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Abstract

Cellular manufacturing is an important approach to the organisation of production. Large
benefits are claimed over traditional functional organisation, and it is compatible with
prominent manufacturing theories, such as just-in-time, total quality management, and
computer integrated manufacturing. Several very successful applications of cellular
manufacturing have been reported, but a wide range of performance improvements has also
been observed. Many benefits of cellular manufacturing do not arise directly from changing
the organisation and layout of direct production resources, but from changes to the way the
production process is operated, managed and controlled, that are made possible by the
cellular organisation. Underachievement occurs when companies do not identify and exploit
such opportunities. This research aims to address the problem by providing a system wide
concept of cellular manufacturing and an improved process to support the design of a

cellular manufacturing system based on this concept.

A review of the theory and practice of cellular manufacturing is presented. A model is
proposed, which comprises a general set of mutually compatible, production system wide,
production system features for supporting or exploiting self-contained groupings of
manufacturing resources. A subset of the features from the general model will be
appropriate to a particular application of cellular manufacturing. Current processes for
designing cellular manufacturing systems do not adequately support the application of such
a concept. In particular, tailoring the general concept of cellular manufacturing to a specific
situation is identified to be an important but widely neglected design activity. A process is
defined that makes concept design explicit, and a matrix-based tool developed to relate the
features of cellular manufacturing to a company’s performance improvement objectives.
The value of this novel approach to designing cellular manufacturing systems is determined
to be in facilitating the generation and communication of insight into the nature of cellular
manufacturing, encouraging a comprehensive appraisal of the concept and its impact
throughout the production system, and focusing limited resources where they will be most

effective.
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Chapter 1 Introduction

The subject of this thesis is the design of cellular manufacturing systems, and the
development of a practical method that will improve the design process. The work was
undertaken with close industrial collaboration to maximise insight into the practical
problem of cellular manufacturing system design and to support the development of a
useful solution. Chapter 1 provides some background to the research domain, and defines

the research problem and aims. Finally the structure of the thesis is explained.

1.1 Competitive Environment

Since the mid-1960s manufacturing capacity has been catching up with demand in most
industries, creating a keen competitive environment (Hill 1985). Moreover, increasing rates
of technical innovation and the growth of the global economy have provided greater
consumer choice and created fragmented markets populated by soi)histicated and demanding
customers. Hammer and Champy (1993) note that since the 1980s the dominant force in
the supplier-customer relationship has shifted towards the customer. “In place of expanding
mass markets, . . . companies now have customers . . . who know what they want, what they
want to pay for it, and how to get it on the terms they demand.” (p. 21). Hanson (1992)
asserts that, “World-class manufacturers will be recognized by the leadersh'ip they provide

in attacking and resolving complex customer problems.” (p. 164).

Shingo (1989) points out that in a competitive environment a product's price will not be the
sum of production costs and the company’s desired profit margin. Rather, the market will
set the price and profit will be determined by the cost of production. That is: Profit = Price
- Cost. Under these circumstances profit can only be improved by removing waste from the

production system. Thus, companies have come under increasing pressure to cut costs.



Furthermore, the nature of competition is also changing. Products no longer only compete
on price alone. Consumers are increasingly considering the total life cycle cost of a
manufactured product and emphasising the relative importance of non-price factors, such
as quality, innovative design, and delivery performance in their assessments of value-for-

money (Finniston 1980; Tidd 1994).

The Japanese first set new standards of performance in quality. For example, in a trial
undertaken by Hewlett-Packard in 1980, the inspection failure rate of memory chips was at
least twenty times greater for American than Japanese suppliers (Hayes, Wheelwright and
Clark 1988). However, excellent quality is now becoming a condition of entry to many
markets. DeMeyer et al. (1989), based on data from their ‘Manufacturing Futures’ surveys,
suggest that Japanese manufacturers have sufficient advantage in quality dependability and
cost-efficiency to focus on speed and flexibility as sources of competitive advantage. The
ability to produce a broad range of products allows the coverage of more market segments,
and Hill (1985) notes that, a company with quick lead times will be able to meet delivery
date requirements when only some or even none of the competition can do so. Stalk (1988)
describes this as time based competition. Cost benefits can be obtained from reducing the
time to transform resources into finished products, while fast response, and the ability to
constantly upgrade the technical sophistication of products through rapid introduction of

new products, attracts the most profitable customers.

Clark and Fujimoto (1991) note that the market conditions described above have combined
to push new product development to the centre of the playing field in the competitive game.
Hammer and Champy (1993) explain that, “not only have product and service life cycles
diminished, but so has the time available to develop new products and introduce them.” (p.

23).

Developing competitive advantage has become a moving target, and the growing intensity
of competition is speeding up the pace of change. Peters (1989) writes, that “For the

foreseeable future there is no such thing as a 'solid' or even substantial lead over ones



competitors. Too much is changing to be complacent.” (p. 3). Uncertainty in the form of
fluctuating currency prices, changing political boundaries and trading policies, and the rate
of new competitors emerging, has increased with the size of the market place. Technology
is also constantly altering both, the nature of products, and the nature of business and
production. Peters' view is that change is becoming continuous, and that only those
companies who can proactively create new competitive opportunities in such an

environment will be successful.

The DTI report, Manufacturing into the Late 1990s (PA Consulting 1993) reviews external
business drivers under the following headings: the global economy; demography and
lifestyles; the environment; markets, products and services; competitors; technology; and
suppliers. Their effect on the challenge facing manufacturing companies is summarised

below:

° Customer expectations and power will continue to grow, and exert pressure on
manufacturers to provide more comprehensive product packages, increase product
choice, enhance product performance, improve quality, delivery and service, and

charge a competitive price.

° Complexity will increase as product and processes contain more technologies and
companies are required to supply wider product ranges of more customised products

to more customers and market niches.

° There will be more Uncertainty as product life cycles diminish and fast moving niche
competitors fragment markets, continually increasing the performance required to
be competitive. A wider range of customers, more product variety more

customisation, and shorter delivery lead times will all reduce demand stability.

° Companies will have to contend with increasing competitive and legislative

pressures.



This is corroborated by Computervision’s survey of manufacturing attitudes (1994). Of the
manufacturing sites that responded, 91% expected some increase in the level of competition
over the following five years. Over half of the respondents expected much more
competition in that period compared with just over a third who felt the same way in the

previous year's survey.

1.2 Cellular Manufacturing: An Appropriate Strategy

Cellular manufacturing is an approach to the organisation of production that exploits
product focused, semi-autonomous groupings of production resources to achieve high levels
of competitive performance. In other words, teams of people are formed and provided with
all the equipment necessary to be able to complete the manufacture of a defined range of
products through a major processing stage. This form of organisation has several beneficial
characteristics that can be exploited (for example, by enabling set up and batch size
reductions) to improve lead times, quality, delivery reliability, and costs. It is also claimed
to provide more humane working conditions, generating high levels of job satisfaction and
a motivated workforce, which, in addition to any moral argument, may also give rise to
increased performance (Black 1983; Burbidge 1961, 1979, 1989; Fazakerley 1976,
Gunasekaran et al 1994; Jackson 1978; Mechanical Engineering EDC 1975; Schonberger
1983). These characteristics have been identified to be particularly suited to tackling the
combined challenges of increasing performance requirements, competition, uncertainty and

complexity highlighted in section 1.1.

Skinner (1974) and New (1992) assert that a focused manufacturing task is essential to
achieving truly competitive performance, and the simplification of material flows is a
significant enabler of Just-in-Time (Cheng and Podolsky 1993; Harrison 1992;
Schonberger 1982, 1983). Swamidass and Newall (1987) identify manufacturing flexibility
as an appropriate strategy for dealing with uncertainty in the environment. Drucker (1990)

describes how cellular manufacturing provides a mechanism for managing complexity by



decomposing the production system into a flotilla’ of product focused modules. The
modular structure of cellular manufacturing provides focus within individual cells, allowing
each to concentrate on achieving high levels of performance to satisfy their particular
customers' requirements. Each cell within the flotilla however, is independently

manoeuvrable, making the factory as a whole tremendously flexible.

Herbst (1976) suggests that autonomous teams are effective in unstable conditions due to
their capacity for learning, and their ability to adopt novel and temporary internal structures.
Hayes, Wheelwright and Clark (1988), Schonberger (1986), and Drucker (1990) stress the
importance of complexity reduction, alignment of information with accountability, and
workforce empowerment in enabling both, high performance, and continuous learning and
improvement. These characteristics can be seen in the architecture of clear, direct, material
and information flows, and the self managing teams upon which cellular manufacturing is

based.

A detailed description of the salient features of cellular manufacturing are presented in
Chapter 2. While the cell concept has been developed from work in both batch and flow
environments, Alford (1994) reports that the majority cf its application has been in batch
production. This is not surprising as batch production accounts for 75-85% of the output
from western manufacturing industry (O'Grady 1988), and the benefits of cellular
manufacturing appear to be more tangible to this environment. Consequently, the focus of
this research is the application of cellular manufacturing in batch production environments.

The aerospace industry provides many typical examples of batch manufacture.

1.3 The Aerospace Industry and Cellular Manufacturing

In line with the general competitive situation, over capacity in the civil aerospace industry
is increasing levels of competition. Ingersoll Engineers survey (1994%) reported that the civil
aerospace industry has become a mature global industry subject to the full competitive

pressures of cost and delivery. An increased demand for product variety is also expected.



The demise of the Cold War has also led to reduced sales and therefore similar increases in

competition in the military aircraft industry.

Recently significant emphasis has been placed upon the reduction of lead times within the
aerospace manufacturing industry. For example: Airbus Industries (Omand 1994) has set
aggressive lead time reduction targets which in turn require that BAe Airbus reduce wing
delivery lead times from seventeen to four months; Rolls Royce claimed to have achieved
significant lead time reductions through the use of cellular manufacturing and are now
pursuing similar performance improvements from their suppliers (Williams and Keeting
1995); the aerospace programme of the Innovative Manufacturing Initiative (EPSRC 1996)
has an objective of reducing industry lead times, and the SBAC Competitiveness challenge

(DTI 1995) advocates the use of cellular manufacturing to reduce lead times.

Ingersoll Engineers identify cellular manufacturing as one of the foundations upon which the
necessary capabilities can be developed within the aerospace manufacturing industry. There
is also significant empirical evidence to suggest that cellular manufacturing can be
successfully applied to this environment (Cook 1994; Kellock 1992; Macilwain 1991;
Masom 1993; Omand 1992; Williams and Keeting 1995)

1.4 Extent of Cellular Manufacturing Application

From the mid-eighties onwards there has been a considerable increase in the acceptance and
implementation of cellular manufacturing. The surveys of cellular manufacturing in 300 UK
engineering companies, undertaken by Ingersoll Engineers (1990, 1994%), reported 73% of
companies using cellular manufacturing with over a quarter of those being fully cellular.
Penetration was found to have increased by 40% between the two surveys. Significantly,

only one company had tried cellular manufacturing and then abandoned the approach.

While the development of the cellular manufacturing concept has generally taken place in

the engineering industry, there is evidence that its benefits are being more widely recognised.



For example, Mugwindiri, Groves and Kay (1995) report a recent increase in the use of

cellular manufacturing in the furniture industry.

Using Cells
73.0%

Assembly

Not Using Cells 18.0%

200%

Part Manufacture

|
Planning Cells 24 0%

7.0%

Figure 1.1 Penetration of Cellular Manufacturing (Source: Ingersoll Engineers 1994)

1.5 Performance of Cellular Manufacturing Implementations

There are many prominent success stories concerning the implementation of cellular
manufacturing, such as Northern Telecom (Taheri 1990), Beavers (Booth 1988), Deere and
Co. (Welke and Overbeeke 1988), Cummins (Venkatesan 1990) and Champion Irrigation
Products (Kumar and Hadjinicola 1993). It is also associated with the triumph of Japanese
manufacturing (Harrison 1992; Schonberger 1982, 1986). Several surveys of cellular
manufacturing implementations have also been conducted (Dale and Wiley 1980;
Wemmerlov and Hyer 1989; Ingersoll Engineers 1990). Although these reports tend to
emphasise the positive aspects of their findings, a significant proportion of companies appear

to obtain relatively small performance improvements.

Figures 1.2 and 1.3 show the results of Wemmerlov and Hyer's survey, and the Ingersoll
Engineers survey respectively. While spectacular results are still in evidence, it is clear that
they are not an inevitable consequence of implementing cells. The difference between the

best and the worst improvements is very large.



Benefit Average Improvement Range

Reduction in Throughput Time 45 6% 5% to 90%
Reduction in WIP 41.4% 8% to 80%
Reduction in Matenals Handling 39 3% 10% to 83%
Improvement of Operator Satisfaction 34 4% 15% to 50%
Reduction in Number of Fixtures 33 1% 10% to 85%
Required
Reduction in Setup Time 32 0% 2% to 95%
Reduction in Space Needs 31 0% 1% to 85%
Improvement in Part Quality 28 6% 5% to 90%
Reduction in Finished Goods Inventory 29 2% 10% to 75%
Reduction in Labour Cost 26 2% 5% to 75%
Figure 1.2 Benefits of Cellular Manufacturing (Source: Wemmerlov and Hyer 1989)

The distribution of performance within this range is not shown but a clue can be found in
Ingersoll's data on lead time and work-in-progress. Figure 1.13 indicates that nearly half of
the companies using cellular manufacturing will have got less than 25% improvements in

two of the key areas of performance improvement associated with cellular manufacturing.

Lead Time Work-in Progress
Percentage Improvement Percentage Improvement
A A
Decreased Decreased
more than more than
50% 50'/T
Decreased Decreased
up to 50% up to 50%
| S ————
Decreased 7, Decreased |
up to 25% | up to 25%
\ | | | | ! | \ | | | | | \ ‘ \
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Percentage of Companies Percentage of Companies
Figure 1.3 Distribution of Performance Improvement (Source: Ingersoll 1990)



1.6 Research Problem

Cellular manufacturing has been shown to be an important concept for organising
production in the current competitive environment. Many companies are experimenting
with using cellular manufacturing, however, there is a significant range in the performance
improvements achieved from introducing cellular manufacturing, with some companies
obtaining relatively little benefits (Wemmerlév and Hyer 1989; Ingersoll Engineers 1990).
Most commentators choose not to interpret the survey results in this way, and emphasise

instead, the demonstrated potential for large improvements.

Burbidge (1979) suggests that the benefits of cellular manufacturing will not be obtained,
simply by grouping men and machines to produce a family of products. Rather, this new
structure provides opportunities to radically change the way production is managed. It is
the exploitation of these opportunities that significantly improves performance. Harrison
(1992) argues that the limited scope of many early cellular manufacturing implementations
led to their underachievement and eventual disuse. The three examples he gives are:
isolated experiments with cellular manufacturing that although successful play no part in
overall company policy; limiting the application to the physical rearrangement of facilities;
and conflict arising from neglecting to change payment and performance measures to reflect
the requirements of the new system. Kirton and Brooks (1994) report that a superficial
conception of cellular manufacturing commonly leads to cells not meeting their performance
expectations. Such cells are described as “white line cells”, in reference to the extreme
cases, where the change may comprise little more than painting lines round existing machine
groups and changing their names to include the word cell. These issues are often associated
with under performance in current applications of cellular manufacturing. The opinions
expressed above are supported by the findings of Ingersoll Engineers (1990), which suggest
that the scale of performance improvements is related to the proportional investment in

people, and management and control systems, over machines and buildings.

Despite the body of evidence to suggest the need for a more holistic treatment of cellular

manufacturing, there is little evidence of this in the literature. Many definitions and



descriptions of cellular manufacturing emphasize its structural comparisons with traditional
production systems, and neglect the wider issues that have been identified as being essential
to its success. Sule's (1988) definition of Cellular manufacturing, as a system in which a
large number of common parts are grouped together and produced in a cell consisting of all
the machines that are needed to produce that group, is typical. Similarly limited definitions
are expressed by Flynn and Jacobs (1987), Fry, Wilson and Breen (1987), Huang and Houk
(1985) and Shafer and Rogers (1991).

The majority of research into the design of cellular manufacturing systems focuses on
discrete elements of the manufacturing system, for example, cell scheduling, job design and
in particular part machine grouping (Wemmerlév and Hyer 1986; Offodile, Mehrez and
Grzar 1994). Little work has been done on the development of procedures to integrate
these design decisions. Lewis and Love (1993) argue that although cell formation has
received a significant amount of attention, this is of a narrow nature, stopping well short of
what is necessary to design a cellular manufacturing system. Their findings suggests that
little has changed since Black (1983) wrote, “Few rules and virtually no theory exist for

designing cellular manufacturing systems.” (p. 38).

The research problem can therefore be stated as follows:

How to provide a system wide concept of cellular manufacturing, and support

the design of a cellular manufacturing system based upon this concept.

1.7 Research Aims

Based on the research problem stated above, the aims of this research is defined as follows:

i Develop a system wide definition of cellular manufacturing that provides a useful

reference to guide the design of cellular manufacturing systems.

10



ii. Identify the strengths and weaknesses of current approaches to the design of cellular
manufacturing systems.

iii. Determine the requirements for an improved approach to the design of cellular
manufacturing systems.

iv. Develop a practical method for designing cellular manufacturing systems that
satisfies the requirements defined by 3 above.

\'A Test and refine the method through practical application in an industrial case.

1.8 Research Strategy

The research strategy adopted was largely influenced by the applied nature of research.
According to Robson (1993), “One of the challenges about carrying out investigations in
the ‘real world' is in seeking to say something sensible about a complex, relatively poorly
controlled and generally 'messy' situation.” (p. 3). Rather than, just gaining knowledge,
finding causes, determining the relationship between variables, and developing and testing
theories, he suggests that “real world research” emphasises solving problems, prediction of
effects, looking for robust results (getting large effects) and identifying actionable factors.
Meredith, Raturi, Aoako-Gyampah and Kaplan (1989), in their paper arguing for a broader
approach to research methodology in the arena of operations management, assert, that,
“Operations is an applied field and its research should be usable, in some fashion, in
practice.” (p. 300). A survey of UK managers undertaken by Bennett and Gill (1978)
revealed the opinion that research was initiated by academics who are often insufficiently
familiar with the managerial culture, and addressed irrelevant problems. It therefore lacked
credibility and was considered to be of little practical value. To ensure that this research
was both relevant and realistic, both the problem definition and the solution development

were undertaken in close contact with industry.

The research strategy adopted was based on exploiting the close industrial relationships
enabled through the British Aerospace Cranfield Manufacturing Centre. This provided

opportunities to obtain information about the practical aspects of designing cellular
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manufacturing systems, both, through interviews with practitioners, and by actively
participating in projects concerned with design of cellular manufacturing. Continued contact
with the sites involved over the duration of the research has provided a valuable longitudinal
dimension. The relationship between BAe and Kawasaki Heavy Industries also enabled the
author to visit Japan to observe the Kawasaki Production System first hand in its native

environment.

In addition to manufacturing practitioners, consultants at Ingersoll Engineers, Lucas
Aerospace, Human Centred Systems, Price Waterhouse were questioned about their
experience of designing cellular manufacturing systems. The author has also communicated
directly with academics who have significant research and practical interests in cellular
manufacturing and manufacturing systems design, such as Professor J. Burbidge, Professor

U. Wemmerlév, Professor K. Hitomi, Dr P. Forrester and Dr B. Wu.

The practical work was supported by a thorough review of the literature in the research
domain. CD-ROM facilities at the Cranfield University library were used to interrogate the
following databases: Recent Advances in Manufacturing (RAM), Compendex Plus,
INSPEC, National Technical Information Service (NTIS), ABI Inform, and the DIALOG
Information Services Aerospace database. Searches in the main subject area of cellular
manufacturing and group technology were supplemented by searches in
manufacturing/production systems design, manufacturing strategy, systems methodology,

just-in-time, lean manufacturing, and quality function deployment.

Test Strategy

Cellular manufacturing is a complex concept, having an impact upon many components of
a manufacturing system, and the success of a cellular manufacturing implementation can be
influenced by both its design and the way it is implemented. Moreover, the design of the
system and the implementation will be influenced by many factors such as, the performance

objectives, and the nature of the existing system. Human factors, such as the skills and
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experience of those involved, the management of the decision process, and the industrial
relations environment play a significant role in the process of planning and implementing
cellular manufacturing. Therefore, a case study approach was identified as being appropriate

to the nature of the research problem being tackled.

Yin (1989) identifies the case study as having a distinct advantage when a how or why
question is being asked about a contemporary set of events, over which the researcher has
little or no control. Yin also suggests that case study research is appropriate for attributing
causal relationships as well as exploring or describing a situation. A major strength of the
case study is the ability to consider multiple variables, possibly collected from different
sources, using a variety of data collection techniques. It is therefore particularly suited to
investigations which need to study both, a particular phenomenon, and the context within
which the phenomenon is occurring. It is apparent from the advantages of the case study
method described above that it is an appropriate approach for understanding the design of
cellular manufacturing systems when studying both, historical and contemporary design

events.

Data collection methods were selected for their ability to obtain the contextual information
necessary to provide a substantial understanding of the practical problems, and their
potential for taking advantage of serendipitous findings about what factors affect the success
of a cellular manufacturing implementation. These included semi-structured and free form

interviews, participant observation and action research.

The new method for designing cellular manufacturing systems developed by this research
was applied in an industrial case by a team of academics and consultants from Cranfield
University and Cranfield Innovative Manufacturing, including the author. A review of the
design process was undertaken involving self reflection by the author and a series of
interviews with key participants. Figure 1.4 illustrates the three prime requirements for a

valid test of the method. Unfortunately it is impossible to achieve all three in a single test.
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Figure 1.4 Test Strategy: Target Populations for Data Collection

While it was felt that the experience of the consultants and academics involved in the case
equipped them to assess the extent to which the findings of the test were generally
applicable, it was also thought that their close involvement with the method and the case
may affect their interpretation of the results. In order to increase confidence in the external
validity of the research, the results from the case were triangulated by asking independent

industrialists and consultants to appraise the method.

1.9 Industrial Context for Research

This research was sponsored by the British Aerospace Cranfield Manufacturing Centre.
This centre was set up by British Aerospace and Cranfield University in 1990 to provide
medium term research, training and consultancy to BAe's aerospace manufacturing

operations.

BAe were aware of the potential advantages of cellular manufacturing and were

experimenting with its application from 1989 (Williams 1991). This provided the impetus
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and role model for introducing cellular manufacturing throughout BAe's manufacturing
facilities. To support this, a programme of research was set up in 1991 to look into the
issues surrounding the planning and implementation of cellular manufacturing. The BAe
Cranfield Manufacturing Centre provided the researcher with access to BAe sites to gather
information, both as an observer and as a participant in cellular manufacturing projects. The
experience obtained with BAe has enabled the author to get involved with designing cellular
manufacturing systems for other companies. One of these companies provided the industrial

case study for the research.

1.10 Thesis Structure

The key points addressed in each chapter of the thesis are summarised below.

Chapter one provides the context for the research. The research problem, research aims are

defined and the research strategy and thesis structure are presented.

Chapter two reviews the theory and practice of cellular manufacturing. A novel model of
cellular manufacturing is defined, and substantiated by the compilation of a wide range of
cellular manufacturing system features and their desired effects from the review of theory
and practice. The implications of this model for the task of designing cellular manufacturing

systems are discussed.

Chapter three reviews the theory and practice of designing cellular manufacturing systems.

The strengths and weaknesses of current methods are discussed.

Chapter four brings together the conclusions of Chapter 2 and Chapter 3 to specify and
develop an new improved approach to designing cellular manufacturing systems that builds
on the general model of cellular manufacturing features and effects described in chapter two.
The importance of the concept design stage is highlighted, and a process for concept design

is specified.
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Chapter five presents a new method to support the concept design stage of the cellular
manufacturing system design process. The method uses matrices to provide a structure for
a company to explore the relationship between their current system, their performance

improvement objectives, and the features of cellular manufacturing.

Chapter six presents a validation of the approach to designing cellular manufacturing
systems. The method is tested in an industrial case and against the experience of
industrialist, academics and consultants. Support is sought for the flexible general model
of cellular manufacturing, for the overall process for designing cellular manufacturing

systems, and for the matrix based concept design procedure.

Chapter seven discusses and concludes the findings of the research in comparison to the
problem defined and the research aims submitted by this thesis. The research process and
and the limitations of the findings are discussed and further opportunities for research arising

from this work are identified.
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Chapter 2 The Nature of Cellular Manufacturing

Chapter 2 reviews current theory and practice of cellular manufacturing with the objective
of reaching a definition that can be used as a basis for studying and improving the design
process. The historical development of cellular manufacturing is presented in order to
identify the basis upon which this manufacturing system was developed and also fo clarify
the alternative terminology used. The relationship between process position, layout and
work organisation, is used to compare cellular manufacturing with traditional
manufacturing systems. The insight from these analyses is then used in conjunction with
a more general review of cellular mamifacturing theory to construct a features and effects

model for the general case of cellular manufacturing.

In order to study the process of designing cellular manufacturing systems, it is necessary to
have a clear understanding of the cellular manufacturing concept. Cellular manufacturing
appears to be the result of several research disciplines, applied to different manufacturing
environments, coming together, and their subsequent evolution. This has led to a confusion
of terms and theories for describing similar manufacturing systems and explaining their
performance. This chapter will therefore begin by reviewing the origins of cellular

manufacturing to provide an adequate foundation from which to develop a useful definition.

2.1 Historical Development of Cellular Manufacturing

Cellular manufacturing developed from the convergence of two broad themes of research.
On one hand there was an endeavour to achieve the economies of mass production flow
lines for a batch produétion environment. On the other hand, mass production methods

were not standing still. Efforts were being made to optimise the organisation of flow lines
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in order to improve flexibility, minimise balancing losses, make them more robust and
improve the quality of working life. Fortunately, the compromises to flow line principles
required to make their application to batch environments practical, reflected the new
direction in work organisation for mass production. A few seminal contributions to the

literature are described below.

2.1.1 Batch Production

While there are some early examples of product organisation in batch production
environments, it took some time before this approach to manufacturing organisation was
formalised, and widely acknowledged. Flanders (1924) clearly articulates many of the
problems resulting from batch production and the solutions he describes would today be
referred to as cellular manufacturing. Figure 2.1 provides a brief indication of Flanders'

production philosophy.

]
Flanders (1924) recognised that work organisation based upon groups of similar machincs was
disadvantaged by “the constant movement of work from department to department with its
consequent slowing up of the work flow, division of responsibility and difficulty of control.” (p.
698). The alternative he suggested, was to arrange facilities by product such that any individual
picce stays in a single department until it is completely finished. He explainced that, “All long waits
..., are eliminated, and with them the expensive items of storage space and idle capital for inactive
stock. The ideal aimed at has been that of a small, fast flowing stream of work instead of a large,
sluggish one.” (p.706). Flanders also described simplifications to production control, inventory
control, and cost accounting procedures that were made possible by changing to product
organisation. These enabled overhead costs to be controlled despite a dramatic down turn in demand.

Figure 2.1 An Early Example of Cellular Manufacturing.

Mitrofanov's (1966) “Group Technology” is frequently quoted as a major inspiration for the
development of cellular manufacturing. His work on the relationship between component
shape and processing methods through the 1940s showed how parts requiring similar set-
ups on a single machine, could be grouped and processed together, to minimise the time

wasted while changing the machine set-up.
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Burbidge (1958, 1961) was one of the first to recognise the wider possibilities of such
findings, and draw them together into a comprehensive production system. Presenting a
case against the economic batch quantity theorem, he argued that maximum profit is
obtained by producing parts in balanced assembly sets, at a rate that provides the maximum
turnover of stock. He advised that flow-line production and period batch control would
achieve this, and claimed that they were practicable in a low volume-high variety situation,
if components were grouped into families such that, “. . . all the components in each family
are made by similar operations, in the same sequence, on the same plant.” (Burbidge 1961,
783). Burbidge (1961) cites Alsthom-Lecourbe as a practical example of such a system.
Results reported were, big reductions in stock, three to four times the output from the same
floor area, a reduction in lead time for new orders from three months to three weeks and a
45% reduction in throughput time per order, reduced tooling costs and improved operator
morale. Siddérs (1962) also presented a case where several machines were grouped such
that they could produce an entire family of components from start to finish. Importantly,
he identified that the beneficial effects of cellular manufacturing are not confined to the
production process. Simplification and cost reductions were reported in indirect activities

such as production control, stores management, cost accounting and production planning.

By 1963 Burbidge confidently wrote, “‘There are already a number of successful applications
of line production to diversified product manufacture; the main difficulty now is not to
justify the change, but to decide how to put it into practice.” (p. 742). He went on to
develop his Production Flow Analysis approach to planning the grouping of parts and
machines. The creation of new approaches to this particular problem has since dominated
research in cellular manufacturing, and is discussed more fully in Chapter 3. Despite some
success, interest in cellular manufacturing was not sustained, and did not really take off

again until the mid 1980s (Ingersoll Engineers 1990).

A similar revolution in the organisation of production had taken place at Toyota in Japan.
Environmental factors emphasised the deficiencies of batch production and led to

development of a product focused organisation to enable control of work-in-progress (WIP)
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between processes. The origins of the Toyota (Just-in-Time) Production System are
summarised in the text box below. While this approach was also not widely adopted
initially, its success eventually led to extensive emulation. The effective use of product
organisation in batch production environments by the Japanese alerted western industry to

the missed opportunities of their own experiments with cellular manufacturing.

. ________________________________________________________________________________________|
Toyota's particular problem in the late 1940s was to achieve a tenfold increase in labour productivity
to catch up with US car manufacturers, while only producing small numbers of many types of car
for their domestic market (Ohno 1988). At that time, Japan was in the grip of a recession brought
on by US imposed credit restrictions aimed at stamping out post war inflation. Toyota were forced
to shed 25% of its work force. They resolved the ensuing dispute by guaranteeing the remainder life
time cmploymcnt and seniority based pay in retumn for flexible working agreements and cooperation
with improving the production process. This had the cffect of making labour a fixed cost, that over’
the long term was more significant than machinery costs, which could be depreciated and scrapped
(Womack, Jones and Roos 1990). Ohno's solution in the engine machining shop was to develop a
system with minimum inventory. “They rearranged machines from their functional arrangement into

- process sequenced "cells”, and a pull system was developed such that a process only produced
output when the following process was rcady for it. As there was not sufficient demand to keep all
the machines running all of the time, machincs were adapted (autonomation) so that cach opcrator
managed more than one at a time.

