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ABSTRACT 

This thesis deals with the theoretical and experimental investigation of two-phase flow 

for a dielectric liquid electromagnetic flowmeter. So far only limited investigations into 

the possible use of electromagnetic flowmeters for multiphase flow measurement have 

been made. These have been restricted to electromagnetic flowmeters designed for 

conducting water based (electrolytic) fluids. The possibility of designing 

electromagnetic flowmeters for use with insulating (dielectric) fluids such as oil and 

petrol has been existed for some years. However the measurement of two-phase flow 

of insulating fluids using electromagnetic flowmeters and the application of this 

knowledge to the measurement of the separate phases has not yet been a subject for 

research. An analytical model is developed which evaluates a transformer signal that is 

produced on the electrodes when a bubble unbalances eddy currents while it passes 

through the meter. The shape and magnitude of this signal for various positions in the 

pipe cross-section is investigated. The behaviour of this transformer signal for various 

electrode shapes is studied as well and it is found that when using large area electrodes 

the position of the amplitude along the pipe axis remains almost constant. For 

measuring the speed of bubbles passing through the meter a frequency analysis is 

carried out and shows that the peak frequency of the signal is proportional to the 

velocity of the bubbles. A flowmeter is built to carry out experimental work. The first 

sets of experiments are carried out with plastic beads fixed on a thin string which is 

attached around two wheels. The speed of the beads is adjusted by an electromotor 

which powered one wheel. In a second experimental design gas bubbles are injected in 

a vertical pipe which is filled with dielectric oil. Both types of experiments exhibit the 

behaviour predicted in theoretical analysis. 
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CHAPTERI 

INTRODUCTION AND LITERATURE REVIEW 

1.1 Obiectives 

The project is concerned with the behaviour of electromagnetic flowmeters in two- 

phase flow of electrically insulating fluids (such as oil and gas) with the view to 

developing electromagnetic flowmeters that can measure the velocity of the second 

phase. The objective was to gain an understanding of the physical effects of bubbles on 

the quadrature output of electromagnetic flowmeters, for dielectric liquids and to 

evaluate and test a signal processing means for extracting velocity information for the 

gas phase. This work laid the basis for the development of electromagnetic flowmeters 

for two-phase flow measurement of insulating fluids. 

1.2 Introduction 

Electromagnetic flowmeters have been in use for many years in various parts of the, 

water, food, process, energy production or chemical industries. The meter is also used 
in medicine, measuring flow in human blood vessels. The electromagnetic flowmeter is 

mainly used to measure single phase flow. For commercial applications meters are 

available for fluids with a minimum conductivity of 0.05 PS1cm. The basic principle for 

magnetic flow measurement is based on Faraday's law of induction, which states that 

when a conductor moves in a magnetic field a voltage is generated in this conductor. 
The general equation for this application is U=B-1-v where U is the induced voltage, 
B is the magnetic field, 1 is the length of the moving conductor across the magnetic field 

and v is the velocity. This is called "Induction Flowmeasuremenf'. The volumetric flow 

is directly proportional to the voltage. 
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General advantages of 'Magmeters' are their high measuring reliability, good accuracy 

(up to ±0.1 % of measurement at maximum velocity), can be cleaned in place, virtually 

maintenance free because of no mechanical moving parts and therefore no wear and 

tear. The major advantage of electromagnetic flowmeters over mechanical flowmeters 

such as Orifice Plates, Vortex Meters, Turbine Meters or others is that they are not 

intrusive. They do not cause an additional pressure drop because of some obstruction in 

the flow. Another major advantage of electromagnetic flowmeters is that they are not 

susceptible to erosion by solid particles in the flow. Also of impotrance is the fact that 

this meter is a linear device (i. e. the induced voltage is proportional to the flow rate). It 

gives a signal whose mean may be directly used to give the mean of the flow rate. 

Traditionally, electromagnetic flowmeters as well as many other types of flowmeters are 

used for single-phase flow only. In practice, however, there are many applications, 

especially in the oil and petroleum industry, where multiphase flow has to be measured. 

1.3 Literature review 

The subject of electromagnetic flowmeasurement is a rather wide area and large amount 

of research work has been published over the last century. For this reason the literature 

review will cover only a brief history of the general subject of electromagnetic 
flowmeasurement. More weight is put on the work which has been undertaken on using 

to measure two phase flow. 

1.3.1 Brief history on the ueneral electromanetic flowmeasurement 

It was Michael Faraday [1] who discovered in 1831 that a fluid, which moves through a 

magnetic field experiences an induced voltage. The first flowmeter device was designed 

by William's [2] in 1930. He used a copper sulphate, solution which moved through a 
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nonconducting circular pipe and applied a uniform transverse magnetic field. This 

arrangement is shown in Figure I. I. He measured a d. c. voltage between two 

electrodes, which were mounted opposite each other on to the pipe and perpendicular 

to the magnetic field. The arising voltage was proportional to the flowrate. 

Magnetic Field I- 

Electrodes 

Figure 1.1 (Basic Electromagnetic Flowmeter Arrangement) 

William's realised that because the velocity profile is not uniform over the cross section 

of the pipe, the induced electromagnetic force (e. m. f. ) would therefore not be uniform 

either. The result is that larger e. m. f. 's in the centre of the pipe would drive a current 
back against the weaker e. m. f. 's near the pipe wall. This effect produces a current 

circulation. An illustration of this occurrence is given in Figure 1.2. 

e. m. L's 

Circulating 

Magnetic 
Currents 

Field 

C 

Figure 1.2 (Induced Electromagnetic Force) 
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The slower moving fluid near the pipe wall 'short-circuits' to some extent the e. m. f. 

induced in the faster moving fluid in the pipe centre. However, if the velocity 

distribution is symmetrical about the centre line of the pipe the voltage which appears 

across the electrodes is the same as it would be if the fluid moved at a uniform velocity. 

In 1936 Fabre [3] recognised the possibility of making use of this method in measuring 

blood flow. A further development for electromagnetic blood flow measurement was 

introduced by Kolin [4] in 1941. He designed a cuff - type flowmeter, which could be 

mounted around the blood vessel and not damaging it. He also made use of a. c. coil 

excitation to overcome polarisation on the electrodes. In further medical research other 

developments took place such as applying a square wave excitation introduced by 

Denison et al. [5] in 1955 and a trapezoidal wave drive of the coils by Yanof and Salz 

[6] in 1960. Shercliff [7] gave a comprehensive theoretical contribution including the 

investigation of conducting and non-conducting walls, circular and rectangular pipe 

sections, and point and area electrodes, in his book, which he published in 1962. The 

U 
sensitivity, which is described as S=- where a is the pipe radius, is only constant B2av 

when an uniform transverse magnetic field, diametrically opposed electrodes, non- 

conducting pipe and an axisymmetric velocity profile are provided. Shercliff wAs the 

first to introduce the weight function. It gives the sensitivity of the flow induced signal 

at the electrodes to the velocity at any point in the pipe cross section. An extension of 

the weight function was given by Bevir [8] in 1970, who introduced the concept of the 

virtual current that derived the weight vector 17V = B_ X j- . He described the virtual 

current (j) as the imaginary current which would flow when a unit current enters 

through the first electrode and leaves through the second electrode (for no fluid flow). 

The virtual current theory was applied to investigate a numerous amount of weight 
functions for different electrode shape and size and various magnetic fields. For a 

velocity profile which would cause the same flow signal, regardless of its position in the 

flow conduit, the weight function is aimed to be as uniform as possible. A considerable 

amount of work improving the sensitivity using weight function theory have been 

published over the years, such as Ketelsen [91 in 1969, Hemp [10] in 1975, Al-Khazraji 

and Baker [11] in 1979, Wyatt and O'Sullivan [12] in 1983. It became apparent that 
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when using large electrodes in an electromagnetic flowmeter the problem of electrode 

fouling which would affect both the flow signal and transformer signal. Al-Khazraji [ 131 

calculated that the sensitivity for the flow signal would change up to 5% and the 

transformer signal would change about 10 times of the flow signal for flow velocity of I 

nzls and for 100 mm diameter flowhead. A way of removing electrode fouling was 

developed by Cox and Wyatt [14] in 1983, when they introduced insulated electrodes 

of large area. These non-contacting electrodes were embedded in the flowtube and the 

result was that this arrangement also reduced the sensitivity by a factor of 14 in 

comparison to point electrodes. An investigation of eddy currents and transformer 

signals was carried out by Hemp [15] in 1990. He showed a relation between the axial 

component E, of the eddy current E-field in the liquid and the electrical potential U 

induced by'a flat profile flow. He could prove with this relation the impossibility of 

reducing base-line instability by magnetic field shaping. At the same time he found with 

this relation, a new method for monitoring flowmeter sensitivity. 

1.3.2 Governing eguations in electromagnetic flow measurement 

The foundation for the basic governing equations for the electromagnetic flowmeter 

theory are Maxwell's equations in the following form 

v X, 5 
= tj (1.1) 

v. b=o (1.2) 

Vxk=-B 

and Ohm's law 

a(k+ Px b) 

It is allowable to neglect B since the influence of this value can be eliminated by means 

of mechanical and electronic design. The basic relation that the gradient of the potential 

equals the electric field (-VU =, E) introduces the potential in equation 1.4. 
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CT(-vu +vx (1.5) 

When taking the divergence of this equation and including from equation 1.1 that the 

divergence of j is zero (vector identity), then the following equation appears 

VIU=v+xb) (1.6) 

Applying vector identity to this equation leads to the following expression 

V2U =, 
ý. VXV_V. V XR (1.7) 

The second term of the above equation can be neglected (Vx, §=O) since the 

magnetic field is not affected by the low currents in the fluid. Hence equation 1.7 

0 becomes 

vlu=b. vxv (1.8) 

This equation is known as the 'Flowmeter equation'. Baker [ 16] derived the solution of 

equation 1.8 for a circular pipe and for a flow profile which is rotationally symmetrical 

around the centre line of the pipe as 

r 

U= f r) +V (a 4ý7, )ýo (p, O)dp 
20 

where p is the radius for the term to be integrated. The potential difference between 

diametrically opposed electrodes can be obtained by solving the following integral 

AU =2jV(. \fr-a)BO r, 2 
(1.10) 

For a uniform magnetic field the potential difference can be solved as 
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a 

AU f rv(r)dr = BDv 
0 

with D as pipe diameter and v as mean fluid velocity. 

1.3.3 The nature of dielectric materials 

A dielectric medium in an electric field can be viewed as a free-space arrangement of 

microscopic electric dipoles. These dipoles are composed of positive and negative 

charges whose centres do not perfectly coincide. These charges are not free charges, 

and therefore can not contribute to the conduction process. They are bound in place by 

atomic and molecular forces and can only shift their positions slightly in response when 

an external electric field is applied. For this reason these charges within a dielectric 

medium are called bound charges. Bound charges can be treated as any other sources of 

the electrostatic field. The feature of all dielectric material (no matter if they are solid, 
liquid or gas) is their ability to store energy. This storage takes place by shifting the 

relative positions of the internal, bound positive and negative charges against the 

original molecular and atomic forces. The source of the energy is a transient current. 
The negative and positive charges shift in opposite directions (against their mutual 

attraction) and produce a dipole which is aligned with the electric field. This dipole is 

described by it's dipole moment p and can be calculated as 

P=Q-j (1.12) 

For n dipoles per unit volume there are n *AV dipoles. The total dipole moment is the 

vector sum, 
n-AV 

T)SUM 

Polarisation is defined as the dipole moment per unit volume, 
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I n-Av 
lim I pi 

AV--+O AV i=l 
(1.14) 

An incremental surface element AS is selected in the interior of the dielectric and an 

electric field E is applied. This is shown in Figure 1.3. The net charge (since there are n 

moleculeS/m 3) which crosses the elemental surface in an upward direction is 

AQb 
nd = nQd -, A9 . In terms of polarisation the last equation can be written as 

AQb,,,, ý =P- A9 . The net increase in the bound charge within the closed surface is 

achieved through the integral 

Qbound -f P- dg 
s 

------------- Dielectric, 
Materi6l AS 

-- ----------- 

Figure 1.3 (Interior of dielectric) 

(1.15) 

The general expression for the total charge density (bound plus free charge) is given in 

Gauss's law as 

Ql,, t., --, ý f EOR - d3 (1.16) 
S 

The total charge is Qtotal '- Qbound + Qfree (1.17) 

Consequently the free charge can be expressed by 

Qf, 
ee = Qtotal - Qbound =f (E 

0P+ 
P) - dg 

s 

A general equation for the electric flux density (D) can now be derived as 
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D=eoE+P (1.19) 

Therefore Qf,, 
e =f F) - d3 (1.20) 

s 

By making use of the divergence theorem (Maxwell's first equation for electrostatic 

fields) the above equation can be transformed into the following 

V. f)=p (1.21) 

The relationship between the electric field intensity (E) and the polarisation (P) is a 

function of the type of material. For isotropic materials E and P are linearly related. In 

an isotropic material the vectors E and P are always parallel. This linear relationship is 

found as 
P=X, EOE (1.22) 

with X, as the electric susceptibility of the material. The susceptibility can also be 

expressed as the relative permittivity minus one (P = (E, - I)E0 P). Putting this 

expression in to equation 1.19 a final form for the electric field flux density can be 

derived as 

D=EoErE 

1.3.4 Electromapnetic flowmeter theorv for insulatina liquids 

It was V. Cushing [17,18,19] in the late 50's and early 60's who investigated 

extensively the behaviour of electromagnetic flowmeters with an insulating medium. He 

worked out a flowmeter theory within he shows that it is possible to measure a 

potential difference on the electrodes when a nonconducting liquid is used in an 

electromagnetic flowmeter. He started his investigation by looking at the general law of 
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induction (an electric field will be induced in a medium moving relative to a magnetic 
field). 

E=VxB (1.24) 

This induced electric field is proportional to the intensity of the magnetic field and to 

the relative velocity of the moving medium. This vector equation does not give any 

information on the dependency and influence of the electrical properties. Cushing 

therefore concludes and shows how the voltage induced by flow depends on 

conductivity and dielectric constant of the fluid, as well as on the frequency of 
induction. He derives an expression (see reference [17]) for the potential that is 

dependent on the electrical properties of the medium. 

V'U = Zdiv(. 6 x V) 

where the variable Z, known as attenuation factor, stands for: 

Z =a +ip = Ae'y 

a=I+ 
(o)KO / cr 1)2 K, (KI - 1) 

(1.27) 
1+ (o)KOKI / a, ) 

2 

p=_ O)Kolal 
I+ (o)KOKI / al)2 

(1.28) 

2 

A= 

f[I 
+ (COKO I (11)2 K, (KI - 11 + ((OKO I C71 )2 12 

1+ (COKOKI / a, 
)2 
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arctan -- 
o)K, / a, 

I+ (o)KO / a, )2 K, (KI - 1) 
(1.30) 

with a further derivation he found an expression for the potential difference at the 

electrodes as 

, 
AU = 

ZBV 
Xa 

(1.31) 

where V is the volumetric flowrate 

He continuous taking the effect of the pipe configuration into account and finds a final 

equation for the potential difference on the electrodes for a circular flow pipe where the 

pipe surface is maintained at zero potential as 

AU= 2CZBV (1.32) 
7ra 

where the flowmeter configuration constant C is given as 

R[I _(a 
)2] 

b 
(a )2 (1.33) 

b 

Cushing [20] proposed in 1965 a capacitive pick-up design of the induced potential. 
The design consisted of a wide area curvilinear electrode which is mounted on the inner 

pipe wall (touches the fluid) and a driven shield which is placed behind the detection 

electrode. This driven shield is held at the same potential as the detection electrode by a 
buffer amplifier of unity gain. The results he gained were promising. He achieved a 
linear output voltage for a flowrate ranging from 0 to 50 gallons per minute. 
However, the results on baseline stability with a zero point drift of about 10% of full 

scale per hour were unsatisfactory. 
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Hentschel [211 reported in 1973 that for dielectric liquid flow a movement of 

electrostatic charge is generated and appears as random noise on the electrodes. This 

electrostatic charge is generated from friction between the pipe wall and the moving 

liquid as well as the turbulence of the flowing fluid. The magnitude of electrostatic 

noise depends on fluid velocity, type of liquid, as well as boundary conditions such as 

pipe wall roughness and arrangement of the electrodes. Hentschel discovered in his 

investigations that the drive frequency plays a significant role for this kind of noise. He 

found that with increasing frequency the magnitude of electrostatic noise decreases very 

considerably. 

Al-Rabeh, Baker and Hemp [22] (1978) provided the theoretical principles and a 

thorough description of governing equations for electromagnetic flowmeasurement 

applicable to poorly conducting and nonconducting liquids. 

