuracy.

Similarly the feature fusion and amplitude vectors of the conductance 2 and gamma

sensors achieved the best performance in predicting water cut with measurement

accuracies of 82 and 81%, Figure 4.39.

For the Gas Void Fraction (GVF) prediction, the back propagation neural network

prediction performance was highest with the feature fusion vectors of the gamma

signal with 76% of the data points within the target accuracy of ±5%. This was

followed by 60% performance, again with feature fusion vectors of the capacitance,

and finally only 51% of the conductance signal was predicted within the target

accuracy of ±5% with the amplitude vectors, Figure 4.40.

This information is important in optimising the network prediction with cross sensor

fusion in the following section. The analysis will be useful in the salinity change

investigations in chapter 5.
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4.2.6 Multiphase Measurement using Cross-Sensor Data Fusion

From the foregoing results and discussions, it is clear that the neural network model's

prediction ability is dependent on the type of feature vector combinations used as well

as sensor type. The above results indicated that if the flow information from different

sensors is fused together, then there is a potential of achieving greater measurement

accuracies in all the test conditions studied. This potential is primarily due to the fact

that each sensor has a defined operating range, outside which its accuracy reduces,

and by combining and fusing stochastic features from different sensors, the overall

accuracy for flow rate measurement may be extended.

There are many different ways that sensor data fusion can be achieved and many of

these were tested during initial test screens in the current study. These included

extracting the same feature (e.g. AV DP, AV Capacitance and AV Absolute Pressure

etc.) from each sensor and fusing them together to form feature vectors to be input to

the neural network model. Other trials included extracting different features (e.g. AV

DP, LPC Capacitance and LSF Conductance, etc) and constructing a set of input

feature vectors. The feature fusion of each feature domain was also tested, whereby

the amplitude features from Cap.l, Cond.l and DPI sensors were combined to form a

total of 18 feature vectors. Similar procedures were also conducted for the linear

prediction coefficient (LPC) and the line spectral frequencies (LSF).

A comparison of the network performance when using the above different feature

combinations, indicated that a good network generalisation can be achieved when

feature fusion of the same feature domain was used. That is to say, fuse the amplitude

features of the DP, Capacitance and Conductance sensors, and similarly the LPC and

LSF. This technique retains the same feature domain, but expands the feature size by

combining different sensor data, Toral et al, (2004). However, the best generalisation

was achieved by the feature fusion of the best performing feature to determine the

multiphase parameter. Table 4.4 shows the resultant features chosen in this study for

the study of cross-sensor data fusion.
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Table 4.4: Cross-Sensor Data Fusion Feature Vectors

Multiphase Parameter Sensor

I

Selected Features Feature

Size

I I I I
VsI

I
Absolute Pressure

I
Feature Fusion

I
17 x 37

I

I
Differential Pressure 1

I
Feature Fusion

I
17 x 37

I

I
Capacitance 1

I
Amplitude

I
6 x 37

I

I
Conductance 1

I
Feature Fusion

I
17 x 37

I

I
Gamma

I
LSF

I
5 x 37

I

I I I
62 x37

I
Vsg

I
Absolute Pressure

I
LSF

I
5 x 37

I

I
Differential Pressure 2

I
Amplitude

I
6 x 37

I

I
Capacitance 1

I
Feature Fusion

I
17 x 37

I

I
Conductance 1

I
LSF

I
5 x 37

I

I
Gamma

I
Amplitude

I
6 x 37

I

I I I
39 x37

I
we

I
Capacitance 1

I
Feature Fusion I 17 x 37

I

I
Conductance 2

I
Feature Fusion

I
17x 37

I

I
Gamma

I
Amplitude

I
6 x 37

I

I I I
40 x37

I
GVF

I
Capacitance 1

I
Feature Fusion

I
17 x 37

I

I
Conductance 2

I
Amplitude

I
6 x 37

I

I
Gamma

I
Feature Fusion

I
17 x 37

I

I I I
40 x37

I

I I I I
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A summary of results from the cross sensor data fusion is given in Table 4.5. The

results are in terms of percentage accuracy classified by the neural network within ±5

% measurement error.

Table 4.5: Cross-Sensor Data Fusion Measurement Performance

Multiphase Parameter Percentage Measurement
Accuracy

Superficial Liquid Velocity (VsI) mls 100%

Superficial Gas Velocity (Vsg) mls 98%

Water Cut 98%

Gas Void Fraction (GVF) 95%

20

-20

•

+ Vsl

•

• Vsg

•

Awe • GVF - - - - +/-5%

o 5 10 15 20 25
Data Points

30 35 40

Figure 4.41 Cross-Sensor Data Fusion Measurement Results
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4.3 Measurements Performance at Test Location 2

The pattern recognition system that has been developed in this research study is based

on data collected at test location 1, as shown on the NEL schematic (Fig. 3.9, Section

3.3), with the 100g/1 MgS04 Solution. It is expected that there will be a difference in

operating pressure between the two test locations as a result of a pressure drop along

the flow line. Figures 4.42 and 4.43 show a plot of the Absolute Pressure against

Superficial Gas Velocity for the various Superficial Liquid Velocities; the Absolute

Pressure is shown to increase with the Superficial Liquid Velocity. The maximum

pressure at the two test sections are indicated on the plots; further analysis revealed an

average pressure drop of 0.5 bars across all the test points in section 1, relative to test

section 2. The effect of change in operating pressure on the pattern recognition

developed will be investigated below.

For the purpose of this study, 30 data points have been singled out for comparison

purposes. Figure 4.44 shows the data points that were selected from test sections 2,

on the Vsl vs. Vsg plot.

In evaluating the network performance with test location changes, three scenarios

were considered.

• The first scenario is to train the network with the data at test location 1, while

testing its generalisation performance with data at test location 2.

• The second scenario is to train the network with data combined from both test

sections 1 and 2, while testing its generalisation performance with data at test

section 2.

• The third scenario is to train the network with data gathered at test location 2,

and evaluate its generalisation performance with data from the same test

location i.e. test location 2.

153



Figures 4.45a-c show the relative measurement errors obtained with the above three

scenarios. It is evident from these plots that the network results are subject to

significant errors in scenarios 1 and 2, but have slightly better results in scenario 2

than 1 (Figures 4.45a and 4.45b), obviously due to the presence of data from the

same test section. However, with scenario 3, the network performance is seen to

improve, achieving results close to those obtained from the best generalisation in test

section 1. i.e. the feature fusion of the best performing features (Section 4.2.6). It is

presumed that the performance achieved in scenario 3 is not the same or even better

than the results from test location 1 as a result of far less available data points from

the test location, thus reducing the training to test ratio.
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Table 4.6: Test Section 2 Measurements Performance

Multiphase Parameter Percentage Measurement
Accuracy

Superficial Liquid Velocity (Vsl) mls 90%

Superficial Gas Velocity (Vsg) mls 80%

Water Cut 77%

Gas Void Fraction (GVF) 73%
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CHAPTERS

SALINITY EFFECTS ON MULTIPHASE FLOW MEASUREMENTS

The presence of salt in multiphase fluid causes the water phase of the fluid to become

more conductive; this conductivity affects the dielectric constant, resistivity and

capacitance of the fluid measurements. The conductivity of water increases due to the

formation of more polar substances, which causes the increase in the dielectric

constant of the mixture and with this increase, multiphase flow parameter

measurements are likely to read higher than actual conditions. Increased salinity also

increases the mass of the mixture, and as a result, the specific gravity of the mixture

increases which implies an increase in the density of water, resulting in a

corresponding increase in the dielectric constant of the mixture, Scheers and

Slijkerman (1996), Johansen and Jackson (2000).

Due to the high solubility of salt in water, the direct impact of salinity on multiphase

flow measurement is on the water cut measurement. Produced fluids having a low

water cut consist of a stream of oil with water droplets suspended in it; this is called

an oil continuous flow. Produced fluids having a high water cut consist of a stream of

water with oil droplets suspended in it; this is called a water continuous flow.

Whether the flow is water continuous or oil continuous matters when the effect of

salinity is considered.

Another complicating factor is that it is quite possible to have a well producing fluid

that has an erratic water cut. The overall bulk conductivity of the fluid increases as the

proportion of conductive water in the fluid increases. This, coupled with the fluid

changing back and forth from oil continuous to water continuous, as well as the

underlying salinity of the water phase of the fluid changing, gives rise to a very

challenging measurement environment in which the water cut and bulk conductivity

of the fluid can change dramatically and unpredictably.

The performance of multiphase measunng instruments is affected by this major,

naturally occurring condition, as indicated in Figures 5.1 - 5.3. This study was .

conducted with two levels of salinity (50 and 100 gil MgS04) .
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5.1 Identification of Salinity Change

A useful application of neural networks is their ability to classify data. Self-organising

maps can examine a series of data points and group them according to some

underlying characteristic property. These networks are particularly useful In

multiphase flow measurements where complex high dimensional data need to be

presented in an understandable format.

Change in salinity was analysed by coupling a multilevel hierarchical neural network,

shown in Figure 5.4. The data points are classified according to the two salinity levels

using a Kohonen self-organising feature map (KSOFM) (review of KSOFMs was

presented in Chapter 2.4.4.) and the identification of the phase flow parameters is

achieved through the employment of a second layer of the Back Propagation Neural

Network (BPNN): one each for the two salinity levels, i.e. 50 gil solution is referred

to as Salinity 1 (S1), while the 100 gil solution is Salinity 2 (S2).

Sensor Signals Data
Output

Fea ture Extraction / Target
Selection

Data Pre-processing and
Normalisation

Salinity I
BPNN

SI Salinity 2
BPNN

Figure 5.4 - Salinity Dependent Pattern Recognition Model

If the correlations between the extracted feature inputs and the target outputs are

indeed salinity dependent then reduced error magnitudes should be observed for the

output parameters trained with data from the same salinity level, in comparison to

those obtained using training data from a different salinity level.
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5.1.1 Salinity Classification Model

The combined signal features were utilised to classify the data points, based on

salinity. Each input data point to the KSOFM comprised the signal's feature vectors

comprising Amplitude, LPC, and LSF features of the capacitance, conductance and

gamma sensors. The data points were labeled with their associated salinity levels (S1

for 50 gil and S2 for 100 gil solutions respectively).

An empirical approach was adopted to determine the optimal magnitude for the output

grid. Several grid configurations were analysed. It was found that too large a grid

resulted in the creation of redundant nodes, whereas, too small a grid yielded

overlapping flow patterns. It was established that a 6 x 5 grid was best suited for the

data set.

The KSOFM learning algorithm was applied, and the node topology shown in Figure

5.5 was obtained.

Labels

51 52 51 52 51 52

52 51 52 51 52 51

51 52 51 52 51 52

52 51 52 51 52 51

51 52 51 52 51 52

Legend

81 = 50g/! salinity
82 = lOOg/l salinity

Figure 5.5 - Salinity Identification by KSOFM
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The KSOFM was able to locate different underlying patterns in the input vectors and

the topological arrangement of the output grid relates well to the salinity level

classification undertaken with the formation of two distinct salinity levels on the

output grid: S1 for the 50g/1 and S2 for the 100g/1 solutions.

After training the neural network on one set of training data, the predictions of data

points for both salinity levels could be compared and contrasted. It was hypothesised

that if the relationship between the input features and output variable is salinity

dependent, good prediction performance would be seen for test points that share a

common salinity with the training data, whilst poor performance would be witnessed

for test points of the unseen salinity.

5.1.2 Salinity 2 (S2) Back Propagation Neural Network (BPNN)

The salinity 2 BPNN was trained on the 100 gil salinity training data. Based on the

results obtained from extensive preliminary repeatability tests, the architecture of the

salinity 2 BPNN was defined to be [n - 8 - 3]. All other parameters were as per the

original single BPNN model used in chapter 4.