Figure 2.2 Development of Cellular Manufacturing at Toyota

2.1.2 High Volume, Flow Production

This thesis is primarily concerned with the application of cellular manufacturing in batch
production environments. However, as flow production was the ideal being pursued by
batch manufacturers, it is instructive to consider the parallel developments that took place
in the organisation of flow production. Rising competition and market demands for
increased product variety and shorter product lives, had made apparent, previously
unimportant structural deficiencies of flow line, such as inflexibility, line balancing

inefficiencies, and lack of clear accountability for product quality. The nature of work on
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the production line, combined with increased levels of education among the workforce and
a changing social climate also led to consideration of the relationship between job design and
productivity. Boredom, monotony, and alienation of production line work are considered
by many to be at least partially responsible for industrial disputes, increased absence and

labour turnover and reduced quality and productivity (Kelly 1982; Wild 1975).

Job design has its basis in the assumption that the nature of work will affect workers’ morale
and motivation to perform. Hence, the needs of both an enterprise and its individual
workers can be supported simultaneously, by manipulating the significant dimensions of the
job design. According to Buchanan (1979), job design theories and techniques have
developed from the simple elimination of monotony and boredom through job rotation and
job enlargement to job enrichment theories that incorporate explicit theories of motivation
(eg. Herzberg's (1966) two factor theory of motivation and expectancy theory which
accounts for individual). Socio-technical systems theory is a further development, which
incorporates an explicit theory of organisation by extending the unit of analysis from the
individual worker to the primary production unit. The various theories of job design
consider similar job characteristics to be significant. However, by considering the
organisation of work above the level of individual worker’s jobs, socio-technical theory

encourages more radical solutions than the other job design theories.

Socio-technical theory was initially synthesised from the findings of two major studies
carried out by researchers at the Tavistock Institute, in Durham coal mines and in an Indian

textile mill. Klein (1994) identifies four concepts arising from this work:

i. The technical and social systems are interdependent. They influence each

other in both directions.

ii. There is choice in the way one organises production around any given
technology.

iit. The work system is an open system.

iv. There is choice in the way technology itself is designed.
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A set of hypotheses for effective ways of putting tasks together to form jobs was developed
by researchers of the Tavistock Institute (Buchanan 1979; Hill 1971). These are based on
satisfying the main psychological requirements of jobs: variety (other than novelty) and
challenge (other than physical), continuous learning, a discrete area of decision making,
social support and recognition, relationship between work and social life, and belief in a job
as leading to a desirable future. Psychological requirements of jobs are in turn derived from
human needs for affiliation and supportive social contact, achieving and maintaining a
favourable self concept, influence and control over one’s environment, satisfying curiosity,

social and economic security. The resulting job design hypotheses are as follows:

i An individual's work should provide the following: optimum variety; a
meaningful pattern (ie. whole tasks); optimum work cycle length; scope for
setting output and quality standards, with feedback of results; inclusion of
preparation and auxiliary tasks; for the use of valued skill, knowledge, and

effort; some perceivable contribution to the utility of the final product.

ii.  Where jobs are interdependent, stressful, or do not individually make
perceivable contributions to the utility of the final product they should be
grouped together: to provide for job rotation, physical proximity;
approximate an overall task; provide scope for setting standards and

receiving feedback; provide some control over the boundary tasks.

iii. Generally, work organisation should also provide channels of
communication to allow workers requirements to be incorporated in the

design of new jobs, and provide channels of promotion.

The multi-disciplinary experiments at Phillips aimed at resolving problems of quality and
morale (van Beek 1964), and the experiments in industrial democracy at Volvo, conceived
to create a better working environment to reduce the cost of labour turnover and

absenteeism (Berggren 1993; Ellegard et al 1992; Rehder 1992; Willatt 1973), are two
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important examples of flow-line reorganisation. Both involved breaking down the
production line, restructuring of task content towards the creation of whole jobs, and
decoupling major process stages with small buffer stocks. The Volvo experiments also
included the formation of autonomous flexible work groups. Although some commentators
(Prokesch 1991; Womack, Roos and Jones 1990) have dismissed Volvo's experiments and
hailed the closing of its most innovative factories as evidence of their failure, it appears they
were rather short sighted. Nissan, Toyota, Honda and Mazda are all now exploring similar

concepts to those that were employed by Volvo (Berggren 1993; Rehder 1992).

Despite the empirical success of the human relations and socio-technical approach to work
organisation, some researchers doubt the validity of the theories on which they are based.
For example, Wall (1984) suggests that productivity enhancements thought to flow from
improved employee motivation are in fact mainly due to improved labour flexibility,
mobility, and ability to use initiative, and on reduced indirect costs. Kirosingh (1989)
expresses a similar view. Kelly (1982) proposes a contingency theory of job design. This
states that where the factors prompting the use of job design involve personnel problems,
ie., poor morale, absenteeism or turnover, then the mechanisms of performance
improvement posited by classical job design theory will explain performance. On the other
hand, where job design is prompted by other sources, such as markets or the production
system itself, then more conventional reward and control systems, ie., job structure,
supervision, pay and other controls will explain performance improvements. His detailed
analysis of the job design literature provides significant support for the latter hypothesis and

therefore his contingency theory.

2.1.3 Alternative Terminology

The fragmented development of cellular manufacturing as described above has given rise to
a confused terminology. Various other expressions can be found which combine the notion
of small groups or subsystems with an expression for a means of production. For example,

Jackson (1978) refers to the cell system of production, which comprises the cell system of
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manufacture and the cell system of assembly. Ross (1991) distinguishes modular
manufacturing as being more people oriented than cellular manufacturing. Other researchers
concerned with the human element of the production system have produced a different set
of terminology again, emphasising the nature of the work done, eg. group working, self
organised groups, and autonomous work groups. All these concepts have fundamental

similarities. This research has therefore drawn upon the whole related body of work.

The relationship between group technology and cellular manufacturing, in particular, is a
point of confusion that requires some further explanation. As discussed in section 2.1.1,
Mitrofanov described his work on component grouping as group technology, and Burbidge
expanded Mitrofanov's initial ideas into a complete system of production. While Burbidge
retained the term group technology, some researchers felt the need to differentiate between
the formation of component families to be produced at the same set-up of a single machine,
and the formation of a group of different machines that could complete the manufacture of
family of components. Edwards (1971) proposed the general term “cellular systems”, to
describe systems of the latter type, after Astrop's (1969) more specific “Serck Audco Cell
System of Batch Manufacture”.

Following a similar path to Edwards, US researchers have since expanded the term group
technology to mean a wider philosophy concerned with the general exploitation of
similarities within groups. Cellular manufacturing is then, the application of group
technology to the direct production resources (Greene and Sadowski 1984; Hyer and
Wemmerlov 1984). This is illustrated by the APICS dictionary (APICS 1987) definition,
where group technology is given as, "An engineering and manufacturing philosophy which
identifies the "sameness" of parts equipment or processes. It provides for rapid retrieval of

existing designs and anticipates a cellular type production layout."
Ironically, it appears that cellular manufacturing has become the dominant term because it
is more descriptive of the holistic manufacturing concept intended by Burbidge (eg.

incorporating production control, job design etc.), and more generally applicable (eg.
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includes assembly) than group technology, which is too readily associated with its roots in

component analysis (Edwards 1971; Schonberger 1990; Sinha, Hollier and Grayson 1980).

Despite the fact that cellular manufacturing has become the dominant term, several authors
have not adopted it. Burbidge (1979, 1991, 1994%), actively discouraged its use,
suggesting that cells are somewhat smaller clusters of equipment than a group technology
"group", and that they are unlikely to be able to undertake all the processing required to
complete the products that they make. However, this definition does not correspond with
the cellular manufacturing literature (Black 1983; Offodile, Mehrez and Grznar 1994), and
it is the authors experience, that compromise during cell design is the main reason for cells
not completing their products, rather than differences in understanding of the fundamental

nature of cellular manufacturing.

The net result is confusion, as group technology is frequently, but not consistently, used
synonymously with cellular manufacturing. The author recognises the value of Edwards’
distinction between group technology and cellular manufacturing. Following his convention,
cellular manufacturing refers to a system for organising production that exploits self
sufficient groupings of production resources that can complete a defined family of parts.
This thesis is concerned with cellular manufacturing as defined above and adopts the cellular
manufacturing terminology. However, the research has drawn upon all the literature

relevant to this concept regardless of the terminology used.

2.2 A Unified Concept of Cellular Manufacturing

The modifications being made to flow-lines described in section 2.1.2, made them more like
the manufacturing cells that were being designed to emulate them within the constraints of
low volume/high variety environments. The widespread use of autonomous group working
connects socio-technical systems theory with cellular manufacturing. Pasmore (1988) for
example, identifies the use of autonomous work groups in 53% of 134 reported socio-

technical redesign cases. Klein (1994) however, is careful to point out that autonomous
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work groups are not the only possible solution to socio-technical systems design and should
not be treated as a panacea. Moreover, she notes that autonomy is not the only design
criterion, and in some situations, may not be the first priority. These arguments are also
supported by Alder (1994). Buchanan (1979) identifies group technology as a technical
solution to a production problem, where the term group refers to a group of similar
products. He indicates that group technology does not imply autonomous group working
but is a technically advantageous way of organising batch manufacturing that affords the
opportunity to establish autonomous group working. More recently however, Buchanan
(1994) describes cellular manufacturing as an emerging 'socio-technical package deal’ of
related and mutually reinforcing physical and organizational innovations. Huber and Brown

(1991) also find cellular manufacturing to be compatible with socio-technical theory.

The two broad areas of research have been fairly pragmatically assimilated to provide a
unified concept of cellular manufacturing. The benefits of a motivated work force are
commonly cited alongside the benefits of simple material flow, reduced WIP, and improved
accountability. The manufacturing system features associated with cellular manufacturing
are compatible with both theories. Cellular manufacturing is also now a commonly used

term in assembly as well as component production (Bennett and Forrester 1993; Burbidge

1989; Jackson 1978).

2.3 Cellular Manufacturing and Process Position

Process position provides a framework for understanding the fundamental nature of
production systems and the relationship between them. Hayes and Wheelwright (1984) and
Hill (1985) indicate that the overall determinant of the way production should be organised
is the nature of demand. Several distinct process choices can be identified along a
continuum of increasing volume and variety. For example, Hill identifies five classic
processes: project, jobbing, batch, line and continuous production. A more precise
classification is given by De Toni (1992), which separates those production systems that are

determined by the nature of the product (discrete products from bulk or dimensional
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products) from those which are determined by the way in which the production volume is
obtained (single, batch and flow production). Moving from single towards flow production
involves investing in the manufacturing process to reduce some of the variable costs of
production. Versatility is usually lost as the manufacturing is made increasingly efficient by
tailoring it towards the production of a specific and narrowing range of products.
Consequently, these products are required in greater volumes to carry the process

investment.

Bennett and Forrester (1993) develop this idea to show how it relates to options for facilities
layout (ie. fixed, by function and by operation sequence) and options for the organisation
of work (ie. product, process and task specialisation). They consider cellular manufacturing
to be a hybrid production system. That is, one which combines different aspects of the
traditional production systems in order to obtain a set of performance trade-offs that are

more appropriate to today's environment than those of traditional manufacturing systems.

Figure 2.3 shows cellular manufacturing as a flexible, product focused work organisation,
in conjunction with a fast throughput, product focused layout. By using flexible labour to
integrate and smooth the load between operations, cellular manufacturing increases the
range of demand stability in which it is feasible to use an operation sequenced layout and
achieve continuous processing of products. Flow-line manufacturers that need to increase
their flexibility in the market place can therefore look to cellular manufacturing to provide
that capability. On the other hand, such flexibility provides an alternative to functional
layouts and batching in the mid range of demand volume and variety, if products with similar
processing requirement can be grouped together for production in a cell. Thus the benefits
of rapid throughput times and low work-in-progress associated with flow-line manufacturing
can be achieved in a demand environment that would traditionally necessitate batch
manufacturing. Schonberger (1986) summed this up nicely, "High-variety, low-volume -
manufacturing is repetitive; we simply failed to organise it that way." (p. 112). Cellular
manufacturing can therefore be seen as providing an alternative to functional and flow-line

organisations, that bridges the gap between small batch and mass production.
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Figure 2.3 Relationships Between Traditional and Cellular Manufacturing Systems
(Source: adapted from Bennett & Forrester 1993 p.44)

2.4 Variations in the Organisation of Cellular Manufacturing

The distinction between organisational forms is not as clear cut as described in section 2.3.
There are degrees to which layout and work organisation can be product focused, to provide
a cellular organisation that approaches the ideal of an uninterrupted flow of work through
the cells. In this way cellular manufacturing provides a scalable system that can be
configured to suit specific demand patterns. Examples of variation in inter-cell material

flow, intra-cell material flow, work organisation and cell autonomy are considered below.

2.4.1 Variations in Inter-cell Material Flow

There are a range of options for partitioning the production process in to cells. Two
fundamental options: parallel and serial cells are identified in Figure 2.4. These can then
be combined as required by the processes and skills necessary to make the product and to

achieve the desired volume of output.
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Figure 2.4 Variations in the Partitioning of Work Between Cells
(Source: adapted from Burbidge 1989, p.131)
Parallel processing provides a robust system, as duplicate lines can keep going in the event
that one breaks down. Accountability for the production of whole products is contained
within a cell. No inter-cell transfer times are incurred and there are no opportunities for
balancing losses. On the down side, duplicate equipment may be required and operators will
need a wide range of skills. Serial processing can be used to separate special skills and
processes, such as electrical and mechanical, or fundamental process stages, such as material
processing, component manufacture and assembly. Reducing the range of technologies in
a cell, reduces one aspect of the complexity of cell management, but fragements
accountability for prodhcing a product, complicates inter-cell co-ordination. It may also
increase material handling, and create balancing problems that will , reduce flexibility, and
increase vulnerability. Combining parallel and serial processing gives rise to various forms
of branched processing. Because different parts of the same product are produced at the

same time, branched processing reduces the elapsed processing time.

Given that it is necessary to split the manufacture of a product into at least a small number
of serial stages, Burbidge (1989) asserts that the material flow should be organised such that
there is no back flow of material between major processing stages, and no cross flow
between cells with a major processing stage. Figure 2.5 shows that there is still scope for
variation in inter-cell material flow. Both systems comprise cells that complete the
production of their defined family of products. However, while the cells of the left hand
system supply those products to several other cells in the subsequent stage of manufacture,
in the right hand case it has been possible to dedicate subassembly and component

manufacturing cells to single end products.
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Figure 2.5 Variations in Inter-cell Customer-Supplicr Relationships

The system with dedicated suppliers simplifies material flow and prevents conflict between
different customers' requirements. However, apart from manual assembly processes it might
not be possible to set up supplier cells with low enough capacity to match the demand
created by a single customer. This could result in duplication of machinery and poor
utilisation to create several cells to produce similar components for different final assembly
cells. To combat this, supplier cells may have to produce more of the components required
for a particular assembly cell, which would decrease the similarity among the supplier cell's
product family. Such cells will also be more vulnerable to fluctuations in demand for the

final product.

2.4.2 Variations in Intra-cell Material Flow

Basu, Hyer and Shtub (1994) suggest that there is a spectrum of possible cellular
manufacturing systems between batch and flow-line production, as shown in Figure 2.6.
Logical (or virtual) cells refer to the dedication of resources to a product family without
actually collocating them. Hybrid cells are systems of physical cells in which some cells
share limited resources. Physical cells are those where the necessary resources required to

complete the production of the product family have been collocated.
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Figure 2.6 Variations in Intra-cell Material Flow
(Source: adapted from Basu, Hyer & Shtub 1994 p. 78)

As the variety the cell has to handle decreases, it becomes possible to arrange equipment
according to the dominant operations sequences within the cell. Towards the right hand side
of the spectrum, the internal layout of the cell is completely product oriented (either fixed
Tocation or process sequenced) such that material flow through the cell is unidirectional.
This simplifies shop floor management and control and makes it easier to keep work moving

through the cell.

2.4.3 Variations in Work Organisation within the Cell
Work within a cell can also be arranged in various ways in each cell depending on such
factors as the size and complexity of the product, the extent of multi-skilling within the cell,

and the volumes that are required.

Paraliel Working Group Working Branched Working Serial Working
— i\ —

—f- —%

— i-—» ~» Matenal Flow

Figure 2.7 Variations in Work Organisation Within a Cell
(Source: adapted from Burbidge 1989 p.132)
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Figure 2.7 shows four ways of dividing work between cell members, ranging from the
situation where a worker undertakes all the operations a product requires within the cell, to
the division of a product's manufacture into several serial stages each to be undertaken by
a different person. Parallel and group working are both flexible with no balancing problems
or inter-operation handling time and costs. Parallel working does however, require
completely multi-skilled operators and is easier to implement with simple products. The
other forms of work organisation can all be used to segregate skills requirements. Operators
with narrower ranges of skills can then be employed, though this will inevitably reduce the
flexibility of the cell. Group and branched working can also compress lead times. The
sequential stages in serial and branched working create the problem of balancing and may
make for less satisfying jobs. Team identity should however, temper the effect of reduced

individual accountability at this level of the organisation,

Parallel Working with Serial Working with
Multi-Machine Manning Multi-Machine Manning

————> Material Flow e > Operator Walk Path

Figure 2.8 Parallel and Serial Working with an Operations Sequenced Layout

The organisation of work need not be determined by the layout. For example, Figure 2.8
shows both parallel and serial working can be achieved in an operations sequenced layout.
Similarly, if it is easier to produce a product at a fixed location, individuals (or teams) may
each build a product independently, or the tasks could be split between the working units

and have one follow another to every product.
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2.4.4 Variation in the Degree of Cell Autonomy
Birchall and Wild (1974) identify six dimensions of authority and four dimensions of

responsibility along which job design can vary. These are presented in Figure 2.9 below.

Dimensions of Autonomy

i.  Goals: qualitative iv. Distribution of tasks.
quantitative V. Group members: Select and appoint new
ii. Performance: decide when to work members
decide where to work Expel unwanted members
decide when to engage in Discipline new members
other activities Train new members
iii.  Production method. vi. Leadership: Internal leader

External leader
Dimensions of Responsibility
i. Materials and products
ii. Equipment
iii. Work arca
iv. Communications

e e e e e e e e e e R e e S R A )
Figure 2.9 Job Design: Dimensions of Autonomy and Responsibility (Source: Birchall and Wild 1974)

2.4.5 Implications of Variety in the Application of Cellular Manufacturing

The range of possibilities for cellular organisation described in this section begin to reveal
how flexible the cor zept of cellular manufacturing is. According to Astrop (1975), cellular
manufacturing is capable of being applied in different ways according to a multitude of
different factors some of which may be unique to a give company. Nyman (1992) states,
“No two cells will be the same. For countless reasons each business environment and the
inherent conditions within that environment require a different approach and yield a unique
end result.” (p. 1). This flexibility enables the use of cellular manufacturing across a broad
spectrum of industry types and process positions, but it also complicates application of the
concept, because it must be adapted to suit each case. To be useful to practitioners, a model
of cellular manufacturing must be able to accommodate such variation. Similarly, a
corresponding process for designing cellular manufacturing systems is necessary, which

describes how to go about tailoring the concept to suit a specific set of circumstances.
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2.5 A Generic Model of a Cellular Manufacturing System:

Cellular Manufacturing Features and Their Desired Effects
While the process position model does provide some indication of the nature of cellular
manufacturing, it concentrates on the structural relationships between parts, people and
machines without giving much indication of how this will effect the operation of the
resulting manufacturing system. It does not incorporate many of the features described in
case studies of cellular manufacturing, and therefore does not address the issues raised in
sections 1.6 and 1.7 regarding the need for a system wide concept of cellular manufacturing,
There is only a small amount of literature available that attempts to provide such a model
of the cellular manufacturing concept. For example, Burbidge (1989) defines a group
technology group hy an eight point checklist of features. Similarly, Black (1991) indicates
eight major elements to his cellular Factory with a Future. These models are difficult to
compare as they can describe cellular manufacturing at different levels of detail. However,
they do contain different features and contradict each other in the detail of some of the
features they have in common, as can be seen in the consideration of material flow structure

in section 2.4 above.

Due to the lack of an appropriate model of cellular manufacturing, a review of the literature
has been undertaken in order to collate the majority of significant cellular manufacturing
features, and their desired effects. The following section describes some of the
characteristics of cellular manufacturing revealed by the literature review. The full list of

features and their effects is presented in Appendix A.

Cellular manufacturing can be considered to be a system of production (Sinha, Hollier and
Grayson 1980). IDEFO process modelling notation provides a structure for descﬁbing the
relationships between the functional elements of a production system (Bravoco and Yadev
1985; Ross et al 1980). Cellular manufacturing is primarily concerned with the function
“make product” but also affects interfacing functions, as shown in Figure 2.10. This
framework has been used to structure the features of cellular manufacturing to make the list

more accessible and to draw attention to the system wide scope of the concept.
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Figure 2.10  Framework for Describing a Manufacturing System

Function (Make Product)

Organisation: Cellular manufacturing groups production resources such that each cell is
capable of completing the manufacture of a defined family of products. This principle
extends to assigning indirect resources to the cells where they are critical to the cell being
able to operate a high levels of performance. The more autonomous the cell is, the greater
their accountability for cost, quality, and lead time, and the greater their, ability to take
action to improve performance (Burbidge, Partridge and Aitchison 1991; McManus 1991).
A compound effect on performance may also be achieved due to the increased perception
of task significance (Huber and Hyer 1985) and improved morale and job satisfaction arising

from this organisation (Fry, Wilson and Breen 1987, Greene and Sadowski 1984).

Dedicating resources to specific products reduces process variables and has many
advantages. Consistency of production is improved (Fry, Wilson and Breen 1987, Moreton
et al 1993), the number of set-ups required may reduce (Dumolien and Santen 1991) and
it can help reduce set-up times (Kellock 1992; Welke and Overbeke 1988). Familiarity and
expertise with a given part family is also increased (Fry, Wilson and Breen 1987, McManus

1991).
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Simplifying the organisation of the production system also has implications for indirect
functions. Information and documentation requirements are reduced (Masom 1993;
Williams 1991), process planning is less complex (Dumolien and Santen 1991; Mosier and

Taube 1985), cost accounting can be simplified, and it facilitates improved cost estimating.

Layout: All the resources required to produce a family of products (including point of use
storage of tools, raw material etc), are collocated, often within a clear physical boundary,
and laid out to reflect the dominant flow paths within the product family. Collocation
improves visibility of shortages, machine status, WIP levels etc., and reduces unnecessary
material handling, and transportation, and maximises social interaction (Black 1991,
Burbidge 1979, 1989; Fazackerley 1976; Greene and Sadowski 1984; Huang and Houck
1985; Lee 1987).

This enables coordination of production activities so that products can be moved quickly
and directly between processes to achieve an uninterrupted flow of work through the cell.
Writing about plant configuration Schonberger (1982) declared "Simplify and the Goods
Will Flow Like Water." Reduced transport times means faster set-ups, shorter lead times
and lower transport costs. Less transport also means less risk of damaging products while
transporting them between processes (Jackson 1978). Improved communication between
consecutive processes facilitates problem solving and process improvement (Lee 1987,
Schonberger 1986).

Job Design: Jackson (1978) emphasises the benefits of team working that are brought
about through cellular manufacturing. He writes, "The cell system of production is based
on the group working principle, where a small number of people come together to function
as a cohesive group, recognising that they are a group, and interacting to accomplish a
common whole task." (p. 18). The cellular structure makes customer/supplier relationships
explicit, and focuses the manufacturing task of each cell. A dedicated team learns to work
together to achieve their common objective, and they grow to understand the special

problems associated with their products and equipment (Burbidge 1979).
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Multi-skilled operators and flexible team working provide the necessary operator mobility
between tasks to balance work loads or to reduce labour costs through multi-machine
manning (Bennett and Forrester 1993; Steudel and Desruelle 1992; Stoner, Tice and
Ashton 1989). Black (1991) and Koelsch (1992) explain how volume flexibility is
achievable by adjusting manning levels. Team working can also contribute to set-up
reduction (Shingo 1985), and is a major lever for problem solving and continuous
improvement. (Schonberger 1986, 1990). Operators can also perform the majority of
material handling within the cell to reduce queuing and handling (Stoner, Tice and Ashton
1989; Welke and Overbeeke 1988).

Work is arranged so that cell operators can vary the tasks they perform and their pace of
work within the limits of the overall production targets. This minimises losses arising from
all operators having to work at the pace of the slowest worker at any given time. It also
provides scope to rectify problems without either stopping related processes or passing on

defective parts (Bennett and Forrester 1993; Burbidge 1989; Jackson 1978).

Independence, product focus, and self determination provide job variety, a sense of purpose,
job satisfaction, and fulfil the psychological needs of its members. This is expected to lead
to increased commitment, reduced absenteeism, and reduced labour turnover (Burbidge

1979; Jackson 1978; Stoner, Tice and Ashton 1989).

Setting up: Reduced set-up times is an important requirement for cellular manufacturing
because it enables small batch sizes which smooths the load on cell resources. Costs and
response to customer demand are also improved, as small batch sizes allow a wide variety
of parts to be made frequently and permit reduced work-in-progress. Confining the number
of parts and the differences in their processing requirements that are routed to each machine,
can reduce the frequency with which setting-up is necessary, and also enables the
application of SMED set-up procedures to reduce set-up times. (Black 1991; Dumolien
and Santen 1983; Morton et al 1993; Stoner, Tice and Ashton 1989).
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Mechanisms

Facilities: A cell should have all the machines and equipment it requires to complete the
manufacture of its defined family of products (Burbidge 1989). This objective will be
facilitated by a policy of buying multiples of small machines in preference to large machines.
In addition this approach to capacity provision can allow dedicated machine set-ups, will
reduce the impact of breakdowns, and will increase the opportunity for operators to perform

in-cycle operations (Schonberger 1983; Stoner, Tice and Ashton 1989).

A defined range of products allows accurate specification of equipment, rather than the
expense of having all machines meet the highest requirements of all the products.
Investment in jigs and fixtures can be kept low by designing them for the product family
rather than for individual products (Gallagher and Knight 1986; Jackson 1978; Noaker
1993). Standardised tooling can also help to reduce set-up times (Morton et al 1993).
Similarly, a defined range of products and reduced WIP allows for the development of
customised handling devices. These can reduce handling and damage and can also be

incorporated into the shop floor control system (Omand 1992; Welke and Overbeeke 1988)

With the reduction of routing flexibility associated with cellular manufacturing, the provision
of reliable capacity is essential. Moreover, eliminating the unplanned delays resulting from
machine breakdowns will remove one of the reasons why WIP is necessary. Total
productive maintenance and preventative maintenance are both identified as valuable
elements of a cellular manufacturing system. Devolving responsibility for maintenance to
the cells can provide the necessary additional resource for extra routine maintenance.
Schonberger (1986) notes that this has the additional advantage of enabling these tasks to
be performed in cycle. Devolved maintenance also increases ownership and morale, and
improves feasibility of maintenance scheduling (Morton et al 1993; Noaker 1993; Stoner,
Tice and Ashton 1989; Welke and Overbeeke 1988).

Good housekeeping is akin to maintenance, and can also be made the responsibility of cell

operators. Keeping things clean and in a designated place improves quality, safety, and
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maintenance, reduces unnecessary operator motion and searching, and provides visual
control of such things as tool availability and WIP level. It also can assist marketing and

improve industrial relations (Black 1991; Masom 1993; Morton et al 1993).

Human Resources: Responsibility for the complete production of a family of products (or
a significant portion of larger products) is consolidated within a defined team of people, who
are multi-skilled, flexible, and work together to achieve production objectives (Astrop 1969;

Bennett and Forrester 1993; Burbidge 1979; Jackson 1978).

Achievement of multi-skilled, flexible team working requires increasing the amount of time
spent on training (McManus 1991). Skills that are not directly related to the manufacturing
process might need to be provided, such as interpersonal skills and problem solving skills
(Huber and Brown 1991). Responsibility for training can be devolved to the cell to increase
ownership of the resources and to ensure that appropriate training is received. Job grades

may also be reduced to encourage flexible working (Peters 1989).

Reward systems should encourage behaviour that is appropriate to the performance
objectives and desired working methods for the cellular manufacturing system. For
example, paying for knowledge or skills (Huber and Brown 1991; McManus 1991; Peters
1989) to encourage multi-skilling, and paying team based rewards (Welke and Overbeeke
1988) to encourage team working. At a minimum the reward system should not encourage
adverse behaviour. Therefore piece rate systems are generally considered to be
inappropriate, while simple systems such as flat rates and salaries are considered to be

acceptable (Burbidge 1979; Schonberger 1986; Stevens 1987)

Product focused organisation provides a good environment for developing competent

managers, and therefore a clear route for promotion from the shop floor (Burbidge 1989).

Management and Control

A cell has the necessary capability and responsibility for the complete manufacture of their
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products. This results in a high degree of accountability, which will itself improve
performance (Sirota 1973). It also makes it possible to consider each cell as a mini-factory,
and to manage them as such. The problem of managing production is thereby simplified in
two ways: first, planning the work flow requires only that work is planned into and out of
the cell, rather than through each process in the cell; second, monitoring the behaviour of

the cell effectively monitors the behaviour of all the people within the cell (Lockyer 1983).

Accountability plus a simplified management task make it possible to locate responsibility
and authority for many aspects of production management to the cell, such as: scheduling
and due-date conformance, cost, quality control, performance measurement and continuous
improvement. This, facilitates appropriate and rapid response to changing circumstances,
leading to more reliable production, and will also reduce indirect labour costs (Burbidge
1989; Schonberger 1986). The cell is then the lowest level of detail considered by the
factory management, which provides instruction, targets, and feedback, and monitors
performance of the cells rather than the individual people and processes within the cell.
Demand is therefore in terms of products rather than operations. Performance measures and
incentive systems should reflect the objectives of cellular manufacturing and include drivers
of customer satisfaction. Direct communication between a cell and its customers and
suppliers is encouraged (Bennett and Forrester 1993; Burbidge 1979, 1989; Harrison 1992;
Kellock 1992; LE&S 1988; Mechanical Engineering EDC 1975; Prickett 1993;
Schonberger 1986). Warnecke's (1992) fractal factory takes this a stage further advocating

that fractals should also play a part in developing their own objectives.