Al-Rabeh [23] (1981) designed and carried out experiments on an axial current meter. 

His results of the output voltage related to the flowrate. But again like in Cushings and 
Hentschels experiments, the baseline stability was found to be low. 

Further work was carried out by Codazzi and Mioque [24] (1986). In their experiments 
it was observed that a flow related signal existed for flow velocities below 1.5 m1s. For 

higher velocities electrostatic charge noise made it impossible to detect a flow signal. 

The recent investigations carried through by Barnes [25] in 1991, whose objective was 

to assess and narrow the problems associated with the measurement of dielectric liquid 

flow. His initial experiments did not show a flow induced signal at all, not even for low 

fluid velocities. The reasons for the failure he concluded were based on three major 
factors: Flow induced noise (electrostatic charge), because his drive frequency was 
278.75 Hz only, Non-uniform electrode coupling (electrodes were not fin-nly attached 
to the spool piece), and capacitive pick-up from the electro-magnets (500 V pk-pk 

existed on the coils). A capacitive coupling of just 0.2 pF is necessary to induce an in- 

phase potential in the low impedance output leads of 10 mV. Also, he pointed out that 
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this capacitance is very variable due to influencing factors like draughts or changes in 

humidity. 

The latest investigations and efforts to improve the performance of a dielectric 

electromagnetic flowmeter was implemented by Amare (1994). The emphasis of his 

work concentrated on overcoming the main problems Bames experienced. He increased 

the drive frequency to 1500 Hz and rninimised the electrostatic noise problem. The 

associated increase in transformer signal was compensated by applying an electronic 

quadrature suppression system as well as the method of phase sensitive detection. The 

very high voltage on the coils (the required magnetic field was 100 Gauss the voltage to 

produce such a magnetic field amounted to 1250 V pk-pk) led to an even higher risk of 

capacitive coupling between the coils and the detection leads. He overcame this 

problem by designing and building of an eddy current free electrostatic shield. The 

attenuation for 1500 Hz was found to be 60 dB. His results were very promising with a 

linear response of the flow induced signal to the flowrate (range from 0 to 3 in1s) and 

the zero stability of the designed meter was measured to be 2.5% zero drift per hour for 

full scale voltage and I% per hour for half the maximum voltage. 

1.3.5 Electromaunetic flowmeters for multinhase flow 

The first attempt to investigate the behaviour of electromagnetic flowmeters in two- 

phase flow was carried out by Heineman et al. [27] in 1963. They theoretically 

developed a form which predicted the vapour volume fraction dependet on voltage 

output on the meter. Their experimental set-up consisted of two electromagnetic 
flowmeters placed in series. Only liquid flowed through the first meter and output 

readings were measured on the electrodes. Before the liquid entered the second meter a 

gaseous phase was mixed in. With the two output readings from the meters the vapour 

volume fraction could be calculated with the previously established equation. The 

gamma attenuation method was used to calculate the void fraction as a reference. 
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The results were encouraging. For void fractions greater than 20% a deviation of + 9% 

to -20% compared with the reference results were achieved. 

In 1966, Hori et al. [28] carried out an extensive amount of work on electromagnetic 
flowmeters in two-phase flow. The continuous phase was mercury and water and the 

second phase was simulated through plastic rods. To simulate different forms -of two- 

phase flow rods of various sizes were placed at various positions in the cross section of 

the I inch flowtube. In this way the flowrate of the continuous liquid phase was kept 

constant. In their experiments they used two electromagnetic flowmeters put in series. 

The first meter, upstream of the second, measured the velocity of the single phase. 

Whereas the arrangement of plastic rods inserted in the flow conduit of the second 

meter in order to simulate the void and measure the average velocity of the obstructed 

flow. The void fraction could therefore be calculated by the following equation 

1- (Ul /U2) (1.34) 

The measured results for the void fractions were slightly lower compared with those 

calculated from the ratio of the pipe cross section and the cross section of the rods. 

Bernier and Brennan [29] in (1982) investigated theoretically and experimentally the 

behaviour of a transverse electromagnetic flowmeter in two-phase flow. They gave 

expressions for the potential difference across the electrodes for a homogenous two- 

phase flow with an uniformly dispersed second phase which has zero velocity, for 

annular two-phase flow, and two-phase flow with dispersed nonconducting spheres 

with relative motion. These investigations both theoretically and experimentally led to 

the conclusion that the calibration of the meter was not dependent on void fraction, 

flow regime, or flow profile. It was also concluded that the meter measures the average 

water velocity over a substantial range of void fractions, water flow rates, slip ratios, 

and flow regimes. The experimental results agreed extremely well (only a 2% 

deviationwas recorded) with the theoretical predictions. In addition they found that the 
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flow noise was virtually independent of the void fraction or water flow rate. 

In the same year Velt et al. [30] made a different approach in measuring two-phase flow 

with an electromagnetic flowmeter. Their idea was to consider eddy currents produced 
by an alternating magnetic field. These eddy currents would be unbalanced by a 

nonconducting particle moving through the meter and hence generate a signal on the 

electrodes which would be in phase with the transformer signal. The typical shape for 

this signal can be described as follows. The voltage rises when the bubble enters the 

meter then reaches a maximum at a certain distance from the electrode plan, and then 

falls to zero when reaching z=O. When the bubble passes the position z=O the same 

signal occurs in an anti-symmetric form. Their investigations predicted that the 

magnitude of the signal and position of the peaks along the pipe axis depends on the 

flowmeter geometry, the magnetic field and the electrode design. The flow rate was 

calculated by measuring the maximum signal with two meters placed in series and also 

measuring the time in between. 

Krafft [3 1] in 1994 made use of this idea and further developed this method for a water 
based main phase and a nonconducting second phase. He investigated the size of the 

signal depending on the position of the second nonconducting phase in the pipe section 

as well as the position of maximum and minimum signal occurrence along the pipe axis. 

He found out that when using large area electrodes the location of maxima and minima 
is almost constant for any position of the moving bubble in the pipe cross section. In his 

investigations he also predicted that the spectra peaks at a frequency of 

fp = 27r. %f3- 
= 3.68vm. Though his measured values of peak frequencies were all above 

the calculated ones. 
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CHAPTER 2 

DEVELOPMENT OF AN ANALYTICAL MODEL 

2.1 Introduction 

In this chapter a theoretical evaluation of the transformer signal in an electromagnetic 

flowmeter due to a moving gas bubble within a dielectric liquid is made. The objective 

is to obtain an understanding of the physical effects of a bubble on the output 

transformer signal of electromagnetic flowmeters for dielectric liquids. 

2.2 The Transformer Shmal 

The existence of the transformer signal has several causes. One major fact that causes 

this signal is that the electrode wires which constitute a loop which, when not perfectly 

perpendicular with the applied magnetic field, can pick up induced voltages from the 

flux of the magnetic field. This phenomena is a result of Faraday's law. A general 

explanation says that an electromotive force (emj), which is simply a voltage that arises, 
is produced due to relative motion between a steady flux and a closed path or a time 

varying flux (0) linking a stationary closed path, and is described in the following 

equation and illustrated in Figure 2.1. 

D(D 
_f 

LB. 
emf T=f iý-A= 

ts at 

The minus sign indicates that this electromotive force is in a direction to generate a 

current with a flux, in addition to the initial flux, which reduces the magnitude of the 

emf. In other words the induced voltage acts to produce an opposing flux and is known 
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as Lenz's law. Equation (2.1) shows that the transformer signal lags 90' behind the 

actual flow induced signal. As applied to flowmeters with sinewave excitation it is 

known as 'quadrature emf. Even larger transformer signals can arise from electrodes 

which are not uniform in contact with the liquid. A further increase of this transformer 

effect arises when bubbles pass through the meter together with the fluid, because the 

path in the fluid is deflected. This effect is investigated in depth and is explained in the 

following sections. 

Figure 2.1 (Existance of transformer signal due to loop on detection leads) 

2.3 The transformer sianal due to a bubble that passes through the meter 

The following theoretical approach to the measurement of two-phase flow with a 

dielectric electromagnetic flowmeter is made. Considering the (displacement) eddy 

currents in the liquid due to an alternating external magnetic field, as soon as a gas 

bubble passes through the current field, it is expected to unbalance the eddy currents 

and therefore produce a 'transformer signal' across the flowmeter electrodes. The 

following analytical model of eddy current/bubble interaction and resulting signals 

across the flowmeter electrodes is developed. The magnetic field is assumed to be 

infinitely long uniform and exactly perpendicular to the y and z axis. End shorting 

effects were not considered. 
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2.4 Modellina a dipole in z-direction 

A gas bubble of specific permittivity, represented in the form of a sphere, surrounded by 

a dielectric liquid (oil) is considered in a uniform current field. The undisturbed electric 
displacement (D) field lines are parallel to the z-axis. In Figure 2.2 it is seen that the 

induced field of the sphere in the region outside the sphere is that of a dipole. The first 

step is to model a dipole pointing in z-direction. The aim is to gain the strength of the 

induced dipole. 

0- 
b - - - 

El 
Af \ 

z 

Figure 2.2 (Electric field lines around a gas bubble) 

We assume there is no volume charge density or surface charge density on the 

boundaries (e. g. the surface of the sphere) and therefore Laplace's Equation, in 

spherical co-ordinates is used to derive a form for the potentials in the different 

regions. 

1a241a Do 1 320 
V20 

r -T - (2.2) 
r2 

T-)+ 
r2 . (sinOý- )+ 2'0 0 Dr r sin 00r sin' 0 T(p 7 

Now separating the radial and angular parts of this equation as 

0= R(r) Y(O, (p) (2.3) 
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Hence we have the separated equations as 

a 
(r 

DR 
)-n(n+])R=O (2.4) 

Dr Dr 

and 
I 

(sin 0ay+1 
a2y 

+ n( n+I )Y =0 (2.5) 20 TF 

sin 0 ý-O ý-o sin (p 

The form of the separation constant n(n+]), where n is a real integer, is dictated by the 

necessity that there is a regular solution at the singularities of the equation for Y, which 

occur at 0=0 and 0= it . In general Y(O, (p) is known as spherical harmonics. If the 

boundary is such that 0=0 and 0= ir (i. e. in polar axis) are excluded, then n need not 

be an integer. 

The general solution of the differential equation for the radial part is 

R(r) = A,, r' + B; "+' (2.6) 

The spherical surface harmonics can be further separated by means of the following 

substitution 

Y(e, q)=e(o»(cp) (2.7) 

The new separation constant is called M2 . For convenience the polar angle variable will 
be g= cosO . The resulting equations are 

d 2)d'9 
+ n(n+])- 7M2 =0 (2.8) 

g2 dg dg 

[- 

d'(D+ 
M2(1) =0 (2.9) 

dy 2 
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The solutions of these equations are 

C,, P,. (g) + D,, Q(g) n 

(D = Em cos m(p + Fn sin my 

G(p +H 

: P, -L 

M=o 

(2.10) 

(2.11) 

The functions P. (cosO ) and Q,, (cosO )are the associated Legendre functions of the 

first and second kind, respectively. It is necessary to note only that P,, ' is the solution 

that is finite for R= ±1 and is thus the only solution allowed when the space involved 

in the problem includes the polar axis. 

These solutions yield the following general expression for the potential. 

0=In -n-I Cpm(tl)+D m(tl) 
.., 

[A,, 
r+ Bn rInn 

nQn 
lEm 

cosmT + F. sin mTj 
(2.12) 

Consider now the potential of a dielectric sphere (gas bubble), shown in Figure 2.1, in a 

uniform field. 

2.4.1 Field at infinit 

Since the field at infinity is uniform, the potential is given by 

0_ = -Eoz = -EorcosE) = -Eorg =- Eo rP, (g) 
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2.4.2 Field inside the sphere 

Regarding now the region inside the sphere, represented by 00 the following 

terms in equation 2.12 are removed. 

B,, r -n-I : Because if r goes to zero this- term goes to zero as well. 

E. cos my + F. sin my : Because 0 does not change with the value of the angle 

(axial symmetry). 

Therefore the potential distribution inside the sphere becomes 

IA,, r"Pn([t) 
n=O 

2.4.3 Field outside the sphere 

Finally consider the region outside and near the sphere represented by 0,. The 

following terms in equation (2.12) is removed. 

A,, rn : Because if r goes to infinity this term goes to infinity as well. 

E cos m(p + F. sin m(p : Because 0 does not change with the value of the angle 

(p, (axial symmetry). 

Hence the remaining equation for ý, (near the sphere) become 

B,. r-"-'P,, (g) - EorP, (g) 
n=O 
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The first term in equation (2.15) represents the dipole source term and the second 

comes from the uniform field. 

2.4.4 Evaluation of the rield constants 

To evaluate the constants An and Bn the coefficients fn (u) had to be equated for the 

same n-values. The boundary conditions are Ob=01 and eb 
L- 

=cj(DO') at r=d 
Ob ( 
Dr 

) 
W) 

and must hold for all values of the angle 0. 

Case n=O 

Also 

because: 

Case (n>]) 

ob = AodoP0(M) = Bod-'Po(; i) = 

Ao = 
Bo 
d 

00b I 
-2p Eb 0 

(it) = Tj =0E Bo(-I)d -ýO-l r r=d 

I' I 

r=d 

d# 0 

Po(g) # 01 

c, #o 

Bo = 0, Ao =0 

ob = A,, dP,, (g)= B. d-"-'P. (g)=0, 

A 
B,, d-n-1 

n dn 
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Also 

A. ndn-lp rr,, B. (-n - I)d -n-2p 
n( 

R)= 
n( 

e, B,, (-n-I)d - n-2 

el 
bA,, nd 

n-I 

d#0 
because: -f- U Cb ý fl 

Cl #0 

Case n=l 

B=O -A=O 

-2p Ob=Alr'P,, (g)=Blr (g)-EorP, (g)=Oj 

A, = 
Bld-2 Eod 

= Bld-3- Eo 
dd 

Also 

6bAlIdOPI(p) = EI[B, (-2)d-'PI(p)- EOPI(y)] 

A, = 
ý-' [-2Bd' 

- EO] 
eb 

Solving the equations for A, and B1 as 

1-91 

A, = Eo 
F'bj 

_1 

+ 
2ei) 
Eb 

(2.16) 
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Eo 1- F- 'd3 
B, =( 

eb 
(2.17) 

2c 
eb 

Having derived the constants A, and B, equations (2.14) and (2.15) become 

- 
1-ei 

ýb= Eo 
eb 

1 rcos0 
+ 

2F, 1 
Cb 

1 El 
d3 

Eorcos 0 
Eb 

(2.19) 
+ 

2E, 
r3 Eb 

2.4.5 Calculation of the dipole strength 

Looking at equation 2.19 it is seen that the induced field of the sphere in the region 

outside of the sphere is that of a dipole. The definition of a dipole is shown in Figure 

2.3. 

The general definition of a dipole moment is as follows, 

lim8 -q=p 
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q_>oo 

r (x�x, 

. ............... . 
Figure 2.3 (Schematic of dipole definition) 

The potential of a dipole is as 

0=-I P-F 
41rEo r' 

Combining equation (2.19) and (2.20) the dipole moment in this case becomes 

(2.20) 

El 

Eo d34; rEo 
+ 

2E, 

E6 

2.5 Evaluation of eddy current field 

We come now to evaluate the eddy current field EO due to the transformer signal using 
Maxwell's equation for time-varying fields to achieve a solution for E0. The geometry 
is shown in figure 2.4. 
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?c 

Figure 2.4 (Geometry of Flowmeter Arrangement) 

y AB 

vx fo = -io)b (2.22) 

k 

xE Xy ya, (2.23) 
E., Ey Eý 

Assuming there is no current going in x and y-direction (E= E(y)k ) (because the 

walls are parallel to the z-axis), the components E., and Ey are zero out and therefore 

equation 2.22 turns into the following form 

Hence E, becomes 

DEz 
= _, Cob DY 

E =-iCi)äy (2.24) 

As it can be seen in equation (2.24) E. varies linearly with y and becomes maximum 

near the pipe wall and is zero in the pipe centre. This is also shown in Figure 2.5. 
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.......................... ... 

Figure 2.5 (Eddy Current Field) 

Having achieved the solution for the electric field, the final expression for the dipole 

moment becomes 

-i(t)By 
Eb 47reod 3 (2.25) 

+ 
2E, 
Eb 

2.6 Model of the rield and bubble interaction 

Having derived an expression for the dipole moment, now an expression for the 

potential due to the electric field and bubble interaction in three regions is developed. 

