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ABSTRACT 

Solid propellant is the highly energetic fuel burnt in the combustion chamber 
of ballistic weapons. It is manufactured, for this purpose, in either granular 
or stick form. Internal ballistics describes the behavior within the combustion 
chamber throughout the ballistic cycle upto projectile exit from the muzzle of 
the gun barrel. Over the last twenty years this has been achieved by modelling 
the process using two-phase flow equations. 

The solid granules or sticks constitute the first phase, which can be assumed 
to be incompressible over typical pressure ranges within the chamber. The 
gas-phase is composed of both the original ambient gas contained around the 
propellant and additional gas produced by the propellant gasifying on heating. 
Equations can be derived that describe the conservation of mass, momentum 
and energy in terms of average flow variables. The equations are a highly 
non-linear system of partial-differential- equations. High-speed flow features 
are observed in internal ballistics and ordinary fini te- difference methods are 
unsuitable numerical methods due to inaccurate prediction of discontinuous 
flow features. Modern shock-capturing methods are employed, which solve the 
system of equations in conservation form, with the ability to capture shocks 
and contact discontinuities. 

However, although the numerical solutions compare well with experiment 
over the bulk of the combustion chamber, the ignition models used in internal 
ballistics are unreliable. These are based on either gas or solid-surface temper- 
ature achieving some empirically measured 'ignition temperature' after which 
the propellant burns according to an empirical pressure dependent burning 
law. Observations indicate that this is not an adequate representation of igni- 
tion. Time differences between first solid gasification and ignition imply two 
distinct processes occurring. ]Further, ignition occurring in gas-only regions 
indicates that ignition is controlled by a gas-phase reaction. 

This thesis develops simple ideas to describe possible mechanisms for these 
physical observations. The aim is to provide an improved model of the igni- 
tion of solid propellant. A two stage reaction process is described involving 
endothermic gasification of the solid, to produce a source of reactant gas, fol- 
lowed by a very exothermic gas-phase ignition reaction. 

Firstly the gas-phase ignition is considered. A very simple reaction is sug- 
gested which is assumed to control the combustion of reactant gas, produced 
by solid gasification. Ignition is, by definition, the initiation of this exothermic 
reaction. Chemical kinetics are included in the gas-phase flow equations to 
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explore the evolution of the reactant gas that is subject to changes in temper- 
ature and pressure. By assuming spatial uniformity, analytical solutions of the 
problem are deduced. The physical interpretation of the solution is discussed, 
in particular, the relationship between temperature, reactant concentration 
and ignition is explored. 

Numerical methods are required to solve the one-dimensional flow equa- 
tions. Development of suitable CFD methods provides a method of solution. 
Finite-volume schemes, based on the original work by Godunov, are used to 
solve the conservation form of the equations. A simple test problem is consid- 
ered whereby reactant gas is injected into a cylindrical combustion chamber. 
By examining the resulting flow histories, valuable information is gathered 
about the complicated coupling of chemistry and flow. 

Chemistry is included into a system of two-phase flow equations. By us- 
ing standard averaging methods along with an equation for gas-phase species, 
equations are derived that describe the rate of change of average flo%v vari- 
ables for both gas and particle phases. Numerical schemes are developed and 
some of the difficulties involved in two-phase flow systems, that are not an 
issue in single-phase flow, are presented. An internal ballistics application is 
considered as a test case and the solution discussed. 

The other important reaction involved in the combustion cycle, solid gasi- 
fication, is explored. The model is based on detailed description of interphase 
mass and energy transfer at the solid-gas interface. This involves the solu- 
tion of the heat conduction equation with a moving boundary that divides the 
solid and gas regions. Similar numerical schemes are constructed to solve the 
equations. Finally, this model is coupled with the equations of gas-phase reac- 
tion. This describes the complete cycle whereby increases in gas temperature 
cause the solid to increase in temperature and gasify. Subsequent gas-phase 
combustion of the reactant gases produces heat-transfer between the solid and 
gas and continues to accelerate gasification. Eventually this results in self- 
sustained combustion of the solid propellant. 
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0.1 Nomenclature 

I dimensional quantity 
t time(sec) 
X axial direction along the combustion chamber 
Y direction normal to solid surface 

C porosi y 
FP region occupied by solid 
P gas temperature (kg/m 3 sec) 
PP solid density(k-g/m 3 Sec) 
U gas velocity(m/sec) 
, aP solid particle velocity(m/sec) 
tc gas kinetic energy(J/k-g) 
tcp particle kinetic energy(J/kg) 
a gas-phase sound-speed(m/sec) 
aP particle sound-speed(m/sec) 
P gas pressure(Pa) 
PO initial pressure(Pa) 
C gas thermal energy(J/kg) 
E total gas energy(j/rn3) 
c reactant mass-fraction 
T gas temperature(K) 
TO initial temperature(K) 
TIP solid surface temperature(K) 

TP(y, t) solid temperature profile(K) 
U vector of conserved variables 

U. q vector of conserved variables for gas 
up vector of conserved variables for solid 
F flux function 
S source function 

R universal gas constant (JlKkgmole) 
IV molecular weight 
b gas covolume(m/kg) 
ly ratio of specific heats 
aP solid diffusivity (m 2 Isec) 
C specific heat capacity of gas(JlkgK) 
CP specific heat capacity of solid (JlkgK) 
AP solid conductivity (JlmsecK) 
A gas conductivity (JlmsecK) 
q heat flux (J/m 2 secK) 
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R intergranular stress (Pa) 
Q gas-phase reaction energy of formation (Jlk-g) 
QP solid-phase energy of formation (Jlk-g) 
L latent heat of gasification of solid (Jlkg) 
K rate of reaction (kg/m 3 see) 
11 chemical frequency (see-') 
[A] concentration of reactant A (moles/M3) 

X(g) gaseous oxidant 
F(g) gaseous fuel 
P(9) gaseous inert product 

V stoichiometric coefficients 
k rate constant (see-) 
D Damk6hler number 
EA activation energy of gas-phase reaction (Jlkgmole) 
' AP activation energy of solid-phase surface reaction (Jlkgmole) Ep 

A. q reaction coefficient of gas-phase reaction (IlPasec) 
A. reaction coefficient of solid-phase gasification (kglPasec) 
B, f burn-rate coefficient (m/secPa n) 
n pressure index 

rate of regression of propellant surface (m/sec) 
M mass of propellant grains (kg) 
7-h rate of gasification of propellant (k-g1sec) 

lilgr rate of gasification of a propellant grain (kglsec) 
Mig total mass of igniter (k-g) 
rhi, rate of addition of igniter gas (kglsec) 
liq ignition delay (see) 
e j., chemical energy of igniter gas (Jlkg) 
T.: critical temperature (K) 
Td decomposition temperature (K) 
Ti. q ignition temperature (K) 
SP Surface area of solid grain (M2) 

do outer diameter of the solid grain (m) 
di inner diameter of the solid grain (m) 
D size of propellant grain (m) 
Dp effective diameter of propellant grain (m) 
VO initial volume of propellant grain (rn3) 
S surface area of propellant grain (rn2) 
so initial surface area of propellant grain (rn2) 

17 
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0 form function 
f (t) fraction of D remaining at time t 
Z(t) fraction of weight remaining at time t 
f. drag force (NIM3) 

kD drag coefficient 
CO settling porosity 
q heat transfer (J/M3sec) 

141r, heat loss to the walls (JIM3sec) 
C, radiation coefficient (Jlm'secK4) 
E emissivity 
0 heat-transfer coefficient 
I length of domain (m) 

cjl Courant number 
CD diffusion number 

ncells number of cells in x direction 
MS01 number of cells in y direction 
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Chapter I 

Introduction 

1.1 Internal Ballistics Modelling 

Internal ballistics modelling involves the combustion of highly energetic propel- 
lant materials. Propellants burn releasing large quantities of chemical energy 
which explains their use as the highly concentrated fuel that powers rocket 
motors and ballistic weapons. Propellants differ from explosive materials as 
the combustion process is much less violent; detonation has been observed dur- 
ing malfunction of arms but is an undesirable phenomena of solid propellant 
combustion. It is the typical combustion cycle of internal ballistics that will 
be investigated in this work. 

Traditionally propellant is provided in solid form such as granular or stick 
propellant, although some modern weapons do exploit the various advantages 
of propellant in liquid form. Figure (1.1) illustrates a typical ballistic weapon 
configuration and the ballistic cycle extracted from the text by Kuo & Sum- 
merfield [1]: 

The long cylindrical combustion chamber is filled with propellant material 
and a projectile is placed at one end. The opposite end of the chamber is called 
the 'breech'. Combustion is initiated by some igniter stimulus and although 
there are various modes and configurations that are in operation, specifically 
this work will concentrate on heating the propellant grains from ambient by 
the addition of hot 'igniter-gas'. The igniter-gas is vented via the 'primer' tube 
which runs along the centre of the cross-sectional area. The tube extends over 
some fraction of the total length of the chamber. The primer is a perforated 

19 
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tube through which the igniter-gas passes and penetrates the propellant bed. 
Energy is transferred from the hot gas to the propellant until the propellant 
ignites and burns, releasing chemical energy. Once the propellant combusts the 
chamber will pressurise rapidly transmitting a force onto the projectile-base. 
The projectile is held in position by an engraving band which does not allow 
the projectile to move before the pressures behind it are high- a typical value is 
around 60MPa. The engraving band is designed so that once the pressure rises 
above this level, a torque is created causing the projectile and engraving band 
to spin out of position and travel along the barrel of the gun. The movement 
of the projectile extends the length of the combustion chamber until finally 
the projectile leaves through the muzzle into the outside atmosphere. Usually, 
the propellant will be completely burnt before the projectile leaves the barrel. 

Early theoretical work on internal ballistics was primarily concerned with 
calculation of the exit velocity of the projectile. The force on the projectile 
is predicted by calculating the pressure history at the projectile-base. Early 
theory on internal ballistics is well documented in the book by Corner et al. 
[2]. The first models proved to be quite accurate at calculating muzzle veloc- 
ities and peak pressure but no attempt was made to include flow dynamics 
in the chamber and the problem was regarded as a 'well-stirred' or 'lumped 
parameter' system. This means that temporal variation of quantities - such 
as the bulk pressure- were calculated with no account of position. An early 
lumped parameter code was written by Baer & Frankle [3]. 

Piobert's law of burning was recognised at this time which provides a for- 
mula for the rate of regression of the solid propellant surface ý as a function 
of external gas pressure and a number of empirical constants specific to each 
propellant type. In addition much cffort was devoted towards constructing 
formulae that would provide the rate of change of burning surface area over 
time for quite complicated propellant geometries. The idea of the form func- 
tion was constructed by Corner which provides a relationship between the rate 
of burning ý and the exposed surface area Sp. The combination of these two 
ideas produces a method of measuring the rate of mass-transfer from solid to 
gas: 

rh = ppspý, (1.1) 
where rh(kglsec) is the rate of gaseous mass addition and pP is the density 
of the solid propellant. Along with this, an experimentally derived energy 
of combustion is taken for the propellant Q(Jlkg) and the rate of energy 
and pressure increase in the gas-phase can be deduced. During these studies, 
it was soon apparent that at high pressures the reactant gas could not be 
described accurately using the ideal gas equation and a covolume equation 
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was adopted. Both of Piobert's law and Corner's theory are used in internal 
ballistics modelling today. 

However, this approach could not model some of the very noticeable and 
undesirable phenomena that were being observed during the operation of bal- 
listics weapons [4]. In particular the presence of longitudinal pressure waves, 
similar to the combustion instability found in rocket motors, would often cause 
difficulties and it was crucial to extend the model to at least one-dimension in 
the axial direction. 

Kuo & Surnmerfield [5] first attempted this by developing a one-dimensional 
inviscid model that included gas dynamics but assumed that the solid propel- 
lant remained stationary. Very soon after this, a number of authors developed 
multi-phase flow theory to produce models of propellant combustion including 
Krier [6], Culick [7], Gough [8] and Kuo [9]. 

However, these were based on different approaches within multi-phase flow. 
The first two authors adopted the idea that the two-phase mixture acts as a 
continuum for which equations of mass, momentum and energy can be derived. 
A thorough documentation of this theory can be found in the book by Soo [10). 

The equations produced by the latter two authors were based on separated 
flow theory allowing each phase to occupy a separate control volume. These 
average equations can be derived by integrating over regions large in compari- 
son with the scale of heterogeneity of the mixture. This region is large enough 
to contain many particles but small compared to the overall dimensions of the 
flow. 

The two phases involve a compressible gas and the solid particles may be 
assumed to be incompressible for typical pressure ranges produced in inter- 
nal ballistics applications. For the gas-phase, equations of mass, momentum 
and energy are produced. The solid-phase involves equations for mass and 
momentum but do not require an energy equation due to the assumption of 
incompressibility. Additionally an equation for the number of solid particles in 
the system can be derived which will be conserved assuming that the particles 
do not fragment or coalesce. All of these flow equations involve an additional 
variable not involved in single-phase flow called the 'porosity', c, which de- 
scribes the fraction of volume occupied by gas whilst (I - c) describes the 
fraction occupied by the propellant. Since the solid density is in fact constant, 
the mass equation in the solid-phase reduces to an equation for e. The covol- 
ume equation of state is used to close the system. This provides six equations 
in six unknowns that can be solved. 
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The original model of Krier contradicted previous two-phase flow theory 
and was proved to be incorrect '. The equations derived by Gough emerged as 
the most prominent form for interior ballistics modelling which were adopted 
by several different research establishments worldwide [11], [12], [13], [14], [15]. 
However, Gough soon realised that the system of equations were ill-posed, but 
was not alone; scientists dealing with other fluid flow problems had found that 
the inviscid two-phase flow equations for two incompressible phases were also 
ill-posed. Specifically the momentum equations were found to be the cause 
and proponents of the continuum approach argue that it is due to the neglect 
of 'inertial' terms, that do not appear in the separated flow theory. More 
details of this will be described at a more appropriate stage in this work as 
Gough's equations are used as the base in which a more detailed ignition model 
is included. Gough et al. solved the equations using the MacCormack method 
[161 in the code NOVA. Several years were spent after this extending the model 
to accept more general chamber geometries, extending to two-dimensions and 
modifying the code to allow greater generality of initial propellant distribution 
[11]. The last of these items included initial propellant distributions that 
included regions of ullage (no propellant charge) and specifying distinct areas 
that held different types of propellants. This was achieved by constructing a 
dynamic mesh routine that tracked internal boundaries of the flow. The code 
was also developed to include some of the additional detail required for stick 
propellant modelling. 

Nuo et al. also developed sets of equations suitable for stick propellant 
that used a combined Eulerian-Lagrangian [17]. In this work, the possibility 
of more than one chemical reaction controlling combustion was considered. 
Combustion was assumed to involve three reactions; solid-surface pyrolysis, an 
exothermic gas-phase reaction followed by a very exothermic gas-phase reac- 
tion. Complementary experiments confirmed numerical results indicating very 
slow stick velocities. The chemical solutions showed the bulk of chemical en- 
ergy being released at the breech implying that pyrolysis and energy release 
occurred at the same location. Following this Kuo also carried out experi- 
mental and numerical studies concerning the fracture of stick propellants [181. 
In particular, a fluid-dynamic code was coupled with a finite-element code to 
analyse the effect of combustion on the structure of a single stick. Fragmen- 
tation of the propellant grain was observed which is particularly relevant as 
propellant fragmentation causes a sudden increase in exposed surface area Sp. 
This increases the rate of burning, described as uncontrolled burning as very 
rapid pressure increases have proved responsible for causing deflagation-to- 
detonation transition in tile combustion chamber. 

IThis was corrected in later work of the author's 
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In the late eighties, Gough and associates also extended their work to 
include gas-phase chemical kinetics contained in the XNOVAXKTC, code [191, 
[20]. The intention was to explain some of the pressure differences obtained 
when different igniter gases are used to initiate combustion. For example, 
increased pressures, of up to thirty percent, were observed when oxYgen-rich 
igniters were adopted. They were also aware of other phenomena that implied 
the importance of chemical kinetics such as long ignition delays, often followed 
by unexplained vigorous combustion, and high reactivity observed in gas-only 
regions. However, the study does not concentrate on the ignition mechanism 
but more the effect of different igniter materials on the overall energy release 
throughout the combustion cycle. 

Arguably the most recent breakthrough on propellant combustion was 
made by Baer & Nunziato [21) who brought together some of the ideas de- 
veloped by researchers over previous years. The equations were developed for 
defl agation-to- detonation transition and had to include compressibility effects 
in the solid-phase due to the high pressures that occur. The derivation was 
based on the continuum approach to multi-phase modelling and the resultant 
system involves mass, momentum and energy equations for both phases and 
two equations of states. Along with this there is a compaction equation, that 
controls the change in porosity, which was developed to satisfy a number of 
entropy conditions. From this a well-posed and comprehensive model was de- 
veloped. For many ballistic scenarios the model of Gough is sufficient but it 
is speculated that the equations of Baer & Nunziato would perform well past 
the point at which Gough's equations fail. 

More recently, the interior ballistics code equations derived by Gough have 
been extended to include viscous and turbulent effects [22]. The accompany- 
ing code has retained the mesh routines of previous versions of the code but 
adopted new CFD techniques to solve the governing equations specifically de- 
velopcd for the multi-dimensional time-dependent compressible Navier-Stokes 
equations. 

Margolis & Williams have also been investigating the multi-phase flow com- 
bustion problem [23]. In particular they study the effect of a deflagation wave 
through a propellant bed and include the formation of a liquid-phase. The 
equations have been mathematically analysed in the steady-state by use of 
activation-energy asymptotics. However, the development of these ideas for a 
realistic internal ballistics problem has not so far been pursued. 

The above review describes the development of interior ballistics combus- 
tion models up to the present day. In the next section ignition studies and the 
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motivation for the work contained in this thesis will be outlined. 

1.2 Ignition Theories 

Ignition modelling has been quite crude in many internal ballistics codes. Many 
assumed that once the gas temperature increases above some experimentally 
measured 'ignition temperature', then the propellant grain would burn at a 
rate governed by Piobert's law. The weakness of the ignition temperature 
idea is that it is supposed to encompass all of the intricate heat-transfer pro- 
cesses between the gas and solid, solid thermo chemistry, solid-phase reactions 
and gas-phase reactions. Experiments proved that the formation of pressure 
waves was highly dependent on the primer configuration and method of ig- 
nition providing good reason to look at the ignition process in more detail. 
A comprehensive review of ignition modelling is contained in the chapter by 
Hermance in [24] and elements of his work will be used in this review. 

Ignition models emerged as early as the 1950's and a review of experiment 
and theory between then and 1966 was conducted by Price and co-workers [25]. 
By then a number of ignition theories had developed which will be outlined. 
Experimental work and the three ignition theories, solid, heterogeneous and gas 
were discussed in Prices's review. In this, the relationships between experiment 
and the proposed theories were outlined and the strengths and weaknesses of 
the various theories compared. In particular, there was a plea to produce 
ignition by use of an externally applied heat flux so that experiments and 
theory could be easily repeatable and comparable. As a result, much of the 
experiment and theory following this report were based on radiation driven 
thermal ignition. 

The earliest solid theory measured the ignition delay by assuming that 
up to ignition the solid acts similar to an inert material. By solving the 
one-dimensional heat conduction equation normal to the propellant surface, 
the rate of rise in solid surface temperature can be predicted. Ignition was 
assumed to be controlled by a condensed-phase reaction confined to a thin 
surface region. For surface temperatures below some critical temperature T, 
the reaction rate was negligible. However, once the temperature approached 
empirically derived T, then the rapid growth in surface exothermic reaction 
resulted in ignition. 

The very first of these models simply solved the heat-conduction equation 
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up to T, at which ignition was assumed to occur. However, these models could 
not measure whether the propellant had actually attained an ignited state- 
some sort of exothermic reaction must be involved to do this- and so the inert 
heating idea is only of use if the duration of initial heating is much longer than 
the time between the point at which the temperature is equal to T, until some 
self-sustaining reaction takes place. 

More detailed models followed that included evolution of the condensed- 
phase reactant (for some order of reaction) and contributions in the energy 
equation for heat release due to exothermicity, convective heat transfer due to 
regression of the surface and in-depth absorption of heat. Surface boundary 
conditions also took into account any energy requirements due to phase change. 
Merzhanov and Averson [26] produced an excellent review of the solid-phase 
ignition theory that described many of the analytical and approximate methods 
used at the time to investigate the nature of the solution. 

A most elegant study was produced by Lifian and Williams [27] in the early 
seventies. By using high activation energy asymptotics, they produced analyt- 
ical expressions for the relationship between surface energy release, activation 
energy and ignition delay time that was identical to an empirical expression 
produced by Bradley [28] in the preceding year. Several papers stemmed from 
this initial paper to include in-depth radiation absorption and conductive heat 
losses to an external gas-phase. Although interesting, the first paper was the 
most notable that introduced the use of high energy activation energy asymp- 
totics as a powerful analytical tool in the study of ignition. 

One of the most significant results obtained from the solid-phase theory 
was the relationship between ignition delay tig and external heat flux q such 
that: 

ti, oc 

where -1.52 <n< -2 at constant pressure, which agrees with experiment. 
However, the solid theory also indicates that as the pressure increases, the 
ignition delay increases which is contrary to experiment. In fact, composite 
propellants, which are composed of ammonium perchlorate oxidiser embed- 
ded in a matrix of rubber or polymer, seemed unlikely candidates for ignition 
based on condensed phase reactions alone as their initiation displayed sensi- 
tivity to external pressure and exothermic gas-phase reactions were observed. 
Experiments had been conducted in which propellant material was ignited on 
exposure to strong oxidisers without the need for any thermal sources of en- 
ergy. Indeed, shock-tube experiments were used to ignite propellant material 
by exposure to stagnant reflected shock conditions. The experiments showed 
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ignition delays dependent on gas-phase oxidizer content and pressure. So, it 
can be drawn that the solid-phase theory breaks down due to its inability to 
include both the effects of external pressure and oxidiser content. 

A 'hypergolic' theory was proposed; this claimed that ignition was due to 
the chemical attack of gaseous oxidiser on the solid surface which produces 
an exothermic surface reaction. These theories involved transient gas-phase 
diffusion of chemical species plus heat conduction into the solid. However, 
the weakness of the hypergolic theory arose from the question of whether 
such a seemingly volatile material could exist in atmospheric conditions. Fur- 
thermore, this did not explain the ignition of composite propellants in inert 
atmospheres. From this question a heterogeneous theory arose which asserted 
decomposition on heating to produce a reactive acid followed by surface hy- 
pergolic attack. At the time of Prices' review, the study of this was very much 
at a qualitative stage but many argued that this theory was 'correct' despite 
the lack of quantitative proof. Other theories were seen as special cases of 
the heterogeneous theory or unimportant secondary aspects of ignition. Price 
commented that this complacency led to the neglect of gas-phase theories, 
which in the light of more recent developments in ignition theory was a rather 
astute criticism. 

Following this, in 1968 Williams [29] produced a heterogeneous ignition 
model with heat-conduction equations for the solid and the gas and an equa- 
tion for the evolution of reactant gas. Recall that heterogeneous ignition is 
controlled by chemical attack on the solid surface; the model links the solid 
temperature, the surface reaction rate and the quantity of external oxidiser. 
The study revealed two distinct periods in the ignition event; initially, the 
surface temperature rises slowly and continually until it arrives at some tem- 
perature. During the second period the temperature remains almost constant 
over some period of time that ends when suddenly the surface temperature 
rises sharply, characterising ignition. Using these results, a relationship be- 
tween ignition delay and the partial pressure of the gaseous oxidiser was de- 
duced that was essentially equivalent to the relationship that can be found 
using the gas-phase ignition theory. However, Williams' work did not include 
convective effects at the solid surface and so the validity of the model ends 
once pronounced surface reaction/ regression occurs. 

Andersen [30] developed the heterogeneous theory using the methodology 
of Frank-Kamenetskii [31]. On first glance, the work appears to be a solid- 
phase theory of ignition with in-depth radiation absorption. However, the 
assumptions made with respect to exothermic energy release mean that this 
can in fact be classed as a heterogeneous model. The analysis also revealed two 
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distinct heating periods prior to ignition; the first period comparable to heating 
of an inert solid where the temperature increases to some critical temperature 
followed by the second rate-controlling step involving an exothermic surface 
reaction. The work adopts the criterion that once the rate of temperature 
rise due to chemical reaction is of the same order as the rate of temperature 
rise due to the heat source, then ignition occurs. A function of ignition delay 
versus external heat flux and external gas pressure was deduced that gave good 
agreement with experiment. In a later paper [32), the time to establish self- 
sustained burning was included in the ignition model. This involved adding an 
extra term to account for convective effects due to surface regression. After the 
exothermic reaction is initiated at the surface the solid starts to regress. This 
results in energy loss at the surface due to convection. Although the model 
was lacking in detail it illustrated the importance of including the convective 
transport. 

Lifian & Crespo [33] used asymptotics in a heterogeneous model to produce 
an analytical expression relating surface energy release to activation energy 
that is similar to that derived using the solid-phase theory [271. Convective 
effects were excluded but added in a later paper, [34). This provided the inter- 
esting result that high rates of surface gasification could actually inhibit the 
ignition process via excessive convective energy loss at the surface. 

However, experimental investigation of propellant ignition by radiative heat 
flux uncovered a time difference between first gasification and ignition. The 
heterogeneous theory failed to provide an explanation for this. 

These observations provoked the development of the gas-phase theory of 
ignition. The gas-phase ignition assumes that the propellant decomposes on 
exposure to heat to produce reactant gas. These reactant gases subsequently 
react exothermically to produce ignition characterised when the gas attains 
some local temperature or luminosity. At the time of the review by Price, no 
explanation of the solid/gas interface decomposition was included and investi- 
gations were at a very early stage. 

Since then, Hermance et al. [35] developed the idea based on the results 
of shock tube experiments, [24], where the initial thermal stimulus was pro- 
vided by conductive heat transfer from a stagnant high temperature gas. The 
physical configuration treats gas and solid in a closed vessel with a single inter- 
face between solid and gas. Gas-phase energy and gaseous reactant equations 
plus a solid conduction equation are solved at the interface which is regress- 
ing due to endothermic surface pyrolysis. A number of ignition criteria were 
developed based on gaseous conditions. For example, ignition was assumed to 
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occur if the gas temperature rose by fifty percent from the initial temperature 
or if the light intensity, based on the gas temperature, increased to some level. 
The gas theory was applied to pure fuel [35), homogeneous [36] and hetero- 
geneous [37] propellants. Relations between ignition delay and both pressure 
and mass-fraction of oxidiser were deduced that compared well with shock tube 
experiments. 

Gas-phase and heterogeneous theories were developed for the problem of 
propellant-surface decomposition caused by sudden flow of a hot oxidising gas 
by Kashiwagi and Surnmerfield. At the time, the problem was a formidable 
problem in numerical analysis so the gas-flow was assumed to be steady-state. 
The gas theory [381 produced closer agreement with experiment. 

The theory of gas-phase ignition due to radiative heat flux is slightly less 
developed. Hermance & Kumar [39] show that the ignition criterion used by 
Andersen [30], for heterogeneous ignition, based on the equality of heat-loss 
and heat generation is inadequate for radiative ignition. A 'stronger' criterion 
which also takes into account the time required to establish self-sustained com- 
bustion is needed. For low fluxes of radiative heating, a reasonable correlation 
between the ignition delay and pressure was found but for higher fluxes the 
agreement was not good. In fact, the numerical calculations implied that the 
gas-phase chemical times were much lower than the total ignition delay. 

Kindelan & Williams once again produced impressive results by exploit- 
ing asymptotic methods to analyse the gas/solid equations. The endothermic 
gasification process produced by a constant radiative heat flux was studied 
in [40]. This revealed three distinct periods that may be compared with the 
heterogeneous work of Andersen; inert heating, transition and finally surface 
gasification. The work found that the time to first gasification versus applied 
heat flux behaved in the same way as the time taken for thermal runaway de- 
rived by heterogeneous ignition theory. The differences between endothermic 
surface reaction and exothermic reaction (heterogeneous theory) is that the 
former produces temperature levelling at the surface whilst the latter provides 
thermal runaway, but apart from this there were more similarities than differ- 
ences. In [41], exothermic reactions were considered in the gas-phase so that a 
gas-phase ignition is possible. If it is assumed that the ratio between the gas- 
phase activation energy and the gasification activation energy is around one, 
the analysis proved that ignition could occur at earliest at first gasification 
or at some considerable time later. However, the work on radiative heating 
could not produce evidence to suggest that the gas-phase reaction was the 
overall controlling mechanism in the ignition process and it is highly likely to 
be a combination of slight exothermicity at the surface followed by gas-phase 
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reaction. 
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Despite this, the gas-phase theory provides explanation to some of the 
most indisputable experimental evidence that cannot be explained by either 
the solid or heterogeneous ignition theories; the influence of pressure, oxidiser 
concentration and delay between first gasification and ignition. Before more 
general discussion on practical ignition studies is embarked on, the comments 
made by Hermance [24] to conclude his review on ignition studies will be stated; 
the gas-phase ignition theory needs further development and the question of 
ignition criteria is still unresolved. The convective transport terms from the 
should not be neglected from the solid-phase energy equation since ultimately 
ignition is not truly attained until there is established surface regression of the 
solid. More theoretical and particularly numerical work is needed. He remarks 
that at its most daunting, ignition is not controlled by one overall mechanism 
but a combination of gas-phase reactions and solid gasification. 

The above studies are very interesting at the solid/gas interface level'and 
can be easily compared to some of the rather artificial experimental work that 
has been performed. However none of this work encompasses the theories in a 
realistic gun or rocket combustion chamber. 

