
CRANFIELD UNIVERSITY

Ian Cowling

Towards Autonomy of a Quadrotor UAV

SCHOOL OF ENGINEERING

PhD THESIS



CRANFIELD UNIVERSITY

SCHOOL OF ENGINEERING

PhD THESIS

Ian Cowling

Towards Autonomy of a Quadrotor UAV

Supervisor: Dr J.F. Whidborne

October 2008

c©Cranfield University 2008. All rights reserved. No part of this publication may be
reproduced without the written permission of the copyrightowner.



i

Abstract

As the potential of unmanned aerial vehicles rapidly increases, there is a growing interest
in rotary vehicles as well as fixed wing. The quadrotor is small agile rotary vehicle con-
trolled by variable speed prop rotors. With no need for a swash plate the vehicle is low
cost as well as dynamically simple.

In order to achieve autonomous flight, any potential controlalgorithm must include trajec-
tory generation and trajectory following. Trajectory generation can be done using direct
or indirect methods. Indirect methods provide an optimal solution but are hard to solve
for anything other than the simplest of cases. Direct methods in comparison are often
sub-optimal but can be applied to a wider range of problems. Trajectory optimization
is typically performed within the control space, however, by posing the problem in the
output space, the problem can be simplified. Differential flatness is a property of some
dynamical systems which allows dynamic inversion and hence, output space optimization.

Trajectory following can be achieved through any number of linear control techniques,
this is demonstrated whereby a single trajectory is followed using LQR, this scheme is
limited however, as the vehicle is unable to adapt to environmental changes. Model based
predictive control guarantees constraint satisfaction atevery time step, this however is
time consuming and therefore, a combined controller is proposed benefiting from the
adaptable nature of MBPC and the robustness and simplicity of LQR control.

There are numerous direct methods for trajectory optimization both in the output and
control space. Taranenko’s direct method has a number of benefits over other techniques,
including the use of a virtual argument, which separates theoptimal path and the speed
problem. This enables the algorithm to solve the optimal time problem, the optimal fuel
problem or a combination of the two, without a deviation fromthe optimal path.

In order to implement such a control scheme, the issues of feedback, communication and
control action computation, require consideration. This work discusses the issues with
instrumentation and communication encountered when developing the control system and
provides open loop test results.

This work also extends the proposed control schemes to consider the problem of multiple
vehicle flight rendezvous. Specifically the problem of rendezvous when there is no com-
munication link, limited visibility and no agreed rendezvous point. Using Taranenko’s
direct method multiple vehicle rendezvous is simulated.
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6 Introduction

Chapter 1

Introduction

An Unmanned Air Vehicle (UAV) can be defined as (Newcome 2004)“A powered, aerial
vehicle that does not carry a human operator, uses aerodynamic forces to provide vehicle
lift, can fly autonomously or be piloted remotely, can be expendable or recoverable and
can carry a lethal or non lethal payload.” Unmanned vehicleshave been around for a
considerable amount of time. In 1917 Elmer Sperry demonstrated his sea plane which
was gyrostabilized and capable of navigating itself (Newcome 2004). In recent times
UAV capability has increased considerably and unmanned flights are being developed for
a range of military operations eg. (Gibbs 2005) as well as other specific tasks such as
power line inspection (Sinhaet al.2006) and coast guard operations eg. (O’Donnell and
Dorwar 2006). The next section discusses just a couple of many potential applications for
UAVs.

There is also interest in smaller UAVs and especially UAVs capable of internal flight.
For internal flight the demands are obviously very different, with agility, low speed and
safety coming to the fore. There are a number of different airframes being researched
for internal flight; the three major ones being low speed fixedwing vehicles, flapping
winged vehicles and rotorcraft such as the quadrotor. Low speed fixed wing vehicles are
simple dynamically but are not as agile as rotorcraft because minimum velocity must be
maintained. Flapping-wing UAVs are capable of hover but aredynamically complex and
still in the very early stages of development. The quadrotoris a small four-rotor helicopter,
two examples of which are shown in Figure (1.1) and Figure (1.2). Controlled only by
the speed of the four rotors, it possesses relatively simpledynamics. Its light weight and
agility make it suitable for internal flight as the propellerrotors can be replaced by ducted
fans. There has been extensive research into the quadrotor with its simple dynamics
making it an excellent testbed for advanced control techniques. Section 1.2 discusses
the quadrotor and potential applications for such a vehicle.

Autonomy when related to an aerial vehicle implies the vehicle is not controlled by others
or an outside force. There are, therefore, many aspects to consider in order to achieve
autonomous flight such as path planning, trajectory planning, trajectory following, health
diagnosis, adaption to different flight conditions and state feedback. This work will con-
sider trajectory generation and trajectory following in depth. Path planning is the determi-
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Figure 1.1: Draganflyer X-Pro at Cranfield

Figure 1.2: Draganflyer V at Cranfield
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nation of a feasible and ideally an optimal flight path to reach the destination. Trajectory
generation is the determination of an optimal path which is time dependent, this may also
include the determination of all the vehicle’s states over this time. For full autonomy
a trajectory generator should be capable of running in real time and ideally on board.
Trajectory optimization should also be capable of running in conjunction with a mission
planner, which may be a path planning algorithm such as Probabilistic Road Maps (PRM)
(Pettersson and Doherty 2004), or independently for example within a visual field. Tra-
jectory generation will be discussed further within Section 1.5.

Once a trajectory has been determined it is obviously necessary to follow that trajec-
tory. To do this there are many potential control schemes both linear and non-linear. The
quadrotor itself has been a testbed for many different control techniques as its dynamic
simplicity makes it ideally suited to the testing of advanced controllers. Trajectory fol-
lowing will be further discussed in Section 1.6.

There are many instances in which it could be beneficial to deploy multiple vehicles as
opposed to a solitary vehicle. Advantages of multiple vehicles include; increased and
improved surveillance area, increased payload and reducedrisk due to a degree of vehicle
redundancy, as single vehicle failure does not necessarilyresult in mission failure. Multi-
ple vehicle literature is extensive and there are many potential strategies for multi-vehicle
co-operation both in centralized and decentralized situations. This work will therefore
look at a specific problem, to demonstrate the capabilities of the quadrotor, as well as
the control schemes presented. This multiple vehicle problem will be discussed further
within Section 1.7.

As discussed, trajectory generation will ideally be capable of running in real time and on
board, however, the solving of a non-linear constrained optimization is usually a com-
putationally demanding process. It is necessary therefore, to consider techniques which
reduce computation time in order to achieve real-time optimization. Analysis of the tra-
jectory generation algorithm shows that a large percentageof the computation time is used
to calculate the gradients of the constraints and cost function. Automatic differentiation
is a computational technique for providing these gradientsthat has potential for reducing
computational time. This will be reviewed in depth in Section 1.8.

Once a control algorithm has been developed, issues such as feedback, instrumentation
and communication need to be considered, before it can be implemented. There are many
potential approaches to designing such a system with emerging technology providing low
cost and lightweight alternatives to existing technology.The requirements and potential
designs will be reviewed in Section 1.9

This introduction will conclude with an outline of the thesis, publications resulting from
this work and contributions made within this work.
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1.1 Potential Applications for UAVs

The list of potential UAV applications is endless and would include numerous surveil-
lance, search and rescue applications as well as specific tasks such as fire fighting. Gen-
erally, UAV application is envisaged within the ‘3D’s’ environment which refers to dan-
gerous, dull or dirty environments; in other words for occasions where it is not desirable
to use a human pilot. There are of course other examples. For instance it may be cost ef-
fective in some cases to deploy UAV’s for coastguard patrolling (O’Donnell and Dorwar
2006). This work is not intended to develop the quadrotor fora specific application, how-
ever, it is evident there are many potential applications, many of which will have general
requirements of such a system. Therefore, it is useful to consider these requirements of
the general case before considering the control system design.

Unmanned air vehicles have many potential applications butsearch and rescue in a haz-
ardous environment is arguably the most likely. Rescue robots were first used in 2001
for the rescue mission in the World Trade Center disaster (Murphy 2005). 3 years later
they were deployed but not used. for the rescue mission afterhurricane Charley, high-
lighting the need for “other robot modalities (air,water)”(Murphy 2005). Rotorcraft have
been used for real surveilance and rescue missions as discussed within Murphy and Stover
(2006) and Murphyet al. (2005). Typically each mission lasts around 15 minutes and is
performed within a visual field. There are also many potential indoor applications such as
internal factory inspection, reconnaisance within an urban environment and observation
of a structually unsafe building. At a later point within this chapter there will be a review
of way point or global generation schemes such as the MILP scheme (Richards and How
2002) and roadmaps (Kavarakiet al.1996). These schemes consider the global trajectory
or path planning problem in which there may be several obstacles or ground threats to the
vehicle. For the missions discussed here it is more likely that a short trajectory will be
required, to peer around a corner for example. Such trajectories are frequently critically
dependent upon time. This is a different problem to the one considered within Richards
and How (2002) and Kavarakiet al. (1996) and therefore requires a different approach.

One potential application for an unmanned air vehicle is landmine detection and removal.
Current techniques are slow, tedious and present significant threats to human life (Harris
2000). There is therefore a significant interest in a UAV capability to scan an area to
detect potential landmines. Within Rajasekharan and Kambhampati (2003) some require-
ments are presented to describe aspects of any proposed vehicle, these have been widely
accepted by researchers within the area. This list providesa useful design criteria for
UAV development, which arguably, the quadrotor would potentially fit very well.

1. Low cost, lightweight and high mobility.

2. Control and communication. At least remote control or semi autonomous.

3. Sensor integration.

4. All-terrain robot.

5. Simplicity of operation, should not require extensive training to use.
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The requirement for the system to be low cost is extremely important. Referring again to
the 3 D’s, it is unlikely that a hugely expensive UAV will be deployed into a potentially
dangerous environment. The second point “at least semi autonomous” and the final point
“should not require extensive training” are in many ways synonymous and this will be
discussed latter within Section 1.3. However, the higher the degree of autonomy and
the subsequent reduced workload on the operator, are extremely important factors within
UAV development. Finally, sensor integration should be by no means a final thought,
after all in the majority of situations the sensor is the reason for the UAV development in
the first place, this has led to a common referal to UAV’s as Unmanned Air Systems.

1.2 The Quadrotor

The quadrotors shown in Figure (1.1) and Figure (1.2) consists of a central unit hous-
ing a lithium polymer battery with 4 equal length arms supporting prop rotors which are
powered by DC motors. The quadrotor is available off the shelf and the Draganflyer V
is the most commonly used vehicle (RCToys 2008). It comes with 3 gyroscopes on the
central unit, providing some basic stabilization for the vehicle. The vehicle is controlled
using a 4-channel radio control which controls thrust, rollpitch and yaw. These vehicles
typically range from around 0.5m (Figure 1.2) to 1m (Figure 1.1). There have been at-
tempts to build in-house quadrotors (Poundset al.2002), generally though, the dynamics
for all the different models remain the same. There are some exceptions, however, such as
Dodd (2007) where the rotors can be tilted to achieve translational motion without rotating
the vehicle. Generally, the 4 rotors control the 6 degrees offreedom, therefore, making
the system under-actuated, although a certain amount of decoupling of the control inputs
makes the control laws relatively simple, especially at fixed angles of yaw (Madani and
Benallegue 2006). As the vehicle is controlled only by varying the speed of the 4 rotors,
the vehicle possess relatively simple dynamics and is, therefore, an excellent testbed for
advanced control techniques, which is evident through the diversity of publications on the
subject. The advantages of such a vehicle, other than its dynamic simplicity include i.) its
agility, as it is essentially omni-directional and ii.) therotors are at fixed angles of pitch,
making the construction of a quadrotor simple as well as cheap.

As discussed, the quadrotor is available off the shelf, but the Draganflyer range is not
capable of closed loop guidance control without modification to achieve feedback, de-
termination of the control action and actuator control. Instrumentation of the quadrotor
is a relatively challenging problem because these models have a limited payload which
prevents the addition of numerous additional sensors. Potential experimental setups will
be discussed further within Section 1.9.

There are many different institutions and control groups looking at the quadrotor. A
major contributor to quadrotor literature is Castilloet al. (2005). This group, based in
Compiegne, France, has worked on backstepping with nested saturations, for real-time
control of the quadrotor, for take-off, hover and landing (Kendoulet al.2006). In Castillo
et al. (2004) these are used to stabilize the quadrotor and this waspossibly the first paper
to demonstrate successful control of the quadrotor. In Castillo et al. (2006) this nested
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saturation approach is compared with classical PD control,the benefit of the nested satu-
rations algorithms is shown to be an improved handling of disturbances.

There is also significant quadrotor research from the Swiss Federal Institute (Bouabdal-
lah et al. 2004b), where there is also interest in backstepping for stabilization, which
in Bouabdallah and Siegwart (2005) is compared with slidingmode control. These are
compared on a fixed rig allowing the quadrotor two degrees of freedom and also through
simulation. In Bouabdallahet al. (2004a), PID and LQ control are compared in the same
way. Again these results show the excellent disturbance rejection from applying back-
stepping control, although all four control schemes perform reasonably well.

Sliding mode control, backstepping and dynamic feedback for stabilization and simple
trajectory tracking have also been considered by the Robotics Laboratory of Versailles
(Mokhtari et al. 2006, Madani and Benallegue 2006, Mokhtari and Benallegue 2004).
It was found that the dynamic feedback control is insufficient to cope with significant
external disturbances, the sliding mode controller provedto be much better in simulation.
The backstepping controller performed well in simulation and in a 2 degree of freedom
experiment.

There appears to be a trend within these papers suggesting that traditional linear con-
trollers are not sufficient for stabilization of the quadrotor, however, there are papers to
the contrary. In Tayebi and McGilvray (2004), two differentPD controllers are proposed.
The first with compensation of the Coriolis and gyroscopic torques, the second without.
These are shown to be effective in simulation and in Tayebi and McGilvray (2006) through
experimentation again on a 2 degree of freedom test rig. The benefit of the compensation
of the Coriolis and gyroscopic torques is not evident in the results, this is thought to be
due to the relatively low speed, for higher speeds this may besignificant.

Other examples of trajectory following controllers include Chen and Huzmezan (2003b),
whereH∞ is considered. The results through simulation show good tracking as well as
good disturbance rejection. In Driessen and Robin (2004) a two phase controller is pro-
posed in which the first phase considers attitude and the second phase position and yaw
angle. Using differential flatness, global convergence of the tracking error to zero is
proven assuming positive thrust.

There are considerably fewer trajectory generation papersfor the quadrotor. In Beji and
Abichou (2005) output space trajectory generation is considered using differential flat-
ness. This paper only considers straight line trajectoriesusing a simple parameterization
and is, therefore, not considering optimality and is assuming feasibility of the straight
line.

Now, the papers reviewed so far are usually based on simulation results with a number
also including results from a 2 degree of freedom experimental rig. The main reason for
this is the problem with determining the position of the quadrotor in flight as GPS is not
available indoors. There are a number of alternatives for solving this problem. In Valenti
et al. (2006) the testbed at MIT is described. Consisting of Vicon ground cameras and
a number of quadrotors with visual markers, this system provides accurate attitude and
position feedback to a ground station, however, the system is certainly not cheap and does
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not offer a commercial solution.

At Stanford University a multiple vehicle testbed is used for comparison of design control
techniques (Waslanderet al. 2005). This testbed with a capacity for up to 8 vehicles
(Hoffmannet al.2004) is only operational outdoors however as it relies on GPS.

A cheaper solution which has been considered by a number of institutions is that of visual
feedback. In Altuget al. (2002) and Altug and Taylor (2004) two cameras are used for
POSE (Position and Orientation) estimation, one camera is onboard the vehicle and the
second is a ground based pan tilt camera. This set up is used tocompare nonlinear control
techniques. However this is not a complete solution as notedin Altug et al. (2002) ‘A he-
licopter can not be fully autonomous if it depends on an external camera.’ In Chitrakaran
et al. (2006) a single onboard camera system is proposed which tracks a moving ground
vehicle. Finally in Hamelet al.(2002) a circular trajectory is followed, using a positional
estimate, obtained through an onboard camera, viewing a square target on the ground.

1.3 Autonomy

Autonomy or an autonomous vehicle are widely used phrases, of which the meaning can
vary from author to author. The literal sense of the word would imply that there is abso-
lutely no human interaction with the vehicle but this is rarely the case as human interaction
is commonly required for take-off and landing as well as refueling. As advances in UAV
technology enable a potentially greater degree of autonomy, the question of what level of
autonomy is actually required demands increasing consideration. In the same way it is
likely that commercial aircraft will continue to be controlled by highly qualified pilots,
UAV’s are likely to operate with a human in the loop. Safety issues are obviously a driv-
ing factor for this but also public perception is equally important. Recently Merseyside
police announced plans to trial quadrotors for tracking criminals and recording antisocial
behavior. This was met with a public outcry regarding an apparent ‘erosion of civil lib-
erties’ (Telegraph 2007). Hence consideration of social impact of autonomous vehicle
deployment is important.

Regardless of the required level of autonomy there are, as always, extreme examples.
One such example can be found in Ieropouloset al. (2004) where a robot searches the
surrounding area for slugs which it can use as a bio-fuel. A less extreme solution for
recharging of a UAV could potentially use solar cells to remove the need for any hu-
man interaction. Typically though a much lower degree of autonomy is required and is
necessary for safety and public acceptance. Figure 1.3 plots the development on UAV’s,
from 1955 through to the current day, as well as the predicteddevelopment up to 2025,
against a quantified degree of autonomy (DoD 2005). In the 1980′s, UAV’s were capable
of remotely guided flight, in the 1990′s technological advances enabled vehicles such as
Global Hawk to have real-time health diagnosis capabilities. As technological advances
accelerate, it is predicted that UAV’s will soon have the capabilities for onboard route
planning, as well as the development of multiple vehicle algorithms, this could be devel-
oped to achieve multiple vehicles cooperation, enabling individual members to operate
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Figure 1.3: DoD Roadmap to autonomy, (DoD, 2005)

within fully autonomous swarms. Figure 1.3 splits autonomous control into 10 levels
from the most basic which is remotely piloted to level 10 which is fully autonomous
swarms. In this context this work looks at how a remotely piloted vehicle can be devel-
oped up to level 4 capability, this includes the ability to adapt to flight conditions and
onboard trajectory planning.

The degree of autonomy is not just dependent on capability. In many cases the level of
autonomy is constrained by safety regulations such as within controlled air space where
the flight plan must be submitted pre-flight. Figure 1.4 showsa basic hierarchical con-
trol structure for UAV operation, however, the precise content of each box depends on
the degree of autonomy of the system. The top level of the system is the operator who
sets out the mission objectives, these may be specific waypoints but may be more general
such area surveillance. For shorter missions the operator may simply set some terminal
conditions. The next level is a mission planner, this would be required for longer missions
where there are more than a single set of waypoints. The mission planner is essentially
what is also know as a navigational algorithm. The role of such an algorithm is to solve a
path planning problem to determine a sequential list of waypoints. The trajectory gener-
ation would determine a feasible and ideally but not necessarily optimal trajectory to get
between waypoints or to the final destination. This differs from a path planning algorithm
as the resulting trajectory is in 3 dimensions and a functionof time. Trajectory generation
could be referred to as a sophisticated guidance algorithm.Finally a trajectory follower
would ensure that the vehicle follows the reference trajectory generated by the trajectory
generation algorithm. This is essentially the control law within the hierarchical structure.
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Figure 1.4: Hierarchial Controller

Ideally, out of regulated air space this control scheme would operate on board as this
would enable re-optimization and redefining of the mission plan if required. In the case
where the flight is within controlled airspace and the flight plan is submitted pre-flight, the
trajectory planner could be implemented as part of a sense and avoid scheme, in which the
vehicle may need to leave the pre-determined flight path momentarily to avoid collision,
in this case the objective is to rejoin the original flight path after deviating from this path.

Figure 1.4 shows how the hierarchical structure can be builtinto a UAV such as the
quadrotor. The mission planner determines some initial andterminal states which are
fed forward to the trajectory generation algorithm, essentially this is an instruction to get
from one point to another. The trajectory generation then optimizes a reference trajectory
to get between these points which is then used to calculate a state error signal using full
state feedback, this error is then fed into the trajectory following algorithm. The trajec-
tory following algorithm then calculates a demanded actuator output based on this signal.
Built into the quadrotor is some degree of gyroscopic stabilization, this forms an inner
loop stabilizer although this is not sufficient for hands-free flight. The actual signals sent
to the motors are therefore a combination of the trajectory following algorithm and this
inner loop stabilization.

1.4 Path planners

There are numerous path planning algorithms, these schemesprovide effective path plan-
ning schemes which are suitable, for example, within the mission planner in Figure 1.4.
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Figure 1.5: Hierarchical controller

Path planners are typically split into two categories; local and global planners (Kamalet
al. 2005). Global planners require global knowledge beforehand and therefore any envi-
ronmental changes such as a new obstacle or moving obstacle will require a reoptimiza-
tion of the path. Local planners are computationally less demanding than global planners
and, therefore, more likely to be able to be run on board. However, consideration of the
local problem, may lead to a globally sub-optimal solution and possibly a globally in-
feasible flight path. As computational demand is of great importance and the globally
infeasible solutions arising from local planners are to be avoided, alternatives have been
considered. In Pettersson and Doherty (2004) an initial global planner is responsible for
determining a flight path for the entire flight offline. An online local linear planner is then
used to pass through the way points generated but also to avoid any potential collision.
An alternative approach is shown in Kamalet al. (2005) where a local planner is used to
determine a trajectory and in the event of the trajectory becoming infeasible at a future
time the constraints are softened to find a new optimal path.

1.4.1 Mission planners and global planners

Roadmaps, sometimes referred to as skeletons, reflect the geometric structure of the envi-
ronment in a similar way to how a skeleton reflects the geometry of a body. In the likely
absence of a physical roadmap these are constructed using some probabilistic approach
in which a quantative analysis of the environment provides some structure of potential or
optimal pathways. Probabilistic roadmap (PRM) algorithmsdeveloped by (Kavarakiet
al. 1996) and adapted by (Pettersson and Doherty 2004) provide an excellent example of
PRM capabilities. The roadmap within Pettersson and Doherty (2004) is generated using
a world model offline to generate a collision free path. The roadmap is then linearized and
an A* search is performed to determine a linear path which is then smoothed or replaced
with splines using a local planner. An A* algorithm performsa search within a nodal
space by estimating and ranking the nodes in terms of the estimated best path through
that node, it then visits the nodes in that order starting with the best estimate and is hence
called a ‘best first’ algorithm.

It is likely that any global planner will be constrained. In an urban environment there
are obviously buildings which must be avoided. In regulatedairspace there are specified
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flight paths which must be followed. In a combat situation it is likely that the vehicle
will be required to fly the safest route, in this case it is constrained to fly a safe distance
away from threats. In Guet al. (2004), Voronoi graphs are constructed by evaluating the
hit probability over an area of a number of SAM (surface to airmissiles) sites. Voronoi
polygons are constructed with the important property that along the edge of any polygon
is the maximum distance from the perceived threat. This therefore constructs a network
or roadmap of the potential paths. The optimal path through the region is then chosen
using a cost function which sums the estimated risk cost and the fuel cost to fly along the
path.

A common approach to path generation is Mixed Integer LinearProgramming (MILP)
(Richards and How 2002). This technique, in a similar way to PRM, provides a global
optimal trajectory, typically through an multi-obstacle terrain such as an urban environ-
ment with many buildings. This scheme presents and solves the problem using linear
programming which provides efficient route planning for a UAV especially in a complex
environment where, for example, there are many buildings orthreats to the UAV such as
ground to air missiles. Formulating the exact problem and finding the optimal path using
MILP is computationally demanding and, thus therefore, in (Kim et al.2007) alternative
formulations are proposed which guarantee a solution (albeit sub-optimal) close to real
time.

1.5 Trajectory Generation

Trajectory optimization is the determination of a feasibleand optimal time dependent
path to the desired location. In order for the trajectory to be feasible it must consider
dynamic constraints of the vehicle and actuator constraints. Potential dangers must also
be considered such as collision with obstacles, other vehicles and in some cases threats.
The algorithm must also be computationally efficient to be run on board as well as able to
run in real time.

Trajectory optimization can be split intoDirect MethodsandIndirect Methods(von Stryk
and Bulirsch 1992), an excellent review of both can be found in Betts (1998). “Direct
methods can be described as discretizing the optimal control problem and then solving
the resulting non-linear problem.” (Fahroo and Ross 2000).Indirect methods “rely on
solving the necessary conditions derived from Pontryagin’s minimum principle” (Fahroo
and Ross 2000). Direct methods are increasingly being applied to the solving of optimal
control problems as the indirect methods are “very difficultto solve for all but the simplest
of problems” (Conway and Larson 1998). The indirect method does have an advantage
however, as the accuracy is better than for the direct methodand in some cases a hybrid of
the two is suggested (von Stryk and Bulirsch 1992). Typically though the direct method is
preferred despite the reduced accuracy especially when considering real-time applications
(Kumar and Seywald 1996a).

There are numerous approaches to transforming an optimal control problem into a non-
linear programming problem within the control or state space using the direct method
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(Hull 1997). The two most commonly used of these are the collocation method (Herman
and Conway 1996, Enright and Conway 1992) and the pseudospectral method (Elnagar
et al. 1995). The collocation method involves the reduction of thesolution to a finite
dimensional problem, some points are chosen within this space (collocation points) and
the solution is found which solves the differential equation at these points (Hargraves and
Paris 1987). The pseudospectral method is the “expanding ofthe underlying functions
over a set of interpolating polynomials which interpolate these functions at specific nodes”
(Fahroo and Ross 2002).

A common problem when solving the parameterized optimal control problem occurs
when the data is non-smooth or as noted within Fahroo and Ross(2004) that even smooth
data can have a non-smooth solution. In these cases pseudospectral methods exhibit Gibbs
phenomenon. The Gibbs phenomenon arises from the approximation of a discontinuous
function with a finite sum of continuous functions, this results in oscillations which do
not die out as frequency increases. This is on the whole due tothe predetermined distri-
bution of the discretization points. Within Fahroo and Ross(2004) a knotting method is
introduced to remove these problems by varying the discretization points.

Differential inclusion reduces the size of the parameter optimization problem by removing
the bounded control from the optimizations, instead the states are bounded to sets of
attainable time dependent states (Fahroo and Ross 2001, Seywald 1994). This removes
the time histories of the controls so that the number of variables within the non-linear
program is reduced, as well as the determination of the analytical gradients (Kumar and
Seywald 1996b). A disadvantage of this approach, as argued by Conway and Larson
(1998), is that the implicit nonlinear constraints are required with the lowest possible
order of accuracy and, therefore, the problem is in fact larger than the collocation method
which uses more sophisticated implicit non-linear constraints.

An alternative approach is the transformation of the optimal control problem into the
output space and the evaluation of the objective function and constraints within the state
and control space through dynamic inversion (Lane and Stengel 1988, Lu 1993, Sentoh
and Bryson 1992). A dynamic system which is dynamically invertible can also be termed
to be differentially flat (Fleisset al.1992).

1.5.1 Differential flatness

Differential flatness is a property of some dynamical systems which enables the expres-
sion of the state and control vectors as a function of the output function and it derivatives
(Fleisset al.1992). This one-to-one relationship enables output space trajectory optimiza-
tion as opposed to control space. The benefit of this approachis the simplification of the
optimization problem when the majority of the optimizationconstraints occur within the
output space. For a system to be differentially flat and therefore possessing a flat output
(y) it requires (Chelouah 1997) a set of variables such that;

• The components ofy are not differentially related overℜ;
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• Every system variable may be expressed as a function of the outputy;

• Conversely, every component ofy may be expressed as a function of the system
variables and of a finite number of their time derivatives.

