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A Conceptual Design Methodology for Low Speed High 
Altitude Long Endurance Unmanned Aerial Vehicles 

A conceptual design methodology was produced and subsequently coded into a 
Visual C++ (GUI) environment to facilitate the rapid comparison of several possible 
configurations to satisfy High Altitude Long Endurance (FIALE) unmanned aircraft (UAV) 
missions in the Low Speed (propeller driven aircraft) regime. 

Several comparative studies were performed to verify the applicability of traditional 
design methods. The traditional computational design methodologies fail in several areas 
such as high aspect ratio wing weight estimation and design, low Reynolds number wing 
design, high altitude engine performance, low Reynolds number drag estimation, unmanned 
aircraft design, and the conceptual design of unconventional configurations. The 
methodology developed for this thesis was robust enough to allow not only for 

consideration of these areas of inadequacy in traditional methods, but also to allow for the 
inclusion of advancements in the relevant technologies as they become more widely 
available. 

The following configurations were evaluated for suitability to the Low Speed HALE 
UAV application: conventional, canard, twin boom, multiple fuselage (conventional or 
canard), tandem wing, multiple fuselage tandem wing or flying wing configuration. The 
configurations were compared on the basis of aircraft endurance for takeoff weights ranging 
from 2,000 to 20,000 pounds and wing loadings ranging from 5 to 25 lbs1fe. 

Initial drag estimates were made using traditional parabolic drag estimation 
techniques. A more refined drag buildup was performed using a vortex lattice drag 
estimation for the lift induced drag (for all lifting components) and calculated skin friction 
coefficients for the parasite drag. Statistically based methods were used for other 
components of drag having much smaller contributions. In addition, a statistical approach 
was taken to the weight estimation of the major aircraft components. However, this 
approach made comparison of alternative configurations more difficult. Thus wing bending 
moments trends were evaluated and utilized in the development of weight saving values for 
multiple fuselage wing weight estimation. 

The comparative performance of each configuration is justified with direct reference 
to the terms in the Breguet Endurance equation. Validation was performed where possible 
on all modules and segments associated with the methodology, as well as for the 
macroscopic results. In addition, parametric studies on endurance were performed for the 
conventional configuration for geometric characteristics and operating conditions directly 
and indirectly effecting the calculated endurance and generalized results presented. Finally, a 
case study was performed to demonstrate this capability. 

A new relation was developed for aircraft empty weight prediction, a low speed 
airfoil figure of merit was proposed, and new constants were offered for UAV fuselage 
length prediction. In addition, horizontal and vertical tail volume coefficients were proposed 
for all of the Low Speed HALE UAV configurations considered. It was determined that the 
multiple fuselage configurations showed comparatively superior endurance performance 
across a range of takeoff weights, with several other configurations demonstrating marginal 
endurance improvements. Finally, a highly flexible and robust computer based conceptual 
design methodology was developed and validated enabling the quick comparison of a greater 
number of possible configurations to satisfy a given mission for Low Speed HALE UAV's 
and providing detailed drag and weight breakdown data. 
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chapt& I 

Through the picture, I see reality. 

Through the word, I understand it. 

Sven Lidman 

Ad Inexplorate (Into the Unknown) 

1. Introduction: General Background 
It has taken a century for unmanned aircraft to find a niche in modern aviation. 

For many years the possibility of unmanned flight has been'discussed, and to some small, 

degree achieved, but it is only in the past several years that technology has advanced to the 

point where unmanned aircraft can be trusted to reliably achieve their goals. 

One of the early uses for UAV's was the conversion of older aircraft to target 

drones. Other aircraft that could be interpreted as unmanned arc cruise n-dssiles, which 

have been around in crude form since World War Il and in much more deadly, accurate, 

and reliable form today. In these applications, the akcraft were really only designed to 

complete one mission. 
These aircraft were either not true aircraft in the sense that they were'expendable 

like bombs or missiles, or they were not originally designed as unmanned. It wasn't until 

the 1960's that unmanned reconnaissance aircraft (Firebee, and Firefly, or Compass 

Arrow) were designed, built and deployed (in Vietnam). The first modern unmanned air 

vehicle designed to remove the pilot in a traditional role (high altitude long endurance 

reconnaissance) was the Teledyne Ryan Compass Cope in 1972. 

Then there was a lull of apptoximately 15 years until the Boeing Condor was 

designed. Then several smaller drones were built for the next 9 years or so. These drones 

were used for shorter distance and short duration military reconnaissance. Finally, in the 

early 1990's larger unmanned aircraft projects slowly began to obtain funding for various 

military and government applications (Global Hawk, Darkstar). The late 1990's saw the 

first public commercially contracted aircraft designed for the possibility of unmanned 
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flight, with the Scaled Composites Proteus high altitude long endurance communications 

relay and reconnaissance aircraft. 
Now, High Altitude Long Endurance O-IALE) Unmanned AetW Vehicles (UAVs) 

are increasingly being considered to perform a wide range of tasks. Recent years have seen 

greater use of UAVs by the West in the military reconnaissance arena, first in the Persian 

Gulf war, with the use of small UAVs, and more recently over Bosnia and Kosovo with 

medium sized UAVs. The Israeli military have used small to medium UAVs for over 15 

years for batdefield and border reconnaissance. 

Ile NASA ERAST program uses HALE UAVs for environmental sensing and 

atmospheric monitoring. Ihe military establishment in the United States and the United 

Kingdom has investigated using HALE UAVs for Ibeater Ballistic Nfissile defense, as well 

as general battlefield reconnaissance. Proposals have been made to use HALE UAVs for 

communications relay, long term surveillance (with a degree of flexibility not available 

from satellites), border surveillance, power line monitoring, forest fire detection, drug 

interdiction, automobile traffic monitoring, disaster relief, and many others. Finally, there 

has been discussion on producing a HALE UAV to fly in the Martian atmosphere, since 

atmospheric conditions there are similar to those found on earth at extremely high 

altitudes'. 
By removing the pilot, UAVs reduce risk, not only to the potential pilot, but also 

to politically sensitive situations. Removal of the pilot provides an overall simplification of 

the aircraft (with possible exception to flight control systems). It also provides for a 

greater variability of possible configurations by removing the need for a pilot to see out 

and sit up, removal of complex environmental controls, the need to accommodate other 

activities necessary for human subsistence (this requires little imagination for a 48 hour 

mission). 

The justification for using Low Speed HALE UAVs is that the low speed regime 
is more advantageous for environmental sampling. Low Speed HALE UAVs are less likely 

to disturb the composition of the air around them. For example, imagine if the Mach 3+ 

SR-71 were used for atmospheric sampling in cruise. Low Speed HALE UAVs have lower 

first cost as demonstrated by the comparative program costs of the entire NASA ERAST 

programs (Perseus, Theseus, Raptor, Pathfinder, CenturionlHelios) when compared to the 

program costs of Global Hawk and Darkstar. In addition, they have lower fuel 

consumption. Unlike turbofans, the engines don't have to be oversized by a factor of 10 to 
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fly at high design altitudes as do tutbofans. Internal combustion reciprocating engines 

normally necessitate more complex systems for cooling and air charge, as well as propeller 

gearboxes. However as demonstrated by the engine choices for the NASA ERAST 

aircraft, Condor, and Strato 2C the fuel consumption is still much lower than those for 

turbofans. In addition, engine, propeller gearboxes, and cooling component sizes/weights 

are still much smaller than a factor of 10 larger than that necessary at Sea Level. 

High altitude flight is generally considered above 55,000 feet and is normally above 
jetstream activity. High altitude flight is desirable for providing a wider field of view for 

environmental sensing and military reconnaissance. It is also the lower end of the regime 

of interest for ozone layer composition/chemistry tests. The air is more stable which 

supplies a more stable sensor platform. It is also the altitude of lower wind speed, and is 

above commercial airways (for the time being). 

Long endurance is desired so that full solar day sensing can be carried out. W1hen 

used in the disaster relief or cellular telephone relay role, the airplane is required to be on 

station for a maximum number of hours. In addition, in the military reconnaissance role it. 

is desirable to watch developing problem areas for a long period of time. Of course in the 

anti-ballistic missile role, it would be advantageous to stay on station awaiting the launch 

of enemy missiles indefinitely. 

Having introduced a range of possible missions for a Low Speed HALE UAV, it is 

now possible to make intelligent assumptions regarding some of the more basic 

performance parameters, thereby enabling the conceptual sizing of the, aircraft to begin. 

Once this process has been begun, several difficulties immediately become 

obvious. For a weU-established mode or regime of ffight, any number of common 

conceptual and preliminary design methodologies could be followed in order to proceed 

with the initial sizing and comparison of multiple possible configurations. 'Me problem 

arises with the application of these common methodologies to the very demanding 

mission requirements of the Low Speed HALE UAV. 

It is quickly discovered that there is no parametric data available to these methods 

with which to begin the sizing. Immediately the literature must be referred to for 

information on weight fractions. Ilere are no existing aircraft types that have nearly as 
large a fuel fraction, or as small a structure fraction as that expected. from a Low Speed 
HALE UAV. As the investigadon'proceeds, it is found that the weight estimation 
techniques do not apply to aircraft with extremely high aspect ratios and in fact, rarely 
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apply for aspect ratios higher than 12. Once a gross estimate of the aircraft weight has 

been obtained, an attempt at a refined drag analysis is normally undertaken. Then it is 

noticed that there is no information on aerodynamic drag estimation for extremely high 

aspect ratio wings at low Reynolds numbers. Intuitively, the lift distribution should be 

dose to elliptical in shape, but how close is not known, and there is no method for finding 

this out available in the common methodologies. It is also intuitively known that a very 

large proportion of the drag of this aircraft will be due to the wing, but how much? When 

an attempt at a drag breakdown of the aircraft is made, none of the aircraft types in these 

methodologies seem to be appropriate for comparison. Surely an aircraft with such a large 

wing will have a 'smaller ftaction of component drag, but how much smaller for each 

component? 
If the stability of the candidate aircraft is desired, wing downwash angle 

information at the tailplane (for a conventional configuration) is required, however, there 

is no information available on the wake of such a high aspect ratio wing. If consideration 

of any slightly unconventional configurations is desired, limited information on canard 

configured aircraft is available. Most likely, no information on the class of area ratios 

required by a 14ALE UAV and little or no information on the effect of downwash on the 

main wing by the canard will be found. Similar problems arise if, say, a flying wing or 

spanloading aircraft configuration is considered. Powerplant performance and cooling at 

altitude experience a similar absence of necessary literature. After mentioning a limited 

number of the problems discovered, a nascent understanding of the specific shortcomings 

of common design methodologies as they apply to Low Speed HALE UAV's should now 

exist. This understanding provides a footing from which begin an explanation of the aims 

of this thesis. 

The primary aim of this thesis is to provide a flexible, robust methodology for the 

early conceptual design of Low Speed HALE UAV's. It will be demonstrated that at 

present, this capability does not exist due to a variety of failings with existing methods. In 

the process of creating this methodology, a code will be developed in order to enact it and 

thus facilitate the communication of information to the designer in a clear, coherent, and 
intuitive manner. This partial automation of the sizing, layout, and analysis of the Low 

Speed HALE UAV methodology will greatly speed up the conceptual design process and 

allow for the production of a wealth of comparative Low Speed Sizing data. 'Me 

underlying theory will be presented where relevant and validated where possible, however 
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it is noted that the parametric database for this type of aircraft is quite small making a 

thorough validation of every component of the methodology impossible. Consequently, 

much of the validation will be performed on the macroscopic results and based on the few 

known performance and sizing data for these aircraft. 
This thesis will begin by providing a sound background on the state of the art in 

the design of low speed high altitude long endurance aircraft and all of the areas necessary 

to enable the comparison of multiple potential configurations. It will also highlight the 

areas in which common methodologies fail and include suggestions from the literature on 
how to overcome these problems. 'Me next chapter will outline the methodology used. 
The following chapter describes the preliminary sizing and the theory behind its 

implementation. The next chapter will involve a detailed description of the specification 

of the aircraft layout and geometry. 'Me next series of chapters involve the analysis of the 

designer specified geometry. The subsequent chapter will describe the theory behind the 

drag estimation, another chapter will describe the theory behind the weight estimation, and 

another will describe theory behind the calculation and determination of the center of 

gravity, static margin, and calculation of trim. Then there is a chapter dedicated to the 

computational implementation of the methodology. Subsequently, a comprehensive 
discussion regarding the results of applying this data and the resulting performance of the 

various designs will be included. Finally, there will be a chapter on the conclusions drawn 

from this work, and any future work that might be undertaken as a consequence of these 

conclusions or as a consequence of utilizing this methodology. 
Before this progression can be begun, a definition of the problem, and an assertion 

of the state of the art must first be presented. 
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Chap ter 11 
For once you have tastedflight, 

You will walk the earth with your eyes turned skyward; 
For there you have been, 

And there you long to return 

-- Leonardo Da Vinci 

No him, no me -- Dizzy GiUespie of Louis Annstrong 

2. Review of the Literature 

The'primary purpose of the introduction was to provide justification for why this 

research was undertaken. To describe what the possible uses for this class of aircraft ate, 

and why the Low Speed High Altitude Long Endurance Unmanned approach is necessary 
'Me first purpose of this chapter is to define the problern, or what this thesis intends 

to achieve. 'Me main purpose behind this chapter is to demonstrate that sufficient 
background research was undertaken to ensure that the work in this thesis is original. In 

addition, that good use was made of the most recent literature available to undertake the 
formulation of the design methodology. Ilis chapter will outline the present state of the 

art for Low Speed High Altitude Long Endurance aircraft design, and in the process will 
highlight the failings of common design methodologies already in wide use for other 

classes of aircraft. Most importantly, this chapter will provide the foundation from which 

a Low Speed HALE UAV design methodology can be created. 

2. A The Conceptual Design Stage 

2. A. 1 Conceptwd Design Def- InItIon 

The definition of the problem must be clearly delineated before a solution is 

attempted. It is first necessary to define Conceptual design as there is often much overlap 
between the definitions of Conceptual and Prelin-dnary design. Since several differing 

I 

i 
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definitions exist for exactly what Conceptual design is, the definition that will be followed 

in this dissertation must be clarified. From Raj', the definition for conceptual design, 

"In this stage, the task is to conceive solution concepts, typically teptesented by sketches 

that can functionally meet the design requirements, such as range, payload, takeoff and landing 

distances, etc., as dictated by the intended mission. A good sketch includes the approximate wing 

and tail geometry, fuselage shape, engine location, etc. Ibis information can be used to estimate 

performance and weight fractions by comparison to previous designs. -A sizing process uses these 

estimates to dctern-dne the required total weight and fuel weight to perform the niission. The first 

order sizing provides the necessary information to develop an initial layout with more details such 

as landing gear, inlet ducts, cockpit, major avionics, etc. to ensure that everything fits. 

The initial layout is analyzed to refine the first set of estimates of aerodynamics, weights, 

and installed propulsion characteristics. Performance capabilities are calculated compared with 

design requirements. Optimization techniques may be used to determine the lightest or lowest cost 

aircraft to meet the n-dssion. The results of these trade-off studies are used to revise the initial 

layout. 

The process is repeated many times, and for several competing concepts depending upon 

the available resources, in attempts to devise an optimal solution. Functional specialists periodically 

review the design to ensure its soundness from their perspective. The resulting layout is then ready 

for preliminary design. " 

Raj then continues with broad definitions for synthesis and analysis. He states that 
Synthesis covers defining, refining, and altering concepts and configurations. Analysis 

encompasses methods, tools, and expertise to produce data and the use of this data in 

evaluating competing concepts and configurations. 
Regarding the differences between Raj's definition of Conceptual design and- the 

definition used in this thesis, this methodology will not perform a detailed first order sizing. 
Optimization techniques will not be used, although it would not be difficult for someone 

skilled in optimization to utilize the methodology for optimization due to the consistent 
modularity of the implementation of the methodology. The number of iterations possible 
for any given concept will also be limited by the time available and obvious limitations in 

manpower I Finally, due to the fact that functional specialists were not'available for 

consultation due to the nature of the thesis and degree, that aspect of the Conceptual 
design process will be included to the extent covered by the research. 

Tbus, it is by these definitions that a Conceptual Design Synthesis and Analysis 

methodology and corresponding computer code were created. TI-ds code will be used as a 
tool in providing results for the comparison of several possible configurations to satisfy 
the Low Speed High Altitude Long Endurance Unmanned Aircraft role. Exactly how this 
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is achieved will be covered in detail in a subsequent chapter. First it is necessary to 
describe the background research that forms the foundation for the methodology. 

2A. 2 Exis ting Me th o do ]ogles 

It is fundamental to this thesis that existing methodologies arc wholly inadequate for 

the design of Low Speed HALE UAV's. Several common conceptual design 

S. 6,7 methodologies exist already" 4' All of these methodologies fail in the high altitude 

regime, in the low speed (low Reynolds number) regime, and for the unmanned aircraft 

type. 
1hcre have. becn a few papers published on related areas in Conceptual design. 

Smrcek! described a potential methodology for use in the Conceptual/Aerodynamic 

design of motorgliders. The majority of this paper was concerned with the aerodynamic 
design, and with the process of teaching design for University level course-wotk. It did 

include a drawing of the detailed methodology, however no detail was provided as to how 

any of the shortcomings of common methodologies were overcome, with the exception of 
the aerodynamics, which took a simplified approach compared to the one used in this 

thesis. 
There is an excellent book by Thomas' on the design of gliders and sailplanes. 

Unfortunately, gliders are designed to a completely different set of specifications. Despite 

the outward similarities in their appearance, glider design is driven by a mostly unrelated 

set of performance requirements. Despite these differences, the glider is the closest relative 

of the Low Speed HALE aircraft with any detailed information available. These 

differences will be discussed in detail in a subsequent section. 
jaxa-Malachowskiýo outlines the iterative process used in the conceptual and 

preliminary design of UAV's in general. The difference between this class of aircraft 
(general, UAV design) and Low Speed HALE UAV's is quite clear, and the paper doesn't 

outline any of the design characteristics specific to UAV's. Ilere is no mention of 

structural or fractional weights due to the absence of an onboard pilot, or of the weights of 

control systems and actuators. In fact, there is precious little detail, and the paper is 

written strictly to outline the methodology similar to that of Srnrcek. 

A few published attempts have been made to create design methodologies specifically 
for HALE aircraft. These attempts have been computational in nature and discussion on 
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their merits will be included in a subsequent section. Ihe remaining possible approaches 

are limited primarily to existing methodologies to design a Low Speed HALE UAV. This 

approach, however, is replete with difficulties. 

A 
L 1.3 Problem Tfith Existing Methodologies 

In general, design methods found in the literature are based on data from existing 

aircraft types". Inherently, these methods pertain to aircraft technology which is at least 

10 years old and more often 20 years old and older. The robustness of any of these 

methodologies is built in with regards to the means by which newer information or 

methods can be integrated or substituted at any point in the process manually. 
Computational methodologies in general, in the past were not afforded this luxury. ý It is 

therefore safe to say that most of the information in current computational methodologies 
is older than 10 years. 

With the cost and complexity of present generation designs increasing exponentially 

over previous generations, a new approach is necessary if there is to be a sustainable 

aerospace industry in the future. Advances in aircraft design have been achieved using 
traditional design practices, however, the deficiencies of these practices makes them 

unsuitable for meeting tomorrow's challenges. Traditional design practices are not 

conducive to reducing time and risk while improving quality, and utility. One of the major 
deficiencies of the traditional design approach is long cycle time due to its sequential 

nature. For modem airplanes, completing a design cycle using the sequential process can 
take a very long time. As a result the number of cycles that can be completed to explore a, 

wide spectrum of alternatives within schedule and cost is quite confined. 
As manufacturers move towards the Concurrent Engineering concept, and begin to 

implement the Integrated Product and Process Development (IPPD) approach, certain 
elements are necessary for the success of this design paradigm. 'Me following 3 attributes 
are excerpted from Raj2 in his discussion of effective implementation of an IPPD design 

environtnent: 
Integrated design and analysis tools using digital product model to capture and refine 
product and process design data. 
Integrated design autornation tools to streamline the design process and assure 
understanding of design intent. 
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Extensive use of Physics-based analysis methods and simulation tools for improved 

product performance with fewer design/build/test iterations. 

Each of these statements supports the need for a more efficient and complete way to 

compare the relative merits of different designs, in addition to utilizing more 

efficient/effective methods to improve on initial design concepts. 11is leads us to a brief 

survey of the existing computational conceptual design methodologies, and the discussion 

on the specific shortcomings of present methodologies will be presented in another 

section. 

2. A. 4 Existing Computa tional Methodologies 

Many computational conceptual/preliminary design methodologies exist'"2, but these 

are all strongly based on the common conceptual design methodology textbooks which fail 

in the aforementioned areas which will be detailed later. An excellent example can be 

found in RoskaM12 from a comment made regarding his Design, Analysis and Research 

(DAR) program in wide use : "Currently time does not perinit the evaluation of innovative 

configurational design approaches". His code was written and specificaRy funded for 

application to general aviation aircraft, though the code he has marketed is capable of a 

wider range of aircraft types, it is still. not capable of handling the majority of 

configurations addressed in the methodology presented in this thesis. 

A couple of HALE UAV computational design methodologies have been produced. 
These have either been proprietary and not available for general use outside of the 

companies they were developed by", or they were written in the FORTRAN programming 
language for use at higher flight speeds (turbojet)" and encompassed more preliminary 
design considerations with the choice of configuration severely limited. 

In addition, all design programs written in FORTRAN restrict the user in many ways 
Firstly, the user is quite limited in how the design process is iterated (linearly/sequentially), 

which results in the designer being further removed from the design process. Secondly, in 

order to receive graphical feedback on results of the various stages of execution of the 

program, the user must exit the FORTRAN program, and use another code to visualize 

the resulting output. This takes time, and when numerous different configurations must 
be compared, it is rudimentary and unnecessary by today's computing standards. 
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A few papers have been written on the topic of computational aircraft design 

methodologies in general and their characteristics and the difficulties in writing and 

maintaining them. An aircraft design synthesis program developed by Boeing for 

Hypersonic Aircraft design. "HOLIST"" was written using FORTRAN and C and was 

based on a UNIX platform. This project was immense and involved the linking of several 

extremely complex modules coupling flight controls and aerodynamics. Neither of these 

modules would be appropriate for Low Speed HALE aircraft, however the difficulties 

mentioned paralleled those experienced in this thesis. 

BiV' describes ADAS, a system that was being developed by Delft University of 

Technology. The ADAS program includes optimization and other attributes that would 

classify it as a preliminary design tool by the definitions used in this thesis. 

Kroo" discusses in detail the problems of maintaining data integrity in systems with 

thousands of variables. He also outlines a few possible classifications for methods of 

approaching the problem of aircraft design within the computational framework. Kroo 

also uses optimization in his solution, but describes a non-procedural architecture 

(nonlinear, non-sequential, object oriented approach) and the necessity for such an 

approach for modeling the conceptual design process. None of these programs have the 

ability to design Low Speed HALE UAV's since they both need to be developed and 

integrated with existing design methodologies, which, as will be shown, do not have the 

capacity to deal with the design problems inherent in Low Speed HALE UAV designs. - 

2. B Difficulties with Discretizing the Conceptual 
Design Process 

Conceptual and preliminary design is a creative and heuristic process, which is not 

easily adaptable to the formalized structure required by the computer. One of the more 

difficult tasks to achieve is modeling the paths taken by the human mind and the number 

of infinite possible directions it can take when given a complex problem to solve. While 

the tools available to solve the problem are quite often identical, or at the very least, quite 

similar, the final solution to the same problem is often quite different. An excellent 

example of this would be the different evolution of rocket propulsion technology between 

the United States and the former Soviet space programs. 
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In the past, traditional design synthesis codes could not balance the amount of 
human interaction and input into the design process with the degree of automation and 

automated analysis. Quite often, designers would find many of the mote relevant 
decisions being made for them, and in a hidden manner. This removes the designer from 

a very important part of the design process, as they are unaware of the path taken to the 

solution. This path is often mote important than the solution itself. 

One of the biggest reasons for the solution method being hidden, however 

inadvertently, was FORTRAN, the most common programming language used by the 

engineer. FORTRAN is a powerful and fast mathematical language, and is able to emulate 

all of the basic computational constructs. Nonetheless, to use compulsory modem non- 

sequential/object oriented programming practices, as well as more complex data structures 

that allow for the implementation of data validation, the engineer MUST utilize another 

programming language. Without these programming practices, software such as CATIA 

and data visualization of fluid dynamics and structures codes (such as Fluent and 
NASTRAN) would be impossible. 

In FORTRAN, visual feedback of relevant design parameters and how they relate J 

can only be achieved by outputting the data from the FORTRAN program. This data 

must be subsequently input into a data visualization program (such as Microsoft Excel) or 
data post-processor specifically designed for a given software package (Fluent, 

NASTRAN, where the post-processor is always written in another language). 

Additionally, the physical layout of a specific aircraft and how it might compare to that of 

another potential design are all left to the user's imagination, due to FORTRAN's inability 

to provide graphical feedback. An important part of the design process has been 

removed, that is, does a design "look" right. Apart from executing a code on several 
different computers, FORTRAN has no facility for comparing several different designs 

and viewing their relevant performance and geometrical parameters side by side in real 
time. If FORTRAN is used, this must be done when all solutions have been compiled 

manuaUy, or printed out, aU methods that cost time. 

Each of these factors taken alone may not seem terribly inconvenient. Yet, when 
200 design concepts are being compared, each with a rather subtle difference, the ability to 

visualize and immediately compare concepts on their relative merits is not only 

convenient, but in light of the present day competitive environment, indispensable. 
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Once another programming language is selected that allows for more flexibility and 

process controL several new problems arise. Kroo" encountered these problems and 

others associated with creating computational design synthesis programs. He states that 

aircraft synthesis programs are well known for their complexity and corresponding 

difficulty with documentation and maintenance. Large computer codes with data shared 

among hundreds of subroutines are not only difficult to understand, but are not easily 

modified or extended. Such capabilities are especially important in the multidisciplinary 

evaluation of new technology or new design concepts. 

A logical extension from the need for a more structured ptogramming language 

and a more structured approach to the computational modeling of the aircraft design 

process, has led to the development of "loosely coupled" systems of analysis routines, 

managed by executive routines. Several examples of such systems have been described in 

the literature. The present method employed by Kroo, consists of a large number of 

procedural routines, executed, when required, by an executive system. Ilie structure of the 

Conceptual design synthesis code written for this thesis is quite similar. 

Ile primary difference here, between FORTRAN and the programming method 

used, is that with FORTRAN, all of the decision paths are hardwited at compile time. It is 

not possible to follow a path that has not been pre-defined. This greatly reduces run-time 

flexibility, however greatly reduces the workload on the programmer in terms of veriýýing 

and validating potential program paths. With modern object-otiented languages, the paths 

taken ate not necessarily all pre-determined at compile time, and can in fact be changed 

and manipulated in run-time. 
Kroo continues by outlining the approach to solving the design problem by 

describing the method of approach. He calls the first critical concept the Quasi- 

Procedural Concept. 'Me Quasi-Procedutal Concept is the basic architecture used and is a 

form of non-ptocedural programming. Unlike conventional (FORTRAN) codes in which 

computation proceeds from given inputs to outputs with a rigid structure, non-procedutal 

systems are free to organize computations so as to produce the required results in an 

efficient way. However, programmers can often generate mote efficient, short procedural 

routines and many ate widely used. It is the complex interconnections among these 

routines that are difficult to manage. Unlike non-ptocedural programs that deal with 

relationships among data on a line-by-line basis, the present approach deals with compiled, 

procedural subroutines as the smallest program unit. 
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The second critical concept he denotes as Nonlinear Analysis Structures. A 

Nonlinear Analysis Structure is where computations requiring iteration include sets of 

analysis modules for which the output of a routine is required as the input for another 

routine and output from the second routine is needed as an input to the first routine. Such 

situations arise frequently in aircraft synthesis problems and lead to difficulties in the 

generation of computational paths. The one solution to this problem is to recognize such 

situations and automatically perform the iteration. This of course results in complex 

logical constructs and decision trees. 

An alternative method is to recognize iteration loops, but to not iterate on them. 

Instead a new design variable is introduced that represents the input guess for the iterated 

variable. Consequently, every time a program variable is input, the program inputs and 

outputs must be examined carefiffly to ensure that no further calculation or iteration must 
be done somewhere upstream of where the program variable was input. Ile simple task of 

examining the program inputs and outputs is a difficult one when the parameters number 
in the thousands. 

One approach uses an object-orientcd description of the problem. A strict, 
hierarchical description appears to work very well in the description of aircraft geometry, 
but this constitutes a small fraction of the parameters used in the synthesis process. 'Me 

connections between parameters can be very convoluted (e. g. payload location effects cg , 
which effects tail moment arm, which effects trim dtag and tail sizing, which ultimately 

effects endurance). 
Finally, once the technique for disctetizing the Conceptual Design process is 

selected, you must decide how much control you are going to allow the user to enjoy. Bil", 

outlines 3 possible approaches to drive the optimization process and control the search 
strategy. Ihey ate: 

Traditional Design Approach: The designer selects and modifies design parameters 
primarily on the basis of intuition and experience. In principle, only little use is made 
of computer codes. 

Parametric Survey or Explicit Optimization: A range of design configurations arc 
systematically analyzed. An optimurn design point can be selected from a graphical 
representation of the results. This approach is particularly useful for sensitivity 
analysis and trade-off studies. 
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Multivariate or Implicit Optimization: The search strategy is controlled by an 
optimization algorithm. With this technique, many design parameters can be 

optimized, but only one design point obtained. 

In the extreme, the first approach makes little use of the computer, and draws almost 

exclusively on the experience of the aircraft designer, providing httle help beyond 

automating monotonous calculations. The last approach essentially removes any intuition 

the aircraft designer might have, and greatly restricts the amount of robustness and 

flexibility the method could have. It essentially removes the designer from the execution 

of the program. 
Again, the programmer is faced with a difficult decision in how to implement the 

methodology. For the purposes of this thesis, the Parametric Survey or Explicit 

Optimization approach will be used. Based on the arguments for the need for expedience 

and graphical feedback in the modem aircraft design process, the Traditional Design 

Approach has been discarded. This approach was nevertheless used for the validation of 

thetesulting methodology when possible. 
Based on a personal belief that the designer should always be kept in the loop as much 

as possible, and the experience of the designer should always be included if available, the 

Multivariate or Implicit Optimization approach was no t considered. In addition, this 

approach removes the designer from the problem to the extent that the fundamental 

understanding of the variation of the driving parameters of the design with changes in the 

relevant design variables can be compromised. This approach is quite'useful once the 

problem is well understood, and an existing design is being refined. Though, 'in the early 

stages of comparison of the relative merits of multiple potential configurations this 

approach is considered inadequate. With the general background discussion of 

computational and traditional methodologies complete, the detailed problems with existing 

methodologies can now be addressed. 

2. C Explicit Shortcomings of Existing Methodologies 

Assuming certain basic configuration and performance related constants are 

available, have been specified in the mission requirements, or can be approximated for the 
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design of the aircraft based'on the selected mission, an initial sizing of the aircraft can 
begin. 

One of the first encounters with the failure of common design methodologies is in the 

specification of the wing design. In the scope of the design of this type of aircraft, this is a 

major failure since up to 70% of the total air vehicle drag is generated by the wing lift 

alone"-"-2'. This will be the first discrepancy found in all of the common methodologies 

considered, but many others will be discussed as well. Ilese include the weight estimation 

and structure, powerplant selection and performance, tau sizing and stability, design of 

alternative configurations, and cooling drag estimation. 

2C1 Wing Design 

Ilis is the first major area in which the common methodologies fail, there are many 

areas within the wing design in which the common methodologies fail. 

Low Reynolds number drag estimation techniques are absent 

Wing profile design and specification can't be performed within one of these 

methodologies 

No possibility for direct inclusion of the above information 

Three-dimensional lift and drag data are nonexistent for aircraft with Aspect Ratios 

greater than approximately 22 and rate for aircraft with Aspect Ratios above 12 

Aerodynamic center for wings and wing-body combinations are also unavailableý' 
Wing downwash angle and downwash angle rate variation with angle of attack are 
also unavailable. 

These are just the major shortcomings, but many others exist. The first section begins 

with an evaluation of available information on low Reynolds number airfoils. 

2 CLa Low Reynolds Number WingProfileData 

In recent years a substantial amount of research has been done on low Reynolds 

number airfoil design. Typical cruise Reynolds numbers for this class of aircraft are in the 

region of half a million and below. This is well above the Micro UAV class of vehicle, but 

well below common General Aviation cruise Reynolds numbers and does not fit well with 
glider or sailplane operations. 
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The challenge in low Reynolds number airfoil design is to prevent laminar separation 
(to maintain low airfoil drag) without restricting the maximum lift coefficients attainable 
for the airfoil, in order to obtain high section lift to drag ratios. For a front loaded airfoil, 

the gentle adverse pressure gradient requirement puts a restriction on the allowable 

minimum pressure peak, which in turn limits the maximum lift coefficients attainable. 
Evangelista and Pfenningerý2proposed a 10% thick airfoil designed to have high lift to, 

drag ratios at lift coefficients dose to 1.0 in low Reynolds number flow (100,000 < Re < 

300,000). Their design approach maintains low airfoil drag without severely restricting the 

lifting potential of the airfoil. 
One of the best low Reynolds number airfoil sources is the book created by Donovan 

and Selie. They essentially compiled a textbook from airfoil shapes by Epplcr, 

Wortmann, Miley, NACA, and shapes that were sent to them by model airplane builders 

across the world, and then proceeded to test them (62 airfoil sections) in the Low Speed 

Wind Tunnel at Princeton University. Since many of the shapes were from model 

airplanes, the design Reynolds numbers were in the region of interest for Low Speed 

HALE UAV's in cruise. In the process of compiling the book many interesting 

observations were made with respect to low Reynolds number airfoil design. These 

observations were too many to mention and relate directly to airfoil design, however if any 
detailed low Reynolds airfoil design improvements are to be made, this book or their web 

site at the University of Illinois is an excellent starting point. 
In 1987, Maughmer and SoMerS24 presented an airfoil design for a High Altitude Long 

Endurance Remotely Piloted Vehicle. They mention that the preliminary design and sizing 

of a HALE RPV is complicated by the fact that data regarding suitable airfoils are limited. 

This is due to the fact that such vehicles, unlike those for which the majority of airfoils 
have been developed in the past, operate at fairly high lift coefficients and at relatively low 

Reynolds numbers. 
In discussing the aerodynamic efficiency of gliding vehicles in 1994, Hermanspane 

states that today's airfoils can provide lan-iinar flow over 80% (lower wing surfaces) at 
Reynolds numbers of one million. McGhee and Walker 26 provide good experimentally 

obtained pressure distribution, lift, and drag data for low Reynolds number airfoils. 
Boermans and Timmerý' present the results of experimental investigations on two low 

Reynolds number airfoils under a variety of modifications such as tutbulators, strips, zig- 
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zag tape and bumps. If detailed design were going to be undertaken, this approach might 

prove useful in lowering dtag. 

In addition to strictly aerodynamic considerations for low Reynolds number airfoils, 

there are several less obvious constraints on a wing profile design. Given the long 

endurance constraint, an extremely high aspect ratio wing is expected and a huge amount 

of fuel would also be expected. Vitali and Tsachý8 in designing the Israeli Aircraft 

Industry's medium altitude long endurance UAV, Heron, found that a high wing thickness 

ratio was the best combination for structural rigidity and increased volume for internal 

fuel. 

Ile papers and books discussed above only begin to detail the recent work done on 

low Reynolds number wing profile aerodynamics. Several international conferences were 

also held and their proceedings may be easily obtained, however the Reynolds number 

tends to be too high for Low Speed HALE UArs. Of all of the areas stated in which 

modem design methodologies fail, tl-ds would be the easiest to remedy. 'Mere is a wealth 

of information available in several aspects of low Reynolds number airfoil design. Any 

modem HALE UAV methodology would have to be robust enough to not only allow for 

the inclusion of this data, but to allow for the inclusion of future work. Finally, there has 

been much work done in the advancement of computational techniques for low Reynolds 

number airfoil design. A few of these methods will be mentioned in the next section. 

2 CLb ComputationalAirfoll Proffle Drag Solutions 

Mark Drela' from The Massachusetts Institute of Technology wrote a low Reynolds 

number airfoil program called XFOIL In his paper he discusses the underlying theory 

behind the computational method. There is some allotment in the code to solve for 

larninar separation bubbles. For validation, his method compared quite favorably to 

experimental results obtained for the Eppler 387 at low Reynolds numbers. 
Referring back to the previously mentioned Donovan and Seli 23 paper, they compared 119 

their experimental results to two different computational codes. The Eppler and Somers 

code formulates the design problem in such a way that allows quick and easy manipulation 

of the airfoil shape. With a minimum number of parameters, almost any desired velocity 
distribution can be obtained. However, they found that this code did not accurately 

predict the performance of airfoils in the Reynolds number range considered in their work, 
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which consequently is the Reynolds number regime of interest for Low Speed HALE 

UAV's. 

They did discover in their investigation, however, that the Drela - ISES code predicted 

airfoil performance more accurately over the Reynolds numberrange of interest. 

IlebecO also used the ISES code to create various low Reynolds number aitfoils with 

varying thickness ratios and degrees of aft loading. Verification of the computational 

procedure was performed on some existing low Reynolds number airfoils and some other 

airfoils created at Douglas aircraft and the results compared favorably to experimental data 

where available. 
Richard Epple? was renowned for his low speed airfoil design. He published many 

papers subsequent to his book of low speed profiles. In 1994 he published the results of 

three different airfoils with only one using flaps and were compared on their relative lift to 

drag ratio properties with the E688 triumphing. Drag polars were computed by means of 
the Eppler-Somers Low Reynolds number profile drag code. 

Similar to Selig and Donovan but not as comprehensive, Evangelista and McGhee3Z 

compared the two computational airfoil analysis methods, the Eppler-Somers code and 
ISES, the Drela-Giles code. Calculations were performed for Reynolds numbers between 

60,000 and 460,000. Experimental results were also included. 'Me basic conclusions from 

this analysis were the same as those of Selig and Donovan. When a laminar separation 
bubble is present the Eppler-Somers code breaks down, and the Drcla-Giles code 

correctly predicts the drag. 

2. CLc Wing Planform Design 

In the design of the wing planform geometry, there are alimited number of design 

variables to choose firom. Ile primary design variables of interest are aspect ratio, taper, 

and sweep. A historical survey of Aspect Ratio in sailplanes is presented in Figure 2.1.7111e 

data for this diagram was taken from Hermanspann". 

This diagram makes several interesting points about trends in the aspect ratio of 

sailplanes. It would appear that for the Standard/15 meter class sailplane, that an ideal 

aspect ratio for the span has been reached. You can see from the unlimited class, though, 

that there is a definite neatly linear trend towards the highest aspect ratio attainable. This 
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has direct implications on the expected planform. of a Low Speed HALE UAV. With the 

exception of hang gliders, none of the wings were swept. 
In the Low Speed HALE UAV application, there is little aerodynamic justification for 

using anything but very moderate sweep, as compressibility effects are expected to be quite 

small even at altitude with a cruise velocity in the range of 0.3 to 0.4 Mach. Iberefore, if 

sweep is to be considered, it will be exclusively to satisfy difficulties with a given 

configuration. 
Theory states that the wing planform with the elliptical shape will have the minimum 

lift induced drag. In practice it is quite coýtly to build an elliptical planform. The next 

option is to approximate the elliptical shape using taper. 
With regards to taper, much of the aerodynamic theory was developed rattler early in 

3,34,35 
the history of modem aeronautics. Glauertý published much of this original theory in 

the early 1920's. These papers dealt with the theory behind lift and drag coefficients, and 

also developed the theory for calculating lift induced drag on a rectangular wing. This was 
later extended to include theoretical prediction of lift induced drag for straight tapered 

wings with the assumption of an elliptical lift distribution. 
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More recently, Traub 16 derived a method for the analytical prediction of vortex 

induced drag for tapered high aspect ratio wings. Again, this method is limited in its 

application as it assumes an elliptical lift distribution. This is the extent to which the theory 

can be applied to the solution of induced drag prediction without invoking the use of a 

computer. Unfortunately, there haven't been any published data regarding experimental 

validation of the shape of lift distributions on extremely high aspect ratio wings. In the 

absence of experimental data there is no way to verify the assumption of an elliptical lift 

distribution apart from the implementation of numerical methods. Intuition would lead to 

the same assumption as the Prandd "infinite wing" case, but strangely enough, this has 

never been experimentally verified in the literature. It should be noted that there is a 

wealth of data for much lower aspect ratio wings. However, any extrapolation of this data 

would be impossible due to incompatible sweep, Mach number, or aspect ratios so much 

lower than those considered in this thesis the extrapolation would be suspect. 

Boermans, Waibel' performed a planform. optimization procedure apphed to the 

design of standard class gliders. Ileir analysis was based on Lifting Line theory assun-dng 
linear section lift data with a spanwise distribution of circulation expressed in terms of 

Fourier series. They found that at equal tip taper, the difference in induced drag between 

double and triple taper wings was negligible. 

In addition, they discovered that the most effective way to improve wing performance 

at higher lift coefficients is to increase the aspect ratio. Also from the aerodynamic study 

of sailplanes, Marsden" found that the relative importance of induced drag is not reduced 

by very high aspect ratio. This means that regardless of the mission segment, the total 

percentage of induced drag will remain at approximately 70% of total aircraft drag. Again, 

this has direct implications on the design of a Low Speed HALE UAV planform. 
Epple? ' observed that the mean aerodynamic chord of the wings of modern sailplanes 

varies little on average with span. This means that regardless of the taper and different 

classes of sailplane, the average chord remains the same. Furthermore, he verified that the 

performance improvement due to increasing span was higher at low spans than at high 

spans. 
It should be noted, once again, that even sailplane aspect ratios are lower on average 

than those considered for HALE UAV's-'Ibe general trends of the above sailplane results 

should, however, be applicable to HALE UAV's. 
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2. CLd ComputationalLift In ducedDragPiedfction 

Given the lack of appropriate high aspect ratio wing data, another solution method 

had to be found for the low speed low Reynolds number cruise environment of the HALE 

UAV. Ilere is a Large body of data available on suitable computational methods. 

As mentioned in the previous section, the theory for such methods was developed 

long before the modem computer. As the modern computer was evolving, several 

extensions to the original theory were developed to handle some of the more difficult 

aspects of fluid flow to predict such as unsteady flow and turbulent separation. Neither of 

these complications is necessary for the Low Speed HALE UAV in cruise, thus simpli4ring 
its application. In addition, for the early Conceptual design phase in which multiple 

configurations are compared, complex and time consuming Computational Fluid Dynamic 

(CFD) solutions are not practical or even reasonable. 

This leaves various Vortex methods. For a comprehensive textbook on the subject, 
Katz and Plotkin39cover all of the background theory in detail. A brief discussion of the 

theory and its implementation used for this thesis are included in Chapter VI, Section 3. 

For the aerodynamic design of a motor-glider, Smrcek! investigated several methods 
for lift induced drag estimation. The methods studied were generally in the form of either 

a stand alone equation giving lift coefficients as a function of aspect ratio, used graphical 

parameters variously derived from Prandtrs Lifting line theory, or were empirical. 
More specifically, he evaluated Lowry and Polham's method which gives the wing lift 

curve slope. Roskam provides a source of semi-empirical expressions supplemented with 

graphical relations for calculation of a range of aerodynamic derivatives, including lift 

curve slope and variation of drag coefficient with angle of attacL He also evaluated 
Schrenk's approximation which gives the distribution of additional lift cocfficient over the 

semi-span. And finally, he evaluated Prandtl's Classical Lifting Line Ibeory which 
develops lift and drag characteristics from a purely theoretical fluid dynamical model of the 
finite wing. 

Smrcek decided to assess the wing chatactetistics from first ptinciples using Prandtl's 

lifting line model since the theory provides a comprehensive source of wing aerodynamic 
data pertinent to the aircraft design process with comparable accuracy to most semi- 
empirical methods available. The values for the lift curve slope, obtained using a computer 
program based on the Prandd Lifting Line Ibeory and the method of Lowry and Polharns 
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were found to be within 1% of each other. He concluded that the method of Schtenk, 

Lowry and Polhams, and the Prandd lifting line theory with three ordinates were equally 

satisfactory for estimation of the lift curve slope and lift distribution at the preliminary 

design stage. 
Guglieri and QuagliotWO performed the evaluation of wing characteristics as a function 

of design parameters by means of the Weissinger" method. The Weissinger method is an 

extension of lifting line theory which is able to evaluate the effects of sweep in 

incompressible flow with acceptable precision, when a comparison is made with other 

methodologies. They concur that there are other computational methods that are 

obviously much more advanced, but they are generally quite time consuming. 
The vortex method used for this thesis is slightly more advanced than the Weissinger 

extension to the Prandtl lifting Line theory. It utilizes discrete vortex rings, which make 

up single panels. These panels are then combined to model the shape of the lifting surface 
being used. It is generally considered to be more accurate than either the Weissinger or 

lifting Line methods and does not rely on the small sweep angle approximation inherent 

in the aforementioned methods. 

Finally, in a paper by Owens2, he warns that including nonlinear aerodynamics during 

the conceptual design phase for complex shapes using a Vortex based method is not a 

reasonable approach. It should be stated that the Vortex method used in this thesis makes 

no attempt at lift induced drag prediction in any phase of flight outside of cruise or climb. 
The shapes of the planforms considered were (for the purposes of induced drag 

prediction) simple straight tapered wing planforms. 

2. CL e Aerodynamic EMcIen cy 

One of the more commonly used measures of aerodynamic efficiency is the ratio 

of lift to drag QL/D). L/D ratios are frequently quoted in discussing the performance of 

gliders. In two dimensional space, a fixed velocity, wing area, and air density, this ratio is 

C 
Y2 

the same as the ratio of lift coefficient (CL) to drag coefficient (CD). A related ratio, L 
CD 

is extremely important with respect to HALE UAV's. Its importance to the endurance of 
the aircraft can be seen in the Breguet equation for the endurance of propeller driven 

aircraft below: 
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term is in direct proportion with the endurance of the aircraft (the other terms 
CD 

and their importance will be discussed in a later chapter). Ibus, for any improvement in 

aerodynamic efficiency, the endurance benefits directly. 
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Figure 2.2 shows the historical trends in maximum lift to drag ratio (Hermanspann"). 

Mueller and Heuermann"' discuss the recent history of L/D ratios in high performance 

gliders. In 1972 the SB 10,2 seater with 26m/29m span and aspect ratio (AR) of 36 had an 
L/D = 53. In 1981, with a 24.5m span, AR of almost 40, L/D's of 57 were obtained. 
Fred lboMaS44 (aerodynamic designer of the Grob Strato 2C HALE wing) states that L/D 

ratios of over 60 have recently been achieved. 
Strojnik4' agrees with the statement that a best glide ratio L/D approximately equal to 

35 is poor for a 15m sailplane by today's standards. Hermanspann' includes several 
figures of interest. In his paper, he outlines a procedure for deten-nining the Maximum 

L/D potential based upon three key performance parameters: Aspect Ratio, wetted area 
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ratio, A,,, t / S,,, f, where A,,,, t is the total aircraft wetted area, S,., f is the reference wing 

planform area, and extent of laminar flow (x. 
%Fc) where x is the chordwise location and c 

is the length of the chord. The wetted area ratio, the ratio of the exposed surface to wing 

area, would ideally only represent upper and lower wing surface. Conventional 

configurations requiring tail surfaces and a body (with wetted area ratios of 2.5 to 3) 

determine current 
L 

otential. To provide an idea of the aerodynamic efficiency of 
(D 

-'5)max 

some HALE aircraft, and compare them to some better known aircraft, Figure 2.2 shows 

the development/evolution of the maximum lift to drag ratio. It is easy to identify several, 

linear trends in the 15 meter and unlimited categories. Figure 2.3 shows the evolution of 

aerodynamic efficiency for a number of different types of aircraft. The HALE aircraft 

included seem to be less efficient than most modem sailplanes. I 
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Figure 2.3 shows the maximum possible aerodynamiceffIciency and how several aircraft compare 
(From Hermanspann 25 with modifications). 

These results and figures all prcývide a good concept of the state of the ait in low speed 

aerodynamic design. None of the existing methodologies are able to incorporate the 
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advancements in aerodynamic efficiency of modem sailplane design. Another area in 

which drag savings can be achieved, but has received little attention in common 

methodologies is trim drag. 

2. C Lf Tiim Drag 

A great deal of work has been done in the area of trim drag, most of which has been 

ignored by the commonly used methodologies. Even though the total aircraft drag is 

largely due to the main wing, a substantial drag saving can be realized by implementing a 

few trim drag reduction design concepts arising from some recent observations. 

Furthermore, since a HALE UAV will require actuators and an automated flight control 

system, the idea of a longitudinally statically unstable platform does not increase the 

complexity of the aircraft substantially. 

it is important, in order to minimize the trim drag for the Low Speed HALE UAV to 

take into consideration the airfoil moment coefficient when selecting a Low Speed airfoil. 

it is exceptionally important due to the fact that most Low Speed airfoils have very high 

zero lift moment coefficients. Ibis will have beating on the trim drag if this moment is 

not balanced by other means within the aircraft. 

From Lutze" typically, a reduction in wing-body or tail profile drag directly reduces the 

trimmed drag, and considerable efforts are made in this direction in aircraft design. 

Additional reductions, although small (1-50/6) can be made by paying careful attention to 

the lift distribution between the wing-body and the tail surfaces (maintaining zero pitching 

moment) so as to obtain proper tradeoffs in induced drag which minimize overall drag. 

Along these lines, Sachss' showed that the minimum trimmed drag is reduced when tail 

span is increased. 

Laitone' showed that aircraft can have their maximum weight to drag ratio (WID) 

occur when the tail load is slightly positive (upward tail lift). Ibis would correspond to the 

minimum trimmed drag for modem conventional aircraft with an aft tail, except for the 

unfortunate fact that they do not have sufficient tail volume to permit the rearward center 

of gravity (cg) location. This rearward cg location would produce an upload on the tail 

and still maintain static longitudinal stability. Prior to World War Il most aircraft were 
designed to cruise with either zero or slightly positive tail loads, but since then the design 

trend has been toward tail downloads at nearly all flight speeds. 
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An even greater tail upload is required for minimum aircraft drag when the usual 

aerodynamic interference between the fuselage, wing and tail are included. The physical 

explanation for why a tail upload produces less induced drag than a zero tail load is due to 

the reduced induced drag on the wing. In addition, the wines lift vector is rotated forward 

due to the circulation vortex system produced by an upload on the tau that is not in the 

plane of the wing. Ilese two effects are sufficient to overcome the additional induced 

drag on the tail, and rearward rotation of the tail lift vector. 
Kroo" made several interesting observations in a paper concerned with trim drag, tail 

sizing and soaring performance. He found that large tail arms, small center of gravity 

ranges, and low speed operation make a sailplane's drag penalty due to trim lower than 

almost any other aircraft type. It should be noted that a similarly designed Low Speed 

HALE UAV is certainly possible. 

He ultimately found that the tail's profile drag produces the greatest influence on total , 
drag. With 10% of the area of the wing, a horizontal tail typically contributes 7% of a high 

performance sailplane's total flat plate drag area. The penalty due to the trim requirement 
increases with speed, primarily because of the increasing importance of parasite drag at 
high speeds. He notes that the difference in the sink rate polars is barely noticeable when 

comparing varying the cg from 20% to 40% of the wing's mean aerodynamic chord (0.14 

< Static Margin < 0.34). This indicated that no significant saving in trim drag is possible by 

simply reducing the static stability. Tail area, tail span, and wing area are the primary 

variables affecting the trimmed drag of 15 meter sailplanes. Finally, he comments that 

sailplanes with larger tails require smaller wing areas. 
Maylan&8, however, observes that low tail area and relatively low tail aspect ratio can 

provide some advantages. Applying these observations, he found that the minimum 
induced drag is decreasing with increasing tail span, but the higher profile drag, due to 
increasing tail area is predominant. With increasing profile drag the Reynolds number 

effect becomes predominant. Only low total lift coefficients (CL ý- 0.2) require high 
ý 
tail 

downloads resulting in greater differences. For the glider tested, the lowest possible drag is, 

obtained with low ratios of tail area to total area. Ile tail plane designs have shown that 

the reduction of induced drag due to a higher tail span is less important than the influence 

of profile drag. 

Vemoný' provides a simple method for determining the trim drag coefficient. The 

method was used to derive trim drag coefficients for low and t-tail locations for a range of 
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parameters including cg position. For the t-tail it is necessary to know the location of the 
i 

wing vortex sheet at the tailplane position, and a simple rule of thumb for determining this 

was derived. 

He assumed that the effects of rolhng up of the vortex sheet were negligible and that 

the spanwise load distributions on both surfaces were elliptical. With regards to an 

ordinary planform. effect, the elliptical assumption is entirely justified. The increases in 

induced drag resulting from non-ellipticity of loading are unlikely to exceed 3% according 

to him. 

He found that for the wing, interference effects must cause some disturbance to the 

lift distributions. For the wing, only a smaU fraction of the span is affected, and the effects 

ate normally counted as part of the fuselage drag. For the tailplane, if mounted on the 

fusela e, except at low incidence, the vertical velocity component is upward, and dose to 9 

the fuselage the magnification is sufficient to overcome the wing downwash completely 

and cause local upwash. 
For T-tails the fuselage influence is almost absent and the interference of the tail lift on 

the wing is virtually unaffected by it since the tail span is so small compared to that of the 

wing. V-tails can be treated in the same way as low tails by using an equivalent flat-tau 

span. Also regarding tails, for cruise, low main wing camber gives the lowest trim drag; cg 

position is unimportant. Beating in mind other considerations such as maximum lift 

coefficient and good handling characteristics, the optimum is probably typical medium 

camber with cg mid or a little aft which agrees well with the results of others. 
Lutze' developed analytical expressions that clearly show the dependence of the 

optimal cg position on the various geometric and aerodynamic parameters. In particular, 
he showed that large changes in the position of the optimal cg can occur for small changes 
in tail downwash angle. This highlights the problem of finding an optimally designed and 

configured HALE UAV without accurate downwash data. 

In a paper in which the results go against intuition, Sachss' states that the minimum 
induced drag is less for the combination of wing-plus-tail than for the wing alone. He 

shows that this is true even for the case where the optimum tail load is a download rather 

than an upload. 'Me airflow direction at the tail location is tilted by the downwash angle 
due to wing circulation. This can be visualized in Figure 2.4. Iberefore, the tail fift vector 

perpendicular to the local flow direction has a component in the main flow direction in 

which overall drag is measured. 
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Figure 2.4 shows the tail lift vector perpendicular to the localflow direction, 
and the component of that vector in theflow direction acting opposite to drag. 

Laitone 52 extended and partially refuted the results of Sachs by stating that the 

reduction in total induced drag by a tail download was overestimated by using the total 

downwash for the wing on the tail, while neglecting downwash produced on the wing by 

the tail. However, the circulation vortex system of the tail upload produces an upwash on 

the wing that results in a "wing thrust" component that cancels the increased drag on the 

tail so that the total induced drag is a minimum with a positive tail load. Laitone proved, 

contrary to Sachs, that regardless of the relative dimensions of the tail with respect to the 

wing, the effect of the tail upon the wing cannot be neglected. If the upwash produced on 

the wing by a tail upload is considered, then the total induced drag of the wing-tail 

combination is a minimum with a tail upload. For this thesis, the effects of the tail on the 

wing were always considered. 
Moreover, Laitone found that whenever the tail is above or below the wing, a tail 

download should be avoided because the induced drag can be increased more than 8% 

over that for a zero tail load. 'Me location of the cg for a zero tail load would require a 

sufficiently large tail volume in order to attain the necessary aft cg; and still maintain static 
longitudinal stability if a fully automated control system were not going to be employed. 
This is less of a concern for a UAV as a fully automated control system is normally in 

place. 
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Goldstein and Combs" devised an analytical method for estimating total trimmed drag 

polar for airplanes with'two lifting surfaces. Drag due to lift was developed as a function 

of the load carried by each surface, its aerodynamic characteristics, and the inclination of 

the aft surface due to downwash. 
They discovered that a clear advantage was shown for canard configurations with main 

wing-tip mounted vertical surfaces. Additionally, since trim drag is a function of the total 

lift generated and the relative load carried by the wing and tail, trim drag is of primary 
importance at high altitude. They noted that trim drag is reduced and the flight efficiency 
is improved with an increase in tail arm for both aft tail and canard configurations. Lifting 

aft tail configurations have the potential for handling larger cg ranges than do comparable 

canard configurations. 'Me shape of the downwash field on the tail is directly related to 

trim drag calculations. This wake region is then directly effected by the variation in drag 

and lift across a loaded span. This aspect of the design for a HALE UAV is covered in 

this thesis/methodology by the lift induced drag calculation via a Vortex Lattice Method 

capable of resolving multiple lifting surface interactions. 

2 Cl. g Spannise Vadationsin ProfiVe Drag at Low Re 

In another area in which very little investigation has been perfon-ned, Guglielmo 

and Seligý 4 experimented with determining the effects of spanwise variations in profile drag 
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at low Reynolds numbers. 'Mey presented wind tunnel test data for the E374 and SD6060 

airfoils at Reynolds numbers from 200,000 to 500,000. An example curve is included in 

Figure 2.5 for interest. It can clearly be seen that there is great deal of variation along the 

span in CD depending on where the measurement is taken. They also showed that this 

variation continues into the wake for some distance. 11eir results showed a strong 

Reynolds number dependence on the magnitude of the oscillations at and below a 

Reynolds number of 300,000. Another area of interest that has received little attention but 

can provide a reduction in wing drag is spanwise camber. 

2C, Lh Spannise Camber 

The photographs of the Rutan Voyager aircraft shortly after maximum gross weight 

takeoff no doubt sets the mind wondering about the effects of spanwise camber on 

aerodynamic efficiency. 
Since the original work of Munk, it has been known that spanwise camber can have 

significant effects in drag reduction. Munkýs work suggests that study of spanwise camber 

can also give indications of potentially favorable planform shapes for reduced induced 

drag. 

Munk's results have consequences that do not appear to be well known. In particular, 

it was shown that under optimum conditions the ratio of lift to induced drag is constant at 

all sections along the wing. There are several known analytic solutions to the spanwise 

camber problem, for example the circular arc wing and the wing with end plates. 
In a curious paper by Lowson", linear theory was used to develop optimum circulation 

distributions and their associated minimum induced drag for wakes from lifting surfaces 

with various spanwise camber. New results were computed for polynomial and 

superelliptic: camber lines. An empirical correlation was demonstrated between' the 

induced drag factor and the inverse arc length for a variety of optimum cases. 

The induced drag factor k is defined following the European practice, by 

CD1 ý- 
kC2 

. Thus, values of k<1 imply reductions of induced drag. It was observed that 

the super-elliptic results gave low values of k and ate therefore of some practical interest. 

There is a strong effect of spanwise camber distribution on induced drag. A comparison of 
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the results for various shapes demonstrates that it is the shape of the tip, and in particular, 

its vertical orientation that is the principal factor governing the benefits. 
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Figure 2.6 shows the variation in aerodynamic 
efficiency term (k) with arc length for several different 
wing shapes (Lowson55). 

Ile results also showed that total arc. length of a cambered wing was a strong 

empirical predictor of induced drag. Figure 2.6 gives a plot of V against total arc length 

for various wing shapes. The arc length and inverse drag factor are closely related for the 

more effective wing forms such as endplates, super-ellipse, etc. The most effective form 

for a fixed arc length is a broadly elliptic shape of modest overall camber. However, the 
induced drag is proportional to the inverse square of the span so that the best use of the 

arc length is generally to increase the span rather than to use camber. 
The results gave a prescribed downwash and bound vorticity distribution for minimum 

induced drag under the assumptions of linearized theory. Computation of optimum lift 

distributions for cambered lifting lines showed the benefits largely due to camber near the 

tips. The most effective form of camber for a maximum given displacement was the end 

plate, but elliptic and super-elhptic shapes are slightly more effective in terms of minimum 
length of the wing for a given displacement. 

One implication of these results for HALE UAV's is that if wing span becomes a 
limiting factor in terms of physical runway width or transportability, spanwise camber 

might become a reasonable option if manufacturing costs were found to be reasonable. 
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As a foUow on from the above discussion of endplate effect, the next section wiU discuss 

winglets. 

2C1.1 Wingle ts 

With aspect ratios occasionally exceeding 40, it would seem unlikely that winglets 

would have much effect on the reduction of lift induced drag for a Low Speed HALE 

UAV. However, winglets usually increase lift with a smaller increase in wing root bending 

moment when compared to the same lift increase due to a span extension. Once again, 

sailPlanes have very similar aspect ratios and therefore a comparison with this particular 
feature proves useful. 

Dressler"' observed that the greatest improvements for sailplanes from winglets are to 

be expected at high lift coefficients, for example during thcrmaling and at low cruising 

speeds. At lower lift coefficients, the additional skin friction drag gains importance, and 

below a certain lift coefficient outweighs the favorable effect of the winglets on induced 

drag. It follows that if winglets were going to be considered for HALE UAV design that 

cruise lift coefficients would have to be high enough to outweigh the adverse effects of the 

additional skin friction drag of the winglets. Minimum power required lift coefficient 

(CL,, i,, pR) tends to drive the cruise lift coefficients of Low Speed HALE UAV's reasonably 
high, which follows from the extremely high aspect ratios and low values of zero lift drag 

coefficients (CD,, ) 

Of the parameters examined, Dressler found that the height of the winglets, exhibited 
the most important influence on the lift distribution of the wing. 'Me optimum winglct 
height decreases with rising speed. Given the winglct chord length, the circulation can be 

adjusted by the winglet angle of incidence. 

Marsden 57 comments on Dressler's findings, saying that Dressler found that the one 

meter high wing tip extensions did increase the maximum L/D ratio from 39 to 41, but 

realized that the gain would have been greater if the span had simply been extended in the 

plane of the wing. This of course provides further justification for even larger span HALE 

UAV's. 

Flight tests on a Nimbus 3 (glider) with winglets showed it to have the. same 
performance as it had with the tip extensions to 24.5m span. This is equivalent to a 13% 
increase in effective aspect ratio due to the winglets. In addition, the winglets greatly 
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k 

improved the roll rate. This statement supports the idea that the only reason to use 

winglets on a HALE UAV is in the event that runway width becomes limited, 

transportability becomes an issue, and span is restricted to a value lower than the 

performance would otherwise require. 

A winglet changes the spanwise load distribution on a wing, resulting in more load 

carried by the wing tips. Ibete is typically a 5% increase in wing root bending moment. 

Addin more structural material to compensate for this additional load would add about 9 
1% to the empty weight of the aircraft [sailplane]. However, it was unclear from this paper 

whether this was an increase over that of an aircraft with the span increased to correspond 

to the effective aspect ratio increase due to the winglets. For a conventional configuration, 

this would be an obvious disadvantage, but for a span-loader, multiple fuselage, or flying 

wing, the effects of this problem are much smaller, and can even be advantageous. 

There is a good deal of reliable experimental evidence that winglets can increase 

sailplane petformance with measured improvements of 2 to 5 points in glide ratio. Adding 

winglets to an existing sailplane wifl increase skin friction drag which is most important at 

high speed. However, with properly designed winglets, the speed at which skin ffiction 

drag of the winglets cancels out the induced drag reduction is weU above the normal 

cruising speed, and even at higher speeds the drag increment is almost too smaU to 

measure. These results should be taken with the consideration that many competition 

gliders are limited in span, depending on the class. Ibus, the use of winglets would be 

justified more by the imposed restriction of any increase in span. 

This highlights one particular difficulty with the extension of results intended for glider 
design being applied to the HALE UAV problem. This is discussed in detail in the next 

section. 

2. C. l. j Differen ces in Sailplan eA cro dvn amic Design 

Although many of the solutions available to fill the aetodynatnic gaps existing in 

present methodologies come from recent glider and sailplane research, it should be noted 

that there are practical limitations to the use of this data. In the aerodynamic design of 

sailplanes, there are two competing factors. To optimize one is to sacrifice performance in 

the other. 
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McMasters'8 states that high speed performance is largely dependent on 

profile/parasite (viscous dependent) drag. Whereas weight and/or wing loading increase 

helps high speed performance, it seriously erodes minimum sink performance. Overall, 

then, for a racing sailplane the trend should be towards large span (to regain low speed 

performance) and high wing loading and extreme aerodynamic "cleanliness" to maximize 

high speed performance. In competition sailplanes (except for unlimited class), the span 
has an upper limit specified by international rules, thus there is a discrete span limit within 

which the glider aerodynamicist can work. 
Many aerodynamic solutions that would improve minimum sink performance would 

degrade high-speed performance. For example, a racing sailplane optimized, for minimutn 

sink rate in a turn and a high forward speed in the region around 6.5-10 ft/s rate, of sink 

should have a somewhat lower than customary aspect ratio. This means a larger area for a 
fixed class (span) of sailplane. 'Mus, absolute rectilinear L/D suffers somewhat,, but the 

average cross-country speed (in the MacCready sense) increases. Ultimately, minimum sink 

rate is the fundamental performance objective, but there is always some degree of sacrifice 
in minimum sink rate performance for high-speed and turn performance. 

AdditionaUy, sailplanes are certified to rather stringent standards structuraUy, in order 

to withstand large gusts and high g loads in turns. A Low Speed HALE UAV would not 

encounter these conditions under normal climb or cruise (normal meaning not through the 

center of a thunderstorm). These structural limitations result in aerodynamic limitations in 

the form of forcing lower aspect ratios for gliders than would otherwise be possible in 

another application. 

2. C 1. k Wing-Fuselage In tera c dons 

An attempt was made to search the literature for wing-body lift and wing fuselage 

interactions for aircraft with extremely high aspect ratio. 'Me correction factor for the 
drag created by wing-fuselage interactions in a Low Speed HALE UAV will have much 
less significance for an aircraft in which 70% of the total aircraft drag is due to the main 

wing. Information on how much less significance is not available, however. 

In another situation where such information was not available, once again for gliders 

and sailplanes, Boermans and Terleth" performed wind tunnel tests of eight sailplane 

wing-fuselage combinations. In the case of a circular cylindrical fuselage the angle of attack 
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at the wingtoots is doubled. Hence the spanwise lift distribution shows peaks at the wing 

roots, and the wing roots show suction peaks at the leading edge. For the most rearward 

wing location on one wing fuselage combination and for the intermediate wing location on 

another, this loss of lift starts at an even lower angle of attack. These combinations also 

show the highest drag increase with angle of attack. This implies that the placement of the 

wing on the fuselage should err on the fore side of the fuselage. 

Finally, they suggested that in designing wing-fuselage combinations and fairings, basic 

potential flow information, obtained from a three dimensional (3-d) panel method, is 

indispensable. The reason for this is no doubt due to the lack of available information on 

the drag characteristics of well-faired wing-fuselage interactions for aircraft with large span, 

high aspect ratio wings. 
The verification of -this approach was carried out by Boermans and WaibeP'. 'Meir 

wind tunnel results also showed the importance of streamline shaping, ie. fitting the fore- 

body to the strean-dines of the wing to minimize cross-flow effects. This cross-flow 

effectively increases the angle of attack at the wing root area (up to approximately one 
fuselage diameter from the junction for a mid wing configuration). 

2. C. 1.1 Component Dra Breakdown 9 

In addition to there being little known about the drag of wing-fiiselage interactions in 

high aspect ratio large span wings, the breakdown of the drag of the individual 

components of this type of aircraft is also unknown. Again, in the common 

methodologies, there are tables with existing aircraft and aircraft types listed, with the drag 

of the components of interest and the parameters involved in their determination. Similar 

classes of aircraft are consulted for a minimal amount of information on the subject. 
Enevoldsen and Bohn-Meyer' give the breakdown of the component drag for each 

part of a canard sailplane in the form Of a CD vs CL2 plot for each component in Figure 

2.7. It can be seen that the wing/canard drag constitutes approximately 77 % of the total 

aircraft drag throughout the normal lift coefficient range. 

In an evaluation of the cost of performance for gliders, Eppler" states the horizontal 

tail profile drag was assumed to be Cd -: 0.0045. The vertical tail was assumed to have the 

same area as the horizontal tail, with Cd = 0.0055 because its sections are mostly thicker 

than those of the horizontal tail. Mote component drag data is available for sailplanes 
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from the common methodologies and additional methods of calculating component drags 

are available firom. Hoerne?. 
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Figure 2.7 is the component drag breakdown of the 
canard sailplane Solitaire as a function of the square 
of the lift coefficient (Enevoldsen and Bohn-Meyer-0). 

As an affirmation of what was probably already known, Hermanspane states that for 

clean, streamlined shapes such as those used on sailplanes, skin friction over the exposed 

surfaces is the only constant (i. e. lift independent) drag contribution. Finally, due to the 

lack of availability of component drags for this class of aircraft, it is obvious that 

parametric data will not provide the answers necessary even for the validation of the 

method that will be used in this thesis. It follows that the validation of this work will most 

likely originate from a comparison of the macroscopic performance of the various 

configurations, as compared to the known achieved (not claimed) performance of existing 

aircraft. 
Fortunately, there is slightly more information available on the weight breakdown of 

this class of aircraft. The next section will discuss this in detail. 

2. C2 Weight EstimationlStructure 

When weight estimation calculations were performed for a Low Speed HALE UAV 

wing using conventional conceptual design methodology weight estimation techniques, 

some answers were wrong by a factor of 10 from the weights of the few known cases for 

such wings. Thus, the degree of confidence in these conventional techniques is weak. In 
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addition, in using those same methodologies to perform weight estimation for fuselages 

and fractional (based on takeoff gross weight) weights of payloads, fuel, structure, 

powerplant, systems, etc, further comparison has shown them to be unreliable for this 

class of aircraft. Ilete is, however, a large body of information from which to draw some 

reasonable conclusions about how to approach the estimation of these quantities 

systematically for this class of aircraft 
In the extreme case, Juan Cruz62wrote a paper about his experiences and work in the 

weight analysis of the Daedalus human powered aircraft. He provides a detailed weight 
breakdown for the Human Powered Vehicle. He also developed equations for weight 

prediction for human powered aircraft. These equations would provide valuable 
information for an aircraft that will only perform a few flights, and those would all be at 
low altitude and much lower speed than the Low Speed IIALE. This firnits the forces to 

well below any that would be experienced by a HALE UAV. 

In the slightly less extreme case, we look at the Rutan Voyager. Rutan PS63 goal for this 

aircraft was that the structure would weigh only 9% of the takeoff weight of the airplane. 
Although he did not succeed, he was reasonably close. This aircraft was designed to be 

durable enough to make it around the earth once without refueling. It lost a wingla on 
takeoff and needed to subsequently shake the other one off in flight. Although not the 

model of maximum toughness and durability, it does provide a valuable lower Emit of 

what could be achieved with composite material technology for a muld-boom canard 

airctaft in 1993. 