Production Planning and Control: As mentioned above it is possible to devolve operation
scheduling and control to the cell. Considering the cell as a single planning point vastly
simplifies the job of planning and controlling the flow of material to and from cells, making
it quicker and more effective (Kumar and Hadjinicola 1993; Love and Barekat 1989). On
the shop floor, the clear material flow and limited product range simplifies scheduling and
material tracking, allowing the use of low cost visual and physical control systems.

Increased responsibility and better visibility of plans and progress in the cell can provide
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opportunities for presetting and set-up dependent sequencing, reduce WIP, increase
operators commitment to the plan, increase operator satisfaction, and reduce administration
costs (Deeming 1993; Fry, Wilson and Breen 1987; Kellock 1992; Oliver 1991; Prickett
1993; Steudel and Desruelle 1992).

WIP is kept to a minimum and contingencies in the system are provided instead, by spare
machine and labour capacity and labour flexibility (Oliver 1991). This reduces queuing,
space requirements, handling, damage, and obsolescence. Production planning and control
is simplified, and administration is reduced. (Burbidge 1989; Kumar and Hadjinicola 1992,
Masom 1993; Schonberger 1986; Stoner, Tice and Ashton 1989) Low WIP also makes
systems deficiencies more visible and encourages their rectification (Schonberger 1986;
Taheri 1990). Low WIP and small batches speed up performance feedback and increase an
organisation’s ability to control its processes (Oliver 1991). For example, by reducing the
interval between defect creation and detection, less defects are produced before a faulty
process is discovered. Small batch sizes and levelled scheduling help to enable low WIP

operation (Harrison 1992; Kirton and Brookes 1994).

Short lead times simplify the job of marketing, production planning, and purchasing, and
reduce the need for expediting throughout manufacturing. To keep costs low, processes and

manning levels for these functions should reflect the simplicity of their task (Black 1991).

Quality: In keeping with cellular manufacturing's principle of maximum ownership, cells
are usually responsible for the quality of their own products. This often incorporates some
form of source inspection . Source inspection allows quality to be assured at each step of
the process, and for any rework or corrective action to take place at its point of creation.
If operators inspect their own work in cycle, or inspection is built in to the process, using
poka-yoke devices (Shingo 1986), every item can be inspected, without consuming lead time
or incurring extra costs. Source inspection, reduces the number of defects produced before
a processing error is discovered, and increases the information available to assist with

identifying and rectifying a problem. It also reduces the likelihood of passing defective items
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onto down stream processes, so resources are not wasted processing them, and the need for
rework or replacement is identified early (Deeming 1993; Dumolien and Santen 1991; Fry,

Wilson and Breen 1987, Nyman 1992; Schonberger 1986; Stoner, Tice and Ashton 1989).

Process planning: The focus and reduction of routing alternatives with a cellular
organisation simplifies process planning activities and makes prediction of new product
manufacturing costs more accurate (Dumolien and Santen 1983). Where a new cell is to be
used for a new product, the introduction of that product is greatly simplified. The cell can
be developed alongside the product. This isolates the disruption caused by new work while
still enabling processing problems to be discovered and solved before production volumes

are ramped up (Nimmons, Williams and Cursham 1994).

Inputs

The way in which material is provided to the cell must match the way it is consumed by the
cell otherwise the result will be shortages or WIP accumulation, or both. Cells should
therefore be responsible for the level of their WIP and be able to regulate the supply of
material to match their immediate production requirements (Schonberger 1983, 1986). Call-
off (Burbidge 1990) and kanban (Esperrago 1988) are two examples of appropriate
execution mechanisms for instructing downstream processes to supply material. Because
each cell has a defined product range and therefore material requirements, it is possible for
material to be delivered directly to the cells. This clearly associates excess material with the
cell responsible, it also eliminates delays and wasteful handling and storage operations, and
provides the opportunity for direct communication between cells and their suppliers (Hall

1982; Masom 1993; Schonberger 1982).

Outputs

Production rates are aligned with customer demand such that products are made only as
they are required by the next stage in the supply chain (Black 1991; Burbidge 1961, 1989;
Schonberger 1986; Wemmerlov 1988). Direct contact with the customer is encouraged as

this increases perception of job significance (Passmore 1988).

42



Summary

In summary, cellular manufacturing is achieved by grouping labour, facilities, and products,
such that, semi-autonomous teams of multi-skilled and flexible people each have all the
resources necessary to complete the manufacture of a defined family of products through
a major processing stage. Cellular manufacturing exploits this simple structure, clarity of
purpose and empowered workers, to achieve fast throughput times, and reliable quality and
delivery, for a variety of products, using simple, efficient processes of operation and

management. This is illustrated in Figure 2.11.

Team based tasks and targets

Cell based authority and control of design and
management of the production system

Direct communication with customer

Clearly defined v%

physical cell & Layout to minimise worker

boundary oy nt and material
handlinF, and to maximise
social‘interaction

Cell based regulation g:olgELettse
of material supplies %z@v B rate
Point of use delivery o hen

S Hemand

Ownership of all necessary equipment to produce defined product family
Team of flexible multiskilled workers

Figure 2.11  Summary of Generic Model of a Cellular Manufacturing System

A large collection of features commonly associated with cellular manufacturing and their
desired effects are presented in the discussion above, and in Appendix A. The extent of
cellular manufacturing across the production system is apparent as is the complex nature of
the interrelationships between the various features and their effects. Figure 2.12 begins to
shows the complex ramifications of the features of cellular manufacturing (as depicted in
Figure 2.11) on the main generic strategic manufacturing goals of cost, quality, lead time,

delivery dependability, flexibility and continuous improvement.
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Figure 2.12 Ramifications of the Features of Cellular Manufacturing

Not all features have a direct effect on performance, but they are incorporated in order to

enable other features, or to mitigate their undesirable side effects. For example, paying for

skills encourages multi-skilling which in turn enables flexible working. Some perform both

functions. For example, moving sequential processes close together will initially only have

a small effect on lead time and transport costs, but it enables batch size reduction. The extra

visibility and communication enable local production control and enhances problem solving.

The broad scope of cellular manufacturing and the interrelationships between its features and

their effects makes it difficult to find a framework to structure these components.

The case material from which the above model was derived all emphasise different features

and effects as being important to their success. Variation is also revealed in the detail of

how the same features are applied in different cases.

This confirms that cellular

manufacturing is a flexible concept that can be tailored to suit the specific objectives, and

situation to which it is being applied. It also reinforces the value of an accepted system wide

model to represent the general case of cellular manufacturing
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2.6 Undesirable Effects of Cellular Manufacturing Features

The most commonly cited disadvantages of cellular manufacturing are, cost of machine
duplication, cost of rearranging facilities to accommodate new products, lower machine
utilisation, reduced routing flexibility, and vulnerability to equipment breakdown (Greene
and Sadowski 1984; Lee 1987; Steudel and Desruelle 1992; Wemmerlv 1988). Jackson
(1978) also warns against allowing teams to become too insular such that inter-cell rivalry
becomes a barrier to factory performance. Multi-skilling will incur higher training costs and
practitioners often expect the cellular layout to require greater floor space. However, the
role of many features of cellular manufacturing appears to be to mitigate some of the
undesirable side effects of other features. Wemmerldv, suggests that if systems designers
are aware of the potential disadvantages, and have a clear view of what is to be
accomplished by the cell system, then the disadvantages can often be avoided or knowingly
accepted. His point of view is supported by the case and survey evidence cited in section
2.5 and section 1.5 respectively, some of which even report cellular manufacturing as having
a positive impact on certain of the above mentioned issues. An example is provided by
Herbert (1992), who describes how a brush manufacturer changed the structure and
management of its cellular manufacturing system to make better use of limited resources and

to eliminate inter-cell rivalry.

2.7 Conclusions

The literature describing cellular manufacturing is fragmented and the concept has not been
well defined to date. This inhibits understanding, communication, and application of the
concept. The following conclusions have been drawn from the review of the nature of

cellular manufacturing presented in this Chapter.

° Cellular manufacturing is a system wide concept. Many changes are required
throughout the manufacturing system to make the self sufficient, product focused

structure of cellular manufacturing feasible. Similarly, many opportunities arise to
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change the manufacturing system to improve performance.

° Reports of cellular manufacturing implementations each emphasise a slightly
different set of features, in addition to the primary cellular structure. Cellular
manufacturing should not therefore be viewed as a rigid concept. A company only
needs to adopt that subset of features which, are appropriate for a particular
company's specific objectives and the nature of their existing manufacturing system.

Moreover, the detail of the way in which features are applied can vary from case to

case.

° A working definition of cellular manufacturing has been generated for this thesis:
Cellular manufacturing is defined as a general set of mutually
compatible, production system wide, features for supporting or
exploiting self contained groupings of manufacturing resources that
complete a defined range of products.

° This model is applied to a particular situation by selecting the appropriate subset of

features for the specific objectives and constraints of that situation.

This chapter has fullfilled the first research aim to develop a system wide definition of
cellular manufacturing to guide the design of cellular manufacturing systems. The concept
is presented as a general set of features from which an appropriate sub set can be selected
for a specific application. A useful contribution has been made by compiling a significant

set of cellular manufacturing features and their effects from an extensive survey of the

literature.

The ramifications of cellular manufacturing features are complex and not well understood.
There are several factors contributing to this which will have a significant impact on the

problem of designing a cellular manufacturing system.
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° The elements of a production system are interrelated, such that introducing a
particular feature of cellular manufacturing may have different effects depending on
the nature of the original manufacturing system and the other cellular manufacturing
features being implemented. This makes it difficult to isolate and quantify the effect
of specific cellular manufacturing features. It also means that the features of cellular
manufacturing can have a variety of roles. A feature could directly improve
performance, enable or support other features or perform both of these functions.

Therefore, several features may need to be planned and implemented together.

o There are several theoretical explanations for the beneficial effects derived from the
features of cellular manufacturing. It is probable that more than one may operate
in unison, and that they may operate to different extents depending on the situation

to which the feature is applied.

° Cellular manufacturing is a human activity system, which results in multiple
perspectives on what the systems objectives are, and how they should be achieved.
Accounting for this complicates the design task. The human element in the system

further attenuates the degree of determinism between features and their effects.

Cellular manufacturing is a complex and flexible concept, that can be applied in different
ways according to the requirements and nature of the specific production system being
reorganised. This poses a substantial design problem, which suggests that improving the
process of designing cellular manufacturing systems will lead to more successful
implementations. Chapter 3 reviews current approaches to designing cellular manufacturing

systems.
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Chapter 3 Designing Cellular Manufacturing Systems

The aim of this chapter is to develop an understanding of the process of designing cellular
manufacturing systems, and determine the strengths and weakness of current methods. The
theory and practice of designing of cellular manufacturing systems is reviewed and the
various approaches compared. The value of current methods for helping a company to
design cellular manufacturing systems is discussed, with reference to the concept of

cellular manufacturing developed in Chapter 2.

3.1 Introduction

The design of cellular manufacturing systems can be described as a process. A process is
a set of ordered activities to achieve a specified outcome (Davenport 1993; Harrington
1991; Hitchins 1992). A process can be understood by identifying its mission and scope,
the process activities involved and its performance (Harrington 1991). Because any process
can be defined in these terms, they can be used to provide a framework for comparing and

contrasting various approaches to designing cellular manufacturing systems.

Due to cell formation being the most visible component of the cellular manufacturing
concept, and because of the complexity of the problem, the primary issue dominating the
design of cellular manufacturing systems in batch production has traditionally been part
machine grouping. This body of work is reviewed in section 3.2. Section 3.3 reviews
methods that go beyond cell formation to address the design of a broader cellular
manufacturing concept. These methods include simple industrial engineering based
methods, just in time methodologies, socio-technical systems design, and manufacturing
systems engineering methodologies. The practice of designing cellular manufacturing

systems is considered in section 3.4.
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3.2 Part-Machine Grouping

Understanding how a company's facilities can be rearranged into cells that will accommodate
the company's product range without requiring a large investment in new equipment is a
considerable problem in batch production environments. Moreover it is probably the single
most visible change to take place, and one of the first significant design activities tackled.
For these reasons and also because the part machine grouping problem provides rich
research opportunities, it has received a considerable amount of attention. An indication of
the emphasis on this issue is provided by a review of the papers published in the
International Journal of Production Research: approximately 70% of cellular manufacturing
research published between January 1987 and July 1993 was dedicated to the development
of cell formation tools (Appendix A).

The high level of research effort directed at solving the cell formation problem has resulted
in the development of many procedures for part-machine grouping, based on a variety of
approaches to the basic problem and employing a range of techniques. Several reviews and
classifications of this body of work can be found in the literature. For example, Figure 3.1
represents the taxonomy used by Wemmerlév and Hyer (1986) to classify seventy five
contributions to the literature. This provides a useful insight into the nature of the cell

formation process.

Procedures for the part famlly
Imachine group ldentification
protl»lem '
T 1
Employ part Employ machine
attributes ’ attriblutes
[ | T 1
APPROACH 1 APPROACH 2 APPROACH 3 APPROACH 4
identify part families Identify machine Identify part famities Identify part families
groups using routing using lroutings and machine groups
i simultaneously
f T 1 { l_—l—|
Use informal Use part Combine  Cluster using Group Cluster using Use manual Use algorithmic
procedures code similar machine around key  part simllarity rearrangement of rearrangement of
similarkies routings similarity machines coefficlents part/machine part/machine
coefficients matrix matrix

Figure 3.1 Procedure Based Taxonomy of Methods for Part-Machine Grouping
(Source: Wemmerlov & Hyer 1986)
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Approach 1

Approach 1 methods identify part families without reference to routings. Having formed
part families, a second procedure will then be required to assign machines to them. This
gives rise to the possibility that there will not be sufficient machines available, necessitating
merging of part families with competing demands for limited numbers of machines,
investment in duplicate machines, or subcontracting to avoid intercellular movement of parts
that cannot be completed in one cell. Burbidge (1989), and Kusiac and Cheng (1991) also
criticise grouping on the basis of part design characteristics, for bringing together parts of
the same shape that should be processed on different machines, due to differences in quality
requirements, volumes, etc, and for failing to group different shaped products that are
produced using the same processes. Wemmerlov and Hyer (1989) report this approach as

being the most commonly used in designing cellular manufacturing systems.

The other three approaches all employ routing information in the analysis and so avoid this
criticism. However, Wemmerlév and Hyer point out that a routing based analysis will
inevitably constrain the solution according to existing methods which will not necessarily

be the best method of production.

Approach 2

Approach 2 methods use routing information to group machines that process similar parts.
A second procedure will then be required to assign parts to the machine groups. This gives
rise to the possibility, for some parts, that no cell will have all the machines necessary for
their completion. Asin Approach I, cell merging, machine duplication and subcontracting
can be employed to reduce intercellular traffic. Grouping of machines rather than parts can
be advantageous in cases where there are very large part populations relative to the number

of machines.

Approach 3

Approach 3 methods use routing information to group parts that visit similar machines. This
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is similar to Approach 1, except part families are based on routing similarity. Vakharia and
Wemmerldv (1990) have used this approach so that the operation sequence of products can

be considered, to create cells with a high degree of unidirectional product flow.

Approach 4

Approach 4 methods identify part families and machine groups simultaneously. These
procedures attempt to avoid solutions with unnecessary exceptional parts by forming the
part family and the machine group simultaneously. When exceptional parts do arise, the

options for dealing with them are the same as for Approaches 1,2 and 3.

A more up to date review, with a hundred and seven references is given by Offodile, Mehrez
and Grznar (1994). Their classification is based on the techniques used to perform the

grouping analysis, see Figure 3.2.

__ Visual
methods

Techniques for

Part Monocode (hierarchical)
Part Family / a Potvcode (chal
Machine Group | ¢oding olycode (chain-type)

analysis Hybrid (mixed)

Identification
Matrix formulation Similarity coefficients
— E Array-based method
Production  [— Graphtheory
L_ routing ] Integer programming
analysis | Mathematical formulation —-E Linear programming
Dynamic programming
Systems simulation
l_ Other Expert systems
structures |: Neural networks

Fuzzy sets theory

Figure 3.2 Technique based Taxonomy of Methods for Part-Machine Grouping
(Source: Offodile, Mehrez, & Grznar 1994)

Visual Methods
This is a relatively informal approach to cell formation that would fit into Wemmerlov and
Hyer's first classification: find part families without using routings. This approach can be

inexpensive but relies heavily on the expertise and experience of the analyst. It is flexible
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in that the analyst can bring all sorts of information to bear on the design decisions as felt
appropriate. For example, efforts may be made to gather together all high volume parts or
parts for the same end product to ensure consistency of competitive criteria and strategic

manufacturing tasks.

Part Coding Analysis

This is a more formal mechanism for taking Wemmerlov and Hyer's Approach 1. Offodile,
Mehrez and Grznar suggest that classification and coding systems are not well known in the
cellular manufacturing literature. However, much of the pioneering work in Group
Technology was based on classification and coding, and is still considered by a lot of the
literature to be fundamental to cellular manufacturing (Guerrero 1987; Kamrani and Parsaei
1994). Classification and coding systems are reviewed by Gallagher and Knight (1986), and
Hyer and Wemmerldv (1985). Hyer (1984) reports problems with using one classification
and coding system for more than one purpose. Burbidge (1989) notes that while a
classification and coding system may be useful as a design engineering tool, the cost of

implementation and its other disadvantages make it unsuitable as a tool for cell formation.

Production Routing Analysis

These methods of cell formation cover Approaches 2, 3, and 4 of Wemmerlév and Hyer's
classification. Offodile, Mehrez and Grznar provide a comprehensive review of the model
characteristic of the cell formation procedures within this category. The model

characteristics considered are presented in Figure 3.3.

Heragu (1994) also reviews part-machine grouping literature, paying specific attention to
those procedures that incorporate objectives and constraints beyond the achievement of
mutually exclusive cells: for example, set-up time reduction, material handling cost

reduction, equipment cost reduction, direct labour cost reduction etc.
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1. Model structure: 5. Decision variables
Matrix formulation: Number of machines of a given type to be assigned to a given
similarity cocfficient based, array (sorting) based cell
Math programming: Number of parts or machines assigned to any given cell
integer, linear, dynamic Number of operations or tool copies per part per group
Graph theory: Batch size
bipartite, other 6. Objectives:
Other: Minimize intercellular travels
simulation, expert systems, neural networks, fuzzy sets Minimize intracellular travels
2. Problem data structure: Minimize sctup time or maximize machine scheduling
Binary, weighted, cither, fractional flexibility
3. Clustering problem: Maximize similarity (or minimize dissimilarity) or
Parts, machines, concurrent formation of part-machine groups compatibility measure
4. Solution approach: Minimize total production cost
Heuristics: Minimize exceptional elements  cost  (subcontracting,
Hierarchical: duplication, or both)
single linkage, average linkage, complete linkage, density Minimize machine idle time
secking. more than two methods Maximize machine utilization
Nonhierarchical: 7. Coustraints:
Array based: Number of groups (cells or part families)
rank order clustering, direct clustering, bond energy, Number of parts per group
cluster identification, occupancy value Number of machines per group
Assignment mode: Machine capacity
Others: Each part machine or both belongs to one part family or
linear  programming, goal programming, graph machine group
partitioning, simulated annealing, fuzzy mathematics (c- Annual operating budget
mean), expert systems, neural networks Tool or processing requirement of parts

3.2.1 Comparative Studies of Cell Formation Techniques

Recently, some studies have been undertaken to compare the performance of different part-
machine grouping algorithms. Shafer and Meredith (1990) report problems with procedures
based on machine grouping followed by part assignment because the machine grouping
procedures placed all the machines of one type into a single group. This contrasts with
procedures that group parts first, where the secondary machine assignment process can split
multiples of machine types across different groups. Simultaneous part-machine grouping
procedures were found to have difficulty identifying groups, because they tended to merge

groups even if there was only a small overlap between them.

Miltenburg and Zhang (1991) found the Ideal Seed Non-Hierarchical Clustering Algorithm
(Chandrasekharan and Rajagopalan 1986) to be slightly superior at grouping (achieving a
high usage of machines within the cell and few parts requiring processing in more than one
cell) their randomly generated data sets, but generally found little difference between the
nine algorithms they tested. Some algorithms did however tend to produce a few large cells,

while others tended to produce a larger number of small cells (where each machine is visited

N
(8]



by most parts in the cell) and one large cell for the parts that do not fit in the small cells.
They also report that where a well structured solution exists to a given problem, all of the

algorithms will find it most of the time.

Kandiller (1994) assesses the inter-cell movement and cell density, work load balance, and
cost of machine under-utilisation, achieved by six algorithms with a variety of data sets. All
the algorithms were found to have their particular strengths and weaknesses making them
more or less appropriate depending on the specific problem to be tackled. The Zodiac
algorithm, developed from the Ideal Seed Non-Hierarchical Clustering Algorithm,
(Chandrasekharan and Rajagopalan 1987), gave the best all round performance.

This research draws attention to the fact that several part-machine grouping algorithms
struggle to fulfil their primary function of cell formation. The problem of how to compare
the quality of solutions is also raised. For example, an understanding is required of how the
pattern of the block diagonal relates to performance objectives. Decisions taken to refine
the part machine grouping are at least as significant determinants of performance as the
initial rough solution produced by clustering algorithms. Moreover, performance is
determined by other elements of the manufacturing system, such as management and control
subsystems. Different part-machine grouping solutions may be the most desirable depending

on their combination with different subsystem designs.

3.2.2 Strategic Implications of Part-Machine Grouping

A few authors have proposed that cell formation decisions should be taken in a strategic
context. Vakharia (1986) for example, argued that "cell formation should not be based on
any one objective; rather it should be a decision based on several objectives which are
usually conflicting, and thus have to be prioritized. Also some of these objectives are based
on corporate policies, such as the degree of flexibility required to maintain a certain market
share. This leads to the decision of cell formation being based on strategic as well as

operational policies." (p. 259). He identifies five manufacturing systems with different
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degrees of cell independence: 1. All cells complete all the parts they make; 2. Some cells
share a common piece of equipment; 3. Part families can be processed in more than one
cell, 4. Serial cells, where the output of one cell is the input of the next cell; 5. jumbled
flow job shop. The effects of each cell type on strategic (process flexibility, product
customisation, additional capital investment requirements) and operational (set-up times and
costs, types of equipment required, inter and intra-cell scheduling requirements, throughput
rate, and machine utilisation) variables is then hypothesised. He does not however, indicate
how specific cell types can be deliberately created, and does not address the relationship

between strategic and operational performance.

Yang and Deane (1994) support Vakharia's argument that cell design decisions must be
viewed as multi-criteria decision making problems that include strategic criteria. They
investigate the performance implications of part set-up time similarity, process-time
similarity, and cell size, using a queuing model. These are then related to strategic
competitive priorities such as, throughput time, flexibility, cost, delivery reliability, and new
product introduction. Specifically, they determine that as part set-up time and part
processing-time similarity increases, set-up time, throughput time, the variance between
throughput times, and the batch size that minimises cell flow times decrease. Increasing cell
size is generally expected to increase the variation in set-up and processing time
requirements. Their hypotheses for the strategic impact of choices between few large cells

and many small cells are summarised in Figure 3.4.

They suggest two alternatives for introducing part set-up time similarity and processing time
similarity considerations into the cell formation analysis. One approach would be to
incorporate these criteria into the traditional cluster analysis models. The other option
would be to fine-tune the results of part-machine grouping solutions produced by normal
methods according to these criteria. More generally they advise that the choice between
routing-oriented and part-oriented approaches to cell formation should be based upon
whether opportunities for set-up reductions are expected from new technology or through

incremental industrial engineering improvements respectively.

35



Design intermediate Consequences Competitive Prionties

Approach
! improved delivery speed and rekabity
Reduced %] Stabilised production scheduling & control activites
batchflowtime | |
[ and flow time — Fast feedback (o quality control
A lwger [~ v Y -
of Reduced job Reduced work in progress inventory
setups
il B T S e e
[ Reduced part —n Reduced cost in labour and materials handng
batch sizes 1 Better control of work flow
b

Efficient uthsation of transportation

New product itroduction flexi

More flexible

Nun

_] to d Volume expansion flaxibity
A smaller p
or of Planning & scheduling flexibility
larger colls
Cost reduction in equi in
Less duplication Cost reduction in squipment maintenance
ot m.:oh::. and Cost reduction in employee training
Efficiont of sy

Figure 3.4 Strategic Impact of Cell Size (Source: Yang & Deane 1994)

This work links cell design parameters to operational and strategic performance. Cell design
parameters are also related to cell design methods. However, the scope of the work is
limited and relationships between operational and strategic performance are hypothetical.
Incorporating set-up time similarities into traditional cluster analysis models would be
difficult because set-up times for individual operations within a cell will be affected by the

composition of its product family and the sequence in which they are produced.

Sheu (1994) sees cellular manufacturing as an extension of the focused factory concept
(Skinner 1974), where the primary objective of cell design is to support the strategic
objectives formulated at the focused unit level. The problem of designing focused
manufacturing units is presented as one of assigning products and resources where the
primary trade-off in the design process is between achieving a high degree of focus (ie.

similar competitive priorities) within each unit and minimizing the resources required.

With regard to methods for designing focused manufacturing systems, Sheu reports that

there are few available, and none consider capacity constraints. A heuristic based on a
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composite similarity index, that recognises both manufacturing tasks and resource
requirements, is presented for generating solutions with different emphasis on these two
objectives. Two measures are defined to evaluate the solutions for degree of focus and
average resource similarity. Cellular manufacturing can then be applied within each focused
unit. This work highlights the importance of clustering products with similar competitive
priorities. Beyond this however, the means to create the desired competitive performance

is not addressed.

3.2.3 Limitations of Part-Machine Grouping Research

There are many issues involved in the problem of part-machine grouping. The main concern
this research has with part-machine grouping, is how useful is this body of knowledge and
tools in providing companies with practical assistance to design better cellular manufacturing

systems. Key issues are discussed below.

Practical Application

Burbidge (1989) points out that the majority of part-machine grouping procedures only
concern themselves with the formation of groups within a department, and give no guidance
on how to partition the material flow between cells, at a company or factory level, or within
cells. He suggests that, because many part-machine grouping procedures do not account
for the possibility of performing certain operations on more than one type of machine, they
will have difficulty in achieving an effective solution to an industrial problem. Another
common hindrance to solving practical problems he notes, is to treat all machines equally
in the grouping analysis. Instead, he advises that clustering takes place initially around those
machines from which work can not be readily transferred, and which the company only has
one of. Processes required by most parts and equipment that can easily be distributed
between cells are ignored until the cells are formed. Production Flow Analysis (PFA) is
advocated as a method that does not have these deficiencies. Burbidge (1994) states, that
only PFA can claim to have been used in at least thirty six cases to find a total division of

a manufacturing system into groups that complete the parts they make.
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Srinivasan and Navendran (1991) report that most algorithms are able to deal with well
structured data sets but fail to provide acceptable results when applied to ill structured
matrices. Offodile, Mehrez and Grznar (1994) contend that practical machine-part grouping
problems do not lend themselves to partitioning into mutually separable clusters. Therefore,
they suggest that a good algorithm should be able to find the natural clusters present in a
data set and separate them from the exceptional elements. Thereafter the concern should
be with analysing the cost-benefit trade-off between machine duplication, subcontracting,

and intercellular movement.

Many part-machine grouping procedures require the number of parts and machines to be
specified as part of the problem. Burbidge (1982, 1994) argues that group size should be
determined as a result of the analysis rather than be specified as a precondition. Srinivasan
and Navendran (1991) suggest that to pre-specify group size contradicts the fundamental
philosophy of GT: that groups exist naturally.

Wemmerldv and Hyer (1986) emphasize that cell formation is a complex and practical
problem. They conclude that "designing manufacturing cells is an iterative and multi-
objective process that can be supported by formal techniques but that also requires human
decision makers with extensive knowledge of and experience with the company's products
and manufacturing processes." (p.145). Vakharia (1986) reports that authors of
"descriptive" (methods that do not rely on mechanical operation of an algorithm)
approaches to cell formation stress the importance of local factors that are not easily
identified. The fact that such factors are not readily considered with "analytical" approaches
would seem to decrease the ability of those approaches to successfully tackle practical

problems.

Research Objectives
Brandon and Schifer (1992) note that the majority of cell formation approaches do not
address the actual problems encountered in the design of Group Technology systems,

concerning themselves more with the development of faster algorithms rather than
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producing better cellular manufacturing systems. Kusiac and Cheng (1991) find that current
research into mathematical programming approaches to part-machine grouping concentrates

more on modelling the problem than on developing effective solution algorithms.

System Focus

Part-machine grouping is only one part of the problem of designing a cellular manufacturing
system. Wemmerlév and Hyer (1986) indicate that, "Designing cellular manufacturing
systems is a complex undertaking with broad implications for the organization. It involves
the manufacturing system as well as related support systems." (p. 126). They do suggest
that structure decisions will tend to precede operation decisions in the design process, and
that part-machine grouping is important because it effects most subsequent decisions.
However, they also indicate that system performance is a function of both structure and
operation, and while they might be conceived and judged independently they must also be
considered together. Brandon and Schifer (1992) point out that "the most celebrated
implementations of Group Technology share a holistic commitment to the cellular approach
... Unfortunately, an alarming neglect of the holistic approach is evident in many modern

contributions to GT." (p. 189)

3.3 Methodologies for Designing Cellular Manufacturing Systems

This section reviews methodologies for designing production systems that are relevant to
cellular manufacturing. By considering cellular manufacturing within the context of the total
production system, a broader view of the systems changes necessary to enable and exploit

a cellular structure is achieved.

3.3.1 Simple Industrial Engineering Methods

There are a few approaches to the design of cellular manufacturing systems that consider
cellular manufacturing to affect the whole manufacturing system but on the whole are
characterised by a rigid view of what features should comprise a cellular manufacturing

system, and have very clear ideas about how they should be applied. There is also a
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tendency for such methods to assume a fixed order for the design and implementation of
their cellular manufacturing features. These are referred to here as simple industrial
engineering methods to distinguish them from those based on systems engineering which are
described later in section 3.3.4. Typical examples of this type of method are Burbidge

(1994), Black (1991) and Nyman (1992).