Kuo et al. [42] solve a one-dimensional heat-transfer equation coupled with 
the gas-phase Euler equations for application to rocket burning. The model 
does not include a regressing boundary and is designed to measure inert heating 
in the solid until the surface arrives at some decomposition temperature. After 
this point combustion is assumed to obey Piobert's law. This is the most 
simplistic ignition that corresponds to the earliest theory presented in the early 
fifties. This means ignition and decomposition occur simultaneously at the 
surface. Heat-transfer is measured using simple boundary layer theory based 
on Newton's cooling law. However, the attraction of this work is that rather 
than solving the heat conduction equation into the solid material, an integral 
method is applied to the equation. By assuming that the solid temperature 
profile can be described by a third-order polynomial, the partial-differential 
equation can be transformed to a first-order ordinary-differential equation that 
describes the rate of surface temperature change in time. This is much faster 
than solving the partial-differential equation over each time-step and although 
approximate it is efficient and simple to code. Once the surface temperature 
reaches some ignition criterion, the equation is no longer utilised. 

The ignition studies described above are particularly appropriate for rocket 
motor configurations and use very similar modelling ideas as 'transient burning' 
theory. Steady-state burning is combustion which occurs in a constant pressure 
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atmosphere. For example a strand-burner involves burning of a propellant stick 
in atmospheric conditions from which a wealth of experimental data can be 
determined. It was soon apparent that burning rates of the strand-burner did 
not compare well with those inside a combustion chamber. Transient theory 
is designed to predict the burn-rate ý during severe pressure excursions and 
has been also used as a basis for ignition models.. Most of the work develops 
methods of using data from so-called 'steady-state' burning regimes to map into 
the transient environment. The theory concentrates on heat-transfer processes 
at the solid/gas interface throughout the burning regime not just up to the 
point of ignition. 

One of the earliest transient burn-rate methods was based on small per- 
turbation theory. For small changes of pressure, small changes in the burning 

rate could be deduced by using steady-state data. This produces very simple 
explicit expressions for the burn-rate but unfortunately is not suitable for large 

changes of pressure. 

It was soon realised that there was no easy method of mapping from the 
steady-state to the transient. Many authors considered the solution of the 
heat-conduction problem with regressing surface in a similar way to those 
studying ignition, as described above. Assuming that the reaction at the sur- 
face is confined to a thin surface layer, the rate of combustion was assumed 
to be controlled by a zeroth order Arrhenius reaction dependent on surface 
temperature. This procedure effectively replaces Piobert's law of burning with 
more detailed modelling of interface chemistry. There is a large amount of 
work along these lines where the approach differs via the method in which the 
heat-transfer from the gas to the solid is formulated. 

Flame models were developed in the late sixties and early seventies that 
are based on the assumption of 'quasisteady' conditions. By comparing the 
characteristic times associated with the thermal diffusion processes in the gas, 
solid-surface and remaining solid, the system is said to be quasisteady if the 
timescale associated with the pressure excursion is much greater than that of 
the gas and surface propellant region but of the same order as the bulk of the 
solid material. The models are produced by integrating the steady-state gas- 
phase energy equation between the propellant surface and infinity providing an 
interface boundary condition that can be interpreted as an expression for heat- 
transfer. The methods differ depending on the assumed distribution of heat 
release in the gas perpendicular to the solid surface. From this a whole family 
of different heat-feedback formulations can be defined which are outlined in the 
book [24] and the review on transient burning by Coates & Kuo [43]. In 1977, 
Kooker & Nelson [44] compared three different flame models. The study did 
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not couple gas and solid phase and the external pressure was imposed from 
empirical data. They concluded all three models gave comparable burning 
rates and that the burn-rate was very sensitive to the amount of surface heat 
release. 

However, the work by other researchers does not support this. In 1982 
Miller [45] produced an interesting study by considering solid propellant burn- 
ing in atmospheric conditions. Combustion was assumed to be controlled by 
a surface reaction followed by a gas-phase reaction. A steady-state analysis 
produced formulations of the burn-rate that agree with Piobert's empirical 
law. He also obtained an expression to describe the heat-transfer from gas to 
solid for transient burning. Following this, Miller & Coffee [46] made an exten- 
sive comparison of flame-model formulations of heat-feedback to compare with 
their own. Miller and Coffee report large variations in solutions and conclude 
that the models are unreliable. 

In the late 1970's the transient theory derived by Zeldovich-Novozhilov 
emerged from the former USSR describing a mapping from the steady-state 
to the transient to give the heat-transfer. This was outlined by Surnmerfield 
and coworkers [47]. The method was widely adopted by many at the time, 
including Gough who used this as a method of modelling ignition. He installed 
this into the internal ballistics code based on his two-phase flow equations 
[48]. The flow equations are coupled to the solid-phase conduction equation 
with moving boundary at a typical propellant particle surface. By using the 
Zeldovich formulation for the heat-transfer from gas to solid, the rate of surface 
combustion is measured. However, the inclusion of this was not particularly 
fruitful and no validation has been made. 

The disadvantage of the Zeldovich method compared to the flame models is 
that it relies on extensive steady-state burning-rate data and cannot be utilised 
in conjunction with erosive burning theory 2- As an ignition model it is treating 
the process as solid-phase ignition with all the associated limitations. 

Despite the huge effort that was devoted to the problem of transient burn- 
ing, most of the theory developed in the 1970's remains in the area of com- 
bustion instability in rocket motors and has not been employed by the interior 
ballistician. The propellant configuration in rocket motors is quite different 
from ballistics and the theory is not easily transferred from one application to 
another. 

2Erosive burning is the phrase used to describe increases in burn-rate due to cross-flow 
sweeping over the propellant surface 
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However, the fundamental ideas have provided a base to build on. More 
recent attempts to model the conditions at the surface abandon the rather com- 
plicated mathematical derivation of heat-feedback expression in favor of more 
conventional expressions for heat-transfer. These are based on the tempera- 
ture difference T-T,, where T is the gas temperature and T, is the propellant 
surface temperature, plus a number of empirical constants. Radiative heat 
transfer, dependent on fourth powers in temperature, may also be included. 
For example the work by Loraud & Porterie [15], specifically designed for in- 
ternal ballistics, base their ignition model on the early work of Kuo et al [42], 
that is, a simple inert heat-up equation for the surface grain until it arrives 
at some ignition-decomposit ion temperature. This work solves axisymmetric 
viscous two-phase flow equations and provides valuable information on how 
primer geometry can promote the formation of pressure waves. The work 
by Wildegger-Gaissmaier and Keller [13] perform similar work. Hypothetical 
configurations are presented which do not assist such pressure waves. Krier & 
Gokhale [49] do not consider the solid temperature to measure the evolution 
of ignition in their study of DDT in solid propellants. Instead a certain amount 
of energy must be absorbed in the solid for ignition to occur. 

There is a wealth of detailed experimental evidence in the literature sug- 
gesting ignition that is heavily influenced by gas-phase reactions, [24). This 
work serves to model two simple observations of realistic ballistic environments. 
Experiments have been conducted in which there is a region of ullage in the 
propellant bed. Ignition has often been seen to occur in gas-only regions of 
the chamber, which implies a homogeneous ignition reaction. As mentioned 
above, experimentally the solid is found to decompose into gas prior to igni- 
tion implying that the solid produces gas which ignites some-time later. In the 
field of ballistics, information gathered by the ignition theorists has not been 
exploited and few have actually considered chemical energy release via gas- 
phase reactions. Those that did, tended to consider the effect on the overall 
combustion cycle rather than specifically ignition. 

Inspired by thework described in the review above, it is anticipated that 
satisjact: jon aj tilese two observations must involve a model that includes pro- 
pellant gas7lacat: ion into reactant gas i43xxowea loq a Model to describe the evo- 
lution ol the gas-phase cherrýicaligtAk: ion. Ti., 1ýtst oý t'ýiese reqiArerneuts can 
be provided by previous theory as given above, the second requires mcluslou 
of gas-phase chemical kinetics in the two-phase flow equations. This thesis 
derives such a decomposition and gas-phase ignition model. Mathematical 
analysis of the equations will be undertaken and numerical methods will be 
validated before the complicated ballistic problem is considered. 
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1.3 Improved Ignition Theory 

The exact definition of 'ignition' has proved to be quite elusive; it is often 
described as a 'go/no-go' process or 'thermal runaway' with empirical mea- 
surements based on this. The mathematical analysis of the proposed ignition 
model provides a more precise, scientific understanding that agrees well with 
the physically motivated definition. 

Chemical-kinetic theory will be introduced in chapter two and applied to 
a chemical reaction in the gas-phase. The proposed reaction is assumed to 
control combustion, in particular, the initiation of combustion, ignition. A 
model is derived to describe the behavior of a reactant gas that is injected 
into a closed vessel. The purpose is to mimic a gasifying propellant, initially 
without the complications of two-phase flow, producing a source of reactant 
which will combust according to the proposed chemistry. Single-phase inviscid 
equations of mass, momentum and energy are derived which involve 'source' 
terms due to addition of gaseous material into the closed chamber. A number of 
assumptions allow the chemistry to be described by a single reactant species 
equation. This provides four equations and five unknowns. The system is 
closed by including an ideal equation of state. 

To provide a physical understanding of the equations with chemistry, the 
system is simplified into its spatially uniform form. Expressions for the time- 
rate of change of mass, species concentration and energy - in the form of a 
system of ordinary-differential-equations - are derived. Mathematical analysis 
can reduce the system onto a phase-plane which depicts how the tempera- 
ture in the system varies with changes in reactant species concentration. In 
this context the relationship between ignition, reactant concentration and gas 
temperature is revealed. 

In chapter three, the numerical solution of the spatially uniform system 
serves to exemplify the analysis in the preceding section and complements the 
work by allowing a greater degree of generality in the system. The timescales 
of chemical kinetics are much faster than that of flow dynamics. The mani- 
festation of this means that the ordinary-differential equations are 'stiff' [50]. 
This disables the use of more conventional solvers, such as explicit Runge- 
Kutta methods, to solve the equations and an appropriate implicit method is 
adopted. A parametric analysis of the terms introduced by gas-phase chem- 
istry is performed. Discussion of how the new system of equations, described 
as the system with non-equilibrium chemistry, fits in with previous models, 
which assume chemical equilibrium, is included. Finally, the equation of state 
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is replaced by the more realistic covolume form, in order to cope with very 
high pressure, and the effect on the equations is explored. 

Chapter four describes the numerical scheme developed to solve the system 
of equations that include one-dimensional effects. The system is a highly non- 
linear system of partial-differential-equations. Time-operator-splitting is em- 
ployed which reduces the system into smaller manageable problems. The first 
involves the Euler equations with chemical effects. Modern shock-capturing 
methods are used to solve these flow equations which produce accurate so- 
lutions of shock propagation. A finite-volume-scheme, based on the original 
work by Godunov and called the WAF method, is chosen. This is a method 
which exploits the solution of the Riemann problem and an approximate effi- 
cient Riemann solver, called the HLLC method, is introduced. The second part 
of the oPerator-split produces a set of ordinary-differential-equations which 
are solved as in chapter three. The numerical methods are applied to a test 
problem which has the configuration of a typical combustion chamber. Flow 
histories are examined which produce valuable information of how the gas- 
dynamics and chemistry are interrelated. 

Chapter five derives the two-phase flow equations with gas-phase chemistry. 
Tile averaging process is applied in an identical manner as Gough to produce an 
internal ballistics model with chemical kinetics. Before proceeding, a disGussion 
is included which outlines some of the difficulties encountered by the author, 
and previously by other researchers, during the solution procedure of the two- 
phase flow equations. A remedy to this is suggested and the motivation behind 
it revealed. 

The numerical methods are extended to solve the system which now in- 
volves a solid-phase, in particular the Riemann-problern for the solid-phase 
equations will be discussed. Some of the empirical relations that are required 
to model two-phase flow are defined. Whilst the above work provides a mech- 
anism for the gas-phase ignition process, in the first instant the solid must 
gasify to produce a source of reactant gas. As mentioned earlier there are 
two important contributions required to measure the rate of gasification of the 
solid propellant, the change in exposed surface area Sp and the gasification at 
the surface ý. 

A description of how Sp is calculated in internal ballistic codes, based on the 
work by Corner [2), is outlined. Specifications required to model three different 
propellant geometries are included. The calculation of ý is more complicated 
involving detailed modelling of the rate of processes at the propellant surface. 
In the past the rate has been assumed to be controlled by Piobert's law which 
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states that ý is a function of gas-phase pressure and this will be assumed in 
this chapter. The model is now suitable to apply to a real internal ballistic 

scenario. Flow variable histories are produced for the problem and the results 
discussed. 

In chapter six, a more detailed model will be outlined to describe the de- 
tailed interface heat-transfer processes. This is designed to describe the transi- 
tion of the propellant from ambient temperature up-to the point at which gasi- 
fication is assumed to be controlled by Piobert's law. The transition occurs at 
very early times prior to gas-phase ignition. The burn-rate model involves the 
solution of the heat-conduction equation at the surface of a typical propellant 
grain where the rate of regression of the solid interface changes. Expressions 
are defined for conduction and radiation heat-transfer at the surface. 

Numerical methods are developed and validated by application to similar 
heat conduction problems that have analytical solutions. The model is then 
applied to a 'closed-bomb' ballistics problem. This involves burning propellant 
in a bomb which has no dominant spatial direction, again a sort of well-stirred 
reactor. These are often used to measure pressure history during propellant 
combustion so that propellant properties can be derived from these experi- 
ments. The model aims to predict the changing thermal profile at the solid 
surface subject to a rapidly varying external gas temperature. As the solid 
heats and gasifies this will produce higher gas temperatures which will in turn 
increase heat-transfer from the gas into the solid. The relationships between 
burn-rate, solid temperature and gas temperature will be explored. 

A summary of the work described, conclusions and directions for further 
work are outlined in chapter seven. 



Chapter 2 

Gas-Phase Ignition 

2.1 Chemical Processes 

A general description of chemical reactions and their associated rate mecha- 
nism will be given. A more comprehensive description can be found in [51). 
The chemical reactions that are considered in the following chapters are very 
simple idealised systems, however this chapter will outline the fundamentals 
required to extend the model to any real chain of chemical reactions. 

Irreversible Chemical Reactions 

An irreversible chemical reaction can be denoted as: 

- (2.1) 

where A,, are the chemical symbols of'the chemical present, v"' and v,, ' are the 
stoichiometric coefficients of the reactants and products respectively. 

The rate of production of any species is given by: 

( motes n 
reaction rate - k' (2.2) ýýT3See 

, C) 
a=l 

where [A,, ]' denotes the concentration of species A,, in MOjeS/M3 and k'(sec-') 
is the rate constant of the reaction that is dependent on the gas temperature. 

37 
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It is usually more convenient to express the reaction rate in terms of mass 
rather than a molar quantity. Also, rather than concentrating on the removal 
of species from either side of the chemical equation, the net rate of production 
of any species in a chemical reaction is a more useful quantity. The number 
of A,, moles created in reaction 2.1 is - v,, ). This gives the mass rate of 
production of species Ac,, denoted K,, as: 

(2.3) 

where W is the molecular weight. Now introduce the mass-fraction c,, which 
is related to the concentration [A,, ] by: 

ct (2.4) T. - 

where p' denotes the dimensional density. Then (2.3) is given as: 

W,,, [ v' '-v,,, ] k' 11 (2.5) 
n P'C. 

a=l 
W. 

Introduce the characteristic chemical time: 

7-1 
p 

(2.6) 
n k flcr= 

I( 
P' v, ' 

IV, 

Substitution into (2.5) gives 
pI", r 

, 11 
-I, 

nV, 
', 

aHc (2.7) K' V. va cr a=l 

2.1.2 More General Reaction Processes 

The above theory is simple to extend to reversible reactions and for a number 
of reactions occurring simultaneously: 

n 
V(r) 

1: 
V(r) a 

'A, 
--+ a 

"Aa. (2.8) 

where r=1,2, -. -m (the rth reaction). 

The net rate of reaction r is the difference between the forward and back- 
ward rates. 

Ir [A,,, ]'a(r)' - k, r [A,, ]'a(r)' (2.9) fr 
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where k' is forward reaction rate constant and k' is the reverse direction re- fr 
action rate. 

Similarly the mass-rate of production of species A,, in reaction r is: 

rrnI 
(r) 11n 

fW [V( V( V& --I va Ka -P a (r) 
11 P (2.10) a Cr 

11 PC 

where: 
P 

11n= p, 
Wa 

Tr (r) rIn 

P 

,( 
.0 kr' 

Cr=1 W, 

2.1.3 Application to a Simple Chemical Model 

The above theory will be used to construct chemical rate expressions for a 
very simple combustion reaction as described in [52] and [53]. This will be 
fundamental in the construction of a gas-phase ignition model with chemistry 
that appears in the following chapters. 

Consider an irreversible reaction 
X(g) + F(g) --+ 2P(g), (2.13) 

where F(g) is a fuel, X(_q) is an oxidiser and P(_q) is an inert product gas. 

Then the stoichiometric coefficients as defined in equation (2.1) are: 

vx =1 ; v', ký = 0; (2.14) 
VF=' ; VF=0; (2.15) 
vp =0 ; vp" = 2. (2.16) 

If the molecular weight of the three species are assumed to be the same and 
equal to 147, then substitution into equation (2.7) gives the following rate equa- 
tions: 

Iýxl = 
PIWI-11 , /Q/ (2.17) PCX CF = -P CX CF; 

KFI = PICXCF = -PISIICXCF; 71 
(2.18) 

Kp' =P 
lVI [2] 

P, cX cF = 2p'QlcxCF (2.19) 
7 
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where ff(sec-) is the chemical frequency. This parameter is independent of 
mass-fraction and depends on thermodynamic properties of the mixture. 

A simple model of gas-phase burning in the presence of solid propellant 
sources will be described as derived in [52]. The chemical scheme outlined 
here is adopted to describe the combustion of a gaseous fuel reactant. 

2.2 A Gas-Phase Ignition Model 

It will be assumed that a solid propellant decomposes into a reactant gas that 
subsequently burns in the gas-phase. The reactant is fed into the combustion 
chamber at a rate rh, ' along with a hot inert igniter gas fed in at a rate rh'i tg- 

The Euler equations for this physical scenario will now be developed. The 
combustion chamber is long and thin with adiabatic walls. All sources are 
assumed to be distributed uniformly across any cross-section and gravity is 
neglected. These assumptions are consistent with the idea that the propellant 
behavior can be modeled as a one dimensional unsteady process. 

It is anticipated that discontinuities will occur in the resultant flow. So 
that these can be adequately simulated the integral form of the conservation 
equations will be considered. 

2.2.1 Equation of State 

At this stage, for simplicity, all gases present are considered to be ideal such 
that: 

plv' 
R' 

T' (2.20) 
w 

where p' is the pressure, v' is the specific volume, W is the molecular weight, 
R' is the universal gas constant, -! I- =R and T' is the temperature. W 
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th + thig 

Figure 2.1: Domain of integration with sources. 

2.22.2 Conservation of Mass 

n 

Mass conservation as applied to the dornain in rigure (2.1) can be given as: 

41 

d 
pldlll +I p'tinjdS' (2.21) 

dil 

where il is the time, V' is the volume, S' is the surface area, ni is the unit 
vector normal to S', p' is the gas density, u, is the gas velocity, rh' is the rate of 
addition of gas due to propellant decomposition and rh'i is the rate of addition Ig 
of igniter gas. It is assumed for simplicity that the igniter gas is an inert ideal 

gas so that it is only a source of thermal energy not chemical encrgy. 

The differential equation in conscrvation form, that is valid in smooth re- 
gions of flow, can be derived from equation (2.21) using Gauss's theorem: 

apt + a(04) Ihi + rhý (2.22) 
-5-1, a Xk 

gg. 
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2.2.3 Conservation of Reactant Species 

The reactant gas generated by decomposition of the solid propellant is assumed 
to be composed of a fuel F and an oxidiser X. In general these will exist in 
concentrations cF and cX, respectively, where cF is the fraction of any unit 
mass of the whole gas mixture that is fuel and cX is the fraction of oxidiser. 

The conservation of these two species can be given as: 

d 
P'cdV' + pic. uýnidS'=j +K. )dV'l 

I Tit 
fill is, 

i ,, 
(r (2.23) 

where a is F or X and K. ' is the rate of creation (depletion if negative) of the 
reactant species, in units of mass per unit volume per unit time. 

The combustion process is assumed to be controlled by an irreversible chem- 
ical reaction: 

F(g) + X(g) ---4 2P(g), (2.24) 

where P(g) is an inert product gas as described previously in section (2-1.3). 

If the molecular weights of X and F are the same, it follows that the 
molecular weight of P must also be the same. The reaction rate can then be 
written as: 

,I1 .111 AX = KF 
- 

(2.25) = 11 -P Q CXCF, 

W(sec') is the chemical frequency which is strongly dependent on the gas 
temperature and weakly dependent on pressure and will be defined as: 

=, ell p'exp (- EA /7Z'T). (2.26) 
9 

I lerc A' is the frequency of collision and E,, 'j is the activation energy. Further- 
9 

more, it is assumed that the mass that is introduced into the system is half 
composed of X and the other half is F, then Th' = rhF = -r*n'/2. Consider the x 
difrcrential form of the conservation equation (2.22), using the simplification 
describcd above, this gives: 

O(P, C. ) 
+ 

(9(p'c'ti'k) 
= K'+ rh'/2. (2.27) 511 OXlk 

These two relations for the species equations of the oxidant and fuel can be 
subtracted: 0(ACF - cx» 

+ 
(9(Pf(CF - CX)Ulk) 

= 0. (2.28) 
Ot , C9X'k 
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By using the differential form of the mass equation (2.22) this can be written 
as: 

(rhI + 
D(CF - CA 

M'j +p=0, (2.29) ig)(CF - CX) 
Dt' 

where D a(CF - CA +i 
a(CF - CA (CF - CA 

at, 
Uk 

ax, (2.30) 
k 

signifies the differentiation Of (CF - CA following the motion of a fluid particle. 
Equation (2.29) can be integrated formally to give: 

to (CF - CA ` (CF - CX)o CXP vI (Ii2l + Mýlj )all) (2.31) 
(fo 

tq 
)I 

where 01' indicates integration with respect to t' along a particle path. 

One possible solution of this is to make 

CX ý CF ý- Ci (2.32) 

which will be (lone here and the above equations for the species can be reduced 
to on]), one species equation that applies to both X and F 

v 
dp, 

cdl, " + p'cuýrzidS'= 
I nt 

_ plfj, C2)dl, ". (2). 3 3) 71,111" 
is 

IiI 

2.2.4 Conservation of Momentum 

The addition of mass into the closed system also introduces a momentum 
source term into the volunic V'. If there are no other external forces acting 
on the gases and the reactant gas is assumed to enter the domain with local 
velocity u., then the momentum equation is: 

dI''d 
V' + (p u' u' )rzjdS' uj'(rh+ th'i )dll'. (2-34) 

tp uj i j. + p'SjL 19 (di IV, %" ss 
fill 

2.2.5 Conservation of Energy 

Consider the energy in a unit mass of gas: The total energy is the sum of the 
intrinsic energy of the gas- which is a function of temperature and chemical 



44 CHAPTER 2. GAS-PHASE IGNITION 

composition in the case of non-equilibrium chemistry- plus the kinetic energy. 
The intrinsic energy of each species is given as: 

II+ C"Qf el. = e. a? 
(2.35) 

where el. is the intrinsic energy, e. is the specific thermal energy and Q. is a 
constant energy of formation per unit mass of the species. If the kinetic energy 
per unit mass of the mixture is given as: 

ul ul (2.36) k ki 

then the total energy per unit mass of the mixture is given as: 
I= pf (E(e' + C,, Q. ') + tz, E (2.37) 

For simplicity, assume that the energy of formation of the fuel F and oxidant 
0 are the same and that all three species X, F and P have the same specific 
thermal energy c. Adopting the assumption of equal mass fractions of reactant 
gmes, given in equation (2.32), means the total energy in a unit volume of the 
mixture is given by 

El = p'(c'+ 2cQ'+ tc'). (2.38) 
Now consider the change in total energy in the system due to the gasification 
process. The total rate of mass addition of reactant gas rh' is 

riz' = riz'x + rhF (2.39) 

and the rate of mass addition of igniter gas is rh'i . The reactant gases are 
assumed to enter the chamber at the local gas temperature and so introduce 
their own intrinsic energy, c' and Q', and kinetic energy per unit mass. In 
this simple thermodynamic model, the adiabatic addition of gas to the system 
from the sources does work on the gas within the system at a rate rWpV per 
unit volume. Thus energy is added to the system at a rate, per unit volume, 

rh'(c' + tc, + PV +QI). (2.40) 

The inert igniter gas only introduces thermal energy, kinetic energy and work; 
its contribution to the rate of energy addition per unit volume is therefore: 

Th'i (e, + K, + P'V'). (2.41) 
19 

Finally the complete conservation law is given as: 
d( 

E'dV'+j uý(E'+p')njdS' 711, Jill S, 
n'+ p'v) 

+ rh'(Q'- L')dV'. (2.42) 
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2.2.6 The Differential Conservative Form 

From the above integral forms of the equations the differential form of the 
equations can be deduced. The conditions for which the differential form of 
the equations is valid is limited. Specifically, whilst the integral form is valid in 
regions of discontinuous flow the differential form only prevails in continuous 
flow. These relation can be derived using the integral equations (2.21), (2.33), 
(2.34) and (2.42) and Gauss' theorem: 

Opt 
+ 

O(PlUlk) 
*5 F, a X'k 

(9(p, c) 
+ 

NPICUO 
51-1 OX'k 

O(P, uj) 
+ 

O(P'UjU'k) 
+ 

(9P' 
all OXlk c9xj, 

O(E') 
+ 

Ouk. (E'+ p') 
(91, (9 X'k 

rhl + rhli (2.43) 
Ig 

tn' K'+ T; (2.4 4) 

Uý 
., 
(Thl + rhlj (2.45) 

I. q 

+ Th'i )(e' + PV) 19 
+ rh'(Q'- L'). (2.46) 

. 2.3 The Spatially Uniform Problem 

TO develop ; in understanding of the consequences of including chemical kinetics 
and the effect on other flow variables, the spatially uniform problem will be 
considered as in I&I]. This means that the time evolution of the gaseous 
mixture will be investigated by neglecting all space derivatives. 

For further simplification let rhi. 9 be zero - the propellant is already in 
gaseous form and so the system does not necessarily require the addition of 
igniter gas to initiate con&stion- which reduces the system to: 

dp' 
= (2.47) 

dP 
dc 

= iii'v'(1/2 - c) - Wc 2 (2.48) 
dP 
dc' 

= 9Q'f)'c' - rh'v'(L'- P'Vl ). (2.49) 
dil 

Mine the independent variable r via the relation: 
dr 

= vlrhi (2.50) T, I 
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and the following dimensionless variables P= p'IpO, E) = ff/v'rh', e= e'IQ' 
and L= L'IQ'. Note that the variable V= ff/vrh', is a local Damk6hler 
number as it is the ratio of the rate of chemical reaction of species to the rate 
of delivery of reactant species. The reaction rate factor ff is a quantity that 
depends on thermodynamic variables and if the rate of delivery of reactant 
species is also considered in this way (e. g. internal ballistics theories usually 
make use of a pressure dependent rate of delivery) then the Damk6hler number 
is a function of thermodynamic variables; assume that D= D(e). 

Using these relations, the equations for c and e in time can be transformed 
to equations in the new variable 7-: 

A1- 
c- Dc' -= 

D(e, c); (2.51) 

A 
')Dc' -L+ pv =- N(e, c). (2.52) Tr 

Recall that the gas is assumed to be ideal so that: 

PIVI = (-Y - 1)c'. (2.53) 

Using the above, equations (2.51) and (2.52) can be transformed to the 
following single autonomous equation: 

de 
= 

2VC" '- (L - (-y - I)c) 
_ 

N(e, c) (2.54) 7c 1-c- VC2 D(e, c) » 
2 

2.3.1 Analysis in the (e, c)-Pliase-Plane 

First consider the values of c and c at which the numerator and denominator 
-ire equal to zero. 

, %r(C, C) = 2, DC2 - (L - (-y - 1)e) = 0, (2.55) 

thell: 

Cn 
L 1)e L 

(2.56) 
2D Fý-V' 

where 
L=L- I)e. (2.57) 

This means that in the (e, c)-plane, an integral curve must have a horizontal 
tangent if it crosses the locus of c.. For the denominator: 

D(e, c) =1- c- Dc 2=0, (2.58) ;7 
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then: 
C= C, - 

-1 + V11 -+2D 
(2.59) 

2D 
Similarly, the integral curves will have a vertical tangent at intersection points 
with the locus Of Cd- 

These two-locii intersect at a singular point where the values of c and e 
define conditions at a 'stationary state' as described in [55]. 