It is quite common to include a positional and velocity term in the output vector of a
system. In a differentially flat system however, the components must not be differentially
related and therefore only velocity or position may be used in the output vector.

Within Martin et al. (1994) the author demonstrates differential flatness for a planar
VTOL aircraft. Differential flatness has also been determined for a helicopter to achieve
reference trajectory tracking within Koo and Sastry (1999). Driessen and Robin (2004)
have developed a differentially flat model of the quadrotor albeit different to the one pre-
sented within this work, this paper also utilises the differentially flat property to track a
reference trajectory. Within Defoortet al. (2007) the differential flatness property is used
within the trajectory optimization to formulate the optimization problem within the output
space which is parameterized using B-Splines.

1.5.2 Real time trajectory generation

Real time trajectory generation is required to produce a reference trajectory or to deter-
mine the control input dependent on the control scheme. Withrecent computational ad-
vances real time optimization is a feasible target and therehas been numerous approaches
to solving the problem. In Ross and Fahroo (2006), a review ofseveral techniques is given
including differential inclusions, control parameterization, flatness parameterization and
high order inclusions. This highlights some key factors to be taken into account, when
considering real-time trajectory generation such as cost function convexity, sparsity and
matrix vector products.

Computation time

It is stated that it is desired that the trajectory optimization is run in real time. What is
meant by real time, in this case it is the ability to redetermine the reference trajectory
online when required so that the vehicle can have a smooth transition from one trajectory
to the second trajectory, without having to revert to hover to wait for the new trajectory.
There are many computational techniques and technologies which can reduce computa-
tion time, for example a Field Programmable Gate Array produced results 330 times faster
than a 1GHz process desktop PC (Yamaguchiet al.2001). In the case where the trajectory
optimization is implemented within a MBPC scheme, the trajectory optimization is run at
the frequency of the control system and therefore in this case real time refers to the ability
to redetermine the trajectory at every control step.
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1.5.3 MBPC

Model Based Predictive Control (MBPC) is an advanced control technique which is es-
sentially a process of repeated constrained optimizationsat each time step. This technique
has been used extensively in the process industry but has yetto be widely applied to other
sectors due to the computational demands of the algorithm. At each time step, the op-
timization minimizes some cost function over a time horizonsubject to a set of equality
and inequality constraints. Typically the time horizon is some fixed time and, therefore,
at each time step as time progresses the time horizon receeds. This is why MBPC is
sometimes referred to as receeding horizon control. The cost function is an approxi-
mate quantitive measure of the optimality of the solution. In the case of path planning,
for example, this could be the minimum distance traveled to reach its destination. The
constraints typically contain dynamic constraints actingon the system as well as user re-
quired constraints such as time constraints, safety constraints and possibly environmental
constraints.

Now, again referring to the example of trajectory generation, assume the vehicle is re-
quired to reach a destination at a set time and by the shortestroute possible. It would
be possible to constrain the time and final destination and tohave some measure of the
shortest distance as the objective function (cost function.) This however applies two hard
constraints to the optimization and one objective function, if the optimization routine does
not find a feasible path to the destination then it will not return a solution. If, however,
the time is entered as a second cost function, albeit with a high weighting, then a solution
may be returned with a time slightly longer or shorter than the initial constrained time.
This technique is often referred to as constraint softeningwhere constraints are referred
to as hard constraints and the objective function is referred to as a soft constraint.

Having given an overview of MBPC it is probably worth exploring the benefits and the
reasons for using this computationally demanding technique. As stated by Mayneet al.
(2000) the “raison d’etre” of MBPC is its constraint handling, whereby a feasible solution
guarantees constraint satisfaction. This is obviously of great benefit for a range of tightly
constrained systems where controllers may often reach saturation, or in the case where
there is an environmental change. In these cases the initialfeasible solution may not in
fact remain feasible but at the next time step these new conditions will be considered and
a new feasible solution will be found.

1.5.4 Nonlinear MBPC

If a system possess severe nonlinearities then the usefulness of linear predictive control
is limited (Maciejowski 2002). The major disadvantage withnonlinear MPC is the loss
of convexity of the problem, this is not necessarily an issuein terms of finding the global
optimum, as this is not always necessary and in any case, a linear model only gives the
illusion of finding this optimum. However, it is a major disadvantage in terms of com-
putation time, as there is no guaranteed time in which a optimal solution will be found,
if one exists at all. This leaves a problem in terms of how to proceed if the routine does
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Figure 1.6: MBPC controller

not find a solution or takes too long to find it. One approach to solving this problem is
considered in Scokaertet al. (1999) where it is shown that a feasible solution existing is
sufficient for stability and in fact an optimal solution is not required.

1.5.5 MBPC for trajectory generation

Model based predictive control can be applied for trajectory generation and trajectory fol-
lowing (Richards and How 2004). By repeatedly solving the open loop optimal trajectory
problem the next control action can be determined, effectively closing the loop as shown
in Figure 1.6. This allows constraint satisfaction over a given time horizon such as obsta-
cle avoidance, as well as initial and terminal constraints.This approach is advantageous
over single trajectory optimization because at each time step the constraints are satisfied
assuming a feasible solution is found, regardless of state or environmental changes since
the previous time step. Within Chen and Huzmezan (2003a) MBPC is combined with
LQ control to control a quadrotor, the MBPC controls the lateral position of the vehi-
cle whereas the LQ control stabilizes the vehicle and controls attitude. The combining
of MBPC with a linear control technique in this way in many ways is a logical step as
MBPC is computationally demanding and therefore solving the full problem in real time
at every time step requires large processing capabilities.

1.5.6 Parameterization techniques

Trajectory optimization typically requires a suitable control space parameterization tech-
nique. There are many potential parameterization techniques such as the simple monomial
(elementary polynomial) (Yakimenko 2000, Eikenberryet al. 2006, Yakimenko 2006,
Nieuwstadt and Murray 1995) and orthogonal polynomials such as Chebyshev polyno-
mials (Fahroo and Ross 2000, Vlassenbroeck and Van Dooren 1988) and Laguerre poly-
nomials (Huzmezanet al. 2001). Chebyshev polynomials are cylindrical in nature and
therefore initial and terminal conditions can be determined analytically which make them
an appealing technique especially within fluid dynamics (Canutoet al. 1988, McKernan
et al. 2006). Laguerre polynomials which are the solution to Laguerre differential equa-
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tion essentially provide a weighting for each term of a polynomial to reduce sensitivity
and improve conditioning as the power of the basis function increases.

The choice of parameterization technique is to some degree application dependent, for ex-
ample, the necessity to meet boundary conditions, althoughconvergence properties may
vary from technique to technique as discussed within Section 1.5 where non-smooth so-
lutions prevent convergence with equally spaced nodes (Ross and Fahroo 2002). The im-
portance of selecting the best parameterization techniquevaries depending on the problem
and technique under consideration. In the case when the entire trajectory is approximated
by a number of piecewise polynomials with the coefficients for each piece being used as
a varied (free) parameter to be optimized (Fahroo and Ross 2000, Betts 2001), it makes a
world of a difference because of the numerical robustness ofthe optimization algorithm.
For example, for 10 different-length pieces with a 3rd orderparameterization, for each
of them, the search has potentially up to 130 free variables.The better accuracy requires
more pieces (nodes). For example, SOCS (Boeing 2008), a specialised optimization pack-
age calls for as many as 807 grid points and 5,795 varied parameters to optimize a couple
of minutes of a glide weapon deployment maneuver of a high-performance aircraft. No
wonder that in such a case the computation time is strongly dependent upon convexity of
the problem, capability to use matrix rather than scalar products, and sparsity of matri-
ces. Therefore, the approximations that have some special properties (e.g., orthogonality)
might be preferable to others.

When considering an output space optimization such as Taranenko’s Direct Method (Yaki-
menko 2000), four polynomials are required to approximate each Cartesian coordinate as
well as the speed profile along the trajectory. In this schemethe majority of polynomial
coefficients are calculated analytically to satisfy the boundary conditions, which means
the problem is simplified in comparison to other schemes which may require dozens or
even hundreds of varied coefficients. In this algorithm, thechoice of parameterization
function will therefore be dependent on specific application and the vehicles dynamic
properties without affecting the robustness of the algorithms. Furthermore by reducing
the number of free variables the computation time is reduced, however, this does come at
a cost and this is that the computed output may be sub-optimal.

When considering onboard trajectory generation it is important to run in real time, ob-
viously the optimal trajectory is desired but if this is not computable in real time then
the sub-optimal trajectory, or even any feasible trajectory, is preferable to no reference
trajectory.

1.5.7 Taranenko’s direct method

As discussed, it is desirable to solve non-linear optimization problems in real time but
this is not often achievable using classical methods such asBellmans equations (Yaki-
menko 2006). This problem, therefore, requires a differentapproach and several have
been proposed such as discussed such as collocation method (Hargraves and Paris 1987)
and method of differential inclusions (Seywald 1994). Another method which has not
been discussed yet is the direct method proposed by Taranenko and Momdzhi (1968) dur-
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ing the early 1960’s in Russia. The majority of subsequent work on this method has been
published in Russian and, therefore, is lesser known than some other techniques. Recently
however, this work has been developed at the Naval Postgraduate School in California by
Yakimenko (2006), where its capability for real-time on-board trajectory optimization and
has been demonstrated (Dobrokhodov and Yakimenko 1999, Kamineret al.2006).

As before, direct trajectory optimization involves the discretization of the optimal control
problem before solving the resulting non-linear problem (Fahroo and Ross 2000). Tara-
nenko’s scheme consists of parameterization of the output space as some function of a
virtual argument allowing the separation of the position and speed profile. This, cou-
pled with an appropriate cost function, allows easy computation of the minimum fuel
or minimum time problem. The polynomial coefficients are determined analytically as
functions of the initial and terminal conditions allowing for a reduction in the number
of free variables, leaving only the final virtual argument aswell as any unconstrained
boundary conditions. As the boundary conditions are met analytically the initial guess is
typically close to the optimal solution and often feasible.This improves convergence, re-
duces the problems caused by the non-convexity and removes ‘wild’ trajectories from the
search space. As well as reducing the computation time, thisbig reduction in the number
of free variables minimises the effect of other optimization considerations such as con-
vexity and matrix sparsity which are major influences on the convergence properties of
other techniques (Fahroo and Ross 2000, Betts 2001). The downside with such a scheme
is the sub-optimality of the resulting trajectory, howeverfor trajectory optimization it is
assumed real time capability is of greater importance.

In fact there is a school of thought that claims, that in fact we do not want to find the
optimal solution at all (Yakimenko 2006). One reason for this is due to the fragility of the
optimal solution. The optimal trajectory to reach a point isgenerally found at the edge
of the feasible search space, in other words the optimal solution results in at least one
state or control input, equaling its constrained maximum. This system can be described
as fragile, as the system can not increase this state. For example in the minimum time
problem, the maximum speed is demanded for the entire flight,however when traveling
at the maximum speed the vehicle can obviously no longer accelerate. In conventional
aircraft, the edge of the flight envelope is very rarely explored except for in extreme cases
such as combat situations.

1.6 Trajectory following

Once a reference trajectory has been determined, an inner loop is typically required to fol-
low this trajectory, (Martinet al.1994) although there are exceptions, such as the MBPC
formulation discussed within Section 1.5.5. This can be implemented with position feed-
back to track this position as seen in Figure 1.5. Alternatively a multivariable controller
can be implemented for stabilization as well as trajectory tracking, hence combining the
two inner loops. If MBPC is possible in real time, theoretically, all three loops could
be combined to achieve trajectory generation, trajectory following and stabilization but
realistically the computational demand necessitates at least one inner loop. Trajectory
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following or tracking is a widely publicised topic and the majority of quadrotor research
to date addresses this problem as opposed to the trajectory generation problem, as dis-
cussed in Section 1.2.

1.7 Multiple Vehicles

In many cases it may be desirable to use multiple vehicles as opposed to a solitary vehicle.
This may be to increase surveillance area or for improved probability of mission success
as there is less dependency on a single vehicle. It is, therefore, probable at some point that
the vehicles would need to rendezvous for refuelling, data transfer, close inspection or to
arrange themselves into a defensive formation. The problemconsidered within this work
is one first considered within Andoet al. (1999) and uses a technique called the circum-
centre law. The problem considers multiple vehicles with nocommunication link in two
dimensions, there is no predetermined rendezvous point andthe only global knowledge is
that of the common control scheme. Furthermore, the visibility is limited, each vehicle is
assumed to have a omni-directional camera with a limited range to detect other vehicles.
This problem is further considered within Linet al. (2006) where graph theory is used to
prove rendezvous of multiple vehicles although again only the two dimensional problem
is considered.

1.8 Automatic Differentiation

When considering trajectory optimization and the desire isfor real-time optimization then
computation time is a major issue. Non-linear trajectory optimization is computation-
ally demanding and this has been the prohibiting factor for techniques such as MBPC
and the reason why implementation within industry has been limited. Within MATLAB
(http://www.mathworks.co.uk/ n.d.), a non-linear optimization problem can be solved us-
ing a function such asfminsearchwhich uses a simplex search method. For constrained
optimization, however, the problem can be easily programmed using thefminconfunction,
this uses the sequential quadratic programming method (SQP). SQP solves a quadratic
programming subproblem at each iteration and is based on a quadratic approximation of
the Lagrangian function. However, this SQP algorithm is gradient based and, therefore,
at each time step, the sensitivity of the constraints and thecost function to a change in
the free variable must be calculated. By supplying these gradients to the algorithm a sig-
nificant saving in computation time can be achieved, as for a typical calculation 70% of
the computation time could be used evaluating these gradients (Cao 2005). For a simple
function with a few constraints, the analytical derivatives can be calculated, for a problem
where there is a large number of constraints, the analyticalsolution is much harder to
find. Calculating these derivatives using a software package such as MATLAB’s Sym-
bolic Toolbox typically leads to significant equation growth. Techniques such as finite
differencing are limited as the accuracy is restricted by truncation and cancellation errors.

Automatic differentiation is a computational technique which is essentially a sequential
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application of the chain rule to determine the gradient of a function. By splitting a com-
plex function into a sequential list of arbitrary computational processes with well known
derivatives, the chain rule can be used to calculate the derivatives of the complex func-
tion. Automatic differentiation is, therefore, error freeunlike finite differencing, it also
avoids the equation growth of symbolic toolbox software andis much quicker to im-
plement than the analytical solution. In Cao (2005) automatic differentiation is used to
evaluate dynamic sensitivity and is compared with other techniques such as CVODES,
within this scheme automatic differentiation reduces the computational time by an order
of 2 magnitudes. There are many software packages which enable the implementation
of automatic differentiation. Through MATLAB it can be implemented directly using
Matlab Automatic Differentiation (MAD) (Forth 2006), alternatively a package such as
ADOL-C written in C/C++ (Griewanket al. 1996) can be interfaced using a MEX wrap
as in Cao (2005).

1.9 Instrumentation and sensors

Two key areas of autonomy have been discussed to formulate a potential control scheme
for the quadrotor. So far, however, the issue of sensors has been neglected. The re-
cent developments in microelectromechanical systems (MEMs) sensors have provided a
cost effective, lightweight solution for state measurement. A inertial measurement unit
(IMU) such as the one used within Carnduffet al. (2007) is widely used for UAV attitude
determination although these can be bulky and typically cost around U.S. $ 2000. Alter-
natively, the solid state gyroscopes fitted to the quadrotorcan be combined with MEM’s
accelerometers to form an alternative and cheaper solution.

Potentially the biggest challenge for indoor flight of the quadrotor is the determination
of the position. The quadrotor is likely to be used for internal flight, therefore, GPS is
not a viable option. One option for obtaining state information is a positioning system
similar to the one used within Valentiet al. (2006) which consists of six ground cameras
using reflective balls placed on the vehicles to determine attitude and position. This op-
tion provides accurate information for multiple vehicles but is not easily transferable from
location to location, nor is it by any means a low cost solution with system installation
costing approximately $100 000. In Tournieret al. (2006) an alternative solution is pre-
sented, in this case the cameras are mounted on the vehicles as opposed to the ground and
ground markers displaying Moire patterns. For a transportable solution the instrumenta-
tion needs to be on board and able to determine the attitude and position. The control
action can be determined onboard (Altuget al. 2002) which is preferable for industrial
application. For research purposes however, a ground station is preferable for ease of ac-
cess to the control algorithm (Castilloet al.2004). It is therefore, necessary to establish a
communication link between the vehicle and the ground station. The state feedback can
be measured on board and sent back to the ground station usinga Bluetooth connection
(De Nardiet al.2006, Hoffmannet al.2004) providing low latency.
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1.10 Review

Potentially there are a vast number of applications for unmanned aerial vehicles. The
quadrotor’s main benefits include its agility, maneuverability and dynamic simplicity.
Likely applications for such a vehicle include internal flight and short search and surveil-
lance missions. The flight time for the vehicle is currently limited to around 20 minutes,
which makes extensive urban surveillance mission unlikely. The vehicle is much more
likely to be used for internal inspection, close proximity search and surveillance or sim-
ply peering around or over a visual obstacle such as a building. It can, therefore, be
assumed that the quadrotor will be operating within a visualfield, the flight time will be
less than 20 minutes and that multiple obstacle avoidance will be unlikely, although obsta-
cle avoidance capabilities will be essential. This thesis,therefore, concentrates on local
trajectory planning schemes which work within a visual field. Path planning schemes
such as MILP and roadmaps are not considered as the vehicle isintended for flight within
a visual field and multiple obstacle avoidance is unlikely. Instead open-loop optimal con-
trol schemes are discussed which provide full state trajectory information. Open-loop
trajectory optimization can be repeated continuously to form a MBPC controller which
in effect combines the trajectory generation and trajectory following loops seen in Figure
1.5. Alternatively, given a reference trajectory an inner loop trajectory follower can be
used to track this trajectory. As trajectory generation should be capable of running in real
time this must be considered within the problem formulation.

1.11 Outline and Contributions

1.11.1 Publications resulting from this work

• Cowling, I.D, J.F. Whidborne and A.K. Cooke (2006). MBPC forAutonomous
Operation of a Quadrotor Air Vehicle. In: Proc 21st International UAV Systems
Conf. Bristol, UK.

• Cowling, I.D, J.F. Whidborne and A.K. Cooke (2006). Optimaltrajectory planning
and LQR control for a quadrotor UAV. In: Control 2006. Glasgow, U.K.

• Cooke, A.K, I.D. Cowling, S.D. Erbsloeh and J.F. Whidborne (2007). Low cost
system design and development towards an autonomous rotor vehicle. In: Proc
22nd International UAV Systems Conf. Bristol, UK.

• Cowling, I.D, O.A. Yakimenko, J.F. Whidborne and A.K. Cooke(2007). A proto-
type of an autonomous controller for a quadrotor UAV. In: Proc. 2007 Euro. Contr.
Conf. Kos, Greece.

• Cowling, I.D. and J.F.Whidborne (2008). Multiple vehicle rendezvous using the
circumcenter law. In: Proc. 23rd International UAV SystemsConf. Bristol, UK.
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• Cowling, I.D., O.A. Yakimenko and J.F.Whidborne (2008). A Direct Method for
UAV Guidance and Control. In: Proc. 23rd International UAV Systems Conf.
Bristol, UK.

• Cowling, I.D., O.A. Yakimenko, J.F.Whidborne and A.K. Cooke (2008). Prototype
control system for autonomous quadrotor UAV. In preparation for submission to an
international journal.

• Cowling, I.D. and J.F.Whidborne. Rendezvous of multiple quadrotors using the
circumcenter law. In preparation for submission to an international journal.

1.11.2 Chapter 2

Chapter 2 derives the nonlinear dynamic equations of motionfor the quadrotor. These are
simplified using a non-conventional rotational matrix. A linear model is also presented
with some linear analysis of the vehicle. Finally, a full dynamic model is described which
has been developed at Cranfield University (Shaw 2005) and isused for simulation of the
control algorithms.

1.11.3 Chapter 3

Chapter 3 defines three missions for testing the control algorithm. The differentially flat
equations of motion are derived for the quadrotor which enables output space optimiza-
tion. A suitable cost function is presented and the convex constraints are defined. Differ-
ent basis functions are considered for output space parameterization and Laguerre poly-
nomials are shown to reduce computation time for the trajectory optimization. Finally,
some trajectories are optimized to demonstrate the Laguerre polynomial based algorithm.

1.11.4 Chapter 4

Chapter 4 considers the problem of closing the loop. A Model Based Predictive Control
algorithm is presented which repeatedly solves the trajectory optimization presented in
Chapter 3. An alternative scheme which consists of a single trajectory optimization and
a linear tracking controller (LQR). Results for both of these schemes are compared and a
combined controller is proposed. This combined controllerconsists of an outer loop tra-
jectory generator and an inner loop trajectory follower, the loops are switched on and off
by an update switch which measures the reference trajectoryfeasibility and the vehicles
drift from this trajectory. The combined controller is thendemonstrated for the 3 missions
defined previously.
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1.11.5 Chapter 5

Chapter 5 considers an alternative trajectory optimization scheme. Taranenko’s direct
method was developed in the 1960’s in Russia but with the majority of papers being
published in Russian it is generally overlooked with a few notable exceptions (Kamineret
al. 2006, Yakimenko 2000). This chapter looks at the major advantages of such a scheme
and incorporates this scheme into the control architecturepresented previously to simulate
the same 3 missions.

1.11.6 Chapter 6

Chapter 6 considers a decentralized rendezvous algorithm.The circumcenter law as pre-
sented in Andoet al. (1999) is extended to 3 dimensions. The combined control archi-
tecture and Taranenko’s direct method are applied to simulate the rendezvous of multiple
quadrotors. This is also extended to consider the conflicting problems of rendezvous and
collision avoidance and a new measurement of direct consequence is presented.

1.11.7 Chapter 7

Obviously to achieve autonomous flight it is necessary to consider issues other than trajec-
tory generation and following. Chapter 7 considers the issues of feedback on the quadrotor
with limited payload. The experimental set up at Cranfield University is described and
some open loop test results are shown. Finally there is a discussion on the challenges that
remain, in order to achieve practical autonomy of a small UAVsuch as the quadrotor.

In Chapter 8 some final conclusions are made and suggestions for future work within the
area. This thesis concludes with details of the dynamic model used for simulation of the
control schemes in Appendix A and Appendix B.
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Chapter 2

Dynamic Modelling

This chapter describes the dynamics of the quadrotor, the subsequent equations of motion
and dynamic modelling of the quadrotor. This chapter startsby stating the approximations
and derives the non-linear equations of motion which are used for trajectory optimization.
This model is then linearized so that a linear multi-variable controller can be designed
for the purposes of path following. Section 2.4 states the equations within the full dy-
namic model of the quadrotor which have been developed for simulation and validation
purposes. Finally this chapter concludes with a discussionof the constraints acting on the
quadrotor and quantifies the necessary control constraintswhich are required for control
design.

2.1 Dynamic model for control system design

2.1.1 Assumptions when modelling

There are certain approximations used when modelling the quadrotor when deriving the
equations for control system design.

• The arms and body are rigid

• The body axes system coincides with the principal moment of inertia axes, therefore
[Ixy, Iyz, Izx] ≈ 0.

• The body rate around the z axis will be kept small under closedloop controlr ≈ 0

• 90◦ rotational symmetry about thezaxis, thereforeIx = Iy

• Gyroscopic rotor forces are considered to be negligible

• Motor inertia is small and therefore lag within the motors isnegligible
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2.1.2 Actuator outputs and control inputs

The quadrotor is controlled only by independently varying the speed of the four rotors. A
pitch moment is achieved by varying the ratio of the front andback rotor speeds, a roll by
varying the left and right rotor speeds (see Figure 2.1). A yaw moment is obtained from
the torque resulting from the ratio of the clockwise (left and right) and the anti-clockwise
(front and back) speeds.

These inputs are clearly working in the body axis, however, when following a ground
track the positional terms in the state space matrix are in the earth axis. It is possible to
relate these earth positional terms to the actuator inputs for the benefit of this state space
derivation, however, doing so involves the introduction ofa rotational transform adding to
the complexity. Therefore, this work uses a state space matrix entirely based in the earth
axis ([x,y,z,φ,θ,ψ]). The control inputs are therefore also defined in this axis ([φ̈, θ̈, ψ̈]).
The demands going to the motors however are obviously in the body axis, these are called
the actuator outputs which are functions of the body accelerations(ṗ, q̇, ṙ)

The first actuator output ( ˜u1) is a combination of the total thrust from the four rotors(τi),
however, to simplify the state space equations of motion this is divided by the vehicle
mass(m). The first actuator output is therefore a body acceleration defined by:

ũ1 =
τ1+ τ2 + τ3+ τ4

m
(m/s2) (2.1)

whereτi is the thrust from theith rotor.

The pitching and roll moments are generated through the differential thrust between the
front and back and left and right rotors. These pitching moments are defined:

ũ2 = l(τ4− τ3) (Nm) (2.2)

ũ3 = l(τ1− τ2) (Nm) (2.3)

(2.4)

wherel is the distance from the centre of mass.

The final actuator output is a combination of the individual torques(υi) generated by each
of the four rotors.

ũ4 = υ3+υ4−υ1−υ2 (Nm) (2.5)

whereυi is the torque from theith rotor.