In a paper on the development of a HALE RPV concept in 1989 at Boeing 

corresponding to the Condor project, Baullinger and Page" discuss some fractional 

weights. They mention that in general, fuel fractions of 50% or more Will be required for 
this class of aircraft. Based on total wetted area, the structural weight per unit weighted 
(exposed) area should be approximately 1 lb1fe times the wetted area (S. "t). Estimated 

weight fractions for some aircraft can be seen in Figure 2.8. As can be seen from the 
fipre, the Voyager marks the lowest end possible with the technology of 10 years prior to 0-- 
the writing of this thesis. Data on the Weight Fractions of Low Speed HALE aircraft will 
be provided later. A limit load factor of 2.0 times gravity (g's) (reduced from 2.5g for 

weight reduction) and an ultimate load factor of 2.5g (reduced from 3. Og for weight 
reduction) are considered reasonable. 
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Figure 2.8 shows the comparative structural iveightfractions ofsome aircraft. 

In another paper on the performance of the Boeing Condor, Breck Hendersorý" adds 

support for these numbers by stating that 60% of the takeoff gross weight was fiiel, and 

9% of the takeoff gross weight was due to the flight control system and the payload. He 

also states that the wing weight was only 2 lb1fe. It should be noted that in this 

application, the wing was used for fiiel storage thereby creating a greater degree of uniform 

span loading for bending moment relief. 
In another application, Israeli Aircraft Industries" (IAI) reported that for the design 

of the Heron aircraft (Medium Altitude Long Endurance, high aspect ratio, twin boom) 

they achieved wing weights of 2 IbIft', with the center section of the wing holding fuel. 

They stated that one key to long endurance is that the ratio of fuel weight to takeoff 

weight should be as high as possible, and that the IAI design goals were 0.50 to 0.65. 

Nevertheless, in the same paper they propose a twin engine piston aircraft with a 32-hour 

endurance and 9140 pound takeoff weight. Ibis proposed aircraft has a structure fraction 

of 0.606, a fuel fraction of 0.328, and a payload fraction of 0.066. 

As an interesting comparison, StrojniV' , 
in a paper on motor-gliders reported that the 

wing weight for his aircraft worked out to 2 lb/ft. 111is wing weight was for an aircraft 

with an aspect ratio of 25 and one that would satisfy the stringent structural requirements 

placed on sailplanes and motor-gliders without the bending moment relief of fuel 

distributed across the span. The paper included a figure for Wing Weight versus Aspect 
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Ratio for 15 meter sailplanes showing a loosely defined inverse linear relationship. In 

terms of weight fractions, the wing weight fraction is 0.2, the total structure and systems 

weight for this aircraft was 0.5. 

In another paper on sadplanes, Boermans and Waibel" discuss the weight breakdown 

of the ASW 24. The total structure and systems weight fraction is 0.44, of which 0.228 is 

composed of the wing weight fraction for a wing with an aspect ratio of 22.5. This places 

the ASW 24 well below the inverse linear relationship mentioned by Stro)nik. 

In a paper on the design and testing of a canard sailplane/motorglider, Enevoldsen 

and Bohn-Meyer6" show wing areas, as well as the weight breakdown of each of the major 

weight groups. This leads to a structure fraction of 0.52, and engine fraction of 0.08, and 

the pilot and parachute (payload) fraction was 0.36. This aircraft has a wing aspect ratio of 

21, a combined wing/canard aspect ratio of 17, and was designed for +7 and -4 g's. This 

reflects durability and strength well above anything expected for a Low Speed HALE 

UAV. 

When comparing materials, Johnstone and Arntz" state that a review of the materials 

showed a dramatic 2: 1 weight reduction when high modulus graphite composites replace 

aluminum. They comment that the wing for the Boeing Condor weighed less than 2 lb/ ft2, 

and accommodated loads (in turns) as high as 2g. Furthermore, they commented that 

adding takeoff gear that would support the fully loaded wing imposed a very significant 

penalty on the takeoff gross weight and air vehicle empty weight (on the order of 150/"o and 

20% respectively). This provides a reasonably compelling argument for the designed 

exclusion of landing gear in a Low-Speed HALE UAV. 

Table 2.1 demonstrates the weight saving in thefuselages of some 
modern gliders resultingfrom the uw, of different coinpoýite r1lateriak 

Glass FRP Carbon FRIP Weight 
muscl Weight (lbs) Weight (lbs) Saving 

ASW 17 280 258 8 
Mini-Nimbus 211 186 11.7 
ASW 19, SIB 11 229 203 11.2 
LS 3 209 177 15 

In discussing and comparing various materials for use in sailplanc structures, Nluscr"" 

states that weight savings (for carbon and ararnid fibers) are in the range of 80'. to 18% in 

comparison with glass fiber structures. All of the planes used in the comparison use a spar 

with carbon - fiber- reinforced epoxy and the weight savings are in the range of about 110', 
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to 14%. When carbon fabric is also used instead of some glass fiber fabric layers, weight 

savings increase up to 17.4% compared with the fuUy equipped wing or up to 24.3% 

compared with the wing structure itself. 

Table 2.2 compares the wing weight of several modern gliders for 
different composite materials are used. 

IIIIIWI"" 

Glass FRP 
Weight (lbs) 

Carbon FRP 
Weight (lbs) 

Weight 
Saving 

Slingsby T59 220 193 12.2 
ASW 17 309 275 10.9 
Nimbus 2 Complete Wing 258 213 17.4 
Nimbus 2 Structure 184 139 24.3 
Mini-Nimbus 146 121 16.9 

, 
PIK 20 D_ 

1 
157 

1 
135 

1 14.3 1 

In the matter of fuselage,, (Fable 2.1), lie found that xvcight savings rates are 

because there is higher weight percent of controls and of the landing gear. This would be 

expected to be different for HALE UAV's. When carbon is only used in fuselage stringers, 

weight savings are about 8%. If some of the glass layers are replaccd 1)), aramid or carbon 

fabric, the range will increase to about 15%. It Is assumed that cost would be the 

determining factor in this material selection and use. Furthermore, this paper was written 

in 1979, and if nothing else, the cost of using these types of materials, as well as the 

expertise in how to implement them have only improved. Tablc 2.2 shows the results of 

the masses of sailplane wings when there is material substitution. As seen in the tables, 

much greater savings are had on average with material substitutions in the wings, however 

a 10 percent saving in weight in the fuselage is still substantial. To date, no post-1960's 

implementation of a FIALE LJAV has used anything but a composite wing construction. 
67 Ining provided a more specific analysis on the empty weight (W,.. -) of a sallplane. The 

empty weight of the sailplane is given b) - 
W =CE 

3, /8 

E Kp (2.2) 

where K,,. = nS I (here, S is wing area, and b is span). From Stender, the lower boundary 

of the diagram for single seaters corresponds to CE-1.3, and the upper boundary to 

CE = 2.15. These values have been taken for the "light" and "heavy" structures for 

Irving's paper, x,, -Iidc the "medium" structure corresponded to the mean of these values 
(1.725). 

Chapter Il 41 Review ofthe Literature 



Design Methodologyfor Low Speed HALE UA Vs 

=W +KE(b'1AY", (2.3) " pilot+instruments 

where in accordance with JAR 22, n=8, and A is aspect ratio. 

Irving presented results only up to aspect ratios of 22. I-Es paper provided enough 
detail, after some derivation, to reproduce his results up to an aspect ratio of 40 while still 

respecting the original assumptions. Figure 2.9 shows the boundaries for sailplanes with 
light and medium structures (to the right of the stall curves). 

Many general observations can be made that might help in the structural design of 

these aircraft. Irvingý 7 remarks that the combination of a light structure and a high 

maximum lift coefficient, CL., provides the best combination. He says that achieving a 

high CLmax is more important than minimizing structure weight. lbus, achieving a good 

C.. is much more important than attaining the lightest structure as shown in Figure 2.9. 
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Figure 2.9 exhibits the houndariesfor high performance sailplanes with "Light" and "Medium" 
structuresfor various lift to drag ratios. 

4 

Hermanspann" comments that a high aspect ratio has always been the most visible 
indication of aerodynamic quality of a sailplane. It is limited by structural efficiency, 
meaning providing adequate strength at acceptable weight, and by constraints stemming* 
from flutter, etc. Realized aspect ratios with wooden designs reached up to 20, while 
modem composite sailplanes nearly double that value. 

Chapter 11 42 Review of the Literature 



Design Methodologyfor Low Speed HALE UAVs 

Aerodynamic flutter is probably one of the greatest structural concerns with an aircraft 

with such an extremely high aspect ratio and span. Ibcre have been two papers written on 

this exact topic. Pendari6s and Boiffier6" et. al. wrote a paper specifically dealing with the 

simplified calculation of aerodynamic flutter for Low-Speed HALE UAV's. In a 

subsequent and clever paper, Pendariýs` wrote about the possibility of using flexible wings 

and controlled flutter as an aid to propulsion by taking advantage of a flapping motion. In 

discussion with Mrs. Pendaries, it was decided that even the simplest flutter model she 

used, would be too computationally intensive and time consuming to include in this 

methodology. 
It should be noted, though, that as computing power becomes more readily available 

such an analysis will become more feasible in a short enough computational time to make 
it applicable for early comparison of configurations. For this thesis, it is accepted that any 

design will have to undergo flutter analysis in the early preliminary design phase. Given 

that flutter is dependent upon mass distribution and structure stiffness, 'if the mass 

estimation isrobust and the database of aircraft on which it is based do not suffer flutter, 

it is likely that a flutter-free aircraft can be designed at the estimated mass. The limits of 

present technology will be observed in this manner. 
FinaUy, Epplerý' observes that increasing the span causes more weight increase for 

high span than for low span. Very high spans are achieved only by means of materials 

stiffer than glass. This influences weights and prices. As an aside, he also states that it is 

justified to assume 5% less weight f6t glidets without flaps. 

One of the major elements in the weight estimation of a Low-Speed HALE UAV is 

the powerplant. The next section includes discussion on some of the more important 

powerplant topics as they apply to the Low-Speed HALE UAV. 

2 C3 Power Plant Selection and Performance Estimation 

For the purposes of this thesis, the turbojet was not explicitly considered due to the 

existence of a computational FORTRAN methodology specifically for sizing these 

aircraft14 . This does not exclude the methodology from being capable of considering such 

configurations, however no special effort was expended in accommodating this class of 

aircraft. The only explicit changes that would have to be made would be the inclusion of 
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the compressibility factor M the parasite drag prediction and the change of the propefler 

endurance equation, though. 

Aside ftom turbojet considerations, there are many problems associated with Low 

Speed HALE engine selection. Most important, however is the ability to operate at 

extremely high altitudes. There is precious little detailed data available from which to draw 

any parametric conclusions, but there are a couple of cases that provide crucial 

information. 

One advantage to considering internal combustion reciprocating engines is that 

according to Arntz and Johnstone"' from Boeing, with proper turbo and supercharging, 

the power output can be considered as reasonably constant all the way to cruise altitude. 

The challenge comes in predicting the fuel consumption, and engine performance at high 

altitudes with greatly diminished ability to shed unused heat. 

Cyrus and Fran7 70 summarized the advantages and disadvantages of using one 

propulsion form or another for a HALE mission. Fuel cells/clectric drives, turboprops, 

diesel, spark ignition, and rotary engines were all considered. No selection was mentioned 

by the paper, as it was determined to be terribly nussion specific as to which propulsion 

system was better.. 

In a thesis by D. L. G. Bizzarn 71 
, 

he compared the relative merits of piston engines to 

wankel and turboprop engines. Specific fuel consumption and specific power were used in 

the evaluation of the more appropriate propulsion system. He selected the piston engine 

despite lower specific power. He claimed that the engine had better efficiency than 

turboprops for the tnission considered. He disnussed the other engine týýpes as 

technologically unproven for the given application and thus the piston engine was deemed 

the most appropriate based on those cnteria. 

f lenderson, McQuiflen, and Lehman 72 present an interesting table comparing the 

benefits of four different types of propulsion systems to satisfy their need for a 400 

horsepower (HP) motor. This table is duplicated as Table 2.3 below. 

From the table it would appear that the rotary engMe has many clear advantages. The 

greatest problem with this engine is that there simply is no data available on it or its 

operation, no matter how good it may appear. The turboprop efficiency is too poor in 

partial power settings, the diesel engines, like the rotarics, are simptv not availablc for 

aircraft applications as yet. Their recommendations based on the results of this table were 

as follows (the paper was published in 1986): 
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Table 2.3 compares the various potential powerplants based on their benefits and drawbacks. 

Henderson, McQuillen, Recip. Spark Turboprop Diesel Rotary 
and Lehman 

72 Ignition 

Turbocharging Yes, 
_(30: 

1) 
-- -, ----No 

Yes (64: 1) Yes (451) 
Stratified Charge Yes No Yes Yes 
Min. BSFC (Ibs. /hr1BHP) 0.35 0.33-0.36 0.3 0.32 
Specific Weight (Ibf/BHP) 2.7 1.2 2.7 2.1 
Fuel Tolerance Poor (req's Avgas) Poor MultiFuel MultiFuel (best) 
Major Advantages Technology w/i Min. Cooling Best BSFC Good BSFC & 

Reasonable reach Requirements Spec. Weight 

Wide Range of Lowest Specific Accepts High Compact 
Engines Available Weight Temp. Inlet Air 

MultiFuel 
Good Turbo 
Compatibility 
Few Parts 

Major Disadvantages Req's Intercooling BSFC too high Reduced Avail High Pinl, t for turbos At partial power Turbo Energy Required 

Engine Cooling Lean flammability Large Turbo 
is high Problems Required 

High Pinl,, t Req'd 

Poor availability 

NearTerm (1-5 years): 

* Spark ignition reciprocatiýng engine 

* Two stage turbocharging system 

* Turbine dn-, -en pumps and fans for cooling 

* BottonlIng Rankine cycle (turbo) for eng. heat rejection and avionics power generation 

* %Ving radiators for turbo intercooLing and radar system cooling 

Far Term (5-10 years) : 

Rotary engine (turbo compounded) 

Three stage turbocharging system 

Electrically driven pumps and fans for cooling 

Bottoming Rankine cycle for engine heat rc)'cction and power generation 
Turbo intercooling and radar cooled with refrigeration cycle back to back with 
bottoming Rankine cycle. 
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Schirmer 73 presents a comparison of different engine types but the evaluation does not 

indicate a clear advantage for one of the investigated engine types, especially between the 

two stroke and rotary engine. The 2 stroke, 4 stroke, and rotary engines are compared 

using the engine concept evaluation matrix In Table 2.4. It should be noted that the 

usefulness of this matrix is limited when taken in the context of a HALE aircraft with 

present technology since neither the rotary nor the 2 stroke engine would be capable of 

having multiple turbocharging enhancements to their performance without significant 

technological investment. 

Table 2.4 also compares a number of engine types but on a slightly 
different basis. 

Schirnier 7? Two Stroke Four Stroke Rotary 

Power/Weight Ratio +ý 

Power Density ++ + 

Fuel Consumption + 

IR Emission + 

Noise Emission + + 

Vibration + ++ 

Reliability + 

Maintenance + ++ 

Cost + 

TOTAL +3 3 +2 

There have been several successful propulsion systems for Low Speed HALE aircraft. 

The Aurora Flight Sciences 74 Perseus B is powered by a conventional four-cylinder 80 HP 

Rotax 912 piston engine driving a rear mounted pusher prop. Additional airflow is 

provided to the engine via a three-stage, four turbine turbocharger capable of providing 

sea-level air pressure to the engine at altitude. 

The propulsion system attempted for the Perseus A was a self contained Internal 

combustion reciprocating system that provided oxygen for combustion at altitude. It 

experienced a great amount of difficulty in development, and was never reliable enough 
for a mission of even moderate endurance at altitude. The endurance and rehabaity of this 

propulsion configuration suffered as a result of the requirement to carry oxygen for high 

altitude flight and to recycle the exhaust as intake. 
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Tonskotter" wrote a paper describing the propulsion system for the Grob Strato 2C 

manned HALE science aircraft. The two engines used in this application were Teledyne 

Continental Motors TSIOL-555 direct drive hqwd cooled opposed, each with a 

displacement of 550 cu. in. and a compression ratio of 7.5: 1. This implementation used a 

compound propulsion system based on a highly supercharged hqwd cooled piston engine 

with charge air intercooling and extensive use of available components. This system was 

designed for an 8-hour cruise at 80,000 ft and a 48-hour cruise at 60,000 ft altitude. The 

compression of intake air at altitude was accomplished through the use of a Pratt and 

Whitney Canada PW127 gas generator. The low-pressure charger provided charged air at 

a pressure that allows the engine to maintain full rated power at altitude. This Continental 

engine was the same used by Boeing for the Condor. Figure 2.10 shows a diagram of the 

two implementations of that engine. 
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Tsach, Yaniv and Avni 65 confirm that piston engines with two stages of turbocharger 

can reach altitudes of 70,000 feet. With three stages, altitudes of 90,000 to 100,000 feet at 

a speed of 0.4 Mach could theoretically be reached. In Figure 2.11 the graph on the right 

roughly shows the thrust specific fuel consumption for various propulsion systems. The 

figure on the left shows the theoretical possibilities for the various propulsion systems 

based on the limitations of Mach number and altitude. These two figures essentially 

combine to visually represent the limitations on the regimes to be considered for each of 

the propulsion systems. 
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Figure 2.11 demonstrates the approximate limits in altitude andfuel consumption for various types 
ofpotential forms of propulsion for the HALE UA V 

The next closest form of usable information comes from Morell, 76 for fuel 

consumption variation with velocity for different types of motorized gliders and light 

aircraft. This paper also provides excellent performance information on other aspects of a 

number of old and new gliders, as well as motorgliders. 
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2C4 Tail SizinglSta biU ty 

There are two areas within tail sizing and stability that require information beyond that 

available in conventional methodologies and literature. There is no information available 

on the sizing of the tail for this class of aircraft. This immediately causes concern in the 

area of stability of the aircraft, and additional information will have to be uncovered, or 

discovered in order to overcome this difficulty. Downwash angle information downstream 

of extremely high aspect ratio wings is nonexistent, and therefore another source of this 

information needs to be found as well. In attempting to find an alternative method of tall 

sizing, tail sizing information, or stability calculations, several observations were made. 

Some experimentation has been performed in the relaxation of longitudinal static 

stabitity in order to gain improvements in trim drag. In order to calculate longitudinal 

static stability, it is necessary to know the downwash. Many methods have also been 

devised to calculate minimum trim drag. In addition, several studies have been performed 

to compare the total drag of conventional aft tall configurations with the total drag of 

canard and three surface configurations. None of the present methodologies ificorporate 

this type of approach, or the information necessary to deal with extremely high aspcct ratio 

wings. These will be discussed in the following sections. 

Ende" found that aft loacting improved cruise endurance, duc to incrcascd lift. 

Depending on the static margin, the trim drag is on the order of 3% to 6"/o of total aircraft 

drag, and a significant savings is possible by decreasing the static margin. This concept was 

confirmed by Siddiqi and Evangehsta"'. They found that configurations which had a 

center of gravity aft of the wing aerodynamic center gave a better lift to drag ratio, because 

they require less download on the horizontal tail. Lutze"' also concurs with these findings, 

stating that the overall drag on an aft-tail vehicle can be reduced by moving the cg further 

aft, causing a reduced download on the tail, or possibly even an upload. 

C 4. a Tail Sizing 

Unfortunately, tad sizing information is unavailable for the HALF, UAV class of 

aircraft. Again the closest aircraft type, the sailplane, will be consulted. The biggest 

problem with using data from sadplane design is that the tad is sized independent of anN 

powerplant or powerplant problems. So for a multi-enginc configuration where the 
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engines are not aligned along the same axis, tail volume coefficients must be approximated 

using multi-engine data from another class of aircraft. The only other alternative is to 

approximate mean aerodynamic chord for the main wing and tail of existing Low-Speed 

HALE UAV's from photographs and drawings, and derive approximate tail volume 

coefficients by hand. 

In a paper on trim drag, tail sizing and soaring performance, Ktoo' made several 
interesting observations. Figure 2.12 indicates that although the lower aspect ratio tails 

may produce lower profile drag due to higher Reynolds numbers, the improved low speed, 

circling performance of the higher aspect ratio tails compensates for tl-ds. This results in 

the optimal horizontal tail having an area of about 10% of the wing area with 

approximately 20% of the span (AR = 9). This result is valid for sailplanes, but obviously, 

the turn/low speed circling performance requirement is not necessary for HALE UAV's. 

1bus; it would be expected that a slightly lower aspect ratio tail would be better. 
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Figure 2.12 shows the effects of changing tail area 
(normalized by wing area) on aerodynamic efficiency 

as afunction of the ratio of tail span to wingspan 
(Kroo"7). 

As a confirmation of this, Kroo states that the results from the optimization procedure 

using muumum straight flight sink rate rather than fixed turn radius, lead to optimal tails 

with AWs of about 4 to 7 and do not yield as large a penalty for smaller tail areas. 
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Kroo made some other observations. In particular, that reducing the static margin 

leads to smaller tails and improved high-speed performance. Trim drag penalty due to the 

requirement for longitudinal stability and trim constitutes a small, but noticeable part of a 

conventional sailplane's drag. This result would be the same for a HALE UAV. Tails sized 

for optimal performance in combined circling flight and high speed cruise have larger 

spans (and AR! s) than those based on straight flight calculations. This final observation 

allows us to use sailplane data, with a greater awareness of which quantities in tail sizing 

have been explicitly compromised due to sailplane specific performance drivers that are 

not shared by HALE UAV's. 

Siddiqi and Kwa79 were involved in the design, flight testing and comparison of various 

different configurations to satisfy a long endurance. low altitude RPV mission. - 
They 

determined that a horizontal tail volume factor of 0.34 (with SHT /S = 0.15) and a vertical 

tail volume factor of 0.016 (with a vertical tail area ratio, SVT /S=0.15) taken frorn 

historical data would be adequate (where SHT is horizontal tail area, and SVT is vertical tail 

area). 
In a paper on a comparison between canards and conventional configurations, 

Blackburn' suggests that in addition to his work, other studies have shown that for a 

conventional aircraft, a wing to horizontal tail ratio of between 7 and 10 gives best overall 

performance. In a paper about the performance of sailplanes Eppler" states that a tail 

volume coefficient was assumed to be 0.585 for all of the configurations considered in his 

paper. Finally, in the book by Fred Thomas9, a comprehensive summary of historical 

vertical and horizontal tail volume coefficients for sailplanes and gliders is provided. 

Another quantity that affects tail sizing will be discussed in the next section. 

2. C4. bDouwwash 

In the early days of aerodynamics, it was common to approximate the downwash in 

the wake through the use of Glaueres8l original theory. This theory is useful if the fift 

distribution is known and easily integrable, or if it is rectangular (uniform) or elliptical. 

Outside of these situations, either it cannot be applied, or the lift distribution can be 

approximated as elliptical or uniform. 

A number of years later, Diehf' presented a paper that reviewed the downwash theory 

to date, however, it didn't include any method of generalized ýownwash prediction. By this 
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time, an experimental database for downwash and wake characteristics was beginning to 

evolve. 'Silvetstein and KatzoffB3 produced design charts for predicting downwash and 

wake characteristics behind plain and flapped wings. This paper was closely followed by 

Katzoff, Silverstein, and Bullivane4 and their paper on downwash and wake behind plain 

and flapped wings. These two papers were rather comprehensive, however, the 

experiments were performed at a time when the Reynolds and Mach numbers of interest 

were climbing fast. It follows that the high aspect ratio low speed regime was not 

considered. Nor could their results be extrapolated with any degree of accuracy given that 

the maximum aspect ratio considered was 12. 

There was one paper written by VAiitcomb8' on the investigation of the downwash 

angle behind a high aspect ratio wing with various amounts of sweep in the, NASA Langley 

8 foot High Speed Tunnel. Once again, the problem with using these results was that the 

aspect ratio was too low, and the paper focused more on the effects of sweep. In addition, 
in keeping with the area of study at the time, the Mach number was also too high. 

Finally, the ESDU data sheets were considered for the determination of downwash. 

Still, they were based strongly on the aforementioned experimental data, and the maximum 

aspect ratios were so much lower and the Mach number so much higher, that they could 

not be extrapolated with any degree of confidence in the results. 

Now that the non configuration specific difficulties have been discussed, the 

discussion on the problems associated with considering alternative configurations can 
begin. 

L 

ZCgDesign ofAlternative Configurations 

One of the areas that common design methodologies fail in, even for more 

conventional missions is the area of alternative configurations. Since the nature of 

conceptual aircraft design is to make the best use of data on existing designs, by far the 
largest body of information exists for conventionally configured aircraft. In today's risk 

averse society, this is the most prudent approach to aircraft design. What this approach 
brings in low risk, it loses in creativity, originality, and overall innovative approach to 

problem solving. It is safe to say that a program like the NASA Apollo program of the 
1960's and early 1970's would not have been possible in today's risk averse environment. It 

must be stated that such a risk averse approach is contrary to the advancement of the 
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human race, as few of the greatest accomplishments of mankind would ever have been 

achieved under such a shortsighted approach. Based on this belief alternative 

configurations comprise a sizable portion of the work in this thesis. 

2C5. a General 

Several papers have been written comparing the relative merits of diff6rent 

configurations and their ability to fulfill many different missions. Ile paper that is the 

closest in design considerations was by Baullinger and Page'9 of Boeing Advanced 

Systems. This paper essentially provides a background on the feasibility of the Condor at 

the time. Iberefore, the conclusions reached parallel the decisions implemented in that 

aircrafi. In the process of reaching those decisions, however, they considered four 

different aircraft concepts in this paper: a twin fuselage, joined wing, twin boom, and a 

blended wing. The primary difference between the resulting design selection in this paper 

and the one used for Condor was the absence of a canard on Condor. 

After the Baullinger and Page paper, the three studies that most closely model what 

will be attempted for this thesis are Foch and Aillinger2o, Tooe', and Siddiqi and Kw'a 79 
.. 

Ihey were part of the U. S. Navy's LAURA project. The acronym LAURA represents Low 

Attitude/Airspeed Unmanned Research Aircraft. 

They performed some experimental comparisons for multiple configurations, small- 

scale low altitude, lower speed (25 - 50 Knots) long endurance aircraft with 10 ft. - 20 ft. 

spans. They considered joined wing, variable span wing, tandem wing, and three surface 

configurations. Although the scales of the aircraft were quite different, some general trends 

in the different configurations and how they compare for the long endurance low speed 

unmanned mission are similar to those of a high altitude mission. Overall, they claimed 

that because the drag of the airplane's non-lifting components is of secondary importance, 

overall flight performance is not very strongly a function of airplane configuration. This, 

much is surprising due to the difference in the scale of the aircraft, where interference drag 

for an alternative configuration could easily overwhelm any of the benefits on such a 

small-scale model. 
A paper by Goraj, Feydrychiewicz, and WiniecV' would on the surface seem to hold a 

great deal of useful information for the work undertaken in this thesis. Unfortunately, the 

authors down-selected the designs almost inexplicably very early in the analysis to a 
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biplane, a biplane with lifting tail, and a forward swept flying wing. Few of the 

configuration related decisions and assumptions made were justified in any way before the 
down-selection. The only real justification was that the decisions were based on the 

personal preference of the authors. In any event, apart from the flying wing, the 

configurations were significantly different from those addressed in this thesis. Details of 

the analysis undertaken were not made available in the paper, nor were any of the methods 
developed to overcome the aforementioned shortcomings in the aircraft design 

methodologies. 
In another study conducted at the Naval Air Development Center by the U. S. Navy, 

Henderson, McQuillen, and Lehmae considered conventional, canard, and flying wing 

configurations and compared them on their merits as they applied to the requirements. 
They failed, however, to select one particular configuration over another for any given 

mission. On the other hand, they clearly stated the well-documented relative benefits and 
drawbacks associated with the selection of each configuration, but did not base these 
decisions on any analysis of the comparative performance, rather the arguments were all 
based on well established arguments seen in any design textbook. 

California State Polytechnic Universi ' produced a paper describing the work done 
by California State Polytechnic University in Pomona to satisfy the NASA/USRA project 
request for proposal (RFP) for a High Altitude Reconnaissance Aircraft. A flying wing, 
monoplane, canard, joined wing, biplane, and tandem wing were all considered to perform 
the High Altitude Long Endurance mission, with the biplane and two tandem wing 
configurations being down-selected for further study. The reasoning behind the 

elimination of one configuration in favor of another is given. In addition, the details of 
the 3 designs selected for further work are also given. Once again, though, no clear 
favorite was singled out for the Low Speed HALE UAV application, and the degree of the 
detail in aerodynamic estimation, weight estimation and propulsion was quite superficial 
leading to doubt as to the origins of some of the decisions. 

The next section will begin the discussion regarding literature available on alternative 
configurations, starting with the twin boom/twin fuselage. 0--- 
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CS. b Twin Boom / Twin Fus clage 

There is a large body of anecdotal literature as to the relative merits of twin booin or 

twin fuselage configurations as compared to others. Unfortunately, there has been very 

little published on the detailed evaluation of these configurations. Problems such as 

placement of fuselages and booms for maximum structural benefit, fuselage lengths and 

tail volume coefficients with the twin, tail arrangement for this class of aircraft are not 

addressed by present methods. 'Me majority of papers on the subject simply compare one 

configuration against another based on pure performance, with no mention of the details 

of important design, layout and configuration related decisions. 

In the Low Speed HALE UAV application, Venkayya and Tischler9, describe a 

number of performance and economic advantages for the twin fuselage vehicle over the 

conventional single fuselage concept. Sharply reduced aircraft/payload interference, 

reduction in wing weight due to the load (bending moment) alleviation between fuselage 

segments, and reduction in landing gear weight are the most readily apparent. Ile rotating 

propellers in particular reflect signals to the antenna and cause interference. Ilie antennae 

on the outboard side of the two fuselages could significantly reduce the interference 

problem due to reflection from the props as well as from the wing. 
They do observe, however, that one of the major drawbacks of the twin fuselage plane 

with a connection only at the wing (no connection at the tail) is that the demand on the 
flight control system would be severe in order to maintain the fuselage alignment with 

control twist only. It is much easier to control the wing angle of attack variation along the 

span in a twin fuselage configuration. By appropriate selection of the spacing of the two 
fuselages the severity of the wing bending can be reduced by as much as 50 %. Another 

advantage to the twin fuselage configuration is the increased volume available for the 

radar/payload and fuel. 

In another paper on Low Speed HALE UAV's, Patterson" makes the same 
justifications as Venkayya and Tischler for the selection of the twin fuselage configuration. 
He claims a sharply reduced aircraft/payload interference (particularly propeller 
interference), and sharply reduced wing weight, primarily by the load alleviation due to the 

multiple fuselages and their contents. 'Me twin-fuselage configuration is more resistant to 
flutter (structural analysis indicates that the wing weight reduction is larger than the 
fuselage weight increase). Finally, he agreed that it sharply reduces the landing gear weight. 
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He concluded that substantial overall cost and weight benefits for twin-fuselage 

configurations, relative to single-fuselage configurations have already been shown in the 

literature for this type of application. An example of the extent of bending relief possible 

from a twin fuselage configuration can be found in Figure 2.13. 

Ultimate 15- 
Wing 

Bending 
Moment 10 - (MIPS) 

5- 

0- 
1600 

1 
WING 

TIP 

Single Fuselage 
Variant + Full Fuel Case Shown 

+ Bending Moments are 
Slightly Less for the Half 
Fuel and Zero Fuel Cases 

/-Twin Fuselage 
\ 

s. 

1200 800 400 400 800 1200 1600 
1 

WING 
TIP Span (inches) WNG 

ROOT 

Figure 2.13 demonstrates the difference in peak wing bending moment 
between a singlefuselage and a muýflefuselage configuration 

(Patterson9 

Vitali and TsacO from Israeli Aircraft Industries selected the twin boom, rear engine 
(pusher) configuration for the Heron aircraft because it offered high mission flexibility in 

terms of payload installation (center of gravity and clean field of view for the sensors), and 
future potential growth. 

At California State Polytechnic University" they worked under the assumption that 

one of the driving parameters of the design was limiting the wingspan. On d-ds basis, they 

stated that a twin boom monoplane would have greater loads than a tandem wing twin 

boom, and therefore removed the twin boom monoplane from consideration since the 

greatest advantage of using two booms was load alleviation. They claim that the tandem 

wing configuration provided lower induced drag. They also stated that interference effects 

can be reduced significantly by employing negative stagger, which places the rear wing 

away from the downwash of the front wing. 
Baullinger and Page" from Boeing arrived at an interesting result. In their paper, they 

discounted the twin fuselage concept because it would be too difficult to get propeller 

clearance on landing without fixed landing gear. For some reason, their down-selected 

twin fuselage concept had the engines fixed in the tail of each fuselage (presumably since 
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one of their design requirements was maximum radar field of view). It is an interesting 

result since the final Condor design didn't have fixed landing gear. They did, however echo 

the advantages of twin fuselages mentioned by the other papers. They did mention that 

this particular configuration only allowed for 240 degrees of radar coverage. 

Their justification for the twin boom (not twin fuselage) concept was that it was low 

risk. They discounted the concept on the basis of not being able to conserve lan-ýinar flow 

due to the tractor propulsion setup. They touted the advantages of distributing the load 

across the entire wing, and the good natural stability of the configuration, but were worried 

about high cg problems in taking off and landing. 

Many of the twin fuselage configurations considered were also canard configured. 'Me 

next section looks at the canard configuration type in greater detail. 

ZC5. c Canard 

In contrast to the twin boom and twin fuselage concepts, there is a much'larger body 

of data available on canard aircraft. Some of this data is just now beginning to be included 

in the more common methodologies, but they still lag fat behind the data available in the 

common literature. 

There are a large number of variables and design rules that need to be considered 

when designing aircraft with a canard (attention to spacing, stagger, gap, sum of lift 

distributions, vortex impingement on wing, etc. ) which will be explained in this section. It 

would seem that very few canard aircraft have followed these rules to the extent necessary 

to be successful examples of how to design one. Like all aircraft designs, these aircraft 
have almost always had many conflicting mission requirements that force a sacrifice of the 

attributes that could make the canard the better choice. Since the majority of HALE UAV 

missions are mostly limited in their requirement for endurance and altitude, these mission 

requirements seem better suited to the use of a canard than other classes of aircraft. These 

characteristics will be discussed in the following section, however, it should be noted that 

these design rules for canards must be followed as closely as is possible, for any benefits to 

be realized. 
Without any doubt the basis for any discussion on canard aircraft has to include the 

original work by Glauete'. He performed experimental tests for the vortex theory of 

airfoils and observed the effect of varying aspect ratio on CL and other aerodynamic 
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constants. He also did some preliminary investigations into the biplane effects of stagger 

and gap. Ibc investigations were extended later by Munk and Prandtl. This Work formed 

the basis for all later work on this subject. 
Many of the accepted characteristics of canards that come from high speed flow are' 

not valid for Low Reynolds number flow. For example, Siddiqi and Evangelista7" discuss 

some of the Low Reynolds number characteristics. 11cy consider the wake rollup 

computations, which show that a low canard position will ensure that its vortex wake 

passes below the wing for high alpha. This may contradict high Reynolds number 

experience, where the interaction of the vortex wake and the wing upper surface is 

considered to be favorable. For the low Reynolds number case, the literature suggests that 
boundary layer separation may be induced on the wing upper surface by the dose passage 

of the vortex wake. 
Michelson, and Mueller92performed further work on the subject of wake impingement 

on the downstream airfoil. Ibcir measurements showed that a maximum influence 

occurred when the wake center impinged near the leading edge of the downstream airfoil. 
All aerodynamic coefficients were reduced due to the velocity deficit in the wake. 
However, outside the wake, the lift was reduced by the upstream airfoirs downwash, and 
the drag was increased by the higher flow velocity induced by the wake blockage. 

In order to make the aerodynamic problem theoretically tractable, many investigations 

of canard configured aircraft make the assumption of an elliptical lift distribution over 
each lifting surface to satisfy the Prandd biplane equation. According to Krocý% when 
operating in the downwash field of a highly loaded canard, the wing's lift distribution tends 
to be shifted outboard due to the downwash directly behind, and upwash outboard, of the 

canard. He comments further that the assumption of an elliptical load distribution is 

reasonable when the vertical gap is large or when the surfaces have equal spans. Similarly, 
he claims that the lift distribution on a tail of significantly smaller span than the wing is not 
far from elliptical. 

Laiton e94 found that when the larger span, either fore or aft, had a uniform lift 
distribution then the total mutually induced drag was less than that produced when the 
larger span had the ideal elliptical fift distribution. This decrease in the mutually induced 
drag when the larger span carried a uniform load was offset by the increase in the self- 
induced drag produced by the uniform load itself. 
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He showed that mutually induced drag of a canard or tandem. aircraft could be 

decreased by having the larger span rear surface carry a load distribution similar to that 

produced by a constant chord wing. Although the total induced drag was increased, this 

modification of the larger span's elliptical load distribution allowed the smaller span front 

surface to carry a larger fraction of the aircraft weight at minimum induced drag condition. 

Contrary to that conclusion, Laitone observed that any canard or tandem aircraft 

should have a finite gap sufficiently large so that the smaller span can carry its share of the 

aircraft's weight at the minimum drag condition. When the gap is one fifth the larger span, 

then either an elliptic or a uniform spanwise load distribution on the larger span requires 

approximately the same lift load on the smaller span in order to attain the, minimum 
induced drag condition. 

Michael and Selberg" performed a study of canard aircraft for General Aviation 

applications. Care must be taken when using their results since the class of aircraft is so 

different, however, some of the general trends of the results can still be helpful in the 

design of HALE UAV's. 

Iley found that vertical distance between the lifting surfaces was found tp. be the main 

contributor to interference effects of their three-dimensional analysis. For designing a 

general aviation canard aircraft,, results pointed toward large horizontal and vertical 
distances between the canard and wing, a large wing-to-canard area ratio, and the canard at 

a low-incidence angle relative to the wing. They noted strong two-dimensional coupling 

with a gap less than one and stagger less than three with moderate coupling for staggers 
between three and ten. 'Mese data represented all decalage angles considered. 'Me three- 

dimensional induced drag results pointed toward a saving when the canard configuration 
had a large gap and a decalage angle equal to -2 degrees. Stagger varied the induced drag 

only slightly. 
They then varied the canard and wing aspect ratio values individually, between 6 and 

12. They found that the highest aspect ratio for both lifting surfaces was the most 

efficient for all wing (S,, ) to canard (S, ) area ratios. An approximate 16% decrease in drag 

for an increase in area ratio from S, /Sc = 50/50 to 90/10 at CL = 0.55, They also noted 

that as S,, /Sc increases, the canard configurations become less sensitive to stagger. 
Static margins for this typical case varied from -0.1 for the aft center of gravity to -1.6 

for the forward location of the center of gravity. As the decalage angle increased the 

canard loading increased, hence increasing the wing loading. Here the highest wing to 
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canard area ratios required the largest trim decalage angle and hence' resulted in a higher 

trim drag penalty. 
Finally, gap was the main contributing characteristic to the interference effects of 

induced drag, but some interference was encountered with different decalage angles, and 

very little for varying stagger values. As much as a 30% decrease in induced drag could be 

obtained if the two surfaces were out of plane and had nominal gaps. This agrees with the 

findings of Laitone mentioned previously. 
Blackburn8o wrote a paper in an attempt to dispel the myths about canard configured 

sailplanes. This paper, however, in its attempt to dispel myths about canards for 

sailplanes, supported many points that would make a canard a good choice for a Low 

Speed HALE UAV mission. 
Several of the problems with canard sailplanes would also be problems for the HALE 

UAV mission and will therefore be discussed here. If the canard should stall in the flare, 

there is nothing to prevent the downward rotation of the nose into the runway. The 

solution is to approach weU above the canard staU, but this has serious performance 

implications as well. Following from this, for models (conventional and canard) with 

essentially the same power and wing loading, canard configured aircraft require at least 

50% more runway. Obviously in the HALE UAV application this is less of a problem as 

takeoff length is not generally a constraining factor. 

Another of the problems with the canard that would effect a HALE UAV is with the 

center of gravity. One approach to solving the center of gravity problem is to add strakes 

as a highly swept forward extension of the inboard wing section to serve as fuel tanks. 
This solves the balance problem, but it creates some others. With fuel concentrated so 

close to the center of the fuselage, airborne wing bending moments will be greater than 

with fuel more evenly distributed along span. The result will be increased structural 

weight. Also there is more wetted area with the strakes, hencemore parasite drag. 

One way around this problem is with an implementation similar to the Rutan Voyager. 

With the Voyager, the fuel booms and large fuselage tanks forward of the cockpit made cg 

control relatively easy. There was even fuel in the canard. The fuel booms also acted as 

end plates which, when combined with the forward sweep of the canard made for a 

virtually constant downwash angle impinging on the inboard wing sections during a flight 

that was flown at neatly constant angle of attack. This statement serves to demonstrate 

1*11 11 
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that if a canard configuration is implemented for the proper mission in an appropriate 

fashion, that the performance can exceed that of a conventional configuration. 

In a paper on sailplanes, trim drag and tail siZing by Krooý', the design had a large 

fraction of lift carried by the canard = 0.5, where I, is the lift of the canard and L,, 

is the lift of the wing). The performance of this design was therefore more sensitive to 

static margin changes than the conventional configuration. If carefully executed, a canard 

configuration might make an acceptable, although probably not an exceptional high 

performance sailplane. This acceptable performance is due to the need to balance 

performance in turns and cruise. This would not be a problem in a HALE UAV 

implementation. 

Krop also pointed out another interesting design difficulty. Unlike an aft tail, the 

canard airfoil must operate over a large range of lift coefficients. This leads to challenges 

in low Re airfoil design and inevitable penalties in profile drag. 

A canard with 40% of the wing span, carrying 35% of the wing's lift, achieves a span 

efficiency (s) of only 0.74. By employing a more optimal distribution of wing lift, this 

penalty may be reduced somewhat. However, the lift distribution required to achieve 

minimum induced drag is highly non-uniform. This leads to variations in section lift 

coefficient over the wing so that airfoil section tailoring is a necessity for such designs. 

This comment serves to repeat what was stated earlier, that in order for a canard- 

configured aircraft to compete with a conventionally configured aircraft, certain aspects of 

the design ate more critical, and therefore require greater attention in the preliminary 

design. 

An aerodynamic tradeoff study of conventional and canard configured aircraft was 

performed by Selberg and RokhsaZ96. The primary objective of the study was to analyze 

the behavior of the ratio of trim lift coefficient (Qw, ") to lift induced drag (CDi) over a 

range of static margins and area ratios. 

For all of the parameters considered, at the lower stabilator aspect ratios Cbrim / CD Of 

the conventional aircraft was the highest, whereas for the highest stabilator aspect ratio 

considered the canard configuration had the highest CDi,,, / CD . They commented that 

many authors use variations of the Munk analysis for induced drag calculations. None of 

these methods accounts for either airfoil thickness or the deformation of the spanwise lift 

distribution as the result of three-dimensional coupling. 
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Figure 2.14 shows the canard configuration induced drag 
sensitivity with changes in static margin and canard area 

(Selberg and Rokhsazm). 

CL / CM for the canard configuration is shown in Figure 2.14 as a function of static 

margin and canard area. The changes in CL / Cjj for a large range of static margin change 

arc much less than those for the conventional or three surface configurations. Similarly, 

the largest area canard has the least induced drag and hence the highest CLICJ'j. In 

addition, for larger static margins, it is the canard configuration that has the highest 

CLICDi* 

Induced drag and viscous drag results for canard aspect ratio to wing aspect ratio of 
2.0 were compared for a static margin of 0.2. For these conditions, the canard 

configuration is superior from both induced and viscous drag considerations. When 

pressure drag and viscous drag are added to the induced drag, the CL,, i .. ICD of the canard 
is the highest, foHowed by the conventional and then the tri-surface. 

At the higher stabilator aspect ratios, the canard configuration has the least induced 

drag as well as the highest Cu,, i,, ICD ratio. However in an cases, the overall CUi .. ICD is 

close enough that configuration selection will most probably be based on other 

considerations, i. e., stability and control, safety, structures, manufacturing costs, etc. It 

should be noted that one of the problems with this study is that it compared like control 

surfaces/ateas for the different configurations. 11iis is not practical or likely given that a 
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good design for a particular configuration would probably have a different area. This 
0--- 

makes the basis for direct comparison questionable. 

Feisteal used a Prandtl-Munk analysis to study various parameters such as span, gap, 

aspect ratio, etc. His results indicated that a ratio of canard aspect ratio (AR, ) to wing 

aspect ratio (AR,, ) of 1.5 - 2.0 was necessary to achieve peak span efficiencies. Finally, 

Levy" produced a paper on downwash prediction for canard configurations. He 

developed a generalized formulation and design charts that could be used in a form similar 

to those produced by Katzoff and Silverstein, but that could be applied to canard 

configured aircraft. Unfortunately, the maximum aspect ratio considered was 12, thus 

making extrapolation a bit impractical. 

The next section focuses on a specific kind of canard aircraft, the tandem wing. 

2. C S. d Tandem Wing 

Many of the aerodynamic analyses on canards were applied in one of the extreme cases 

to the tandem wing. There is very little available in the form of useful data regarding the 

tandem wing configuration since there have been so few flying examples. Stintoný 

performed an aerodynamic analysis typical of, the common methodologies. This analysis, 

however, didn't result in any real methodology through which to design an aircraft of this 

type. It is possible, though, to make some generalizations. 

In their study for the HALE reconnaissance role, California Polytechnic Institute" 

used total wingspan as one of their constraints. This partially resulted in their preference 

for the tandem wing design. In addition, they claimed the wing. bending and structural 

weight are better than the monoplane configuration. The tandem wing configuration also 

provided a lower induced drag. They stated that interference effects can be drastically 

reduced by employing a negative stagger. This places the rear wing away from the 

downwash of the front wing. In addition, if the upper wing is used for mounting the 

engines, ground clearance for the propellers is less of a problem. 

On the subject of tandem wing sailplanes, Kroo' states that tails of very large span 

(tandems) are not advantageous for most aircraft since structural weight penalties outweigh 

the advantage in structural efficiency due to reduced span. For sailplanes it is not 

structural weight, but Reynolds number effects which eliminate tandem designs from 

contention. To determine when this Reynolds number penalty overcomes the increase in 
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span efficiency, the soaring performance of sailplanes with optimal wing area was 

computed for various tail geometry. The same problem is not likely given the even higher 

operating cruise lift coefficients (and thus relative domination of lift induced drag) of Low 

Speed HALE UAV's. 

Cross and Donnelly 98 further support these comments in their paper on Low Reynolds 

number aerodynamics of multiple wing systems for RPVs. Ihey state that for a given 

stalling speed and gross weight, a biplane or multiple wing vehicle can usually be made 

lighter and more stow-able than a monoplane of similar chord and wing area. An 

increased minimum drag coefficient is possible of only 5% to 15% above monoplane 

values. 'Meir study consisted of an experimental investigation of a tandem wing 

configuration aircraft with many variations of wing location along the fuselage. 

Ihere remains one major classification of configuration that could be considered 

useful in the Low Speed HALE UAV role. 

C. 5. cF ing Wing 

The most obvious application of the flying wing configuration to the Low Speed 

HALE UAV role is as a simple span loaded aircraft. This configuration was used in the 
Aerovitonment Pathfinder, and wiU be used in the Aerovitonment Centurion and Helios 

aircraft as well. This particular configuration is well suited to Low Speed flight, as it 

doesn't sacrifice any of the low speed flying qualities by sweeping the wing. It does, 

however, present a challenge in stabilizing the aircraft in yaw. In addition, special airfoil 

sections must be used in order to counter wing pitching moment. This field still has a great 
deal of evolution to endure before aerodynamic efficiency is not sacrificed too much. 

As an example, Kroo 47 makes the statement for tailless sailplanes and airfoils with 
flaps, a static margin of 0.2 at a CL Of 1-0 (with zero lift moment coefficient, Cmo = 0.2) 

would entail completely unacceptable drag penalties. He observes that as in the canard 

case, some performance advantages ate predicted but they are small, especially in light of 
the assumptions required in the analysis. These conclusions were the result of studying 

tailless gliders with small sweep. 
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Figurc 2.15 shows the average chord and trailing edge kink 
dimension for a flying wing configured aircraft 

Culver" provides a simple design criteria to use in order to avoid the problem of 

tumbling. Ibc reason tumbling is a problem is that the machine gets trapped in its own 
lift circulation or vortex. 'Me tumbling study suggested that a simple criteria for the 

borderline between tumbling and not tumbling, for the case of the cg in the wing chord 

plane vertically, and at 25% of the MAC, was D/C = 2. Here C is the average chord and 

D is the trailing edge kink dimension (Figure 2.15). High sweep angles alleviate the 

problem of the tendency towards Pilot Induced Oscillation in a machine with low pitch or 

yaw damping, but it is unlikely that this will be a consideration for anyone but the flight 

control system software manager. If plane tumbling were induced, the effect of a vertical 

-offset of the cg for cg's of 1 average chord above or below the chord, the tumbling would 

not continue. Swept back wings have excessive roll due to yaw +Clp so Culver suggested 

using bent down'tips for fins and rudders. These could be cranked as much as 45'. Bent 

tips at 45* ate so powerful in producing -C, D that the wing can have some dihedral to give 

ground clearance as indicated both by theory and paper model tests. 

Guglieri and Quagliote provide a flying wing, wing weight estimation as a linear 

function of wing surface area S. 'Me difficulty with this formula is that it was written for 

solar cells covering 80 % of the area of the wing. This affects the structural rigidity as well 

as tlýe weight. 
(ne next section includes brief discussion about a configuration that has been 

considered mostly in sailplanes, but curiously could be used to overcome one of the 

limitations of Low Speed HALE UAV's. 
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ZCS. f Telescoping * 

Telescoping wings have been proposed previously in an attempt to change the wing 

loading in flight. The primary reason that the telescoping wing is a curious possibility for 

Low Speed HALE UAV's would only be dear if a time to climb requirement were 
imposed. In traditional sailplanes, this is attained using water ballast to alter the low speed 

and high-speed characteristics in flight. 

In a study by Mueller and Heuermanri, they discovered that the adaptation to the 

high speed and slow speed flight only with the aid of changes of wing areas and wing span 
didn't reach the performances achieved by changes in curvature and wing area for wing- 
flap wings. Their results from the design of the SB 11 sailplane led to the knowledge that 

neglecting the flight properties in favor of the flight performance can lead to theoretically 

possible advantages not being obtained in flight. When commenting on the failure of the 

telescoping wing to improve the performance more than ballast for the cost, they stated 

that small performance related inferiority in individual items in favor of distinct superiority 
in other items could lead to substantial overall disadvantages. 

2. C6 Co oKng Drag Es tim a tion 

One area that receives almost no attention in common methodologies is cooling drag. 

Most of the attempted Low Speed HALE UAV applications have used an internal 

combustion reciprocating engine. Depending on what load these engines are operating 

under, they can generate a great deal of waste heat. In normal circumstances, it would not 
be a large drag penalty to devise a cooling system for an aircraft with an extra heat load. 

The problem is that for a Low Speed HALE aircraft in cruise, the ability to transfer heat to 

the atmosphere is greatly diminished due to the extremely low air density resulting in very 

poor convection rates. This problem has received some attention in the literature. 

In general, 3 different concepts for heat rejection in Low Speed HALE UAV's are 
discussed. Fuel tank heat sinks, flow through radiators, and surface heat exchangers. 111e 

fuel tank heat sinks were used in combination with surface heat exchangers for the Boeing 

Condor. 'Me difficulty with employing this type of cooling method is estimating the 

weight of the plumbing necessary to implement it, and predicting the ability of the fuel to 
dissipate the heat in cruise as it is diminished in supply. In addition, there were no data 
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available on the topic of boundary layer transition being influenced by heat transfer on 

laminar flow airfoils. It is a well known result, however, that if enough heat is transferred 

through the surface of the wing that transition would occur earlier than if there were no 

heat transfer. 

Petkus and Gallington'00 described some concepts for minimizing heat loads and 

rejecting waste heat effectively. Heatrejection concepts such as surface heat exchangers, 

fuel tank heat sinks, and conventional radiators, were discussed relative to their respective 

merits and weaknesses. They mention that forced heat convection at altitudes greater than 

60,000 feet is similar to free convection at sea level. Also, that the heat rejected from a 

reciprocating engine is mainly a function of, the horsepower being extracted and, is not 

explicitly influenced by the altitude at which it is operating. Finally, they devised several 

mathematical relations for use as power losses, or corrections due to cooling drag. 'Me 

derivation of these terms included some highly configuration dependent assumptions. 
Since A of the internal combustion reciprocating engines use some form of 

combination of turbo and supercharging, there is some information available on the results 

of this approach. Nagurny"' describes how a reverse Rankine cycle waste heat recovery 

system has the potential to increase the endurance of a HALE by up to 7% (over that 

obtainable with a baseline heat rejection system). The cycle operated with a 

thermodynamic efficiency of about 15%, assuming that the working fluid was adequately 

superheated. Using this system introduces additional weight and ram drag penalties; 
however, the net power gain claimed is well above the imposed losses. 

Tonskotter" describes the, system used in the Grob Strato 2C. 'Me nacelle flow is 
heated when, passing the heat exchangers and the internal drag of the nacelle is very low. A 

total heat rejection of about 225 HP at an altitude of about 80,000 feet requires very large 

heat exchangers with a total frontal area of 38 ft. 

Russ and Drela'02 comment on the system devised for the Perseus B aircraft. For a 

given powerplant performance and cooling requirement, the tradeoffs for an optimum 
heat exchanger design were between cooling drag and instaUation weight. Preliminary 

sizing of the Perseus tam air heat exchangers showed that optimum designs would have 

frontal areas of approximately 7.5 fe for the high temperature exhaust gas heat exchanger 

and approximately 6.5 fe for the liquid coolant heat exchanger. Total heat transfer area 
for both heat exchangers is almost 3 times the wing area. 
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The aerodynamic layout and the exact location of the cooling duct was done such that 

the effect simulated the presence of an additional fifting surface. The effect on the 
longitudinal stability of the Perseus aircraft would balance out the shift in aft direction of 

the cg. Since the air charge temperature (AC'1) of the engine was only allowed to be in a 

relatively narrow range, the exhaust gas heat exchanger exit temperature had to be actively 

controlled. An ACT above a certain limit would lead the engine into knocking and an 
ACT under 273 K would freeze the water in the exhaust gas created as a byproduct of 

combustion. 
In another paper by Mark Drela"' he discusses the integration of the heat exchanger 

into the wing, as was done on the Theseus aircraft. In the case of a wing leading edge inlet, 

an ineffective inlet geometry can have very adverse effects on the wing airfoil, as 
demonstrated in previous experimental studies. This makes a radiator installation that is 

separate from the wing less risky and more attractive. On the other hand, effective 
integration of the radiator with the wing airfoil also Offers possibilities for favorable 

interactions and greater compactness, with possibly lower overall drag and lower system 

weight than with an equivalent isolated installation. 

Drela derives a set of relations describing the drag of a radiator core arrangement 
based on the heat transfer through it. He mentions that a net thrust is obtained from the 

ramjet term over much of the range of operating altitudes. That if properly implemented, 

the radiator core drag is virtually nil even at the rather high pressure drop coefficient (P = 
10), most of the frictional drag being canceled by the ramjet effect. Most of the problems 
inherent in the aft mounted radiator can be largely overcome with the front mounted 
installation, which does not subject any thick boundary layer to the cowl/radiator's 

pressure field and allows much smaller velocity ratios to be used. That along with the 

experimental and numerical results of this investigation, result in the conclusion that the 
front mounted configurations appear to be inherently superior. 

Most of the items discussed in the literature review were introduced with the intention 

of justiýýing decisions taken later in the methodology and thesis. Although it may not have 
been readily apparent at the first reading, it is hoped it will start to become clearer with the 
topic of the next chapter, an introduction to the methodology. 
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Ch ap ter III 

Ifyou want to truly understand something, 

Try to change it 

-- Kurt Lewis 5 

3. Overview of the Methodology 
In the Introduction an attempt was made to delineate the problem for which this - 

thesis was written to address. Where the problem or need originates from was described, 

and how this thesis intends to address the problem in general terms of the design of Low 

Speed HALE UAV's was also described. The purpose of the Literature Review was to try 

to explain the scope of the problem and how aspects of the problem have already been 

addressed in the literature. 

This chapter will begin the discussion of the methods used to approach the solution 

of the problems mentioned in the previous chapter and the Introduction. It will present 

the structure for the methodology that the entire thesis is based upon. This chapter will 

introduce the concept of the difficulty and challenge of programming this particular 

methodology as an object-oriented computer based application. In addition, the 

procedure used throughout this thesis to describe the structure of the methodology and its 

implementation will be highlighted. 

3. A Paraflel Currents 

The writing of this thesis is even more of a chaUenge than the ordinary scientific 

dissertation. The difficulty atises in the description of the approach to the solution of the 

problem. 'Mete is a significant theoretical component in addition to a significant 

component resulting from the actual coding of this theory in the object-oriented 

environment. This has already been alluded to somewhat in the Ilterature Review. 
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On the surface, it would seem all that needs to be done is to code the equations and 

the methodology has been implemented. In reality, as described in the Uterature Review, 

and as will be explained in more detail, tl-ýs is rather fat from the actual case. It is for this 

reason that the thesis has been broken down by a description of the theory used, and a 

description of the implementation of that theory for specific cases. 

It will be extremely difficult in some cases to divorce the implementation from the 

theory since one often drives the other, however, some attempt will be made to leave 

discussion on the implementation for the chapter specifically designated to address it. 

Ilese are in effect Paraffel Currents. The ideal way to explain the existing 

complementary nature between the theory and the application would be for the human 

mind to have two parallel input channels to enable the visualization of both 

simultaneously. Since that is likely to be invented farther in the future than this thesis will 

evaluated, a sequential format will be used, with the discussion of the theory preceding the 

discussion of the implementation. 

Ile quesdon might arise as to why there is any emphasis in this thesis on the 

implementadon at all, as it may not at first appear to consdtute a significant part of the 

original contribution in this work. It will be shown in the chapter on the implementation 

that it is in fact a considerable element in the process of the computational design of any 

aircraft. 

3. B The Methodology 

It would be untenable to claim that the methodology was entirely new or 

groundbreaking. Instead, the methodology used is described as an application of an 

existing analytical technique to the solution of a problem. Whereas the procedure for the 

analysis is similar to existing procedures, the analytical techniques utilized at each stage in 

the procedure are different from or are a conglomeration of existing techniques based on 

validation against a few existing design points. In addition, the ability to navigate freely 

about the procedure is also rather unique in a computational methodology. 
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- -ý Figure 3.1 is the structure of the Conceptual Design Methodology used throughout the thesis. 
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The human machine performs many of these tasks giving little thought to the 

decisions that it is making. There ate no existing equations or decision trees for this truly 

unique aspect of the methodology, however it will be discussed in greater detail in the 

implementation chapter. 
In the past, the application of the computational design methodology has been rather 

sequential in nature. 1hcre are NO non-proprietary methodologies that allow you to freely 

construct multiple fuselage, multiple lifting surface aircraft, or to freely change the 

geometry of several different configurations and to visualize those changes side by side. It 

has not been possible before to quickly evaluate the effects of these changes on weight and 
drag in teal time for the purposes of conceptual design and sizing. The implementation of 

this methodology allows that. 
As noticed from the diagram of the methodology there are numerous feedback loops 

that simply cannot exist in other computational implementations of the general conceptual 

design procedure (this of course excludes MVO methods). The implementation of this 

methodology not only allows for that freedom, but the results obtained due to that 

freedom to navigate the procedure allows for a considerably greater understanding of the 

driving parameters in each of the design concepts considered (this includes IAVO 

methods). The designer can, at any time in the design process, return to change any of the 

relevant design parameters without having to restart and re-execute the program. The 

procedure followed in the methodology will be mirrored in the development of the thesis. 

Iberefore, detailed discussion of the methodology is left for the respective chapters 

outlined in the next section. 

IC The Procedure 

The discussion of the various aspects of the procedure and the underlying theory will 
be as follows: 

Chapter IV: 
Formulation of the Nfission Requirements 

Specification of the Critical Constants 

Creation of the Constraint Diagram 

Evaluation of the Realism of the Constraints 

,,. 
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* Selection of the Design Point 

9 Sensitivity on Takeoff Weight and Cruise Velocity 

* Selection of the Payload Weight or Wing Area 

" Selection of the Preliminary Weight Fractions (only used for the 1" 
estimate/Prelin-ýinary Sizing) 

" Selection of the Number of Engines and Fuel Consumption and Excess Power 
Available for Climb 

" Calculation of the Initial Endurance and Time to Climb 

o Selection of the Configutation 

Once the configuration has been selected, the next chapter will cover the details of the 

sizing of the default configuration and the re-sizing of existing configurations. In the 

execution of the program, this re-sizing happens in no particular order. Each procedure is 

invoked by the selection of the relevant button on the desktop or by clicking the mouse 

over the relevant part of the aircraft. 

Chapter V: 
Fuselage Dimension and Location Specification 

Wing Planform, Parameter Definition 

Airfoil Characteristics Specification 

Tail/Canatd/Tandem Wing Planform/Sizing Characteristics Specification 

Location and Performance of Engine(s) 

Chapter VI : 
Chapter VI is reserved solely for discussion on the calculation of the drag of the aircraft 

and its components. 

Chapter VII : 
Chapter VII is reserved solely for discussion regarding the calculation of the aircraft and 

airctaft component weights. 

Chapter VIII : 
o Specification of the Location of the Payload in the fuselage 

* Specification of the Center of Gravity of the Aircraft with and without Fuel 
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" Calculation of the Aerodynamic Center of the Aircraft 

" Determination of the Aircraft Static Margin 

" Calculation of the Effects of Trim Drag on the Endurance 

" Recalculation of the Endurance based on Revised Drag and Weight estimations 

As mentioned earlier, Chapter IX wiU discuss the problems specificaUy associated with 

attempting to program the above procedures in the object-oriented environment and the 
difficulties associated with knowing which decisions to leave in the hands of the designer, 

and how many decisions to automate. 
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Chapter IV 

Perseverance is not a long race, 

It is many short races one after another 

Walter Elliot 

4. Preliminary Sizing 
This chapter will describe the methodology and theory used in the early 

preliminary sizing stage up to the specification of the configuration. Discussion of the 

Nfission Specifications will be limited to the referral of the reader to the Introduction 

where most of the potential missions for the Low Speed HALE UAV were described. In 

general, selection of any of these missions specifies the critical constants to be discussed 

next. The particular missions to be used in generation of the results of this thesis win be 

described in the Results Chapter. It is, however, assumed that the methodology has been 

written in a way that insures that it can be applied to any of the potential missions 
described in the Introduction. For a detailed description of the actual design process 
followed in this chapter, the reader is referred to Figure 3.1. 

It is again noted that the methodology was created as a tool for the identification of 

any relevant trends resulting from the variation of certain configurational, operational, or 

geometric characteristics. 1hus, the organization of the methodology reflects this 

orientation. The methodology was not intended to allow the designer to specify an exact 

mission endurance, and to iterate or optimize based upon this information to find a unique 

solution. 

4. A Specification of the Critical Constants 

Any of the variables necessary to create a constraint diagram ate considered to be 

constants critical to the early initial sizing of the aircraft. After setting up the equations 

relevant specifically to the Low Speed HALE UAV constraint diagram, the resulting 

Chapter IV 75 Preliminary Sizing 



lh, sigii A [owSpeed I 'A I -,, ý 

critical constants can be see in Figure 4.1. Figure 4.1 is a snapshot of the Critical 

Constants Dialog box. Once again, it is pointed out that reasonable values for all of these 

constants can either be derived using common sense, or obtained from the common 

literature. 

The exact implementation for each of the constants will be explained in the next 

section. It is noted that the constants for Oswald efficiency and zero lift drag are used 

exclusively for the calculation of the constraints and time to climb. Once the 

configuration has been specified, the dnig breAdovm %vill be c', ilcuhted explicitly. 

Cruise Ntitude I 7oooo Feet Units 

Max. Altitude 85000 Feet Standard 

Aspect Ratio 35 Sl 

Oswald Efficiency 

0.0161 
UUu I - - 
Cl-max 1.3 

r 
Grap 

l 

Prop Efficiency 0.85 
Cancel 

Prop. Elf. Takeoff F-0.75 

Min. Climb Rate F-100 Feet/ Minute 

Cruise Velocity 200 Knots 

Stall Speed Clean 40 Knots 

Takeoff Dist. (min) F-5000 Feet 

Max. Load Factor F--2 2q g's 

Figure 4.1 is the Critical Constants or Basic Aircraft Constants dialog 
hox which is usedjor the input of data necessaqjor the creation of the 
Constraint Diagram. 

4. B Creation of the Constraint Diagram 

The Gmstraint Diagram is t- ýimihar to all in thu mrcnift dcýign field. The cicsign spacc 

for the aircraft must be defined in the early stages in order to size the aircrat -t properly 

without violating any of the basic Laws of physics. The most genend form for this (Itagrain 

is Wing 1. ()Aing (W/S) versus Thrust ()r Power LoAding (I IP/W). 
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This diagram has an inherent utility that is indispensable. The Constraint Diagram 

provides multiple possibilities from which to launch the non-unique iterative conceptual 

design process. Using the diagram, a general idea of the size of the aircraft is- easily known. 

UsMg the present methodology, a comparison of two or more Constraint Diagrams side 

by side is possible. This quickly identifies how variation in any of the critical constants 

effects the constraints set out by a given mission. 

In this way, the critical constants can be manipulated and the effects of each change 

can be plainly seen. T his emphasizes which of the driving constraints that will have the 

most bearing on the design. It also identifies where a change in a given constraint will 

impact the performance of the aircraft the most. In the following section, the equations 

used for the creation of the constraint diagram are included. Their derivation is 

straightforward and can be found in most aircraft design textbooks. 
All of the equations that follow arc in terms of the horsepower to weight ratio as a 

function of the wing loading. In general, the equations are in terms of the lift coefficient. 
The conversion factor of 1/550 is present in all equations to convert from units of ft 1bf/s 

to horsepower. 

4. B. 1 Maximum LoadlTurn 

A quick derivation based on the assumption of a parabolic drag polar yields the 

equation: 

lip IQC (-ISV) 
+K W 550)7P 

1 

1) wQ 

This equation is written in terms of (CD, Q, K, and n) where Q=1 PV2 , and 2 

K and assumes a constant velocity turn. In this equation, the density selected (, 0) 
irARe 

was at cruise altitude - 
propeller efficiency (17,, ) is considered a constant value. Load 

factor (n) is provided depending on how robust a structure is necessary or desired, and 

what g loading the aircraft is to be designed for in a turn. The zero lift drag coefficient 
(C, 

" 
) has already been specified by the designer. 
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As can be seen from this equation, for a given design ( fixed ? 1,9 CDO, K ), 

maximum load will be most sensitive to changes in Altitude (p), r=dmum load factor (n), 

and velocity. 

4. B. 2Endurance 
HP 4 CY4 

ýK 4(_IWY2 

'I 'I 

T 

(4.2) 5 017p '- 3pS) 

In the endurance equation, again for a fixed design , the design is sensitive to the zero lift 

drag coefficient (CD,, ), the aspect ratio (through K), and the altitude (P). 

4. B. 3 Chdse 

HP 
=2 CY4KY4 -13L (4.3) W- 550? 7p 

Do 

(P 

sp 

In this equation, only aspect ratio (through Iý, CD,,, and altitude have any effect on the 

sensitivity of the design to variation of the cruise parameters. For the creation of the 

constraint diagram, even though wing loading was varied, it was necessary to maintain CD,, 

as a constant, as specified. Although this would not be the case in reality, for the purposes 
in the early sizing phase of the methodology. it was thought appropriate. 

4. B. 4Rate of CKmb (RofQlCeiUng 

HP 
-1- RoC+ 

01 CD 
0+ KC1V2 2 

Y2 - 

(4.4) W 55017, p 
CT2 'MX Ps -3-L 

33ý) 

L. 
X 

In this equation, the parameters that affect sensitivity to a specific design are the altitude, 

aspect ratio, and the maximum lift coefficient (CL. J. The maximum lift coefficient is 

used instead of the maximum lift to drag ratio or minimum power required lift 

coefficients. This is due to the fact that the true limiting factor in terms of lift coefficient at 

such a high altitude will most likely be stall speed for a given wing loading/power loading. 

Therefore, for the constraint diagram, the most limiting factor for the design is used. 
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To use this equation to calculate the absolute ceiling of the aircraft, the Rate of 

Climb (RofC) is simply set to zero. 

4. B. 5 TakeoffDlstance 

HP 
- 

2.44 11w (4-5) 
W 550i7p gdl,, psLCL., Tf 

For the takeoff distance constraint equation the greatest degree of sensitivity is found in 

the takeoff distance (dt,, ) specified and the maximum lift coefficient. The density is 

assumed to be that at sea level. 'Me takeoff propeller efficiency should be that appropriate 
for takeoff with a cruise-maximýed propeller unless a variable pitch propeller is assumed. 
The takeoff velocity is assumed to be 1.2 multiplied by the stall speed. 

4. A6 Stafl Condition 
W=p TT CL.. Vs- (4.6) 

This equation is sensitive to the assumed values of maximum lift coefficient and stall speed 

(Vs,, ). The density is assumed to be at sea level for the constraint diagram since no other 

reasonable assumption could be made. 'Mus, this constraint is in effect a maximum' 

allowable stall speed. This is chosen as a constraint for a UAV as it is often found that a 

Low Speed HALE UAV will be built without assuming the drag and weight penalties of a 

permanent undercarriage. With this in mind, the minimum possible speed at which the 

aircraft can touch down is desired, more so than for an aircraft with traditional landing 

gear. 

4. C Evaluation of the Realism of the Constraints 

Now that the Constraint Diagram has been created it is necessary to evaluate whether 

or not the Constraints resulting from the Critical Constants are realistic. For example if a 

cruise altitude of 120,000 feet was selected and a desired HP/W ratio of 0.04 was also 
desired this is quite obviously not possible based solely on the physics involved. 
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Figure 4.2 is a demonstration of the comparative abilities of the implementation of the methodology. 
In this case twvo constraint diagrams ivith differing aspect ratios, but othenvise identical constants are 
compared side by side. 