Cn " Cd : -- Css - (2.60) 

After some algebra, equating equations (2.56) and (2.59) produces explicit 
expressions for the value of V and c at the stationary state: 

E) = Dss = 
2Lss (2.61) Tj 
- 

Iss )2 

C= Css =1 (2.62) 
2 

To investigate the nature of this stationary state, it is necessary to perform a 
local stability analysis. The idea of such an analysis is to determine how small 
perturbations around the point behave. For example, if the small perturba- 
tions grow the state is unstable, conversely if the perturbations diminish the 
stationary state is stable. Define such a perturbation via: 

e=e, + Ael Ae << ess; (2.63) 

C', +AC, Ac << c". (2.64) 

Substituting (2.63) and (2.64) into equations (2.52) and(2.51) and expanding 
the right hand-sides of D and A' in the form of a Taylor series gives the result: 

de dAe 
= IV(e. ' C., ', 

) + 
ÖN 

Ae+ 
oi\r) 

d7 
( 

De De 
+ 0(A/2e, A2e); (2.65) 

de dAc 
=D (e�, c�) + 

ÖD) 
"ý, e + 

ÖD) 
nc 27 --«ý d-r 

( 
De 

ss Dc 33 + O(A2e, A2C). (2.66) 

Remember that N(e,,,, c,, ) and D(e, c,, ) are by definition identically zero. It 
is easy to see that: 

ON 
T= 4Dsscss > 0; 

c 
(2.67) 
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ON 
= 2c, 2,15.,, + (-y - 1) > 0; (2.68) Te 

aD 
2D,, c,., -1<0; (2.69) 

TC 
aD 

= -2Li)ý,., < 0; (2.70) 
'Oe 

where the signs are deduced since D, c are by definition always positive and 

ý) =- 
dD 

>0 (2.71) 
de 

implying that the rate of chemical reaction increases with increases in thermal 
energy as would be expected. Using the values of c,,,, E).,, given above define 
the constants: 

4Lss 
Ckss -2 ý>0; (2.72) 

2+(, y 1) > 0; (2.73) 

-is s=_1+ 
Lss 

< 0; (2.74) 
i- LSS 

_1 
(1 

_ 
Lss)2, b 

,0 
(2.75) 5,13 =39< 4 

It follows from (2.65) and (2.66) that perturbations Ae and Ac satisfy the 
pair of linear ordinary-differential-equations 

dAe 
d7- = O. TsAe + OSSAC; (2.76) 

dAc 
d-r = 7"Ae + S,., Ac. (2.77) 

The above two equations are simple linear equations. If solutions of the form 

(,, -r (,, -r e=r,, e c=s,, e (2.78, 

are tried for arbitrary (,,, then (2.76) and (2.77) makes: 

or: 

r, (, = a,, r,, +)3ssSn; (2.79) 

Sn(n = 7,, rn + SssSn; (2.80) 

(a,, - (n)rn + PssSn = 0; (2.81) 
-y, srn + (Sss - (n)Sn = 0- (2.82) 
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There is a solution for r, s,, only if (,, satisfies: 

det ass - (- 16-IS (2-83) 
TS .9 

Ss. 
1 -C. 

I= 

0, 
or: 

(ass - C. M. s 7s"O. " = (2 ++y- ss, 3,,. (2.84) n 

Hence two values of (,, can be found, namely: 

2 + Sý (a,, + V(ass + S")2 - (2.85) 
2(2 (aý,, + S,, ) - 

V(a.,., 
+S S")2 - (2.86) 

A more general solution of the linear equations can be found by multiplying 
e= rje07, c= sle(II by a constant C, since the result will still satisfy (2.76) 

and (2.77). Similarly, e= r2eC2 7" C= S2e C27 can be multiplied by a constant 
C2. If these two solutions are added a general solution is given as: 

Ae = Clrlexp((17-)+C2r2exp(C27-); (2.87) 
Ac = Cis, exp(Cl-r) + C2S2exp((27-). (2.88) 

By using the relations given in (2.72), (2.73), (2.74) and (2.75) it can be 
seen that the signs of (i and (2 are real and opposite. It can be shown that 
in the expressions for Ae, equation (2.87), and Ac, equation (2.88), that it is 
the positive exponential that eventually dominates the expressions indicating 
an unstable stationary state; this particular type is called a saddle point [55]. 

Since Ae and Ac are vanishingly small (differential) increments, one can 
write: de 

- 
r, + (C2/Cl)r2 exp [(C2 - CI)7-] 

(2.89) 
133 

51 + (C21CI )52 exp [((2 - 
(1)7-] ' 

which, for C, 0 0, will give the tangents to integral paths that pass through 
(c,,, e,., ) which can be used to sketch the 'separatrices' of the saddle point. 
These are integral curves that pass through the stationary state separating 
regions of different solution behavior. 

A sketch, taken from [53], of the integral curves in the phase plane (e, c) 
can be seen in figure (2.2) which clearly indicates the features described. Only 
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the segment 0<c<1, e>0 is of physical interest. For exothermic com- 2 
bustion to occur it is clear from the figure that rh' must be positive and the 
ambient conditions must be such that e> el where el is defined as the point 
of intersection of the lower separatrix from (c, e,, ) with the ordinate axis. 

It can easily be seen from equation (2.54) that 

de 
= -2L1 (2.90) 7C-IC=o 

which implies that for positive L, internal energy e decreases with increasing 
c initially. However, the point of zero gradient is when: 

1)e = 0. (2.91) 

Define this value of internal energy as ell = Ll-t - 1. The physical significance 
of this point is that if the initial energy is such that e> ell, then the energy 
will immediately start to increase with increasing c. For el <e< ell the 
internal energy will initially decrease to a minimum (N = 0) and then start to 
increase. This implies that providing sufficient propellant is supplied then for 
e> el combustion will be self-sustaining. 

These and further physical features will be described in the next section 
where the numerical solution is investigated. The numerical solution will be 
validated using the algebra derived above. After this a slightly more general 
and realistic form of the equations are solved. The influence of chemical pa- 
rameters in the system will be investigated and the theory compared with more 
traditional ideas in internal ballistics. 
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6 

ell 

el 

ess 

0 r- 

Figure 2.2: Sketcl, of tile solution in the (e, c)-phase-plane. 

Css 1 

2 



52 CHAPTER 2. GAS-PHASE IGNITION 



Chapter 3 

Numerical Investigation 

The preceding chapter described how an analytical solution for the spatially 
independent equations could be produced. However, the assumptions for this 
simple system will not necessarily be valid when applied to internal ballistics 
problems which will require numerical methods to produce a solution. In this 
chapter, numerical solutions will be used to compare with the previous analysis 
for validation purposes. A parametric analysis will then be performed, with 
ease, using this numerical scheme. 

3.1 The Numerical Solution 

The system of ordinary-differential-equations derived in the previous section 
can be summarized as: 

dpl 
T, = M; t 
dc 

Q'c +(1- c)v'rh'; (3.2) ý F, --: -- - 1) 

de' 
= ')Q'Q'C2_ 'rW(L'-p'v'). (3.3) dt' v 

The system may be transformed using: 

d7- 
= v/rh/ (3.4) 

dt' 

53 
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to give: 

dp 
- P; (3.5) d7- 

de 
=1- c- Dc 2; (3.6) 

d, r 2 
de 

= 2Dc-L+(-y-I)e, (3.7) d7 

where p= p'IpO, *D = Q'/v'rh', e = e'IQ', L = L'IQ' and rh = rh'/Q' with 
initial conditions 7- = 0, t=0, p=1, c=0, e= eo. 

The systems of ordinary-differential-equations are difficult to solve numeri- 
cally. Standard explicit methods used to solve ordinary-differential-equations, 
such as Runge-Kutta methods, cannot resolve the radically different timescales 
of chemical kinetics - compared with other flow variables - without the use of 
cripplingly small timesteps. Systems that exhibit these characteristics are de- 
scribed as stiff. In a precise mathematical context, if the system is written as 
Uj =f (U, t), then stiffness can be recognised if the Jacobian of f possesses a 
relatively large negative eigenvalue ([50]). Fortunately, the problem of stiffness 
is not a new one and today numerical methods are well established that deal 
with these difficulties reliably and accurately. 

In particular, Gear [50] developed backward-differentiation-formulae that 
successfully reduce the system to a set of implicit linear equations that can 
easily be solved to produce a solution. The timestep is varied depending on 
the rate of change of flow variables so that accuracy and stability are preserved 
which explains why the formulae fall into the general class of linear multistep 
methods. Gear produced a code based on his work which has been developed 
and improved along with co-worker Hindmarsh [561. The most recent version 
LSODE will be used to solve the system of equations described above. Recall, 
from the previous chapter, if the Damk6hler number is defined as a function of 
internal energy D(e), then the equations for mass-fraction and energy can be 
decoupled from the other governing equations. This results in one autonomous 
equation: 

de 2D2 (L - (-y 
1 (3.8) 

dc i-C- DC2 

The analytical solution of this problem was investigated and pursued in the 
previous section. 

An explicit function will now be given for the Damk6hler number using the 
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chemical rate expressions derived in section 2.1.3: 

D(p, e) = 
Q' 

_ 
A, 'p' exp (-EA/? Z'T') 

(3.9) 
vlr; j/ - virizi 

The ideal equation of state can then be used to give: 

A'p'(, y - 1) e'exp (- EA' / (-y - 1) 
D(p, e) =g 

vlýnl 

If the rate of mass addition rh is defined as a function of pressure (in combustion 
this is known as Piobert's law of burning) then again using the ideal equation 
of state: 

rh = p'PSY = 'PS'B' A' 1)e'. (3.11) 
PPP CfP SP ('t 

where P'P is the density of the solid propellant, SP' is the surface area of the 
propellant which, will be assumed to be constant in this section, P(Mlsec) 
is the rate of surface regression of the solid and A' = p'PSP'B, ',. Finally, the S Damk6hler number can be given as: 

X 
D(p, e) : 7', - p'exp (- Eý / (-y - 1) e') (3.12) 

As 

For simplicity assume that the gas density is constant so that the Damk6hler 
number is a function of internal energy only D(e), then an analytical solution 
can be found with all the attributes as described in the previous chapter and 
in [53]. 

Figure (3.1) is a numerical solution in the T'- c plane which corresponds to 
the reduced autonomous equation (3.8) where the ideal equation of state is used 
to replace the internal energy with perhaps a more physically understandable 
temperature distribution (since T' is directly proportional to e). The values of 
the parameters used to produce this solution are given in table 3.1: 

The initial value of temperature To' has been varied like a parameter to give 
a full phase-plane solution. The null-clines 

N(e, c) = 0; D(e, c) =0 (3.13) 

give the loci of minimum internal energy ei,, and maximum mass-fraction Cmax 
corresponding to the formulae (2.56) and (2.59). Clearly the loci correspond to 
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Solution in the T-c Plane 
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Figure 3.1: Solution in the T' -c plane for different initial temperatures To' 
and mass fraction co- 

7 1.2627 L' 1996100 Jlkg 
Qf 3512700 Jlkg A' 104 ilsecPa 
A' 10-'kglsecPa PO M3 0.88983 kgl 

EA' /R/ 5000K w 21-535 
R' 8313.3J/Kkgmole 

Table 3.1: Parameters for numerical solution of spatially uniform case. 
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temperature vs. time mass-fraction vs. time 
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Figure 3.2: Temperature and mass-fraction histories for different To' = 443.5K 
(-) and To' = 444K (full line). 

zero and infinite. tangents of the integral curves. These intersect at the saddle 
point singularity and if the numerical solution passes close to the saddle point 
the code runs into difficulties. This illustrates how the mathematical analysis 
can play an important role by identifying conditions that may cause difficulties 
in the numerics. It is reassuring to see validation of the numerical solution 
achieved by exploiting the analytical methods. 

Now consider some of the features shown in figure (3.1) and the physical 
interpretation: For values of To' below ý 444K, the mass-fraction increases as 
the internal energy falls and continues to decline. Physically this corresponds 
to the system that has insufficient energy at the early stages to overcome the 
energy losses due to latent heat. Reactive species are produced by gasification 
and, despite the fact that gaseous mass-addition is a source of chemical energy, 
there is never sufficient thermal energy to trigger an exothermic reaction. The 
reactive species remains a potential source of en ergy which cannot be released. 
In combustion terms ignition cannot occur. This can be seen more clearly 
in figure (3.2) which gives the temperature T' and mass-fraction c histories 
independently. The dashed curve represents the situation in which ignition 
does not occur and where the initial temperature is 443.5K. 

The situation is totally different when To' is above this critical level. The 
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solution starts in the same way, that is the mass-fraction increases, but the 
temperature now falls to a minimum temperature T. in ( again due to latent 
heat losses). However, the system is now able to sustain this loss and the 
thermal energy starts to rise. The mass-fraction soon reaches a maximum 
and then decreases as the temperature rapidly increases. The point at which 
ignition is attained is somewhat ambiguous: For instance, ignition might be 
said to occur when the temperature first recovers and starts to increase, that 
is, when N(e, c) =0 and the temperature is minimum T, 

nin. 
Alternatively, 

ignition could be when D(e, c) =0 and c=c,,,,,, for once the energy of the 
system rises above this critical level there is an almost discontinuous jump 
in thermal energy accompanied by a similarly violent consumption of reactant 
gas. Frequently ignition is described as thermal runaway and clearly the second 
definition might be regarded as such a physical process. The time interval 
before the mass-fraction attains c,,,,,, will be described as the ignition delay. 

After this, the mass-fraction tends to very small values as the tempera- 
ture increases dramatically. In these circumstances the solution describes how 
reactant gas enters the system and is consumed instantaneously releasing all 
available chemical energy. At these times the combustion cycle is well under- 
way. Again, the full lines in figure (3.2) represent this possible outcome. The 
solution tends to equilibrium chemistry after the ignition delay as will be seen 
later in this chapter. The initial conditions mean that the only solutions in 
the phase-plane that are physically relevant, in this context, are those in which 
t' = 0, c=0. 

Obviously, the above solution is rather non-physical due to the way in which 
it has been constructed. However, for validation purposes, it is enlightening 
just how the numerically generated solution fits in with the analytical solution. 

Now, consider the full set of equations where for simplicity the rate of ad- 
dition of gaseous mass rh' is constant at 6011. The rate of change of density is tn3 

no longer assumed to be zero so the Damk6hler number is now also a function 
of changing density V(p, e). This means that the equation given in (3.8) will 
no longer be autonomous so cannot be solved independently from the density 
variation. However, note that the analysis in the preceding chapter does not 
insist that the density is constant, only that the Damk6hler number is a func- 
tion of internal energy alone. The density was assumed to be constant only 
so that typical expressions used in internal ballistics, Piobert's burning law, 



3.1. THE NUMERICAL SOLUTION 

could be used to measure the rate of gasification. 

59 

The T' -c plane is given in figure (3.3). This picture does not greatly 
differ from figure (3.1) and the physical interpretation is identical. Howeverl 
the solution seems to have been displaced vertically so that the critical initial 
value of To' that determines whether exothermic reaction occurs or not is now 
approximately 486K. 

Figure 3.4 illustrates the flow-variable histories for two different initial val- 
ues of To' where the density is now allowed to vary at a constant rate. 
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Solution in the T-c plane 
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Figure 3.3: T' -c plane with density variation for different values of To. 



3.2. INTERNAL BALLISTICS WITH CHEMISTRY 61 

temperature vs. time mass-fraction vs. time 

I 

Figure 3.4: Temperature and mass-fraction histories for different To' = 486K 
(full line) and To' = 485K ( --- ). 

3.2 Internal Ballistics with Chemistry 

It is informative to see how the inclusion of chemical kinetics effects the solution 
of the Euler equations with source terms. More conventional flow equations in 
internal ballistics and this model will be compared. 

3.2.1 Equilibrium& Non-Equilibrium Equations 

The inclusion of chemical reactions means that it is necessary to consider a 
species conservation equation as in equation (2.48). 

d 
(p'c) = rh'/2 + K'. (3.14) 

dt' 

The equations of mass and energy are formally unchanged by the presence of 
chemical species, observed from the absence of c in equations (2.47) and (2.49). 

However, the definition of total energy in the energy equation has a different 
form when chemical kinetics are being modeled. 
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The energy conservation equation is defined as: 

rhi +, ii )(, 11+ KI) + rhi(QI - it-, E'= (�e +pv L), 

where e' is the thermal energy and tc' is the kinetic energy per unit mass. 

Equilibrium chemistry is established in aa system once the chemical times 
involved are negligible, as in many standard applications of the inviscid flow 
equations. In this case, the total energy is defined as: 

El = pl(el + st), (3.16) 

However, for. the non-equilibrium chemistry, defined in the previous chapter, 
total energy is defined as: 

El = pl (el + ii' +2 cQ'). (3.17) 

When these two energy definitions and the transformation 

d7- 
= vlrhi Tt / 

are substituted into the energy conservation equation (3.15), along with the di- 
mensionless variables, two different equations for the rate of change in pressure 
appear: 

dp 
- yp + p(-y - 1)(Q - L) equilibrium; d-r (3.19) 

dp 
- -yp + p(^i - 1)(2DQc' - L) nonequilibrium. (3.20) d7- 

Since chemical equilibrium implies that chemical characteristic times are neg- 
ligibly small, an alternative definition could be that the chemical frequency 
is infinitely fast, 9 -+ oo. For physical reasons the chemical rate K' must 
be bounded so that since K' = _p/SIIC2 this implies that as chemical equilib- 
rium is approached c must tend to zero. If these ideas are used in the species 
equation (3.14), one finds that limitingly fast reaction implies the equilibrium 
conditions: 

K -, -m; 2 
2DC2 _4 1. (3.21) 

Figure (3.5) shows plots of temperature, for equilibrium and non-equilibrium 
chemistry, and Mcý vs. t' for the non-equilibrium case only. The dataset 
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temperature vs. time 2DC2 VS. time 
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Figure 3.5: Comparison of non-equilibrium and equilibrium (full line) 
chemistry. 

that was used to produce the earlier plot in figure (3.4) was adopted where 
the initial gas temperature is 486K - This clearly displays how the new model 
with non-equilibrium chemistry approaches the equilibrium model as time pro- 
gresses as condition (3.21) is satisfied. Similarly, the temperature distribution 
described by equation (3.19) approaches the temperature distribution for equa- 
tion (3.20). When equilibrium chemistry is attained the change of temperature 
will be governed by the rate of gasification of propellant species rh and the ef- 
fect of chemical kinetics in the gas-phase are negligible. 

This is a clear illustration of how chemical kinetics affect the solution. Now 
compare the energy equation in equilibrium form given above, and described 
here as model A, and the conventional form of the gas-phase energy equation, 
model B, that has been adopted in the old single phase internal ballistic models 
[2] as originally compared in [57]. 

The equilibrium form of the energy equation as described above in equation 
(3.20) is stated in dimensional form: 

dp' 
. v7i2,, yp, + rh, (, y 1)(Q, model A dt' (3.22) 

The pressure distribution given in conventional lumped parameter ballistic 
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models is of the form [2]: 

dp' 
1)(Q- L') model B (3.23) ý F, 

Comparison of the new and old expressions clearly indicates the appearance of 
an extra term; to try and recognise the meaning of this extra term consider a 
purely investigative limiting case. Gas is fed into the chamber in a chemically 
neutral manner so there are no latent heat requirements, so L' is zero, nor is 
the process exothermic, Q' is zero also. It is supposed that no igniter gas is 
required to initiate such a process, m'i = 0. Obviously the existence of such t9 
a volatile solid material that spontaneously gasifies is highly unlikely without 
the need for some sort of stimulus. 

Model B described by equation (3.23) indicates that in such a process 
although the mass addition rh' is non zero, the pressure would remain constant 
since 

dpl 
0; 

dt' 
P' = constant. (3.24) 

Substituting the mass equation (2.47) into the pressure (3.22) produces the 
relation between pressure and density: 

dpl dpl 

pp 
=* p oc P'. (3.25) 

This dependence of pressure on density represents simple adiabatic isentropic 
addition of mass. 

Despite the neglect of such a term in model B, equation (3.23) has remained 
quite satisfactory at predicting rates of pressure rise. To understand why this 
is the case, it is necessary to understand the energy change that is assumed 
to occur when the solid propellant gasifies ( this will be seen in more detail 
when the two-phase problem is addressed). In model B, that is essentially the 
same as described in [58], the change in energy at the propellant/gas interface 
is described as 

rhie'l., =- rh'Q'Pl., , (3.26) 

where s is the interface and a new parameter has been introduced QP which 
is the energy of formation produced by simultaneous gasification and combus- 
tion of the propellant. This implies that the rise in gas-phase thermal energy 
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is equal to the energy released at gasification of propellant which produces a 
source of mass and exothermic energy simultaneously. Both of these contribu- 
tions are taken into account in Q'P. 

In model A the contributions are split into two recognisable parts; energy 
increase due to gasification followed by energy increase due to gas-phase com- 
bustion: 

((rh'(e'+ p'v') + 7iz'(Q'- L'))l = rh'QP)[,. (3.27) 

This new value Q' has been introduced to distinguish it from QP. This effec- 
tively means that the definition of Q' is different in models A and B. These 
differences will need to be recognised to fully implement the model with chem- 
istry, where there is a distinguishable term responsible for adiabatic addition of 
gas, into a real ballistic scenario. Experimental data must be gathered for the 
net rate of change of energy due to chemical gasification and for the exother- 
mic gas-phase reaction individually. In this gas-phase model presented Q will 
now be adopted as the energy of formation of the reactant gas. 

7/ 
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3.3 Parametric Analysis 

To understand the influence of chemical kinetics on the full system and the 
effect of key chemical parameters on chemical rates, a parametric analysis was 
necessary. This also ensures that the set of equations represent well under- 
stood physical phenomena. The parameters that will be investigated are the 
latent heat L', rate of addition of gaseous mass rh' and the two reaction rate 
parameters- the activation energy EA' and the frequency of collision A.. 

3.3.1 Latent Heat 

The results of changing the size of L' can be described by varying the dimen- 
sionless variable L= L'IQ'. Compare the solutions where the dimensionless 
latent heat L is varied from 0.568, to L+ AL and L- AL where AL is 0.004. 

Figure (3.6) shows the equivalent phase plane as in figure (3.3) but now the 
temperature To is constant and L is varied. When L is increased to L+ AL 
ignition does not occur since more heat is now lost to gasify the solid propellant. 
If L is decreased to L-AL, less energy is needed for gasification and the initial 
fall in internal energy decreases. The temperature soon starts to increase. and 
very rapidly there will be sufficient energy to switch on the ignition reaction. 
This means the maximum reactant mass fraction c,,,, will be lower than for 
the original value of L before the mass-fraction plunges down to near zero 
values. 

The equivalent temperature and mass-fraction plots for this event can be 
seen in figure (3.7) 
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Solution in the T-c plane 
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Figure 3.6: Solution in the T' -c plane as L is varied, L=L+ AL (dotted 
line), L (full line) and L- AL (-). 
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temperature vs. time mass-fraction vs. time 

I 

Figure 3.7: Temperature and mass fraction histories as L is varied, L= L+AL 
(dotted line), L (full line) and L- AL (-) is varied. 

3.3.2 Rate of Mass Addition rh' 

Consider the case in which the rate of addition of mass is varied Th' = 30kglm3S ec, 
60kgl, rn3sec and 120kglrn3sec. 

Firstly consider what happens when rh is increased from 30kglm'sec to 
60kglm'sec: Figure (3.8) gives. the temperature and mass-fraction histories. 
The fall in temperature at early times is more pronounced for the larger value 
of rh. This is due to the increased requirement of latent heat to gasify the larger 
mass of solid material. The results is an increased ignition delay and greater 
accumulation of reactant gas. However, after ignition the rate of change of 
temperature remains higher. 

If 7i2 is further increased to 120kg/m 3 sec there is insufficient initial energy 
to sustain an exothermic reaction and ignition does not occur. 

For internal ballistics problems there is a point at which the fuel source is 
completely depleted called burnout. Consider what happens when this occurs: 

If combustion is well underway at burnout, in this example at 6rns, figure 
(3.9) shows how the temperature rapidly settles to a constant and the mass- 
fraction approaches very small values. However, if burnout occurs during the 
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temperature vs. time mass-fraction vs. time 
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Figure 3.8: Temperature and mass-fraction histories for different rates of mass 
addition where the dashed line is for 7"n' = 30kg/m', the full line is 7h' 
60kglm' and the dotted line is rh' = 120kg/m'. 

ignition delay, prior to approximately 4ms, at 3ms, this is not the case as can 
be seen in figure (3.9). Although the mass addition is zero, the internal energy 
increases before levelling off. The differences can be understood by studying 
the reduced form of the equations given in section 2.3 when rh' becomes zero: 

dpl 
0; (3.28) ý F, 

dc WC 2 (3.29) Tt I 
de' 

= C)Q1Q1C2. (3.30) TV 
If burnout occurs after the ignition event, then the chemistry is approaching 
equilibrium as described in section 3.2.1. According to equation (3.21), and 
the conditions for burnout, this means that: 

P IQIC2 --+ rh'/2 = 0. (3.31) 

Substitution into equations (3.29) and (3.30) implies that the change in mass- 
fraction and internal energy will be zero. 

Alternatively, for burnout prior to ignition, non-equilibrium effects are still 
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temperature vs. time mass-fraction vs. time 

2e 

Figure 3.9: Temperature and mass-fraction histories for burnout at 3ms(dotted 
line) and 6ms (full-line). 

important. This implies that: 

lot c2> rh/2. (3.32) 

The gas density is real and positive throughout which implies that: 

9'c 2>0. (3.33) 

Substitution of equation (3.33) into the mass-fraction equation (3.29) means 
that the mass-fraction will immediately decrease and the internal energy will 
continue to rise, according to equation (3.30), until equilibrium chemistry is 
attained. This makes good physical sense; for non-zero rn during the igni- 
tion delay the internal temperature of the system is reduced due to latent 
heat requirements outweighing any energy increases due to isentropic mass 
addition. Decreasing temperatures mean exothermicity is negligible. When 
burnout occurs and rh is zero, although there is no more addition of reactant 
mass, there is an increased availability of energy due to absence of latent heat 
requirements. This means that the reactant gas present can be immediately 
consumed releasing chemical energy into the system. Once all of this chemical 
energy has been released there are no other energy sources and the internal 
energy can increase no more. 
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The assumption of a constant value of rh' is completely unrealistic in the 
ballistic cycle. However, it can be quite accurately calculated as a function of 
pressure alone if the exposed surface area of the propellant is assumed to be 
constant: 

rh' = A'sp In (3.34) 

where A, p'PS'B', is the burn-rate coefficient and n is a constant called the 
pressure index that are measured empirically. Let equation (3.34) be used to PC 

calculate the mass addition where two different coefficients A' are adopted, A, 
S 

and A2 where A, is greater than A2,10' and 3X 10-4 respectively, are chosen 
for comparison. 

temperature vs. time mass-fraction vs. time 
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Figure 3.10: Temperature and mass-fraction histories where the rate of mass 
addition is proportional to pressure with constant of proportionality A, (full 
line) and A2 (-). 

The pressure and mass-fraction histories can be seen in figure (3.10). Ig- 
nition occurs at different times, approximately 3ms for the higher constant 
A2 and 4ms for A,. Previously, after ignition the rate of rise of temperature 
tended to a constant. It can be clearly seen that the rate of temperature rise 
now increases with time. 
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temperature vs. time mass-fraction vs. time 
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Figure 3.11: The effect of Aq on the flow histories; A. 
q= 10000(secPa)-' (full 

line) and A' = 15000(secPa)-l 9 

3.3.3 Chemical Rate Parameters 

Now consider the two parameters associated with the rate of chemical reaction: 

,p exp (3.35) ST =A' ' 

A' is related to the frequency of collision which is a measure of the number 9 
of molecule-molecule collisions. EA' is the activation energy of the reaction, a 
measure of the amount of energy required before two molecules will react. This 
controls how the temperature will affect the rate of reaction. If the exponential 
term is negligibly small, it will dominate Q' which will also be approximately 
zero. During the reaction, the exponential can rapidly change with small 
increases in temperature. If the exponential is close to the maximum value of 
1 then it is said to be saturated and the reaction rate is very weakly dependent 
on further increases in temperature. 

Consider the effect of multiplying Ag by 1.5; figure (3.11) shows how this 
increase speeds up the rate of reaction as would be expected. 

Next the activation energy is varied as displayed in figure (3.12). EA' is now 
only multiplied by 0.9 and 1.1 and yet this radically changes the reaction time. 
In fact for the higher activation energy this prevents ignition occurring at all. 
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temperature vs. time mass-fraction vs. time 
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Figure 3.12: The effect of Eý on the flow histories; EA' = 5000K (full line), 
EA' = 0.9 x 5000K ( --- ) and EA' = 1.1 x 5000K (dotted line). 

The reduction of EA causes halving of the ignition delay. Once again this result 
makes good physical sense from the definition of the activation energy. The 
activation energy is the dominant parameter in the chemical rate parameters. 

3.4 A Covolume Equation of State 

Particularly at high densities, the ideal equation of state is inaccurate for the 
gaseous products of combustion. A more appropriate equation of state is the 
covolume equation: 

IP 10 - 01) R'T' 
e= 

PTY - 1) W(-Y - 1) 
(3.36) 

where b(m/kg) is a constant. 

The form of the equations for mass, mass-fraction, momentum and energy 
conservation do not change. However when the pressure is substituted into 
the energy equation (2.46), transformed from t' to 7- and the dimensionless 
variables adopted, the pressure variation is: 

dp 
- 

-tp + (-y - 1)2pDC2Q (3.37) 
d7- I- pbl 
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or in equilibrium form: 
dp -tp + (-t - 1)PQ 
d7- 1- pbl 

(3.38) 

Equation (3.38) can be approximately integrated analytically but the process 
is not elegant and it is easier to resort to numerical methods. However, since 
both p and V are positive, the effect of this modification is to increase the rate 
of change in pressure over time as the density p increases. 

An enlightening study of the spatially uniform problem has been under- 
taken. This has given precise meaning to some of the new parameters that 
have been introduced in a model that includes chemical kinetics. The predic- 
tions produced make physical sense and can be firmly placed in context with 
past combustion models. The definition of ignition has been discussed; a pro- 
posal has been put forward that gives the term a mathematical interpretation 
which also ties up well with the observed phenomena. With the wealth of in- 
formation and understanding that has been gained, the more complex problem 
that deals with the interrelation of flow and chemistry will be pursued. This 
means solving the complete set of conservation equations given at the start of 
this chapter. 