Table 5.1 (page 178), contains a summary of the flow rates and water cut prediction

performance, obtained from the salinity 2 BPNN using features from the capacitance,

conductance, gamma sensors, as well as fused features from all the sensor signals.

5.1.2.1 Liquid Superficial Velocity

Figures 5.7 and 5.8 display the liquid superficial velocity measurement results

obtained from the salinity 2 BPNN using a range of different input signal features.

Figure 5.7 illustrates the network performance for the salinity 2 test points; while

Figure 5.8 depicts the prediction results for the salinity 1 test points.

Figure 5.7 shows the best predictions from the salinity 2 test point's liquid superficial

velocities were predicted within the specified target accuracy of ±5% using the

following four combinations:

• Capacitance - Feature Fusion 96%

• Conductance - Feature Fusion 86%

• Gamma - LSF 78%
• All Signals Fusion - Feature Fusion 100%
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Figure 5.8 illustrates the comparatively poor measurements predictions exhibited for

the salinity 1 test points. The network had been trained to classify input features

according to the function derived in a learning process conducted entirely with

salinity 2 data points and predicted the salinity 1 data points according to this

function. This comparatively poor performance illustrates the salinity dependence of

the relationship between the extracted features and the target outputs.

Figure 5.9(a) displays the errors associated with each of the test data points for the

neural network predictions conducted employing feature fusion of all sensors as the

input features. The data points exhibiting errors in excess of ±5 are labelled. One can

observe the relationship between the measurement error and the water cut (WC): as

the test point WC increases, the fluid's bulk conductivity increases and the larger the

probability and magnitude of the error in the liquid's superficial velocity prediction. A

significant majority of all liquid velocity measurements at WCs greater than 60%

were under-predicted with respect to their target.

The locations of the outlying test data points classified outside the target accuracy are

shown on the test matrix, Figure 5.9(b).

5.1.2.2 Gas Superficial Velocity

Figures 5.10 and 5.11 depict the gas superficial velocity measurements prediction

results obtained from the salinity 2 BPNN for the S2 and S1 test data points

respectively.

Figure 5.10 illustrates that gas velocity salinity 2 prediction accuracies were not as

high as those obtained for the liquid phase measurement. This observation agrees with

what was witnessed for the single-BPNN System evaluated previously in chapter 4,

where gas phase measurements were observed to be less accurate than the liquid

phase parameter determination. The best prediction results were obtained from the

feature fusion, which proved to be the strongest input feature group. Optimal

classification of the gas superficial velocities was obtained exploiting the amplitude

feature of the gamma signal: 85% of salinity 2 test points were predicted within ±5%.

Figure 5.11 shows the prediction results for the salinity 1 data points. Again, salinity

1 classification by the salinity 2-trained network was considerably poorer than the
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salinity test results reinforcing the hypothesis that input feature/output correlations are

a strong function of salinity.

Significant errors were obtained across the we range for both salinity 2 and salinity 1

test points. There is a definite increase in error magnitude with increasing we but this

increase was much less pronounced than that observed for the liquid velocity

measurements.

As the raw sensor signals are dominated by the passage of slugs, features extracted

from the signals will encode mainly data from the passage of slug elements. Features

representative of the gas phase properties are likely to exhibit smaller variations that

are drowned out by the more dominant liquid structure induced signal features.

5.1.2.3 Water Cut

Figures 5.12 and 5.13 display the water cut measurements observed employing the

salinity 2 network for the salinity 2 and salinity 1 test points respectively.

Figure 5.12 indicates that the conductance signal feature fusion and the amplitude

features provided the strongest performances. By employing the feature fusion

features extracted from the conductance signal, 95% of the salinity 2 test data points

were successfully resolved within the ±5% target accuracy.

Figure 5.13 illustrates that the salinity 1 test data points were not well predicted using

the function derived from the salinity 2 network training, demonstrating the salinity

dependent nature of the water cut parameter correlation. This trend was seen for all

three output variables suggesting that the superficial phase velocities and the water cut

have a strong salinity specific relationship with the statistical features extracted from

the raw signals.

There was also an increasing frequency and magnitude of error with increasing tests

point for we outside the target error specification of ±5%. The recurrence of this

phenomenon reinforces the salinity sensitivity of the nonlinear regression modelled by

the network. Nevertheless, significant errors in the salinity 2 test data points were also

attained across the whole we range of salinity 2.

It is hypothesised that the prediction of all data points into just two salinity levels may

be an over-simplification of the system and may not facilitate accurate representation
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of underlying relationships owing to the presence of more than two characteristic

input features - output interactions in production situations - as variations in water

salin ity in oil and gas producing fields are shown to be much more complex in terms

of the ions and concentration levels .
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5.1.3 Salinity 1 (Sl) Back Propagation Neural Network (BPNN)

Similarly, the Salinity 1 BPNN was trained with 50gl1 solution data from features

extracted from the capacitance , conductance ' and gamma sensors. The network

architecture was also defined to be [n - 8 - 3]. All other parameters were as per the

original single BPNN. The trained network (50 gil solution data) was presented with

the same test data set, a mixture of salinity 2 and salinity 1 test points.

Table 5.2 (page 178), contains a summary of the flow rates and water cut prediction

performance, obtained from the Salinity 1 BPNN using features from the capacitance,

conductance , gamma sensors, as well as fused features from all the sensor signals.

5.1.3.1 Liquid Superficial Velocity

Figures 5.14 and 5.15 display the liquid superficial velocity measurement results

acquired from the salinity 1 neural network using a variety of different input signal

and feature combinations from the sensor signals.

Figure 5.14 illustrates the network performance for the salinity 1 test points; the best

performance was yielded exploiting the feature fusion features of the capacitance

signal: 98% of salinity 1 data points were predicted within the target accuracy of

±5%. Furthermore , 90% of salinity 1 liquid velocities were also obtained for fused

LSF features of the conductance and gamma signals and 96% from the fused LPC

from all signals.

Figure 5.15 presents the salinity 2 data point results for the salinity 1 trained network.

As anticipated, the salinity 2 predictions observed were relatively poor, reinforcing

the hypothesis that different underlying relationships exist between features and flow

parameters for each of the salinity levels. In all cases, less than 52% of salinity 2 test

points were predicted within the specified target accuracy of ±5%.

5.1. 3. 2 Gas Superficial Velocity

Figures 5.16 and 5.17 show the gas superficial velocity measurement results obtained

from the salinity 1 BPNN for the salinity 1 and salinity 2 test points respectively.
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Figure 5.16 illustrates that the salinity 1 gas superficial velocity predictions were

better than those obtained for the salinity 2 in the salinity 2 BPNN: 98% of salinity 1

data points were predicted within ±5% of their target outputs employing the feature

fusion input vectors of the all signals. Based on the results obtained, it would appear

that the gas phase exerts a larger influence on the signal in the higher salinity data

points.

Figure 5.17 exhibits the gas measurement results for the salinity 2 test points.

Although accurate predictions were obtained for salinity 1, this model obviously does

not transfer well to salinity 2 data points; typically, 70% of salinity 2 test points

produced errors outside the target threshold.

Figure 5.18(a) presents the measurement errors obtained for each of the test data

points using the feature fusion group as the input features. The all feature fusion

signal data points exhibiting errors in excess of ±5% have been identified. It can be

seen that at high WCs (>60%) superficial gas velocity predictions were outside the

desired ±5% target accuracy range. Increasing the WC of the test point, thus

increasing its bulk conductivity characteristics, results in increased error in frequency

and magnitude.

Figure 5.18(b) indicates the location of the erroneous test points on the test matrix

and reinforces the salinity sensitivity of the salinity 1 trained network: all off­

specification measurements reside in the salinity 2 data points.

5.1.3.3 Water Cut

Figures 5.19 and 5.20 display the water cut measurements observed employing the

salinity 1 data trained BPNN for salinity 1 and salinity 2 test points respectively.

Figure 5.19 illustrates the improvement in the performance yielded in the water cut

determination through the employment of a salinity dependent model. By exploiting

the amplitude features of the capacitance signal, 100% of salinity 1 test points were

measured within ±5% of their target output. Strong water cut predictions were

witnessed for all input signals studied using the amplitude features.
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Figure 5.20 demonstrates the poor water cut determination measurement yielded for

salinity 2 test points from salinity 1 trained network, reiterating the salinity specificity

of the models developed in the multilevel hierarchical neural network system.
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5.1.4 Summary of Results from Salinity Effects on Muitiphase Measurements

Tables 5.1 and 5.2, contain a summary of the flow rates and water cut prediction

performance, obtained from the Salinity 2 and Salinity 1 BPNNs respectively, using

features from the capacitance, conductance, gamma sensors, as well as fused features

from all the sensor signals. It can be seen that each individual salinity specific BPNN

yielded good results for test points of the same salinity as the training data and that

poor prediction of those test points belong to the alien salinity level. These findings

support the hypothesis that each salinity level exhibits its own characteristic

correlations between statistical features of the sensor's signals and the multiphase

flow parameters. The implication is that a salinity sensor is required, if salinity is

varying.

Table 5.1 - Summary of Measurements Prediction Results of Salinity 2 BPNN

Sensor(s) Best Performing Feature Salinity 2 BPNN Salinity 2 BPNN

(S2 training data) (S 1 training data)

e::;5% (%) e::;5% (%)

VsI Vsg WC ~~rwcl VsI Vsg WC

[ All Capacitance FF FF FF j96j83f831 45 39LSF 41

I All Conductance FF FF FF j86j83f95140Amp 39Amp 50

I Gamma LSF Amp Amp j78j85f8l125FF 3OFF 45 LPC

I All Sensors FF FF Amp roorsoi92148 50 55FF

Table 5.2 - Summary of Measurements Prediction Results of Salinity 1 BPNN

Sensor(s) Best Performing Feature Salinity 1 BPNN Salinity 1 BPNN

(S 1 training data) (S2 training data)

e::;5% (%) e::;5% (%)

VsI Vsg WC ~~rvcfYSll Vsg WC

I All Capacitance FF Amp Amp j98i94roafSll 47FF 50

I All Conductance LSF FF Amp rorssj86~1 40LSF 4hF

I Gamma LSF FF FF roj89j85f45139LSF 38LSF

I All Sensors LPC FF Amp FJ98J98j46148 43FF
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CHAPTER 6

6 DISCUSSION

6.1 Application of Simple Sensors and Signal Analysis for Multiphase
Measurement

This chapter examines the performance of pattern recognition systems that have been

constructed to model the non-linear relationship between the stochastic features

extracted from each sensor and multiphase flow parameters. The system was

constructed and tested for its effectiveness in enabling the meter to measure the

individual liquid and gas flow rates, water cut and gas volume fraction without prior

knowledge of the measured parameters. Performance of the system was evaluated

based on two locations of the spool piece on the flow loop as well as two salinity

levels.

A pair each of Differential Pressure sensors (DP1 and DP2, mounted axially),

Capacitance (Cap.1 and Cap.2), Conductance (Cond.1 and Cond.2), one single-beam

Gamma Densitometer, and Absolute Pressure and Temperature sensors were installed

on a horizontal spool piece (see Figure 3.1 for the location of sensors). The test

matrix covered mainly a three phase (oil, water and gas) slug flow. Data were

collected under two different salinities of 50 and 100 gil MgS04, and the spool piece

was placed at two different locations in the NEL flow loop. The results presented

showed that each of the sensors responds uniquely to different flow conditions.