Actuator outputs(ũ2− ũ4) can be related to the body rates

ũ2 = Ixṗ+qr(Izz− Iyy) (2.6)

ũ3 = Iyq̇− pr(Ixx− Izz) (2.7)

ũ4 = Izṙ − pq(Ixx− Iyy) (2.8)

Assuming symmetry about thezaxis resulting inIxx = Iyy and the body angular rate about
the z axis(r) is small under closed loop control the equations can be simplified resulting
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in:

ũ2 = Ixṗ (2.9)

ũ3 = Iyq̇ (2.10)

ũ4 = Izṙ (2.11)

Figure 2.1: Quadrotor schematic

2.1.3 State Variables

The state variable vector,x, is defined as

xT =
[
x y z ẋ ẏ ż φ θ ψ φ̇ θ̇ ψ̇

]
(2.12)

wherex, y andz are the translational positions (see Figure 2.1) andφ, θ, ψ are the roll,
pitch and yaw respectively. For surveillance operations the camera position and pointing
direction are important, hence the desired outputs for the vehicle are the translational
positions(x,y,x) and the yaw angle(ψ). The output vector,y, is hence defined as

yT =
[
x y z ψ

]
. (2.13)



Dynamic Modelling 31

2.1.4 Rotation Matrix

Aerospace engineers traditionally use the rotation matrixRxyz (Cook 1997) to relate the
body axis to the earth axis. This rotational matrix or Directional Cosine Matrix (DCM) is
derived by successively rotating about the x axis, y axis andfinally the z axis as shown in
Figure 2.2.
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Figure 2.2: RotationsRxyz

Rxyz= RxRyRz =




1 0 0
0 cφ̂ sφ̂
0 −sφ̂ cφ̂






cθ̂ 0 −sθ̂
0 1 0
sθ̂ 0 cθ̂






cψ̂ sψ̂ 0
−sψ̂ cψ̂ 0

0 0 1


 (2.14)

Rxyz=




cθ̂cψ̂ cθ̂sψ̂ −sθ̂

sφ̂sθ̂cψ̂ −sψ̂cφ̂ sφ̂sθ̂sψ̂ +cφ̂cψ̂ sφ̂cθ̂
cφ̂sθ̂cψ̂ +sφ̂sψ̂ cφ̂sθ̂sψ̂ −cψ̂sφ̂ cθ̂cφ̂



 (2.15)

wherecθ̂ = cosθ̂ andsψ̂ = sinψ̂ etc.
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This directional cosine matrix can translate body forces oraccelerations from the earth
axis(PEA) to the body axisPBA:

PBA = DCM×PEA (2.16)

For the state space equations of motion the thrust (u1), is acting in the body axis. Relating
this body axis acceleration to accelerations in the earth axis can be done through the
transpose of the DCM matrix and recalling that the upward thrust is providing a negative
acceleration in the downward pointingz axis:




ẍ
ÿ
z̈


= RT

xyz




0
0

−u1


 (2.17)

The translational equations of motion can therefore be derived recalling the control inputs
2.26

ẍ = ũ1(cψ̂sθ̂cφ̂ +sψ̂sφ̂) (2.18)

ÿ = ũ1(sψ̂sθ̂cφ̂ −cψ̂sφ̂) (2.19)

z̈= g− ũ1cθ̂cφ̂ (2.20)

When considering trajectory generation, in order to reducecomputation time, it is desired
to have the translational equations in the simplest form. When using the rotation matrix
Rxyz for a fixed wing vehicle, the first rotation is about the axis ofthrust. This simplifies
the equations of motion. This scheme is adopted throughout the industry even for other
vehicles in which the thrust acts along a different axis suchas a helicopter. If for the
quadrotor a rotational matrix is chosen with the first rotation about the axis of thrust i.e
thez axis, then the equation can be simplified. In Figure 2.3 the rotations occur around
thez axis thex axis and finally they axis, giving

Rzxy= RzRxRy =




cψ sψ 0
−sψ cψ 0

0 0 1






1 0 0
0 cφ sφ
0 −sφ cφ






cθ 0 −sθ
0 1 0
sθ 0 cθ


 (2.21)

with the resulting rotational matrix

Rzxy=




sθsφsψ +cψcθ cφsψ cθsψsφ−sθcψ
sφsθcψ −cθsψ cθcφ cθsφcψ +sθsψ

sθcφ −sφ cθcφ


 (2.22)

This results in the following translational equations of motion for the quadrotor which are
a significant reduction in complexity compared with (2.18-2.20).

ẍ = −ũ1sθcφ (2.23)

ÿ = ũ1sφ (2.24)

z̈= g− ũ1cθcφ (2.25)
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Figure 2.3: RotationsRzxy

2.1.5 Input Transforms

As will be seen later the control inputs are not chosen to equal the actuator outputs. In-
stead, the control vectoru, is expressed as a function of the Euler angles and defined
as

uT = [u1, u2, u3, u4] . (2.26)

whereu1 = ũ1, u2 = φ̈, u3 = θ̈ andu4 = ψ̈. The actuator outputs are therefore acting in the
body axis unlike the control inputs which are functions of Euler angles. The Euler angles
can be expressed as a function of the body rates using




p
q
r


= L




φ̇
θ̇
ψ̇


 (2.27)
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where

L =




0
0
ψ̇



+




cψ sψ 0
−sψ cψ 0

0 0 1








φ̇
0
0



+




cψ sψ 0
−sψ cψ 0

0 0 1








1 0 0
0 cφ sφ
0 −sφ cφ








0
θ̇
0



 (2.28)

=




cosψ sinψcosφ 0
−sinψ cosψcosφ 0

0 −sinφ 1


 (2.29)

The actuator outputs(ũ2),(ũ3) and(ũ4) are the turning moments acting in the body axis
and resulting in a rotational acceleration(ṗ, q̇, ṙ). These can therefore be expressed as a
transform of the Euler angles. Recalling (2.26) these actuator outputs are now expressed
as a function of the control inputs(φ̈, θ̈, ψ̈) and its integrals(φ̇, θ̇, ψ̇).



Ixũ2

Iyũ3

Izũ4



=




cosψ sinψcosφ 0
−sinψ cosψcosφ 0

0 −sinφ 1








φ̈
θ̈
ψ̈





+



−sinψψ̇ cosφcosψψ̇−sinψsinφφ̇ 0
−cosψψ̇ −cosψsinφφ̇−cosφsinψψ̇ 0

0 −cosφφ̇ 0






φ̇
θ̇
ψ̇


 (2.30)

Taking the state equation (2.12), the control inputs (2.26)and the equations of motion
(2.23,2.24,2.25), a state space model can be defined as

d
dt




x
y
z
ẋ
ẏ
ż
φ
θ
ψ
φ̇
θ̇
ψ̇




=




ẋ
ẏ
ż

−u1sθcφ
u1sφ

g−u1cθcφ
φ̇
θ̇
ψ̇
u2

u3

u4




(2.31)

2.1.6 Linear approximations of the rotor dynamics

In order to control the actual quadrotor the rotor voltage needs to be determined for each
rotor. To determine the individual thrust for each motor from the input it is possible to
manipulate the equations (2.1-2.5).

τ1 =
ũ1+2ũ3/l − ũ4/CT

4
(2.32)
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τ2 =
ũ1−2ũ3/l − ũ4/CT

4
(2.33)

τ3 =
ũ1+2ũ2/l + ũ4/CT

4
(2.34)

τ4 =
ũ1+6ũ2/l + ũ4/CT

4
(2.35)

whereCT is an approximate thrust to torque conversion factor. The following voltagevi

to thrustτi relationship can then be determined from experimental datasee Figure(A.1).

vi =
√

37τi (2.36)

2.2 Linear Control Model

In order to apply a suitable linear controller for trajectory following, it is necessary to have
a linear model of the quadrotor. A linear model is derived by taking partial derivatives of
each state and control variable with respect to the state matrix.

ẋ = Ax+Bu (2.37)

where

A =




0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 u1sinθsinφ −u1cosθcosφ 0 0 0 0
0 0 0 0 0 0 0 u1cosφ 0 0 0 0
0 0 0 0 0 0 u1sinθcosφ u1cosθsinφ 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0




(2.38)

B =




0 0 0 0
0 0 0 0
0 0 0 0

−sinθcosφ 0 0 0
sinφ 0 0 0

−cosθcosφ 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




(2.39)
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y = Cx (2.40)

where

C =




1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0


 (2.41)

This model is linearized about the hover conditions, in thiscase the body is level in the
earth axis (ψ = 0,θ = 0,φ = 0) and the total thrust is equal to the gravitatinal force(u1 =
mg) leaving:

A =




03×3 I3×3 03×1 03×1 03×1 03×3

01×3 01×3 0 −u1 0 03×3

01×3 01×3 0 u1 0 03×3

01×3 01×3 0 0 0 03×3

03×3 03×3 03×1 03×1 03×1 I3×3

03×3 03×3 03×1 03×1 03×1 03×3




(2.42)

B =




03×1 03×3

0 01×3

0 01×3

−1 01×3

03×1 03×3

03×1 I3×3




(2.43)

2.3 Linear Analysis

2.3.1 Controllability

In order for the system to be controllable the controllability matrix must have full rank.
Taking the linearized state space equations (2.42, 2.43), where A is ann×n matrix and B
is ann×m matrix, the controllability matrixC is defined:

C = [B AB A2B ....An−1B] (2.44)

The controllability matrix has full rank and is therefore fully controllable for any lin-
earized model which is linearized with a control inputu1 > 0. Therefore as long as the
linear model is about a point with a positive thrust and not infree fall the vehicle is con-
trollable. This is an expected result as if there is zero thrust then each motors individual
and relative thrust is zero.
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Figure 2.4: System time response

2.3.2 Stability

The stability of the vehicle can be analysed by finding the eigenvalues of the linearized
A matrix. This produces 12 poles all of which are found at the origin showing that the
system is marginally stable. The time response of the linearsystem to a step change is
shown in Figure 2.4.Therefore closed loop control is required in order to stabilise the
system.

2.4 Full Dynamic Model

In order to test the control algorithms it is necessary to have a full dynamic model of the
quadrotor for simulation purposes. A model of the small quadrotor (Figure 1.2) has been
developed at Cranfield University (Shaw 2005) and contains experimental data details of
which can be found within Appendix A. This model is used for the majority of simulations
within this work although this model has also been adapted tomodel the Draganflyer X-
Pro (Figure 1.1), details of this can be found within Appendix B.
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2.4.1 Assumptions when modelling

A revised list of assumptions is required for assumptions for the full dynamic model as
opposed to the equations derived for control system design.These assumptions apply to
the models described in Appendix A and Appendix B.

• The arms and body are rigid

• Gyroscopic forces are considered to be negligible

• Motor inertia is small and therefore lag within the motors isnegligible

2.4.2 Powerplant

The powerplant converts the input voltages into the total thrust and turning moments
of the quadrotor. The thrust and speed of each rotor is calculated by interpolating the
experimental data and from this the torque can be calculated. Using blade element theory
(Cooke 2002) and making the usual assumptions we can state that the total power required
per rotor is ;

Pi = Ti(VC +VI )+0.125ρbcR4
bΩ3

i Cd (2.45)

whereTi in this section is the thrust from theith rotor,VI is the induced velocity,VC is
the vertical speed,ρ is the air density,b is the number of blades,c is the chord,Rb is the
radius,Ωi is the speed of theith rotor andCd is the drag coefficient. The induced velocity
for each rotor can be determined by:

VI =

√
Ti

2ρAd
(2.46)

whereAd is the disk area. TakingPi = QiΩi , the torqueQi from the ith rotor can be
calculated by:

Qi =
Ti(VC +VI )+0.125ρbcR4

bΩ3
i Cd

Ωi
(2.47)

The propulsive forces(Xp,Yp,Zp) and moments(Lp,Mp,Np) acting on the vehicle can be
calculated using

Zp = −T1−T2−T3−T4 (2.48)

Lp = (T3−T4)l (2.49)

Mp = (T1−T2)l (2.50)

Np = (Q1+Q2)− (Q3+Q4) (2.51)
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2.4.3 Equations of motion

The gravitational forces acting on the body can be calculated using the directional cosine
matrix as shown;




Xg

Yg

Zg



=




cθ̂cψ̂ sφ̂sθ̂cψ̂ −sψ̂cφ̂ cφ̂sθ̂cψ̂ +sφ̂sψ̂
cθ̂sψ̂ sφ̂sθ̂sψ̂ +cφ̂cψ̂ cφ̂sθ̂sψ̂ −cψ̂sφ̂
−sθ̂ sφ̂sθ̂ cθ̂cφ̂




T 


0
0

mg



 (2.52)

By defining the body forces(FB) acting on the vehicle:

FB =




X
Y
Z


 (2.53)

The body accelerations can be derived (Stevens and Lewis 1992):



u̇
v̇
ẇ


= −Ω




u
v
w


+




Xg/m
Yg/m
Zg/m


+




X/m
Y/m
Z/m


 (2.54)

whereΩ is the cross product matrix:

Ω =




0 −r q
r 0 −p
−q p 0



 (2.55)

resulting in:




u̇
v̇
ẇ


=




rv−qw−gsinθ+X/m
−ru+ pw+gsinφcosθ+Y/m
qu− pv+gcosθcosφ+Z/m


 (2.56)

In a similar way the body axis rotations can be derived (Stevens and Lewis 1992):



ṗ
q̇
ṙ


= −I−1ΩI




p
q
r


+ I−1




L
M
N


 (2.57)

whereL, M andN are the torques acting in the body axis andI is the inertia matrix:



Ixx −Ixy −Ixz

−Ixy Iyy −Iyz

−Ixz −Iyz Izz


 (2.58)

The body rates are translated into the earth axis using the rotational matrix



ẋ
ẏ
ż


= Rxyz




u
v
w


 (2.59)
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where

Rxyz=




cθ̂cψ̂ sφ̂sθ̂cψ̂ −sψ̂cφ̂ cφ̂sθ̂cψ̂ +sφ̂sψ̂
cθ̂sψ̂ sφ̂sθ̂sψ̂ +cφ̂cψ̂ cφ̂sθ̂sψ̂ −cψ̂sφ̂
−sθ̂ sφ̂sθ̂ cθ̂cφ̂


 (2.60)

Finally, the rates of change of the Euler attitude angles aredetermined by;



φ̇
θ̇
ψ̇


=




p+qsinφ tanθ+ r cosφ tanθ
qcosφ− r sinφ

qsinφsecθ+ r cosφsecθ


 (2.61)

2.5 Constraints

The quadrotor has very few constraints on motion, there is nominimum speed for the
vehicle as it is capable of hovering and it is omnidirectional in the sense that from hover
it can move is any direction required. There are however constraints on the control inputs
in terms of maximum voltage and therefore maximum thrust, roll moment, pitch moment
and yaw moment. To avoid singularities and consider stability the attitude is constrained
although this is not a physical constraint it is present within the control algorithm, details
of this can be found within Section 3.4. From experimental data at the maximum voltage
of 7.5v:

τn ≤ 1.364(N) (2.62)

Ωi ≤ 216(rad/s) (2.63)

Therefore ifu2 = u3 = u4 = 0 then the maximum acceleration is

u1MAX =
1.364×4

m
= 12.28m/s2 (2.64)

Obviously if the turning moments are increased from zero then the maximum acceler-
ation will be reduced and therefore a reasonable trade off isrequired to determine the
maximum control inputs. Assuming the body rotational accelerations(ṗ, q̇, ṙ) are con-
strained to 0.5rad/s2, whereas, in reality the rates would be considerably smaller than
this, the actuator outputs are constrained to

ũ2MAX = 0.5Ix (2.65)

ũ3MAX = 0.5Iy (2.66)

ũ4MAX = 0.5Iz (2.67)

therefore

ũ2MAX = 0.0042 (Nm) (2.68)

ũ3MAX = 0.0036 (Nm) (2.69)

ũ4MAX = 0.0062 (Nm) (2.70)
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Recalling (2.32)-(2.35), it can be seen if the maximum rolling, pitching and yawing mo-
ments are applied then the maximum acceleration is reduced

u1MAX ≈ 12.18m/s2 (2.71)

In conclusion it can be seen that by appying a constraint to the rolling, pitching and yawing
moments the total acceleration is not significantly reducedand therefore with a suitable
approximation of the control inputs the following can be applied without a significant loss
in performance.

u1 ≤ 12.18m/s2 (2.72)

u2 ≤ 0.5rad/s2 (2.73)

u3 ≤ 0.5rad/s2 (2.74)

u4 ≤ 0.5rad/s2 (2.75)
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Chapter 3

Trajectory Generation

Trajectory generation is the determination of the optimal path as well as the optimal speed
to travel along this path. With respect to the quadrotor, thetrajectory is typically a short
flight lasting maybe a few seconds. However, it is likely the quadrotor will be used for
an internal flight or within an urban environment which introduces the need for obstacle
avoidance. For surveillance purposes it is not necessary toarrive at the destination in the
minimum time, instead, maybe the vehicle is required to arrive at a specific time or with
minimum fuel cost. Indirect methods yield a problem which becomes increasingly hard
to solve when constraints such as obstacles are added or the cost function is modified to
accommodate different requirements.

Direct methods involve the conversion of this optimal control problem into a non-linear
programming problem typically within the state or control space for which there are many
techniques for solving. Differential flatness is a propertyof some dynamical systems
which allows the expression of the state and control vectorsas functions of the output
space and hence the optimization problem can be re-posed within the output space. This
chapter will start with defining three mission which will be used for testing the trajectory
optimization scheme. The general problem will then be formulated within the control
space. Differential flatness will then be considered and thedifferentially flat equations
will be derived allowing for a reformulation of the optimization problem within the out-
put space and hence simplifying the problem. Trajectory optimization is subject to a set
of inequality and equality constraints placed on the controls and states, these will be dis-
cussed within Section 3.4. Obviously for optimization a quantative measure of optimality
is required and therefore within Section 3.5 a suitable costfunction is defined. To reduce
the problem to a finite dimensional problem a suitable parameterization is required for
which there are many options including polynomials, Laguerre polynomials and Cheby-
shev polynomials, a few of these are considered and comparedwithin Section 3.6. With
the resulting output space problem with a suitable parameterization the topology can be
examined and the missions previously defined can be used to test the optimization algo-
rithm.
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3.1 Missions

In order to demonstrate the trajectory generation algorithm and to later demonstrate the
control schemes three missions have been defined. All three missions start at hover at
(0,0,0) and consist of a reasonably short flight which is lessthan 30 seconds. Within
this section the missions are defined with predetermined flight times in this case the opti-
mization is concerned with the optimal path to reach the destination at this time and not
considering the minimum time problem.

Mission (i) The first mission involves a vertical flight of 5m in 7 seconds.This mission
is obviously very simple but this enables comparison with well known analytical
results for minimum time or minimum fuel.

Mission (ii) The second mission involves navigation around an obstacle to reach a des-
tination at(6,0,0) in 15 seconds. The obstacle is modelled as a sphere centered at
(3,0,0) with a radius of 1m.

Mission (iii) The third mission involves a horizontal flight to the top of a mineshaft or
well located at(10,0,0), before descending down the mineshaft to reach the bottom
at (10,0,−5) in 25 seconds. The mineshaft is modelled as a cylinder with radius of
2m. If a wind is applied in this mission it is acting only aboveground, there is no
wind acting on the vehicle within the mineshaft.

3.1.1 Disturbances and uncertainties

Applying a controller to follow a trajectory in the absence of disturbances is obviously a
trivial problem, therefore the missions are simulated in the presence of wind and gusting
of varying strength. Each mission is further defined dependent on the wind and gusting
strength

Mission (i)

• Mission (ia) Constant wind of 0.1m/s acting along thex axis.

• Mission (ib) Constant wind of 0.01m/s acting along thex axis.

• Mission (ic) Constant wind of 0.1m/s acting along thex, y andzaxis.

• Mission (id) No disturbances acting on the vehicle.

• Mission (ie) Constant wind of 0.1m/s acting along thex, y andz axis, gusting of
mean 0m/s with variance of 0.01m/s acting onx,y andz axis.
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Mission (ii)

• Mission (iia) Constant wind of 0.25m/s acting along thex axis.

• Mission (iib) Constant wind of 0.01m/s acting along thex axis.

• Mission (iic) Constant wind of 0.1m/s acting along thex, y andz axis,

Mission (iii)

• Mission (iiia) Constant wind of 1m/s acting along thex axis.

• Mission (iiib) Constant wind of 0.05m/s acting along thex axis.

• Mission (iiic) Constant wind of 0.1m/s acting along thex, y andz axis,

The model used for the majority of simulations is not a full aerodynamic model and there-
fore it is not possible to accurately incorporate wind into the model. Instead it is assumed
that the vehicle travels in the wind axis and offers no resistance to the acceleration due
to the wind. Furthermore this wind has no effect on the dynamics of the vehicle. In a
similar way the gusting acts in the translational axis only and will accelerate the vehicle
in this axis. As an example if the vehicle is trying to hover and a wind is acting along the
x axis at 1m/s then the vehicle will travel at this speed along the x axis. As it is trying to
hold position in the earth axis, it will try to correct this and travel back but will need an
airspeed of 1m/s to remain stationary above ground.

In this chapter it is assumed throughout that there are no model uncertainties or modelling
errors. In practice there are likely to be at least slight discrepancies between the model
and the vehicle, these will be considered in more detail in Section 4.2.4.

3.2 General Problem

The direct method requires a transformation of the optimal control problem into a non-
linear programming problem, this is typically within the control space. By a choice of
suitable control space parameterization(u = f (t)) and from the initial states and controls
(x0,u0) the Cauchy problem can be solved to determine the statesx = f (u, t,x0,u0).
The control input can then be optimized to meet some degree ofoptimality in which
constraints placed on the controls, states and outputs are met.

min
û(t)∈u

Φ for t ∈ [0,T]

s.t.c(u) ≤ 0

s.t.x0−g1(u0) = 0

s.t.yT −g2(uT) = 0

s.t.y = g3(u,x0)

(3.1)
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whereΦ is the cost function,c(u) is a set of functions that express inequality constraints
on the state and output,x0 is the initial state att = 0, the state is a functiong1 of the input,
yT represents the terminal output att = T, the output is some a functiong2 of the input
and some dynamic constraints are applied so that the outputy is a functiong3 of the input
u and the initial statex0.

3.3 Differential Flatness

Differential flatness as proposed by (Fleisset al. 1992) is a property of some dynamical
systems which allows the inversion of the dynamics and therefore the expression of the
state and control inputs in terms of the output space.This allows for the optimization to
occur within the output space as opposed to the control space. The output space parame-
terization with a one-to-one mapping into the state and control space removes the neces-
sity to solve the Cauchy problem and instead these are evaluated analytically. Another
benefit of the differentially flat approach is within the constraint analysis and specifically
when a large number of constraints are present within the output space. Through dif-
ferential flatness the output space constraints can be expressed as direct functions of the
parameterization whereas within the general formulation these will be functions of the
outputs which are determined through the Cauchy problem. Potentially in a general con-
trol problem where the majority of constraints are acting inthe control space this is of
no benefit. But for trajectory optimization, many constraints such as obstacle avoidance,
are within the output space, so in this case the problem in simplified. It is also possible
to satisfy some constraints analytically such as initial constraintsx0 = f (t0) and therefore
again simplify the problem.

By manipulation of the equations of motion and recalling Equation (2.31), the state vector
and input vector can be expressed as a function of the output vector.

θ = arctan

(
ẍ

g− z̈

)
(3.2)

φ = arcsin

(−ÿ
u1

)
(3.3)

where

u1 =
√

ẍ2 + ÿ2+(g− z̈)2. (3.4)

From Equation 3.4:
ÿ
u1

≤ 1 (3.5)

Therefore singularities in this model only appear when

g− z̈= 0 (3.6)

in other words when the vehicle is in free fall. This can be avoided by constraining the
input such thatu1 > 0 and the pitch and roll such thatθ < 900 andφ < 900. The output
space must be defined ensuring each component is not differentially related to another
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component, as discussed in Secion 1.5.1. The translationalpositions of the vehicle are
chosen as out components but this prevents velocity also being an output parameter as
this is clearly differentially related to position. Instead the yaw angle (ψ) is chosen as the
fourth component. The output space will be parameterized using a suitable choice of basis
function and will be therefore defined as[x̂, ŷ, ẑ, ψ̂]. As the system is differentially flat, the
full state and control space can now be expressed as a function of these parameterized
outputs and their derivatives:

x = x̂ (3.7)

y = ŷ (3.8)

z= ẑ (3.9)

ẋ = ˙̂x (3.10)

ẏ = ˙̂y (3.11)

ż= ˙̂z (3.12)

φ = arcsin

(
− ¨̂y√

¨̂x2 + ¨̂y2 +(g− ¨̂z)2

)
(3.13)

θ = arctan

( ¨̂x

g− ¨̂z

)
(3.14)

ψ = ψ̂ (3.15)

φ̇ =

(
u̇1 ¨̂y−u1

...
ŷ
)

(u1)

√
(u1)

2− ¨̂y
2

(3.16)

θ̇ =

...
x̂
(
g− ¨̂z

)
+ ¨̂x

...
ẑ((

g− ¨̂z
)2

+ ¨̂x
2
) (3.17)

ψ̇ = ˙̂ψ (3.18)

where

u1 =

√
¨̂x2 + ¨̂y2 +(g− ¨̂z)2 (3.19)

u̇1 =
1
2
( ¨̂x2 + ¨̂y2 +(g− ¨̂z)2)−1/2(2¨̂x

...
x̂ +2¨̂y

...
ŷ +2(g− ¨̂z)(−

...
ẑ) (3.20)

The second control input ˙u2 = φ̈ can therefore be expressed:

u̇2 =
Nu2

Du2
(3.21)

where

Nu2 = (ü1 ¨̂y−u1
....
ŷ )(u1

√
u2

1− ¨̂y2)

− (u̇1 ¨̂y−u1
...
ŷ)(u̇1

√
u2

1− ¨̂y2 +u1(
1
2
(u2

1− ¨̂y2)−
1
2(2u1u̇1−2¨̂y

...
ŷ))) (3.22)

and

Du2 = (u1

√
u2

1− ¨̂y2)2 (3.23)
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The third control input ˙u3 = θ̈ can be expressed:

u̇3 =
Nu3

Du3
(3.24)

where

Nu3 = (
....
x̂ (g− ¨̂z)+ ¨̂x

....
ẑ )((g− ¨̂z)2+ ¨̂x2)

− (
...
x̂(g− ¨̂z)+ ¨̂x

...
ẑ)(2(g− ¨̂z)(−

...
ẑ)+2¨̂x

...
x̂) (3.25)

and
Du3 = ((g− ¨̂z)2+ ¨̂x2)2 (3.26)

Finally the fourth control input is expressed as a function of the output:

u̇4 = ¨̂ψ (3.27)

3.3.1 Differential flatness discussion

Differential flatness has been shown for the quadrotor between the output space ([x,y,z,ψ])
and the control inputs ([u1,u2,u3,u4].) These control inputs are functions of the Euler an-
gles in the earth axis and hence not equal to the actuator outputs ([ũ1, ũ2, ũ3, ũ4]) which
are acting in the body axis. The actuator outputs can be assumed in some cases to approx-
imate the control inputs (Castilloet al. 2005), this assumes small angle deviation in roll
and pitch and fixed zero yaw angle. This approach is obviouslylimited however, for tra-
jectory optimization in the four dimensional output space (Section 3.6) as the yaw angle
is clearly not always zero and therefore this assumption no longer holds.

As seen within the differentially flat equations rapid equation growth is present as the
differential flat equations are derived for the state and control spaces. For true differential
flatness the actuator outputs would be calculated as a function of the output space, this
would however result in further equation growth. Instead the differential flatness is con-
sidered only within the earth axis and hence simplifies the problem. The actuator outputs
(body axis) are then calculated from the control inputs (earth axis) using the algebraic
relationship in equations (2.32) to (2.35). For trajectoryoptimization the constraints are
placed on the control inputs in the earth axis using a suitable approximation as discussed
within Section 2.5. The whole problem can now be posed withinthe output space as
opposed to the control space (Equation 3.1.)

min
y(t)

Φ for t ∈ [0,T]

ss.t.d(y) ≤ 0,

x0−h1(y(0)) = 0,

yT −y(T) = 0

(3.28)

Now the state is a function of the output space obtained from the differential flatness
h1(y). Furthermore, any inequality constraints on the problem are also expressed as a
function of the output spaced(y). These inequality constraints contain dynamic, control
and environmental constraints such as maximum velocity, thrust limits and obstacles.
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3.4 Constraints

Obviously when determining the optimal or quasi-optimal trajectory it is important that
the trajectory is feasible. The trajectory must satisfy a set of equality and inequality
constraints which ensure dynamic, actuator and obstacle avoidance constraints are met.
Also obviously the vehicle must start at its current position and reach its destination at the
predetermined flight time, therefore:

x̂0 = x0 (3.29)

wherex̂0 is the initial parameterized state andx0 is the initial state of the vehicle. Simi-
larly:

x̂T = xT (3.30)

wherex̂T andxT are the parameterized state and required state at the predetermined time
(T). As with any equations of motion, singularities exist at roll and pitch angles exceeding
90o. While these can be avoided by adopting quaternions, it is unlikely that these angles
will be exceeded with any rotor craft. Therefore to avoid these singularities within the
differentially flat equations the roll angle and pitch angleare constrained. Furthermore
singularities also occur at zero thrust and therefore this is also constrained:

−90o ≤φ ≤ 90o (3.31)

−90o ≤θ ≤ 90o (3.32)

u1 > 0 (3.33)

As discussed within Section 2.5 the constraints are approximated as functions of the con-
trol inputs:

u1 ≤ 5.4 (3.34)

u2 ≤ 0.5 (3.35)

u3 ≤ 0.5 (3.36)

u4 ≤ 0.5 (3.37)

As this model contains no aerodynamic effects there is no maximum speed within the
model, therefore the maximum speed of the vehicle is constrained:

√
˙̂x2 + ˙̂y2 + ˙̂z2 ≤ 5(m/s) (3.38)

3.4.1 Obstacle Modelling

In order for the trajectory to be feasible, the trajectory must avoid obstacles such as other
vehicles, buildings and the ground. For computational simplification it is desirable to
model all obstacles as convex smooth obstacles. In the simplest case this would be in the
form of a sphere in which the inequality is presented as

Rs−
√

(x−X)2+(y−Y)2+(z−Z)2 ≤ 0 (3.39)
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whereRs is the radius of the sphere,(x,y,z) are vehicle co-ordinates and(X,Y,Z) are
obstacle co-ordinates. This is used within the simplest obstacle avoidance mission de-
scribed within Section 3.1. Buildings on the other hand which are clearly not spherical
are modelled as infinitely high cuboid approximations, as itis assumed they are too high
to fly over.

