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Abstract

With the optimisation of fixed aerodynamic shapes reaching its limits,

the active flow control concept increasingly attracts attention of both

academia and industry. Adaptive wing technology, and shape mor-

phing airfoils in particular, represents a promising way forward. The

aerodynamic performance of the morphing profiles is an important

issue affecting the overall aerodynamic performance of an adaptive

wing.

A new concept of active flow, the Active Camber concept has been

investigated. The actuator is integrated into the aerofoil and aerofoil

morphing is realized via camber deformation. In order to identify

the most aerodynamically efficient designs, an optimisation study has

been performed using high resolution methods in conjunction with a

two equation eddy viscosity model.

Several different types of previously proposed compressible filters, in-

cluding monotone upstream-centered schemes for conservation laws

(MUSCL) and weighted essential non-oscillatory (WENO) filters, are

incorporated and investigated in the present research. The newly

developed CFD solver is validated and the effect that high resolution

methods have on turbulent flow simulations is highlighted. The outer-

most goal is the development of a robust high resolution CFD method

that will efficiently and accurately simulate various phenomena, such

as shock/boundary layer interaction, flow separation and turbulence

and thus provide the numerical framework for analysis and aerody-

namic aerofoil design.

With respect to the latter a multi-objective integrated design system

(MOBID) has been developed that incorporates the CFD solver and



a state-of-the-art heuristic optimisation algorithm, along with an ef-

ficient parametrization technique and a fast and robust method of

propagating geometric displacements. The methodologies in the MO-

BID system resulted in the identification of the design vectors that

revealed aerodynamic performance gains over the datum aerofoil de-

sign. The Pareto front provided a clear picture of the achievable

trade-offs between the competing objectives.

Furthermore, the implementation of different numerical schemes led to

significant differences in the optimised airfoil shape, thus highlighting

the need for high-resolution methods in aerodynamic optimisation.
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κ Von Kármán constant

Symbols

cd Coefficient of drag

xi



LIST OF FIGURES

cl Coefficient of lift

cm Coefficient of moment

cp Specific heat at constant pressure

CD Cross-Diffusion term

cv Specific heat at constant volume

e Total energy

ein Internal energy

J Geometric Jacobian of the inverse transformation

k Turbulent kinetic energy

L/D Lift-to-Drag ratio

M∞ Freestream Mach number

p Pressure

Pr Laminar Prandtl number, Pr = 0.7

Pk Production term

Prt Turbulent Prandtl number, Prt = 0.9

pt Turbulent pressure

qt
i Turbulent heat flux vector

ql
i Molecular heat flux vector

R Universal gas constant

Re Reynolds number

Re∞ Reynolds number, based on chord length

Sij Mean strain rate

xii



LIST OF FIGURES

T Temperature

ui Velocity vector

uτ Friction velocity

xa Active chord percentage

y Normal distance to solid boundary

y+ Dimensionless wall distance, y+ = yuτ

ν

z∗max Non-dimensional actuator deflection

Acronyms

AoA Angle of Attack (degrees)

BV I Blade Vortex Interaction

CFD Computational Fluid Dynamics

DNS Direct Numerical Simulations

ENO Essentially Nonoscillatory

IBC Individual Blade Control

ILES Implicit LES

LES Large Eddy Simulations

LEV M Linear Eddy Viscosity Models

LTM Long-Term-Memory

MEMS Micro-electronic-mechanical-systems

MOTS Multi-Objective Tabu Search

MTM Medium-Term-Memory

MUSCL Monotone Upstream-centered Scheme for Conservation Laws

xiii



LIST OF FIGURES

NLEV M Non-Linear Eddy Viscosity Models

RANS Reynolds-Averaged Navier Stokes

RSM Reynolds Stress Models

SGS Subgrid Scale Stress

SST Shear Stress Transport

STM Short-Term-Memory

TI Turbulent Intensity

TNT Turbulent/ Non Turbulent

TS Tabu Search

TV D Total Variation Diminishing

WENO Weighted Essentially Nonoscillatory

xiv



Chapter 1

Introduction

One of the most important dimensionless quantity in Fluid Dynamics is the

Reynolds number, which is a measure of the ratio of inertia to viscous forces.