Region I contains the dielectric medium, region 2 is the insulating pipe and region 3 is 

the medium (air) between the pipe and the grounded shield. In Figure 2.6, this 

arrangement is shown. 

a. ; ... ......... ... - ... .......... ..... 

Figure 2.6 (Regions for calculated electrical potentials) 
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6.1 Expansion of the potential in efizenfunctions 

Again, Laplace's equation, this time in cylindrical co-ordinates, is used. 

v2e 
=0=1 

ý (raý)+ 
-'- 

ý2ý 
+a' (2.26) 

r Dr Dr r' DO' DZ2 

The following procedure to solve Laplace's equation is used. Starting with the 

separation of the variables 0(r, G, z) =f (r) - g(G ). h(z) 

Putting the variables into equation (2.26) Laplaces equation changes to the following 

form 

Id( 
rf - gh) +11. 

r dr r2fg 
h+fgh" =0 

IdI. h" (rf')+ ýL+-=o 
fr dr rgh 

dh 
_ hA' =0 ýZ-7 

1d (rf )+1 g" +A2 =O (2.26. a) 
r dr r2 9 

where A is a constant. 

Continuing the procedure with respect to the second separation constant: 

Id1.2 
r (rf')+! 

-+A r2 =0 dr 

=: > 
d9 

+gB 
2= 

d0' 
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1rd (dj+A 2r2-B2= () (2.26. b) 
f dr 

Hencef(r) is in a form of a Bessel function satisfying 

rd (rf + (A'r 2-B 2)f 
=0 (2.26. c) 

dr 

The three solutions to (2.26a, b, c) from Laplace's equation are derived, where A and 

B are the separation parameters. Equation 26. c is known as Bessel's equation. 

For real A and B, then, the integrals are of the form: 

f (r) = aJ,, (Ar) + bYB(Ar) => for A# 0 

f (r) = arB + br-' =* for A=0 

g(G)=ccosBO +d sin BE) => for B0 

g(E) = cO +d for B0 

h( z) keAz + je-Az for A# 0 

h(z) = kz +i=: > for A= 0 

In the present problem neither A nor B are zero, therefore the equation for the potential 

is as follows 

0= E(ajB(Ar)+ bYB(ArXc cos Be+ dsin BeXkeA'+je -Az ) (2.27) 

Because of the fact that the potential does not approach infinity (ý -4ý -) when moving 

to infinity along the z-axis (z -4 -), the term ke Az in equation (2.27) must be zero. For 

convenience from now on the constants A and B will be renamed m and n respectively. 
The general solution valid for z ý: 0 is 
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a. [(J,, (mr)+ Y,, (mr))(cosnE) +sin nG)]e-'l (2.28) 
n=O M--l 

Each solution must satisfy the condition 0=0 on r=c, so that m is limited to a discrete 

set of values m, where I is an index number. The entire solution is, in general, a double 

sum over m, and n, with coefficients determined so as to satisfy the boundary 

conditions. The following equations are therefore valid for z ý: 0 

(2.29) 
n=O m=l 

F, are constants and the potential in different regions become as follows where the . 

in region 1: [A,, J,, (mj) + Y. (m,,, r)] cos n ee-', O' (2.30) 

in region 2: [B,,, J,, (m,,, r)+ C,,, Y,, (m,,, r)]cosni9e-'-" 

in region 3: 
nl3= 

[D,,, J. (mn, r)+ E,, Y,. (m,,, r)] cosnE)e-', d' (2.32) 
OnI3 

The term Y,, (m,,, r) in equation (2.30) is not needed, because for r=O this Bessel 

function goes to infinity. 

The above equations (2.30,2.31,2.32) are used to form a matrix in order to achieve the 

relations between the constants A, B, C, D and E. The following boundary conditions 

are valid and used. 

0,,,, (r = a) = 0,,, 2(r = (2.33) 
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Onl2(r = b)= 0,, 3(r = b) (2.34) 

Onl3(r = c) =0 (2.35) 

El 
do,,, (r = a) E2 

dO,,, 
2(r a) (2.36) 

dr dr 

E2 
dOn[2(r 

= b) 
E3 

do,,, (r b) 
(2.37) 

dr dr 

Hence the boundary conditions applied to equation (2.30,2.31,2.32) became 

A,,, J. (m,,, a) = B,,, J., (m,,, a)+ C,,, Y,, (m,,, a) 
B,,, J,, (m,,, b)+ C,,, Y,,, (m,., b)= D,,, J,. (m,,, b)+ E., Y,, (m,,, b) 

Dn, J,, (m,,, c) + E,,, Y,, (m,,, c) =0 
E, AniMnIJ'n (Inn, a) = Fl2[B,,, m, ýjJ'. 

(mn, a)+ C,, Im,,, Y',, (m,., a)] 

-C2[BnIM. lj'n (m, 
ýIb)+ 

CnlMnly'n (mn, b)] = c., [D,,, m,., J',. (m,, b)+ E,, m,, Y' 
n 

(Mn, b)lj 

(2.38) 

Having a linear system of equations, the next step is to set it in matrix form. Hence 

equation (2.37) becomes 

J,, (%a) -J,, (ma) -Y,, (nja) 
0 J,, (%b) J,, (%b) 
000 

(%a)c, % -Y. (%a)F-2M, -P. (%a)e2ni, 
itn (%b)F, 

2% Pm (%b)62n; d 

00 

-J. (nigb) -Y�(%b) Bi 
J. (n; 

dc) 
Y�(n; 

dc) 
c =o 

00 

-l. 
(%b)e3%jrEdj 

(2.39) 

The determinant of the matrix is calculated with a computer software program (Maple). 

By setting the determinant equal to zero the eigen . values Mn, are calculated ftom a 
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FORTRAN program. Both the determinant and the flow-chart are listed in Appendix A. 

The form of the above matrix (2.39) would give an infinite number of solutions for the 

constants A, A C, D and E. However by using the following method a set of finite 

solutions is achieved. Dividing the matrix by the constant A will form a 'new' matrix of 

the following configuration. 

J,, (m,, a) -J. (m,, a) -Y,, (m,, a) 0 

0 J,, (m,, b) J. (m,, b) -J. (m,, b) 

0 0 0 J. (MOC) 

P. (m,,, a)e, m,, -P. 
(m,, a)ý'2M,, -I. (m,,, a)e2Mnl 0 

0 J'n (Mnlb)e2Mnl Yn (Mrdb)F2Mid -jo,, (Mnib)F-3Mid 

(2.40) 

For convenience the following substitution is made 

Bý IAW 
=U ni 

%An, 
= Vnl 

Dý lAn, 
= W., 

Eý lAnl 
=X nl 

Al 
.4 Aw 

- Y. (m,, b) RIA., 

Y. (m,,, C) CIA. 

0 DI 
A A., 

-1". (m,,, b)ejma, 
, 
EIA., 

Multiplying the constants VI, W. 1, X., and Y,,, back into the matrix an obviously solvable 

equation system comes up with the form 

U. IJ�(m�lb)+V�IJ�(m�lb)-W�IJ,. 
(m., b)- X�, Y�(m,., b)= 0 

w�li. (m. 
ýc)+ X. IY,. 

(m, 
ýlc)= 

0 

-F-2UnIMnlj'n 
(Mnla)-E2VnIMnly'n (m,., 

a) (m�, a) 

. 
C2UnIM. 

IJ'. 
(mnib)+e2VnIMnly'n (m�, b)-F'3W,., M�j (, (m., b)-e, X�m., Y'. (m., b)= 0. 

For further simplification the following substitutions are made 
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J,, (m., a) =a 

Y. (m,,, a)=b 

J,, (m,,, b) =c 

Y. (m,,, b) =d 

J. (m,,, c) =e 
Yn (Mnl C) =f 

mnlJl,, (mn, a) =g 

M,, Y',. (m., a) =h 
Mnlj'n (mn, b) =i 

M,, Y',, (m., b) =j 

The solutions for the above equations are calculated as 

C, 9(-dft3'+F'2jef -C2jde + dec3j) 
% 

(0/0 1X2 
(2.41) 

-E V= lg 
(- 

Cfe 3' - ie2de + ce3je + ie2 fC) 

(2.42) 5/A 
0 (/OIX2 

DW_ ib g(ic - id) (2.43) YA 
%] 

X ee, g(ic - id) (2.44) 5/A 
%] 

where 
%1=-hCfp- 3' - 

h"2'2de +jgC 2de + hce3je + WC 
2 

fC - j9C 
2 

fC+ dgfe3'- dge Je 

Having found the solutions for the constants, the next step is to determine the constants 

F,,, in the general solution for the potential distribution ( 2.29) or 
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(2.45) 

whereOnI = OnIl 
9 

Onl2l OW2 are defined in equations 3.30 to 3.31 for regions 1,2 and 3. 

2.6.2 Field of a point charge in the duct 

We first place a unit charge on the x-axis at distance s from the flowmeter axis, shown 
in Figure 2.7. 

- --------- ................................... 

. ............................... 

Figure 2.7 (Schematic of Charge in pipe section) 

To find the field of the charge we use the well known equation to define the relation 
between an electric field and its potential (2.46) as well as Gaussian theorem to 

establish a solution for this particular charge distribution. 

(2.46) 
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The general form of Gaussian theorem is explained below. See also Figure 2.8. 

Gaussian law generally states that the electric flux passing through any closed surface is 

equal to the total charge enclosed by that surface. 

ff). dg = 

Figure 2.8 (Schematic of Gauss's law) 

In this specific case the way to apply Gaussian law is as follows. Having put a unit 

charge on the x-axis at z=O, two closed surfaces (on the left and right sides of the z- 

axis) have to be considered. See Figure 2.9 and 2.10. Reducing the problem by 

considering only one side of the closed surface the equation for Gauss's law (in polar 

co-ordinates) 
becomes 

a 2n 
ii 

DzrdrdO 
a02 

........... 

........ .............. ......... 

Figure 2.9 

(2.47) 

y 

.... .......... . ............ 

Figure 2.10 

(Position of charge and electric flux density) (Definition of radius and angle on charge) 

Putting equation (2.46) and (2.47) together lends to 
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i D-dA= if c .2r- drdE) =q 
A 

az 

I 

Z=o 

(2.48) 

From equation (2.46) an expression for the electric flux density in z-direction can be 

extracted, so that D, became 

Dz = -2 
, 

F' = F' OF' r 
(2.49) lalz 

z=O 

At the point where the charge is a discontinuity the potential gradient occurs in the z- 
direction. This discontinuity can be represented by a Dirac Delta function. Hence the 

flux condition can now be expressed in terms of the two dimensional Dirac 8 -function, 
for which 

ff 8(r- s)S (e)rdrdO =I (2.50) 

Putting equation (2.48), (2.49) and (2.50) together, an expression for the flux condition 
due to a unit charge comes up and is stated in equation (2.5 1). 

I 
q8 (r - sý (G) = -2 

2-1 
az 

I 

Z=O 

A substitution of equation (2.45) into the above equation (2.5 1) leads to the expression 
(2.52) below. 

q8 (r - s)6 (G) = -211 F (2.52) nlýnl 
(-Mnl ) 

The term e-', " is omitted because for Z=O the exponential term becomes 1. 
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2.6.3 Evaluation of the coefflcients in eciuation (2.52) 

The next step is to find the constants F,,. For this task both sides of equation 2.52 are 

multiplied by ýn'l' 

*c and then integrated with respect to rdrdO by using the 

orthogonality properties of the eigenfunctions. 

fII 
q3(r - s)8(e)iO_,.., rdrde = -211 (-m,, )F,,,, ff rdrde ErnI%Y 

orthogonality-properties 
=0-ýif_n#d, or__... l#r 
#0-4if-n=d, and. -. 

I=l 

(2.53) 

To evaluate the left hand side of equation (2.53) it is known that when integrating a 

Dirac 8 -function times a second function it becomes of the magnitude of the second 

function at that point where the Dirac 8 -function is infinite. 

Hence 

(2.54) 
00 

and an equation for the constants F,,,,, is 

qý 
r= 

F,,.,. =- 
nT 

(e 

=so (2.55) 27C c 
Jf rdrdO 
00 

The remaining problem is to solve the integral in the denominator of equation (2.55). 

An integral of a product of two Bessel functions is given in Abramowitz & Stegun 

(Page 484, nr. 11.3.3 1) as 
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r P+v+l 91 
., 
(r). S, (r)dr r 

V+v+2 

9t ', 
(r 3v (r 91 

2-(g+v +I)f 
)++, (r)-3v, 

l 
(r)l (2.56) 

To bring equation (2.56) in a shape corresponding to the integral in the denominator in 

equation (2.55), which includes the equations (2.30,2.31,2.32), the sum of the 

exponents g, v in equation (2.56) must vanish. To do that, the exponents are set equal 

and opposite, g= -v . Then a relation between Bessel functions of positive and 

negative orders is found in Abramowitz & Stegun (page 358 nr 9.1.5) 

(-I)n J,: (r) K. (r) 
= 

(-I)" Y, (r) 

in this case: -g =v=n 

The final resolution for the integral of the Bessel function is as follows, 

r- n+n+l 91 (r)dr r- 
n+n+2 

Tý I 
91 

-,, 
(r) 

-3, 
(r) + 91-n+, (r) ! 3,, 

+, 
(r) 

2- (-n +n+ 
(-, y 91, (r) Hl (r) 

191, (r)-I, (r) - 91 
2 

(2.57) 

The general resolution for the trigonometric integral is obtained from 

(cos nE))cdE) = 
(cosnE)) C-1 - sin nO +c-If (cos n())" de (2.58) 

2n 2 
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valid for n>O. 
The specific case (c=2) becomes 

(cos nO 
)2 dG = 

cos nO -sin nE) +I 2n 2 

2.6.3.1 Evaluation of the intearals 

(2.59) 

Having found the expressions for the integrals, these expressions are evaluated in the 

different regions. 

A) Repion I 

a 2x a 2x 

El 
(Ont )2 

rdrdlg JfE I -I(Anl 
Jn (Mnl) 

- cos nG)'rdrdO 
0000 

a 2n 

j jc, A '112 
(J. (m,,, 

r))2 (cos nG 
)2 

rdrdE) 
00 

22 ))2 ))]Ilr=a cos nO sin nE) I E) 
=21C 

cjAnl - 
(M-1 

r+ 

r=o 
2n2 0=0 a 

a2 

= F-, A, 
ý, 2 

[«J,. (m�, a»' - 
(J�-, ir 

(2.60) 
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B) Rep-ion 2 

b 21r b 2x 

E2(Onl 
)2 

rdrdlg 
2ff 

F- 2 
ýBnljn(mn, 

r)+C,,, Yn(mnir)]. cosnO rdrdE) 
ff 

a0a0 

b 27c 
f JE2jB,,, J,, (m,,, r)-cosnE) rdrdO 
a0 

b 2n 
ff 

F-2fC., Y,, (m,, r) - cos nG 12 rdrdE) 
a0 

ff c22Bn, J, 
ý(m. Ir)- cosnO, C., Y. (m. 

Ir)- cosnOrdrd0 

= 
[C 

27C 
I- 

22 

B2 [(J,, (Nb)) 2_ (jn (m,, b)J,, 
+, 

(Nb))Il 
JE2 

2 

Ci2lFfb 
22 

_(Y 
a2 

n, 
(m,, b)) 

-, 
(m,, b)Y b))] T 

[(Y 
[V2 n 'd 

a' 2B, d Cj 
r2 

IJ,, (nb)Y. (nb) -Jj (nid b)Y,,,, (tqdb)l]-[ 
2 

IJ,, (tqa)Y,. (tq, a) -J,, (N, a)Y,,,, (tqa)ll 

(2.61) 
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C. Rep-ion 3 

c 2yr 
- )2 

19 
c 2n 

4D 
nlyn(m,, Ir)]-cosn(31 

2 

rdrdG 
ff 

E3(Onl 
3 rdrd 

ff 
63 

nl 
Jn (mn, r) +E 

b0b0 

The same procedure as used for region 2, is applied to evaluate the integral in region I 

However the appropriate constants and integral limits have to be used. The result is 

[F- 
37t 

I- 

D22 
[(Jn(MnIC)) 2 

_(Jn 

fb 2 2_( 
1 

jn+l 
d+ ,d 

RL2 

-](MnIC)jn+I(Mid c))Ij r2 
P" (Mnj b)) Jn_l (Mnb) (ml b4l] 

2FfC 
222 

_(Y 
L 

En', y 
dc)y+l 

oll 
2 

(m,, b)) b))]Il + 
2 

[(Y'(m,, 
C)y n 

(m 
2 

[(Y 
_ -, 

(m., b)Y 
n-' 

(m 
'd nn n+I(Mnl 

2D, 
jEd -'Cl -J"(Ndc)yn+'(Iqdc)']-[ 2 

lJn(qb)Y,, (tlib)-JI(rlib)Yn.,, (%b)lI 

2 

tj'(N'C)yn(nLc) 

(2.62) 

A new expression for the constant F,,, is now 

qý,,, 
rýs 

Fl= 
() 0 

(2.63) 
2m., (equ. 2.60 + equ. 2b] + equ. 2.62) 

Now that all unknown factors are solved, the equations for the potential distribution in 

each of the three regions due to a unit charge placed in the first region, can be written 

as 

01=IIF,,, A,,, (m., r) cos nG e-"ý, ' (2.64) 
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ý, =Z Z F�, (B�, J�(m. �r)+C., Y�(m�lr»cosn0 -e-l' (2.65) 

ý3 = 11 F,,, (D.,, J. (m,, 
Ir)+ E,,, Y,, (m,,, r))cosnE), e-, d' (2.66) 

2.6.4 Field of the bubble dipole source iu the duct 

To work out the potential distribution Cý) due to a dipole placed in a flow section that 

carries a dielectric medium, the above equations have to be differentiated with respect 

to z. The value for the dipole moment, established in equation (2.25) and repeated 

below, has to be included as well. 