Rs− N
√

(x−X)N +(y−Y)N ≤ 0 (3.40)

whereN is a large number and asN→∞ then the obstacle approaches a convex square. To
avoid computational difficulties obviouslyN is not chosen to be∞, instead a reasonable
approximation is made by settingN = 12. Figure 3.1 shows the approximation of a square
for N = 12. Obviously not all obstacles are circular or square, however, weightings can be
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Figure 3.1: Constraint approximation of a square

applied to the approximations to obtain approximations fordifferent shapes. By applying
a simple weighting to thex andy coordinate a rectangular obstacle can be modelled

Rs− N

√
(x−X)

wx

N

+
(y−Y)

wy

N

≤ 0 (3.41)

wherewx andwy are weighting factors. Figure 3.2 shows the approximation of various
rectangles by varying these weightings. This approach is a simple method in which any
obstacle avoidance can be modelled as a concave inequality regardless of the actual shape
of the obstacle, spherical approximation accounts for a factor of safety for the trajectory
and improves the convergence on an feasible solution.
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Figure 3.2: Constraint approximation of a rectangle

3.4.2 Terminal constraints

The optimization is required to minimize the cost function subject to the dynamic, initial
and terminal constraints. This is solved numerically and itis found that the convergence
properties of the algorithm can be greatly improved by relaxing the terminal constraints,
this is done by creating a box around the destination in whichthe trajectory must finish.
Equation 3.30 is therefore relaxed, such that




x̂T

ŷT

ẑT



=




xT ±0.25
yT ±0.25
zT ±0.25



 (3.42)

where[x̂T , ŷT , ẑT ] are the relaxed terminal parameterized positions and[xT ,yT ,zT ] is the
destination coordinates.

3.5 Cost Function

Trajectory generation involves the minimization of some cost function,Φ, with respect
to a set of constraints. The cost function is required to be some quantitative measure of
optimality for any given trajectory. There are three classes of problem (Pierre 1969), the
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Lagrange problem which is a function of the running costs over the mission

ΦL =
∫ T

0
f (x, ẋ, t) dt (3.43)

the Mayer problem which is a function of the terminal costs

ΦM = f (x, t)|T0 (3.44)

and the Bolza problem which is a function of the running and terminal costs

ΦB = f (x, t)|T0 +

∫ T

0
f(x, ẋ, t) dt. (3.45)

For a predetermined flight time the vehicle should travel to the destination by taking
the shortest possible route or use the minimum amount of fuel. There is obviously some
correlation between shortest distance and minimum fuel, the further the vehicle travels the
more fuel it needs. When considering missions such as mission (ii), then the relationship
is less straightforward as dropping below an obstacle requires a different control action
to going around it, although both are minimum distance. The difference is obviously the
thrust required to overcome the gravitational pull, this isonly acting in one plane and
therefore the symmetry of minimum distance problem is lost.

In all three missions there is a desired terminal position, which requires the trajectory to
finish at a certain height, this simplifies the problem somewhat. Consider mission (ii) as
an example, the terminal state requires the vehicle to return to its initial altitude, therefore

1
T

∫ T

0
u1dt ≈ mg (3.46)

Now consider a minimum fuel cost function, in which the cost is a direct function of the
total thrustu1

Φ =
1
T

∫ T

0
u2

1Pu2
1
′ (3.47)

where P is a weighting factor. It follows therefore that the minimum fuel problem in
this case, with a fixed mission time, is essentially minimizing the deviation from the
average required thrust (g). Recalling the differentially flat equation (3.4), it can be seen
that minimizingu1 is achieved by minimizing the vehicles acceleration as opposed to the
minimum distance. In Chapter 5 this topic will be revisited but for now minimum distance
is used for a number of reasons. Firstly the optimal solutionfor minimum distance is
reasonably obvious, whereas minimum fuel requires carefulconsideration. The major
advantage is however due to the output space optimization, as the problem is posed within
the output space, by expressing the cost function as a directfunction of the output space
as opposed to the control space, the cost function is much simplified and does not include
the large differentially flat equations (3.19-3.27). The following cost function is proposed
and therefore the problem is formulated as a Lagrange problem:

Φ =
1
T

∫ T

0
(P1ẋ2 +P2ẏ2+P3ż2)

1
2 dt (3.48)

whereP1, P2, P3 are weighting factors,T is the predetermined mission time.
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3.6 Parameterization

In order to reduce the optimization problem to a finite dimensional problem a parameteri-
zation of the output space is required. The simplest starting point for this is a polynomial
or monomial (elementary polynomial) (Yakimenko 2006, Yakimenko 2000, Eikenberryet
al. 2006, Nieuwstadt and Murray 1995), these are not necessarily the most effective solu-
tion however, as the conditioning is poor and there is a greater sensitivity at larger values
of time. Other techniques which have been considered include Laguerre polynomials
(Huzmezanet al.2001), Chebyshev polynomials (Fahroo and Ross 2000, Vlassenbroeck
and Van Dooren 1988) and polynomials obtained from the Taylor series expansion.

All techniques are essentially a product of a free variable(ak) and a basis functionΓk,

f (t) =
M

∑
k=0

akΓk(t) (3.49)

where M is the order of the basis function. The search space, assuming that there is no
requirement to optimize the yaw angle(ψ), becomesR3(M+1), with a 5th order basis func-
tion the problem becomes a 18 dimensional optimization problem. This in comparison is
much lower than the search space within the work by Fahroo andRoss (2000), where the
search space over G piecewise polynomials of magnitudeM is R

G(3(M+1)+1) and although
each polynomial may only be a 3rd order polynomial the dimension of the problem is still
130. While the dimension of the search space is not the only factor when considering
convergence and the resulting computation time, with such areduced search space other
issues which are important within the work by Fahroo and Ross(2000) become less sig-
nificant.

3.6.1 Laguerre polynomials

Laguerre polynomials which are derived from Laguerre’s differential equations improve
conditioning by weighting the individual terms of the simple polynomial. Laguerre poly-
nomials can be derived from the following recurrence relationship.

Γ0(t) = 1

Γ1(t) = 1− t

(k+1)ΓK+1(t) = (2K +1− t)Γk(t)−kΓk−1(t).

(3.50)

Laguerre polynomials (Γn, for n = 0,1...5) can be seen in Figure 3.3

3.6.2 Chebyshev polynomials

Chebyshev polynomials are used extensively within fluid dynamics as their cylindrical
nature and the ability to determine both set of boundary conditions analytically make them
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Figure 3.3: Laguerre polynomials

ideal for certain fluid flow modelling problems. This can be beneficial when considering
trajectory optimization problems as the initial and terminal constraints can be determined
analytically.

Γk(t) = cos(ny) wheret = cos(y). (3.51)

Chebyshev polynomials (Γn, for n = 0,1...6) can be seen in Figure 3.4

3.6.3 Taylor series polynomials

The conditioning of the polynomials can be also improved using weightings obtained
from the Taylor series.

Γk = (1/k!)tk. (3.52)

The benefit of this can be seen when comparing the sensitivityto a change in the free
variable at a large value oft. Starting with the basic polynomial:

Γk = tk. (3.53)

The sensitivity to a change in the free variableak is:

∂Γ
∂ak

= tk (3.54)

whereas for the polynomial obtained from the Taylor series this is:

∂Γ
∂ak

=
tk

k!
(3.55)
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Figure 3.4: Chebyshev polynomials

To show the benefit of this improved conditioning, the sensitivity for both the Taylor
polynomials and the standard polynomials, are shown in Figures 3.5-3.9. For different
time values(t = [1,2, ....5]) the sensitivity is shown at different powers(k). This shows the
increased sensitivity for large values ofk for the standard polynomial but this is reduced
when the Taylor series weighting are applied.

3.6.4 Comparison

There are many potential parameterization techniques and therefore in order to come to a
decision as to which is the best one to use, some method of testing is required. In Section
3.1, three missions are defined to test the optimization algorithm, it is therefore possible
to test each basis function for each mission by solving the optimization problem stated
in Equation 3.28. Essentially we are interested in finding the optimal path in the shortest
possible time, assuming the total optimization time is a product of the number of iterations
and the single iteration time then we can evaluate the effectiveness of each basis function.
As the computation time for a single iteration is small and not particularly varied from
one basis function to the next then it can be assumed we are interested in the technique
which converges to the solution in the smallest number of iterations.

Table 3.1 shows the number of iterations for each mission with the four different basis
functions. It is assumed that all techniques converge on thesame optimal solution as the
final cost function is the same. It can be seen that the basic polynomial generally requires
more iterations than the other techniques to converge on thesolution. The weighting from
the Taylor series reduces the number of iterations for the Vertical mission especially but
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Figure 3.5: Improved conditioning with Taylor series (t=1)

the best results are achieved when using Laguerre polynomials and Chebyshev polyno-
mials. Chebyshev polynomials are cylindrical in nature andtherefore initial and final

Table 3.1: Number of iterations for various parametrization techniques
Iteration The well Vertical Obstacle
Polynomial 30 85 17
Laguerre 21 33 18
Chebyshev 15 33 17
Taylor 30 30 20

boundary conditions can be determined analytically and applied to reduce computation
time although this proves complex for variable horizon times. Laguerre polynomials are
shown to be an efficient parametrization technique for this problem and therefore have
been implemented.

3.6.5 Topology plots

Having decided upon a 5th order Laguerre polynomial and recalling the cost function
(Equation 3.48) it is possible to plot small changes in the free variables within the param-
eterization against the cost function to get some idea of anypotential convexity that exists
within the optimization. The search space when optimizing over translational position
and yaw angle becomesR4(M+1) which obviously can not be shown on a single graph,
instead just the six coefficients on thex position are varied in pairs(a0,a1,a2,a3,a4,a5)
to produce 3 sets of graphs (Figure 3.10).
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Figure 3.6: Improved conditioning with Taylor series (t=2)

These results indicate convexity over this region but also show the sensitivity variation
within the Laguerre polynomials despite the improved conditioning due to weightings.
These results can be compared to the cost function convexityusing a basic polynomial
parameterization (Figure 3.11). It is clear that the conditioning for the polynomial param-
eterization is very poor, as it appears that the cost function is almost totally dependent of
only one of the two free variables in each of the plots. This isunderstandable considering
the basic sensitivity analysis shown in Figures 3.5-3.9.

3.7 Results

Mission (i)

Figure.3.12 shows an example of the trajectory optimization for the vertical mission. Us-
ing Laguerre polynomials and an initial guess ofλn = 04x6 the optimal path and states are
calculated. Obviously the optimal horizontal displacement for a vertical flight when min-
imizing distance traveled is zero and therefore the optimization essentially determines the
speed profile and required thrust to reach the destination at7 seconds. The minimum time
solution for such a problem is well known (Pontrjaginet al.1962), where the optimal con-
trol signal appearing as a ’bang-bang’ with maximum thrust followed by minimum thrust.
The minimum fuel problem which converges to infinite time is small positive thrust fol-
lowed by small negative thrust, the control profile in this case appears to be a flattened
replica of the minimum time problem. With fixed time at 7 seconds it can be seen that
the problem lies in between minimum time and minimum fuel andtherefore the maxi-
mum thrust is considerably below the constraint of 5.4N and the ’flatter’ control profile is
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Figure 3.7: Improved conditioning with Taylor series (t=3)

evident.

Mission (ii)

The second mission is the obstacle avoidance and this can be seen in Figure.3.13. As
seen the reference trajectory passes along the surface of the obstacle as this is the shortest
route to the destination. As the cost function is a function of the distance traveled, the
optimal trajectory is along the surface of the sphere but it could equally be underneath or
around the side. The reference trajectory is therefore dependent on the starting point for
the optimization, i.e the free variables’ initial values.

Mission (iii)

The third mission is the mineshaft mission and this can be seen in Figure.3.14. This
mission is possibly the most challenging mission in terms offinding a feasible solution
as the walls severely increase the number of constraints within the optimization as the
vehicle must pass down a thin mineshaft, this accounts for the increased computation
time which will be discussed in the next section. If the diameter of the mineshaft was
smaller, then a 5th order polynomial may struggle to meet theconstraints, this could be
solved by increasing the order of the polynomial although this in turn would increase
computation time. An alternative to this problem would be toset waypoints to determine
a trajectory to the top on the mineshaft and to then drop down the mineshaft after a new
trajectory generation.
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Figure 3.8: Improved conditioning with Taylor series (t=4)

3.7.1 Computation time results

The computation times for the optimization are calculated on a desktop PC with a 3GHz
processor, 1GB of RAM and running a Windows operating system. The MATLAB func-
tion fminconis used to optimize Equation 3.28 with 5th order Laguerre polynomials. The
free variables require an initial guess at which the optimization search begins, in all three
missions for the polynomials of orderR

4(M+1) the free variableλ0 = 04x6. At subsequent
optimizations in the case the trajectory needs to be redetermined it is possible to useλopt

as the starting point in the optimization and this generallyreduces computation time.

Table 3.2: Computation time for 3 missions
Mission Computation time

(i) 1.8 seconds
(ii) 2 seconds
(iii) 7.2 seconds
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Figure 3.10: Cost function convexity using Laguerre polynomials as function of
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Chapter 4

Control Schemes

The previous chapter discussed trajectory generation of the quadrotor, by performing a
non-linear optimization, within the output space, to calculate the reference state and con-
trol values, for a given mission. By feeding these referencecontrol signals forward, it
is theoretically possible to fly the vehicle open loop. In reality, this is obviously not the
case however, as disturbances, noise and model uncertaintywill cause tracking errors.
Furthermore, the vehicle is unstable hence feedback is required to stabilize the system.

By repeatedly optimizing the trajectory at every time step,and updating state informa-
tion through feedback, it is possible to close the loop and formulate a MBPC controller.
MBPC optimizes the trajectory at each time step providing guaranteed constraint satisfac-
tion. However the disadvantage of such a scheme is significant computational demand.
Alternatively, a dual loop controller, as shown in Figure 1.5, can be used to achieve closed
loop flight, with reduced computational demand. Trajectoryoptimization produces ref-
erence states and control for the duration of the flight, feeding forward these reference
values and combining with a standard multivariable controller (LQR), produces a robust
trajectory following controller. However, in the event of environmental changes or sig-
nificant disturbances the reference trajectory may become infeasible and therefore it is
necessary to determine a new optimal trajectory. The two schemes discussed therefore
offer advantages and disadvantages, the MBPC scheme offersconstraint satisfaction but
with significant computational demand, whereas, the LQR inner loop does not guarantee
constraint satisfaction but is less computationally demanding. It is therefore possible to
consider a combination of the two control schemes where an outer loop trajectory gener-
ation is combined with an inner loop trajectory follower andthese loops are controlled by
a switch which monitors the trajectory feasibility.

This chapter consider both MBPC and singular trajectory generation with trajectory fol-
lowing and compares the results of both schemes using the three standard missions de-
fined in Section 3.1. A dual loop controller is then developedwhich combines the benefits
of both schemes and this is demonstrated using the same missions but with environmen-
tal changes, mission changes and model uncertainty to show the adaptability of the new
scheme.
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It is clear that the computation time for trajectory generation is of great importance.
Within a gradient based optimization routine such asfmincon,a large percentage of the
computation time is consumed calculating the gradients of the constraints and the cost
function with respect to a change in the free variable. Computation time can be re-
duced significantly by supplying these gradients to the routine, however, determining
these gradients analytically is a time consuming process. Automatic differentiation is a
computational process, which, utilises the step by step nature of a computer program, and
systematically uses the chain rule, to determine the derivative of a function. Automatic
differentiation software is available in MATLAB (Forth 2006) and this is used to evaluate
the gradients of the constraints and cost function and the computation time is compared
with the analytical solution.

4.1 MBPC

A single trajectory optimization provides reference stateand control values for the re-
quired mission. Closed loop control can be achieved by continually reoptimizing the
trajectory and forming in effect a MBPC controller. MBPC is aprocess of successive op-
timizations over a given time horizon. The initial control input is inputed into the system,
the process is then repeated at the next time step. Typicallythe time horizon is fixed and at
every time step receeds, this is why MBPC is sometimes referred to as receeding horizon
control, an excellent review of MBPC can be found in Mayneet al. (2000). The ma-
jor benefits of MBPC is its online capability to satisfy constraints and therefore the real
benefit of this for trajectory generation is it capability tohandle dynamically changing
environments with some measure of optimality. MBPC can be formulated for trajectory
generation by optimizing the reference trajectory at everytime step by solving Equation
(3.28) over some time horizon. This formulation is a nonlinear problem and therefore
requires non-linear MBPC. This presents several problems such as the convexity will be
lost possibly resulting in local minima or ‘wild’ trajectories. Also there is no guarantee of
computation time if a feasible solution is found at all. Furthermore MBPC is dependent
on the accuracy of the model and therefore if the model changes due to for example a
change in mass then the resulting control input may be unsuitable. The advantages and
disadvantages can therefore be summarised:

MBPC advantages

• Constraint satisfaction at every time step

• Measure of optimality at every time step

Non linear MBPC disadvantages

• No guarantee of a feasible solution
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• Sub-optimal or ‘wild’ solutions resulting from local minima

• Large computational demand

• Poor robustness to model inaccuracy

4.1.1 MBPC for trajectory generation

At any given time steptk, given by;

tk = t0+kη tk ∈ [t0 t f ] (4.1)

whereη is the sampling time. The optimal trajectory is determined over [tk tk +T] where
T is a constant time horizon and the control actionuk+1 is determined. This process is then
repeated at the next time steptk+1, over the time horizon[tk+1 tk+1+T] to determine the
control inputuk+2. This is why predictive control is also referred to as receding horizon
control. This can be applied to autonomy of UAV flight by successive optimization of the
flight trajectory with respect to a set of constraints such asmoving obstacles and actuator
limits. The benefits of this control technique are thereforeits ability to combine the tasks
of the path planner and controller as well as its improved constraint handling abilities.

4.1.2 Time Horizon

The trajectory optimization determines the optimal path from the current state to the des-
tination, this is obviously not therefore a fixed time, as is the norm for MBPC in which a
fixed time horizon receeds into the horizon (hence receedinghorizon control). The time
horizon is initially set to the full flight timeT = [tk , t f ] wheretk = t0 and reduces with
time, with the vehicle reaching the destination whentk = t f andT = 0, in this case the
time horizon is no longer receding. Thus the predictive controller has a varying time
horizon which can be expressed as;

T = t f − tk (4.2)

t f can be set to any value and this depends upon the requirementsof the mission although
if the minimum time is required this can be determined off-line by starting at an arbitrary
value, checking feasibility and adjusting the mission timeaccordingly and repeating until
a minimum is found.

4.1.3 Algorithm

Having defined the cost function, constraints and time horizon it is possible implement
the control algorithm. At each time steptk for k = [0,1.... f ]:

1. Obtain measurementyk;
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2. MinimizeΦ, subject to constraints as in Equation (3.28);

3. Determine control inputuk+1;

4. Repeat untilT = 0.

In practice for small values of the time horizonT < 0.5s, it is very hard to find optimal
feasible solutions. This is improved by relaxing the terminal constraints with the addition
of a destination box as discussed in Section 3.4.2. Despite this however a feasible solution
may not be found, in this case a practical solution is to use a linear control scheme to
follow a reference trajectory determined by the last feasible solution. When optimizing
the trajectory it is necessary to provide a start point for the search (λ0) from which the
optimal trajectory is found (λopt). Initially this is an arbitrary initial guess (λ0 = 04×6),
but for valuesk > 1 the search time can be significantly reduced by recalling the previous
optimal solution (λ0(k) = λopt(k−1)).

4.1.4 Feasibility and stability

Stability for non-linear MBPC is generally very difficult toshow (Maciejowski 2002).
Global stability requires that a feasible solution can always be found and although this
could be shown for very simple missions, when obstacle avoidance is considered this is
certainly not a trivial problem. Non-linear stability can be shown in the case where a feasi-
ble solution is always possible by the addition of terminal constraints and convergence to
these constraints through a Lyaponov function. Although this work contains no non-linear
stability proof, stability is demonstrated through simulation and terminal constraints are
also placed on the trajectory.

4.1.5 MBPC results

Mission (ia)

The first mission was the vertical flight, to climb 5m in 7 seconds. For all missions the
sampling rate is 10Hz and all target destinations have a tolerance of 25cm and this is
modeled as a box around the destination. The result of this test can be seen in Figure 4.1.
A feasible solution is found at every time step untilT < 0.5s. At this point the vehicle is
quite close to the target, and using the last feasible solution for the control, results in the
vehicle passing through the target box at 7 seconds. It should be noted that the scheme
generally does not find feasible solutions when the horizon gets small, but the vehicle is
usually very close to the target at this time.
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Figure 4.1: MBPC for vertical climb

Mission (iia)

The second mission involves a flight to a target 6m north of thestart point within 15
seconds. An obstacle modeled as a sphere with radius 1m is centered at(3,0,0). The flight
path can be seen in Figure 4.2. As disturbances such as wind are present in the simulation
then the optimal path may change in flight, as discussed this is a major advantage with
MBPC. This plot shows an initial optimal trajectory but due to a tail wind blowing the
vehicle towards the obstacle, the optimal trajectory changes at the next sampling interval.
The vehicle then attempts to follow this trajectory but due to the continual tail wind and
resulting errors it is necessary to constantly replot the trajectory. The optimal path is very
close to the obstacle as seen, this is due to the optimizationroutine attempting to find the
shortest route to the destination. In practice a factor of safety would be required when
defining the obstacles.

Mission (iiia)

The final mission involves a flight to a waypoint at the top of a mineshaft in a strong
wind followed by a vertical flight down to the bottom of the mineshaft. There is no wind
disturbance in the mineshaft. The flight path can be seen in Figure 4.3. After the first
optimization the vehicle takes into account the disturbance due to the strong wind. As
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Figure 4.2: MBPC for obstacle mission

the vehicle has a induced velocity due to the tail wind there is no need to pitch to reach
the top of the mineshaft, instead the vehicle drifts in the wind to the top of the mineshaft
whereupon, in order to slow down, it pitches and descends down the mineshaft. Within
the mineshaft however the wind drops, leaving the vehicle pitching and drifting towards
the mineshaft wall. At this point it is necessary to pitch theother way to avoid collision
and to return to the center. This mission highlights the advantage of MBPC over a linear
tracking controller over a pre-defined trajectory, as it accounts for environmental changes
such as the presence of a strong wind.

Computation time

The computational demands are the obvious disadvantage when considering MBPC, and
this is the major contributing factor, as to why its application in industry is limited to
the process industry where the time constants are typicallylarge (Al Seyab 2006). The
quadrotor on the other hand has short time constants making real time optimization a
very challenging problem. The average computation time foreach trajectory generation
presented in this section is under 0.5 seconds, on a standard desktop PC, but this is still not
sufficient to operate at 10Hz. Significant reductions in computation time can be achieved
using techniques such as automatic differentiation, as will be discussed within Section 4.4.
However, even with significant computational reductions the computation time is still too
large for realistic real-time MBPC operation. Also as the problem is a nonlinear MBPC
problem a feasible solution is not guaranteed. In the event of an optimization not finding
a feasible solution, it is possible to revert back to the previous optimal solution, and use
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Figure 4.3: MBPC for mineshaft mission

the reference control signal, but this is in effect reverting back to open loop control which
is not desirable, especially as the quadrotor is open loop unstable. These two problems
require the investigation of an alternative approach such as an extra loop as previously
shown in Figure 1.5.

4.2 Trajectory Following using LQR control

With a single trajectory optimization full optimal reference states and controls are found
for the entire flight. Closed loop control can be achieved by feeding forward these values
and applying a standard multi variable controller (LQR) to follow this trajectory as shown
in Figure 1.5. Assuming a reference trajectoryxre f from the trajectory optimization, as
discussed within Chapter 3, an LQR controller can be used to track the time dependent
reference trajectory. This approach is of negligible computational demand once the refer-
ence trajectory has been determined compared to a MBPC scheme. Also once a trajectory
has been determined a feasible solution exists which the vehicle can follow and is there-
fore not dependent on a new trajectory being determined before the next control action.
There are obviously disadvantags with this approach as wellsuch as a reliance on the
initial reference trajectory optimality. Furthermore if the problem changes after the initial
optimization, due to for example a new obstacle appearing, the control algorithm will not



70 Control Schemes

reoptimize a trajectory to avoid this obstacle. As before the advantages and disadvantages
are summarised below

LQR trajectory following advantages

• Negligible computational demand

• Does not require a feasible solution after initial optimization

• Inherent robustness and stability characteristics

LQR trajectory following disadvantages

• Could violate constraints due to environmental changes such as a moving obstacle

• Relies on the initial trajectory optimality

4.2.1 The LQR control problem

Linear Quadratic Regulator (LQR) control is a widely used control technique (Starinet
al. 2001, Wuet al.1998), which can be applied to linear state space systems

ẋ(t) = Ax (t)+Bu(t) . (4.3)

The control gains are found by solving the Riccati equation and minimising the perfor-
mance measure (J),

J =

∫ ∞

0
(x(t)Qx(t)+u(t)Ru(t) )dt (4.4)

whereQ andR are weighting matrices. The control input is then defined:

u(t) = uref −K cx(t) , (4.5)

resulting in a stable closed loop system

ẋ = [A −BK c]x(t)+Bure f (4.6)

Now, assuming a time-dependent reference trajectoryxre f (t) , the LQR control can be
applied as a trajectory follower to minimize small errors between the full measured state
x and the reference statexre f , such that the applied control becomes

u(t) = ure f(t)−K c(x(t)−xre f(t)) (4.7)

The control gainsK c are determined with the plant linearized at hover (Equation2.42 and
Equation 2.43).
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The weightings for performance measure can be chosen to minimize deviation from the
reference trajectory or to minimize control action. For thenon-normalized case where the
A andB matrices are defined in (2.38,2.39), theQ andR can be used to minimize control
action as well as ensure constraint satisfaction for the control inputs. By defining

Q = diag(1×10−5,1×10−5,1×10−4,1×10−5,1×10−5,1×10−4,1×10−3, (4.8)

1×10−3,1×10−3,1×10−5,1×10−5,1×10−5) (4.9)

R = diag(1×10−5,1×108,1×108,1×108) (4.10)

the control gains are suitably low to reduce the likelihood of constraint violation. It is
worth noting that this is not the same as setting the weightings to zero, as theQ andR
matrix must remain positive definite. Alternatively theA andB matrix can be normalised
with respect to the inertia of the vehicle and similar control gains can be determined using
a identity matrix. The resulting gain matrix is:

K c =




0 0 3.16 0 0 4.04 0 0 0 0 0 0
0 0 0 0 0 0 3.1×10−6 0 0 2.5×10−3 0 0

−0.32 0 0 −1 0 0 0 6.13 0 0 3.50 0
0 1.00 0 0 2.81 0 0 0 15.0 0 0 5.48




(4.11)

The closed loop stability of the system can now be analysed bycalculating the eigenvalues
of the closed loop(A −B∗K c), these are shown in Figure 4.4.