For each Critical Constant specified for any given mission, this type of analysis must 
be performed. 'Me Constraint Diagram allows this process to occur quickly. Early 

tradeoffs in size and performance can be made even before a specific configuration has 

been selected. In addition, using the ability of the program to represent results of the 

variation of different parameters side by side, this process has been sped up considerably. 
An example of the Constraint Diagram variation due to a change in Aspect Ratio is 

provided in Figure 4.2. It can be observed from this diagram how much of a variation can 

occur in any given constraint based entirely on the variation of a single Critical Constant. 

This example roughly corresponds to the difference in Aspect Ratio of the Boeing Condor 

and the Aurora Flight Sciences Perseus B. It can also be observed from this diagram that 

at least for this particular set of Critical Constants, Takeoff Distance is the least 

constraining of the curves. The design space is bounded on the left by the Constant 
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Velocity Cruise Constraint, on the right by the Stall Constraint, and on the lower end by 

the Maximum Load in Turn Constraint. 

4. D Selection of the Design Point 

At this point, it is safe to assume that a reasonable Constraint Diagram has been 

created. A certain degree of trial and error may have been necessary to achieve this, and a 

better understanding of the critical constraints should now exist. The design space should 

now be acceptable enough in range to create a robust design with room for slight variation 

in any given Critical Constant without generating a conffict with any of the constraints. 

Now the design point can be selected. 
It should be noted that even after the design point has been selected, it will always be 

possible during the ptogram/methodology to return to the selection of the design point 

(or the selection of the critical constants). Ibis can be done to create another 

configuration based on any desired variation (slight or major). This change can be for the 

purpose of comparison or for a better understanding of any parameter driving the design. 

It is also very important to note that the design point is a normalized quantity and as such 

represents a range of possible design solutions depending on the selection of takeoff 

weight, wing area, or HP. 

4. E SensitiVity on Takeoff Weight and Cruise Velocity 

In order to enhance the ability of the designer to make an educated choice even 

further, two separate sensitivity curves were created. The first compares the variation in 

Lift Coefficient as a function of and Wing Loading and Cruise Velocity. This was thought 

to be useful given the sensitivity of the left side bound on the design space. As can be 

seen in Figure 4.3, the Maximum Lift Coefficient is drawn as well as the Design Point if it 

has already been selected. Thereason the Design Point is represented by a line'on these 

figures was to provide the designer with the ability to visualize the effects of selecting one 

takeoff weight or one cruise velocity based upon the Wing Loading already selected. Ihe 

most important aerodynamic characteristic on the plot is the minimum power required lift 

coefficient (Q,, &, pR). This term has direct significance in the endurance equation and 
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should ideally be the cruise lift coefficient. For aircnift with very Lirge aspect nitios, 

practical limitations in maximum lift coefficient usually make this difficult to achieve. This 

results from the fact that CL,,,,, PR scales almost directly with the square root of the aspect 

ratio for a given zero lift drag coefficient (see Equation 4.9). Thus, also included for 

interest Is 

CL vs Wing Loading at Altitude 

0 

u 

cr 

1 cskýr Pdd 

01'. 5 Vcr 

-'L, Max 2D 

02468 10 12 14 16 18 20 22 24 
1 Min Pow Reqd 

Wing 1,0.1ding (pst) 

Figure 4.3 is one of the sensitivity diagrams. It shows the marimum lift to drag ratio and minimum 
power required lift coefficients, and asensitivil), on cruise velocity as afunction of ning loading and 
lift coefficient. 

Another reason for including this curve is that approximately 70 percent of die 

aircraft drag is due to the wing. Thus die cruise lift coefficient would be of interest to the 

aerodynamicist for yet another reason. It can be observed from the figure th', It a 15", 

increase in cruise velocity results in an almost 25" 0 change in possible wing loading at 

maximum lift coefficient for this particular set of critical constants. It can also be seen it, 

the figure that for this particular set of critical constants, the GrmnPR Is about 2.1. This is 

obviously not practical for an unflapped wing. 

The second curve made available by the program is a sensitivity diagram for the 

variation in Wing Area as a function of .,, kircraft Takeoff Weight and Wing ], (ýýidmg. An 
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example of this curve can be seen in Figure 4.4. There are several excellent reasons for 

including this diag)nim. 

, 
ý)Yiuig Arcý, a x/s Wirip, I, k-)ýacling /-Utpqj 

1800 

1600 

1400 

1200 

Cý 
0 looo 

Soo 

600 

400 

200 

U 

o 5oo IbF 

oi ow lb, 

20W lbý 

4o som lbs 

o 10,000 ros 

o 2t), (xio lbi 

41, -e_ 
I10 

40 40 IL 
Wiip'll Point 

44-1 
li 

246NI () 12 14 16 18 20 22 24 

Willig I-C).. -Idillp (t. IS. t) 

NUM 

Figure 4.4 is a sensitiviýy diagramfor takeoff weight as afunction qj*)ving loading and iving area. 
The selected design point is also drawn on the curvejor interest. I'Iii. visotiet)j'thet)IWNeti. vitivil), 
diagrams available inunediateývjollo; ving the selection of the design point. 

In general, the wing of the aircraft is going to be responsible for i very Lirge 

portion of tile dnig. As mentioned before, approximýitely 70", o of tile drig of this type of - 

aircraft is due to the wing. Interestingly, there Is a balance between parasite in(] induced 

drag. At high values of cruise lift coefficient, lift induced drag dominates ýind ýit lower lift 

coefficients it is the parasite dnig that dominatcs. Thus, for ýi Low Speed I 1AH' UAV in 

cruise, the induced drag will be the dominating factor. If the lift coefficient is low, it 

represents a potential conflict in constraint. A low wing 1(),, iding is desired in ()rder t(ý 

combat the effects of vortex drag, ind a low wing area is desired to combat wetted ýarea 

effects on drag. With some knowledge of the size of the pýiyload desired, and tile 

fractional weight of the payl()ýid relative to the entire aircraft, the takeoff weight of the 

aircraft can already be determined. This sensltlvltýy diagram en', ibles the designer to 

compýire these quýintities ýind visuAly interpret the tradeoffs. 
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It is obvious from this figure that there is a point at which the weight increases 

sharply for a given Wing Area. This diagram can be used to insure that the selected design 

point is within the flat range of the weight curve while minimizing wetted area and keeping 

the wing loading reasonable. 

The equation used to generate the Lift Coefficient/Cruise Velocity/Wing Loading 

curve was simply: 
Iw 

CL 
pV2 S 

(4.7) 

In this instance, the wing loading was the independent variable (x-axis), the velocity (Vj 

was fixed at intervals of ± 15% and ± 35% around the specified cruise velocity. 'Me 

equation for the Wing Area (S,, h/Weight (Wt, )/Wing Loading diagram was even more 

simply: 
w 
"to ref W 

s 

Ihe lift coefficient at minitnum power required is : 

CLIWUPR = Fc, ý (4.9) 

I 
where K is -. C is the Oswald Efficiency factor specified by the designer. The 

rARe 

maximum lift to drag ratio lift coefficient was calculated similarly without the factor of 

three in the square root used for calculation of minimum power required. 
After having reviewed the relevant design space, the aforementioned sensitivity curves, 

and after reviewing the constraint diagram again, it is once mote suggested to specify or re- 

specify the design point based upon the new information at hand. 

4. F Selection of the Payload Weight or Wing Area 

It is necessary in the early preliminary stages of the conceptual design methodology to 

start the iterative design process somewhere. Some methodologies claim to be original in 

terms of how they go about addressing this. In fact, there are few differences in how this 

process can ultimately be performed at present. 
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It is therefore with little justification that the iterative process for this methodology will 

be started with the selection of either the Payload Weight or the Wing Area. At first 

glance the Payload weight might seem a strange choice of entry points to the iterative 

process. Taking two steps down the procedure it can be seen that the Payload weight will 

be used along with the Payload weight fraction (which will soon be specified) in order to 

calculate the overall weight fraction of the major components of the aircraft. This will be 

done in order to provide an approximate estimate of the endurance which is used as a 

means to verify that the overall sizing of the aircraft can perform the mission desired based 

on the specified payload Cin this case). The calculation of the endurance and the 

specification of the weight fractions occur a further along in the procedure of the 

methodology. The justification for using payload weight should make a little more sense 

in this context. It is noted the above discussion made no mention of the more obvious 

fact that often times the designer of this class of aircraft is designing the aircraft based 

around a very specific payload or set of payloads, the weights of which are often known 

(roughly) beforehand. 

The second possibility for entry into the iterative design process (using' this 

methodology) is the specification of the wing area. This essentially designates the Takeoff 

weight of the aircraft. It was thought that for this particular class of aircraft, these two 

quantities were more useful than the straightforward specification, of the Takeoff weight 
itself, The wing area will drive the wing loading and the drag of this aircraft. These two 

quantities were also thought to have greater bearing on the final sizing of the Low Speed 

HALE UAV aircraft than the Takeoff weight alone. 

4. G Selection of the Preliminary Weight Fractions 

It should be noted that these weight fractions 
(-! 

-) are merely used in the very early Wt. 

stages of this meth6dology until the default aircraft has been provided and a more detailed 

weight estimation can be performed. The quantities that are requested can be seen in 

Figure 4.5. Weight fractions are requited for payload, engines, structure, and fuel. 

Although not many HALE UAVs have been built, there is enough information available 
to make sensible estimates for these valýies as seen in Table 4.1, with, the exception. of the 

powerplant weight fractions.. 
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Wpayload / Wtogw F 130 
F. 4 Wfuel / VVtogw 

ý Wstructure / Wtogw F. 14 

Wpowerplant / VVtogw 

Cancel 
II 

OK 

Note: S is the Ref. Wing Planform Area 

Figure 4.5 is the Weight FractionSelection 
dialog box which enables the designer to enter 
earlypreliminaty weightftaction data available 
ftom the literature. 

Of the aircraft shown in the table, the long endur, mcc urcraft gcticrilly have lower 

than 40 percent structural weight, have less than 10 percent payload fractv)nal weight, and 
fractional fuel weights of at least 40 percent. 

Table 4.1 is a compilation of known weightfractions for aircraftsimilar 
to the Loss, Speed HALE UA V obtainedfrom the literature. 

Wemptvlwto WmaxPL/Wto Wmaxfueffito 

Heron 0.544 0.093 0.363 
Hermes 450 0.445 0.133 0.422 
Aura (USN) 0.5 0.25 0.195 
HiLine 0.543 0.041 0.416 
Perseus A 0.765 0.104 0.131 
Perseus B 0.454 0.120 0.426 
Theseus 0.670 0.097 0.233 
Altus 0.567 0.153 0.279 
Predator 0.343 0.2 0.289 
Raptor 0.431 0.040 0.447 
Voyager 0.219 0.052 0.73 

, 
Condor 0.31 0.09 0.6 

Sj)CCIfICAti( )II ( )f these CILIAntitics 111( )"vs h )r flic 1111ti'll ("'t1ill'Itc ý& T1111C, t' '111111) 

and Endurance, Despite a general dislike for the use of such gross fractional weights and 

their implementation in the early sizing process of conceptual design, it was thought useful 

to have 'an estimate of the total aircraft endurance before the more detailed ýind time 

icatl consum ng specifi ion of the configuration has taken place. This enables the designer to 
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decide at an earfier stage whether or not the overall size of the aircraft is going to satisfy 

the n-ussion requirements. If the mission requirements are not satisfied, it is simpler to 

return to re-select the design point at this stage rather than later. 

4. H Selection of the # of Engines, Fuel Consumption, 
and Excess Power Available for Climb 

The next step in the methodology is to select the number of engines, fuel consumption 

and excess power for climb. The number of engines desired will depend upon a very large 

number of factors, most of which will not be available at the time of overall slZing. Based 

upon the necessary Power Loading of the aircraft obtained from the Constraint Diagram 

and Design Point, the actual engine horsepower required for cruise is now available. 

The decision of how many engines to use will be made based upon the avallable 

engines, which for this class of aircraft are quite limited at this time. III fact, only a few 

internal combustion reciprocating engines have ever performed at this altitudc. Some data 

are available, however, as to the efficiency of the propellers and the fuel consumption III 

cruise for this class of aircraft, and for this stage of sizing, this Information is thought to be 

sufficient. Later in the methodology, a more robust approach will be made available. 

Very few engines operate efficiently across a wide range of available power. For this 

reason, it was necessary to allow for the definition of a climb available power, separate 
from that avadable for cruise. This climb power (for this class of aircraft) should have an 

associated increase in fuel consumption and this must be taken into account in the climb 

calculation. If the aircraft were assumed to climb using the same power setting as that 

used in cruise the aircraft would take an absurd amount of time to reach altitude. This was 
discovered in the original version of the methodology, which made no allotment for an 

increase in avadable power for the climb phase. 
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4.1 Calculation of the Initial Endurance and Time to 
Climb 

Ile calculation of the preliminary endurance depends first on a calculation of the time 

to climb. The calculation of the time to climb is the first calculation requiring more than a 

single equation and some algebraic manipulation. It was found that in order to get an 

accurate estimation of the time to climb (even for the early preliminary stage), that an 

integration needed to be performed. Given the excess power available for climb, an excess 

energy approach was taken to the climb. At least one quantity had to be assumed constant 

for the climb. After much experimentation, it was decided that CL was the quantity to be 

kept constant. 'Me only other option was velocity, however if velocity was kept constant 
from Sea Level to Altitude, the resulting power required to fly at Sea Level was absurdly 
high. 

'Mus, initially, CL was calculated conventionally as: 

r 

CLcruise 
I 

Vc2 

Y-)cruise 
(4.10) 

Pruie 
ruise 

This lift coefficient was used to calculate the velocity of the climb inside of a loop that 

iterated on altitude in 500 foot increments. 11-iis assumes a continuous function and 

approximates the function by a series summation. 
The velocity in the climb was given by: 

W 
V. 

Umb( H-) 
S 12 P( 

Where H is the altitude of the specific iteration, Vclimb is the climb velocity, and where the 

wing loading is adjusted by subtraction of the fuel burned. The drag of the aircraft was 

then calculated assuming a parabolic drag curve (for the preliminary sizing only) as: 

C =C +KC2 D do lxruise (4.12) 

based on the zero lift drag coefficient (Cd, ) specified in the Critical Constants dialog box 

and a constant CL calculated based upon the Wing Loading, density and velocity at cruise. 
11is gave a Cruise power of: 

I cl) -I)T Sre 
P, 

ruise 

00 
= 

Y2P(', )[Vclimb(I 
f (4.13) 

l7p 
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using the propeller climb efficiency specified in the Critical Constants dialog box and the 

density at the altitude of the given iteration. 

Excess Power is then: 

pum, (H) 
-. '= Pavail - Pauise (H) 

Ilis gives a Rate of Climb of : 

RoC(H) = 
P-""-(H) (4.15) 
wt. Q-I) 

where the takeoff weight is adjusted on each iteration by the subtraction of the weight of 

the fuel burned. 

The time to climb is therefore given by: 

TtoClimb = 
CruiseAltitude AH I 
H-SeaLeve, RoC(H) 

(4.16) 

At this point, the average aircraft weight in cruise is recalculated based upon the 

subtraction of the fuel burned in the climb. In addition, the aircraft cruise CL is 

recalculated based upon this new wing loading. The Endurance is then calculated after the 

drag is recalculated applying the new cruise CL. Using the Brequct Endurance equation 

(Equation 2.1) shown in the Aerodynamic Efficiency section of the Literature Review 

(Section 2. C. Le) the first estimate for endurance is calculated. It is noted that all of the 

quantities required for the calculation of this quantity have either already been supplied to 

the program, or have been calculated by this point. 

Once a rough knowledge of the possible (however optimistic) endurance and time 

to climb are available, the decision can be made to either return and re-designate any of the 

quantities effecting the endurance specified thus far, or if satisfied, to move on to the 

specification of the configuration. 

4j Selection of the Configuration 

Prior to this stage in the methodology, the procedure followed has been reasonably 

sequential and generic in nature. It is at this point in the methodology that the procedure 

begins to branch out into parallel paths. Several general configurations are made available 
for selection. The selection of any configuration has a large number of calculations and 
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assumptions associated with it in order to present the designer with i dcfiLilt Aircraft 

configuration from which to work. 

Each of those assumptions and the more relevant calculations will be mentioned in the 

subsequent chapter. For the moment, it is beneficial to briefly mention the coil figurations 

considered to perform the Low Speed I IALE UAV missions in this thesis. 'I'lic major 

cl, tssificýtti, n 4 configurations cin I)c seen in Figure 4.6. They are : 
40 Conventional or Canard 

" Twin Boom 

" Multiple Fuselage Conventional or Canard 

" ýingle Fuselage Tandem Wing 

\I iiI tiple Fuselage Tandem Wing 

I ! ý, ing Wing 

Figure 4.6 is the main configuration selection 
windois, from which the default configuration to 
be created is selected 

'I'lie selection of these configurations was based most]), on the Idea that since the 

aircraft is unmanned, that the actual layout of the aircraft is based more on the 

requirements of the payload. These requirements for this class of aircraft call vary wide1v 
depending on the mission, however in general a wide forward or side field of view for the 

payload is desirable. The decision to consider several of the configurations was based on 
the fact that similar aircraft have already been built. These existingaircraft should provide 

an adequate basis for validation of the methodology, even if data on these aircraft are 

scarce. 

Each individual configuration was made available in Single Engine Tractor and I 
Pusher configurations, Twin Engine Tractor, Twin Fngine Pusher, and Twin Fngine 

Push-Pull configurations. The Multiple Fuselage aircraft were all available in 2 and 3 
fuselage configurations. Overall, this resulted in the possibility for '-)5 different 

configurations once the number of fuselages and possible engine confiprations are 

considered. Tilts is the first hint of the potential power of the resulting meth()dolog'y. 
Once the individual modules have been explained in detall, the range and limitmion of 

applicability of the methodology will be better understood and apprectatcd. The first steps 
in tilts object- oriented approach will be described in the next chapter. 
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Chapter V 

It takes no more ejfort to design something beautifid 

Titan it does to design something that is not 

--- Steho Frati 
(Designer of the SIAI Nlarchettl SF260) 

5. Aircraft Layout and Geometry 

Once the general configuration has been specified from one of the 55 possibilities, it Is 

a requirement of the methodology and code that a default configuration be created from 

which to work. This eliminates the arduous task of setting up a general aircraft for every 

configuration to be considered. It removes the necessity for the designer to specify every 

geometric characteristic for the default configuration. Tirne was taken in order to insure 

that the default aircraft would have appropriate geometric properties to perform a generic 

Low Speed HALE UAV mission. The Fuselage, Tail /Canard /Tan, let n Wing, Main Wing, 

and locations for all of these quantities were specified in advance of the creation of tile 

Main Configuration Window using the Critical Constants already specified. This required 

many assumptions. 

Once inside the Main Configuration Window it is possible to change any of these 

quantities by either simply pressing the relevant button or clicking the mouse on the 

relevant component of the aircraft. The details of the sizing procedure for both the 

default and designer modified cases will be explained in detail in this chapter. 
It should be noted that the discussion will proceed in the order of the original 

creation /calculation of the relevant quantities for the default configuration case. Once the 

default configuration has been created, the calculation for the individual components is 

limited to the effected components. For example, a change in Fuselage Length will often 

result in a change in Tail Moment Arm Length. In this instance, even though only the 

Fuselage Length was modified, the Tail Area and related characteristics will be 

recalculated. This type of interaction is one of the characteristics that makes coding the 
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design process considerably more challenging than just entering equations into a 

computer. 
fhe discussion begins with the definition of the momentarm length for the various 

possible configurations. 

5. A Moment Arm Length Definitions 

At this stage of - the methodology for the default configunition, the procedure 

becomes more complex. For each of the configurations considered (for the default case), 

a moment arm length for the sizing of the tall must be specified beforehand in order to 

continue with the construction of the default aircraft geometry. Thus, it is beneficial to 

begin the discussion with the various definitions for tail moment arm used for the 

different configurations. Afterwards, the placement of the wing on the fuselage and then 

the tail volume coefficients for all of the possible configurations will be presented and 

discussed. 

5. A. 1 Conventional Configuration 

As can be seen from the Figure 5.1, the conventional configuration is tile most 

straightforward. It is shown here for completeness. The moment arm length is defined as 

the distance from the tail (horizontal or vertical) quarter chord to the main wing quarter 

LT 10 

Figure 5.1 shows the definition of 
the tail moment arm lengthfor the 
conventional configuration. 

chord. In this application there is no difficulty \vIth 

sharing the value of tail quarter chord between the 

horizontal and vertical tail as the difference is small. In 

this application, the horizontal tail quarter chord is 

selected, and the only error that is caused can be 

-absorbed by an adjustment in the vertical tail v(Atime 

c0efficient. 
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In addition, since the aerodynamic center of the aircraft for this particular 

configuration is known to coincide with a location somewhere along the wing chord, the 

moment arm length selected will be reasonably close to the actual value. 

9. A. 2 Canard Configuration 

For the canard configuration, the length used for the horizontal tail moment arill is 

shown. 'flie difference in the way this is calculated from the conventional configuration is 

that for the conventional configuration, the main wing '/4 chord is added to the horizontal 

tail '/4 chord. For the canard, the canard '/4 chord is 'added to the main wing chord. It 
4 

should be noted that Raymer Suggests US ing an area split for the sizing of canards instead 

of trying to use tail volume coefficients. Since the canard in this configi-iration is 

considered mostly for control, this option was not acceptable, and the canard had to be 

sized relative to changes in moment arm length, as would a normal horizontal tail and as 

suggested by Nicolai'. 

LTC 

Goven the decision to treýit the cinard more like a 

horizontal tall, an Ageement must be made vs to what 

length to use for the moment arn-i length. This Is thc 

gi of the Modified týiil volume coeffic ent. ort in II 'HIC 

reason it is called modified is that the moment arm 
length used is not a true moment arm length In the 

traditional definition of the terrn discussed above. 

Figure 5.2 shows the dtfinition of 
the tail moment arm length for the 
canard configuration. 

[, 'or configurations like the canard, the longitudinal static stability is a strong 

function of the length of the moment ari-ri. Iliere is no way of knowing where the aircrift 

centers of gravity and lift will be for the cariard configuration before performing the more 

detailed calculations of acrodynamics, weight and center of gravity. I'liesc values are not 

avathible when setting Lip the def-, iult configurations, nor arc they known in the early sizing 

stages when the overall shape of thc aircraft is being manipulated. Therefore, the length 

used to predict the moment arm distance must be fixed at some value, and kept c(ýnslstent- 
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At a later time, these values, along with the values for tail volume coefficient should be 

validated against stability calculations. This process was carried out by iteration using the 

present methodology, and the final values for moment arm length are those cited and 

discussed in detail in Table 5.3 and Table 5.5 in Sections 5. B. Ld and 5. B. 2. c respectively. 

The decision for the Vertical tail moment arm length for the canard configuration 

was more difficult to validate since the methodology does not calculate yaw stability. 

Instead, once again, a moment arm length was selected and kept consistent throughout the 

method. This length was a fixed fraction of the fuselage length. This allowed for the 

resulting tail size changes due to any change in fuselage length. '17he remaining changes in 

vertical tail size due to changes in longitudinal engine location (meaning changes in cg 

relative to the aircraft neutral point, and thus changes in static margin) were absorbed by 

variations in the vertical tail volume coefficients. 

The underlying assumption for this choice was the behef that the distance ftom the 

nose of the aircraft to the canard would change very little in the sizing process. 

Furthermore, the distance of the main wing from the vertical tail was assumed to change 

very little during the preliminary sizing. In addition, a variation in neither of these 

quantities was expected to change the yaw stability of the aircraft substantially in the range 

of longitudinal locations to be used. The one quantity that was expected to be manipulated 

at least as much as the locations of the main wing and canard was the fuselage length. It 

has an equal effect on yaw stability due to being coupled to the wing location. 

This fraction of overall fuselage length was used along with the knowledge of 

existing vertical tail sizes for Low Speed HALE UAV aircraft and the knowledge that 

canard aircraft have slightly larger vertical tail surfaces on average to ensure that adequate 

tail surface area was provided. 
It is beneficial to note that the utility of the vertical tail size to this methodolop, 

was limited to the weight and parasite drag estimations. It was decided that yaw stability 

was not crucial to the conceptual design methodology in the preliminary sizing phase. 

\yv'here there were vertical tail size differences expected due to differences in configuration, 

these differences were applied to the methodology as above. 
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5. A. 3 Twin Boom &Muldple Fuselage Conventional 
Configurations 

As can be seen in Figure 5.3, the implementation for horizontal and vertical týiil 

moment arm is essentially the same for these configurations as it is for the conventional 

configuration. 'flie major difference in this instance is in the implementation. For the 

conventional configuration it was a simple matter to use the measured distance from 

between the '/ý, chords of the wing and tail. 

Figure 5.3 shows the definition of tail moment armfor the hvin booln (left) and multiple 
fitselage conventional (right) configurations. 

In this implementation, the boom length must he Used and tile fLISCLIge k-ligth 

must be ignored. This should elucidate the reasoning behind the different contiguration 

dependent moment arm multiplying factors of either Lh,,,,, or Lfj,,, that will be seen in 

Table 5.3 and Table 5.5. In addition it should highlight one of the minor difficulties lin 

programming the equations and identifying the different possible permutati()i1s. Fach 

configuration Must be dealt with separately, using common modules to perform the 

mathematics. This will be discussed further in the imp] cri-ien tati ()n chýaptcr. 
The vertical t, 61 moment ann is treated the same . is for the convcnt'ý)iwl 

cnnfiguration, except that the distance used is boom length and n()t fusclagc length. The 

same assumpti()ns are made -, ihout the proximity ()f the horizontal tail 'ý, chord to the 

vertical tail ' '4 chord. In this case, though, that entails slightly greater error due to the fact 

that the vertical tail surfaces are split in two (50/50 area split for -Al multiple 
fuselage/boom aircraft) as a result of the Multiple fuselage forinýit. This will reduce 
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average chord, which will increase the distance between the horizontal tail and vertical tall 

1/4 chords. Again, as long as the distances selected are kept constant, this error will be 

invisible, while allowing for reasonable guesses for the vertical tail size. 

5. A. 4 Multiple Fuselage Canard 

For the Multiple Fuselage Canard configuration, the distance from the 1ý chord of 

LT 

Figure 5.4 shoj" the definition 
of tail moment armfor the multi 
juselage canard configuration. 

the main wing to the '14 chord of the canard was used for 

the canard moment arm as seen in Figure 5.4. 'nits 

distance was taken as a fraction of the boom length for the 

default case and was maintained as a fraction throughout 

its use. For this particular configuration, the resulting 

value is not far from the actual center of gravity or center 

of lift as long as the canard is not generating too much lift. 

In any event, the value was selected and it was kept 

consistent, as explained earlier. 'I'lie canard was sized 

accordingly with the cited tail volume coefficient. 

For the vertical tall moment arm, the same distance was used. Wille this has no 

basis in reality, it was numerically simpler than using a separate moment arm for the tall. 

Additionally, there was little possible )ustification for using any other distance with the 

information available at this stage in the methodology. If the distance to the main wing 1"4 

chord were used there is the dmiger of an extremely small to zero distance (zero moment 

arm length) from the vertical tail '/4 chord. In a computational application tills was 

deemed unacceptable. 

In this instance, the moment arm only changes as a function of canard distance 

from the main wing. It is realized that the vertical tail should also be sized relAtIve to the 

span-wise distance of the engines t- or die t7\vin engine case, however, without the possibilm, 

of verification through yaw stability and en ine out analysis these surfaces could castly be 91 

oversized. It was thought better to try and maintain the surfaces within traditi(, nal values 
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found for this class of aircraft in the twin engine configuration (Condor, Theseus, Strato 

2(ý. Again, two vertical tail surfaces of equal area were -assumed, attached to the booms. 

. 5. A. 5 Tandem Wing 

5. A. 5. a Single Fuselage 

LT 

For the single fuselage tandem wing, the forward 

wing was not sized as a canard or tail. 'File 

fractional wing area was given prior to the setup of 

the default aircraft and maintained throughout the 

geometric manipulation. If a different division of 

wing area is desired, it can only be changed by 

returning to the Configuration Selection Dialog. 

Figure 5.5 shows the definition of the single 
fuselage tandem wing moment arm length. 

Thus, ()nlv the vertical tall moment an-n rernains to be specified. I ii this instance, it 

is quite difficult to know beforehand even roughly where the center of gnivity or center of 

lift will be. The variation in wing area and fuel placement for this configuration makes this 

prediction impossible without an explicit calculation of those quantities. Once ýigain, ,i 
distance was selected that has no basis in reality (Figure 5.5), but provides a reference from 

which to calculate a vertical tail surface sufficient to control the aircraft based on what was 

considered a conservative moment arm length. The distance from the forward wing `4 

chord to the aft wing '/4 chord was used. As the forward wing is moved further forward, 

the tail volume required to control the aircraft in yaw will increase. The spacing between 

the two wings for the default aircraft was determined by trial and error as the best distance 

to bahncc the ýiircraft, without allowing for too great a proximity. 

5. A. 5. b Multiple Fuselage 

Again, there is no horizontal tail moment arm for the case of the tandem wing, 

since the area is kept fixed througliout the process past the configuration selecti(mi 

window. For the vertical tall inoment arn-i length for the Multiple Fuselage Tandem Wing 

configuration, the same distance is used as for the single fuselage case. 'I'lle primary 

difference is that the distance is given as a fraction of boorn length instead of fusclage 
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length. Thus, the difference is in the application of the same information. This is another 

occurrence of the difficulty of a structured computer code in duplicating a decision that 

would otherwise be made rather easily by a designer independent of the code or 

methodology. More examples of this type of situation will be given in the Implementation 

Chýipter. 

LT 

Figure 5.6 is the difinition of fail moment arm length for the tantlem ning multiplefuselage. 

5. B Fuselage Dimension and Location Specification 

Several of the calculations performed for the default case are also performed for the 

designer edited case. There are, however, a number of calculations and assumptions 

required specific to the default case, so a separate section will address these issues. 

5. B. 1 Default Fusebge Case 

F()r the most part, the guncr. ition (A the defailt fuschgc was Is. iniplificati(m ()f the 

more complicated designer specified case, with the addition of several values obtained 

through the execution of the mefliodology and the remainder of the values resulting trom 

assumptions. The ()rigin of the values obtained through the use of the program and the 

assumptions made to ()btalti the remaining values , vill be clearly explained in the following 

sections. 
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9. B. I. a Fuselage Length Calculation 

Raymer' suggests the fuselage leng-th (Lfi,,, ) calculation take the form 

LAse ----7 a(W, Y' 

Wiere a and C 'are constants with values given depending on the ýIlrcraf -t conhgunition. 

Unfortunately, the only constants lie supplies are for much more conventional 

configurations and can not be applied to Low Speed HALF UAV's when výilidated ýIgainst 

the aircraft that have been built. Nevertheless, the form of the equation lie provides is 

useful in describing the fuselage length for I1,, M-F UAV's. 

Using the known lengths of several Low Speed I IALF UAV aircnift, a revised 

model was created of the form above with ti = 0.656 and C : -- 0.466. A plot of the 

resulting curve is given in Fignirc 5.7. The classes of aircraft available from Rayrner thýit 

, ire wi were closest to the Low Speed I IALF, UAV curve were included In this figL ith tile 

cLisses of aircraft havinggreater error being eliminated from the figure for simplicity. 
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Figure 5.7 shows the relationship betweenfiiselage length and aircraft takeoffiveightfor 
several different aircraft classes, including the new HALE IJA Vfuselage length model. 

The aircraft considered in the creation of tile new U,, \\' mociel cýjjj be see,, III 

T, ible 5.1 and were the (jeneral Atomics Allus, the Scýaled Composites Raplor, thc Aurora 

Flight Sciences Perseus A, Perseus B. and Thesens, the N)cing Condor, mid the Isniel 
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Aircraft Industries Heron. It is pointed out that the Heron is not in fact a High Altitude 

UAV. The overall percentage error of this model when compared to the known lengths of 

these aircraft is actually less than 7 %. Looking at the evolved version of the Persetis A, it 

can be seen that the aircraft was 400 pounds heavier, but the fuselage was actually shorter. 

The average error of the new UAV method without the Perseiis A is only 5.3'/o. 

Table 5.1 compares known HALE UA Vfuselage lengths to the length 
predicted by the new method, along with the error involved with using the 

new methodfor each aircraft. 

Takeoff 
Weight 

(lbs) 

Est. Length 
New UAV 

Method (ft) 

Actual 
Length 

(ft) 
% Error 

Condor 20000 
_66.25 

68 2.57 
Heron ___ ___ 2425 _ 24.78 28 11.48 
Perseus A 1830 21.74 26 16.39 
Perseus B 2205 23.71 25 5.16 
Theseus 7716 1 42.50 40 6.26 
Altus 2150 23.43 22 6.51 
Raptor 1880 22.01 22 0.06 

Avg. Error 6.92 

A systematic approach was taken in selection of these constants and the least error 

solution was selected. It can be noted from the figure that the nearest previously existing 

models were for the Powered Glider and the General Aviation Twin F, ngme aircraft. 
Although the General Aviation Single Engine aircraft looks quite good for lower'Fakeoff 

Weights, its accuracy fads truserably at higher Takeoff Weights. When the graph is 

expanded to the range of the Boeing Cotidor at a Length of 68 feet and Takeoff weight of 

20,000 lbs, it is clear that none of the cM. sting models even comes close to providing an 
accurate prediction of the length of this class of UAN'. 

Special consideration must be given to aircraft with twin booms or multiple 

fuselages. The determination of length for these configurations is quite different than for 

the more conventional con figuration s considered in Table 5.1 above. In addition, the 

length for the flying wing is calculated differently (most hkcly based on payload length). 

5. B. 1. b Multiple FuselagelBoom Length Cqlculation for the Default 
Configuration Case 

The most straightfonvard way to present the IlLinibcrs used In each of the different 

situations is to list them as in Table 5.2. Where there was data available, the numbers were 
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taken directly from the source. Where the data was not available, a trial and error method 

was used m order to detern-une the most suitable relative length for each boorn or fuselage. 

These decisions were based on the results of the stability calculations as well as a 

determination of whether or not there was swtable room for payload given the various 

possible engine locations. For the default configuration, the Single Engine Pusher, Twin 

Engine Pusher and Push-Pull configurations were neglected in the fuselage length 

algorithm. 

Table 5.2 lists the different fractional 
conventional fuselage lengths used by the various 
alternative configurations in setting up the 
default aircraft. 

Single Twin 
Engine Engine 
Tractor Tractor 

Twin Boom 
Center Fuselage 0.55 0.55 
Booms 0.65 0.65 

Multi Fuselage 
2 Fuse Conventional 0.9 0.9 
2 Fuse Canard 0.9 0.9 
3 Fuse Conventional 

Center Fuselage 0.594 0.45 
Booms 0.9 0.9 

3 Fuse Canard 
Center Fuselage 0.5 0.65 
Booms 0.9 0.9 

Tandem 
2 Fuse 0.705 0.705 
3 Fuse 

Center Fuselage 0.705 0.7 
Boom 0.705 0.705 

I,, cs alt, mulliplit-d /)N the otiginal Fuselage Length 
calculated using the modified UA V constants 

The table will be re-prescnted in the section discussing the full range of potential 
fuselage/cngine colifigurations avadable to the designer and most of the numbcrs cited 
here will change slightly. The reason for this is that for the default configuration, the 

average wing and tail chords must be approximated in the calculation of the moment arm 
length since the wing and tail geometry have yet to be specified. Once revised values are 

avaflable from the geometry definitions of the wing and tail, they are included in tile 

calculation of the fuselage and boom lengths. This will be discussed in greater detail in the 

next section. In the table, Fractional Conventional Fuselage Length represents a fraction 
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multiplied by the length of fuselage predicted for an equivalent conventional aircraft. The 

term 3 Fuselage Conventional is used to distinguish between conventional tail aft and 

canard 3 Fuselage aircraft. 

S. B. Lc Defa ult Fuselage Heigh t an d Width 

For the aircraft in which these dimensions are actuaUy known there is little 

variation for umnanned aircraft in this class. They have all been between 2 and 3 feet in 

each dimension. It was a fairly simple matter then to assume that the default height and 

width would be equal to 2 feet with a circular cross-section. In fact, most of the aircraft 

surveyed have square or rectangular cross sections. The option to specify a square or 

elliptical cross section will be made available to the designer once the default configuration 
has been calculated and drawn. The only exception to this geometrical specification of a 
default diameter of 2 feet is made for the Single Fuselage Tandem Wing configuration. 
The fuselage of this aircraft will experience higher torsional loads. Photographs of the 

Rutan Proteus would appear to confirm that a larger fuselage diameter is necessary for this 

type of aircraft. 
Normally other factors such as engine size, payload requirements, and even 

stealthiness would have some influence on the selection of these dimensions, however in 

the early stages of outer fuselage definition it was thought excessive to include any direct 

influence of these quantities on the default configuration. As mentioned already, they can 
be changed at any time once the default configuration has been displayed. 

S. B. Ld WingPosition on Fuselage, MomentAim Length Estimation 

At this early a stage in the conceptual design process, moment arm lengths for 

sizing the tail are normally given as some fraction of fuselage length. This can be made to 

work for the conventional configurations, but for unconventional configurations the 

process is more complicated. For each particular aircraft configuration, the argument had 

to be posed as to how to estimate the moment arm length and what reference datum to 

use. 'Me problem is much more far-reaching than just the specification of the default 

configuration. This was described in detail in Section 5. A. 

For the default conventional configuration, the tail moment arm will be defined in 

the traditional manner, in terms of some fraction of the fuselage length. In the non- 
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default case, it was shown that the distance from the quarter chord of the wing (F 
""j"g 

) to X 

the quarter chord of the tail (horizontal or vertical, ZFYtail) is used for the moment arm 

length, even though this distance may be inappropriate for several of the configurations 

considered. For the default cases, the moment arm factor (for the Horizontal 

Tail/Canard/ Tandern Wing) basically decides the location of the wing on the fuselage. 

Since the moment arm length will be based on the distance between Fxwing to 

CY, . some estimation needs to be made for these values before they have been expliddy , tail 51 

calculated given the order assumed in this methodology (fuselage, wing, then tail). The 

assumption was as foUows: 

c�ins = 0.1245 * Lf. 
� and FHT�i, = 0.1 * Li�,. (5.2,3) 

In practice, this assumption worked out quite weU, with the difference between the 

default configuration and the second iteration being essentially invisible to the designer. It 

should be pointed out that these values are replaced as soon as the first calculation of the 

wing and tail. geometry is made. It was unavoidable to provide a default configuration 

without making some assumptions. In this instance, the assumptions made were unknown 

to the designer since as soon as the full aircraft was generated, the calculated quantities 

replaced these assumed values. Thus, these values had no impact on the final sizing of the 

aircraft except to provide a point from which to launch the iterative process. 
As already mentioned, for this stage in the methodology, the moment arm length 

was assumed as some fractional quantity of the overall fuselage (or boom) length. These 

values were determined in the same manner as the fuselage length values tabulated earlier. 
The moment arm length fractions ate listed in Table 5.3 for the default 

configurations. Once again, these values will be changed slightly from their default values 
for the non-default calculations. In addition, the moment arm lengths for the remaining 

possible configurations will be specified in the Tail Sizing section. 
Where data was available from existing aircraft, they were incorporated into the 

model. Values for horizontal and vertical tail moment arms were estimated from drawings 

for the Boeing Condor, Aurora Flight Sciences Perseus and neseus aircraft, and for the 

Israel Aircraft Industries Heron. The Altus has an inverted V-tail and it was impossible to 

derive tail sizing information from photographs of this aircraft. For the less conventional 

configurations, the moment arm length values resulted from a trial and error evaluation of 
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sufficient static margin (an attempt was made to keep static margin within ± 10%) in 

addition to a certain degree of intuition. 

This was implemented and iterated via the existing computational methodology. 

Since there is no mechanism for iterating to an optimum solution for a given 

configuration, intuition was developed from the use of the methodolop- on the most 

judicious rearrangement of components on and in the aircraft to create a more favorable 

static margin. In many ways, these values constitute results of the methodology. These 

results, however, were deemed more approprIate for prescntation in these sections of the 

discussion of the methodology. 

Table 5.3 lists the fractional fuselage or boom lengths usedfor 
the wing-taiLlcanardltandem moment arm length estimation for 

the set-up of the default aircraft. 

Multiplied Single Twin 
By rzngine Engine 

Tractor Tractor 
Conventional Lf, 0.6 Oý5 
Canard Lt,,,. 0.4 0.4 
Twin Boom Lboom 1 1 

Multi Fuselage 
2 Fuse Conventional Lboom 0.55 0.55 
2 Fuse Canard Lbo,,,,, 0.9 0.9 
3 Fuse Conventional Lt,, m 0.45 0.55 
3 Fuse Canard Lboom 0.45 0.35 

Tandem Single Fuse Lf,,,, 0.5 0.5 
Tandem 

2 Fuse 0.705 0.705 
3 Fuse Lb(X)m 1 0.7 07 

IFlying Wing Lfuse 1 0.4 

In the case of the Flying Wing configuration, the values mxre not Lised to size a tail, 
but were in fact used to place the fuselage on the wing. For the case of the Canard 

configured aircraft, these distances were used for the vertical tall as well. This assumes tile 
distance to some fictional aerodynamic center, estimated to be some distance between the 

canard and the vertical tad. This distance can be specified by the designer later in the 

methodology but cannot be specified for the default case. All other values were fractions 

of either the boom or fuselage length as indicated. Thcse distances were added or 

subtracted to the appropriate fractions of C and depending on the configuration X 
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being considered. This kept the moment arm distances reasonably constant despite not 

havMg the calculated quarter chord values available initially. 

There is little to remark about the values thernselves. All of the Canard configured 

aircraft values are significantly smaller, as would be expected based on the reduced 

distances associated with using an average distance to a fictional acrodynanu'c center, 

instead of the conventional moment arm length assumption of distances between the 

quarter chords of the wing and tall. The final comment related to these values is that in 

some instances the values would be expected to vary from a single engine configuration to 

a twin engine configuration. The reason for some of the values remaining the same is that 

the modified tail volume coefficients used for the stability calculations adopted any 

additional expected change in tail area resulting from a difference in configuration. 

5. B. 2 Designer Modified Fuselage Case 

As already mentioned, the tables presenting various Fuselage/Boom lengths and 

moment arm lengths used in the construction of the default configurations were csscntially 

simplified versions of what is necessary for the designer modified cases. The discussion In 

this section will begin with the quantities that are the easiest to process once supplied by 

the designer. 

5. B. 2. a Specirication of the Fuselage Geometric Parameters 

The methodology aHows for the direct specification of a number of fuselage geometric 

parameters regardless of the configurafion being considered. These include the : 

Fuselage Cross Sectional Shape (Circular, Square/ Rectangular, Elliptical) 
Fuselage Width Dimension 
Fuselage Height Dimension 
Fuselage Length Dimension 
Fuselage Placement on the Main Wing, or Moment Arm Lcngth. 

In addition, for Canard or Tandem Wing configured aircraft the absolute location of the 

wing on the fuselage can be specified as vvell as the distance of the wing quarter chord to 

the canard/tandern quarter chord. For multiple fuselage or boom aircraft, the lateral 

distance of the fuselages or booms from the aircraft longitudinal centcrlinc can also be 

specified. 
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Any change in fuselage length or wing placement on the fuselage relative to the tail 

or canard requires a corresponding recalculation of the tad or canard sizing. The structure 

of these modules and how they interact will be presented in the computational 

unplementation chapter. 

5. B. 2. b Fuselage Length Calculation for The Remaining 
configurations 

Thus far, fuselage and boom lengths have only been specified for the Single and Twin- 

Engine Tractor engine configurations. The values for fuselage and boom length fractions 

g uIr for the remaining configurations that req iea change in fuselage length based on a change 

in engine configuration are given in Table 5.4. 

Table 5.4 lists the configurations that require a change in fuselage length based on a change in 
engine configuration, and how much of a change is needed due it) the engine corifikguration. 

Multiplied Single Single Twin Twin Twin 
By Engine Engine 

I 
Engine Engine Engine 

Tractor Pusher Tractor Pusher Push-Pull 
Multi Fuselage 

Im 

3 Fuse Conventional L ...... 0.66 0.75 0.45 0.45 1 0.45 
3 Fuse Canard Lboom XX 0.7142 0.65 0.7 

1 

0.45 

Due to the event driven nature of Visual (, ++, it was necessan, to set these values 
for fuselage and boom lengths in the Power-plant Location dialog box. The reason for 

this will be explained in the implementation chapter. Nonetheless, any time the engine 
location is changed, the value given for fuselage length is modified unless a value has 

already been specified by the designer. Most of the values for these lengths go unchanged 

as a result of a change in engine configuration. This is not the case for the moment arm 
lengths or modified tail volume coefficients. The moment arm lengths will be provided in 

the next section. The modified tail volume coefficients will be discussed in a later section. 

5. B. 2. c Wing Position on Fus elage, or Mom en t Arm Length 
Estimation 

Similar to the previous section, moment arm lengths have only been specified for 

the Single and TwIn-Frigine Tractor engine configurations. The values that require a 

change in moment arm length based on a change in engine configuration are gt-%-cn in 
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Table 5.5. Again, the moment arm length is specified based on the fuselage and boom 

length fractions for all of the remaining configurations. The values listed were determined 

using the same ptocedure mentioned in Sections 5. B. I. b and 5. B. I. d. 

Table 5.5 lists the change in moment arm length necessary due to changes in engine configuration 
for the alternative configurations. 

Multiplied Single Single Twin Twin Twin 
By Engine Engine Engine Engine Engine 

Tractor Pusher Tractor Pusher Push-Pull 
Conventional Lt,,,, 0.6 0.35 0.55 0.5 0.5 
Canard Lf... 0.45 0.55 0.6 0.65 0.45 
Twin Boom Lboom 0.6 0.35 0.55 0.5 0.5 
Multi Fuselage 

2 Fuse Conventional Lboon) 0.55 0.45 0.55 0.45 0.4 
2 Fuse Canard Lboll, 0.45 0.5 0.35 0.45 0.4 
3 Fuse Conventional Lt,,,, m 0.45 0.45 0.55 0.45 0.4 
3 Fuse Canard LbIll, 0.45 0.35 0.35 0.4 0.4 

Tandem Single Fuse Li,,,, 0.5 0.5 0.5 0.5 0.5 
Tandem 

2 Fuse Lboom 0.7 0.7 0.7 0.7 0.7 
3 Fuse Lboom 0.7 0.7 1 0.7 1 0.7 10,7 

IFlying Wing Ltuse 0.4 0.45 1 0.45 1 0.45 1 0.45ý 

There are a fcxv publlsliccl rcSLIltS , vith Nvillch to compare a few ()f the values In this 

table. Raymer states his values should only be used as rough estimates, which is csscntially 

the same assertion made in this thesis. For the Single F. ngme conventional (tractor) 

configuration, he suggests a value of 0.6*Ljiise (Itaymer 4 
P. II ()). This 

value was found to 

compare well to the existing conventional UAV Tail Moment Arms, and also produced 

satisfactory results when implemented in the present methodology. 

For the Single Engine Conventional pusher configuration, he suggests a range 

ftorn 0.45 to 0.5 times Lf,,.,,. In application to the present methodology these values were 

found to be too large. It was discovered that with the immense fuel load in the main wing, 

the additional moment due to the aft engine could not be balanced at the values offered 1)), 

Raymer if the payload was not given enough length ahead of the wing/fuel center of 

gravity for this configuration. 

For the Single Engine Canard configuration, Raymcr suggests 0.5* Lfi,,,,,. This value 

was found to be close to the necessary value to create a stable aircraft, but still required 

some reduction due to the fact that Raymcr had assumed a 25%-75"1/0 area split bet-, vecii 
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the canard and main wing. This area split was not even distantly obtained for the Low 

Speed HALE UAV due to the nature of the relative size of the HALE UAV wing. 

Other estimated values of moment arm lengths for some relevant aircraft x-vill be 

mentioned. The Perseus Single Engine Pusher had a moment arm length based on the 

fraction of fuselage length of 0.4734. This value is not close to the value used for this 

methodology due to the fact that a very long propeller shaft was used 'in order to locate the 

engine further forward in the aircraft. It should be noted that the tail volume coefficients 

used for this aircraft were far below even those found in gliders which generally have the 

lowest values for tail volume coefficients of any aircraft. 

For the Condor Twin-Engine aircraft, a value of 0.54 was obtained. This value was 

found to produce reasonable results with little modification. For the Theseus Twin-Engine 

pusher aircraft, a value of 0.57 was obtained. Again, this value is quite close to that 

obtained from the iterative process utilizing the present methodology. 

The Heron Single Engine Pusher Twin Boom aircraft had a value of 0.64. It is once 

again mentioned that this aircraft was designed for medium altitude and not I-Ligh altitude 

flight. With that in mind, this value of moment arm length was found to be considerably 

too large. Incidentally, the Tail Volume Coefficient for this aircraft was also found to be 

quite large, however that will be discussed further in the Tail Sizing section. 

Overall, there were not many aircraft to compare to, and many of the existing aircraft 

were configured differently to the default configurations supplied. Taking these points 

into consideration, for the configurations that were comparable, the values for moment 

arm length agreed quite well. Unfortunately, this tv e of data are not available at all for the T 

less conventional configurations, however calculation of static margin based on detailed 

aerodynan-uc and weight esfimafions was thought to be adequate validation for an early 
Conceptual Design and SIZMg methodology. 

Once the fuselage parameters have been specified, the geometrv and location of the 

wing can be specified for the default configuration. 

5. C Specification of the Wing Planform Geometry 

The most complicated aspect of Setting tip the xving has bccn performed I)v the 

fuselage calculation function; that is the location of the wing on the fuselage(s) and booms. 
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The actual implementation of the geometry of the wmg is comparatively straightforward. 

First the default case will be discussed. 

9. C. 1 The Default Case 

For the majority of the configurations, the specification of the wing planform 

geometry for the default case is fairly basic. The Critical Constants dialog box specified 

the Aspect Ratio. By the time the configuration is selected, the Takeoff Weight or Wing 

Area of the aircraft is known. This makes calculation of the wing geometrical parameters 

simple. Despite this simplicity, some assumptions still need to be made for the default 

case 

A single tapered wing planform was considered sufficient for the purposes of early 

conceptual sizing and configurational comparison. While it is realized that for an aircraft in 

this flight regime, a double tapered wing planform would likely be more efficient, a single 

tapered wing was considered for overall simplicity and ease of application of the 

methodology at this stage. Obviously addition of double taper would add allothcr design 

variable, more accurate absolute values for endurance, and a wider range of possible 

solutions. This, however, would add little to the configurational comparison but would 

add greatly to the complexity and time required to obtain a single solution. 

An assumption was made that for all of the default configuration,, the Taper Ratio 

(A) would be set to 0.4. This value was selected due to the fact that without allowing fot 

an elliptical planform shape, this is the Taper Ratio that generates the least vortex- induced 
drag. It should be noted that some of the assumptions in this methodology have greater 

impact on the overall outcome of the methodology. 

I-or example, the assumption of Taper Ratio effects all of the con figu rations since 

the assumption is applied without regard for configuration. This xvould effect the final 

value for Endurance if it were flawed, but is unlikely to influence the advantages of one 

configuration when cornpared to another. Assumptions that are made that effect only one 

or a couple of configurations ate considered more critical since the prii-riary goal of the 

methodology is the conipaiison of the ability of any given configuration to perform 
better when applied to the specified Low Speed HALF ,U AN' rnission. 
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Returning to the specification of the wing planform, once the assumption has been 

made for a value of Taper Ratio, the remaining wing planform geometrical characteristics 

are calculated traditionally as follows: 

b 2ZFA Twing 
- (5.4,5,6,7). b --S 

, ZF = I- 
CTwing = 11 

CRwing = 
L- 

AR 1+A A 
Where ZT is average chord, cTig is the wing tip chord, and cR,,, ig is the wing toot chord. 
The configurations that resulted in slight modifications to the above equations were the 

Flying Wing and the Tandem Wing aircraft. For all aircraft except the Flying Wing, the 

default wing sweep angle was assumed to be zero. 
Ihe literature Review covered the arguments for sweeping the wings of Low 

Speed HALE UAV's. None of these arguments were strong enough to consider sweeping 

the wings of any of the default configurations. The Flying Wing configuration has to be 

swept in order to provide an adequate moment arm to stabilize the aircraft 

The Tandem Wing configured aircraft required a slightly different approach. 

Previously, for the Canard configured aircraft, the canard was considered strictly for 

control and trim, and not as a primary lifting surface. For the Tandem Wing aircraft, the 

second wing was considered to generate a substantial percentage of the total aircraft lift. 

This required a slightly different approach to the sizing of the Main Wing planform, and 
for the sizing of the Tandem Wing as well. 

Upon selection of the Tandem Wing configurations, the designer is prompted to 

specify the percentage of total wing area that the main [aft] wing comprises. The default 

value supplied (arbitrarily) for this is 60%. The areas of the wings are subsequently split 
between the Main [aft] Wing and Tandem [fore] Wing accordingly. This change required 

some modified decisional structures in the Drag and Weight estimation algorithms. The 

governing equations are more appropriate to those sections and will be discussed later in 

the thesis. For now, the division of total aircraft wing area between the main wing and the 

tandem wing is defined by the designer. This factor is multiplied by the total wing area 

sent to the Wing Geometry module. Thus, the above calculations take place for a main 

wing based on the reduced area. 'Me construction of the tandem wing win be performed 
in the Tail calculation module. The greatest difference between the default and the 

designer specified cases is the consideration and calculation of changes in Taper Ratio and 
Sweep. 
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5. C. 2 Th e Design er Mo difle d Wing Planform Ge om e try 

The Aspect Ratio provided in the Critical Constants dialog box is fixed as a 

constant. If the designer wants to change this value it is necessary to return to the Critical 

Constants dialog. The reason for fixing this value is that it was considered fundamental to 

the aerodynamic performance of the aircraft, and even though changes in Taper and 

Sweep may be desired, it was thought that the Aspect Ratio was mote a fixed characteristic 

of a given design. 

With this in mind, the designer has the option to modify any two of Taper Ratio, 

Leading Edge Sweep, Quarter Chord Sweep, or Trailing Edge Sweep angles. In addition, 

the ability to specify either High, Nfid, or Low wing location for the wing on the fuselage is 

provided. The effect of tl-ds change is taken into account in the drag estimation. Although 

it may be thought to have a very minor effect on this type of aircraft, it was believed that 

when multiple fuselage configurations were being considered, one of the major differences 

in drag would be due to the type of interaction each wing-fuselage junction would 

experience. This will be discussed further in the Drag Estimation chapter. 
For a given modification in Taper Ratio, the equations used in the previous section 

were applied. The effects of the sweep angle were actually only taken into account in the 

layout of the wing, which is later used for the drag and weight estimations, however none 

of the other wing planform geometrical parameters (b, F, cT,, i,, g 9 CRwing 9 AR) were changed 

as a result at this stage of the methodology. In fact, for the modification of the main wing 

planform geometry, the most difficult situation arises from the logic involved in dealing 

with the different possible combinations of input by the designer and deciding which 

variables to make available for variation. This will be discussed in detail in the 

Computational Implementation chapter. 

5. D Win-a/Canard/Tandem/Tail Profile Specification Z: p , 

1he title of this section makes the section appear more complex than it is. In order to 

perform a reasonably accurate calculation of the drag for this class of aircraft, it was 
believed crucial to the quality of the results that accurate airfoil profile data be 

incorporated into the estimation of the drag. This stage is one of the more robust 
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characteristics of the methodology allowing for the inclusion of advancements in a given 

technology, while proViding sufficient defaults in the absence of this information. 

CL vs a and CD VS CL curves obtained from experimental or advanced 

computational methods (discussed in the Literature Review) can be read in as a file for use 

in predicting the profile drag of the wing and canard/ tandem/ tail. The methodolo M_,, like 

the designer (independent of this program), is not limited in the scope of the drag data 

available. This of course raises a difficult problem when the final results will be presented, 

and that is which airfoil(s) to use. Appendix A is dedicated to the selection of appropriate 

airfods, but for now, a description of the available input options will be presented. 

9. D. 1 ProviWon of Wing Profile Characteristics 

In the event that no profile data are supplied, the assumption of a m-o-dimensional CL 

vs a hft curve slope of 27r is made for all surfaces that are expected to generate lift. 

Therefore, if no value or curve has been provided, the wing angle of attack is predicted 

using this hft curve slope. 

If no values are supplied for the profile drag variation with lift coefficient, a profile 
drag coefficient is calculated in a manner specified in the Drag Estimation Chapter. For 

the wing profile, a default moment coefficient of -0.156 was assumed. This value 

corresponds to that of an efficient Low Speed Eppler airfod at a high value for lift 

coefficient. The default airfoil thickness to chord ratio for the wing 
( 

-t) was assumed 
C 

to be a conservative value of 0.14. 

It is not likely that a Low Speed HALE UAV will use a much thinner profile. The 

value is considered conservative since some applications have used much thicker airfoils. 

Once again, this is only the default case, and if an airfoil has been selected, the associated 

should be specified by the designer. An example of the Wing Profile dialog box is 
C 

wing 

given in Figure 5.8. The available options can be seen, as well as the provision of the 

Chord Reynolds number from which to base the selection of drag and moment 

characteristics. 
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No allotment was made (in either the default or designer specified cases) to take into 

constdcr, ition ch, inges ()f moment coefficient with angle of attack. Wifle it is recognized 

that there Is a variation in 

Chard Reynolds Number 376048 

Avg. Thickness to Chard Ratio W- 

Cruise Moment Coefficient F- -015 5-9 

Enter a Lift Curve Slope 
0R Specify a Curve Below: 

moment coefficient with angle of 

attack, this change tends to be 

rulatively small. It is noted that If 

per Degree 

llnen 
Pfuldu Clit 

)g c 47r, ir ,II 

View Main 
Wing Prolilt! 

X/c 

rlr Cd 

Alpha Cl 

Cancel 
II 

OK 
I 

the designer desires, the wing lift 

coefficient is known and output 

to the designer thus making 

P()Ssll)le the mo-)(fification of tills 

number mmitially with changes in 

configuration ýand lift coefficient 

if so desired. 'I'lic process will 

not be autornatic, however, as it 

is for the , ingle ()f , ittick, lift 

cocfficient, drag coefficici-it 

curx-cs when spccified. 

Fi gu re 5.8 is the Ring Profile and Drag Specification dialog 
boxfrom which all of the wing profile drag characteristics can 
be specified. Identical dialog boxes ewist for the Horizontal 
Tail, Canard, or Tandem iting configurations. 

5. D. 2 Pro vision of TaillCan ardITan dem Profile 
Characteristics 

An ilin( ýst idcnticýil dialog 1)()x Is provided for the specification of Ilic 

Tall/Canard/Tandem profile charac teris tics. The primary difference is that the default 

values used in the instance of no designer specified data are more appropriate to values for 

a horizontal tall. 'llie cliaracteris tics of a NACA 0009 were assumed for both the 

horizontal and vertical talls. It is noted that a rather large majority of gliders and sm1planes 

used the W()rtmaim F\71-1-1-50/30 or 1,50/2-5 profiles. Unfortunately, due to the lack of 

, availability of the Stuttgcirler Profilkwalog second volume (1982) by Althaus and 

\\'()rtni, mn, the ch aracteris tics of this profile were not available in time to be included in 

this thesis. It is also noted that the profiles used for the tail on a glider are more important 
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due to the amount of time spent in reasonably small radius turns. It was thought that the 

NACA 0009 would suffice for application to the Low Speed HALE UAV nussions in 

which the only turns would have a much larger radius on average. 

For the Vertical tail, only the provision for a and a single drag coefficient at the 
C VT 

given Reynolds number are made. It was thought since yaw stability was not going to be 

considered in this methodology the given information would be sufficient for the 

calculation of drag and weight of the Vertical Tail. 

5. E Tail Sizing Characteristics Specification 

The next major steps in the methodology and the creation of the default aLrcraft in 

addition to the maintenance of the proper geometrical form of the overall aircraft are the 

Tail Calculation and Tail Variable Specification functions. A very large number of 

constants were created in order to size the tails of these possible configurations. These 

constants are based on the traditional sizing criteria of tall volume coefficient with trunor 

modifications for the configurations for which the traditional approach is difficult to 

apply. 

9. E. 1 Defa lilt Tail Sizing 

The specification of tail moment arms has already been detailed in previous sections. 
Thus far, none of the tall geometric characteristic parameters have been specified. For the 

majority of the tail geometric characteristics, historical data is available from which to base 

the default values. The same cannot be done for the tail volume coefficients. The reason 
for this will be described following the mention of the default values for the tail geometric 

characteristics. 

5. E. La Specilication of Default Tail Geomettic Charactetistics 

The tna)orl", of the assumptions made for values of tail aspect ratios, s,, vccp angle 
and taper ratios for the default case and conventional configurafions xvcrc extracted from 

Roskam' (Pt. 11, p. 207) and from ghdcr data from Thomas". The horizontal tall taper ratio 
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was 0.7 for the Conventional and Canard Configurations, 1.0 for the Twin Boom and all 

Multiple Fuselage configurations except for the Tandem Wing. The reason for this was 

that if these surfaces were tapered, that would produce a large stress concentration at the 

junctions of the surface to the multiple fuselages /booms. Additionally, historically, very 

few twin boom aircraft have had anything but constant chord horizontal tails. 

In some instances, it would be desirable to sweep the canard in a multiple fuselage 

case (the default single fuselage canard is swept). This was done with the Rutan Voyager in 

order to try to tailor the sum of the lift distributions of the canard and main wing in an 

attempt to maximize aerodynamic efficiency. This would obviously not be done in the 

earl), stages of conceptual design and was therefore also not included as an option. 

The Tandem Wing configurations had a Taper Ratio of 0.4 for the default. The 

default value for all tail constants for the Flying Wing was 0.0 as it was assumed to ha. "c no 

tail. 

Only the horizontal tail for the Conventional and Canard configurations had a 

nonzero sweep angle (15 degrees). All of these values were selected from historical data. It 

is realized that the sweeping of these tall surfaces increases mass, reduces aerodynamic 

efficiency and decreases the moment arm. Dcspitc these facts, practically all of the Low 

Speed HALF1 LIAV's have had swept tall surfaces. It was therefore deemed prudclit to 

include the deleterious effects of including sweep for these surfaces. 

The assumed values for the honzontal tall aspect ratios were 6 for the Single FIngine 

case and 7 for the Twin-Frigine case. This applied to all of tile configurations except tile 

Tandem Wmg, which was given a default aspect ratio of 22, tile same aspect ratio as tile 

Perseiis aircraft. The reason the single and twin engine aircraft horizontal tail surfaces had 

different aspect ratios was thought to be due to propeller slipstream effects, however these 

data were again taken from historical values. 
For all of the vertical tails with the exception of aircraft with 2 or more fuselages, the 

aspect ratio was given a default value of 2, a quarter chord sweep angle of 15 degrees, and 

a taper ratio of 0.5 for Single FlngMie aircraft or 0.6 for Twin-E-rigine aircraft. 
For aircraft with 2 or more fuselages or booms, the tail area was split (always III two, 

regardless of tile number of booms/fLiselages) and tile tail geometric characteristics were 

sized based on that area split (50/50). Although the listing of information in paragraph 
format is generally arduous to read through, a tabulated format for tile assumed values 

above would not have been more clear due to the number and nature of the exceptions. 
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5. E. Lb Default Tail Volume Coefficient Specification 

Tabulated values are given in Table 5.6 for the Nfodificd tail volume coefficients. 

The "XX" for the Tandem Wing Horizontal Tail values denotes the fact that the Tandem 

Wing was sized as previously described, without the use of volume coefficients. The values 

of horizontal tail volume coefficient for the Conventional and Canard configurations were 

selected from Raymer 4 in the range for Sailplanes. It was discovered during the initial 

iterations through the methodology that any other available values simply oversiZed the 

horizontal tail. The evaluation of what constituted "oversized" was determined from 

information extracted from existing Low Speed HALE UAV's. The drag penalties (usually 

parasite/ pro file) from oversizing the tail can be large and are unacceptable for Low Speed 

HALE LTAV's. 

It is difficult to explain the nature of these modified tail volume coefficient values at 

this point in the thesis. A detailed discussion as to the origins of the moment arm lengths 

used for the various configurations wiH soon follow, and the hulk of the associated 

questions should be answered at that time. For now, it is asked that these coefficients be 

viewed with the consideration that one of the fundamental variables in their determination 

(tail moment arm, L, ) has yet to be defined for the majority of the configurations 

considercd. 

Table 5.6 shows the modified tail volume coefficients usedfor the sizing of the tail 
or canard of the default configuration. 

All Default Engines are 
/n Tractor Configuration 

Single Twin 
Engine Engine 

Cht Cht 

Single Twin 
Engine Engine 

Ct CIt 

Conventional 0.5 0.55 0.015 0.02 
Canard 0.5 0.55 0.025 0.025 
Twin Boom 0.6 0.65 0.04 0.05 
Multi Fuselage 

Conventional 
anard 

0.5 
0.5 

0.45 
0.35 

0.015 
0.02 

0.02 
0.015 

Tandem Wing xx xx 0.015 0.05 
Flying Wing 0 0 0 0 
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5. E. 2 Difficuldes n4th the Vertical Tad Volume Coefficient 
Defi-nition 

There were no values given by Raymer for vertical tail volume coefficients for any 

class of aircraft that were useful. The values determined from estimates taken from 

photographs of existing Low Speed HALE UAV's are all less than half of the value of the 

smallest coefficients given by Raymer (for sailplanes). 

The reason for this can clearly be seen with a quick look at the definition for the 

VerticalTail Volume Coefficient: 

CV7 = 

L, SVT 

bS 
ref 

The denon-unator dorrunates this term for Low Speed FIALF UAV's. The relative wing 

span and wing area for this class of aircraft is much greater than even the next closest class 

of aircraft, the sadplane. 

At this point, it is also beneficial to recall the Fuselage Length Diagram, Figure 5.7. 

-rhe fuselage length (and thereby the tail moment arm length Lt) is higher for the Glider 

than any other class of aircraft. When taking into account the shorter tail moment arms of 

Low Speed I IALF UAV's, in combination with the higher wing spans and larger reference 

areas, accurate tail volume coefficients will acquire valLICS that upon first glance would 

seem ridiculously small. 

Example values of existing aLircraft (again derived from photographs) are (-Vj- = 0.02 

for Perseus A, 0.015 for Perseus B, 0.011 for Theseus, and 0.011 for Condor. 

9. E. 3 Tail Volume Coefficients forAH Conji-gurations 

The vertical tail volume coefficients should only be compared to existing tail 

volunie coefficients for the conventional configurations. The other values resulted from 

non -traditionally defined vertical tail moment arm lengths, which fun dame n tally change 

the values of these coefficients. Again, this xv-as done out of necessity and the lack of any 

relevant information for unconventional aircraft configurations. The results were validated 

only in the form of overall vertical tail areas where possible. 

It is mentioned once more that the horizontal tail volume coefficients presented in 

Table 5.7 result from the iterative use of the methodology in determining that the aircraft 
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can be made longitudinally stable using the hori7ontal tail sizcs spccified. This includes 

attempting to find the minimum value at which this occurs to mimn-uze parasite drag. In 

addition, the resulting honZontal tail areas were compared to those of existing aircraft of 

the Low Speed HALE UAV class where available. 

As mentioned in an earlier section, several of the values for single and twin engine 

tractor configurations have changed slightly from their default values. This was due to the 

differences between the predicted and the actual main wing and horizontal tall average 

chord lengths. 

Table 5.7 lists all of the remaining horizontal tail volume coefficients based on the horizontal tail 
moment arm lengilis defined in the previous sections. 

Single Single 
Engine Engine 

Twin Twin Twin 
Engine Engine Engine 

Tractor 
Cht 

Pusher 
Cht 

Tractor 
Cht 

Pusher 
Cht 

Push-Pull 
Cht 

Conventional 0.5 0.5 0.55 0.55 0.5 
Canard 0.5 0.5 0.55 0.55 0.5 
Twin Boom 0-6 0.6 Oý55 0.55 0.5 
Multi Fuselage 

Conventional 
Canard 

0.5 
0.3 

0.5 
0.3 

0.5 
0.25 

0.5 
0.25 

0.4 
0.2 

Tandem Wing xx xx xx xx xx 
Flying Wing 0 0 0- 0 0 

Table 5.8 lists all of the remaining vertical tail volume coefficients based on the vertical tail moment 
arm lengths defined in the previou sN ection ý. 

Single Single Twin Twin Twin 
Engine Engine Engine Engine Engine 
Tractor Pusher Tractor Pusher Push-Pull 

CIt C"t Ct Ct C', 
Conventional 0.015 0.015 0.02 0,02 0.0175 
Canard 0.015 0.02 0.025 0.025 0.0175 
Twin Boom 0.04 0.04 0.05 0.05 0.045 
Multi Fuselage 

Conventional 0.015 0.015 0.02 0.02 0.015 
Canard 0.02 0.02 0.025 0.025 0.02 

Tandem Wing 
Single Fuselage 0.05 0.035 0.04 0.035 0.04 
Multiple Fuselage 0.04 1 0.04 0.04 1 0.04 1 0.035 

[Flying Wing 0 10 0 10 10 
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Most notable is that the horizontal tail volume coefficients don't change much 

between the twin engine tractor and twin engine pusher configurations. The main reason 

for this is seen in the moment arm length definition. The change in moment arm length 

for the configurations that have constant values for tail volume was more than sufficient in 

re-sizing the tail based upon the definition of wing on fuselage placement. No change in 

tail volume was necessary for the coefficients. 

Due to the nature of the different moment arm definitions for the vertical tad 

volume coefficients, a significant range of values is covered by the results (compiled in 

Table 5.8). As expected by the relative definitions, the vertical tall volume coefficients for 

the tandem wing configurations and the twin boom are consistently higher to compensate 

in the denominator for consistently higher moment arm lengths. Once again, application 

of these values outside of this methodology would not be recommended without 

validation in the form of yaw stability and multi-engine engine out controllabilItY 

calculations. 

Nevertheless, the vahdation performed for the macroscopic vertical tail areas is 

considered sufficient for sizing the vertical tails of the large variety of different 

configurations. This is especiafly true considering these areas xverc used only for the 

purposes of drag and weight estimation performed within this tile thodology. Given the 

nature of this type of aircraft, only a very large relative variation in tail area would 

noticeably effect the drag or weight estimations. 

5. F Location and Performance of the Engine(s) 

One of the less technical aspects of the methodology deals with the placement of the 

engines on the aircraft. Despite being less technical, it is no less challenging to implement, 

given the rather large number of possible configurations. This will be discussed in the 

Implementation Chapter. For the moment, the discussion will cover the method of engine 

placement, and introduce the effects of placement that are covered bN, the methodology. 