6.1.1 Feature Extraction

Stochastic features have been extracted from the sensors in three information domains

(Amplitude, Linear Prediction Coefficients (LPC), and Line Spectral Frequencies

(LSF)). Features were normalised by applying Zero Mean and Unit-Variance

(ZMUV) normalisation, which equalises the magnitude and dynamic range of each

feature, so that they are given equal emphasis. Further data preprocessing was not

found useful as it resulted in the loss of some of the discriminatory information

present in the data as well as reduced classification accuracy.
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The feature contouring analysis showed that there is a clear relationship between

stochastic features and multiphase flow parameters (Superficial Gas and Liquid

Velocities, Water Cut and Gas Volume Fraction). All features displayed a strong

dependency on liquid loading and gas velocity. There is clear evidence from the

contour plots that an input-output mapping exists between the above stochastic

features and the corresponding multiphase flow parameters.

The plots also revealed that the feature distributions confirmed the limitations of

conductance sensor function with oil continuous flow. The change in feature trends is

more pronounced at water cuts below 60%.

The observed feature behaviour indicates that if pattern recognition system is

developed which is trained/calibrated upon a data (feature vectors) set gathered, say,

under particular pressure or salinity conditions, and the system experiences a change,

then the system may not be expected to perform satisfactorily.

6.1.2 Neural Network Structure

The pattern recognition techniques were illustrated in Figures 4.14 (a) and (c) (chapter

4). The raw data were measured with sensors indicated on the spool piece. The

multiphase flow parameters measurement system is composed of feature vectors

extracted from the amplitude, linear prediction coefficients and line spectral

frequencies. A BPNN model is used as the pattern classifier.

The BPNN prediction model used in this study has shown that it is possible to

construct an input-output mapping between the stochastic features and the

corresponding multiphase flow parameters. The exact form of this mapping IS

determined from a data set of labelled examples (i.e. training data).

Another advantage of the BPNN is that, unlike traditional neural networks which

require a dedicated validation subset to minimise overfitting, the Bayesian technique

controls model complexity (overfitting) automatically using only the training data.

Furthermore the Bayesian approach improves generalisation and provides a measure

of how many network parameters (weights and biases) are being effectively used by

the network.
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It also eliminates the guesswork required in determining the optimum number of

hidden neurons and consistently leads to good networks that are not over-trained. A

sigmoid non-linear transfer function was used in the hidden layer and a linear transfer

function in the output layer. The structure of the network was kept constant, with the

only variable being the size of the input nodes, which is directly controlled by the type

of feature vectors used. This allowed an objective methodology to be developed upon

which the performance of the sensors and feature vectors to be compared. The back

propagation neural network was tested for the backward reproducibility of the

individual phase flow rates and water-cuts from the derived features. The results of

tests confirmed the applicability of neural networks in on-line flow rate measurement.

The multiphase flow parameter prediction results obtained vary considerably

depending on which feature combinations and sensors were used. The results were

also heavily influenced by flow conditions.

6.1.3 Results of Individual Sensor Performances

6.1.3.1 Absolute Pressure

The Absolute Pressure (AP) performance for the liquid flow rate indicated that the

amplitude and feature fusion vectors have all successfully predicted a liquid velocity

relative measurement error of ± 5 %, by achieving 88 and 100% respectively. It can

be concluded that if only the AP were to be used for liquid flow rate measurement,

then only the extraction of amplitude features should be considered.

The line spectral frequency (LSF) feature vectors resulted in the best measurement

accuracy, with 65% for the gas superficial velocity. While the network was trained

successfully for liquid velocity, most of the prediction errors for gas velocity appeared

at the higher liquid velocity extremities of the flow.

6.1.3.2 Differential Pressure

From the DP transducers results, it may be concluded that if a single differential

pressure sensor only is available for phase flow measurements on the spool piece,

then feature fusion vectors for the single transducer should be used for the liquid and

gas volumetric measurements.
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This also underlines the fact that neural network generalisation performance is heavily

influenced by the type of feature vectors used and that the formation of a large

calibration database in terms of feature vectors does not necessarily lead to improved

measurement accuracy.

6.1.3.3 Capacitance

The flow rate measurement results obtained by the different feature vectors extracted

from the capacitance sensors showed that the amplitude and feature fusion features

provided the best discriminatory properties for liquid velocity determination. 78% of

all liquid superficial phase velocities (Vsl) were resolved to within ±5% for amplitude

features of capacitance 1, and 74% VsI with feature fusion signal features of

capacitance 2. The feature fusion vectors also predicted 71% gas velocity within ±5%.

The same amplitude and feature fusion vectors were found to provide the optimal

output for the water cut measurements from both capacitance sensors. Hence either of

these two feature vectors may be recommended to be used for the simultaneous

measurement of gas and liquid flow rates as well as the water cut, with the

capacitance signals.

6.1.3.4 Conductance

The conductance sensor results obtained from the liquid superficial velocity

measurement accuracies were significantly poorer than those obtained for the

capacitance features, especially at water cut :::;60%. LPC and feature fusion provided

the best discriminatory properties for liquid velocity determination for conductance 1

and conductance 2 respectively. 69% of all liquid superficial phase velocities were

resolved to within ±5% for the LPC features of conductance 1, and the feature fusion

results for conductance 2 signal features Vsl predictions was 67%, i.e. within the ±5%

target.

It was observed that the liquid superficial velocity error distribution was a function of

water for the LPC input vectors for conductance 1. The data points lying outside the

target accuracy have been identified on the plot and have been observed to be in high

liquid, low water cut flow conditions. This confirmed the conductance's poor

performance in oil continuous flow multiphase conditions.

182



The conductance sensor results demonstrated that LSF input vectors provided the

strongest discriminatory abilities for gas superficial velocity determination for the

conductance 1 meter. However, for conductance 2, feature fusion vectors showed

stronger gas velocity classification capabilities. Similar to the liquid predictions, the

conductance features produced poorer gas superficial velocity predictions than the

capacitance signal features.

It was also observed that prediction error of the conductance vectors decreased as

water cut increased. Testing of the neural network showed that 78% was predicted

within the target accuracy of ±5% with LPC features of conductance 1, and 82%

accuracy with feature fusion vectors of conductance 2.

When liquid and gas velocity information was checked at points where the highest

prediction error occurred, they were observed to lie at the high liquid velocities and

low water cut.

6.1.3.5 Gamma

For the Gamma Densitometer, liquid superficial velocity measurement accuracies

indicated 71% of the data points were best predicted with the LSF feature vectors

within the target accuracy of ±5%. Gas flow rate prediction results demonstrated that

amplitude feature input vectors provided the strongest discriminatory abilities for gas

superficial velocity determination. In general, the results obtained produced the best

predictions so far for Vsg measurements within the target of ±5% compared to results

from all individual sensors. The water cut measurement performances obtained from

the input features of the gamma signal indicated that the amplitude feature input

vectors provided the best output accuracies, with 81% of the test data points meeting

the specified target within ±5%.

It may be concluded that, when comparing the overall measurement performance of

the sensors and the four different feature vectors, the Absolute Pressure (AP) and the

Differential Pressure 1 sensor (DPl) achieved the best measurement results for the

liquid phase, with the best features vectors being the feature fusion vectors. However,

in terms of the gas phase, the best results were obtained from the Gamma Amplitude

vectors which achieved a better performance than the other sensors.
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Also the feature fusion and amplitude vectors of the conductance 2 and gamma

sensors achieved the best performance in predicting water cut.

The Gas Void Fraction (GVF) prediction performance was highest with the feature

fusion vectors of the gamma signal with 76% of the data points within the target

accuracy of ±5, followed by the capacitance achieving 60% with feature fusion.

From the above discussions, it may be concluded that when comparing the eight

sensors, the fusion and amplitude feature vectors achieved the best flow rate and

water cut prediction accuracies.

6.1.4 Results of Cross Sensor Fusion

In terms of cross sensor data fusion, the pattern recognition prediction accuracy

depends on the types of sensor combined and which types of feature are fused

together. The results obtained indicated that if the flow information from different

sensors is fused together, then there is a potential of achieving greater measurement

accuracies in all the test conditions studied. This potential is primarily due to the fact

that each sensor has a defined operating range, outside which its accuracy reduces,

and by combining and fusing stochastic features from different sensors, the overall

accuracy for flow rate measurement may be extended.

A comparison of the network performance when usmg the different feature

combinations indicated that a good network generalisation can be achieved when

feature fusion of the same feature domain is used. i.e. when the amplitude features of

the DP, Capacitance and Conductance sensors, and similarly the LPC and LSF were

fused.

However, the best generalisation was achieved by the feature fusion of the best

performing feature to determine the multiphase parameter. From the features chosen

in this study for cross-sensor data fusion, the results have shown that a better

generalisation can be achieved by selecting the best performing features for the cross

sensor fusion, as against the more traditional fusion of the same domain. A

remarkable performance was seen, whereby the overall results for both liquid and gas

velocity predictions were 100% and 98%, within the target accuracy of ±5
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respectively. The water cut performance of 98% and GVF predictions also improved

significantly to 95% within the specified accuracy.

6.1.5 Location Effects on Multiphase Measurements

The flow rate measurement results by different feature vectors showed that the

metering system developed in this study is affected by the change in location of the

spool piece. However, at the same time, the results showed that if sufficient

calibration data are provided in the two locations of the spool piece, then the system

could be made independent of the test location. In other words, the same pattern

recognition model could be used in different test locations, provided the system is

adequately calibrated.

The results from the study of location effects showed that when the pattern

recognition metering system developed here is subjected to a flow condition that was

not part of the calibration data, then the system showed significant measurement

errors. If substantially alien data is presented to the network (as represented by

introducing new flow conditions here) then it will be prone to significant errors. The

availability of a controlled test rig or validated and wide-ranging field data should

allow the collection of extensive data under a sufficiently wide range of conditions to

ensure that the network performs satisfactorily in the field in case unexpected flow

conditions develop. However, in situations where the system is expected to

experience a sudden change of operating conditions outside the calibration database, a

detection system may be considered, which should decide when a feature set does not

represent any known measurement parameters.

In terms of operating pressure changes, this would require the provision of training

data, which is collected under the system's operating pressure, and if possible some

data in extreme conditions (Min and Max expected operating pressure). The

operating pressure would normally fluctuate and vary by a small amount and the

pattern recognition system should be expected to extrapolate well in these conditions.

In cases where the system is expected to experience sudden and large operating

pressure changes, the absolute pressure measurements should be monitored closely,

185



and if they change significantly from a predefined threshold, the system should be

turned into a calibration mode and retrained.

6.1.6 Salinity Effects on Multiphase Measurements

The multi-level hierarchical neural network model with salinity dependent BPNNs

yielded measurement accuracies that match superficial phase velocity and water cut

predictions from the cross data fusion performance discussed earlier. The Salinity 2

BPNN feature fusion of the three sensors (Capacitance, Conductance and Gamma)

yielded the best liquid flow measurement, performing at 100% within the specified

accuracy of ±5%, while the fusion and amplitude features of the combined sensors in

Salinity 1 BPNN yielded 98% each for the gas velocity and water cut predictions

respectively.

Comparing the two salinity dependent BPNNs, it was observed that each individual

network yielded good results for test points of the same salinity as the training data

and poor prediction of those test points belonged to the alien salinity condition.

These findings support the hypothesis that each salinity level exhibits its own

characteristic correlations between statistical features of the sensor signals and the

multiphase flow parameters. During testing of the two-salinity multi-level hierarchical

networks, results obtained reinforced the salinity specificity of the feature correlations

with the multiphase flow properties. Good predictions were obtained for test points

sharing a common salinity with the BPNN training data, while test points from a

differing salinity were poorly predicted.