4.2.2 Stability Analysis

Clearly, to follow a trajectory, the system does not remain at hover. A simplified analysis
is hence performed to determine an envelope of operation where the vehicle will remain
stable. The analysis is not rigorous and is is hence only an indicator, however the analysis
is simple and provides a convex bound on the statex. Stability for a calculated trajectory
can be subsequently checked by simulation. From Equation 2.42 and Equation 2.43, the
linearized dynamics depend on three variables,θ, φ and u1. We define the linearized
stability setS to be

S =
{

θ,φ : α(A(θ,φ,u1)−B(θ,φ)K c) < 0,0.5 < u1 < u1(max)
}

(4.12)

whereα(·) is the spectral abscissa (most positive real part of the eigenvalues). The set is
plotted in Figure 4.6 . By inspection, we can fit a disk inside the set, hence it is clear that
Sc ⊂ S where

Sc =
{

θ,φ : θ2+φ2 ≤ r2
s

}
(4.13)

with rs = 60◦. Sc is also shown in Figure. An extra constraint can be inserted into the
trajectory planner, which maintains the angles within thisset and therefore ensures lin-
earized time-invariant stability.
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Figure 4.4: Closed loop poles with LQR control

Figure 4.5: Stability surface for varyingθ andφ



Control Schemes 73

θ

φ

 

 

−80 −60 −40 −20 0 20 40 60 80

−80

−60

−40

−20

0

20

40

60

80

0

0.05

0.1

0.15

0.2

0.25

0.3

Figure 4.6: Stability region contour for varyingθ andφ

4.2.3 Results

LQR control for hover of the Draganflyer X - Pro

Before attempting to attempt trajectory following of the smaller quadrotor, the larger
quadrotor model detailed in Appendix B will be used to demonstrate a hover controller
for the Draganflyer X-Pro. Essentially these models are the same except for some obvi-
ous differences such as the vehicles inertias, mass and rotor properties. Obviously as the
model is different the required control gains will be different, these are determined in the
same way the controller is designed for the smaller quadrotor but with different weight-
ings. In this case the control inputs are normalized with respect to the vehicles inertia and
mass and this allows a identity matrix to be chosen for the weightings without saturating
the control inputs. The LQR weighting for the normalized model for this controller have
been chosen simply asQ = I12,R = I4. The reference state is set such that the vehicle
hovers at[0,0,5], with the initial state set to[1,0,0]. For this simple hover simulation the
wind is applied as a constant drift of 0.1m/s along thex, y andz axis, gusting is applied
as a random noise with a mean value of 0.1m/s and a variance of 0.01m/s. There is also
a time delay between the state measurement and the control action of 0.1 seconds to sim-
ulate the communication lags with the experimental set up described in Chapter 7. As
seen in Figure 4.7, the vehicle flies to the hover condition within 30 seconds. The LQR
weightings are chosen for demonstration and performance can be improved by modifying
these weightings.
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Figure 4.7: Quadrotor hover using LQR control

LQR control with step changes

It is typical to test a linear controller by inputing step changes in the demanded state of
the system. This is not so straightforward for the quadrotorhowever. As the system is
highly coupled a step change in one state is not ideal. For example, a step input into the
roll angle alone, requires the vehicle to roll while maintaining zero roll rate and at a fixed
position, clearly this is not possible. These step changes are considered using the smaller
quadrotor model detailed in Appendix A. In Figure 4.8, initially the roll angle increases
as demanded but this leads to a big error in the roll rate and the east position. To reduce
these errors the vehicle the vehicle rolls the other way reducing the horizontal velocity.
There is then a sequence of oscillations as the vehicle triesto reduce all the state errors
which of course is not possible. The vehicle then returns to essentially a hover condition,
whereby the demanded roll angle in not met but the other stateerrors are minimized.

In a similar manner a demand in a change of position requires errors in other states to
occur. In Figure 4.9 a change in position is required. This ispossible as in this case the
vehicle can hover at a different location although state errors are inevitable in achieving
this. As before there is a quick initial response as the vehicle pitches. Again this leads
to errors in other states however, so the vehicle pitches theother way to reduce these



Control Schemes 75

0 2 4 6 8 10
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

Time, (s)

R
ol

l a
ng

le
, φ

 (
ra

d)

 

 

Demanded step change
Roll angle

(a) Simulated roll angle

0 2 4 6 8 10
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Time, (s)

R
ol

l a
ng

le
 r

at
e,

 φ
 (

ra
d)

(b) Simulated roll rate

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time, (s)

E
as

t v
el

oc
ity

, y
 (

m
)

(c) Simulated east velocity

Figure 4.8: Roll angle step change

and again this leads to oscillations. In this case, convergence to the demanded state is
possible although this is quite slow. These results show that the coupled nature of the
dynamics, can result in poor tracking, of a step change in thevehicles state. To improve
this tracking performance to a step change the LQR weightings could be modified to
reduce this coupling effect, however, for reference trajectory following, where the full
state is fed-forward this problem is reduced. It is likely however, that an state offset,
could remain constant as the vehicle tracks the other states.

LQR tracking of reference trajectory

To demonstrate closing the loop with a LQR controller the three missions described pre-
viously will be shown. This includes a single trajectory optimization, the reference states
and controls are then fed-forward to the LQR controller, which follows this trajectory.
These results are simulated using the model of the smaller Draganflyer detailed in Ap-
pendix A.
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Figure 4.9: North position step change

Mission (ib)

The vertical climb mission can be seen in Figure 4.10 and the error is plotted in Figure
4.11. To increase the chance of finding a feasible path a tolerance of 25cm is introduced
into the terminal positional constraints. As seen the LQR controller tracks the reference
trajectory well despite the presence of noise and disturbances.

Mission (iib)

The obstacle mission can be seen in Figure 4.12. To increase the chance of finding a
feasible path a tolerance of 25cm is introduced into the terminal positional constraints.
As seen the vehicle drifts slightly off the reference trajectory but this is understandable as
a constant wind is acting on the vehicle. The reference trajectory passes on the surface
of the obstacle as this is the shortest path to the destination, in reality a factor of safety
would be introduced here. Despite the disturbances acting on the vehicle, the vehicle does
not pass through the obstacle.
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Figure 4.10: LQR trajectory following for vertical climb

Mission (iiib)

The final mission is the mineshaft mission where the vehicle must fly to the top of the
mineshaft before dropping down to the bottom. As seen in Figure 4.13 the vehicle again
drifts off the reference trajectory slightly due to the tailwind acting on the vehicle although
this is only the case above ground. Despite this tailwind thevehicle reaches the bottom of
the mineshaft without hitting the walls of the mineshaft.

4.2.4 Disturbances and model uncertainties

Up to this point we have considered a number of missions, withsome moderate wind
applied in one direction only, causing the vehicle to momentarily depart from the refer-
ence trajectory. Obviously this is not always going to be thecase with the addition of a
severe wind likely to prevent the vehicle from reaching its destination. To demonstrate
the effect of various types of wind, mission (ii) is simulated. Figure 4.14 shows mission
(ii) with the reference trajectory as before passing below the obstacle. Initially various
steady winds are applied along thex axis in a northerly and southerly direction. As seen
despite an initial large disturbance and subsequent tracking error the vehicle returns to the
reference trajectory. A magnitude of 2m/s is recoverable in a reasonable time but if the
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Figure 4.11: Vertical climb error

wind is stronger than this then the demanded control exceedsthe control limits resulting
in problems from controller saturation. It is unlikely thatonly a steady wind will be act-
ing on the vehicle, there is also likely to be gusting acting on the vehicle, this is modelled
as a random noise with a mean of 0 and variance of 0.01m/s. The simulated flight path
with gusting acting in all three axes is shown and it can be seen that the vehicle departs
significantly from the reference trajectory. The vehicle isunable to recover from gusting
with a variance of 0.1m/s. Also shown is flight path with gusting acting in all three axis
with variance of 0.01m/s and steady wind in all three axis of magnitude 0.1m/s, as seen
the vehicle tracks reaches the destination despite a constant tracking error.

At the start of the mission the vehicle is required to determine the optimal trajectory. This
requires determining the current state, determining the optimal trajectory and then track-
ing this trajectory. Trajectory generation will take some time to calculate, and therefore,
the vehicles state is unlikely to be the same as the initial conditions stated in the optimiza-
tion algorithm, resulting in initial state errors. In Figure 4.15 the initial state is varied to
model this time lag due to the trajectory optimization. A postion error in thex axis is
shown, as seen the vehicle returns to the reference trajectory by flying back towards to
the start point before proceeding with the forward flight. A position error in they axis
is also shown, here the vehicle is required to roll to minimize this positional error, again
the vehicle quickly passes to the reference trajectory. Also shown is the case where the
vehicle has an initial velocity along thex axis, this result appears to be very similar to the
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Figure 4.12: LQR trajectory following for obstacle mission

presence of a steady wind acting along the same axis, the vehicle is able to quickly return
to the reference trajectory. Finally the flight path is shownwhere the vehicle is initial-
ized with a large roll angle. This causes the vehicle to driftoff the reference trajectory
as the roll angle is corrected, the vehicle then rolls the other way to rejoin the reference
trajectory and this is done reasonably quickly.

The scheme presented in this work is model based and up to thispoint the model is
assumed to be correct. It is however, inevitable that the model will contain errors and
inaccuracies due to modeling assumptions, it may also change due to the flight conditions
or be required to carry a particular payload. For example themodel presented includes
the weight of the standard battery, sometimes a larger battery may be required or some-
times a smaller battery may be used. In this case the model could have significant errors.
In Figure 4.16 the obstacle mission is again simulated but this time the vehicle’s mass is
changed to show the effect on the tracking controller. As expected if the mass is varied
there is a large difference between the reference control value and that of the control re-
quired to track the reference trajectory. As the mass is increased from 0.44kg to 0.5kg the
vehicle drops below the reference trajectory and is unable to track the reference trajectory
accurately, this is due to the error in the reference controlsignals and the necessity to also
track the reference speed profile, which it does after the initial drop in height. If the mass
is reduced the vehicle climbs at the start as again the reference control signal is inaccu-
rate. Although the vehicle then compensates for this changeby reducing the total thrust
the vehicle remains a constant distance from the reference trajectory, and in fact passes
through the obstacle.
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Figure 4.13: LQR trajectory following for mineshaft mission

4.3 Combined Control

In the previous section two schemes have been proposed. The first is a MBPC con-
troller which re-determines the optimal trajectory at eachtime step. The second scheme
is an LQR controller which follows a trajectory regardless of environmental changes or
disturbances. The MBPC scheme provides optimal control with guaranteed constraint
satisfaction and is also adaptive in terms of taking into account environmental changes.
By closing the loop with a linear controller such as LQR the computational demand is
reduced but constraint satisfaction is not guaranteed in the event of any environmental
change.

This section discusses a combined controller which benefitsfrom the online adaptability
and constraint satisfaction of MBPC as well as the computational simplicity of LQR tra-
jectory following. In Figure 4.17 a controller framework ispresented consisting of two
loops which in effect combines the two previous controllersin Figure 1.5 and Figure 1.6,
this new framework is controlled by an update switch. LQR control forms the inner loop
which can run at a high frequency (1 - 100Hz), trajectory generation forms the outer loop
which determines a new optimal path when activated by the update switch and feeds the
reference values through to the inner loop at a much lower frequency (0.01 - 10Hz). This
controller therefore introduces no new additional terms but simply combines the MBPC
algorithm presented in Section 4.1.3 and the inner loop LQR control from Equation 4.7.
The only new addition to the theory so far presented in this work is in fact the switch.
The switch itself compares the current state with the reference state as well as ensuring
all constraints are satisfied. If at any point the vehicle drifts off the reference trajectory or
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Figure 4.14: LQR trajectory following for obstacle missionwith different wind strengths

a new obstacle appears so that the constraints are no longer satisfied the trajectory gener-
ation is switched on. The new algorithm now incorporates both loops, at each time step
(k):

1. If k = 1, determine initial reference trajectory by solving Equation (3.28);

2. Check feasibility of reference trajectory against time varying constraints C(k);

3. If the reference trajectory is infeasible then reoptimize by solving Equation (3.28);

4. Follow reference trajectory by determining control input (Equation 4.7);

5. T = T −∆T, If T ≤ 0 then end, else go to step 2.

4.3.1 Update switch

The update switch decides when the reference trajectory is to be reoptimized. There are
two issues to consider when evaluating the existing reference trajectory, feasibility and
optimality. Feasibility is easy to evaluate analytically by evaluating the reference trajec-
tory against a set of constraints, which would include any new constraints introduced, due
to for example, a new obstacle becoming visible. Optimalityis harder to evaluate ana-
lytically, to determine the optimal trajectory the optimization problem has to be solved
(Equation 3.28). Obviously it is desirable to determine andfollow the optimum trajectory
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but this is not always possible, in these circumstances a quasi optimal trajectory or even a
feasible trajectory will suffice. Assuming an initial trajectory is feasible and has some de-
gree of optimality then as long as this trajectory remains feasible then it will be followed.
Potentially periodic optimizations may be performed on board to evaluate the trajectory
optimization and evaluate the optimality but this is not possible at every time step.

4.3.2 Results

To test the control architecture three scenarios have been simulated with the full dynamic
model.

Mission (iv)

Mission (iv) is bsaed on the obstacle mission with an environmental change. Unlike the
previous example a second obstacle is detected after 5 seconds and therefore the initial
trajectory becomes infeasible. In Figure 4.18 it can be seenthat the initial trajectory
passes under the obstacle. After 5 seconds the update switchdetects the infeasibility of
the reference trajectory due to the presence of a second obstacle and a new trajectory is
determined (Figure 4.19). The vehicle then follows the new reference trajectory which
passes over the top of the obstacles. In this mission there isa constant tailwind acting
along thex axis of magnitude 0.1m/s. This result also shows the dual optimality of pass-
ing under or over the obstacle in this mission, the calculated optimum is dependent on
the search direction within the optimization algorithm andthe initial values of the free
variable.

Mission (v)

Mission (v) is also based on the obstacle mission (Figure 4.18), but this time the mis-
sion scenario changes. In this case after a short time the desired destination moves from
[7,0,0] to [7,2,2], this requires a reoptimization of the reference trajectory as the terminal
constraints are no longer met (Figure 4.20). As before the LQR controller shows good
reference tracking of the trajectory despite the presence of disturbances which is again a
constant tailwind of magnitude 0.1m/s. As the new reference trajectory has initial condi-
tions which are the vehicles current state then a smooth transition is evident in the flight.

Mission (vi)

Mission (vi) demonstrates the case where the initial information which is presented to
the controller is incorrect, this mission is the mineshaft mission as seen in Figure 4.21.
In this example after 5 seconds the position of the mineshaftmoves from[10,0,0] to
[12,0,0] making the reference trajectory infeasible. A new trajectory is then required as
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seen in Figure 4.22 and this is then followed using the LQR controller despite the constant
tailwind of 0.1m/s.

4.3.3 Combined control conclusion

A control structure has been presented which combines an inner loop LQR controller with
an outer loop trajectory generation. These loops are controlled by an update switch which
monitors the feasibility of the current reference trajectory. In the event of the trajectory
becoming infeasible a new reference trajectory is determined in real time from the current
state to the destination allowing for a smooth transition. In the event that the optimization
routine is unable to determine a feasible reference trajectory then the current reference
trajectory is tracked until a new reference trajectory can be determined, if there is an
immediate threat of collision then the quadrotor is capableof hover.

4.4 Computation time

The major disadvantage of MBPC as discussed in Section 1.5.3is its computational de-
mand. This is possibly the main contributing factor to the reason MBPC has only had
limited application and typically only within the process industry where the time con-
stants are longer. Technological advances are enabling thedeployment of MBPC into an
increasingly wider range of applications. However, for a vehicle such as the quadrotor,
significant computational time reduction is still required.

The trajectory optimization routine can be easily implemented using thefminconwithin
the MATLAB optimization toolbox. This optimization routine uses a sequential quadratic
programming method (SQP) to find the optimal trajectory, this routine is however gradi-
ent based, requiring the constraint and cost function gradients to be calculated or supplied.
Analysis of thefminconalgorithm shows a large percentage of the computation time con-
sists of the constraint analysis and more specifically determining the gradient of these
constraints with respect to the free variableλ.

4.4.1 Analytical Solution

Recalling the constraints are placed on the full state and control matrix then it is neces-
sary at each evaluation of the constraints and cost functionto also analyse the gradient
of each state. The obvious starting point for this problem isto determine an analytical
solution. There are 12 states and 4 control inputs and either18 or 24 independent free
variables (depending whetherψ is optimized or fixed), this therefore requires up to 384
analytical solutions of the gradient. It can be appreciatedthat providing so many analyti-
cal solutions by hand to some complex functions is not feasible and therefore alternatives
are required. The analytical solution can be determined using mathematical software such
as Mathematica or the symbolic toolbox within MATLAB, thesesolutions can result in
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large equation growth and therefore lead to significant programming time and evaluation
time within the optimization routine. Other techniques such as finite differencing provide
an adequate solution but often increase computation time significantly and are subject to
rounding errors.

4.4.2 Automatic Differentiation

Automatic Differentiation (AD) is an alternative approachto calculating the derivative
analytically. Automatic differentiation was first considered in the 1960’s (Wengert 1964)
but later popularised by Rall (1981) and Griewank (1992). Automatic Differentiation is a
systematic application of the chain rule to determine the gradient of a function( f ). AD is
similar to finite differencing in the fact it only needs the original function( f ) to calculate
the derivative. Instead of executing( f ) on different sets of inputs it builds a new function
( f ′), that calculates the analytical derivative of the originalfunction. This new function
is typically referred to as the differentiated program. Thescheme utilises the step by
step nature of a computer program, as a elementary function is performed on the original
program a corresponding function is performed on the differentiated program to obtain
partial derivatives. The partial derivatives are then accumulated using the chain rule.

Example

As an example consider the first control input:

u1 =
√

ÿ2
1 + ÿ2

2+(g− ÿ3)2 (4.14)

where the accelerations can be expressed as a function of thefree variableλ and some
basis function̈Γ




ÿ1

ÿ2

ÿ3


=




λ1n

λ2n

λ3n


 Γ̈n (4.15)

The analytical derivative with respect toλ1n

∂u1

∂λ1n
=

1
2

(
ÿ2

1 + ÿ2
2 +(g− ÿ3)

2)− 1
2 2ÿ1

∂ÿ
∂λ1n

(4.16)

As seen the analytical solution leads to equation growth, this is only the gradient ofu1,
the gradients of ˙u1,ü1 and

...
u1 as well as the other states and derivatives are also required

for analysis of the constraints. Clearly an alternative solution is desirable.

As elementary functions are performed on the program (vn), a corresponding function
is performed on the differentiated program (δvn). For examplev1 is defined as the first
free variableλ1n, the differentiated programδv1, is subsequently defined asδλ1n. Now to
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evaluate the first variabley1, the free variable is multiplied by the basis functionΓ̈n. The
differentiated program is updated in parallel, recalling ¨y1 = λ1nΓ̈n the new differentiated
function δv2 is a product of the previous differentiated function (δv1 = δλ1n) and the
basis functionΓ̈n. This process is repeated throughout the program as shown until the
sensitivity for the complex functionu1 is calculated.

v1 = λ1n δv1 = δλ1n (4.17)

v2 = y1 = v1Γ̈n δv2 = δv1Γ̈n (4.18)

v3 = y2
1 = v2

2 δv3 = 2v2δv2 (4.19)

v4 = λ2n δv4 = δλ2n (4.20)

v5 = y2 = v4Γ̈n δv5 = δv4Γ̈n (4.21)

v6 = y2
2 = v2

5 δv6 = 2v5δv5 (4.22)

v7 = λ3n δv7 = δλ3n (4.23)

v8 = v7Γ̈n δv8 = δv7Γ̈n (4.24)

v9 = y2 = g−v8 δv9 = −δv8 (4.25)

v10 = y2
3 = v2

9 δv10 = 2v9δv9 (4.26)

v11 = v3+v6 +v10 δv11 = δv3 +δv6 +δv10 (4.27)

v12 =
√

v11 δv12 =
1
2

v
− 1

2
11 δv11 (4.28)

4.4.3 Results

Automatic differentiation can be easily implemented into aMATLAB optimization rou-
tine using the MATLAB Automatic Differentiation toolbox (MAD). This is done by ini-
tialising λ as afmadobject, so that at every stage, the gradient is evaluated along with
the function, as demonstrated in Equations (4.18-4.28). The computation times for the
evaluating the gradients analytically and through the MAD toolbox can be compared by
evaluating the script 100 times and then calculating the average computation time. The
mean computation time for the analytical solution is 0.0058seconds as opposed to the
mean MAD time which is 0.1618 seconds. Although MAD does reduce the programming
time as the analytical gradients do not need to be calculatedthese results demonstrate a
significant increase in computation time which makes the application of MAD prohibitive.

It is worth considering the reason for this increase in the computation time. In Cao (2005)
significant reductions in computation time are achieved using AD and therefore the in-
crease in time is unlikely to be from the technique. The technique can be compared with
the analytical solution by hand for a simple example. By calculating by hand the gradient
of each state in a similar way as shown in Equations (4.18-4.28) the constraint gradients
can be evaluated. Again the mean evaluation time for 100 repeats can be compared with
the analytical solution, to reduce the programming time,φ and it derivatives are not eval-
uated. The mean average time for the analytical solution is 0.0028 seconds with the mean
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average time for the recursive relationship being 0.00025 seconds. This shows that the re-
cursive process is not inherently any slower than the analytical solution. This also implies
that any increase in computation time when using MAD is likely to be from the program
as opposed to the method.

4.4.4 Automatic Differentiation conclusion

Automatic differentiation is a computational technique which can be used to provide a
functions gradient to a optimization routine. Automatic differentiation can be imple-
mented using any number of different software packages including MAD. In this example
the overheads from the MAD toolbox negates any benefit from the AD technique. This
does not necessarily show that AD can not be applied to calculate the gradients of the
constraints within this MBPC algorithm. There are many alternatives to MAD to eval-
uate the sensitivity such as ADOL-C, which has been successfully applied for a similar
application as demonstrated by Cao (2005).
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Figure 4.15: LQR trajectory following for obstacle missionwith initial position errors
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Figure 4.17: Controller framework
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Figure 4.20: Moving target mission, revised trajectory
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Chapter 5

Taranenko’s Direct Method

5.1 Introduction

In Chapter 3, trajectory optimization was considered within the output space using the
differential flatness property of the system’s dynamics andparameterizing using Laguerre
polynomials. The idea of output space optimization has beenaround for a long time, for
example Taranenko and Momdzhi (1968) solved optimal control problems in the output
space through dynamic inversion. This idea was very popularin the 1990’s with the
proposal of differentially flat systems (Fleisset al. 1992, Martinet al. 1994, Koo and
Sastry 1999, Driessen and Robin 2004, Milamet al. 2000). Despite this sudden interest
in output space optimization Taranenko’s techniques were largely ignored as the majority
of literature was published in Russian.

The majority of this work has been focused on solving the optimization problem in the
minimum amount of time, in order that a trajectory can be generated on-line. However,
inevitably there is a trade off between optimality and computation time. The majority
of research (Conway and Larson 1998), attempts to find the optimal solution in ‘pseudo
real time’, which is generally too long to run in real time. Taranenko’s method based
on the optimal control work done by Taranenko and Momdzhi (1968) and developed
by Yakimenko (2000) and Alekhin and Yakimenko (1999) is designed, to solve ‘pseudo
optimal’ trajectory planning algorithms in real time. ‘pseudo optimal’ is an approximation
of the optimal solution, which can be found in less time than it would take to find the
optimal solution. The difference is clearly a trade-off between optimality and real time
capability.

Now for practical implementation it is necessary for the algorithm to run in real time.
‘Pseudo real time’ is defined as for a mission lastingT seconds, anything up to 1000T,
whereas ‘real time’ is defined as 0.01T. Clearly ‘pseudo real tine’ is not sufficient for this
purpose. Therefore it is necessary to trade optimality for real time capability and solve
the ‘pseudo optimal’ problem. As argued by Yakimenko (2000)the optimal path is not
necessarily desirable in the first place, as there is normally a trade off between optimality
and robust stability.



94 Taranenko’s Direct Method

Therefore in reality we are much more concerned with first finding an feasible path and
then some degree of optimality is preferred, but is not as important as providing a solution
in the required time. Since the mid 1990’s Yakimenko has beendemonstrating real time
optimization, using a standard IBM386 computer, for trajectory generation (Yakimenko
2000) as well a range of other applications including the inverted pendulum (Yakimenko
2006).

There are a number of advantages that this direct method has over other techniques such
as those discussed in Section 1.5 and the technique presented in Chapter 3. These benefits
arise from just two changes to the optimization routine, thefirst being the parameteriza-
tion as a function of a virtual argument as opposed to time. The second change being
the determination of boundary conditions analytically. The virtual argument within the
parameterization allows for the velocity to be determined independently of position as
opposed to the velocity being tied to the Cartesian coordinates through the time deriva-
tive. Determining the boundary conditions analytically reduces the number of constraints
within the optimization routine. This ensures exact satisfaction of the boundary states so
there is no longer any need for the boxes at the terminal states Equation 3.4.2. Further-
more, this analytical determination of the boundary conditions provides a smooth tran-
sition from one trajectory to the next as the current state and its derivatives are fixed as
the initial conditions for a trajectory. This determination of the boundary conditions also
reduces the number of free variables. This technique is capable of optimizing any cost
function without the need to consider differentiability ordimensionality. This method will
be looked at more detail in this chapter and demonstrated in simulation using the same
controller as presented in Figure 4.17.

This chapter starts by introducing Taranenko’s direct method and crucially the virtual
argument. This introduction will include the key elements of this method; the decoupling
of velocity and position and boundary condition satisfaction. In the same way as before,
a cost function is required, this is discussed in more detailin Section 5.4. Finally the
topology is considered for the cost function and state constraints, these are then compared
with the previous scheme. The missions developed previously are then used to test the
resulting control algorithm.

5.2 Separating Trajectory from Speed Profile

Parameterized trajectory optimization typically uses a basis function which is some func-
tion of time. This results in a preset single speed profile which is tied to the trajectory
and, therefore, as the trajectory is determined the speed profile is also determined by

V =
√

ẋ2 + ẏ2 + ż2 (5.1)

By transferring the parameterization into a virtual domain, the path and the speed profile
can be optimized independently, if the speed profile needs changing it can be done easily
while maintaining the same path.