Burbidge's approach, refers to the introduction of group technology, but as explained in
Chapter 2, his approach to group technology is compatible with the concept of cellular
manufacturing. His strategy has been developed through his extensive involvement in
implementing cells in industry (Burbidge 1992). Burbidge suggests that the only way to
simplify a change of this complexity, is to divide it into a series of independent projects, each
of which is exactly specified to describe the nature of the change, the method to be used, the
outputs required, the timing of the project and the condition when the project is deemed to
be complete. He identifies this set of projects, though reference to his other writings on the
subject would be necessary to obtain any detail about the nature of the changes or the
methods to be used. He does however, supply eleven principles for simplifying the design

of cellular manufacturing systems. Most of these are concerned with part machine grouping.

Black (1991) presents an eight step
Form cells
process for achieving what he calls Reduce set up times (using SMED)
integrated manufacturing production Lniggrate:quality control.
Integrate preventative maintenance
systems using linked cells. His concept Level and balance
Link cells - Kanban
Reduce WIP

Build vendor programmes

of linked cells provides a very specific

Q0 N v v s 9 B e

format for the design of the material

flow system to conform to. Black treats Figure 3.5 8 Steps to Integrated Manufacturing Production

the design of each feature as separate Systems using Linked Cells (Black 1991)
issues but provides no advice on how to approach project management of the overall
process. The desire to design a cellular manufacturing system is assumed at the start of the

process and the issues of design evaluation and justification are not dealt with.
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Ingersoll's approach as presented by Nyman (1992) is slightly less prescriptive than the other
two methods described here, and although it makes no explicit reference to systems theory
it exhibits many of the features of the manufacturing systems engineering approaches
described in section 3.3.4. There are three broad steps to the design process, macro facility
planning, cc;nceptual cell design, detailed cell design, though other activities such as project
management, justifying cellular manufacturing and selling the concept to management,
implementation, auditing cell performance and automating cells are also described. The
main features that set this design process apart from the others in this section are the more
loosely defined cellular manufacturing features, and also the progressive development from

low resolution system wide design to high resolution design of specific features.

3.3.2 Just-in-Time (JIT) Based Methodologies

JIT is a broad based approach for the organisation of manufacturing that was developed in
conjunction with a cellular organisation (Ohno 1988). Cellular manufacturing and JIT are
closely related and are often partnered together (Ramarapu, Mehra and Frolick 1995;
Wemmerlov and Hyer 1989). However, the principles and objectives associated with the
design of JIT manufacturing systems are more focused on the operation and performance

of the production system than is the case with cellular manufacturing.

JIT is commonly viewed as a philosophy of continuous waste elimination. Transportation
of materials, motion of workers, overproduction, inventory, waiting time, production of
defective goods and over-processing are all identified as sources of waste (Ohno 1988).
Many tools and techniques have been identified or developed to tackle various aspects of
waste elimination, such as kanban, single minute exchange of dies, Poka-yoke, and layout
improvement (Shingo 1989). Cellular manufacturing as described in Chapter 2 can be seen

to incorporate, or at least support the application of many of these.

The introduction of JIT does not appear to be treated as a process of design followed by

implementation. Instead JIT systems evolve towards the JIT ideals by incremental
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application of tools and techniques identified to eliminate waste. Many of the processes
available for guiding the implementation of JIT are similar to those described in section 3.3.1
for designing cellular manufacturing systems. A set of JIT tools and techniques are defined
to be applied individually in a given sequence, for example Shingd (1989) describes the
development of JIT at Toyota, and O'Grady (1988) presents a five stage framework based
on his observations of JIT implementations. A more flexible approach has been suggested
by Bicheno (1994). He proposes a two stage process, identifying a set of JIT tools and
techniques for each stage. The first stage comprises those tools and techniques that are
either relatively easy to implement or provide a foundation for stage two tools and
techniques. Stage two is generally considered to be a more advanced form of JIT, with
more streamlined, synchronised material flows, some elements of which may only be suitable
for high volume, low variety environments. He does not however suggest how the tools and
techniques should be selected from within each stage, and the relationships between the

various tools and techniques is not clear.

World class manufacturing (WCM) is a closely related production philosophy that embraces
cellular manufacturing and JIT. The distinguishing characteristic of WCM is its emphasis
on identifying and serving customer requirements and the importance it assigns to the role
of humans in the system. Simple material and information flows assume additional
significance for WCM as they support empowerment and team working, which facilitates
learning and continuous improvement, and increases flexibility. WCM as defined by
Schonberger (1986) and Hayes Wheelwright and Clark (1988) is an unstructured
incremental approach to JIT, in terms of the introduction of JIT tools and techniques, the
progressive refinement of their application and the way JIT is spread through the factory.
The design process therefore amounts to a set of actions to initiate the change, putting
appropriate structures in place or removing barriers such that objectives and performance

are obvious, and involvement in systems improvement encouraged and facilitated.

As a component of JIT the cellular manufacturing concept is reduced to the use of a cellular

organisation, and often more narrowly referred to as layout improvement. Cell formation
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is not addressed in detail in the JIT/WCM literature. Some authors, such as Hutchins
(1988), barely discuss the subject; others, such as Monden (1983) restrict their discussion
to what should be achieved without describing how. Some authors reference cell formation
techniques in cellular manufacturing / group technology literature: see for example,
Harrison (1992) and Kelleher (1986). Where cell formation is tackled it is generally
considered to be a straightforward issue. Cells are simply identified and implemented one
at a time, by grouping the machines necessary to produce a chosen group of similar
products: see for example, Arogyaswamy and Simmons (1991), Hay (1988), and
Schonberger (1986). Over time, a policy of investing in multiple small machines rather than
large machines is expected to eliminate the problem of not having enough machines to place

in each cell.

3.3.3 Socio-Technical Systems Analysis and Design

Although the design of a cellular manufacturing system would not be the explicit objective
of a socio-technical system design exercise, its historical association with cellular
manufacturing and the frequency with the solution will incorporate autonomous group
working warrants that socio-technical system design is reviewed alongside other methods
for designing cellular manufacturing systems. The socio-technical systems approach
introduced systems theory to production engineering and organisation design, and

introduced the notion of integrating the organisation of both technology and workers.

There is no definitive method for designing a socio-technical system, although Hill's (1971)
process for socio-technical system design, based on his work with Shell UK, is widely
known. However, Klein (1994) draws attention to the fact that it was developed for a
specific application and when used out of context, there are many interdependencies
between the technical and social systems that do not come to light using this method. Hill's
process is summarised in Appendix C. Purists argue that the lack of procedure and design
rules are an essential component of the open systems approach upon which socio-technical

design is based (Klein 1994; Neumann 1990). Instead a set of general principles are
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advocated (Cherns 1976, 1987): see Figure 3.6. These principles should be interpreted for

a given situation through open-ended grounded diagnosis and action formulation.

1.

111,

1v.

V1.

Vi,

Compatibility. The way design is done should be compatible with the design's objectives. Design should
be as participative as 1s practical and recognise the inevitability of conflict. Members must reveal their
assumptions and reach decision by consensus. Joint optimisation does not mean modification of the

technical system for social reasons but taking each decision on both technical and social reasons.

Minimal critical specification. No more should be specified than absolutely essential. What 1s essential

should be identified. This principle implies the minimal critical specification of tasks, the minimal critical
allocation of tasks to jobs or of jobs to roles and the specification of objectives with mimimal critical
specification of methods of obtaining them.
Variance control. Vanances (deviations from standard in the production process) should not be exported
across organisational boundaries.
Boundary location. Boundaries should not be drawn so as to impede the shanng of mformation,
knowledge and learning.
Information flow. Information for action should be directed first to those whose task it 1s to act.
Information for record should readily available for call only when and as needed.
Power and authority. Those who need equipment, matenals, or other resources to carry out
responsibilities should have access to them and authority to command them. In return they accept
responsibility for them, and for their prudent and economical use.
The multifunctional principle. Orgamsations need to adapt to their environments. This should be
achieved through tramning and development to enlarge the response repertoires of individuals and
teams rather than through hiring experts as these complicate the lines of command or allocations of

responsibility within the organisation.

viil.  Support congruence. Support systems should be designed to reinforce the desired performance of

X

the designed organisation. Cherns suggests that according to the second principle, 1t is preferable to
design support from scratch to create an ideal organisation, which can be later be constramed
according to practical or policy considerations, rather than to attempt to modify existing support
systems for compatibility with the new organisation.
Transitional organisation. There 1s a period of transition to achieve the new organisation that requires
planning and design. The transitional organisation is both different and more complex than either an
existing or the new one. The design team and 1its process are a vehicle of transition.  Start up and
debugging should be planned and designed to enhance traiming.
Incompletion. As soon as a design 1s implemented, 1t will have consequences that create the need for
redesign. Implementation begins with the start of design and with implementation comes evaluation. The
multifunctional principle indicates the wav to address this. Redesign is not the task of a special design
team; 1t 1s the function of self=regulating operating teams provided with the techniques of analvsis. the

appropriate criteria, and the principles of design.

o e e
Figure 3.6 Principles of socio-technical systems design (Source: adapted from Cherns 1987)
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Socio-technical design has a strong basis in practical application, and a track record of
successful projects. The explicit theoretical foundation and the design principles derived
from this do not impose prescriptive solutions. This provides a wide range of applicability
and does not suggest a ceiling to continuous improvement. The systemic values of socio-
technical systems theory make several important contributions to our understanding of the
design process, concerning the need to integrate the design of the technical and social
subsystems of the production process, and to integrate design and implementation. The
latter also leads to the notion of a circular process without beginning or end. The need to

reflect desired operating principles in the design process is also a valuable insight.

Despite empirical success, there are arguments to suggest that while the features typically
associated with a socio-technical system may be valuable, the theoretical explanations for
their benefits may be misguided. For example, Kelly (1982), points out that while socio-
technical systems theory claims joint optimisation of the technical and social systems, in the
majority of cases of socio-technical design the technical system has not been altered. Instead
they have been prompted by technical innovations that have failed to deliver expected

benefits, and have adapted the social system to the technology to yield higher productivity.

With regard to job design, Kelly questions the correlation between changes in intrinsic
motivation, job performance and job attitudes. He draws attention to the acquiescence of
autonomy to managements economic needs in published cases of socio-technical redesign,
and argues that the productivity improvements resulting from the use of autonomous work
groups are primarily based on flexible work assignment, which allows the levelling of any
uneven work loads that exist across the production system. This has enabled the same
amount of work with less people, or where there was spare capacity in the technical system,
increased output with the same number of people. He argues that the changes in pay levels
and to the payment system accompanying many implementations of autonomous work
groups, are likely to have been important in securing higher rates of working or agreements
for job losses. The connection between improved quality and quality linked payment

systems is also noted.
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Buchanan (1979) highlights the fact that the socio-technical systems analysis does not deal
with the impact of changing the primary production unit's work organisation on management
and auxiliary systems. In addition, he suggests that the analysis is dependent on the
ingenuity of the designer, stimulating the generation of job design hypotheses rather than

generating them directly from the analysis.

3.3.4 Manufacturing Systems Engineering Methodologies

Increasing recognition of the integrated nature of manufacturing systems has led to a
broader interest in systems theory, and systems engineering in particular, as a framework for
understanding and designing production organisations. As a result, manufacturing systems
engineering (MSE) has emerged as a new discipline (Hitomi 1990). The MSE approach
recognises the relationships between the various components of the production system and
attempts to ensure that they are all compatible and aligned with a company's manufacturing

strategy. Three MSE methodologies, Lucas, Wu, and Drama, are reviewed below.

The Lucas Methodology for Manufacturing Systems Redesign

The Lucas methodology, described by Dale and Johnson (1986), Dale and Fielden (1988),
and Parnaby (1986), is a proprietary methodology, developed by Lucas Engineering and
Systems (LE&S), from their experience at overhauling manufacturing operations throughout
Lucas Industries PLC since the early eighties. Its purpose is to restructure a traditional
(functionally organised) manufacturing system into cells and to introduce JIT and TQM
methods of operation. The design process was rationalised to allow rapid replication of the
benefits across the business. It has been widely and successfully used by LE&S to redesign
over six hundred businesses, approximately half of which are outside of the Lucas company.
Case examples report significant performance improvements such as reduced lead times and

stock holdings (Dale and Fielden 1988; Dale and Johnson 1986; Kellock 1992).

There is little material available in the public domain describing the methodology, and what

is available does not give a consistent presentation of the approach. This is perhaps
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inevitable with a practical consulting tool, which does not need to provide a rigorous model,
and is likely to be amended frequently to suit the job in hand. The author supplemented the
literature by interviewing LE&S consultants to enhance his understanding of the

methodology.

Figure 3.7 presents a typical example of a flow chart describing the Lucas methodology.
The process steps are described in more detail in Appendix C. Redesign projects are
typically broken down into blocks of work of approximately six months duration for a
project team of 7-8 people (some of which will be only part time). The reason being that

experience has shown that momentum begins to diminish beyond this time.

Business
. . . systems . Integration with .
Business and market ¢ Product engineering and manufacturing systems -  engineering ! financial strategy !
strategy engineering strategy © strategy ! :
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::;ar:(y;: product, Sort data E::;dy systems Quantify costs
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Define Collect process into families design. Control Implementation
business ¥ data. P flow route P> and define =3 Dynamic P system plan
objectives Define capability' cell design. design Submit for
product data and structure Per_sonnel Systen.1 approval
strategy analyse policy integration

Figure 3.7  Flow Chart of Lucas Methodology (Parnaby 1986)

This methodology assumes that cellular manufacturing is generally a better way of working
and that the change will be desirable if it can be cost justified. The design task is simplified
in practice, by restricting the choice of procedures to be used for part-machine grouping, the
range of solutions considered for issues such as production control. However, the lack of
detail and decision support available suggests that facilitation by an experienced consultant

would be necessary to ensure good results.

The defined process is top-down and sequential. While strategic objectives and constraints
are made explicit early in the process, to provide guidance for remaining design decisions,
objectives are set before analysing the market requirements and company capabilities,

thereby raising the possibility that inappropriate or unobtainable objectives may be set.
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There is also no explicit mechanism for translating corporate objectives and market
requirements into manufacturing system design and performance measures. Consequently
no clear framework is constructed for evaluating the design throughout the process. In
practice, these problems may be resolved by the experience and knowledge of managers

setting the objectives, and of the consultants operating the design process.

Lewis and Love (1993) argue that, in breaking down the design of the manufacturing system
into discrete steps, the methodology ignores important interrelationships within the system,
and that relationships and their effect on performance are only evaluated at the end of the
design process. For example, work design and control system design after the physical
restructuring. This suggests that the intention is to make these elements fit the chosen
structure, rather than recognising the impact of work design and control system on
manufacturing performance and accounting for their requirements when designing the
manufacturing architecture. Even dynamic design is shown to take place before the control
system has been designed. Use of multidisciplinary task forces as discussed by Parnaby
(1986) may help integrate these design stages and ensuring compatibility at the interfaces

of the production system.

Wau's Methodology for Design and Evaluation of Manufacturing Systems

Wu's (1992) methodology is based on the general problem solving cycle of systems
engineering theory. It has been developed as a general framework for analysing and
designing manufacturing systems as shown in Figure 3.8. The process stages are elaborated
in Appendix C. The process addresses recognition of the need for change and redesign of
the physical and control systems, to rectify poor performance or to pursue new objectives
or opportunities. The methodology, uses narratives, input/output diagrams, flow charts, and
problem solving techniques. Simplicity and focus are offered as general principles to guide

the design.

Rigorous practical evaluation of the methodology has not been undertaken, though it has

been widely used during industrial projects by undergraduates and postgraduates at Brunel
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University. Wu claims that feedback from these projects is generally favourable.

The methodology is not exclusively for
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Figure 3.8 Stracture of Design & Evaluation existing strengths and ensure that realistic

Methodology (Wu 1992) objectives are set, without restricting
creativity for the design of the new system. This approach diminishes the criticism that
systems approaches are overly problem oriented and neglect wider influences on design such
as strategic opportunity. The need for a framework for evaluating the design throughout

the process is made explicit.

A systemic perspective is facilitated by splitting the design process into two stages:
conceptual and detailed design. By reducing the level of detail considered at a conceptual
level the designer can consider more components of the manufacturing system and their
interactions. A significant level of detail is pursued in detailed design, including machine
selection and data structures for information systems. Structured methods of analysis and
design such as IDEF, are utilised, which incorporate a disciplined approach to

documentation.

Design of the social system is neglected. Although the human resources are included in the
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situation analysis, such issues as job design, incentive systems and training do not feature
explicitly in the design components of the methodology. The design of structures for

continuous improvement of the manufacturing system is not incorporated either.

Decision Rules for Analysing Manufacturing Activities: The DRAMA Methodology
The DRAMA methodology was initially developed by Bennett and Forrester (1993) from
ICL's experience in designing and implementing market focused. modular, production
systems at their Ashton plant for the design and assembly of mainframe computers. The
methodology's general applicability was then tested against thirteen cases covering
electromechanical, mechanical engineering and the textile industry. However, no

deliberate and explicit use of the methodology has been reported.
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Figure 3.9 The DRAMA Conceptual Model of Production Systems
into ten distinct components Design (Bennett and Forrester 1993)

that represent decisions at the strategic, tactical, and operational levels of the business, as
shown in Figure 3.9. This structure is intended to allow the designer to select only those
elements that are of immediate interest. It is suggested that the components of DRAMA can
each be viewed as a set of gears, all continually turning, sometimes at different rates but

always subject to change from the other gears. In general, the methodology progresses from
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the strategic domain to the operational domain and exhibits a sequential progression through
the components within each domain, though it does recognise that there are many
interconnections between components and that iteration will be necessary. The process

stages of DRAMA are described in more detail in Appendix C.

DRAMA is not specifically for designing cellular manufacturing systems though it is
committed to the principles of achieving market focus and recognises a cellular organisation
as being an appropriate solution. The market focus also manifests itself in a top-down
approach to analysis and design. DRAMA takes a broad and comprehensive view of the
manufacturing system and the design process. Different levels of organisational decision
making within the company are made explicit helping to bridge the gap that currently exists
between manufacturing strategy and its translation into an operational design. Evaluation
is shown to take place at each level of the organisation and within each module of the

process. Evaluation also includes self assessment of the design process.
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Figure 3.10  Format of a Design Option Guide

methodology. The decision
(Bennett and Forrester 1993)

process is presented as a flow

chart with the key parameters as inputs. Decision support is provided by one or more
Design Option Guides (DOG), see Figure 3.10. The DOG requires designers to make
explicit, priorities among the results that can be affected by each decision. The designer is
then invited to select from a range of decision options based on the direction of their

expected impact on the desired results. The framework of the DOGs is considered to be
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more important than the detail. In discussion, Forrester said that he would recommend

companies to construct their own DOGs.

Use of DRAMA does not appear to result in a detailed design specification that could be
implemented directly. Even for many design decisions in the operational domain the DOGs
appear to work at conceptual level, helping the designers to settle such issues as what type
of layout should be adopted and whether to centralise or distribute tool storage. DRAMA
does not for example, deal with the identification of capacity requirements or the balancing

of capacities between processing stages.

A key feature of the DRAMA is that it advocates concurrent design of the physical system,
control and information system and work design is advocated. However, interrelationships
between the Decision Option Guides for these systems are not readily addressed apart from
assuming a multifunctional design team and recognising the need for iterative design cycles

between the components.

3.4 Additional Insights into the Practice of Designing Cellular

Manufacturing Systems
With the exception of many part machine grouping tools, most of the methods reviewed
above reflect the practice of designing cellular manufacturing to a certain extent. However,
there is very little literature concerning the use and performance of these methods. Case
studies tend to emphasise the cell features implemented and the overall performance benefits
rather than describe the way design decisions were taken and the reasons that have resulting

in the specific outcomes of decisions.

Further insight into the cell design process has been obtained through interviews and
discussions with industrialists and consultants who have designed and introduced cellular
manufacturing systems, and through project work concerned with the design of cellular

manufacturing systems (Nimmons 1992, 1994; Nimmons, Williams & Cursham 1995).

72



Mission and Process Performance

Nyman (1992) argues that in order to ensure that cells are applied in the most profitable
manner, it is important to understand the connection between manufacturing and marketing
strategies. Unfortunately he observes that in practice, the decision to install cells is usually
made by manufacturing people for operational reasons, and that their connection to anything

higher than plant goals is usually obscure.

Of the cases encountered, the most successful were characterised by design processes that
developed clear performance objectives and an explicit understanding of how cellular
manufacturing will address these objectives. This is perhaps best illustrated by a case of the
reverse (Nimmons 1992), where they took advantage of their need to move out of their
existing facility, to adopt a cellular layout in the new building. As they did not have any
specific objectives to address through cellular manufacturing, they made little attempt to
exploit their new organisation and a year later they were still puzzled as to why they had not

improved performance.

Fritz, Schmid and Wu's survey of manufacturing systems design revealed that only a small
proportion of companies use formal methodologies for designing their manufacturing
systems. The authors criticize available methodologies for being too impractical, too
complex, too general, too abstract, and for being too narrow in focus (both in the number
of stages in the design process being supported, and the number of manufacturing system

elements considered).

Scope of Design Process

Several implementations were hindered by the designers not taking a broad enough view of
the systems changes required to introduce cellular manufacturing. The case described above
took a very limited view of cellular manufacturing and got similarly limited results. Ina
second case, a cellular structure was implemented rapidly with little consideration of the
wider system. Although some benefits were obtained, their performance was significantly

improved at a later stage using the principles and techniques of JIT to exploit the potential
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of the cells (Hallihan, Williams & Sackett 1995). This observation coincides with the views

of researchers cited earlier in section 1.6

Design Stages

All of the consultants interviewed describe a preliminary business review phase to the design
process in which performance is benchmarked, business objectives are defined, and pareto
problems are identified. This stage allows them to use their experience to identify those
issues whose resolution is most critical to achieving the desired performance improvements
and potential solutions to the problems. In two cases of the introduction of cellular
manufacturing reviewed where a consultant was not employed, the members of the company
responsible for the introduction of cellular manufacturing determined “best practice
methods” through available literature, and study visits for example, through the DTI Inside
UK Enterprise Initiative, and then selected those that were suitable for their company
requirements. However, development of a concept design appears to be problematical. In
a survey of cellular manufacturing in the furniture industry, Mugwindiri, Groves & Kay
(1994) identify the lack of understanding of cellular manufacturing concepts as a common
problem that hindered implementation. In a survey of manufacturing systems design, Fritz,

Schmid and Wu (1994), identify the evaluation of design concepts as a major problem.

Design and implementation stages merge together, especially where pilots are used, as no
sooner has implementation started than new understanding is generated which initiates
refinement of the design. Evidence of this was displayed in a case that started with a poor
design for part machine grouping, where the cell leaders renegotiated their cell contents

among themselves as they began to appreciate the benefits of ownership.

Ramifications of Design Decisions

Two cases designed part machine groupings with unacceptable intercellular movements,
because the significance of ownership on control of production was not appreciated.
Decisions were therefore based on the cost of improving the organisation rather than the lost

opportunity caused by a poor solution. Tradition and constraints of the existing system
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encouraged one case towards conservative decisions rather than looking for ways to
eliminate the constraints. In both cases, the organisation has subsequently been improved.
A cell leader in one case commented, that if they have any problems meeting the schedule
now, it will more than likely involve the one remaining part they have that leaves the cell for

an intermediate (electron beam welding) operation.

Similar difficulties arise in understanding the impact of elements of the wider production
system on the performance of the cellular manufacturing system. In one case it was decided
to retain a central cutter tool management system because it was new and had found to be
beneficial in the existing functional organisation. Jobs were sent back to stores between
each operation to be kitted for the next one. The cell's ability to control the flow of work
between operations was lost, and with it, its ability to improve lead time and reduce WIP.

Accountability was also diminished.

In a second case, the production planning and control system was reviewed as part of the
change to cellular manufacturing. It was concluded that improved scheduling would help
the cells reduce lead times and WIP and improve delivery, so a centralised OPT system was
installed. This added another production control function and computer system between
customer demand and production. The schedule was based on MRP data not the reality of
the workable jobs in the cell, and the system was not responsive to the cells scheduling
needs. It did not improve control of production. One of the cells in this case has since
stopped using the OPT schedule as it has found that improving the organisation of the
production process has reduced the scheduling problem and progress can be better managed
using simple physical systems locally. However, a significant investment was made to
implement OPT, and attention diverted that would have been better spent improving
production methods and organisation. Moreover because other cells are still managed
centrally, the opportunity to reduce the overhead of production planning and control has not

been exercised.
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3.5 Conclusions
This chapter has reviewed the theory and practice of designing cellular manufacturing
systems. A range of approaches to this problem have been presented and their shortcomings

have been discussed. Practical implications of the cell design process have been described.

The largest body of work found was concerned with developing procedures for part-
machine grouping. These techniques perform the valuable function of defining in detail the
organisation of parts and machines for cellular manufacturing. However, there are major
shortcomings with these techniques, not least of which, is the fact that many can not
adequately solve real industrial problems. Given the system wide features of cellular
manufacturing described in Chapter 2, it is clear that, while the more practical part machine
grouping techniques may find useful employment as part of a broader methodology, solving
the part machine grouping problem will not be an adequate basis for the introduction of
cellular manufacturing. Cell formation should also be guided by the way in which it

expected that the new structure will enable performance improvements.

Some researchers have recognised the need for a broader approach to the design of cellular
manufacturing and several methods have been developed to this end. Moreover, it is the
author’s experience that a broad perspective of the design task is associated with successful
implementation of cellular manufacturing. The issues arising from reviewing these methods,
that need to be taken into account to improve the process of designing a cellular

manufacturing system are highlighted below.

° The design process must recognise the flexible nature of cellular manufacturing as
defined in Chapter 2. This implies that the concept must be interpreted for a given
situation before proceeding with detailed design and implementation of the various
features. Simple production engineering methods have a fixed concept of cellular
manufacturing embodied in their approach. Of the remaining approaches, only Wu's
methodology makes explicit reference to concept design. However, DRAMA

appears to operate primarily at a conceptual level.
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There is a need to make concept design explicit and to improve the support
available. A significant hurdle to designing cellular manufacturing systems is the ill
defined and flexible concept itself, and companies find conceptual thinking difficult.
Neither of the methodologies that include concept design are exclusively for
planning the introduction of cellular manufacturing, and consequently do not provide

guidance in specifically developing a cellular manufacturing concept.

A cellular manufacturing system should be designed to support the company’s
strategic objectives. The design process should help to understand the effect of
design decisions upon performance. Due to the complexity of manufacturing
systems, the relationship between the features of cellular manufacturing and
performance will need to be determined for each specific situation. Of those
methods that do recognise the influence of different objectives on the design, most

rely on post design testing such as simulation to evaluate the quality of the design.

The design process must address the full extent of the manufacturing system
included in the cellular manufacturing concept. Most of the methods reviewed

neglect some aspect of the manufacturing system.

Most of the methods reviewed fail to account for the relationship between design

and implementation.

Current methods for designing cellular manufacturing systems do not adequately
account for the complexity of production systems. Little consideration is given to
the relationships between design decisions. For example, DRAMA does not help to
determine the relative importance of system features identified in different decision
domains, so effort can be focused on those that are critical to improving
performance. The value of one decision option for supporting another in a different
decision domain is also ignored. However, while it is desirable to account for this

complexity, the method must remain practical and usable.
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Chapter 4 Specification and Development of an
Improved Process for Designing Cellular

Manufacturing Systems

This Chapter brings together the conclusions of Chapter 2 and Chapter 3 in order to
specify and develop an improved approach to the design of cellular manufacturing systems.
The design task is defined in terms of the purpose of the design process, the extent of the
manufacturing system addressed, and the process stages addressed. A process for

generating a concept design for.a cellular manufacturing system is developed.

4.1 Introduction

The analysis of the nature of cellular manufacturing in Chapter 2 has identified several
characteristics that complicate the task of designing a cellular manufacturing system. In
particular it is an ill defined and flexible concept, with complex indeterminant relationships
between cellular manufacturing features and their effect on the manufacturing system. None
the less, a valuable contribution is made by making these features and effects explicit. The
review of existing methods for designing cellular manufacturing systems in Chapter 3 reveals
that none are entirely adequate for tackling the complex task. Most of the processes
reviewed did not address the full range of issues contained in the general model of cellular
manufacturing developed in Chapter 2. None defined a procedure for tailoring a general
model of cellular manufacturing to a specific situation. This chapter develops an improved

approach to address these issues.

78



4.2 Purpose

The two extreme positions that can be adopted as the purpose of a manufacturing systems
design process are embodied in prescriptive and design methodologies. Prescriptive
approaches advocate the design and implementation of a fixed set of features often in a set
sequence. Burbidge (1994) and Black (1991) have both presented methodologies of this
type that focus specifically on the design of cellular manufacturing systems. Manufacturing
systems design methodologies on the other hand tend to identify stages in the design
process, the types of decision that should be being taken, and useful tools to assist the
design, rather than specifying any particular features that the manufacturing system should
possess. This does not mean that these methodologies are value free. Socio-technical
systems theory for example, provides a set of principles to guide both the design process and
the resultant manufacturing system. Wu (1992) and Bennett and Forrester (1993) also
describe “best practice” approaches that might be incorporated into the design as
appropriate. However, design methodologies typically stop short of supporting any
particular design decisions or imposing any order for the design and introduction of elements
of best practice. None of the design approaches reviewed in Chapter 3 were exclusively for
designing cellular manufacturing systems and therefore cannot focus on the specific issues

involved.

Advantages of prescription are speed of application and a well-defined end point to work
towards. Disadvantages are the potential for wasted effort through implementing
unnecessary features, or worse, reduced performance if they are inappropriate.
Manufacturing systems design approaches should not suffer from these draw backs as the
solutions proposed should be generated from analysis of the specific objectives and
constraints of the company. Undertaking such an analysis and developing their own design
ensures that a company understands why it is implementing the designed features, and will
therefore be equipped to modify and improve the design in the future. Consequently
designed systems are likely to be more robust than systems based on prescription.
Unfortunately the strength of design methodologies is also their weakness. As they require

the company to take more responsibility for the shape of the resulting manufacturing system
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design, they take longer, which can make it difficult for companies to sustain the necessary
quantity and quality of design effort. Moreover, the necessary knowledge is not always
available within the company, and old ways of working can confuse new thinking. This
problem is emphasised with a change of the magnitude of introducing cellular
manufacturing. More effort will also be required to communicate a common understanding

of design objectives.