It was also observed that a relationship between the measurement error and the water

cut exists, whereby as the test point WC increases, the fluid's bulk conductivity

increases and the larger the probability and magnitude of the error in the liquid

superficial velocity classification. A significant majority of all liquid and gas velocity

measurements at WCs greater than 60% were under-predicted with respect to their

target.

The results suggest that prior to applying pattern recognition techniques to real world

applications in the field, the system must be calibrated with data collected under a
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sufficiently wide range of conditions (e.g. line pressure, flow regimes, fluid

properties, salinity levels, etc).

A possible technique of incorporating a novelty detection algorithm into the PR

measurement system is given as part of possible extensions of the current research

work (see chapter 7 - Future Work). The absolute pressure, conductance for water

continuous, and capacitance for oil continuous multiphase flows can be used as part of

a novelty detection system to monitor the system operating pressure and salinity

levels, and if this is significantly outside the system calibration database, a decision

should be made about whether to continue the measurement or retrain the pattern

recognition system with the new developing conditions. For example, the sensitivity

coefficient for salinity influences on the water cut measurement can be given as a %

variation of water cut per % change in salt content.

6.2 Meter Performance Compared with Existing Commercial MPFM

6.2.1 Accuflow

The AMMS has been employed by Chevron Texaco in the Lost Hills and Cymric

Fields in California, USA, since 1996. Shen and Riley (1998). Chevron Texaco

reported AMMS volumetric liquid measurements to within 2% of those of the test

separator and agreement to within 3% was obtained for the liquid phase water cut. No

gas phase measurements were performed.

6.2.2 Agar

The Agar multiphase flow meter is said to have performed to its specifications (±10%

of the reading for gas, oil and water) in numerous fields worldwide, up to 99.99%

GVF, McNulty and Beg (1997), Agar and Farchy (2002). Conoco (USA) have tested

the Agar MPFM for high GVF under controlled field conditions on its Lafayette

(Louisiana, USA) test loop and found it to be accurate to ± 12% when compared with

single-phase measurements.
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6.2.3 ESMER

In 2002, ESMER was field tested by Sarawak Shell Berhad in Malaysia over a 20­

month period. Cai et al (FLOMEKO - 2004). In a series of well tests, the meter's

measurements were compared against those obtained from a conventional test

separator. Good repeatability and trending of the meter against different production

rates and flow patterns were reported and it was claimed that ESMER measurements

matched the separator measurements to within ±10% for wells which were inside the

operating envelope. However, it was noted that the accuracy of the meter deteriorated

in well tests located at the boundary of the MPFM's operating envelope and with the

passage of time.

6.2.4 FlowSys

Laboratory testing of the FlowSys meter was undertaken at the National Engineering

Laboratory (NEL), Hall (2000). The test matrix comprised a number of points with

liquid and gas flow rates ranging between 0-60 m3/h and 0-340 m3/h respectively.

Liquid phase and oil flow rate measurements obtained were within a relative

uncertainty band of ±5%. However, for test points with a GVF greater than 70%, or

water cuts in excess of 75%, large deviations from the reference values were

observed. The gas flow rate measurements were found to be within ±20% across a

large proportion of the operating envelope.

6.2.5 Multiphase Meters AM mpm

Field validation tests were undertaken In January 2007 on the Gullfaks A field

operated by Statoil and reported gas and oil flow rate measurement accuracies to

within ±8% and ±3% respectively across the full range of GVFs and WLRs Scheers

and Wee (2007).

6.2.6 Phase Dynamics CCM

In 2001, Phase Dynamics reported the field testing of the CCM unit on 1152 wells in

the BP operated Milne field in Alaska using a conventional separator for reference

measurements. Measurement accuracies of ±5% were claimed for the gas flow rate,

liquid flow rate and liquid phase water cut, Phase Dynamics Inc. (2008).

6.2.7 Roxar

Field tests of the MPFM 1900Vi meter were undertaken by the Gulf of Suez
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Petroleum Company (GUPCO) in Egypt on seven wells, Leggett et al (1996). During

testing, the flow regime observed was noted to range from severe slugging through to

annular owing to the dynamics of the gas-lift production system employed (the

average GVF ranged between 93 and 98%). It was reported that gas and liquid phase

flow rates were measured to within ±10%, relative to the test separator, for GVFs in

the range 93 - 96%. Significant errors were reported for liquid flow rate

measurements in tests where the GVF was in excess of 96%.

6.2.8 Schlumberger Vx

Laboratory testing of the PhaseWater Vx meter was also undertaken at the National

Engineering Laboratory (NEL), Letton et al (1997). The test matrix comprised a

number of points with GVFs ranging from 0 to 95%. Liquid phase and oil flow rate

measurements were produced within a relative uncertainty band of ±10% and water

cut readings had an associated absolute error of ±6%. No quantification of the gas

phase measurement performance was reported.

Table 6.1 - Performance of Current PR Meter Compared with Commercial MPFMs

Meter Performance Comments

I ~~rwcl I
I Accuflow AMMS I ±2% ~ I ±3% I Compared against Test Separator

I
IAgar I±1O% I±10% I ±lO% Compared with Single-Phase

Measurements, GVF up to 99.99%

IESMER I±1O% I±15% I ±5% I Field Tests against Test Separator,
Accuracy across 1 - 98% GVF

IFlowsys I ±5% I±20% I ±5% NEL Test Separator, Large deviations for
GVF>75% and WC>70%

Multiphase Meters AM I ±3% I ±8% I Tested across full range GVF and WC

mpm

IPhase Dynamics CCM I±5% I±5% I±5% Field Tested against conventional Test
Separator

IRoxar I±1O% I±lO%~ Field Tested against Test Separator, GVF
93 - 96%, Significant errors for GVF>96%

ISchlumberger Vx 1± 10% ~1 ±6% NEL Test Separator, GVF range 0 - 95%,
WC (Absolute)

ICurrent PR Meter I±5% I±5% I±5% I NEL Test Separator, GVF range 0 - 100%
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The current meter performances for both liquid and gas velocity predictions were

100% and 98%, within the target accuracy of ±5% respectively, with The water cut

performance of 98% was within the specified accuracy. The overall meter

performance did not appear to be affected by GVF. The measurement accuracy was at

its best when the flow rates encountered were close to the centre of the operating

envelope but deteriorated towards the edges.

Unlike most of the conventional meters shown in Figures 6.1, the current meter maps

the non-linear relationships by pattern recognition / neural net training rather than by

theoretical modeling. This ensures that the meter can measure the flow rates of

individual phases in oil production lines without the need for separation or a complex

sensor. The meter does not require a-priori empirical models or knowledge of slip,

does not employ cross-correlation, and does not determine flow rates from the set of

equations shown above (so its accuracy is flat across 1-99% GVF).

The meter depends on the naturally occurring multiphase flow patterns in the pipeline

which it characterises by neural net analysis of high frequency signals emitted by

simple and standard sensors.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

Although Multiphase Flow Measurement is not new, but still relatively nascent in the

oil and gas/process industries, the pattern recognition approach for multiphase flow

parameter measurements employed in this research work, provides an economical

means of non-intrusive multiphase flow measurement. Simple sensors were used to

detect shifts in flow conditions, such as flow structure, pressure and salinity changes

in combination with a pattern recognition system that measured the flow parameters

simultaneously without the need for preconditioning or prior knowledge of either

phase. These, coupled with the current levels of oil prices and the global economic

meltdown, would reinforce the justification of the industry's goal of high performing

and lower cost Multiphase Flow Meters. A summary of the initial project's objectives

is presented in this chapter.

7.1 Conclusions

Prior to presentation of the conclusions drawn from this research work, a brief recap

of the original project objectives is provided; these are as follows:

• To review the literature describing components of the multiphase metering

systems, and the application of pattern recognition techniques in multiphase

flow measurements.

• To experimentally collect the response from a range of simple sensors when

subjected to three-phase (oil/water/gas) flow conditions, with operating

conditions covering a wide range of gas and liquid superficial velocities, in a 4

inch (l02mm) horizontal pipe, under two different salinities of 50 and 100 gil

MgS04, at two different locations on the flow loop.

• To analyse features from the sensor signals' characteristics in relation to key

multiphase flow parameters.

• To apply an appropriate pattern recognition model (Neural Network) for the

identification of individual phase flow rates and water-cuts.
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• To assess the performance of the system, for a range of multiphase flows and

the effectiveness of the neural network on the different pipe locations as well

as the different salinity levels.

The review of the multiphase flow and its metering reiterated the need for the

development of a robust, non-intrusive and low-cost measurement solution to meet

the oil and gas industry 's requirements.

Employing PR techniques for multiphase flow analysis has been documented by a

number of researchers to resolve the multiphase parameter measurements or to

identify the prevalent flow regime. The use of sensors in conjunction with PR in

multiphase flow measurement has also been reported where two sub-spools that form

part of a sensor array installed horizontally have been commercially deployed.

However, the flow in these meters involves intrusive measurement components , and

reported measurement uncertainty, that do not lend themselves to the current industry

requirements for multiphase metering performance standards.

No information has been published in the public domain on the use of non-intrusive,

yet simple sensors that detect shifts in flow conditions (flow structure , pressure and

salinity), in combination with a pattern recognition system to provide phase

composition and velocity information simultaneously without the need for

preconditioning or prior knowledge of either phase. However, ongoing work is aimed

at achieving these objectives.

This research work has demonstrated that low cost and simple sensors can be

exploited, in combination with pattern recognition analysis, to infer the superficial

phase velocities and the liquid phase water cut, thus enabling the individual

component mass flow rates of the multiphase flow to be determined to a degree of

accuracy comparable with several commercially available multiphase flow meters.

The measurement system used for this research consists of temperature and absolute

pressure transducers, gamma ray densitometer, a pair each of differential pressure

sensors (mounted axially), capacitance, and conductance installed as a single horizontal

spool piece, see Figure 3.1 for the location of sensors.
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The test matrix covered mainly the three phase (oil, water and gas) slug flow. Data were

collected under two different salinities of 50 and 100 gil MgS04, and the spool piece

was placed at two different locations in the NEL flow loop. A 4" Perspex visualisation

section was installed immediately upstream of the sensor spool piece.

For its measurement approach, the pattern recognition system developed in this work

relies on the sensors to extract relevant information in the form of features. A Back

Propagation Neural Network (BPNN) is then used to relate these features to the liquid

and gas superficial velocities, and the liquid phase water cut from which the

volumetric flow rates can be calculated for oil, water and gas mixture.

1. Sensor signals features were extracted by means of digital signal processing

techniques in three information domains (Amplitude, Linear Prediction Coefficients

(LPC), and Line Spectral Frequencies (LSF)). These were found to be most effective

based on their discriminatory trend to variations in flow conditions.

2. Feature contour analysis showed that there is a clear relationship between

stochastic features and multiphase flow parameters. All features displayed a strong

dependency on liquid loading and gas velocity. There was clear evidence from the

contour plots that an input-output mapping exists between the above stochastic

features and the corresponding multiphase flow parameters. Further dimensionality

reduction was not found useful as it resulted in losing some of the discriminatory

information present in the data and in reduced classification accuracy.

3. The BPNN used in this study, unlike traditional neural networks, does not

require a dedicated validation subset to minimise overfitting; the Bayesian technique

controls model complexity (overfitting) automatically using only the training data.

Furthermore the Bayesian approach improves generalisation and provides a measure

of how many network parameters (weights and biases) are being effectively used by

the network. The Neural Network Training optimisation was shown in Figure 4.15

using the Bayesian technique.