The Reynolds number provides a criterion for determining dynamic similitude

between real and model applications, but, most critically, it describes whether a

flow is laminar or turbulent. Laminar flows correspond to low Reynolds number,

where viscous forces are dominant, and the flow is characterized by smooth, con-

stant fluid motion [1]. Most aerodynamic engineering applications occur at high

Reynolds number, where the flow is dominated by inertial forces that produce

chaotic fluctuations with high velocity gradients and result in three-dimensional

space and time flow disturbances. The identifiable disturbance with an associated

scale that characterizes its spatial extent and persistence in time can be thought

of as a turbulent eddy. In fact, turbulent flows are characterised by a wide con-

tinuous spectrum of eddies. Large eddies interact with the mean flow and with

each other. Through this interaction, the turbulent kinetic energy is transferred

from the mean flow to large eddies and so on to smaller ones, with the smallest

eddies eventually dissipating into heat through molecular viscosity. Conclusively,

turbulence can be described as a spatially varying mean flow with superimposed

three-dimensional eddies that are self-sustaining and enhance mixing, diffusion

and dissipation [1].

Experimental results indicate that airfoil performance deteriorates when the

chord Reynolds number decreases below about 5 × 105 [2, 3]. The flow over

the aerofoil at these low Reynolds numbers is laminar, and even slight changes
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1.1 Flow Control

in the flow field have significant effects in the lift-to-drag ratio. Even at low

angles of attack, the laminar boundary layer on the suction surface of the aerofoil

becomes subjected to an adverse pressure gradient, resulting in laminar boundary-

layer separation and formation of a shear layer. Past the separation point, the

boundary layer undergoes transition due to amplification of flow instabilities.

At Reynolds number below 5 × 104 the separated shear layer does not reattach

to the aerofoil surface and a large wake is formed [4]. In contrast, at higher

Reynolds numbers, the separated shear layer may become turbulent and reattach

to the aerofoil surface, resulting in the formation of a separation bubble and the

development of an attached turbulent boundary layer. In both cases, laminar

separation has a detrimental effect on aerofoil performance.

From an aerodynamic point of view, laminar separation leads to high pressure

drag rise. On the other hand, turbulent flows result in thick boundary layers that

produce more skin friction drag than laminar boundary layers, which are thinner

by principle. Moreover, in compressible flows, shocks may appear that interact

with the boundary layer causing flow separation. Shock/boundary layer inter-

action appears in many aeronautical applications, such as flows around turbo-

machinery blades and external flows over aircraft wings or helicopter blades. The

aerodynamic performance in these applications depends strongly on the loca-

tion and strength of the shocks, as well as on the flow separation, induced by the

shock/boundary layer interaction. Flow separation on lifting and control surfaces

of flying vehicles and/or shock/boundary-layer interaction is the main reason for

a series of problems, such as drag increase, loss of lift and poor controllability,

that limit the realization of engineering ingenuity.

1.1 Flow Control

It was previously stressed that the boundary layer development and the interac-

tion of the boundary layer with the outer flow field, aggravated at high speeds by

the occurrence of shock waves, limits the overall air-vehicle or air-vehicle com-

ponent [5]. This interaction dictates the pressure distribution on the aerofoil

surface, and subsequently the aerodynamic loads. Therefore in order to achieve

2



1.1 Flow Control

high performance for mission varying air-vehicles it is necessary to either: (a) al-

ter the boundary layer behavior of the aerofoil, and/or (b) change the geometry

of the aerofoil real time for changing freestream conditions.

Flow control essentially involves a beneficial change in the wall-bounded and/or

free-shear flow with the objectives of (a) delaying/advancing boundary layer tran-

sition, (b) suppressing/enhancing turbulence and (c) preventing excessive bound-

ary layer growth and separation. Means of boundary layer flow control include,

conventional air-jet [6] and sub-boundary layer vortex generators [7], or zero-

mass pulsing jets [8], deployed to delay separation, discrete suction or blowing

meant to decrease viscous drag [9, 10] and unconventional deploying devices such

as Gurney flaps [11], divergent trailing edges and reversed flow flaps [12] to in-

crease lift-to-drag ratios (L/D) and clmax. Micro-electronic-mechanical-systems

(MEMS) that manipulate the high-shear-stress streaks in the boundary layer [13],

can also be utilised for vortex control, by affecting local leading edge separation

and vortex location, to enhance maneuver capability [14].