Objectives & ldeal type model
constraints of of cellular
existing system manufacturing

Situation specific
design concept for
cellular manufacturing

Figure 4.1 Tailoring an Idcal Model of Cellular Manufacturing

An improved approach would adopt the best features of each of these extreme positions.
While prescriptive methods for designing cellular manufacturing systems can be criticised
for their lack of consideration of the circumstances to which they are being applied, it is a
waste to ignore existing knowledge and experience, that has identified the collection of
compatible techniques and manufacturing system features that is recognised as the concept
of cellular manufacturing. Rather than build up a situation specific version of cellular
manufacturing from nothing, it would be possible to tailor an “ideal” model of cellular
manufacturing, to suit the specific existing manufacturing system and its performance
improvement priorities, as shown in Figure 4.1. Therefore, an improved approach would
start from the position of having decided that cellular manufacturing is an appropriate way
to organise production, and would have the specific purpose of defining how the general
concept of cellular manufacturing (as defined and presented in Chapter 2, and embodied in
the features and effects compiled in Appendix A) could be best applied to address the

individual objectives and constraints of a given production system.
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4.3 Scope of Cellular Manufacturing Systems Design

Most of the methods described in Chapter 3 focus on certain aspects of the manufacturing
system and neglect others. This is understandable in the prescriptive approaches, which
define the objectives in terms of the features they address. The systems methodologies
however, should provide a framework within which all aspects of the manufacturing system

can be designed.
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Figure 4.2 Scope of Cellular Manufacturing Systems Design

The model of cellular manufacturing features and their effects developed in Chapter 2
indicates that cellular manufacturing is a system wide concept. Figure 4.2 indicates the
scope of the manufacturing concept using an IDEFO representation of the manufacturing
function. The concept of cellular manufacturing may be focused on the central function
make product (eg. changing the organisation and layout of direct production resources,
introducing flexible working and improving set-up procedures) but this organisation of the
production function has implications for many supporting processes and systems. In
particular, production planning and control must be modified to take advantage of the new
organisation’s ability to produce in small batches and coordinate the flow of work between

machines. Quality control and stores procedures must be defined so that they do not
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interrupt the flow of material, and functions that supply and manage resources, such as
personnel, training, production engineering and maintenance must make sure that their
policies are aligned with the requirements of the make product function. For example,
recruiting and developing multi-skilled operators, and choosing to purchase multiples of
small machines, in preference to single super-machines. The arrows on the diagram
represent four broad types of transaction with the production function: inputs, outputs,
controls and resources. The design process must therefore define the organisation of the
production function and the affected interfaces with supporting systems and processes. In
practice, the scope of the design process is defined by the range of features associated with

the cellular manufacturing concept, as compiled and presented in Chapter 2.

4.4 Process Stages and Procedure

The most clearly defined processes for designing cellular manufacturing systems described
in Chapter 3 are those developed by Lucas and Wu based on the systems engineering
problem solving process. All the consultants that were interviewed identified with a simple
process, similar to systems engineering, comprising the following steps: analyse existing
situation and set objectives, design system, and evaluate. However, the previous sections
in this chapter have identified that an improved process would recognise the flexible generic
concept of cellular manufacturing presented in Chapter 2 and would tailor this concept to
address the specific objectives and constraints of a given production system. Such a concept
can also evolve with the development of the theory and practice of cellular manufacturing.
A concept design stage must be incorporated into the commonly accepted process for
designing cellular manufacturing systems, where the general concept can be confirmed,
updated and tailored to the current circumstances. While consultants indicated that they
used their experience of cellular manufacturing to develop a vision of what features would
be appropriate to a given company's specific production characteristics, performance
objectives, and current performance inhibitors, only Wu's process makes explicit reference
to concept design. Wu however, describes a general approach to functional modelling of

the manufacturing system rather than the development of a cellular manufacturing concept.
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The absence of a defined process for concept design allows this important activity to be
neglected, and denies the means to do it from those without prior experience of designing
cellular manufacturing systems. Therefore this section will develop a process for designing

a cellular manufacturing system that incorporates a concept stage.

Systems engineering provides a system life cycle model which can structure decomposition
of the design process. This identifies initiation, preliminary study, total system study, sub
system studies, implementation, followed by stages concerned with realisation and utilisation
of the system before returning to initiation. The problem solving cycle can be applied to all
problems throughout this cycle, albeit with different emphasis at each stage (Buchel, Breuil
and Doumeingts 1984). This can then be combined with a further decomposition of the
design into concept and detail. The reduced detail considered when dealing with concepts
allows a wider view of the manufacturing system. Therefore, concept design is applied to
the total system and addresses strategic design objectives. The result of concept design

provides more specific objectives and constraints to guide the detailed design of the sub

systems.
Manufacturing strategy
objectives
Sclected cellular
manufacturing Concept design
features
Detailed des.ign objéctives & constraints
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Implementable specification of ceilular manufacturing features design
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Figure 4.3 The Hierarchy of Design Activity
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Figure 4.3 illustrates the nature and role of concept design in relation to manufacturing
strategy and detail design. Concept design is the interface between manufacturing strategy
formulation and detailed design, translating abstract system wide requirements into tangible
sub system features and design objectives. For example, strategic production performance
requirements (such as reduced lead time, improved delivery, reduced cost and improved
quality) and the system wide concept of cellular manufacturing are cascaded into a
compatible set of sub system features and design requirements (such as operator inspection,
reduced batch sizes, multi-skilling, reduced set-up times, increased accountability, and

increased visibility of performance).

A system wide concept design stage is compatible with Ackoff's (1981) view, that the more
parts of a system and levels of it that plan simultaneously and interdependently the better.
As cellular manufacturing has been identified as a system wide concept, and the
manufacturing systems are complex interrelated sub systems, the concept design stage is also
valuable for enabling the ramifications of cellular manufacturing to be understood. This is
important because it makes the mechanisms by which performance will be improved explicit.
Principle mechanisms can be identified and attention focused on making these happen and
ensuring that there are no major conflicts with other elements of the manufacturing system,
that might inhibit their operation. Understanding the interrelationships between cellular
manufacturing features also provides more specific objectives and constraints to guide the
detailed design of individual features. For example, if it is known that reduced set-up times
are being pursued primarily to allow smaller batch sizes, then point of use storage of tooling

will probably be a more viable option than controlling and kitting tools centrally.
The implication for the composition of the design team of a system wide concept design is

that a multi-functional team would most likely be appropriate. This is compatible with the

systems methodologies reviewed.
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The fact that the relationships between cellular manufacturing features and their effects are
not well defined makes the design task more difficult. Mitchell (1991) shows how complex
objectives and incomplete theory affects the approach that should be taken to the design
task: see Figure 44. This is also consistent with Ackoff’s (1981) approach to the

development of complex systems.

Leaming
Simple Optimum final Complex Scequence ol
objectives design objectives transition designs
Theory and data Partial theory and data
Figure 4.4 Alternative Design Strategies

The development of the manufacturing system should therefore progress as a series of small
iterations between design and implementation to provide for learning, and to accommodate
evolving objectives. Following this model, the prioritising and selection of cellular
manufacturing features from a general model can be considered to be the identification of
viable intermediate states on the path to an ideal manufacturing system. Therefore, not
every aspect of the manufacturing system needs to proceed for detailed design, just those

that have been identified to be important during concept design.

The overall design process proposed for designing cellular manufacturing systems is
presented in Figure 4.5 below. Essential inputs to the process are a decision to introduce
cellular manufacturing, and the strategic performance improvement objectives that are

sought, and the performance and constraints of the current system.
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] ’ S GinTiD
performance [ \ manulacturing
B g X . | Detail design system
objective Concept design : '.\ ’ lmpl -
—— . 0 p= |1plementation
~&—— of total system lg—— "Mpiementatic —_—
. ’ sub-systems f
Current L \ - (e Improved
manufacturing Feedback between stages 1o mainte: performance
system compatibility as design progresse
Figure 4.5 An Improved Process for Designing Cellular Manufacturing Systems



As with systems engineering, a problem solving process is an appropriate way of addressing
the problems identified throughout the process. Each stage assesses the current situation,
defines objectives relevant to the level of detail being considered, and generates, analyses
and evaluates solution options before deciding and presenting the solution as the task for the
next stage of the process. Iteration will also occur at other levels of the design process.
Feedback will occur between process stages when the activity of the down stream process
raises issues that affect the definition of the previous stage. For example, detailed design
of set-up procedures may indicate the need for changes to the layout and production control
system. Similarly implementation is likely to reveal constraints that were not apparent
during design. Having successfully implemented the specified cellular manufacturing
features, development of the manufacturing system will proceed as further iterations through
the overall process. This will enable additional cellular manufacturing features to be
selected as they become necessary to continue improving performance. It also allows the
emphasis of the design to be modified to maintain alignment with any changes in the drivers

and constraints (performance objectives, technology, culture etc.).

Figure 4.6 shows how a cellular manufacturing system is developed through repeated
iterations of the design and implementation process. This can be likened to the solution of
a jigsaw puzzle. The first pass of concept design might select the corner pieces, and having
found three of the four, detail design would identify which corners they were and
implementation would put them in place. Having got this far, one would return to the
pieces, to find the final corner and to begin selecting the edge pieces (possibly restricting the
selection to a particular colour or other feature of the image). Building up from the corners,
these pieces would in turn be identified more precisely and then located. A similar
procedure would be repeated until the image was complete. For a cellular manufacturing
system, early features might include grouping parts machines and operators, collocating cell
equipment, and introducing flexible working agreements. Subsequent stages will build upon
the new organisation. For example, in the next stage of development, part machine

grouping may be refined in light of experience, and training budgets may be increased and
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devolved to the cell leaders to help increase multi-skilling. In addition, WIP locations may
be identified to increase visibility of WIP build up, and performance may be measured for
each cell. A third pass might include changing performance measures to remove conflict
between measures encouraging output and the requirement for controlling WIP, and set-up
reduction may be pursued to eliminate another barrier to further WIP reduction.
Development of the manufacturing system will continued in this manner until further

application or refinement of cellular manufacturing features is no longer the most expedient

way to improve performance.

Develop model of cellular manufacturing with internal and external expenence

Phase A

Concept Detail Implemen
design — -tation

Phase B
General Cm»lccp( l)clfn’l lmplcmcn
design design — -tation

CM
Features

\ Phase C
- Concept Detail Implemen
design design — -tation

Figure 4.6 Development of a Cellular Manufacturing Svstem

Since concept design has been neglected in the literature concerned with designing cellular
manufacturing systems Section 4.5 below will develop these generic process stages in terms

of the specific task of generating a cellular manufacturing concept design

Socio-technical theory argues that the design process should be compatible with the
objectives of the design. As team working, and participation in continuous improvement are

significant elements of the general cellular manutfacturing concept it is likely that these
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characteristics should be apparent in the design process. A high level of participation is also
implied by the principle of minimal critical specification. The learning design cycle described
above both supports these principles as operators will be incorporated in the learning
process. The separation of concept and detailed design also facilitates the devolution of

detailed design to those who will have to implement and operate the design.

4.5 Concept Design

Having decided that cellular manufacturing is an appropriate form of organisation for a
given production system, concept design is necessary to tailor the generic concept to a given
situation. This involves determining the relative importance of the cellular manufacturing
features and selecting an appropriate sub set for detailed design and implementation. The

stages involved in this process are described below.

l General Model of Cellular Manufacturing ]

BEREEREERERER

Important efl‘ccls of CM

v

Imponam fedtureq of CM
Strategic __ <—_Cuirent
objecuves Sup p ort featur ei/ operating system

Situation spccﬂ'xc
CM concept design

Figure 4.7 Tailoring the Cellular Manufacturing Concept

1 Because the general model of cellular manufacturing is not static, but
evolving with developing theory and practice, it is necessary to confirm and,
if required, update the general model. Reviewing literature and study visits
to cellular manufacturing implementations are important activities towards

this end.
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ii.

ii.

iv.

The route to improved performance will depend on the specific objectives
and the performance inhibitors of a given production system. For example,
the importance of reducing set-up times would depend on current set-up
times and the variety of products made. The process must therefore assess
the anticipated effects of cellular manufacturing against the current
production system to estimate the impact of these effects on the system’s
performance. Targets can then be set for the level of effects needed to

provide the desired performance improvements.

Although a cellular manufacturing feature may be associated with a desired
effect, the level of effect generated is likely to vary with the circumstances
to which it is applied. Collocation of equipment will have a greater effect on
the visibility of progress in a large factory that has each department in a
different building, than it will in small one that is all under one roof.
Therefore, it will be necessary to assess features against the current

production system to identify their potential influence.

The importance of a particular cellular manufacturing feature will be a
function of the benefit that the feature generates and the difficulty of
introducing that feature. The benefit will be a function of the number of
effects it generates, the scale of these effects and the importance of these
effects to improving the company’s strategic performance. It is likely that
there will be more than one dimension to strategic performance that will
need to be accounted for in assessing the importance of cellular

manufacturing effects.

Having identified the primary cellular manufacturing mechanisms for
achieving the desired objectives, it might then be necessary to identify the
effects of further cell manufacturing features, the main function of which are

to either, enable the primary mechanisms, or to mitigate any of their
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unwanted side effects. For example, where batch size reduction is identified
as a primary mechanism for WIP and lead time reduction, support features
may be required to negate the associated increase in the number of set-ups,

number of inspections, and amount of documentation.

V. Having established the relative importance of the various cellular
manufacturing features to the achievement of performance objectives and
their support requirements, an appropriate selection can be made for
progressing to detailed design and implementation. The effects required
from each feature, and its contribution to the target can be defined, along

with the relationships between features.

Lack of formal recognition of this stage in the design of cellular manufacturing systems
means that it currently relies on the experience of cell designers or trial and error. From the
description of the process stages above, concept design can be seen to be a complex and
creative task. It is not surprising that companies find concept design difficult. Many tools
and techniques exist to address elements of the detailed design, however there is a lack of

support for concept design.

4.6 Summary

An improved process for designing cellular manufacturing systems has been outlined, that
builds upon the general model of cellular manufacturing defined in Chapter 2. The novelty
of this approach stems from the treatment of cellular manufacturing as a general set of
system wide features that must be tailored to meet specific circumstances. This leads to the
emergence of concept design as an important and neglected stage in the design process, and
therefore, to the specification of a procedure for performing this task. The key issues raised

are highlighted below:
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The approach should provide guidance to the designer as to what manufacturing
system features are compatible with the principles of cellular manufacturing without
being prescriptive. A procedure based on tailoring an ideal or general model to a

specific set of objectives and circumstances satisfies this requirement.

Cellular manufacturing is a system wide concept, and the design process must define
the organisation of the value adding function and its interfaces with all of the
elements of the manufacturing system that are affected by cellular manufacturing.
This is defined by the range of features that are generally associated with cellular
manufacturing. Chapter 2 and Appendix A provide a current reference set of

features, which have been compiled from an extensive review of theory and practice.

The design task is decomposed using the systems life cycle, and design detail to
establish a process that incorporates a system wide concept design stage. The
purpose of this stage is to select an appropriate sub set of cellular manufacturing
features prior to undertaking detailed design of the chosen features. The design is
developed iteratively, by identifying the highest priority features, specifying these
in detail and implementing them. Then, in light of the effect on the production
system and its performance, returning to reconsider the relative priorities of the
cellular manufacturing features and make a new selection, followed by detailed
design and implementation. Development of a system wide concept design would

be best undertaken by multi-functional teams that incorporate system users.

The task of concept design is to identify important features from the general model and

define the effects required of the selected features. The process stages for concept design

have been specified in this chapter. However, as this stage has been neglected in the

literature concerned with designing cellular manufacturing systems there is a lack of tools

and techniques available to assist with this stage of the design. Chapter 5 will present a

mechanism to support the development of a concept design for cellular manufacturing.

Chapter 6 will describe an industrial application of this process.
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Chapter 5 Procedure for Cell Manufacturing System
Concept Design

The objective of this chapter is to develop a tool to support the concept design stage of the
process for designing cellular manufacturing systems established in Chapter 4. The
purpose and requirements of the tool are developed from the process definition and the
insight gained through reviewing the theory and practice of cellular manufacturing and the

design of cellular manufacturing systems.

5.1 Introduction

Concept design is the development of the general model of cellular manufacturing into an
explicit statement of the cellular manufacturing features and effects that will provide the
desired improvements in performance for a given situation. It is an important stage in the
design process because it provides direction for detailed design and implementation, and

ultimately determines the success of the manufacturing system developed.

The concept design process has been described in Chapter 4. The essence of this task is to
relate the company's strategic objectives to the various features of the general cellular
manufacturing model and select the most important cellular manufacturing features.
However, because of the nature of cellular manufacturing this is not straightforward. The

main difficulties associated with this task are listed below,
i The relationships between cellular manufacturing features and their effects is not

well defined. First, there can often be more than one explanation for the benefits

derived from a feature. Second, relationships are generally non deterministic. The
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particular effects that will be derived from cellular manufacturing features must be

estimated for each specific situation, often by subjective judgements.

ii. The relationships between the features of cellular manufacturing and the
performance of the production system are complex. There are long chains of cause
and effect between the actual changes made to the production system features and
changes in strategic performance. This, combined with the fact that the relationships
between cause and effect are many-to-many, gives rise to interrelationships.
Interrelationships mean that the effect of applying a particular feature will depend

upon the nature of the rest of the production system.

As concept design is not explicitly recognised by the majority of design processes for cellular
manufacturing it is not surprising that there is an equal deficit of tools and techniques to

support this task.

5.2 Use of Matrices for Relating System Features to Performance

Mizuno (1988) identifies matrices as an appropriate tool for indicating the presence and
degree of strength of (many to many) relationships between two sets of factors. Various
patterns of matrices can be constructed to tackle a range of problem situations. A notable
application of matrices for relating system features and performance in the design of

complex systems is quality function deployment (QFD).

QFD is a practical design tool for helping designers to cascade customers requirements for
product quality to all decisions concerned with the design of a product and its manufacturing
process (Eureka and Ryman 1988). Hjort, Hananel and Lucas (1992) explain that the
purpose of QFD is to organise large quantities of data from all stakeholders in a product
development project in order to identify the critical parameters that need to be controlled
to improve performance against customer requirements. The insight is deployed through

the development process so limited resources are focused where they will have the greatest
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impact on customer satisfaction. Descriptions of QFD matrices and procedures can be
found in Akao (1990), ASI (1989) and Hauser and Clausing (1988). QFD provides the

following benefits to the design processes:

° Focuses design on customer requirements, and competitive performance.
° Provides a forum for multi-disciplinary communication.

° Deals with complex interrelationships between design parameters.

° Structured approach to defining critical characteristics.

° Concentrates efforts upstream in the design process, to anticipate and

prevent problems arising later.

These points are elaborated in Appendix D. As can be seen from section 5.1 there is a
significant correspondence between these benefits and the difficulties identified with
developing a cellular manufacturing concept design. This indicates that a matrix method
could be usefully developed to harness similar benefits for the design of cellular

manufacturing systems.

While QFD was developed to support the design of products and their associated
manufacturing processes, Burn (1990) suggests that the use of QFD is not restricted to the
design of physical products and that it would be equally applicable to the running of a
business. However, there are only a few examples of broader applications of QFD.
Maddux, Amos and Wyskida (1991) report the successful use of QFD to clarify objectives
and define a strategy for the provision of production engineering tools by the Production
Engineering Division of the US Army Missile Command. Conti (1989% 1989") proposes
the use of QFD for managing the integration of processes: the objectives for the total

stream of processes being cascaded through QFD matrices to the sub processes.

Matrices in general have also been applied to the design of manufacturing systems. Sweeney
(1992) uses a matrix to relate various manufacturing tools and techniques to a company's

desired competitive capabilities, and a matrix is also used in the DTI Competitive
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Manufacturing Strategy procedure (DTI 1988) to present the relationships between elements

of the production system and manufacturing capability.

5.3 Development of a Matrix Approach for Cellular Manufacturing
Concept Design

5.3.1 Assessing the Potential for Direct Application of QFD

Initially, QFD was taken as a starting point for exploring how to support concept design.
Two academics involved in the same industrial case to introduce cellular manufacturing
agreed to participate in an exercise to follow the QFD process stages using the case to
provide some tangible basis for design decisions. Two half day sessions were arranged. The
author facilitated the proceedings based upon the process defined by the American Supplier
Institute (1989). Afier completing the first stage of QFD, the participants reviewed the
results. The participants were satisfied that the performance improvement priorities
generated by the process adequately reflected the cases requirements, the following

observations were made:

° Clarification and communication of strategic objectives was encouraged.

° Assumptions about the causes and potential solutions to problems were surfaced for
analysis.

) The process provides a logical procedure for prioritising change opportunities.

However, the process was found to have the following short comings:

° Different levels of objectives and solutions were generated during the process
because their was insufficient guidance as to what was an appropriate input for a
given stage in the process.

° Assigning strengths of relationships time was consuming, and became tedious,

though it also generated useful debate.

° The secondary triangular QFD matrix used for exploring the interrelationships
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between design decisions was also time consuming. This problem was diminished
by only identifying interrelationships that impinged on important design decisions.
However, due to the complex interrelationships in a manufacturing system, this

matrix soon became unintelligible.

It was concluded that basic matrix mechanism underlying QFD would be useful in
supporting the concept design of a cellular manufacturing system, but it would need to be
incorporated into a new procedure, developed specifically this purpose. In particular
construction of the matrices should be based upon defined features and effects of cellular

manufacturing, such as those presented in Appendix A.

5.3.2 A New Matrix Based Concept Design Procedure

Cellular manufacturing concept design requires strategic performance requirements to be
related to the features of cellular manufacturing. However, the relationship between these
is complex and indirect, acting through a range of interrelated, intermediate effects. Two
matrices can be used to make this logic explicit, one connecting features to their effects and

the second connecting these effects to desired strategic performance improvements.

Chapter 2 identified that while some features of cellular manufacturing will have a desirable
effect on certain aspects of performance it may not be practical to introduce them to a
production system in isolation. They might have undesirable side effects that need to be
mitigated. For example, set-up time reduction, collocation of resources and simplified
paperwork may be necessary to minimise the negative effects of reducing batch sizes.
Having identified the primary features that are required to address the desired performance
improvements it will then be necessary to review these to determine their support
requirements. Supplementary features can be identified to provide the necessary effects that
are not met by the primary features. Figure 5.1 shows an overview of this process. The

construction and use of these matrices is described in more detail below.
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Figure 5.1 Use of Matrices for Cellular Manufacturing Concept Design

Concept Design Stage 1:  Identify Important Cellular -

Manufacturing Effects | O |

The purpose of the first stage is to determine the relative potential impact of the effects of
cellular manufacturing upon strategic performance so that important effects can be identified

for further analysis. The following steps are required:

a. Construct a matrix with strategic performance objectives along the vertical
axis and the possible effects of cellular manufacturing along the horizontal
axis. The set of effects is consolidated from the effects associated with all
the features in the general model of cellular manufacturing. A generic
matrix is presented in Figure 5.2

b. Confirm strategic performance improvement priorities, and weight the
parameters between one and ten, where ten is the most important.

C. Appraise the current manufacturing system to assess the potential impact of

each effect upon the strategic performance parameters. Insert a score in the
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appropriate matrix location according to the scale of potential impact. Use
one for low impact, three for medium and nine for high. (This choice of
scoring system is based on its almost universal adoption by QFD users.)

d. Calculate the relative strategic importance of effects as follows. For each
effect, multiply the scores of impact potential with the weights of strategic
objectives, and sum these calculations. The procedure is repeated for all the
effects. The score for each effect can then be normalised back to a value
between one and ten.

€. Identify those effects that are critical to achieving the desired improvements
in the performance of the manufacturing system, and which should be taken
into the next stage of the method to identify which are the most important

cellular manufacturing features.

Figure 5.3 illustrates the construction of a matrix for relating strategic performance
improvement priorities to the effects of cellular manufacturing. 1In the partial example
shown, the highest priority objectives are reduced lead time followed by reduced cost. The
priority effects to be achieved start with improving accountability for performance and
reducing WIP, followed by reducing set-ups and reducing defects. Selection of effects to

be pursued in the next stage follows common sense application of the pareto principle.

Potential Effects of Cellular Manufacturing
e
H
]
o3
g £ §
&l £ g
3 a 3]
L1 |
3 % £ 8
z| g &< HIR:
IR
H g % 3 3 3 3 Strength of relationship
g 3 b 'g § T ° between objective and
Strategic Performance Improvement Prionitics E g g _g g g g ﬂ
Reduced Lead ime 10 9 0 9 1 3 9 S
Reduced Cost 7 9 9 9] 0 3 5 9
Y (priority x strength of
153| 63| 153| 10} 51]125{113 I relationship)
eg. (10x5)4(Tx9)=113
Figure 5.3 Construction of a Matrix to Identify Important Effects of Cellular Manufacturing
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This stage of the concept design process focuses attention upon those eflects of cellular
manufacturing that are most significant for achieving the desired performance improvements.
This minimises waste effort in pursuing process improvements that will only have a marginal
effect on strategic performance. Clarifying what are the primary drivers for improving
strategic performance provides a sound basis for assessing the benefits of cellular
manufacturing features later in the design process. It also provides some guidance for
developing the detailed design. For example, if reduction of inspection delays to reduce lead
time is the main reason for pursuing source inspection, this will strongly influence any debate

as to whether work should wait between processes for inspector verification.

Concept Design Stage 2:  Identify Important Cellular .

Manufacturing Features

Stage 2 determines the relative contribution of cellular manufacturing features to the desired
effects. This enables the identification of those features that, if applied to the production
system in question would best provide the desired effects identified in the previous section

The procedure is similar to that for stage one.

a. Construct a matrix with the effects of cellular manufacturing and their scores
of strategic importance in descending order down the vertical axis, and the
possible features of cellular manufacturing across the horizontal axis. Figure
5.4 presents a proforma for this stage. The vertical axis is to be populated
with the desired effects identified in stage 1.

b. Appraise the current manufacturing system to assess the potential impact of
each cellular manufacturing feature upon the important cellular
manufacturing effects identified in stage one  Insert a score in the
appropriate matrix location according to the scale of potential impact  Use

one for low impact, three for medium and nine for high.
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C. Calculate the total relative importance of the features for achieving the
desired effects. For each feature, multiply the score of potential impact with
the score of importance for the related effect then sum the results of these
calculations. This procedure is then repeated for all features that generate
a desired effect.

d. Select high scoring cellular manufacturing features as primary features
making sure that a significant impact is identified for each of the most

important effects.

Continuing with the example used in Stage 1 above, typical cellular manufacturing features
that might be identified as having a strong relationship with improved accountability for
performance are increased ownership of product, resources and increased dedication of team
members and increased distribution of indirect tasks. Reduced work in progress and
queuing would typically have a strong association with increased devolved scheduling, visual
control systems, pull control, increased multi-skilling and flexible working, and in cycle

inspection.

This stage performs the central function of concept design. It assembles those features of
cellular manufacturing that are most likely to bring about the effects of greatest importance
to the achievement of the company's strategic performance improvement priorities.
Together with the stage one, this defines the logic of how the company in question expects
to use cellular manufacturing to improve performance. The aim of making this logic
explicit, is to enable criticism and improvement of the proposed design concept. It also
forms the basis for detailed design, informing the detailed design of each feature with
specific objectives and awareness of interactions with other features. In addition,
understanding the link between features and strategic benefits can be useful for justifying the
cost of introducing features. However, there is a degree of refinement required to make

sure the design is viable. This is addressed in stage three below.
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Concept Design Stage 3: Determine Supplementary Support .

Features Required and Presentation

of the Concept Design
The objective this stage is to identify any difficulties there might be with introducing the
selected features, such as undesired side effects that need to be mitigated, or inappropriate
conditions that would prevent a feature from being implemented or having the desired effect.
It is assumed that if the primary features have formed a part of other cellular manufacturing
implementations then any additional features that were necessary to enable them are likely

to have been incorporated into the cellular manufacturing model.

a. Appraise each selected primary feature to identify any additional
requirements necessary to enable them. For example, reducing batch sizes
may require that SMED set-up procedures are introduced and machines
collocated. Implementing in-cycle inspection may necessitate operator self
inspection.

b. Once all the required support effects have been identified, then establish
which will be provided by the primary feature set and which will need
additional features to ensure all the primary features are viable. These
additional features should be sought in the general set of cellular
manufacturing features.

C. Finally there is a need to present the selection of features, their intended
effects, and required support features in order to inform detailed design and
implementation. The primary requirement is to present any precedencies
that exist between the various features chosen. Therefore, a network or
PERT type diagram is appropriate for this task. Figure 6.2 shows a network
diagram being used to present selected cellular manufacturing features and

their interrelationships.

This stage aims to encourage debate to determine what is required for the primary features

to work. It also endeavours to communicate the intention to take appropriate action to
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enable the primary features, thus dismissing any concerns or arguments over their validity.
The insight presented by this stage is also available to justify the introduction of cellular
manufacturing features that may not have a significant direct impact upon strategic

performance.

5.4 Summary

Tailoring the general concept of cellular manufacturing to suit the circumstances of a
specific manufacturing system is an important but neglected stage of designing a cellular
manufacturing system. The main difficulties are associated with understanding the
relationships between cellular manufacturing features and desired performance
improvements. This is complicated by the ill defined and complex nature of the cellular

manufacturing concept.

Matrices have been identified as an appropriate mechanism for presenting many to many
relationships between two sets of features. QFD has been identified as a widely known and
successful example of the use of matrices for designing complex systems. The benefits of
using this methodology for designing products correspond to the difficulties of developing
a cellular manufacturing concept design, though it has not been found to be suitable for

direct application to this problem.

A new procedure, using matrices specifically to support the concept design stage of the
process for designing cellular manufacturing systems defined in Chapter 4, has been
developed and presented. It takes the general set of cellular manufacturing features,
described in Chapter 2 and summarised in Appendix A, as its starting point, and then tailors
this to suit a specific set of circumstances. Two matrices are used to relate the features of
cellular manufacturing, through their effects upon the existing production system, to

strategic performance improvement objectives.

The method comprises three main stages:
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The first matrix relates strategic manufacturing objectives to the effects of cellular
manufacturing. Important effects are identified and cascaded to the second stage for

further analysis.