5. F. ILo ca tion of th e Engin e (s) 

The llowcr-plant Dctads Dialog box is given in Figure 5.9. This dialog box is 

included because it was thought to simplify the explanation of the parameters associated 
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with engine placement considered by the methodology. As sccn in the figure, the 

preliminary engine Horsepower required has already been calcuLited at tills point in the 

methodology (as the product of the HP/A' ratio times the takeoff weight). A more 

accurate estimation of the power will be performed vvith the refined drag estimate 
descnbed at length in the next chapter. For the purposes of selecting and sizing an engine, 

this information was thought to be sufficient. As a reminder, the number of engines is 

included since the Horsepower shown is total Horsepower. If used for st I twin z ng a 

engine aircraft, this Horsepower would have to be divided by two. '11-ie second propeller 

efficiency has already been taken into account in the calculation ()f the I 1()rsepower shown 

in the Dialog box, however. The remaining ch arac teris tics will be discussed in the 

folb)WIng 

Y Engine Distance 

Number of Engines 2 

Propeller Diameter F 
Number of Blades 

5. FI. a Propeller Specification 

As seen in the ll()wer Plant DetAlls Di, ikg 1)()x, thc mly imidu for 

propeller design -, ind specification is for the propeller diameter and the number of 1)1, tdes. 
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In performing the drag and weight estimations, these were the values required, and this 

will be discussed in the drag and weight estimation chapters. A detailed design of the 

propeller was not attempted by this methodology. The unique flight regime of this class of 

aircraft makes traditional propeller design methods difficult to apply. 

Bizzarn" discussed propeller design for HALE aircraft on a basic level using 

traditional design methods. Very little else was found in the literature. There was mention 

of a special code written by Mark Drela to perform propeller aerodynamic design for low 

Re conditions, but this code is not in the public domain. Thus, there is a limitation to 

assume propeller characteristics that already exist for aircraft of this class, at least for the 

early conceptual sizing stage. Since the effects of propeller efficiency and design are not 

expected to be configuration dependent (aircraft configuration, not engine orientation), 

this area was not investigated in further detail. 

There have been a wide varlety of propeHers used for this type of tyassion. A 

selection of Low Speed HALE UAV's are listed in 'Fable 5.9. As can be seen from the 

table, just as for General Aviation Aircraft, there is no consensus on the correct diamctcr 

or number of blades for the propeller for the Low Speed HALF1. It is agreed upon In flic 

literature, however, that this aircraft will need a gearbox in order to climb more efficiclitiv 

at High RPNI and crwse at Low RPNI in the thinner high altitude air. At crWsc altitudcs It 

becomes difficult to avoid propeller tip shock and this is the primary reason for lower 

RPM's as the speed of sound is greatly reduced at the lower temperatures and densities in 

cruise. 

TabIc 5.9 is a compilation of useful propeller details for HALE aircraft 
availablefirom the literature. 

LOICIIINIU901 
(ft. ) 

IfUlauco I Itr-[Upt: IjW5 MIMS 

Altus 8.5 
Condor 16 3 2 
Perseus A 15 2 1 600-1200 
Raptor 14 1 
Strato 2C 20 5 2 600-650 
Theseus 8.5 2 2 

The ptopcller efficiency in chtnb and cruise was specified in the Critical Constants 
dialog box. In order to change the values of either of these efficiencies, the designer must 

return to this dialog box to change them, as they were assumed fixed for the given design. 
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5. F. Lb Prop ellerlEngin e Co n figura tion 

In the upper left comer of the Power-Plant Details dialog box is the 

Tractor/Pusher radio button group. The designer can select either a Tractor or Pusher 

engine/prop configuration for single engine aircraft, or for twin engine aircraft Tractor, 

Pusher, or both (Push-Pull). This invokes the tail sizing calculation as each of these 

engine/propeller configurations has large changes in aircraft Center of Gravity associated 

with it. The engine propeller group usually comprises at least 10 percent of tile takeoff 

weight of the Low Speed HALE UAV and is often located at the extremities of the 

aircraft. This explains why the tail must be resized with the definition of cnginc/propener 

configuration. The constants used for this sizing were described in the'Fail Sizing section. 

With the selection of the Twin Engine Tractor or Pusher, the option is made 

available to specify the distance along the span of the wing where the engines will be 

located. No provision was made for asymmetrical positioning. There arc several 

arguments for and against placement as close to the main fuselage(s) as possible. 

The main argument for placement near the fuselage(s) is the engine out 

controllability. The arguments for placement closer to the wing tip are structural in nature. 

In all of the twin engine implementations, the engines were placed as close to the fuselage 

as possible, taking into account the flexibility of the structures the engines arc attached to. 

In any event, the designer is free to locate the engines anywhere along the span provided 

the propellers clear the fuselage. 

Torenbeek' suggests at least one inch radial clearance bemeen the blade tips and 

the ai. lane structure, plus any additional clearance necessary to prevent any harmful IT 

vibration. He suggests at least 0.5 inch longitudinal clearance between the propeller blades 

or cuffs and stationary parts of the airplane. He also suggests positive clearance between 

other rotating parts of the propeller or spinner and stationary parts of the airplane. The 

remainder of the limitations deal with propeller clearances for takeoff based on landing 

gear lit-rutations. He strongly recommends these values be treated as absolute minimums 

(and further suggests at least 4 inches between propeller tip and fuselage plus 0.65 inch per 

100 HP per engine). Finally, he mentions that engine power growth is likely and that the 

prop diameter is likely to grow as a result. 

The range of possibilities of engine placement on the various con figu rations needs 

to be described graphically for each configuration. This would take Lip too much space 
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with the 55 different possibilities, however it is believed that tile choices made for possible 

engine locations for the different configurations was made in a rational, )ustifiable manner. 

The engines were placed in the most conventional locations possible. At tirries this was 

nota difficult decision. 'file example of the Two Fuselage Single Fnginc case(s) allow for 

quick v1sualiz'Ation of the problem of where to place the engine. In the instance of the 

single engine pusher, the engine was placed as far aft without interf - cring with the tall 

structure. This position could be manipulated by varying the cg position of tile enpine ()Il 

the fuselage. This allows for the possibility of either a tail aft pusher, or a shaft drive 

pusher. 

The actual 1()Ln*c required for the placement of the en ines i gi is more complex than 

would he expected. 'me process of placing -, in engine on an aircraft is quite siniple and 

intuitive for a designer, independent of a structured computer ci-iviroi-imem. The 

difficulties of automating this task will be covered in the lrnplcrnentýatlon Chapter. 

Finally, the button on the middle right of the Power-platit Details diýtlog bo\ has 

yet to be described. It leads the designer to tile Power-pLint Specificatl(ms (il,,, I()g bo\ to 

be discussed in the ne\t section. 

Engine Height 

Engine Width 

Engine Length 

Installed Weight 

Longitudinal 
CG Location 

Present Engine Rotax-91 4 

F57'- Fe et 

FT- Feet 

FETI- Feet 

FI-I'- 
Lbs 

Relative to Front of 
Engine(s) in Feet 

View Engine 
Niformance Curve 

SFC I 

I HP 

NOTE For Push-Pull Configurations, the front engine 
CG is used for the rear engine, but in the opposite sense 

I rT7777ý 

ancel I OK ii 
....... ...... ........ . ........ .......... 

Figure 5.10 is the Engine Selection dialog box which enables the 
designer to specify and view the performance and geometric 
characterislics qf the engine. 
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5. F. 2 Engine Geometry and Performance Specification 

Figure 5.10 shows the Engine Selection Dialog Box. The first thing to notice is the 

Present Engine. If no engine has been specified, a default engine is assumed and the 

dialog indicates that the default engine specifications are being used. The dimensions of 

this default engine are of the form given by Raymer' as follows : 

Lengine 
--- a (HP)l) (5.9) 

The constants he suggests for Opposed Engines and Inhiic l%ligincs cali bc sccn m 

Table 5.10. The resulting characteristic curves can be seen in Figure 5.11. In addition to 

constants for the Horsepower dependent expression to deternune length of the engine, he 

provides a range of values for width and height of the engines independent of the HP. 

For the default engine, the larger of these values were used in order to provide clearance 
for the turbo-charging and supercharging ductwork and turbines. For the length, however, 

an additional 50% of the engine length was given to create space for installation and intake 

charge apparatus. 

Table 5.10 lists estimates for engine width and height by 
engine type and the constants necessary to derive engine length 
from engine horsepower using Raymer's method for internal 
combustion reciprocating engines. 

ab 
Opposed Length 3.86 0.424 
60 - 500 HP 

Width 
Height 

32 - 34 in. 
22 - 25 in. 

In-Line Length 5.83 0 -124 
100 - 300 HP 

Width 
Height 1 n 

32 - 34 
22 - 25 in 

"I'lic grapli of the raLhal unginc Icligtil as ,, functi(m of 111' was included tor intcrcst 

and comparison. It can be seen that for the same H13 output, the Opposed engine is 

considerably shorter throughout the HP range considered. In addition, a brief look back 

at Table 5.10 will show that in addition to being shorter, it is equally as wide and high as 
the In Line engine. Although physically this may not make sense, historically, In Line and 
Opposed engines have had very similar width and heights. It was for this purpose that the 
Opposed engine was selected for use with this methodology. The relative engine %veights 
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will be compared in the Weight Estimation Chapter, however, it happens fliat tile 

Opposed engine is only very slightly heavier than the In I-Inc. Despite being shorter III tile 

range of interest, the Radial engine has by far the largest frontal , irca of any of the engines 

considered. This, in addition to lack of availabillry prevented it from being includcd. 

Engine Length as a Function of HP 

80 

0ppo s-e-d-1 70 
In Line 
Radial 60 w 

50 m 

d) -A-A A 
C 40 
Cn A__A _A 

Uj 
30 

20 
50 100 150 200 250 300 350 400 450 500 

Engine HIP 

Figure 5.11 highlights the differences in the engine length estimation methodv 
across a range of horsepower. 

No other engine types were considered for the default case. A colnl)ýIrls()Ii of 
Rotary, 2 cycle, turboprop, ai-id Diesel cycle engines was d()nc in thc Liteniturc Iýcview. 

Unfortunately, no data were available on the performance of these engines, and tile 

problems associated with using each one would most likely exclude Al but tile Internal 

combustion reciprocating engine from being used for the I IALIý, ' UAV without extensive 
development work. 

Alternatively, if the designer has engine data available, this information can be read 

in and visualized directly by the program. The engine size should Include AdC(ILLIte room 
for turbo-charguig and supercharging. Also, available from manufacturer's (ht-, i, the 

engine installed weight and center of gravity location cýati be specified by the designer it 

this stage. No engine weight is calculated until the detailed weight estlination lilts been 

selected by the designer. At this stage in the methodoloey there is no use for the enpne 

weight or center of gravity location but these data -will become useful further tl()iig the 

methodology. 
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If the designer has the information at hand, a curve of Thrust 'Specific Fuel 

Consumption variation with Engine Power Output can be read 'into the methodology and 

subsequently used to adapt the engine fuel consumption to whatever power output 

requirement is determined by the methodology in the refined drag calculation. This will 

have some impact on the final endurance calculated depending on the characteristic fuel 

consumption curve for the engine used. 
It is known that the average fuel consumption in cruise for the Bocitig Comlor was 

lb lb 
., -hould bc pointed 0.40 or 0.25 fhese values can be used as a baselinc. It 

HP - hr 1bf - hr 

out that the reciprocating internal combustion engine performance is comparatively less 

complex to predict at altitude. It is assumed that if turbo and supercharging can be 

performed efficiently enough to provide near Sea Level density air at near Sea Level 

temperatures, that the power output will be fairly constant. '11-iis minimizes the effects of 

altitude on engine sizing for the internal combustion reciprocating engine, however it does 

not remove the effects. Consideration must still be given to the sizing/weight of radiators, 

intercoolers, etc, while the drag considerations were described in detail in Drela"'. 'I'lle 

performance of the internal combustion reciprocating engine is fundamciitallý' different 

from the performance of a turbo) et/ turbo fan. The turbojet/ttirbofan requires a complex 

engine performance prediction algorithm at attitude (and in order to predict how to climb 

to altitude), and gross over-sizing of the engine due to the greatly reduced intake air 

densities at altitude. 

At this point, all of the useful engine geometrical and performance characteristics 

have been specified. In addition, in no particular order of specification, the Wing 

Planform, Wing Profile, Tail, and Fuselage general layout and geometry have been defined. 

It is now possible to move on to the next ma)or step in the procedure of the methodology. 

Once more, it is necessary to state that the iterative process can be begun at any point, and 

exited at any point. For this methodology, the ncxt poliit of Itcration is tile Rcfined Drag 

Estimation. 

Chapter V 126 Aircraft Layout and Geometry 



Design Methodology for Low Speed HALE UA V's 

Chapter VI 

He is the best sailor 

Who can steer within fewest points of the wind, 

And exact a motive power 

Out of the greatest obstacles 

Henry David'I'lioreau 

6. Aircraft Drag Estimation 

The subject matter of this thesis thus far has been rclated to the Justificati(m, crcatioll, 

geometric manipulation, and specification of realistic default configurati This chaptcr 

begins the discussion of the analysis -related aspects of the methodology. 

The f(Alowing chapter is responsible for explaining the rather broad topic ()f detailed 

aerodynamic drag estimation utilized in this methodology. The cstirnation entails many 

different methods of drag calculation depending on what part of the aircraft tile drag is 

being estimated for, and often what portion (lift induced, viscous, profile) of the drag is 

being estimated for any given component. Methods ranging from statistical, to flat plate 

similarity, to a Vortex Ring Lattice method are employed and validated where necessary. 

The discussion will proceed m the order in which the component drags were estimated in 

the methodology, however, for the most part, for the purposes of the methods employed 

the order of prediction of the drag of the components is irrelevant. 

It should be stated that although airfoil profile drag originates from viscous forces, 

there is a distinction between the two in this chapter. In many books the pure viscous 

drag is called parasite drag, and the additional two-dinienslonal drag incrcasc due to ail 

airfoil profile (either at angle of attack or not) is often referred to as profile drag. This is 

the definition used for this thesis. 
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6. A Determination of Major Aerodynamic Variables 

The definition of lift coefficient is seemingly straightforward. Difficulties arise, 

however, when attempting to apply this equation to some of the less traditional 

configurations. It becomes most intricate in the instance of the lift coefficient definition 

for the Tandem Wing configurations. Any time a significant portion of the lift Is 

generated by any surface other than the main wing, a slightly revised method of calculation 

of the lift coefficient must be performed. Obviously, before any analysis of the drag can 

be performed, an accurate value for lift coefficient must be determined. 

As a part of the proper definition of the hft coefficient, some value must be used for 

the reference area of the surface generating lift. Care must be taken in assigning this 

reference area, since it will be used in the deterrmnation of the aircraft drag as well. It is 

not crucially important as to what is selected for the reference area, as long as it is kept 

consistent throughout the analysis. In selection of the reference area (Sj), for all of the 

configurations except the Tandem Wing configurations, S, f was chosen as the main wing 

planform area. 

For the Tandem Wing aircraft, the detcr=nation of S,, j- was shghtly different. The 

drag analysis rcquires a lift coefficient for both the fore and aft wings for the tanderri wing 

case. The division of area was defined prior to the creation of the default aircraft. There is 

a choice, then, between 3 possible areas, that of the forward wing, that of the aft wing, or 

the overall wing -area, upon which the wing loading is defined. 

The only justifiable choice is the selection of the overall total wing area. Most 

Importantly, it maintains a constant reference area for aR of the possible configurations. 
This is important when comparing the relative values of drag coefficient CD for the 

different configurations. In this manner, there is certainty in the values of CD for accurate 

comparison between configurations. 
Once the reference area has been chosen, the lift coefficients for the Tandem Wing 

configuration are found based on the definition of Total Lift Force 

Plý I aveSrej 
L 

1,, d1j 
= W,, 

) 
Y2 

n Cl-mr(ralt L horeWing 
+L 

AftWing 

(6.1) / Vý2 c 
2p 

v 2'1ýeS c =ý2P 
rin se 

S 
Fore Wing 

+Y2 
(n AftWing LAjAV,,,, 

Where is the lift of the forward wing, and LA. Iffing IS the lift of the aft wing. It is 

known that the area of the forward wing is related to the area of the aft wing by the 

cquations : 
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SFo"Wing = 
(' 

-'5)Sref andSAftWing = '5S, 
ef 

(6.2ý3) 

where i5is the fraction of total wing area comprised by the aft wing (and is user defined, or 

60% by default). 

In addition to these equations, the disttibution of lift coefficients between the two 

wings has to be done in a way to insure that the forward wing stalls first. In order to do 

this, the forward wing lift coefficient is assumed to be 10% greater than the aft wing. 

Implicit in this assumption is the assumption of a similar Reynolds number. This results in 

the forward wing lift coefficient: 
CLf, 

_W, 
":: 1. ic LIJA4, 

ý, 
(6.4) 

which, when substituted into Equations 6.1 and 6.2 gives the aft wing lift coefficient: 

cl 
C= LAIWng (i + 0.16) 

(6.5) 

This ultimately provides the division of lift between the front and back wings of the 

tandem wing aircraft. For the other configurations, the lift coefficient is calculated In the 

same manner as the aircraft hft coefficient above. It is noted at this time that the weight 

estimation module verifies that there is sufficient fuel in each wing to Insure the calculatco. 1 

division of hft can be maintained in an equilibrium flight condition. 

In the instance of canard lift or horizontal tall lift, the amount of lift is expllcltlý 

detern-uned by the Trim Calculation module, and the preceding analysis Is not perfoi-ined. 

The'frim Calculation module will be explained in detail in Chapter S. 

6. B Determination of the Lift Curve Slope 

The implementation of the Vortex Ring Lattice method used, strictly calculates the 

induced drag of the major lifting surfaces of the aircraft. As such, 1 is not equipped to t 

adjust for cambered airfoils when cambered airfoil angle of attack (C,, - a) information is 

input. As a result, the slope of the CI, - a curve must be calculated, and an associated angic 

of attack extracted based on the relevant calculated lift cocfficicnt. 

Thc procedure described is idenfical for the main wing, canard, or tandem wings. 

There are several possibilities. If the designer has input a CL- a characteristic curve, the 

value of slope is extracted from this curve in the pre-stall range. If either there has been 

no information entered by the clesig)-ner, or the lift coefficient for cruisc Is beyond the pre- 
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stall range of the curve, the designer is warned that the two dimensional theoretical value 

of lift curve slope equal to 2TC is being used as an estimate. While it is recognized that this 

will overestimate the value of lift curve slope, there were no other alternatives available for 

the prediction of the slope in tl-ýs region. It is hoped that if a particular airfoil has been 

selected, that attention will be paid to ensure that the maximum lift coefficient has not 

been reached in cruise. If this occurs, the designer is notified, and of course has the 

option to return to and modify any of the inputs that determine the lift coefficient. 

This section has introduced the concept of one of the most useful analysis tools to be 

used by the methodology in the comparison of the aerodynamics of the different possible 

configurations, the Vortex Lattice Method. 

6. C The Vortex Lattice Method 

This section will present the following points: 

* Justification for why the method is necessary. 
* Basic theory (enough to delineate the bounds of apphcability) 
* Validation of the implementation used. 

It was thought at the genesis of this project that a swtable means of calculating the lift 

induced drag would be absolutely necessary to the achievement of the goals of the thesis. 

A reliable method to calculate the drag interactions of several lifting surfaces beyond those 

methods a,. 'ailablc using common design references is required for the comparison of less 

com, entional configurations. Several methods were considered, most of which were 

discussed superficially In the Literature Review. 

If the drag analysis were limited to the methods available in the common 

methodologies there would be no mechanism for taking into account the less conventional 

configurations. The existing methods for drag prediction that do not use equivalent flat 

plate area are based almost exclusively on conventional configurations. 

6. C I Wing Profile Drag and the Vortex Lattice Method 

'I'liere exists a wealth of information on the drag associated with wing profiles. 

Several of these profiles have been modified for low Reynolds number, high lift coefficient 

operation. For tills information to be used by the present methodology, the data need only 
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to be discretized into a tabular format and read into the methodology as a data file. It was 

believed that this data would be much more accurate than any predictions made via an 

Ideal Potential Flow prediction. The accuracy could be comparable if the method was 

specifically tailored to airfoil design, such as the codes mentioned in the Literature Review. 

However, since extensive work has already been performed in accurate predictions of 

airfoil profile flow, the effort required to implement an accurate method was thought 

repetitive. 

In addition, the speed of the computational methodology would have been greatly 

comprorrused. In it's current implementation, even the tandem wing configuration which 

requires the vortex lattice method to be applied to two interacting lifting surfaces provides 

results in less than 6 seconds on an Intel Pentium 150 NIFIz processor, and essentially 

instantaneously on the newer Pentium 11 and III or equivalent processors. This may seem 

insignificant, but it was thought quite important for the results to be provided in rcal-tityle. 
In order for several different configurations to be compared and iterated oil, it was 

thought absolutely necessary that the waiting time for changes in each configuration be 

unnoticeable. This has been preserved in the present methodology. 

6. C2 Potential Flow The ory and Lifting Surface Interaction 

Unfortunately, the three -dimensional effects of one lifting surface on anothcr are 

not covered by any technique mentioned in the common design references. ANIOLIgh 

wing camber is not modeled using this implementafion of the vortex lattice method, tile 

lift-induced drag created by a wing planform at angle of attack is very accurately predicted 

at the Reynolds numbers seen by Low Speed HALE ITAV's in cruise. 
For a detailed analysis on the background theory of the vortex lattice method, 

104 
several excellent books have been written. Most notably, Katz and Plotkin"% R. I. LewiS 

, 
and C-13-Stribling"" All of these references were used in the Implementation 111d -,, alidation 

of the Vortex Ring Lattice method used in this methodology. 

For incornpressible, inviscid/irrotational, small disturbance flow (i. e. steady flow 

for this implementation), the wing is modeled as a set of lifting panels (i, j, total N). Fach 

panel contains a ring vortex. A bound vortex is located at the V4 chord position (Fj). Both 

spanwise and chordwise variations in lift can be modeled as a set of non-continuous 
changes from one panel to the next. 
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The required strength of the bound vortex on each panel needs to be calculated by 

applying a surface flow boundary condition. The equation used is the condition of zero 

flow normal to the surface (Vn=o)l or the Neumann boundary condition. It should be 

stated that there are two commonly used boundary conditions for vortex methods, the 

other being the Dirichlet boundary condition of zero velocity parallel to the surface. Only 

one can be used, and there is a fundamental rift between the two schools of 

implementation. The Dirichlet boundary condition is generally more appropriate to more 

advanced viscous boundary layer calculations. 

It should be noted at this point in the discussion that a sizable portion (-20 - 30% 

in crLUse) of the drag of this aircraft is due to viscous forces. It would have been possible 

to include a vortex lattice method capable of predicting skin friction drag with slightly 

greater accuracy than existing flat plate drag analogy prediction techniques. 

This, however, was not seen as one of the failings of common aircraft drag 

prediction in the conceptual design phase. It also has little bearing on the comparison 

between configurations, as once again, the error would be the same regardless of the 

configuration, assuming roughly equal wing areas. Most importantly, these viscous vortex 

lattice codes rcquire much more time to process, thus making them incompatible with tile 

desire for real-time results from changes in configuration. 

z 

yn =0 

Panel i Section Mean Line 

Figure 6.1 defines the terms relating to the panel 
normal vector used in the development of the equations 
for the Vortex Lattice Method. 

For each panel, the boundary condition is applied at the '/4 chord position along 

the centerline of the panel (called the coflocation point). The normal velocity is made Lip of 

a free-strcani component and an induced flow component. This induced component is a 
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function of strengths of all vortex panels on the wing. Thus for each panel, an equation 

can be set up which is a linear combination of the effects of the strengths of all panels. A 

matrix of influence coefficients is created (Aj). This matrix is then multiplied by tile 

vortex strengths and is equal to a right hand side vector of free-strcam effects. 

vn=0=V,,, sin (0) + vv, (6.6) 

N 

A, F, (6.7) 

N 

A, F= -V,, sin (0) (6.8) 

Wliere sin(O) can be approximated by (as seen in Figure 6.1): 

sin (0) = sin (a -a- (6.9) - (a 
-, 8, ) 

- 
ddx 

W-iere 8, is the local panel angle. 'Flie influence coefficient A,., represents the Induced flow 

on panel 1 due to the vortex on panel )- 

PAmr, Ir 

Figure 6.2 defines the terms used in the implementation of the Vortex Lattice Method equations. 
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If all of the panels are assumed to be approximately planar then this influence 
t. 

coefficient can be calculated as a relatively simple application of the Biot-Savart law along 

the four component vortex lines (or 3 lines in the wake region). 

The result of "s integration leads to the following formulae for influence 

coefficients in general, the physical analogy for which can be seen in Figure 6.2: 

Aw =1 
sin(o) r ds (6.10) 

41r r2 
J 

wI 
sin(o) d- rj =A, rj (6.11) UfT; r r2 

s 

1 2h(x+h)+2k(y+k) 2h(x-h)+2k(y-k) 

Ai = 'I 
(x+h)(y-k)-(x-hXy+k) R, R2 

41r 1 J+ II 

+ k) R, (y - k) R2 

(6.12) 

Where R, = 
J(x 

+ hy + (y + ky and R2 (6.13,14). 

The right hand side terms for the boundary condition equations depend on the free-stream 

velocity (V-), the angle of attack for the wing (a), and the slope of the panels if camber 

were considered. A solution for the strength of the vortex lines on each panel is found by 

solving the resulting matrix of equations. 
The lift coefficient for the wing at a given angle of attack is then obtained by the 

integration of the panel lift distribution. The lift for a given panel can be found using the 

Kutta Law: 

L, = pV-r, 2k for the lift of Panel i 
N 

L=2Lj for the lift of the Wing. (6.16) 

The downwash velocity induced at a panel can be calculated once the strength of the wing 
loading is known. The variation between local flow angles for the panel and the free- 

stream velocity can be found. A consequence of this downwash flow is that the direction 

of action of each panel's lift vector is rotated relative to the ftee-stream direction. The 

local Eft vectors are rotated backward and hence give rise to a lift induced drag. By 

integrating the component of panel lift coefficient that acts parallel to the free-stream 

across the span, the induced drag coefficient can be found. 

Jý 
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Di = pV-ri 2k sin(a, ) is the dtag of Panel i (6.17) 
N 

D=E (6.18) D, teprcscnts the drag of the Wing 

The induced flow ((X) represents the amount of rotation of the lift vector backward and 

must be calculated from the velocities induced on the bound vortex of the panel by other 

panels and the free-stream. 

This explanation is an oversimplification of the actual implementation, but was 

intended to provide a very basic background of the vortex lattice method in general. 

Considerably more detailed analyses are available in the aforementioned references. 
Given a basic knowledge of the origins of the above vortex lattice method 

(Potential flow theory, inviscid, irrotational, incompressible), it is safe to state that the 

method can be frecly applied to the cruise condition of the Low Speed HALE UAV. 

None of these assumptions is violated in the high altitude low speed flow regime in cruise. 

In addition, the implementation of the vortex lattice method assumed steady flow. Since 

the aircraft is assumed in 'Steady cruise flight, this assumption is also valid. 
Ile theoretical assumptions involved in applying the method are known, however, 

there are particularities associated with its implementation that need to be assessed and 

then verified before it can be applied to the Low Speed HALE. 

6. C3 Validation of the Vortex Lattice Metbod 
Implementation 

The first objective in the validation of the vortex lattice implementation was to 

verify that the macroscopic values obtained for lift and drag coefficient were reasonable. 
In addition, the minimum number of panels necessary to provide repeatable and accurate 

results (for angles of attack in which flow is still attached) was desired. 

6. C 3. a The Rectangular Wing Analogy 

The results for Uft and Lift Induced Drag as a function of angle of attack can be 

seen in Figure 6.3 and Figure 6.4. For the validation case, a case with a known, simple, 

theoretical closed form solution was used, the Rectangular wing. The curves given varied 

the number of chotdwise and spanwise panels in a search for the optimum. 
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Figure 6.3 provides an idea of the overall accuracy of the method as compared to 

theory and the variation in that accuracy with increasing angle of attack. A more detailed 

view of the higher angle of attack area is given in Figure 6.4. 

Rectangular Wing VLM Comparison 
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Figure 6.3 compares the lift dependent drag results of the vortex lattice 

method nith variation in angle of attackjor different grid densities. 

Rectangular Wing VLM Comparison 

0.007 Cdi (Theory) 

U 0.0065-- "4XI 0 
A 4X1 5 

C 2 
0-006 1 OX20 

. U 0.0055 - 5X30 

0 1 OX30 
0 0.005 - 15X20 

0 0045 -- 0 --1Ox1O 
a . 00 0 04 - 0 0.0 

so 
0.0035-- 

.E .0 
.0 

0.003 1 

0.0025 
5 5.5 6 6.5 7 7.5 

Angle of Attack (Degrees) 

Figure 6.4 is a magnified view of the previous figure in order to provide a better 
understanding ofthe variation of the accuracy ofthe results depending on the grid selected. 

The trends can be much more clearly viewed from this figure. The first thing to 

notice is that there is no direct correlation between greater panel density and greater 
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accuracy. It can clearly be seen that there is a minimum number of chordwise panels 

below which the results begin to deteriorate quickly. In addition, it can be seen that the 

actual aspect ratio of each panel must have some significance, since a greater number of 

panels, but the wrong panel aspect ratio seems to yield worse results as well. 
in any event, the difference between even the worst results shown and the 

theoretical curve is 0.00050. The lessons learned from this evaluation were to be careful in 

selecting panel aspect ratio and not let the value get too low, to maintain a certain 

minimum number of chordwise panels, and finally that greater panel density does not 

correspond to greater accuracy if not applied correctly. 

Rectangular Wing VLM Comparison 
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gicient h angle fa kjor the Figure 6.5 shows the variation in lift coe wit o aft c 
vortex lattice method for various grid arrangements, and how the results 
compare to two &mensional theory. 

The final curve presented of this group involves the lift coefficient prediction for 

the rectangular wing (seen in Figure 6.5). Although the vortex lattice method calculated 
lift coefficient is not used for any calculations in the drag estimation module, it is another 
indication of the care that must be taken in the application of the vortex lattice method. 

Ibis figure demonstrates that there is a perceivable variation in lift coefficient as a 
function of angle of attack as a function of the number or distribution of panels for the 

vortex lattice method. Again, there is an increasing disagreement with the two 

dimensional theoretical curve with increasing angle of attack. Ibis is exactly as would be 

expected, as three dimensional effects are expected to be greater at higher angles of attack. 
This disagreement could become a problem if not addressed. The reason for this 

is that the vortex lattice method calculates very accurate drag coefficients for the 
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corresponding lift coefficients. 'Me problem arises from the fact that the lift coefficient 

value cannot be explicitly specified for the vortex lattice method. The vortex lattice 

method takes an angle of attack as an input and then calculates the corresponding lift and 
drag coefficients. 

If the two-dimensional theory lift curve slope is used in the deten-nination of an 

estimated angle of attack for a given lift coefficient, the error can be significant in the lift 

coefficient range of interest for Low Speed HALE's as can be seen in Figure 6.6. In 

addition to highlighting the significance of this error, the graph compares the variation in 

this deviation for different taper ratios. An investigation was also performed to determine 

the effects of changing the aspect ratio on this error. It was found that high aspect ratio 

planforms experienced very little deviation from lower aspect ratio Low Speed HALE's. 

Thus, a polynomial curve fit was performed. The resulting equation is as follows: 

CL = -0.0007a 2+0.10647a (6.19) 

Variation in CL with Angle of Attack for VLM Method 

3 
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Figure 6.6 compares the curve fit correction for the lift curve slope nith two 
dimensional theory and the results outputfrom the vortex lattice methodfor two 
extremes ofreasonable taper ratio. 

Rather than determining the angle of attack input to the vortex lattice method 
from the two-dimensional theory lift curve slope and the calculated value of cruise lift 

coefficient, a quadratic equation was solved using the coefficients from the equation 
above. The implementation of this quadratic curve fit for variation of lift coefficient with 
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angle of attack reduced the error between configuration specified cruise lift cocfficicnt and 

the vortex lattice method calculated lift coefficient. This decreased the error and increases 

the level of certainty in the resulting vortex lattice method calculated values for induced 

drag coefficient for the wing. 

6. C3. b Sine and Cosine Spacing ofSpannise and Chordnise Points 

In the literature associated with the implementation of the vortex lattice method, 

there ate numerous different approaches taken to the resolution of the necessary 

equations. The majority of the differences arise from the implementation of the grid. 

Several different methods were suggested by the literature to increase the accuracy of the 

vortex lattice method. 
The most common implementation used on lifting surfaces isjo take the equal 

spacing of the grid points and replace them with a spacing dictated by some cosine or sine 

function distribution depending upon the direction (spanwisc or chotdwisc). 

Spanwise Lift Distribution 
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Figure 6.7 compares the normalized spanwise lift force distribution resulting from using 
different spanwise grid spacing techniques in the vortex lattice method. 

In the spanwise direction, the function used was sin 
7r U 1) 

wherej 2# SpanwisePanels 

) 

is the spanwise panel of the present iteration. A comparison of the different functions 
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considered can be seen in Figure 6.7 for a high aspect ratio wing similar to those on 

HALE UAVs. Obviously for the high aspect ratio wing there is not much difference in 

the spanwise lift distribution obtained. Neither of the spacings shown compare well with 

the rectangular wing theoretical solution near the wing tip, although the sine spacing 

appears to be a better prediction than the equal spacing. It should be stated, however, that 

intuitively, it makes more sense to* have a higher density of panels closer to the wing tips 

than an equal spacing throughout the wing. In addition, it is noted that the region in which 

the differences occur (towards the wing tip) can cause large differences in the final value 

obtained for overall lift coefficient. An investigation into fuselage effects discussed later 

will demonstrate little use for a higher density of points in the inboard wing region for 

HALE aircraft at the conceptual design level. 
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Figure 6.8 compares the normalized spanj4se lift coefficient resufts from using different 
chordivise grid spacing techniques using the vortex lattice method 

In the Chordwise (y) direction it is much easier to see differences in the results 
between using equal -and in this case Cosine spacing. The relation used for spacing the 

points along the chord was given by : c(y I- co 
(i + 1) ]. 

A graph 2 (# ChordPls + 1) 

comparing the results from the equal chordwise spacing to the cosine distribution of 

panels can be seen in Figure 6.8. In this instance, much lower values for aspect ratio and 
lift coefficient were used for the comparison in order to try and highlight the possible 
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problems encountered with equal spacing of the panels. Ihe case of the swept wing is 

shown, however the non-swept wing showed similar variation between the equal and 

cosine spaced panel results. Ihe figure shown demonstrates the spanwise variation in 

normalized lift coefficient as a result of the change in chordwise spacing. Since camber 

effects were not being modeled, it was thought that the spanwise effects would be of more 

interest to the methodology. 
. 
As seen in the figure, the error seems independent of taper 

ratio, and both spacing models seem to arrive at the same lift coefficients close to the tip 

regardless. Since the spacing being evaluated is in the chordwise direction there is no 

difference in spacing between the cosine and equal spacing cases in the spanwise direction. 

it is expected that the equal spacing consistently over-predicts the spanwise value of lift 

coefficient resulting from the surn of the chordwise panels. 

HopeMly, the brief demonstration of the effects of panel (grid point) spacing has 

provided a better understanding of the choices made in implementing the vortex lattice 

method in the present methodology. It is also hoped that this demonstrated a respect for 

the importance of proper grid sizing in maintaining valid results. In this regard, there is 

one further area that was investigated in order to insure the validity of the results as 

applied to a Low Speed HALE. 

6. C 3. c Wing- Tail an d WhW6Fu s elage In tera ctions 

The extent of the interactions between the fuselage and the wing were unknown. 

it was unknown as to whether or not the wing/fuselage interference prediction techniques 

offered by the common methodologies would be accurate for such high wingspans relative 

to the fuselage diameter. A reliable way of validating these existing methods was needed 

for such ratios of long wing span to small fuselage diameter. It wa's thought to use the 

vortex lattice method for modeling wing-fusclage and wing-tail ef&cts on the lift induced 

drag (or overall lift distribution). In this instance, the fuselage was modeled as a lifting 

surface at angle of attack to distinguish the lift induced wing/fuselage junction effects. 

Once again, it is realized that due to the absence of viscous effects in this prediction, there 

would need to be another mechanism to take the entire drag (lift induced and viscous 

interference) into account. This difference will be coveted in a subsequent section. 
After a great deal of experimentation, the values resulting in Figure 6.9 and Figure 

6.10 were obtained. Figure 6.9 shows the effects of placement of the horizontal tail on the 

lift distributions of both the wing and tail. As expected from Potential theory, as the 
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I- horizontal tail is moved too close to the win& it effects the lift distribution of the main 

wing as well. It should be mentioned again that much lower aspect ratios than those 

normally found on a Low Speed HALE UAV had to be used in order to show any 

noticeable influence of the tail on the wing. For both the wing and horizontal tail, the 

default independent lift distributions at the given angle of attack are provided for a 

baseline. These results were generated at a moderate angle of attack and lift coefficient. 
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Figure 6.9 shows the normalized lift force results for different combined J'ang and tail 
situations to validate the vortex lattice method 

Figure 6.10 shows the effects of the fuselage and tail in combination on a much 

smaller span wing than the Low Speed HALE UAV. It was determined from the 
investigation that in order for the fuselage to noticeably effect the lift distribution of the 

main wing, that the span of the main wing had to be reduced by a factor of 5. 

As seen in the figure, the solution that includes the wing and all of the surfaces 
(wing, fuselage, tail) at 5 degrees angle of attack is essentially coincident with the curve for 

the wing and fuselage alone. This means that for this scale of win& the conventional aft 

tail has little effect on the lift distribution compared to the effects of the fuselage on the 

wing. This effect is lessened with a lower angle of attack. As mentioned, the span of the 

wing had to be greatly reduced from that of a HALE UAV in order to generate a 

noticeable effect of the fuselage on the wing lift distribution. It was thus concluded that 
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the lift induced drag resulting from the presence of a fuselage for the MALE UAV would 

be insignificant enough to ignore. 'Merefore in the Drag estimation part of the 

methodology, no attempt was made to calculate the effects of the fuselage on the wing lift 

induced drag. Me Viscous drag resulting from the wing fuselage junction was considered, 

however and will be discussed later in the chapter. 

Small Span Wing-Fuselage Effects 
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Figure 6.10 shows the normalized spanivise liftforce resultsfor iving-fuselage and 
ivingm-fuselage-tail effects using the vortex lattice methoiL 

Finally, it should be stated that at any time, the results of the vortex lattice code 

can be compared with two dimensional theory to determine whether or not the results are 

reasonable. Ibis was done consistently throughout the execution of the methodology to 

insure that there were no application specific errors. 

6. C3. d Canard- Wing Interference Effects 

As another phase in the validation of the Vortex Lattice code produced for this 

methodology, the effects of the canard on the wing were briefly analyzed. One of the 

resulting figures can be seen in Figure 6.11. 'Me curve is normalized in distance in the 

spanwise direction. The configuration tested was set up in a Low Speed HALE UAV 

configuration, and the canard had to be brought within two chord lengths (as mentioned 

in the Literature Review chapter) before there were any noticeable effects of the canard on 

the wing. It is noted that this longitudinal proximity is not likely on a Low Speed HALE 

UAV, however the exercise was performed as a step in the validation of the method. For 
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the Figure, the canard hada semi-span of roughly 13 feet and the main wing a semi-span of 

roughly 94 feet. 
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Canard on Wing Effects 

Figure 6.11 demonstrates that canard on ning aerotýynamiceffectsmust be 
considered if the canard is placed within tivo chord lengths of the wing. 

Thus, if the cmiard tip x, ()rtex trmled , ift in a roughly linear rnminer (for the distance 

()f two chord lengths) in the Imigitudinal dircctimi, the vortex should impinge ()n the main 

wing at roughly 14'ý"o ()f the wing serni-span. This cm-i be seen in the figure to liýivc been 

correctly predicted. At this close proximity, the effect of the canard lift is rather prominent 

ýind disturbs the main wing lift distribution considerably. 

In addition, when viewed frorn behind, the vc)rtcx from the canard should be rotating 

cminter-clockwise. 'I'lic effect, then, should be reduced lift inboard of the point of 

in-ipingement, and increased lift outboard. From the figure, this would also appear to be 

have been well predicte(i. 

6. C3. e Tandem Wing- Wing Interference Effects 

The effects of the forward tandem wing on the aft tandem wing were much more 

than the effects ()I the canard on the main wing when the aircraft were set up in 

a 1. ()w Speed I IALF, L'AV configuration. In ()rder for the canard on wing et - fects to be 

visible, it was necessary to mt)vc the canard to a proximity to the wing that would not 

normýdly be experienced for a 1, ()w Speed I IALE UAV. This was not the case for tile 

tandem wing effects. The graph output from the program for a 55/45 area split tandern 

wing aircnaft can be seen in Figure 6.12. The case shown is for a 10,000 1)()un(i takeoff 
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weight aircraft. The average chord of the forward wing is approximately 4.5 feet and the 

average chord of the aft wing is approximately 4 feet. The distance between the two wing 

quarter chord locations on the fuse]-age was 24 feet, or between 5 and 6 chord lengths. 
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Figtire 6.12 is a snapshot of the coded methodology, representing the effects of 
thefore wing trailing vortex sheet on the aft ising lift distribution. 

The forward wing semi-span was SO feet and the att wing scini-span was 693 feet. 

Therefore, making the same assumption as for the can,, ird, the vortex 4 the forward wing 

should impinge on the aft wing at approximately 72/o ()f the senji-span ()f tile aft wing. 

From viewing the figure, this WOUld appear to have been accurately predicted. It would 

also appear from the figure that the lift was decreased itilmard of the Impinging and 

increased outb()ard. This once again indicates tile proper rotýatlon ()f the tip \, ()rtcx from 

the forward surface. Wille It is Impossible to validate tile actual Maglitudes ()f these 

ef - fccts without experimental results, ii t "s thought th-, it the \'()rtex Lattice inctliod written 

for this methodology m least manages to model the i , icrosco )cf -- nIIc fects of multiple lifting 

SLirf-, ice interactions. 

In another manner of viewing similar results, in Figure 6.13 the spanwisc distance 

was not normalized so th,, it the absolute location of the phN, sical serni-span wing tip can be 

seen, and the absolute l()cation at which it impinges on the aft wing can be seen. T%vo 

different area split cases are shown, 5i/45, and 75/25 where the first number is the 

percentage total wing area due to the aft wing, and the second the percciii-agc total wing 
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area due to the forward wing. Since the aspect ratios of the two surfaces were kept 

constant for this graph (35 for the aft wing, 22 for the forward wing), the wing spans are 

different for the two cases. 
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Figure 6.13 showv the absolute spamoise location of the 
intlyinging trailing vortices of thefonvard wing on the aft wing 
ky shoiting the absolutesemispan len44h of each wing. 

As can be seen in the figure, the vortex impingement occurs where expected for 

both cases. ( )bviously the effect.,, of this unusual lift distribution will be noticeable from a 

perspective, locally increasing the shear and the wing bend ing moment and then 

locally decreasing these values outboard of the vortex impingement. For this reason, the 

tandem wing aircraft wing bending moments were studied separately with regards to the 

Wing Weight estimation. 

6. D Wing Drag 

The wing lift induced drag Is calculated using the \, ()rtex lattice method. The wing 

pr(, filc drag is then calculatcd. The first stcp in the cilculation ()f the wing proFtle drag is to 

m,, ikc the ýissumptv)n of a wing thickness to chord ratio (if one has not already been 

selected by the designer) f()r Lise In calculation of the wing wetted area. It is mentioned 

again, that tile designer can easily specify a value for this number in the Wing Profile 

Selection I)i, il()g (see Figure i. 8). A default value ()f 0.14 was chosen , is reasonably 

representative for Low Speed I IALF UAV aircraft if no value was supplied. Additionally, 
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changes in this number (within the range expected for a Low Speed HALE UAV) cause an 

extremely small difference in the value for wetted area of the aircraft, which subsequently 

makes a very small difference in the parasite drag of the aircraft. The reasons for this will 

be better understood in a moment. 

The differentiation was made between net wing area 
ýSnt,,., 

n, 

) 

and gross wing area 

(Splanformýj,, ) 
prior to the wetted area calculation as given by: 

S 
net wjýx 

S 
planfortnwi., 

C 
roorw, ýK 

w fuselage (6.20) 

where the wirig toot chord is assumed constant throughout the width of the 

fuselage (wfi,,, I,, g, ). This assumes moderate taper and moderate spacing between multiple 

fuselages in the spanwise direction. If the configuration type is one of the multiple 

fuselages, this is taken into account in the net wing area calculation by repeating the 

calculation for the number of fuselages based on the relevant fuselage/boom parameters. 

For the twin boom configuration, the effect of the width of the booms on the net area was 

assumed to be negligible and was therefore not considered. 

Once the Net Wing area is known, the wetted area of the wing 
)can be 

calculated based on the thickness to chord ratio and the net wing area as follows (StInton", 

P. 207): 

Sne,,,,, 2+I -t 3 
(6.21) 

This assumes a constant wing thickness to chord ratio which is reasonable for early 

conceptual design stages. 

Next the wing profile drag needs to be assumed IF it has not already been 
I 

specified by the designer. In the event that the lift-drag profile characteristic curve has 

been provided by the designer, this is used in order to provide the proper profile drag for 

the given angle of attack. 

If not specified by the designer, this wing profile drag coefficient can be 

calculated/ approxim ated using the Roskam' (PtNl, p. 23) (-,,,, Wing equation. Assuming: 

R,. f = 1.05, 
RI, = 1.1 (No Swecp), 
Cfý,, = 0.0051, 

2.0 (assumes at < 0.3c), 
C 

max 
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the equation yields a value of 0.0075. 

It is not recommended to use this number for the detailed drag estimation, 

especially since more accurate wing profile data is readily available in tabulated form. The 

results of this thesis were generated using experimentally obtained values from well-known 

airfoils (selected in Appendix A) to remove the effects of making this assumption. The 

reason for this statement is that such a large portion of the aircraft drag is due to the wing 

profile/parasite drag. It is thus believed that the most accurate value available should be 

used. 
The parasite and total drag of the wing can now be calculated as follows: 

s wet. *g 
S'in* 

CdProfileýll 
S. and CDt,,, 

s 
(6.22,23) CDparasite. 

j., " 
ref 

= CDparasite., + CDinducedWMi,, 

ref 

The reference area (not simply wing area) is used in aff of the drag calculations. This 

results ftom the inclusion of the tandem wing configuration for which the reference and 

wing area are different. 

6. E Tail Drag 

Ihere are two basic considerations for the drag of the tail. The first is the 

combination of the lift induced and parasite drags. The second is due to the particular tail 

configuration that has been selected. It will be shown that the differences in drag between 

these tail configurations will not justifý the inclusion of the calculation of the additional 
interference due to different tail configurations. 

6. E. 1 Tail Para site an dL ift In du ce d Drag 

There is slight difficulty in dealing with the horizontal tail. For the first iteration, the 
horizontal tail drag calculation is the same regardless of whether or not the aircraft is 

configured in a traditional manner or if it is treated as a canard. It is assumed to be a 

profile at zero degrees of angle of attack. The assumed horizontal tail/canard profile drag 

coefficient of 0.006 was taken from the Drag Polar Data of Abbott and Von Doenhoff'06 

for a NACA 0009 section at a Reynolds number of 3*10' and above. This Reynolds 

number is a bit high, but the drag data is not very Re sensitive in this range for this 
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particular airfoil. In addition, this value is very close to the value suggested in the Literature 

Review by Epple? ' for use with sailplanes. 
For the tandem wing the profile drag is calculated by using the assumed default lift 

curve slope discussed previously, or by using the designer specified curve for variation in 

profile drag with lift coefficient. Also, for the tandem, the lift-induced drag is calculated 

using the vortex lattice method. 
Assuming the same default profile section for the vertical tail, the same profile drag 

coefficient was used in the event that the designer did not specify one. The only 
difference in the calculation of the drag for the vertical tail was that for certain 

configurations (twin boom, multiple fuselages), the tail was split into a twin tail. This had 

to be taken into account in the wetted area calculations. 
For the second iteration of the refined drag estimation, the trim lift coefficient 

should be known. The horizontal tail/canard profile drag must be recalculated to take the 

additional viscous drag due to angle of attack of the airfoil into account. In addition, the 

vortex lattice method is used to calculate the lift-induced drag due to the angle of attack. 
The wetted area calculations for the horizontal and vertical tail ate performed in 

the same manner as for the main wing, however the thickness to chord ratio used is that of 

the NACA 0009 section, unless designer specified data have been supplied., Obviously, this 

is not the best assumptioýn for the use lof a canard, and it is hoped the designer will specify 

a canard specific wing profile in that case, as was done for the results obtained in this 

thesis. 'Me vertical tail profile drag, is then calculated in a manner similar to the wing 

profile using the ratio of the relevant tail area to the reference area. 

6. E. 2 Configura tion Dep en den t Tail Drag 

A detailed comparative drag analysis of several different tail configurations was 

given in Hoerne? ' (p. 8-12). The same approachwas taken in this thesis in the process of 
deciding whether or not to include tail configuration dependent effects into account in the 
drag analysis. It was decided that once the reference area was factored into the tail 
interference drag that the absolute value of the overall tail interference drag was less than 

0.1% of the total drag. Ilus, the difference between the various tail configurations was 
less than 0.03% of the maximum of the total drag, and was thought to be comparatively 
insignificant. The analysis was not included in this thesis for brevity, and because the 
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relevance of the calculations is greatly reduced in light of the results, however, the 

approach used for the calculations was the same as that taken by Hoemer. 

While taking these results into consideration, it is noted that the majority of modem 

sailplanes use a T-tail configuration. This is most likely a result of the combination of 

benefits between the endplate effect for the vertical tail, a clean incident freestrearn (free of 

wing downwash) for most low to moderate angles of attack, and minimization of damage 

in off-airpott landings. For the Low Speed HALE UArs that have been built, the Raptor 

had an H-tail, the Theseus and Strato 2C had T-tails, and the Perseus and Condor had 

conventional tails. Once again there would appear to be no consensus on which tail type 

to choose. Since the vertical position of the horizontal tail was not taken into account in 

the drag analysis outside of the vortex lattice method, the effects of this choice arc thought 

to be minimal on overall performance. This is thought to be due to the size of the main 

wing relative to the horizontal tail. 

6. F Fuselage Drag 

For the fuselage-induced drag, it is assumed that the aircraft will be designed such that 

the fuselage will not have an angle of attack on average for cruise. Otherwise, it would be 

difficult to justify giving the fuselage any decalage angle relative to the aircraft that resulted 
in any other angle of attack for the fuselage in cruise. 

The fuselage parasite drag was calculated using a flat plate analogy. For this part of 

the drag prediction, it was necessary to assume laminar flow over a portion of the fuselage 

and turbulent flow over the remainder. Other assumptions were made about how the aft 

section of the fuselage terminates (at a point, no base drag). 

Since there was little information available as to how to accurately predict the 

transition to turbulence, the fractional value of the fuselage experiencing laminar flow was 

assumed to be the part of the fuselage fore of the main wing. It should be noted that in 

many of the HALE UAV implementations, the fuselages have quite non-traditional 

shapes, assurnedly to accommodate the many different types of payloads. No attempt was 

made in this methodology to model anything but the traditional longitudinal shapes and 
the traditional cross sections mentioned in Section 5. B. 1. c. 

First the fuselage Reynolds number was calculated, based on the length, 

c 
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Refuse = 
Pc'. 

iseV cmiseLf 

JUcruise 

(6.24) 

Then the Iaminar skin friction coefficient is given from Fluid Dynamic statistics for 

incompressible flovr. 

1.328 (6.25) 

Likewise, the turbulent skin friction coefficient: 

0.455 (6.26) Cfll.. 
I, F-lar (1+0.144M2 Y. 65 [loglo (Ref 

.. 
)ý" 

'Me specified percentage of fuselage area experiencing Iaminar and turbulent flow ate then 

taken into account to create a gcneral/combined fuselage skin friction coefficient. 

For the calculation of the fuselage wetted area, the fineness ratio is required 

f= 
Lfilse 

(6.27). 
Dfuse 

The determination of the fuselage diameter (Dfus, ) depends on the shape of cross-section 

specified by the designer. For a square or elliptical section, an equivalent diameter is 

calculated. The Fuselage Wetted Area is from Torenbeek' (p. 447), and is valid for fineness 

ratios over 4-5: 

= zDfuseLjj., 1 -. 
1 

1+ 1 8we'F-1W 
fr f2 

Roskam Pt VI p. 44 gives the relation for parasite drag coefficient as : 

CDpýjj,, 
FýI. ý 

ý CfF_lg. 1+ 60 
+0.002 

L"'S" s WetFumlao 

L(L 
f-ID 

f.,. 

3 Dfuse s 
ref 

(6.28) 

(6.29) 

He includes a base drag coefficient that is ignored for the purposes of this 

methodology. The base drag coefficient is calculated based on a ratio of the wing area to 

the fuselage frontal area which is quite small. It is also based on the ratio of the fuselage 

diameter to the diameter of the fuselage where it tapers until it terminates in the aft section 

of the empennage. Since this information was not known, nor could a reasonable 

assumption be made as to an estimate of this value without it being explicitly specified, the 

base drag coefficient was not included. 'Me base drag coefficient would be appropriate for 
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more elaborate fuselage shapes, and for fuselage shapes resembling those of mostly 

manned aircraft which thus have diminished relevance for the Low Speed HALE UAV in 

early conceptual design. 

In addition, Roskam includes a wing-fuselage interference factor, however the 

chart he provides for determination of this factor starts at a Reynolds number roughly an 

order of magnitude greater than that experienced by this fuselage. The factor was thus 

assumed to be 1. 

A separate caIculation is performed for the drag of the booms. For the twin boom 

configuration, given the higher fineness ratio, a larger portion of the boom is considered to 

experience laminar flow. Given the different lengths of the booms relative to the center 
fuselage, the Reynolds number was recalculated and the drag added to that of the center 
fuselage. 

6. G Engine Nacelle Drag 

The first step in the calculation of the nacelle drag has more to do with the 

configuration being considered than with the actual calculation of drag. Before calculating 

nacelle drag, it was first determined whether the particular configuration warranted an 

additional nacelle drag calculation. For example, single engine pusher aircraft usually have 

nacelles with inlets for cooling, so this would enter the cooling drag term, but would not 

qualify as nacelle drag. Also, the viscous drag of the nacelle area for this configuration 

would already have been determined as part of the fuselage drag. Once it has been 

determined whether or not to perform the nacelle drag calculation, the calculation 

proceeds as described below. 

Depending on the specific application, both nacelle parasite drag and nacelle 

vortex induced lift interference drag were considered. The approach foHowed came from 

Torenbeek7 pages 510 (for induced) and 506 (for parasite). 
For wing mounted engines, Nacelle length was suggested as : 

LNacelle, 
ff = 2L,,, 

gi,,, 
(6.30) 

Engine width and height are multiplied by 1.05 to obtain the naceHe width and height: 
WNacelle, 

ff = 1.05w,,, 
gi,,, and HN,, 

cell,, ff= 
1.05Hengine (6.31,32) 

Calculate the effective nacelle diameter for skin friction drag purposes and the frontal area: 
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ýWNaMle, 

_, 

HNacelle, 

DN"elle, 
ff _ 

7r 
and SNac, 

lle,,.,, = wN,, clle ff 
HNacelleff (6.33,34) 

This gives a Nacelle Reynolds number of: 

ReNacelle = 
PcruiseVc,, iseLNacelleff 

flcruise 

Ile fineness ratio is once again required for the calculation of the wetted area of the 

Nacelle: 

fNacelle = 
DNacelleff 

(6.36) 

The approximate Nacelle wetted area follows as : 
SNacellew,, = 

(2 
w,.,,,,, 

ff 
+2H Nacell,, ff 

XLNa, 
lleff + =D2 11 (6.37) 

, ff Nace eff 

Calculating the skin ftiction coefficient fbt the Nacelle assuming fiffly tutbulent flow uses 

Equation 6.26. 

If the configuration is a Push-PuH twin, the number of engines is taken to be some 

fraction of two (reasonably arbitrary) in an attempt to model the true ýretted area 

represented by such a configuration. FinaUy, the parasite drag coefficient for the naceHe : 

+ 
2.2 

+3,8 
SNacellew,, 

(6.38) CDoN_,,,, 
*": 

Cf,,.. -3 
V, 

s 7N ý, 
Il, 

fN"ell, 
_ ref 

For aircraft with engines on the wing, Nacelle lift induced drag varied historically 

depending on whether or not the aircraft had a high or a low wing as given by Torenbeek. 

It is unknown as to whether or not this would be appropriate for the application to an 

unmanned aircraft since the relative fuselage cross sections tend to be much smaller, 

thereby diluting the effect of the high or low wing. However, Torenbeek states that this 

contribution is greatest at low angles of attack and is caused by the local change in wing lift 

due to the nacelle. Additionally, papers presented in the Literature Review on wing/body 
interference for gliders implied some induced drag correction was necessary. This can be 

logically extended to nacelle/wing interference. In any event, the difference in the overall 
drag of the aircraft was not significant, so it was used as shown. 
For high wing configurations: 

CUNýdj, 
= 0,008(# Engines) 

S ref 

(6.39) 
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and for the low wing: 

clkv-11, --ý 0.004(# Engines) 
SNacellef-tal 

(6.40) S 
ref 

6. H Cooling Drag 
C: 7 C7 

In a paper mentioned in the lAterature Review by Mark Drela"" of M. I. T. , 
aerodynamic designer of the Perseus and Theseus cooling systems, he uses a detailed heat 

transfer analysis to set up the governing equations in the cooling problem for a high 

altitude long endurance reciprocating internal combustion engine. One of the more 

significant statements of the paper was as follows 

"The extremely rapid rise of DI, (the dimensionless drag-power parameter) with altitude clearly 
points to the need for extreme care in the design of radiator installations for high ceilings. The 

greater the ceiling, the larger the fraction of available engine power which can be consumed b, v 
radiator drag. Conversel 

, 
y, the possibility of generating significant rainjet thrust power from the 

radiator increases in the same manner" 

These results point to the fact that a carefully designed radiator system for this class of 

aircraft and propulsion could in fact generate more thrust than drag. This has been 

achieved before in other flow regimes. Given that applying Drela's detailed heat transfer 

analysis is too tinie consuming in the early conceptual design phase, It is safe to assume 

that conventional cooling drag estimations can be used for this phase as long as the 

designer is aware of the risks and assumptions involved. 

Thus, from Torenbeek 7 (p. 515) : 
CDcooling = 

4.9 . 
10-7 HP - T,. 'ruj,, PSeaLeveI 

(6.41) Vc. 
iseSrefPcruise 

Where is the air temperature in cruise. 

Another method was proposed 1)), Roskarn, however it was found to be less 

convenient for computational implementation, and relied on pre-existing curves. In 

addition, it was not directly a function of engine horsepower and was designed more for 

use with well-defined nacelle inict geometry. 
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6.1 Wing-Fuselage Interference 

y is The last area of significant drag contribution to be considered 1)), the mcth()doI, ), g 

the viscous drag resulting from wing-fuselage interference. The vortex lattice method tAcs 

the lift induced interference effects into account. The equation used was taken from 

Torenbeek' (p. 510), however there is sorne ambiguity as to the definition of - Some of tile 

terms. It is belleved that the relevant ten-ns were interpreted properly in this 

Implelliclit"ItiOll. 

Overall Aircraft Draq Coefficient 0 C434 New Power Requited 31 00 lip 

Cruise Lift Coefficient 1 Old Power Required blý 'Ij HP 

New Awiramft C; Dn -tl 11 1,11 1 101.1 

CD Swel, ft ̂ 2 

0.034961 VIR ý91 39600 

Lift Induced 

Parasite 42. Q0 OV B5,16 

Section 0.009357 It 1', 

Fuselage(s) 0,001713 126.1.14 

11 Parasite UUU 13 

Wing/Fuselmige 
interference 0-109 DM0047 

I lorizontalTdil 0001421 
P 

47 Yj 

Lift Induced 

parasite 0,001421 

Sa clion 0 11060no NACA 0009 

Veri 1014 554 79 

Parasite 0001644 

Section if 0111rifitill 
r, At-AD009 

Engine NaceflP(q) 1 002235 
02136 

Lift Induced 0000175 

Parasite 0 002I)SU 

Cooling Drag 0001189 

Figure 6.14 is the Drag Summary dialog box which shows the breakdown 
qf drag and wetted area in absolute and pereentage total values, as- ivell as 
outputting the new and Power Required. 

This time a wing-fuselagc Reynolds number is necessary, and it is dut-med based 

upon the root chord. It is safe to assurne that the re Jon is fully turbulent, ind the skin 91 1 
friction coefficient calculation proceeds as it did for the fuselage and nacelles. At this 

point, once again, there is a differentiation between the high, low ýind mid wing cases. The 

interference drag is calculated hased upon 'a basic, and a supplementA dnig coefficient 

term. They are ýis follows : 
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CDbasir 1.5Cff troolý, 
nx 

croot,,,, cos Ay (6.42) 

CDsuppl 0-"Cfýf CLi., Croot.,., Dfuse (6.43) 

The total circumferential length of the wing fuselage junction is different for the trud-wmg 

(4.5'Ic,,,,, ) than for the low and high wings (2.25* c,,,,, ). This accounts for the factors used 

in the different cases of wing position on fuselage. 

For the High Wing CD,, i,,, f.,, 

(2.25CDbasic 
- CDsuppl 

(6.44) 
S 

ref 

For the Mid-Wing CDwingfuse 
4.5CDbasic 

(6.45) 
s ref 

For the Low Wing CDwingfuse 

(2.25CDbasir 
+ CDsuppl 

(6.46) 
S 

ref 

If there are multiple fuselages or the Twin Boom configuration has been selected then the 

interference of the booms are also considered. In the case of the Tandem Wing, the 

interference factor is calculated for all intersections using the relevant geometrical 

characteristics as well as the relevant aerodynamic characterisfics. 

6. j Total Drag 

At this point, the total aircraft drag can be calculated by simply summing the relevant 

component drags. The power required is also recalculated, as below : 
V3 

PRe(ld, 
New 

Prruise cmiseSref 
CDtot 

2 550(77pr,,,, ) (6.47) 

1, , or interest, the Overall Drag Dialog is presented in Figure 6.14 as an example of the 

Output provided to the cle-signer in order to verify and monitor the drag of the individual 

compoliclits. 

The previous power required based on the Horsepower to weight ratio selected by 

the design point is output. The overall aircraft drag coefficient is output along with the 

new The component drags arc output in absolute and percentage total aircraft drag 

form, and the wetted area and percent wetted area (based on total aircraft wetted area) for 

each component is also output. The wetted area values are output to provide some idea of 

which components are don-driating the CDo term for any given area considered. 

Chapter VI 156 Aircrqft Drag Estimation 



Design Methodology for Low Speed HALE UA V's 

Chapter VII 

Never try to cross a river 

Just because it has an average depth of 4 feet 

Martin Friedman 

7. Detailed Weight Estimation 

There is very little known about comparative weight estimation of alternative 

configurations. There is also very little known about the breakdown of the weight of 

individual components for UAV's in general, and this is obviously worse in the Low Speed 

HALE area. There are a large number of statistically based weight estimation tcchin(jucs 

available from the common design methodologies. A detailed investigatioli was 

undertaken for the weight estimation of each component of the aircraft. The discussioii 

will begin with the component, without which the aircraft could be considered a %'ery 

expensive car. 

7. A Wing Weight Estimation 

A gallant attempt was made to get a multiple fuselage wing weight estimation 

technique (Udin and Anderson"") designed for much larger aircraft to work for Low 

Speed HALE UAV's. Unfortunately, the method was found to be too sells-itive to 

extremely small changes in wing thickness to chord ratio, and wing fuel weight to provide 

consistent and repeatable results. In addition, a great deal of difficulty was encountered 

even repeating the cited results for large aircraft. Due to this sensitwity, the technique was 

not implemented in this methodology, and more conventional statistical methods were 

considered and compared. 
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The procedure used for the wing weight estimation was repeated for all of the 

components considered in the weight estimation in general. For brevity, the most detailed 

comparison will be presented only for the wing. For the other components, only the 

"short list" of appropriate methods will be presented. 

This cLiss of aircraft does not fit neatly into any of the general categories described in 

the common design textbooks. As such, an analysis was undertaken on all available 

methods to insure that a method that might on the surface appear to be inappropriate, can 

not in fact,, ipply to this class ofaircraft. 
The simplest way to list all of the methods considered is to provide an example of one 

of the component spreadsheets used in the determination. The sheet listed in Figure 7.1 

was prepared using the ch arac teris tics of the Boeing Condor. Tie figure lists the various 

methods considered and the reference for each. 

The quantities Imed in violet are the qUantmes that are essentl,, tl for the different 

methods to CAICLILItC the Wlllg WClgllt. Fach method takes a slightly different set of 

variables Hito consideration, however all of the methods were statistically based. As seen 

in the figure, the absolute wing weight is specified for each method, along with the wing 
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weight per reference area. The reason the wing weight per area is listed is that tile value 
for Condor was known to he 2 lbs / ft2. In addition A sound knowledge of glider wing 

weight per area is known to be in the same region. It should be noted that tile Condor 

carried fuel in the wings, and was a twin engine configuration with the engines mounted 

on the wings for added bending moment relief. Gliders, on the other hand rarely carry 

anything (occasionally ballast) in the wings and have slightly lower aspect ratios on ýivcrage 
(the exception being the Unlimited Class). Despite not carrying additional weight in the 

wings, these aircraft are designed for much higher g loadings thýan Condor was (cited as 
2.25 g's) yet have the same general wing weight per area. 

Wing Weight Per Area 

I irii ii 

Anderson USAF 1 61757fý 0 9047557 11 9677'*, 31 fl 8ý49775 1 A10161) 111 WIM 1 '1751i1B 
I lit týl Itietk(l 2 ý3 11 /2 1 2) 1 b]J/kjul) 2 U2 -t 'Li I/IIIU1 ý2ýjlf 121 1 u4jtl',! 2ýj 2.1 UJUI 

ýLorenheek(2) 2321793 1,26417079 2.93602381 1,2203495 1289407 1,7106484 2 189474 
Torenbeek(3) 1.976727 1.0140039 2.54675391 1.0472604 1.312006 1.8330145 1.836559 

325502 1 28 1918 13 2 4925ff-)ff, I ý', ) 174 15 1 ý, ioin,, ý I ', ffl 177' 

Aircraft 

FV 

I Torenbe 

3031071 1,170832301 3,631610201 1 42tU711 1,2031 
1733381 13333331 44 435LI9 5121951 7 5, 

Aft Predator I Raptor I Conflnr Tlieseus 

IT 
Ir) 

9 795636371 0.799633771 2 404ýýLjýb 1 1ý4143, 

1.553373 1,45571396 1.2976309 
ý, "1 1.1818 ý, C9 619117 1 '-l 1, qmscq 
2,304787 2.10191067 1.663753 
2.147313 1.95472036 1543606 

11V 

i 0733: 20b 
z "n laq I /, -I V J. -M IIII Ll 61 -'1 

2 492844 2 33740351 1 67471271 

16.26768 18.2401752 10.226tO9' 
, 

2 7167bOý 1 65L 

4. b635424 2.401 

1/1 

, 9- 2822 '- 9434F, 17 31 
17 4970 11.11616 

4 3532167 5.36661 
2.1 U844J 1 2.0069U 1 
10639535 11 3651181 

Figure 7.2 is the summary of thewingweight (per unit; sing planform area, lb. Vft'7) estimations 
perfortnedfor aircraft in the HALE UA V or similar class. 

As also seen in the figure, very few of these methods are výdid in the higher t-, Ikc()ff 

weight Low Speed I IALF UAN' area. Nlost of the methods grossly ()ver-predict the wing 

Chapler 171 159 I)e1aded ffeighl Eslitnalion 



Design Methodologyfor Low Speed HALE UAV's 

weight of the Condor. It should be mentioned that not one single method considered was 
designed specifically for composite wings. The majority of the methods suggest some 

generic correction factor depending on the degree of composite use in the wings. 1he 

Condor wing was composite as are almost all modem sailplane wings and all other aircraft 

constructed to perform Low Speed HALE missions. 

Ile same analysis performed for the Condor above was performed for 12 different 

aircraft, mostly in the Low Speed HALE UAV class, but several medium altitude aircraft 

were also considered. The results can be seen in Figure 7.2. 'Mere is no reason to decide 

on just one method, if more than one method can provide reasonable results across the 

range considered for this methodology. However, very few of the methods shown can 

provide reasonable results across the entire range. 
The down-selection process begins with the Condor. The majority of the methods 

over-predict the Condor's weight enough where they cannot be trusted for higher weight 
Low Speed HALE UAV aircraft. Thus, immediately Howe, Torcnbeek (1) and (2), 

Raymer (1) and (2), and Roland (2) and (3) can be removed from consideration. That 

leaves 5 methods : Roland(l), Anderson USAF, Torenbeek (3) and (4), and Raymer (3). 

'Me next consideration is whether or not they can be used across the entire range of 

weights being considered. Torenbeek (4) is supposed to be used for aircraft greater than 

12,500 pounds takeoff weight, so it is removed from consideration as well. 
Ile next basis for down-selecting is the knowledge that the Perseus A and B used 

identical construction techniques, and that the aircraft wing weight per area should be 

reasonably close. 'Me values resulting from Roland (1) are too low to be realistic, and this 

method is thus removed from consideration. Raymer (3) and -Anderson both were 

considered to underestimate the wing weight on average and therefore were not included. 

Raymer (3), however, is used to detern-, dne the first guess for the remaining method, 
Torenbeek(3), which is iterative. As can be seen in the figure, this method predicts almost 

equal wing weight per area for the two Perseus aircraft and in general predicts reasonable 

wing weights across the range being considered. The value for the Hennes 450 aircraft was 

predicted low by all of the methods considered. This aircraft has a side-by-side fuselage 

arrangement which might have some effect on the weight of the wing. The other aircraft 

wing weight which was under-predicted by the Torenbeek iterative method was the United 

States Navy Aura aircraft, which was based on a Rutan Long-EZ. None of the 

unconventional configurations considered by this methodology correspond to this 
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configuration (strakes, high sweep ang1c). For the conventional configuration, a minimum 

wing weight per. wing planforin a-tea of 1.5 lbs1fe has been set to ensure it does not drop 

below a realistic value. Ihe same limit is applied to the wing weight before the application 

of the configuration weight reduction factors for twin boom or multiple fuselage aircraft. 