Special consideration is also given to control the shock waves and the shock

associated boundary layer development. The objective here is either to influence

the shock strength, by spreading the shock associated pressure rise over a certain

chordwise distance, thus reducing wave drag, or to energize the boundary layer

making it less prone to adverse pressure gradients. Reducing the shock strength

can be accomplished by passive or active cavity ventilation [15, 16] or by a con-

tour bump in the shock region [17]. Energizing the boundary layer upstream of

the shock may be accomplished by discrete suction [5], or by integrating vortex

generators [18].

Although promising results have been obtained with the aforementioned flow

control methods, adaptive wing technology is of interest in this work. Employing

adaptive wing technology, where the effective aerofoil/wing geometry adjusts to

the changing flow and load requirements, allows to fully explore the aerodynamic

flow potential at different points of the flight envelope, thus resulting in aero-

dynamic performance gains during take-off, cruise, maneuver and landing and,

furthermore, most likely improved structural designs [19, 20, 21, 22]. Means of

realizing adaptive wing technology are predominantly geometrical adjustments

including the deformation of the complete wing and/or the use of leading and

3



1.1 Flow Control

trailing edge camber variations to achieve the desired aerodynamic loads distri-

bution. Moreover, local contour modifications, in the shock region, can be im-

plemented to reduce shock strength that ameliorate boundary layer development

and drag.

1.1.1 Flow Control in Helicopter Main Rotor Blades

Anecdotal evidence points to the increase in helicopter usage due to its ability

to fly commercial, medical, rescue and law enforcements missions. These mis-

sions require flight profiles close to populated areas. Therefore, it is important

that modern helicopters are further improved with respect to environmental and

public acceptance. Key aspects are envisaged to be external and cabin noise

reduction, vibration reduction for passenger comfort and component life, better

fuel consumption and increased performance regarding flight envelope, speed and

range.

The main source of noise and vibrations in the helicopter are due to the

non-symmetric main rotor flow. In forward flight, the advancing and retreating

blade experience varying spanwise distribution of lift and drag, that excite the

blade’s bending modes and result in alternating rotor hub loads and moments.

Furthermore, in high speed flight, the retreating blade experiences dynamic stall

while the flow at the advancing blade tip becomes transonic resulting in strong

vibrations and loud noise generation. On the other hand, in descent flight or low

speed maneuvers, the rotor blades interact with the tip vortices of the preceding

blade. This type of interaction, termed as Blade Vortex Interaction (BVI) is

another source of helicopter vibration and noise.

Because of the complex flow features, BVI cannot be easily alleviated. How-

ever, there is significant potential for improvement by actively altering the aero-

dynamic loads of each blade individually (Individual Blade Control) [23]. Under

this scope, a lot of research has been performed and several adaptive helicopter

rotor blade systems have been developed. In fact, although designs featuring

hydraulic actuators have been developed and tested in helicopters [24, 25], recent

research is focused on electro-mechanical actuators [26], since high performance

induced strain piezo-electric actuators offer advantages in terms of weight, power

4



1.2 High resolution CFD methods

consumption, frequency bandwidth and reliability [27]. Emerging on - blade

actuation technologies comprise (a) active twist control and (b) discrete flap ac-

tuation.

In active twist control, the distributed induced-strain actuation results in a

continuous twisting of the blade that varies the spanwise lift distribution without

affecting the aerodynamic pitching moment. In discrete flap actuation, a servo-

aerodynamic control surface ( leading of trailing edge flap ) induces localized

aerodynamic force variations, offering control of both lift and pitching moment

in combination. The main advantages of the active twist concept are the aerody-

namically unchanged blade profile and the absence of moving of parts, whereas

the discrete flaps allow a more flexible modular design.

Under the EU FP6 Friendcopter project, a new concept for an IBC actuator,

the Active Camber concept has been investigated. The actuator is integrated into

the aerofoil and aerofoil morphing is realized via camber deformation. The ad-

vantages of the Active Camber concept are a smoothly deflected aerofoil contour

in the chordwise direction, without the associated gaps of the discrete actuators.

Since there are no moving parts nor discrete hinges, parasitic drag and discrete

vortices are alleviated when the Active Chamber actuator is enabled. Further-

more, the feasible modular design provides ease of maintenance and the actuator

may be detached from the host blade structure for replacement. In order to iden-

tify the most aerodynamically efficient designs, an optimisation study has been

performed using high resolution methods in conjunction with a two equation eddy

viscosity model.