To do this, first we replace time with a virtual argument(τ), which is the virtual arc length,
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this is related to time through a variable speed factorλ where

λ =
dτ
dt

(5.2)

The output space parameterization is now expressed as a function of this virtual argument
as opposed to time

P(τ) = a0+a1τ+a2τ2...aMτM (5.3)

whereP(τ) = [x(τ),y(τ),z(τ)]T. The derivatives are now taken with respect to this virtual
argument

x′ =
dx
dτ

(5.4)

y′ =
dx
dτ

(5.5)

z′ =
dx
dτ

(5.6)

The velocity can now be expressed as a function of this virtual argument and the speed
factorλ

V(τ) = λ
√

x′2τ+y′2τ+z′2τ (5.7)

and the acceleration likewise

V̇ =
λ√

x′2+y′2 +z′2
(
λ′ (x′2+y′2+z′2

)
+λ(x′x′′+y′y′′′+z′z′′)

)
(5.8)

However, to optimize the trajectory and the velocity independently, the velocity can also
be parameterized as a function of this virtual argument. In this case the order of the
polynomials is less than the polynomial in 5.3, this will be discussed further in Section
5.3.

V = a0+a1τ+a2τ2+ . . .+aM−2τM−2 (5.9)

Now, we obviously need to relate these output vectors as functions of time in order to
evaluate constraints, cost functions and to provide time dependent reference trajectories.
By evaluating the position and velocity polynomials at a number of equidistant nodes inτ

P(τ)| j=0...N (5.10)

V(τ)| j=0...N (5.11)

whereN is the number of nodes. The distance travelled(s) between nodes can be easily
approximated forj = 1. . .N

sj =
√

(x j −x j−1)2+(y j −y j−1)2+(zj −zj−1)2 (5.12)

The time elapsed between nodes(∆t j) for j = 1. . .N can be approximated using the ob-
vious relationship

∆t j = 2
sj

V(τ) j +V(τ) j−1
(5.13)
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Therefore, the time at every node( j) for j = 2. . .N is calculated by

t j = t j−1+∆t j (5.14)

The speed factor forj = 2. . .(N−1) can be approximated at every node assuming small
time steps

λ j =
∆τ

∆t j−1
(5.15)

Determining the boundary conditions forλ when j = 0 and j = N will be discussed in
Section 5.3. The speed factor derivatives(λ′ λ′′) are calculated numerically at each time
step using the backward step method.

Now the time derivatives can be calculated for each of the output states, from the virtual
derivatives[x x′ x′′ x′′′] and the speed factor approximation[λ λ′ λ′′]

ẋ = λx′ (5.16)

ẍ = λ2x′′ +λλ′x′ (5.17)
...
x = λ3x′′′+3λ2λ′x′′ +(λ2λ′′+λλ′2)x′ (5.18)

As before, with the output vector and its derivatives, the full state and control vectors can
be evaluated using the differentially flat equations.

5.3 Parameterization

In Section 3.6 there was a comparison of various parameterization techniques. Each
scheme was defined as a function of a free variable and a particular basis function such as
a Laguerre polynomial. Within this approach the free variable was varied in order to meet
initial, terminal and actuator constraints as well as minimizing some cost function. The
next section will demonstrate how the problem can be reposedby satisfying the boundary
conditions analytically. In this case any basis function can be chosen without affecting
algorithm robustness. The minimum order of the parameterization (M) in this case is
defined by the number of boundary conditions which need to be satisfied.

Satisfying Boundary Conditions

So if the order of the parameterization is now determined by the number of constraints on
the boundary conditions, how is the order determined and howare these constraints met?
Taking for example a simple polynomial

P(t) = a0+a1τ+a2τ2+ . . .+aMτM (5.19)

If the initial and terminal position, velocity and acceleration are to be constrained then
M must be at least 5 as that will give 6 free variables (a0...a5) and 6 conditions to be
met (x0,ẋ0,ẍ0,xf ,ẋf ,ẍf ). The analytical solution will now be shown for this case where
the order of the polynomial is the minimum order to achieve these boundary conditions
analytically.



Taranenko’s Direct Method 97

5th Order Polynomials

The fifth order polynomial is used to parameterize the position of the vehicle over time,
in this example only thex coordinate is demonstrated but this can obviously be extended
for the 4 dimensional optimization problem(x,y,z,ψ). For the second derivative of the
polynomial where the order is now 3rd order,x′′ is expressed as a function of the free
variable(b)

x′′ = b2+b3τ+b4τ2+b5τ3 =
5

∑
k=2

bkτk−2 (5.20)

Integrating to get the first derivative ofx and again to getx produces

x′ =
5

∑
k=1

bkτk−1

max(1,k−1)
(5.21)

x =
5

∑
k=0

bkτk

max(1,k(k−1))
(5.22)

Now as the six boundary conditions are met analytically the free variablesbk can be
determined from the following relationship:
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(5.23)

In this case, where the six boundary conditions are determined analytically, the only free
variable is arc lengthτ f . As will be shown shortly, varyingτ f gives only a limited degree
of flexibility of the reference trajectory and, therefore, further flexibility is required. There
are two approaches to this problem, firstly, the constraintson the second derivative can
be relaxed, this would, therefore, become a free variable. The second approach is to
increase the order of the parameterization, this would allow for the determination of the
third derivative or jerk boundary conditions(

...
x0,

...
x f ). As we do not wish to constrain the

third derivatives boundary conditions then these become additional free variables.

Boundary conditions in the virtual space

In order to determine the boundary conditions, they must be posed as a function of the
virtual argument. Transforming for the time domain to the virtual domain requires a value
of λ. By rearranging (5.18)

x′ = ẋλ−1 (5.24)

x′′ = ẍλ−2− ẋλ′λ−1 (5.25)
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now with the initial and final values ofλ, these can be calculated. For a fixed wing vehicle
the following boundary values ofλ are suggested (Yakimenko 2000):

λ0 = V0 (5.26)

λ f = Vf (5.27)

λ′
0 = V̇0V

−1
0 (5.28)

λ′
f = V̇fV

−1
f (5.29)

However choosing the boundary values for hovering vehicle needs to be considered care-
fully. A rotor craft can hover, resulting in singularities at V0 = 0. In practice the velocity
of a vehicle is rarely zero in flight. The velocity of a hovering vehicle may be close to zero
but very rarely zero. In this work, it is assumed thatV = 0 only att0 andt f . Furthermore
it is assumed at these time the acceleration is also equal to zero. In this case the boundary
conditions are simply fixed to zero in both the virtual and time domain and the boundary
conditions forλ are not required. Between these points the value is calculated without the
singularities as the velocity and accelerations are non-zero.

x′0 = ẋ0 = x′f = ẋf = 0 (5.30)

x′′0 = ẍ0 = x′′f = ẍf = 0 (5.31)

7th Order Polynomials

Now for additional flexibility the order of the polynomial can be increased to a 7th or-
der polynomial. In the same way as for the 5th order parameterization, the analytical
solution is found for the boundary conditions of the 7th order parameterization where the
coefficients(c) are now determined by:

c0 = x0 (5.32)

c1 = x′0 (5.33)

c2 = x′′0 (5.34)

c3 = x′′′0 (5.35)

c4 = −
2x′′′f +8x′′′0

τ f
+

30x′′f −60x′′0
τ2

f

−
180x′f +240x′0

τ3
f

+420
xf −x0

τ4
f

(5.36)

c5 =
10x′′′f +20x′′′0

τ2
f

−
140x′′f −200x′′0

τ3
f

+
780x′f +900x′0

τ4
f

−1680
xf −x0

τ5
f

(5.37)

c6 = −
15x′′′f +20x′′′0

τ3
f

+
195x′′f −225x′′0

τ4
f

−
1020x′f +1080x′0

τ5
f

+2100
xf −x0

τ6
f

(5.38)

c7 = 7
x′′′f +x′′′0

τ4
f

−84
x′′f +x′′0

τ5
f

+420
x′f +x′0

τ6
f

−840
xf +x0

τ7
f

(5.39)
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Figure 5.1: Varyingt f

Again the positions, velocities and accelerations at the initial and terminal state are con-
strained but now the third derivative (jerk) is introduced and this becomes a free variable.
Of course, if the third derivative needs to be constrained then this can also be done ana-
lytically and the polynomial order could be increased to 9thorder or higher for additional
flexibility. Alternatively, further free parameters can beincluded by increasing the poly-
nomial order. Inevitably, this is at the expense of an increased search space dimension
and longer convergence times for the non-linear program. The additional flexibility can
be demonstrated in the following example, initially onlyτ f is varied as shown in Figure
5.1, where

x0 = 0, (5.40)

ẋf = 0, (5.41)

ẍ0 = 0, (5.42)
...
x0 = 2, (5.43)

xf = 0, (5.44)

ẋf = 0, (5.45)

ẍf = 0 (5.46)
...
x f = 2 (5.47)

Obviously in practice however,τ f would remain positive. Now, by taking the same initial
and terminal conditions but varying the third derivatives(

...
x0,

...
x f ) as well as the virtual
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Figure 5.2: Varyingt f and third derivative

argument(τ f ) results in a greater degree of flexibility as seen in Figure 5.2.

Velocity polynomial

The order of the velocity polynomial is dependent on the boundary conditions that need
to be met. If the velocities and accelerations are constrained at the boundary conditions
then the polynomial is fifth order

V =
5

∑
k=0

akτk

max(1,k(k−1))
(5.48)

5.4 Cost function

The cost function,Φ , is a quantitative measure of the optimality of the trajectory and can
be approximated by the sum of the running costs and the terminal cost. Assuming that the
running costs (fuel consumption) are proportional to the average velocity, the objective
function can be defined as:

Φ = (1−w)
1
t f

∫ t f

0

√
(P1ẋ2+P2ẏ2 +P3ż2) dt+w(t f −T)2 (5.49)
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wherew, P1,P2,P3 are weighting factors, andT is the desired time of arrival. In particular,
the case whenw = 1 andT = 0 corresponds to the minimum-time problem; and the case
whenw = 0, P1 = P2 = P3 approximates the minimum-fuel problem which is discussed
in Section 5.4.1.

5.4.1 Alternative cost functions

The assumption that the average velocity is a reasonable approximation of fuel cost holds
for certain scenarios but is not always the case. One advantage of using a trajectory opti-
mization algorithm such as Taranenko’s direct method is theability to pose the problem
with different cost functions or constraints. It is, therefore, worth considering the min-
imum fuel problem where the objective function is now in the control space. Starting
with the new objective function which is now formulated as the minimum fuel problem
by simply taking the scalar product of the control input:

Φu =
1
t f

u1P1u′1 (5.50)

whereP1 = 1

The reference trajectory can be determined for mission (ii)as before, with this new ob-
jective function and compared with the original reference trajectory for the minimum dis-
tance problem. Figure 5.3 shows the minimum distance and theminimum fuel trajectories
as well as the corresponding control profiles. It can be seen that although the trajectories
and control profiles are similar there is a difference between the two problems. It can
also be seen that the path length for the minimum fuel problemis longer than that of the
minimum distance but the fuel costs are harder to visualise.Table 5.1 shows both the
minimum fuel (Φu) and the minimum distance (Φ) cost functions for each trajectory.

Table 5.1: Minimum fuel and distance comparison
Objective function Fuel cost(Φu) Distance cost(Φ)

Min Fuel 33.3732 2.8791
Min Distance 36.848 0.2797

5.4.2 Convexity

Non-linear trajectory optimization is generally computationally demanding, yet Tara-
nenko’s direct method has been demonstrated in real time (Yakimenko 2000). The major
reason for this is the decoupling of the time and path problems as well as the analytical
solving of the boundary conditions, both of which enable theproblem to be solved with as
few as 9 free variables. It would logically follow therefore, that by reducing the number
of free variables the problem reduces in complexity, this isnot necessarily the case.

In fact, it is well known (Ross and Fahroo 2006) that the computation time of a trajectory
optimization is not simply dependent on the number of variables but also on factors such
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as convexity, sparsity and matrix vector products. For example SOCS, is a high perfor-
mance optimization package which is used for trajectory optimization for amongst other
things a high performance aircraft (Boeing 2008). In this package as many as 807 grid
points are required with 5795 free variables, as opposed to the 9 presented here. In this
example where there are so many free variables, the issue of convexity is of massive im-
portance. A large number of free variables also introduces other important issues which
are of less importance when considering a problem with 9 freevariables such as: matrix
sparsity, capability to use matrix rather than scalar products and parameterization orthog-
onality. As discussed in (Betts 1998), the number of free variables can be increased to
reduce computation time if this improves on some of the otherfactors which influence
computation time. In this work however, where the number of free variables is so low, the
dependency on other factors is reduced.

Another example to demonstrate the influence of other factors is found in (Ross and
Fahroo 2006) where there is a comparison of several different techniques, including differ-
ential flatness. They show that the differential flatness approach under-performs in com-
parison with other techniques, such as differential inclusion, as the convexity of the prob-
lem was lost when transferring the problem from the control to the output space. Again,
this approach uses a greater number of free variables than Taranenko’s direct method but
the point remains, that other factors influence the computation time, not purely the num-
ber of free variables. However, by having as few as 9 free variables the computation time
can be significantly reduced. This can be backed up by the workcarried out primarily by
Yakimenko (2000) in which the cost function can be any non-convex function and yet has
been demonstrated working in real time.

Ross and Fahroo (2006) also found, that the differential flatness approach worked well
with a good initial guess of free variable values. Using a suitable parameterization tech-
nique, where the initial and terminal conditions are met, the initial guess is often a feasible
solution and therefore, a good initial guess is inherent within the formulation.

5.4.3 Topology plots

The cost function can be plotted as a function of the free variables(λ1,λ2,λ7), as shown
in Figure 5.4. Of interest in these plots is the problem conditioning, a well conditioned
problem will react equally to a change in different free variables. As seen the problem
appears to be convex within this region and the conditioningis significantly better than
in the previous example in Section 3.6.5. The speed and obstacle avoidance constraints
can also be plotted as a function of the free variables although as singularities exist at
τ f = 0, this is constrained such thatλ7 > 0. In Figure 5.5 the maximum velocity is plotted
against the same free variables, the conditioning appears not to be as good as for the cost
function. The final plot in Figure 5.6 is the obstacle avoidance constraint against the free
variables.
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5.5 Results

Mission (i (c))

The first mission is a simple vertical flight of 7m finishing at hover at the destination. The
vertical flight in itself is not a challenging mission as the analytical solution for minimum
time and minimum fuel is easily achievable from Pontryagin’s principle (Pontrjaginet al.
1962). However, when the flight time is pre-determined or a combination of minimum
fuel and minimum time is required the problem requires a morecomplex approach. Re-
calling the cost function (Equation 5.49) it can be seen thatby varying the weighting (w)
it is possible to optimize any combination of minimum fuel and optimal time, therefore,
we can decide we want optimal time but not at any cost. Optimaltime can refer to mini-
mum time or in this case predetermined flight time. For surveillance missions the camera
it may be required that the camera arrives at a specific time.

In the case of minimum time it is easy to compare with the analytical optimal solution.
The optimal solution is well known (Tou 1964) to be the bang bang solution given by

u1(t) = 5.4 for 0≤ t ≤ 1.44 (5.51)

u1(t) = 0 for 1.44≤ t ≤ 1.8 (5.52)

This is an optimal solution and while it is not expected that the solution will be exactly this
it gives an indication of the approximation capabilities ofthe optimization routine which
is dependent on the tolerances set within the optimization,choice of basis function and
convergence properties of the algorithm. Figure 5.7 shows the altitude against time for
the flight which has a total flight time of 3.26 seconds. Figure5.8 shows the first control
input over this time. As seen the thrust is a polynomial approximation of the maximum
constraint followed by a short reduction in thrust. It should be noted though that while
the flight timet f is 1.5 times greater than the optimal one (obtained for the simplified dy-
namics) all boundary conditions (including those imposed on the rotor fans dynamics) are
satisfied, the reference trajectory and nominal control arefeasible and (which is probably
the most important) the solution can be obtained in the real time.

Now, consider the optimal flight time problem ofT = 5, w = 1 andT = 10,w = 1. In this
case the resulting optimal flight time is exactly the desiredflight time and the reference
and control inputs can be seen in Figure 5.9. To demonstrate constraint satisfaction the
reference and actual control inputs were plotted against the constraint. As seen the flight
time in this case is equal to the required mission timeT and all constraints are met.
The sharp peak at 0.1s of the actual control inputs are the result of a strong down wind,
this causes the vehicle to initially accelerate downwards and therefore an increase in the
thrust is required to remove the positional error. As the wind is constant this explains the
constant extra thrust applied for the duration of the flight.Once the initial transient has
overcome the downwind, the trajectory is tracked closely despite the constant wind, as
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Figure 5.7: Minimum time for vertical flight
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Figure 5.9: Vertical flight,w = 1

can be see in the speed profiles in Figure 5.10 and Figure 5.11.

Now assuming optimal time is still required but not at any cost. The weighting,w, is
reduced to 0.75 in order to have some measure of minimum fuel and the resulting control
profile can be seen in Figure 5.12. For the first mission whereT = 5s, the actual optimal
flight time is higher at 6.2 seconds, this is due to the fuel consideration and this can be
seen by the flatter control profile. The second mission flight time is 10.2 seconds which is
close to the desired flight time but again the control profile is flatter than for the previous
case. Again a sharp peak at 0.1s is due to a constant downwind.

This can further be demonstrated by showing the control profiles, for decreasing values of
the weighting, with the desired time of 10 seconds as seen in Figure 5.13. As the weight-
ing decreases the flight time increases resulting in a flattercontrol profile. These are in
effect approximations of the well-known analytical solutions. At a weighting of one the
solution is an approximation of the bang-bang minimum time problem and as the weight-
ing approaches zero the solution approaches the infinite time solution. So decreasing
the weighting flattens the control profile as the result tendsto the infinite time analyti-
cal solution, this can be seen in Figure 5.14 which plots the maximum thrust against the
weighting. As the weighting is reduced then the flight time increases, again towards the
infinite time analytical solution, this is shown in Figure 5.15. Data from Figure 5.14 and
Figure 5.15 is combined on a single plot in Figure 5.16. This represents the Pareto frontier
or the set of solutions that are all Pareto efficient (no further improvements can be made).
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We start optimization at some point above this curve and meetit at a certain point defined
by w. The two well known analytical solutions, minimum time and minimum fuel are
the two extremes of this plot but in practice we are more likely to be interested in the
region between these points. Having this curve a designer can introduce proper scaling
coefficients to reshape this curve or make focused tradeoffs.

Mission (i (d))

Figures 5.17-5.20 demonstrate the quality of LQR controller in tracking trajectories pro-
duced by the trajectory generator. Figure 5.17 presents thecase of the following a six-
metre vertical transition reference trajectory with no disturbances. As seen, the simple
LQR controller does the job fairly well. Moreover, the intentionally introduced discrep-
ancy in the initial acceleration is being corrected in a timely manner (the speed profile
shown in Figure 5.18 corrects in a half of a second).

Mission (i (c))

Figure 5.19 shows the case of the same vertical transition trajectory but in case of constant
downward wind of 0.1m/s. As seen, despite the larger discrepancy in the speed profile
due to the constant downwind in the beginning of the trajectory, the altitude profile re-
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Figure 5.18: Vertical flight speed profile

mains untouched. The speed profile tracks the reference profile well after the controller
compensates for this disturbance and the thrust is increased. A constant wind of the same
magnitude is also applied along thex andy axes, despite this constant disturbance the
controller compensates and the trajectory is followed closely.

Mission (i (e))

Finally, Figure 5.20 presents the case of gusty winds. A constant downward and cross
wind along thex andy axis is applied as before with a magnitude of 0.1m/s. As well
as this, turbulence is added along all three axes in the form of a Gaussian random dis-
placement, with a mean of 0m/s and a variance of 0.01 m/s. A small constant error is
present within thex andy position but the altitude profile remains unchanged despitethe
turbulence. Within Figure 5.20 (d) there are two sharp peakson the actual speed, this is
due to combined effect of the strong wind and the gusting. Within Figure 5.20(d) there
is an initial downward peak as the downward wind acceleratesthe vehicle downward, the
controller then compensates by inputting a large thrust shown by the second peak, the
consistent offset is then present as the vehicle accuratelytracks the reference position as
seen in Figure 5.20(c).

Mission (ii (c))

The second mission is an obstacle avoidance mission, the vehicle must fly from the origin
to the destination at[6,0,0] . An obstacle modeled as a sphere is centered at[3,0,0]
with a radius of 1m. Consider the case where to improve disturbance rejection around
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Figure 5.19: Vertical flight with constant wind



Taranenko’s Direct Method 117

0 2 4 6 8 10 12
−0.05

0

0.05

0.1

0.15

0.2

Time, t (seconds)

N
or

th
, x

, (
m

et
re

s)

 

 

Reference position
Actual position

(a) x

0 2 4 6 8 10 12
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Time, t (seconds)

E
as

t, 
y,

 (
m

et
re

s)

 

 

Reference Position
Actual position

(b) y

0 2 4 6 8 10 12
−1

0

1

2

3

4

5

6

7

Time, t (seconds)

A
lti

tu
de

, z
, (

m
et

re
s)

 

 

Reference position
Actual position

(c) z

0 2 4 6 8 10 12
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time, t (sec)

V
er

tic
al

 v
el

oc
ity

, z
’, 

(m
/s

)

 

 

Reference vertical velocity
Actual velocity

(d) speed
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the obstacle it is desired to reduce the radial speedV around the obstacle to minimize the
chance of collision. This scheme can easily incorporate a modified cost function to deal
with such a problem by modifying the existing cost function as shown:

Φ = (1−w)
1
t f

(∫ t f

0

√
(P1ẋ2 +P2ẏ2 +P3ż2) dt+Pγ

∫ t f

0

Vγ

D2
Ob

dt

)
+w(t f −T)2 (5.53)

where

Vγ =

√
ẋ2 + ẏ2+ ż2([x,y,z]− [3,0,0])T

DOb
(5.54)

andDOb is the distance to the centre of the sphere

DOb =
√

(x−3)2+(y−0)2+(z−0)2 (5.55)

The factorD−2
Ob assures that we are only concerned about the radial velocitywhen we are

close to the obstacle. Figures 5.21 and 5.22 show the resultsof the simulation withT = 0
, P1 = P2 = P3 = Pγ andw = 0.1 . The optimal trajectory is now slightly further away
from the obstacle due to the cost function now being a function of the distance, as seen
in Figure 5.21. The speed is reduced around the obstacle as can be seen from Figure 5.22
compared with the same mission with the original cost function. Figure 5.21 also shows
the flight path for the vehicle and demonstrated close tracking of the reference trajectory
despite the presence of the disturbances.

Mission (vii)

Up to this point obstacles have been modelled as spheres; a new mission is now defined
which simulates flight in an urban environment. Mission (vii) is a horizontal flight around
some tall buildings, therefore the vehicle must find a trajectory around the buildings and
not over. In this mission we also consider the case of incorrect or incomplete information.
As the vehicle navigates around the first building a second building comes into view as
seen in Figure 5.23. These buildings are assumed to be squarebased cuboids. The vehicle
must reach a destination of[7,0,0]. In this mission there is a constant wind acting on
the vehicle of 0.1m/s along thex, y, andz axis. It is possible to approximate a square
obstacle and still maintain the convex smooth problem as discussed (3.4.1) through the
relationship:

Rs = n
√

xn +yn (5.56)

wheren is a large number, asn tends to infinity the square approximation improves;
however as n increases and the distance from the center becomes small, rounding errors
cause numerical problems within the routine. For the simulation n, was chosen to be 12,
to approximate square buildings. Initially only one building is in view of the vehicle and
the trajectory is planned accordingly. As the vehicle navigates around the building another
building comes into view making the reference trajectory infeasible as it passes through
the second building. A new trajectory is then determined around both buildings and the
vehicle follows the new trajectory. As the current state is set as the initial conditions in
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Figure 5.21: Direct Method obstacle mission
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the trajectory optimization a smooth transition from one trajectory to another occurs this
can be seen in the speed profile for the flight in Figure 5.23.

Mission (iii (c))

The fourth mission is a mineshaft mission with retargeting mid-flight. The vehicle initially
determines a trajectory to fly 6m north and then down a mineshaft with a pre-determined
time of arrival of 10 seconds. After 4 seconds however the target moves and a new target
in introduced at(10m,5m,0m), which requires a new trajectory to be determined (Figure
5.24). This mission demonstrates a smooth transition for dynamic retargeting as well
as dynamic change of constraints shown by the urban environment mission. The initial
reference flight time is 10.3 seconds but after retargeting this increases to 12.9 seconds.
The initial drift from the reference speed profile is due to the constant wind along the x
axis, this results in the vehicle drifting ahead of the reference position so the vehicle slows
down as seen in 5.24(b), which explains why the actual speed drops below the reference
speed.
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Figure 5.24: Mineshaft mission
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Chapter 6

Multiple Vehicles

6.1 Introduction

When considering small UAV’s such as the quadrotor there hasbeen considerable interest
in the control of multiple vehicles. When considering UAV applications, there are many
possible advantages to deploying multiple vehicles as opposed to a single vehicle. these
include an increased surveillance area, inspection from different angles and a reduced
dependency on a single vehicle.

The term rendezvous implies a meeting at a common point at a set time, the motivation for
this could be, for example, the completion of a more complex task or for battery recharg-
ing. For multiple vehicle flight the issue of rendezvous is a challenging problem, which is
complicated by the necessary conflicting problem of collision avoidance. Also, in order
to rendezvous, determining the position of the other vehicles is necessary, however, there
are a number of scenarios where this might not be possible. The quadrotor due to its size
has a relatively limited payload and therefore communication hardware may be an infea-
sible load. Also as discussed in Chapter 7, determining the position of a vehicle indoors
is a challenging problem as GPS signal is not available. In this case visual sensors may be
guiding the vehicle with respect to a relative position, such as a nearby doorway, as op-
posed to absolute position. There are also bandwidth considerations, a vehicle may have
sufficient bandwidth to communicate with another vehicle but for rendezvous it would
need to communicate with every other vehicle. Finally thereis growing interest in guid-
ance within GPS denied regions and even if GPS is not denied then the signal is variable
and only has limited accuracy. Therefore it is unlikely thatany rendezvous algorithm is
going to be purely based on GPS information. It is therefore possible, for a number of
reasons, that the quadrotor will not be aware of other vehicles in the vicinity, and the only
method of detection is through an on-board sensor, such as anomni-directional camera.
Any camera will only be able to detect other vehicles within afinite range determined by
the camera resolution and the size of vehicle.

This chapter will look at one particular decentralized rendezvous algorithm. A decentral-
ized algorithm is one which is run on board each vehicle independently, as opposed to at a
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central ground station. This scheme assumes there is no communication between vehicles
and no predetermined meeting place. In fact there is no global knowledge between the
vehicles except that all the vehicles use the same algorithm. It is also assumed that there
is a limited sensor range and therefore each vehicle may not be able to see all of the other
vehicles, although each vehicle can see at least one other.

6.2 Circumcenter law

This section demonstrates a two dimensional point convergence algorithm as developed
by Andoet al. (1999) for autonomous vehicles with limited visibility. The algorithm is
memoryless, as at each step the next position is determined by the position of the vehicles
in the visibility range, at that time, and independent of theprevious history of the system.
By initially ignoring the problems of collision, and assuming that each vehicle is within
visibility range of at least one other vehicle, an algorithmcan be developed to rendezvous
all of the vehicles. Since each vehicle has a limited visibility it is likely that initially only
some of the entire group will be in visibility range. The method is a 4 step algorithm
which is repeated until the rendezvous is complete.