Ilus the equation used for wing weight prediction by this methodology is from, 

TorenbeeO (p. 452) as foUows : 

-0,45 ' 

-t 
King 

= 8.94 - 10 -4 K.,, K.; K, K,,, K,, [Kbn.,, (Wd,, 
- 

0.8Wwj,, 
gG,,,,, C)r 

(cos A 
1.325 

(7.1) 
lb,, 

f cosAy 
K,,,,, =1+bb,., f = 6.25 ft. (7.2,3) 
KA =(I+ AYA 

K, = 0.95 if there are two wing mounted engines in front of the elastic axis, otherwise it is 
1.0 

K,, c = 0.95 if the undercarnagc is not mounted to the wing, otherwise it is 1.0 
K, t =1 for low subsonic aircraft 

Y 
Vc K, W) 

and Kc is 33 for normal and utility category aircraft up to W/S = 20 
S 

Kb 1 for a cantilever wing, it is a strut factor. 

It should be noted that Wdes is the weight of the aircraft without fuel in the wings. Careful 

consideration must be taken when applying this to either canard or tandem wing aircraft 

with fuel in the canard or tandem wing. 

First, the volume available for fuel in the wing or tandem must be checked. It would 
be rate in the case of the Low Speed HALE UAV for there to be inadequate volume for 

fuel in the wing though not impossible if an endurance above 48 hours is desired. Jbc 

reason for having greater available volume in the wing for fuel is the lower fuel 

consumption as compared t6 a turbojet or turbofan engine. In any event, the available 
fuel volume in the wing is calculated. If it is found to be insufficient, fuel is shifted to the 

other horizontal surface, or to the fuselage, depending on the choice of the designer. 

Some experimentation was performed to see if the strut factor could absorb the 

difference in weight due to multiple fuselages, but this was found to be inadequate. On the 

subject of multiple fuselage wing weight estimation there is very little data available. In 

fact, the only data available is for a single point. The wing weight per square foot of the 
Rutan Voyager is known to be 0.5 lbs/fe. As mentioned previously, this aircraft was 
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designed for a very extreme mission, and should only be used as lower lin-tit for wmig 

weight per square foot of wing area. The Voyager wing weight per square foot was '/4 the 

wing weight per square foot for the Condor wing. 

A detailed study was undertaken with regards to the relative bending moment 

distributions of the various configurations considered by the methodology. This study was 

essentially performed to identify the relative magnitude of the spanwise bending moment 

depending on various combinations of the number of fuselages, the number of engines, 

and their spanwise placement. The details of this study are presented in the next section. 

7. B Spanwise Wing Bending Moment Study 

In order to insure confidence in the overall endurance results, reasonable wing 

weight estimations for the various configurations considered by the methodology were 

required. The spanwisc lift force distribution is readily available from the vortex lattice 

method employed in the methodology. This lift force distribution in addition to the 

spanwise force distribution (due to fuel and wing weight), and the weights and spanwise 
locations of the fuselage(s), payload, engines and nacelles were subsequently used to 

generate complete spanwise wing bending moment distributions for all of the 

configurations. 
A study was then performed for 2000 lb., 10,000 lb., and 20,000 lb. takeoff weight 

aircraft for the following configurations : 

SINGLE ENGINE TWIN ENGINE 
Single Fuselage Single Fuselage 
Two Fuselage Two Fuselage 
Three Fuselage Three Fuselage 
Twin Boom Twin Boom 
Tandem Tandem 

Single Fuselage Single Fuselage 
Two Fuselage Two Fuselage 
Three Fuselage , Three Fuselage 

In addition, a brief study was performed on the effects of changing the taper and aspect 

ratios on the bending moment distribution. 

These results will be presented in the order of single engine , single engine tandem 

wing, twin engine, and twin engine tandem wing. At the end of the analysis, a factor to 
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multiply by the existing wing weight will be introduced for the config-urations where 

relevant. 

7B. 1 Single Engine Study 

At first, it is important to note that tile Low Speed I IAI-F, Ui, \\' inisst, m has drivell 

the geometry of the wing to higher aspect ratio and higher span than thm normally found 

on aircraft with more conventional mission requirements. Thus, a very large 1)()rtion of 

the aircraft and fuel mass is in the wing. This comhInation greatly reduces the magnitude 

of the bending moment when compared to other classes of aircraft. In ; Id(lItI()Ii, the 

payload fraction for this class of aircraft is rather significantly smaller than tho of- any 

other class of aircraft. '11-iis reduces the magnitude of the bending moment even further. 

800( 
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Moment Distribution 

r_ 
6000 

4000 

E 2000 
0 2 

0 

-2000 

-4000 

Sfuse SE 
2fuse SE 
3fuse SE 
TvAnBoom SE 

-T- -T --- . .... 

10 20 30---, 
_40 

50_60 70 80 90 1 

Spanwise Distance (ft. ) 

Figure 7.3 compares the spanwise bending moment of the single 
engine non-tandem configurations. 

The overall shape of the spanwise bending moment distribution for tile single 
fuselage aircraft, however, remains the same. This can be seen in Figure 7.3. In addition, 

it is possible to view this distribLition graphically within the methodology, once the detailed 

component drag and weight estimations have been purl - ormed, -, in(] once the rcstilts of the 

spanwisc lift distribution are available from the vortex lattice method. 
Figure 7.3 shows the results for the 10,000 pound t,. ikc()ff weight case. Tlic other 

takeoff weight cases showed identical behavior with only the magnitudes cli'miging. The 

first point of interest to note is that the bending moment outboard of the 
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booms/fuselages for the multiple fuselage/boom aircraft is essentially identical. The no 

fuel case is shown as it was found that the full fuel case only unloaded the wing further, 

thus reducing the maximum wing bending moment. This was true for all but the two- 

fuselage configuration which experienced greater negative bending moments inboard of 

the booms/fuselages for the full fuel case. 

The single engine two-fuselage aircraft (with the engine at the longitudinal 

centetline) for all of the takeoff weight cases generated too large a moment to be unloaded 

by the inboard lift, and resulted in negative wing bending moments at the longitudinal 

centerline in all cases. Consequently, an attempt was made in the study to determine the 

optimum spanwise location for the booms for each takeoff weight case by balancing the 

maximum positive and negative wing bending moments. 

The single engine three fuselage and twin boom results were in very good 

agreement. By placing the center fuselage and payload weight at the longitudinal 

centerline, these configurations did not experience the corresponding large negative 

bending moments that the two-fuselage aircraft experienced. This depended partly on the 

proper spanwisc placement of the booms. 

The method employed to compare the relative magnitudes of the bending moment 

was as follows. The area under the single fuselage spanwise bending moment distribution 

curve (()r the total magnitude of wing bending moment) was calculated by the integration 

of a parabolic curve fit. The difference between the single fuselage and individual multiple 

fuselage/boom aircraft wing bending moment curves was then calculated. In most 

instances, the shape of this difference was linear, and in a few instances the shape was 

parabolic. These "difference" curves were curve fit using either linear or parabolic curve 

fits and then integrated to deterrrune the area of the difference in bending moment (or the 

difference in total magnitude of wing bending moment). Finally, the percentage reduction 

in total wing bending moment was calculated using these integrated areas for the individual 

configurations and takeoff weights. 

Bascd on the results of applying the above procedure to each non-tandem single 

engine coil figuration and based on a study of aspect ratio and taper ratio effects, an 

average reduction in total magnitude of wing bending moment was found as shown in 

Table 7.1. The two-fuselage aircraft saw the largest reduction, however the most caution 

must be used In employing this configuration to ensure that the negative bending moment 

inboard of the fuselages is kept reasonably low. The twin boom and three fuselage case, 
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were again essentially identical, provided that the booms are scaled up for the 20,000 

pound takeoff weight case. This is not done automatically by the methodology, however it 

was thought to be a reasonable assumption to scale the diameter of the booms up from 

those used for the 2000 and 10,000 pound takeoff weight cases. 

Table 7.1 lists the reductionfaclors resultingfrom 
the anaýj, sisfor single engine non-tandem aircraft. 

wo Three Twin TT --: FF- 
Fuselage I Fuselage Boom 

0.47 0.18 0.18 

jAve 

r 

Thus, the reciLICtIOnS In Table 7.1 will be erripl()), cd In tile Wilig \vclghl (""11111ml(Ol 

of the methodology for single engine non tandern wing configurations. Alille It Is re,, ilizo. -d 

that wings are sized structurally based on bending moment, shear, torsion (Ind stiffil"s 

constraints, it was believed that for aircraft in this class, the bending moment would be the 

primary consideration with the other factors being of - secondary imPortaticc. With regards 

to the mAgnitude of the reduction factors considered, it is noted that the three fliscLige 

reduction factor in Table 7.1 is still 3.3 times that used for the Voyager. 

20 Klb SE Tandem Spanwise Bending Moment 
Distribution 

8000 1 
m 

6000 Sfuse SE 
A 2fuse SE 

4000 
A 3fuse SE 

0 
10 20 

r- 4) -2000 

-4000 
Spanwise Distance (ft. ) 

Figure 7.4 shows a comparison of the single eirgine landem aircraft 
spanwise bending moment disiributions. 

A represcnt,, itl\, c graph of the single eng"ne. tandern wmgmrcnif -t Configmt-Av)IIS Can 

be seen in Figure 7.4. The study shown in the figure is for the 20,000 paind tAc()ff 

weight aircraft. The behavior of these curves is very similar to that scen in Figure 7.3 for 

30 40 50 
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the non-tandem 10,000 pound takeoff weight case. The most notable difference is the 

slight increase in bending moment of the three-fuselage tandem wing curve prior to the 

departure of the cunes for the other two configurations. 
This can be explained by the fact that the optimum spanwise location for the 

boom in this case was further outboard than that of the hvo-fuselage aircraft. In addition, 

it is possible, due to balance considerations, that there was less fuel in the wing of the 

three-fusclage wing weight calculation. This would then result in a lower calculated wing 

weight and thus lower spanwise wing weight distribution. Consequently the wing would 

not be unl()aded as quickly thereby resulting in a comparatively higher wing bending 

moment 

Following an idcntical procedure to the one followed for the non-tandem single 

engine cases, average values were obtained for multiplying wing weight reduction factors 

based on the reduction in total magnitude of wing bending moment for the given 

configurations. The resulting values can be seen in Table 7.2. 

I'lic rcsults for the vvo-fuselage case were the same as for the non-tandem aircraft, 

ýind the r(-SLJltS for the three-fuselage case were extremely close to those of the non-tandetyi 

ýiircraft. One consideration thýit resulted from this study of the tandem winged aircraft 

cannot be seen in the figures shown. '11-ic bending moment distribution on the forward 

wing w, is negative and its magnitude was related to that of tile aft, larger wing. There 

norn-ially was not enough lift generated by the forward wing to offset the load necessary to 

balance the ýiircratt. In designing the tandem aircraft, it is suggested that BOTH wing 
bending moment distributions be monitored to insure that the negative load on the fore 

wing is not to() great as a result ()f setting the optimum bending moment distribution for 

tile aft Wing. 

Table 7.2 lists the single engine tandem wing weight 
reductionfactors determined through the analysis descriheJ 

Two 
Fuselage 

Three 
Fuselage 

0.47 

7B. 2 Tivin Engine Study 

is once again ncccssýiry to note the spcuil nature of the Low Speed I IALF UAV 

; nrcrift. In this instance, it is necess,, iry to note due to the excessive \vcight of tile 
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propulsion system, when compared to other more conventional aircnaft. 'I'll's excessive 

weight has a profound effect on the spanwise wing bending moment distribution, even 

more so for twin engine (non Push-pull) configurations. This effect can plainly be seen In 
Figure 7.5. 

10 Klb Twin Engine Spanwise Bending 
Moment Distribution 

6000 1 
4000 

ui 2000 
0< 

-2000 -20 40 60 so 100 
E -4000 0 6000 
Co -8000 '9 Sfuse Twin 
S . -10000 H 2fuse Twin 

0 - 12000 A 3fuse Twin 

14000 TwinBoorn Twin 

- 16000 

Spanwise Distance (ft. ) 

Figure 7.5 demonstrates the large negative hending moments tit the aircraft 
longitudinal centerline for multiple fuselagelboom configurations for the twin 
engine non-tandem aircraft. 

As seen in the figure for the single fuselage configuration, if the emnnes are pLiced 

properly, they can be used to almost completely unload the wing at tile wing fuselage 

junction. This beneficial effect for the single engine contiguration is equally ýIS detrimental 

to the multiple fuselagc configurations for this class of aircraft. The absolute maximum 
bending moment has increased for the two-fuselage configuration to the p()int where it 

simply would not be worth considering this concept in a twin engine configuration. 
Likewise for the three-fuselage configuration, the absolute maximun-i [)ending moment has 

increased too much for this configuration to be rendered practical frorn a structural 

standpoint. The twin boom configuration, however has moderate enough bchav1()r to be 

considered if strictly from a wing bending moment perspective. It is tl()tc(i, however that 

none of the less conventionýil configurations offer any benefit structunilly for tile twin 

engine configuration, and in fact result in considerable structural penalty. 
Thus for the twin en ine non-tandem confi III gurations, no weight saving factor is 

.,; u, e, gcstcd For the wing weight estimation, and if one were to be included, it \vmild in fýact 
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not be a weight saving fictor, it would be a weight penalty. For the purposes of this thesis, 

however, unconventional twin engine configurations were not considered in the results 

due to time limitations. It is also believed that the wing weight estimation is considered to 

be conservative enough in Its estMition of the weight to absorb any of these differences. 

3000 

10 Klb Twin Engine Tandem Spanwise 
Bending Moment Distribution 

-0 2000 
Z, - 

1000 
r- 
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Figure 7.6 compares the tivin engine landem aircraft spanivise bending 
moment di4ributions and once again highlights the large negative 
bending moments experienced kv the tivin engine configurations. 

The results for the twin engine týuidcrn wing aircral -t can be seen in Figure 7.6. 

The rc; ison this fiqire is included was to demonstrate that the tandem aircraft have slightly 
different behavior due to the relative size of the wings. In this figure, the three-fuselage 

aircrat -t compares reasonably well to the single fuselage tandem. If absolute maximum 

bending moment is considered, the two configurations compare quite well. f lowever, it 

the two are cotnpýircd kised on the total magnitude of the wing bending moment, the twin 

enginc three-fuseLige aircraft would again not compare very well. Once again, the t-, vtn 

engine two-fuselage aircraft performs very poorly based on the absolute maximum and the 

magpitude )f the total wing bending moment, and would not be suggested based on 

structunil consideration,, ýAone. Based on these results, no correction factor is suggested 
for the estini. itY, ii ()f the weight ()f twin engine tandem wing aircraft. 

Thus for the Single FIngine Twin Boom Configuration Wjr,, X = 0.82 Wjv,, X, 
for the Single Engine Two Fuselage Configuration, wtj"'g = 0.53 wjj"'ý"ýl 
for the Single FtigineThree Fuselage Configuration, W; f,,, g 0.82 Wjj,,, g, 
for the Single Fnt', 1ne Two Fuselage Tandern Wing, Wjr,, g 0.53 Wjj,,,, x, 
for the Single F. rigineThree Fuselage Tandem Wing Wjrj,,, ý 0.79 Wjj,,, g, 
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Consequently, the resulting tmmrnum values of wing weight per area are set at 1.23,0.795, 

1.23,0.795, and 1.185 lbs /ft2 respectively. 

Obviously, a more accurate way of predicting multiple fuselage wing weight is desircd. 

It is noted, however, that it would be extremely difficult to create and subsequently 

validate any multiple fuselage weight estimation technique as there are so few examples 

from which to validate these results. No wholly theoretically based method could take 

into consideration the manufacturing methods used in aircraft. It is also noted that the 

paper cited earlier by Udin and Anderson W7 made no attempt to validate their multi 

fuselage wing weight estimation method for multiple fuselage aircraft, they only validated 

their method against existing single fuselage aircraft. 

7. C Fuselage Weight Estimation 

Normalized Fuselage Weight by Method (2000 lb Case) 

1.8 
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Figure 7.7 compares the fuselage weight estimation methods evaluated for use with the 
methodology. The results shown arefor the 2000 lb aircraft case. 

In the evaluation of the best fuselage weight estimation technique to use, 15 different 

methods were compared. The methods that yielded ridiculous values were removed and 
the remaining 13 are plotted in Figure 7.7 for the case of tile 2000 pound aircraft. The 

same analysis was performed for the 20,000 pound aircraft case as wdl. 
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As seen from the figure, the predictions from several methods are well above what 

would be expected for this class of aircraft. Ile average of these values is 0.8724 lbsIfe. 

Based on this average value, it is possible to dismiss the possibility of using certain 

methods if a criterion of plus or minus 15 % of the average is implemented. This leaves 

the USAF method with the Roskarn Correction, Raymer Figher/Attack, Raymer General 

Aviation, and Howe Single Engine methods. 
To arbitrarily assign importance to the average of all of the methods would be remiss. 

However, as mentioned above, some knowledge of what a reasonable value for fuselage 

weight per wetted area is known and described in the many general design methodologies. 0-- 
Raymc? suggests 1.25 lbslfe for a composite general aviation fuselage. Stintoný suggests 

roughly an average of 1.25 lbs1fe for a metal single or twin. From the Ilterature Review, 

an average weight saving for glider fuselages of - 11 % was shown by substituting graphite 
fiber with carbon fiber reinforced plastics. Taking these factors into account, along with 

the fact that the values cited by Stinton and Raymer are at least as old as the glider weight 

saving estimates, the fuselage weight per wetted area average seems more reasonable. 
Applying the same criterion to the 20,000 pound case eliminates the Roskam 

Correction to the USAF method. The 20,000 pound case average of 1.07 lbs1fe is closer 

to but still below those cited by Stinton and Raymer. The fuselage weight is thus 

calculated using the Raymcr Fightcr/Attack, Raymet General Aviation, and Howe Single 

Engine aircraft methods. The methods used are as follows 

Raymerý Fighter/Attack: 
WO. 3'n. 

1, Lf.,, H 0.849 0.685 Wfi. 
e = 0.499Kd,, f fise WýSe 

where K, 4f = 1.0 for non delta wings. 
Raymer' General Aviation: 

-0.072 
use 1.086 W 0.051 fi V2 Wfuse = 0.052Swejw. (null 

to 
r. 177 (21 

cruis, 

Y. 2A' 
t Hfuse 

Pcruise 

and Howe"' Single Engine: 

(7.4) 

(7.5) 

)2., -., 
sl 

1'5 
(2.2) (7.6) Wf. 

se = 0.053[Lf., (Hfi., + wf,,,, 
XO. 3048 

jVde TSI 

where 0.3048 and 2.2 are conversion factors from SI to English units. The fuselage weight 
is calculated by an un-weighted average of the above equations. 

It is, believed. that these methods tend to underestimate the weights of 
conventional light aircraft fuselages due to the fact that they were developed, in general, 
for aircraft with much higher takeoff weights and different construction techniques than 

a 
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those expected for UAV's. It is, however, suspected that UAV fuselage weights per area 

are below those of conventional aircraft making the use of these techniques more 

appropriate. 
The reasoning behind this is that there are far fewer breaks in the critical load 

paths created by the need to maintain traditionally inaccessible instruments and structural 

components. There are also fewer breaks in the critical load paths due to the need for 

human ingress and egress. It is noted that most payloads are supplied on palettes and the 

breaks in the fuselage need only accommodate this and the ability to service and maintain 

the fuselage structure. In addition, the assumption of a skid landing system reduces the 

need for additional weight at a specific point in the fuselage to absorb the impact upon 

landing. 

Obviously there is a lower limit to which this fuselage weight per area can obtain, 

and that will be monitored carefully in the output of the methodology. Thus, a minimum 

value of 0.85 IbIft' was set for the fuselage weight per wetted area. The only way to verify 

whether these assumptions are sound is to evaluate the weight estimation on a 

macroscopic scale as applied to Low Speed HALE UAV aircraft with known empty 

weights. Although this does not validate the component weight breakdown, the actual 

exact breakdown of weight of the components is not necessary at any stage in this 

methodology. Once again, it is the relative weights of components that will become more 

important in the comparison of the various configurations. 

It is expected that the fuselage will be sized by its ability to resist the moments 

created by the tail, payload, and fuselage mounted engines, since there is no requirement to 

pressurize the aircraft as it is unmanned. It is a matter of curiosity to mention that the 

Grob Strato 2C actually had two separate pressure vessels inside of each other in order to 

accommodate habitation at high altitudes. Obviously the weight penalty from this type of 

approach is not necessary for the UAV. 

A factor of 10% is multiplied by the fuselage weight of the Single Fuselage 

Tandem Wing configuration, in addition to an increase in the diameter of the fuselage. 

This was done in order to combat the greater torsional stress on the fuselage resulting 

from the possibility of opposing moments acting on the fore and aft wings due to an 

asymmetrical gust loading. The Multi Fuselage Tandem Wing configuration was believed 

to have sufficient structural rigidity built in to not require the addition of structural weight 
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Finally, no weight saving is assumed for the fuselage in the case of the multiple 

fuschge configurati(m. This was done as a result of the increase in wing fuselage junction 

weight which would likely offset any benefit in overall structural rigidity supplied by the 

multiple fuselage configuration. 

7. D Horizontal Tail/Canard Weight Estimation 

A slightly diff-crent approach w-, is t,, ikcn to the sclection of the horizontil tail weight 

estumition methods. In this application, a sensitivity analysis was performed on the 

equations hased on moment arm length (given the difficulty in defining moment arm 
length for many of the configurations), Vd, 

, n,, j, , thickness to chord ratio, and '/4 chord 

sweep angle. 

Variation in Normalized Horizontal Tail Weight for Different 
Methods 
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Figure 7.8 is a comparison of different horizontal tail weight estimation methods and performs a 
sensitivii), on the most relevant terms to the application of the methodology, againjor the 2000 lh case. 

Once ag'aln, the results for tile, 2000 pmind c', isc are presented. It should be noted 

th,, tt the results for the 20,000 pound case tend to be much more reasonable as the design 

references they corric fron-i are more appropriate to larger, heavier aircraft. The results for 

the 2000 pound case are presented since they are more c(-)ntroversial and prompt 
diSCLISSion ()f the limitations atid problerns associated with using these weight estimation 

methods. The average horizontal tail weight for the 2000 pound case In I ýlgure 7.8 is 1.171 

excluding the Roskam (2) method. '1'()renl)cek 7 states that the weight of the tailphine is 

tl(ýrrn, illy between 3.5 and 4 percent ()f the aircraft empty weight. WAc there is no 
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guarantee that this aircraft will share the same fractional weight, it provides a "ball-park" 

estimate to indicate if the value is reasonable. Assuming a 40 percent structure fraction for 

this aircraft (2000 lb), that would result in a 28 to 32 pound tall. With a horizontal tail area 

of 34.1 ft2, this gives a value of approximately 0.9 lbs / ft2. This value appears to be a bit 

below that expected. 

It can be seen from the figure that all of the methods are fairly insensitive to 

changes in the moment arm length of over 15 percent. In fact, with the exception of the 

Roskam (2) method, there is almost no noticeable change as a function of moment arm 

length. This is an important result relating to the calculation of the horizontal tall weight 

estimation for the alternative configurations. Overall, the methods show the greatest 

sensitivity to the ultimate load factor first, and the design diving speed second. This result 

also follows reason and common sense as they are also the most structurally relevant 

quantities. 

Given the average weight per area of 1.171 IbS / ft2' the down-selcction process 

needs to be performed to limit the weight estimation to the most reasonable solutions. 

Unfortunately, the limiting process used for the fuselage cannot be applied to the 

horizontal tail. The variation in the values about the average for each method for the 

20,000 pound case (average of 2.366 IbS / ft2 horizontal tail weight per -area) is cornpictcly 

different from the variation in the 2000 pound case. 

A compilation of values of planform area normalized horizontal tail weight for 16 

gliders introduced between 1975 and 1983 fromThomas" gives, an average of 1.416 lbs/ft2, 

and a standard deviation of 0.254 lbs/ ft2. The minimum value was 1.01 1bs/ft2 and the 

maximum was 1.84 lbs/ ft2. It is thought that these values represented the state of the art 

in composite construction techniques up to 1983. In the 17 years that have passed since 

the time of the most recent of those gliders (DG 300, ASK 23, LS 6, and Ninibits 3/24-5), 

there is little doubt that composite construction techniques have advanced considerably. 
This advancement makes the values predicted using the composite horizontal tail weight 

estimation method described here easily obtainable. 
In this instance, a composite of threc different methods is used to reproduce 

values close to the average in a repeatable manner. The Raymer (3) method which is a bit 

low, the Howe UAV method which is reasonably close, and the Roskam (1) method which 

is moderately high. This composite of methods results in a value of 1.25 1 I)S / ft2 for the 

2000 pound case, and 2.34 lbs/ft2 for the 20,000 pound case. It is noted that the 
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difference in these two values is a little perplexing. It is expected that the average weight 

per area would be less for the higher weight aircraft, however this was not the case. One 

possible explanation is that as the honZontal tail area increases, the structure necessary to 

resist the forces on it must increase in density. In any event, the equations used for these 

three methods were as follows : 

Raymer' General Aviation Method (p. 404) : 

WIIT 
= 0.016(n,,,, W,,, ) 

0.414(l 1168 0.896 
100 -0.12 

AR )0.043 

A-0 . 02 
:T PcruiseVc2ruise IIT 

cos A IIT Cos 2A 
IIT 

11T 

Where All-1- is the leading edge sweep angle. 

Roskam' (Forenbeek) Method (Pt. V Ch. 5 p. 73) : 

(7.7) 

sO. 2 
W117' 

-, 7:: KHTSIIT[3.81 HTvds 

-0.287 (7.8) 
1000(cosA Y2HT 

YI 

where K,,,. = 1.0 for a fixed tail and Kirl. = 1.1 for an all moving tall. 

And the Howe"" UAV method: 

bliTSIIT 1+ 2Ä11T W,. n�, t 
0.3 

de% 

09 

WIll, --:: 0.8(0.028 n 
. 2.2 (7.9) 

cos At 
, li, - 

3+3 IlliT SHT 
r 

Once again, an un-weighted average of these numbers is used to calculate the final 

horizontal tail weight. A minimum weight per area was set at 1.0 lbs/ ft2 based on the 

gildcr data. 

At this stage in the methodology, it is useful to note that if a Tandem Wing 

configuration is being analyzed, that the weight estimation is performed as if it were 

another wing, and not via the horizontal tail/canard weight estimation techmques 

mentioned here. No weight saving was considered for the horizontal tail of the multi 
fuselage or twin boom configurations. It was believed that the decrease in weight resulting 
from the horizontal tail being supported on two sides would be offset by the additional 

weight of the hardware necessary to fix both ends of the tail. 
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7. E Vertical Tail Weight Estimation 

An malysis similar to that of the horix(mital t-, ul -was pci-formed in ()rdcr to detcrminc 

pC the most suitable weight estimation methods to implement in this methodology. 1"IgLr 

7.9 shows the results for the 2000 pound aircraft case. Once ýigain, the moment arm 

length was varied due to the ambiguity in the definition of moment arrn length for tile 

vertical tail. Once more, the methods tested were essentially insensitive to re-asonably large 

changes in moment arm length. 

Variation in Normalized Vertical Tail Weight by Method 
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Figure 7.9 is a comparison of different vertical fail weight estimation methods and performs a 
sensitivi(y on the most relevant ferms to the application of the methodologj,, againjor the 2000 lb case. 

In 'Adition, the inethods tested showed slight sensitivity to variet(mis in '', chord 

sweep angle and thickness to chord ratio. The most sensitivity was sho%vn in the ýireas of 

ultimate load factor, design dive speed, and for the muthods that considered it, the use of a 

T-tall instead of a conventional tail. These results wcre expected, with pcrli, ips the 

exception ()f the T-t. iil- 'Ibis was a bit ()f a surprise, howcver undcrstýindable when viewed 

from a structural point of view. With the T-tall config), uration, the fin provides a l()ad path 

for the horizontal tail loads and the end plate effect increases the fin hending 111()n1clit for 

a given yaw angle. 

The difference between the average N-Aue for the 2000 p()und and 20,000 p(aind cases 

was much smaller for the Vertical Tail, with the 2000 p()und ýivcragc ()f 1.01 ll)/ft2 and the 

20,000 pound , iverage ()f 1.51 Ib/ft2. A'911n, n()nC ()f tile nICtlI()ds wcrc 'Ipplic-able al()IIC, 

so a composite function was inade. up ()f -a non-weighted -, iveragc ()f 2 different nictliods. 

Thus, the niethods used were I 1()wc UAN' ýind Nicolai/Anderson USAF. The c(, tnl)()site 
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value for the 2000 pound case was 1.05 lb1fe and the composite value for the 20,000 

pound case was 1.53 lb/ ft2 . The 2000 pound case value (1.05 lb/ft) was set as a nunitnum, 

allowable value for all vertical tail weight cases. It is not expected that a vertical tail can be 

produced much below this weight per area as seen from the horizontal tail glider data. In 

general, however, the equations used were as follows: 

Nicolai'/ Anderson USAF (p. 20-17): 

n,,,, W,,, 
0.87 1.2 

bvT 
0.5 . 458 

WvT 
= 98.5 

[ 

100000 100 tVTroot 

where tvir ... ( is the thickness of the vertical tail at the root. 

Howe 109 UAV: 
-0.2422 

. S1.3 Vd0 18 12 

-2.2 
WýT= 0.8(# Fins)(0.11156 Lfuse v L, j 

Agam, the factor of 2.2 is to convert from kilograms to pounds as A of Howe's equations 

are in ST units. 

Unfortunately, neither of these methods takes into account the tail configuration. The 

only equations that did take tail configuration into account, however, either severely over- 

predicted or under-predicted the vertical tail weight in the useful range for the Low Speed 

HALF UAV (when compared to existing glider tail weight data from Thomas). Although 

other methods take more design variables into account in their equations, the results they 

provide arc not suitable here as seen from the preceding analysis. The next weight to be 

estimated belongs to one of the heaviest components of the aircraft. 

7. F Engine Weight Estimation 

Care must be taken when selecting an engine weight estimation method. Several of 

the methods will include accessories, while others neglect them. For a component that 

weighs as much as an engine, these onUssions or inclusions can make a significant 

difference in the final weight estimate. Once this difference is taken into account, the 

weight estimates provided by the methods evaluated are some of the most concordant 

when compared to the other components of the aircraft. 

An analysis similar to the previous components was undertaken. This time, the' 

installed engine and accessory weight was normalized by the most appropriate quantity, 
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horsepower output. The results for the 2000 pound (70 1 IP) and 20,000 p(Aind (350 111) 

Twin) installed aircraft engine weight estimates can be seen in Figure 7.10. The average 

for all of the methods for the 350 1 IP case was 3.93 ibs/I IP and for the 70 1 IP cýlse was 

3.46 lbs/1-1P. 

Norrnalized Engine and Engine Accessories Weight Estimation 
Comparison 

CD 
Z 5.0 2000 lb 0 350 HP ý0 70 HP 20 Klb 1 

Avg = 3.83 
1 P 3 , , ý 

3 4.5 
; 

4,0 FI 

VI 35 Avg 3.65 

3 0 A yg = 3.46 
. 

-U 
HP 

Z5 

2.0 

1.5 
1.0 

0.5 

0 
z 

0.0 
Tofenbeek Torenbeek Torenbeek Raymet (1) Raymer (2) Poskam PtV Niwlai p -20 1 I(Aw, 

(2) (3) Ch6 5 

Figure 7.10 is a comparison of different engine weight estimation methodsfor both the 2000 lb 

and 20,000 lb aircraft cases. 

This result runs contrary to what would be expectc-d. It Was thoUght that thcre 

should be an economy of scale with larger internal combustion reciprocating ci-igines, 

however that result does not appear to be true In the nange considered for ýill hut vw(ý of 

the methods tested. Many of the methods shown in the figure rely on inimil estimates of 

engine weight and then subsequently predict the installed engine weight. There Is little cisc 

remarkable about this figure, except that it can be seen that the results from Roskain 

markedly reduce the overall average for the 20,000 pound cisc. 

Roskam' (Pt. V, Ch6, p. 84) proposes a simple method for predicting engine weight 

alone which is simply a constant times the I IP required. The only (aher method 1)roI)()sccl 

, gested by for engine a](-)nc weight was sutý T()rcnhcck 7 (p. 286). The difficulty with Lising 

this method is that it is a function ()f the number and N, ()Iuin(- ()f cylindcrs for the engine. 

This information is not always av,. iflab1c, however it was found to predict the weight ()f 

engines quite accurately when this information is known. Raymer' (p. 405) presents , in 

enPile (alone) weight estimation technique for several types ()f engines. It is simil, ir in 

appearance to the engine length and width prediction techniques menti(owd in Chaptur V, 
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Section 5.2. Thus, for reasons of versatility and ease of use the Raymer engine weight 

alone method was used. This relation is of the form 

W, 
ngine= a( Hp)b (7.12) 

where h is 0.780 for both in-line and opposed engines, and a=5.47 for opposed engines 

and a=5.22 for in-linc engines. 'I'lie resulting characteristic curve can be seen in Figure 

7.11 

Engine Weight Variation with HIP 

650 ---- - -- IýI 

600 
Opposed 

550 InLine 
TCM 10-550G 

500 
Radial 

450 
TCM TSIO-550 

400 

.0 350 

300 
ycoming 0-360 

250 
Rotax 912 

200 

150 Rotax 914 

100 --- 
50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 

Horsepower 

Figure 7.11 compares Rtqmer's engine weight estimation method nith some known 
aircraft engine on4j, (uninstalled) weights as afunction of horsepnver output 

As seen in the figure, the graph for opposed engines is reasonably accurate for 

known engine only weights within the range expected for the Low Speed UAVand 

it was tills tnethod that was used. Therefore the installed weight correction methods 

remain. At this stage, it will he pointed out again that if engine information is known by 

tile designer, it can be specified in place of these prediction techniques without any 

difficult)'. 

F()r the installed engine and accessory weights, the methods selected were 
lUvrner/Nicolat, and Torenbeek 7 (3, p. 286). Raymer's' General Aviation method of 

installed engine weights (p. 405) is the same as Nicolai's' (p. 20-. 5) USAF method for 
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light/utility aircraft which does not include the fuel system, but does include the mounting 

and induction-The Raymer/Nicolai method is as follows: 

922 W,. 
gine, installed = 2.575 - 

on 
"ne 

(7.13) We'ngi 

Torenbeek's method is the surn of the accessories /drives /gearboxes /air 

induction/exhatist/PP controls, Supercharger, Oil system and cooler, Prop Installation, 

and engine weight and appears as follows: 

Wengine, 
installed = 1.03(1.2 - 

Nengines 
' Hpý. 7 

+ 0.455(NenKines * Wengine 
ý 943 

+ 0.03Nengineswengine + 

0.144Nprops [1.2D HP-N 0.5 ). 78174 
+W 

prop blades engine 

(7.14) 

where 
Nengs is the number of engines, Np,, ps is the number of propellers and Nbl 

.. 1,, is tile 

number of blades per propeller. 

Once again, it will be difficult to validate the engine Installed weights for Low 

Speed HALE UAV's since no data have been published on this subject. Thc only way to 

validate these results is to compare the uninstalled weights for known engines (Rotax 912, 

914), some of which have been used in HALE UAV's with additional turbo-charging and 

supercharging. In addition, once the installed engine weights have been calculated, a factor 

of 1.5 is multiplied by the installed engine weight. This number is relatively arbitrarý,, 
however there has been no analytical indication in the hterature as to what a reasonable 

increase in weight would be. This factor is used to make tip for the weights of radiators, 

modern supercharger and turbocharger weights, air induction and intcr-co()IIng weights, 

and other assorted miscellaneous added weights for the Low Speed IIALF UAV 

powerplant. Thc next step Is to determine the weight of the engine fairings. 

7. G Engine Nacelle Weight Estimation 

At this point in the wcight cstitnation, fcwer nicthods arc available in the cotiitll()ti 

methodologies for the prediction of the remaining component weight.,. The existing 

methods will be compared and included if the results were thought to be reasonable. The 

engine nacelle weight estimation was evaluated on a per wetted area basis, for the 2000 and 

20,000 pound aircraft. The results can be seen in Figure 7.12. 

Once more, the result of lower normahzed nacelle weight for the lower weight aircraft 

was not expected. One possibility is a change in the materials used for constructing 
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nacelles abovc a certain weight, however this is thought to be unlikely. In general there is 

much bet-ter agreement between the methods across the various types of aircraft 

considered. A comparison was also undertaken based upon Nacelle Weight normalized by 

aircraft takeoff weight, however this yielded less useful results and greater variation 

between methods. 

Given the výirtcty ()f different possibIc engine conflprations f- or thc present 

methodology, four of the above methods were used depending upon the configuration. 

Wierc appropriate, similar equations were aver-aged. For example, it is possible to have a 

Single Fnpine Light Aircnift with the engine mounted in the nose, and also have an engine 

mounted on the main structure. In this instance, the results of these two equations are 

ýivcragcd. It is noted that the logic for deciding which of the equations to use in a 

computational environment is complicated. A decision that a designer can make in an 

instinctive manner, essentially instantaneously, can be slightly more arduous to repeat in an 

automated fashion. The equations used were as follows : 

T(wenbuck' single engine light aircraft (p. 283) 

ffýiacelle 

- 2.5HP 12N 
en. ýines 

and T()rcnbcek Nfulti F, tiginc aircrift (p. 283) 

W 
nacelle - 0.32HP - 

N, 
ngines 

where is the number of engines. 
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Howe"' suggests this equation for main structure mounted nacelles : 

WP7, 
Jcelle - 143Wý���, (7.17) 

And this equation for wing mounted pod nacelles (Cranficid (', (ýA Iccturc N(, t(-s) : 
W 

macelle = 0. (7.18) 

7. H Fuel System Weight Estimation 

Normalized Fuel System Weight Comparison 

0.07 

0.06 -ý1120001bý 
020KIb 0.05 

0.04 
Average 0.03145 

0.031 

E 
( (L, L) 0.02 

(1) 0.01 
7F) 

0 

Toientx,, ek Torenbeek Raytnei (1) R, iViwi (2) Nwolai (1) Nic,, hi (2) R,,. k, IITI Ro-*mii 
(1) (2) Cesmia (1) Curssna (2) 

Figure 7.13 is a comparison of tfifferenffijel, ýystem weight estimation methods 
normalized ki, aircraft takeoff )veight. 

The fuel system weight cornpýtrison was normalized Imscd on mi-craft takeoff weight. 

The results can be seen 'In 11, igurc 7.13. On this basis, the differcticc bo-wcen the averagc 

of the 2000 pound case and die 20,000 pound case wýis quitc sniall. The 2000 I-mund 

average was 0.03107 
lb(Fuel, ýV. Vlem Weight) 

and for the 20,000 p, und cýisc 0.03183 

lb(FuelSvstent Weigh I 

lb(Takeqf VIVeight) 

lh(Takeofflf'eýghf) 

Of the inethods considered, tile Raymcr(l), Nicolal(l) mid R(), skmn 

Cessna (1) mctliods wcre sclected as the rriost appropt-Litc for the ], (ýw Specd I 
From the fiuýurc, the remaining metll()(is cither ()N, cr (w under prccilct thc wulght by too) 

Lirge 'a margin. The equations used ýirc ýis follows : 

Raymer's' General Aviation fuel system weight estitnati(m (p. 40-5) : 
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-0.363 

Wf., Is, vs , ": 
2.49VO. 726 I+ 

Vf., 
I/integral N 0.242 N 0.157 (7.19) 

fuel Vfuel tanks engines 

where Vf,,, l is the total volume of fuel, Vfuel/integral Is the volume of fuel in integral fuel 

tanks, and 
Ntanks Is the number of tanks. 

Nicolai's' estimation is a combination of the Self Sealing ceU weight plus the fuel system 

bladded cell backing and supports (p. 20-7) : 

WfsCornponents 
= 7.91 

Vf., 
l / wings 

+ Vfi,, 
l / fuselage 

0.854 

(7.20) 
100 

Wjuelsys 
= 41. 

Vf., 
l / wings 

+ Vfuel 
/ fuselage 

0.918 

+w (7.21) 
loo 

fsComponents 

And fitially Roskam's' Cessna Method (Pt. V., Ch. 6., p. 90) : 

Wf., jsv, : -- 
0.4Vf,, 

el (7.22) 

7.1 Electronics /Avionics/ Instruments Weight 
Estimation 

This aspect of the weight estimation represents the most disparate grouping of 

IIII ferentiate exactly what the we' equipment. This makes it more difficult to dcfine and dif ight 

is being estimated for. I ̀ Igure 7.14 has been created comparing the different groupings, this 

time normalized based on aircraft takeoff weight. Several of the categories plotted are 

actually sub-categories of other methods shown. As a check on the overall magnitude of 

the values obtained, Rayrner states that avionics weight ratios 
"ýIertronirs 

in the range of W. 

0.01 to 0.04 are to be expected for single and twin engine general aviation aircraft. 

Without knowing beforehand exactly which instruments or what types of avionics 

will be placed in this aircraft, it is difficult to apply one of the component buildup methods 

for weight estimation. Therefore, estimation methods based on the overal-I 

cicctronics/aN, ioiiics/iiistrumetit weight have been used. The two Torenbeek methods 

were used (greater than and less than 12,500 pounds), and the General Dynamics method 

taken frorn Roskam was also used. The equafions appear as follows : 

Chapter VII 182 Detailed Weight Estimation 



Design Methodology. for Low Speed HALE UA Vs 

Normalized Electron Ics/Avionics/Instu ments Weight Estimation Comparison 

0.04 
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0.03 
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Torenbeek Roskam Nicolai 
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Figure 7.14 compares different electronics, avionics, and instrument weight estimation melhodsJor 
both the 2000 lb and 20,000 lb cases. 

'1'(-)rciil)cck' for takeoff weights less than 12,500 pounds ( p. 289) 

- 40 + 0.008W, (7.23) 

and for weights greater than 12,500 pounds : 
W, 

lectronics - 120 + 20N,, 
glýle, + 0.006W, (7.24) 

And the General Dynamics method taken froin R(, sLirn' (PtA' Chapter 7,1). 103) : 

0.032W�, 0.006W�, 
"' +O. 012W�, (7.25) 1-5 ++ N�""", 5 -f + 0.15 

1000 
1 

1000 
j 

1000 
7. j Surface Controls Weight Estimation 

The final major aircraft component group to be considered for inclusl(m In tile welght 

estirnati(-)n for this 'nethodol(), gy is the surface controls, ()r tile weight ()f tile 

controls/actuators and the control surfaces that they move. Slmll,, ir to tile electronics 

weight estimation, there are several different sub-c', itegorles within the weight estllllýltl(fll 

of the surf-ace controls. Once more, it is impossible to know beforchand w-lictlicr or not 
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the ýiircnift will have dual or single systems, and whether or not a normal auto-pilot weight 

would suffice to estimate the weight of the controls for an autonomous drone. 

Normalized Surface Control Weight Comparison 

0.045 -- 02000 Ib Case 
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IS 20 KIb Case i 
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- -- 

Avg 0.02202 2M 
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4, "'0 v, Ide 

qj 

< 
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, ýý , 1ý " 1ý11 (2p 1 

CýT- 0 
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Raymer 
Nicolai 

Torenbeek Roskarn Howe 

Figure 7.15 compares several different classes of surface controls, their associated 
weights, and the results of'these methods when appliedto the 2000 lb and 20,000 lh cases. 

it is noted that any inethod selected will most likely under-predict the weight of these 

systems (due to the control requirements of 'a UAV as compared to a manned aircraft), 

however it was thought better to include some estimate for the weight of these 

components than to CXCILIdC thcm altogether. In addition, even though the surface 

controls systems for a Low Speed IIALE UAV may not compare well to those of a 

general avI', ttI()n singic, there is the possibility that the systems to be used on a HALE 

UAV inight compare well to those on a fighter or bomber. PILIS, the evaluation was 

undertaken ()nce more. The results of the comparison can be seen in Figure 7.15. 

The componctits \vcrc normalized by the aircraft takeoff weight. 'I'lie averages for 

graph. Given the difficulty of deciding on any single cach weight class are marked on the ,IIII 
method, a composite or average of methods will be used in order to try and maintain a 

reason-A& value for the weight. 'I'lic methods used in the composite were the Torenbeek 

(Duplicate Powerud C(ýntrols, Single I lydraulic Power System), Roskam General Aviation 
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Flight Controls Weight, Howe's Powered and Manual flight control weights, and Nicolai's 

Commercial/Military Cargo/Troop Transport control weights. 

The equations were used as seen below: 

Torenbeek' (p. 284) : 

(7.26) Wcontrots 0.42WO . 65 

Roskatn' (Pt. V., Ch. 7., p. 100): 

ýý-ontrol, 0.0 1 68W,,, (7.27) 

Professor Howe's")8 Course notes (Cranfield CoA) 

Howe Powered W 0' 11 
ýý- ) 0.8 

2.2 (7.28) 
2.2 

"I 

0.75 

Howe Manual W(ontrols 0' 1- W", 
2.2 (7.29) 

2.2 

And Nicolai' (p. 20-19) 

2 915 

ontrols - 15.96 2P (ruiu, 
Vi 

misewto (7.30) 
1 

100000 

1 

While the analysis used for the down-selcaton of the wcight estimation inct-hods 

employed for the last few components (Surface controls, I'llectronics, etc) did not make 

clear any given choice over another, a choice had to be made, or the component would 

have been left out of the estimate altogether. An attempt was madc to try and quantify the 

differences between methods where possible. Where this was not possible, or no other 

justification for differentiation between methods could be determined, a composite of 

available methods was used, rather than the selection of only onc. It is hoped that this will 

reduce the amount of error encountered by tile overall methodology in the absence of 

better estimation methods. It is noted that the weights of these last few components arc 

qwte small (a combined total of less than 3 percent) relative to tile takeoff -,,,, eight of the 

aircraft. Thus, a more accurate weight estimation nicthod would have a Impact 

on the total aircraft weight. 

With the component weights and locations now determined, it is possible to 
daerminc the aircraft center of gravity, and subscquently the aircraft static margin and 

trim characteristics. These topics will be covered in the next chapter. 
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Chapter VIII 

Ae only limits are, as always, 

Those of vision 
James Broughton 

8. Center of Gravity, Static Margin, and Trim 

These three topics arc all interrelated and are calculated in sequence in the present 

methodology. Without knowing the exact mass distribution within the individual aircraft 

components, it is difficult to determine an accurate estimate for the center of gravity of the 

respective components. There is a large statistical database of existing center of gravity 
locations within components, and the results found from this database are primarily what 

will be used in the present methodology. 
The static margin relies rather heavily on the value of downwash gradient in the 

wake experienced by the tail in conventional configurations. The difficulty in finding a 

reliable source for this value will be discussed briefly as well. Finally, the trim drag penalty 

is calculated and the endurance recalculated based on trimmed flight. The value for final 

endurance is compared to the endurance recalculated just prior to the trim calculations. 

This ensures that the most recent values of drag, lift, and weight are used in the 

dcterminafion of the pre-tritn endurance that is compared to the trimmed aircraft 

endurance. The discussion begins with the methods used to deternime the center of 

gravity of the various aircraft components. 

8. A Aircraft Center of Gravity Calculation 

Fvery major component considered in the weight estimation needs to have a center of 

gravity location associated with it. Many of the methods seen in the literature calculate a 

center of gravity for a combination of the fuselage, engine, and vertical and horizontal tails. 

Chapter VIII 186 C. G., Static Margin, and Trim 

i 



lksign Methodologyfor Low Speed HALE UAV's 

These methods were obviously avoided for the present methodology given the wide 

variety of configurations considered. 

Since the methodology at present considers only longitudinal stability, the component 

lateral locations of center of gravity will not be discussed. The values found for center of 

gravity location in the common methodologies can be seen in Table 8.1. 

Table 8.1 lists the different component center of gravity locations cited by the 
respective aircraft design references. 

Torenbeek" 
(p. 294) 

Raymer' 
(p. 398) 

Stinton" 
(p. 384) 

Roskam5 
(Pt. V. p 114) 

Wing Straight 38-42 F. 4 0'/o c 40% c 38-42'/, o c 
Swept 70% front /rear sp r dist 70% front /rear spar dist 

Fuselage w/ engine 40-50% Lt,,,,, 40% Lf,,,,, w/ engine 
Horizontal Tail 42% 'ýIIT 40% c-,,,. 42% 

Vertical Tail 42% C-v[, 40% C-vl 42% EvI, 

Engine 40-50% L, nu 40% L,,,, 
Nacelles 40% Lnacelle 140-50% Lnaceflo l 

40% Lnaceflo 

All valucs cited in the table arc from the front of the respective compoticnt. It 

would appear that if the center of gravity of a giVcn aircraft component were unkno), vii, 

that a value of 40"//(, of its length measured froin the front would be a good estimate from 

the TabIc. As mentioned, the problcm with flic Toreilbcck and Roskam fusclagc centcr ()f 

gravity estimations is that they include the engine in the fuselage and dit's was not 

appropriate for application within the present rncthodology. 

The designer has the option to enter the engine center of gravity locatloii relatlVc 

to the front of the engine from manufacturers' data. The center of gravity 1()cation ()f tilc 

fuel in the wings was assumed to coincide with the wing center of gravit-N location. It was 

found after applying a more complicated prismoIdal shape volume estimation method that 

the values rarely varied much from this value so the calculation was renio%, ed. 

Furthermore, the calculation required the assumption of exact locations for the front and 

rear main spars are values that are not always easy to derive ftom aitfoil data. 

Roskarn provldcd an estimatc for the tall boorn center of gravity location of 

-n the most fonvard structural attachment between 40 and 45(' of boom length starting frot 

point of the boom. For this methodology, the reference zero location was taken as the 

foreword-most point on the aircraft. This point was normally at the nose of one of the 
fuselages/booms. 
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It would appear from the table that the application of this reasonably 

straightforward information should be simple. This, however, was not the case. The 

various engine locations resulted in logical constructs to determine exactly what type of 

nacelle was being used (-, ving mounted, fuselage mounted, twin, single, push-pull), all of 

which had different implications on the center of gravity location in the overall aircraft. 

Along with the problems encountered in locating the engine nacelle center of gravity 

location is the problem of locating the engine center of gravity location, depending on the 

engine location on the aircraft, for any given configuration. This kind of problem will be 

discussed in more detail in the Implementation chapter. The difficulties dealing with 

multiple fuselage/boom aircraft, tandem wings, split fuel locations etc. win also be 

discussed. 

Before the overall aircraft center of gravity can be calculated, the location of the 

pavload and payload center of gravity must be specified. Based upon the fuselage with the 

most volume available, the payload can be placed anywhere within that fuselage as long as 

it is not in conflict with the engine location. The designer is prompted for the payload 

location, payload length, and payload center of gravity relative to the front of the payload. 

These values are then verified as physically possible (for example, not outside of the 

fuselage, or in conflict with the engine or end of the fuselage). Once this information has 

been input, the center of gravity of the entire aircraft can be calculated. 

It is noted that several of the elements considered in the weight estimation were 

not considered in the center of gravity calculation. It was thought essentially impossible to 

determine values of center of gravity for the surface controls and electrorucs beforehand. 

Since their weight Is nominal and no reasonable estimate could be made for their location 

(much less their center of gravity location) they were omitted from the center of gravity 

calculations. This will have minimal impact on the final results. An example of the Center 

of Gravity and Static Margin Summary dialog box is provided in Figure 8.1 in order to 

providc some idea of the detail of the feedback to the designer. 

Hic discussion of the aerodynamic center and static margin values in Figure 8.1 is 

1cft for the next section. It can be seen from the figure that values for aircraft takeoff 

weight (full fucl) center of gravity and aircraft empty weight center of gravity are provided. 

This gives sufficient knowledge of the fore and aft center of gravity limits of the aircraft. 

In addition, the designer is provided with the individual component center of gravity 

mornerit arm lengths (measured from the front of the aircraft), and the total moment due 
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to each component. 'Mis information can be useful in redesigning the aircraft or re- 

placement of aircraft components to provide a more advantageous mass d'strtl)utl()Il 

throughout the aircraft. I'lie strongest argument for this would be if the aircraft IiA too 

large a center of gravity shift in its present form, or if one single component was causing 

the majority of difficulty in making the aircraft longitudinally stable. 

StaticMargin w/Full Fuel Load -0 1219 

Static Margin w/Zero Fuel Load -00381 
Aircraft Aerodynamic Center Location 7 06 Feet from the Nose 

Wing/Fuselage Aerodynamic Center Locabon 590 Feet from the Nose 

Center of Grm/ity Location w/Full Fuel Load 6 136 Feet from the Nose 

Center of GrwAty Locetion w/Zero Fuel Load (AA CG Limit) Feet fro rn the Nose 

Wing 

Fuselage 

HorizontalTail 

Vertical TtO 

Engine #I 

Engine #2 

Engine Nacelle(s) 

Paýdomcl 

Fuel 

Totals 

631 1 GOB 41 

9.90 ?. 18.92 

20.07 859.40 

`14 ý7 19.41 671.09 

1.06 398.04 

0,66 12.95 

13.35 267000 

631 5051.54 

182D 17 Piju M 

OK 

Figure 8.1 is the Center of Gravi4, andStalic Margin Summaq dialog box. It provides 
enough dclail to identif j, which components pose c. g. or static margin problems for the 
fullfuel, or empýy weight phase. 

After this dial()g box is cl()scd, tile designcr is returned to thc aircl-A -I ge(mictry 

specificatio-m window, and any of the aforementioned cha-ngcs can be ni-xic. This pi-()vIdcs 

excellent visual IzatI() n ()f the problem parameters ýmci their varjýatj()n to the desig-ticr. In 

addition, the aerodynamic center and fore and aft centur ()f gravity limits arc drýi%vn on the 

aircraft for added visualization. The discussion on the determination ()f this value is 

covered in the next section. 
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8. B Static Margin Calculation 

The first value necessary in the calculation of the aircraft static margin was found in 

the previous section, the aircraft center of gravity. This was calculated for both the takeoff 

weight and the empty weight, in order to provide some feedback to the designer as to the 

scale of the change in aircraft handling characteristics throughout the flight. Likewise, as 

seen in Figure 8.1 the static margin is calculated for both cases. 

In order to obtain an estimate of aircraft aerodynanuc center for the large variety of 

configurations considered, the methods used must be widely applicable, and not stricken 

with limitations that would prevent their use with some of the less conventional 

configurations. These relations will be presented in the order in which they are calculated 

beginning with the wing downwash gradient. 

It should be pointed out that the method of determination of wing downwash 

gradient included in this thesis was not the first choice. An attempt was made to use the 

vortex lattice method to provide wing downwash/upwash data at the location of interest 

(tail, canard effects on wing, tandem). In principle, it is not difficult to extract the wing 
downwash information from the Vortex Lattice Method. The same vortices that are 

integrated in the determination of lift induced drag create the downwash of interest. The 

difficulty arises in the dctern-unation of the gradient in downwash with angle of attack. In 

order to obtain the value of downwash angle at another surface, several values of angle of 

attack must be considered. Once again, the time required to perform these calculations 

increases too quickly for it to be considered for use with the present methodology. Thus, 

more traditional methods must be considered. 

The FSDU data sheets were considered as a possible source of downwash gradient 

information. It is, nevertheless, clear from the limits on aspect ratio that any estimation of 

these quantities would have to originate from a gross extrapolation of these data. The 

maximum aspect ratio considered in the creation of the graphs was 12. This is practically 

one half the aspect ratios common in Low Speed HALE UAV's. Furthermore, a brief 

look at the graplis will demonstrate that the variation in some of the curves cannot be 

Justifiably or reliably extrapolated to the extent necessary. 

Thus, the only available methods that remain are those in the common design 

methodologies. The linl1tation on the accuracy of these methods is not thought to be 
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incompatible with the remainder of the present methodology. The most detailed method 

available is from Roskam' (Pt. Vl, Ch. 8., p. 272). 

de- 
- 4.44 K� KÄ Kh cos A') 

y2 1 1,1, ) 
cla 1m 

da 

1 

/V2 clalm=o 

Where 

K,, 
AR I+ AR"' 

KA = 
10 - 3A 

7 
2L, lv, 

Kh 1 
ZJIT 

bb 

,8 
(1 

_M2y2 

claim=0 

Where Z11T IS the height of the horizontal tail relative to the wing height 

(8.1) 

(8.2) 

(8.3) 

(8.4) 

(8.5) 

(8.6) 

Ibis equation can 

be used for every configuration except the canard. In the instance of the Tandem Wing, it 

is applied to the forward wing. 
For the canard configuration, several papers have bcen published on the subject. 

Mueller 92 stated that as long as the canard is 2 wing chord lengths alicad and the wake does 

not impinge directly on the main wing, these jupwashl effects are generally small enough 

to be ignored. A visual inspection from Roskam (Pt. V I, Ch., S, p. 274) shows this to be true 

as well for the wing/tandem distances being considered. In addition, Nicol"11' suggests 

de 
-setting da 

0. A more detailed analysis would need to be undertaken in order to 

detertrune the canard downwash/upwash effects of a specific configuration. A number of 

papers were mentioned in the Literature Review that refer to more detailed evaluations for 

the canard effects. It is thought that for early conceptual design, however, that setting 

canard upwash effects oil the main wing in the aerodynamic center calculations equal to 

zero is appropriate given that 
d,, 

will likely be small for the canard configurations dal 
...... 

used. This assumption should be valid tip to moderate shifts in the center of gravity III 

flight. It is mentioned that the lift induced drag effects have heen considered for the 

canard effect on the wing and vice-versa by the N, ortex lattice method implementation. 
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The next step in the process is to determine the propeHer slipstream effects on the 
horizontal tail control surfaces. It doesn't require much imagination to realize that this can 
be quite complicated in implementation given the large number of possible engine 
locations and configurations. Each configuration was evaluated appropriately, and the 

equations used for propeller slipstream effects were obtained from Roskamý (Pt. VI, Ch. 8, 

p. 27 1) as follows : 

+ 

(SHT,,.,, 

2200. OP.,,. il (8.7) SHT, 
can 

nVcrujseD2 Q 
prop 

Where Q= 112pV, P,,, il,, bl, is the available HP, and (SHT,,,,, ), jjpt, -,,, ý is the area of the 
horizontal tail or canard in the propeller slipstream. 

Once the propeller slipstream factor has been calculated, the aerodynamic centers 

of the wing profiles are assumed to be at the respective 'Achord lines for all but the flying 

wing sections. After that assumption has been made, the two-dimensional lift curve slope 
is either taken from designer supplied data (as discussed earlier in the Wing Profile 

selection dialog box), or the standard two dimensional lift curve slope is assumed. With 

the lift curve slope 
(CL. 

-Mg2j specified, a correction for three-dimensional effects is made 

from Roskam (Pt. VI, Ch-8, p-248) using the Mowing equation : 

CL. 
wing 3D = 2; rAR 2+4+ ARp 2+ 

g2 

JY2 

(8.8) 
(K) 

Where K= 
CL.. 

ing2D 

2 X8 (8.9) 

This equation has been simplified with the assumption that the exposed wing area is equal 
to the wing reference area, and that the correction for the fuselage diameter relative to the 

span are extremely small compared to the scale of the answer. These effects were 
therefore neglected. After the approximate three-dimensional wing lift curve slope is 
known it is possible to estimate the effect of the fuselage on this lift curve slope. It was 
attempted to obtain this value through other methods, however the attempt met with the 

same difficulties encountered in the downwash estimation. None of the methods were 

appropriate for use with aircraft with such high aspect ratios, and extrapolation was simply 
not a reliable option. Ilerefore, a calculated estimate was made using Roskams (Pt. VI, 
Ch. 8, p. 272): 
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fi Cl. 
winglbo4 = CLwing3D 1+0.025 w fi" 0.2 use 

)2 
wb 

FinaUy, A of the terms necessary for the determination of the aircraft aerodynamic 

center (X,,, ) are available. The aerodynamic center can be found by performing a moment 

balance about any point in the aircraft. 'Me equation used has been broken into two parts 

(as in the code) in an attempt to make it easier to read. The equation appears as fbHows for 

the general case : 

Xac, 
wib 

+ llslip, 
HT 

CL. 
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1 -- de Sil-r X ac, HT -'7., lipcanCLcan 
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(8.11) 
and the denominator term is seen as below: 
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Where the derivative of downwash angle with angle of attack for the canard is assumed 

zero for reasons already discussed. For the multiple fuselage aircraft, the additional 
fuselage interference effects on the lift curve slope are taken into account in the above 

procedure. Furthermore, for the tandem wing aircraft, the horizontal tail term is treated as 

the main wing, and the main wing is treated as the horizontal tail. Also for the tandem 

wing configurations, the wing/body lift curve slope is calculated for both surfaces. 
Based on the above equations, and with the aircraft centers of gravity already 

calculated, the aircraft static margin for the two cases considered is : 

SM (W 
XCG. 

Aircraft 
RO) 

- Xac 

to F. 
ing 

(8.13) 

SM(W ac 
e. p, y 

)= XCG, 
Aircraft 

(Wempty ) 

-X 
_ (8.14) 4 F. 

ing 

'Mese values, as well as the aerodynamic center and aerodynamic center distance 

from the nose are provided in the Center of Gravity and Static Margin summary dialog 

box as feedback to the designer as seen in Figure 8.1 at the beginning of this section. 
When this dialog box is closed, the fore and aft centers of gravity, as well as the 

aerodynamic center are marked on the aircraft for the designer to visualize. If the static 

Chapter VIII 193 C. G., Static Margin, and Trim 



/Or Low Speed HALE UAV's 

margin was too small, it is a simple matter to return to the Center of Gravity dialog box 

and change the payload location. If a larger change in center of gravity location is needed, 

the location of any of the aircraft components can be moved and the process begun again. 

If a satisfactory static margin and range of center of gravity travel have been determined, it 

is now possible to determine the effects of trim on the endurance of the aircraft. 

8. C Trim Condition 

The implementation of the calculation of the horizontal tail/canard cruise hft 

coefficients is different for each configuration, due to the different horizontal tail moment 

arm definitions and the fact that fuselage effects on moment coefficient are taken Mto 

account differently for multiple fuselage aircraft. The governing equations and the 

procedure are nevertheless essentially the same for each one. First the fuselage effects on 

the wing moment coefficient are determined from Munk for near circular sections : 

Ajiuse Cm, 
ac 

= -I 
I-2.5 wfu" 7rWjuse H 

1we 
Lj'u. 

%e CL, O F (8.15) 
H 

fuse 4S, 
ef 

Cwing 
(Cl- 

Where C1, o is the fift coefficient with the fuselage angle of attack equal to zero, and F is a 

shape factor to correct for lion near circular fuselage cross sections and is as follows: 

Actual Cross - Sectional Area 
(8.16) 

Ir 
- WfuseH fuse 4 

Once the fuselage effects are calculated, they are added to the wing profile moment 

coefficient supphed by the designer (or assumed) as f6flows : 
Cm, 

ti(,,, b 
--: 'ýkjuseC 

+ Cm, 
profile (8.17) 

Where Cm, 
prqfile Is the wing profile moment coefficient at the cruise lift condition. Next, 

the combined wing/body moment coefficient about the aerodynanuc center found from 

Torenbeek' (p. 481, F-9.1) follows: 

CG,,,, 
g 

Xacm, 
lb Cmwlb Cm., 

c,, 
+ CLIIIIIII 

Finally, the desired quantity, tall/canard lift coefficient required for trimmed flight can be 

found as foflows for a conventional configuration : 

Chapter VIII 194 C. G., Static Margin, and Trim 



Design Methodology. for Low Speed HALE UA f "s 

CG -C CLJIT ailg - 
Xac Cýwmg 

m, %, 
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W'here L, is the length of the horizontal tail moment arm. The calculation proceeds in a 

similar manner depending on which configuration 'is being considered. The difficulty 

arises in accounting for the various moment arm 1crip,, ths for the different arrangements. It 

is not always simple to extract this information. Sometimes a wing or tail 'Ai chord is taken 

into consideration, other times it is the distance measured from tile tail or nose. 

Sometimes the moment arm length is the fractional length ()f a fuselage, other times it is 

the fniction. il length ()f ýi 1)()()m. Fach case is evalwtcd scpýmitcly. 

Endurance 

Power Required 

Total Aircraft Drag 

Wing Cruise Lift Coefficient! 

Wing 
Lift Induced Drag 
Parasite Drag 

Horizontal Tail 
Lift Induced Drag 
Parasite Drag 

New Old 

62.39 6517 Hours 

2890 27,70 HP 

0 03638 0.03487 

1.0910 1.0537 

001238 0.01109 

0,01494 0,01494 

0 00036 

o 00095 0.00095 

01K 
..... ............... 

Figure 8.2 is the Trint Effects dialog hox. It outputs the most 
recent aircraft endurance hased on the detailed weight and drag 
estimates, and compares that value with the trim"red aircraft 
endurance in order to highlight the effects of trint drag depending 
on the configuration and choice of'static margin. 

The procedure foll()ws the (Icterri-iinati(m ()f the tml/caiiard lift owfficictit with mi 

upd, ated calcuLition of time to climb and avenige wing 4)ading throughout the cruise 

phase. This information is used in the updated cýtlcuhtlon of thc mi-craft component drýig. 

The macroscopiC CoMponent dnig results (('i)o) arc fed back int(, the cridimincc CAICULIM)II 

in ()rder to provide a fair baseline for the non-trini endumncc casc. If the dr-ag wýis not 

rec, ilculated using revised tirne to climb , ind , werage wing 1(molinp N-Aucs, the cotrip', irlsoll 
of endunince valucs would not be ()n the s'ame basis. 
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Likewise, the non-trimmed endurance is recalculated based on the new 

macroscopic drag values in order to insure that the comparison with trimmed endurance 

values is valid. Once the non-trimmcd endurance has been calculated in a mannet that will 

provide repeatable results, the trimmed aircraft component drag is calculated based upon 

the tail/canard lift coefficient value calculated above. 

Once the trimmed aircraft drag is known, the final trimmed endurance is calculated 

and output as seen in Figure 8.2. 'Me trimmed and untrimmed values for Power Required, 

Cruise Uft Coefficient, and all of the relevant component drags are included in the figure 

for a better idea of the origins of the differences between the trimmed and untrimmed 

total aircraft endurance. 
The procedure may appear overly complex, however, it is important to note that if 

this procedure were not followed, the value for non-trimmed aircraft endurance would be 

based on a lift coefficient resulting from the specification of the basic constants alone, and 

would not be configuration specific. Finally, throughout the thesis, mention has been 

made of the problems specific to the implementation of this theory and the methodology 
in a computational context. Ilis topic will be covered in the next chapter. 

Chapter VIII 196! C. G., Static Margin, and Trim 



Design Methodologyfor Low Speed HALE UAVs 

chapterIx 

Science is the attempt to make 

the chaotic diversity ofour sense-experience 

correspond to a logically uniform system of thought 

Albert Einstein 

9. Implementation of the Methodology 
The theory used in the implementation of the methodology has hopefully been 

clearly delineated in the preceding chapters. The primary intention of this chapter is to 

offer some insight into the actual implementation of those equations and relations in the 

object oriented, event-driven computational environment. 
The structure of the methodology has already been provided in Chapter Ill. In the 

present chapter, the structure of the program will be provided, however it win be done in 

smaller increments. There are compelling reasons for presenting the structure of the 

program within the thesis. If the equations were simply applied without regard for when or 

what they were being applied to, the results could be worse than if erroneous equations 

were used. In addition, in the event driven programming environment, if the wrong or old 
(preliminary) data were used for calculation of some of the more refined estimates, the 

results provided would once again be inappropriate. This defines the issue of Data' 

Validation discussed earlier in the literature Review. 

Since it is impractical to include the 15,000 lines of code necessary to animate this 

otherwise perfunctory methodology, the following approach was thought to be the best 

manner in which to demonstrate that the application of the theory already covered was 
done appropriately. Whilst the theoretical aspect of the methodology imposes a large 

number of constraints in how that theory can be applied, the computational environment 
imposes equally as many constraints. They are imposed in a manner that is much less 

forgiving though. For example, the code will crash or provide erroneous results in a more' 

obvious manner. This chapter is also intended to demonstrate that in the progranuydng 
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environment used, it would be misguided to believe that it is possible to simply program 

equations into a computer and end up with a computational methodology. A significant 

amount of original work is involved in the determination of- 

* How to obtain information from the designer in a dear, coherent manner 

* What information to obtain 

+ What processes and decisions to leave in the hands of the designer 

* How to emulate human processes or decisions when automated 

* What analysis is most appropriate to provide for the solution of the problem 

* When to provide for the possibility of analysis 

* How to validate that the data used is the most recently entered in an event-driven 
environment 

* Whether real-time data feedback is better understood graphically or in a tabular format 

* How to present large amounts of data in a clear, coherent manner. 

These are all processes that are normally performed by a designer on a subconscious level 

whenever a conceptual design is undertaken. Each one of these issues will not necessarily 
be addressed explicitly point-by-point in the following chapter. Nevertheless, these issues 

permeate each level of the structure of the program. At any point in the program 

structure, this series of questions can be, and should be satisfactorily answered by the 

analysis presented in this chapter or by the use of the_code itself. 

It should be mentioned that many of these issues do not exist for a standard 
FORTRAN program. Data validation is a non-existent entity in FORTRAN due to the 

lack of possibility for event driven programming. There is little possibility for graphical 
feedback, and the format for presenting and obtaining data is the rudimentary command 
line text. Thus, with the possibility of the graphical representation of data comes the 

responsibility for clarity in presentation. 

9. A Event Driven Programming 

The term has been used several times already. It was defined in the Literature Review, 

but will be repeated since it is crucial to the understanding of the flow of the program 

structure. The Windows environment and the Visual C++ ptogranuning language allow 
for the existence of a special kind of function (or more appropriately, a class). 
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Traditional higher level programn-dng languages are executed in a linear manner. ne 

order in which the functions will be executed, and the order in which they can be executed 

in is determined at compile and link time. Thus, the designer, at a very discrete and 

predefined time and place in the program is given the option to perform a task or 

function. If the designer would like to go back one or two steps and re-execute a 

calculation based on a n-dnor change, the entire program must be executed again. This can 

be severely limiting in a process where there is the possibility for hundreds of changes. 

The only solution in this instance is to automate the entire program (to perform all of the 

hundreds of changes) and remove the possibility of the designer making the incremental 

changes at run-time. This, despite the fact that most of these hundreds of changes could 

be eliminated by minimal feedback of the appropriate kind to the designer at run-time. 
Once again, it is noted that the aircraft design process is one in which a small 

amount of graphical feedback can provide the designer with a much better concept as to 

the correctness of any given value. The sequentially executed program simply cannot 

provide this feedback in a timely manner. 
An event-driven program does not have a preprogtammed order of execution of 

functions. This order of execution is detern-dned at run-time by the designer. The 

implications of this are rather far-reaching in the design process. If the designer aspires to 

make a minor change as mentioned before, it is as simple as the click of a mouse. 'Me 

order of the program execution can be restricted by the graying of menu items in the 

window, however tl-ds is only performed for the first iteration of the preliminary sizing 

segment, before necessary variables have been supplied by the designer. 