Chapter 4 

The One-Dimensional Problem 

The single-phase equations are given as: 

df 'dll'+ f 
p'u' 

V, 
P 

S, jnjdS' dt' v 
d I" 

p'cdl, " + p'cujnjdS' TV I 
d 

p'u'. dll'+ k )njdS' 
3 s' 

(p'u' U, + P, Jjk 

d 
EYV' + uý(El + p')njdS' �1, i dt v, 

V, 
(rh' + rW )d1l" (4.1) 

V, 
(rh'/2 + K')dll'; (4.2) 

v 

utý (rhl + ýnl )dill; (4.3) 3g 

I+ 

,,, 

(rizl + rW, 
g)(e 

tc + P, v 

+ rh'(Q'- L')dll'; (4.4) 

where the gas will be assumed to be a covolume gas such that: 

Ip 
f(l - plbl) 
P'(-y 1) . 

(4.5) 

and the total energy is defined as: 

El = pt (e'+ tc'+ 2cQ'). (4.6) 

For brevity, from now on, in this thesis, all quantities are dimensional, and 
will be dropped . For smooth solutions the equations can be rewritten in 
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one-dimensional, differential form as: 

P pu rn + rhig 

PC 
+ PCU rh/2 - pSlc' (4.7) 

pu PU2 +p u(ii2 + r7ii, 9) 
E pu (E + p) (ýn + rhi. )(e + pv + tz) + rh(Q - L) 

that is 

Ut + [F(U)]., = S(U), (4.8) 

where 

P Pu 

u PC F(U) -- 
PC (4.9) 

Pu Pu 
2+p 

E u(E + p) 
rh + rhig 

S(U) 
ýn/2 - pflc' (4.10) 
u(7h + rTiig) 

(7in + rhig)(e + pv + tz) + rn(Q - L) 

where u is the component of velocity in the x direction. The initial-value- 
problem is defined by specifying: 

U (X, 0) = Uo (x). 

The physical boundary conditions for the inviscid flow equations at the fixed 
boundaries of the domain x=0 and x=I are: 

u(0,1) = 0; u(1, t) = 0. (4.12) 

The system of equations are hyperbolic and will be solved using the method 
of fractional steps that transforms the single problem into two successive 
problems -a homogeneous hyperbolic problem followed by a system of stiff 
ord i nary-different i al-equat ions. This will be described together with the nu- 
merical methods used to solve each individual problem. Following this, flow 
variable histories will be examined to investigate the consequences of including 
simple kinetic theory into the model. 
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4.1 Numerical Methods 

4.1.1 The Method of Fractional Steps 

The method of fractional steps is based on the ideas by Yanenko [59]. This 
involves splitting the problem as given: 

Ut + F(U)., = S(U), (4.13) 

with initial conditions 
U(X, 0) = UOW, (4.14) 

into two subproblems. Firstly the homogeneous hyperbolic conservation law 
is solved 

Ut + F(U)., = 0, (4.15) 
followed by a system of ordinary-differential-equations: 

Ut = S(U). (4.16) 

Let L(t) be the exact solution operator of equation (4.13). The solution of this 
in conjunction with initial conditions (4.14) can be expressed in the form 

U (x, t) =L (t) Uo. (4.17) 

Similarly let LI(t) and L2(t) be the solution operators of (4.15) and (4.16), 
respectively. The first order fractional step method is based on the approxi- 
mation: 

L(t,, )Uo ý- (L2(At)L, (At))'Uo, (4.18) 

or equivalently with L, and L2 reversed where At is the splitting step and 
L, and L2 are at least first-order solutions of equations (4.15) and (4-16). A 
second-order solution was developed by Strang [60] and is given by 

L(t,, )Uo -_ (L2( 
At 

)LI(At)L2( At WUO, (4.19) 
1) 1) 

where L, and L2 are at least second-order solutions of equations (4.15) and 
(4.16). 

However it should be noted, for discontinuous solutions of conservation 
laws both methods have been shown to be only at most first order accurate 
[61]. The method can be extended to multi-dimensional systems as done by 
Godunov [62] and Strang [60]. A recent paper by Tang & Teng [63] look at the 
non-homogeneous problem as defined above. They show that (4.18) converges 
to the unique weak entropy satisfying solution of (4.15), (4.14) and that errors 
produced by the splitting are bounded so the method is stable. This splitting 
technique will be used in the following work. 
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4.1.2 The Homogeneous Hyperbolic System 

The homogeneous hyperbolic problem derived from the time-operator-splitting 
process described above is 

Ut + F(U)., = 0. (4.20) 

The system has been written in conservative form where U is the vector of con- 
served variables of mass, mass-fraction, momentum and energy. The physical 
problem that is being considered involves high speeds and it is highly probable 
that shocks will be an important flow phenomena. The system of partial differ- 
ential equations above can only produce solutions that include discontinuities, 
such as shocks, if the more general integral form of the equations is considered. 
This is given as 

i Udx - Fdt = 0. (4.21) 

This integral form (4.92) can be solved using finite volume methods. 

4.1.3 The Finite Volume Method 

The finite volume method that will be used is the weighted-average-flUX (WAF) 
[64]. This is a second order extension of the original ideas pioneered by 
Godunov. In this section, the general ideas behind the use of finite-volume 
schemes to provide conservative methods of solution will be introduced. 

Let the domain in x space and t time be discretised into m regular cells of 
size Ax x At as seen in figure (4.1). Consider a typical cell i of volume V; the 
vector of conserved variable at time n in cell i can be denoted as Ui". Assume 
that the vector Uj" is known for all i, the timemarching procedure is used to 
approximate the vector of conserved variables at the next time-level tn+l by 
using information at t,, and information from the governing equations to give 
ulý+I 

Equation (4.21) can be evaluated by integrating in space around the closed 
volume V between xi-. L and xj+i: 22 

i Udx - Fdt =0 (4.22) 
tn+l 

U(x, t)dx - F(x, t)dt =0 (4.23) 
in 
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Un 

Figure 4.1: The discretisation of the domain into finite-volume cells. 
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=: ýjx'+IU(x, t,, +j)dx 
x i+j U(x, t,, ) dx + +1 F(U(xi j, t))dt 

xi-j 

4-1 

tn 

ftln+ I 

F(U(xi+ i, t))dt. (4.24) 

Let the pointwise values of the true solution be denoted by: 

Ui' = U(Xi, t"). (4.25) 

Then the cell average is defined as: 

U (x, 1�) dx. (4.26) 
'- Ax .. -i 

Substituting the cell average into equation (4.24) and dividing by Ax gives: 

- n+l = fjý -L 
[ftn+l 

F(U(xi+ i, t) - F(U(xi 3, t))dt (4.27) ui Ex 

Numerical methods estimate the exact solution to some defined accuracy where 
the approximation is introduced via averaging and flux functions on the right- 
hand-side of equation (4.27). Denoting as U'j' an approximation to the exact 
average solution Qj' in cell i, equation (4.27) can be approximated as: 

U in+l Uin 
6ýt 

ii Ax 
[F'i+1/2 

- 
F'j-1/2]; (4.28) 
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where tn+l 
V 

i+1/2 F 
(U(li+1/21 

t)) dt. (4.29) 
t 

it. 

By using this algorithm, the approximate solution at time n+1, given as 
U/n+1 

iI can be obtained over all cells m in the domain. Note that the numerical 
solution U'j' is not only an approximation to the true solution but differs in 
nature from this since it remains constant over space Ax and time At in cell 
i. The flux function F'i+1/2 is an approximation of the average flux which is 
a function of any number of elements of the vector U" centered around cell 
i. Generally, if higher accuracy is required, more of the elements of the vector 
U" are used in constructing the flux function. Pictorially equation (4.28) is 
illustrated in figure (4.1). 

The final step that is required to calculate the cell average at the new 
time is the formulation of the flux functions. There are a whole range of 
discretisation methods that will do this and if the method satisfies (4.28), 
then it is a conservative method. Two such methods, the Godunov and NNIAF 
methods, will be described below. 

4.1.4 Introduction to the Riemann Problem 

Before the Godunov and %%'AF methods are described, the concept of a Rie- 
mann problem must be introduced. The Riemann problem is the conservation 
law with simplified initial conditions from which an exact solution may be 
found. It can provide a wealth of characteristic information that can be used 
in the construction of conservative methods for the full problem. The Godunov 
and NVAF methods use this information to approximate the flux functions F. 
Unfortunately, the exact solution of a single Riemann problem is expensive, 
computationally, and in any one timestep of a numerical computation hun- 
dreds of individual Riemann problems may need to be solved. This expense 
has prompted the development of more efficient approximate solutions to the 
Riemann problem a few of which are described in [65], [66], [67] and [68]. The 
HLLC method [68] is the method that will be used in the following work. 

The conservation law with piecewise constant data having a single discon- 
tinuity is the Riemann problem as depicted in figure (4.2). 

For this system the Riemann problem is given as: 

Ut + [F(U)]., = 0; (4.30) 
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Uk Figure 4.2: Initial conditions for the Riemann problem where L and URk are 
two initial left and right components of the vector of conserved variables U. 

with initial conditions: 

U(X, 0) 
UL X<0 
UR X> 0- 

(4.31) 

The system of equations (4.30) is said to be totally hyperbolic if the eigen- 
values of the system are real and distinct. For the system of equations that 
are being considered, the eigenvalues are: 

a, A(2) = u, A (3) 
= u, A (4) 

=u+a, (4.32) 

where a is the gas sound-speed: 

ý 
-1p (4.33) 

(ly-ppb)' 

Clearly the eigenvalues are real but not distinct meaning the equations are 
hyperbolic but not totally hyperbolic. 

The solution structure of the Riemann problem given in equations (4.30) 
and (4.31) consists of four waves that correspond to each of the eigenvalues. 
Two of the waves are identical and the waves separate four constant regions 
which can be seen in figure (4.3). The two outer regions contain the initial 
left and right states whilst the region inside the two nonlinear (outer) waves 
is called the star state in which flow variables need to be deduced from the 
governing equations. 

The waves that travel at the same speed as the gas P) and A(3) advect the 
density and mass-fraction in the fluid at speed u*. These two waves are called 
'contact discontinuities' and the pressure and velocity remain constant across 
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Figure 4.3: Solution structure of the Riemann problem. 
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them. Across the two nonlinear waves P) and A(4) , the fraction of reactant 
c remains constant whilst the velocity, pressure and density all change. The 
methods that reveal how this particular wave structure, as depicted in figure 
(4.3), is deduced are outlined below. 

The nonlinear waves can be either 'rarefaction waves' or 'shock' waves 
depending on the flow conditions. A brief description of how to distinguish 
between the two wave types and methods that will lead to the precise properties 
of the two will be given. 

4.1.5 Rarefaction Waves 

Rarefactions are continuous solutions of the equations. Figure (4.4) describes 
the solution of the Riemann problem where the two non-linear waves are rar- 
efactions. Each wave consists of a rarefaction fan that consists of a continuous 
solution that connects the outer regions to the star region. Since the solution 
is continuous the equations may be re-written in non-conservative form: 

Wt + AW., = 0, (4.34) 

where: 
PU0P0 

Wc A= 
0U00 (4.35) 

U00U1 P 
P00 pa 2U 

The wave-speeds can be found by calculating the eigenvalues of A for all wave 
types: 

Del JA-AIJ =0 
=ý- V) =u-a, A (2) 

= u, A (3) 
= u, A (4) 

=u+a 

which validates equation (4.32) where the corresponding right eigenvectors are: 

pppp 

R, 0 R2 c R3 c R4 
0 

(4.36) 
-a 00a 
pa 

200 
pa 

2 

The formation of what are described as 'generalised Riemann invariants' 
[69] produce relations that hold across rarefaction waves. Details of the deriva- 
tion of these is given in appendix (A). The method reveals the complete flow 
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variable distribution across each rarefaction wave. The generalised Riernann 
invariants are solutions to the o. d. e. 's 

dw, dW2 dw.. 
(4.37) W- Y) W r, r2 rm 

for each eigenvector Ri = [r('), r(') r 
(i)]T 

associated with eigenvalue 0) 
12m 

where wk is the vector of variables being considered. In short, equation (4.37) 
describes a relationship between the rate of change of each variable across the 
wave i. 

For the waves described above this gives: 

For AO): 
dp 

= 
dc 

= -du _ 
dp 

. (4.38) 
3 p 0a pa2 

For AP) and A (3) : 
dp 

= 
dc 

= 
du 

_ 
dp; 

- (4.39) 
p c0 0 

plor A(4): 
dp 

= 
dc du dp 

(4.40) 
p 0a pa2 

Firstly consider the center waves A(2) and A(3): 

ýp 
_ 

dc 
; du = 0; dp = 0. (4.41) 

Pc 
This means that the velocity and pressure do not change across the central 
waves: 

Ui = U; = U*, P7 = P; = P* (4.42) 

This describes the characteristics of a contact discontinuity where the density p 
and fraction of reactant c change discontinuously but the velocity and pressure 
remain constant as can be seen in figure (4.3). 

For V) this translates to the results: 

dc = 0; 
dp 

=- 
du 

; 
du 

=- 
dp 

1 
(4.43) 

pa1 pa 

which gives the following relations: 

cl = ci; (4.44) 

ul + 
-y 

2al 
1 

(1 - pib) = u' + 
-y 

2a, * 
1 

(1 - pl*b). (4.45) 
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Equation (4.44) indicates that the mass-fraction does not change across the 
wave AM. For this type of flow where entropy is constant along particle paths, 
the isentropic condition can be used to connect left and right density and 
pressure that is: 

p oc P. (4.46) 

This implies that 
PI PI P (4.47) 

(1 - bpF) (1 - bWI) P, 
Use of equations (4-45) and (4.47) provide an expression for the star velocity 
in terms of the star pressure and initial left-side data: 

U* ul - 
pi -P* (4.48) 

M, 

where 
M, -Y 71PI (P*/Pl) 

(4.49) bDil)) 1- (p. /pl)(-y-l)/2-y* 2 
ýý 

(I 
L---p p 

Then u' can be written in the form: 

U* = ul - fl(p*, UI). (4.50) 

Similarly for P) it can be shown: 
Cr = c; (4.51) 

Ur - 
2a, 

(1 - pb) u- - 
2a, * (1 - pr*b); (4.52) 

P; Pr P (4.53) 
- 

-bp, ) 
1-1 
Pr 

Use of equations (4.52) and (4.53) provide an expression for the star velocity 
in terms of the star pressure and initial right-side data: 

u Ur + Pr -P* (4.54) 
Mr I 

where 
Air 

F -Prpr (P. /P, ) 
2V -y(l - bPr) 1- (plpr)(-1-1)12-f 

(4.55) 

Then u' can be written in the form: 

U, f, (P*, (4.56) 

Note that if the pressure in the star region is known p*, then all other flow 
variables can be calculated and the exact solution can be found with ease. 
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The Two Rarefaction Wave Structure 

Figure 4.4: Wave solution of the Riemann problem with two rarefactions. 

4.1.6 Two Rarefaction Approximation 

If the two non-linear waves of the flow are two rarefactions as depicted in figure 
(4.1.6), then equations (4.50) and (4.56) can be manipulated to give a closed 
form for the pressure and velocity and use of equations (4.47) and(4.53) give 
the left and right star density, [67],: 

I -L bpl)al + (1 - bp, )a, + (ul - u, )L-2-1! 1 m 
pt, (1 - bpi) -mL + (i - bp, ar 

(4.57) 
P. pm r 

U* U, 
2(l - p,, b)a,,, 

(4.58) 
-Y 

P. * Pa 
- bp; ) (1 - bp,,, ) pcf 

(4.59) 

where a= L/R and m= 'l. 

3 
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A rarefaction wave produces a continuous change in flow variables across the 
nonlinear waves. This creates the structure illustrated in figure (4.1.6) where 
a rarefaction fan divides the constant states. The wave speed varies across the 
fan. The outer extent of the fan travels at the fastest speed - the head - and 
the inner part is called the taiL For a right rarefaction the head and tail speed 
are 

SR(head) u, + a,; (4.60) 
SR(tail) u* + a*,. (4.61) 

Similarly for the left rarefaction 

SL(head) ul - al; (4.62) 
SL(tail) u* - a*l. (4.63) 

Summarizing these results validates some of the features seen in figure (4.3) 
if the two outer waves are assumed to be rarefaction waves. 

4.1.8 Shock Waves 

As mentioned above, the equations must be written in conservative form to 
properly account for discontinuous solutions. Rankine-Hugoniot jump condi- 
tions can give the wave-speeds of propagating shocks. In this problem there 
are four waves dividing four constant regions- the right and left initial condi- 
tions and the right and left star regions. Jump conditions provide relations 
that hold across discontinuous changes in the vector of conserved variable: 

F(Ul, f t) - F(Uright) " S(Uleft - Uright) (4.64) 

where S is the shock speed, F is any flux of the conservation law and U1, ft I Uright 
are the conditions to the left and right of the discontinuity. This gives: 

[F] 
(4.65) 

IUI 

where [. ] indicates the jump in any quantity across a discontinuity. For the 
system of equations (4.30), then if the outer waves P) and A(4) are shocks, 



88 CHAPTER 4. THE ONE-DIMENSIONAL PROBLEM 

this expands to 

-*u p. 

- pý Paua PO 
PO CO - p; Co PO CO uck - PC> c* u 

so 

2+ pa) 
cr (4.66) - (P. u0 ct U*2 + p*) P. u. - P. *u* - 

(p* 

pc, E� - pý EZ pCrUc, (Ec, + pcv�, ) - pc*, u*(E, *:, + p*v, *�) 

where a=I for wave P) and a=r for wave A(4). Manipulation of the 

equations defined in (4.66) reveals valuable information about the structure of 
the shock. Use of the equations controlling the change in mass and change in 

mass-fraction produce the results: 

cl cl; (4.67) 
Cr C;; (4.68) 

so the mass-fraction does not change across the outer nonlinear waves if these 
are shock waves, as illustrated in figure (4.3). 

The appendix (B) shows how further manipulation of equations (4.66) pro- 
vide explicit forms for the shock speeds: 

SL=ul-al 1+-Y+1(El-l) (4.69) 
v 

2-y pi 

SR = Ur-ar 1+2+1(El-l) (4.70) v 
2y Pr 

where p' is still to be determined. 

If the Rankine-Hugoniot conditions are applied to the central waves P) 

and A(3) , one possible solution to satisfy the momentum and energy condition 
is that pressure and velocity remain constant across the waves, confirming once 
again that the structure of the central waves corresponds to that of a contact 
discontinuity. 

Just as for the rarefaction waves, the star velocity u* and the unknown den- 
sities pT and p; can also be found as explicit functions of the initial conditions 
and p'. The derivation of these expressions is also through the manipulation 
of the Rankine-Hugoniot jump conditions. The star velocity is given in terms 
of the left and right initial data and the star pressure as given in appendix 
(B): 

U, = Ul - fl(p*, Ul), (4.71) 

U* = Ur+fr(P*, Ur)- (4.72) 
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x 

Figure 4.5: Wave solution of the Riemann problem with two shocks. 

4.1.9 Two-Shock Approximation 

89 

t 

Although no explicit expression can be given for this solution -as in the case 
of the two rarefaction waves- an approximate closed solution can be given 
as developed by Toro [70] for an ideal equation of state and extended for a 
covolume equation of state in (71). The unknown pressure p' and velocity u' 
can be given as: 

p 
pigi(po) + P, g, (Po) + ul - U, (4.73) 

gi (po) + g, (po) 

u ((Ul + U, ) + (P' - p, )g, (po) - (P* - pl)gl(po)), (4.74) 

where 

+ 
ýa 

g 
VýAý 

a 
(P) =+ (4.75) 

Act = 
2(l - bpc, ) 

1 
(4.76) 

(-f + 1)p. 

Ba = )P, a 1, r (4.77) 
y+1 

C, 

4 
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where po is some initial estimate for the star pressure. 

4.1.10 The Exact Solution 

The above has described how the structure of the waves is determined. From 
the analysis of rarefaction waves in section 4.1.5 and shock waves in section 
4.1.8, it is apparent that the solution to the Riemann problem reduces to 
solving equations of the form 

U* = ul - fl(p*, Ul), (4.78) 

U' = Ur+fr(P*iUr)- (4.79) 

where the functions fj and f, are functions of the initial left and right states 
and the star pressure p*. The form of these functions depends on whether 
the waves are rarefaction or shock waves. By subtracting equations (4.78) and 
(4.79) a single algebraic equation for the unknown p* can be solved: 

F(P*, ULi UR) = 0- (4.80) 

If the solution consists of two rarefactions then the full solution structure 
can be determined explicitly as seen. For the two-shock case an approximate 
expression can be derived to give the solution explicitly. However, the above 
expressions do not give the solution with such ease if the solution consists of 
both a rarefaction and a shock wave. In this case an exact solution of the 
Riemann problem can be found iteratively using some initial guess for p*. At 
each step the ratio of p'lp,, is tested to see which form of f, and f, should be 
used in equations (4.78) and (4.79) to form the single equation F(p*, UL i UR): 

P, /P. ý: 1, shock, (4.81) 

P, /P. < 1, rarefaction. (4.82) 

The iterative procedure is repeated until the star pressure is calculated within 
a specified error bound. The value of p' is then substituted into the formulae 
to obtain the other unknown variables such as star velocities and densities. 

However, this iterative procedure can be very expensive which has prompted 
the development of an adaptive method of solution that uses different solution 
strategies depending on the severity of local conditions. Some of these methods 
that are adopted will be outlined. 
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For regions of small change it can be shown [65] that the non-conservative form 

of the equations can be approximated by: 

Wt + A(W)W., =0 (4.83) 

where W is an average vector written in terms of WI, W, the initial right and 
left values of the primitive variables. Using this new formulation, the Riemann 
invariants give the four equations in four unknowns for this system: 

ut + U* + ! -PI* 
(4.84) 

U, + PI 
= U* +P (4.85) 

zip zip 
Zip, P11* 

ul u+ (4.86) 

Ul - 
Pr 

= U* -P (4.87) 
zip zip 

The simple closed solution of this problem is 

p1 [fid(ul - U, ) + P, + pil; (4.88) 
2 

u (ul + U, ) + 
(pi - P') (4.89) 

(ul - U*). (4.90) A Pi +ýaI 

P" P, +p 
(u* - U, ) (4.91) 

zi 

where the average states are taken to be fi = , 
Fp-lp, and ii = "±2'r * 

4.1.12 The HLLC Method 

This approximate solution was first devised by Harten, Lax and Van-Leer [72]. 
Although the method was quite accurate for two-wave problems such as the 
shallow water equations or isentropic gas dynamics, the contact discontinuity 
present in the Euler equations was not captured well. The simple reason for 
this was that the approximate method was based on the assumption of a two- 
wave structure. The method was extended by Toro, Speares and Spruce [68] 
and assumes a three-wave initial wave structure. 
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Figure 4.6: The HLLC wave structure. 
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The wave structure is assumed to be as in figure (4.6): 

Three waves of speed SL, SM, SR separate four constant regions. In this 
approximate solution it is not necessary to consider the fourth wave also of 
speed u. These speeds are regarded as known information. The integral 
form of the conservation law is: 

f Udx - Fdt = 0. (4.92) 

Evaluation of equation (4.92) around ABCD gives the result: 

-AX1UL + AtFL + AX1U1 + AtF* = 0, (4.93) 

but Ax, -= 
SLAt and so this can be written as 

F*L = FL + SL(Uj - UL)- (4.94) 

Integrating around EFGH similarly gives 

F*R = FR + SR(Uý - UR)- (4.95) 

So if the vector of conserved variables in the star region UT and U; can be 

calculated, then the flux functions in the star region can be found. If equation 
(4.94) is rewritten in the form: 

SLUZ - F*L: -- SLUL - FL Qi (4.96) 

where Q is the vector (qj, q2, q3)T. The value of Q can be calculated using the 
relationship of equation (4.96) that consists of known initial data. Recall that 
the value of the star flux flow variable u* is identically equal to the central 
wave speed S, %f. This is assumed to be known information so that substitution 
into the right-hand-side of equation (4.96) gives: 

SLPi - SMPT = ql; (4.97) 

SLpiSj%j - p7S, 2A, - p' = q2; (4.98) 
SL E; - S, %f (EI* + p*) = q3. (4.99) 

This is a system of three equations with three unknowns which can be solved 
to give: 

p7 = q, I (SL - Sjvf) (4.100) 

p* SAfql - q2 (4.101) 

ET q3p* + Sxf 
(4.102) 

SL - sAf 
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From these expressions the value of U* can be found. Similarly Uh can L 
be calculated in an identical manner. Substitution into equations (4.94) and 
(4.95) give the star fluxes that are needed to formulate the WAF method. 

4.1.13 Wave-Speed Estimates 

The above integral produces an average solution of the problem in terms of 
the wave-speeds. However, since these are not known, the approximate nature 
of the method is due to the necessity to estimate wave-speeds. This is where 
the algebraic expressions that describe the solution of rarefactions and shocks 
can serve to aid these approximations. 

Hybrid wave-speed estimates are used which use approximations for the 
pressure p* and velocity u* to substitute into the exact formulations of the 
wavespeeds. The exact relations for the wavespeeds are: 

SL ul - qlal; S, %f = U*; SR = Ur + qrar; (4.103) 

1 111 <1 rarefaction, Pa q. 1+ 117- >1 shock. 
(4.104) 

1v 

2-y P. pa 

where a is left or right. These solutions are identical to those given in equations 
(4.60), (4.62), (4.70) and (4.69) where all that is required to calculate the 
wavespeeds are values for p' and u*. The value of p* and the central wave u* 
are selected adaptively depending on the local flow conditions. In regions of 
small change the linearized estimates given in equations (4.88) and (4.89) are 
used. This is tested, as a-priori, by calculating the pressure estimate p* given 
in equation (4.88). Let, 

p,, i,, = min(PliPr)i Pmax = max(pl, Pr)- (4.105) 

The linear estimates are used if 

Pmin <P. < Pmax (4.106) 
(4.107) 

However, if the initial guess for p* that is obtained from the linear estimates is 
greater than the left and right pressures pi and p, then a two-shock approxi- 
mation is adopted for p', using equation (4.73), and u*, given from equation 
(4.74). Alternatively, if the initial estimate for p* is less than both pl and p, 
then the two-rarefaction approximation is used for the pressure given'in equa- 
tion (4.57) and the velocity is calculated from equation (4.58). This adaptive 
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method of solution reflects the likelihood of any specific wave pattern emerging 
using information gleaned from the initial conditions. 

To sum up, the method of solution of the Riemann problem: The approxi- 
mate HLLC method is used throughout the solution procedure. The wave-speed 
estimates that are required in the HLLC method are the exact formulations 
but require approximations for the star pressure and velocity. These are se- 
lected adaptively so that either a linearised solver is used as described in sec- 
tion (4.1.11), two shock, from section (4.1.9), or two rarefaction, from section 
(4.1.6), approximations depending on the local flow conditions. 

The solution to the Riemann problem will be used in the construction of 
intercell fluxes in the finite volume methods that are outlined below. 

4.1.14 Godunov Type Methods 

The solution of the Riemann problem reveals valuable information about char- 
acteristic information within the framework of a conservative method. Go- 
dunov first devised the idea in 1959 (62) to exploit the Riernarm problem, 
which is an exact solution of a conservative law with simple initial conditions, 
to provide a general class of conservative methods to solve any system of con- 
servative equations with general initial conditions. The construction of these 
ideas is outlined below where further detail about the method is given in [73]. 

Consider the conservation equations with general initial conditions at time 
t,, given as U(x, t,, ). The domain L is divided into m cells of length Ax. 
Boundary conditions are given at each extreme of the domain x=0 and 
x=L. 

The Godunov method constructs the numerical solution at time t,, in cell 
i, denoted as U'j', by assuming a piecewise constant distribution of the initial 
data U(x, t,, ), that is: 

Uin U(x, i,, )dx. (4.108) x 
Ax x 

This is illustrated in figure (4.7) which indicates how the numerical solution 
at time t, is an approximation to the initial conditions at t. - 
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U" 

Figure 4.7: The piecewise constant numerical data. 

The method proceeds to define a piecewise constant function which is iden- 
tically equal to the numerical solution at x= xi and t=t, that is 

t(Xi, tn) Uin 
i; Xi-112 X< Xi+112- (4.109) 

Since t(x, t,, ) is piecewise constant, this function and the conservation law 

Ut + [F(U)]., =0 

can define a series of m+1 Riemann problems where each Riernarm problem 
with left and right data, 1ý(xj, t,, ) and fJ(xi+,, t,, ) respectively, centred around 
the intercell boundary i+ 1/2 is denoted as RP(i, i+ 1) for i=0, m. The idea 
is to solve each Riemann problem RP(i, i+ 1) individually. 

Consider how the solution at time t' + At, where At is the timestep that 
has not yet been defined, is constructed. By solving the sequence of Riemann 
problems over the whole domain, the exact solution in the interval t,, <t< 
tn+l I 

fJ(x, t) can be found. The approximate numerical solution at the new 
time t, +, can then be given by averaging the exact solution: 

utn+l =1 
IVi+1/2 

t(xi, t,, +I)dx. (4.110) 
-Ts-1/2 

The process is then repeated using this function as new piecewise constant 
initial data. Consider how this process is used to mathematically construct 
intercell fluxes to provide an algorithm for the updating procedure. 