4. Absolute Pressure (AP) performance for liquid flow rate indicated that the

amplitude and the feature fusion vectors have all successfully predicted a liquid

velocity relative measurement error of ± 5%. In particular, the feature fusion vectors
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obtained 100% measurement accuracy, while the line spectral frequency (LSF)

feature vectors resulted in the best measurement accuracy, with 65% measurement

accuracy for the gas superficial velocity.

5. Results from the DP transducers have shown that if only a single differential

pressure sensor is available for phase flow measurements on the spool piece, then

feature fusion vectors for the single transducer should be used for the liquid and gas

volumetric measurements.

6. It can be concluded that if only the AP and DP were to be used for liquid flow

rate measurement, then the extraction of fusion features should be considered.

7. The capacitance sensor showed that the amplitude and feature fusion features

provided the best discriminatory properties for liquid velocity determination. 78% of

all liquid superficial phase velocities (Vsl) were resolved to within ±5% for amplitude

features of capacitance 1, and 74% Vsl with feature fusion signal features of

capacitance 2. The feature fusion vectors also predicted 71% gas velocity within ±5%.

Also amplitude and feature fusion vectors were found to provide the optimal output

for the water cut measurements from both capacitance sensors. Hence either of these

two feature vectors may be recommended for the simultaneous measurement of gas

and liquid flow rates as well as the water cut, with the capacitance signals.

8. LPC and feature fusion of the conductance sensor provided the best

discriminatory properties for liquid velocity determination for conductance 1 and

conductance 2 respectively. It was also observed that prediction error of the

conductance vectors decreased as water cut increased; this confirmed the hypothesis

that the conductance sensor performs poorly in oil continuous flow conditions.

9. Gamma sensor features produced the best predictions for superficial gas

velocity measurements, with all individual sensors. The water cut measurement

performances obtained from the input features of the gamma signal indicated that the

amplitude feature input vectors provided the best output accuracies, with 81% of the

test data points meeting the specified target within ±5%, while liquid superficial

velocity measurement accuracies indicated 71% of the data points were best predicted

with the LSF feature vectors.
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10. The Gas Void Fraction (GVF) prediction performance was highest, with the

feature fusion vectors of the gamma signal having 76% of the data points within the

target accuracy of ±5%, followed by the capacitance achieving 60% with feature

fusion.

11. It may be concluded that when comparing the eight sensors, the fusion and

amplitude feature vectors achieved the best flow rate and water cut prediction

accuracies.

12. The individual sensor performance and the improvements in some cases of the

feature fusion scenarios have indicated that further flow rate measurement

improvements could be achieved with cross-sensor feature fusion.

13. Features chosen for cross-sensor data fusion in this study have shown that a

better generalisation can be achieved by selecting the best performing features for the

cross-sensor fusion, as against the more traditional fusion of the same domain.

14. The cross-sensor data fusion improved overall performance, whereby the

results for both liquid and gas velocity predictions were 100% and 98%, within the

target accuracy of ±5% respectively. The water cut performance of 98% and GVF

predictions also improved significantly to 95% within the specified accuracy.

15. Studies conducted on location effects showed that when the pattern

recognition metering system developed is subjected to a flow condition that was not

part of the calibration data, the system will yield significant measurement errors.

16. The results also confirmed that if sufficient calibration data were provided

from different locations of the spool piece, the system could be made independent of

the test location. In essence, the same pattern recognition model could be used in

different test locations, provided the system is adequately calibrated.

17. The Kohonen self-organising feature map (KSOFM), a multilevel hierarchical

neural network, classified data points according to the two salinity levels used, while

the identification of the phase flow parameters was achieved through the employment

of a second layer of the BPNN (one for each for the two salinity levels, i.e. 50 gil

solution is referred to as Salinity 1, the 100 gil solution as Salinity 2).
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18. Salinity specific BPNNs were developed based on results obtained from

extensive preliminary repeatability tests; the architecture of the salinity BPNNs were

defined to be [n - 8 - 3]. All other parameters were as per original single BPNN

model.

19. The multi-level hierarchical neural network model with salinity dependent

BPNNs yielded measurement accuracies that matched superficial phase velocity and

water cut predictions from the cross data fusion performance discussed earlier.

20. Best liquid flow measurement performance was obtained by Salinity 2 BPNN

feature fusion of the three sensors (Capacitance, Conductance and Gamma), with

100% within the specified accuracy of ±5%, while the fusion and amplitude features

of the combined sensors in Salinity 1 BPNN yielded 98% each for the gas velocity

and water cut predictions respectively.

21. Results from testing the two-salinity multi-level hierarchical networks,

reinforced the hypothesis of salinity specificity of the feature correlations in

multiphase flow. Good predictions were obtained for test points sharing a common

salinity with the BPNN training data, while test points from a differing salinity were

poorly predicted.

22. A relationship between the measurement error and water cut has been

established, whereby as the test point WC increases, the fluid's bulk conductivity

increases and the larger the probability and magnitude of the error in the liquid

superficial velocity classification. A significant majority of all liquid and gas velocity

measurements at WCs greater than 60% were under-predicted with respect to their

target.

23. The results from the study of location and salinity effects show that if

substantially alien data are presented to a neural network (as represented by

introducing new salinity and flow conditions here) then it will be prone to significant

errors; the system must be calibrated with data collected under a sufficiently wide

range of conditions (e.g. line pressure, flow regimes, fluid properties, salinity levels,

etc).
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24. Where the system is expected to experience a sudden change of operating

conditions outside the calibration database, a detection system may be considered,

which should decide when a feature set does not represent any known measurement

parameters; the absolute pressure, conductance, and capacitance sensors should be

monitored closely, and if they change significantly from a predefined threshold, the

system should be turned into a calibration mode and retrained.

25. The performance of some commercially available multiphase flow meters was

reviewed and compared with results of current research findings. Liquid (water and

oil) flow rate measurements from the multiphase meters were compared with

reference flow rate data, obtained from a gravity based test separator. The plot shows

the liquid rate measurements for ±5% accuracy level within the flow range, as shown

in Figure 6.1a. Figure 6.1b shows the accuracy of liquid flow rate for the same four

multiphase meters presented in Figure 6.1a, showing the impact of GVF on accuracy

of the four meters to satisfy the ±5% accuracy requirement for liquid flow rates.

26. In comparison, the current PR meter results have shown that performances for

both liquid and gas velocity predictions were 100% and 98%, within the target

accuracy of ±5% respectively; the water cut performance of 98% was within the

specified accuracy. The overall meter performance did not appear to be affected by

GVF. The measurement accuracy was at its best when the flow rates encountered

were close to the centre of the operating envelope but it then deteriorated towards the

edges.

27. This work has shown that unlike most conventional meters, the current PR

meter maps the non-linear relationships by pattern recognition/neural net training

rather than by theoretical modeling. The meter learns the details of fluid dynamics

behaviour from experience and there is no Newtonian mechanics modeling in the

meter, hence its (theoretical) immunity to inaccuracies resulting from incomplete or

erroneous flow regime and flow regime transition modeling.

28. The current PR meter is shown to measure flow rates of individual phases in

oil production lines without the need for separation or a complex sensor. The meter

does not require a-priori empirical models or knowledge of slip, does not employ

200



cross-correlation, and does not determine flow rates from the set of equations shown

above, so its accuracy is flat across the complete range of GVF.

7.2 Future Work

The general consensus is that there is no single multiphase flow meter design capable

of providing the required accurate measurements of oil, water, and gas fractions, as

well as the phase velocities under all flow conditions. However, this research work

has demonstrated that low cost and simple non-intrusive sensors can be used, in

combination with a pattern recognition system, to infer the superficial phase velocities

and the liquid phase water cut, thus enabling the individual component mass flow

rates of the multiphase flow to be determined to a degree of accuracy surpassing

several commercially available multiphase flow meters.

It is believed that with further development work on this pattern recognition based

system, the ideal multiphase flow meter is in sight, and given below are some

recommendations for further enhancements suggested for the current work.

1. In its current form, the measurement model developed will only be valid for

the same fluids in identical operating conditions. Application of the technique

developed to other installations will require further development work. The present

study utilised one type of crude oil (Forties Beryl). No attempt was made to establish

the relationship between features' responses and fluid physical properties. This type

of study is necessary to generalise the proposed technique. Key parameters that

should be considered are oil density, oil viscosity, increased levels of water salinity,

from a variety of salts, especially sodium chloride (NaCI), which is the predominantly

occurring natural salt encountered in oil and gas exploration. The operating pressure,

pipe diameter, and pipe orientation, as well as temperature should also be considered.

Perhaps the return of the sensor spool piece to Cranfield from NEL will provide these

opportunities for further studies at the Cranfield test facility.

2. A significant source of errors in neural network applications arises from the

input of alien data. As was seen in chapters 4 and 5, a network which is trained to

discriminate between numbers of classes coming from a set of distributions, will be
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confused when confronted with data coming from an entirely new distribution. This

was most evidently demonstrated when the current pattern recognition system was

trained on data from one location of the test facility, and tested with data from a

different location. Results from the study of salinity effects also showed that if

substantially alien data are presented to a neural network (as represented by

introducing new salinity) then it will be prone to significant errors. The system must

be calibrated with data collected under a sufficiently wide range of conditions (e.g.

line pressure, flow regimes, fluid properties , salinity levels, etc). Results have shown

that in cases where the system is expected to experience sudden and large changes in

operating conditions, the absolute pressure, conductance , and capacitance sensors

should be monitored closely, and if they change significantly from a predefined

threshold, the system should be turned into a calibration mode and retrained. Further

studies can enhance this work by developing a novelty detection algorithm into the

PR measurement system.

3. Some other feature vectors could be evaluated for their effectiveness on the

system performance. These include, but are not limited to, the following: reflection

coefficients (RC), log area ratio (LAR), arcsine of reflection coefficients (ASRC),

impulse response of LP synthesis filter (IR), etc. Investigations on the evaluation of

slug parameters carried out during the earlier stages of this research work, the results

from determination of slug lengths, slug translational and film velocities, and other

parameters from the test matrix, if included as input features for the neural network

model, will no doubt add value to the overall study.

202





Appendix A. - Review of Commercial Multiphase Flow Meters
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A.I Abbon Flow Master

There are two different versions of the Abbon Flow Master (AFM), both based on the

Abbon acoustic detector, electronics and software technology:

• AFM 300C is a clamp-on instrument that uses either existing construction

details (such as a choke valve) or a simple flow conditioner as a signal generator

with a sensor attached to the surface.

• AFM 3001 is an in-line version that incorporates a flow conditioner which

increases the acoustic signals, shown in Figure A.I It is claimed by the

manufacturer that the flow conditioner permits higher accuracy and easier

calibration.

Iii

Figure A. - AMF In-Line Spool Piece, Abbon (2007).

As the oil well's multiphase flow passes through the measurement section, acoustic

energy signals are generated which correlate to the flow rates and composition of the

medium (AFM Product Specification Sheet). The AFM employs on-line detection,

processing and interpretation using multivariate analysis of the acoustic fingerprint to

infer variations in composition and flow rates. However, no information was available

in the public domain relating to meter testing or commercial installations of the AFM

multiphase meter.
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A.2 Accuflow AMMS

The Accuflow Multiphase Metering System (AMMS) is a patented technology

comprising a pipe separator design to separate a multiphase flow into a gas-free liquid

stream and a liquid-free gas stream, as shown in Figure A.2, Accuflow (2007).

Conventional single-phase measurement devices are then employed to measure each

of the separated streams.

Multiphase fluid from the production flow line enters the vertical pipe tangentially,

creating a cyclonic action in the vertical pipe where a majority of the gas is separated

and flows upward. The downward inclination of the inlet pipe promotes liquid/gas

stratification in the inlet pipe that enhances gas/liquid separation in the vertical

separator pipe. The remaining gas, mostly in the form of small bubbles, is carried

downward with the liquid stream and enters the horizontal pipe section.