An example with reference to the code used for this thesis would be any operation 

performed after the creation of the Default configuration. The shape and location of any 

component on the aircraft can be changed at any time. The drag, weight, center of gravity, 

trim, endurance, all can be recalculated at any time. Due to the Windows Multiple 

Document Interface NDI), several designs can be compared in windows right next to 

each other in real time, and small changes can be made in each one at any time. Graphical 

and tabulated results of any changes can be viewed at any time as well. This greatly speeds 

up the conceptual design process in a way previously unavailable for any UAV's, much less 

Low Speed HALE UAV's. This is a very powerful programming environment which 

provides excellent feedback to the designer while keeping the designer in the loop as much 

as is practical. The cost of this power, though, is that data must be very well organized in 
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structures, and calculations must be performed in very discrete modules. Another cost of 
the power is the necessity for presentation of information in a logical, sensible manner, to 

avoid confusion of the designer in comprehending the input and output mechanism. 
With the exception of codes by Raymer" and Roskarn", this, type of approach to 

conceptual aircraft design has not been taken before. Raymer's code is based on a very old 
DOS-Window type interface, and is restricted in its analysis to conventional aircraft, 
although any type of aircraft can be drawn, the analysis on the resulting ai craft will not 
necessarily yield correct results. In addition, there is only the provision to evaluate one 
aircraft at a time since the DOS/Windows environment does not allow multiple 
executions of the same program. 

Roskam's code is significantly more expensive, and a much more modern 
implementation, however it is very strongly tied to the equations and aircraft classes 

available in his books. There Is not a single class of aircraft in his books than can be 

reliably used as I basis for a UAN' as shown in the discussion of weight estimates and 

induced drag calculations. Thus any results from this method would be highly suspect. 

it Is thereforc safe to state that this implementation of a conceptual design 

(T, -ýý"S Is trulv unique. Discussion in the methodology for Low Speed HALF 

Complit, itional implementation will begin with the presentation of the macroscopic 

structure of the program. 

9. B Structure of the OveraH Program 

it is difficult to graphically depict the implicatU)ns of simultaneous multiple program 

instances. A 1()()k at Figure 9.1 shows the stnicturc of the program for a single program 

instance. The easiest way to itnaginc a simultaneous program instance is to imagine the 

coexistence ()f mic ()r many photocopies of the structure shown, each with a discrete 

identifying tag. Fach window created belmigs to the function (and data) that created it. 

\X"Ith that concept, the data belonging to that window ()r function is the data which existed 

at the time of creation, and remains so until a change is made while that vvindow has the 

program focus. The program focus is simply when the cursor is over a particular window. 

Fherefore, two windows with two different aircraft can be ()pcn simultaneously, 

yet only ()ne can have the program focus. If a characteristic is changed white a particular 

windoxv has the program focus, the change will apply to that aircraft alone. Likevvise, if a 

Chapter IX 200 hilplenlentelt I Oil (ýI'tlle Methodologv 



Design MethodologyjOr LowSpeed HALE UAV's 

change is made to the basic constants, then those changes will apply to the last 

configuration window opened. 

'xccutc 

r( It II it I i, ir I )( 1.1kill Md It I, IIk01 

\ircratt ()f tilt, 

; c( )111(. l I 

& , 
tIIII AIc 

Figure 9.1 shows Me stractare and largest groapings ofinodalesfi)r flit, overall code. 

Referring to the figure, only the major module licadings have been Included III tile 

tructure. A much more detailed breakdown of the structure of the Idual modules ss indiv 

will be discussed for the first 3 modules in later sections. The absence of any , trro%,, -s in the 

figure is noted. This results frorn there being no order of operations within the structure. 

With the exception of the first iteration, any of the modules can be executed in any order. 

For the first iteration, it is important that the critical constants are specified before other 

modules arc invoked, otherwise there will be Insufficient Information from which to create 

tile (-ICf', ILllt aircraft. Furthermore, a repeat of the DCf'. ILIlt Aircraft Creation module will 

create another Aircraft instance (copy), upon x-ditch any of the remaining modides can 

modify. 

The main structure is brokcn down into Preliminary Sizing, Del-milt Aircraft 

Creation, Nlocli(ving the Fxisting Gcomctrv, and Ailal\, sis In fact, tIlL. Dcfault 

aft Cteation is a subset of the Nl()(11fiCItl()Il ()f OIC FAIAIIILý (; (-()111Ctt-ý\ Ill(RIUIC, bUt , \ircr- 

-will be addresscd seperatcly for clarity. 
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9. C Preliminary Sizing 

The detailed structure of the preliminary sizing module appears in Figure 9.2. For the 

first iteration, these modules must be executed in series, from left to right. Once they have 

been executed one time, they can be re-executed in any order, depending on what the 

designer is trying to accomplish. Each of the local modules will be explained. All of the 

inputs and outputs will be detailed as if the modules were black boxes with a fixed set of 

inputs and outputs. Afterwards, some of the more relevant decisions made within the 

modules/black boxes will be explained. 

Figure 9.2 shows a more detailed breakdown of the structure of the preliminary sizzing segment. 

Figure 9.3 shows a different representation of the prehminary sizmg segment of 

the code. It utilizes the graphical user interface to demonstrate which variables are coming 

from the designer and which are calculated. It also shows the progression of the enttý, of 

the variables, from top to bottorn for tile first iteration. 

Beginning with the Critical Constants dialog box, the only variable that is changed 

at any point within the program is Cj)(). In reality, the only use for Co, after the 

preliminary sizing segment is to calculate the aircraft drag in the climb. C[), is changed 

within the drag routine, to insure that the value used for time to climb is deterillIncol using 

the most accurate data available. In addition, if the designer wants to return to the CL VS 

WIS graph to determine C, ..... . and C, ... i,,,, R, these values will be recalculated using the 
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updated value of CD, All of the other values are treated as constants. Oswald efficiency 

factor is ignored once the detailed drag estimation has been performed. All of the Critical 

Constant variables are used in creating the Constraint Diagram from equations listed in 

Chapter IV. V,,.,, i,, is used ubiquitously throughout the program, n,, It is used in the weight 

estimation routine, and ? I,,, is used wherever power or endurance are calculated. 

Also shown next to the Critical Constants dialog box is a shortened IF structure to 

demonstrate that error checking is performed at the dialog box level for validation of input 

values. Error checking for reasonable data is performed on all data entered. 
Once the designer views the limits defined by the constraint diagram based on the 

critical constants, the design point can be selected. The wing loading remains constant 

throughout the methodology until the point where the time to climb is calculated. At this 

point the revised wing loading is used. The value of the variable for thrust to weight ratio 

goes unchanged, however once the drag estimation has been performed, an updated value 

of this number exists. This value is not used unless the designer returns to the constraint 
diagram afterwards. 

With the (normalized) design point specified, the designer can specify either the 

payload weight, or the wing area. Regardless of which value is selected, the result is 

unchanged throughout the remainder of the program, unless the designer returns to this 

point to change the values. The wing area and the payload weight were thought to be two 

of the defining features of this aircraft. Tbus, once selected, they are fixed for the design 

downstream of this selection. The logic depending on the choice is shown in the figure. 

If the wing area is selected, the weight and HP can be determined immediately, otherwise 

they are detennined in the Weight Fraction Selection dialog box after the specification of 

the payload weight fraction. 

The specification of the fuel consumption based on the output HP necessary for 

cruise and the number of engines makes the calculation of the endurance possible by the 

procedure explained in Chapter IV. The number of engines (and number of propellers) is 

used to calculate the endurance and is then immediately used to set up the default 

configuration. At this point the designer may choose to return to any of the previous 

steps in an attempt to create a more advantageous set of characteristics to maximize the 

endurancc. 
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The interdependence of the modules in this segment ofthe code is minimal. If the 

payload weight is changed, the values of aircraft weight, wing area and HP are recalculated 

based upon payload weight fraction data already entered. If this information is changed, 

the weight, wing area and HP are recalculated in the weight fraction module. If either of 

these conditional statements in either of their respective functions were on-ýitted, the values 

used in calculation of the aircraft performance would not be the values the designer 

wanted to use. This is the first instance of data validation, albeit a simple case due to the 

minimal interdependence of the other modules thus far. In the next' module the majority 

of parameters calculated will be used by the majority of modules, thus complicating the 

matter dramatically. 

In terms of emulation of the process followed by the designer, this module sought 

to automate the phase that verifies that the aircraft will not violate any of the basic laws of 

physics. In other words, based upon the designer provided Critical Constants, the mission 

could be satisfied. The feedback was mostly graphical in nature, as this would be the most 

commonly used form used by the designer at this phase, independent of the computational 

methodology. The weight fractions selected were done so with the knowledge that the 

weight fraction information was either available, or could be roughly deduced from 

information available in the literature, and these values were only used for the preliminary 

sizing segment. 
The procedure followed was left as open-ended as possible for the designer, 

allowing a return to any module at any step in the procedure. This models the process 
followed by the designer at this phase in conceptual aircraft design as closely as possible. 
The repetitive calculations were removed from the hands of the designer, the results 

presented graphically, and the final endurance provided. These results are in addition to 

the availability of sensitivity diagrams for a few of the more relevant parameters. 
Finally, it is mentioned out of interest that the graphing routine used was 

completely original. All of the logic for the scaling of the grid-lines, axes, tides, symbols, 
legend, line types, colors, text style, numbers, and active coordinates were created 

specifically for this program by the author. 
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9. D Creation of the Default Aircraft 

The basic structure of the process followed in the creation of the default aircraft can 

be seen in Figure 9.4. The process is initiated by the selection of the configuration by the 

designer. This defines the configuration for the function (class) MainConf. This is the 

main class for all of the configurations. It draws the window, buttons and the aircraft. It 

is therefore responsible for calling all of the functions responsible for geometry definition 

seen in the figure. The Default Configuration case is in fact a subset of the class 
MainConf. It was drawn this way to demonstrate that even though the procedure for 

creating the default aircraft is the same as for a designer modified aircraft, the inputs and 

011tpUtS of tile niodtiles will be shown to be completely different. 

Figure 9.4 shows a more detailed breakdown of the structure of the Default Configuration 
Creation segment, which is actually a subset of the Modification of the Existing Geometry segment. 

The respective inputs and outputs of each function are provided In Figure 9.5. The 

double-licaded arrow Linder NlainConf implies that all information Is passed through this 

class before the next function is invoked. Fvcn though the last two functions appear to 
have very little in the way of input, in fact, the majority of the input is inherited from the 

previous functions. For example, function Drawl, ng requires the wing sweep and 

coordinate,, of the wing in order to place the engines on the wing of a swept wing twin 

engine configuration. 

For the output of the Nla1nConf class there are terms with the prefix hRgn. hRgil 

I,, , in object called a container that holds all of the geometric qualities of an item. Thus, 
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hRgn'rail holds the geometry of the tail. This makes it much eýisler to dc, 11 with as a dat. 1 

structure. One of the regions has heen dcfincd as hRgnT,, tIl. F, )r the purp()ses ()f the 

implementation of the program this makes handling the data ýincl (Lita interface simple. In 

the program, an event handler is written for the click of the left inouse butt(ýn. If A 111()LISC 

hit is detected in the region bound by the points in IiRgn'l'ail, the Týill constants (fill()g hox 

is invokcd. It would be this simple if it wcrc not for the coordin,, itc transform,, mon. 
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Figure 9.5 details the inputs and oulpits of the noore important modules that are invoked 
kv the class MainConf in the process of drawing the Default Configtiration. 

In crcýittng a geometric reprusuntation ()f the ýatrcnift ()n tlic sci-(. (. ii, thc 1)(milds ()I- 

the screen must be determined in alvance. Then the span mid lcnoh ()f the an-crift Must 

bc calculated. Once this has been done, a coordinate transformati(m is performed in 

to insure that the aircraft will fit on the screen regardless ()f the manipulation (, f thc sizu )t 

the window. Thus, if the coordinates are transformed and scaled to make the mrcnift fit, 
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the transformation must be performed every time the aircraft or any component of the 

aircraft is plotted. 
If a mouse hit has been detected, the coordinates must be transformed from the 

device coordinates to the logical coordinates. The transformation performed is different 

for Canard configured aircraft. The reason for this is that the main wing is much farther 

aft on Canard aircraft. The main wing apex was selected as the origin of the window for 

all configurations. The default origin in Windows is the upper left comer. So, not only are 

the coordinates transformed in scale, but the origin is also displaced. The entire process of 

fitting and scaling to find the best distances and proportions can only be performed by 

trial and error. 
Whereas the designer would grab the paper napkin and sketch a wing planform, 

the computational methodology must first establish the location of the wing on the 

fuselage. Then compare the fuselage length relative to the screen height, and the wing 

span relative to the screen width. Then it must perform the coordinate transformation. It 

must have ALL of the wing geometric data defined before drawing, including exact XY, Z 

coordinates for the wing leading and trailing edge root and tip locations. The 

mathematical/trigonometric relations necessary to extract those exact XYZ coordinates 

must be derived. They are not very complex for constant taper or a single sweep angle, 
however if both leading and trailing edge angles are specified as well as a taper ratio, the 

geometry and interdependence of variables can be quite involved. 

For the default configuration case, the drawing and placement of the engines is 

greatly simplified. If there is a single engine, the engine is always placed in the tractor 

configuration. If two engines are selected, they are always placed on the wing in a tractor 

configuration. With the exception of the Flying Wing configuration, none of the default 

aircraft have swept wings, thus simplifying the plotting and placement further. Since the 

logical structure used in the creation of the default configuration is a simplified subset of 

the actual structure used for all possible configurations, the discussion of the details within 

each function will be left for the next section. 
For the default configuration, there is no further data to obtain ftom the designer. 

The decision as to what data to obtain was incorporated into the Preliminary Sizing 

segment in order to make that data available for the creation of the default configuration. 
The processes and decisions that are made for the designer are comprised mainly of the 
default tail volume coefficients. They are the only quantities that cannot be changed 
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immediately following the creation of the default configuration. Many - decisions and 

assumptions were made, and they were clearly stated in the theoretical section of this 

thesis. These decisions were intended to create quantities that would otherwise be difficult 

to obtain based on reasonable assumptions. At any rate, any geometrical characteristic of 

the default configuration can be manipulated the instant it has been created. 

For this segment, it was thought that graphical feedback in the form of a scale 

drawing of the actual aircraft would be the best form of feedback. This is essentially what 

the designer would do in the absence of the program, except that it would take 

considerably longer for each iteration. As can be seen in Figure 9.5, data validation is not a 

huge problem at this point since the inputs into the default configuration are rather 

limited, however, it is a problem. 

It was made impossible to re-specify the number of fuselages without creating a 

new instance of the MainConf class. This means that in order to change the number of 

fuselages, the designer must re-select the configuration, thus creating a new Default 

Configuration window. The first problems in Data Validation occur with the creation of 

the Default Configuration window and the way the variables for wing area, aspect ratio, 

and number of engines are specified. 

Imagine that an instance of the MainConf class is initiated called TwinBooml. 

TwinBooml is initiated based on set values for these three variables, S,,, jg, aspect ratio, 

and Number of Engines. So a window exists with the corresponding aircraft having these 

geometric characteristics. In the event that the designer returns and changes the Aspect 

Ratio, Sj., , or Number of Engines, there is no problem, unless there is another 

configuration window open (TwinBoom2). In this instance a conflict would arise if not 

addressed. This happens because the newly entered data will over-write all previous 

information and change it for both TwinBooml and TwinBoom2. 

There are three alternatives to overcoming this difficulty. The first is to have a 

another copy of the code running simultaneously. The second is to restrict the number of 

configuration windows open within a program execution at any given time to just one. 

This will insure that any change initiated by the designer is intended for the configuration 

that is being worked on. The third alternative is to create a global container class which 

holds in it ALL of the data for any given aircraft. The difficulty with this third choice is 

that there is a very large amount of data associated with, any given aircraft configuration. 

This would limit the number of configurations that could be compared at any one time, 
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and would also impair the speed and limit the extent to which the vortex lattice method 

could be implemented without exhausting available memory. 

The present incarnation of the code includes M it portable classes making possible 

the first and third approaches. It was thought, however, that the restriction to a single 

configuration window was worth the sacrifice in extra memory. At least until the amount 

of memory on the average computer increases somewhat. It is noted that this does not 

restrict the number of constraint diagrams, or the number of changes that can be made to 

any given configuration without having to restart the program. It simply allows only a 

single configuration window to be open at any time. The way in which those changes are 
handled by the existing functions and structure introduced in this section will be discussed 

iii the next section. 

9. E Modification of the Existing Geometry 

The structure of the Modification of the E'xisfing Geometry segment of the program 

can be seen in Figurc 9.6. By pressing any of the buttons or the respective part of the 

aircraft with the mouse, the recalculation of the interdependent variables has been 

initiated. MainConf is called any time that the window must he redrawn. Any time a 
dialog box is opened, the window must be redrawn. Thus, if the designer changes any of 
the geometric parameters using the dialog boxes, the entire aircraft geometry is 

recalculated (including all of the interdependent variables) using the new geometrical 

characteristics. The actual detads for how this is implemented are n-ured with exceptions 
for every configuration and for every component of the aircraft. An attempt wil-I be made 
to show the interdependence of the functions based on the inputs to each function. This is 

necessary since it has changed significantly from the case of the Default Configuration 

discussed in the previous section. 

Fhere is a large amount of sharing of calculations hetween the dialogs and the 
functions for the respective aircraft components. It was difficult at the time of the original 

writing of the program to decide which calculations should be made at the point at which 
the data -are input and which calculations needed to be performed every time the window 

was repainted. C onseq Lien tly, the content of both the dialogs and the functions changed 

considerably during the evolution of the code. 
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In the previous section, a diagram was shown th-at displ-, iyed the inputs t- ()r each ()f 
the functions responsible for calculating the geometric characteristics of the , tircnift. In 

the figure mentioned above, the input side has fundamentally changed. Before flic inputs 

came from a series of dialog boxes that were completed 1(mg before the cýilculttl()n of the 

geometry of the aircraft. Now, as seen in Uigure 9.6, the ni,, ijority ()f the inputs L: ()iii(, 
directly from the designer. 

Rather than try to repc, it thu previ( ms (kagrim 4 inputs into flic I-Lincti(ois and the 

resulting geometrical characteris tics CýIlcuhtcd based ()n tll()s(- inputs, another type ()f 

(Im, gram has been created. From Figure 9.6 almvc, it (-, in be su-n thAt any tinic ýuly ()f tile 

gc()n-ietncal dialog boxes is opened, the MmilOmf class is called mid the respective 

component functions are executed in top down order. Figure 9.7 shows wh, it luppens it, 
between. 
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I 'igure 9.6 shows the choicespresentedlo andthe interaction hetween the de. %igner 
and the class MainConf in the process of re-drawing the designerspeciJied aircraji. 
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As mentioned earlier, a series of container classes were set tip based on , specific 

parts of the aircraft. If the designer presses the Wing Planform button in the 

configuration window (or clicks the mouse on the wing) in Figure 9.7, tile procedure 

shown results. First the dialog box is opened, then the designer inputs whatever changes in 

the geometry that are desired. In the next step, the information that has been changed is 

placed into a specially designed container class, in this instance called Planforn-iGeom. It is 

noted that the same basic structure is used for the Wing, Horizontal Tail (I lTail), and the 

VerticalTail (VTail). 

The respective names of the variables are thought to be intuitive, and therefore will 

not be explained individually with the exception of the variables TtoC (thickness to cliord 

ratio), l. FITIpS (I. eading Edge Tip, Starboard \, Y, Z Position), TFAII)S(Fralling l,, Llgc TIP, 

Starboard X, Y, Z position). The data type POINTis a structure with 3 incunbers, X, Y, 

and Z. Thercfore, 1,1-, 'I'ipS. x is the leading edge tip, starboard side x coordinate. The data 

type bool can only have two values, TRUF or FALSF. A double data type is equivalent 

to the FORTRAN double precision statement. 

A great deal of organi7ation and thought goes Into dCcI'jIjjg how to set Lq, a 

container class, and what to include in the container. There is such a high degree ()f intcr- 

connectivity between the various components of the aircraft it is not a simple mattcr to 

create these classes. Take for example the aircraft gcotnett-N,, the classes shown are rather 

intuitive. These classes work rather well for the aircraft geometry (1cf-inition. ( )ncc the 

aircraft geometry definition phase is finished and the drag and weight cstimati(m phases 

begin, the geometric containers become unwieldy. This occurs since all ()f- the Individual 

geometric characteristic containers are required in order to perform either tile weight or 

drag analyses. 

As another example, look at the FAiginePerforniance container. 

F, nginePerformance is actually a misnomer. The container holds performance and 

geometric information. Thus, for half of the functions that the container is used for, it %vill 

carry too much information and clutter memory. This is , in ohvious conipronlisc. I Icre 

all of the engine information is together in otic place, hovvever this results in a large 

amount of infort-riation being exchanged without being used. 

Consider the example of the Drawl"rop function. 'I'he function 1" called every time 

the window is repainted. It uses the FtiginePerforniatice container class. Thus, every time 

the window is repainted all of the engine fuel consumption array information is loaded 
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into memory, and subsequently unloaded without being used when completed. Obviously, 

care must be taken in order to prevent too many of these types of situations from slowing 

the program down considerably. 

These are all considerations that do not exist in a FORTRAN implementation of a 

methodology. In FORTRAN, the most likely procedure would be a bulk COMMON 

statement placed in every program module/ subroutine that uses the arrays. Thus the 

power and modularity of a structured programming language can be as beneficial as 

detrimental depending upon the implementation. 

There was insufficient room to show the following structure in Figure 9.7 it can be 

seen in Figure 9.9 below. 

struct ProfAeAndDragData 
I 

char ProfileNatneJ20], DragName[201, AlphaNarneJ201-, 
bool WhichGraph; 
unsigned NumProfilePts, NumDraglIts, NuniAlpliaPts; 
double X14001, Y14001; 
double Cd[4001, C11400], CL-klpha[400], Alpha[4001, Re; 
double MinCd2, NlaxCd2, MinCl, NIaxCl, n-iCtAlpha, Cm; 

)WliigPrl)ragData, H'Fl'rDragData, V'I'PrDragData; 

Figure 9.8 shows the Wing/1'ail Profile and Drag Data container class, 
which is associated with the WinglTail Profile dialog boxes. 

This class contains the information necessary for reproducing the hft-drag curve for 

the wing or tail profile. It contains the coordinates necessary for reproducing the airfoil 

, shape, it holds the lift coefficient versus angle of attack curve and slope, the moment 

coefficient, the airfoil narric, and the calculated ma-, imum and minimum of each curve 

used for scaling and comparison. It is much more efficient to evaluate the maximum and 

minimum at the time that the file is read in since the data must be buffered anyway. It was 

done at this time rather than performing the evaluation every time the curves or data are 

used. There arc numerous other classes created for use with drag, weight estimation, 

centcr of gravity, static margin, and trim specific information. 

It is noted that the Po,, ver Plant Details dialog box and the Wing and TaiI Proffle 

, Selection dialog box open into subsequent dialog boxes. This allow. s for the specification 

of more information by the designer. Unfortunately there was insufficient space to include 
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them, however they were included in the original discussion of the geometric 

characteristics in Chapter 5 in Figure 5.8 and Figure 5.10. 

One topic that has yet to be discussed is the determination of which variables to 

place in the dialog box, and which variables to fix. For c%, cry Input dialog box many 

difficult decisions must be made relating to how much control to keep in the hands of tile 

designer. Even more important, though, is the case where a number of N-arlables may be 

The decision as to which characteristics will be of the most interest to the , specified. 
designer is not always intuitive or obvious. 

For the Wing Planform dialog box, the process was not that difficult since tile 

designer was restricted to changing only a taper ratio and a sweep angle or two sweep 

angles due to the fact that the aspect ratio and the wing area were fixed. Another 

important related question is what information (Ili the form of feedhack to the dcsignct-) is 

desired prior to a change in the geometry. Ili the Wing Planform dial()g box, aspcct ratio, 

wing area, span, root chord, tip chord and average chord were providcol. In addition, tile 

most recent value for taper ratio was initiali7ed into the edit box autolllaticaliý'. 

The best example of the difficulty in deciding what to placc In :1 dial()g box and 

how to handle the information input is the Tail Configuration dialog b()x. Ili tile final 

incarnation, the designer may specify any two out of the four variables, tapcr ratj(), leading 

edge sweep angle, root chord, or aspect ratio. This results in a very complex decision tree 

with over 16 branches. The same tree exists for the \, crtical tail as well. Many of tile 

branches must assume values from previously specified variables. The process of deciding 

which are the most intuitive is a rather long one. Ili addition, it is a very time consunling 

process to solve every individual geometric equation in terms of every possible variable. 
Once the changes have been specified by the designer, anotlicr decision tree is 

entered. First based oil the aircraft configuration, then based on the number of engines, 

then based on the engine coil figu ration, as there arc different tail vollinic cocfficictits for 

all 55 different possibilities. The discretizing of even sonic ()f tile most simple human 

thought processes can be rather involved. The designer performs thcsc decisions almost 

without conscious thought. For the computational itnl)lc nlen tation of tile gcotilctr c 

calculations for tile vertical and horizontal tads, over 1000 lines of code were necessary. 

This does not include the Tail dialog box vvhich was anothcr 665 lines! 

Another ImPortant consideration is that tile dialog boxes must change depending 

oil which coil figuration is being considered. The Tail dialog and tile Fuselage dialog arc 
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not the same for a conventional configuration as they are for a canard. The canard 

configuration requires more information resulting from the difference in the way the 

canard and main wing arc placed on the fuselage. The Power Plant dialog is different 

depending on whether the aircraft is a single or twin engine, whether if a twin, the aircraft 

is a Push-pull or a simple Pushcr or Tractor. 

It is hoped that the dialog boxes created for use with the geometric specification of 

the aircraft requested the data in a dear and coherent manner. At times it was impossible 

to justify the provision of one variable over another, and the end result was personal 

preference. At other times, the variables provided for selection were the only choices 

available. It is thought that those geometric quantities selected for specification by the 

designer are the best given the information available at the time. 

Many assumptions had to made in the instance of just one variable being supplied 

when the possibility of two variables being entered was allowed for. The example of the 

Tail dialog is used once again. If the designer only specified taperratio to be changed, 

constant tail area was assumed along with constant root chord. T'hcre were a number of 

other possibilities, but this was the one selected. If the possibility to specify more variables 

were allowed, it would have been very easy to allow for over-specification of the quantities. 
All of these concerns were considered when designing the dialog boxes and the most 
intuitive choices were made. 

No matter how it is stated, though, decisions were taken out of the hands of the 
designer. Unfortunately, there was no other way to proceed in most instances without 

prompting the designer with an extensive list of choices every time a minor change was 

made in one quantity. Again, it was thought the geometric characteristics that the designer 

was allowed access to, provide for enough control to change the overall and aerodynamic 

shape of either tailplane. In terms of attempting to model the human thought process, it is 

believed this is the area that is most lacking in originality of implementation. 'Me decision 

trees and SWITCH statements used are clumsy and unwieldy to code, but efficiently 

converted into assembly code for fast processing. Thus, another compromise has been 

made. 
For this particular segment (Modification of Geometric Characteristics), much of 

the data was tabulated in dialog boxes, but much of the data was plotted in the shape of 
the aircraft. This is an excellent form of feedback, and probably gives the designer the first 

"feel" for whether the numbers make sense. In addition, any changes made in any of the 
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dialog boxes appeared instantly on the plotted aircraft. In this segment the designer could 

enter the wing profile, CD-CL curve, CLý-cr curve, fuel consumption versus HP curve, and 

visualize all of the data plotted on a graph immediately afterwards. This aspect of the 

methodology adds greatly to the robustness of the model. It allows for advancements in 

engine or aerodynamic technology to be included in the analysis at a later time. Finally, a 

very large amount of data has been made available to the designer, all in a simple and easy 

to use interface. All of these characteristics help to greatly speed up the conceptual design 

process, but also help to understand the interdependence of many of these characteristics. 

9. F Analysis of the Aircraft 

The analysis of the aircraft is much less dependent upon active input from the 

designer. The majority of the information needed to perform the analysis has already been 

specified by the critical constants and the geometry. The only data that need be input 

regards the payload size, dimensions, and center of gravity location. If no values have 

been specified for wing profile, engine center of gravity, and various other variables, the 

designer is notified at the time of the calculation involving that quantity of the fact that a 

value is being assumed. It was thought necessary during the analysis phase to inform the 

designer of the assumptions being made due to the absence of any designer entered data 

where the possibility was allowed for this data to be entered. Otherwise the results arc 

almost exclusively in the form of tabulated data with the exception of the plotting of the 

aircraft fore and aft centers of gravity and the aircraft aerodynamic center (see Figure 6.14, 

Figure 8.1, and Figure 8.2). 

The results of the analysis modules culminate with the aircraft trimmed endurance. In 

addition, weight and drag component breakdown, power required, time to climb, 

component center of gravity, and static margin detailed results are available. This output is 

the direct result of the aircraft defined by the designer. It does not represent an optimized 

aircraft or converged solution to perform a given mission for a given weight, nor was it 

intended to. It does, however, represent the detailed performance capability of the aircraft 

specified by the designer. The methodology was created as a tool to identify the driving 

parameters in the design of a Low Speed HALE UAV. This process will be highlighted in 

the Results chapter. The results output to the designer were detailed enough so that if a 
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change needed to be made to any particular component weight or drag after the execution 

of the program, the total could be recalculated at a later time based on the information 

output. 

'Me procedure followed during the analysis segment is essentially linear or sequential 

in nature. Thus, apart from the fact that the interface is a window and the fact that 

container classes were used for the transfer and portability of data, the code follows almost 

directly from the theory section. The only exceptions to this are the configuration specific 

problems which add markedly to the complexity of these modules. In many instances a 

different calculation must be performed for every different configuration being considered 

leading to very large decision trees. 

An attempt was made in this chapter to highlight the differences betvýeen a structured 

event-driven computational methodology, and the concept that equations can simply be 

programmed into a computer for the creation of a computational methodology. Many of 

the details of how decisions were made, or which assumptions were made for the designer 

in setting up the geometry of the aircraft were left unaddressed as they do not have any 
impact on the fmal results and only affect intermediate stages of the geometrical setup. 
The most important quantities fixed by assumption were the tail volume coefficients, and 

they were presented and validated where possible in an earlier chapter. Many of the more 

minor decisions /assumptions made were simply not included for brevity, though there 

were hundreds if not thousands. 
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ChapterX 

There is a time in the life of every problem - 

When it is big enough to see, 

Yet small enough to solve 

--- Mike Leavitt 

10. Results and Discussion 
This chapter is separated into three major sections. The first section validates the 

macroscopic results of the methodology by comparing them to existing configurations and 

their known (or claimed) performance. The second section expands on the results of the 

validation by presenting detailed results for the conventional configuration. 

Since the only configuration that could be validated within a comfortable range of 

certainty was the conventional configuration, the initial expansion of the results is 
0--- 

performed for the conventional configuration alone. This section identifies and explains 

any trends arising from the variation of the many possible design parameters, all within the 

bounds of the conventional configuration. 'Me evaluation and discussion involves the 

macroscopic and microscopic changes resulting from changes in as many of the most 

relevant design parameters as time would permit the evaluation of. 
Finally, the third section will draw from the most relevant results for the 

conventional configuration. The consequences of these results will be incorporated into 

the analysis and presentation of the results for the alternative configurations. 
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10. AValidation 

This section will undertake the most complete validation possible based upon physical 

and performance specifications available from the popular literature. It is noted at the 

beginning of this -section that reasonable assumptions had to be made in some cases for 

several of the more relevant variables that were unavailable. In some instances the results 

should be viewed with a limited amount of skepticism. Any assumptions that needed to 

be made are mentioned, and the effects of these assumptions are included where possible, 

and where it was believed additional analysis would be most relevant. The values used as 

input for the validation of each aircraft are tabulated in Appendix B. The values that were 

most commonly unavailable in the literature and were thus necessary to assume were as 
follows: 

Used Only For the Time to Climb Calculations: 

* Oswald Efficiency Factor = 0.85 

* CDo =0.0161 

* Takeoff Propeller Efficiency = 0.75 

Other Values Commonly Assumed: 

* Cruise Propeller Efficiency = 0.85 

* Maximum Lift Coefficient = 1.6 

* Airfoil Selection: NLF(l)-1015 

+ Limit Load = 3.5 g's 

* Engine Specific Fuel Consumption = 0.4 lbs/HP/hr. 

It is mentioned once again that the specific fuel consumption and cruise propeller 

efficiency appear directly in the Breguet Endurance equation. It is thus obvious that these 

assumptions have a fundamental impact on the ABSOLUTE endurance results. For this 

reason, the results for absolute endurance cannot be validated in a closed form manner 

within this thesis. Values resulting from the methodology for endurance will be cited for 

each case, however without accurate values for propeller efficiency and specific fuel 

consumption these endurance values may be in error in excess of a factor of four at times. 

In general, it is more reasonable to evaluate the accuracy of the methodology based upon 

the aircraft empty/structural weights and the power required in cruise and climb. 
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10. A. 1 Boeing Condor 

The Condor was the aircraft with the most detailed information available. Despite 

the relative wealth of information available for Condor, a number of assumptions still 

needed to be made. The Liebeck airfoil used for the Condor main wing was not available, 

as a consequence, the NLF(l)-1015 airfoil was used. At a Reynolds number of close to 

one million (based on average wing chord), this represents the upper end of Reynolds 

number expected for this class of aircraft. 
In order to ensure that the choice of airfoil had a minimal effect on the results for 

the validation of the methodology, the Wortmann FX 63-137 was also tested. A minimal 

difference (on the order of minutes) in final endurance was found between the 

implementation of the two airfoils in the results for the Condor. 

The propeller efficiency was not available, however a value of 0.85 was used. When 
. 

this value was increased to 0.9, the respective increase in endurance was roughly 5%, so, 

the strong effect of the propeller efficiency on overall aircraft endurance can plainly be 

seen. The same experiment was performed for the specific fuel consumption by 

increasing it from 0.4 lbs/HP/hr to 0.44 lbs/HP/hr. The subsequent endurance decreased 

by approximately 9%. This is as expected by the presence of both the propeller efficiency 

term and the specific fuel consumption term in the Breguet endurance equation. - 
The value for Oswald efficiency factor (used only to determine the time to clinýb) 

was also unknown. It was assumed to be 0.85. An increase in this value to 0.9 resulted in 

an increase in endurance of 11 minutes (out of 56.56 hours total), and a corresponding 

decrease in time to climb of 11 minutes. This quite obviously represents a minimal effect 

on the overall results. All of the remaining values input into the methodology originated 
directly from widely published literature. 

The Condor held the endurance at altitude record for piston reciprocating engine 

aircraft at 58-18 hours at 66,980 feet of altitude. This includes the time required for 

descent (cited as less than 3 hours), but does not include the time to climb. The present 

methodology predicted an endurance (not including descent time) of 56.56 hours with 2.98 

hours time to climb. This represents a maximum possible error of less than 3 percent 
before taking into consideration the descent time, which only reduces the error. In terms 

of the macroscopic endurance results this is much more accurate than expected. 

Chapter X 221 Results and Discussion 



Design Methodologyfi)r Low Speed HALE UAVs 

Since no details of the drag breakdown of the aircraft are known, the specific drag 

details cannot be discussed. The predicted crwse power required was below the cited HP 

available from the Condor's engines. This is expected since it was determined from the 

results that the engines of the Low Speed HALE UAV are sized based on the clin-ib and 

not the cruise requirement. In general, the macroscopic solution would appear to validate 

the overall aerodynamic prediction. Shghtly more detafl was avadable with regards to the 

weight breakdown, however. 

The breakdown of the component weights can be seen in Table 10.1 for the Condor. 

The methodology (over) predicted the aircraft empty weight by 120 pounds. This is 

impressive given the 6200 pound empty weight of the Cotidor, and even more impressive 

when the 18,700 pound takeoff weight is considered. The wing weight, however, was cited 

to be 2 lbs/ ft2 and the method predicted the wing weight to be 2.6 lbs/ ft2 as shown 'in the 

Weight F, stimation chapter. From the limited arnount of weight data available for this 

aircraft, it was impossible to determine wbicli corresponding component(s) were under 

predicted in weight by the remaining 540 pounds. It was unclear, howcver, if the 

published wing weight was the weight of the entire wing with fuel systems, actuators, etc., 

or was just the average material density resulting from the finished empty wing stnicture. 

Table 10.1 is a table of the component weights 
predicted by the methodology for the Condor. 

Weight (lbs) %Empty Weight 
Wing 3019 47.87 
Fuselage 383.2 6.075 
Horiz. Tall 244.5 3.876 
Vert. Tail 177.0 2.806 
Engine(s) 1290 20.45 
Nacelle(s) 124.4 1.973 
Fuel System 570.5 9.044 
Cntrl Sfcs 235.8 3.738 

, 
Elec/Avion. 262.6 4.163 

IO. A. 2Aurora Flight Sciences Perseus B 

The Perseus B is perhaps the most perplexing of all of the aircraft validated against. 

Although valucs had to be assumcd in accordance with Section 10A for propeller 

efficiency and Oswald F, fficicncy factor (assumed values for each aircraft can be seen M 

Appendix B), the airfoil characteristics were made available from the literature. 
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The origin of the perplexing behavior was due to the manner in which the 

performance data were provided in the literature. FAidurances of both 8 and 18 hours 

were reported in the fiterature, for a payload of 176 pounds. Taking the payload weight 

along with the cited empty weight ý)98 pounds) and the cited maximum takeoff weight 

(2200 pounds) provided for enough fuel for the methodology to predict a 60.76 hour 

endurance. As a result of further research, it was discovered that tile limitation in tile 

endurance of the Persei4s B was not m fact performance related, but due to the size of tile 

fuel tank used (20 gallons). The 18 hour endurance cited was for a doubled fuel capacity 

of 40 gallons using external pods. 

Under thcsc circumstances for fuel fraction and total takeoff weight (1292 Ibs and 

1409 lbs respectively for the 20 US gallons of fuel and 40 LIS gallons of fuel cases), tile 

predicted endurances were 11.7 hours and 22.2 hours respccti,, -cl), at 60,000 feet. The time 

to clin-lb was estimated at 0.7 hours for both cases and suggests that tile specific excess 

power available throughout the climb is lower than that resulting from the assumed 65 

1-11). This also Suggests the inability to maintain Sea l. evcl power up to alutudc with the 

Rotax engine impict-nciitation. Whcn tile endurances arc ad*justcd by the dift-Crenco: In the 

time to climb, the resulting valucs arc 9.95 and 20.42 hours rcspcctI%, cly. 
Finally, the empty weight predicted by the methodology was 862 pounds for the 20 

gallons of fuel case, and 920 lbs for the 40 gallons of fuel case. The cited valLic for the 

actual Perseus B enipty weight was 998 POLIIILIS. These predictions would classlfý, as 

reasonably accurate due to the weight and drag implications of the presence of landing 

gear on the Persetis B. 

IO. A. 3 Aurora Flight Sciences Thescus 

As -aircady secti in Table 4.1, the Aeseus has thc higlicst structurc fractional weight 

of any of the I IALF. L', \%"s cvaluatccl (exccpt for tho: pro: vIOLIS gclicration Pervetuv 
W", 

A). The Theseus also has thc lovvest 111) to weight ratio of any of the aircraft cvaluatcd. 

These factors havc an obvious dircct impact on not only thc final cticlurancc and time to 

climb, but also the weight cstimatioti. Silicc tho: Theselis ctigincs werc dertvcd from the 

Rotax 914, the fucl consumption for that enginc was asSLIMCd for this aircraft. 
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It is first noted that the Theseus never flew above 22,000 feet before experiencing an 

in flight breakup, so all of the cited performance numbers ate estimated based on the 

calculations of Aurora Flight Sciences engineers. Aurora Flight Sciences literature cited 

the total engine power at 160 HP. If the climb power is set to this value, the aircraft takes 

15.5 hours to ascend to the cited endurance ctifise altitude of 82,000 feet. Thus the 160 

HP value was assumed to be a cruise power setting. 1he Rotax 914 has a full throttle 

rating of roughly 110 HP for each engine. Assuming a conservative combined twin engine 

climb power of 200 HP, the aircraft takes a slightly more reasonable 9.3 hours to climb. 

The endurance at 82,000 feet for Theseus was cited as 10 hours. 

'Me methodology predicted an endurance of 16.48 hours at a power required of 201 

HP using the fuel consumption of 0.4 lbs/hp/hr. It is believed that this fuel consumption 

could not be maintained up to 82,000 feet, however there simply were no other data 

available for the estimate. Despite the higher power required calculated by the 

methodology (normally one of the most fuel efficient power settings for the Rotax 914) 

compared to that given by Aurora Flight Sciences, the fuel consumption is suspected for 

the difference in endurance (when the predicted empty weight difference is taken into 

account). Another possible explanation is the same phenomena witnessed with the Perseus 

B, where the reported maximum takeoff weight of the aircraft is not in fact possible due to 
limitations in the fuel volume of the existing tanks. 

For all of the aircraft where the cruise velocity was not published, the cruise velocity 

was set based upon the known wing loading and a cruise lift coefficient as dose to 1.3 as 

possible. As will be shown later, the impact on the aerodynamic efficiency resulting from 

changes in lift coefficient are small for robust Low Speed high lift coefficient airfoils. In 

the case of the Theseus the maximum fift to drag ratio lift coefficient is close to this value. 
Ibc minimum power required lift coefficient was however, as with most Low Speed 

HALE UAV's (due to the extremely high aspect ratios), too large to be practical without 

the use of high lift devices. No other assumptions needed to be made for this aircraft. 
Most importantly, though, the weight estimation module under-predicted the weight 

of this aircraft by 1500 pounds (out of a total empty weight of 5166 pounds from the 
literature). This can partly be explained by the fact that the aircraft has an 

uncharacteristically high structure fraction when compared to other aircraft in the class. It 

is noted that the wing weight per square foot predicted for Theseus was over 3.5 lbsIft' and 
the weight estimation method still under-predicted the weight of the aircraft. It is also 
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noted that the outer wing for this aircraft held no fuel and was constructed to satisfy FAR 

23 standards (+3.5 g load). Finally, in the methodology, if the empty weight is under 

predicted, this weight is replaced by fuel to keep the takeoff wing loading and takeoff 

weight the same. In this instance, the endurance is'increased by the amount of the weight 

difference times the required cruise HP times the fuel consumption. 

For the remainder of the difference in estimated weight, it is beneficial to consider 

the layout of the actual aircraft. Theseus is a twin engine aircraft where the engines are in 

relatively large pods on the wing. 'Mese pods double as structure for the main landing 

gear and also contain a large amount, of fuel. In addition, they house a rather intricate 

gearbox and prop-shaft which allows for a bizarre pusher-propeller arrangement giving 

greater propeller/ground clearance. None of the, other light-to-medium weight aircraft 

evaluated have such an intricate implementation. 

IO. A. 4 Scaled Composites Raptor 

It is noted that the Raptor was designed as optionally piloted, and was never designed 

as an unmanned aircraft. This will have obvious effects on the weight estimation and 

center of gravity of the aircraft. In addition, the aircraft never performed at altitude, and 

the performance numbers cited are again the result of the calculations of Scaled 

Composites engineers based on known lower altitude perform ance. 
The Raptor is another aircraft propeUed by a Rotax engine. In'the earlier Eterature 

for this aircraft it was cited as having a Rotax 912, however it was e'xpectcd that if funding 

materialized it would be retrofitted with a Rotaý 914. Apparently the funding did not 

emerge and the retrofit has not happened so the performance of this aircraft was estimated 

using extrapolated Rotax 912 data. The reason the data was extrapolated was that the 

predicted cruise power for this aircraft Was 23.4 HP. This is below that provided by the 

Rotax Company data. At such a low power setting the Rotax 912 is not nearly as efficient 

and a fuel consumption of approximately 0.65 lbs/HP/hr was used in the endurance 

calculations. 

The Raptor presented a curious problem. Given the geometrical data for the 

aircraft, the aircraft center of gravity and static margin were reasonable, however the wing 

was directly behind'the engine with little clearance and there was no possibility of 
instrument visibility in the forward portion of the aircraft. Despite these problems, the 
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performance of the aircraft in this configuration was given in the literature, as 48 hours. 

The altitude was assumed to be 60,000 feet since the claimed ceiling was 65,000 feet. 

Roncz airfoils were specified for this aircraft for the wing, vertical, and horizontal 

tails, however these airfoils are not available in the literature so the usual NLF(1)-I 015 was 

assumed with the NACA 0009 used for the tail sections. 
The endurance of this aircraft was thus calculated at 48.17 hours with a 1.75 hour 

time to climb using the 0.65 lbs/HP/hr fuel consumption. This represents 6.57 hours lost 

to trim, however it results from using the geometric configuration given in the literature. 

Using a specific fuel consumption of 0.4 lbs/HP/ht, the endurance was calculated as 88 

hours, with only 4 hours lost to trim. Much of this is possibly due to the inability of the 

methodology to take into account the "optionally pilote&' mode. 

FinaUy, the weight of this aircraft was under-predicted by a mere 10 pounds (out of 

850 pounds empty weight), however it was unclear as to whether or not the values given 
for the weight fractions of the aircraft represented the fully unmanned, or "safety" piloted 

mode. In addition, given the presence of landing gear on this aircraft, this result would 

again classify as a slight over prediction of the weight. 

1O. A. 5 GenendAtondcs Altus 

In evaluating the Altus the most imPortant factor to remember is that this aircraft 

was for the most part designed as a low to medium altitude aircraft. The engine was 

modified for high altitude flight, and the modifications to the geometry of the existing low 

altitude aircraft consisted mostly of wing-tip extensions, an enlarged vertical surface above 
instead of below the fuselage, and a shorter overall fuselage length due to reduced payload 

capacity. 

Referring again to Table 4.1, it can be seen that the Altus has the third highest 

structure weight fraction, 18% below that of Theseus, yet 24% higher than the Raptor, the 

next closest true HALE UAV. 

With those considerations in mind, the estimated empty weight for the Altus was 190 

pounds under (out of a total empty weight of 1220 pounds) the actual empty weight. It is 

strongly believed that if this aircraft were designed as a high altitude aircraft the actual 

empty weight would have been much lower thereby reducing the 15 percent error in the 

weight estimation, with ffixed landing gear accounting for the remainder of the difference. 
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Ibis weight difference accounts for an increase in predicted endurance of approximately 7 

hours at the cruise HP. 

The power required to cruise at an altitude of 65,000 feet was predicted to be 64.2 

HP. This is in the more efficient range of the Rotax 914 providing a fuel consumption of 

0.4 lb. /HP/hr. Given the reasonably high wing loading of this aircraft (for a lightweight 

Low Speed HALE UAV), the cruise velocity was fairly high at approximately 225 knots. 

The claimed endurance for the Altus was 30 hours at the given altitude. The methodology 

predicted an endurance of 32 hours with 0.67 hours time to climb. 

1O. A. 6 Gen era] A tomics Pre da tor (R Q-M) 

Although the Predator is not a high altitude long endurance aircraft, there was 

sufficient information available to predict the weight and endurance of tl-ýs aircraft using 

the methodology. The Predator uses a Rotax 912 for which fuel consumption information 

is available. It was suspected before undertaking the weight estimation that the 

methodology would under-predict the weight of the Predator due to the fact that it was 
designed for much lower altitude operations and thus would need to withstand greater gust 
loading and need greater damage tolerance. 

Despite these considerations, the weight estimation method predicted an empty 

weight roughly 10 pounds under that of the actual empty weight of 770.75 pounds. Since 

the Predator operates at such lower attitudes and far off of the optimum for the Rotax 912, 

the fuel consumption was taken directly ftom the Manufacturer's data as 0.6 lbs/HP/hr 

which is toughly equivalent to 2.3 U. S. gals/ht in cruise. 

Predator has an endurance of approximately 40 hours taken at an assumed altitude of 
20,000 feet. The methodology predicted an endurance of 39.3 hours with a 250 pound 

payload. 

10. A. 7 Isra e1i Aircraft In dus tries Heron 

Once again, this aircraft is designed as a medium altitude long endurance aircraft, 
however it is a Twin Boom Pusher configured aircraft and could potentially provide 
interesting validation results. Also, again, it was suspected before undertaking the analysis 
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that the weight estimation module would under-ptedict the empty weight of this aitcraft 

since it was designed for lower altitude cruise and loiter. 

From the literature, the Heron has a maximum velocity of 125 knots. The cruise 

velocity was taken as 110 knots at an -altitude of 25,000 feet. The published maximum 

altitude is 32,000 feet. The greatest unknown in the prediction of this aircrafes 

performance was the engine. The engine used was unknown, but was given as a4 cylinder 

turbocharged engine, rated at 100 HP. The published endurance was given as 40 to 50 

hours. 

An endurance of 61 hours at 36.5 HP was predicted by the methodology. This is 

most likely a much lower HP rating than the aircraft is actually flown at, however it results 
from assuming a high cruise lift coefficient similar to high altitude flight in the absence of a 

more relevant value. The difference in predicted endurance results from the additional 

weight of fuel replacing the weight by which the structure was under predicted. 
As suspected, the weight estimation module under-predicted the weight of the Heron 

by 275 pounds (out of a total empty weight of 1315 pounds). Again, this is believed to be 

more a result of the fact that the aircraft is a low-to-mediurn altitude aircraft with landing 

gcar than a result of any error in the Twin Boom configuration weight estimation. In 

addition, the Heron is designed with the possibility of a large external payload. This would 

also serve to increase the empty weight of the aircraft. 

1O. A. 8 Scaled Composites Proteus 

Although this aircraft is primarily a manned aircraft, its unusual Tandem Wing 

configuration provided an interesting opportunity for some basis of comparison using the 

methodology to apply to less conventional configurations. Additionally, this aircraft is 

built with the possibility of adding wing tip extensions to both the fore and aft wings 
depending on the mission. The Proteus was designed with the ability to add payload pods 

of varying size and shape to the underside of the aircraft fuselage. All of these 

characteristics make the weight estimation of this aircraft less accurate. 

Extremely accurate fuel consumption data at altitude were obtained for the Williams 

FJ44-2 engines used from a source working on high altitude turbojet powered aircraft. In 

the literature, the Proteus was listed with a best range cruise of 190 knots. At 60,000 feet, 

this gave the aircraft a cruise lift coefficient of 1.5. It was thus assumed that this was not 
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the maximum cndurance velocity. Even though the Roncz airfoils used could have been 

capable of operating at these lift coefficients, it is thought unlikely that this value would be 

selected for best endurance. Thus a cruise velocity of 205 knots was assumed using a 

more reasonable lift coefficient of 1.4. The Williams engines are listed as having a total 

weight of 1100 pounds. This was verified as an installed weight in conversation with Burt 

Rutan. Finally, a fuselage diameter of 3 feet was assumed. All other values were known 

for this aircraft. 
The methodology predicted an endurance of 21.5 hours at 60,000 feet with a 2000 

pound payload. The value for endurance cited in the literature for these conditions for the 

Proteus was an endurance of up to 14 hours. Due to the error in the estimation of the 

weight of this aircraft, it is difficult to know the source or magnitude of the error in 

endurance as once again the weight remaining from the structural weight under prediction 

was replaced with fuel. One possibility is that the average Reynolds numbers experienced 
by this aircraft are higher than what the methodology was created for which would effect 

the prediction of the drag. 

The predicted empty weight was 4018 pounds. The actual empty weight of the 

Proteus is 5900 pounds. Again, the reasons for this rather large difference are due to the 

manned pressure section of fuselage, controls, instruments, unknown fuselage diameter, 

optionally extended wing tips, and hard points on the fuselage for carriage of external 

payload pods, 6 foot long main landing gear, dielectric construction of certain sections of 

the aft wing, and a thickened inboard section due the presence of flutter. 

1O. A. 9 Teledyne Ryan Global Hawk (R Q-4A) 

Once again, it is noted that the methodology was not explicitly intended for the 

design of turbojet or tutbofan aircraft. 'Me most important module which will not predict 

well under these conditions is the drag estimation module. Ile Global Hawk loiters at 343 

knots which is well into the regime of compressibility at altitude, and at the very least, 

compressibility factors would need to be included in order to more accurately predict the 
drag of this aircraft. In contrast, the weight estimation of this aircraft should be 

reasonably accurate. There is some information available on the component weights, and 

this information will be used to validate the weight estimation module of the methodology. 
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Table 10.2 lists the estimated and actual 
component weights for the Global flawk. 

Weight 
(lbs) 

Weight 
(lbs) N 

Empty 8479 9120 -7.02 
Wing 3067 2915 5.21 
Fuselage 1169 1540 -24.1 
Empennage 264 330 -20.0 
Landing Gear N/A 1100 
Fixed EquiD. 996 895 11.3 

Given the mput pararnetcrs (Appendix B) for the Global flawk, the methodology 

predicted weights and actual component weights can be seen in Table 10.1. Thc overall 

empty weight compared quite well, however, with the exclusion of landing gear i the 

weight estimation module of the methodology, several component weights must have been 

overestimated. A brief to(-)k at the table shows that the wing weight was predicted with a 

high degree of accuracy. The fuselage was predicted underweight by a very large margin. 

This can be explained by the fact that the methodology was designed to predict the weight 

()f fully comp()sIte fuselages having simple shapes, and the Global Haývk uses a combination 

of construction techniques and a very complex fuselage shape. In additiml, there is no 

mechanism to incorporate the weight of the ducting for the engine used in the Global Hmik 

The installed weight ()f the Allison AF1 3007H was used in the methodology (2660 lbs), 

however, it is unclear as to whether this weight included the weight due to tile 

dUcting/inict for the engine. 

Fhe weight of the cinpciinage was under predicted by almost 25%. The impact of 

this under prediction is rather small on the overall weight estimation due to the small 

relative value of the weight of the components Oess than 4/o of aircraft empty -, %-eight). 

One possible explanation is that the V-Tail configuration support structure is greater than 

that of a conventional tail. The impact (on the weight) of the proximity of the engine and 

engine exhaust to the tail is also unclear. Finally, the fixed equipment was over predicted 

by over 11"'(,. There was no further information available for the remainder of the 

component weights. It is mentioned, however, that a landing gear weight of I 100 pounds 

is almost 12", 'o of the takeoff weight of the aircraft and must include the weight of 

hvdraulic systems and actuation. The weight of these control and actuation sN, sterns were 

taken into account by the surface controls weight group in the methodology. 
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Finally the endurance was predicted as 41.12 hours, with the 1800 pound payload. 

The endurance for the Global Hawk is cited as over 40 hours. (; iven the closeness of the 

weight estimation and the accuracy of the fuel consumption values used, the error most 

likely originates from the aerodynamic prediction and the fact that compressibility %vas not 

taken into account. 

1O. A. 10 Summary of the Res ults of the Valida tion 

It is difficult to perform any kind of closed-form validation of the nicthodologv. 

Given this difficulty and the limitations of the data available from the Itteraturc, the 

methodology provided reasonable rcsults In all instances, and excellent rcstilts in most for 

an early conceptual design methodology. A tahulated summary Of tIIC ClIdLirancc and 

empty weight prcclictions and their respective errors arc provided in Table 10.3. 

Table 10.3 summarizes the re. vults of the validation on aircraft endurance and emplY weight. 

ENDURANCE (hrs) EMPTY I NEIGHT (lbs) 
Methodology Cited Error (%) @SFC Methodology Cited Error 

Condor 56.56 56.18 0.68 0.4 6307 6188 1 99 
Perseus B 9.95 8 24.4 0.4 862 998 13.6 
Perseus B 20.42 18 13.4 0.4 920 998 7.82 
Theseus 16.48 10 64.8 OA 3666 5166 29.04 
Raptor 48.17 48 0.35 0.65 840 850 11A8 
Altus 32 30 6.67 0.4 1030 1220 15.57 
Predator 39.3 40 1.75 0.6 759 771 1.49 
Heron 61 40-50 27.5 (max) 0.4 1040 1315 20.91 
Proteus 21.05 14 50 - 4018 5900 31.39 
Global HawkA 

_ 
41.12 1 >40 1- I- 1 8479 1 9120 1 7.02 

P'Nen though the etidLiraticc values must bc vicwcd vvitli ski-pticism duc I() thu 

suspcct naturc of the occasionally unknown fLICI Co11SLIIIII)tl()Il valucs, the ovcnill 

methodology shov. -ed amazing flcmbility In duplicating the results of kiio%, %, tl airmift. As a 

verification, notic of the cruise powcr required valtics prc(licted xx-crc grc: ttcr than the 

cilgine 1-111 values cited in the litetaturc. It ý, vas clear from the above results (cspcclally 

Theseus) that the engines are slzc(. 1 more ()n Time to Chnib rccluircinciits than cruise 

reqUirernctits. 

For the aircraft in N-ditch tile tll()st information was known, (tile Condor) the rcSLIItS 

from the nictliodology wcrc excellent. The aircraft xvith the grcatcst crror in vvcight, all 
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had uncharacteristically high structural weight fractions for Fligh Altitude aircraft, had 

configurations not optimized for High Altitude flight, or simply were not High Altitude 

ai. rcraft. 

10. B The Conventional Configuration 

The methodology was validated primarily against the conventional configuration. 
1bus, the first and most detailed set of results was generated from the application of the 

methodology to this configuration. A logical progression of parameters was studied and is 

detailed in the subsequent sections. Given that this thesis and methodology have been 

built around the maximization of aircraft endurance at altitude, the analysis and 

explanation will be presented with direct reference to the individual terms in the endurance 

equation and their relative influence on final aircraft endurance. In addition, a parametric 

variation is performed specifically to isolate the effects of each parameter on overall 

aircraft endurance. 

10. B. 1 Breguet Endurance Equation Revisited 

For clarity, the Breguet Endurance equation is recited below: 

Endurance 
C Y2 r2p -c 

r. j,, 
fL 

Fjý 

,.. e 
WW 

SFC CD Wfi'I 

with units in hours. The propeller efficiency is not very widely known for this class of 

aircraft, however its influence is rather simple to correct for. As long as a constant value is 

used for all of the results, the general trends for endurance will be correct, assuming 

reasonably similar operating conditions. 
The specific fuel consumption (SFC) is a parameter that was possible to include in 

the overall analysis. It was decided, however, that the results from using any particular set 

of engine performance curves would be specific to that engine, and would likely hide the 
driving aerodynamic and weight trends for which this thesis was intended to uncover. For 

this reason, a constant value of specific fuel consumption corresponding to the known 

value for Condor was used for all calculations. While it is realized that this assumption 
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will impact the absolute results for total aircraft endurance, it does not preclude the ability 

to obtain absolute endurance values at a later date when specific engine. data is available. It 

would be possible at any later time to simply multiply the endurance by the constant fuel 

consumption assumed, and divide by the value of fuel consumption for Horsepower 

requited in cruise (already output from the methodology) for the conditions corresponding 

to the results of interest. I 
The air density in cruise is only a function of the cruise altitude. A study on the 

variation of cruise altitude is included for interest. The next term of interest from the 

Brcguet Endurance equation is essentially takeoff wing loading. For the following study, 

wing loadings of 5,10,15,20, and 25 lbsIft' were considered at takeoff weights ranging 
from 2,000 to 20,000 pounds. 

The fmal two terms will be referred to as the endurance term and the fuel fraction 

term respectively. These terms reflect the most useful output from the methodology. 
The effects of the endurance term are further narrowed by the assumption of a 

constant lift coefficient throughout all but one of the studies. Based on the definition of 
lift coefficient and its application to the endurance equation, the choice existed to either 

select a constant cruise velocity or a constant lift coefficient as a basis for comparison. of 

all configurations aýd all parametric variations. Given that the lift cocfficient is a more 

useful aerodynamic and design indicator, it was selected as the constant value. In order to 

understand the implications of this decision, a study was performed on the variation of lift 

coefficient. It is noted, though, that it was impractical to assume a constant velocity across 

the parameters (takeoff weight, wing loading) being considered as the resulting range of lift 

coefficients would have been unrealistically large. 

The variation in the fuel fraction term will be studied closely. Given the above 

assumptions made regarding the Breguet endurance equation, the behavior of the final 

endurance with any variation in parameters can and will be traced back to the fuel ftaction 

Wf 
wl" 

Y2 

and endurance 
( CL, 

CD terms. It is again noted that the average lift 

coefficient has been kept constant. Consequently, the changes in the endurance term for a 

given configuration will result from the degree of travel of the center of gravity (as fuel is 
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expended), the change in shape of the wing fift distribution (resulting from varying the 

magnitude of the wing loading), and due to Reynolds number effects. 

Thus, the extent to which the endurance equation can be directly influenced by 

input into the methodology is limited to the selection of the Cruise Altitude, the Wing 

Loading, the Takeoff Weight and either the Wing Area or the combination of Payload 

Weight and Payload Weight Fraction. Since Payload weight was thought to be of more 

practical interest, this parameter was selected. 

The endurance equation can be indirectly influenced by a much larger number of 

parameters. These have been categorized into three major areas, Wing Geometry, 

Operating Conditions, and Engine Configuration. It is noted that although Cruise 

Altitude is a variable directly effecting the endurance equation, it has been placed into the 

Operating Conditions section. The parameters selected for study within each area will be 

discussed in subsequent sections. The discussion of the general results for the 

Conventional Configuration will proceed with the variables directly influencing the 

endurance equation. 

1O. B. 2 General Results fro rn the Variation of W/S,, Wto,, and 
WPL / Wto 

general study was performed on the Conventional Configuration. Takeoff weights 

of 2000,5000,7500,10000,15000, and 20000 were considered. For each takeoff weight, 

four wing loadings were considered, either 5,10,15, and 20 lbs/ft' from 2000 to 10000 

Pounds, or 10,15,20, and 25 II)S / ft2 for the 15000 and 20000 pound cases. The reason 

that the sarne wing loadings were not considered for all weight cases is the limitation on 

practical span given the assurned aspect ratio of 35. For each wing loading, 3 payload 

fractions xvere considered, = 0.05,0.10, and 0.15 
W. 

I'liese takeoff weights were selected within the range of limits to single and twin 

engine internal combustion reciprocating engine unmanned aircraft. They were chosen to 

allow for the academic study of the variation of the parameters affecting the endurance 

performance of the Low Speed I IALF UAV, not to imply that a 2000 pound -aircraft with 

a 10'! o payload fraction could satis(v the same mission as a 20,000 pound aircraft xvith the 

same payload fraction. In addition, the study undertaken was not intended to give the 
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illusion of determining the oplimum takeoff weight for a given desircd endLit-311cc. Thc 

study was intended merely to identify the magnitude of the effect of variation of cert, 1111 

key aircraft configurational conceptual design parameters. 

The conditions for which all of the following results (for this section) were 

generated under were the following: 

0 Cruise Altitude of 60,000 feet 

0 Limit load factor of 2.25 g's (from Condor) 
Lift coefficient of 1.3 
Aspect Ratio of 35 
Specific Fuel Consumption of 0.4 lbs/1 ll'/hr (from Colidor) 
Propeller efficiency In cruise of 0.85 
1 IP to weight ratio of 0.035 (used only to size thc engine for climb) 
Oswald efficiency factor of 0.85 (used only for time to clinil) calcuLiti(ms, VLNI ivýud 
for C 

, j) 
0 (. 

(,, ) of 0.0 161 (used only for the preliminary time to Climb CAICUlatv)ns) 

, Several of these parameters will be the focus of study in Liter section,,. F()r iio,,,, -, thu 

discussion will begin with the prescntýition ()f the total cndurýincc results Lising tlicsc 

parameters. Following th', it section, the fucl fraction mid cndurancc term results will I)c 

presented in an attempt to clarify the underlying behavior of thc wa-rall C11dLI1-, IIICC. 

IO. B. 2a Endurance Results 

Endurance vs Wing Loading, Wp, NVt, = 0.10 
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Figure 10.1 shows the overall aircraft endurance fi)r the 10%P piqload 
fractionalweight case as afunction of jilig loa(lilig. 
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The general shape of the variation in endurance as a function of wing loading can 

be seen in Figure 10.1 for the 10 percent payload fraction case. Similar behavior was seen 

for the other payload fractions. 'Me only difference between the various payload cases was 

the magnitude of the maximum values for the curves collectively. The shape and trends of 

the curves for the 3 different payload cases were otherwise identical. As can clearly be 

seen, the optimum wing loading in terms of overall aircraft endurance is dependent upon 

the payload/takeoff weight desired for the conditions assumed for these results. 

A definite trend exists in the overall endurance as a function of wing loading. The 

optimal wing loading experiences a gradual shift from 10 lbs / ft2 for the 2000 pound case 

to boween 10 and 15 lbs / ft 2 for the 5,000,7,500, and 10,000 pound cases, and between 15 

and 20 lbs / ft 2 for the 15,000 and 20,000 pound cases. The reason for this gradual shift 

will be explained in the next section. The higher takeoff weights appear to maintain their 

optimum value for a much broader range of wing loadings. This would make these 

aircraft more versatile, however they need to be since they will burn comparatively more 
fuel supporting their additional weight in cruise. Also worth noting is the relatively poor 

overall performance of the 2,000 pound takeoff weight case. This phenomenon will be 

further discussed in the aspect ratio section. 

Endurance vs Takeoff Weight, Wpl/Wt, 0.10 
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Figure 10.2 shows overall aircraft endurance as a function qf 
takeoff weightfor the 10 % p(gload weightfiaction. 

Figure 10.2 shows a slightly different view of the same results which liclps 

highlight one of more interesting ch aracteris tics of the variation of endurance. It is noted 
til, 

'It , III 
I)Lt tile 

'j 
II)S/ft2 Case SI, ow roughly the same tendencies. 'rhe 5,10, and 15 Ibs/ft2 

cases All reach a maximum value within the range of takeoff weights considered and then 
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begin to decrease at a slower rate. Again, similar behavior was shown for all three payload 

"I tu e lie weight fractions considered with the only difference being the overall mapn doft 

endurance. 'Me general shapes and trends were the same. 'I'liere was i slight reLitiVe 

downward shift from higher payload fractions to lower payloAd fractions of the higher 

wing loading curves. The reason for this shift will be discussed in the next section. 
Again, the reasons behind most of this behavior will be more c1c. irly secii when the 

endurance is broken into the fuel fraction and endurmice terms. Also notable is the 

strange behavior of the lowest wing loading value. This behavior will be repeated 

throughout the results and is due to a number of rcýisotis that will be explaincd In (Jct,, Ill 

later. 

10. B. 2b Results for the Fuel Fraction and Enduran cc Terms 

IO. B. 2b. i Fuel Fraction Term 

The first figure shown is for the fuel fraction term ýls ýl - uiictl, )Il 

of wing loading (Figure 10.3). It is noted timt the hrgcr the viluc for this term, the higher 

the overall aircraft endurance will be, resulting from a higher fucl fnictiotml weight fr(ml 

the total aircraft takeoff wclgllt. 

Fuel Fraction Term vs Wing Loading, Wp, fW,, = 0.10 

0.55 

0.5 

0.45 

0.4 
W 0.35 
0 0.3 

0.25 
LL 0.2 

0.15 

ol 

5 10 15 20 

Wing Loading (lbs/ft 2) 

---o 2000 lb 

t4 5000 lb 

A 7500 1b 
10000 lb 

15000 lb 
20000 lb 

1 
25 

Figure 10.3 shows the ftiel fraction component (! f the overall 
aircraftenduranceas afunction ofwing loadingfor the lo', "Opqyload 
weightfraction. 
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This Figure is for 
WPL 

=0.10, however the general trends are again essentially WIll 

idcntical for the other two payload cases considered. In general, there is a roughly 

logarithmic increase in fuel fraction ten-n with an increase in wing loading. The curves 

appear to approach a limit, however none of the takeoff weight curves considered seem to 

reach the limit. Nevertheless, the slope decreases faster at lower wing loadings for lower 

takeoff weights. 
Obviously, if the fuel fraction term were the most dominant, the endurance for a 

given takeoff weight would continue to increase approaching some limit. Referring back 

to the endurance figure (Figure 10.1) it can be seen that this is not the case, and there is 

another term that serves to decrease the overall endurance with an increase in wing 

loading. From Figure 10.3, it is evident that there is some benefit of scale in terms of 

structural efficiency. This will be observed later when the structural weight, and not tile 

fuel fraction ten-n, is viewed as a function of wing loading. The reason for viewing tile two 

variables in separate graphs is that the fuel fraction term hides the impact of the payload 
fraction in the results, whereas the structural weight fraction exclusively demonstrates the 

results from the weight estimation routine. 

Fuel Fraction Term vs Takeoff Weight, WpjIW,, o. jo 
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Figure 10.4 shows the fuel fraction component of the overall 
aircraft endurance as a fundion qf the takeoff weight fi)r the 10% 
pyload weightfraction. 

The fuel fraction term as af- unction of takeoff weight is shov, -n in Fqnirc 10.4, 

again - or the 
W"', 

= 0.10 case. The general trends were identical for -Al thrce p-, iyl()-, id cases W", 
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with the only difference being in the magnitude of the fuel fraction terni. This differclice 

is replaced with in magnitude arises solely from the fact that payload II fuel and vice versa. 

The fact that the curves are consistent across the payload weights iniplics thýit thc weight 

estimation is relatively insensitive to trades between payload and fuel within +. 5" o of the 

takeoff weight of the aircraft. This was the only payload fraction range tested clue to what 

was perceived as practical limitations taken from existing data. 'Flits was intended by no 

means to imply that a 2000 pound aircraft with aI O"'o payload fraction has flic sýinie utility 

as a 20,000 pound aircraft with the same payload fraction. It also does not attcnipt to 

imply that aircraft of these two weights could satisfy the same missl()n. Ag., 1111, tllcs(- 

takeoff weights were selected as limits to single and twin enginc ititcrnýil cotnl)Listt()n 

reciprocating engine unmanned aircraft. 'Fhey were chosen to all, )w for flic icadernic 

study of the variation of the parameters affecting the endurance pct-forinance (d thc 1. ()w 

Speed I IALI` UAV- 

As seen in the figure, all ()f the wing loading curves den-ionstr itc wc ik 1()gýiritliinic 

tendencies in shýipc. The most dramatic of all ()f the CLIn'es is ýJpljj tlic --) ibs/tr' \VIng 

loading case. This figure implies that for the fuel fnicti()n term, t-()r ýiny given take()ff 

weight, the highest wing loading will yield the most beneficial fLicl fraction cn(kir, incc tcrm. 