The second matrix relates important effects to the features of cellular manufacturing.
Those features that will have the most significant impact on the desired effects are

determined.
The third stage identifies the additional support features that are necessary to enable

the primary features to be implemented. The interrelationships among the various

features are presented using a network diagram.
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Chapter 6 Review of the Cellular Manufacturing Concept

Design Process

The objective of this chapter is to present a validation of the new approach to designing
cellular manufacturing systems. Application of the method in an industrial situation is
described and the impact of the method is discussed. Benefits and problems encountered
while using the method are presented. The method is also appraised by experienced
consultants and cellular marfacturing practitioners. Support is sought, for the pertinence
of the flexible general model of cellular manufacturing features and effects, for the overall

design process, and for the matrix based concept design procedure.

6.1 Introduction

This chapter describes how the new method for designing cellular manufacturing systems
was tested and developed. As described in Chapter S, initial development and testing of the
procedure for supporting concept design was undertaken at Cranfield. Parts of the method
were worked through hypothetically by academics with an interest in cellular manufacturing
systems to test its logic and assess its viability. Feedback from these sessions was
incorporated into the development of the method, so that it was defined sufficiently for

presentation to a wider audience and for application in the industrial case.

The main vehicle for testing was an industrial case study to introduce cellular manufacturing.
One of the key reasons why the Cranfield Manufacturing Centre were asked to do the work
was because the company were reassured by the approach proposed by Cranfield, and in
particular the flexible system wide concept of cellular manufacturing that was advocated.

The process was applied in the live situation of the case. Having completed and presented
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the concept design to the company, the design process was reviewed. The review involved
direct reflection on the design process by the author and a series of semi-structured
interviews with the process participants. The prompt sheet for the interviews can be found
in Appendix F. There were two main categories of interviewees: first, the company
personnel that were central to the cellular manufacturing project, and second, the Cranfield

staff and manufacturing consultant that participated in the case.

The above mentioned Cranfield staff and manufacturing consultant had wider experience of
designing cellular manufacturing systems that enabled them to comment on the extent to
which the findings from this case could be generalised. The external validity of the research,
was strengthened further by presenting the method to additional consultants and
industrialists with experience of designing cellular manufacturing systems for their opinion
onits applicability and value. The industrial case is described in sections 6.2, 6.3. Results

and reflections on the design process are discussed in section 6.4.

6.2 Industrial Case Study

6.2.1 Company Background

The company is a subsidiary of a large British engineering company. It is approximately a
£9M business (though most of this is value added as the majority of their current business
supplies free issue' material), employing around 200 people. The primary products are
nozzle guide vanes and turbine blades for the gas turbine industry. These are complex
precision components that require multi-axis grinding and advanced manufacturing
processes such as electro-discharge machining and laser drilling. They have small bills of
material, generally comprising one or two main castings and sometimes one or two

additional components such as small tubes or plates.

! Free issuc refers to material for processing by a supplier or sub-contractor, which is provided free of charge
by the customer.
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The company are a sub-contract manufacturing business with no design engineering
capability. One customer, currently dominates their business, though they do supply some
other aerospace companies and the industrial gas turbine market. The company live with
the expectation that this customer will withdraw business for their own production facility.

They are therefore looking to win new business that will reduce this dependence.

The company's business is low volume high variety. Typically they would have around a
hundred different part numbers on their schedule at any one time. More specifically, the end
products for their components have long life cycles and there is significant visibility of
engine programmes even if some of them are intermittent. However, short term fluctuations
in these programmes can be quite pronounced. Their role as an off-load subcontractor

exacerbates this situation.

6.2.2 The Project to Implement Cellular Manufacturing

During 1994 the company was made aware of two significant new requirements for their
major customer. The first was for 50% reduction in lead time, and the second was for the
end of free issue material. Reviewing their strategic manufacturing performance

requirements, the company reached the following conclusions:

Lead time reduction is currently their most critical performance improvement
requirement. A target has been set to reduce lead times by the order of 50% in
response to the direct request from their primary customer. With a large part of
their business arising from tactical off-loading by their customers own manufacturing
facilities, reducing lead times will also make them more flexible to customer
demands and open up more business opportunities. In addition reduced lead times

will also support their efforts to win business beyond their dominant customer.

The second most important improvement requirement is that of cost reduction, to

reduce the impact of their impending liability for the cost of inventory, in
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anticipation of the change away from free issue material. Any new business with
other companies is likely to be based on fully bought out material rather than free
issue, so this change in performance will also prepare the company for entry to a

wider market.

Quality is an order qualifying performance characteristic in the aerospace industry,
and the company's quality performance is considered to be satisfactory by their

customers. However, they are aware that their cost of quality is high.

The company had identified cellular manufacturing as an approach to production
organisation with a reputation for enabling significant reductions in lead times and work in
progress. The Cranfield Manufacturing Centre became involved in May 1995 to provide
support and guidance to help define a cellular manufacturing system to achieve this
objective. In line with the process for designing cellular manufacturing systems presented

in Chapter 4, Cranfield proposed the following project outline.

1. Review of current system and concept design
2. Detailed design

3. Implementation

4, Audit performance and review design

A project team was set-up to support the execution of this process. The core team
comprised the company's manufacturing director and two Cranfield University members, and
a consultant from Cranfield Innovative Manufacturing. Additional members were drafted
in as needed to support specific tasks and analyses. The main role of the core project team
was therefore to determine the timetable of process, initiate design activities and recruit
temporary project team members, and communicate a coherent picture of the development
of the design. Formal communications included news letters, presentations, and forums to

supplement informal mechanisms.
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The project was initiated in May 1995. The first three months were mainly taken up with
data gathering, general education about cellular manufacturing, reviewing the existing
system and development of the concept design. Detailed design began with part machine
grouping as this was required to make the concept more tangible for the company, though
layout and cell manning were progressively developed to support grouping decisions. The
cellular organisation was presented and accepted in December 1995. Part machine groups,
layout and cell teams were refined in early 1996 and further elements of the detail design
were initiated, such as SMED analysis of set-up procedures and the generation of
appropriate strategies for reducing set-up times. For internal reasons, relocation of
machines could not begin until May 1996 and then all machines were moved over a two
month period. The company is continuing to detail design and implement the concept

design.

This case focuses on the first element of the process and describes its implications for the
subsequent stages. Concept design requires a review of the current manufacturing system
to determine problems and barriers to improved performance. More specifically the
objectives of this analysis are to identify what effects of cellular manufacturing would help
improve the company's performance, and to identify what features of cellular manufacturing

they could apply to provide the desired effects.

6.3 Concept Design

Cranfield took primary responsibility for concept design, due to their broader experience and
depth of knowledge of cellular manufacturing, and because the company wanted an
objective assessment of their production system and its performance. The approach taken
to concept design followed the procedures described in Chapter S. The model of cellular
manufacturing features and effects was used as a framework for assessing the current
manufacturing system. A variety of information sources were exploited, including company
data, direct observation, and the experience and opinions of company personnel through

attitude surveys, workshops and informal discussions. This was achieved by spending time
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in the company, observing and questioning features of their current organisation and
working methods. This time was also used to introduce their personnel. and the foremen
in particular, to the principles and techniques of cellular manufacturing and discuss the
potential of these for the company. Their views were then incorporated into the

development of the concept design.

Stage 1: Identification of Important Cellular Manufacturing

Effects ~ -

Following the procedure described in Chapter S and illustrated by Figure 5.2, each cellular
manufacturing effect was considered in turn to identify those that would improve lead time
and cost performance of the company's production system. In effect, the general model of
cellular manufacturing effects was used to structure the analysis of the current system's

performance. The main findings of this analysis are summarised below.

The company turns its stock over approximately five times a year. As there is very little raw
material stored or finished parts, the majority of inventory is WIP_ If this is averaged across
the work centres, there would be queue of roughly a day in each WIP pool, while the
operation time for a part can often be measured in minutes. As there are more work centres
than people, some queues will be longer than one day. It is estimated that the value of WIP
will double if their entire business is converted to fully bought out material. Reducing WIP
can therefore be seen to have a major potential for improving lead times and for reducing
cost impact of the move away from free issue material. Simplified production planning and
control with reduced WIP was seen as an opportunity for further cost reductions. In
addition, the potential for reduced work-in-progress and consequently lead times to reduce
the number of defects produced by a faulty process before its consequences were discovered
down stream were noted, along with the greater visibility of rework or replacement
requirements provided. These last two factors will also set-up a benign spiral as less WIP

will be required to buffer against uncertainty.
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Reducing set-up times was determined to be an important effect of cellular manufacturing
for the company because set-ups consume a significant proportion of their lead time and
capacity. It was estimated that approximately 5% of the lead time for a batch of one
product would be taken by setting. In addition to the direct consumption of lead time, long
set-ups cause a reluctance to break down running jobs and encourages the ganging together
of several batches. It also means that small rework batches are delayed waiting for other
batches to arrive and make it worthwhile setting the machine. These consequences of long
set-up times all further increase lead time and the level of WIP. Setting is also a non value
adding activity that only adds costs to the product. Analysis of a typical set-up on a CNC
surface grinding machine indicated that over half of the set-up time was taken up by
preparation. It was also noted that the CNC programmes need to be adjusted between
different machines of the same type. The main elements of the inspection system and quality

performance are presented in Figure 6.1 below.

Inspection System and Quality Performance
I Tnspector ~goods receipt” I Cost of Quality = 20% of salcs
* A Subcontract ervors = 30%
Set up machine - Total Rejects = 4% Dimensional defects = 28%
. e - Supplier casting defects = 21%
Other =21%
Move to next I Inspector “first-off™ ]
machine.
] . . Dressing errors =29%
Repeat “'f“l . Perform operation on cach 4% of total rejects Damage =239,
:1: e | i... productinthebaich found at overcheck Dimensional defects ~ =20%
O hres v Other - 28%
been o I Operator 100%inspection I
I Inspector sample “pass-off™ '
[ Inspector 100% final inspcclJ
' Inspector sample ovcrchcckJ
Figure 6.1 Inspection System and Quality Performance



In addition to the operators inspecting every part after every operation, all batches must be
“passed off” by a production inspector sampling the batch. The sample is often taken as the
batch is being processed to reduce the time taken to identify process abnormalities and to
reduce the impact of inspection upon lead time. A batch is not allowed to move on to the
next process without a “pass-off”, and a process operated by a semi skilled operator will not
be set-up for the next part. A “pass-off” is also required at the beginning of each shift
because the majority of dimensional errors are attributed to variation in the loading of parts
to the fixture. Final inspection is a visual inspection of all parts by semi skilled inspectors.
Overcheck completes outstanding paperwork and audits critical dimensions. In reality,
overcheck exceed their audit requirements, often doing 100% of pieces. 4% of defects are
found at overcheck though these parts will have already been passed by many other

inspection stages.

Reducing the amount of defects and stemming the passage of defective items through the
system would allow duplicate inspection operations to be eliminated. This would reduce the
cost of quality and reduce inspection delays. Improving the reliability of production would

also improve average lead times and reduce the need for WIP buffers.

Because many of the company's products are manufactured in ring sets (a circular
arrangement of components similar to their assembly in the customers product), the
complexity introduced by non-conformances are particularly pronounced. It is desirable to
produce parts in full ring sets because quality is more reliable and to achieve maximum
efficiency at bottleneck machines. Therefore, the possibility of defects means that a bond
of spare parts is held in front of the first radial process to fill in any gaps that arise.
However, if any items are lost at a radial process then the batch must proceed as a partial
batch. Moreover, if it subsequently decided to rework the part, then it will have to wait for
another batch to arrive for processing that is a part short. Reducing defects and reducing
the time taken to deal with non conformance would lessen these issues and thereby reduce

work in progress, lead times and lead time variability.
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The current functional organisation means that no department completes a product. In fact
a product will more than likely pass backwards and forwards between departments several
times throughout its manufacture. Therefore, it is difficult to measure performance of a
department in a way that reflects its contribution to the performance of the total
manufacturing process, such as lead time and the total cost of making a product, and it
would also be difficult to affect performance against such measures. Consequently
performance of current departments is measured in terms of output and efficiency such as
standard hours produced, overtime, and utilisation of direct labour and machines. These
measures encourage maximum productivity from individual resources but they encourage
over production with its detrimental effect on cost and lead times, and will discourage
stopping production in order to introduce improvements. Increasing accountability for, and
making more visible, performance related to customer satisfaction will therefore encourage
desirable behaviour, in both, the management of day to day operations and also guiding and

encouraging continuous improvement.

Important Effects of Cellular Manufacturing
Strong impact on:
Effects of Cellular Manufacturing Lead time Cost
+ Reduced WIP and queuing o &
» Reduced number of operations Z &
« Reduced m/c down time for set ups o v,
» Reduced defects ] @
+ Reduced time to isolate and address non- ) v
conformance
+ Increased accountability for performance g o
« Increased visibility of performance ) %)
» Increased acceptance and use of 7 e
performance information
+ Improved problem solving / Kaisen < v
Figure 6.2 Output from Stage 1: Important Effects of Cellular Manufacturing
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Due to the large number of effects related to lead time and cost, it was decided that only
those that had a significant impact on both would be used to determine desirable cellular
manufacturing features. This was completed in a single half day session. Figure 6.2
presents the output from stage 1. These effects were rated highly for improving both lead
time and cost, and were taken forward to the next stage of concept design for further
analysis. In some cases the description of an effect was modified slightly so that it better
reflected the company's requirements. Where similar effects were identified, such as reduced
WIP and reduced queuing, they were combined so that they did not artificially inflate the

importance of their associated features.

Stage 2: Identification of Important Cellular Manufacturing

:
Features !%

This stage considered the features of cellular manufacturing in light of the current
manufacturing system to determine which ones would be most likely to generate the desired
effects identified by stage 1 above. Following the procedure described in Chapter S and
illustrated by Figure 5.4, the project team debated the impact that each of the features would
have on the effects to reach an agreement on how each relationship should be scored. This
proved to be quite a long arduous task, taking two half day sessions to complete. While
the debate was very useful in surfacing opinions and assumptions about how the
manufacturing system will be affected by the cellular manufacturing features, the team
decided only to identify those relationships that were high impact at this stage. It was felt
that any further refinement would be meaningless, given that the aim was to identify a few
most significant features, and that the importance of effects determined in the previous stage
resulted in an equally coarse classification with all the desired effects being of equal

importance. The matrix generated from this analysis is presented in Figure 6.3.

The features that clearly stood out from the general set as the most important for achieving

the desired effects were:
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L] Ownership of the product and resources.

. Dedicated team.
° Operator inspection.
] Measures of cell performance related to customer satisfaction and results
published.
Stage 3: Determination of Supplementary Support Features | ;

Required and Presentation of the Concept Design |

Having identified the primary features required, each one was then analysed to determine
if any further features were necessary to enable the introduction of the primary features.
Much of this information had been debated in the previous stage, so it was relatively easy
for the project team to brainstorm the support features needed, using a fishbone diagram to

structure the output. The results from this process are presented in Figure 6.4 and below.

Support Features Required

Operator inspection Ownership of product
& resources

I Comply with quality systems | Reduce seting time to increase setter &
m/c availabihity, & allow load balancing

Improved system for operator SMED. increased number of workers capable of
trmmng & qualification setting. point of use storage of 1ools & consumables,
improved house keeping

— Increase incentive to identify & correct — Improve balance of load on resources
defective work |

Increased ownershup of product
Performance measures related to 5 y .
customer satisfaction Provide desired

efTects of cellular
manufacturing

Local WIP control

Provide each cell with necessary skills &
capacity, & reduce waiting for appropriately —

skilled operator
Increased owmnerstup of

products and resources

Improve balance of load on resources

Increased multi skilling /
flexible working

Dedicated team Measure cells performance related to
customer satisfaction & publish results

Figure 6.4 Cause & Effect Analysis of Support Features Required
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Having determined all the features that are critical for achieving the desired effects, either
for their direct influence or for their support of such features, they were then arranged as a
network to show the precedencies between them. Figure 6.5 shows the network developed
for the case. The arrows indicate the direction of dependence. For example, increased
multi-skilling and flexible working will facilitate the dedication of personnel to cells. The
double arrows indicate that the two features are mutually supportive. The fishbone diagram
and associated network were developed from the insight into the relationships between
features generated by the debate in the previous stage of the method. Stage 3 was

completed in a single half day session.

Selected Cellular Manufacturing Features
& Their Interrelatiosnhips

Multi- skllhng/ ___» Dc.dlcalcd team
Flemblc working

Customer
satisfaction
measured

Ownership o
products
&resources

Published
performance
WIP control

Dperator approval .Operat‘or
nspection

Figure 6.5 Network Diagram of Sclected CM Features

6.4 Results and Reflections on the Design Process

The concept design has been accepted by the company management and the project has
since proceeded through detailed design and into the early stages of implementation. The

company is fully committed to cellular manufacturing, and Cranfield's contract has been

118



extended to support implementation and future development of the cells. The disruption of
moving machines caused an initial drop in output of approximately 50%. However, with
a month output began to increase again and within two months had surpassed the pre-move
production rate. Progress is being made in improving performance, and while overall figures
are not yet particularly impressive, some local examples of the benefits of the cellular

organisation have been observed already by company managers:

A foreman noticed that close proximity of processes such as dressing and electro-
discharge machining has improved feedback between the operations providing EDM
with clearer understanding of the machined profile required by the dressing

operation, and leading to a reduction in defects.

The production control manager has found that ownership and collocation has
enabled local scheduling to take place between some capacity critical processes, in
order to improve the flow of material through the factory. Operators are loading
jobs, and in some cases expediting work from previous processes so that they can

meet the requirements of subsequent processes.

These benefits confirm the indications provided by the concept design that it would be
important to create cells with a high level of ownership. The importance of ownership
stressed in the concept design had a significant influence on the process of part machine
grouping. First, it helped their management to understand why the “process based cells”
they had envisaged prior to Cranfield's intervention would not provide the desired
performance improvements. Second, it supported the use of Production Flow Analysis,
which besides having a more extensive practical track record than many other procedures,
is a manual procedure which advocates intervention by the designer to modify routings in
order to eliminate out-of-cell operations. The rest of this section appraises the new
approach for designing cellular manufacturing systems against the specified requirements

for an improved method.
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6.4.1 General Model of Cellular Manufacturing: System Wide Features and Effects
Defining cellular manufacturing as the general set of mutually compatible system wide
features and their effects associated with the support and exploitation of semiautonomous
product focus groupings of production resources was accepted by all the interviewees
involved in appraising the process. It was considered to be a useful way of making an
otherwise abstract concept tangible. Compilation and maintenance of a current list of
features and effects was perceived to encourage companies to take an external perspective
and to provide a common understanding and a useful checklist. The list was however
described as daunting by one person, who suggested improving the presentation. Ideas
included keeping all the elements on one sheet of paper and using colour codes to highlight
common themes. It also became clear in use, that while presenting the concept is more
logically grouped by features then effects, when using the model most of the search was for

the features associated with a desired effect.

The system wide general model of cellular manufacturing drew attention to the range of
changes beyond a new layout that would be needed to make cellular manufacturing
successful. Being aware of this in advance prevented the benefits of cellular manufacturing
from being delayed, and helped to reduce the difficulties encountered in the early stages of
the project when there was still significant cynicism of the cellular manufacturing from some
parties within the company. However, the large number of features in the model also raised
the problem of what to do first. An explicit concept design stage in the design process
allowed the project team to identify appropriate priorities for the introduction of cellular

manufacturing.

6.4.2 Tailored Approach

It was unanimously agreed that all situations were different and that some features or
techniques would be more or less appropriate in some circumstances than others. Not
accounting for this was risking wasted effort and poor results. The consultants in particular,

pointed out that sustaining a major programme of change is difficult. The drivers behind
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such a change must therefore be significant to the business. They also felt that tailoring the
nature of the concept to a given situation was an essential part of engendering ownership

and commitment to the change.

One proviso was raised. The concept should not be so flexible that anything goes. Some
basic principles of cellular manufacturing must be at the core of any implementation. The

model and the design process were criticized for not making this clear.

6.4.3 Iterative Approach

Most responses concerned with iteration, suggested that as clear a vision of end point as
possible was desirable, but agreed that for a change as significant and company specific as
cellular manufacturing, no more than a general outline would be possible. Therefore
iteration was desirable to allow the inclusion of new understanding as it develops. The
manufacturing director also made it clear that the company could only cope with so much
change at once, and that iteration in the medium term was essential. A consultant added that
making the iterative nature of the design clear upfront prevents fixed end points being

assumed for the design and therefore reduces the change of stagnation.

6.4.4 Concept Design Procedure

Stage 1

The selection of important effects was a valuable intermediate stage in the identification of
an appropriate sub set of cellular manufacturing features from the general model, because
it made clear the basis for selecting particular features. For example, there was initially a
significant misconception within the company as to the function of collocation in cellular
manufacturing. The belief that this feature was primarily concerned with reducing transport
times diminished the perception of its importance: it was apparent that moving work

between queues more quickly would not have much of an effect on lead time. However,
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linking collocation with ownership, visibility, and communication rectified this situation.
Consequently, greater effort was made to collocate processes than would have been the

case.

The consultants asked to comment on the method, suggested that in decomposing the
problem into a logical sequence of cause and effect the method allows a wider involvement
in the planning process and supports an appropriate relationship between “experts” and
managers. Exposition of a reasoned argument was also considered to help obtain

commitment to the design.

The matrix was found to be easy to understand, and provided an appropriate logic and
mechanism for identifying important effects. It took performance improvement objectives
into account along with the potential impact of the effects on the current manufacturing
system. The large number of effects in the general model of cellular manufacturing required
that a vigorous selection procedure was used to isolate the most critical effects. This was
achieved by only considering the two most important strategic objectives. This also
simplified the application of the matrix procedure as it became possible just to identify those
effects that were considered to be significant to both objectives. It was pointed out that the
matrix procedure assumes a certain level of knowledge, and that it was likely to need a

skilled facilitator in many cases.

Stage 2

The matrix was also considered to provide the appropriate logic for the identification of
important features. The scoring system was simplified at this stage as well. This was partly
because the simplified scoring procedure used to determine important effects meant that
those selected were all of approximately equal significance. Also, as the aim of the
procedure is to determine those features that will have the greatest impact on performance
there was little point in using an elaborate scoring system at this stage. In practice, it was
considered sufficient to identify strong relationships between features and effects. The

relative significance of a feature is indicated by the number of effects it is related to.
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Again the matrix approach was considered to be helpful in allowing wider participation in
the design process, and similar concerns were expressed by the consultants about the need
for facilitation to ensure a successful result. The stage two matrix took twice as long to
complete as stage one. It was suggested that advanced briefing of the selected participants
would smooth the running of the process. The general model of cellular manufacturing is
compiled from many specific explanations of features and their effects, and consequently it
is possible to identify several similar effects as being important. This would obviously bias
any computation relating features to these effects. In this case, the problem was overcome
by editing the set of important effects identified before they were imported into the matrix
to determine critical features, reducing the repeatability and precision of the procedure.
Another option would be to refine the general model so that such duplications were

eliminated.

The general opinion was that the advantages outweighed the difficulties associated with the
technique. A consultant expressed the view that, as with techniques such as IDEF, Goal
Directed Project Planning, and Quality Function Deployment, most value was derived from
taking part in the process and the achievement of consensus about a set of decisions, rather

than in the details of the solution developed.

Stage 3
Separating the selection of primary features from the selection of support features was
useful because it clarified the value of support features and helped to make sure that primary

features could be implemented effectively. Some examples are given below:

Stage 3 drew attention to the company's need to increase multi-skilling, (in
particular, cross training of setters and increasing the number of operators
competent at setting) in advance of the reorganisation to cells. The fact that the
company experienced some difficulties because they were not able to respond
adequately to this requirement before they were forced to move machines indicates

the value of such insight.



Set-up reduction was also highlighted as a prerequisite to reorganisation. The
SMED analysis revealed a large number of opportunities to reduces set-up times.
Some of the solutions generated could be implemented immediately, but it was
discovered that the cellular organisation was necessary to provide visibility of
progress to enable adequate set-up preparation. Point of use storage of tools and
pre-loading of pareto CNC programmes require that a clear relationship between
part and machine exists. However, advanced knowledge of the options for set-up
reduction, meant they could be implemented rapidly after the reorganisation to cells.
It also provided guidance and constraints to the design of other manufacturing
system elements such as, layout, management of tooling, visible control,

performance measurement, and operator inspection.

Stage 3 also highlighted the interdependence of ownership, dedicated teams, and
collocation. It was clear therefore that the detailed design of these features would
need to be developed in conjunction with one another, and that all three elements

would need to be implemented simultaneously.

The network diagram was considered to be appropriate for presenting the interrelationships
between cellular manufacturing features, providing a foundation from which could be
developed, for example, into a Gantt chart to support the planning of detailed design~ and
implementation. It was suggested however, that there was more than one purpose to the
presentation of the concept design, including the broader communication of a vision and to
seek justification for the change. The first could be improved by generating a pictorial
representation of the features and effects. The second would require a more explicit

presentation of performance improvement expectations.

The overriding conclusion from the process participants involved in the industrial case was
that the concept design procedure has been valuable in helping the company identify a
coherent set of cellular manufacturing features that are critical to achieving their desired

. performance improvements. The opinion of those with a broader perspective of the problem
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of designing cellular manufacturing systems, was that the approach provided a useful way
of perceiving the cellular manufacturing concept and the design process, that was by its
nature, generally applicable. It was suggested by one consultant that it made explicit the
approach that he would adopt intuitively. The concept design procedure was considered to
appropriate logic for structuring the decisions associated with developing a tailored cellular

manufacturing concept.

6.5 Conclusions

A novel approach to the design of cellular manufacturing systems has been tested in an
industrial situation and against the experience of consultants and industrialists. The test has
provided evidence to support the validity of the system wide model of cellular
manufacturing, the iterative design process (incorporating a concept design stage for
tailoring the general concept of cellular manufacturing to a specific situation), and the

concept design procedure.

The model of cellular manufacturing as a general set of associated system wide features was
accepted and found to be a useful communication aid and check list. The range of features
identified as being critical to the company's desired performance improvements is compatible

with a system wide concept of cellular manufacturing.

There was unanimous approval for a tailored approach to the introduction of cellular
manufacturing. The fact that some features were identified as being critical to the company's
desired performance improvement, while others were considered to be insignificant, gave

further credibility to this approach.

It was confirmed that an iterative design process was an appropriate practical response to
the complexity of a manufacturing system, the scale of the change involved in introducing
cellular manufacturing, the flexibility of the cellular manufacturing concept and the potential

for environmental changes over time.
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The concept design stage was performed successfully and provided useful insights that were

considered to have improved the design of the cellular manufacturing system.

° Explicit statement of overall company performance improvement objectives
provided a common understanding upon which to base design decisions and an

integrating effect on the design of the various elements of the manufacturing system.

° The matrix procedure for supporting concept design was used successfully to help
identify the relative importance of cellular manufacturing features and their effects

to achieving the company's performance improvement objectives.

° The matrix procedure was found to be sufficiently straightforward that all levels of
the organisation could participate in its construction. The Stage 2 matrix was time
consuming to construct but the insight developed and communicated by participating

in this process was considered to more than justify the time spent.

° Identification of support features was shown to be a valuable aspect of the concept
design procedure, as several support features were identified as being required to
enable the primary features selected. It was felt that this helped reduce the potential
for negative effects in the early stages of the change that would have delayed
benefits and could have undermined the project before the value of cellular

manufacturing had been demonstrated.

Concept design proved to be an important stage in the process of developing a cellular
manufacturing system in this case, helping to focus attention on those features that provided
the greatest improvements to the performance of their current system according to their
strategic objectives. The process also increased the company's understanding of cellular
manufacturing principles and techniques, and the mechanisms by which they improve

performance. This helped their personnel contribute more effectively to the detailed design
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of the various elements of the manufacturing system, and is expected to reduce the chances
of the design being corrupted during implementation. It also means the company will be
better equipped to develop the design to meet future requirements. The concept design is
in the process of being developed into detail plans and implemented. Initial feedback from
the new cellular manufacturing system is encouraging, and significant performance

improvements are anticipated in the future.
The evidence provided by industrialists, academics, and consultants suggests that the novel

approach for designing cellular manufacturing system developed by this research, is suitable

for wider application than just to the specific circumstances in which it was tested.
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Chapter 7 Discussion and Conclusions

This chapter discusses and concludes the findings of this research. The issues raised by
the review of the theory and practice of cellular manufacturing and the design of cellular
manufacturing systems, and by the development and testing of a novel approach to the
design of cellular manufacturing systems, are compared with the research problem and
aims submitted by this thesis. The research process and the limitations of the findings are

discussed, and further opportunities for research arising from this work are identified.

7.1 Introduction
The problem undertaken by this research was how to provide a system wide concept of
cellular manufacturing and support the design of a cellular manufacturing system based on

this concept. The research aims developed to address this problem are given below.

1. Develop a system wide definition of cellular manufacturing that provides a useful
reference to guide the design of cellular manufacturing systems.
ii. Identify the strengths and weaknesses of current approaches to the design of cellular

manufacturing systems.

iii. Determine the requirements for an improved approach to the design of cellular

manufacturing systems.

iv.  Develop a practical method for designing cellular manufacturing systems that
satisfies the requirements defined by iii. above.

V. Test and refine the method through practical application.

The nature of cellular manufacturing and the problem of designing cellular manufacturing
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systems have been explored and a new model has been proposed. Existing methods for
designing cellular manufacturing systems have been reviewed and their short comings have
been identified. An improved design process, building on the new model of cellular
manufacturing has been specified and developed to undertake the design of a cellular
manufacturing system. Concept design was highlighted as an important but neglected stage
in the design of cellular manufacturing systems. A procedure was developed for tailoring
the general concept of cellular manufacturing to a company’s specific objectives and
circumstances. The new approach to designing cellular manufacturing systems has been
tested by using it in a real industrial case and it has also been assessed by experienced
independent designers of cellular manufacturing systems. The following discussion will

compare the results of this research with the research aims submitted.

7.2 Develop a System Wide Definition of Cellular Manufacturing

The purpose of clarifying the definition of cellular manufacturing was to determine the task
of designing a cellular manufacturing system, and to provide a useful reference for this. The
nature of cellular manufacturing has been explored by reviewing its historical development

into current theory and practice.