-i(t)By 
Eb 41rEod 

1+ 
2E, 
Eb 

The result is 

Fn, j,, (m,, r)cos ne(-m,,, )-e-'-"P, 
nI 

(2.67) 

(2.68) 

02 (2.69) 

03= FI[D,., J,, (m,,, r)+ E,, Y. (m. 
1r)] cosnE) (-in,,, ) (2.70) 

nI 

and in the duct (0 <r< a) 
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Eb 
47wod' J. (%s) 

(-%)J,, (%r)cosne. e-"" 
+ 

2E, 2% (eqLZW + equZ61 + eqmZ62) 
Eb 

(2.71) 

2.7 Results for point electrodes 

In this section computed results of the transformer signal due to a bubble in a flowmeter 

with point electrodes are examined. The following calculations are achieved with 
FORTRAN coded programmes. Principle flowcharts of the programmes are given in 

Appendix A. Figure 2.11 shows calculated transformer signals for dipoles placed at 

various positions along the y-axis and moved along a line parallel to the pipe axis. The 

transformer signal is calculated for a frequency of 1500 Hz, a magnetic field strength of 

0.01 Tesla and a pipe radius of 50 mm. Similar to Krafft's transformer signal for a 

bubble in a conducting medium the transformer signal in a dielectric fluid is anti- 

symmetric in z direction. The signal is significant over a pipe length of about 5 cm. It is 

observed that the magnitude of the signal increases by a factor of 2.08 for every 3 mm 

the dipole is positioned further away from the pipe centre. The magnitude of the signal 
for a bubble radius of a bubble of the pipe radius is in the range of I E-5 to 8E-5 Volts. 

Potential Di fferenct due to a Dipole of Radius 8110 moving through tht mettir 
at various Positions 

9 OOE 05 -- 

6 OOE-05 

4 OOE 05 

2 OOE-05 

0 07 -0 05 001 0 03 0 05 001 

400E. 0 

'0 

OOE -05 

Pipe Axis [m 

mm -0-15mm -S-12mm -9-9ý -2-6ý ýS-=3mm 

Figure 2.11 
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The graphs in Figure 2.12 show various transformer signals for bubbles crossing a line 

at an angle of 45'. The difference in transformer signal magnitude between a dipole 

positioned at an angle of 90' and 45' increases with increasing radius s. In order to 

investigate the behaviour of transformer signal magnitudes versus dipole positions at 

angles ranging from 15' to 90' and various radii s, plots in Figure 2.13 and Figure 2.14 

are produced. It is clearly seen that dipole closer to the electrode produce a bigger 

transformer signal. 

Pot*ntlal Ditfor*nC* du* to Dlool* of Radius i/10'a at an Angle of 459 for various Radii 
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4 DOE-05 
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Figure 2.12 

Mmiamm Potwifial Diffamwe (AmWftude at Trarwtomw SkW) due to DiRgk at Radous A at 
vadow AngM a and PAdi 
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Figure 2.13 
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Maxima Potential Difference due to DiRgle of Radius a/5 at various Radii (9) and 
difterent angles 
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4. OOE-04 
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Figure 2.14 

Another important result is seen in Figure 2.15 where it is shown that for point 

electrodes the position of maxima and minima transformer signals (during translation 

parallel to the duct axis) vary very much with the position of the bubble in the x-y plane 

of the pipe section. 

0 
i- CL -1 SOE-02 G. OOE-03 0.00 ý. w S. OOE-03 I. OOE-02 1 SOE-02 

-10 

-15 

20 

,w 

Z-AXIS [m] 
1-0-90' -m*-75- --*-W- --0-461 --*- 

Figure 2.15 
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In Figure 2.16 a plot is produced that shows the transformer signal due to bubbles of 

different radii. According to equation 2.71 it is expected that the transformer signal 

would increase as the cube of the radius. The positions of maximum and minimum 

transformer signal on the pipe axis are also anticipated to be at equal and opposite z 

values. 

Potenfial Difference due to a Depole at 9 18mm for dMerent D*12ole Radii (r) 
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Figure 2.16 

2.8 Results for strip electrodes 

After a calculation of the potential difference between two point electrodes an 

investigation of strip electrodes is made. From earlier work (Cox and Wyatt [141) it is 

known that large and non-contacting electrodes have an averaging effect of changes in 

the velocity profile and therefore reduce noise pick up due to turbulence. This average 

effect definitely applies for electromagnetic flowmeters for conducting fluids, because 

of the fact that conducting currents will not penetrate the isolating pipe wall. Therefore 

for a theoretical calculation of the potential on evenly distributed locations on the 

electrode can be added up and then averaged over the number of points taken. This 
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effect is illustrated in figure 2.17. For dielectric electromagnetic flownieters it is a 

different matter, since in this case instead of conduction currents displacement currents 

have to be considered and therefore the above argument does not apply in this case. But 

,, -nice the relative permativity for the dielectric fluid is different frorn tile relative 

perrintivity of the pipe wall and consequently a discontinuity on the Interface between 

the liquid face and the pipe wall is apparent. Thereforc a first approach to investigate 

the transformer shmal for area electrodes the averaging method can still be applied. 

AveraL, inL, Method ! )I'I'otential calculated for Strip and 

Area Electrodes 

6 

0= -10, 11 ,-I, 
Figure 2.17 

Figure 2.18 (Illustration 01, Strip Flectrodcs) 

47 



The large electrodes can be modelled as a number of point electrodes over which the 

signal is averaged (see Figure 2.18), because it is assumed that these types of electrodes 

are non contacting and capacitive coupled. Various calculations for different bubble 

positions and diameters are implemented. In Figure 2.19 the transformer signal for point 

electrodes and strip electrodes are shown. The only apparent difference between the 

two signals is the magnitude. The signal amplitude for strip electrodes is slightly less 

then the one for point electrodes. Figure 2.20 shows that the distribution for maxima 

and minima of the transformer signal with strip electrodes is similar to the transformer 

signal calculated for point electrodes. The apparent difference is that for locations of the 

bubble (dipole) closer to the pipe wall the maxima and minima of the transforrner signal 

occurs on a narrower width along the z-axis, especially for increasing angles. 

C om paroson b*tw eon transform or signal for Roint and strip 
electrodes (DiR Rod a/5. sul8mm! 
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Figure 2.19 
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Maxima and Minima PoslUons along z-axis for various angles of Transformer 
Signal for StriR Electrodes 
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Figure 2.20 

2.9 Results for area electrodes 

In this section a further investigation for wide area electrodes is implemented. The 

method used to calculate the transformer signal for area electrodes is similar to the one 

used for strip electrodes. A number of points evenly distributed over the surface of the 

area electrodes is used in order to calculate an averaged signal. See Figure 2.21. The 

electrodes have a length of twice the tube radius a and an angle of 90'. 

In Figure 2.22 a comparison of point, strip and area electrodes shows the difference 

between transformer signals. A further decrease in transformer signal magnitude results, 
because of the fact that the averaging takes places over a wider area. Looking at Figure 

2.23, a plot of maximum and minimum positions of the transformer signal shows that, 

compared with the same plot for point and strip electrodes in Figure 2.15 and 2.20 

respectively, the variation between maximum and minimum positions has remarkably 
decreased. 
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--. --, u- '-Z 
-, -, 

Figure 2.21 (illustration for Area Electrodes) 

The power spectrum of the transformer signal has a characteristic frequency and will 

change for different bubble velocities and distances between the maximum and 

minimum positions. With respect to the fact that for wide area electrodes the variation 

between these maxima and minima decreases considerably, the frequency analysis 

would depend less on the position of the bubble in the pipe cross section and depend 

more on the velocity of the bubble. A higher bubble velocity would result in a higher 

frequency and slower bubble velocities would achieve lower frequencies. Consequently 

a desirable feature of the electrodes would be a constant difference between maxima 

and minima for all bubble positions in the pipe cross section. For this reason transformer 

signals are calculated for even larger electrodes. The length of the electrodes is 

extended to twice the tube diameter. 

As it can be seen in Figure 2.24 the extension of the occurrence of maximum and 

minimum signals has further decreased and is almost a straight line. This leads to the 

conclusion that with large area electrodes (about two times the tube diameter long and 
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with a subtended angle of 140' a frequency analysis would no longer depend on the 

position of the bubble in the pipe section. 

Comparison between Transformer Signal for Point. Strip and Area 
Electrodes 
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Maxima and Minima Positions of Transformer Signal for Area Electrodes 
(Electrode Length = Tube Diameter) 
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Figure 2.23 
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Maximum and Minimum Positions of Transformer Signal for large Area 
Electrodes 

(Electrode Length = Twice the Tube Diameter) 
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2.10 Summarv 

In summary the above chapter covers an extensive theoretical approach which is 

required in order to investigate and analyse the occurrence and the behaviour of 

transformer signal arising when a gas bubble (modelled as a dipole) surrounded by 

dielectric liquid passes through an electromagnetic flowmeter. From this an expression 

for the transformer signal is obtained. A computer program (Fortran99) is written in 

which this expression is used to calculate the signals. 

It is also possible to achieve results for the behaviour of the same signal for different 

electrodes (point, strip and wide area electrodes). 
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CHAPTER 3 

NUMERICAL MODEL OF THE TRANSFORMER SIGNAL 

3.1 Introduction 

In this chapter a numerical investigation of the transformer signal arising from a gas 

bubble as a second phase is implemented. For this task the Finite Element (FEM) 

software application ANSYS is used. The first step is to design a finite element model, 

which represented the transformer signal due to a dipole, pointing in the flow direction, 

in order to compare and verify the results achieved in chapter 2. The next phase is to 

model a gas bubble in the form of a sphere within a dielectric medium and extract the 

transformer signal on the point electrodes. 

3.2 ANSYS for electric field analvsis 

ANSYS is a multi-purpose design Analysis Software Package, which is able to cope 

with 2 Dimensional and 3 Dimensional Problems. Electrostatic Field Analysis is used to 

determine the electric field and electric scalar potential (Voltage) distribution due to 

charge distributions or potential drop. Two types of loads, applied voltage and charge 
densities, can be utilised in this analysis. There are three main steps to produce a 

complete analysis. The starting point is to build the model, which included the 

specification of the element types, material properties, model geometry, and the mesh 

on the solid model. The next stage is to apply the so called loads (voltages or charge 
densities) on the model (Nodes or Elements). Finally, after running the program, results 
from the analysis are reviewed. They consist of Primary Data (Voltages on Nodes) and 
Derived Data (Electric Field, Electric Flux Density, and Electrostatic Forces on Nodes 

and Elements). These results are reviewed by obtaining graphics displays and tabular 
listings. 
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3.3 Modelliniz a dipole within a dielectric medium 

As it is found out in the previous chapter that a bubble can be modelled as a dipole 

pointing in the flow direction. In a first step, using a Finite Element Method program, 

such a dipole is modelled. It is well known that as less nodes are used when meshing the 

solid model it takes less time to run the program. Therefore the method of images for a 

dipole is used which reduced the number of nodes down to 50%. We know that an 

infinite plane, midway between the two charges of the dipole has zero potential and the 

electric field intensity is therefore normal to this surface. Thus the dipole is replaced 

with a single charge and conducting plane shown in Figure 3.1. 

The amount of charge can simply be extracted from the general equation for a dipole 

8. Q=P 

3.3.1 Operation conditions 

The operating conditions and dimensions for the problem under consideration are: 

Pipe Length: 40cm 

Pipe Diameter: 50mm. 

Pipe Material: Perspex 

3.1 
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Figure 3.1 (Method of Images) 



Liquid: Dielectric Oil 

Dielectric Constant of Pipe Material: 3.4 

Dielectric Constant of Liquid: 2.2 

Element Type for Pipe Section: SOLID 122, (Element with 3-D category and 
Brick Shape) 

Element Type for Liquid Section: SOLID 122, (Element with 3-D category and 

Brick Shape) 

Element Type for Air Gap (Shield): SOLID 122, (Element with 3-D category and 

Brick Shape) 

In this case loads are applied on nodes. As a boundary condition the entire outer pipe 

contour as well as the front and end plane of the pipe is set to zero potential. See Figure 

3.2a. The node placed at a distance half of the dipole diameter from the zero potential 

plane, and at a certain distance (y-axis) from the pipe centre is given a beforehand 

calculated amount of charge (from equation 3.1). Having finished the procedure for 

applying the loads the package is run and solutions for the potential could be achieved. 

Figure 3.2b and 3.2c show a graphics of the potential distribution in of the pipe in the y- 

z projection and x-y projection respectively. 
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Figure 3.2a (Boundary Conditions on FEM-Model) 

56 



z vv 0 00 
H I r- I 

r- E-1 wow 
0) t: ) r, IT r- 

00) 4 vm IT 
- rý 00 q; v 0v 

LO (N (n 
(N -- r-i ri ri I 

(0 CA 0 ý4 11 11 11 11 

Lf) V 193, (1) (Y) 
00000 

WWWWW LO 
0000orin 
0000000 
TA rl 0 TA LO 00 

0....... 
>4 041)4 F4 E-1 
CA4 --nwMz4zx 
ZD %D 0 E-4 DH0ZZ 
4l'lr4ZMWE-4>WM 

11 

U- 
to 64 

T-4 

Figure 3.2b (Potential distribution in y-z pjýjjje) 

57 



z 
0 
H 
E-A 

ON ED 

LO IV (A 
(Y) rl r-I r-I 

>4 04 04 W E-4 
ri) ý4 QW in Z ý4 X 
Z tD 0 E-4 LD H0X 
9 ý-3 r-i Z CA ri) E-4 > (1) 

IV V qT 0 

00 LI) V) 
'i N IT LO 000 

1111101 

I- 

U 
t) 

�-4 

0 

.- 

cn 

FigUre 3.2. c (IllotelitizIl (11, sti-II)LI1,01, III y-x I)Izllle) 

. 

a) 
0 

58 



3.3.2 Results for dipole modellim 

Results are depicted in order to compare and verify analytical results (in chapter 2). In 

Figure 3.3 a comparison of the transformer signal (numerically and analytically) due a 

dipole (of 5 nim in diameter) of placed halfway between pipe centre and pipe wall 

shows that the shape of the two signals are very similar. Although the boundary 

conditions, geomtries and parameters for the signal calculation are identical a deviation 

of 33% between the analytically achieved signal maximum and the signal maximum 

calculated with the FEM-Model occurred. The same percentage deviation appeared for 

bubbles at different locations. 

Comparison of Transfomer Signal achieved analyicaly and 
numericaly 
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Figure 3.3 

3.4 Model of a sphere within a dielectric medium 

In this section a further investigation of the transformer signal is made. Instead of the 

previous method of using a dipole representing a gas bubble passing through the meter 
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this time a sphere in a plastic pipe which is filled with insulating liquid is modelled and 

the resulting effect is analysed. We have evaluated equation 2.23 in chapter 2 (the 

resulting electric field due to a gas bubble placed in a uniform field) a calculation for the 

surface charge on the bubble surface is conducted. 

3.4.1 Phvsical model 

We start from one of Maxwell's equations, also known as Gauss's law, which states 

that the electric flux passing through any closed surface is equal to the total charge 

enclosed by that surface. 