-

Figure A.2 - Operating Principle of the AMMS, Accuflow (2007).

The liquid level in the horizontal separator pipe section is controlled in the middle of

the pipe using a control valve located in the gas flow line. As the liquid stream flows

through the horizontal pipe, gas bubbles rise to the gas/liquid interface and are

separated as the liquid stream flows towards the outlet end of the horizontal pipe. The

large gas/liquid interface area, thin gas-bearing liquid layer, and quiescent flow in the

horizontal pipe all contribute to the efficient removal of entrained gas bubbles from

the liquid stream.
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Accuflow claim that their patented pipe separator design can achieve complete gas­

liquid separation and can thus employ conventional proven single-phase measurement

devices to measure the separated phase streams (typically vortex or ultrasonic meters

for the gas and a Coriolis meter for the liquid).

The AMMS has been employed by Chevron Texaco in the Lost Hills and Cymric Oil

Fields in California, USA, since 1996, Shen and Riley, (1998). Chevron Texaco

reported AMMS volumetric liquid measurements to within 2% of those of the test

separator and agreement to within 3% was obtained for the liquid phase water cut. No

gas phase measurements were performed.

Accuflow Inc. claims to have installed units at 65 sites, in six countries, with similar

measurement accuracies attained for flow rates of up to 30,000 bpd, and at water cuts

and gas fractions up to 99%, Dutton and Daniel (2001).

A.3 Agar MPFM

Agar's MPFM-400 Series is a phase separation type meter comprising a patented

Fluidic Flow Diverter (FFD) device and a gas bypass loop shown in Figure A.3. The

FFD device employs the difference in flow momentum in the gas and liquid phases to

divert most of the free gas in the multiphase stream into a secondary measurement

loop around the core of the MPFM.

(a) (b)

Figure A.3 - Agar MPFM 400-Series (a) Schematic and (b) Skid Mounted (mirrored),

Agar and Farchy (2002).
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This secondary measurement loop is essentially a wet gas metering system and

consists of a Venturi and a vortex shedding flow meter in series. The primary

metering loop comprises three components: a positive displacement meter to

determine the total volumetric flow of the mainly liquid stream; a momentum meter

(dual Venturi) which measures the gas fraction of the flow; and a microwave water­

cut meter. After metering, the gas in the secondary bypass loop is recombined with

the oil, water and gas measured by the core meter.

The Agar multiphase flow meter is said to have performed to its specifications

(±10% of the reading for Gas, Oil and Water) in numerous fields worldwide, up to

99.99% GVF, McNulty and Beg (1997)., Agar and Farchy (2002). Conoco (USA)

have tested the Agar MPFM for high GVF under controlled field conditions on its

Lafayette (Louisiana, USA) test loop and found it to be accurate to ± 12% compared

with reference single-phase measurements, McNulty and Beg (1997). Saudi Aramco

have reported trial testing the Agar MPFM at a gas oil separation plant (GaSp), Al­

Taweel and Barlow (1999). Here, the plant's separator was used as a reference

measurement to evaluate meter accuracy. Approximately 30 comparison tests were

made over a wide range of water cuts and GVFs (though the range of GVF was not

mentioned). They mentioned that the meter compared well with the test separator and

that no significant problems or operational failures occurred. However, the meter

tested was said have been undersized for a large portion of the company wells.

A.4 FlowSys TopFlow

The major parts of the FlowSys TopFlow meter are the Venturi insert and the

impedance electrodes incorporated inside the throat of the Venturi insert. The

differential pressure is measured across the inlet of the Venturi insert while the

capacitance or conductance of the mixture flowing through the Venturi insert is

measured by the electrodes inside the Venturi throat. Fluid velocity is found from

cross-correlation of the high-resolution time signals from pairs of electrodes within

the Venturi insert.

The flow rates of the oil, water and gas are then calculated based on the measurements

obtained by these sensors as illustrated in Figure A.4.
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Figure AA - Schematic Diagram of the FlowSys TopFlow Meter, Hall (2000).

Laboratory testing of the FlowSys meter was undertaken at the National Engineering

Laboratory (NEL), Hall (2000). The test matrix comprised .a number of points with

liquid and gas flow rates ranging between 0-60 m3Jh and 0-340 m3Jh respectively.

Liquid phase and oil flow rate measurements obtained were within a relative

uncertainty band of ±5%. However, for test points with a GVF greater than 70%, or

water cuts in excess of 75%, large deviations from the reference values were

observed. The gas flow rate measurements were found to be within ±20% across a

large proportion of the operating envelope.

Further laboratory testing of the TopFlow MPFM was carried out by Christian

Michelsen Research (CMR), Klepsvik et al., (2000). The test matrix comprised a

number of points with liquid and gas flow rates ranging between 15-40 m3Jh and 20­

90 m3Jh respectively. It was reported that 99% of the liquid flow rate measurements

were within a relative deviation of ±10% from reference values, 78% of oil flow rate

measurements were within ±10% and 84% of the gas flow rate measurements were

within ±15%.

In 2001, FlowSys's TopFlow meter was field tested by Eni in Trecate, Italy, Mazzoni,

et al., (2001). It was documented that the FlowSys meter gave phase flow rate

measurements within ±10% for GVFs up to 92-93% for the gas flow rate and GVFs

of up to 86-87% for the liquid flow rates. Liquid 'and gas flow rates ranged between 6­

35 m3/h and 35-145 m3/h respectively. However, at GVFs in excess of 92-93%, the

liquid flow rate measurement accuracy deteriorated to approximately ±20%. Owing to

the limitations imposed by the test wells, the water cut was only examinable between

41-51%. In this range it was reported that the meter was able to classify the majority

of the test points to within ±5%.
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A.5 Framo / Schlumberger Vx MPFM

The Vx MPFM makes use of two measurement techniques: a Venturi with pressure,

temperature and differential pressure sensors for mass flow measurement and dual­

gamma densitometry for phase fraction determination. Following a blind tee, the

multiphase flows vertically upwards through the metering area. All the measurements

are made in the Venturi throat, i.e. absolute pressure, temperature , differential

pressure relative to upstream conditions and phase fractions, shown in Figure A.5,

Theuvent et al (1998).

Figure A.5 - PhaseWatcher Vx MPFM, Theuvent et al (1998).

Phase fractions are measured using a dual-energy gamma densitometer employing a

barium-133 radionuclide source. The source has energy levels appropriate for

measurement of gas fraction and water cut (29 keY and 80 keY). The gamma

densitometer is located at the narrowest part of the flow conduit, allowing the low

energy levels employed by the gamma meter to be feasibly used with a low strength

source.

Laboratory testing of the PhaseWater Vx meter was also undertaken at the National

Engineering Laboratory (NEL), Letton et al., (1997). The test matrix comprised a

number of points with GVFs ranging from 0 to 95%. Liquid phase and oil flow rate

measurements were produced within a relative uncertainty band of ±10% and water

cut readings had an associated absolute error of ±6%. No quantification of the gas

phase measurement performance was reported.
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Al-Khafji Joint Operations installed five PhaseWatcher Vx MPFMs in the offshore­

Khafji field for satellite-based monitoring. Well tests were referenced against a test

barge comprising a conventional three-phase separator set up. Measurement

agreements for the PhaseWatcher Vx meters were reported to exhibit 5-10% relative

error for the oil and water flow rates and in excess of 15% for the gas phase flow rate,

with respect to the separator measurements, Al-Bourni et al., (2005).

A.6 Haimo MPFM

The Haimo MPFM combines features of inline and partial separation type MPFMs.

The phase flow rate measurements and the water cut determination are carried out

independently of each other. The gas/liquid two-phase flow meter consists of a

Venturi and two identical single-energy (59.5 keY) gamma sensors. The full range

three-phase water cut meter comprises a dual-energy (22 and 59.5 keY) gamma

sensor and a flow conditioner located upstream, shown in Figure A.6, Haimo (2007).

g .. if'

1 .Temperature Transmitter 2 . Flow Cond itioner 3. '\.'enturi Flow l'u1eter
4 .Differential Pressure Transmitter 5 . Single Gamma l'u1eter
6. Dual Gamma l'u1eter 7. Pressure Transmitter

Figure A.6 - Haimo MPFM, Haimo (2007).

Both the gas and liquid flow rates are measured upstream of the flow conditioner in

the two-phase flow meter: the dual-energy gamma densitometer measures the water

cut of the conditioned flow mixture.

In March 2005, Haimo claimed to have completed well tests on more than 1500 wells

and to have over 100 MFM meters installed in onshore and offshore applications,

Haimo Newswire, (2005).
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A.7 Jiskoot Mixmeter

Jiskoot's Mixmeter utilises a patented upstream mixer to ensure that a homogenous

multiphase flow mixture is present in the meter's measurement section, shown in

Figure A.7., Hewitt et al (1997). The mixer attempts to equalise the velocity of the

three phases and removes the need for complex slip correction calculations. Phase

fractions are determined through the employment of a dual-energy gamma

densitometry system; while the phase velocities are determined through the cross­

correlation of sensor data. No data were found documenting the Mixmeter's

performance in laboratory or field tests.
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Figure A.7 - Mixmeter MPFM, Hewitt et al (1997).

A.8 PSL ESMER

ESMER exploits advanced signal processing techniques to determine the individual

phase flow rates of a multiphase flow mixture. The ESMER system comprises two

modular sub-spools: the pressure spool and the impedance spool. The pressure spool

contains a differential device (orificeNenturiN-cone) equipped with differential

pressure and absolute pressure gauges and a temperature sensor. The impedance spool

comprises a capacitance sensor for oil external applications, a conductance sensor for

water external applications or both for full water cut range applications. The spools

are installed in a horizontal orientation.

ESMER is a pattern recognition based meter that establishes the non-linear

relationships between an array of sensor measurements and the individual phase flow

rates by a combination of pattern recognition and neural network training, illustrated

in Figure A.8., Toral et al (1998).
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Figure A.8 - ESMER Concept Model, Toral et al (1998).

In 2002, ESMER was field tested by Sarawak Shell Berhad in Malaysia over a 20­

month period, Cai et al (2004). In a series of well tests, the meter's measurements

were compared against those obtained from a conventional test separator. Good

repeatability and trending of the meter against different production rates and flow

patterns were reported and it was claimed that ESMER measurements matched the

separator measurements to within ±10% for wells which were inside the operating

envelope. However, it was noted that the accuracy of the meter deteriorated in well

tests located at the boundary of the MPFM's operating envelope and with the passage

of time.

A.9 Roxar MPFM 1900VI

The Roxar MPFM 1900VI comprises a capacitance sensor, an inductive sensor, a

gamma-ray densitometer, a Venturi meter and a system computer, illustrated in

Figure A.9, oil, gas and water fractions are determined by electrical impedance and

gamma ray density measurements. A cross-correlation algorithm is used to measure

individual component flow rates. The Venturi meter measures the mixture flow rate

and extends the range of the MPFM 1900VI to cover single-phase liquid where the

cross-correlation technique fails to operate, Leggett et al (1996).
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Figure A.9 - Schematic of Roxar MPFM 1900VI Meter, Leggett et al (1996).

Field tests of the MPFM 1900Vi meter were undertaken by the Gulf of Suez

Petroleum Company (GUPCO) in Egypt on seven wells, Leggett et aI., (1996). During

testing, the flow regime observed was noted to range from severe slugging through to

annular owing to the dynamics of the gas-lift production system employed (the

average GVF ranged from 93 - 98%). It was reported that gas and liquid phase flow

rates were measured to within ±10%, relative to the test separator, for GVFs in the

range of 93 - 96%. Significant errors were reported for liquid flow rate measurements

in tests where the GVF was in excess of 96%.