Cellular manufacturing is an important approach fto the organisation of
production with the potential to provide significant improvements in

performance over traditional organisations.

This research supports the view that cellular manufacturing is a system wide concept and
that it is also a flexible concept. These characteristics have been incorporated into a novel
definition of cellular manufacturing. The model has been substantiated by the compilation
of a wide range of cellular manufacturing system features and their desired effects from the
review of theory and practice. Evidence to support the validity of the model was generated

by this research and is discussed in section 7.6.
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Cellular manufacturing is defined in this thesis as a general set of mutually
compatible production system wide features for supporting or exploiting
self contained groupings of mamufacturing resources. This model is
applied to a particular situation by selecting the appropriate subset of

Jeatures for the specific objectives and constraints of that situation.

The nature of cellular manufacturing as defined above makes for a difficult design task. The
task is further compounded by the complexity of manufacturing systems, and the poorly

defined relationships between cellular manufacturing features and performance.

7.3 Identify the Strengths and Weaknesses of Current Methods for

Designing Cellular Manufacturing Systems
A review of the theory and practice of designing cellular manufacturing systems revealed
that the majority of methods were concerned with part machine grouping. These undertake
an essential task in the design of a cellular manufacturing system, however, the scope of the
design problem addressed by these methods is inadequate. Moreover, the restricted focus
of research in this area has resulted in the development of many procedures that are not

actually capable of tackling real industrial problems.

There is a small number of methods that consider the broader impact of cellular
manufacturing on the production system. None of these were adequate for the task of
designing a cellular manufacturing system based on flexible general model developed by this
research. All the methods reviewed were associated with one or more of the following

shortcomings:

° Are based on a fixed and restricted concept of what features comprise cellular
manufacturinig, and assume a fixed sequence of introduction is suited to all cases.

° Provide no guidance as to what principles or manufacturing system features should
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be considered for the introduction of cellular manufacturing.

Neglect aspects of the production system.

Do not link the design of cellular manufacturing system features to strategic
performance improvement objectives.

Do not address the complexity of manufacturing systems. Do not tackle the

interrelationships between design decisions.

None of the methods reviewed addressed the tailoring of general mode! of cellular

manufacturing to a specific situation.

7.4

It is concluded that a new, improved approach to the design of cellular
manufacturing systems, which builds upon the new model of cellular

manufacturing, is required.

Determine Requirements for an Improved Approach to the Design

of Cellular Manufacturing Systems

The issues raised by reviewing the nature of cellular manufacturing and the existing methods

for designing cellular manufacturing systems above, were used to specify and develop a new

improved design process.

The primary requirement for an improved approach is that it should
capable of putting into operation the flexible general model of cellular

manufacturing defined by this research.

The auxiliary requirements determined to be necessary to satisfy the primary requirement

are as follows:

An improved approach must address the full extent of the manufacturing system

affected by the cellular manufacturing concept.
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° An improved approach must contain a stage and procedure for tailoring the

general model to the specific circumstances and objectives.

In order to be effective, an improved approach would also have to recognise the complex
interrelationships between production system elements and help the designer to comprehend
the impact of cellular manufacturing features on the performance of the production system,
despite being reliant on weak and conflicting theories. Section 7.5 describes the new
process for designing cellular manufacturing systems developed to satisfy these

requirements.

7.5 Develop a Practical Method for Designing Cellular Manufacturing

Systems Based on the Specified Requirements

A novel approach to designing cellular manufacturing systems has been
developed that incorporates an explicit concept design stage for tailoring
the flexible general model of cellular manufacturing to specific

circumstances and objectives.

Concept design addresses the primary requirement defined by this research for an improved
approach to the design of cellular manufacturing systems. It also reduces the level of design
detail considered to allow a wider range of the production system elements to be considered

together. In this way it helps to address the complexity of manufacturing systems design.

By starting with a comprehensive system wide model based on the theory and practice of
cellular manufacturing, and paring this back to those elements that are critical to the specific
manufacturing system in question, the process avoids the criticism that it pays insufficient

attention to any particular aspect of the manufacturing system.
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The design process is iterative to help to cope with the complexity of the manufacturing
system, the ramifications of cellular manufacturing features, and the poorly defined
relationships between cellular manufacturing features and performance. Iteration also allows
the process to account for changes in the objectives and constraints imposed upon the
system, encourages continuous improvement and allows for development of the cellular

manufacturing concept.

Concept design has been identified as an important but neglected stage in

the design of cellular manufacturing systems.

As a consequence, this research has focused on the development of a procedure to support
the concept design stage of the process defined above. The main difficulties with this task
are associated with understanding the impact of cellular manufacturing features on
performance. The is impeded by the complex nature of cellular manufacturing and the

competing theories, which result in poorly defined relationships.

A matrix based procedure has been developed to relate the features of the
general case of cellular manufacturing, through their effects on the existing
production system, (o strategic performance improvements. The matrix
procedure provides a framework for determining the relative importance of
the cellular manufacturing features to achieving the company's desired

performance improvements.

Validation of the new, improved approach to designing cellular manufacturing systems, and

its concept design procedure, is described in sections 7.6 and 7.7 below

7.6 Test and Refine the Method Through Practical Application

The extent to which the new approach to designing cellular manufacturing systems satisfies

the requirements specified, and the practical value of this method were tested in an industrial

133



case study, and against the experience and opinion of industrialists, academics and

consultants.

A system wide approach is necessary and has been provided by the method
developed.

This research has provided evidence to support the flexible system wide model:

° All the features contained in the model have been associated with the theory and
practice of cellular manufacturing.

° Not all the features are associated with every application of cellular manufacturing.

° The industrial case study identified a coherent subset of production system features
from this model as being critical to achieve the company’s desired performance
improvements.

° The model was accepted by experienced industrialists, academics and consultants.

The case confirmed that a systems wide approach was important because the company
agreed that simply reorganising the machines and people would not provide substantial
benefits and that the additional system elements identified were significant inhibiters to
improved performance. The concept design developed in the case identified a range of
manufacturing system elements, from skill levels and facilities layout to set-up procedures
and performance measurement, as being important. It is of course possible that these
features could have been identified without using the improved process. However, this
approach has provided a systematic method to make sure that all features of cellular
manufacturing are considered, so that the only features that were not included in the concept

design were those that have been deliberately excluded.

It is necessary to have a tailored approach to the design of cellular

manufacturing systems, and has been provided by the method developed.
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The fact that a coherent subset of the features contained in the general model of cellular
manufacturing were identified as being critical to the case situation, while others were
considered to be insignificant supports that view that cellular manufacturing is a flexible
concept. A tailored approach to the design of cellular manufacturing systems saves effort
from being wasted, or worse performance from deteriorating as a result of introducing
features that are inappropriate to a specific situation. The review of the design process in
the industrial case suggested that the method has helped to identify an appropriate subset
of cellular manufacturing features, enabling the company to focus limited resources on
introducing those features that would give the most benefits. While the selected benefits
may have been identified without using the method defined by this research, the new
approach has provided a systematic and structured way to identify the relative importance
of cellular manufacturing features to achieving the company’s desired performance

improvements.

The ability to address the complex impact of cellular manufacturing on the
production system despite the ill-defined relationships between cellular
manufacturing features and performance, is important and has been

provided for by the method developed.

Complexity, and poorly defined relationships between cellular manufacturing features and

performance are addressed in the new method by four key aspects of the new method.

° An explicit concept design stage, where the interaction between design features can
be considered.
® Iteration, to allow the design to accommodate the new insights generated as the

concept is developed and applied to a specific situation.

° A novel matrix procedure that can utilise subjective data, and facilitates the
organisation of knowledge from multiple sources.

° An explicit stage for determining the support requirements of those features that had

been identified as having a significant impact on performance.
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The fact that support features were identified in the industrial case and were considered to
be important by the company supports both the notion that identifying interrelationships will
improve the cellular manufacturing system design and also that the proposed process has
been successful in encouraging this action. Making important interrelationships explicit was
also found to have several benefits for communicating the design in practice. First it helped
to justify the need for features that would not have a large direct impact on performance.
It was also necessary to convince people that it was feasible to introduce some of the

primary features.

The new approach to cellular manufacturing has been successfully tested in an industrial case

and against the experience and opinions of industrialists, academics, and consultants.

It is concluded that the new method for designing cellular manufacturing
systems, developed by this research meelts the criteria specified as

requirements for an improved approach.

7.7 Limitations of the Research
Any research design will have limitations which should be taken into account when
interpreting the results. The main limitations arising from the approach used in this research

are discussed below.

The primary requirement of this research was that it should investigate and address the
practical problem of designing cellular manufacturing systems. Therefore, a research
programme was developed that incorporated close contact with industry. A wide range of
contacts were maintained during the problem definition, so that the problem identified would

be more generally applicable than to one manufacturing system.

However, the desire to test the improved method for designing cellular manufacturing



systems by applying it in a real industrial project gave rise to two major problems. First,
time constraints meant that testing would be restricted to a single case. Second, the author's
involvement in the case could effect the operation and effectiveness of the method being
tested. Assessment of the method by cellular manufacturing system designers that were
either not connected with the industrial case study, or had a greater breadth of experience
against which to judge the method, was undertaken to increase the external validity of the
research. This also provides additional sources of evidence, to triangulate with the case

evidence in order to improve confidence in the findings.

The method was applied in a specific company operating within a particular environment,
and has therefore only been validated for similar circumstances (eg. batch production,
discrete part, complex precision machining). However, the general model has been
developed from a broad base of information relating to a wide range of industries. The
process itself does not have any particularly industry specific characteristics and has been
deliberately developed for the purpose of tailoring a general model to a specific situation.
The process should therefore be applicable for designing cellular manufacturing systems in
many production environments. Support for this view was provided by the positive
assessments of the method's general value made by experienced cellular manufacturing

system designers.

The case used to test the method, involved a company with no experience of cellular
manufacturing, that was attempting to take its first steps in this direction. While the process
is intended to be iterative the limit of its utility are not known. Only one major iteration of
the process was undertaken in the industrial case. Although this limits the extent to which
the defined process has been validated by practical application, sufficient confidence has
been developed in the process from the initial iteration, that at the time of writing, the cell
design team are using the process to define the next stages of development of the company's

cellular manufacturing system.



7.8 Opportunities for Further Work

This research has developed a method for tailoring a general system wide concept to the
requirements of a specific manufacturing system. Further research to develop and refine the
general conceptual model of cellular manufacturing would greatly assist the design of
cellular manufacturing systems. Improvements in the structure of the model, the definition
of relationships between the various features and effects of cellular manufacturing, and

presentation of the model would be valuable.

Although this research has focused on concept design, by advocating an iterative process
recognises the importance of the interaction between design and implementation. However,
this relationship was not explored in detail, and implementation is in general, under
researched. A comprehensive process would need to provide guide lines for

implementation.

The method could be developed and refined by feedback from further usage. Of particular
importance would be the pursuit of the evolution of a cellular manufacturing system through
more iterations of the process and using it to support projects in different manufacturing
environments. Evaluating the use of the method without the author's involvement would
add to the confidence in the validity of the research. There is also scope for testing various
approaches for applying the method, such as, with and without facilitation, or with various

degrees of worker participation.

Development of an appropriate delivery methodology and support tools would be useful.
For example, a work book may be helpful to guide the user through the method, and a
computer tool, such as a formatted spreadsheet, would minimise the task of constructing the

matrices, and recording the design decisions.

The method appears to be suited to the application of other manufacturing systems concepts
that have similar attributes to cellular manufacturing. Characteristics that would suggest this

approach might be suitable include, system wide complex effects, ill defined theory,
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described as collections of tools, techniques or features. Examples of manufacturing
systems concepts that exhibit some these characteristics are just-in-time, concurrent
engineering, and total quality management. Determining the applicability of the method to

other domains would be an interesting avenue for further research.
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Appendix A

Feature / Effects Definition of Cellular Manufacturing

Features

Effects

Function: Make Product

Organisation:

Resources dedicated to certain similar parts (Fry, Wilson &
Breen 1987; Noaker 1993)

Ownership of product (Fry, Wilson & Breen 1987)
Ownership of resources (Morton et al 1993)

Dedicated team (Burbidge 1989; Prickett 1993)
Devolved indirect tasks (See later features)

Reduced processing variables (Noaker 1993)

Increascd consistency of production (Fry, Iilson & Breen
1987)

Reduced scrap (Fry, Wilson & Breen 1987; Aorton et al
1993)

Improved accountability for cost, quality & delivery
(Burbidge, Partridge & Aitchison 1991; McManus 1991)
Enabled delegated decision making (Burbidge, Partridge &
Aitchison 1991)

Improved foundation for evolutionary development of
automation (Burbidge, Partridge & Aitchison 1991)
Reduced number of set ups necessary (Dumolien & Santen
1991)

Reduced set up times (Fry, Wilson & Breen 1987; Kellock
1992; Welke & Overbeke 1988)

Increased perception of task significance(fuber & Hyer
1985)

Improved morale & satisfaction (Burbidge, Partridge &
Aitchison 1991; Fry, Wilson & Breen 1987; Greene &
Sadowski 1984)

Increased part familiarity/expertise & reduced start ups (Fry,
Wilson & Breen 1987; McManus 1991)

Enabled problem solving (Nimmons, Williams & Cursham
1995)

Simplified material flow (Williams 1991)

Reduced information / documentation requirements (AMasom
1993; Williams 1991)

Enabled simplified production planning & control (Masom
1993; Nimmons, Williams & Cursham; Schonberger)
Reduced expiditing/WIP tracking (Greene & Sadowski
1984; McManus 1991)

Enabled maintenance planning (Morton et al 1993)
Reduced process planning effort (Dumolien & Santen 1991;
Mosier & Taube 1985)

Increased standardisation of job times (Dumolien & Santen
1991)

Enabled simplified cost accounting (Schonberger 1986)
Improved cost estimating (Dumolien & Santen 1991)

Distributed support (Kellock 1992)

Increase cell autonomy (Kellock 1992)
Timely implementation of shopfloor improvement
suggestions (Stoner, Tice & Ashton 1989)
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Layout

Collocation of product's process requirements (Burbidge,
Partridge & Aitchison 1991)

Minimum distances between processes / machines
(Fry,Wilson & Breen 1987; Nimmons, Williams &
Cursham 1995)

Defined physical boundary (Burbidge 1989; Prickett1993)

Improved communication/feedback (/uber & Hyer 1985;
Schonberger 1986)

Improved problem solving (Schonberger 1986)

Enabled low WIP (Schonberger 1983)

Reduced material handling (Fry, Wilson & Breen 1987;
Greene & Sadowski 1984)

Reduced damage (Nimmons, Williams & Cursham 19935;
Stoner, Tice & Ashton 1989)

Increased team & territory definition (Burbidge 1989)
Improved visible control (Prickett 1993)

Cell storage of raw materials, tools, finished products
(Deeming 1993; Morton et al 1993; Stoner, Tice &
Ashton 1989)

Reduced sctup times (Aforton et al 1993)

Reduced handling (Greene & Sadowski 1984)

Increased visibility of requirements (Sioner, Tice & Ashton
1989)

Reduced WIP Sroner, Tice & Ashton 1989)

Reduced shortages

Reduced admin (Greene & Sadowski 1984)

Reduced storage & retrieval complexity ie. no auto systems
necded (Stoner, Tice & Ashton 1989)

Job Design
Multi machine manning & in cycle ancillary ops (Burbidge
1988; Schonberger 1983; Stoner, Tice & Ashton 1989)

Reduced operations (Schonberger 1983)
Reduced queuing(Schonberger 1983)

Reduced handling (Black 1991; Burbidge 1988)
Improved labour efficiencies (Burbidge 1988)

Multi-skilling / flexible working(Burbidge 19988; Deeming
1993; McManus 1991; Noaker 1993)

Increased flexibility of job assignment (Burbidge 1988
Noaker 1993)

Reduced WIP (Firy, Wilson & Breen 1987)

Improved labour efficiency (Bennett & Forrester 1993)
More tangible relationship between operator tasks & product
quality / process performance (AfcAfanus 1991)

Increased employce motivation (AfcA fanus 1991)

Operator material handling (Stoner, Tice & Ashton 1989;
Welke & Overbeke 1988)

Reduced queuing & handling (Welke & Overbecke 1958)

Shop floor problem solving (Deeming 1993; Schonberger
1987)

Reduced defects (Deeming 1993; Schonberger 1987;
Steudel & Desruelle 1992)

Satisfying work (Huber & Brown 1991)

Reduced absenteeism (Deeming 1993; Huber & Brown)
Reduced labour turover (Huber & Brown)
Improved labour productivity (Bennett & Forrester 1993)

Setting:
SMED (Black 1991; Morton et al 1993)
All workers capable of setting (AMforfon et al 1993)

Reduced set up times (Black 1991; Morton et al 1993)
Reduced waiting time (Aforton et al 1993)

Mechanisms

Facilities management:

Duplicates of simple / small machines (Schonberger 1983:
Stoner, Tice & Ashton 1989}

Reduced number of set ups (Stoner, Tice & Ashion 1989)
Reduced impact of breakdowns (Stoner, Tice & 1shton
1989)

Increased flexibility for redefining the cells / process
(Schonberger 1986; Stoner, Tice & Ashion 1989)
Reduced investment in new machines (Schonberger 1983,
1987; Stoner, Tice & Ashton 1989)

Increased opportunity for in-cycle operations (Schonherger
1983, 1987 Stoner, Tice & Ashton 1959)
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Standardised tooling (Morton et al 1993; Noaker 1993)

Reduced number of tools (Jackson 1978; Noaker 1993)
Reduced sct up times (Aforton et al 1993)

Customised handling devices (Omand 1992; Welke &
Overbeke 1988)

Reduced damage (Omand 1992)
Improved health & safety ()

Maintenance:
Devolved maintenance (Noaker 1993; Stoner, Tice &
Ashton 1989)

Increased resource for routine maintenance (Stoner, Tice &
Ashton 1989)

In cycle maintenance enabled (Schonberger 1986)
Increased morale (Stoner, Tice & Ashion 1989)

Increased ownership (Aforton et al 1993)

Reduced unplanned downtime (Noaker 1993; Stoner, Tice
& Ashton 1989)

Improved maintenance scheduling A forton ct al 1993)

Total Productive Maintenance (Aforton et al 1993)
Preventative maintenance (Stoner, Tice & Ashton 1989;
Welke & Overbeeke 1988)

Maximise machine availability (Aforton et al 1993; Welke &
Overbeeke 1988)

Reduced unplanned delays (A forton et al 1993; Stoner, Tice
& Ashton 1989)

Enabled low WIP (Schonberger 1983)

Good housekeeping (Masom 1993; Morton et al 1993)
Operator responsibility for housckeeping (Black 1991)

Improved quality workmanship (Afasom 1993)
Increascd marketing opportunities (A fasom 1993)
Improved industrial relations (Afasom 1993)

Improved maintenance A forton et al 1993)

Improved safety (Black 1991)

Visual control and reduced unnecessary motions and
searching by operators (Black 1991; Schonberger 1986)

Human Resource Management:

Reduced job grades (Peters 1989)

Pay for knowledge / skills (f/uber & Brown 1991;
Peters1989; Schonberger 1986)

Stable income plan / straight day work / monthly salary
(Burbidge 1979: Schonberger 1986; Stevens 1987)
Team based rewards (IWelke & Overbeeke 1988)

Pay bonuses on completed products only (Prickett 1994)
Gain share / Profit share (Huber & Brown 1991)

Encourage multiskilling (Tfuber & Brown 1991;
Peters1989; Schonberger 1986)

Encourage flexible working (Burbidge 1979}

Reduce admin (Burbidge 1979)

Discourage overproduction (Schonberger 1986)
Encourage team working (Welke & Overbeche 1988)
Encourage low WIP / fast throughput (Prickett 1994)
Encourage factory performance improvements (Jluber &
Brown 1991)

Increased (dedicated) training time (Huber & Brown 1991;
McManus 1991; Stevens 1987)
Devolved training responsibility (Peters]989)

Increased employee motivation (AfcA fanus 1991)
Increased multiskilling (A fcA famus 1991)

Improve interpersonal & group working skills (Jluber &
Brown 1991)

Improved problem solving skills (Huber & Brown 1991)
Improved career development options (//uber & Brown
1991)

Management and Control
Flat management organisation (Afasom 1993: Peters 19589)
Consensus based management (Buchanan 1994}

Increased accountability (Afasom 1993)
Increased empowerment for local decisions (Afasom 1993)
Improved industrial relations (Afasom 1993)
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Production Planning and Control:

Devolved scheduling (Fry, IWilson & Breen 1987; Peters
1989; Prickett 1994)

Simplified shop floor production scheduling & control
(Buchanan & Preston in Buchanan 1994; Deeming 1993;
Schonberger 1986)

Visual systems (Stoner, Tice & Ashton 1989)

Reduced WIP (Fry, Wilson & Breen 1987 Stoner, Tice &
Ashton 1989)

Increased visibility of plans & progress (Deeming 1993;
Kellock 1992; Prickett 1994)

Increased opportunity for presetting (Aforton et al 1993)
Increased operator commitment to plan (Deenting 1993)
Increased operator satisfaction (Deeming 1993)

Reduced information processing & admin (Kellock 1992)
Reduced PPC staff Afasom 1993; Schonberger 1986)
Reduced need for shop floor data collection (Stoner, Tice &
Ashiton 1989)

Increased realism of planning & customer promises (Love &
Barekat 1989; Prickett 1993)

Increased speed and timeliness of replanning (Barekat 1991)

Pull control / local WIP regulation (Kellock 1992)
Single cycle ordering (Burbidge 1989)

Reduced WIP (Kellock 1992; Omand 1992)
Reduced load surges (Burbidge 1989)
Enables sequencing parts with same set up (Burbidge 1988)

Low WIP (Stoner Tice & Ashton 1989)

Reduced space (Kumar & Hadjinicola 1992; Masom 1993;
Schonberger 1983)

Reduced WIP tracking & admin (Greene & Sadowski 1984;
McA fanus 1991)

Reduced queuc times (Jackson 1978: Kellock 1992)
Reduced version control & obsolescence (Burbidge 1989;
Deeming 1993; Omand 1994)

Reduced damage (Jackson 1978)

Reduced handling (Schonberger 1986)

Reduced PPC & progress (Schonberger 1986)

Reduced time to identify process errors & isolate defects
(Stoner, Tice & Ashton 1989)

Reduced processing of defective items (Stoner, Tice &
Ashton 1989)

Increased visibility of system problems (Schonberger 1983
Taheri 1990)

Increased visibility of replacement requirements

Improved information for corrective action (Stoner, Tice &
Ashton 1989)

Small batches (towards single items)(Kellock 1992; Stoner,
Tice & Ashton 1989)

Reduced WIP (Sroner, Tice & Ashton 1989)

Reduced time to identify defects (Sroner, Tice & Ashton
1989)

Reduced number of defects produced (Stoner, Tice &
Ashton 1989)

Reduced time to complete running jobA feM fanus 1991)
Reduce lumpiness of loads on facilities (Harrison 1992;
Kirton & Brooks 1994)
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Quality:

Operator inspection (Deeming 1993; Fry,Wilson & Breen
1987)

100% inspection throughout process (Stoner, Tice & Ashton
1989)

Poke Yoke (Black 1991)

Reduced response time (Fry, Hilson & Breen 1987)
Reduced number of defects (Fry, Iilson & Breen 1987)
100% inspection at source enabled (Stoner, Tice & Ashton
1989)

Reduced time to identify process errors & isolate defects
(Nvman 1992; Stoner, Tice & Ashion 1989)

Reduced processing of defective items (Dumolien & Santen
1983; Stoner, Tice & Ashton 1989)

Increased visibility of replacement requirements

Improved information for corrective action (AfcAfanus 1991;
Stoner, Tice & Ashton 1989)

In cycle inspection enabled (Schonberger 1986)

Reduced inspection cost (Dumolien & Santen 1991;
Schonberger 1986)

Performance Measurement:

Devolved ownership of performance measures (Pefers
1989; Prickett 1994)

Publish results (Deeming 1993)

Improved timeliness (F/uber & Brown 1991)

Increased acceptance (Huber &Brown 1991)

Increased use of information (Prickett 1994; Schonberger
1986)

Improved feedback & visibility of performance (Prickeit
1994)

Improved job satisfaction (Prickett 1994)

Performance measures related to customer satisfaction
(Masom 1993)

Increase visibility of customer satisfaction (Afasom 1993)
Discourage activitics that reduce customer satisfaction
(Aasom 1993)

Process planning:
Early involvement of manufacture in design (Stoner, Tice &
Ashton 1989; Welke & Overbeeke 1988)

Reduced number of tools required / tooling costs (Prickett
1994; Stoner, Tice & Ashton 1989)

Improved producibility (Stoner, Tice & Ashton 1989;
Welke & Overbeeke 1988)

Reduced material types required (Prickert 1994)

Inputs

Direct delivery of material to the cell (Nimmons, Williams &
Cursham 1994; Omand 1992)

Cells ordering supplies direct (Omand 1992)

Reduced handling & delays (Nimmons, Williams &
Cursham 1994)
Simplified ordering (Omand 1992)

- Improved responsiveness to cell necds

- Reduced admin / overhead

Outputs
Production rate matched to customer demand
Direct contact with customer (Passmore 1988)

Minimum WIP (Black 1991; Burbidge 1961, 1989,
Schonberger 1986; Wemmerldv 1988)
Increased job significance (Passmore 1988)
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Appendix B

Survey of Cellular Manufacturing Research Topics:
International Journal of Production Research Jan 87-Jul 93

Date | Authors Title Topic
Vol 31 Kapov and Vakharia Scheduling a Flow-Line Manufacturing Cell: A PPC X
Jul 93 Tabu Search Approach
Jun 93 Gupta Design of Cells for a Flexible Environment P-M Grouping X
Considering Altemnate Routings New Method
Shafer and Rogers Similarity and Distance Measures for Cellular P-M Grouping X
Manufacturing Pt I An Extension and Comparison New Mcthod?
Ruben, Mosier and Mahmoodi A Comprehensive Analysis of Group Scheduling PPC N
Heuristics in a Job Shop Cell
Wu and Salvendy A Modified Network Approach for the Design of P-M Grouping X
Cellular Manufacturing Systems New Method
Balasubramanian and Covering Technique Based Algorithm for Machine P-M Grouping 4
Panneerselvan Grouping to Form Manufacturing Cells New Method
May 93 Shafer and Rogers Similarity and Distance Measures for Cellular P-M Grouping X
Manufacturing Review of
Meothods
Apr93 Irani, Cavalier and Cohen Virtual Manufacturing Cells: Exploiting Layout P-M Grouping 4
Design and Intercell Flows for the Machine Sharing New Method
Problem
Chu Manufacturing Cell Formation by Competitive P-M Grouping X
Leaming New Method
Dahel and Smith Designing Flexibility into Cellular Manufacturing P-M Grouping X
Systems New Method
Mar 93 Lee and Garcia-Diaz A Network Flow Approach to Solve Clustering P-M Grouping X
Problems in Group Technology New Method
Feb 93 Vanelli and Hall An Eigen Vector Solution Methodology for Finding P-M Grouping X
Part-Machine Families New Mothod
Jan 93 Ferreila Riberio and Pradin A Methodology for Cellular Manufacturing Design P-M Grouping X
New Mcthod
Vol 30 Song and Hitomi GT Cell Formation for Minimising Intercell Parts P-M Grouping X
Dec 92 Flow New Method
Nov 92 Kusiak and Cho Similarity Cocflicient Algorithms for Solving the P-M Grouping X
Group Technology Problem New Method
Oct 92 Chen A Petri Net Based State-Transition Model for an Operator X
Operator Cyclic Walking Pattem Development in Scheduling
GT Cells
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Date | Authors Title Topic
Jul 92 Damodaran, Lashkari and A Production Planning Model for Cellular pPPC X
Singh Manufacturing Systems with Refixturing
Considerations
Jun 92 Rajamani, Singh, and Aneja A Model for Cell Formation in Manufacturing P-M Grouping X
Systems with Sequence Dependence New Mecthod
Yang and Jacobs Comparison of Make-to-Order Job Shops With P-M Grouping X
Different Machine Layouts and Production Control and PPC
Systems Compaisons
Kaparthi and Suresh Machine-Component Cell Formation in Group P-M Grouping X
Technology: A Neural Network Approach New Method
May 92 Shafer, Kern and Wei A Mathematical Programming Approach for Dealing | P-M Grouping X
with Exceptional Elements in Cellular New Method
Manufacturing
Geoffrey, Okobaa, Chen, Manufacturing Cell Formation Using a New Intercell | P-M Grouping X
Changchit and Shell Flow Reduction Heuristic New Method
Burbidge Change to Group Technology: Process Organisation | P-M Grouping v/
is Obsolcte Method
Evaluation
Mar 92 Ketcham A Branch and Bound Approach to Facility Design P-M Grouping X
for Continuous Flow Manufacturing Systems New Method
Logendran A Model for Duplicating Bottlencck Machinesinthe | P-M Grouping X
Presence of Bugetary Limitations in Cellular New Method
Manufacturing
Jan 92 Tan A Simulated Annealing Algorithm for Allocating Layout Planning | X
Space to Manufacturing Cells
Vol 29 Moon, Gallego and Simchi- Controllable Production Rates in a Family PPC X
Dec 91 Leui Production Context
Nov9l Frazier and Gaither Seed Selection Procedures for Cell Formation P-M Grouping X
Heuristics New Method
Oct 91 Park and Steudel A Model for Determining Job Throughput Times for Analytical 4
Manufacturing Flow Line Work Cells with Finite Model CM
Buffers System
Performance
Boc and Cheng A Close Neighbour Algorithm for Designing CM P-M Grouping X
Systems New Method
Sept 91 Sule Machine Capacity Planning in Group Technology P-M Grouping X
New Method
Mahmoodi and Dooley A Comparison of Exhaustive and Non-Exhaustive pPC X
Group Scheduling Heuristics in a Manufacturing
Cell
Aug9l Kermn and Wei The Cost of Eliminating Exceptional Elements in P-M Grouping X
Group Technology Cell Formation New Mecthod
Jul ot Chu and Hayya A Fuzzy Clustering Approach to Manufacturing Cell | P-M Grouping X