V. D=p (3.2) 

j f) - d§ Q 
s 

(3.3) 

The boundary conditions for the tangential components turn out to be Etanb = Etant 
v 

because from fk- dL =0 (no work is required carrying a unit charge around any 

closed path), see Figure 3.4, obtaining E,,,,, b - Aw - E.,,, - Aw = 0. Therefore the 

tangential components on the boundary condition do not contribute to a surface charge. 
The boundary conditions on the normal components are found by applying Gauss's law 

as shown in Figure 3.4. The flux leaving the top and bottom surfaces is the difference 

between the Electric Flux Density in the bubble and Electric Flux Density in the 

dielectric liquid and is written down in equation 

DnbAS - DnIAS = AQ = Ps, &s (3.4) 

from which Dnb- Dnl = Ps 

or F-bEnh -cjE., -. = ps 
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The final equation for the surface charge, that can be used as a "load7' in the FEM- 

investigation is going to be 

, 
)f. . (3.5) (F- 

b- F- n= ps 

where E is the electric field in the fluid when the bubble is absent. 

A sphere placed in the eddy current electric field is shown in Figure 3.5. 

The surface charge in equation 3.5 is the source of the secondary electric field due to 

the bubble. 
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3.4.2 Operatins! conditions 

Operating conditions such as the geometry of the model, the appropriate material 

properties as well as the applied element types are given in the following table. 

Pipe Length: 

Pipe inner Diameter: 

Pipe outer Diameter: 

40 cm 

50mm 

55 mm 

Pipe Material: 

Liquid: 

Bubble: 

Dielectric Constant of Pipe Material: 

Dielectric Constant of Liquid: 

Dielectric Constant for Nitrogen: 

Element Type for Pipe Section: 

Perspex 

Dielectric Oil 

Nitrogen 

3.4 

2.2 

1.01 

SOLID 122, (Element with 3-D category and 
Brick Shape) 

Element Type for Liquid section: SOLID 122, (Element with 3-1) category and 
Brick Shape) 

Element Type for Bubble: SOLID 122, (Element with 3-D category and 
Brick Shape) 

Element Type for Air Gap (Shield): SOLID 122, (Element with 3-D category and 
Brick Shape) 
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3.4.3 Results for bubble modelling 

Results are achieved for sphere diameters of 2.5 mm, 5 mm, 10 mm, and 15 mm. Sphere 

positions are varied from 10 mm to 28 mm along the y-axis. Transformer signals across 

the electrodes are shown in Figure 3.6 and 3.7. It can clearly be seen that the behaviour 

is the same as it is for the analytically calculated signals. The closer to a electrode a 

bubble passes through the meter the larger the signal. 
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Figure 3.7 
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Figure 3.8 and 3.9 compare transformer signals of different bubble diameters. As 

expected, the larger the bubble diameter the larger the transformer signal. An 

investigation of the correlation of bubble diameter (relatively small bubble diameter, 

bubble radii :! ý a/10) and magnitude of the transfon-ner signal shows that the magnitude 

of the signal is proportional to the cube of the bubble diameter. 
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Figure 3.8 
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In Figure 3.10 graphs are plotted, which show the maximum potential difference against 

different bubble diameter for various bubble positions. It can be seen that the magnitude 

of the transformer signal increases very rapidly for bigger size bubbles (bubble radii >> 

a/10). 
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Figure 3.10 

Figure 3.11 shows a plot of bubble positions along the y-axis versus the positions of 

peak signals along the pipe axis and for different bubble diameters. The curves show 

that the distribution of peak signals extends over the same distance along the pipe axis, 

and therefore the location of peak signals do not depend much on various bubble sizes. 
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A final comparison of the transformer signal calculated analytically and numerically is 

provided in Figure 3.12 and shows that the two (dipole model and sphere model) 

numerically achieved transformer signals are virtually identical. The analytically 

produced transformer signal shows again a deviation of 30%. 

Comparison between analldicaly and numericaly calculated Transtoffner 
Signals 
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Figure 3.12 

3.5 Summarv 

In this chapter the principal emphasis is to prove theoretical results achieved in chapter 
2 and to further develop the numerical approach by modelling a bubble in form of a 

sphere, which allowed to investigate the behaviour of the transformer signal due to 
bubble sizes larger than the constriction for the dipole model which holds only for 

bubble diameter of maximum one tenth of the pipe diameter. The results produced in 

this chapter agree well in shape with those in chapter 2 but show a 30% deviation in 

magnitude of the signal amplitude. 
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CHAPTER 4 

THEORETICAL FREOUENCY ANALYSIS OF THE TRANSFORMER 

SIGNAL 

4.1 Introduction 

In this section the data of the theoretical (analytical/numerical) transformer signal, 

obtained in earlier work (produced by bubble interference with the eddy currents), is 

transformed with a Fast Fourier Transform Method into a Power Spectrum. Three 

different conditions are examined. The shapes of the power spectra's for an evenly 

spaced set of bubbles and a changing velocity of the bubbles, is considered first. Then a 

set of power spectra for just the opposite condition (constant velocity and sets of 
different evenly spaced bubbles) is considered. Lastly a randomly spaced set of bubbles 

is examined to see the effect on the power spectrum. The Fast Fourier Transform is 

implicated with 4096 Data Points. The data for the signals are extracted from a 

maximum magnetic field of 0.01 Tesla, a field excitation of 1.5 kHz, a pipe radius of 50 

mm and a bubble radius of 5 mm. 

Because of the fact that the eddy currents are varying with time (sinusoidal drive 

excitation) a distorted Transformer Signal can be expected. Such a distorted 

Transformer Signal would obviously change the power spectrum. It is investigated how 

the Transformer Signal would change for different drive frequencies and bubble 

velocities. The drive frequencies used are 10 Hz, 100 Hz, 1000 Hz and 1500 Hz. The 

considered bubble velocities are 0.5 Ws, I Ws, 1.5 nVs and 2 m1s. At the same time the 

power spectra are computed and analysed. 
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4.2 Frequencv analysis 

To further investigate the transformer signal use is made of the mathematical tool of the 

Fourier Transform. The Fourier Transform is a signal representation that basically 

involves the decomposition of the signal in terms of sinusoidal (or complex exponential) 

components. With such a decomposition, a signal is said to be represented in the 

frequency domain. The frequency content of a signal is called its spectrum and a 

spectrum provides an identity for the signal in the sense that no other signal has the 

same spectrum. 

Although frequency analysis is a well established mathematical device and is 

enormously used in the field of signal processing a brief introduction to the theory is 

given next. A continuous and periodic signal can be represented as a linear combination 

of han-nonically related complex exponentials (or a combination of sine's and cosines) 

of the form 

x(t) col`-' (4.1) 
k=- 

with the fundamental period TP = IIFO . Therefore the exponential signals 

fe j2nkF(ý 
........ k=O, ±I, ±2,... Iare the basic "building blocks" from which we can 

construct periodic signals of various types by proper choice of the fundamental 

frequency and the coefficients 1c, 1. FO determines the fundamental period of x(t) and 

the coefficientsjCk I specify the shape of the waveform. For a given periodic signal x(t) 

with period TP, we can represent the periodic signal by the series (4.1) which is called a 

Fourier series, where the fundamental frequency FO is the reciprocal of the given period 

TP. To derive the coefficients we use the following result 
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cl =I x(t)e-J2n'Fotdt (4.1 a) 
TP T, 

A periodic signal has infinite energy and a finite average power, which is given as 

I 
P. =- 

IX(t)12 dt 
TP 

p 

(4.2) 

Since the signal is periodic, the transform signals exists only at discrete values of 

frequencies (i. e., F=0, ±FO, ±2FO,... ), the signal is said to have a line spectrum. The 

spacing between two consecutive spectral lines is equal to the reciprocal of the 

fundamental period T., whereas the shape of the power spectrum depends on the time 

domain characteristics. In order to represent an aperiodic signal the period is allowed to 

increase without limit, therefore the line spacing tends toward zero. In the limit, when 

the period becomes infinite, the signal becomes aperiodic and its spectrum becomes 

continuous. This argument suggests that the spectrum of an aperiodic signal will be the 

envelope of the line spectrum in the corresponding periodic signal obtained by repeating 

the aperiodic signal with a period TP. Considering an aperiodic signal x(t) with finite 

duration, a periodic signal xP (t) with period TP can be created. Clearly, xP (t) = x(t) 

in the limit as TP -ý - that is, 

X(t) = lim Xp (t) TP )- 
(4.3) 

This interpretation implies that by taking the limit TP -4 co the spectrum of x(t) from 

the spectrum of xP(t) can be obtained. Coming back to the Fourier series 

representation of xP(t) , 

X(t) =ic, ej 
21tkFot 

(4.4) 
k=- 

where 
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C, -i""-'dt Fo x, (t)e (4.5) 
TP TP 

Because xP (t) = x(t) for - 
Tý, 

2/: 
5 t :5 

TP12 (17) may be expressed as 

'P 

=1 

/2 

-j2nlFotdt c- TP x(t)e (4.6) k TP ý 
/2 

Because it is also true that x(t) =0 for Itl > '/, the limits on the integral in (18) may be 

replaced by - and -. Therefore 

Ck =I x(t)e -j2ntFotdt (4.7) 
TP - 

Now a function X(F) is defined, and is called the Fourier transforin of x(t). 

X(F) = 
J. - x(t)e-j2'Fdt (4.8) 

X(F) is a function of the continuous variable F, and does not depend on TP or FO. 

Comparing (4.7) and (4.8) the Fourier coefficient c, can be expressed in terms of X(F) 

as 

or equivalently, 

Ck= 
1X 

(kFO) 
TP 

_k 
p 

Tpc, = X(kFO) =X j7 (4.9) 
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Thus the Fourier coefficients are samples of X(F) taken at multiples of FO and scaled by 

FO. If we substitute ck from equation 4.9 into equation 4.4 the following result will be 

obtained 

k 
X, (t) x j2nWot 

Tp 
k=- p 

(4.10) 

Taking the limit of (4.10) as TP approaches infinity. Defining AF =I and substituting TP 

this in (4.10) it becomes 

X(kAFýi2nkäF(, äF (4.11) 

Remembering that in the limit as T, approaches infinity, xP(t) reduces to x(t). Now, 

AF becomes the differential dF and kAF becomes the continuous frequency variable F. 

In turn, the summation in (24) becomes an integral over the frequency variable F. Thus 

lim xp(t) = x(t) = lim X(kAF)e-J2AFAF (4.12) 
TP +- AF-+O 

x(t) 
j X(F)eJ2FdF (4.13) 

This integral relationship yields to x(t) when X(F) is known, and is called the inverse 

Fourier transform. Finally the Fourier transform pair (4.8) and (4.13) can be expressed 

in terms of the radian frequency variable Q= 2nF. Since dF = 
dK' 

(4.13) and (4.8) 
27t 

become 
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X(t) fX (Q)e i"t dil (4.14) 

X(K2) = f- x(t)e-j"'dfl 

The Fourier transform exists if the signal x(t) has finite energy, that is, if 

IX(t)12 dt .: ý 00 

If a signal x(t) is absolutely integrable, it will also have finite energy. That is, 

Ex = 
flx(t)12dt:: 5 

If 
Jx(t)Idt] 

2 

(4.17) 

This energy equation, in turn, can be expressed in terms of X(F) as follows: 

E. 
� =f x(t)x*(t)dt 

x(t)dt[ X* (F)e -j2"FdF] 

i 
X"(F)dF[ix(t)e -j2'Fdt] 

ilX(F)12dF 

Therefore, it can be concluded that 

72 



E., =f 
IX(t)12 dt =f IX(F)12dF (4.18) 

This is Parseval's relation for aperiodic, finite energy signals and expresses the principle 

of conservation of energy in the time and frequency domains. 

In the above paragraphs a Fourier series for continuous-time periodic (power) signals 

and the Fourier transform for finite energy aperiodic signals is briefly explained. Now 

the Fourier series and Fourier transform for discrete-time signals are considered. 

Suppose we are given a periodic sequence x(n) with period N. By substituting the 

Sample Period N for the Time-Period TP in the Synthesis Equation (4.1) and Analysis 

Equation (4.1a) from the continuous Fourier Series Analysis a form which represents 

the Synthesis Equation (4.19) and Analysis Equation (4.20) can be achieved. 

N-1 
j2xkn/ 

ly 
x(n) =jCke N (4.19) 

k=O 

N-1 
-j2xkn/ IV 

x(n)e v (4.20) c, Nn=O 

The average power of a discrete-time periodic signal with period N is defined as 

N-1 

Px = -I 
lx(n)12 (4.21) 

Nn=O 

The expression for P 
., 

in terms of the Fourier coefficient fc, I is 
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2 
ck 

k=O 
(4.22) 

To achieve a Fourier transform for discrete aperiodic signals the same procedure as that 

for periodic signals can be used. We substitute sample's n for time t and define the 
(Analysis Equation) Fourier Transform of a finite-energy discrete-time signal x(n) as 

X(w) x(n)e-j' (4.23) 
n=- 

The Synthesis Equation as 

x(n) =I X(co)ej'mdn (4.24) 
2ir 

Ic 

The Energy relation between x(n) and X((o) of an Aperiodic Signal is 

X (co)I'dw (4.25) 
n=- -11 

A major reason for the importance of the discrete Fourier transform (DFT) is the 

existence of efficient algorithms for computing the DFT. The computational problem of 
the DFT is to compute the sequence [X(k)) of N complex-valued numbers given 

another sequence of data I x(n)) of length N, according to the formula 

N-1 

X (k) =I x(n)e-"-*Im 0: 5 k:! 5 N-1 (4.26) 
n=O 

The computationally efficient algorithms, known collectively as fast Fourier transform 
(FFT) algorithms, are used here. 
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4.3 Power spectra of evenly spaced bubbles compared with varying! 

velocities 

Considered are 8 cycles with a bubble spacing of 300 mm for velocities of 0.25 "lls, 0.5 

n7ls and 1.5 nzls. In Figure 4.1 a set of calculated transformer signals for bubbles with a 

velocity of 0.5 nVs are illustrated. According to equation. (4.21) the magnitude of the 

power is not expected to change. The results shown in Figure 4.2 to Figure 4.4 indicate 

clearly that the power remains exactly the same for all different velocities. It is, 

therefore, independent of velocities. But it also can be seen that the frequency band 

increases with increasing velocity. This effect is very much as expected, because the 

transformer signal for a higher velocity has a narrower width in time and therefore has 

to be made up with higher frequencies in the Fast Fourier Transform. 

Velocity 0.5m/s 
Time/Cycle 0.6s 
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Figure 4.1 (Transformer signal produced from evenly spaced bubbles) 
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Computed Power Spectra 
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Figure 4.5 

Figure 4.5 shows a linear relationship between Peak Frequency and Bubble Velocity. 
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4.4 Power spectra of varvine bubble spacin 

In this section resulting power spectra for transformer signals, obtained with a constant 
bubble velocity and different bubble spacing where performed and compared. The 

results are shown in Figure 4.6 and Figure 4.7 and depict clearly that for decreasing 

spacing the power increases. This is also expected with respect to equation (4.21). The 

position of maximum frequency is nearly the same for all signals with different spacing. 
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Figure 4.6 
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4.5 Power spectra of randomlv spaced bubbles 

Figure 4.8 shows the power spectrum of a set of randomly spaced bubbles. This is 

compared with the power spectrum (Figure 4.9) for a set of bubbles that has a constant 

spacing that is equal to the average of the one with random spacing. The two 

compared spectra are very similar. On account of the theoretical analysis this is 

anticipated. 
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4.6 Frequenev analysis for transformer 
- si2nal due to time varvini! eddv 

currents 

In the previous section time varying eddy currents, which occur in the fluid, is not 

considered. On the experimental side, the meter is driven with a sinusoidal frequency. 

The drive frequency should be at least about 1000 Hz for an electromagnetic flowmeter 

in use with a dielectric liquid. This is because of the known fact that for isolating liquids 

the method of inductive flowmeasurement becomes extremely difficult due to 

electrostatic charges that arises in moving liquid. The reasons for this electrostatic 

charge, which shows up as an electrostatic disturbance potential on the electrodes, is 

contact between the liquid and the pipe wall and charge separation in the turbulent 

dielectric liquid. The magnitude of this disturbance potential depends on now velocity, 

liquid properties, liquid contamination and on boundary conditions like pipe wall 

roughness. From intensive investigations (Hentschel [21]) an appropriate operating 

frequency for an inductive flowmeter fias to be chosen in such a way that in connection 

with the bandwidth on the system output an allowable signal to noise ratio appears. A 

spectral distribution of electrostatic charge is achieved by Hentschel. Although the 

operating frequency for electromagnetic flowmeters for insulating liquids is rather high, 

a general investigation of transformer signals and associated power spectra beginning at 

10 Hz and up to 1500 Hz is computed and analysed. Also looked at is the behaviour of 

the transformer signal for different bubble velocities. Figure 4.9 to 4.16 show the 

transformer signal for non time varying eddy currents, a rectified (rectified because the 

power is taken after signal processing) sine function at the operating frequency and the 

distorted transformer signal which is the product of the two. An obvious difference is 

that the lower the bubble velocity and the higher the drive frequency the less deformed 

became the rectified transformer signal. In Figure 4.17 to 4.35 the effect on the power 

spectra is compared. As previously examined, transformer signals became more 
distorted for low drive frequencies and high bubble velocities it appears that these 
distortions hardly influence the power spectra. The only difference is noticed that the 

magnitude of the power varies slightly. There is no verification on the frequency 
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distribution to be seen. A reason for this behaviour of the power spectra is the 

averaging effect that takes place over the time period. 