41 
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Since the function t(xi, t) is an exact solution of the Riemann problem 
over the interval (i - 1/2 >x>i+ 1/2, t,, >t>t,, +i) then this must satisfy 
the conservation law: 

-T +1/2 i+1/2 fgn+l 

tn 

fJ(x, t, +, )dx fJ (x 
, t,, 

) dx +t F(t(Xi-1/21 t))dt 

tn 

Itn+l 
F(fj(Xi+1/21 t))dt. (4.111) 

By substituting expressions (4.109) and (4.110) into equation (4.111) the ap- 
proximate conservative algorithm for this process is given: 

where 

u/n+l = uin 4ýýX 
ii- 

[F'i+1/2 
- Fi (4.112) Ai 1 1-1/2] 

V F(t(Xi+1/21 t))dt (4.113) t+1/2 At in 

The exact solution along any intercell boundary i+ 1/2 is identically equal to 
the solution to the Riemann problem between adjacent cells i and i+1. From 

equation (4.80), at time t', this is a function of the two initial states U'i' and 
Uý n 

, +, only, that is 

(Uýn, Uý+Jn t(Xi+112, t) =- Ul i+112 tt 

where U*i+1/2 is the solution of the Riemann problem along the boundary 
i+ 1/2 as depicted in figure (4.8). 

Conservative schemes differ in the way in which the flux function, given 
in equation (4.113) is specified. However, due to the simple structure of the 
Riemann solution prior to wave interaction, the function F(U(Xi+112, t)) at this 
intercell boundary is seen from figure (4.8) to be constant over time and from 

equation (4.114) a function of the initial constant left and right data. This 

constant integration in equation (4.113) gives the result: 

(Uýn n)) V1+1/2 = F(Ul*i+1/2 
17 

Uý+l (4.115) 

This means that Godunov's method can be given as: 

Ujn+I = Uin 1. (Utin 
, 

Uln (Uin 
1, 

Uln)) 
ýKx 

[F(U 
i+1/2 j+ F'(U'i-1/2 i- i 

(4.116) 
Godunov's method is first-order accurate where the approximate nature of the 
method is in the construction of piecewise constant data from what is actually 
a smooth solution. 
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t 

Figure 4.8: Solution to the Riemann problems RP(i - 1, i) and RP(i, i+ 1). 

However, to preserve the simple solution structure indicated in figure (4.8) 
so that, for example, the star state remains constant over the time interval, t 
must not be too large for the waves arising from neighboring Riemann problems 
to modify this structure. To ensure this does not occur, At = t,, +, - t,, must 
be sufficiently small. 

It can be shown that the wavespeeds are bounded by the eigenvalues, [74). 
Since the neighboring Riemann problems are Ax away, the condition on t is: 

At 
A(k) < (4.117) 

Ax 
I 

for all k where A(k) are the eigenvalues of the system. 

Condition (4.117) actually allows interaction between Riemann problems 
provided that these are contained within a mesh cell. Figure (4.8) illustrates 
how the exact solution at later times t(x, t) would be very difficult to calculate 
after wave interaction. However, Godunov's method does not calculate the 
exact solution but the cell average. The method relies only on the fact that 
the star state solution along the intercell boundary remains constant during 
the time interval. 

i-112 Ax 4112 
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Figure 4.9: The formulation of the WAF method. 

4.1.15 The WAF method 
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The Godunov method utilises the solution of the Riemann problem between 

cells (i, i+ 1) only along the intercell boundaries z'+ 1/2. This produces a first 

order solution which badly smears discontinuous waves. The weighted average 
flux method (N%IAF), is a high resolution method that was created by Toro [64]. 
This takes an integral in space over the solution to the Riemann problem at 
time t,, + ýýt- to produce an average flux as depicted in figure (4.9). 2 

As opposed to equation (4.113), the flux is defined as: 

F(Uj', Uj+ 1) =1 
f-Ts+1/2 

F(11ýn(X, 
At 

))dx (4.118) Ax 
s-1/2 2 

By doing this the accuracy of NVAF is extended to second-order accuracy by 
using more of the information contained in the solution to the Riemann prob- 
lem. 

i 4112 41 
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For the Riemann problem with N wave speeds S(k) and N+1 constant 
states, then the integral in space is trivial and the total flux can be represented 
as a weighted average of the flux in each constant region: 

N+l 
F(Uý, Un Wk-F k(U*(Un, Un j). (4.119) 

.7 j+ j+ 
k=l 

This is illustrated in figure (4.9) where the weights Wk are the geometric 
extents of the constant states in the integral. Define the Courant number as: 

S(k) 
(4.120) 

(Ax/yt-), 

the ratio of the wave speed over the speed associated with the mesh dimensions. 

Simple geometry shows that the weights are given in terms of the Courant 

numbers: 
Wk "1 

(Vk 
- Vk-1)7 VO :- -11 Vn+I ` 17 (4.121) 

2 
for k= l, n+l. 

4.1.16 Oscillations & TVD Regions 

In 1959 Godunov proved that a second-order method would create spurious 
oscillations behind discontinuities [62]. The NNIAF method removes these oscil- 
lations by constructing total variation diminishing (TVD) constraints on the 

solution- which effectively reverts the solution to first order accuracy near 
discontinuities. The TNID region achieves this by modifying the upwind and 
downwind contribution to the intercell flux. Consider the Riemann problem 
between cells (i, i+ 1); the weights 147k. control the flux contributions between 

each wave k of the solution. These are explicit functions of the Courant num- 
bers vk- associated with each wave. The distribution can be altered by replacing 
the Courant numbers with 'modified' Courant numbers vk: 

147 
111 

(4.122) k. ý -- 2 
(Vk- - Vk-1)' 

Since generally vk'. are greater than vk., vk' is called the amplified Courant num- 
ber. The effect of this is to increase the upwind contribution and decrease the 
downwind contribution in the flux formulation. The amplified Courant num- 
bers are a function of the original Courant numbers and a parameter ri+1/2- 
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This parameter measures the ratio between the change in the flow-field upwind 
compared with local change in flow variables: The parameter ri+1/2 is given as 

ri+1/2 "".: 
(Aq),, 

p,,, (4.123) 
(Aq)jý, ' 

where the local change Aql,, = qj+1 - qj and the upwind change depends on 
the sign of the wave speed: 

f (Aq)i-1/2 = qi - qi-l; A (k) > 0, 
t (Aq)i+3/2 = qi+2 - qi+l; A (k) < 0. 

(4.124) 

Then the amplified Courant numbers are 

I vk. = AkVk-i (4.125) 

where 

Ak = A(vk., ri+1/2)- (4.126) 

ror some simple scalar equations a rigorous derivation of the TVD region can 
be carried out. However, for systems of non-linear equations the TXID region is 

cnipirical but nevertheless performs very well and has been extensively used. 
The function in equation (4.126) can be defined in a number of different ways. 
The two amplifiers that are given as options here are the Minbee amplifier and 
Van-Leer's amplifier. Van-Leer's captures discontinuities more sharply but the 
Minbee produces better resolution of smooth waves. The Courant number 
amplifiers are given by: 

Ak ý-- 
1- (1 - lvk. I)Bk 

(4.127) lVk-I 

where the constant Bk is a standard flux limiter function. 
Minbee 

7'i+1/2 < 0; 0 

B ri+1/2 0< ri+1/2 < 1; (4.128) 
1 ri+1/2 > 

Van-Leer 

B=0 2r, +112 
ri+1/2 < 0; 

(4.129) 
1+r, + 1/2 

ri+1/2 >0 
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4.1.17 Boundary Conditions 

The inviscid Euler equations have only one physical boundary condition at 
fixed walls. This states that the velocity normal to the wall must be zero. For 
the one dimensional problem this implies that at the fixed boundaries of the 
domain x=0 and x=1: 

u(0,1) = 0; u(1, t) = 0. (4.130) 

However, the solution structure of the Euler equations also provides sets of 
numerical boundary conditions that must be implemented into the solution 
methodology to provide a correct solution. For Riemann-type methods this 
involves solving a Riemann problem across the fixed boundary x=0 where 
the left-side, that is outside the domain, has imposed initial data: 

UL " -Uolo+; UR UOIO+; (4.131) 

PL Polo+; PR Polo+; (4.132) 
PL Polo+; PR Polo+; (4.133) 

CL " Colo+; CR Colo+i (4.134) 

%%, here 0+ denotes known initial data inside the domain adjacent to the fixed 
wall at x=0. Similarly at x=1 information is required for the right-hand 
state: 

UL ---: Uoll-; 1117 " -Uoll-; (4.135) 

PL Poll-; PR Poll-; (4.136) 

PL Poll-; PR Poll-; (4.137) 

CL " Colt-; CR Coll-, (4.138) 

where I- denotes known initial data inside the domain adjacent to the fixed 
wall at x=1. This means that Riemann problems are solved with equal left 
and right data for the pressure, density and mass-fraction and UL = -UR for 
the velocity. These choices are based on the simple structure of the solution to 
the Riemann problem. By using this set of initial data for any fluid velocity, 
at the cell centres of the cells adjacent to the boundaries, the solution to the 
Riemann problem will give zero velocity along the boundaries which will satisfy 
the physical boundary conditions. A more general description of the derivation 
of boundary conditions can be found in [75). 
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Figure 4.10: A test model. 

4.1.18 Summary 

cross-section 
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The WAF finite-volume scheme will be used to solve the governing equations. 
This requires the solution to the Riemann problems between adjacent cells. 
The structure of the Riemann problem for this set of equations has been out- 
lined above. The IILLC method will be used to give an approximate solution 
to the Riemann problem. This numerical method should produce an accurate 
solution to the homogeneous hyperbolic problem over some time interval. 

4.2 System of Stiff O. D. E. 's 

As described in the previous chapter, a stiff ordinary-differential- equation 
package, written by Hindmarsh [56], is used to solve the second part of the 
operator split. The solution from the homogeneous hyperbolic problem is used 
as initial conditions for the ordinary differential equation. The final solution 
that is produced by solving this initial value problem is the full solution of the 
complete set of equations 

4.3 A Test Problem 

A very simple test problem will be considered as described in [76]. This con- 
figuration is frequently used to compare interior ballistics CFD codes. 

Figure (4.10) shows a cylindrical combustion chamber which is 0.762m long 
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and has a uniform cross-sectional area of 0.01368m'. A projectile is placed at 
one end of the chamber which, in a ballistic simulation, can move. However, 
not to further complicate the problem, a very high resistance pressure is placed 
here that prevents movement of the projectile so that the chamber volume is 
fixed. The opposite end of the chamber is called the breech. The initial gas in 
the chamber is at ambient conditions. In a typical two-phase simulation the 
vessel will be full of propellant particles which will start to burn. However, 
since this model does not include a solid phase, reactant gas (produced by 
gasification of propellant) is fed into the chamber via a tube that runs down 
the axial length. Gasification is initiated once the local temperature in the 
chamber rises above the solid decomposition temperature Td and a typical value 
of 444K is assumed. The temperature in the chamber raises from ambient to 
the decomposition temperature due to a constant supply of inert igniter gas 
also fed through the tube. Whilst reactant gas can be fed along the entire 
length of the chamber, the igniter gas is only vented along a sixth of the axial 
length, 0.127m, starting at the breech. The reactant gas has the capacity to 
release large quantities of chemical energy but the igniter gas is assumed to be 
inert. This means that the igniter does not have any chemistry associated with 
it and only introduces thermal and kinetic energy into the chamber. The rate 
of addition of reactant gas 7in and the rate of addition of igniter gas rhig can 
be seen in the table (4.1). Initially there would appear to be a large disparity 
between the two which may seem to be unrealistic since it is the propellant that 
eventually drives the entire combustion process. In present ignition models 
once the temperature rises to decomposition, gasification proceeds using the 
law iii oc p". This produces a discontinuous jump in ýn which is highly unlikely- 
it is more plausible to expect that once the local gas temperature approaches 
the decomposition temperature, the gasification iii will increase slowly from 
zero. In this case only very small quantities of reactant mass will be introduced 
into the chamber, so initially a relatively low value of rh is realistic. 

There are no heat losses from the chamber Nvalls and gravity is neglected. 
All sources of mass are assumed to be constantly distributed over the cross- 
sectional area so that the problem is one-dimensional. Other necessary param- 
eters are given in table (4.1). 

To and po are the ambient temperature and pressure; -y is the ratio of 
specific heats; R is the universal gas constant; IV is the molecular weight of 
the ga-s; b is the covolume; Q is the heat of formation; L is the latent heat; 
th is the rate of addition of reactant gas; rhi_, is the rate of addition of igniter 
gas, A. is the frequency of collision and ncell are the number of cells in the 
domain. 
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Table 4.1: A model one-dimensional problem. 
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The most influential chemical parameter, as found in the parametric anal- 
ysis in the previous chapter, is the activation energy. To illustrate the effect of 
chemistry on the combustion cycle, two widely different values of the activation 
energy will be chosen. Firstly a 'low' value for EA/R equal to 5000K, followed 
by a higher value of 15000K. Flow variable histories are shown that were pro- 
duced using the numerical methods described above. These were performed 
on a very fine five hundred cell mesh. Solutions for the low activation energy 
will be considered and compared with the high activation energy solutions. 

4.3.1 Flow Variable Histories for EA/R = 5000K 

The figures (4.11) to (4.16) illustrate the pressure, gas velocity, temperature, 
mass-fraction and reaction rate, respectively, over the whole combustion cham- 
ber over the first 47-ns. Figures (4.17), (4.18), (4.19) show profiles of flow 
variables at times 0.75ins, lins, 1.5nis and figures (4.20), (4.21), (4.22) show 
profiles at 4ms. 

Tile venting of igniter gas over the first sixth 0<x<0.127m of the cham- 
ber length causes a rapid increase in the pressure, density and temperature in 
this region illustrated in figures (4.17) and (4.18). A compression wave forms at 
the end of the igniter length which travels towards rthe projectile base shown 
in the pressure history in figure (4.11). The fine mesh produces very good 
resolution of this shock wave illustrated in the full flow histories and in the 
pressure profile in figure (4.17). At 0.75ms the shock has traveled to 0.525m. 
and the expansion fan is also seen in the region of the igniter. Temperatures 
between 0<x<0.127m quickly rise above the decomposition temperature 
444K, seen in figure (4.17), which causes high velocity gradients due to the 
passage of gas into colder regions towards the projectile base demonstrated 
in figure (4.18). Once the local temperature rises above the decomposition 
temperature, reactant gas is fed into the chamber due to gasification of the 
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propellant. The introduction of reactant gas can be clearly seen in the early 
time mass-fraction profile in figure (4.19) and in the history in figure (4.15). 
There is a straight line feature in the mass-fraction history that lags behind the 
shock wave extending between (0.02m, 0.2ms) to (0.64m, 1.5ms). By consult- 
ing the mass-fraction profile the plot displays non-zero mass-fraction between 
0.127m <x<0.26m at time 0.75ms. Since the temperature over this inter- 
val, away from the igniter region, is lower than the decomposition temperature, 
why does mass-fraction appear in these regions since it cannot be produced 
locally? By comparing the speed of the shock wave and this feature, it can be 
easily seen that this is a path of particle paths as in [771; the reactant is being 
convected from the hot region into the cold region by the high velocity gas. 
The change [u] in the flow velocity across a shock of Mach numberklo is given 
by [78] 

'o +i 
(mo - Nij (4.139) 

where ao is the sound speed ahead of the wave. When the flow speed ahead 
of the shock is zero, as it is in the case of the primary shock shown in figures 
(4.11) and (4.13), [u] is actually equal to the flow speed behind the shock. 

Figure (4.11) shows that the pressure ratio across the primary shock at 
0.762m is about 4.55. Since the connection between pressure ratio and Mach 
number for a normal shock is 

p2 

(4.140) 
PO +1 

it follows that, with the value for -j of 1.2627, the primary shock in figure 
(4.11) has a Mach number A10 : -- 2.04. From the formula for [u] we see that, 
as a consequence, [ul/ao ý-- 1.37. 

The time for the primary shock to travel 0.762m is determined from figure 
(4.11) to be about 1.03nis. The time for the 'reactant-wave' to travel the same 
distance is determined from figure (4.15) to be roughly 1.48ms, i. e. about 1.42 
times longer than it takes the primary shock to travel the same distance. The 
ratio of Alo to [u]/ao is equal to 2.04/1.37 c-_ 1.49, which is close enough in 
the circumstances to 1.42 for us to conclude that the 'reactant-wave' is indeed 
following a particle path. 

Since reactant mass-fraction rises sharply across this feature it will be called 
a 'reactant wave'. The gradual build up of reactant gas indicates that the 
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temperatures are still too low to provoke any large consumption of reactant 
gases and temperature increases at this stage are mainly due to the adiabatic 
addition of gas. This can be seen from the rate of reaction plot in figure 
(4.16) which remains low over the first 1.05ms although marginally higher in 
the hotter igniter region seen in figure (4.19). Now consider what happens 

at a later time ; zý 1.25ms. The primary shock travels down the chamber and 
strikes the fixed projectile base at approximately lms. The shock reflects 
producing a large jump in temperature displayed in figure (4.17) behind it to 
above 444K. This switches on gasification behind the shock explaining the 
sudden growth of mass-fraction in figure (4.19) and density in figure (4.18). 
The shock causes rapid deceleration of gas velocity. At (0.64m, 1.5ms) the 
reflected shock intersects with the reactant wave that is travelling towards the 
projectile base. The combination of high concentration of reactant mass and 
high temperature switches on the exothermic reaction (which is controlled by 
the rate -pQc 2 where Q= Aqpexp(-EA/7ZT). The reaction causes further 
increase in temperature and the consumption of mass-fraction is indicated 
by the low values of mass-fraction that can be seen at this point. If the 
definition of ignition is taken, from the previous chapter, as being a point of 
temperature increase along with the initiation of a runaway very exothermic 
reaction, then this point of intersection can be seen as the precise time and 
location of ignition. Since it is the igniter configuration that determines the 
flow field in the above example and the chemical rate parameters that describe 
the relationship between temperature and release of chemical energy, these 
are two of the major factors that influence the location of ignition (this will 
be further illustrated in the following example with EAIR = 15000K). The 

reflected shock bends as it travels towards the breech indicating that the shock 
is accelerating due to the addition of mass and release of chemical energy. Any 

reactant mass in its path is consumed figures as illustrated in figure (4.15) 
which continues to feed the shock wave. Once the shock reflects off the breech 
the mass-fraction remains low. 

By using the spatially independent analysis of chapter one, it call be seen 
that equilibrium conditions are approached once: 

PSIC 2 -+ 
M= ')9.2kg/m 3 sec. (4.141) -T - 

The reaction rate plot at 4ms displays reaction rates much higher than this 
implying that equilibrium conditions have not been attained. In fact the plot 
shows a sharp peak at x=0.4m corresponding to conditions of high reactant 
concentration and temperature. This is precisely the position of the shock 
front which is again travelling towards the base as illustrated in figure (4.20). 
Tile continued effect of the igniter gas is still apparent. 



Ms CHAPITJ? 1. 'I'll E' ON/,, '- DIA IF'NSIONA 1, PHO1311'. 11 

Pressure (MPa) History 
31 
30 
28 
27 3,5 
20 
25 
24 3.0 
22 
21 
2.0 2.5 

2.0 

14 

12 1.5 

10 
09 

- 08 1.0 

- 07 

- 06 

- 04 

- 03 

- 02 

- 01 

2 0.3 0.4 0.5 0.6 0.7 
distance m 

Figure 1.1 1: Pressure history for PIA/IZ ý 5000A' over the first 4m. s. 
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Figure 4.19: Mass-fraction and reaction rate profiles at t=0.75ms (full line), 
t= lms (dashed line) and t=1.5ms (dotted line). 
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Figure 4.21: Density and gas velocity profiles at t= 4ms. 
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4.3.2 Flow Variable Histories for EAIRT = 15000K 

At the early stages there is little difference in the histories for pressure, density, 

velocity and temperature- igniter gas heats up the breech producing a shock 
wave and rarefaction fan. 

However, consultation of the profile at 0.75ms in figure (4.31), differs from 
the lower activation energy picture in figure (4.19), due to a greater build up 
of c. This is because the high value of activation energy means there is insuf- 
ficient thermal energy to produce significant consumption of reactant. This 
idea is reinforced by comparing the reaction rate plots for the two activation 
energies which significantly differ. Since relatively small quantities of mass- 
reaction are being consumed the total energy increase is due to mass addition 
and negligible chemical energy is being released into the system. A reactant 
wave forms also due to the convection of reactant gas from the hot igniter 
regions displayed in figure (4.27). The shock reflects, as before, switching on 
gasification behind it. However, when the reflected shock and reactant wave 
intersect, the mass-fraction history shows that c does not decline indicating 
that ignition has not occurred. In fact the higher temperature behind the 
shock simply induces more gasification without any chemical energy release so 
that c increases. This can be confirmed by consulting the reaction rate profile 
which remains low during these early times in figure (4.31). The intersection 
of the shock and reactant wave do however produce a feature that indicates 
a minimum in mass-fraction. This is since additional reactant is created at 
(0.64rn, 1.5ms) and after this time, the reactant is least for tile particle paths 
at this point. As the shock travels towards the breech the high temperatures 
gasify propellant introducing more reactant but the high activation energy 
means that tile reaction rate remains low and little reactant is consumed. 

At 41ns the manifestation of this can be seen by comparing the pressure 
and temperature in figures (4.20) and (4.32). The temperature plots shows a 
difference in magnitude of approximately 50A' that is a result of the difference 
in chemical energy release. The shock for the lower activation energy is also 
travelling faster. The difference in the reaction rates is also significant from 
figures (4.22) and (4.34). 

For this second case, one interesting observation is that throughout the 
combustion cycle the mass-fraction in the igniter region remains at approxi- 
mately 0.0022 as seen in figure (4.34). This can be explained by considering 
the density and mass-fraction equations. 
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0a 
T(P) + T(pu) = rh + rhig (4.142) 

tx 
aa T(pc) + T(puc) 

m+K (4.143) 
tx9 

As explained above, at this activation energy and temperature range the reac- 
tion rate is very small i. e. Q ;: tý 0 and thus K is almost zero. The mass-fraction 
(4.143) equation can be expanded and written as: 

c9c 0caa P ýTt- +Pu Tx + C. ý ; Zý 
± 

(4.144) 
ý5tp 

+ Txpul 2 

By using the density equation (4.142) this can be written as: 

Dc tiz 1 criiig (4.145) iW =p (2 - C) -p 

The steady-state solution is given as: 

Dc 
Tt 0 

C 
7-h (4.146) 2(iii + niiq) 

If this value of mass-fraction has been attained it will remain constant in time. 
Substituting the parameter values rii = O. Skg1msec; nij, = 178.81kg1? nsCC 
gives: 

c=2.29 x 10-3 (4.147) 

This shows that the mass-fraction remains almost constant in this region over 
time because the steady-state has been attained. 

The figures from (4.23) to (4.28) illustrate the pressure, density, gas veloc- 
ity, temperature, mass-fraction and reaction rate, respectively, over the whole 
combustion chamber over the first 4ms. 

Figures (4.29), (4.30), (4.31) show profiles of flow variables at times 0.75nis, 
lms, 1.5ins and figure (4.32), (4.33), (4.34) show profiles at 4m. s. 
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Figure 1.25: Gas velocity history for EA/IZ ---: 1500OR' over the first 47ns. 
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Figure 4.28: Reaction rate history for E, I/IZ = 15000A' over the first 4ms. 
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Figure 4.29: Pressure and temperature profiles at t=0.75ms (full line), t 
inis (dashed line) and t=1.5ms (dotted line). 
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Figure 4.31: Mass-fraction and reaction rate profiles at t=0.75ms (full line), 
t --: - lms (dashed line) and t=1.5ms (dotted line). 
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Figure 4.33: Density and gas velocity profile at t= 4ms. 
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Figure 4.34: Mass-fraction and reaction rate profiles at t= 4ms. 
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4.4 Summary 

Just as the previous section gave us a sound understanding of the evolution 
of chemistry in time, here important relations between fluid flow properties 
and chemistry have been illustrated. Some of the controlling factors that can 
influence the time and place of ignition have been deduced. Most equilibrium 
models can only model the ignition process by assuming combustion is initiated 
once the local temperature has risen above a critical temperature. This means, 
in the case illustrated above, ignition occurs in the region in which igniter gas 
is being fed - at the breech end. However, ignition has often been observed to 
occur towards the projectile base and most interior ballistic models have been 
unable to predict this. The solution of the chemical equations presented above 
can give one possible mechanism of how this can occur and clearly this could 
not be predicted without tracking the movement and evolution of gas-phase 
reactant species. 

The example problem posed is rather artificial since the effect of the solid 
motion has been completely neglected. However, by considering the gas alone 
some clear ideas have been developed which may have become obscured if the 
more complicated problem was considered. Later, two-phase flow equations 
will be derived that include the chemistry described above. Perhaps some of 
the features observed above will not be so different in the more complicated 
flow regime. 



Chapter 5 

Two-Phase Flow 

There are numerous two-phase flow sets of equations that have been developed 
for propellant systems [6], [9), [211 which use slightly different approaches. 
In this work, the equilibrium two-phase flow equations that were derived by 
Gough [8] will be developed to include the non-equilibrium chemistry that was 
described in chapter 2. Gough takes mathematical averages of flow variables, 
for the two-phase mixture, in space and time to develop a set of average two- 
phase flow equations. In multiphase flow theory, the approach is based on 
the idea of separated flow as opposed to the continuum approach, adopted for 
example, by Soo [79]. A full account of the derivation without chemistry can 
be found in [8). 

5.1 Definition of the Average 

Consider the domain given in figure (5.1) that consists of a mixture of gas and 
propellant. The domain is of volume V, the surface area of the domain is S and 
the vector normal to S is given as n. The idea behind the averaging process is 
to average the point variables over regions that are large compared to the scale 
of heterogeneity of the mixture. In this way the averaging acts as low pass 
filtering which eliminates unwanted high frequency signals from local instant 
fluctuations of variables. The statistical properties of these fluctuations are 
taken into account during the derivation of the equations. 

To formally average the two-phase flow mixture it is necessary to define 
a weighting function g(y - x, -r - t) that reflects the influence of remote 

123 
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n 

S 

Figure 5.1. - Domain 

points (y, 7-) on the average that is formed at (x, t), where x and y are three- 
dimensional vectors. The requirements on g are identical to those described 
in [80]; g must be non-negative and the integral of it over all space and time 
must exist. Then g can be assumed to be normalized such that: 

Jap. 

ce, time g(r, i)dVdt = 1. (5.1) 

Without going into unnecessary detail about the nature of the weighting func- 
tion, it is important to highlight some physical aspects associated with this. 
The weighting function has a 'radius' associated with the region over which 
the averaging takes place. This radius must be large compared to the par- 
ticle spacing but small relative to the size of the physical dimensions of the 
vessel containing the two-phase mixture. In this case, the averaged variables, 
derived below, are insensitive to the detailed form of the weighting function 
and are uniquely determined. This statement provides a lower limit on the 
computational mesh, below which the validity of the average equations fails. 

The void fraction or porosity may be defined in terms of g according to 

C(X, t) = 
IR 

g(y - x, 7- - t)dlld7-, 1 (5.2) 

where R is the region occupied by the gas. The porosity defines the fraction 
of the total volume that is occupied by gas at (x, t). An average value of any 
gas property V, can be defined using the above relations: 

g(y -x, 7- - t)O(y, r)dVd7-. 
, 1) j, 

(5.3) 

The average properties in the solid phase are determined in an analogous 
manner. Note that the equations are integrated over all time and space. 
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The averaging procedure is applied to the microscopic equations. These 
equations contain derivatives and so a commutation principle is required to 
describe the effect of the order in which differentiation and averaging are per- 
formed. The following identities describe this: 

Let xi be a component of x at which the average is formed. Since the region 
of integration depends on x then: 

c(x, t) (0 (x, t)) -jxi 
[g(y - x, 7- - t)O(y, -r)]dVd-r. 

IR (5.4) ýix 
i 

Now the integrand on the right-hand-side can be written as: 
00 

(Y, 
0 

[g(y 
- X, 7- 1)V) (Y, 7)] = 9(Y - X, 7- 1) 

Lo 
7)- [g(y - X, 7- t)ý)(y, 1)] 

(9xi Dyi ä-yi 
(5.5) 

Accordingly an application of the divergence theory yields: 

C(X, WO(x, 0) = C(X, t)( a O(x, 0) - 
JE O(y, 7-)g(y - x, 7- - t)nidA, 

Oxi 
(5.6) 

where '. I' is the region of integration defined by the interface between the media 
and all time, w is the velocity of the interface and n is the normal to the 
interface taken as positive out of the medium for which the average is being 
formed. 

Similarly we have: 

ac 
(X, 0 (0 (X, 0) (X, t) (a -V'(X, t)) + V, (y, 7-)g(y - x, -r - t)w. ndA. it- 5-t 

is 

(5.7) 

The above identities, in particular (5.6) and (5.7), are key to the formal 
replacement of the microscopic equations by the governing equations for the 
average properties. 

The surface integrals that will appear in the following averaging proce- 
dure can be interpreted in a more physically meaningful manner if they are 
simplified: 
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The term fE gdA is the average surface area per unit volume. Let VP 

and SP be the volume and surface area, respectively, occupied by the 

propellant Providing that VP and area SP have locally similar volume, it 

can be shown that: 

sp 
gdA = (1 - c)- (5.8) JE vp. 

9 The velocity of the interface can be expressed as: 

uP +ný, (5.9) 

where uP is the particle velocity and ý is the rate of regression of the 
propellant surface. 