1. Observe position of other vehicles

2. Determine next position.

3. Move to the new position.

4. Repeat until the rendezvous is complete

6.2.1 Determining the next position

An algorithm is required at the beginning of each step, to determine the next position
of each vehicle. Consider a group of four vehicles att = 0, with limited visibility such
that only one other vehicle is visible to vehicle A as seen in Figure 6.1. The smallest
encompassing circle is determined for these two vehicles (Figure 6.2). The vehicle then
proceeds to the assembly point. This process is repeated by all vehicles simultaneously
until all vehicles meet at the same point as shown in Figure 6.3.

6.2.2 Centre of the smallest possible circle

The smallest enclosing ball is a well known, non-trivial, computational problem (Gartner
2008). One approach to the problem is by first removing from consideration, the vehicles
which have no influence on the center of the smallest circle (inactive vehicles). To do
this it is necessary to first calculate the distance between all vehicles within the visibility
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Figure 6.1: Multiple Vehicles, starting points.

range. In 2D, for a circle center to be calculated requires between 2 and 4 points, the other
vehicles are not influential on this circle center.

In the most simple case, where only 2 vehicles are within the visibility range, the center of
the smallest encompassing circle lies at the mid point between the two vehicles as shown
in Figure 6.4.

In the case of 3 vehicles, the smallest circle center is calculated in a number of steps.
Firstly the two greatest distances are calculated and the mid-point co-ordinate of each
distance is found. In the case where 3 distances are all the same length, then any two of
the three distances are used. The center of the smallest circle is then found at the meeting
of the lines perpendicular to these points.

Finally for the case of 4 or more vehicles, again the first stepis to calculate the two longest
distances. If the two longest distances form a triangle between 3 points, then the 4th point
is discarded for this calculation as it is inactive and the center is found as before for 3
points. If the two longest distances do not have a common point and 4 points are ’active’
then 2 mid-points exist. In this case the center of the smallest circle is the mid-points of
these mid-points as seen in Figure 6.6.

The smallest center is therefore calculated with the following algorithm.
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Figure 6.2: Center of encompassing circle A

1. Determine all vehicles in the visible set
[V1V2V3....Vn−1Vn]

2. Calculate the distance between all vehicles
[d12d13....d1n....dn−1,n] in the visible set

3. Determine the 2 greatest distances between points[da,bdc,d]

4. Remove ‘inactive’ vehicles, leaving vehicles
[VaVbVcVd]

5. Calculate centre of smallest circle

6.3 Extension to 3 dimensions

The previous section discussed the circumcentre law to ensure the rendezvous of mul-
tiple vehicles. This law ensures that for the two dimensional problem all vehicles will
rendezvous at a given point. For UAV operation it is likely vehicles will be at different
altitudes and therefore the problem becomes a 3D problem. With the addition of a omni-
directional camera the visibility range would now take the form of a sphere. This problem
differs from the two dimensional one as now it is necessary todetermine the smallest pos-
sible sphere encompassing all of the visible vehicles. In the same way as the 2D problem,
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Figure 6.3: Rendezvous in 2 dimensions

the 3D problem can be solved by considering only the active vehicles. In this case how-
ever, the three greatest distances need to be calculated producing between 2 and 6 active
points. If two of the greatest distances share a point (common point), a plane is defined
with these 3 points on the surface and the center of this planeis found, as discussed for
the 2D case (Figure 6.5). However this is not necessarily thecenter of the sphere as there
are now 3 greatest distances. If 2 lines do not share a common point, then as before both
mid-points are calculated and the center is the average of these mid-points.

1. If two distances share a common point, a plane is found and the resulting center is
calculated using the 2D rules.

2. If no common point is shared between distances, the centeris the average of the
mid-points.

6.4 The control algorithm

To demonstrate the practicality of such a scheme this work simulates the flight of a number
of quadrotors which are required to rendezvous. This simulation uses Taranenko’s direct
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Figure 6.4: 2 point circle centre

method, as discussed within Chapter 5, and is implemented within the control structure
presented in Figure 4.17. The mission planner will determine the destination, which is
dependent on the position of the other vehicles. The trajectory planner will determine the
optimal trajectory to get to this destination before the next time step and the trajectory
follower will track this trajectory. The benefit of using Taranenko’s method for this prob-
lem, is its analytical boundary condition satisfaction. Atthe first time step( j) the mission
planner determines the new reference position of the vehicle at the next time step( j +1)
and the trajectory determines the reference trajectory between these time steps where

x j =
[
x j y j zj 0 0 0 0 0 0 0 0 0

]
(6.1)

and
x j+1 =

[
x j+1 y j+1 zj+1 0 0 0 0 0 0 0 0 0

]
(6.2)

This is repeated for until the vehicles rendezvous. The update switch will monitor the
feasibility of this trajectory and drift from this trajectory and switch on the trajectory
planner if required.

The vehicle must travel to the center of the sphere by the end of the time horizon. As
the problem is now multiple vehicles then it is obviously necessary to consider colli-
sion avoidance. This problem has not been considered by (Ando et al. 1999) and is
complicated by the decentralized nature of the problem, in other words, no vehicle has
prior knowledge of the others vehicles trajectory. The trajectory optimization scheme
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Figure 6.5: 3 point circle centre

can be applied to plot an initial trajectory to reach the required destination and to avoid
the static obstacles. However other vehicles with unknown trajectories provide unknown
constraints on the vehicles trajectory optimization. There are two potential approaches to
this problem considered within this work, a stochastic analysis of a safe path to the desti-
nation or a rule based approach such as if two vehicles are within a certain distance then
one vehicle climbs 2 meters or hovers. Stochastic analysis of an omni-directional vehicle
such as the quadrotor is a challenging problem due to the vehicles high bandwidth and
the required length of the prediction horizon, this would possibly result in sub-optimal or
infeasible results. In this scheme a simple flight path law isapplied which considers the
direct consequence of the other vehicles and applies a simple flight path law, this will be
discussed in Section 6.4.1.

The inner loop trajectory follower will again be a simple LQRcontroller which tracks the
reference trajectory to the center of the circle or until thetrajectory becomes infeasible. In
the event the vehicle needs to hover, for example if another vehicle is very close then the
LQR controller can switch to hover very easily by setting thereference trajectory equal
to the current position of the vehicle and with the attitudesset to zero.



130 Multiple Vehicles

−10 −5 0 5 10 15 20

−10

−5

0

5

10

15

 

 
Smallest circle

Vehicle A

Vehicle B

Vehicle C

Vehicle d

Centre line

Centre line

Perpendicular to midpoint

Centre of circle

Perpendicular to midpoint

Figure 6.6: 4 point circle centre

Step time

The step time is the time required for the vehicle to reach itsdestination, i.e the center
of the sphere. This time must be constrained, because at the end of the step time all the
vehicles must progress onto the next step. It is however, possible for the vehicles to arrive
at the destination early and hover until the next step. The problem is posed therefore as a
constrained time problem, where the step time is fixed and thevehicles mus arrive before
this time. Ideally all vehicles will converge in the minimumpossible time, however, if the
time is too short a feasible trajectory may not be found. Assuming a visibility range of 20
meters then the maximum distance to the center of the new sphere is under 20m, assuming
this distance can be covered within 10 seconds then this provides a suitable time horizon.

6.4.1 Avoid collision but rendezvous

Now as it can be seen in Figure 6.3 the circumcentre law provides, at each time step,
co-ordinates for each vehicle’s destination. This guarantees rendezvous of all vehicles,
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but specifically it means all vehicles will arrive at the samepoint at the same time, which
will result in multi-vehicle collision. This presents a problem as rendezvous and colli-
sion avoidance are conflicting problems. The best way to avoid collision is to maximise
distance between vehicles and not reduce it.As discussed anestimator could be used to
predict the likely trajectory of the other vehicles and optimize the path around these. How-
ever due to the high bandwidth of the vehicles this is deemed unsuitable. Instead collision
avoidance is removed from the initial optimization and instead collision avoidance is only
considered on a direct consequence basis. If the vehicle detects another obstacle within a
certain range on the reference trajectory it is able to hover, until the vehicle passes, and if
the other vehicle does not pass by, then it is assumed that thevehicles have reached the
rendezvous point. The update switch therefore determines the ‘direct consequence mea-
surement’ which is the distance to other vehicles, which areon the reference trajectory, if
this is below 2m then the vehicle hovers.

6.4.2 Multiple vehicle algorithm

The multiple vehicle algorithm reflects the same control structure presented within the
single vehicle case in Figure 4.17. In addition to this modelis the direct consequence
measurement within the update switch which ensures collision avoidance by switching
the reference state to hover in the event of another vehicle on the reference trajectory
within a certain range. The full multiple vehicle algorithmis shown in Figure 6.7.

6.5 Results

To demonstrate the suitability of the circumcenter law, 3 scenarios have been chosen. The
circumcenter law guarantees convergence for any number of vehicles but for computa-
tional time considerations, simulation of 5 vehicles are shown within this work.

6.5.1 Test case 1

The first test case is for a set of randomly distributed vehicles as shown in Table 6.1.
As with all of the scenarios the visibility is 20m with a DCM tolerance of 2m. Despite
the presence of the conflicting problem the vehicles rendezvous and the final position are
reasonably close, easily within a tolerable range to establish a communication link. As
seen in Figure 6.8 and Table 6.2 all the vehicles converge to the rendezvous point within
5 steps.

In Figure 6.9 the total distance(Dt) between all vehicles is calculated over the complete
flight time, by:

Dt =
vk=5

∑
vk=1

vm=5

∑
vm=1

√
(vk−vm).2 (6.3)
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Table 6.1: Starting coordinates for test case 1
x y z

v1 10 10 -10
v2 10 10 10
v3 30 10 10
v4 30 10 30
v5 10 30 10

Table 6.2: Final coordinates for test case 1
x y z

v1 16.4554 13.3915 9.4396
v2 19.0220 12.4534 10.9103
v3 19.3220 12.4868 11.1195
v4 20.2634 12.0541 11.7497
v5 17.2330 13.6866 9.9507

where vk and vm are the vehicle numbers. It can be seen that despite the constraints on
the vehicles to avoid collisions, that the total distance between vehicles is reduced. The
discrete time steps can also be seen. As the vehicle returns to hover at each step the
velocity reduces and hence the total distance gradient flattens. The theoretical minimum
value for this total distance for(n) vehicles is 2n(n−1), in this case 40m. This theoretical
minimum is assuming all vehicles can form a shape where the distance between each
vehicle is the minimum distance between all vehicles (2m). In reality this will not be
possible or desirable as there is little margin for error andinstead a value close to this
would be acceptable.

6.5.2 Test case 2

The second test case is where the vehicles start in a straightline as shown in Table 6.3.
Obviously in the case where collision avoidance is not considered the vehicles would fly
to the exact coordinates of the central vehicle but with collision avoidance considerations
this is not the case. Although the first vehicle initially can’t see the third vehicle it will
eventually need to fly towards it, the problem is the second vehicle is in the direct line to
this point. This scenario is therefore interesting as the conflicting problems of rendezvous
and collision avoidance are very evident. As seen in Table 6.4 and Figure 6.10 the vehicles
are slowly converging to a final point but very slowly, this however can be explained
by the fact that the first vehicle has only just become visibleto the third vehicle and
therefore by adding an additional step to this simulation the convergence speed should
increase. In Table 6.5 and Figure 6.11 the additional step isshown. Now the smallest
encompassing sphere for the first vehicle includes the thirdvehicle and it is therefore
closer to the theoretical rendezvous at[38 10 10]. As the first vehicle approaches this
point at a greater speed then the target for the second vehicle also converges on this point,
the only constraint now being the collision avoidance constraint, this can be seen by the
first vehicle hovering 2m away from the second vehicle in Figure 6.5.
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Table 6.3: Starting coordinates for test case 2
x y z

v1 0 10 10
v2 19 10 10
v3 38 10 10
v4 57 10 10
v5 76 10 10

Table 6.4: Final coordinates for test case 2
x y z

v1 20.0753 10.0000 9.9751
v2 27.0802 10.0002 9.9849
v3 38.0444 10.0000 9.9727
v4 49.0208 10.0000 9.9713
v5 55.9254 9.9999 9.9646

Table 6.5: Final coordinates with additional step for test case 2
x y z

v1 26.4626 10.0020 9.9476
v2 29.0051 10.0000 9.9799
v3 38.0038 10.0067 9.9701
v4 47.1428 9.9999 9.9675
v5 49.4763 10.0000 9.9427

Table 6.6: Analytical solution for test case 2
J = 0 J = 1 J = 2 J = 3 J = 4 J = 5

v1 0 9.5 14.25 19 28.5 38
v2 19 19 23.75 26.125 28.5 38
v3 38 38 38 38 38 38
v4 57 57 52.25 49.875 47.5 38
v5 76 66.5 61.75 57 47.5 38

This test can be compared with the analytical solution whereit is assumed the vehicle
moves to the center of the smallest enclosing sphere and no collision avoidance is con-
sidered. As all vehicles are on the same plane then we know they will converge as this is
essentially the 2D problem which is proved within Andoet al. (1999). Table 6.6 shows
this analytical solution. It is shown that in fact for the analytical solution the vehicles do
not rendezvous until the 5th step. It can be seen though that the third vehicle becomes
visible to the fifth vehicle after three steps, which is the point at which the convergence
rate increases, this is delayed by one step in the results as collision avoidance is consid-
ered. It can therefore be seen that for the straight line scenario then convergence is slow
and this is understandable as it takes a long time for the third vehicle to become visible to
the first and fifth vehicle. It is also fair to say that convergence is never in doubt within
this scenario as the vehicles only move towards the rendezvous point.
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As before the total distance between all vehicles is shown inFigure 6.12. Obviously
for the straight line case the total distance between all vehicles is the maximum value
while retaining the minimum visibility links. In this case although convergence to the
rendezvous point is at a reasonable rate, after 50 seconds the total distance between all
vehicles is still large. This reiterates the fact that, despite a seemingly slow convergence
rate the convergence is not in doubt using the circumcenter law.

6.5.3 Test case 3

For the third test case the vehicles are positioned strategically to ensure no two vehicles
start by flying towards each other. This is achieved by placing two vehicles the maximum
distance apart and then turning through 90 degrees from one vehicle and placing the third
vehicle the maximum distance within range as seen in Figure 6.13. In Figure 6.14 the
multiple vehicle rendezvous problem is shown with the no collision avoidance strategy.
In Figure 6.15 the same mission is shown with the collision avoidance strategy. The
coordinates for both scenarios is shown in Table 6.7. The collision avoidance strategy
has no impact on the final coordinates of the vehicles untilt2 and at this point only the
1st vehicle is affected. By the final time step 3 vehicles havea different final position
compared with the first scenario but in this case they still rendezvous but without collision.

Table 6.7: Test case 3 for A) No collision avoidance consideration. B) Collision avoidance
consideration

A B
x y z x y z

t0 v1 0 0 0 0 0 0
v2 20 0 0 20 0 0
v3 20 20 0 20 20 0
v4 20 20 20 20 20 20
v5 40 20 20 40 20 20

t1 v1 6.8 0 0 6.8 0 0
v2 14 5.97 0 14 5.97 0
v3 20 13.65 5.99 20 13.65 5.99
v4 23.68 20 13.8 23.68 20 13.8
v5 33.09 20 19.98 33.09 20 19.98

t2 v1 11.27 4.72 2 10.88 4.2 1.85
v2 13.4 6.85 2.86 13.4 6.85 2.86
v3 16.1 10.58 6.73 16.1 10.58 6.73
v4 26.28 17.14 13.06 26.28 17.14 13.06
v5 29.21 20 17.34 29.21 20 17.34

t3 v1 13.44 7.48 4.13 13.19 7.16 4.01
v2 17.32 10.03 6.31 17.25 9.89 6.31
v3 19.64 12.18 9.25 19.53 11.98 9.22
v4 22.44 14.22 10.65 22.44 14.22 10.65
v5 24.94 16.77 13.53 24.94 16.77 13.53
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Finally the total distance is again measured over the flight time. In this case the conver-
gence rate is again reasonably fast, but in this case, the final time step produces only a
small reduction in the total distance. At this point the total distance between all vehicles
is small and therefore the collision avoidance constraintsare active, thus limiting the con-
vergence rate. By this point however, the vehicles are deemed sufficiently close. This
result highlights the benefits of the direct consequence measurement, where the impact of
the additional constraints are only active when the vehicles are sufficiently close.
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Figure 6.7: Multiple vehicle rendezvous algorithm
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Figure 6.8: Multiple vehicle rendezvous for test case 1
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Figure 6.9: Total distance between all vehicles for mission1
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Figure 6.10: Multiple vehicle rendezvous starting from straight line
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Figure 6.14: Multiple vehicle rendezvous starting from worst case scenario with no colli-
sion avoidance



144 Multiple Vehicles

0

10

20

30

40

0
5

10
15

20
25
−5

0

5

10

15

20

25

North (x), meters
East (y), meters

D
ow

n 
(−

z)
, m

et
er

s

(a) J = 0

0
5

10
15

20
25

30
35

40
45

0

5

10

15

20

25

−5

0

5

10

15

20

25

North (x), meters
East (y), meters

D
ow

n 
(−

z)
, m

et
er

s
(b) J = 1

0
5

10
15

20
25

30
35

40
45

0

5

10

15

20

25

−5

0

5

10

15

20

25

North (x), meters
East (y), meters

D
ow

n 
(−

z)
, m

et
er

s

(c) J = 2

0
5

10
15

20
25

30
35

40
45

0

5

10

15

20

25

−5

0

5

10

15

20

25

North (x), meters
East (y), meters

D
ow

n 
(−

z)
, m

et
er

s

(d) J = 3

0
5

10
15

20
25

30
35

40
45

0

5

10

15

20

25

−5

0

5

10

15

20

25

North (x), meters
East (y), meters

D
ow

n 
(−

z)
, m

et
er

s

(e) J = 4

Figure 6.15: Multiple vehicle rendezvous starting from worst case scenario with collision
avoidance
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Figure 6.16: Total distance between all vehicles for mission 3
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Chapter 7

Towards implementation

7.1 Introduction

To achieve autonomy of a UAV there are many issues to consider, these include issues
already discussed within this work such as trajectory generation and trajectory following.
Of equal importance is the issue of feedback and the practical implementation of the
control algorithms, which have been presented within this work.

There are two obvious potential solutions for providing real time state feedback. One
approach is to use ground based sensors to determine the vehicles states as for example
demonstrated in Valentiet al. (2006). These systems usually are based on visual identi-
fication and can provide very accurate state information forthe control laws as they are
free from vibration and electrical interference. However they are typically very expensive
and not portable which prevents widespread use. Very precise state feedback provides an
excellent testbed for comparison of different vehicles andcontrol laws. However, these
results are only of real benefit if the near perfect state information can be obtained all
of the time, in reality this is not the case as flight outside ofthe test facility is probably
desirable.

The second approach is to obviously measure the states onboard but this introduces further
problems such as payload, size and interference. The quadrotor is a small UAV and has
a limited payload and therefore can not accommodate a large or heavy sensor set and
control processor. Furthermore with each motor drawing up to 10A each, the issue of
electromagnetic interference is likely to be an issue.

The practical task of providing feedback and hence closing the loop is a challenging prob-
lem especially on such a small vehicle. A large air vehicle would typically carry a Inertial
Navigational System (INS) which provides accurate rate andacceleration information as
well as a GPS unit which gives positional information. Also on a larger vehicle, ring laser
gyros for example provide very accurate rate information but these are too large to incor-
porate onto a small UAV. GPS is also typically relied upon to provide accurate positional
information, the quadrotor is however intended for internal flight and therefore GPS is
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unlikely to be a viable solution. Furthermore, GPS is typically only accurate to a few me-
ters which is probably not sufficient for a small UAV such as the quadrotor. Alternative
solutions are therefore clearly required for feedback on such a small UAV.

There is a reasonable amount of interest in state estimationusing visual feedback. There
are a number of merits to this approach. Firstly a reduced dependency on GPS is advanta-
geous for both internal flight or in GPS denied regions. Secondly cameras are reasonably
cheap and lightweight as well as being the primary reason forthe majority of UAV flights
in the first place; if a camera is being used for surveillance,then why not also use it to pro-
vide state information. However, this is not a trivial problem and developing this system
is beyond the realistic scope of this work.

The recent rapid development of Micro-Electro-MechanicalSystems (MEMS) sensors,
provide another alternative to these traditional systems and are commonly used in the
majority of MAV autopilots. One option for the quadrotor would be to fit a commer-
cial off the shelf (COTS) autopilot. There are many commercial autopilots on the market
today, offering a range of functionality (Blue-Bear-Systems-Research 2008, Cranfield-
Aerospace 2008, MicroPilot 2008, Procerus-Technologies 2008). The majority include
MEM’s accelerometers, gyroscopes, magnetometers and numerous analogue to digital
converters for connection with barometric pressure sensors and dynamic pressure sen-
sors. Furthermore some autopilots come fitted with GPS and all are designed to accomo-
date GPS. The majority of this functionality is therefore not applicable to the quadrotor
as for internal flight barometric pressure, dynamic pressure, magnetometers and GPS is
either not required or not suitable. In fact these autopilots are almost too sophisticated for
the quadrotor as with this range of functionality they are much larger than the key com-
ponents, which are actually required for a small UAV flying internally. However, MEMS
sensors for acceleration and rates are possibly the only feasible solution for on-board
state measurement of a quadrotor. These do however come at a cost and this is typically
precision.

The deployment of the control algorithm also requires consideration. On-board compu-
tation of the control action is no doubt the preferred solution for industry as this reduces
time lags, however, in a experimental set up, the requirements are different. The control
law may need modification in flight or at least a quick turn-around in between flights. Fur-
thermore, the control algorithms presented in this thesis are computationally demanding
and therefore, while on-board implementation is the eventual aim, off-board computation
is the initial preferred option. However, this in turn presents communication challenges
with lag time being the critical factor.

It is therefore evident there is a considerable amount of work involved in the development
of a suitable control system. While this is not the main focusof this thesis, an appreciation
of the challenges in achieving autonomy is essential. This chapter, will therefore describe
the development of the Cranfield experimental set up, and theissues that arise from this
work. This set up has been demonstrated by performing some open loop flights, where
the quadrotor is piloted using a joystick via a PC, and the state feedback is recorded on
the groundstation.
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7.2 Experimental set up

For both trajectory generation and trajectory following, full state feedback is required.
This requires a measure or estimation of the vehicles position (x,y,z), velocity (ẋ, ẏ, ż),
Euler angles(φ,θ,ψ) and Euler rates(φ̇, θ̇ψ̇). Measuring these states can be done from
the ground using a sophisticated camera system such as the one presented in Valentiet al.
(2006), however, in the majority of cases, it is done onboard, using an inertial measure-
ment unit (IMU) (Carnduffet al.2007).

There are many inertial measurement units on the market today but they all consist of
essentially the same core components; accelerometers and gyroscopes. MEM’s technol-
ogy has allowed for the development of very small accelerometers which are capable of
measuring the body accelerations along 3 axis(ẍ, ÿ, z̈). Solid state gyroscopes are also
typically incorporated into a IMU to provide body rates about 3 axes(p,q, r).

The Draganflyer X-Pro is sold with an onboard stabilisation loop which consists of rate
feedback through some solid state gyroscopes, this enablesa pilot to fly the vehicle
through a radio control although this is not sufficient for hands free flight. It has been de-
cided that this inner loop stabilization should remain on the vehicle for enhanced stability
and be incorporated into the new control scheme As these sensors are already on-board, it
also makes sense in terms of payload, to utilize these sensors for rate measurement, rather
than to add additional sensors. With these gyroscopes already on the vehicle, with the
addition of a 3-axis accelerometer, the core components of atypical IMU are in place.

Position measurement is a challenging problem and is discussed in more detail in Section
7.4. However, there are several feasible solutions for height measurement. The cheapest
and most available option is an ultrasonic sensor (Active-Robots 2008), which measures
straight line distance by sending and receiving ultrasonicpulses. Another option is a laser
altimeter which have a greater range but are generally heavier, more expensive and require
more power (MDL 2008). For a low cost experimental set up, an ultrasonic sensor is the
preferred solution. A mahor concern with the ultrasonic sensor, was that the propellor
down-wash would interfere with the signal. A number of benchtests were performed
with the quadrotor however and this was not found to be a problem. For internal flight in
a room with known dimensions and clear walls it could be possible to utilize these sensors
for positional determination by placing a number of sensorsof the side of the vehicle.

Closing the outer loop can be done onboard or via a groundstation. The inner stabilization
loop is hard wired into the circuit board and therefore left on the vehicle. For a commercial
application the control action would be determined onboard, this is preferable as opposed
to a groundstation because of smaller communication delays. For research purposes how-
ever, it is desirable to determine the control action on a groundstation, as the control laws
can be easily accessed. This requires a reliable communication link for downlink and
up-linking, where latency is a primary consideration.

Figure 7.1 shows the proposed experimental set up for validating the work discussed in
this thesis. A standard hobbyist joystick is connected to the RTOS which converts the
body axis demands from the pilot into serial outputs. These serial outputs are converted
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Figure 7.1: Experimental Set up

by a bespoke standalone PIC box into a PWM signal and sent to the RC controller through
the buddy port. The RC controller sees this PWM signal as it would another RC controller
and can switch between RC control and the signal coming from the joystick. This signal
is then received by the 2.4GHz receiver onboard the vehicle and the state information is
then sent via Bluetooth transceiver to the RTOS.

7.2.1 Sensors

For implementation of the control law, the following information must be measured di-
rectly:

• Angular rates in roll pitch and yaw

• Linear acceleration along the x,y and z axis

• Altitude

• Horizontal displacement

The angular rates are measured using the onboard gyroscopes. Signals from these sensors
were taken directly from the circuit board of the XPro and a low-pass filter removes the
high frequency noise from the signal.

A MEM’s analogue 3 axis accelerometer has been fitted onto thevehicle (Analog-Devices
2008). These are capable of measuring up to 3g, with a sensitivity of 300mV/g, and a
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sensitivity accuracy of 10%. This one was chosen as it offersreasonable accuracy and a
limit of 3g is deemed sufficient for the quadrotor which has a maximum thrust of around
1g. Analogue sensors have been chosen for ease of implementation and this signal is also
filtered with a simple anti-aliasing filter with a adjustablecutoff frequency. The major
benefit of this sensor is that it is extremely lightweight, draws very little power and also
costs less than 50GBP. Further details of this component canbe found in Table 7.1.

Table 7.1: ADXL330
Number of axis 3

Size 4mm x 4mm x 1.45mm
Range ± 3g

Sensitivity 300mV/g
Supply voltage 3.6V
Supply current 320µA
Noise density 280/350µg/

√
Hzrms

Bandwidth (x,y axis) 0.5Hz to 1600 Hz
Bandwidth (z axis) 0.5Hz to 550 Hz

Turn on time 1ms

A simple ultrasonic sensor is fitted to the bottom of the vehicle (Active-Robots 2008).
This sensor is very cheap (30GBP) but provides an accurate estimate of the vehicles height
above ground. Its effective range is approximately 5m, which is deemed suitable for
internal flight within a lab. Initial fears that the down washfrom the blades would cause
interference were proven to be unfounded. Furthermore the sensor is capable of detecting
the ground at roll or pitch angles of up to 45 degrees. This sensor is triggered by a
simple 555 timer circuit and operates at 20Hz. The output from this sensor is a Pulse
Width Modulated (PWM) signal which has been calibrated in house (accuracy:±1cm).
No additional filtering was required for this sensor. If triggered the ranger will output
8 bursts of ultrasound (40kHz) and raise its echo line high until an echo is received. It
therefore outputs a pulse width signal proportional to the height of the vehicle and is able
to measure distances of 3cm up to 5m.