A.10 eProduction Solutions Inc. REMMS

The Red Eye Multiphase Metering System (REMMS) combines compact separation

technology with conventional liquid and gas metering. The multiphase fluid enters the

main body through a narrow tangential inlet into the vertical separator body. This

forces the liquid and gas to accelerate through the inlet and around the vertical axis of

the main body, creating a vortex as shown in Figure A.10, eProduction Solutions

(2008).
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Figure A. 10 REMMS MPFM, eProduction Solutions (2008).

Due to the large density difference between the gas and liquid phases, the gas

migrates quickly to the centre while the denser liquid travels to the wall. Once

separated, the individual streams are measured with conventional liquid and gas

meters, typically Coriolis and vortex meters respectively. The water cut is determined

by employing eProduction Solutions proprietary Red Eye 2G Water Cut Meter which

exploits infrared absorbance to determine the relative quantities of water and oil in the

liquid phase The separated phases are then recombined or transported in separate flow

lines. In December 2004, eProduction Solutions completed the installation of 18

REMMS MPFM units in Chad Africa, eProduction Solutions Corporate Website,

accesssed (2008). There have been no details of the meters' performance published in

the public domain.

A.II Multi Phase Meters AS mpm

Multi Phase Meters AS's mpm is marketed as a high-performance meter and was

developed through a lIP involving Eni, Hydro, Shell, Total, Statoil and

ConocoPhillips, Multi Phase Meters Newsletter (2008).. The mpm measurement

system is based on patented 3-D Broadband technology which measures the dielectric

constant in 3-D to calculate the water density, salinity and conductivity, and the gas

concentration in annular flows as shown in Figure A.II, Multi Phase Meters

Newsletter (2008).

214



Figure A.ll - mpm Meter, Multi Phase Meters Newsletter (2008).

A Venturi section is employed for flow conditioning and velocity measurement, while

a gamma densitometer unit is exploited for phase composition data. A sub-sea version

of the meter has also been developed. Field validation tests were undertaken in

January 2007 on the Gullfaks A field operated by Statoil and reported gas and oil flow

rate measurement accuracies to within ±8% and ±3% respectively across the full

range of GVFs and WLRs, Scheers and Wee (2007).

A.12 Multiphase Solutions Inc VMS

Multiphase Solutions Inc. take a software-based approach with their Virtual Metering

System (VMS). The VMS uses measurements from existing sensors in and around the

well and to infer multiphase flow rates. VMS can use several predictive models to

determine flow rate. It approximates the uncertainty of each estimate and then

combines these values to achieve the lowest overall uncertainty, Two installations of

the Virtual Metering System have been publicised: one installation for Eni in the Gulf

of Mexico and another for the Shell Philippines Exploration at Malampaya,

Multiphase Solutions Inc., (2008).

A.13 TEA Sistemi Spa LYRA

The TEA LYRA multiphase meter is suitable for multiphase flow measurement when

the GVF is less than 90%. A differential pressure section (Venturi, nozzle or orifice,

according to the fluids and process specification) is employed to determine the total

mass flow rate as shown in Figure A.13.
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Figure A. 13. - LYRA MPFM, TEA Sistemi Spa (2008).

The water-cut is determined using a patented impedance meter which requires input

of the mean density of the gas-liquid mixture. The mean density is measured by a

gamma densitometer or, if the liquid fraction is appreciable (~30%), the pressure drop

measurement is used to infer the mean density, negating the need for inclusion of a

gamma-densitometer in the metering system. Interpretation of the measured data into

individual phase flow rates is largely based on proprietary mechanistic models and

artificial neural networks trained with well testing data.

LYRA has been marketed in Italy since 1995 and has been installed in three Agip

operated oil fields, (Prezioso, Dirillo and Trecate). Although good results have been

claimed, no figures pertaining to actual measurement accuracies were available, TEA

Sistemi Spa (2008).

A.14 Kvaerner-DUET

This flowmeter uses the attenuation of gamma rays at two different energies to derive

the oil, water and gas phase fractions. The mass absorption coefficients of oil and

water vary as a function of gamma photon energy, and so the two different absorption

rates and continuity relationship allow the phase fractions to be determined. To

maximise the transmission of the lower energy gamma rays, the sources and detectors

are arranged around a GRP pipe section. Velocity measurement is by cross-correlation
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of two gamma densitometer signals, so it responds most accurately to distinct

multiphase flow features such as liquid slugs, Roach and Whitaker, (1999).

A.IS Phase Dynamics Inc. CCM

This Compact Cyclone Multiphase Meter (CCM meter) utilises a compact gas-liquid

cyclone, to separate the liquid and gas phases prior to measurement, shown in Figure

A.IS, Phase Dynamics Inc. (2008).

Figure A. 15 - CCM Meter, Phase Dynamics Inc. (2008).

Effectively, the system is a modem version of a traditional two phase separator.

Coriolis meters are used to measure the separated gas and liquid flow rates. The

separated liquid phase is then routed through a Phase Dynamics full range microwave

water cut meter, forming an integral part of the CCM multiphase meter. To date,

Phase Dynamics have sold and installed 19 CCM meters in Alaska, Wyoming,

Siberia, China and Abu Dhabi. The actual dates of these have not been published in

the public domain. In 2001, Phase Dynamics reported the field testing of the CCM

unit on 1152 wells in the BP operated Milne field in Alaska using a conventional

separator for reference measurements. Measurement accuracies of ±5% were claimed

for the gas flow rate, liquid flow rate and liquid phase water cut, Phase Dynamics

Inc., CCM Sales Presentation (2008).
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Appendix B - Review of Slug Flow
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B.I Modeling Multiphase Slug Flow.

Previous work examining experimental and analytical work on slug flow in

horizontal and near-horizontal pipes is presented.

• B.1.1 Describes slug flow and the slug flow parameters

• B.1.2 Shows some analysis of the Multiphase flow parameters

An important feature linking the extremes of slug initiation and steady-state slug

flow is the way in which slugs develop as they progress along a pipeline.

Initially, slugs are formed at high frequency but then a large proportion begins

to collapse as they travel downstream and so the frequency reduces. During this

process the length of slugs which persist may also increase as they over-run the

remnants of the collapsing slugs.

B.l.I Description of Slug Flow and Slug Flow Parameters

Slug or intermittent flow is the most common occurring flow pattern in hydrocarbon

transmission pipelines, Manolis (1995). investigated the advantages and

disadvantages when operating in the slug flow regime. Some of the advantages are,

1. Simultaneous transport of large amounts of gas and liquid in small lines.

2. High convective mass and heat transfer coefficients can be achieved due to the

high liquid velocities.

Disadvantages are:

1. Significant variations In gas and liquid flow rates can cause mechanical

damage to pipeline connections, support and fittings.

2. Dangerous vibration in the pipes due to slugging can cause resonance to occur

as the slug frequency approaches the resonant frequency of the pipe system.

3. Erosion-corrosion phenomena in pipelines may be influenced by the

intermittency of slug flow.

4. In designing separators, knowledge of the largest slug length that might occur

is required.
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Slug flow is a very complex phenomenon and inherently unsteady. Complexity arises

from particular geometric distribution of the gas-liquid phases, which show variations

in space and time.

Figure Bl.l shows an average slug unit cell in fully developed slug. Where the unit

cell consists of a slug region of length, Is and constant holdup as followed by a

"film" region of length II and variable holdup aI (x). The parameter x indicates

axial distance in upstream direction. At point where the preceding slug zone ends and

the film zone begins, x = 0 and aI =as, and at front of the next slug, x = II and afe .

Total length ~fthe slug unit is: (Iu = Is + II )'

The film region lies between the tail of one slug and the front of the next slug. Liquid

leaves the slug tail and drains towards the bottom of the tube to form a stratified layer

or "film". This liquid layer is then picked up by the advancing front of the next slug.

The gas phase may also be entrained at the slug front and discharged at the end of the

slug tail. Each slug unit has several local velocities , which are:

1. Local liquid phase and gas velocity ~s and Vgs respectively, in the slug body

and usually these velocities are different as the flow regime is changed to

annular flow.

2. Variable velocities in the film zone dependent on the local liquid holdup,

defined as ~s(x) and Vgf (x ) respectively. At the end of the film zone and

before the arrival of the next slug front, the film zone velocities are denoted by

~s/ and Vgsl

3. ~ is the translation velocity, and usually it is larger than the local velocities

defined above.

4. The superficial velocities J{ and J g for each phase which is equal to the

phase flowrate divided by the total section-area of the pipe.
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Figure B1.1 - The slug Unit, Manolis (1995).

Bil.LlSlug Flow Initiation

The Kelvin-Helmholtz process, shown in Figure B1.2, describes the slug flow

initiation. There are two main assumptions in the process:

The inlet phase velocities are constant and perfectly stratified flow as initial

conditions.

Then a localised disturbance is applied at the interface between phases shown in

Figure B1.2a, which results in the following points:

• A pressure drop caused by acceleration of the gas phase due to restriction in

the area.

• An upward force on the liquid phase, which may cause a wave to be

developed if it is comparable with the liquid layer weight as shown in Figure

B1.2b .

• Any further acceleration in the gas phase and pressure drop might cause a

complete blockage in the pipe, see Figure B1.2c. However, not every

blockage of the pipe can cause a liquid slug. There are specific subsequent

processes that cause the slug flow to be built-up. For example, immediate

build-up of gas pressure at the rear of the pipe blockage, rapid pickup and

assimilation of the liquid layer in the front of the blockage, as a result rapid

slug growth.
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(b):