The term fE gOdA is in effect the definition of the average 0 over the 
interface -7, apart from the normalizing factor given in equation (5.8). 
Many of the important transfer processes between the solid and gas such 
as mass, heat and friction losses can be quite naturally expressed in terms 
of surface averages. Define the surface average of 0 as: 

fEgodA 
fE gdA 

Since this surface average is in general not equal to the overall average, 
define the fluctuation field associated with the tensor 0: 

0 11 = V, - (V, ). (5.11) 

Provided that 

«0) = (0), 

then it follows that (0") = 0. Physically this means that only the charac- 
teristics of the flow that are large compared with the domain of influence 
of g are embedded in the theory. 

9 From this it follows that: 

(0 VI) = (0) (0) + (0 

9 Finally two more identities will be stated; for the surface average 

(O)gdA gdA, 
s 
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and 

R(O)VgdVd7 
= -Vc(O). f 

This last equation is identical for the integration over the region occupied 
by the solid. 

A fuller explanation of the above items are given in the thesis of Gough 
and are included here only for completeness of the following mathematical 
derivation. 

5.1.1 The Microscopic Equations for the Gas-Phase 

Equations of motion can be given for each individual phase in the two-phase 
flow mixture. The Euler equations for the gas-phase are given as: 

0 
ät P+V. pu = 0; 

PC+ 17. pcu = K; 

c9 - j-pu + V. (puu + T) = 0; 
1 1 

a 
p(e + U. u + 2cQ) + V. pu(e + U. U + 2cQ) + u. T +q0; (5.19) Ný 1? 2 

where p is the gas density, u is the gas-velocity, c is the mass-fraction, e is 
the internal energy of the gas, K is the rate of reaction, Q is the energy of 
combustion in the gas-phase and q is the heat flux. T is the stress tensor which 
is positive in compression and assumed to be symmetrical. The expression um 
signifies the outer product of u with itself. 

These are identical to Gough's equations apart from the inclusion of a mass- 
fraction equation which also introduces a further term into the total energy 
formulation. 

5.1.2 Boundary Conditions 

The boundary conditions for the two-phase reactive flow are given at the gas 
solid interface by: 
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p(u - w). n = 

pc(u - w). n = 
[TC + pu(u - w)] -n = 

u+ p(u - w)(e + U. U + 2cQ) n= 

pP (UP - w). n; (5.20) 

pp 
2- 

(UP - w). n; (5.21) 

[TP + pPUP(uP - w)] n; (5.22) 

TP. Up + pp(Up - w)(Qp + up-U P n; 

(5.23) 

where the superscript p denotes the solid phase properties and QP is the 
solid propellant energy of combustion. 

Again, these are almost identical to those given in Gough's paper where now 
there are two energies of combustion, the energy released due to the gas-phase 
combustion and the chemical energy inherently contained in solid propellant 
prior to burning. The old form of the energy transfer at the boundary can be 
recovered by setting c equal to zero in (5.23). In this case the energy equation 
implies that the chemical and kinetic energy in the solid-phase are transferred 
to gas-phase thermal and kinetic energy. In the new formulation, with non- 
zero mass-fraction, the solid-phase energy is now transferred to thermal energy, 
kinetic energy and chemical energy is carried by the reactant species where it 
may be released at a later time. The implication being that the energy of 
combustion of the solid propellant QP is not equal to the gas-phase energy 
of combustion Q. The boundary condition given for the mass-fraction states 
that at the interface half of the propellant decomposes into reactant 0 and the 
other half into F. 

5.1.3 The Mass Equation 

In order to gain some understanding of how the averaging process works, the 
conservation of mass will be derived in an identical manner as by Gough. 

The conservation of mass is given microscopically as (5.16): 
a- 

p+V. pu = 0. 

Multiplication by the weighting function g and use of equations (5.6) and (5-7) 
gives: 

5-tc(p) + V. F-(Pu) gp(u - w). ndA. (5.24) 
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Expand (pu) according to (5.12) and neglect the correlations (p"u"). Use the 
jump condition (5.20), the identity (5.8) and (5.9) to give finally: 

a sppp ýt-c(p) + V. C(P)(u) = (1 - C) VP 
Mi. (5.25) 

The term on the right-hand-side is the exposed surface area of propellant 
multiplied by the rate of mass transfer from the surface that is the expression 
is equivalent to the term 7in. 

5.1.4 The Mass-Fraction Equation 

This is derived in an analogous fashion. 

The mass-fraction equation is given as (5.17) 

a 
pc + V. pcu = K. 

at 
Multiply the mass-fraction equation by the weighting function g and then 
integrate over the region occupied by the gas. Using (5.6) & (5.7) produces 
the result: 

0 
ä IF(PC) 

+ V. C(PCU) = -E(Iý) - 
is 

gpc(u - w). ndA. (5.26) 

Expand (pc) and (pcu) according to (5.12) and neglect the correlations (p'Y') 
and (p"c"u"). Finally use the jump condition (5.21) , the identity (5.8) and 
(5.9) to give 

C9 p 
-j- c (p) (c) + V. c (p) (c) (u) =c (K) + (I - c) 

L! f (ý)'. (5.271) 
t 21/p 

5.1.5 Further Equations 

The derivation of the momentum and energy equations are analogous to the 
derivation of Gough apart from a slightly different definition of the total energy 
of the gas: 

p(tz +e+ 2cQ), (5.28) 

where tc = lum is the kinetic energy. The solid-phase mass and momentum 2 

equation are unchanged. 
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5.2 The One-dimensional Non-equilibrium Equa- 
tions 

The set of two-phase, chemical, one-dimensional equations will be stated here. 
Note that the notation (. ) is dropped here for the sake of brevity, however, it 
must be remembered that all flow variables are averages. 
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x Ox 
+D; (5.34) 

00 
(N) + (NIIP) = 0; (5.35) 

where the new variable N is the number of solid particles. Fragmentation or 
coalescence of the particles is assumed not to occur. 

5.3 Numerical Solution 

The basic strategy to computing two-phase flow using Godunov type methods 
was set out by Toro in [81]. These ideas, as outlined in some detail in [82], and 
the method applied to the single-phase ignition model of chapter 4 are used to 
solve the system of equations with a reactive species. Specifically, this involves 
time-operator splitting which produces a homogeneous hyperbolic problem for 
the gas and solid phases followed by a system of ordinary-differential-equations. 
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5.3.1 Time-Operator Splitting 

The system of partial differential equations can be written in the form: 

Ut + F(U)., = S(U) (5.36) 

where U, the vector of conserved variables, is given by. 

U= (Ug, Up)T; 

Ug = (ep, epc, epu, cE)T, 

UP = ((I - E)pP, (1 - c)pPuP, N)T (5.37) 

and the flux and source terms, F(U) and S(U), are functions of U. 

The method of fractional steps is used to split the problem into subprob- 
lems so that the flow equations and source terms may be handled separately. 
The flow equations are then further split to handle the gas and solid phases 
individually. The solution procedure then involves two hyperbolic problems 
for the gas-phase and solid-phase, 

Ul + Fg (U9) = 0; (5.38) 

UPt + F. P, (UP) = 0; (5.39) tx 

followed by the solution of a system of ordinary differential equations that 
takes into account the source terms 

Ut = S(U). (5.40) 

5.3.2 The Homogeneous Hyperbolic Problems 

In this section a lengthy discussion will be included to address some of the 
mathematical difficulties associated with the flow equations of Gough, and 
more generally, flow equations for two-phase incompressible flow. 

According to Drew [83], early work on the problem of a particle immersed 
in a fluid dates back to as early as the late eighteenth century. However, in 
this work more recent studies will be considered. Some very influential books 
on the theory of two-phase flow began to emerge which brought together the 
ideas developed over previous years for a variety of diverse applications. For 
example the books by Soo [10] and Boothroyd [84] concentrated on mixtures 
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of particle-fluid motion. The work of these authors was based on the origi- 
nal work by Truesdell & Toupin [85] which provides the idea that each single 
phase can be treated as a continuum which occupy the same region in space. 
From this equations of mass, momentum and energy for each phase can be 
deduced along with jump conditions at the interface between the two-phases. 
The model derived by Gough [58] adopts a more intuitive averaging approach 
that allows the two phases to occupy distinct regions of space, described as the 
separated flow theory. The method derives macroscopic quantities from the 
microscopic equations for each individual phase. The paper by Drew similarly 
averages the equations but it is particularly relevant to some of the problems 
associated with the momentum equation. Drew applies the averaging process 
to two incompressible phases without phase changes. This produces just two 
mass and momentum equations which are of the same form as those derived by 
Gough but with fewer source terms, since Drew does not allow phase change 
and is just concerned with forces transmitted between the two-phases. The 
paper has an in depth look at the interrelation of the two phases and how 
forces are transmitted. He notes that for the intergranular stress model sug- 
gested by Gough [11] -where the intergranular stress becomes zero above a 
certain porosity- that in this case the particle momentum equation becomes 
meaningless. More importantly, he states that generally the one-dimensional, 
incompressible, inviscid-flow equations without virtual mass effects is ill-posed. 
By studying the equations he illustrates how the system is fundamentally un- 
stable so that small scale phenomena grow rapidly distorting the true solution. 
This situation does not improve by extending to two or three dimensions and 
the system is still ill-posed. He concludes that the equations do not treat 
small-scale phenomena correctly: 

'This seems to imply that an inviscid model is nowhere valid for 
two-phase flows, that is, viscous or eddy stresses are important 
everywhere. ' 

Although the addition of virtual mass can make the system well-posed [86], 
Drew does not feel that this is the total answer. However, if viscous and 
Reynolds stresses are included the equations are parabolic and well-posed. 
Finally, lie notes some other contributions to this particular difficulty; Pros- 

perretti L van Wijngaarden [87) produce a well-posed system using certain 
compressibility assumptions and Stuhmiller [881 shows that if the form drag is 
taken in the form ýP21U2 -U1 12 then the system is well-posed for sufficiently 
large ý. The above discussion by Drew provides a good understanding of some 
of the detailed modelling that is required to produce a well-posed system. 
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However, although this addresses the difficulty with the inviscid two-phase 
flow model, Gough's system of equations has added complexity due to the fact 
that there are not two incompressible phases, but one compressible and one 
incompressible phase. In the work by Gough et al., the mix of high speed gas 
dynamics and incompressible solid particles in the flow is avoided by insisting 
that supersonic flow can only occur in gas regions only. If this is not assumed 
to be the case, then the buoyancy force can be extremely high causing ax 
propulsion of solid propellants and high solid density regions. In the model that 
assumes an incompressible solid, there is a theoretical minimum in porosity 
that can be violated if the buoyancy force is too high. In fact Harlow 
Amsden [89) commented that 

'the effect of the factors c and 1-c modifying the pressure, gradi- 
ents, amplify the tendency for particles to clump together' 

so it is not surprising that in the presence of shock waves difficulties arise. 

Experimentally [901, when a strong end-pad igniter' is adopted to ignite a 
granular propellant bed, this will force the movement of propellant away from 
the breech producing a region of ullage and the moving solid particles coagulate 
into a dense plug. This is the sort of scenario that can be produced using 
the governing equations in their present form. The most obvious suggestion 
would be to simply go the whole way and choose a mathematical model that 
performs well beyond the limit of the model proposed by Cough. This is 
to assume compressibility of both phases and to adopt the well-posed and 
robust model that was developed by Baer k Nunziato [211. In their work- 
which is developed to predict DDT in granular explosives- equations of mass, 
momentum and energy conservation are taken for both phases, equations of 
state for both and finally a compaction equation that controls the change in 
porosity. However, it could also be argued that such a model is not necessary 
for the bulk of the burning cycle and perhaps special consideration could be 
made to allow for the more extreme circumstances that arise (usually) during 
the early times. Further, the work by Stewart et al. [91] addresses the issue, 
that this approach may be unnecessarily complicated, and constructs a much 
simplified system of equations that may be used to model the compaction 
process. 

However, the real issue is, does the neglect of important terms (such as vir- 
tual mass) exaggerate compressibility effects or is the neglect of compressibility 

'An end-pad igniter heats the propellant bed by venting igniter from the breech only 
producing a highly one-dimensional problem with strong pressure waves. 



134 

effects producing unphysical solutions? 

CHAPTER 5. TWO-PHASE FLOW 

Dimitrenko & Smirnov [92) simply neglect the pressure gradient at the 
interface using the argument that this is small compared to viscous drag effects. 
Soo [93] provides an argument to suggest that the virtual mass effect is of the 
same order as the buoyancy term so can be used to cancel this out altogether. 
Although the proposition that these exactly cancel is unlikely -a stationary 
fluid subject to a pressure gradient will start to move without the effect of 
drag- the virtual mass may substantially reduce the net contribution of the 
buoyancy term and viscous drag will be the dominant force on the particles. If 
the buoyancy force is zero in the solid-phase momentum equation the system 
is well-posed [94) and it will be shown in this work that a shock wave can form 
in the two-phase region without instability emerging in the solid phase velocity 
profiles. 

Finally, many of the modern works on two-phase flow problems solve the 
Navier-Stokes equations rather than the inviscid equations. For example, the 
work of Gibeling et al. [22] is an extension of Gough's work. They use an 
existing Navier-Stokes code based on the internal ballistics code of Gough. In 
this work they note that artificial dissipation was employed to avoid numerical 
overshoots in the porosity. So the inclusion of the viscous terms does not 
remedy all of the difficulties described above. 

To summarise, the inviscid, incompressible two-phase flow equations are ill- 
posed. The problem can be alleviated by inclusion of virtual mass and a well- 
behaved system is obtained if the buoyancy term is neglected altogether and 
viscous drag included. Although the inclusion of viscous effects also produces a 
well-posed solution difficulties can still arise when the porosity dips below the 
theoretical minimum which is necessary due to neglect of compressible effects. 

5.3.3 The Solid-Phase Problem 

In this work, the pressure gradient term in the solid-phase equations is to 
be neglected which necessitates the inclusion of drag forces and intergranular 
stress to produce a physical and well-posed model. In this case, the homoge- 
neous part of the solid equations completely decouple from the gas-phase. It is 
in this respect that the work differs from the two-phase flow problem described 
in [821. 
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Figure 5.2: Riemann problem for the solid-phase. 

For the solid-phase this defines the system: 
UPj + FPx(UP) =0 

135 

(5.41) 

where UP = ((1 - c)pP, (1 - c)pPuP, N)T and FP = ((1 - f: )pPuP, (1 - c)(pPuP' + 
R), A, )T. R is the intergranular stress that is a measure of how particle-particle 
forces are included in the momentum balance. An eigenvalue analysis produces 
three wave speeds AP(') that are given as uP, uP + aP and V- aP where aP is a 
sort of 'sound-speed' associated with the granular fluid that is given bý - 

aP (5.42) 

which, as will be shown below, is given empirically. Thus the equations are 
totally hyperbolic and well-posed. 

Define eP =1-c, then the solution structure of the solid-phase Riemann 
problem is given in figure (5.3.3). 

The intergranular sound-speed is given empirically in the form 

P k 

R 

if C, < 60 
aP aLe-'(" -co) if (I < co < c. (5.43) 

0 if el > C* 
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where co is the settling porosity and aLi c* and k are experimental constants. 

The hyperbolic problem is solved using the weighted-average-flux scheme 
WAF) [64) as described in section 4.1.15. This requires the solution to the 

Riemann problem in the solid phase. 

5.3.4 The Solid-Phase Riemann Problem 

The HLLC method that was described in section (4.1.12) will be used to ap- 
proximate the solution to the Riemann problem in the solid phase where further 
details can be found in [81]. To recap, consider the Riemann problem: 

Ut + F(U), =0 

with initial left and right conditions Ui and U,. The solution of the Riemann 
problem is determined by finding the star-state variables and corresponding left 

and right fluxes, F*L and F'R. The HLLC method produces closed expressions 
for the left and right star fluxes in terms of the initial data and wavespeeds. 
The Nvave-speeds are estimated from the initial data and substituted into the 
derived formulations for the flux functions given in equations (4.95), (4.94) 
that is: 

F*L = FL + SL(Uý - UL)- (5.44) 

F'R = 
FR + SR(Uý - UR)- (5.45) 

These expressions can be rewritten as: 

qLU! - F*L ý SLUL - FL "Q 
SRUý - F*R: -- SRUR - FR =R 

where Q is the vector (qj, q2, q3)T and R is the vector (rl, r2, r3 )T. In the 
formulae, wave-speeds SL, SR and SAf are assumed to be known so by manip- 
ulating vector Q and R, and exploiting the fact that the star state velocity u' 
is equal to S, %I, explicit formulae for Uj and Uý can be obtained to substitute 
into equations (5.44) and (5.45). These left and right star fluxes are then used 
in the %%'AF method. 

The wave-speed estimates will be constructed from the shock/rarefaction 
relations in an analogous manner to the solution to the gas-phase Riemann 
problem. These formulations will be summarized here: 
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SL = up, - qlalp; Sm = up*; SR = uP, + qaP,; (5.46) 

where 

q,, 
Cp*/CP < 1; 

(5.47) C, ýC 7- _/C P_ ; f: p*/Ep > a 

These expressions are the exact shock or rarefaction waves relations for the 
solid-phase equations. To calculate the value Of SLi SR and SAj estimates are 
only required for cP* and up*. These are chosen according to the local flow 
conditions: 

Linear estimates for the star states are given from: 

fp P+ CP) 
C P. = -(UI - Ur) + 

(CI 
r (5.48) 

2& 1) 

U+ 
Ur) + 

zip (Cf, - Crp) (5.49) 
1) TO 

where ýP = 
V(7_1 

C_rp and Zip (aP + aPr)/2. 

Let: 

p Cmin =: min(cf, cP), cP max(cp, cP). (5.50) 
rMr 

if. 

p (min < fp* < f-pmar' (5.51) 

then linear estimates are used in formulae (5.47) and (5.46). 

Alternatively, if- 

(. 5.52) ep' < Emin < Ein 
x; 

(5.53) 

then the two-rarefaction approximation is given for cP' and uP*: 

cP* = CP exp 
Illp - Ilp'. (5.54) 

26-P 

u. =1 (ul + u, + iiPln P 
(5.55) 

Cr 
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Finally, a two-shock approximation will be adopted if- 

f-P* > EP > Omin (5.56) 
max 

CP* = 1/4(-b + Vb-2 _ 4C)2; (5.57) 

U* = u,,, ± a,, ((-P* EP., )/Nfcpcp*; (5.58) 

b= 
(U 

r-U I) A/P-2 
ip 

(5-59) 
&(VIC-P, + Van 

p 
c=- 

ýf-plfpr + V/Crepl (5.60) PC, + Vc-p-r 

This is sufficient information to calculate the solution to the Riemann prob- 
lems which are inserted into the construction of the WAF formulation as de- 
scribed in section 4.9. 

5.3.5 The Gas-Phase Problem 

Following the solution to the solid-phase equations, the solution of the gas- 
phase equations can be found. Any variables updated in the previous calcula- 
tion which are involved in the gas equations, such as porosity, remain constant. 
The hyperbolic problem for the gas-phase is defined as: 

Ug + F(U9), = 0. (. 5.61) t 

Writing 

119 = it; P, = cp (5.62) 

will transform the homogeneous equation into the identical form considered in 
chapter 4. From this position the equivalent numerical methods can be used. 

5.3.6 The System of O. D. E. 's 

This is defined as: 
a 

(PC) = ýn + rhig at 
(5.63) 
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m it- (fpc) =2- cpf2c, (5.64) 

0 (p(u) =p ac + rhuP -D (5.65) 
ax 

+ t 
(cpE) = ýn(Q + Ic. n iq e iq 

a(l - O(up) p dx uPD - TVj -q (5-66) 

49 (PP(l - 6)) = -ril (5.67) 

(PP(l - C)UP) = -ýW +D t 
(5-68) 

a jt (N) =0 (5-69) 

More simply this can be expressed as: 

Ut = S(U) (5.70) 

This system of equations needs to be solved over the whole spatial do- 
main and the solver used previously [95] in the single-phase ignition model, is 
adopted. However, there are some fundamental differences between the single- 
phase problem and the new posed two-phase problem. 

In the single-phase model there were four equations of mass, species con- 
centration, momentum and energy. For each cell i the stiff solver was called 
to solve a system of four equations and in this manner the new solution could 
be obtained over the entire domain at the new time-level. 

The immediate impression is that this method can be extended for the 
two-phase problem so that we have now mass and momentum equations for 
both phases, a species and energy equation for the gas-phase and finally a 
particle number equation for the solid phase. In total for each cell ia system 
of seven equations must be solved. Unfortunately, the two-phase flow equations 
involves a number of porosity derivative terms in the momentum and energy 
equations. These have been calculated in the past by using a second order 
central difference relation that is given in terms of the two-adjacent cells to 
any cell i e. g. for a uniform grid: 

OC(i) 
- ax 

C(i + 1) - C(i - 1) (5.71) 
2Ax 

This means that the ordinary differential equation in cell i is dependent on 
the conditions in the two-adjacent cells, that is, the equations across the entire 
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domain are fully coupled meaning that we have a system of o. d. e. 's with mx7 
equations where m is the number of cells in the domain. This entire system 
must be solved by the stiff solver. 

As can be seen from the above system, the right-hand-side of equations 
(5.63) to (5.69) involve a number of source terms. The accurate determination 
of these is fundamental in the modelling of propellant combustion. 

5.4 Source terms 

5.4.1 Rate of Mass Addition 

Mass addition to the system is controlled by the factors rhiq and rh. 

The rate of addition of igniter gas rhiq is a prescribed constant flux calcu- 
lated simply by dividing the total mass of igniter by the length of the primer 
tube and the duration over which the igniter-gas is vented. This factor will 
dominate the events at early times. Once combustion is sustained the high 
ratio between energy release due to propellant burning and any energy con- 
tribution from igniter gas will be so high that this term will be much less 
significant. 

The function ýn is perhaps the most important factor in the combustion 
problem since this controls the rate of energy release throughout the bulk of 
the burning cycle. Much of the early work concentrated on detailed calculation 
of this function. The rate of mass addition from gasification of solid propellant 
is a function of exposed surface area SP(t) of the propellant granules and the 
rate of regression of the propellant surface ý(t): 

rh = ppspý (5.72) 

where pP is the density of the propellant. Both the surface area and the rate 
of regression vary in time depending on the external influences on the solid 
such as rapid temperature changes. The methods that are used to calculate 
the change in surface area in time is well-founded. However, modelling the 
rate of regression of the propellant remains an unresolved problem. Empirical 
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methods have been used in the past that have been reliable and quite success- 
ful in normal burning regimes. However, unexplained deviations from these 
empirical laws under unconventional conditions have necessitated a more phys- 
ical understanding of what is really happening at the gas/solid interface and 
detailed modelling. Also, if the burning is assumed to occur in the gas-phase 
as described previously then distinctions between the rate of solid gasification 
and gaseous combustion must be made. 

5.4.2 The Form Function 

Research on how the exposed surface area of a burning propellant grain changes 
in time dates back to the 1950's. A more detailed discussion of the theory 
described can be found in [2). One of the most important observations that is 
used as a basis for the prediction of propellant burning is the idea of 'parallel 
burning'. This is the phrase used to describe llo%v a propellant grain Nvill burn 
in parallel layers so preserving the original grain geometry prior to burnout. 
By using this rule, functions can be derived that link the exposed grain surface 
area to the fraction of propellant that has been burnt at any time. 

Define the size of the propellant grain, D, as the least thickness required for 
complete combustion. 2 Let f be the fraction of D remaining at time t, z be 
t lie fraction of weight burnt at time I and S be the surface area at that instant. 
The forin function relates z to f (standard British method) or alternatively. S 
to z (sonic other continental countries) which depends on the initial geometrY 
of the propellant grain. This function can be written in the form: 

Al + OA (. 5.73) 

where 0 is a function of f. 

The shape of the propellant determines the form of 0. The sign of 0 de- 
termines how the surface area changes in time; if 0 is positive the surface area 
of the propellant decreases in time and the burning is said to be dcgressivc. 
Conversely, if 0 is negative then the surface increases in time and the burning 
is progrcssivc. 

The form function will now be used to calculate the rate of mass loss iii. 
2ror a multitubular propellant this is redefined as the least thickness before grain frag- 

mentation and the distance is called the 'web'. 
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Consider the burning of a single propellant grain: 

Thgr -, z MI 
dz 

: -- MI 
azaf (5.74) 

dt af at 

where ýnqr is the mass-loss of the grain which varies in time, mj is the initial 
mass of a propellant grain in kg and z =1 - Tngrl'rnI- Using equation (5.73) 
it is easy to show that: 

az r-- T= V(l + Oý - 40z. (5.75) 
f 

Now consider how the expression ý1, which is actually the rate of regression at 
of the solid propellant surface, can be calculated. 

5.4.3 Surface Regression 

Most models of propellant burning rely on what is known as 'Piobert's law of 
burning' to calculate the rate of surface regression ý. This states that the rate 
of solid regression is a function of gas pressure: 

ý=B, fp' (5.76) 

where B, f' is the burn-rate coefficient and n is the pressure index, both em- 
pirical constants. For many propellants, the burn-rate coefficient and pressure 
index may change between different pressure ranges. The solid gasification 
is assumed to be controlled by this law once the gas temperature increases 
above some temperature Td. Recall from section (3.2.1), gas-phase chemical 
kinetics dominate events in the chamber until the chemical time of the gas- 
phase reaction becomes negligible. It is at this point that the gas is said to 
be in chemical equilibrium and the combustion will then be determined by the 
rate of solid-phase gasification rh. The method that. is used to calculate the 
empirical coefficients required in Piobert's burning law assume that chemical 
equilibrium has been established and so is actually a measure of both gasifi- 
cation and combustion. For arguments sake, it will be taken as a measure of 
solid-phase gasification alone here. However, in the next chapter, the whole 

3Care must be taken when extracting the burn-rate coefficient from available data; in 
many countries the above theory is formulated in terms of surface area which gives a 'double- 
sided' burn-rate. This differs from the above description of burn-rate coefficient by a factor 
of two. 
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question of what physical processes occurr between the gas and solid material 
opens a challenging modelling problem. Use of equation (5.76) implies 

i9(-fD) n 
at - Bfp (5.77) 

In the two-phase flow work that follows, the number of grains per unit length 
at time t is given from the particle number N(x, t) and in this case the total 
rate of addition of mass rh per unit length is given as N(x, t)fi1,,. Substituting 
expressions (5.75), (5.77) and multiplication by N gives on substitution into 
equation (5.74): 

Bf pn rh = Nmj. l(l + Oý - 4OZ. 
D' 

(5.78) 

There are a number of possibilities that can be chosen to calculate the value 
of --(t) that is still required to calculate rh explicitly from equation (5.78). The 
mass of propellant present at any time can be calculated using the porosity 
c(x, t). The porosity is the volume fraction that is occupied by gas at (x, t), 
whilst (1 - c(x, t)) is the fraction occupied by propellant. This means that 
at any position and time the mass of propellant in the chamber is given as: 
pP(I - c)I/ where V is the volume of the vessel and so the fraction of mass 
burnt is 

PP(l - C)v 
Nmj 

Thus. equation (5.78) provides a way to calculate the rate of change of solid 
into gas for any form function 0.0 depends on the propellant grain geometry 
and some possible grain geometries will be briefly described. The numerical 
code that has been written will accept any of tile three geometries listed below. 

Tubular 

This is a cylindrical length of propellant with one hole through the center of 
the grain. Let the wall-thickness of the tube be D, the mean radius be R and 
the length be kD. It is easy to show that the form function can be given as: 

-f)(I +f1k), (5.79) 

and the form function as defined in equation (5.73) can be given as 0= l1k. 
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Multitubular Propellant 

w 

Figure 5.3: A typical seven perforation multi-tubular propellant grain. 

Slotted Tube 

These consist of tubes, as described above, which are slotted together. The 
geometry for this propellant is a little more difficult to deal with and an ap- 
proximation can been used to give a value for the form function [2]. The result 
is only stated here: The tube parameters are defined as above but now a slot 
is also defined that is assumed to be formed of two radii inclined at an angle 
2w. The form function for the slotted tube can be given approximately as: 

-f)(1 +fD 2/f2), (5.80) 

where Q= 2RD(7r - w). 
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Multitubular 

145 

The propellant grains are short tubes with seven evenly spaced perforations 
running along the length as shown in figure (5.3). The web D is the distance 
required to burn before the tube will fragment into twelve curvilinear triangular 
prisms. About 85% of the burning occurs before fragmentation and the exact 
calculation of the burning surface needs to consider two completely different 
configurations before and after fragmentation. Pike[96] wrote a piece of code 
that does this and it is included in the full code as a subroutine. However, for 
simplicity there is a good approximation that holds well during the first 8517o 
of burning. By redefining the web, D' by equating D' = 1.15D, then the form 
function is: 

0.172f) 

where 0= -0.172. 

5.4.4 Drag 

(5.81) 

Since the buoyancy term has been neglected, the particle-phase will only move 
if drag is included. The units of drag f... describes the force on the M3 

solid particles due to the movement of gas which explains why this quantity 
is heavily dependent on the relative velocity of the two phases. This is taken 
directly from the work of Gough (11] which is in turn from the original ideas 
set down by Ergun [97]. 

fs c)pPkD(It - UP)III - UPI 
10 

ZO) 
(5.82) Dp (I 

--) 

where 0 is the form function; z is the fraction of propellant burnt and Dp = 621ý1 so 
the effective diameter of the propellant grains given in terms of the initial vol- 
ume V, o and the initial surface area So of the propellant grains. kD is empirical 
given as 

1.7.5 if c< CO 
1.75 

0.45 
if CO <c<f: l (5.83) 

,EI CO 0.3 if > 

EI =1 (5.84) 
1+0.021! --"1 Co 

and co is the settling porosity. 
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0.127m 

y 
ignite <> 01368M 

0.762m cross-section 

Figure 5.4: Two-phase flow test problem. 