All of the sensors installed are analogue sensors. In order to communicate with a computer
ground station it is obviously necessary to convert to a digital signal. To convert these
signals, PIC microcontrollers with 12bit resolution are used. PICAXE controllers are
programmed in BASIC and are very low cost and easy to use. One PIC chip is used to
convert the accelerometer and gyroscopic data. A pulse width measure from the ultrasonic
is performed by a second microcontroller. All data is converted into a TTL level serial
data stream at a maximum baud rate of 19600Baud and an update rate of 20Hz which is
limited by the ultrasonic sensor. All timing is done using the timer on the ultrasonic, once
the PIC chip receives a signal from the ultrasonic it sends the digital signal to the TTL
level shifter and then triggers the second chip which immediately sends the accelerometer
and gyroscopic data. The onboard instrumentation setup canbe seen in Figure 7.2. The
total cost of all additional hardware installed on the quadrotor amounts to about 300GBP.
This whole system is small, lightweight and consumes around2Watts of power and is
supplied by a separate lithium polymer battery.
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Figure 7.2: Onboard instrumentation

A major issue with any sensor is that of noise. On the quadrotor this is especially an issue
due to the large currents supplying the rotors as these largecurrents induce significant
electromagnetic interference. As the rotors are variable speed, the noise is of variable fre-
quency which makes filtering a non-trivial problem. Low-pass filters consisting of basic
resistor capacitor circuits are installed, these filter outall high frequency noise. A nec-
essary extension to this work would need to consider the removal of the electromagnetic
noise at low frequencies, however, reducing the cut off frequency would be likely to re-
sult in the loss of the vehicles dynamic data. Notch filters could be applied to remove all
noise outside of a given frequency but in all likelihood there will still be a rotor speed
which introduces noise at the same frequency as the vehiclesdynamics. Filtering could
be performed on the groundstation to remove some of the noisehowever, there are possi-
ble simpler solutions including repositioning the sensors, shield the sensors from the EM
noise and screening of the motor power cables. This requiresfurther investigation.

7.2.2 Groundstation

Successful control of the vehicle may be achieved by closingthe loop either within the
vehicle or remotely via a ground station. An onboard controlsystem holds the advantage
of stability as well as small delay times and is undoubtedly the preferred solution for a
commercial vehicle. For research purposes though, a high degree of flexibility is needed
with algorithms being constantly improved and updated. To ensure fast turnaround times
a control system on a ground station provides a number of advantages. These include ease
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of access, reduced payload, cost, the ability to rapidly deploy updated code and room for
future expansion.

The ground station itself consists of generic personal computing hardware used as a hard-
ware target to run a real time operating system. It is networked to a standard PC from
which code can be updated and deployed instantly. The standard PC runs a LABVIEW
interface, which, is capable of reading serial data and plotting the sensor data in real time.
It is also possible to deploy a control algorithm within LABVIEW and output the required
control action through the serial port. The base station also has a joystick which enables
open loop control of the vehicle which has been found to be an easier method of flying
than the radio control.

7.2.3 Downlink

The difficulty introduced by the concept of a ground station is to establish a deterministic
communication link with manageable transmission delays. There are many ways of es-
tablishing a communication link between a UAV and a groundstation. For a given power
limit however, the trade off is typically between bandwidthand range. In an experimental
set up, the maximum range is unlikely to exceed 50m. It is alsoassumed that bandwidth
is a major factor with a requirement for as much state information to be transferred to
the groundstation as possible. Furthermore any device usedon board the vehicle must be
small, lightweight and low cost.

A standard 2.4GHz Bluetooth transceiver offers high transfer rates as well as being small,
lightweight and low cost. Another major benefit of the Bluetooth transceiver is the serial
interface allowing easy connectivity with the PIC controllers. Sensor data is streamed to
the ground station with a transmission latency of 50ms (±5ms)). Furthermore the range of
the Bluetooth transceiver is up to approximately 100m, comfortably exceeding the likely
maximum. At the time of writing a new Bluetooth transceiver came onto the market,
this new transceiver is expected to reduce the latency to 15ms. Sensor data is read by a
2.4GHz Bluetooth transceiver directly via a RS232 port.

7.2.4 Uplink

The uplink is via a 4 channel radio control, the 4 channels being total thrust, roll control,
pitch control and yaw control. These 4 control actions are determined on the PC either via
the joystick or control law. For safety reasons it is necessary to keep a pilot in the loop, so
that the control law can be switched off at any time and the safety pilot can regain control.
Control via a PC is one option but in the event of a computer crash, control by a pilot or
autopilot would be lost. Instead an RC transmitter used for model aircraft control, is used
to fly the vehicle as normal, this is more reliable than a PC andis the preferred solution
for many UAV experimental set ups (Valentiet al.2006). In order to activate the control
law the PC is connected into the buddy port at the back of the transmitter and can be given
control of the vehicle by the RC transmitter.
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The buddy port of the transmitter requires a PWM signal. PWM generated from the
groundstation is possible but was found to be too slow for practical implementation. In-
stead a PWM converter box has been produced consisting of twoPIC chips. The first chip
reads the RS232 signal from the computer, the second PIC chipthen converts this signal
to a 4 channel PWM signal. This box then connects to the back ofthe transmitter. An FM
receiver is then placed on the vehicle.

7.3 Open loop Results

An open loop flight test has been performed in order to test theuplink and feedback.
This involved a flight using the uplink and downlink described within this chapter. The
normalised thrust going into the quadrotor against height from the ultrasonic sensor can
be seen in Figure 7.3. There is a non-linear relationship between the thrust and the altitude
which can be explained by the presence of ground effect.

Although not considered within this work, ground effect is an inevitable disturbance
which the controller must overcome. However, without a detailed model of this effect,
it is impossible to determine the suitability of the controller to cope with this. A test stand
has been constructed with a large wire grid surface. This surface holds the vehicle well
above the ground (1.5m) but allows the down wash from the props to flow through the
surface. This test stand will enable control development outside of ground effects.

The control inputs for this flight were also recorded and shown in Figure 7.4. This figure
gives some indication of the high pilot workload required tofly the quadrotor which ex-
plains why it is so hard to manually pilot. Pilot Induced Oscillations (PIO) are a common
problem when flying the quadrotor, the oscillatory demands which can lead to this, can
clearly be seen in Figure 7.4.

Data from the gyroscopes and accelerometers, was also recorded during this flight. As the
supply current to the motors is large however, large electro-magnetic forces are present
and therefore significant noise is present within the data. As the rotors are of variable
speed the electro-magnetic noise is of variable frequency and therefore filtering the noise
out without removing the dynamic data is not a trivial problem. This has been reduced by
adding low pass filters to the vehicle to remove noise at the frequency of the motors but
this is something that will need modification before autonomous flight can be achieved.

7.4 Discussion

This chapter has presented some open loop test flight resultsfrom the Cranfield exper-
imental set up of the Draganflyer X-Pro. This data provides accelerations, gyroscopic
rates and height measurement. Before trajectory planning techniques, such as the ones
discussed within this thesis, can be implemented, positionfeedback of the vehicle is re-
quired. For a vehicle such as the quadrotor, which is intended for internal flight, this
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Figure 7.3: Experimental thrust against measured height
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Figure 7.6: Experimental accelerometer readings

problem is made harder by the fact horizontal displacement can not be measured by GPS.

There are a few options for position feedback for such a vehicle: a indoor camera system
such as the Viacon system can be installed which gives accurate state feedback for all
vehicles within the room to a high degree of accuracy, unfortunately the system is very
expensive costing typically $100 000 and this does not solvethe problem of how to obtain
this information in practice. An alternative portable solution is to attach on board cameras
on to the vehicle and use visual recognition software to determine position (Altuget al.
2002), this however is by no means a trivial task and could warrant an independent thesis
alone, so is not investigated within this work. A simpler solution in a room of known
geometry as discussed in (Parket al. 2005), is to use side mounted ultrasonic sensors to
measure the distance to the walls, however, this would only be feasible in an empty room
with regular walls.

The practical results presented in this chapter demonstrate the feasibility of such an ex-
perimental set up. Control of the vehicle is achieved through a PC, albeit under manual
control, thus validating the uplink control. Data is also streamed in real time to the ground
station with minimal latency and therfore closing the loop.Potentially of greater impor-
tance this work has highlighted some key challenges which need to be considered before
autonomy of the quadrotor can be achieved. Electromagneticnoise from the motors is an
issue which requires consideration before the sensor data can be used for determining the
control action. This work also demonstrates the non-linearbehavior within ground effect.
Without extensive modelling this is a very difficult thing toconsider in control law design,
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however these results show it is significant and therefore will need consideration before
flight testing. It is also theoretically possible with the current set up to use flight test data
to validate the full dynamic model used in this work. This chapter therefore despite not
demonstrating closed loop control of the quadrotor, does highlight some key issues with
achieving autonomy of the quadrotor. Furthermore, whilst not demonstrating autonomy
it would not be complete without considering these challenges to achieve this. In doing
so, it is now a reasonable claim that this work truly considers the problem of autonomy
and makes considerable strides to achieving it in a low cost experimental set up.

7.5 Multiple vehicle implementation considerations

This work considers the challenges of implementing the control laws developed in this
work on a single quadrotor. In the previous chapter the problem of multiple quadrotor
control was considered. It is therefore worth considering the suitability of the experimen-
tal set up described in this chapter for the control of multiple vehicles.

The first issue, is the scalability of the current set up, although the states are measured
onboard the vehicle the control action is determined on the ground station. This will
obviously limit the number of vehicles that can be controlled from a single PC as the
computation time will grow with each vehicle controlled by aPC. Multiple ground sta-
tions are a possible solution but it is more likely that the vehicles would need to determine
the control action onboard the vehicle. For safety reasons however, it is likely that a pilot
would need to remain in the loop. For a small number of quadrotors however, it is feasible
that the current set up is sufficient and would be very cost effective.

Another issue is that of collision avoidance. The previous chapter considered the multiple
vehicle rendezvous problem and proposed a control scheme which was dependent on a
visual or similar system, to rendezvous the vehicles as wellas to avoid collisions. If the
control laws are decentralized and the control actions are computed onboard then it is
necessary to also determine the position of other vehicles onboard or through a telemetry
link. However, in the current set up, with the addition of positional measurement, the
ground station could prevent collisions through direct control of each vehicle.

In conclusion while the experimental set up described in this work is not a long term
industrial solution, there are a some merits when considering the problem of multiple ve-
hicles. Firstly as the number of vehicles increases the instrumentation cost per vehicle
remains low as the computational power is in the ground station. Secondly, when con-
sidering collision avoidance the addition of extra sensorsis not necessary, as the vehicles
can be kept apart by the ground station which has a position estimate for each vehicle.
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Chapter 8

Conclusions

8.1 Quadrotor

As UAV’s are reaching an unprecidented level of sophistication, there is a growing interest
in hovering vehicles. The quadrotor is one possible solution for this, its dynamic simplic-
ity results in low manufacturing costs as well as being an ideal test-bed for advanced
control algorithms.

In Chapter 2, the quadrotors’ dynamics are considered. The six degree of freedom, equa-
tions of motion for the vehicle are presented. This work simplifies these equations by
using a different rotational matrix as opposed to the rotational matrix traditionally used
by aerospace engineers. This simplification is of great benefit when manipulating these
equations to evaluate the differentially flat property.

As well as these simplified equations, a full dynamic model has been developed at Cran-
field University for the testing of the control laws. This model is based on experimental
data as well as theoretical analysis.

8.2 Trajectory optimization

In order to achieve autonomy of a UAV several issues need to beconsidered, these in-
clude trajectory generation and trajectory following. Trajectory generation is essentially
the determination of a feasible, time dependent, three dimensional trajectory to reach the
destination. In order to determine the optimal trajectory for the three missions defined
(3.1), it is necessary to solve a non-linear constrained optimization, typically this would
be solved within the control space. Differential flatness isa property of some dynamical
systems which essentially means the dynamics can be inverted to repose such an opti-
mization problem within the output space. In Section 3.3 thedynamic flat equations of
the quadrotor are shown enabling such a formulation.
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To determine a feasible trajectory the optimization must beconstrained, by approximating
the control inputs as a function of the actuator outputs suitable control approximations can
be made to avoid control saturation. Initial and terminal constraints are also required to
ensure the vehicle reaches its destination at some predetermined flight time. Singularities
are present within the differentially flat equations when the vehicle pitches or rolls through
90 degrees, therefore the trajectory is constrained withinthis range. Finally obstacles and
buildings are constrained using a convex approximation. Within this work, it is assumed
that there exists a feasible trajectory to reach the destination although that in reality is not
always possible.

In order the reduce the order of the optimization to a finite amount, a suitable output space
parameterization is required. The simplest form of output space parameterization is the
simple polynomial but the conditioning of this is poor. Other techniques such as Laguerre
polynomials and Chebyshev polynomials are compared and it is found that for this type
of problem, Laguerre polynomials provide the fastest convergence properties.

Using Laguerre polynomials and the differentially flat equations, trajectory optimizations
are posed within the output space and shown for the 3 missions(3.7). The computation
time for these optimization is typically a couple of secondson a standard desktop PC.
There are however a number of disadvantages to this approach. The initial and terminal
constraints are determined numerically, which can lead to long computational time to
be solved exactly. To remove this problem a bounding box is used to relax the terminal
constraints and hence reduce computation time, enabling a feasible trajectory to be found.
Also in this formulation the flight time must be predetermined and can not be optimized,
preventing the solution to the minimal time problem.

8.3 Control system

Once a reference trajectory has been found, the reference states and controls, can be fed
forward. For stability and accurate tracking however, closed loop control is also needed.
Two different control schemes are initially considered in this work, the first a non-linear
advanced control technique (MBPC) and the second a standardmultivariable controller
(LQR).

8.3.1 MBPC

Model Based Predictive Control is an advanced control scheme, which essentially consists
of repeated optimizations, over a given time horizon, to determine the current control
input. By repeatedly solving the non-linear constrained optimization proposed in Chapter
3 a non-linear MBPC problem is formulated. At each time step the initial constraints are
set to the vehicles current state and hence closing the loop.

Typically the time horizon receeds in MBPC as time progresses, hence the alternative
name of receeding horizon control. In this work however, thewhole trajectory until the
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final predetermined time is considered and therefore the time horizon reduces with time.

MBPC is used as a combined trajectory generation and trajectory following algorithm.
The three missions shown demonstrate the suitability of MBPC for UAV control. The
major advantage of this approach is the ability to satisfy state constraints especially in
the event of an environmental change, this is shown by the reoptimization of a trajectory
to account for a strong wind. A disadvantage of this approachhowever, is the computa-
tional time required to solve the nonlinear optimization problem. Furthermore there is no
guarantee when considering nonlinear optimization that the algorithm will converge on a
feasible solution.

8.3.2 LQR

Once a reference trajectory is found, if this remains feasible for the duration of the flight
there is no need to reoptimize. Instead a standard multivariable controller (LQR) can be
applied to track this reference trajectory. The computational time of trajectory following
is negligible and it can be easily implemented. The disadvantage of this scheme is that
constraint satisfaction is not guaranteed after the first time step. Therefore in the event of
environmental changes such as an obstacle moving, the trajectory may become infeasible
resulting in a collision or large tracking errors.

8.3.3 Combined control

As MBPC is computationally demanding and simple trajectoryfollowing does not guar-
antee constraint satisfaction, an alternative solution isrequired. A combined controller
is proposed which follows the reference trajectory when it is feasible to do so, but re-
optimizes if it not feasible. An update switch monitors the reference trajectory and the
vehicle’s drift from this trajectory and switches between the inner loop trajectory fol-
lower and outer loop trajectory generation. The resulting controller is capable of near
to real time simulation on a standard desktop PC as well as ‘reacting’ to environmental
changes as shown in Section 4.3.2.

8.3.4 Automatic Differentiation

In this work the optimization is programmed into a gradient based routine (fminconin
MATLAB.) Evaluation of the optimization routine shows thatupto 70% of the computa-
tion time is used in the evaluation of the constraints and thegradients of these constraints.
Significant reductions in computation time can therefore betheoretically achieved by sup-
plying the gradients to this routine but determining these analytically by hand is a time
consuming process. Automatic Differentiation (AD) is a computational technique which
utilizes the step by step nature of the computer programme and the chain rule to evaluate
the gradients of a complex function. AD can be implemented easily into MATLAB using
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MATLAB Automatic Differentiation (MAD) (Forth 2006). Unfortunately in this exam-
ple there is no saving in computational time using MAD as the overheads of the software
seem to negate the benefits of the technique. Future work in this area would look to seek
alternative software packages such as ADOL-C as used in (Cao2005), where significant
computational time reductions are shown.

8.4 Taranenko’s direct method

Output space trajectory optimization through dynamic inversion was heavily researched
during the 1990’s (Martinet al. 1994, Koo and Sastry 1999, Driessen and Robin 2004,
Defoortet al.2007, Chelouah 1997) following the work on differential flatness proposed
by Fleiss (Fleisset al. 1992). Output space optimization via dynamic inversion wasnot
a new idea however, in the 1960’s Taranenko was also looking at direct methods in the
output space to solve optimal control problems. A significant difference in this work, is
the use of the virtual argument, which greatly improves the convergence properties of the
scheme. Unfortunately the majority of publications on thisapproach are in Russian and
therefore lesser known.

By introducing a virtual argument the optimal path and speedproblems are separated,
allowing for example, easy variation of the speed profile along a trajectory. Another
benefit of this technique is the analytical determination ofthe boundary conditions, which
were previously solved numerically within the routine presented in Chapter 3. As the
boundary conditions are met analytically, the initial guess of the remaining free variables
are less crucial, and often provide a feasible solution, unlike the Laguerre based scheme.
The virtual argument also enables the solving of the optimaltime problem as opposed to
arriving at a predetermined arrival time. The big difference observed from a programming
point of view is a much reduced dependency on the optimization settings, such as the
initial values for the free variables.

When considering fixed wing vehicles using Taranenko’s direct method, there is no need
to consider zero velocity. The quadrotor however, is capable of zero velocity during hover.
This creates a problem because the speed factor (λ) becomes undefined (zero divided by
zero) when the velocity is zero. The work in this thesis assumes that zero velocity can
occur only at the boundaries. The assumption is made that thespeed factor is zero at the
boundary and this worked satisfactorily. This is because the approximations that are used
means that the sigularities do not occur in the calculations. Although this approach does
not allow for the possibility of zero velocity during a flightthis was not found to be a
limitation for the case cases studied. The question of how best to deal with zero velocity
remains for future work. In (Whidborneet al.2008), an iterative scheme is proposed for
defining the boundary conditions of the speed factor, this requires further testing and has
not been covered in this thesis.

This work assumes that this zero velocity only occurs at the first and last time steps there-
fore, allowing for the speed factor to be equal to zero at the boundary conditions. Al-
though this does not account for the possibility of the zero velocity during the flight this
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was not found to be a problem. This case does require further consideration and espe-
cially the case where the initial or terminal velocity are zero, as in-flight zero velocity is
less likely.

This work therefore, through the use of the differentially flat equations applies Tara-
nenko’s direct method to the quadrotor successfully. This technique was found to be a
significant improvement on the algorithm presented in Chapter 3. From these results, two
different conclusions can be drawn. The first is that Taranenko’s direct method is a vi-
able trajectory generation algorithm for control of the quadrotor. However, Taranenko’s
method can be applied to any UAV which posses differentiallyflat dynamics. This scheme
has a number of benefits and it envisaged that this scheme is equally applicable for control
of other rotary and fixed wing UAVs.

While a scheme of this complexity may not be deployed in standard fixed wing flight,
where a classical control structure following waypoints may be equally suitable, it may
be deployed for maneuvers which require the states to be constrained or optimized. One
example state optimization is time critical problems, where for example a vehicle is re-
quired to reach a destination at a predetermined or optimal time. Another example of
state optimization is the velocity optimization problem considered in this work where a
vehicle passes over an obstacle with reduced velocity. An example of state constraints
is also shown in this work where the vehicle is required to avoid obstacles, drop down
a mineshaft and satisfy dynamic and control constraints. For fixed wing flight, similar
constraints may be encountered when considering for example automated landing, sense
and avoid problems, formation flight and multiple vehicle rendezvous.

8.5 Multiple vehicles

When considering small UAVs such as the quadrotor there are anumber of advantages to
deploying multiple UAVs. This work considers a decentralized rendezvous problem. In
Ando et al. (1999), a two dimensional point convergence algorithm is presented which
guarantees convergence of multiple vehicles with no communication link and only lim-
ited visibility. In Chapter 6 this scheme is demonstrated for the 3D case with 5 quadro-
tors. Furthermore this work considers the conflicting problem of collision avoidance and
with the application, of a ‘direct consequence measurement,’ collision avoidance and ren-
dezvous are demonstrated.

The results show that despite the collision avoidance considerations within the controller
the vehicles rendezvous successfully. For the straight line scenario the convergence is
slower than for the analytical solution but rendezvous is not in doubt. This work also
provides another example of a potential application for a trajectory optimization scheme
such as Taranenko’s. In this example, the analytical determination of the boundary condi-
tions is especially beneficial as well as the extra state constraints imposed by the collision
avoidance algorithms.
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8.6 System design

To achieve autonomy there are many issues to consider including trajectory generation
and following, which have been considered within this work.Other important issues
include that of feedback and the implementation of the control law. In Chapter 7 the
experimental set up at Cranfield University is discussed with some open loop experimental
data. It is shown that it is feasible to use a groundstation for determining the control
action, as a Bluetooth transceiver is used to stream data with a reasonably small latency.
Lightweight MEM’s sensors are used to measure linear acceleration along the 3 axes,
steady state gyroscopes are used for attitude feedback and an ultrasonic sensor is used
for altitude. Successful open loop flight results are shown which show the feasibility of
such a system as well as highlighting the difficulties when considering instrumentation of
a small UAV such as the quadrotor. These difficulties includethe position determination
of an internally flying vehicle where GPS is not available. Another issue is the filtering of
the vehicles sensor data where variable frequency electromagnetic noise is present. While
this work does not go as far as demonstrating autonomy of a quadrotor, by considering
the implementation of the control laws it is a reasonable claim that the full problem of
autonomy is considered.

8.7 Future work

Suggested future work following the work presented within this thesis can be split into
two key areas, that of trajectory generation and implementation. While the trajectory gen-
eration issues consist of potential applications of the schemes discussed for other vehicles,
the implementation side involves the demonstration of the techniques discussed onto the
quadrotor itself.

8.7.1 Trajectory optimization

Future improvements of the control algorithm presented could include focus on the reduc-
tion of computation time. In this work AD proved unsuccessful, but there are examples
of significant computational time reductions using AD (Cao 2005). Using a package such
as ADOL-C and the MEX wrap in MATLAB could potentially significantly reduce com-
putation time.

Taranenko’s direct method is easily extendable to other vehicles. Consider the case of
the fixed wing rendezvous problem, this is different to the problem discussed previously,
as there is a constraint on the minimum velocity. The direct method allows for the ve-
locity profile to be varied along a given trajectory which simplifies this problem. As the
boundary conditions are met analytically, and the states are explicit functions of these
boundary conditions, then it is easily extendable to the case of a critical terminal state,
such as landing on a slanted roof.
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8.7.2 Implementation

A major issue encountered with the instrumentation is the electromagnetic noise within
the sensor data. The 4 rotors are variable speed rotors and therefore the noise is of variable
frequency making a simple, low-pass filter inadequate. Future work will be required to
remove this noise from the sensor data without the removal ofthe vehicles dynamic data.
Removing this noise from the signal will provide a good estimate for body rates([p,q, r])
and accelerations[ẍ, ¨y, z̈]. Other state parameters such as Euler angles can potentially be
obtained from this information.

Before trajectory tracking can be demonstrated it is first necessary to determine the ve-
hicles position. As the vehicle is intended for internal flight, GPS is typically not viable.
Currently the only options on the market are very expensive such as the ground based
camera system used by Valentiet al. (2006) and an indoor GPS system (Naviva 2008).
This provides very accurate state feedback but is expensiveand does not solve the prob-
lem for a transportable UAV. There is therefore substantialfuture work required to obtain
position feedback onboard potentially via visual feedbackfrom onboard cameras.

Therefore to validate the work presented in this thesis, thefollowing tasks are required:

• Shielding or filtering of electromagnetic noise

• Positional feedback through additional sensors

• Attitude determination from onboard sensors through a suitable filter

• Deployment of control law on RTOS
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Appendix A

Small Quadrotor Model

A.1 Simulink Model

A full dynamic model of the quadrotor is required for a numberof reasons. For trajectory
optimization, a model enables the realistic constraints tobe included in the algorithm.
Also with a full dynamic model of the quadrotor, the control schemes can be tested as
shown throughout this thesis. This modelling has been done by Barry Shaw, as part of his
MSc thesis (Shaw 2005). A full quadrotor model has been developed using experimental
data and theoretical analysis and compiled in SIMULINK. Experiments have been carried
out to model the rotor dynamics as well as determine the mass and inertias. The model
can be seen in Figure A.3. This model is used for all simulations within this thesis with
the one exception of Section 4.2.3 which uses the model for the larger quadrotor detailed
in Appendix B.

This model essentially consists of five major parts; the powerplant, gravitational calcula-
tions, equations of motion, navigation and angular motion calculations. The powerplant
uses look up tables constructed from the experimental data to convert voltage into rotor
speed and thrust. Using blade element theory detailed in Section 2.4.2 the torque per
rotor can be calculated. These are then converted to body forces using Equations (2.48-
2.51.) In a similar way the gravitational force is convertedinto body axis forces within
the gravitational calculations. The equations of motion then convert these forces using the
experimental mass and inertial data into body rates(u,v,w, p,q, r, ṗ, q̇, ṙ). The angular mo-
tion calculations convert these into Euler angles(φ,θ,ψ) and the navigational calculations
converts these into positions and speeds(x,y,z, ẋ, ẏ, ż).

A.1.1 Experimental data

In order to determine the total thrust and the turning moments acting on the vehicle it is
necessary to first determine the individual rotor speed and thrust from each rotor. Experi-
mental data (see Figure A.1) from a pendulum test has been used to determine the voltage
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Figure A.1: Voltage to thrust

to thrust relationship. The following approximate relationship has been determined:

τ =
v2

37
(A.1)

The voltage to rotor speed relationship has been determinedusing two different experi-
mental procedures. The first was using a hand held tachographand the second a strobo-
scope. The results can be seen in Figure A.2.

The moments of inertia have been calculated using a compoundpendulum and a bifilar
pendulum and are;

Ix = 8.33gm2 (A.2)

Iy = 7.14gm2 (A.3)

Iz = 1.24gm2 (A.4)
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Appendix B

Draganflyer X Pro Model

In order to test the control schemes on the larger quadrotor asimilar model to the one in
Appendix A is required. Experimental data has been obtainedfrom wind tunnel testing
to obtain the voltage to thrust and voltage to speed relationship of the motors. As seen in
Figure B.3 the motors are placed on a force balance within theopen section of the wind
tunnel and connected to a regulated power supply. This is tested for a range of angles
at different wind speeds to obtain the dynamic properties ofthe model. For this model
however, we are only interested in the zero pitch angle results. This work has been done
by Vincent Martinez Martinez towards his MSc thesis Martinez Martinez (2007). The
model presented in Appendix A has been adapted with this new data to test the LQR
controller in Section 4.2.3.
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Figure B.3: Wind Tunnel testing of the Draganflyer X Pro