Distorted Transtormer Sigani due to Bubble Velodly of 0.5nVs and a Rogular Bubble 912adng of 100mm 
at a Drive Frequenýy of JOHz 

100 

075 

0,50 

0 
020 0Q 

-025 

050 

0 75 

-100 

Time (a] 
I-Dworted Trsnslwý Swd Rechfied Dn" Requemy Transfýer SWd for Non TWns VaryM 

Figure 4.10 

Dostorled Transformer Signal due to Bubble Velochy of 0.5m/s and a BMIar Rubble Spaci[Ig of 
100mm at Dreve Freauencv of looHz 

IV, 

0.75 Q 4:. 4 4.1 N, 11.1,4. 

0.5 4ss 

0.25 

I 

Z1. 

0 --48 ý >0 10 0.40 A 000 

026 - 

-05 .I 

-0.75 - 

Ttme (a] 

RoMed Dr1w Frowmcy Rsn*kffn*F Signal lw Non Tim* V"nq Eddy Currents --Dl9brbdTMn*Fosm*rSigriW 

Figure 4.11 

82 
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Power Spectrum from Transformer Signal of Bubble Velocity of 0.5m/s and a Regular Bubble 
Spacing of 100mm at a Drive FrequenQj of 1OHz 
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Figure 4.18 
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Power S12! 2gtrum from Transformer Signal Of a Bubble Velocgy of 0.5m/s and a Regular 
Bubble Spacing of 1 00mm at a DNe F=uency of 1 000Hz 
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Power Spe ctrum from Transformer Signal of a Bubble Velocity of lm/s and a RegulaL 
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Power Spectrum from Transformer Signal of Bubble Velodly of lnrVs and a Regular Bubble S12acina of 
1 00mm at a Drive Frequency of I OOOHz 
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Power Spectrum from Transformer Signal of Bubble Velocijý of 1.5rrVs and a Regular Bubble Spadna of 
1 00mm at a Ddve Frequency of 1 OHz 
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Figure 4.26 
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Power Spectrum from Transformer Signal of Bubble Velocity of 2mls and a Regular Bubble 
Spacing of 1 00mm at a Drive Feguengy of 1 OHz 
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Figure 4.30 

Power Spectrum from Transformer Signal of Bubble Velocity of 2m/s and a Regular Bubble 
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Figure 4.31 
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Power Spectrum from Transformer Slanal of Bubble Velodly of 2mls and a Regular Bubble- 
Spacing of 1 00mm at a DrNe FrequenCy of 1 OOOHz 
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Figure 4.32 
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Power Spectrum from Transformer Signal of Bubble Velocity of lm/s and a Regular Bubble- 
Spacing of 166.66mm at a Drive FrequenQj of JOHz 
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Power Spectrum from Transformer Signal of Bubble Velocity of lm/s and a Regular Bubbla 
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Power Spectrum from Transformer Signal of Bubble lodty of I M/s and a Regular Bubble 
Spacing of 66.66mm at a DrivefrequenQj of 
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4.6 Summary 

In summary this chapter dealt with the frequency analysis of the transformer signal. It 

showed that from the frequency information of the transformer signal a correlation with 

the bubble velocity could be obtained. A linear relation between peak frequency of the 

signal and bubble velocity is found. 

A further examination showed that the power spectra does not change significantly for 

distorted transformer signals due to time varying eddy currents. 

96 



CHAPTER 5 

PREDICTION OF FLOW SIGNAL DUE TO A BUBBLE PASSING 

THROUGH THE METER 

5.1 Introduction 

This chapter shows the effect on the flow signal due to a bubble that is moving through 

the dielectric liquid electromagnetic flowmeter. When a bubble travels through a liquid 

(whether the liquid is stationary or moves with a different velocity than the bubble) it 

creates liquid flow around the bubble. This effect is shown in Figure 5.1. This flow of 

the liquid could affect the flow signal. The following model predicts the order of 

magnitude of the flow signal in the meter. 

Liquid flow around a bubble 

pipe 

pipe filled with liquid 

bubble 

-6 

1 31. V 

------------- 

Figure 5.1 
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5.2 Development of model 

The following sections derive a model which predicts an order of magnitude of the flow 

signal due to a bubble passing through the dielectric fluid electromagnetic meter. 

5.2.1 Governinu eciuations 

The condition for a dielectric fluid is that conduction currents are much smaller than 

displacement currents. The mathematical expression for this is given in equation 5.1. 

aE << icocE (5.1) 

Maxwell's equations for k and D- in a single fluid due to the external magnetic field B 

and the velocity ý are 

V-b =0 
VxE=-B 

+ K(v x F3) 

(5.2) 

(5.3) 
(K=E 

-Eo) (5.4) 

0 
These equations contain two source terms -, R and K(V XR). Without those terms f) 

and E would be equal to zero. The source term -B leads to the E and D fields 

associated with the transformer signal. The source term K(V x F3) leads to the flow 

signal. The boundary conditions for Maxwell's equations at the bubble surface are 

E, is continuous (5.5) 

Dn is continuous (5.6) 
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Because the flow signal was considered in this section the source term -B in equation 

(5.3) was left out. 

vxk=o and k= -VO (5.7) 

From equation (5.2) and (5.4) it was found that 

V. b=e V-R+KV-(Vx, ý)=O 

v 
2K+ vvx 

Applying vector identity the following expression was produced 

V. (VXF3) = F3. vxv- v-vxr3 

Since VxB=0 (for any field B ), a form for equation (5.8) is 

V20 K 
B-VXV 

E 

(5.8) 

(5.9) 

For the fact that inside the bubble (gas) the relative permitivity is I (c = co), therefore 

K=O. Hence inside the bubble equation (5.9) became 

vlo = (5.10) 

Considering the area in moving liquid and assuming potential flow the second term in 

equation (5.9) becomes zero (VxV=0). Therefore in the fluid equation (5.9) became 
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V20 =0 

The boundary conditions on the bubble surface are as follows 

0 is continuous 

-Ebldo 

I+ 
Kýv x P) 

rr r d- dr =d. 

where E. is assumed equal to E.. 

5.3 Solution of governing eguations 

eb - EO) 

(5.11) 

(5.12) 

(5.13) 

After deriving a way in order to evaluate the flow signal due to a bubble passing 

through the meter, the established equations in the above section where solved in the 

following part. 

5.3.1 Evaluation of vector product 

In order to find an expression for the potential, equations (5.10), (5.12) and (5.13) had 

to be solved. The first step was to evaluate the term (V X ý), in equation (5.13). The 

expressions for the radial and angular components of fluid velocity around a stationary 

sphere and moving liquid are as follows 

rr 
vr = V_ I- 

(. ý 
] 

coso 
I 
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v. = -v- sinO I+ Iý 
31 

(5.15) 
2( r 

For the case of a moving bubble (see Fig. 5.2) in a stationary fluid the above equations 

would be invalid, because the liquid flow around the bubble would not become equal to 

zero far away from the bubble. In order to make equation (5.14) and (5.15) valid the 

terms -V_ cosO and V_ sin 0 had to be added respectively (i. e. -V_ is added to all 

particles of the system). Hence the final equations for the fluid velocity around the 

moving bubble became 

Vr V- COSO 

2( r)3 vo -v_ sinO 

v 

ve 

Vr 

rr 

E) 

Figure 5.2 (Velocity Components) 

Now the vector product was solved as follows 
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ijk 
ýv x V., vy v, = vyB, - vBy 

B, By B, 

This result was transformed into spherical co-ordinates and became 

(v F3) 
r= 

vB, - vB. 

For the fact that v, =0 and B, = -B sin 0 the final expression was 

(v x B), 1,. 
=d= v_ sin 0-0.5B sin 0 (5.20) 

5.3.2 Solution of Laplace's eauation 

An expression for the potential was derived. Using the general solution of Laplace's 

equation which was previously provided in chapter 2, solutions for the potential 
distribution inside and outside the bubble were found similar to the solutions in chapter 

2. The potential distribution inside the bubble with the correct symmetry and correct 
behaviour at r -> 0 and r -> - became 

0, =IA,,,. r"P,. '(p)sinmo 
. 

(5.21) 
n, m 

and outside the bubble 

02= IB.,. r-'-'P,. '(p)sinmo (5.22) 
n, m 

where n=O, 1,2.... and m= 1,2,3 
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5.3.2.1 Evaluation of constants 

A simple observation of equation (5.13) shows that m has to be equal to 1, because for 

m=O and m>O the terms sinmo and sino in equation (5.13) would not balance. For n 

it appeared that it also had to be equal to 1. A general expression for P. (R) is given in 

Abramowitz and Stegun (Page 334 Nr. 8.6.6) as 

pm (ýt) = (- J)m (I -tM dmP 
X2)2 - 

(R) 
(5.23) 

dgm 

and P, coso (5.24) 

For n= 1 P"W= (-1)(, _(Cos0 (because 
dg =1) (5.25) 

= -sin 0 

Therefore a balance between P, '(y) =- sin 0 and ýv x b) 
r --sin 0 occurs. Using the 

boundary conditions in (5.12) and (5.13) gives a solution for the constants A,,, and 

Bj, j * 
El - Eb 

v- I 
Eb 

2E 
+ -1 Eb 

EI - eb 

v 2 
Eb 

1+ 2e, 
-Z ebd 3 

and the potential is 

ol = -A,,, r sin 0 sin 0 < 

(5.26) 

(5.27) 

(5.27a) 
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02 = -Bl, l 
I 

sin 0 sin 0 r>d (5.27b) 
r .2 

5.3.2.2 Resulting dipole strent! th 

Because the potential outside the bubble is the same as it would be for a dipole source 

at the bubble centre the dipole moment was found by setting the general expression of 

the potential of a dipole moment (5.28) equal to the expression found for the potential 

outside a bubble (5.27b). 

I 

47reo 
(5.28) 

Knowing from equation (5.18) that the dipole moment has to point in the negative y- 

direction (also illustrated in Figure 5.3) the dot product in equation (5.28) became 

P-F = (r7)yp = r- sin 0. sin 0. p 

.......... . .. 

Figure 5.3 (Dipole Moment in Coordinate System) 

104 



I sinesin 
P :- 02 = -Bl', 

I 
47rEo r2 r2 sinesin 0 

The dipole strength became 

- eb 1 

EI 
v_ , BI 

47reo 
1 2el 

J ebd 
3 

5.4 Summarv 

(5.29) 

A simple calculation showed that the magnitude of the dipole strength for the flow 

signal is to the order 10-2Cin whereas it was to the order 10-'7 Cm for the transformer 

signal and therefore is about 104 times smaller. This means that a bubble passing 

through the meter should not have a significant effect on the flow signal and hence it 

was not taken into further consideration. 
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CHAPTER 6 

SET-UP AND EXPERIMENTS WITH ARTIFICIAL BUBBLE FLOW 

6.1 Introduction 

The development of theoretical (analytical/numerical) background of the transformer 

signal in insulating liquid (main phase) and an interfering second phase in form of a gas 

bubble has been discussed. An experimental set-up is designed and built, which enabled 

a series of experiments to be conducted. This set of experiments showed the effect on 

the second phase only. In the following chapter a description of the experimental 

apparatus, the electromagnetic flowmeter, the electronics including data acquisition and 

signal processing instruments is given, as well as the results of the experiments. 

6.2 Svstem deshm of the experimental ri 

In the following experiments the effect of the second phase only is considered. 

Investigations of the interference of the eddy currents in the liquid due to a sphere are 

made. Spheres are used to represent bubbles of different sizes, positions and velocities. 
An adequate experimental rig is designed and built. A drawing of the final arrangement 
is shown in Figure 6.1. The electromagnetic flowmeter is mounted between two tanks 

(containing dielectric liquid). The idea is to simulate the second phase with a hollow 

plastic sphere that is fixed on a thin piece of string. In order to move this artificial 
"bubble" through the meter, the string is bound around two wheels. To achieve different 

ball velocities one of the wheels is powered with an adjustable electromotor. The design 

for the wheel mounting also allowed adjustable ball 
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positioning in the pipe section (x-y plane). This leads to an investigation of transformer 

signal and ball positioning. 

Unfortunately, for bubble speeds of around 0.8 m/s and faster significant vibrations of 

the spheres in vertical direction took place. This unwanted occurrence is expected to 

alter the shape and magnitude of the transformer signal. It also could produce an 

increasing amount of noise on the electrodes, since the additional vibrating movement 

of the sphere creates more charge separation. Therefore, the use of this experimental 

apparatus, for investigations of an ideal bubble movement on the transformer signal, is 

confined to bubble velocities lower than 0.8 nzls. 

6.3 The electromagnetic flowmeter 

A schematic drawing of the electromagnetic flowmeter for the use in dielectric liquids 

and a second gas phase is shown in Figure 6.2. The flowmeter consists mainly of the 

flow conduit, the detection electrodes, the driven electrodes, the electrode clamps, the 

excitation coils for the magnetic field and the electrostatic shield. These parts are 
described next. 

6.3.1 The flow conduit 

A two inch perspex pipe of 370 mm length is used for the flow conduit of the meter. It 
is an advantage that a non conducting pipe wall does not give rise to eddy currents in 

the magnetic field. Because capacitive signal detection is used, perspex could be used as 
an adequate dielectric medium between the two capacitor sides. The magnitude of the 

capacitance, estimated with the geometry equation C=Er*Eo*Ald (Plate Capacitors), 

can be determined with 2.0 E-10 CIV = F. 
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6.3.2 The detection and imard electrode 

The electrodes used in the experiments are designed and made by Schlumberger Dowell 

and provided to the Department of Fluid Engineering and Instrumentation in 199 1. The 

electrode arrangement has a large area (detection electrode) with a driven shield 

electrode behind. Both electrodes, made of copper, are mounted and separated on three 

flexible, rectangular insulating boards, so they could be smoothly added onto the flow 

conduit. The flexible insulating boards are made from 125 micro meter thick Kapton 

film. Kapton is a Polyamide with a permittivity of 3.4 and an electrical conductivity of 

10-16SI m. The flexible boards on which the two electrodes are mounted have a length 

of 100 mm and a height of 160 mm. The driven shield, or 'guard electrode' as it is often 

called, is used to keep the detection electrode at the same potential as the arising 

voltage on the detection electrodes and therefore avoid capacitive coupling between 

ground and the detection electrodes. This is a very effective method of shielding the 

detection electrodes. The guard electrode is placed extremely close behind the detection 

electrode and both are separated by a thin insulating layer. These guard electrodes are 
driven by the noninverting output of the buffer amplifiers. A schematic drawing of the 

signal detection and feed back system is given in Figure 6.3, and a further description 

on the buffer amplifier and associated electronics is given in section 6.4. The two 

electrodes have a so called fishbone like shape, which keeps them, in comparison with 

ordinary area electrodes, virtually eddy current free. A principle drawing with 
dimensions of this special arrangement is given in Figure 6.5. 

6.3.3 Electrode and weir clam 

An important general feature for an electromagnetic flowmeter is to keep tile electrodes 
and detection leads in a stable position. Durcan (1996 [33]) designed, for a related 
project, a clamping mechanism that keeps the electrodes and detection leads in a 
prearranged position and ensures that the detection leads will be placed in a straight line 
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in order not to create a loop that would increase the transformer signal. These clamps 

are rebuilt by courtesy of L. Durcan and used on the meter. Figure 6.4 shows the design 

of the clamps. 

flow conduit 

Figure 6.3 (Signal detection and feed back system) 

Upper Part 

Lower Part 

Figure 6.4 (Design for electrode clamps) 
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6.3.4 The electrostatic shield 

A common device to avoid capacitive coupling in many electronic systems and 

applications is a grounded electrostatic shield. When dealing with signals in the range of 

milli Volts or even smaller then electrostatic shielding is necessary. For electromagnetic 
flowmeters the shield becomes penetrated by the magnetic field, and hence is exposed 

to eddy currents. In return these eddy currents would disturb the transverse magnetic 

field, both in magnitude (causing a power loss) and phase (causing difficulties in 

reduction of the quadrature signal). The range of the circulating eddy currents depends 

on the magnitude and area of the magnetic field lines. The absolute eddy current is the 

summation of all the circulating eddy currents in the area fluxed by the field lines. 