5.4.5 Further Sources 

In the model the contribution of interphase heat-transfer q and heat loss to the 
walls W1 will be assumed to be negligible. However, in the following chapter 
the importance of q will be emphasized for if in reality there is no heat-transfer 
there will be no solid gasification to initiate combustion. The assumption made 
is that the energy of combustion is the net heat created, taking into account 
interphase heat transfer. 

5.5 Two-Phase Flow Test Problem 

The test problem described in chapter 4 is now extended where the chamber 
contains mass m of seven-perforation granular propellant as illustrated figure 
(5.4). The propellant has form function 0, outer diameter d,,, inner perforation 
diameter di and length dj. The chamber length is I and the cross-sectional 
area of the chamber is A,. The initial conditions are pressure po and gas 
temperature To. Again, burning is initiated by the primer tube that runs 
along a sixth of the axial length and vents inert produce gas into the chamber. 
The total mass of igniter is given as mig which is vented at a constant rate 
for time ti.. In this testcase, the igniter will introduce chemical energy eig 
immediately on introduction into the combustion chamber. The data set for 
this problem is given in the table below: 
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1 0.762m A, 0.0136848m 2 

ncell 300 Cf 1 0.75 
^f 1.27 To 294.4K 
Po 101400Pa b . 0010838m/k-g 
mig 

. 2268kg tig loms 

e ig 1.57 ý"j 
k pp 1.57 kg3 

m 

QP 
g,. 

3.7363' Bcf 6.241 x 10-'m/sec(pa )n kg 

n 0.9 m 9.5255kg 
do . 0143m di . 001143m 
di . 0254cm W 21.13 
R 8313.3J/I, ýkgmole Td 420K 
CO 0.4 el 1 
aL 24.8m/sec k 3 
EAIR 500oK 1 1 

I is the length of domain, ncell is the number of cells taken. 

Flow variable histories for this two-phase problem were obtained over the 
first 2ms and the pressure, mass-fraction and two reaction rate plots are given 
in figure 5.2a-d. Flow profiles are given at times 0.5ms, 0.75ms and lms in 
figures 5.3a-d and over times 1.25ms, 1.5ms and 2ms in figures 5.4a-d. 

Before the solutions are discussed, there are several major differences be- 
tween the previous gas-phase ignition model experiment and the two-phase flow 
model that must be emphasized. The inclusion of the two-phase flow equa- 
tions enables modelling of the movement of particles in the chamber which 
has a direct effect on the variable zii as given by equation (5.78). Whilst in 
the single-phase flow model the rate of addition of igniter gas rhig was much 
greater than the rate of addition of reactant gas 7h and both remained con- 
stant, in this full combustion problem this is not the case. Although rhig will 
continue to be constant and at very early times will be greater that ýn, the 
rate of gasification will now be calculated using Piobert's law so that it will be 
assumed that gasification increases with pressure. Finally, Pike's [96) formu- 
lation of the form function is employed which will mean a change in exposed 
surface area. As a consequence there will be a rather complicated interrelation 
of flow variables. 

Figure (5.5) shows the pressure history during early times. A compression 
wave forms at the end of the primer length and travels towards the projectile- 
base. The wave reflects on the base just after 0.7ms and starts to travel 
towards the breech. Now consider the mass-fraction plot (5.6); the solution 
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looks quite different from the single-phase solution for now non-zero mass- 
fraction appears coincident with the compression. If the temperature profiles 
are consulted in figure (5.11), the gas temperatures behind the compression are 
now much higher than the gasification temperature 420K and so gasification 
is switched on immediately behind the compression. 

Figure (5.10) illustrates a high pressure region at the primer and an almost 
linear decrease in pressure from the primer to the shock wave that is traveling 
towards the opposite end. This decrease is due to the switch on of gaseous 
mass addition behind the shock wave. 

However, the higher temperatures in the primer region will still cause higher 
rates of gasification of propellant and the reactant wave feature introduced 
in chapter 4 can be seen once more between(x = 0.127m, t=0.2ms) and 
(x = 0.7m, t= lms). This illustrates the movement of reactant species into 
cooler regions of the chamber. The density profiles in figure (5.9) clearly 
displays a dense region of gas that stretches between 0.35m <x<0.5m at 
t=0.5ms which causes a peak in temperature. This is the the presence of the 
reactant wave which produces a denser region of gas as can be confirmed from 
the mass-fraction profiles in figure (5.10). 

Profiles of the solid velocity and particle number can be seen in figure (5.12) 
and the porosity is given in figure (5.11). Throughout these times the solid 
is moving at a relatively low speed away from the primer region producing 
higher porosity in the primer region. Comparison with the gas-velocity his- 
tory confirms that the solid particles are being dragged by the gas movement. 
However, at later times, the gas velocity has clearly changed direction figure 
(5.13) but the drag forces are only sufficient to decelerate the particles as seen 
in figure (5.16) by the decline in the peak of the curve over time. Although 
the effect of this particle movement does not have any dramatic effect on the 
pressure history of the gas, the resulting change in porosity, particle number 
and rh will have some influence. 

The reaction rate in figure (5.7) is now plotted so that the effect of chem- 
istry in the two-phase flow model can be fully appreciated. The absence of 
curves at early times indicates how the reaction rates are much higher after 
0.75ms between 0.7m <x<0.762m. To capture the detail at earlier times, 
the plot (5.8) limits the range of reaction rate. This indicates that although 
the mass-fraction is switched on by the compression wave, the reaction rate 
behind this wave is relatively low. This is due to quite low quantities of re- 
actant and modest temperature levels. The reaction rate is higher behind the 
reactant wave due to the much higher concentration of reactant. The reaction 
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rate increases along this wave as the increasing temperatures mean further 
gasification and enhanced combustion. This is illustrated by the temperature 
peak seen in figure (5.11). Ultimately the reflected shock meets the reactant 
wave producing even higher levels of reaction. After this, the reaction rate 
close to the projectile base remains higher than in any other location in the 
chamber which causes sustained high temperature in this region as seen in 
figure (5.15). 

The effect of including the second-phase into the calculations is not dra- 
matic and some of the features could have been reproduced in the gas-phase 
ignition model by just increasing the size of the constant mass source rh. This 
emphasizes the value of studying a simplified model in order to recognize some 
of the important features before the detail is obscured by solving the more 
complex model. 

However, again this describes how the time and location of ignition can 
occur away from the primer. The reaction rate plots then indicate how loca- 
tion of ignition can have a dramatic effect on the release of chemical energy 
throughout the rest of the combustion cycle. 

A deficiency of the above model is the use of empirical information that 
was originally derived for equilibrium chemistry models. Specifically, Piobert's 
law was designed to measure the rate of change of energy due to propellant 
gasification and combustion. In the above test, the law has been used as 
a measure of surface gasification alone. The use of this is only truly valid 
once gas-phase chemical times become negligible and equilibrium chemistry 
is approached. Furthermore, the model assumes that it is primarily the rate 
of change in gas-phase temperature that controls the rate of gasification, any 
influence of solid-phase thermochernistry is ignored. In the following chapter 
these issues will be addressed by concentrating on heat-transfer processes at 
the gas-solid interface- the site of solid gasification. 
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Figure 5.9: Density and gas-velocity profiles at t=0.5ms (full line), t 
0.75ms (dashed line) and t= lms (dotted line). 
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Figure 5.10: Pressure and mass-fraction profiles at t=0.5ms (full line), t 
0.75nis (dashed line) and t= lins (dotted line). 
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Figure 5.11: Temperature and porosity profiles at i=0.5ms (full line), t 
0.75ms (clashed line) and t= lms (dotted line). 
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t=0.75ms (dashed line) and t= lms (dotted line). 
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Figure 5.13: Density and gas-velocity profiles at t=1.25ms (full line), t 
1.5ms (dashed line) and t= 2ms (dotted line). 
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Figure 5.14: Pressure and mass-fraction profiles at t=1.25ms (full line), 
t=1.5nis (dashed line) and I= 2ms (dotted line). 
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Figure 5.15: Temperature and porosity profiles at t=1.25ms (full line), t 
1.5nis (dashed line) and t= 2ms (dotted line). 
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Figure 5.16: Particle velocity and number profiles at t=1.25ms (full line), 
t=1.5ms (dashed line) and t= 2nis (dotted line). 
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Chapter 6 

Interface Processes 

This chapter will describe a simple model for the interface processes that occur 
between the gas and solid. A physical mechanism that defines a role for solid 
thermochernistry is developed. The evolution of the solid-phase thermal profile 
up to first solid decomposition is explored. 

6.1 Transient Burning 

Transient burning is the term used to describe the burn-rate when a material is 
exposed to severe pressure excursions. For example, a candle burns under con- 
stant ambient pressure conditions whilst propellant burning within an internal 
ballistic combustion chamber or a rocket motor is severely transient. Interest 
on the subject goes back to the 1930's; however, even today there seems to be 
no conclusive or uniform approach to providing the solution. However, most 
studies seems to stem from considering the mass and energy transfer between 
solid propellant and an external hot gas. 

Consider figure (6.1) that illustrates this interface which is regressing at a 
rate ý due to the decomposition of propellant. Observation of burning propel- 
lants reveal a decomposition process from solid into a thin liquid layer followed 
by decomposition of liquid into gas. However, for simplicity the liquid-phase 
will be omitted and the solid will be assumed to change directly into gas on 
decomposition. The burning process is initiated when the gas is heated to a 
temperature above the ambient temperature by some external stimulus. Heat- 
transfer from the hot gas to the cold solid is initiated producing a boundary 

157 



158 CHAPTER 6. INTERFACE PROCESSES 

Tgas 
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Figure 6.1: Surface of a typical propellant grain. 

layer in the gas and a temperature gradient in the solid. The surface de- 
composition of the solid propellant is assumed to be an Arrhenius reaction 
dependent on temperature. It is assumed that the reaction layer is confined to 
a very thin surface region. In this case it is reasonable to approximate the rate 
of chemical reaction as a function of propellant surface temperature [261. The 
chemical reaction can be be either exothermic or endothermic. The process of 
decomposition increases the gas energy due to adiabatic addition of mass and 
either produces energy in or removes energy from the gas due to the chemical 
reaction. The burning procedure continues with heat-transfer between gas and 
solid plus decomposition of the solid into gas. The modelling of the phenom- 
ena is basically a heat conduction problem. However, the different approaches 
generally concern the boundary condition at the interface that governs the 
heat feeýlback from the gas into the solid. 

6.2 Mathematical Model 

The one-dimensional heat conduction equation for a moving solid is given as: 

(9TP DTP r)2 TP 
-- -ju- =P , gl 

+ýya 
cgy2 
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where TP(y, t) is the temperature in the solid, and aP =' Here AP is solid PPCP * 
conductivity ; CP is specific heat capacity and pP is the solid density. 

An expression will now be proposed to define the rate of surface gasifica- 
tion. The following burn-rate model will be used to tie up the old theory on 
interior ballistics with this more detailed formulation of the processes which 
are occurring at the surface. 

6.2.1 Surface Regression 

The burning rate ý is given by the pyrolysis law: 

-EP 

oc Bf (p)e RT, (6.2) 

where B, f (p) is a function of pressure that is identical to Piobert's law; T, (t) is 
the surface temperature and EP is the activation energy of the surface reaction. A 
This has been inspired by the work on ignition and transient burning [26], [24] 
that defines pyrolysis at the surface as an Arhennius exponential dependent 
on the solid surface temperature T, 

ý oc exp - EA' /IZT.,, 

and Piobert's law used in internal ballistics that describes the solid gasification 
as a function of gas pressure only. Internal ballistics modelling often assumes 
that the solid decomposes once it reaches a decomposition temperature (as- 
surned to correspond to some empirically measured gas-phase temperature) 
and from then on the regression is based on Piobert's law ý=B, fp'. Since for 
many applications this burning law has been quite successful it will be retained 
after the decomposition temperature has been reached. The intention of this 
model is to predict the propellant behavior prior to this temperature. Let the 
regression of the surface be such that: 

Bfp'exp(-EAP/IZ(-L--L) T, <Td 
Bf p' 

Td Ts 
Ts = Td 

(6.3) 

where Td is some 'decomposition' temperature. In effect this is just a switch 
that produces the standard burning law after some critical temperature Td is 
achieved at the surface. Before this point the rate of surface reaction is con- 
trolled by the Arrhenius exponential term which produces a negligible burn- 
rate at low temperatures but increases exponentially at higher temperatures. 
Physically this means that at early times the solid propellant starts to increase 
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in temperature but gasification is almost zero. As T,, approaches Td, the expo- 
nential dramatically increases effectively switching on solid gasification. Once 
T, = Td it remains at this temperature burning rapidly. 

6.2.2 Boundary Conditions 

The solid is initially at ambient temperature To. The boundary conditions to 
this problem are: 

TP(-oo, 0) = To; (6.4) 

Ap i9TP aT 
I, =A F- 19Y y 

Ig + pPý(QP - L); (6.5) 

=ý. q, = q_, + ýAQ, hvm (6.6) 

where A is the thermal conductivity of the gas; QP(Jlkg) is the heat generated 
due to the chemical decomposition; L(Jlkg) is the latent heat required for 
gasification q, is the heat flux into the solid; q. is the heat flux into the gas-, 
and "\Qchcyyz is the net heat created by the surface reactions. The heat flux 
frorn the gas will be given as an empirical heat-transfer relation such that: 

F(T, T, ) (6.7) 

When the solid-surface temperature arrives at the decomposition tempera- 
ture, the solution to the heat conduction equation could continue to be solved 
with the new boundary condition T, = Td. However, under the circumstances 
it is unnecessary since the rate of regression is assumed to be a function of the 
gas-pliase pressure history alone and solid properties are no longer required 
to calculate the burn-rate. To some extent, a physical appreciation of what 
governs the gasification process after this critical temperature can be gathered 
by studying the interface relation at the solid surface. From equation (6.5) 
simple manipulation shows that: 

ZA q (6-8) 
pP(L - QP) 

where Aq = qg - q,, =f (T, T,, A, AP), is the difference between the heat flux 
from the gas and the heat flux into the solid. Consider the case in which the 
heat produced by gasification QP is zero . The rate of regression can only be 
greater or equal to zero. If the regression rate is negligible, then this implies 
that Aq ý- 0 and the heat transfer from the gas is completely absorbed by the 
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propellant material causing increases in solid temperature. The work in this 
chapter concentrates on this part of the gasification process where latent heat 

and exothermic reaction contributions are small as ý is negligible. 

If the regression rate is non-zero, T, > Td, then Aq must be positive im- 
plying that heat-transfer occurs from the gas and into the solid. If the gas 
produced by gasification reacts exothermically, then this will increase the heat 
flux _Aq into the solid surface. For constant solid density and latent heat this 
will mean increasing regression rate ý. 

Conversely, if the gasification process is such that L- QP < 0, that is, 
the energy released on gasification is non-zero and greater than latent heat 
requirements, then Aq is negative implying heat-transfer from the solid into 
the gas and a self-sustaining gasification process. 

Assume both latent heat and energy produced by the reaction are constant, 
if Piobert's law is substituted into equation (6.8) this implies that the energy 
flux is such that Aq oc p'. 

6.3 Viscous Flows 

The heat-conduction equation is a convection-diffusion problem that can be 
solved as by Toro &, Brown [98] using time-operator splitting. This involves 
splitting the whole problern into two subproblems namely: a pure convection 
hyperbolic problem and a pure diffusion parabolic problem in a, similar Nvay as 
seen previously in the solution of the gas-phase ignition model. 

6.3.1 Convection-Diffusion Splitting 

Let equation (6.1) and the initial conditions be re-written as the following 
initial-value problem: 

OTP 
+ý 

OTP 
op 

c9, TP 
(6.9) ät- -a 

y- 0Y2 , 

TP (y, 0) = To (y). (6.10) 

Let L(I) be the exact solution operator of equation (6.9) so the solution in 
conjunction with initial conditions in equation (6.10) is given as: 

TP(y, t) = L(t)To. 
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Define LI(t) and L2(t) as the solution operators of the convection equation 

DTP DTP 
+ý gy 

and the diffusion equation 
UP a2 TP 
-- = ap (6.13) 
jqt ay2 

respectively. As seen previously, the first order fractional step is based on the 
approximation 

(At))nT 
I L(t,, )To -- 

(L2(At)LI 
0. (6.14) 

or equivalently with LI or L2 reversed where At is the splitting step and L, 
and L2 are at least first-order accurate. 

To solve the full problem over time At, the convective step produces an 
intermediate solution for T(y, t) which is used as the initial condition for the 
diffusion step which is then solved for timestep At. This results in an approxi- 
mation to the full problem given in equation (6.9). Strang's second order split 
is 

At At 
) )nT 

I L(t,, )To = 
(L2( 

9 
)LI(At)L2( 

0. (6.15) 

Brown [99] has shown that the solution is exact for the model convection- 
diffusion equation and second-order otherwise provided that L, and L2 are at 
least second-order accurate. 

6.3.2 Convective Step 

This involves the solution to the partial-differential equation: 

Tip + ýTýp = 0. (6.16) y 

The NVAF method, as described in chapter (4.1.15), is adopted. What is im- 
portant in the present discussion is the selection of the timestep to guarantee 
stable solutions. As seen previously this can be given as a function of the 
maximum wave speed ý 

Atc = 
Cfj X 

(6.17) 
AY 

where Atc is the convective time-step, Ay is the dimension of the spatial mesh 
and cf I is the Courant number such that cf 1E [0,11. 
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6.3.3 Diffusion Step 

This involves the solution to: 

Ttp =aP Typy . 
There are a numerous ways to solve this equation. The simplest would be to 
transform the partial-differential-equation to an ordinary-differential-equation 
by replacing the right-hand-side of equation (6.18) by a second-order central- 
difference approximation. Replace the continuous function TP(x, t) by the 

piecewise constant function T= (T,, T2,..., T,, )T where Tin is the value of 
temperature in cell i at time n: 

T, n 
+1 - 2Ti' + Ti' 

(Ti)YY Ptý 
( 

Ay 2-1) (6.19) 

Using this substitution in equation (6.18) produces 

dT 
=f (T), (6.20) 

dt 

where f= Usual discretization techniques mean that this is 

a system of ordi nary-di fferenti al-equat ions that can be solved using the first- 

order Euler: 
T"+' -- Tn+-: ý, t. f (T n). (6.21) 

However, if extra accuracy is required, as will be seen later, the modified Euler 
is second order accurate and the scheme given by: 

T' + Aff Tn+f (T") (6.22) 

N, Iote how the temperature at the new level T n+I can be written as an explicit 
function of the temperature at the previous time level Tn 

. 

It has been shown [981 that stability restrictions require that the diffusive 

step At is such that: 

AtD y (6.23) 
2aP 

where CD is the diffusion number such that CD E [0,1]. 

However, although the above method is very simple, the stability restric- 
tions that are typical of all explicit methods can cause severe difficulties when 
rapidly changing boundary conditions are encountered. This means that if 
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the timescales associated with the change in external boundary conditions are 
small compared with the change in other flow variables then problems, simi- 
lar to that of stiffness, will arise. To deal with such problems a semi-implicit 
method that is well documented- the Crank-Nicolson method- will be used 
through most of the following computations. 

6.3.4 The Crank-Nicolson Method 

The Crank-Nicolson method is second-order accurate and discretises using the 
following scheme: 

(Ti) i=-T, 
'+' - Ti' 

(6.24) 
At 

+1 
Tiný I Tjný +2 Ti'+ 1_I 'I - 2Ti' + Tin 

(Ti)YY =( 9AX2 

+-)+( Ti, 
+ 

c)_AX2 
-1) (6.25) 

Substituting into equation (6.18) and manipulation gives: 

-cTi', +'+, 
' + Ti"' (1 + 2c) - cTi'!, ' = cTi'+, + Ti(1 - 2c) + cTi' 1 (6.26) 

%vliere c= YA=r - 

As can be seen, the solution at the new time-level Tj'+1 cannot be found 
explicitly. Instead a system of linear algebraic equations must be solved of the 
form: 

A. T = 

where: 

1 +2c+ a, 

-C 
0 

-C 00... 

I+ 2c -C 

-C 1+ 2c -C 0 

0 

-C 1+ 2c 
0 

... 0 -C 

(6.27) 

0 

(6.28) 
0 

-c 
1+2c+a2 
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and a, & a2 are determined from the boundary conditions. 

T(1) n+I T(1) n 

T(2) T(2) 

T= T(i) b=F T(i) (6.29) 

T(m - 1) T(m - 1) 
T(m) T(m) 

A is a tridiagonal matrix, T is the unknown, b is a function of the initial 
conditions and F= (FI, F2,... ' F,,, )T. 

This is a system of linear equations which can be solved using LU decom- 
position and partial pivoting is employed to preserve accuracy. Partial pivoting 
transforms the tridiagonal form A into a matrix A'. The process introduces 
non-zero terms into the diagonal immediately above the upper-diagonal i. e.: 

d, 0 ... 0 
11 d2 U2 62 

A' 0 12 d3 U3 
(6.30) 

0 Sn-2 

In-2 dn-I Un-I 
00... 0 In-I dn 

Ail appropriate algorithm [1001 is then utilised to factorise A' into its LU 
decomposition where L is a lower diagonal and U is an upper diagonal matrix. 
The solution is then found using forward and back substitution: 

L. Y = b; U. T = y. 

The forward substitution firstly solves for y which is then used in the second 
equation to solve for T. 

Details of the above may be found in reference [100]. 

6.3.5 Boundary Conditions 

Boundary conditions provide the temperature at the cold-end of the spatial 
domain and the hot surface interface. As described in equation (6.4), the 
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cold-end is not permitted to rise above ambient temperature To so that: 

oo, t) = To. (6.32) 

At the regressing surface a gradient boundary condition is provided in equation 
(6.5). Simple finite-differences are used to approximate the temperature in this 
surface region. A second-order central difference approximation is given by: 

DTP TIL - TsP+ 
= F(Tj T, ); 

NY-1 

3 
Ay 

=ý TL = T, + + AyF(T, T, ), (6.33) 

where s- and s+ denote small perturbations around the propellant inter- 
face. For the explicit method described above the inclusion of these boundary 
conditions are trivial source terms, function of Tn' in the system of ordinary- 
different i al-equ at ions given in equations (6.21) and (6.22). However, the Crank- 
Nicolson method needs the definition of the boundary conditions at the un- 
known time-level Tn+1 to calculate a, and a2 that are inserted into matrix A 

of equation (6.28). Since these are still unknown, substitution of the boundary 
will produce a set of non-linear equations, as opposed to a set of linear equa- 
tions. if the function F(T., T, ) is a non-linear function of T,. In the problem 
that will be considered radiation heat-transfer is a function of T, 1. Newton's 
method will be used to solve the system of non-linear equations 

A. T =b =ý- A. T -b=0 (6.34) 

6.3.6 Solution to a System of Non-linear Equations 

The Newton method is used to solve the system of non-linear equations: 
f(x) -b= F(x) = 0, 

for x %vliere 

X= (Xli X2- X39 .... Xm) 
Tf= (flif2if3i 

... 1 
fm) T 

b= (bi, b2, b3,..., b .. )T F= (F� F2, F3, ... 7F.. )T * 

This can be solved using the following iterative method: 

x n+I = x' - J(x')-'F(Xn) 

(6.35) 

(6.36) 

(6.37) 
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where J is the Jacobian of the function F. 
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This is reminiscent of the Newton-Raphson method for a single equation 
and details can be found in [100]. 

Since the inverse of a matrix is expensive to compute, the following scheme 
is exploited. Let: 

z n+l =x n+l -xn1 (6.38) 

Then equation (6.37) can be rewritten as: 

J(x')z'+l = -F(X'). (6.39) 

This has now been transformed to a system of linear equations in unknown 
z13+1 and the form is tridiagonal. It can be solved using LU decomposition 
together with forward and back substitution as was outlined in the previous 
report and x"+i can then be calculated using (6.37). This is an iterative 
process and is sufficiently accurate once: 

JIF(x')11,,. < tol. (6.40) 

In order to assist convergence to the solution, a damping procedure was used: 

z n+l 
-J-'F 

i min 0<j, JIF(Xn +h )11: 5 JIF(Xn)ll 
2j 

x 71+1 xn+ (6.41) 

Details can again be found in [100]. This helps to hasten the convergence, 
which is quadratic for Newton's method. 

6.4 A Model Problem 

In order to test the validity and accuracy of the numerical solution produced 
using the above method, it is necessary to be able to compare with known or 
exact solutions. Since there is no exact solution to the full heat-conduction 
equation as proposed above, a slightly simpler problem that has however the 
same form as the full problem is considered, 

0T aT WT 
5t +aT=a 

y2 
(6.42) 

v ay 
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A 0.31 msecK C 1550.0 ' kgK 
p 1577.8 a 0.007/. 07 ' 

qig 1000; 72; t--c-K 
1 sec 

1.5 x 10 -4M 

Table 6.1: Model heat-conduction problem. 

This differs from the full problem as ý has been replaced with a constant a. 
The initial temperature throughout is ambient: 

T(y, 0) = To = 298K1 

and boundary conditions are slightly simpler: 

T(-oo, 0) 

A 
[OT]., 

ay 

= TO 

= qiq T, 

(6.43) 

(6.44) 

(6.45) 

where now the interface boundary condition is only a linear function of surface 
temperature and where qj, is a constant. In the Crank-Nicolson method the 
final system of equations will be linear and Newtons method will not be nec- 
essary for this model problem. A plausible choice of parameter values is given 
in table 6.1 where I is the length of computational domain. 

The derivation of the exact solution for this problem can be found in (1011 
and is given by: 

Tj ýcj. 
f C(y -at)+( ckqig ) 21 y+ at T(y) = Tj -22 Va- t ciqi, -ae 

cl erf c( 2 vfa- t 

+ 
2aqiq -ae (q, gy-q, gt[a-aqg]) erf cy+ 

(2ctqi, a)t 46) 
oqig -a)2 Va- t 

Two choices of a are taken since the burn-rate ý will vary in the real prob- 
lem. 

Figure (6.2) gives the solution to the problem using a first order explicit 
method on a one hundred cell mesh for the two examples over lms. The so- 
lution for a equal to . 007m/sec corresponds to a lower rate of decomposition 
of solid propellant. The solution is good and is seen to depart from the true 
solution only when the temperature gradient is at its steepest. The second 
solution shows the equivalent for a equal to . 07m/sec. The temperature gra- 
dient in the solid is almost constant near the interface and comparison with 
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Figure 6.2: Exact (full line) and first-order implicit (X) temperature profiles 
at 1nis. 

the previous plot indicates how the the form of the diffusion-dominated and 
convection- dominated solutions will differ. In this case the first order solution 
is excellent. 

Figure (6.3) compares the identical problems at time 2ms where the second 
order split is used with the implicit Crank-Nicolson method. For the first 
problem the agreement close to the gradient boundary condition is significantly 
improved. 

Finally figure (6.4) compares the exact and numerical solutions where the 
second-order split, explicit method is used at 4ms. The above examples go 
some way to validate the numerical techniques used but also illustrate a sec- 
ondary difficulty. As the time increases to 4nis clearly the cold-end boundary 
condition will be invalid once the temperature at 1.5 x 10' increases above the 
ambient temperature. The difficult part when attempting to solve such a prob- 
lem is selection of the initial size of the computational domain. For example 
the entire width of propellant could be selected as the size of the domain. How- 
ever, not only would this necessitate the solution of at least a two-dimensional 
heat conduction problem, but also since the temperature variation is confined 
to a thin surface layer, if the domain is too large, too many cells are required 

0.0,10,5.0*101 1.0*10,1.5,101 
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Figure 6.3: Exact (full line) and second-order implicit (X) temperature profiles 
at 2nis. 
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to resolve the temperature variation in this fine layer. Similarly however, as 
time passes more and more of the spatial domain is affected by the external 
heat flux at the surface. If the domain is too small then the boundary con- 
dition at the cold-end which states that the temperature remains at ambient 
will be violated. It was purely a matter of trial and error that set the length of 
domain and restricted the time run so that no boundary conditions would be 
violated in the examples above. This is by no means a satisfactory answer to 
the difficulty and it has been necessary to track the variation of the 'thermal 
penetration depth' in a reliable and informed manner. Adding more cells to 
the domain is one possible solution. Unfortunately the thermal penetration 
depth can increase dramatically and ultimately this method could increase the 
number of mesh cells by an order of magnitude. In this case excessive com- 
putation would be needed at later times. The conventional diffusion problem 
has a characteristic length that can be obtained from studying: 

Tt a, Tyy (6.47) 

I 
TI, )o(I 

Y] 
(6.48) 

where I is the time. From this last relation a characteristic length ID ` 
O(VaPt) can be used as an estimate of the thermal penetration depth due to 
diffusion. A similar calculation for the convection problem gives Ic = O(H). 
If the domain is taken as the maximum of the two I= maxUD, 1C) this proves 
to be quite a reliable estimate as demonstrated in figure (6.5). This compares 
the exact solution at times Inis, 21ns and 4ms where the domain length is 
varied according to the formula above. The size of domain varies according to 
the scheme described and captures the 'cold-end' of the propellant material. 

However, whilst the exact solution does not require the solution at any 
other time to construct the solution at the time required, numerical methods 
build on the solution at previous times via timestepping. If this strategy is 
applied where the size of the domain varies in time then the temperature 
plots at different times will lie within two different domains. This problem is 
addressed by using interpolation between the two-time levels. 