1.2 High resolution CFD methods

Throughout the relatively short but highly evolutionary history of CFD, numer-

ous methodologies have been devised in order to accurately predict complex flow

phenomena. The state-of-the-art in modern CFD computations lies in the devel-

opment and efficient implementation of high resolution methods.

High resolution methods are typically used in Direct Numerical Simulations

(DNS) and Large Eddy Simulations (LES) of turbulent flows. The high order of

accuracy inherent in high resolution schemes is a prerequisite in order to reduce

5



1.2 High resolution CFD methods

dissipative numerical errors and to resolve a larger range of length scales than the

traditional second-order methods. On the other hand, the increase in accuracy

comes at a cost, due to the large discretisation stencil required, high resolution

methods are harder to code and also result in longer computation times than

low-order methods.

The outermost goal of any high resolution method is to circumvent the fun-

damental Godunov’s theorem that states that monotone methods are at most

first order accurate [28]. High accuracy must be achieved without the introduc-

tion of spurious oscillations across discontinuous flow phenomena, such as shock

waves and steep shear layers. Hence high resolution methods are sought to be

non-oscillatory. Furthermore, positiveness must be guaranteed, that is, posi-

tive definite quantities, such as density and energy must remain positive [28].

These attractive numerical properties are satisfied by employing nonlinear dis-

cretisations, where the discrete stencil changes as a function of the solution itself.

This is what distinguishes high-resolution schemes from linear second, or higher,

order finite difference methods that make use of the same differencing stencil

throughout the computational domain, regardless the characteristics of the so-

lution. Following Harten’s definition [29], high resolution methods exhibit the

following properties:

1. provide second or higher order of accuracy in smooth regions of the flow,

2. yield solutions that are free from spurious oscillations and

3. produce high resolution of discontinuities by adapting the discetisation sten-

cil, containing the contact wave, similar to that of first-order monotone

methods.

The main approaches to achieve high resolution comprise Total Variation Di-

minishing (TVD), Monotone Upstream-centered Scheme for Conservation Laws

(MUSCL), Essentially Nonoscillatory (ENO) and Weighted ENO (WENO) meth-

ods.

TVD methods comprise one type of Total-Variation Stable schemes, which is

founded on the very condition that the total variation of the numerical solution

6



1.2 High resolution CFD methods

does not increase in time [30]. TVD schemes are highly associated with tradi-

tional Artificial Viscosity Methods. In particular, TVD methods and Artificial

Viscosity Methods achieve the elimination or control of the spurious oscillations

near high gradients. Both types of schemes apply the mechanism of the addition

of artificial viscosity to construct schemes with accuracy higher that first order

while overcoming Godunov’s theorem [31]. However, in TVD methods artificial

viscosity is inherent in the scheme and is applied on a more rational basis than in

Artificial Viscosity methods, whereby extra diffusive terms are explicitly added

to the total partial differential system.

The Monotone Upstream-centered Scheme for Conservation Laws (MUSCL)

approach was introduced by Bram van Leer [32, 33, 34] in order to achieve higher

order of accuracy, through modification of the piece-wise constant data in the

first-order Godunov method and is used to construct high order methods. The

MUSCL results in high-order of accuracy achieved through data reconstruction

that is bounded via the use of limiters so as to avoid spurious oscillations [30].

MUSCL schemes have gained popularity during the 1970’s and the 1980’s, which

is manifested by the numerous limiters developed. The most well known and

commonly used limiters are ULTRABEE, SUPERBEE and MINBEE due to Roe

[35], VANLEER due to van Leer [32, 33] and VANALBADA due to van Albada

[36].

Essentially Non-Oscillatory (ENO) and Weighted ENO (WENO) schemes are

high order accurate finite difference schemes that have been formulated and suc-

cessfully applied in the resolution of problems with piecewise smooth solutions

containing discontinuities [29]. ENO and WENO schemes are specifically designed

for hyperbolic conservation laws. Through the use of a nonlinear adaptive proce-

dure at the level of approximation, what is succeeded is an automatic preference

for the locally smoothest stencil, which leads to the prevention of the crossing of

discontinuities in the interpolation procedure [37]. Common problems that are

regulated with the use of ENO and WENO schemes are shocks and complicated

solution structures, including applications of compressible turbulence simulations

and aeroacoustics.
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1.3 Turbulence Modelling

1.3 Turbulence Modelling

Most practical aeronautical engineering flows are turbulent. Turbulence is one

of the most-studied phenomenon in CFD. In fact, parallel to the development of

numerical methods for CFD was the evolution of turbulence modelling that is a

vast subject on its own. There exist three major branches of CFD that deal with

the study of turbulence, namely Direct Numerical Simulation (DNS), Large Eddy

Simulation (LES) and Reynolds -Averaged Navier Stokes (RANS) simulation.