Therefore a special shield, that keeps the capacitve coupling and the magnetic field as 
low as possible, is necessary. Amare (1991 [26]) designed an eddy current free shield 

from a grid like arrangement that breaks the circulating loops of the eddy currents. In 

recent work Durcan (1995 [33]) improved the design of the shield when he wound two 

layers of insulated thin copper wire around a plastic cylinder. The electric field 

attenuation is found to be 60 dB (i. e. for a 1000 volt source voltage, the coupling 

voltage is I volt). Figure 6.6 depicts the electrostatic shield. By courtesy of L. Durcan 

an identical shield is rebuilt and used in these experiments. 

Insulated copper hollow Insulating cylinder 

, 
V75mm 

-- -------- -- 

300 mm 

Figure 6.6 (Schematic of electrostatic shield) 
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6.3.5 Excitation coils 

The design and geometry of the coils depended mainly on the required magnetic field 

strength and excitation frequency. 

The magnetic field strength for electromagnetic flowmeters in insulating liquids that is 

necessary to generate a reasonable flow signal is 100 Gauss (0.01 Tesla). Although in 

this work the flow induced signal is considered less than the transformer signal 

generated by gas bubbles passing through the meter. With respect to measure both, 

main and second phase with one meter, a field strength of 100 Gauss is chosen. 

The choice of excitation frequency depended upon the following factors: magnitude of 

quadrature signal; charge noise bandwidth; eddy currents in the electrostatic shield; and 

the voltage on the coils. From the fact that the quadrature signal is proportional to the 

operation frequency (Oquad= wBAcoswt), the higher the frequency the larger the 

quadrature signal. From previous research work (Al-Rabeh [23], Hentschel [2 1 ], Amare 

[26]) the charge noise frequency increases with the flowrate. For a flowrate of 3 nils a 

noise level of 0.4 mV at 1000 Hz occurred. Eddy currents in the electrostatic shield are 

also proportional to the operational frequency (i,,, 
y =2) as derived by Arnare 

[26]. Knowing that these eddy currents cause a power loss and a disturbance to tile 

magnetic field, they should therefore be kept as low as possible. It should be targeted to 

keep the voltage on the coils on a low level, because as higher the voltage on the coils 

as higher is the electrostatic pick up at the electrodes and associated electronics. Tile 

voltage on the coils results mainly from the inductance (L). Capacitance (C) and 

resistance (R) have only a minor influence on the voltage. The magnitude of the 

reactance of the coils is described in equation 6.1. For an alternating current that flows 

through the coils the voltage on the coils can be calculated from equation 6.2. 

XL = 14 6.1 

UL ='. XL 6.2 
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From the above two equations it can be seen that the reactance is proportional to the 

operating frequency and therefore the voltage increases with increasing frequency. To 

find the optimal operating frequency a compromise between these four factors had to be 

found. It is decided to follow Amare's choice to use an operational frequency of 1500 

Hz. 

Therefore the same type of coils as used by Amare are used for this meter and 

subsequently for our experiments. A brief description and calculation of the coils are 

given next. Because of the relatively high operating frequency (1500 Hz) of the 

magnetic field, that would create strong eddy currents in the usually iron cored coils, 

only air cored coils could be used. The geometry of the coils (width w and thickness t of 

the coils, wire diameter, as well as the number of turns for each coil) is calculated by 

Amare as follows. The magnetic field strength is determined from the Biot-Savart law 

and is given by equation 6.3. 

Bi = ju 0 IR 2T 

2(R 2 +Z2)2 

6.3 

For a steady current (I) flowing in a circular loop of Radius R you can derive the 

magnetic field strength at a vertical distance z from the above equation. See geometry 

details in Figure 6.7. The maximum field strength is found to be at R= z-, r2-. To avoid 

over heating in copper wire coils the thickness (t) and width (w) are chosen to be 25 

mm by 25 mm, according to the rule of thumb (2540 Ampere / cm 2) 
. An insulated 

copper wire of 0.8 mm diameter capable of carrying an r. m. s. current of 2 Ampere is 

used. The distance (z) is the radius of the electrostatic shield plus half of the thickness 

of the coil. To achieve maximum magnetic field strength the radius R is chosen to be 

R= zNr2-. To produce a field strength of 50 Gauss on each coil the number of turns per 

coil is determined to 475. To calculate the inductance of a coil, for low frequency given 
in Terman [36], equation 6.4 is used. 
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L= 
3.2R 2N26.4 

12R + 9t + lOw 

The value for the inductance on one coil is 30 mH. 

Figure 6.7 (Schematic of geometry of excitation coils) 

Therefore the voltage on the coils could be estimated as 1225 Volt, using cquations 6.1 

and 6.2. 
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6.4 The electronics 

Two sets of electronics are used to run the flowmeter. The first set considered are the 

excitation electronics and the second set is the detection electronics. Both systems are 

explained in the following sections. 

6.4.1 The excitation electronics 

The two series coils are connected to a capacitor to form a resonant circuit. In order to 

have the operating frequency (1.5 kHz) as the resonance frequency, equation 6.5 

(Horowitz and Hill [34] page 33) had to be applied. 

I 

21rNfL-C 
6.5 

With the inductance of the series coils of 65 mH and the targeted resonance frequency 

of 1.5 kHz the required capacitance is calculated to be 0.0166 pF. To provide this 

capacitance six capacitors in series each of 0.1 pF are used. 

As evaluated in the previous section the electronics are designed to deliver an 

alternating current of 2A through the coils that subsequently could produce a ma gnetic 
field strength of 100 Gauss. The resistance RL of the coils is measured to be 8.7 D and 

the resistance Rc from the capacitors in series is given as 5.6 D. Using Ohm's law, in 

order to deliver a sinusoidal current of 2A through a resistor of 14.3 D( RL + Rc )a 

voltage of 28.6 volts is required. The power amplifier (RS MOS 248 type which is 

available from previous work) could provide such a voltage. The characteristics of the 

power amplifier are that it operated on a +/- 55 volts d. c. supply and could deliver a 
power of 120 watts onto a8D load. The input of the power amplifier is then I inked to a 
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signal generator (Hewlett Packart 3312A). The arrangement of the excitation 

electronics is shown in figure 6.8. 

Power Suppiv 

VAv 
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Power Amplifier 
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Powef Suppiv 

V- A 
F25 I F-, j 301 F r 

V 

0 

00-00 OQ 

L 

Signoi Generator 

Refeforze 
Sgnci 

Figure 6.8 (Excitation electronics) 

This set of excitation electronics is built and tested. The actual resonance frequency is 

found to be 1365 Hz. This deviation from the theoretically calculated resonance 

frequency comes from the tolerance of the dimensions of the coils and the estimated 

inductance (equation 6.4) which of course is only an approximation. By altering tile 

capacitance it would have been possible to increase the frequency, but since charge 

noise is only severe at 1000 Hz the resonance frequency is kept at 1365 11z. In tile 
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following three graphs (Figure 6.9-6.11) the measured correlation between adjusted 

voltage from the signal generator, current and voltage output from the power amplifier 

as well as the relation between maximum magnetic field strength in the pipe centre and 

current output from the power amplifier are depicted. As expected from Ohm's law 

I=U) and the equation for the magnetic field strength (equation 6.3) all these 
R 

relationships are linear. In the experiments carried out the final setting for the voltage 

on the signal generator is put to 850 mV peak to peak, that meant that the value of the 

magnetic field strength in the pipe centre is 0.0078 Tesla. This setting provided a stable 

baseline, after nulling the quadrature signal down and also generated a reasonable signal 

created by the bead. 

Measured Correlation between Sig. Gen. Voltage and 
Current OutpLd from Power Amp. at Flewnance 
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Figure 6.9 
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Figure 6.11 

6.4.2 Detection and guadrature suppression electronics 

The principle system used for the detection and quadrature suppression electronics 

builds on work previously done by Hentschel and Amare. The design used for tile 

electronics is described in the following sections. The detection and quadraturc 

suppression electronics are grouped in to three units (1,11,111), see Figure 6.12. Tile 

first part (1) shows how the signal is retrieved. The second part (II) is the amplitude and 

phase shifting of the reference signal, and the third unit (III) shows the final quadrature 

deduction stage. 
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6.4.2.1 Sip-nal detection unit (1) 

The arising signals on the two detection electrodes are put in to the noninverting input 

of the follower amplifiers (AD549). The guard electrodes are connected to the inverting 

input of the AD549 amplifiers. Since the gain of the follower amplifier is assumed to be 

one (in practice very close to one), the potential on the detection electrodes are virtually 

the same as on the guard electrodes and therefore the detection electrodes are 

practically not interfered by capacitive coupling. This method is also called 

'bootstrapping'. 

A 500 MU resistor linked between the detection electrode and ground is used to let the 

high input bias current of the follower amplifier flow to ground. Another reason wily a 

follower amplifier is used, is because of its high input impedance that matches the high 

impedance of the flowmeter. With an input impedance of 1013 Q and I pf, an ultra low 

input bias current of 50fA, and a very low offset drift (0.2 [tvPQ for stability reasons, 

the AD549 has the appropriate characteristics for the required purposes, 

The difference voltage of the two output signals from the two follower amplificrs, 

which are of opposite sign, is identified by using a differential amplifier. Tile gain of the 

differential amplifier is 1. The specifications of the operational amplifier OP-27 are 

suitable for our needs. OP-27 had a ultra low noise of 2 nv at 1500 11z, a very low 

offset voltage drift of 0.2 gvPC, and a high common mode rejection ratio (CMRR) of 
126 dB. 

6.4.2.2 Amplitude and phase shiftina unit (11) 

The voltage detected by the electrodes contained the flow signal and a certain amount 

of quadrature voltage. This quadrature occurrence is generated from various deviations 

.p 
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axisymetric placing of the electrodes, non identical contact impedance on electrodes, 

non-identical gain on buffer amplifier, non-uniform. transverse field, or non-perfect 

wiring geometries. Even an extremely carefully built and designed flowmeter can only 

reduce such quadrature build up to a minimum, but it is obviously never possible to 

avoid it completely. The remaining quadrature signal is of the order of 400 ntV. 

Therefore an electronic method is necessary to remove of the remaining quadrature 

voltage. Following the now described technique, known as Phase-Sensitive Detection, 

that generates a signal of the same magnitude and phase as the quadrature signal but of 

opposite sign, the quadrature signal cancels out. First the current flowing through the 

coils is branched off as a reference signal and connected to a variable resistor on tile 

feedback of an inverting amplifier (OP27). With the variable resistor the amplitude of 

the voltage can be controlled and adjusted equal to the quadrature voltage, and the 

inverting amplifier (voltage gain = V,,,, t / Vi,, = -R21 RI) produces a voltage of opposite 

sign on its output. The reference voltage is then connected to a phase shifting circuit 

that gives an output sine wave of adjustable phase from 0' to 180* and keeps the 

amplitude constant. For this purpose the voltage is split in to ul and 112, and both are 

equal in magnitude but 180' apart in phase. 

6.4.2.3 Ouadrature deduction stap-e (111 

Both signals, the quadrature contaminated baseline signal and the generated signal that 

is adjusted to the right amplitude and in anti-phase to the quadrature signal, are fed in to 

an instrumentation amplifier. This instrumentation amplifier contained a TL072 dual 

operational amplifier and a OP27 operational amplifier, that is used as a diffcrential 

amplifier. The instrumentation amplifier arrangement is designed for a gain of 120, and 

then finally a suppression of the original existing quadrature voltage to a minimum of 

about 20 mV could be achieved. See Figure 6.13. The output signal is then conncctcd to 

a Band-pass Filter. 
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Figure 6.13 (Schematic of quadrature supression) 

6.4.3 Bandpass filter desin 

In order to refine the output signal from disturbing noise sources and harmonics, a 
band-pass filter is designed and built. 

It is decided to use a pass-band width (BW) of 400 Hz with lower (fl) and upper (f,, ) 

pass-band frequency limits of 1.3 kHz and 1.7 kHz respectively. These two limits are 

normally chosen at 3 dB. This meant the arithmetic centre frequency (fo) is 1.5 k11z. The 

ratio of upper band-pass frequency (f,, ) to lower band-pass frequency is a critcria 

whether the to be built filter is a WIDE-BAND PASS Filter (for a ratio of 2 or bigger) 
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or a NARROW-BAND PASS Filter (for ratios smaller than 2). Since this ratio in our 

case is 1.3076 a Narrow Band Pass Filter is designed. See Figure 6.14. 

f, = 1.3 kHz f. 1.7 kHz 

0 dB ---------- 

fo 1.5 kHz 

3 dB --------- 

i4 700 Hz 

f, = 0.9 kHz 
Stop BW 

C2 = 2.1 kHz 

Figure 6.14 (Design of narrow band pass filter) 

The selectivity factor (Q) that is defined as Q= fo 
, and serves as a criteria that states BW 

that fo can be kept as the arithmetic mean for Q ý: 10 , and for Q< 10 a normal ised 

centre frequency of fo = Vfj _+f. should be used. Inasmuch as Q is calculated as 3.75 

the band-pass filter had to be normalised. The new normalised centre frequency is fond 

to be 1.4866 kHz. The normalised and geometrically related stopp-band frequency 
-2 -2 fo 

points are calculated with f, = and A=. 
ýO__ 

and became 1.052 k11z and 2.455 f2 A 

kHz respectively. The two pairs 

are A=0.9kHz and f2= 2.45kHz (f2 
- f, 1.55kHz) 

and f, -=1.05kHz and f2= 2. IkHz (f2- fl' 1.05kHz) 

The second pair is retained, since it had lesser separation. The steepness factor (A, ) 

could be calculated as A. = 
StoppBW 

= 
1.05kHz 

= 2.62. 
BW 0.4kHz 

A Butterworth low-pass filter could now be selected from the normalised curvcs, which 

are given in Appendix [B]. The constant D in this table simply is the ratio 
BIV, 

BIV, MD 

125 



where BW, is the band width of interest. In our case BW,, is the stopp band width. 

Therefore D is calculated as 2.62. The stopp band attenuation of 25 dB needed a three 

section filter. The chosen circuit is a Active Dual-Amplifier Bandpass (DABP) 

structure, because of its remarkable performance. This type of structure is first 

introduced by Sedra and Espinoza. The final circuit is given in Appendix [C]. 

6.4.4 Phase sensitive detection (Lock-in Amplifier) 

The final signal processing stage is the application of a Lock-in-Amplifier. It is used to 

separate the remaining quadrature part and the flow related signal from each other and 

to monitor the flow related and transformer signal. 

This method, used in the Lock-in-Amplifier, is called phase sensitive detection (PSD) 

and works in principal as follows. In order to detect the quadrature phase, the signal, 

coming from the band pass filter, is multiplied by a square wave function, that is in 

phase with the quadrature signal and then integrated (which gives a d. c. output) over 

time. As it can be seen in Figure 6.15b, the flow related signal becomes equals to zero 

and the transformer signal remains and can be monitored. To get the transformer signal 

equals to zero, the original signal, coming from the band pass filter, has to be multiplied 
by a square wave function, that is in phase with the flow related signal, and then 

integrated over time. See figure 6.15a. The final signal amplification after tile signal 

processing electronics and filtering method is measured to be 120. 
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The term LOCK-IN comes from the fact that the instrument (ORTHOLOG-SC 9505E) 

locks into the frequency of the reference signal (taken from the coils). The quadrature 

signal, that theoretically lags 90' behind the flow induced signal, experienced phase 

shifts from previous signal processing. To acquire the condition of the desired phase 
(phase of the flow signal or quadrature signal) the PSD can be adjusted to the 

appropriate phase using a phase shifter. The output of the PSD is connected to a low- 
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pass filter. The purpose of the low-pass filter is to remove all components of the mixer 

output with frequencies far from reference frequency. 

6.4.5 Si2nal recordina method 

For the signal recording the software package PICO-LOGIN-Systems is used. The 

output from the Lock-in-Amplifier is connected to the Analog to Digital Converter of 

the PICO-LOGIN-software package, which collects sets of measurements and stores 

them on disk. It is provided with tools to scale the measurements and to produce text 

and graphical reports. 