~

~

~

~~~~t~~f.;;:~~

(c):

Figure B1.2 Formation of slug flow by Kelvin-Helmholtz instability mechanism:

Stewart (2001).

(a) localised disturbance on a perfectly stratified film; (b) pressure drop and wave

growth; (c) bridging of the pipe, acceleration of the blockage, and the pickup of fluid

B.1.1.2S1ug Zone Structure

Stewart (2001), visually observed the slug zone to be divided into three regions

namely; front region, the body of the slug, and the tail region. Also, the effect of the

increase of the gas phase velocity is shown in the same Figure B1.3.

Starting from the lowest to the highest gas flowrates, the following flow regimes can

be observed;

• The plug flow condition, which occurs at the lowest gas flowrate shown in

Figure Bl.3a.

• Slug flow as shown in Figure B1.3b, which occurs by an increase in the gas

phase flowrate. In this case, the incoming flow is diverted into a mixing

vortex and accelerated to the slug velocity, causing a large irreversible

pressure drop in the system.
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• And by increasing the gas flowrate the incoming film velocity increased, and

there will be more gas and liquid within the mixing zone shown in Figure

B1.3c.

• Then by reaching the highest gas phase flowrate, the flow will reach the slug­

annular condition illustratedby Figure B1.3d.

(a);

(b);

(c):

~_."~
(d);

Figure B1.3 The observation of the relative motion of the liquid phase within the slug

body, in reference translating with the slug front, Stewart (2001).

(a) Plug flow (low gas velocity); (b) slug flow Jg ~3 mso-l ) ;(c) slug flow (3<Jg <7

mso-I ); (d) slug annular flow ( J g >7ms/\-1)

B.l.l.3Film Zone Structure

Stewart (2001), observed that, the length of the film zone far exceeds the slug length

within the film zone structure.

Some key factors about the film zone are summarised as follows:

• When the gas and liquid flowrates are very low, there will be a close

resemblance to smooth stratified flow. Large waves and precursor waves may

appear over the film body.

• By increasing the gas flowrate, gradual gas bubbles from the previous slug

zone will be released, and lateral curvature of the film interface occurs. At the

end the film geometry creeps round the perimeter to create a liquid annulus
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with considerable spray in the gas space, as annular flow conditions are

approached.

• By further increasing in the liquid flowrate, towards the bubble flow

conditions, a well-defined curved film profile will develop. And obviously,

there is a notable reduction in the film zone length, and at the same time the

number of developing features between slugs occurs.

B.1.1.4S1ug Frequency

Slug frequency, v, is defined as the mean number of slug unit which passes a fixed

observer in unit time, and increases with increasing liquid flow rate and decreasing

pipe diameter. For positive inclination from the horizontal, the slug frequency

increases with increasing pipe inclination. Correlations for the slug frequency, v, have

been reported, Gregory and Scott, (1969).

Gregory et al, (1978), Related slug frequency to slug velocity and proposed a

correlation based on their data (carbon dioxide-water system in 19 mm diameter

horizontal pipe). Slug frequencies were determined from visual observations and

pressure pulse recordings. Gregory and Scott, (1969) developed their correlation in

term of modified Froude number defined as follows:

[

2 ]1.2
V = 0.0226 it 19.75.+ i

gD }
(B.1)

Where i is the total superficial velocity. However, equation (B.1) is restricted to use in

low-pressure applications.

Manolis (1995), took the original correlation of altered Gregory & Scott, 1969) and

extended it to high pressure applications, resulting in the similar expression:
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B.1.1.5Slug holdup

[
2]1.8

V = 0.0037 if 25 ~ i
gD ]

(B.2)

The average liquid holdup in the slug zone has been found to be dependent on fluid

properties, pipe diameter and inclination

Gregory et al (1978), measured the liquid volume fraction using capacitance-type

volume fraction sensors in a light oil-air system for 25.8 mm and 51.2 mm diameter

horizontal pipes:

(B.3)

Andreussi and Bendiksen (1989), studied the inclination effect on the slug holdup, for

air-water flow in horizontal condition for a 50mm and 90mm pipe diameter. The

models for slug pickup and return at the front implied a strong dependence of as

upon the relative slug front velocity. This model was used to develop a semi­

theoretical correlation of the form:

(BA)

Where expressions for parameters fJ, Vm/ and Vmo are presented in the original report.

The resulting correlation is rather complex; a simple fit to the experimental data are

given by the expressions:

s={ -1 }1 i-<2.5ms
1.242-0.263In i 2.5~ms -1

(B.5)

At large gas superficial velocities, the slug holdup takes a minimum value defined by

1/ fJ which is approximately equal to 0.5.
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B.1.1.6S1ug Length

Slug frequency and slug length are related parameters , linked to the time of passage of

the slug unit. Although a large statistical variation around the mean value of the slug

length, Isexists, the observed experimental mean slug length values are independent

of gas and liquid flow rates and range between 12-30 pipe diameters for slug flow,

Manolis (1995).

Unlike the slug frequency and the slug holdup correlations, in which described above,

the slug length is relatively independent of gas and liquid superficial velocities, Brill

et al (1981), developed a correlation to predict liquid slug length for larger diameter

pipes, based on their data from 305 mm and 406 mm diameter test lines and on data

from 102 mm and 178 mm diameters pipes, and is given by:

In(3.2808Is ) = -2.663 + 5.441[ln(39.37D )]0.5 + 0.059In(3.2808Vm ) (B.6)

In large diameter pipes, Scott et al (1986), proposed the following correlation to

calculate slug length:

In(3 .2808I s ) = -25.4134 + 28.4948[ln(39.37D )]0.1 (B.7)

Nydal et al (1992), used horizontal pipes (53 mm and 90 mm) to measure the length

of the slug. The range of the superficial velocities

is it = 0.6 - 3.5ms- 1;i g = 0.5 - 20ms-1
• He came up with an equation and that after

distinguishing between developing and developed slug, and neglecting the former

one,

(B.8)

B 1.2 Multiphase Slug Flow Parameters Analysis

Capacitance and Conductance sensors both offer a wide bandwidth. However, the

capacitance sensor allowed the measurement of oil and water continuous mixtures,
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compared with conductance sensors which can only operate properly with water

continuous mixtures.

Some procedures are proposed to characterize the flow through the analysis of the

slug flow by analysing the capacitance sensor signal output, which allows the main

slug flow parameter, such as slug velocity, length, frequency, hold-up to be evaluated.

The procedure is validated through extensive comparisons with literature data based

on two-phase data and flow visualisations by means of video images of the slug

flows, which shows a general agreement with present measurement. The operating

conditions cover a wide range of gas and liquid superficial velocities, in a 4 inch

(l02mm) horizontal pipe for both two-phase & three phase flows.

However, correlations used to compare the results cover a wide variety of test fluids,

pIpe diameters, pipe inclination and phase superficial velocities. The

description/characterisation of slug flow with tests and analysis carried out with this

experiment is therefore based on available two-phase data, as there are no previous

results for three-phase flow.

From the plot of the liquid hold up versus time the number of slugs during the

observing period can be obtained and residence time ~'ti was associated with the ith

individual slug, shown in Figure Bl.4. To this aim, two threshold values have been

introduced. These values are the minimum liquid holdup HL,slug (slugs that don't

achieve HL,slug are considered travelling waves and discarded from counting) and the

cut liquid holdup HL,c according to which the residence times are calculated. In

particular the above relationships were introduced, based on a preliminary sensitivity

analysis:

HL,slug = Max(O. 9 Hmax,Hs) (B.9)

{
-

H - H if
LC -
, 0.8 if
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Where H = 1- a represents the time-average liquid holdup, Hs = 1- a s is the

average liquid holdup of the liquid slug body , and Hmax is the maximum liquid holdup

recorded value.
-

The average residence time L1 t: and the slug frequency u can be obtained from

counting the slug.

1.1 -.----------- - - - --------------,

1 F "I!'U'v''''vvvvyc._._._._._._. ._._ ._ ._ ._ ._._._-_._.-

0.9

:I:
Q.
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'tl
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HL,c

0.6

16.2515.7515.25
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14.75

0.5 +------ ---.-- - - - - ---,----- - - ----,--------1
14.25

Figure B1.4 Liquid Holdup Vs Time from Capacitance Sensor Signal

The slug translational velocity Vt can also be calculated from the phase continuity

equation as a function of the liquid superficial velocity VstJ gas superficial velocity

VSG and their sum, the mixture velocity VM.

V
- VSLH slug. V M

11 -
I-a -Hslug

(B.1l)

where H slug is the average liquid holdup in the slug body as calculated on the basis of

counted liquid slugs.

Neglecting the amount of gas present in the liquid slug, the equation becomes:

V = VSG = VSG
12 --

l-H a
(B.12)
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Appendix C Additional Information on the Data Acquisition System
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1. AID & CTR Dig.vi

This VI controls the data collection process. It configures the AID and counter

cards and also controls the operation of each so that analogue and pulse data are

collected synchronously. A configuration case runs during the first iteration of the

main programme, allowing the user to check and adjust calibration constants. The

MENU allows this configuration case to be run at any time during execution of

the main programme.

The order of execution is as follows:

1. The AID card is configured for triggered operation. Data

collection will start when a DIGITAL pulse is received on PFI6.

This pulse is generated when analogue output (Ala) channel 0

starts. This is controlled by software.

11. The Timer/Counter card is configured to collect pulses on the

SOURCE pin of counter O. A signal on the GATE pin determines

the frequency at which the pulse count is read. The GATE signal

is generated on Ala channel 0 of the AID card at the same

frequency as the data collection rate. In this way the pulse count

is updated at the same rate as the analogue signals.

111. Ala channel 0 is started. This triggers the counter and AID at the

same time, thus synchronising data collection on both devices.

2. Cals. & ADC.vi

During the first iteration of the main programme loop this VI displays a list of the

calibration constants for the analogue channels. It also configures the AID card

for the required operation (triggered) and sets the sample rate. During subsequent

iterations, it reads the sampled data from the input buffer. This is normally done

once every second but the frequency may be altered. For example, if the sample

rate is 1kHz and the loop time in the main programme is 1 second, this VI will

request 1000 data points from the input buffer. If delays have occurred and a scan

backlog has built up, the VI will read the outstanding samples available. In order
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to keep the AID and counter scans synchronised , the same number of counts will

be requested from the counter buffer.

3. Counter ADC

During the first iteration of the main programme, this VI configures the

counter card for buffered data collection. Pulse counts are stored in the buffer

every time a pulse is received on the GATE pin. During subsequent iterations,

the input buffer is read at the same frequency as the AID buffer. Thus the two

cards produce data at the same rate. If a delay has occurred and a scan

backlog has built up, the amount of data to be retrieved from the AID and

counter buffers will be the greater of the two outstanding amounts.

4. Generate Gate.vi

During the first iteration of the main programme, this VI starts generating a

square wave signal from AlO channel 0 of the AID card. The frequency is the

same as the AID sample rate.

5. Meters.vi

This VI displays the values of each of the sampled channels. For the analogue

signals, the value shown is averaged over the loop time (typically 1 sec.). The

pulse count value is the number of pulses accumulated during one iteration of

the main programme.

6. Serial Read.vi

The Multiphase Data Collection computer at N.E.L. has been programmed to

transmit a byte string over an RS232 Serial link. This VI reads and parses the

byte string. The Serial Link Utility document prepared by Kyle Systems and

Consultancy gives details of the string. The VI checks the format of the string

and where an error has occurred, requests the N.E.L. computer to retransmit

the string.
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7. Data File Control.vi

This VI creates a data file for each test point. When the "START" message is

received, a data file is created. The filename contains the characters defining

the test number and test point number. The date and time values contained in

the serial string are written to the data file header. When the "STOP" message

is received, the data file is closed. This VI also allows the user to manually

save data if the serial link is not available or is not used.

8. Validation

The programme was checked in 3 stages.

1. The sub-VI' s have a "simulate" setting that allows test values to be

input in order to check correct data flow and the results of calculations.

In this mode, it was possible to check for the correct passing of data to

the data file.

11. The programme was tested dynamically using reference inputs from a

calibrated voltage source.

111. Synchronisation of the AID and counter data streams was done using a

function generator. A square wave was connected to the AID inputs

and the counter SOURCE pin. Data was streamed to disk and a step

change was made to the frequency of the square wave. The count data

and analogue values were compared. With the GATE signal used to

trigger both cards, there was no measurable delay between the signals.

The test was repeated several times, using different frequencies of

square wave and at different sampling rates. Without the GATE

signal, there was a noticeable delay between the two signals (up to

O.25s). The delay was not repeatable.
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Appendix D Details of accompanying DVD
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The companion DVD of this PhD thesis contains the following materials:

1. Experimental Data Folder

a. Sensor Response Database for Multiphase Flows

1. <README.txt> a general description of the data structure

11. Tests Data NELMU06 01-19 (50g/1 MgS04 Salinity)

111. Tests Data NELMU06 21-37 (lOOg/1 MgS04 Salinity)

IV. Tests Data NELMU06 38-44 (lOOg/1 MgS04 Salinity - Location 2)

b. Template Folder

v. <INSTRUCTIONS.txt> is a set of a simple to follow
instructions to enable the users import data to the template to
view the data.

IV. <NELTEMPLATE.xls> is a spreadsheet in Microsoft Excel
format. It contains the summary of all the data files including
test conditions and flow regimes.

2. Results Folder Contents

a. Data Analysis Samples (Feature Extraction) and PR Meter
Performance in Microsoft ExceL

b. Test Matrix (Calculated Superficial Gas and Liquid Velocities)

c. Sample Matlab Codes

3. The DVD also contains the complete PhD thesis in .PDF format
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