Formation

New Method
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Date | Authors Title Topic
Jun91 Askin, Cresswell, Goldberg A Hamiltonian Path Approach to Reordering the P-M Grouping X
and Vakharia Part-Machine Matrix for Cellular Manufacturing New Method
Mar 91 Srinivasan and Navendran GRAFICS - A Non-Hierarchical Clustering P-M Grouping X
Algorithm for Group Technology New Method
Feb 91 Boctor A Linear Formulation of the Machine-Part Cell P-M Grouping X
Formation Problem New Method
Logendran Impact of Sequence of Operations and Layout of P-M Grouping X
Cells in Cellular Manufacturing New Method
Vol 28 Nagi, Harhalakis and Proth Multiple Routings and Capacity Considerations in P-M Grouping X
Dec 90 Group Technology Applications New Method
Nov 90 Vohra, Chen, Chang and Chen | A Network Approach to Cell Formation in Cellular P-M Grouping X
Manufacturing New Method
Sep 90 Franks, Lofius and Wood Discrete Cell Control PPC 7
Mahmoodi, Dooley and Starr An Investigation of Dynamic Group Scheduling pPC X
Heuristics in a Job Shop Manufacturing Cell
Aug 90 Chu and Tsai A Comparison of Three Array Based Clustering P-M Grouping X
Techniques for Manufacturing Cell Formation Method
Comparison
Rajamani, Singh and Aneja Integrated Design of Cellular Manufacturing P-M Grouping X
Systems in the Presence of Altemative Process Plans New Method
Askin and Chiu A Graph Partitioning Procedure for Machine P-M Grouping v
Assignment and Cell Formation in Group New Method
Technology
Jul 90 Gupta and Seifoddini Production Data Based Similarity Coeflicients for P-M Grouping X
Machine-Component Grouping Decisions in the New Mecthod
Design of a Cellular Manufacturing Svstem
May 90 Logendran A Workload Based Model for Minimising Total P-M Grouping N
Intercell and Intracell Moves in Cellular New Method
Manufacturing
Apr90 Shafer and Meredith A Comparison of Selected Manufacturing Cell P-M Grouping '
Formation Techniques Methods
Comparison
Kuo and Inman A Practical Heuristic for the Group Technology PPC v
Economic Lot Scheduling Problem
Mar 90 Rockwell and Wilhelm Material Flow Management in Cellular CM System 4
Configurations for Small-lot Circuit Card Assembly Performance P-
M Grouping and
PPC
Feb 90 Kumar and Chandrasckharan Group Efficacy: A Quantitative Criterion for P-M Grouping X
Goodness of the Block Diagonal Forms of Binary Solution
Matrices in Group Technology Evaluation
Sassani A Simulation Study on Performance Improvement of | PPC v
Group Technology Cells
Al-Qattan Designing flexible Manufacturing Cells Using a P-M Grouping X

Branch and Bound Method

New Method
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Date | Authors Title Topic
Jan 90 Silver Deliberately Slowing Down Output in a Family pPPC X
Production Context
Srinivasan, Narendran and An Assignment Model for the Part Families Problem | P-M Grouping X
Mahadevan in Group Technology New Method
Harhalakis, Nagi and Proth An Efficient Heuristic in Manufacturing Cell P-M Grouping v/
Formation for Group Technology Applications New Mcthod
Vol 27 Flynn Critical Machines Preventative Maintenance Policies | Maintenance X
Dec 89 for Group Technology Shops
Silver Shelf Life Considerations in a Family Production PPC X
Context
Wei and Kemn Commonality Analysis: A Linear Cell Clustering P-M Grouping X
Algorithm for Group Technology New Method
Oct 89 Globerson and Millen Determining Leaming Curves in Group Technology Leaming Curves | X
Settings
Mosier An Experiment Investigating the Application of P-M Grouping X
Clustering Procedures and Similarity Coefficients to Method
the GT Cell Formation Problem Comparison
Sep 89 Gunasingh and Lashkari Machine Grouping Problems in Cellular P-M Grouping X
Manufacturing Systems: An Integer Programming New Method
Approach
Wemmerldv and Hyer Cellular Manufacturing in the US Industry: A Survey of '4
Survey of Users Practice
Aug 89 Hyer and Wemmerlov Group Technology in the US Industry: A Survey of Survey of 4
Current Practices Practice
Jul 89 Seifoddini A Note on the Similarity Coefficient Mcthod and the | P-M Grouping X
Problem of Improper Machine Assignment in Group New Method
Technology Applications
Jun 89 Chandrasckharan and GROUPABILITY: An Analysis of the Propertiesof | P-M Grouping X
Rajagopalan binary data matrices for Group technology New Method
May 89 Shtub Modelling Group Technology as a Generalized P-M Grouping X
Assignment Problem New Method
Vol 26 Co and Araar Configuring Cellular Manufacturing Systems P-M Grouping X
Sep 88 New Method
Jul 88 Choobinch A Framework for the Design of Cellular P-M Grouping X
Manufacturing Svstems New Method
May 88 Kusiak EXGT-S: A Knowledge Base System for Group P-M Grouping 4
Technology New Method
Mar 88 Booth Beavers - Changing to Low Inventory JIT/Cells Case 4
Manufacturing Study
Burbidge Operation Scheduling with GT and PBC PPC X
Parnaby A Systems Approach to the Implementation of JIT JNT/Cells v
Methodologies in Lucas Industries Methodology
Rolstadis Flexible Design of Production Planning Systems ppC X
|| Zelenovicond Tesic Poriod Ratch Contenl and Group Technology: ppC L
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Date | Authors Title Topic
Vol 25 Kumar and Vanelli Strategic Subcontracting for Efficient Disaggregated P-M Grouping X
Dec 87 Manufacturing New Method
Flynn The Effects of Setup Times on Output Capacity in PPC X
Cellular Manufacturing ’
Nov 87 Banerjee and Flynn A Simulation Study of Some Maintenance Policies in | Maintenance X
a Group Technology Shop
Jun 87 Chandrasekharan and Zodiac - An Algorithm for Concurrent Formation of P-M Grouping X
Rajagopalan Part Families and Machine Cells New Method
May 87 | Ballakur and Steudel A Within-Cell Utilization Based Heuristic for P-M Grouping 4
Designing Cellular Manufacturing Systems New Method
Apr 87 Kusiak The Gencralized Group Technology Concept P-M Grouping X
New Method
Mar 87 Wemmerldv and Hver Research Issues in Cellular Manufacturing Topic review X
Jan 87 Zelenovic, Cosié, Sormaz and An Approach to the Design of More Effective P-M Grouping e
Sitarica Production Systems New Mothod
Askin and Subramanian A Cost Based Heuristic for Group Technology P-M Grouping X
(‘Mn\ﬁm Now Afathad
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Appendix C

Processes for Designing Cellular Manufacturing Systems

Hill's (1971) Process for Socio-technical Systems Design

i

ii.

iii.

iv.

Initial scanning. Identification of the main characteristics of the production system
and its environment to determine the main problems. This stage covers layout,
organisational structure, system inputs and outputs, the transformation process, the
main types of variance and their source, the relationship between the production
system and its containing department/business unit, and the main production and
social objectives of the system.

Identification of unit operations: the main phases in the production process that
converts inputs into outputs.

Identification of key process variances and their interrelationship. deviations from
standard arising in the nature of the production process (not the technical equipment
or the social system) that significantly affect the ability of the production system to
pursue its objectives. Criteria suggested for identifying the significance of variances
are their impact on quantity or quality oi'production, or on operating or social costs.
A matrix is used to explore the relationships between variances.

Analysis of the social system. Identification of the main characteristics of the
existing social system. A key objective of this stage is to determine the extent to
which key variances are at present controlled by the social system. This is achieved
through compiling a table that details, where variances occur, where they are
observed, where they are controlled, who controls them, what tasks are performed
to control them, what information is obtained from where to enable control to take
place. Also included in this stage are: analysis of auxiliary activities performed by
workers, and their relationship with variance control activities; mapping of physical
or geographical relationships between the various roles in the production system,
and their relationship over time (shift patterns etc); recording of worker flexibility
and knowledge of each others roles; identification of relationships between pay and
the various roles in the production system; assessment of the roles against
psychological needs, and identification of areas of frequent malfunctioning.

Men's perception of their role. Obtains an understanding from the workers of how
well they feel their jobs satisfy their psychological needs.

This concludes the analysis of the production system itself and it is expected that several
redesign proposals will have emerged. The analysis goes on to the consider the impact of
some external systems upon the production system.

165



vii.

viii.

ix.

Maintenance system. Maintenance variances and the extent to which they are
controlled are determined. The extent to which maintenance tasks should be taken
into account in the design of operating roles is assessed.

Supply and user systems. Identification of variances that are passed into the
production system by the systems that supplies raw material, or by the systems
which dispatch or use the products of the production system. Possibilities for
controlling these variances closer to the source are considered.

Environment and development plans. Identification of those forces (such as
development plans and general policies) operating within the wider environment that
either effect the ability of the production system to achieve its objectives, or are
likely to lead to a change in its objectives in the near future.

Proposals for change. Gathering of all the proposals developed in previous stages
for assessment of viability testing against the production and social objectives of the
system. An action plan can then be formulated.

Pasmore's (1988) Change Model for Socio-technical Systems Analysis and Design

1.
ii.
iii.
iv.
V.
vi.
vii.

viii.

ix.

Define scope of the system to be redesigned.
Determine environmental demands.

Create vision statement.

Educate and organise members.

Create change structure.

Conduct socio-technical analyses.
Formulate redesign proposals.

Implement recommended changes.
Evaluate changes / redesign.

Process Stages of the Lucas Methodology for Manufacturing Systems Redesign

i.

ii.

Business and market strategy: The aim of this stage is to develop a set of guidelines
to direct manufacturing systems design. First the levels of performance necessary
to be competitive are defined along such dimensions as sales per employee, stock
turn ratio, lead times selling price, product cost and measures of quality. Through
the use of SWOT and situation analyses, products demands, life cycles and
competitive positions should be identified. The output of this phase should be a
detailed plan of volumes and variety over time, along with a clear statement of how
manufacturing should support strategic objectives.

Manufacturing systems engineering strategy: Having developed a clear set of
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iti.

iv.

objectives for the manufacturing system it is now possible to begin to design an
appropriate manufacturing system. This stage begins with data collection to
describe the current manufacturing system for example, bills of materials, product
routings, machine capabilities, capacities, and reliabilities, supplier details. The
designer is encouraged to look ahead through the process to determine data
requirements. In practice, this is likely to result in some back-tracking to collect
data that is found to be pertinent at a later stage. Pareto analysis is recommended
to identify important parameters. Part-machine groupings and relationships between
groups are determined, using Production Flow Analysis (Burbidge 1989) or Rank
Order Clustering (King and Nakornchai 1982), to provide an architecture with a
simple flow from raw material to finished product. This may result in a refinement
of existing make-buy arrangements in order to deal with parts that don't neatly fit
into the proposed new structure. Steady state design involves detailed allocation of
machine capacity and human resources to cells based on average expected operating
conditions. Job design and personnel policy are aligned with the new business
objectives and the new organisation. The training necessary to achieve this is
identified. Reduced levels of support required from service departments are also
identified along with any requirements for supplier development. Dynamic
behaviour of the system is then explored using simulation tools.

Business systems engineering strategy: The production control system is then
designed to take advantage of the simplified flow system and modular organisation.
MRP is advocated to plan medium term material requirements, while day to day
control is devolved as far as possible to the shop floor. The use of kanban is
encouraged where it is applicable, while period batch control is the preferred option
for the cells with high variety. Integration of the manufacturing information system
with the other business information systems is then designed.

Integration with Financial Strategy: An implementation plan is developed for the
proposed system, and presented to management along with a financial analysis that
details the costs, benefits, risks, and cash flows, associated with the project.

Process Stages of Wu's (1992) Methodology for Manufacturing Systems Design and
Analysis

Analysis of Situation: Involves identifying the need for change, formation of a team
and the allocation of tasks and responsibilities, and the compilation of a list of the
symptoms indicating problems with the current manufacturing system. This stage
then proceeds to describe the current manufacturing system using cross referenced
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ii.

i,

iv.

databases of production technology, products, processes and personnel. Physical
and control systems descriptions are also developed, for example using IDEF, .
Static and dynamic analyses are then undertaken to determine the root causes of the
symptoms listed. Market and product analyses are beyond the scope of this
methodology but their importance and influence on MSD is recognised.

Setting Objectives: This stage creates a view of the desired future state of the
manufacturing system. Variables and target values are identified, that balance the
needs of individual projects and the long term goals specified by the corporate
strategy. Comparing the desired future state with the current situation reveals the
design task for the following stages.

Conceptual Modelling:  Identifies the building blocks (manufacturing and
controlling functions) required of the system, including make-buy analysis. Defines
the relationships between these functions and develops the basic principles by which
the system will work. After evaluation, promising concepts are selected and taken
forward for detailed design.

Detailed Design: Transforms the conceptual model into detailed specifications that
can be used for implementation. This involves selection, organisation and layout of
production technology, determination of batch sizes and provision of storage
facilities for buffer stocks, and the selection of materials handling devices. Control
system design includes the process design, database design, selection and location
of hardware and the allocation of managerial responsibilities.

Evaluation and Decision: Assesses the design solution against the initial objectives
set out for the design, and determines whether the new system will generate a
sufficient rate of return to justify the investment when compared with the option of
leaving things unchanged. Major evaluation points come after conceptual modelling
and after detailed design. A balance approach is advocated including the use of the
Analytical Hierarchy Process where intuitive assessment is required in addition to
quantitative analysis. Cash flows and risk assessment are also included in the project
appraisal.

Process Stages of the Drama Methodology (Bennett and Forrester 1993)

i

ii.

Market and Environment: SWOT analysis of economic, sociogovernmental,
customer, competitor and technical factors. Codetermination of corporate policy
(profitability, growth, quality, customer service, personnel) and market strategy
(geographical and product markets addressed, competitive edge criteria).
Manufacturing Strategy: Manufacturing's contribution and response to the market
strategy. Includes auditing current capabilities, decisions about make-buy and the
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iii.

iv.

vi.

vii.

viii.

ix.

degree of vertical integration, and the setting of manufacturing performance targets.
Organisation: Design of the organisation structure (demarcation of responsibility
and lines communication) and state (culture, employment climate, flexibility etc.).
Justification: Selection of investment appraisal approach to generate a business
case for a new or modified production system.

Project Management: Determination of a policy for the formation of a project team
and the identification of appropriate project management tools and techniques.
Physical System Design: Selection of the type of material flow path required,
decisions regarding the type of automation of inter and intra module transportation
and its integration with processing equipment, and also decisions regarding the
degree of centralisation with regard to storage, tooling and work instructions. The
type of storage is also defined.

Control and Integration: Determines the balance of push and pull for production
planning and control. Establishes stock holding policies, decides the degree of
centralisation of the information system and selects the type of shop floor data
collection

Work Design: The choice of work organisation within the production system
addresses such issues as worker flexibility, responsibility for quality and operator
tasks, etc.

Implementation: Plans the implementation with regard to timing and resourcing.
Evaluation: Establishes a framework and approach for evaluating the design and
the design process.
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Appendix D

Benefits of Quality Function Deployment

Raises the Voice of Customer. QFD focuses the design process on the customer, ensuring that
technical trade-offs reflect the needs of the customer and that customer interface people

understand the technical trade-offs (Hauser 1993).

Competitive Context QFD quantifies the competitive position and the opportunities available
so that resources can be concentrated on satisfying those customer requirements that will provide

the most competitive advantage.

Teamwork and Communication. QFD is a communication mechanism that uses the "Voice of
the Customer" as a common language to facilitate multi functional team working by creating a
common purpose, priorities and focus of attention (Sullivan 1986). A study by Griffin and Hauser
(1992) showed that QFD increased integration and cooperation within a design team, and that
communication among team members was enhanced even when the team crossed functional
boundaries. Burn (1990) also notes that QFD provides a permanent and complete record of all
the information currently available, providing a solid starting point for any future work to be

undertaken or for any new team members.

Deals with Complex Interrelationships. QFD methodology provides a logical means of looking
at interrelationships between the critical characteristics of the product that affect customer
satisfaction. By their clear display in pictorial form a reasoned judgement can be made in design

so that the confounding interactions are minimised (Burn 1990).

Systematic and Disciplined. "QFD offers a structured method to utilise the collective
knowledge of management in defining the most critical characteristics of a product." (Maddux
Amos and Wyskida 1991 p. 33). According to Eureka president of ASI, QFD allows for
formalisation of knowledge, drawing out that information that engineers have in the back of their

minds but don't bring out when talking at meeting (Vasilash 1989).
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Proactive and Preventative. QFD aims to design positive customer requirements into the
product rather than solely react to customer complaints (Akao 1990). It also moves and
concentrates action and resources upstream in the design process to minimise the opportunity for

problems to develop (Burn 1990).

There is very little published information describing the results and benefits of using QFD.
Vasilash (1989) suggests however, that many companies are using QFD but are not publishing
because the results are too important to their competitive advéntage. This view is also expressed
by Hjort et al (1992). Toyota Autobody's experience is the most widely quoted example: design
costs cut by 61%, and lead times reduced by a third while simultaneously improving the quality
of their product (Burn 1990; Hauser and Clausing 1988; Sullivan 1986). However, sufficient
similar claims have been made by other companies to suggest that QFD may consistently deliver

these benefits. For example:

o Hauser (1993) reports that QFD enabled Puritain-Bennett to launch a new product in
record time and at acceptable costs. More importantly, the product was so well received by the’

market that the company forecast a five-fold increase in sales.

o Comparing a product designed using QFD with a previous model, Nichols (1992) writes
that Digital achieved a 75% reduction in concept phase time, a 40% reduction in engineering
phases needed to get their product to market , and a 25% reduction in unnecessary product

features.
o Vasilash (1989) reports the experience of an Ernst and Whinney manager as being, that

QFD generally results in a 30-50% reduction in design cycle times, 20-60% reduction in start-up

costs, and a 20-50% cut in warranty claims.
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Appendix E

Supplementary Information: Case Study

Cell Strategy

Manufacturing Strategy Objective
Reduce Lead Time by 50%

|

Review current performance

Improve process flow /Reduce WIP

Cells structure provides

Focused factory
Ownership
Visibility

Minimum movement

75% LT = Queue times .
Introduce Cells ~ ——>

Concept Design - Detail Design - Implement

Addresses defined problem
Reported benefits significant Cell operation provides
Acrospace usage wide ¢ Set up time reduction

.
3
.

Smaller batches
Flexible working
WIP control

Lead Time Breakdown

Average lead time 43 days / internal 33 days

B
oL

nkﬁeét T'ravel WIPbduleués & otheri‘delays '
i 1 shift |39.5 days / 79 shifts

Sub con
10 days

e Part No xo00000xx: (Batch = 51)
- Intemal throughput efficiency 6%
-~ Stockturns =5 =1 day per op WIP queue
- lIrregularities: quality problems & schedule changes

e Knock-on Effects
- WIP=£1M
— Interest = £50,000K

- Quality: 4% rejects ~20% of sales
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Ideals of Lean Manufacture

eOperations
eTransport
—Zero transport
elnspection
—Zero defects passed to next process
eDelays
—Zero work-in-progress
»Delivery of material only when required for production
»Production only when required by next process
»Batch size of one
—Zero set up times
—Zero break downs
—Zero defects So why is WIP

importa

Causes of Work in Progress

e Unbalanced and unsynchronised flow between
processes

e Safety buffers to avoid machine breakdowns or
quality rejects from delaying succeeding processes
— eg Kitting bond

e Security
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WIP Hides Problems

WIP level

QC delays” Control & coordination

Visibility &
communication

How Cells Help

e Ownership of product and production objectives

e Reduce distances between processes
— Improve visibility of status / progress / problems
— Improve communication between processes
— Reduce transport times

e Control of process & resources
— To meet production objectives & solve problems
e Simplify routing complexity, reduce sources of variation

e Good foundation for further improvement

— Work place organisation, set up reduction, reduce
documentation generated, local PPC, source inspection etc

— Support TQM & continuous improvement
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Focus For Improvements

Layout & facilities improvement
— First cut, refinement is inevitable and desirable
— Increase local wash facilities

Work place organisation
— Visual control
— Good housekeeping

Work flow balancing
— Reduce set up times
— Reduce transfer batch quantities

— Control build up of WIP between processes
Set up reduction

— Improve preparation
— Hold most used programmes in the machine
~ Improved work place organisation

Local scheduling & control

— Notice boards for production plans, progress & performance
measures

— Progress to key operations
— WIP locations / levels

Simplify documentation system

e Quality / inspection

— Cell quality performance measured
— Shift focus from operation to product
— Cell focused quality engineers
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Performance

Mission
« To reduce lead times by 50% in support of the
business objectives

— To provide quality products which meet the customer
requirements

— To meet all delivery schedules in the quantities
required

— To manufacture at a low cost by achieving high levels
of productivity

Physical Environment

e Obijectives How
. Visibility - Cell layout
« Organised

— work progress, machine

condition, tools, documents — Place for everything, no

clutter in work area

t
Mi °e ¢ ¢ Clean & tidy
« Minimum waste movemen _ Everything in its place
- work & people « Preventative maintenance
« Minimise delays due to « Off-shop eating areas &
unexpected m/c down time personal lockers
. Improved communication ¢ Good lights
. Safety  Painted floors

« Good work environment
« Impressive appearance
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Quality

Obijectives
Minimum inspection
delays

No defects passed on to
next process

Continuous improvement

How

» Approved operators & self
inspection

» Need for overcheck
eliminated

« Quality issues resolved
quickly in cell
— local quarantine
— cell focused assessor,

engineer

— operator involvement

« Local measure & display
of quality performance

« Improved process control
exploiting SPC

Work Flow Control

Obijectives How

Minimise delays
between processes

Control level of WIP

Accurate knowledge
of work status

Even load across
resources of a cell

Clear production targets

« Ownership of necessary

resources to complete products

* |In cell scheduling & control

— Clear & visual mechanisms: eg.
WIP locations & max levels,
planning boards

Quick set ups

Small batches
— (no grouping of batches)

Local measure & display of lead
time & delivery performance

Stable plan
Smoothed schedule
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People

Objectives

Minimise delays through
lack of available skills

Minimised wasted labour
Continuous improvement
Robust organisation

How
« Multi-skilling & flexible

team working

— Basic machine maintenance

— In cell inter operation
material handling

Multi-machine manning
- Inc. across m/c types
Operator involvement in
problem solving
Minimise short term
movement between cells
Medium to long term cell
rotation to maintain skill
base

Future Development

Objectives
Assure future of company
Continuous improvement

How
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« New products engineered

to fit cells

» Cells developed to meet

changing requirements
Investment to support
lean working

— eg more small m/cs rather
than few big m/cs: local
wash, vibro polish

Supply chain development
to meet cell needs
Development of internal

systems to suit cells &
lean working



Support Services

« Objectives How

- Support services to « Service contracts

compliment cell operation specifying cell & service
centre responsibilities
— eg. delivery times &
quantities, & turnaround
times

Business Support_::?f?egf PdrdhaSing, Fmance Information Systems, Sales and Marketing

Production Support: eg. Quality, Engineering, Production Planning and Control,
Management Accounting,

BuildingAl ||
Cell B > a
——A"» = ; 8 —
5 , =
S S a2 : O
: I Ll
=  Building B10 ' b |

Shared Production Service Facilities
NDT, US Clean & Degrease ., Polish & Cut-ofT. Stores.
Tool Room, Standards Room. Maintenance

Subcontract =
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081

Module

W/C

W/CENT DESCRIPTION

5

MOSS TWINHEAD FANTAIL ERODE

PFA Module Summary With Machine Loads

14

21

AMCHEM TRANSFER EDM

MATSUURA VFB00CNC MILL 5 AXIS

101%

NEWALL GRINDER

NODDING SINGLE HEAD XLO

176%

ELECTRON BEAM WELD

MILLING POWERMATIC

ASTEK SUPER DRILL

Olo|N|ojon|alwin]—>

S/HEAD XLO - SWIVEL

MATSUURA 760V 3 AXIS

36% |

AGIETRON BLOCK THROAT ERODE

CHARMILLES EDM

BLOHM PLANOMAT 412

*|#

MOSS M25 CONVERSIONS

79%

LAPPER - E4 AREA

LAPPER LATHE AREA

CINCI.VERT/HORZ MILL

TWIN HEAD XLO

3 HEAD XLO GRIND NO1

XLO GRIND

LASER DRILL

LUMSDEN ROTARY GRIND

WICKMAN EDM - SYSTEM

TIG WELD

WICKMAN EDM - W30/S3

SWIFT LATHE

ELB HAND NC GRIND

CNC SNOW GRIND

41%

&2

14%

ELB SURFACE GRIND

BLOHM PLANOMAT 408

Gl |an|o|o|alwnRRSRZ= == nlel=lo| === == ===
€
>

119%

71%




Cells: Machine Groups
(Based on 1997 L.oads)

A 23,000 B 32,000 A C 29,000
Std Hrs Std Hrs } Std Hrs
Matsuura SAxis 2HXLO/1H XLO/ 1H XLO Swivel 2HXLO
lx‘;’f::;dding T X0 IMmu TwinHead /_' Agietron Block Throat Erode
) .aser ’ g .
MJT Mini/Midi Tech Astek Super Drill ] l;l‘}”l,(k)l 1H _\l‘.\() Swivel
Wickman EDM1+S83 Generator EBeam Shared or Huphcated Xa YrFchkman EDM-System
Wickman EDM1+4200a Generator Amchem Transfer EDM Resources |Cells B&C 2\1”('k FDM-W30/53
Wickman EDM1+MC 75 Charmilles EDM Matsuura| 760V X \!‘4““;'"” ’ AP,
Pegasus EDM centre (4 units) Wickman EDM-System Radial Arm Drill Spin ‘lr_ rill
Charmilles EDM x2 Wickman EDM-W30/53 Lapper X UCNCSROW
Astek Super Drill + 3 axis table / TIG Planomat 408
Matsuura 760V 3axis Swift Lathe(Metco) + Another Swift Lathe S/Stroke Rubin
Planomat 408 Danobat Surface Grind Blanchard Rotary Grind
Planomat 412 Moog Drill
CNC Snow Elb Hand NC Grind
Profimat 4 Spindle Drill
4 Spindle Drill CNC Snow
Blanchard Rotary Grind Blanchard Rotary Grind
il cpee In cell auxiliary processes: o | .
In cell auxili rocesses: - A In cell auxiliary processes
Degrease / Waghp/ Etch / Inspect / l)egr"eau.’ / Wash / Etch ,I'_"r"" Degrease / wash / etch inspect
Dress/ Trim / Fitting / Vacublast Dress/ Trim / Fitting / Vacublast dress trim / fitting
x23HXLO . ¢
o x2 Moss M25 (
Central Processes Milling (Beaver) x2 TIG omversions
PFD Milling Powermatic (1 from Fheam support)
Cut-Off Lapper
Polisk x2 Lumsden Rotary Grind CNCS
ri Wickman EDM-System £ 8 WOV
Newall Grinder Wickman EDM-W30/53 Planomat 408
x4 Swift Lathes (one to include reverse) Elb Hand NC Grind
4 Spindle Drill S/Stroke Star o
Elb Surface Grind Blanchard Rotary Grind
In cell auxiliary processes: Degrease
wash / etch ' inspect / dress / trim / fitting

24000

l) Std Hrs

Cell C - Dominant Flows

Top Ten Parts (Std Hrs) in Cell C
Part 1 27K Std hrs = 10K parts ~—9»

Yart 2 4K Std hrs = 5K parts =
Part 3 3K Std hrs = 0.6K parts -
) CNC
Wickman o
—_— EDM - spmdlu 44— Spow —» Blanchard
Dnill >y > A
A
< ¥ >
> TIG Weld - 2HXLO
Degrease & \j
- - Ultrasonic Clean |- IHXLO
v Y
» Lapper
Planomat
> 408
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Functional Organisation of EDM Machines
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Preparation of New Factory
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Appendix F

Prompt Sheets for Semi Structured Interviews

1 f Consultan Il Design hodologi

a. Describe your process for designing cellular manufacturing systems.
Do you have any published material on the method or cases?
Is this a company developed process or personal process?
What is the extent to which this methodology has been tested?

How many times, who for, and does it include implementation?

b. Description of the execution of each stage.
What is to be achieved at each stage?
How is this determined?
How is it achieved?
How is success evaluatcd?
How long is it expected to take?

How are the tasks related? - what are the contingencies?

C. What issues arise at each stage and how they are dealt with?

d What are usually the most significant problems to be overcome to ensure a successful
outcome?

€. How important is the organisation of products and cquipment to the systems performance.

Compare with control system design, job design, quality system dcsign?
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2, Revi fth w Design Pr

Introduction
Describe purpose of interview

Present summary of cell design process under review

Tailoring Cellular Manufacturing Concept
How important do you think it is that the cellular manufacturing concept is tailored to suit the opcrating
environment of each specific manufacturing system?

How well do you think we have achicved this?

How important is it that the design is guided by strategic performance improvement objectives?

How well do you think we have achicved this?

Do you think it is necessary to proceed in a scrics loops, moving between design and implementation?

Determining Important Effects of Cellular Manufacturing

How useful is it to identify important effects as a intermediate step in the identification of important
cellular manufacturing features?

Did the general mode! help to identify cellular manufacturing effects that othcrwise may not have been
identified.

How useful is the general model of cellular manufacturing?

Are there any drawbacks of using such a modcl?

Could the model be improved & how?

Determining Important Features of Cellular Manufacturing
. Does the matrix help to identify the relative importance of cellular manufacturing features?
Did the general model of cellular manufacturing help to identify any features that otherwise may not
have been identified?
‘What are the benefits of using the matrix?
What are the difficultics of using the matrix?
Could these difficulties be overcome, or is their a better way of achicving the same benefits?

Do the benefits outweigh the difficultics?

187



Determining Support Features
Having identified the key fcatures that are required to achiceve the desired benefits, how important do
you think it is to identify further “enabling” cellular manufacturing fcatures?

How well do you think we have done this?

Presentation of the Concept Design
Does a network diagram adequately describe the intcraction of cellular manufacturing features?

Could the presentation of the concept design be improved?
General

Are their any issues that you feel are important that arc not covercd by the questions I have asked?

Would you consider using this process for designing ccllular manufacturing systems?
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