Once ag:, iin, if this were the dominant term through, )iit flic ningc ()f wing 1(), idinp, ind 

takeoff weight, all Low Speed I IALF. UAV's w0tild be built with extremely high wing 
loadings. This behavior is complemented by tile behavior of the cndLinincc fUt-111 IS Will be 

shown shortly. 

Fuel Fraction Term vs Wing Loading, Payload Effects 
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Figure 10.5 shows the pq), load effects on thefitel fraction component of the overall aircraft 
endurance as afancYion ofwing loading. for three different takeof 

.f 
weights. 
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Figure 10.5 shows a comparison of the fuel fraction term results as a function of 

wing loading for three different takeoff weights. Each takeoff weight was analyzed for 

three different payload weight fractions, 0.05,0.10, and 0.15. The behavior of the 10,000 

and 20,000 pound curves is quite similar. The 2,000 pound case is different from the other 

two takeoff weights shown. The reasoning for this will be discussed when the structural 

weight curves are presented, since the effects of payload can still be seen in the present 

figure. In fact, the shapes of the curves for a given takeoff weight are essentially identical, 

with the only visible difference being the change in magnitude, assurnedly due to the 

replacement of payload with fuel and the effect of the subsequent load redistribution. 

The optimum fuel fraction term is important, however, there is a balance between 

the fuel fraction term and the endurance term. The effects of either term cannot be 

ignored, and the product of the two terms result in the overall aircraft endurance. The 

contribution of the endurance term is discussed in the next section. 

10. B. 2b. ii Endurance Term 

Before viewing the endurance term figure, it is necessary to note that the range of 

variation across all takeoff weights for the entire Y-axis (endurance term) is onlv 5.1`. ý'o and 

that the largest variation of any single takeoff weight is only 3.1'/o. With those values in 

mind, the variation in endurance term with wing loading can be seen in Figure 10.6. 

Although the magnitude of the variation of the endurance term is significantly smaller than 

that of the fuel fraction term, there are still some discrete and discernible trends repeated 

throughout the results. 

Across the different payload fractions considered, the overall trends were similar. 

The only difference was that for the higher payload fractions, the distance between the 

curves for the different takeoff weights was less, and for the lower payload weights, the 

distance between the curves for the different takeoff weights was greater. This 

characteristic is expected given that higher payload fractions translate into lower fuel 

fractions. Lower fuel fractions create a higher average wing loading throughout the flight 
g- 

of the aircraft. Thtis for a given takeoff weight, the higher payload fraction case will create 

a higher average wing loading for the case considered which results in a less optimal lift 

distribution Oess elliptical), generating more drag for a given lift coefficient. This drives 

flic endurance term lower since it is simply a measure of aerodynamic efficicncy. 
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Endurance Term vs Wing Loading, Wpl/Wt, = 0.10 
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Figure 10.6 shows the endurance terntlaero(ýJ, namic cfficienq, 
component of the overall aircraft endurance as a function t4* )ving 
loadingfor the 10% payload treightfraction case. 

All of the lower takeoff weights considered sho,, ved mcrc, using icroclynamic 

efficiency from lower wing loadings up to a ma\Itnurn point with ýi sul), CCILIclit gnlduýll 

decrease in aerodynamic efficiency. Considering the -actual rchtivc ntignituck, (d the 

curves, the slopes In the region after the in-a-mmuni are quitc s1m1hr. Thc \'Allw 

for the endurance term for all of tlic takeoff weights is re,, isom1bly simiLir with flic 

exception of the 2000 pound case. One possIbIlIty for this C\CCptI()II IS tl1C li)\V I-ClAtIVC 

value for the cruise Reynolds number. This would serve to incr(%tsL- the parasitc dni, tl ()n 

most of the aircraft components. 
Also worthy of noting is the slight "kink" in the 20,000 Imund týikc()ff wcight 

curve. It is believed that this behavior is due to tile Combination of high Wing 1()Ading and 

high Reynolds number. The difference, nonetheless is less than 1.0'! /o. It is inci-it-P)ned thAt 

the "kink" is slightly more prominent at higher ptyload fractl()nýil wcights, ýind less 

prominent at lower payload fractional weights. 
In brief, it can be seen that the endurance term as a functl, )n of wing kading hxs 

decreasing behavior beyond an optimum wing loading. This decreý, istng bch,, tvt(ýr ýit higlict- 

wing loadings ýippears to be sufficient to cause the ()verall aircraft ClIdUnince to dco-casc in 

spite of the increasing fuel fraction term. 

IO. B. 2. c Summary of the General Endurance Resu Its 

It li'as thus been shown how the shape ()f the ()vcrall ctidurmice curvu is influenced 
by the combined results from the fuel fniction ýind endurance terms. It is p(ýIntcd ()Lit 
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again that as a result of keeping the lift coefficient constant (within less than 0.8'/0), the 

endurance term only embodies Reynolds number effects, lift distribution shape changes 

due to changes in wing planform shape, and parasite drag changes. 

The optimum wing loading for the endurance ten-n occurred somewhere between 

10 and 15 lbs/ft2 depending on ffie takeoff weight, except for the 2000 pound takeoff 

weight case where the optimum wing loading was between 5 and 10 lbs / ft2. The 

endurance term initially increases rapidly, but beyond 5,000 pounds increases very slightly 

for all wing loadings considered, throughout the range of takeoff weights considered. The 

maximum values for both the endurance and fuel fraction terms experience a shift towards 

higher wing loadings for higher takeoff weights. 

For the fuel fniction term the maximum point is not obtained within the range of 

wing 1()adings and takeoff weights considered. There is no clear optimum takeoff weight 
for the fuel fraction term, however fuel fraction terms appear to reach a plateau or region 

of decreased slope faster for lower takeoff weights at lower wing loadings. 

10. B. 2. d Other In teres ting Res ults 

Wstruct/Wto vs Wing Loading, WpMt, 0.10 
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Figure 10.7 shows the predicted emljq, iveightftaction as afunction 
of sting loadingfor the 10% payload iveightftaction. 

Another study of Interest can be seen in Fiprc 10.7. It shows the relationship 
between the aircraft structural weight and the wing loading. The essential difference 

between this and the fuel fraction term shown previously is that it removes the effects of 

payload fractv n from the output. 
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With the removal of the effects of the payload weight fraction, the results for the 

prediction of the empty weight of the aircraft are much more consistent. As seen in the 

figure, the 2,000 pound takeoff weight aircraft is the least structurally efficient above wing 

loadings of 10 lbs/ ft2 . This behavior occurs at a point where the takeoff weight is 

reasonably low, and the wing area is also quite low. It is suspected this behavior is .1 direct 

result of the lower limit placed on wing and fuselage weight per area values discussed in 

the weight estimation chapter (Chapter VII). This weight per area limit can have a large 

impact since the wing is often 40% of the empty weight of a Low Speed HA Ll -', I 1A V. It 

appears from the figure that the 5,000 and 7,500 pound takeoff weight aircraft also reacli 

the lower limit on weight per area, both around 20 IbS / ft2. Tlie aircraft seem to begin to 

reach the lower structural weight limit at a wing area of approximately 250 W. 'I'llis value 

is seen as a practical limitation in the strength and power densities of the materials uscd for 

construction and propulsion, and not a limitation in the predictive ability ()f the 

methodology. 

In addition, the extremely high structure fractions resulting at 5 1bs/ft2 are likely a 
direct result of the lower limits placed on wing and fuselage weight per area. Tbo: lilgli 

structure fractional weights occur for the highest takeoff weight aircraft at the p()Int where 

they have the largest wing area. 

Additionally, there is a deviation that appears to begin at wing areas above roLiglily 
1000 ft' as seen by the behavior of the 7,500,10,000,15,000, and 20,000 p()und takcoff 

weight curves at their lower wing loadings. This deviation causes , in error ()f less than 

5.0% up to wing areas of 1500 ft2 which is considerably above even that ()f Condor (1143 

ft') with its 200 foot span. 

Taking into consideration the above discussion, throughout the range ()f wing 
loadings and takeoff weights considered, the aircraft empty weight prediction 1m)(1111c ()f 
the methodology provides extremely consistent results. The Curve shown %%-as for 10 

percent payload wei ht fractions but the curves for the other payload fractions werc 19 

essentially identical in shape and magnitude. 

The other figure is presented mainly for completeness to dern(mstrate that the 

predicted drag behavior is consistcnt with what would be expcoed for the co', N'clltl()Ilql 

aircraft. This is achieved by viewing Figure 10.8 for the horscpowcr requircd In cruise as a 
function of wing loading for each takeoff weight considered. 
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Cruise HP vs Wing Loading, WpVWt. 0.10 
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Figurc 10.8 showN the increase in predicted cruise poner required 
for increasing takeoff weightsfor the 10%paj, loadweightfraction 
case. 

The figure shown is for the 10 percent payload weight fraction. There was no 

difference across the different payload weight fractions considered. All of the figures 

shown will be used as a baseline for comparison to other cases later in the chapter. 

10. B. 3 Stud of Wing Geometry Effects Y 

The foll()wIng sections specifically address the effects on aircraft endurance and the 

parameters effecting endurance as a result of a variation in several parameters associated 

exclusively with the geometry of the wing. 

IO. B. 3., a Aspect Ratio Study 

For the study of the effects of varying aspect ratio on aircraft endurance, all of the 

V, 11LICS ýissurncd in Section 10.13.2 were kept the same, with d-ie exception of the aspect 

ratio which was changed from 35 to 22. These values were selected since they were seen 

as limiting values. The Co"clor had an aspect ratio of 36.6 and the Altus an aspect ratio of 

21.75, These represent present day realistic limits on Low Speed HALE UAN' aspect 

ratios. Wille larger aspect ratios could be used in constructinga future Low Speed I IALE 

UAV, the general trends experienced by the endurance and the respective endurance and 
fuel fraction terms should be the same. 
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The comparatiVe results for aircraft endurance as a function ()f wing loýidmg ýirc 

given in Figure 10.9 for takeoff weights of 2,000, , 
10,000, -, ind 20,000 pounds. 'I'lle 

analysis was also performed for 5,000,7,500 and 15,000 pound takeoff weights, Ina tllcs(- 

results were not dramatically different from those shown. In addition, the graph would 

become unreadable with the inclusion of these cases. 

Endurance vs Wing Loading 
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Figure 10.9 compares the change in overall aircraft endurancefor aircraft isith 
different aspect ratios (it various takeoff)veights. 

It is n(, ted that for all ()f the comparAtIvc results throughout tills ch, ipiur, dic 

baseline case is presented in the figures in solid lines, and the cascs being studled/výmcd 

are plotted using dashed lines. The case used as a baseline Is that 1)rcs(--iit(-(l for the 

convcntiomil aircraft under the assumptions and conditions stýitcd in SUCti(In W. B. 2 (, f- iliv, 

chapter. 
The most surprising characteristic from this figure IS tile fýlCt tjlýjt tile, lll,, IXIITlLltll 

endurance is not for the aspect ratio 35 aircrat -t except for the 2,000 Pound CIISC- . \t tIIIS 

point it is important to remember two factors. Firstly, that the overall ýiircrý, ift endunitict- is 

a result in this case of the product of the aerodynamic efficiency ; ind thc structunil 

efficiency. Secondly, and perhaps more importantly, the specific fuel consumption %v, vs 
held constýint throughout the analysis. '11-ic downstr(. %un effect (If thlS ASSLIMptIon Is 111.1t 

the aspect ratio 22 case, as will be shown, requires more power to fly undcr thc s. inic 

conditions. I lighcr powcr settings do not always Imply grc, itcr fuel consumpti(m, ImwCvcr 

if the engine is optimized for the ()perating conditions for each individmil cxsc, a highcr 

power setting should result In higher fuel consumption. 
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The other point of interest arising from the figure is the fact that the maximum 

endurance point has shifted left for the aspect ratio 22 wing for both the 10,000 and more 

noticeably the 20,000 pound takeoff weight curves. The reason for this shift will be 

discussed with the presentation of the fuel fraction term. Also of interest is the greater 

endurance associated with the higher takeoff weight aspect ratio 22 aircraft with wing areas 

greater than I ()()o ft 2. The reason for this will also be explained in terms, of tile fuel 

fraction term. 

It is surprising that the -aspect ratio 22 aircraft compares so well in performance. It 

is important to note that there are two distinct factors influencing the shape of these 

curves. It is suspected that the weight saving from the lower aspect ratio wing increases 

the endurance as the structure weight is replaced by fuel. This is the only reason the 

endurance of the aspect ratio 22 aircraft can compare at all to the aspect ratio 35 aircraft 

endurance (in addition to the aforementioned constant specific fuel consumption). 

37 

36 

35 

34 
4) 0 33 

32 

31 

30 

29 

Endurance Term vs Wing Loading 

2000 lb, AR 22 
10,000 lb, AR 22 

A 20,000 lb, AR 22 
2000 lb, AR 35 

Ll 10,000 lb, AR 35 

A 20,000 lb, AR 35 

10 15 20 25 

Wing Loading (IbSIft2) 

Figure 10.10 shows a 20% decrease in the aircraft endurance termfor aircraft 
with lower aspect ratios. 

The endurance term is shown in Figure 10.10. This figure appears exactly as 

would be expected. The lower aspect ratio wing is consistently less aerodynamically 

efficlentat the same lift coefficient. The difference in endurance terms is roughly 20"o. In 

terms of the macroscopic output f- rom the methodology, this demonstrates that the vortex 

lattice code does in hict provide reasonable results for the three dimensional lift 

distribution. 

Figaire 10.11 shows that the lower aspect ratio aircraft has a consistently higher fuel 

fraction endur', ince term throughout the range of wing loadings considered. The sole 
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exception is the 2000 pound aircraft up to 10 lbs/ft'. For the higher takeoff weights, tile 

increase in fuel fraction endurance term is between 20 and 30'//o. '1111s behavior is tempered 

in the value of final endurance for the aspect ratio 22 case by the consistently less 

aerodynarnically efficient wing which drove the endurance ten-n lower as seen previously 

with the aspect ratio 35 case. 

Fuel Fraction Endurance Term vs Wing Loading 
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Figure 10.11 shows the increase infiielfraction endurance terinjor aircraft 
with lower aspect ratios due to increaseds1ructural efficiency. 

The primary difference between the two aspect ratio cases is flut the increase in 

fuel fraction term for the aspect ratio 22 case is balanced at lower wing 1()IIdIIIgs hý, the 

effects of the lower aerodynamic efficiency. This causes a slight leftward shift (, f the 

over-all aircraft endurance peak (in the direction of lower wing 1()adingas , in optimum for a 

given takeoff weight) for the higher takeoff weight aircraft. The end result is a higher 

overall aircraft endurance (roughly 2),, () higher), but it is pointed ()Lit that this results froln 

the replacement of structural weight saving for the aspect ratio 22 case with fuel, thcrcbý 

slightly increasing the endurance for a given takeoff weight. The most importmit design 

implication is that for the aspect ratio 22 aircraft, the optimum wing loading for a given 

takeoff weight is reduced by approximately 5 IbS/ft2. 

The reason for this shift can be seen by referring to the two-dimensiomil nummum 

power required and maximum lift to drag ratio equations. If thc minimum power rcquircd 

and maximum lift to drag ratio velocities are substituted with their respective lift 

coefficients and TE, E:, p, and Ci are assumed to be constant, the fO11()wing rulationships 

exist 
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It is safe to assume a slight decrease in Cdo with a decrease in aspect ratio. This is due to 

increasing Reynolds number resulting from an increased average chord given a fixed wing 

area. 'Me combined effect in the above equations of decreasing aspect ratio and 
decreasing Cd,, will cause the leftward shift in optimum wing loading. 

The aspect ratio study provides an excellent example of the complementary 

interaction beNveen the structural and aerodynamic efficiency of the aircraft with 

application to the overall aircraft endurance. 

Cruise HP vs Wing Loading 
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Figure 10.12 shows the magnitude of the increase in required cruise power 
resullingfrom an increase in aspect ratio tit various takeoff weights. 

The List figure included in this section is seen in Figre 10.12 for horsepower 

required in cruise as a function of wing loading. The most interesting characteristic about 
'red is higher for all I this figure is th'at the power requi II of the aspect ratio 22 aircraft cases. 

This reflects tile increase in drag due to the shape of the wing, but in general demonstrates 

thc comparatively poor aerodynamic efficiency of selecting lower aspect ratio wings for the 
1. ()w Speed I I. M. F. mission. 

91 "U I11 Since the en ines of the Low Speed Fl, J` are sized for the climb requirement, 
the cost of the increased power required for the aspect ratio 22 aircraft depends mostly on 

248 Residis and Discussion 

5 10 15 20 25 

Wing Loading (IbS/ft2) 



i)esign Methodologyfor Low Speed HALE UA Vs 

the choice of engine and the fuel consumption performance characteristics of thýit engine 

at the selected operating point. 

10. B. 3. b Taper Ratio Study 

The value chosen for taper ratio was again done so to demonstrate ()f the 

extreme case. It is rather unlikely that a Low Speed I 1., V. E aircraft will ever be built with a 

taper ratio of one. Nevertheless, use of this extreme value helps to uncover some of tile 

underlying phenomena effecting the design of a Low Speed I IALF, wing. 
Figure 10.13 shows the comparative endurance of the aircnift with wings (J - taper 

ratios 0.4 and 1.0. The maximum difference in endurance Value between an aircraft with a 

taper ratio of 1.0 and an aircraft with taper of 0.4 is approximately 25"/'0 (for thu 10,000 

pound, 101b/ ft2 wing loading). 'flie minimum difference is roughly (for thc 2,000 

pound, 20 I [)/ft 2 wing loading). 
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Figure 10.13 shows a less severe effect of changing the taper ratio compared to 
the effects of aspect ratio changes on the overall aircraft endurance when using 
the conventional case as a haseline. 

In contrast to the aspect ratio variation, the takeoff weight cun, us do il()t show ý. my 

shift with respect to wing loading. In fact, it appe-ars again that the basic shýipc (d the 

takeoff weight curves is identical. The locý, Itloll of the optimum wing loading for a given 

takeoff weight appe-ars to have ren-i'mned the same despite the change in endurance. 
The endunince term cutNTe is not included as it essentially derrionstnites the sýiinc 

concept as with the aspect ratio study. P This is reassuring iven the absence of taper ratio I 
in the maximum efficiency equations. The only difference I)ct-, v(--Cn the aspect ratv) 111d 

týaper nitv) Figures is the magnitude. The difference between endurance terms for the til-)(, t- 
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ratio 1.0 and 0.4 cases (less than or equal to 2.0) is roughly 30% that of the difference 

between the aspect ratio 22 and 35 terms (approximately 6.0). Ibis would imply tI-iat 

aspect ratio effects on aerodynamic efficiency are much greater than taper ratio effects for 

extremely high aspect ratio wings within the design boundaries and under the conditions 

being considered. 
Figure 10.14 shows the fuel fraction term results for the taper study. In general, the 

taper ratio 1.0 takeoff weight curves show consistently lower values for fuel fraction 

endurance term. 'flits results from the taper ratio factor in the wing weight estimation. 

When compared to the structural effects of reducing the aspect ratio, die benefits from 

decreasing taper ratio are fewer throughout the range of wing loadings and takeoff weights 

considered. It would appear from the results in general that a variation in taper ratio has a 

much smaller effect on the overall aircraft endurance, aerodynamic efficiency, and 

structural efficiency than a variation in aspect ratio across the range of values considered. 

Fuel Fraction Endurance Term vs Wing Loading 
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Figure 10.14 shoisw that the effects of taper ratio changes are less dramatic than 
the effects of aspect ratio changes on thestruclural efficienq of the aircraft 

The reduced ýterodynamic efficiency for the taper ratio 1.0 case, once again results 

in higher values for cruise power required across the entire range of takeoff weights and 

wing loadings considered. 

I'his section and the previous section essentially quantl(y the combined structural 

and aerodynamic effects of consideration of the three-dimensional lift problem. Variation 

in taperand aspect ratio b()th impact the structural weight predicted for the aircraft, which 

in turn directly effects the fuel fraction and thus the endurance. In addition the results 
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place a rather considerable emphasis on the necessity to consider the three-dimensional 

nature of lift distributions gven die reasonably large difference found in the aerodynamic 

efficiency due to these effects. 

10, A 3. c Airfad Study 

In order to ensure that the results were not skewed to the bchav1(, r of ýi pArticuLir 

airfoil, it was necessary to perforrn a study using a different airfoil. In addition, it Wýls 

considered of interest to observe the performance of another airfoil in the context of tile 

proposed airfoil figure of merit in Appendix A. Since the figure of merit yielded the 

NLI, '(I)-IOI, S as a first choice, and this Is tile airfoll section used to this point, tilc second 

choice from the figure of merit, the Wortmann FX-63-137 was used for tile ýurfoll study. 
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Figure 10.15 demonwrates the effed of exchanging hvo low Rtynolds flu"Iber high liji 
airfoils on the overall aircraft endurance. 

Several different effects were expected before the study wýjs undertaken. Tllc 

thickness to chord ratio of the N1, F(l)-1015 is 15"/o, and the thickness to chord ratio of 

the F\63-137 is 13.7'(,. '['his has obvious implications oil sti-lictkIral weight. In addill, ti, 

the difference bct-, vecil the two moment Coefficients for the lift coufficiclit vallic jised (j.. j) 

is roughly 0.09. This will Impact the static margin of the aircraft and thu ýibiltty to trim. 

Finally, neither of the airfolls has reached their t-, vo-dinicrisional ctidurancc term ma-mInUln 

at ýi lift coefficient of 1.3. 'I'lle j, X63-137 is closer to its maxii-num t-wo-dinictisiolul 

endurance term, however the magnitude of this m', tximum is less than that of the Nl, l-'(I)- 

10 15. This was expected to impýict the threc-climenst, 11,, 11 acrodymirnic efficiency term. 
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The results of the airfoil comparative study for the aircraft endurance can be seen in 

Figure 10-15. The effects are not nearly as dramatic as for the taper ratio and aspect ratio 

studies, however they are still reasonably pronounced for a simple change between two 

high lift airfoils with reasonably similar thickness to chord ratios. 11-le Maximum 

difference in overall aircraft endurance occurred for the 20,000 pound takeoff weight at a 

wing loading of 10 lbs /ft2 where the difference was 5.9%. 

More important than the absolute values for the endurance, though, is the fact that 

the shape of the curves is similar, and that there are no characteristics that are distinctly or 

violently different between airfoils. 'I'lie magnitude of the difference in aircraft endurance 

empliast7es the importance of the selection of the airfoil. A maximum 6.0 hour difference 

in endurance occurs due to airfoil selection alone, and that is with the selection of another 
high lift coefficient airfoil. Tiis only further supports the argument that any new 

implementation of a Low Speed I IALFI UAV should have an airfoil designed specifically 

for the missions being considered. 

Endurance Term vs Wing Loading 
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Figure 10.16 shows the tffect of a change in airfoil on the three dimensional aircraft 
aerodynamic cfficiency term. 

Figure 10.16 shows the endurance term for the airfoil comparison. 'rile first point 

of interest to note is that the largest difference between the two airfolls at any given 

takeoff weight and wing loading is roughly 1.4'/o. The second point of interest to note is 
that the Y-xxis scale represents less than a 6.0", o variation in endurance temi. Taking these 

factors into consideration, the cunes are essentially coincident, with the FX63-137 being 

very slightly less aerodynamically efficient. 'fhe m-crall shape of Imth sets of curves is 

essentmily the same. Despite the very smill variations in endurance term, the shape of the 
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results are consistent from one execution to another suggesting that the solution obtained 

for the drag of -a specific configuration is unique. It is reasonably safe to conclude from 

observing this figure that the selection of airfoil did not substantially bias the aerodyn,, imic 

results of the methodology. 

Figure 10.17 shows the fuel fraction term for the airfoil comparison. There is a very 

slight difference shown in the figure hetween the takeoff weight curves for the different 

airfoil cases. It is suspected this results from the greater thickness to chord nitl() of the 

NI. 11(l)-1015. There were no other parameters varied between tile two airfolls that could 

have an effect on the structural weight of the aircraft. Thus, this figure essentially 

represents a study on the effects of the variation of the thickness to chord ratio), which 

appear quite small. 

Fuel Fraction Endurance Term vs Wing Loading 
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Figure 10.17 highlights the effects onstructural efficiency due to a slight change ill 
thickness to chord ratio. 

10. B. 4 Study of the Effects of Operating Conditions 

IO. B. 4- a Altitude Study 

It was apprent from the discussion regarding the Breguet oiduraticc CCILI', Ill()Il til, it 

a change in altitude would result in a change in overall aircraft endunincc. The purpose of 
this section was to determine how much of that change in overall cnduraricc results from 

the variation ()f the ýur density and hoW MUch rcSLIltS from ch', ingus in acrodynamic 

efficiency. Aclditv)nally, the altit-Lide clia"ge serves , is a check on the weight estimation 

module, , is there should be little ()r no change 'n tllc predicted empty weight (, f thc aircr. ift 
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as a result of a simple altitude change. This holds true to the extent that the aircraft is still 

flown at high altitude and that the increase in altitude does not imply too large an increase 

in cruise velocity. 
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Figure 10.18 shows the dramatic effect of increased altitude on overall aircraft 
endurance. 

The overall aircraft endurance relationship is shown in Figure 10.18. The altitudes 

tested were the baseline, 60,000 feet and 75,000 feet. This figure is interesting due to the 

fact that once again, the shape of the curves does not change as a function of the variable 

being evalu,, ited. It is comforting to know that the optimal wing loading f(--)r a given 

takeoff weight is not a function of cruise altitude. This greatly simplifies the decision- 

making process when selecting a design operating point. The distance between the curves 

f(jr a given takeoff weight for the different altitude cases remains relatively constant across 

the range ()f takeoff weights and wing loadings considered with the exception of the lowest 

This has already been shown to result from the fuel fraction term which wing loading. 

reflects the sensitivity of the structural efficiency at large values for wing area. 
The endurance term results can be seen in Figure 10.19. At the lowest takeoff 

weight, the endurance terms are almost equal. For the two higher takeoff weights, the 

more aerodynamically efficient case is the 60,000 foot altitude. It is important to mention 

that lift coefficient was kept constant at 1.3. One of the aerodynarnic implications of this 

assumption is that the velocity was as much as 80 knots greater for the 75,000 foot altitude 

cases. Thus, there is a tradeoff in the Reynolds number between lower air density and 
higher cruise velocity. 
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Endurance Tenn vs Wing Loading 
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Figtire 10.19 shows a curious decrease in aero4j, natnic efficient-,, with an increase 
in aftitude. 

The change in air density is less than 10", (, for the chmige in 'Atitude. 'Ibe ch-mige 

in velocity necessary, however, was over 40", o for all cases. It Is therefore safo: to assunic 

that the Reynolds number for a Pven takeoff weight -, ind wing ]()ading was highcr for thc 

75,000 foot altitude case. Despite this average increase of Reynolds number, tli(- 

aerodynamic efficiency of the higher altitude case was still lower. This iniplics thc relativc 

domination of the lift induced dnig compared to the pýtnisitc drag. ( hice ig-aln, however, 

the differences are quite small. The greatest difference between the two furthest points 

(20,000 pounds, 20 lbs/ft) was only 2.7)/, o. 

It is noted that the aerodynamic efficiency for the 2000 pmind takc(df weight case 

is almost unchanged. This Is due to very low wing arc%i. Thc performance of thc 2000 

pound case was already abysmal in comparison to the highur i-Acoff weight cýiscs. Thus 

the increase in altitude does not cause it to suffer , is inuch in pcrf()rmancc -, is the higher 

takeoff weight cases. 
The fuel fraction term figure can be seen in Figure 10.20. At First gLince, it would 

appear strange th,, it there would be a change in estimated fuel fractlonýil aircraft welght 

based solely on a change in cruise altitude. Upon further reflection it is realized thm flits 

change results directly from the assumption of - const'llit lift C()Cf - 11CICIII ý11)d the 

corresponding increase in cruise velocity of - over 40') o for all c. iscs. The lc, ist sensitive to 

these changes is the 2000 pound aircraft which alreadv has a reLan-cly 1()w fticl fniction, 11 

weight. 'I'lie difference in the value for the fuel fraction term between IIIC IAV() Cruise 

altitudes for the othcr two tAc()ff weights is reasonibly constant ýicross thc rýmgc ()f wiliiý 
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loadings. The mxximum difference is roughly 13.1'1/0 for the 20,000 pound takeoff weight 

aircraft at a wing loading of 10 lbs / ft 2. 

Fuel Fraction Endurance Term vs Wing Loading 
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Figure 10.20 shows a very slight decrease in structural cf . 
1icien de to an 

increased cruise veloci(y corresponding to the increased aftitude. This is a direct 
result of the assumed constant cruise lift coefficient. 

Uigure 10.21 is included to show the difference in power required for cruise ', It the 

higher altitude. Regardless of these increases, it Is still believed that the engines will be 

sized to the climb requirement. The increase in power required appears much more 

dramatic at higher takeoff weights, however the percentage increase (-45%) is roughly the 

same for all three takeoff weight cases. 

Cruise HP vs Wing Loading 
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Figure 10.21 shows the veg large increase in power required to cruise resultingfroln 
an increase in cruise altitude of 15,000jeet 
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10. B. 4. b Lift Coefficient Study 

Endurance vs Wing Loading 
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Fig ure 10.22 shoivs little effed on overall endurance due to a large 
lift coefficient increasefor the aircraft using the NLF(l)-1015. 

The assumption was made in the 'airfoll fipirc ()f ment analysis thAt tllC VAILIC Of 
80% of the mxximum lift coefficient was a more practical measure ()f the sultahility ()f a 

given airfoil for use with a Low 'Speed IIAI, I-, ' UAV. It was statcd at the tinic th. it this was 

-a conservative value. In order to insure that this value did not significantly hi-as flic results, 

the following study on the effects of chan ing the lift coefficient from 1.3 to 1.5 was 

undertaken. 

The results for the overall endurance c', "i be scen in Figure 10.2222. The most 

remarkable characteristic of this figure is the fact that tile results -are so cl()sc in VAILIC. This 

is attributed to the relatively flat Liminar drag bucket region ()f the There 

was a mxximum 2.0'o difference between the 1.3 and 1 -5 lift c, )cfficIcnt cases t-()r all ()f the 

takeoff weights. 
I'lie next Cipre (Pigure 10.23) shows the conilmr . lsoll ()f tIlc cildurmice terms. It 

was known that the Nl, i, '(I)-1015 airfoil has not reached It's ()I)tIIIIIIIII AcrOdyn, 11111C 

efficiency until \-,, -cil beyond the lift coefficient of 1.3 Lised throughmit this chaptcr. This is 

clearly shown in the figure, where It can be seen that the average increase in ý, c,. o(jN-j,,, jjjc 

ctficiency is roughly 1.5. The iticrcasc is a rcsult of an increase in lift c(, cfficictit akiic. 

The velocity has decreased by a much smaller amount comp, ircd t(, the I)t-('N-i, )Lis 
The velocity was decreased 1)), approximýitcly 6.0') o for -all takeoff weight c, iscs. 11 11.1 

t1jought that this change is tempered in the endurance term hy the tncrcýise in acr(ýdynanitc 

efficiency of the airfoil. 
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Figure 10.23 shows the increase in aerodynamic tfficiency resultingfront 
an increase in lift coefficientfor the NIF(l)-1015 airfoil implemented on the 
LowSpeed HALE aircraft. 

The fuel fraction graph is not shown since the resulting curves were not noticeably 

different. There was a very slight effect of decreased velocity. This served to change the 

fuel fraction an almost immeasurably minute amount. It was believed, consequently, that 

the figure would add little to the discussion and was therefore not included. 

NVith the discussion of the effects of variation of the most influential design 

parameters on overall aircraft endurance for the conventional configuration now complete, 

it is possible to begin considering other configurations. 

IO. B. 5Study of the Effects of Engine Configuration 

JO. B.. 5., a Single Engine Pusher Propeffer Configura tion Study 

The results for the comparison of the overall aircraft endurance for the 

conventional and pusher-propeller configured aircraft can, be seen in 1,1gure 10.24. At first 

it is surprising that the endurance of the pusher-con figured aircraft would compare so 

The performance of the pusherappears to improve with increasing takeoff weight 

,, in(] wing 1()ading. 

The endurance term is higher by roughly 1.0 for the conventional configuration oil 

average. 'file 20,000 pound takeoff weight pusher aircraft has increasing aerodynamic 

efficiency -, is it appro-aches higher wing loadings. This serves to decrease tile difference in 

the predicted endurance between tile pusher and conventional aircraft with increasing 
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wing loading. The fuel fraction terms for the two different configurations are for the most 

part identical. 

Endurance vs Wing Loading 
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Figure 10.24 shows the somewh tit surprising result of a decrease in aircraft 
endurance due to a change in propeller configuration from a tractor to a 
pusherfor the conventional configuration. 

Thus, the re'ason for the difference in endurmicc between the tw4) omfipinitions 

must come entirely from the proximitý7 of tile w"T to the tý"] ýind thc ro. -Lacd iniurf-crctice 

for the pusher configuration. It is mentioned the the bcnefits ()f the wing ii, )t bciiw, in thc 

propwash were only included in the trim calculations. (, iven the rchtive , iv. c of thc wing, 

it is thought that consideration of this effect on the acrodyn,, imics would kive ýi mininiA 

impact. 

IO. B. 9. b Tnin Engine Study 

IO. B. 5b. i Conventional Twin Engine Configuration 

The twin en 'ne endurance results are presented In this sectl,,,, jjj,, stlý' [-()I- 91 

completeness. These results will be used later for comparison to ()thcr twin engine 

configurations. The results can be seen in Figure 10.25. ( )bvI()usIN-, the dccIsI()n wAs inAdc 

to keep the fuel consurnpti()n constant, despite the fact that the cruise horscl)(oxcr t-()I- 

each engine was halved. Once again, it is menti()ned that ()nce a partICUIAI- Cll, ýIHIC IMS I)CCII 

selected, the fuel consumption can be SLIbStItLItCd And thC AbSOILItC ClIdIlt-AII(T 

correspinding to that fuel consumption can then he ()btý, jjccj. 
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Figure 10.25 shows an unfair performance comparison hehveen the single 
engine and tnin engine configurations time to the assumption of constant 
specir: flefuel consumption. 

The next fipire h', is a slightlY more serlous implication as dle comparative trends 

are independent of any assumptions regarding fuel consumption. Figure 10.26 shows that 

there is a rather serious falloff in aerodynamic efficiency with increasing wing loading for 

the twin engine 2,000 pound takeoff weight case. This result demonstrates that at least in 

terms of aerodynamic efficiency, the additional drag inherent in adding nacelles and 

engines to the wing will most likely outweigh any benefits of additional power available for 

this weight class at even moderate wing loadings. Apart from the behavior of the 2,000 

pound takeoff weight twin engine case, the twin engine endurance term is lower 1)), 

roughly 2 throughout the range of wing loadings. 

Endurance Term vs Wing Loading 
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Figure 10.26 the endurance terms of the single and twin engine configurations. 

This incremental decreisc is a result of the additional panisitc dr,, ig of the ii, icclies. 
The reason this parasite drag lias a greater effect on the 2000 pound case is, th-at the nacelle 
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frontal area remains reasonably constant across all takeoff weights. This implies that for 

aircraft with less total wetted area, the effect of the addition of large nacelles on panisite 

drag is much greater since the nacelle drag is calculated as a combination of the nacelle 

frontal and wetted areas. 

Fuel Fraction Endurance Term vs Wing Loading 
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Figure 10.27 demonstrates the decrease in structural effivienc), of the twill 

engine configuration. 

Cruise HP vs Wing Loading 
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Figure 10.28 shows the increase in cruise power requiredfor the twin engine 
configuration. 

The fuel fraction term figure (Figure 10.27) shows that for all take4f weights the 

twin engine aircraft Is less structurally efficient. Again, the general sliýipc ()f the curves Is 

consistent, and it I-, only the magnitude of the fuel fraction endurancc term that is effected 

by the addition of an en . ne. It can be seen from this figure that anN, beiwfit from the 

additional bending moment relief resulting from the addition of the engines ()n the wing is 

outweighed 1)), the additional weight of the second engine, nacelles, ind instalLition. 

The final figure shoxvn for the conventional twin en'21-Ine study is the c(wnpartson ()f 

the cruise power required. Figure 10.28 shows that considerably higher power I,, required 
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in cruise for the twin engine aircraft at all takeoff weights considered. This is 

representative of the extremely large drag penalty of the nacelles. 

IO. B. 5b. ii Conventional Twin Engine Pusher Configuration 

The endurance curves for the three takeoff weights considered are shown in Figure 

10.29. It is noted immediately that the baseline used for comparison is the conventional 

twin engine case discussed in the previous section. It was thought that the conventional 

twin provides a more useful basis for comparison of the different twin engine 

configurations. It can readily be seen from the figure that there is little benefit to the 

pusher configured twin in overall endurance. The primary reason for the small difference 

in performance is that the difference in aerodynamic performance of the main wing 

without the effect of the propeller slipstream was not taken into consideration by the 

methodology. The only instance that the propeller slipstream effect was taken into 

account wýis in the trim calculations. 
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Figure 10.29 shoisw a veq ininute advantage in overall endurance for the 

lytisher configured hvin engine aircraft. 

The endurance term results can be seen in Figure 10.30. In this figure, tile only 

takeoff weight expericricinga significant deviation is the 2000 pound case. The other two 

takeoff weight cases are essentially the same as for the tractor configured aircraft. In order 

guration it was necessary to move the wing much closer to to halaticc this particular confiý 

the horizontal tail. The deviation is most likely a direct result of higher dr,, tg predicted due 

the closer proximity of the wing to the tail. 
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Figure 10.30 shows a deviation in endurance terniftom the conventional tolin 
configuration onýyjor the 2000pound takeoffweight case. 

The fuel fraction term for the twin engine pusher experienced very in""Itc 

departures from the baseline curve, arid is therefore not included. In ýiddlti()n the 1)()w(-, t- 

required in cruise was only minutely less for the pusher configuration on avcnwe and wýis 9 

not included. 

10. B. 5b. iii Conventional Push-PuH Twin Engine Configuration 
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Figure 10.31 shows a significant improvement in endurance of the twin 
engine push-pull configuration 2000 pound case over the conventional tivin 
engine tractor. 

The conventi(mAl twin engine push-pull configurition shoxcd the most promise in 

terms of over-all endurmcc out of all of the conventionA twin Cligille cont - igurmvms 

considered. The belmvior of the endurance for this configurati(m cmi be seen ii, Ftý, jirc 
10.31. The impi-m-cments in endurance were most pronounced for the 2000 paind 
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takeoff weight case. The other two takeoff weight cases experienced much less 

improvement in endurance, however they still outperformed the conventional twin engine 

tractor configuration. 

Once again, the fuel fraction terms were identical for the two twin engine 
configurations and the figure was not included. With the fuel fraction terms essentially 

identical, the difference between the two 2000 pound takeoff weight cases must be 

explained solely in terms of the endurance term. The variations in this ten-n can be seen in 

Figure 10.32. The primary reason for the large difference in aerodynamic efficiency 

between the two 2000 pound cases is the significant decrease in parasite drag. 'Mis 

decrease results from the removal of the large nacelles from the wing, thereby greatly 

reducing the wetted area due to the addition of the second engine. 

Finally, a very small decrease in cruise horsepower required was evident from the 

results. This improvement was not significant enough to include in a figure, however. 

The discussion of the endurance results for the conventional configuration is now 

complete. In the process of generating and analyzing these results, interesting behavior in 

the structure fractional weight was noted. This behavior is the topic of the next section. 

Endurance Term vs Wing Loading 
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Figure 10.32 shows the increase in aerot4wamic efficien, ýv resuftingftom the 
removal of much of the nacelle S..,, jvith the push-pull engine configuration. 
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IO. B. 6 Proposed Empty Weight Fraction Relation 

The ch,, iracteristic sh,. ipc ()f the empty weight, or structure fractional weight 

ýý, 
-I-, I cun, c(s) in Flgure 10.7 facilitated the development of tile following relation for 

W", 

the estimation of the empty weight fraction of a Low Speed IIALE UAV urcraft. The 
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relation is a function of known wing loading, aspect ratio, taper ratio, and number of 

engines. A "power" curve fit was performed for the results of the aforementioned Studies 

for the conventional configuration. The changes in structure fractional weight were small 

enough to ignore (in general less than 1.5%) for the variations in lift coefficient, airfoil 

(and thus small changes in thickness to chord ratio), altitude, payload fractional weight, 

and pusher-propeller configuration. Special consideration had to be taken for the twin 

engine, aspect ratio and taper ratio cases. The resulting relation appears as follows 

Wern, 
ýv 

= 
Ken, (0.192A + 1.208 

W 
(4.092xiO 'AR O. S72) 

(10.2) 
WIII S 

Where Keng is a twin engine factor which is equal to 1.081 for twin engine aircraft, and 1.0 

for single engine aircraft. X is the aircraft taper ratio. AR is the aircraft aspect ratio, and 

WIS is the aircraft takeoff wing loading. 

The range of applicability of the relation is limited to 

Wing loadings of: 5<W< 25 
Ibs 

S ft2 

Payload fractional weights of : 0.05: 5 
W 

0.15, 
W. 

Takeoff weights of: 2,000 !ýW,,, : fý- 20,000 lbs, 

ft2 << ft2 Wing Areas of roughly: 250 1752 

And Aspect ratios of : 20 ! ý- AR 40 based on the output from the metII()d()I()gy usct I to 

fit the "power" relation. 

Use of this relation has a maximum error of less than 10`0 when compared to the 

data from which it was fit. More specifically, a single case, the 5 lbs/ft2, as'pect ratio) 22 

case had an error of 9.5%. The remainder of the maximum errors cilcoutitered from the 

curve fitting process were less than 5.0'1ýo. The average error was less thati 3.0') o across all 

cases for which the curve fit was modeled. Since the relation was developed using the 

results of this nictliodology, the error encountered when comparing the results of the 

relation to existing Loxv Speed HALE UAV's is similar. 
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IO. C Alternative Configurations 

Although the methodology makes available a large amount of data on the breakdown 

of the drag and weight of the aircraft being studied, time and space restrictions prevent the 

inclusion of these results in this thesis. Instead, it was decided to continue with the 

approach used in the previous section to study overall aircraft endurance. The execution 

of the methodology was performed under conditions identical to those in Section 1O. B. 2 

for all configurations. The method used for comparison is similar to the previous section, 

where the overall aircraft endurance was broken down into an endurance term and a fuel 

fraction term. 

A Minor change had to be implemented in the reporting of the endurance term results 

when comparing alternative configurations. When the comparison was performed for the 

conventional configuration, it was thought important to compare the various quantities 

based on constant wing lift coefficient, not total aircraft lift coefficient (aircraft plus tail). 

Tail hft has a rninor effect wheii compared across different wmg loadings and takeoff 

weights for the same coil figuration, assuming reasonably constant static margin across the 

configurations. This is not the case, however when comparing the conventional 

configuration to alternative configurations. 

Thus, the aLrcraft endurance term was re-calculated for the conventional configuration 

with the inclusion of tall lift, and all subsequent endurance term calculations were 

performed similarly for the purposes of comparison. It is of interest to note at this point 

that the comparisons performed thus far were all for configurations with as close to 

neutral longitudinal stability (on average) as possible in order to n-unimize the effects of 

trim. The average neutral longitudinal stability was achieved by the longitudinal variation 

of the location of the payload in the fuselage and the wing on the fuselage. 

10. C, I Canard 

For the canard cotifiguration, the fuel fraction terms were essentially identical to 

those calculated under the same conditions for the conventional configuration. Thus, 

these terms will not be included in the discussion in the following comparison. The 

differences in endurance between the conventional and canard configurations found by 

the mcthod()I()p, were thus strictly aerodynamic in nature. 
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10. C, 1. a Single Engine Canard Tractor 

The results of the overall endurance comparison between the conventl()nal single 

engine tractor and the canard single engine tractor are shown in Figure 10.33. The canard 

tractor appears in general to perform quite well when compared to the conventional case 

for all but the 2000 pound takeoff weight. The differences are quite small with the 

exception of the highest wing loading 2000 pound takeoff weight case. Looking at the 

endurance term provides a better understanding of why this happens. 
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Figure 10.33 compares the overall aircraft endurance of the conventional single engine 
tractor to the canard single engine tractor configuration. 
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Figure 10.34 disly/tgs increased slopefor the aero(ýynamic efficiency curve of the canard 
tractor aircraft at lowuing loadings when compared to the conventional tractor aircruff. 

Figure 10.34 shows the endurance term behavior for the cimird tnictor compýircd 

to the conventional mrcraft case. The behavior of the curves is consistunt the trcnds 

Endurance Term vs Wing Loading 
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viewed in previous configurations, decreasing aerodynamic efficiency with increasing wing 

loading. It was discovered that the lowest wing loadings for each takeoff weight yielded 

the lowest fuel fractions for the given takeoff weight. This in turn made control of die 

center of gravity much more challenging. Since the wing loadings were the lowest, they 

result in the highest wing area cases for each takeoff weight. This implies that the lift force 

on a proportionally sized control surface, would be a maximum compared to the other 

configurations considered, provided the moment coefficient remains constant. It is 

suspected that this is the source of the deviations in the slope of the aerodynamic 

cfficiency at low wing loadings. 

In , iddition, the aerodynamic efficiency for the 2000 pound takeoff weight canard 

aircraft is more sensitive to changes in wing loading than the conventional case. It is 

believed that the lightest aircraft experiences the greatest influence of the difference 

between the tail download for trim and the canard upload. '17he lightest aircraft was in 

general the most difficult to balance, as the length of the fuselage often did not allow 

enough room to properly manipulate the aircraft center of gravity location by modification 

of the payload location alone. 

10. C. 1. b Single Engine Canard Pusher 
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Figure 10.35 compares the endurance of thesingle engine canard pusher aircraft to the 
single engine conventional tractor aircraft- 

Thu ()vcrall aircrAt cridur-mcc results for the single engine canard pusher can be seen 

in Figure 10.35 compred to the results for the conventioml case. In general, the results 

(A the pusher propeller configured c,, tn,, trd are better than those for the tractor contigured 
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canard. This seems to support the argument that small changes in average center ()f - 

gravity location can have a significant impact on the over-all aircraft endurance. All of the 

takeoff weight cases experienced improvement due to the change in cnPne and wing 

position resulting from the change to a pusher configured aircraft. 'I'lie only exception was 

the value for endurance for lowest wing loadings. 

The endl-jr-ance term for the canard pusher can be seen in Figure 10.36. It is 

interesting to note that the behavior of the 2000 pound canard tractor aerodynamic 

efficiency term is not repeated for the pusher configured canard. In executing the 

methodology for the pusher canard, it was much easier to balance tile aircraft, and a much 

more acceptable range of travel for aircraft center of gravity was I- ound. The result seen 'in 

the aerodynamic efficiency term for the 2000 pound takeoff weight case serves to supp()rt 

the argument that aircraft configurations that require less average moment to trim have 

greater aerodynamic efficiencies. Thus the better balanced aircraft configuration will 

normally be more desirable from an aerodynamic standpoint. Although this may seem to 

be stating the obvious, it is reassuring that the methodology proxides tile cxl)cct(-(i result. 
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Figure 10.36 shows greater aerodl, namic efficienq, for the canard pusher aircraft at (I 
lower takeoff weight is-hen compared to the conventional tractor configuration. 

in general, for the single enunne canard, the pusher confiprati(m would I)c flic m(we 11 1 

desirable of the two configurations based on endurance per[ - (am-mice ; il()nc. At the 1()wcr 

takeoff weights, the canard pusher shows significant advmitages over the cOnvcntl()md 
configuration in overall aircraft endurance, and compares reasonablN, well in 

endurance across the range of wing loadings considered. Due to the r clative equ, ility in 
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overall endurance, the selection between the canard and the conventional configurations 

would likely be based on factors other than performance for the higher takeoff weight 

cases. Finally, the power required in cruise for the canard pusher aircraft was consistently 

lower than that required for the conventional aircraft in cruise. 

10. C2 Tivin Boom 

10. C2. a Single Engine Tractor Tu4n Boom 

The endurance for the twin boom tractor can be seen in Figure 10.37. Once again 

the general shape of the curves is consistent with the other configurations and cases 

already tested. '11-iroughout the range of takeoff weights and wing loadings considered, the 

twin boom tractor aircraft compares quite well to the conventional aircraft for a given 

wing loading and takeoff weight. One characteristic to note is the increasing endurance 

with decreasing wing loading of the twin boom relative to the conventional case. This 

decrease is structural in nature and will be eNplained with the discussion of the fuel 

fraction term. 
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Figure 10.37 shows the comparative endurance performance of the tractor propeller 
configured hvin hoont. 

The endunince term behavior for the twin 1)()()m tractor can be seen in Figure 10.38. 

The 10,000 ýind 20,000 pound cases for the twin boom appear to have much more 

consistent drag bchavior, showing only a slight increase with decreasing wing loading. It 

would appear that for the larger aircraft the additional skin friction drag of the booms is 
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sufficient to balance the aerodynamic benefits of lower wing loading on tile lift 

distribution. The slope of the 2000 pound takeoff weight case for the twin boom Is similar 

to the conventional case, however. This indicates that there is likely a wetted ýire,, i 

threshold above which the effect-, of additional skin friction drag balance the aerodynamic 

benefits of reduced wing loading. 
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Figure 10.38 compares the endurance ternisjor the hvin boom tractor and conventional 
tractor aircraft configurations. 
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Figure 10.39 provides an ewplanationfor the source of the increasing endurance of 
the twin boom configuration resultingfrom decreasing wing loading. 

It is noted that in tile tractor configurati(m, many (A the resulting twin 1)()()Ill 

configurations were not verv reason-ahle from a practical operati(mal standp(), tit. 'I'll(, 

changes in center fuselage location necessary to provide minimal trim forces placed tile 

fuselage so far back that interference from tile b(, ()m structure and tail, regardless ()f 

payload, would most likely be a factor. 
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A look at the figure for the fuel fraction term (Figure 10.39) provides a better 

understanding of the shape of the overall endurance results in Figure 10.37. The increase 

in endurance with decreasing wing loading for the twin boom case originates from an 

increase in fuel fraction term. The increase in fuel fraction, coupled with a decrease in 

wing weight predicted for a wing carrying more fuel serve to increase the fuel fraction term 

increasingly with decreasing wing loading. 

It Is interesting to note, that the weight saving factor used in the calculation of the 

weight of the wing for the twin boom configuration would appear to have had a 

reasonable effect on the final results for structural weight. It is observed that In terms of 

the overall aircraft endurance for the twin boom configuration, the weight saving from 

using the twin boom balance the additional skin friction drag created from the booms and 

interference. It will be interesting to see if the same holds true for the multiple fuselage 

ýurcraft configurations. 

10. C2. b Single Engine Pusher Twin Boom 
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Figure 10.40 disphqs the overall aircraft endurance of the titin boont aircraft in the 
pusher configuration compared to the endurance of the conventional aircraft in the tractor 
configuration. 

The performmicu of the twin b()om in the pusher configuration secti in Fiqire 10.40 

was very slightly improved from the twin boom tractor seen in Figure tO. 37. Similar to the 

difference between the c,, in,, trd tractor and canard pusher, it is believed most of tills 

difference is due to the reduction of tail lift resulting from a better balanced aircraft 

resulting from the closer proximity of the engine to the main wing/fuel. In sharp contrast 

Chapter X? '17 1 Resuhs and Discussion 
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to the twin boom in the tractor configuration, the center fusclage was xx-cll placcd from a 

payload operational standpoint. 
The same characteristic trend of an increase in endurance is present with decreasing 

wing loadings, identical to the twin boom tractor case. In fact, the fuel fraction term figure 

was essentially identical in shape to that of the tractor configured twin boorn and is 

therefore not included. The only difference in this diagram was that the magnitude of the 

deviation from the conventional case was much shghtly greater for the pusher 

configuration, indicating that the pusher configured aircraft was more structurally efficient. 

This is most likely due to the shorter boom length and moment arm required to balance 

the aircraft. In addition, the shape of the endurance term curve was essentially identical to 

that of the tractor configured twin boom. Again, the only difference was the magnitude of 

the endurance terms. This difference 111 the magnitude of the endurance term happened to 

be unnoticeably small. Nevertheless, with the effects of improved structural efficiency, the 

overaH endurance is improved for the pusher twin boom configuration when compared to 

the twin boom tractor. 

la C. 3 Multiple Fuselage Conventional and Canard 

Contrary to the previous sections where individual aircraft configurations were 

compared to the conventional configuration on a casc-by-casc basis, this sect, on will 

combine the results of many different cases. This was the only reasonable manner it, 

which to proceed given that 8 different configurations must be evaluated after all of the 

engine, fuselage, and canard configuration possibilities are considered. The results will bc 

grouped by takeoff wcight, with the two and three fuselage aircraft configuration results 

presented on separate graphs. The basel-ine for comparison will once again be the single 

engine conventional tractor configuration. 

10. C3. a2,000polind Takeoff Weight 

IO. C. 3a. i Endurance 

The results for the 2000 pound takeoff -, vctgjt c, al, I)c see,, ill 1,, igurc 10.41 for thc 

two fuselage aircraft in canard, conventional, pusher and tractor configurations. A distinct 

Chapter X2 73 Remdrý tind Discussion 



Design Melhodology. for LowSpeed HALE UA Vs 

advantage can be seen for the two fuselage canard aircraft over the conventionally 

configured two fuselage aircraft. There is little difference in endurance between the canard 

tractor and canard pusher with the exception of the higher wing loading cases. All of the 

two fuselage aircraft, however, show an interesting deviation from conventional single 

fuselage behavior below 10 lbs/ft2. Neither the canard nor the conventional two fuselage 

aircraft compare very well to the conventional single fuselage case in terms of performance 

below approximately 12 lbs / ft2. Intuitively, for the 2000 pound takeoff weight case, there 

is a threshold weight at which the advantages of wing weight reduction due to wing 
bending moment relief are balanced against the effects of the additional weight and drag 

penalties of the additional booms. This threshold was especially visible for the 2000 

pound takeoff weight two fuselage aircraft. The specific reasons for this effect will be seen 

in the endurance and structure fraction term figures. 

Endurance vs Wing Loading 
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Figure 10.41 is a comparison of the different 2 fuselage configurations and their 
performance relative to the conventional configuration for the 2000 pound caseý 

The endurance results for the 2000 pound takeoff weight 3 fuselage aircraft can be 

seen in Figure 10.42. Again, the agreement between the two canard configured aircraft is 

quite good, indicating that the aircraft baLinced quite well. For the 3 fuselage canard cases, 

the devLal(m -. it high wing loading is mucli smaller and flie disagreement at lower wing 
loading,, is higher. This is the exact opposite behavior of the 2 fuselage canards. Aliereas 

the 2 fuselage canard pusher and tractor began to dc\-Iate above wing loadings of 15 

Ibs/ft2, the 3 fuselage canard pusher and tractor deviate below wing 1()adIngs of 15 ll)s/ft2. 

In , iddition the difference between the conventional tractor and pusher aircraft is much 

Chapier, X' 274 Results and Discussioll r" 
ý, 

10 15 20 

Wing Loading (IbS, ft2) 



Design Melhodology. for Low Speed HALE UA V's 

greater above 10 lbs/ft2. This behavior is due to combination of effects as will be shown in 

the following sections. 

Endurance vs Wing Loading 

0 2000 lb, Conventional 

D- 2000 lb, Multi Vuse Can 

0 2000 lb, Multi 3Fuse Conv 

2000 lb. Multi Vuse Push Can 

e 2000 lb, Multi Vuse Push Conv 

Figure 10.42 the different 3 fuselage configurations for the 2000 pound case Nhow 
behavior opposite to their corresponding 2juselage configurations. 

10. C. 3a. ii Fuel Fraction Tenn 

Fuel Fraction Endurance Term vs Wing Loading 
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Figure 10.43 compares the fuel fraction terin for sintilar 2 and -4 fiiselage pusher 
configurations relative to the singlefuselage conventional configuration. 

For the two and three fuselage 2000 pound cases, the fuel fracti()n term is baslc, illý, 

the same between the canard and conventionally configured cases. The shýipc ()f the four 

multiple fuselage cun-es agree well cach other. 'I'lic trends in the curvcs for the three 

fuselage fuel fraction term -are essentially the same , is the trends seen in the two fuschgc 

cases. Thus it was decided that a griPh highlighting the differences in fuel fnicti()n term 
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between the one, two, and three fuselage cases would be of more interest. This crossover 

graph can be seen in Figure 10.43. 

It is first noted that the scale of this figure is significantly magnified when compared 

to the previous graphs for the fuel fraction term. Thus any differences will appear larger. 

This was necessary to highlight the differences between the single, two, and three fuselage 

aircraft structure weights. 
The figure presents some rather curious results. At the lowest wing loadings, the 

single fuselage and three fuselage fuel fractions are quite close. At the highest wing 

loadings, the single fuselage and two fuselage aircraft agree quite well. This figure truly 

highlights the effects of reduced wing weight due to additional wing bending moment 

relief versus the effects of additional structural weight due to the additional fuselage(s). 

Since the 2000 pound aircraft experienced the wing weight lower threshold values more 

often, the benefits at low wing loadings of a reduction in this threshold can be plainly seen 
for the two fuselage aircraft. As the wing loading increases, however, the benefit of this 

effect is equalized due to a reduction in the size of the wing and consequently a reduction 

in the weight saving. 
Fhe three fuselage aircraft wing bending moment relief weight saving factors 

apparently do not outweigh the effects of the increase in weight due to the weight of the 

additional fuselage. It is noted, however, that the two and three fuselage aircraft are much 

more versatile in terms of payload location and volume. In addition, they were much 

more stable with regard to center of gravity location and travel. A better estimate of the 

weight saving would need to be determined before a proper trade-off analysis could be 

performed. It is mentioned, however that the increased payload volume and the reduced 

impact of the payload location in the fuselage make the multiple fuselage aircraft 

configurations far superior to the conventional single fuselage aircraft from an operational 

standpoint. 

Thc results for the two and three fuselage tractor configured atrcraft were essentiallN, 

the same as those of the pusher aircraft and are tllcref(--)rc not included. The deviations 

hetween the two and three fuselage canard and conventional aircraft in overall endurance 

seen in Figurc 10.41 and Figure 10.42 arc not entirely explained by the behavior observed 

in the fuel fraction term. Thýs behavior will be explained in the next section. 
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IO. C. 3a. iii Endurance Tenn 

The endurance term for the two fuselage configurations can be seen in Figure 10.44. 

Part of the deviation seen in the endurance figure (Figure 10.41) originates from tile 

endurance term. 'I'lie same departure of the conventional hvo fuselage canard aircraft 

above 15 lbs/ft2 can be seen in this figure. 'I'he source of this behavior is unclear, ho%vever 

the conventional two fuselage aircraft appears to follow the same pattern, Athmigh less 

pronounced. In fact, the aerodynamic efficiency terms for both tractor configured two 

fuselage aircraft have slight oscillations. This Is similar to the conventional single fuselage 

curve, however the multiple fuselage curves have a greater avenige slope. The ni,, ignitudc 

of the oscill-atWns is quite small, but these oscillations have an effect ()jj the )x, et%jll 

endurance nonetheless. In addition, the canard aircraft endurance term does not oscillate 

in the same manner. It is believed, though, that this provides mic possible explanAV)n for 

the source of the oscillation. Uie 2000 Pound Conventionally configured aircraft wýis 

., ds was njucli gr(, jt(-j- much more difficult to balance and the resulting výimition in t., iii lo, 

than for the canard case. Tie deviation in the overall endurance it high wing 1, jdjjj, j), s t-()t- 

the conventional 2000 pound two fuselage aircraft is due to, the same ()scillýjji, n III 

endurance term. 

Endurance Term vs Wing Loading 
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Figure 10.44 shows, oscillations in the tractor configured two fuselage aircraft, 
similar to the oscillations in the conventionalaircraft, but isith greaterslope. 

The large difference between i and 10 lbs1ft2 in the over-all enclunince curve for the 
two fusehige aircraft irises from tile f"lct tllýlt t1le ftlel fr', Ictl()" tcml is sufficlently Lirge 11 
lower wing loadings to overcome the norinillv low 1., It 1, -)w wijl,, ý k,, idingsj ()\ýcr. jll ýurcnift 
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endurance. 'ITIIS Causes the endurance curve to flatten out until higher wing loadings 

where the effect of decreasing aerodynamic efficiency becomes dominant. 

The endurance term results for the three fuselage configurations can be seen in 
Figure 10.45. The deviation in the overall endurance of the canard comes from the 

difference in slope, which in this case actually moves the two endurance curves closer 

together from lower to higher wing loadings. This happens because of the small 

difference between the pusher and tractor configurations in fuel fraction term. The 

deviation in the overall endurance for the conventional three fuselage -aircraft also has its 

origins in the endurance term as seen in the figure. The three fuselage conventional 

pusher was not as easy to balance as the tractor, as there was little to offset the mass of the 

engine and tail in combination. As a result this configuration experienced greater cg travel 

during flight and this was reflected in the trim angle of attack of the tall. Tills in turn 

adversely impacted the aerodynamic efficiency. The fact that the aerodywmic efficiency 
drops off faster at lower wing loading-, (where the fuel fraction increases most rapidly) 

implies sensitivity to the increasing fuel weight in the aircraft. This further supports the 

assertion above. 
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Endurance Term vs Wing Loading 
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Figure 10.45 reveals the source of the large deviation in overall endurance between 
the two conventionalýj, configured 3fuselage aircraff. 

IO. C3. b 10,000pound Takeoff Weight Case 

IO. C. 3b. i Endurance 

The enclurancc results for the 10,000 pound Nvo fuseLkgc aircraft m-c shown in 
Figaire 10.46. In gencnil, the endurance for the two fusehge mrcraft are in much better 
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agreement than for the 2000 pound takeoff weight case. Once again, at the lower wing 

loadings, the two fuselage aircraft show a large deviation from the shape of the 

conventional single fuselage endurance curve. 'Ibis deviation is responsible for a large 

increase in endurance at the lower wing loadings. Similar to the 2000 pound cýlsc, tile 

performance of the two fuselage aircraft decreases with Increasing wing loading. F(ýr thc 

case of the 10,000 pound aircraft, however, the degradation of performance is not great 

enough for the performance of the two fuselage aircraft to fall below of that of tile single 

fuselage aircraft. It is noted, however, that the 10,000 pound two fuselage airci-A -t perf - orm 

much bet-ter than the 2000 pound takeoff weight aircraft. In addition, the diffi-runces in 

endurance between the canard and conventional two fuselage aircraft seen with the 2000 

pound case are not repeated in the 10,000 pound takeoff weight endurance figure except at 

the lowest wing loading. 

Endurance vs Wing Loading 
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Figure 10.46 compares the overall endurance for the 10,000 pound hvo fuselage 
conventional and canard configured aircraft to the single fuselage conventional 
configuration. 

Thc overall endurance for the three fusclagc 10,000 pound takcoff , vulght mrcr, ift 

can be seen in Figure 10.47. The n-iost notable characteristic I,, thýit flic conventi()nýil 111rec 

fuselage curve appears to have shifted to%,,, -,, irds higher undurancu, and tlic. caliar(l tlircc 

fuselage cunýcs appear to have shifted lower. The overall shape of all of tlIC CUI-VC,; 

remains the same, however. 'llie result of the shift In location of thc curves is that for 

lower wing loadings, the endurance of the three fuselage canard is now signific', intly lowcr 

than that of the conventional three fuselage configurations. 
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Figure 10.47 compares the endurance of the threefuselage conventional and 
canard configurations to the single fuselage conventional tractor 
configuration. 

1, 'inally, both the two and three fuselage configurations outperformed the 

conventional configuration below 10 Ibs/ft2. This will be seen to result from higher 

structural efficiency at these wing loadings for the multiple fuselage aircraft. 

IO. C. 3b. ii Fuel Fraction Term 

Fuel Fraction Endurance Term vs Wing Loading 
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Figure 10.48 shoivs the large increase in fuelftaction terin of the hvo 
fuselage configuration over the other tractor configurations. 

SimiLir to the 2000 pound takeoff weight case, the fuel fraction term results within 

the two and three fuselage cases were for the most part identical. It was thus decided that 

another crossover gniph would be of more use. Figure 10.48 compares all ()f the multiple 
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Endurance vs Wing Loading 

280 Result,; atid Piscussioli 



ocsign A4ethodolo*,. for Low Speed HALE UA Vs 

fuselage tractor configurations considered (canard and conventional) in the sinlc graph. 

In contrast to the 2000 pound takeoff weight case, the overall shape of all of the fuel 

fraction curves is quite similar. Once again, the difference in fuel fraction term between 

like configurations is quite small, and largest at lowest wing loadings. This difference in 

overall endurance perfort-nance results in part from the difference in fuel fraction term. 

'rbe difference between the two fuselage and the single and three fusclage 

configurations is rather large for the fuel fraction term. 'I'lle m-, IjOrity of this difference is a 

result of the difference in wing weight saving factor (due to bending moment relief) used 

for the two and three fuselage aircraft. Without this wing weight saving fictor, tile 

structural efficiency of the three fuselage aircraft would not compare well ýat all with the 

conventional single fuselage aircraft due to the weight of the additional vw() fuscl. iji,, cs. 

This is likewise true for the two fuselage aircraft. 

IO. C. 3b. iii Endurance Tem-i 
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Fig-tire 10.49 showv the reasonabýj, flat behavior of the canard twofuselage aircrali 
endurance term compared to that of the hvofuselage convejjjjj)jjajýj, configured aircruff. 

Once again, much ()f the behavior of the ()verall endurmicc 1-(, i- dic multipIc 

fuselage aircraft is due to the endurance term and not structural vartmvms ikilc. Thc 

endurance term for the two fuselage configured , ilrcraft can be seen in Figurc 'I'll, 

first characteristic to note in this figure Is tile fact that the canard configured two fuschgc 

aerodynamic efficiency cun, e is reasonably flat. This is in contrAst to the curvcs 1-(, t- the 

conventionally confi. gured two fuselage aerodynamic ef - flclellcý, which c\periClICC A 

reasonably constant decrease with increasing wing 1()admp,. Thc reasoning behind this 
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decrease is the same as for the 2000 pound takeoff weight case. Aerodynamic efficiency 

decreases as a function of both increasing wing loading and how difficult the aircraft is to 

balance. The canard aircraft were easier to balance. Consequently, the incremental 

difference behveen the canard and conventional two fuselage curves is due to tail upload 

rather than tail download. This behavior explains the comparative decrease in overall 

endurance performance for the canard aircraft at lower wing loadings. 

Endurance Term vs Wing Loading 
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Figure 10.50shomv a decrease in the difference in endurance term between the three 
fuselage canard and conventionalýv configured aircraft. 

Figurc 10.50 shows the endurance term behavior for the three fusehige aircnift. The 

slope of the conventional pusher endurance term curve has decreased and now matches 

the performance of the conventional tractor (ind conventional single fuselage) much 

better. 'Mis could he -, t result of the addition to the wing-fuselage lift, though it is unclear. 

Otherwise the trends of the four curves are identical to those for the t-, vo fuselage 

endurance terms. 

In cornpýirtng the two figures, however, some differences become app,, irent. The 

; tcrodynainic efficiency ()f the conventional three fuselage aircraft seems to have improved 

slightly. This has a direct impact on the overall endurance, and explains the behavior of the 

sh-, ipc of the overall ctidurance curves when comparing the two and three fuselage cases. 

I'lic only misonabic explanation f()r this behavior is the relative ease with which the 

three fuselage aircraft is balanced. Therefore, there is less travel of the center of gravity 

throughout the flight of the aircraft. An improvement in the aerodynamic efficiency 

rcsults for the convcni-Ional configuration. The parasite drag of the additional fuselage is 

balanced by the decre'. ise in cg travel thus decreasing trim drag. -', Ince the canard aircraft 
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was already well balanced, however, the performance decrease due to the jmr. isitc drýip. , I- 

an additional fuselage is more apparent. 

IO. C3. c20,000pound Takeoff Weight 

Endurance vs Wing Loading 
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Figure 10.51 shows the comparative endurance for the 20,000 pound two juselage 

aircraft which demonstrate trends quite different to the 2,000 and 10,000pound cases. 

The 20,000 pound takeoff weight two fuselage case denionstratcd radict- dilk-rcio 

trends from the 2000 and 10,000 pound cases for overall endurance, liow(-%, (, r flic behax, i(ýr 

of the endurance term and fuel fraction terms was essentially idelltical. Figure 10. ýl ; ind 

Pigure 10.52 show the results for the overall endurance ()f the 20,000 1)(IL111d two AIR] tht-CC 

fuselage cases respectively. 

The most noticeable difference in the two fuselage figure Is the absence ()t- ffit 

behavior of the endurance curves at lower wing 1()adings. '111IS Call quitc cxsllý I)(- 

explained by the fact that the 20,000 pound aircraft wings did nw eNp(-rI(-iw(- flic 1()w(-r 

limit of wing weight per area as did the other two tak-coff \vciglit c. iscs. The result is I 

decrease in slope of the fuel fraction ten-n curves which transLites into mimcr(%isc in sl()I)(- 

of the overall endurance curves due to the effects of decreased acrodyimmic cfficiciicy it 

lower wing loadings for the 20,000 pound takeoff weight case. Otlierv,. isc, tdc-mic, il trends 

as those seen for the 10,000 pound case were seen In the curves f(, r the fucl Cracti(m md 

endurance terms for the 20,000 pound case. It is thus hcheved that thc (.. \ 1)1, ltl, it 
for these phenomena can be -. ipplled to the 20,000 pound case witll()Llt furthcr dis(Alss'(41. 
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Endurance vs Wing Loading 
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Figure 10.52 shows the 20,000 pound three fuselage aircraft endurance results on an 
expanded Y-axis scale which show trends similar to the 10,000 pound case. 

10, C4 Single Fuselage Tandem Wing 

There w,, is il() literature available on the deten-nination ()f the ()ptti-num division of 

wing area or lift for tandem wing aircraft. For this reason two different single fuselage 

tandem wing aircraft were evaluated. The division of wingarea for tile first configuration 

was selected based Lipon a statement in Stinton 6, which said thataircraft with a 50/50 split 

cannot decide which wing is in control of the aircraft -and tend to wander through the skies 

in an unstable manner. Therefore, a limiting case of division of area was selected as 55/45, 

where 55 is the percentage of main or aft wing area, and 45 is the percentage of fore wing 

area 

Fhe other c-, ise considered was based on die fact fliat the horizontal surfaces used 
for the Low Speed I L, 1J, F1 UAV's tended to be between 5 and 15 percent of tile main wing 

, area. Since sonic distinction needed to be made between the tandem wing and canard, the 

division ()f area selected for the lower hinit was 75'/o aft/25% fore. Another difficult 

(Icclsl()n that needed to be made was the determination of the relative aspect ratios, as 

again there was no information available. It is necessary to insure that the fore wing stalls 

- irst, ,t reqUirement to maintain positive longitudinal control of the aircraft. Tits can be 

achicN, cd by either keeping the fore wing angle of attack higher, or by making sure the fore 

wing Reynolds number is significant]), higher. Since lift coefficients are already 

appr, )ýichlng reasonable stall limits in cruise flight for Low Speed I IALF UAV's, it was 

decided that a decreased aspect ratio for the fore wing would be a reasonable solution. 