For example let the solution T, be the solution over time tj in the domain 11. 
To calculate the solution at the new time t2, the initial temperature conditions 
T, for the integration must be set up over the new domain 12 that corresponds 
to the domain calculated for time t2 which will be greater than 11. Linear 
interpolation is used to map the temperature T, onto the temperature T02 that 
provides values for the temperature over the larger domain 12. However, normal 
interpolation will produce a temperature at the surface which is lower than the 
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Figure 6.5: Exact solution to the heat-conduction equation over time that 
demonstrates the variable domain scheme. 

pre-interpolated value. Under some conditions this can be a problem since the 

exponential 
(exp (E' / R(-L - -TL) A 7d ,) 

has the potential to change dramatically 

with T.,. Figure (6.6) illustrates how usual interpolation techniques would 
lower the temperature at the surface. 

To prevent this problem the interpolation was constructed so that the value 
of the surface temperature remained constant through the interpolation pro- 
cedure. Two examples of this interpolation scheme at different times from one 
domain to another is shown in figure (6.7). 

The application of this will be illustrated in the following example. Before 
this, the empirical relations that are used to calculate the heat-transfer will be 
outlined here. 

O*Icf VIV 2*10' 3*10' 4*10' 5*10' 6*10' 

ckstance m 
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Example of Interpolation 
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Figure 6.6: Typical interpolation procedure from domain 11 (circle) to 12 
(square) where 11 < 12- 
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Figure 6.7: Examples of the modified interpolation procedure from domain 11 
(triangle) to 12(cross) where 11 < 12. 
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6.5 Heat-lý-ansfer 

For investigative purposes, that will soon be apparent, the heat-transfer will 
be assumed to consist of radiation and conduction heat-transfer despite that 
fact that in reality convective heat-transfer is known to play a critical role. 
The net solid-phase heat-transfer will be given empirically as 

qs -::: qr + qc (6.49) 

where q, is the heat flux due to radiation per unit time and q, is the heat flux 
due to conduction per unit time. These can be given [1]: 

4_ T4) c'E (T 
s7 

(6.50) 

where c' is the radiation constant, E is the emissivity, T is the gas temperature 
and T, is the surface temperature. 

qc = APCPTO . 25 
ý0.8 

(T - T, ), DO. 2 
p 

where C is the specific heat at constant pressure, ý is the regression rate and 
Dp is the effective diameter. How realistic these expressions are, considering 
the neglect of convective heat-transfer, is uncertain and in the following ex- 
periments it was necessary to multiply these expressions by a factor V, in order 
to produce realistic solid temperatures subject to the external conditions. On 
occasions this has been up to three orders of magnitude and for arguments sake 
attribute this to the substantial contribution of convection in the heat-transfer 
process. The formulae are devised to make the heat-transfer a function of the 
external gas temperature -as it is obvious that this must have a strong influ- 

ence on the rate of surface temperature increase- and in particular include the 
radiation heat-transfer as a quartic function of gas temperature. 

6.6 Closed Bomb Problems 

The full two-phase flow equations with chemistry can be seen in the preceding 
chapter. However, to reduce the complexity of the problem and to concentrate 
only on transfer processes between the gas and solid interface, all spatial deriva- 
tives are neglected from equations (5.29), (5.30), (5.31), (5.32), (5.33), (5.34) 
and (5.35). This describes a 'closed-bomb' where it is the time rate of change 



6.6. CLOSED BOMB PROBLEMS 175 

of gaseous pressure and temperature that is of interest rather than any par- 
ticular aspects of the flow regime. By using these equations, the solid surface 
is exposed to a realistic transient gas-phase pressure and the heat-conduction 
equation can be solved in conjunction with the two-phase equations. This 
explains why convective heat-transfer has been neglected since the gas-phase 
velocity is assumed to be zero in such a simplification. This reduces the sys- 
tem to a set of ordinary-differential-equations that govern the rate of change 
of porosity, gas density, reactant mass-fraction and gas-phase energy in time: 

dc 
= dt 

rh 
pp 

(6.52) 

dcp 
dt = Th + rhig; (6.53) 

depc 
dt 

2m 
- fPQC + -; 2 

(6.54) 

dcE 
dt rhQP + rhiqei.; (6.55) 

(6.56) 

where iii = pPýSP. The change in surface area is calculated accurately using 
the theory described in section (5.4.2) and the heat-up and rate of regression 
of the propellant surface will be calculated using the transient burning model. 

Interface Solid Phase Equations 

DTP aTP a'TP 

71- +ý ay ap t)y2 (6.57) 

Ap'exp(-EP/R(-.! ---i-)), T, <Td; 
Ap n, 

A Td T. 
Ts = Td; 

(6.58) 

where 

TP(y, 0) = To, (6.59) 
TP (- oo, 0) = To, (6.60) 

Ap 
DTP 

F (T, T, ), (6.61) 
1 

OY 
1' 

where T is the gas temperature. 

These equations indicate how the solid and gas are coupled; the rate of 
mass addition th is dependent on the external gas temperature and pressure, 
and similarly the change in gas flow variables is dependent on rh. 
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Table 6.2: Spatially uniform test data. 

The test configuration described in chapter (4.3) is modified here to pro- 
vide the spatially uniform conditions that are required in this section of the 
modelling. The combustion chamber is of length L, constant cross-sectional 
area A, and the volume remains constant. It is filled with seven perforation 
multi-tubular propellant grains. Combustion is initiated by an igniter which is 
vented uniformly along the entire axial length. The neglect of gravity and any 
heat losses from the chamber result in a so-called closed bomb problem. Recall 
that the idea of this reduction in complexity is so that, at this stage, emphasis 
can be placed on looking at the effect of gas-phase and interface chemistry 
alone without the complications of gas dynamic effects or solid phase move- 
ment that occur in the full combustion problem. 

The input data can be seen in table 6.2: 

Firstly, consider the case where equilibrium chemistry occurs in the gas 
phase only. This corresponds with standard ballistic-flow models in which all 
chemical energy is released from the propellant on gasification. 
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Figure 6.8: Closed bomb pressure and gas temperature history for Td = 420K 
over the first 5ms. 

6.7 Equilibrium Gas Phase Chemistry 

Figure (6.8) shows the pressure and gas temperature variation in the chamber. 
The transient burn-rate modelling only plays a part at the very early instances 
and the effect on the bulk of the combustion cycle is negligible after decompo- 
sition is established. Figure (6.9) concentrates on very early times-, the surface 
temperature rises to the decomposition temperature and remains there. The 
rate of increase of gas temperature is almost constant for T, < Td due to the 
dominance of the constant supply of igniter gas at these times but the sur- 
face temperature clearly does not resemble this rate process. The non-linear 
heat-transfer terms and the role of the exponential factor mean that the rate of 
change in surface temperature is not linear but the rate increases in time. This 
implies that the increase in solid temperature cannot be calculated using some 
simple empiricism that assumes the solid temperature is directly proportional 
to the gas temperature. This means that there must be some error incurred 
by assuming the rate of change of solid temperature can be measured in terms 
of the gas-phase temperature alone as has been done in the past. The effect 
of the model is similar to the Heavyside function that is used in past models 
where the burn-rate is switched on at some critical point. However, whilst in 

012345 
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Surface Temperature Gas Temperature 

I 

Figure 6.9: Early-time surface and gas temperature histories for Td = 420K. 

the past this has been when the gas temperature rises to some decomposition 
temperature, now decomposition is switched on when the solid surface rises to 
420K. In fact the gas temperature is approximately 510K at this time. The 
difference T-T, will be dependent on the rate of heat-transfer, diffusivity and 
exponential term. 

Although the surface temperature remains constant after 420K this does 
not mean that there is no heat-transfer into the solid but that the rate of 
regression can now be modeled as a function independent of the surface tern- 
perature change using Piobert's pressure dependent law. The pressure and 
exponential factor can be seen in figure (6.10). The exponential is negligible 
at early times which means that the burn-rate will be close to zero. However, 
this rapidly tends to the maximum value of I and the conventional burnrate 
law ý=B, fp' is retrieved once the surface reaches decomposition tempera- 
ture at time td = 0.07nis. When the exponential rises to I the gasification is 
switched on and both the rate of pressure change and gas-temperature change 
slightly increase at 0.071ns. 

The temperature profiles at different times are illustrated in figure (6.11). 

Clearly the thermal penetration depth increases with time and the plots 
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Pressure Exponential Factor 

Figure 6.10: Early-time pressure and exponential factor history for Td = 420K. 
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Figure 6.11: Early-time temperature profiles at various times for Td = 420K. 
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Figure 6.12: Early-time surface and gas temperature history for Td = 620K. 

illustrate how the numerical code successfully tracks this depth over time. 

The dominating parameter in the above modelling is the choice of decom- 
position temperature which will dictate how the rate of change of surface tem- 
perature behaves. Under all circumstances the exponential factor must tend 
to I once the surface temperature attains the decomposition temperature. 

Figures (6.12)-(6.14) illustrate the equivalent experiment where the de- 
composition is increased to 620K so that the effect of changing this important 
parameter can be investigated. The gas temperature and pressure histories 
look very similar to the experiment with Td = 420K for T., < 420K. However, 
figure (6.13) shows that the change in exponential factor is delayed meaning 
that the rate of change in pressure and gas temperature does not occur until 
0.14ms and Id doubles for this higher choice of decomposition temperature. 
However, the gas temperature at this time is ý- 650K which shows that the 
difference T-T., has decreased. This is an indication of how the non-linear 
heat-transfer terms cause the rate of increase in surface temperature to accel- 
erate over longer time spans. The implication is that at much later times the 
difference between gas and surface temperature will be negligible. Under these 
circumstances, approximating the surface temperature by assuming that it is 
close to the gas temperature is more viable. From this it can be seen that 
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Pressure Exponential Factor 

Figure 6.13: Early-time pressure and exponential factor for Td = 620K. 
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Figure 6.14: Early-time temperature profiles at various times for Td = 620K. 
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Figure 6.15: Temperature history for reduced heat-transfer. 

calculating the interface gasification using Piobert's law, that solely refers to 
gaseous pressure, can be justified. 

The temperature profiles demonstrate how the solid-surface temperature 
approaches the gas temperature since at later times after 0.08ms the temper- 
attire gradient at the surface is clearly decreasing in time implying that the 
heat-transfer into the solid is declining. 

Now consider the effect of varying parameters that control the heat transfer 
due to radiation and conduction. Figure (6.15) compares the surface and gas 
temperature where the heat due to conduction and radiation are reduced by 
a factor of two independently. As expected the surface temperature arrives 
at decomposition slightly later than previously and although the effect on the 
gas temperature is small it is as would be expected. Is is also clear that the 
effect of heat-transfer due to radiation dominates since it is proportional to T' 
whilst heat conduction is only proportional to T". 

The above indicates the role of the interface chemistry model without gas- 
phase chemistry effects. Early heat-up of the solid surface from ambient dif- 
fers from the rate of change of gas temperature. However, as time proceeds 
non-linear radiation and conduction heat-transfer cause the solid surface to 
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Figure 6.16: Early-time temperature histories for EA/R = 5000K (-) and 
EA/IZ = 7000K (full-line). 

approach the rate of change in gas temperature until the surface starts to 
gasify. 

The more complex coupling of the interface and gas chemistry will be in- 
vestigated. This will also test the robustness of the methods that are used to 
solve the heat conduction equation when solved in conjunction with rapidly 
changing boundary conditions. 

6.8 Non-equilibrium Gas-Phase Chemistry 

Figure (6.16) illustrates the temperature profiles for two different gas-phase 
activation energies EA/IZ, 5000K and 7000K. The rate of rise of surface 
temperature is not effected by the gas-phase chemistry and the two surface 
temperature plots are almost identical. Prior to I=0.05ms, ý -- 0 and this is 
reflected in the mass-fraction c which is negligible and the reaction rate in figure 
(6.17). The exponential quickly approaches I producing a rapid increase c and 
consequently in the reaction rate also. The values of EA strongly influence the 
consumption of gaseous reactant mass. 
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Figure 6.17: Early-time mass-fraction and reaction rate histories for EAIR 
5000K (-) and EA/R = 7000K (full-line). 
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Figure 6.18: Early-time temperature histories for EA/7Z = 11000K (full-line). 
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Mass-fraction Rate of Reaction 

Figure 6.19: Early-time mass-fraction and reaction rate histories for EAIR 
11000K (full-line). 

The coupling of the rate of change in gasification rh and rate of gas-phase 
reaction K introduces an important new dimension to the understanding of 
how the rate of mass addition effects the consumption of reactant gas. As the 
rate of addition of reactant mass increases, the rate of reaction rises with this. 
For EAIR equal to 5000K, thus an increase in c between times 0.07rns and 
0.15ms implies that the rate of mass addition is greater than the rate of gaseous 
mass reaction in the vessel. After this the decline in mass-fraction implies that 
the rate of reaction is now greater than the mass addition. In chapter three 
it was predominately the gas temperature which drove the evolution of the 
gas-phase chemistry via the chemical frequency Q and the ignition reaction 
was characterized by a steep decline in mass-fraction to near zero values. The 
present discussion illustrates how the more realistic scenario can differ from 
this now that rh varies. 

It is quite possible that if rh continues increasing then comparison with 
the reaction rate would mean that the mass-fraction never falls to near zero 
values. In this case, when does ignition occur? Section (3.2.1) showed how 
the chemical process was such that over time when K -ý rh/2 equilibrium 
chemistry was established. Ignition was assumed to have occurred when there 
was a steep increase in gas-phase temperature and reaction rate. In this study 
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thi's can be similarly accepted but now the added complication is that the 
rate ýn is not constant and now has a dependence on an activation energy EPA 
(at early times) and gas pressure. The rate of decomposition will continue to 
accelerate as the pressure increases so it is quite possible to imagine a scenario 
in which the rate of supply of gas-phase reactant always exceeds the rate of 
consumption. Non-equilibrium effects in the gas-phase will then prevail long 
after ignition. 

Broadly speaking the coupling of the gas/interface chemistry will produce 
two possible scenarios prior to ignition: 

For O(EA) -- O(EA), decomposition and ignition will occur almost si- 
multaneously as illustrated in figures (6.16) and (6.18). 

For O(EAP) << O(EA), decomposition will occur much earlier than igni- 
tion. This is illustrated in figure (6.17) and (6.19) which show identical 
plots for activation energy EA/IZ -` 11000K. Decomposition occurs 
again before O. Ims but high rates of reaction do not occur until 0.7ms. 

The transient burn-rate modelling dominates events until the exponential 
in the decomposition rate tends to one. After this, according to the present 
model, transient burning no longer plays a part and the gas-phase chernistry 
dominates. Once equilibrium chemistry is attained then the conventional burn- 
ing models are retrieved that rely on Piobert's law alone. In reality this is not 
entirely true as the interface processes continue throughout burning. It is onlý 
for simplicity that all of this complicated interfacial chemistry is encompassed 
using Piobert's law. 

For a more detailed and mathematically precise discussion of how the rate 
of solid gasification and the rate of gas-phase chemistry are related, the reader 
is directed to the recent analysis of Clarke [1021. In particular, a solution 
is analysed for the rather unusual case in which EAP > EA. This will allow 
solutions categorized, in chapter two, as go/no-go solutions mathematically 
depicted as solutions that fall to either side of the separatrices around a saddle 
point in the T, plane. However, it will also allow a new class of solutions math- 
ematically corresponding to a focal node in the plane. Whilst the solutions 
around the saddle point have timescales measured in milli-seconds, the new 
solutions can span over hours. This might be interpretated as the 'liang-fire' 
phenomena whereby the the combustion products seem to 'cook' over a long 
period of time. 
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The above describes a possible mechanism for the interfacial chemistry that 
occurs between a hot gas and a reactive solid. This is a preliminary model 
and needs development for more complicated regimes such as extending the 
application of the model over the full combustion cycle, from initiation to 
burnout, and exploring the effect of latent heat and exothermic energy release 
in more detail. Heat-transfer relations also require improvement, in particular 
the model must be included in at least a one-dimensional context so that 
convective heat-transfer may be included. However, it provides insight on 
some of the controlling physical mechanisms and indicates a way forward. 
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Chapter 7 

Conclusions and Further Work 

The beginning of this study reviewed and discussed theory, and experiment, to 
describe the complex mechanisms that control the ignition of solid propellant. 
Most internal ballistics codes neglect a huge body of literature, that investi- 
gates detailed ignition processes, in favor of the very simplest ignition models. 
These simple models fail to provide adequate representation of some of the 
dominant factors known to influence ignition development. In particular, ig- 
nition models based solely on gas or solid-surface temperature attaining some 
empirical ignition temperature cannot predict the effect of gas-phase pressure 
and reactant species concentration on ignition delay. The participation of these 
elements motivates exploration of a gas-phase ignition model in a two-phase 
flow context. The goal has been to understand the ignition and consequent 
behavior of combusting propellant particles. 

The first step of the investigation involved the development of a gas-phase 
reaction that controlled ignition and combustion. Detailed mathematical anal- 
ysis of the governing equations that include simple chemical kinetics provides 
a precise criterion for ignition. Numerical methods have been described that 
solve the highly non-linear system of differential equations that is produced. 
These adopt modern shock-capturing methods, which provide high resolution 
of shocks, resulting in accurate, stable and, most importantly, physically mean- 
ingful solutions. Furthermore, application to realistic chamber configurations 
demonstrates the important coupling of the gaseous flow field and chemistry. 

The gas-phase theory is still at a conceptual stage and needs to be extended 
to allow a much greater number of reactant species so that the true combustion 
cycle may be adequatelN represented. Investigation into the reactions that 
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occur during propellant combustion reveals hundreds of chemical reactions. 
For reasons of computational efficiency these must be severely reduced into a 
smaller number of the most important rate controlling reactions. 

The second step has developed a model of solid propellant gasification that 
provides the source of gas-phase reactant species. This has exploited the vast 
amount of literature on ignition and transient burning that was specifically 
developed for rocket motor combustion. At present the model acts as the bridge 
to describe the events between first heating from ambient conditions to the 
establishment of gasification according to Piobert's law. However, the division 
of combustion into two constitutive reactions, gasification followed by gaseous 
combustion, throws question on the validity of Piobert's law in this context. 
Piobert's law is a measure of gasification rate and combustion simultaneously. 
It will only be valid in the above model once gas-phase reactions are in chemical 
equilibrium. When this is established, combustion is controlled by the rate of 
solid-phase gasification, since release of gas-phase exothermic energy occurs 
instantaneously on gasification. In essence this implies the obvious; accurate 
modelling of chemical processes requires accurate experimental information on 
the influential chemical rates. If the true nature of the propellant behavior is 
to be determined this will require unraveling some of the empiricism that has 
been adopted in the past. 

Surface gasification can be either exothermic or endothermic depending 
on the choice of propellant. These reactions must be included into the heat- 
conduction equation to describe energy transfer particularly during the ignition 
transient. The present model implies that once the surface rises to some tem- 
perature then this is assumed to remain at this temperature regressing rapidIN. 
However, throughout the burning cycle gaseous reaction will continue to pro- 
vide heat feedback into the solid accelerating the rate of surface regression. 
If the gasification process is assumed to be endothermic, then these increas- 
ing quantities of thermal energy will be used for latent heat requirements. If 
gasification is exothermic then there may not be heat transfer into the solid 
since the solid may be very hot. To complement this, once again, chemical 
investigation into some of the actual reactions that are occurring must be in- 
vestigated. The question of whether strong oxidiser actually attacks the solid 
propellant in a 'hypergolic' manner must be addressed. 

To validate some of the work included, experimental data must be ob- 
tained. Closed bomb experiments that measure the time and temperature of 
first decomposition and ignition would provide an indication of the size of some 
of the chemical parameters involved. Following this the time and location of 
these processes must be measured in a one-dimensional context to validate the 
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concept of shock and reactant wave interaction as a controlling mechanism for 
ignition. It would also be interesting to examine the solution of the problem 
that contains a region of ullage. If the interface between the two-phase flow 

mixture and the ullage acts anything like the end of the primer tube, which 
is expected to be the case, then it is highly likely that reactant gas will fill 
the region of ullage producing high reactivity in this region. This has been 
frequently observed experimentally. 

In the near future, the above model will be extended to include two- 
dimensional effects. It is anticipated that this will introduce a whole new area 
of difficulty due to the computational time required to solve the combination 
of two-dimensional transient two-phase flow and detailed gas and solid-surface 
chemistry. 

Finally, perhaps the most fundamental question when it comes to interior 
ballistics in general, more detailed analysis of the governing equations has to be 

performed. If Gough's equations are correct upto the point of solid propellant 
incompressibility, then more precise criteria must be developed to calculate 
the exact point at which the limit is attained. Alternatively, if it is a question 
of ill-posedness, multi-phase flow theory should be exploited to resolve these 
issues for good. 

It is highly likely that some of the complications are due to the numerical 
methods which have not been developed correctly to deal with some of the 
solid-phase behavior. For example, the numerical methods used in compress- 
ible high speed flow have taken years to be able to predict accurate propagation 
of shocks and contact discontinuities. The development of similar ideas may 
be required to model solid-phase features such as discontinuous changes in 

porosity. There seems little doubt that the action of gas-phase shocks on a 
wholly incompressible solid-phase is very likely to create difficulties physically 
and numerically. As the numerical methods have improved to provide excellent 
resolution of shocks these issues are becoming more important as the effect of 
the gas on the solid becomes more extreme. It seems that some of the older 
numerical methods based on high quantities of artificial viscosity, to provide 
stable solutions in the gas-phase, can attribute their success on the diffusion 
introduced in the system that smooths out discontinuous features. The equa- 
tions may need some degree of compressibility to allow physical solutions to 
these problems. In fact it was not until the modelers of DDT, whom auto- 
matically assume solid-phase equations of state and compressibility, included 
thermodynamic considerations that physically meaningful solutions could be 
produced from the equations. 
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Some of these issues are urgently required for extending the generality of 
the model to allow a greater number of solid propellants with various differ- 

ent initial distributions. For example, if two different propellants occupy two 
distinct regions in the chamber, then there will be a jump in porosity be- 
tween the propellant types. These issues are fundamental in the modelling 
of this two-phase flow problem and must be addressed before proceeding to 
multi-dimensional Navier Stokes calculations. 

This discussion shows that despite the years of research into interior ballis- 
tics and solid propellant combustion in general, an accurate, all purpose model 
is still not within our capabilities in the immediate future. 



Appendix A 

Riemann Invariants 

Riemann invariants are relations that can be constructed for a particularly 
simple class of homogeneous hyperbolic equations. Furthur details may be 
found in the text of Jeffrey [69]. 

Consider the set of equations written in conservative form: 

Ut + F(U), = 0, 

where U= [UliU2i 
... 1 Unj and F are n dimensional vectors. Assume that this 

set of equations can be re-written in the form: 

Ut + A(U)U, = 0, (A. 2) 

where A= A(U) is an explicit function of U and does not contain the inde- 
pendent variables x and t, that is, the system is 'reducible'. Since the system 
is hyperbolic it will have real eigenvalues P) for i=1, n such that 

All = 0, (A. 3) 

with associated right eigenvectors r() = 

A generalised simple wave region is defined as any region S in the (x, t) 
plane in which the solution vector U can be written in the form U(uj) where 
uj is one particular element of U. Generalized Riemann invariants apply in 
S space. This must be emphasized; the concept of a Riemann invariant is 
actually an exception to the rule and only applies in S space. Let j=1 in 
the system, then since U= U(ul), substitution into equation (A. 2) gives the 
result: 

( ýýu-l I ýýu-l A 
dU 
ý- = 0. 

U, at Dx 
) 

ul 
(A. 4) 
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If U is continuous and differentiable, it follows that: 

dU =- 
dU 

5 (A. 5) du, 
A non-trivial solution to equation (A. 4) can only exist provided that: 

JA 
- A(')II = 

07 (A. 6) 

(a-1 /a-, ). However, since the system of equation (A. 2) are hy- for at 8. 
perbolic, then the system has n eigenvalues which by definition are identically 

equal to the AM defined in (A. 6). In fact when A= A(), the associated right 
eigenvector r(') - by definition - must be such that it is proportional to dU 
to satisfy equation (A. 4). 

Define the set of characteristic curves C(') by: 

dx 
= A(i) =_ (A. 7) 

dt 
aullaul 
at ax 

Then from the analysis: 

au '-dx + 
all' 

dt = 0, along each curve C('). (A. 8) 
C9 x at 

If i=k then from this it is clear that ul(x, t) is constant along each of the 
curves C(k). The same result can be derived for all n families of characteristic 
curves; in particular concentrate on the k" family. From this the system of 
generalized simple waves associated with this family will be determined. Since 
uI is constant along characteristics C(k), it follows that the solution U(uj) must 
also be constant and by implication 0) is constant and the characteristics 
are in fact straight lines. This means that dU oc r(k) along the straightline 
characteristics which results in a set of n differential equation: 

du, d112 du� 
(k) (k) de. (A. 9) 

ri r2 rn 

This set of equations provides a relationship across simple waves 
dtij 

r 
ýk) 

(A. 10) dZ j1 

and uj can be found in terms of ý by integrating the system. For example 
consider the case of one dimensional unsteady inviscid flow; for an ideal gas 
this can be written in the form given by equation (A. 2) where: 

u A= 
( 

au 
p0 

22 (A. 11) /P u 1/pi9s 

s00u 
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where p is the gas density, u is the gas velocity, p= p(p, s) is the gas pressure 
and the entropy s= s(p, p). The eigenvalues are given by: 

P) =u+a, 
\(2) =UI A(3) =u-a 

where a is the gas-phase sound-speed and the right eigenvalues are: 

i ), 
alp 

0 

as 
0 

( -aap 

2 

1 

alp ( 
-0 

(A. 12) 

(A. 13) 

Inserting these results into equation (A. 10) gives the following: 
Generalised Riemann invariants P) for A('): 

jo) ua dp = const, and V) =- S= const. I 
J2 (A. 14) 

Generalised Riemann invariant for A('): 

j(2) - j(2) - I=p= const, and 2=u= const. (A. 15) 

Generalised Riemann invariant for A(3): 

j(3) +a dp = const, and J2(1) =- S= const. (A. 16) 

Entropy s is constant over the outer waves V) and A(3) and it and p are 
constant over \(2). 
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Appendix B 

Shock Speeds 

This section is designed to describe to the reader how the formation of the 
Rankine Hugoniot jump conditions are manipulated to produce closed forms 
for the shock speeds and star velocity. 

The one-dimensional Euler equations with a single species reactant equa- 
tion are given as: 

Ut + F(U), = 0, (B. 1) 

where U= (p, pc, pu, E)T and F(U) = (pu, puc, pu' + p, u(E + p))T. 

Rankine-Hugoniot conditions are defined by: 

SAU = AF (B. 2) 

where S is the shock speed and A defines the jump in quantity across the shock 
where the conditions at either side are depicted in figure (4.3). For example 
figure (13.1) shows the change in variables across the left shock SL- 

It is easy to manipulate the equations to give a closed form for the shock 
speed qL by transforming the equations to a frame of reference in which the 
shock is stationnary. This is described in figure (B. 1) where a new variable is 
introduced, v, which replaces u in the equations: 

vi = ul - SL; (B. 3) 
V* = U* - SL. (B. 4) 

Substituting equations (B. 3) and (B. 4) into equation (B. 2) effectively gives 
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sl 0 

PI p PI pl* 
Ci Cl Ci Cl 
Ul ul Vi Ul 

PI PI PI P1 

Figure BA: Transformation of a shock wave from speed SL to speed zero. 

a zero shock speed and only the right-hand-side of the Rankine- H ugoniot con- 
ditions remain that is: 

AF0 (B. 5) 

Pivi PTV*; (13.6) 

PjVjcj P, V cl; (13.7) 
P, V2 + P, Pj V*2 + P.; 1 (13.8) 

v, (Ej + pl) v*(Eý + p*). (B. 9) 

Subtracting equation (B. 3) from (B. 4) implies vi - v* = ul - u*. Define the 
parameter 

ML =- PIV, = PTV*, (B. 10) 

then substitution into (13.8) and simple manipulation- gives: 

AIL = 
PI - P* A -P* (13.11) 
VI - V* U1 - U* 

Recall from equation (13.10) that vi = AILlpi and v, MLlpl* then substition 
in equation (13.11) gives: 

AIL' = pi A PI P* (B. 12) 1A 
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where DI = p, *Ipl. The third relation given in equation (B. 9) can be manipu- 
lated to give: 

ei =1 (pl) 
«HI + 1)(DI - 1) ), (B. 13) 2 pl D, 

where Hi = p*lpi. 

The equation of state for a co-volume gas is: 

p(1 - ob) 
P(-t - 1)1 

where b is the covolume. Use of this in equation (B. 13) gives a relationship 
between HI and DI across the shock that can be substituted into equation 
(B. 12) to give: 

(7 +1 plpl 
-) 

(HI 
+ ^f - 1). 

(B. 14) 21- bpl -Y +1 

Recall that 
SL = III - vi = ul - MI/pl, 15) 

and the gas-phase sound speed can be defined as 
ý lp 

(1,1-p pb) 

then this finally gives the the left shock speed as: 

Si=ul-al 1+-Y+I(L! -l) (B. 16) 
-1 -1 pt 

Use of equation (B. 11) also gives the relation: 

U, =ui- 
P* -Pi 

- -. 1 - ft (P*, ul) (B. 17) A 

where fi(p*, Ul) = P,,, P' which is used in the exact solution of the Riemann 
problem. 

Identical manipulation of the right conditions gives the formula: 

, qR=u, +a, 1+-Y+1(V' -1). (B. 18) 2-y Vr 
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Similarly it may be shown that: 

APPENDIX B. SHOCK SPEEDS 

Ur + P*- Pr 
- Ur + fr(P*, Ur) (B. 19) Al'r 

where fr (p*, U, ) P* -r AIr ' 

These relations give closed forms for the left and right shock speeds and 
the star velocity in terms of the unknown star pressure p* and all known initial 
data. 
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