6.4.6 The ONO-SOKKI analvser 

For frequency analysis the ONO-SOKKI instrument is used. Signals are fed in to the 

ONO SOKKI and Fast Fourier Transformations, which led to power spectra, are 

executed. 

6.5 The used fluid 

The dielectric liquid used in the experiments is BP180. The relevant properties of this 

very pure and highly insulating oil are conductivity (or) of 5.7 E- IIn -1 , relative 

permittivity of 2.2, viscosity of 0.00 1492 NI 2, and density of 748 k'91 
lin /1ý13 - 

6.6 Experiments carried out 

Two different types of experiments are carried out. The first group of expcriments 
looked at the behaviour of the transformer signal for plastic beads, of differcrit 
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diameters, surrounded by a dielectric liquid (BP 180, Dielectric Oil) passing through the 

electromagnetic flowmeter. The second set of experiments investigated the response of 

the frequency analysis carried out for various bubble velocities. 

6.6.1 Transformer simal behaviour 

In Figure 6.16 the transformer signal generated by a bubble passing through the meter is 

recorded. The bead, representing the bubble, moved passed the meter very near (at a 

vertical distance of about 15 mm measured from the pipe centre) one of the electrodes. 

The diameter of the bead is 20 mm. The emerging shape of the signal is as expected. It 

rose in an exponential manner as the bead entered the magnetic field. At very close to 

half of the length of the magnetic field the signal reaches its peak and then decreases 

and falls down to a maximum negative value from where it increases to a zero value. As 

it can be seen the two maximum points are not of the same magnitude. This was not 

expected. The positive peak reaches a value of 1.2 mV whereas the negative peak only 

approaches about -0.9 mV. It could also be observed that as the final signal approached 

zero there is slight overshoot of the signal before it settled at zero voltage. This 

incidence is, with regards to theoretical investigations, not anticipated. Reasons for this 

occurrence where most likely to come from a slightly asymmetrical arrangement of one 

of the electrodes. But even after a careful readjustment of the electrodes this occurrence 

could not be avoided. 

A set of experiments examining the response of the transformer signal for different 

vertical positions at which the bubbles moved passed the electrodes (vertical positions 

at 5 mm, 10 mm, and 15 mm) as well as for different bubble diameters (10 nun, 15 111111, 

and 20 mm) are conducted. The graphs in Figure 6.17a to 6.17c show the maximum 

signal for various bubble locations and diameters. As predicted it is perceived that with 
increasing bubble diameter the peak signal increased. The relation between bubble 

diameter and transformer signal is theoretically established as 0- d' (see equations 
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2.67 and 2.71). This proportionality holds for the recorded results, within a close 

tolerance. E. g. bubble diameter of 10 mm and 20 mm cause the maximum transformer 

signals of 0.00018 V and 0.0015 V respectively see Figure 6.16c. The theoretically 

calculated signal (using the above mentioned relationship d 3) would be 0.0014 V 

for the bubble of 20 mm diameter. 

A close agreement between the magnitudes of experimentally recorded transformer 

signals and the computed signals is described in chapter 3. Comparing the peak signals 
for bubble diameters of 10 mm and 15 mm in Figure 6.17c and the equivalent 

computational results shown in Figure 3.9, a deviation of 20% and 35% respectively 

exists. 
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Figure 6.16 
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6.6.2 Experimental frecluencv analysis of the transformer signal 

The following experiments are conducted in order to see the effect of bubbles moving 

through the meter with different velocities. The investigated bubble velocities varied 
from 0.1 nzls up to 0.5 nils. This range secured a horizontal bubble movement only. A 

higher bubble velocity would introduce significant bubble vibration in the vertical 

direction, which is not desirable feature at this stage. The output signal of the Phase- 

Sensitive-Detector is fed in to the ONO-SOKKI analyser, where' a Fast Fourier 

Transform is carried out. The corresponding power spectra are printed out and are 

shown in Figures 6.18 to 6.23. The particular power spectra show that the frequency of 

the occurring peak increases with higher bubble velocities. A correlation of peak 
frequencies versus bubble velocities is given in the plotted graph in Figure 6.24. 
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Figure 6.18 (Power spectra for bubble velocity of 0.1, "/, ) 
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Figure 6.19 (Power spectra for bubble velocity of 0.2 ml, ) 
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6.6 Summarv 

In this chapter the experimental apparatus, including rig, flowmeter, and electronics is 

described and explained. 

Also, two different sets of experiments are carried out. In this first group of 

experiments the shape of the transformer signal is investigated. Although the general 

form of the transformer signals that are recorded agreed with the theoretically 

determined signals, a slight deviation, in form of overshooting, on the shape of the 

signal is noticed. Despite a careful rearrangement of the electrodes (because an 

asymmetry in the electrode arrangement is suspected) no significant improvement could 
be achieved. However the results in terms of magnitude of the transformer signals 

proved to be very close to the theoretically predicted signals and showed similar 

characteristics. 

The second set of experiments concentrated on the behaviour of the produced power 

spectra for different ball speeds. It is discovered that the peak frequency of tile 

transformer signal is related to the velocity of the bubbles passing through the meter. 
This provides a possibility to measure the velocity of the second phase in form of a 
bubble. 
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CHAPTER 7 

EXPERIMENTS FOR INSERTED NITROGEN BUBBLES 

7.1 Introduction 

The results in chapter 6 showed the potential to measure the velocity of the second 

phase. In this chapter a set-up for a more realistic approach is implemented by having 

nitrogen bubbles passing through the meter. 

7.2 ExDerimental set-u 

The flowmeter used in chapter 6 is put in a vertical perspex pipe section, filled with 

dielectric fluid. The lower end of the pipe is connected via a hose to a pressuriscd 

nitrogen supply tank. The bubble velocity in the column is controlled by a valve 

connected on to the plastic hose. The used arrangement is shown in Figure 7.1. The 

velocity of the bubbles is measured with a video camera. The video camera is equipped 

to review the recorded experiments in pictures for every 0.02 seconds. The electronic 

set-up (excitation as well as detection electronics) is identical to the one used in chapter 

6. 

7.3 EXDeriments carried out 

In Figure 7.2 the noise spectra for zero flow is printed. It can be seen that the noise has 

a continuous magnitude over the bandwidth. The next step is to insert gas bubbles with 
different velocities and to examine the co7esponding frequency analysis. Tile bubble 

velocity range is between 0 and 0.38 m1s. In Figures 7.3 to 7.8 the power spectra and 
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corresponding pictures of bubble flow are plotted. These clearly reflected the same 

coherence as seen in chapter 6. The peak frequency of the analysed fourier transform 

depends on the velocity of the bubbles. In Figure 7.9 a comparison of the relation 

between peak frequency versus bubble velocity gained from the experiments achieved in 

chapter 6 and the above results show good outcomes. 

Figure 7.1 

138 



N 

z 
-J 

m 

Q 
Cýj 
(D 

C 
CD 

> 

< 
CD 

a- Ln M ('\J >, C"i 

rr - 
3: 

L-L-Q 

Lf-) 
x 

7. -1 
J lower spectra for zero huhh Ic %clocit\ 

139 

0 



> 

m 
-T 
QD 

ro 

Ln Cl- M U) CID 

CL 

Figure 7.3 (POWCF 1, I)CCH-LI 101' it hLlbb IC%CI OC IIýo I(). I. --) ly, ) 

140 

Ln 

0 CD 
<1 



> 

LD 
m 

Cl a- Ln 

CD 

0 CD >x 

x 

141 

7.4 ( Powe r spcc I I'a lo, a 1)(II)h I L' % ck ()I ()'I 



m 
co 
m 
co 

z FH 

-J 

C: 
Co 
r- 

< -T- 
Q 

n- Ln cn r 

--- 

--- - c_) 
ýl 

CD 
N 

Ln 
x 

CD> 

142 

ýýl 

1'-igL[I'C /. 5 (1)()WCI'. SI)CCII'a 101- il hLIhbIC ýCIOCII\ ýil t) 



--T--___ --m- 
- 

I. 
C) 
0i 

i-> 

CD 
cr) 

F-A 

M 

CIO 

cn C) 

CL 

10 

Vigurc 7.6 (11()\vci- spectra for a huhhIc vcloctlý ()I ý/, ) 

143 

'cl 
0 

'c--I 

(_D> 



; ý. : Cýj 

(. D 
CU 

ý 
z T- 

(f) Ln 

ly- Ri 
I 

-K 

CD > 

144 

FigUre 7.7 (Power spcctra lol It bubb1c \clocit) t)l (). -i ,, ) 



-T- --T-- ---T- --r 

C3 
m 

C) 
Ln 

ý-l 
-r 

F-I 

-J 

c 
(7C) 

r- 

< 
C) 

n- Ln cr) m 

Cc m 

Q- 

ý<l 

0 

Fiaire 7.8 (Power spectra for a huhh1c \, cl()cit\ oi 

145 

CD > 



Correlation between Peak Frpquency and Bubble Veloci 

45 

4 

35 

Cr 

U. 

m 
(D 

CL 

40 

0 05 

Bubble Velocity [rTVs) 

Figure 7.9 

From equation 4.21 and the Figures 4.6 and 4.7 in chapter 4 it is expcctcd that tile 

power of the spectra 'is to increase with decreasing bubble spacing. This is tile Iýjcj I()r 

very low bubble velocities and therefore gas bubbles which are 111, sertc(l a cleai 

distance from each other (Figure 7.3 to 7.5). By analysing the results oftlic exPerinklills 

in Figure 7.6 to 7.8 the power does not increase with decreasino bubble spacinv. A 

clear reason for this occurrence could not be found. But a possible explanation collid I)e 

that the gas bubbles for higher velocities are of different size and are much t, l()ý, cj 

together, and in return this could alter the actual shape ofthe transformer signal. 

7.4 Summar 

III this chapter experiments are conducted which examined tile behaviour ()I' III,. 

, spectra produced by gas bubbles of various speeds passing through the inclel.. 

outcome of the experiments showed quantitatively tile same responsc as the results III 

chapter 6. Because of' the relatively high discontinuous noise level withill tile 10,111al 

more distinctive and stable power spectra could not be achieved. 
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CHAPTER 8 

8 CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 

, 
8.1 Introduction 

This chapter rounds up the conducted work and the derived results in this thesis, and 

gives final conclusions. Furthermore arising suggestions and recommendations for 

future work, both on theoretical and experimental aspects, are made. 

8.2 Conclusions of work 

A theoretical model is developed that investigated the behaviour of the quadrature 

component of an electromagnetic flowmeter that arises when a bubble (modelled 

in the form of a dipole) passes through the meter. The cause of such a signal is 

due to the fact that a bubble passing through the meter would unbalance existing 

eddy currents. The model predicted a signal with a distinctive shape. It also 

predicted that the magnitude of the signal is dependent on the magnetic field 

strength, excitation frequency, bubble size and bubble position. All influencing 

factors have a linear effect on the signal magnitude apart from bubble diameter 

which is cubed. The magnitude of the signal does not depend on the velocity of 
the bubble. 

An investigation shows that when using large area electrodes for signal detection 

the position of maximum transformer signal does slightly change with tile 

circumferencial position of the bubble in the pipe section. 
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A numerical investigation of this transformer effect is made by using the Finite 

Element Methods software package, ANSYS. In a first attempt a dipole is 

modelled in order to predict and verify the transformer signal of concern. It is 

found that the shape of the signal is identical to analytical results and the signal 

magnitude altered by 30%. In a second step a bubble is modelled in form of 

spheres of different diameters. The results for the transformer signal for identical 

bubble diameter are virtually the same as the dipole modelled results. 

(iv) A theoretical frequency analysis of the transformer signal generated by a bubble 

passing through the meter is performed. Fast fourier transforms are carried out on 

a set of signals arising when successive bubbles with certain separations are 

moving through the meter with various velocities. It is found that the peak 

frequency is directly proportional to the velocity of the bubbles. As higher the 

bubble velocity the higher the peak frequency. 

(v) In a further investigation it is proved that the transformer signal for 1500 11z 

excitation frequency does not distort the resulting transformer signal. 

(vi) Although this work is trying to make use of the transformer signal, a brid 

investigation is carried out to see the effect of the second phase on tile flow 

signal. A calculation predicted a negligible effect on the flow signal. In tile actual 

experiments this prediction is verified when no voltage is detected on tile now 

signal. 

(vii) For experiments carried out, the expected shape of the transformer signal is 

recorded. A comparison of peak signals between numerical and experimental 

solutions (for bubble diameters of 15 mm) indicated a good agreement. A slight 

overshoot of the signal is noticed before it approached zero value. T'his 

unexpected effect is thought to be due to asymmetric adjustment of the electrodes 

onto the flow conduit. Unfortunately a careful readjustment did not remove this 

effect. 
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(viii) The frequency analysis carried out on the experiments (that used beads fixed on a 

very thin fishing line and injected nitrogen bubbles) showed similar qualitative 

results as predicted in the theoretical simulation. A dependence of bubble velocity 

and peak frequency on the power spectra is obvious. Unfortunately a linear 

dependency between these two factors could not be achieved. A relatively high 

level of introduced noise onto the power spectra impaired the quality of the 

power spectra. 

8.3 Recommendations for future work 

This work laid the basis for the development of an electromagnetic flowmeter for two- 

phase flow measurement of insulating fluids. With regards to further work to develop 

and improve this method, suggestions are given below. 

(i) In order to improve the quality of the power spectrum a method that would lead 

to a significant reduction in noise would be beneficial. Because noise is mainly 

introduced due to charge separation, coming from the moving bubble, noise 

reduction would be a difficult task. 

(ii) An increase in bubble velocity (possibly up to 3 nds) would be desirable to 

complete the relationship between peak frequency and bubble velocity over a 

widerrange. 

(iii) Eventually an investigation and tests of this method in a real two-phase flow (with 

a dielectric main phase and gaseous second phase) situation should be carried out. 
For testing this meter, the extraction of velocity information for each flow phase 

should be considered. 

(iv) A further analytical or numerical investigation of end-effects and their implication 

on the transformer signal would be of use. 
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(v) For real two-phase flow conditions th6 bubble separation can be very small. This 

can be seen in flow regimes photographed and shown in Figures 7.3 to 7.6. Often 

two or even more bubbles move at the same axial position. This occurrence 

would obviously affect the transformer signal, both in magnitude and shape. An 

overlapping effect can be expected. To understand these issues and possible 

consequences a theoretical examination could yield to vital information. 

(vi) To obtain a more precise result for the transformer signal, a more in depth 

investigation of the eddy current field should be considered. 

(vii) Because of occurring minor phase shifts due to electrostatic pick-up on the coils, 

a method of accurate metering these phase shifts would provide an exact 

adjustment of the lock-in amplifier. This would avoid even very small leakage of 
the transformer signal in to the flow signal. 
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Appendix A 

Flow chart for potential difference accross electrodes 
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Flow chart to calculate zeros of determinant 
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Determinant calulated with 'MS Maple' 

-a -b 
cd 

X -. = 000ef 
El g -B2 g -E2 h00 

0 B2 i E. 2 -E3 i -ES ij 
det(x)� 

-a c E2 he E3j +ac E2 li f E3 ia E2 gd E3j 

-a E2 gdf . 93 1+a E22 gj c f'- a E2'gj e 
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+ EI gadf E3 i- El ga E2j cf 
+ E. 1 ga E2j de+ El gbce R3j 
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APPENDIX B 

Calculations for bandpass filter 

All calculations refer to, Electronic Filter Design Handbook, Williams. 

The corresponding poles of the normalized low-pass filter are found in table 12-1 as 

follows: a= -0.5000 p= ±0.8660 

= 1.000 

The bandpass pole transformation is performed in the following manner: 

C=a 2 +p2 =1 

D= -La- = 0.297 Qbp 

E=c+4=4.088 
Q2 bp 

G= NFE2+4D2 = 4.131 

Q= E+G 
- 37198 

ý 
iD' -* 

M= aQ 1.01, Qbp 

W=M+I=1.033 

f, 
a 

L=1.43 
8kHz 0 

w 
f,, 

b= Wfo = 1.536kHz 

The following design equations for the element values can be obtained: 

R= 
I 

=R2=R3 2 nf, C 
R, =QR 
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The capacity C and the recistors R4 = R5 are arbitrary and were chosen as C=0.1 pF 

and R4 = R5 = 10 kHz. 

The obtained values for the first stage (n=1): 

f, = fa = 1.438 kHz 

R= HOOD 

R, = 8400 D 

The obtained values for the second stage (n=2): 
f, fb= 1.536 kHz 

R 1040 D 

R, 7860 D 

The obtained values for the third stage (n=3): 

f, fo = 1.486 kHz 

R 1070 D 

R, 4014 D 

IN 
oul 

160 