Chapfer. V 284 Resulls and Discussion 



Design AllethodoloDfor Low Speed HALE UA Vs 

This is a similar tactic to that used by the Scaled Composites Piolew which has a fore wing 

aspect ratio of 16.7 and an aft wing aspect ratio of 20.1. For the cases executed in this 

section, the fore wing aspect ratio was 22, and the aft wing aspect nitl() was maintaltic(I it 

35. 
Similar to the multiple fuselage results, the results for the single fuseLige tandem 

gurati wing aircraft will be grouped by takeoff weight. There were 4 config i0lis considerud III 

total for each takeoff weight case, considering variatIons III dIvIsI()n ()f wing arc-, i mid 

engine configuration. 

10. C 4. a 2000 po un d Takeoff Weigh t 
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Figure 10.53 shows the overall endurance results for the 2000 pound single fuselage 
tandem configurations compared to the conventionalsinglefU Nelage configuration. 

It is first noted that the Y-axis scale for cndunincc is (-%pýlndcd -g tll(- 'gIN In, 

appearance of a difference in shape from that seen prevv)usly. The scýjlc was exp; jud(-d in 

an effort to highlight the differences in the configurations being (-()tnl)arcd. Tlic first 

characteristic to notice about the 2000 pound overall endurance rcsults sccn in 1-iy, 
)-urc 

10.53 is the fact that the 75/25 area split tandem pusher in(] tractor ýiircrm -t ci)tnparc quitc 

well to the conventional configuration. Als() quitc n(AICcable Is the Lict thýlt Ill(. 

comparative performance of the 55/45 area split tandern configurations is quite 1)()()r. Thc 

performance of the 75/25 area split tandems was supcri()r to the pcrform. iticc ()f Al 5. --)/45 

tandems regardless of takeoff weight as will he seen Liter. For the t. indcm (-,, nh, v, iiration 

there is an interesting combination of structural and acrodynýitnic effects that ci-(,, it(. this 
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remarkable overall endurance performance. These effects are least pronounced for the 

2000 pound case, however, they are still reasonably clear. 

Similar to other configurations seen thus far, the pusher configuration provides 

slightly better overall endurance performance. The reasoning Is similar, resulting from the 

fact that the pusher configurations were much easier to balance and had more reasonable 

cg travel. 

Endurance Term vs Wing Loading 
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Figure 10.54. vho)ss the surprising resuft qfgrealer aero4l, namic efficiengfor the 
7-5125 areasplit tandem ning, in both pusher and tractor configurations. 

I`igure 10.54 for the 2000 pound tandem configuration endurance term highlights 

,; ()me verv interesting and unexpected behavior. The most interesting result Is that the 

75/25 area split has a higher aerodynamic efficiency than the 55/45 area split. This result 

was not c%pected. The most likely reason for this behavior is the fact that the lift 

coefficicnt for the tandern wings was not held constant for these results. Since the 

aircrq lift coefficient was kept constant, the lift coefficient of the individual surfaces was . 
ft IIIII 

determined in the manner that would best bahtrice the aircraft. The result of this was a 
companitively higher lift coefficient for the fore surface of the 7')/25, and a comparatively 

1()w(, r lift coefficient for the aft surface and vice versa for the 55/45. In Adition, a larger 

percentage oF tot,, il Wing -area was at a lower aspect ratio for the . 
55/45 cýisc. On averige, 

the sum of the drag coefficients for the 75/25 was lower than that of the 55/45. At this 

point it is noted that it is suspected this result is highly airfoil specific and tile same 

behavior might not be obtained using airfolls optimized for each surface. 
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The 2000 pound takeoff weight fuel fraction term curves seen in Figurc 10.5.5 

provide some additional information. It can be seen that there is very good agreellient Ili 

all of the curves up until 10 lbs/ ft2. Beyond th', it wing 1()ading, the 55/45 aircraft has ,I 

structural efficiency very slightly higher than that of the 7-5/25 aircraft, with 111 f()Llr 

tandem aircraft having greater structural efficiency than the conventional aircr, ift. This Is 

the first sign that the structural efficiency (based on the imignitude of the fucl fniction) ()f - 

the tandem wing aircraft is superior to that of a standard conventional single wing att-crat - I. 

This is due to a reduction in span of each wing, and a reduction Ili aspect ratio fora smiblc 

fraction of the overall lifting surface area. 

Fuel Fraction Endurance Term vs Wing Loading 
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Figure 10.55 hints towards the superior. 81ructural efficiency of*the 
tandem ning aircraft. 

Nvv'hen the influence of the fuel fraction and acrodymu-nic (-f - ficiclic), tcrins m-c 

considered it becomes apparent that the relatively po()r comparative pcrI-, )rmancc (, f thc 

55/45 area split tandem is due ýilrnost entirely to the 1)()()r rulativc acro(IN-munic 

perforrmince of that configuration. This supports the argument th, it if ýi t, indcIn wing 

aircraft configuration is to be considered, a great deal ()f care must be taken in the design 

of the wings and their interaction. 

10. C 4. b 10,000 pound Takeoff Weigh t 

The 10,000 pound tandem -wing m-mill cndurance result,, c, m bc seen m Fiý, ýurc 

10. i6 for the various configurations considered. Different from flic 2000 pound t, ikc(, ff 

weight cun-es, the 55/45 tandem aircraft outperform the coIlx, elltl(),,., Il configuration Lip to 
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approximately 12 lbs /ft2 
, and perform almost as well beyond that wing loading. Similar to 

the 2000 pound takeoff weight curves, the 55/45 and 75/25 area split tandems agree 

betterat the lowest wing loadings. 
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Figure 10.56 vho)tw the comparative improvement of the tandem aircraft when 
compared to the conventional configuration. 

Endurance Term vs Wing Loading 
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Figtire 10.57s-hoivs, a relative decrease in performance kj, the tandems relative to 
the conventional configuration when compared to the 2000 pound takeoff weight 
case. 

The endurance term graph is given in Figure 10-57. Once again, the acrodynimic 

efficiency of the 75/2-5 tandem wing aircraft is higher than that of the 55/45 tandem for 

all wing 1()adIngs considered. In addition, the slope of the aerodynamic efficiency cun, es 

f(ýr the tandems experienced a very small decrease. The 10,000 pound tandem wing aircraft 
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endurance term perfori-nance experienced a decrease relative to tile c, )nvcnti, -, iml ýtircr, ift 

when compared to the 2000 pound case. 

Fuel Fraction Endurance Term vs Wing Loading 
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Figure 10.58 shows a significant advantage in s1ructural efficiency for 
the landent aircraft due to a reduction in span of the wings, and a 
reduction in overall aspect ratio. 

The fuel fraction term can be seen in Figure IO. i8 for the 10,000 pound single 

fuselage tandem aircraft. The most rem-, irkahle characteristic ()f this figure I-s' Ihc 

prominent increase in structunil efficiency for all of the t'. indetn ýilrcnift. This incrc, isc is 

considenibly more noticeA)le thýin for the 2000 pound takeoff weight c, isc. Since thc sp, 111 

and area of the individu', il wings has been greatly reduced due to the divisj()n ()f tot, 11 wing 

area into two undern wings, the wing-, can be built more structurAly efficient t-()t- tll(. s. 1111(. 

aspect ratio. In addition, since a significant portion of the totlil wing ýirca is now 

composed of a wing of lower aspect ratio, the overall structur-, il efficicilo, I,,, 11ý), Alli 

Increased. There is most likely a point at which the structuril bcno-It kil. inccs the 

aerodynx-nic pcnilty for the tandems, and this should be studied in greater detail. 

The Increase in overall structural efficlency for the tandern aircrAft Is the rc%is, )n for 

much higher overall endurance at the lower wing loadings. This rcrnýuns the c, isc Lilitil tile 

effects ()f the reduced acrodynamic efficiencY of tile tandem aircnift bcomic tn(wc 

prommentat higher wing loading,,. 

10, C4. c 20,000pound Takeoff Weight 

The 20,000 pound takeoff weight case will not be pa-sentc-d in flic s, 1111c. clet. 111 ýjs 

,, veil it, 1; 1ý), the previous two cases. The overall endurance i, ,; L, Urc 10. --)9, liowc-\-(-r the 
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trends seen in the fuel fraction term were identical. In addition, the trends seen in the 

endunince terrn were identical. 

Endurance vs Wing Loading 
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Figtire 10.59 shows a significant improvement in overall endurance of the tandem Iving 
aircraft tit lower wing loadings when compared to the conventional configuration. 

Similar to the 10,000 p()und t, ikc()ff weight overall endurance values, the deviation 

t-()r the t, indcm aircraft is greatest at the lowest wing loadings, or highest total wing areas. 
It Is ll()I(. (i that tl1c Imsic shapc of the 20,000 pound takeoff weight conventional 

configurati()n ciidurýiiicc curve is different from die shapes of the 2000 and 10,000 pound 

take4f weight curvo--s. As a result ()f this difference, the effects of greater structural 

cfficwncy at lower wing loadings for the tandem aircraft effects the basic shape of the 

convctitional curvc dif-Ccmitly thari for the other two takeoff weight cases. The underlYing 

rcýisonmg behind the belmvior of the tandem curves, however is identical. 

In , iny case, the optimal wing loading for the 10,000 pound and 20,000 pound 

tAc(, fI- \vo. -Ight c,, is(-s ýippc-. irs to h-, ive shifted towards lower wing loading when compared 

to tile c()tIvCIitI()nal case. Finally, it is noted th'at the Y-scale was again increased in order 

to f- ýIclilltitc the tdcnfificýitvm ()f the relevant trcnds. 

10. C5 Multiple Fuselage Tandem Wing 

Flic "Ifigic f1i"'cly"c tt-, Ictot- týindcjn wing configuration will I)c used as a hasellne for 

comp, ins()n to the nitiltiple fuselage tandem wing results. Four different multiple fuselage 

tandem c()nfipurations wci-c considered: a two fuselage tractor, a two fUSCLIgC pusher, a 
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three fuselage tractor and a three fuselage pusher. The division of area selected for tilts 

study was 55/45 for all cases. The results will be grouped by take()ff weigilt once ýIgaln III 

order to reduce the number of figures necessary and provide a more appropri, ite 

comparative reference. 

10. C9. a 2000pound Takeoff Weight 
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Figure 10.60 compares the 2000 pound muftiple fuselage tandem ising air -ra to th 
singlefuselage tandem ning aircraft as a baseline. 

'me endurance for the 2000 pound multiple fuselage tandem Wing (., III bc 

seen in Figure 10.60. All of the multiple fuselage tandem aircnift diftcrrjjtlý, fnqll 

the single fuselage tandem below 10 lbs/ft2. The behavior 
of the multiple t-Us, l. jj), (- t, 111(j(. 111S 

above 10 II)S/ft2 
agrees well with the single fuselage with tlic )nly d1j-tct-t. jj, -(- 

being in the slope and location of the curves. 'I'lie behavior ()t- all ()f tll(. 111,11tipic 

tandems agrees well with the behavior of the multiple fuselage cO, j%, e, jtj()jj,, l ýIjjd c. 111.11-(l 

results already presented. The behavior of these cunes at low wing 1,1, J111,11, %,. -. Is sll()Wll 

result from a combination of highest aerodynamic efficiency combincd wit), 

efficiency greatly increased over the single fuselage configuration (ILIC to tll(' WIlIg Ively, 111 

saving factor used for tile multiple fuselage ýilrcraft. 

The primary reason for the deviation ()f the three ýuid two fusclagc pusllcr 

configured tandems was that the fuselage was lengthened for both cases. This WAS 

necessan' -at the lowest wing loading (-,,, here the deviation is gre-atcst) in (, r(i(-r to balance 

the Aircraft, and to keep the forward wing greater than two chord lengths in t-i, ()Ilt th(. 

maln wing. This (A), viously had , in ý, idvcrse effect oil the (, ndurance ()f this, c(m[wilt-Avol, 
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and the detailed reasoning as to why is left for the description of the individual terms. It is 

noted that, similar to the conventional and canard multiple fuselage 10,000 pound takeoff 

weight case, the multiple fuselage tandem aircraft outperform the single fuselage tandem 

aircraft only at the lowest wing loading. 

It is also noted that there was a difference of 3% in the wing weight saving factor 

of the three fuselage aircraft between the tandem and the conventional and canard. This 

effected the shapes of the curves differently due to the fact that the weight saving factor 

was applied to hoth the fore and aft wings for the tandem. 

Endurance Term vs Wing Loading 
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Figure 10.61 shows a greater slope in the aerocývnamic efficiency of the twofuselage 
tandem aircraft when compared to thesingle and threefuselage tandem aircraft. 

The endurance term results for the 2000 pound multiple fuselage tandem aircraft 

c-, in be seen in Figure 10.61. The three fuselage aircraft appear to have a lower value of 

slope, and therefore closer approximate the aerodynamic efficiency of the single fuselage 

tandem. The slope of the endurance term curves for the two fuselage aircraft is greater 

than that of the single or three fuselage curves. Once again, the two fuselage aircraft at the 
higher wing loadings both experienced greater travel in the aircraft center of gravity 

throughout cruise. Alien there was less fuel to balance against, the range of travel of the 

aircraft center of gravity adversely affected the aerodynamic efficiency. Ibis effect is 

combined with the decrease in aerodynamic efficiency (with increase in wing loading) 

already experienced resulting from a more heavily loaded wing. 

Only the three fuselage tandem tractor at a wing loading of 5 lbs/ft2 outperforms 

the single fuselage tandem, and that is by ,I small margin. Part of the result of increasing 
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the fuselage length for the lowest wing loading three fuselage pusher tandem is the 

comparative decrease in aerodynamic efficiency seen 'in the figure. This contributes to a 

fraction of the behavior for that configuration in the overall endurance results. 

Fuel Fraction Endurance Term-vs Wing Loading 
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Figure 10.62 shows that the fuelfraction term is the printarl, reason for the poor 
overall enduranee performance of the three fuselage tandem pusherjor the 2000 
pound takeoff weight case. 

The remainder of the behavior scen by the threc fusclage pushcr tmidum cmi bu 

explained by viewing Figure 10.62 for the 2000 pound takcoff weight fucl frýjctjoji tcl-111s. 

It can be seen that the fuel fraction of this aircraft is well below fliat of all of t1ju ot1jur 

aircraft with the exception of the lowest wing loading. This is a direct result of- the wcI i, lit 

of the additional fuselage length. This low fuel traction terin is rusponsibic for thc 

comparatively low overall endurance pert - ormance of the three fuselage pusher tandcni. 

NI, , so from the fipre it can be seen that the two fuselage týindcni aircraft igrcc 

with the other configurations in the shape of the fuel frýlction tem-1 curvcS. III 

the two fuselage tandem fuel fraction term is superior to thit of the other colif - igunitions 

considered throughout the range of the 2000 pound takeoff weight cýjsc. 
In summary, the only multiple fuselage týindcm aircrAft tliýit compýirc well, r 

exceed the performance of flic single fuselage tandem ýirc the t-\\,, () fusclagc trýictor mid 

pusher aircraft, and that is mily for wing loadings between 5 and 
1() II)S/ft2. ()tll(. IAVIS(" h 

)r 

the 2000 pound ukeoff weight case, the single fuselage tandern would appear to he 

superior. 
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10. C9. b 10,000pound Takeoff Weight 
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Figure 10.63 shows a slight leftward shift (of sting loading) in opti"lu"I endurance for 

the multiplefuselage tandem sting aircraft in addition to a higher mavimum endurancefor 
the 10,000 pound takeoff weight cases. 

The 10,000 pound takeoff weight endurance figure can be seen in Figure 10.63 for 

the multiple fuselage tandem aircraft. The most notable feature about tills endurance 

figure is that the two and three fuselage configured tandems all outperf - orm the single 

fuselage tandem below wing loadings 'of approximately 1() ll)s/ft2 
. 

-Me optimum 

endurance for the two, tractor configured tandem aircraft appear to shift towards a lower 

wing loýidlng. Moreover, the performance of the three fuselage pusher configured tandem 

is improved. '11-iis configuration was difficult to balance at almost all wing loading,, -, and 

takeoff weights and if for this reason alone would not be recommended. I lowever, the 

performance of this configuration due to this difficulty in balancing was poor compared to 

the other multiple fuselage tandems at low wing loadings as well. 

The results for the endurance term can be seen in Figure 10.64. In comparison to 

the 2000 pound takeoff weight case, the aerodynamic efficiency for all of the multiple 
fuselage tandem configurations appear to agree better with the single fuselage t, indem. 
Part of the reason for the two, tractor multi fuselage tandems outperforming the single 
fuselage tandern in m-crall endurance can be seen in this figure. At wing loadings under 10 

Ibs Ift2 the two rnultl fuselage tandem tractor configurations experience a slight increase in 

slope when compared to the single fuselage tandem. The two, pusher configured tandem 

aircraft both have lower aerodynamic efficiency than the single fuselage tandem aircraft. 
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Given that much of the fuel was in die main (aft) wing, the addition of the weight of tile 

engine aft made the pusher configuration much more difficult to balance. 

Endurance Term vs Wing Loading 
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Figure 10.64 shows much better agreement in the endurance termjor the multifilvelage 
tandem aircraftfor the 10,000 pound takeoff weight case. 

Fuel Fraction Endurance Term vs Wing Loading 
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Figure 10.65 compares the fuel fraction termsfor the multipleft4selage tandem 

aircraft and shows a slight improvement in fitel fraction for the 10,000 pound 
takeoff weight multifisselage tandent aircraft when compared to the 2000 potind 
takeoff weight case. 

The fuel fraction results can he seen in Figure 10.65 for the mulit fusclagc tandem 

aircraft. Below wing loadings of - approximecly 10 lbs/ft2 the two fuscLigc tractor Mid 

pusher, and the tfirce fuselage tnictor have higher fuel fractional weight tcn-ns than thc 

single fuselage tandem. IIIII rcitcr th in th, it 'Mis, n comb nation with acrocivimmic efficicticy gI 

of the single fuselage tandem result in the behýavlor seen in the overall c-ndunince fipurc 
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(Pigure 10.63) for the 10,000 pound takeoff weight. Furthermore, the comparative 

performance of the weight fraction term for the three fuselage pusher tandem aircraft is 

much better than for the 2000 pound case, which explains the smaller deviation in total 

aircraft endurance. 
In summary, for the 10,000 pound takeoff weight case, the perfort-nance of the two 

fuselage configured tandem aircraft outperformed the single fuselage tandem for all wing 

loadings considered. Once again, the performance of the three fuselage tractor tandem 

was superior to the single fuselage tandem only at the lowest wing loadings, and the three 

fuselage pusher tandem performed poorly in comparison. 

10. C 9. c 20,000 po un d Take off Weigh t 
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Fig-tire 10.66 shows endurance behavior extremeýj, similar to the 10,000 pound takeoff 
weight tandem endurancefigure above iving loadings qf 10 lbs/ft: - 

Thc trends in the 20,000 pound takeoff weight endurance term curves are 

essentially ldctitical to those seen for the 10,000 pound takeoff weight case. 1, 'or the fuel 

fraction cunes, there are several differences. 'I'lic First difference Is that the pusher 

configured three fuselage aircraft fuel fraction curve experienced I decreased slope 

between 10 and 20 lbs/ft2. '11-its behavior in the fuel fraction term is responsible for the 

characteristics seen in the overall endurance curve for the 20,000 pound takeoff weight 

three fuselage pusher configured tandem. In addition, the fuel fraction curves for all four 

multiple fuseLige tandems experienced an upward shift. 'I'llis improvement III fuel fraction 

WAS Sufficient enough Such that the fuel fraction terms of ýill 4 the multiple fuselage 

tandem aircriff exceeded the fuel fniction performance of tht singlc fuschgc t. indem. 
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FinaHN', the fuel fraction performance of the three fuselage tandem aircraft stiperior to 

the performance of the two fuselage aircraft for the first time. This reversal is also 

reflected in the overall endurance performance graph, with the three fuselage aircraft \'Crý' 

slightly outperforming the two fuselage aircraft in many instances. This can be explaiticd 

by the fact that the weight of the additional fuselage is proportionally much smaller for In 

aircraft takeoff weight of 20,000 pounds. 

With those considerations in mind, the endurance can be seen in Figure 10.66. 

Although this figure is for the 20,000 pound takeoff weight tandem aircraft, the bcliavior 

essentially represents the shapes seen in the 10,000 pound takeoff weight endurance figurc 

for wing loadings above 10 lbs/ft2. This is true with the exception of the fact that thc 

three fuselage tandem now outperforms the two fuselage tandem, although the differcticc, 

are quite small. In addition, the optimum wing loading for the niultiple fuselagu tandcnis 

has now quite clearly shifted towards lower wing loading. In summary, for thc 20,000 

pound takeoff weight case, the performance of all of the multiple fusclagc tandeni aircraft 

exceeds that of the single fuselage tandem. 

10. C5. d Tandem Wing Aircra ft Summary 

The outstanding endurance performance of the tandem vving cont - igurations 

compared to the performance of the other configurations might raise SO111C LjUCStI011'S '11', to 

the validity of the results. As seen from the single fuselage tandem wing aircraft study, tho: 

reason for the exceptional endurance performance of the tandem wing aircraft is for tile 

most part due to a much higher structural efficiency for the wing(s). The wing normally 

constitutes approximately 30% to 45(ý"o of the empty weight of the aircraft. This range of 

wing fractional empty weight was obtained from the results of the methodology. There is 

only one other single component of the aircraft that is nearly as heavy and that is the 

engine. For the majority of cases considered, the Nving is heavier than tile Cligine, "Ind file 

heaviest of the remaining components is less than 8') o of the empty weight. 

Referring back to the section on aspect ratio vanati(mi, it was shown that an 

average improvement in fuel fraction terin of roughly 0.10 was found across the entirc 

range of wing loachngs for the higher takeoff vveights. It is noted that this %vas for a xving 

with area equal to the aspect ratio 35 wing to which it was compared. Thus, the span and 

area of an individual tandcm wing is significantly reduccd further beyond this valtic. In the 
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range of takeoff weights and wing loadings where this weight saving was less pronounced 

in the aspect ratio study (2000 pounds), the tandem aircraft do not pert - orm sipificantly 

better than the conventionally configured aircraft. 

kNI-iethcr or not these weight savings could be achieved in reality 

is a reasonable 

question. However, it is difficult to argue against the concept that peak wing structural 

loads are significantly decreased by the reduction of individual wing span and area (and 

thus aspect ratio) for extremely high aspect ratio wings. In addition, it was shown that the 

aerodynamic efficiency for the forward wing is not significantly reduced (-, Md in some 

cases is even increased) by the division of wing area and reduction ofaspect ratio. 'fliese 

two statements in combination allow for the conclusion that the tandem wing Mrcraft 

results are in fact quite reasonable in terms of endurance performance. 

10. C6 Flying Wing 

Endurance vs Wing Loading 
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Figure 10.67 shows the endurance of the untrimmed flying, wing compared to the 
conventional configuration. 

In the limited time available, it was impossible to evaluate the flying wing 

configurati(m with the necess; tr-y degree of detail. The difficulty with providing detailed 

results lies with the control surface deflections necessarý, to maintain the selected static 

margin and keep the aircraft In cruise trimmed flight. The airfoil used for the aerodynamic 

analysis for the flying wing (the Eppler 344) was slightly rellexed in order to reduce the 

wing moment coefficient. Despite this airfod selection, it is suspected that there would be 

greater dnig penalties due to the need to increase control surface deflection as fuel is 
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burned. Consequently, the results shown do not have the same trimmed drag penalties as 

the other configurations and should be viewed as representative of the overall comparative 

trends of the flying wing when compared to the conventional configuration. Since the 

trimmed drag penalties were not evaluated for this config-uration, there was little additional 
benefit expected from evaluating the pusher propeller configured flying wing. 

The overall endurance results can be seen in Figure 10.67. As would be expected 

without the consideration of trim drag penalties, the flying wing configuration significantly 

outperforms the conventionally configured aircraft. Additionally, it can be seen that the 

general shape of the takeoff weight curves is the same across the two conhýy nto is. pII 

There is a very slight increasing deviation between the curves for the two configurations 

with decreasing wing loading. Again, this behavior has been traced back to the variation in 

the wing weight estimation with lower wing loadings (influenced through lower fuel 

weight). The most notice-ably different behavior seen in this figure is that of the 2000 

pound flying wing cunrc. Thcre Is a much sm'Aler difference in endurmice betweell thc 

2000 pound case and the other two tAeoff weight cases for the flying wing. 
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Figure 10.68 sho)vs the coincidence of the endurance term curvesfor theflying iting case. 

The reason for the sinaller cliffereticc in ovenill aircraft endurmicc for the 2000 

pound flying wing case can be seen in Figure 10.68. l, ()r tile First tin-ic in the gniph for the 

endurance term, the three different takeoff welight cases are cssentiMN, commicni m value 

as a function of wing loading. It is helieved this is a direct result 4 not consicicring trim 
for the flying wing configuration. This only further emphasizes the effects of trim on the 

aerodynamic efficiency, and the need to include a trim analysis when compar . 11 ig 
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configurations as was done in this thesis. The lowest t'ako)ff %vcight aircraft has 

consistently shown lower aerodynamic efficiency than the other two, higher takeoff weight 

cases. It was also noted earlier that for several of the configurations considered, the 2000 

pound aircraft was the most difficult to find an acceptable center of gravity location for 

the payload (in order to provide an acceptable aircraft static margin). 
The only other possible explanation for the coincidence of the endurance term 

takeoff weight curves for the flying wing would be the exclusion of tail surfaces from the 

drag analysis. Given that the tail surfaces scale directly with the size of aircraft, the 

fractional drag should do so as well. In checking the detailed drag output for many of 

these cases, it was determined that the fractional drag consistently scales directly with the 

size of the tail, and thus would not explain a consistent difference between the larger 

takeoff weights and the 2000 pound case. It is believed, however, that the incremental 

difference between the aerodynamic efficiency of the two cases results directly from only 

two factors: Trim Drag and Tail Surface Drag (skin friction and profile drag). 

Fuel Fraction Endurance Term vs Wing Loading 
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Figure 10.69 shows the improvement in s1ructural efficiency for the flying )ving 
configuration resultingfrom the removal ofthe tail surfaces from theweight estimation. 

The increase in structural efficiency for the takeoff weights considered for the 

flying wing can be seen in Figure 10.69. This is exactly the behavior that would be 

expected with the remo\, al of the tall surfaces from the structural weight calculations. The 

flying wing configuration had a center fuselage for payload, so the effects shown result 

strictly from the removal of the tail surfaces and supporting structure. 
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IO. D Case Study 

The discussion thus far in the Results chapter has focused on the validation of the 

existing methodology and the application of the methodology to a wide -variety of 

conceptual design problems. The methodology was used first to perform sensitivity on 

the conventional configuration to geometric variables, flight conditions, and configuration 

related parameters. Then the methodology was used to perform the same style of 

sensitivity study for a wide variety of configurations. A set of charts was gcneratcd with 

respect to each of these parameters which identified the optimum non-dimensiollal dcsign 

point for maximum aircraft endurance performance. If the non-dinictisional nature of 

these graphs is full), understood, they can be used in the design of aiiý, aircraft within the 

takeoff weight, wing loading, and configuration related limits tested and validated within 

this thesis. 

Regardless, a traditional conceptual design type study was performed using the 

methodology in order to demonstrate that the methodology is capable of evaluating 

aircraft in this manner. The study begins with the specification of the following Mission 

Requirements : 

3000 nautical mile combat radius 

24 hour endurance on station 

2200 pound payload 

373 knot cruise velocity (Nlach 0.65) 

50,000 foot crWse/loiter altitude. 

In addition to these requirements several reasonable assumptions needed to be made In 

order to limit the number of possible aircraft that could satisfy the above requirements. 

Although not stated in the requirements, a takeoff field length of 5000 feet was 

assumed, and a maximum stall speed of 120 knots was assumed. In addillon, for 111c 

purposes of facility and ease of transport, the wing sen-ii spaii was limited to 65 feet. 

Finally, a wing (without flap) maximurn lift coefficient of 1.4 was aSSUIIICd. ' FlIcsc 

additional requirements have obvious implications in the areas of takeoff wing loading, 

maximum takeoff weight, wing geometry, takeoff distance, stall speed, and in payload 

weight fraction (given the payload weight). 
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1O. D. 1 Conventional Configuration 

The first of two configurations to be considered in the case study was the 

conventional single engine aircraft. Given the cruise velocity requirement, a 

turbo fan/turbojet powerplant was necessary. The Allison AF3007H (the poxvcrplant for 

the Global Hawk) was selected, with a cruise specific fuel consumption (at 50,000 feet and 

Mach 0.65) of 0.65 lbs/lbf/hr. 

Another effect of the increased crwse -velocity xvas that the bencfits of increasing 

the aspect ratio were much less pronounced due to the rclativc domination of parasite drag 

over lift induced drag. This resulted from the fact that the average lift coefficients 

experienced by this aircraft, despite its higher wing loading were still much lower than 

those experienced by the propeller aircraft due to the presence of the velocity squared 

term in the denonnnator of the lift coefficient definition. The final result of this effect is 

that the aspect ratio was determined more based upon structural and span linuitations 

rather than aerodynamics, as the sensitivity to this parameter was . vcak. As an example, 

for the highest wing loading cases considered (where span limitation was the least 

constrained), the aspect ratio was increased from 28 to 36 and the lift to drag ratio was 

only improved by 1.13 and the endurance was relatiVely unchanged. 

Several different designs with the given basic configuration were capable of 

attaining the required performance. The configurations selected for inclusion can be seen 

in Table 10.4. The configurations are named A, B, and C in order of increasing xving 

loading, or decreasing takeoff weight. 

It is noted at this point that there are an infinite number of possible concepts that 

will satisfy the requirements as stated, and Table 10.4 was intended onlN, as a definition of 

the limits or bounds of what could be reasonably considered based on the output from the 

methodology. In addition, the cases considered represented the range of payload weight 

fractions seen in existing HALF LTIýVls. It is also noted that for each configuration, small 

changes in aspect ratio, wing sweep, taper ratio, and wing profile will result in small 

improvements or penalties as shown in the Results for the Conventl()nal Configuration 

already discussed. The values arrived at for the case study were done so as determined 

through the balance of aerodynamic and structural considerations already justified in the 

resi, )cctl%, c sections of this Results chapter. 
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Table 10.4 lists a few of the concepts that were found to satisfy the mission 
requirements, for the conventional confýiýuration. 

IAIBIC 

Wing Loading 51.2 56.4 64.5 lbs/fl? 
Endurance 24.2 24.0 24.1 hrs 
wt. 33,846 26,829 22,000 lbs 
S 661 476 342 ft 2 

Trimmed Power Req'd 918 694 543 HP 
L/D 27.3 29.7 32.4 
WPI / wt" 0.065 0.082 0.100 
Wf., / Wt. 0.636 0.605 0.574 
AR 26 27 28 
B 131 113 97.8 ft 
vstalvto 104 109 117 knots 

lVstalVldg 68.0 73.7 1 81-1 knots 

It can be seen in the table that all three configurations satisfy the 24 hour 

endurance reqlurement. These numbers have been obtained with consideratt()n of the 

time required for ingress/egress atready taken into account. It can also be scen that tile 

takeoff weights range in value by 35'ý'o. Thus a reasonably large range of m, crall size of 

aircraft can fulfill the trussion requirements as stated. It was for this reason that additimial 

constraints were necessary. Identical values were used for payload size , ind volume. 

Payload placement was based upon the provision that all three cases have identical static 

margin and static margin ranges. Placement of the wing further forward providcd slightly 

better aircraft performance, however this severely limited the physical range of payload 

placement and the stability of the aircraft for lighter payload cases. Tbus a sliglitly further 

aft main wing position was selected than the position that would providc the optimum 

aerodynamic performance. This process was kept consistent across all cases considered. 

The values of wMg loading that satisfy the 24 hour endurance requirement \, ary 

inversely with the takeoff weight, with the highest wing 1()ading cot-rcsp(miding to the 

lowest takeoff weight and vice versa. Case A was considered as the heaviest and largest 

possible option. There are many problems associated with this configurati(m. ( )nc 

problem is that it is on the upper end of wing span even though it has the 1()-, k, cst aspcct 

ratio of the three configurations. Configuration A also has the highest trim 1)()\x-cr 

required and the corresponding lowest aerodynamic cfficiency. The fact that it i, the 
largest aircraft, and has the highest cruise power required nicans that the first cost and the 

operating costs (more fuel, more aircraft to maintain) of this aircraft will be the highest. 
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In direct contrast to Case A, Case C was considered the lightest and smallest 

possible option. Case C had the highest aerodynamic efficiency and the lowcst power 

required in cruise. Furthermore, it had the highest wing loading which presented the 

limiting side of the concept. Case C had the highest n-unimum stall speeds in both the 

landing and takeoff configurations. The takeoff stall speed was calculated using the 

maximum takeoff weight, and the landing stall speed was calculated based on 10"'0 fuel 

remaimng, both at a maximum lift coefficient of 1.4 and sea level conditions. 

With a high takeoff and landing speed, the aircraft would require considerably 

more runway for takeoff and landing, M addition to increasing the potential for damage in 

the event of an off-field landing encounter. Another serious consideration with tile higher 

wing loading is the fact that the max-imum ceiling is now limited severely bN- the stall speed 

when equivalent airspeed is considered under cruise/loiter conditions. With a crwse 

velocity of 373 knots, and a crWse altitude of 50,000 feet, the equivalent cruise speed is 146 

knots. If a cruise altitude of 60,000 feet is considered, this aircraft will stall before reaching 

attitude before a substantial amount of fuel is expended. 

Finafly, Case B is presented as the best compron-use between the other two, 

limiting cases already discussed. While it has a higher power required and lower 

aerodynamic efficiency than Case C, it requires less runway and has greater staH margin, in 

addition to greater potential for growth versions and the abil-ity to reach higher attitudes 

without the need to expend fuel first. When compared to Case A, it is a smaller aircraft 

with higher aerodynamic efficiency and, if designed properly, wflI ultimately cost less to 

purchase and operate. It is noted, however, that without requirements on takeoff distance, 

stall speed, wing span, and maximum hft coefficient, all three configurations win perform 

the mission required. 

10. D. 2 Two Fuselage Con ventional Single Engine 

The second configuration to be considered in the case study was the two fuselage 

single engine conventional configuration. A representative diagram of this aircraft can be 

seen in Figure 10.70. Obviously care will have to be taken in the final layout of this 

aircraft to prevent the 'et exhaust from impinging on the horizontal tall, however this tTe 

of configuration has been implemented before with a jet engine. 
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Figure 10.70 shows the hvofuselage single engine conventional configuration. 

it is important to note that due to two primary factors it wýis necessary to rc- 

evaluate the wing weight saving factor used for the two fuselage configuration. With thc 

high degree of sweep angle used (resulting from the high cruise vcl()clty), and with thc I-lict 

that a large amount of fuel was placed in the fusela, ý,, cs, the critirc strUCtUral nature of thc 

wing has changed when compared to piston aircrift traveling it 1()wcr specds. There wcrc 

only a couple of piston aircnift thýit were not c', i1mble ()f placing ýill ()f the fucl in the wing 

for a similar missl()ii requirement. I 1()wc%'cr, duc r() thc miturc ()f thc fucl consunipt . 1()Il (d - 

let enpries, tills was, no longer the case for tills aircraft. 

Table 10.5 lists the resultsfor afew of the concepts that werefinind rip 
satisfy the mission requirementsfor the less conventional configuration 

consideredfi)r the casewueýl,. 

111213 

Wing Loading 49.2 54.4 62.2 lbs/ft2 
Endurance 24.0 24.1 24.3 hrs 
Wt. 33846 26829 22000 lbs 
S 687 493 354 ft 2 

Trimmed Power Req'd 962 720 558 HP 
L/D 24.2 26.8 29.5 
W', / wt. 0.065 0.082 0.100 
Wfuel / Wto 0.670 0.632 0.594 
AR 25 27 28 
b 131 115 100 ft 
VstalVto 102 107 115 knots 

, 
VstalUldq 64.3 1 _70.4 

78.2 knots 

It was found from a comparative study of tot, il wing bending nionicia tli, it flic 

wing weight saiin ,g 
factor h,, id to be increased substantially to 0.75 thcreby mcrc, isimý the 

overall wing weight for the two fuselage configunitl(m. This effcct dranutic, illy ruducud 
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the primary advantage of this configuration (-as seen prex-louslý' in the Restilts) when 

compared to the conventional single fuselage configuration. The performance of the two 

fuselage aircraft can be seen in Table 10.5. 

Once again, three configurations are fisted in the table, all capable of satis-ýying identical 

mission requirements. Configurations 1 and 3 are considered as the limiting cases for what 

could reasonably be considered in terms of the additional requirements discussed, and 

Case 2 is seen as the best compromise. 

When compared to the single fuselage aircraft, it is first noted that the wing 

loading that satisfies the mission reqwrements for a giVen takeoff weight has been slightly 

reduced for the two fuselage aircraft. The wing loading reduction is in the range of 3.6 to 

4.0% for the three cases. It is also noted that the aspect ratio on Case I was reduced to 25 

when compared to Case A in the single fuselage table. This was done to keep the s-emi- 

span below the reqwred 65 feet, and resulted directly from the reduction in optimum wing 
loading experienced by the two fuselage aircraft. 

The two fuselage aircraft had comparatiVely lower aerodynamic efficiency (from 9 

to 1311/0 lower) for the same takeoff weight. This was due in part to the fact that a lower 

wing loading satisfied the mission requirements, but due also in part to the additional 

parasite drag of the second fuselage. The weight saving in overal-I empty weight of the two 

fuselage aircraft over the single fuselage aircraft ranged from 3.4 to 5.3%. 

The end result was an increase in power required for the two fuselage aircraft from 

2.7 to 4.8%. This belies the nature of the two fuselage aircraft. It is expected that there 

will be a weight saving due to the bending moment relief of the multiple fuselages, 

however the penalty is expected in the aerodynamics. 

Identical arguments can be used for the exclusion Cases I and 3 from 

consideration as were used to exclude cases A and C. Thus, the comparison is reduced to 

that of Case 2 and Case B. It is expected that since the performance of these two 

configurations was so sin-ular that a decision between the two would likely need to based 

on some other requirement or consideration. 
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Chapter XI 

Long is the Road 

from Conception to Completion 

Moli&re 

11. Conclusions and Recommendations 

11. A Conclusions 

An extrenicly powcrftil and robust graplilcally ititcractive computmional 

conceptual design synthesis methodology has been created. This mcthOd()Iogy was used 

to perform a detailed study on the driving design parametcrs bchind flic lit-L-glict 

endurance equation for a large number of conventional and U11COM-ClItIO11: 11 

configurations. 

In the process of creating and executing the methodology: 

*A new relation was developed for UAV length prediction 

*A Low Speed HALF airfoil figure of merit was proposed 

*A large number of horizontal and vertical tall volume coefficients resulted from 

exccutions of the methodology and were presented for use with conventional and 

unconventional configurations 

+A simplified relation for the prediction of single fuselage Low Speed i 1AI, F, I'AV 

empty weight was proposed 

*A validation on the macroscopic results was pct-formcd against as niany aircraft as was 

practical. 

A detailed study was performed for the conventional configuration on Breguct equatioll 

cnclurance sensitivity to: 
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+ Aspect Ratio 

* Taper Ratio 

* Airfoil Selection 

* Cruise Uft Coefficient 

* Cruise Altitude 

* Various Single and Twin Engine tractor and pusher configurations and Twin Engine 

Push-PuH configuration. 

The greatest sensitivity was to altitude, then aspect ratio, taper ratio, and twin engine 

variations. The push pull twin engine conventional aircraft showed the best endurance 

performance of the twin engine aircraft as a result of the elimination of the wing mounted 

naceUcs. 

A general study was performed on overaU aircraft endurance for the foUowing 

configurations in both single engine tractor and pusher engine configuration: 

* Canard 

* Twin Boom 

* Two Fuselage Conventional and Canard 

* Three Fuselage Conventional and Canard 

+ Single Fuselage Tandem Wing, 55% Aft Wing Area/45% Fore Wing Area 

* Single Fuselage Tandem Wing, 75% Aft Wing Arca/25% Fore Wing Area 

* Two Fuselage Tandem Wing 

* Three Fuselage Tandem Wing 

+ Flying Wing. 

The tandem wing aircraft had by far the most superior endurance performance 

throughout the range of configurations, takeoff weights and wing loadings tested. Ile 

flying wing configuration also had excellent endurance performance, however a trim 

analysis was not performed for the flying wing. Thus elevator/aileron deflections were 

not determined, and the drag necessary to trim the flying wing was not taken into account 

as was done for all other configurations considered. The remainder of the single engine 

configurations experienced minor changes in endurance as a result'of differences in 

configuration. Ile endurance for each configuration for a given design wing loading and 
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takeoff weight can be maximized by giving due attention to balancing the aircraft 

properly. 'Me optimum wing loading in terms of endurance for a given takeoff weight for 

each configuration was detern-lined. The details for the behavior of the individual 

configurations were provided in the Results and Discussion chapter (Chapter Xý. 

ll. B Recommendations 

Due to the litnited time to petform the reseatch, and the limited space within this 

thesis in which to present the results, a large number of areas were identified for further 

research. 

11. B. 1 Further UdUzatibn of the Methodology 

Following from the above statement, there simply was insufficient time to take 

advantage of the fiffl ability of the methodology to generate detailed results on Low Speed 

HALE UAV's. Furthermore, there was inadequate time and space to evaluate all of the 

results already obtained. Several areas have been identified for relatively straightforward 

study based on results already generated. Other areas have been identified for further study 

utilizing aspects of the methodology as yet underutilized. 

11. B. La Twin Engine Alternative Configurations 

The results presented in this thesis only included the various twin engine 

configurations for the conventional aircraft. Ile Theseus elected to use two engines at a 
takeoff weight of less than 10,000 pounds. Thus the region from roughly 10,000 to 20,000 

pounds needs to be studied to determine the takeoff weight, wing loading, and 

configuration that provides the optimum twin engine endurance. There ate therefore 30 

possible combinations of engine and aircraft configuration that remain to be investigated 

when aircraft configuration, tractor, pusher, and push-pull engine configurations are 

considered. 
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1I. B. 1. b Tandem Wing Study 

Since the tandem wing configuration showed the most promising overall endurance 

results, it follows that this configuration should be the topic of a more detailed study. 

1here were some unexpected results in terms of the division of area between lifting 

surfaces for both the aerodynamics and weight. Each of these phenomena could be 

isolated by a parametric analysis using the present methodology. Questions still remain as 

to the optimal division of area, lift, lift coefficient, airfoil type, longitudinal placement, and 

aspect ratio for the fore and aft wings. Each of these parameters can easily be studied 

using the present methodology. 
As an aside, a brief study was performed on the single fuselage tandem wing 

configuration. The 55/45 aircraft forward wing aspect ratio was increased from 22 to 30. 

The resulting aerodynamic efficiency was the highest obtained overall. However, this 

effect was moderated by a corresponding decrease in structural efficiency. Tbus the 

overall endurance was greater than the original 55/45 tandem (AR 22 fore wing), but still 
less than the 75/25 tandem aircraft (AR 22 fore wing) originally studied. This implies that 

there exists an optimum compromise between structural and aerodynamic effects that 

must be found in order to take the greatest advantage of the tandem wing configuration. 

11. B. Lc Detailed Drag Breakdown, Weight Breakdown, or Trim 
Penafty Studies 

A large data set already exists subsequent to the studies performed for this thesis. 

Ile results for each execution performed for research in this thesis were output by the 

methodology as tab delimited text files. They were saved in a long form (tabulated), listing 

the results for all of the calculations performed for lift and drag, weight, center of gravity, 

static margin, and trim, in addition to listing all of the input conditions. 'Mus, it would not 
be a difficult matter to study the component breakdown of the lift, drag, weight, or the 

trim penalties as a function of variations in aircraft takeoff weight or wing loading. 

Moreover, once these results have been studied, the methodology can be used to further 

isolate or identify interesting trends as was done for the tandem wing endurance study. 
Finally, the methodology could be used as an excellent testbed for Low Speed 

HALE UAV airfoil studies. Studies could be performed on the implications on overall 

aircraft endurance of the selection of one airfoil over another for a given configuration. 
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ll. B. l. d OptimalEngine 

As mentioned in the beginning of the results, the selection of the engine can easily 

influence the outcome of the optimal aircraft endurance design point and endurance curve 

behavior. If engine data were to become available in the public domain, it would be 

interesting to see the effects of variation in fuel consumption added into the results for 

overall endurance for each of the configurations. This would be especially true if data 

were available for more than one engine and a comparative study could be performed. 

11. ALc Link Program to an Op timizer 

It would be interesting to view the results of coupling the analysis modules of this 

methodology to an existing optimizer. Given the object oriented approa . ch taken in the 

programming of the methodology, this would not be, overly difficult. 

ll. B. 2 Gener, ýd Recommendations forFurther Study 

11-B-2-a Lightweight High Aspect Ratio Wing Weight Estimation 

The area within this methodology consideted the least adequate is the wing weight 

estimation. The inclusion of alternative configurations requires a more robust wing weight 

estimation technique that can take into account wing bending moment relief due to 

multiple booms or fuselages. It is obligatory that the next iteration of this methodology 

include some form of simplified composite wing buildup method. However, limited time 

prevented the derivation of such a technique for the present iteration. The difficulty is in 

creating a method that is robust enough to apply to all of the alternative (multiple fuselage 

and boom) configurations considered, but simple enough to run essentially instantaneously 

on a personal computer. The execution of the vortex lattice method means that a detailed 

spanwise lift force and bending moment distribution is already available. This should 

simplify the future implementation of a more detailed wing weight estimation technique 

even further. 
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11. B. 2. b SimpEfied Viscous Drag Model 

It was mentioned in the vortex lattice method section that a computational model 
for viscous drag could be included, but at too high a computational cost. The viscous drag 

of the main wing is a very significant portion of the overall aircraft drag for the Low Speed 

HALE UAV. Although skin friction coefficient methods are reasonably accurate for 

Conceptual level design, it should be possible to arrive at a predicted viscous drag having 

greater accuracy without the cost of the detailed vortex lattice model (or more 

computationally intensive Computational Fluid Dynamics results). 

11. B. 2cRYgh Altitude Engine Model 

The engine weight and performance estimates used for the present methodology 

need to be expanded for the methodology to better predict absolute overall endurance. 
Very little information has been published regarding the weight, lift and drag penalties due 

to the addition of superchargers, multiple turbochargers, intercoolers and elaborate cooling 

systems. In addition, a study performed on one of the existing internal combustion 

reciprocating engines used for Low Speed HALE UAV's and the variation of power with 

altitude would be of interest. 

ll. B. 2dLow SpeedHigh Aspe ct Ratio Wing Wind TunnelData 

Ilere is very little published aerodynarnic data for extremely high aspect ratio wings. 
Ibete is data available to some extent on low speed airfoils, however there is little data on 
low Reynolds number, high lift, high aspect ratio wings. The three-dimensional lift, 

induced drag, parasite drag, and wing downwash data need to be expanded for wings in 

this flow regime. 11iis expansion of the database needs to be done in order to validate the 

results of the methodology for wing design more completely. Additionally, the low 

Reynolds number high lift coefficient wing profile database could easily benefit from 

advancements in computational and experimental technology. 

Chapter XI 312 Conclusions and Recommendations 
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11. C Concluding Remarks 

It is with much regret that a greater portion of the "Recommendations" section does 

not appear in the results chapter of this thesis. A great deal of time was spent attempting 

to insure that the output of the methodology was valid, reasonable, detailed, and applicable 

to the problem for which it was designed to solve. It is unfortunate that the most 

productive phase in the creation of a thesis is the shortest phase. 

Ilie primary objective in the creation' of this methodology was to uncover the 

underlying aerodynamic and weight based driving parameters with direct reference to the 

overall aircraft endurance. Ibis objective included the desire to consider configurations 

generally regarded as not practical, judging only from the standpoint of the number of 

aircraft with these configurations that have been built. It is in a sense ironic that one of 

these less practical configurations produced the highest overall aircraft endurance. The 

scientific process must always continue without bias. 

Chapter XI 313 Conclusions and Recommendations 
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App en dix A 

Airfoil Selection and FigUre of Merit 

'Me selection of the, appropriate airfoil for the Low Speed HALE UAV would 

ideally not have, to be performed at all. An aircraft with such a specific mission and. 

operating range of, Reynolds number and extremely high lift coefficient should have an 

airfoil specially designed for the task. Unfortunately given the limitations in time (and 

resources), the custom airfoil design was. not performed and a selection of the most 

appropriate airfoil from existing airfoils and airfoil data was undertaken. The discussion 

wilt begin with the introduction of an existing Low Speed HALE UAV Figure of Merit 

and will continue with a proposed Figure of Merit based on other factors more relevant to 

the present design. The discussion will conclude with the decision of wl-dch airfoils to use 

with the present methodology for the generation of the results and will include justification 

for those decisions. 

1. Airfoil Figures of Merit 

Ll Maughmer and Somers 

As mentioned in the literature Review chapter, Maughmer and Somers" wrote a 

paper specifically to address the problem of airfoil selection for High Altitude Long 

Endurance aircraft. They developed a Figure of Merit that was based on the assumption 

of a parabolic drag curve, a span efficiency factor, an operating point lift (and 

corresponding drag) coefficient, the difference between the operating point drag 

coefficient and the minimum drag of the airfoil, the maximum lift coefficient, and the wing 
area. 

Appendix A A-1 Airfoil Selection and Figure of Merit 
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C 
Y2 

They focused on the point that the airfoil with the best endurance factor 
CD was 

not necessarily the best airfoil to perform the mission since it did not take into account the 

corresponding wing area necessary, and thus neglected the wetted area parasite drag effects 

of selecting an airfoil. In addition, they mentioned the coupling between the wing area and 

the aircraft weight via the definition of lift coefficient equation. Ibcy stated that the', 

endurance factor in no way restricts the value of lift coefficient used, and simply 

optimizing endurance factor will sacrifice the ability of the aircraft to perform at the higher 

lift coefficients expected for Low Speed HALE UAVs. ' Their subsequent development 

focused on incorporating a maximum lift coefficient term into their Figure of Merit and' 

the corresponding optimum wing area. Finally, the lirnit they imposed for wing area was' 
based on a takeoff restriction, and not one of ability to fly at altitude. 

While their approach to trading off wing area and endurance terms while finding - 

an optimum airfoil is a reasonable approach, it has several failings when being considered, 
for application to a Conceptual Design Sizing methodology. Their method requires the 

assumption of a parabolic drag estimation, but also requires precise spcdfication of the 

span of the wing and other aerodynamic terms that will not be known before starting the 

methodology. The assumption that takeoff wing area will be the limiting factor is a fatal 

flaw in terms of the design of most Low Speed HALE aircraft, and severely limits the 

applicability of this method. It would be possible to couple an airfoil Figure of Merit to 

the conceptual design methodology, however, as mentioned before, it is thought that any 
implementation of such an aircraft would have a specially designed airfoil. 

Ilus, it is believed that a suitable Figure of Merit must be introduced to justify the 

selection of one existing airfoil over another, in broader terms. This means that knowing 

the general requirements for a Low Speed HALE UAV airfoil, a methodical approach to 

the selection of existing airfoils must be developed. A method was desired that will select 

the most versatile airfoil based on a range of possible design requirements and not just the 

aerodynamic optin-dzation of a single pre-defined point. This method would need to select 

thebest airfoil for Conceptual Design purposes, allowing for performance over a range of 

possible operating points. The resulting proposed Figure of Merit is presented in the next 

section. 

Appendix A A. 2 Airfoil Selection and Figure of Merit --I 
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L2 Proposed Figure ofMerit 

The proposed Airfoil Figure of Merit includes several terms. Each term will be 

explained and justified individually. It appears as follows : 

rtN( (0.8CL 
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Before discussion of the individual terms begins, a graphical explanation of the terms can 
be seen in Figure A-1. 
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Figure A. 1 describes the origin of the terms used in the proposed Figure of Merit 

The first term results from the difference: 
AcLnurkLamBuo ý- CLmax. 

LamBuc - 
CLminLamBuc 

CLrain. 
LamBuc as seen from the figure is the lift coefficient that corresponds to the absolute 

minimum drag coefficient. CLrnaxLamBuc 
results from adding 0.002 to the absolute 

minimum drag, and reading the corresponding lift coefficient. 
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This term attempts to quantify the size of the Iaminar drag bucket for a given 

airfoil. The size of the laminar drag bucket is a sign of the versatility of a given airfoil. It 

demonstrates an ability to operate efficiently across a range of potential lift coefficients. 
Ile larger the bucket, the higher the resulting Figure of Merit. 

The difficulty in characterizing this term was the definition of where a larrdnar drag 

bucket ends. As seen in Figure A. 1 for the Wortmann FX 63-137 for the Reynolds 

numbers shown, it is not simple to quantify. After experimenting with a percentage of the 

ininimurn drag, a fixed absolute increase in drag of 0.002 was chosen as giving more 

consistent results. In addition it represents an equal basis for comparison for all airfoils. It 

is recognized that if another value were chosen, another airfoil could result as being more 
beneficial, depending on the drag variation with lift, as can be seen by the cutoff for the 
FX 63-137. Unfortunately, a ceiling to the laminar drag bucket had to be selected, and 

after experimentation, this value yielded the results that corresponded best with a visual 
inspection of the various airfoil lift/drag curves tested. 

Since the lower range of lift coefficients is of little interest for the Low Speed 

HALE UAV, the minimum value for the laminar drag bucket was selected as the absolute 

minimum drag point for the given airfoil. So even though a profile may have a large 

portion of its laminar drag bucket below the minimum drag point, this region was thought 

unimportant to the Low Speed HALE UAV cruise. 

The next term, [I - 
(0.8CLnax 

- CLnaMamBujjj is an attempt to quantify the distance 

between the maximum practical operating lift coefficient, UC.., and the defined upper 

limit of the laminar drag bucket. If the operating lift coefficient is within the laminar drag 

bucket, the resulting value of the term will be greater than one, thus increasing the Figure 

of Merit. If the operating lift coefficient is outside of the laminar drag bucket, this is 

considered a penalty and the distance (in lift coefficient terms) is subtracted from one, 
thereby reducing the Figure of Merit. The value of 80% of the maximum lift coefficient 

was chosen as a much more practical operating limitation than the actual maximum lift 

coefficient. This was done since it was thought highly unlikely given the normally high 

drag at and around the maximum lift coefficient that any aircraft would select CL.,,. as the 

cruise CL. The value of 80 % was selected as a reasonable compromise, and allows for a 

wider range of safe operating conditions. 
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0.005 ) 
The term 

( 

Cdjygn, 
LamBuc 

1ý 

arises from a comparison to what was thought to be an 

unrealistically low minimum drag coefficient for a profile for the Reynolds numbers being 

considered, 0.005.1he closer the airfoil being compared comes to achieving this 

minimum drag coefficient, the closer this term is to one approaching from less than one. 

It is noted that none of these terms was given greater weighting than any other term. 

1herc was no justification for weighting one term more than another. The variation in 

range of each of the terms was kept as close as possible to try and ensure that none of the 

terms wasweighted any more than any of the other terms in the overall Figure of Merit. 

The next terin was included solely for structural reasons, Ibc diickness 
0.15 

to chord ratio of 15 percent was chosen as a minimum for structural reasons (and normally 

extremely high aspect ratios). If the selected airfoil has less than a 15 percent ratio it is 

considered disadvantageous and the structural term is less than one as a result. If the 

section has a thickness to chord ratio over 15 percent it is considered structurally 

advantageous and increases the overaU Figure of Merit. 

The next term was the most difficult to define, 

(&CIniinRe).,, 

g The 
LýCdniin, Re 

denominator, as can be visualized in ýigure A. 1, results from the difference between the 

absolute minimum drag coefficient at the Reynolds number selected for evaluation and the 

next closest Reynolds number drag curve absolute minimum drag coefficient. The 

difficulty arises in deciding how to create an equal basis for comparison between two wing 

profiles which were tested at completely different Reynolds numbers. 

For example, imagine two airfoils are being compared. For one airfoil, there is 

data available for Reynolds numbers of 700,000 and 1 million, for the other airfoil there is 

data available for 300,000 and 500,000. How can the '6ýCdnýn, Reof the two airfoils be 

compared? In its final form, the term relies on an average obtained by evaluating several 

airfoils and calculating an average for what the difference across that given range of 

Reynolds numbers is, and how that airfoil compares with the other airfoils. Taking the 

previous example, the airfoil with Reynolds numbers of 700,000 and 1 million is compared 

(in the numerator of the Figure of Merit term) to an average obtained from 8 or more 

other high lift airfoils tested at Reynolds numbers of 700,000 and 1 million. 

Appendix A A. 5 Airfoil Selection and Figure of Merit 



Design Methodologyfor Low Speed HALE UAV's 

In effect, the change in absolute nunitnuin drag coefficient from one Reynolds 

number to another is normalized by the average difference of a number of other airfoils 

across the same range of Reynolds number vanation. 

The origin of the term was intended to account for the ability of the airfoil to 

perform well across a range of Reynolds numbers, and not Just for the one being 

considered. Obviously, in conceptual aircraft design and preliminary sizing, this is a 

quantity that must be considered, since the very value of Reynolds number is a direct 

function of the average chord of the surface being considered for a given attitude. In 

addition, this term measures the ability for a fixed configuration to operate efficiently at 

different altitudes. 
The final term to be introduced is the so-called Endurance parameter, 

(0.8CLawx 02 

C'i (& 0.8C, in this case normalized by the value 150. Once again, the more practical 150 

value of 80% of the maximum lift coefficient is used, and the associated drag coefficient is 

also used in the calculation. The value of 150 was arrived at through trial and error, in an 

attempt to maintain equal weighting to all of the terms. An endurance parameter over 150 

wfll result in an increase in the Figure of Merit, and an endurance parameter less than 150 

will result in a decrease in the overall Figure of Merit. 

The proposed Figure of Merit is thought to be much more appropriate to the 

selection of airfods for the conceptual design phase, and much more appropriate for the 

present methodology than that proposed by Maughtner and Somers. It embodies the 

endurance parameter and maximum lift coefficient considerations suggested by Maughmer 

and Somers. The proposed Figure of Merit adds to the feature of comparison based on 

endurance parameter by including a more practical operating limit of 80"'o of maximum lift 

coefficient in the calculation of the endurance term, along with the corresponding drag 

coefficient at 8W'o maximum lift coefficient. In addition, it includes consideration of the 

size of the overall laminar drag bucket and the proximity of the lanuinar drag bucket to the 

practical maximum lift coefficient. It takes into account the fact that tile aircraft will not 

operate at the maximum lift coefficient but at some value below it. The proposed Figure 

of Merit considers how well the airfod being compared performs with changes in Rcynolds 

number, and takes into consideration the absolute minimum drag coefficient achicvable by 
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the iven profile. Finally, it considers the structural implications of the sections being 91 

compared. 
Thus, it is thought that the proposed Figure of Nlent is Much more appropriate for 

use in selecting an airfoll for early conceptual and preliminary sizing phases of aircraft 
design. In the next section, candidate airfoils will he compared, term by term, and with the 

overall proposed Figure of Merit in an attempt to show the component characteris tics ()f 

the Figure of Ment. 

2. Airfoil Selection Using the Proposed Figure of Merit 

In thc f, 11ý \\ 1111", C( )11 l:. llldlLi. lt(' mrfolls f( r the ], ()\k, Speed I I., \i +', u,, \\, t( 

be used in the generation of results for the present methodology, a nurnber of Low Speed 

HALF specific airfoils will be compared. Spectfically, the AlIF, \ 16, N1, F(l)-1015, and 

PS-02 (, iirfoil used for the Pet-seus). In addition, several other well-known airfoils will I)c 

compared uid considered in order to provide ýi better basis for comparison for each ot- the 

individual terms in the Fipire ()f Merit. 'llie last four airfolls in each riph are specificýtlly 
designed for flying wing aircraft, \vhich should explal the'r rclativelý poor cornpanitive 

performýincc- 
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Figure A. 2 shows the comparative resultsfor the Figure of Merit Lanlinar Drug 
Bucker size lernifor the different airfoils considered. 
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Thc rcsults for the first term cýin he seen graphically in Figure A. 2. From the figure it 

can be seen that the iirfolls with the largest laminar drag buckets based on the definition 

used for the Figure of Merit are the NI, F(1)-1015, the Gottingen 797, the Eppler 397 and 

398, then the PS02. The APF\ 16, even though it was designed for Low Speed I ligh 

Altitude flight does not have as wide a laminar drag bucket as several of the Eppler glider 

; 6rfo)i1s. It is surpris . ing that thc F\ 63-137 is not amongst the top 3 or 4, but this is most 

likely attributibIc to the effect ()f the Cutoff value of absolute minimum drag plus 0.002. 

As would be expected, thc Flying NVIng airfoils are amongst the worst performers, 

. ilthough n()t the worst. 
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Figure A. 3 shows the comparative resuftsfor the absolute minintum drag term 
of the Figure of Meriffor the airfoils considered 

I'lic results ()f tllC 1bSolUtC rninimum drag term can be seen in Figure A. 3. It c,, in 

pi'llilly hc scell that lllýllly ()f the Fppler glider all-folls have much better minimum drag 

VAILICS th. in the rmi*j()nty ()f ilrfolls designed specifically for Low Speed I IALE's. The main 

c\pLlt); ltl()n for tills is th'it thc minimum drag value has normýilly been sacrificed for better 

Illp'll 111-t C()Cfi-lclcllt perf - ()rinaticc, as most of the best perf6ri-ning alrfolls in the figure have 

much til; txlnlLltll lift Coefficients as will be seen in the comparison of one of the 

suhscquciit tcnns. 
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The reason for die poor minimum drag performance of the IIS 02 is th, it it li, is iii 

integral radiator in the lower surface trailing edge region which significantly r, 11scs tlic 

minimum drag of the profile. 'fhe reasonably low minimum drag values (high mitumum 

drag FONI term values) for the flying wing profiles is due to the fact that thc results for 

these profiles were given at much higher Reynolds numhers. 'llils will be corrected for it, 

the later Reynolds number term. 
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Figure A. 4 shows the comparative resultsfor the laminar drag bucketproxifflif 
* to the practical mwdmum lift coefficient termfor the airfoils considered. 
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Figure A. 5 shows the comparative resultsfi)r the structural terin oj the Figure 
Meriffipr the airfoils considered 
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The ncxt tcrni to I)c considered can be seen in Figure AA This term is the measure 

()f thc proximity of the laminar drag bucket to the practical maximum lift coefficient. The 

APFA16 and PS02 perform equally as well in this terrn, demonstrating that they were 

designed to ()perate close to the maximum lift coefficient. This term truly 

highlights the airfoils that were specifically designed to consistently operate near the 

maximurn lift coefficient, with the N1, F(l)-1015 and Fppler glider airfoils all performing 

quite well at hielicr lift coefficients as would be expected. 
Thc next term to bc considered is the structural term (Figure A. 5), the thickness to 

ch(, rd rýitto. Scvcral mrfoils thm havc prcviously shown no real benefit stand out in the 

evAtimion 4 this tcrin. Thc Fppler 584 and NACA airfoils both have thicker sections. 
Thc I IALF airfolls ill maintain relatively thick sections, with the APEX 16, NIT(l)-1015, 

mid PS 02 airf(jils all vcry closc to 15 percent thickness to chord ratio. 
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Figure A. 6 shows the comparative resultsforRuynolds number dragsensitivily 
terin of-the Figure of Heritfor the airfoils considered 

'I'll(, nuxt turin t( )I )c c( )nsidered is the Reynolds number sensitIN'Ity term seen in 
l'ipirc A-6. 'I'll(- I-'I)I)lcr A31 ýiiid 432 1)()tll perform vcry well showing very little variation 

ill (Irlig ; Icl-()S. ', CIIýIligcs III Reynolds number, along with the FX 63-137 and the NACA 

; III-t-oll. 'I'lle most lv)týlhlc pool- performer was the APEX 16 which demonstrated very bad 

Rcynolds numher sensitivity for liýivlng been designed for the Low Speed I IALF flow 

reginic. 
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The last term to be evaluated before the composite Figure of Merit is tile ciidur, ince 

term which can be seen in Figure A-7. This term was calculated using the 80"., \, alue of 

maximum lift coefficient and the drag coefficient at 80% Ma-XIMUm lift coefficient. The 

FX 63-137 truly excels in the endurance term. The next nearest term is the NLF(1)- 101 ý, 

and there is almost a 20 percent difference between the two. Again, rather Surprising Is the 

poor performance of the APEX 16, an -airfoil supposedly designed for I 1ALF conditions. 

The PS02 shows moderate performance, however it is again noted that it has in intct) gnil 
radiator. Not surprisingly, the Eppler glider airfoils perform quite well for this term, which 

is often called the Sink Rate Parameter when referring to sailplancs. 
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Figitire A. 7 sho)vs the coniparafive resultsfor the endurance term of the Figure of 
Meritfor the airfoils considered 

Finally, the composite Figure of Merit results are presented in 1; igurc A. 8. Altli, iii,. h it 
did not perform exceptionally well In many of tile terms, in the conil)()sitc rcstilts III, 

NIT'(1)-1015 is the clear choice based upon the Figure of Merit results. Thu next 

airfoil is the F\ 63-137 which in the past has been the default airfoil ()f cll()ic(- t-()t- 

Speed I IAIAI, UAV's. The PS 02 outperformed the AITA 16 despite the fact th. 1t the I)S 

02 has an integral radiator. This is nither difficult to, understand. The (, nlý' 

explanation is that the APIA 16 airfoil was not actuýilly designed for thu Speed 

I 1ALF1 regime, although it was claimed to be a Low Speed II \H it \x*, I,.,, 

consistently outperformed by airfolls not even specifically designed f(, r thc 1,,, \\ ý1)(. (. d 

I IALE regime. 
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l, '()r thc I)Lirl), )s(, s (4 this thesis, the ; urfoils that will be considered are the NI, F(l)- 

1015, the FX 63-137, the F1431 and the PS 02 for validation purposes. The Eppler 344 

flying wing airfoll will be used f(, r application to the flying wing configuration. 

Finally, no mcntif)n has been made previously regarding the Cranficid results for the 

W()rtmann FN 63-137. It is believed that since these data were never published they were 

not c(mstdcred acceptable for one reason ()r another. 'Flicy do not agree well with an), of 

the ()tllcr cited results for this airfoll and therefore the results from the Cranfield reference 

values in the Figure of Merit for the FN 63-137 are ignored. 

Figure of Merit Comparison 
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Fi gu re A. 8 shoisw thefinal resullsfor the composite Figure qf Merit. 
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App en dix B 

Validation Input Data 

AIRCRAFT 
Condor I Perseus BI Theseus I Raptor 

Cruise Altitude 66980 60000 82000 60000 ft 
Max. Altitude 70000 65000 85000 65000 ft 
Aspect Ratio 36.6 26.35 28.25 23.7 
Oswald Eff. (F-) 0.9 0.85 0.85 0.85 
Cdo 0.02414 0.0161 0.0161 0.0161 
Cum 1.6 1.6 1.6 1.6 
Prop Efficiency (71p) 0.85 0.85 0.85 0.85 
Takeoff Prop Eff. 0.75 0.75 0.75 0.75 
Min. Climb Rate 100 100 100 100 ft/min 
Cruise Velocity 195 125 240 140 knots 
Stall Speed 60 40 60 40 knots 
Takeoff Distance 5000 5000 5000 5000 feet 
Maximum Load 2.25 3.6 3.5 3.5 9's 
Takeoff Weight 18696 1408.8 7717.28 1764.5 lbs 
Payload Weight 504.79 175.91 750.12 74.99 lbs 
Wing Loading 16.4 7.25979 11.12 9.6 lbs/ft2 
PL Wght Fraction 0.027 0.1249 0.0972 0.0425 
Fuel Wght Frac. 0.642 0.222 0.444 0.478 
Structure Frac. 0.224 0.4757 0.394 0.3661 
Engine Wght Frac. 0.107 0.1774 0.0648 0.1134 
Engine SFC 0.4 0.4 0.4 0.4 lbs/HP/hr 
Wing Area 1140 194 694 183.8 h2 

Span 204.265 71.4976 140.02 66.0005 ft 
Fuselage Length 66 19.2402 40 22 ft 

, 
Mom Arm Length 0.55 0.35 0.5 0.75 %Lfuse 
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Altus I Predator I Heron I Proteus I 

ruise Altitude 65000 20000 25000 60000 60000 ft 
ax. Altitude 70000 25000 32000 65000 65000 ft 

spect Ratio 23.3 19.25 21.2 20.1 26 
swald Eff. (v) 0.85 0.85 0.85 0.85 0.85 
do 0.0161 0.0161 0.0161 0.0161 0.045 
Lmax 1.6 1.6 1.6 1.6 1.6 

rop Eff Iclency (il,, ) 0.85 0.85 0.85 0.85 0.85 
akeoff Prop Eff. 075 0.75 0.75 0.75 0.75 
In. Climb Rate 100 100 100 100 100 ft/mIn 
ruise Velocity 125 80 110 190 343 knots 
tall Speed 40 40 40 40 100 knots 
akeoff Distance 5000 5000 5000 5000 5000 feet 
aximum Load 3.5 3.5 3.5 3.5 3.5 g's 
akeoff Weight 2148.4 1671.95 2422.9 12499.9 25605 lbs 
ayload Weight 329.78 250.79 550 1999.99 1800 lbs 
Ing Loading 16.4 13.56 17.29 26.0849 49.0 Ibs/ft2 

L Wght Fraction 0.1535 0.15 0.227 0.16 0.0703 
uel Wght Frac. 0.2791 0.361 0.358 0.368 0.6 
tructure Frac. 0.4744 0.369 0.312 0.384 0.253 
ngine Wght Frac. 0.093 0.12 0.103 0.088 0.1041 
ngine SFC 0.4 0.4 0.4 1.1608 0.615 lbs/lbs/hr Ibs1HP/hr 
Ing Area 131 123.3 140.1 479 522.5 fe 

pan 55.2476 48.7188 54.4988 77.8981 116.555 
uselage Length 23.42 26 13 56 44.4 
om Arm Length 

, 0.372727 0.280385 I 
0.576923 

I , 
0.50208 0.4 

I 
%Lfuse II 
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