In DNS the entire spectrum of spatial and temporal scales is fully resolved.

DNS is applied to simple geometries of low Reynolds number flows and provides

an essential tool in fundamental turbulence related research, such as transition to

turbulence, bypass transition in boundary layers [38] and streak instabilities [39].

The computational cost and storage requirements of DNS increase proportionally

to the Reynolds number (in three dimensions the grid points required can be

approximated by Re9/4 and the cost by Re3 [40]). The computational constraints

associated with DNS, render this numerical approach impractical for almost all

engineering applications and far beyond affordable computing resources for many

years to come [41].

In LES the large scales are fully resolved while the small scales are modeled.

This permits the usage of larger discretisation cells and time steps than what

are generally employed in DNS, thus allowing the study of much higher Reynolds

flows in a computationally more efficient manner. A deduction of Kolmogorov’s

Universal Equilibrium Theory is that large eddies are dependent on the flow geom-

etry whereas the small eddies display a self similar, isotropic, behavior [42]. This

serves as the rational behind LES, where the large scales are mainly accounted

for the transport properties in a turbulent flow and therefore are computed di-

rectly, whereas the smallest eddies are either implicitly modeled, in which case

LES is labeled Implicit LES (ILES) [28] or explicitly modeled through the im-

plementation of a Subgrid Scale Stress model (SGS). In either case the near wall

resolution requirements restrict LES to relatively low Reynolds numbers making

it unfeasible for most of the aeronautical engineering problems.

In view of the above, the solution of the RANS equations is the most realistic

choice for real life aerodynamic problems. RANS can be best described as a

8



1.3 Turbulence Modelling

statistical approach according to which the Navier Stokes equations are time

averaged. Because of the nonlinearity of the Navier Stokes equations, the time

averaging procedure leads to the appearance of extra momentum fluxes that act as

stresses throughout the flow, the Reynolds stresses, which are not known a priori.

Herein lies the closure problem; establishing a sufficient number of equations for

all unknowns [42].

Turbulence models can be classified depending on complexity, sophistication

and accuracy. On top of the hierarchy lie the Reynolds Stress Models (RSM)

that capture more of the flow physics while at the same time are computationally

intensive since seven additional transport equations need to be solved along with

the mean flow equations [43]. Due to the associated complexity and computa-

tional costs of RSM, two equation turbulence models are considered as a more

viable approach for high Reynolds number applications. Furthermore, regard-

ing the constitutive relation between Reynolds stress and mean strain rate ten-

sors, turbulence models can be categorised to Non-Linear Eddy Viscosity Models

(NLEVM) and Linear Eddy Viscosity Models (LEVM). Although, there are many

approaches to the derivation of NLEVM, Explicit Algebraic RSMs (EARSM) have

recently received great attention. These models are derived by applying simplify-

ing assumptions to RSM, and demonstrate potential in predicting normal-stress

anisotropy and the effects of streamline curvature, swirl, or secondary strain ef-

fects [44]. However, the increased complexity and computational cost, when com-

pared to LEVM, prohibits the use of NLEVM in engineering design processes.

LEVM seem to offer the best balance between accuracy and computational ef-

ficiency. LEVM make use of the Boussinesq approximation to relate the Reynolds

stress tensor with the mean strain rate tensor and the eddy viscosity. Since the

1950’s three main categories of LEVM have evolved; algebraic models [45, 46, 47],

one equation models [48, 49] and two equation models. The algebraic and one

equation models are incomplete as the turbulence length scale is related to a

typical flow dimension and therefore, their range of applicability is limited. On

the other hand, in two equation LEVM the second scale variable is solved for a

modeled transport equation and therefore are complete [42].

The current level of maturity of both high resolution methods and turbu-

lence modelling renders the technological value of Computational Fluid Dynamics
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undisputed and invaluable. Furthermore, modern Computation Fluid Dynam-

ics methods has become an indispensable tool for design optimisation, since a

plethora of different configurations can be investigated at acceptable cost and in

relatively short time. Therefore it is essential to examine different aspects of flow

control by performing CFD based aerodynamic optimisation.

1.4 Aerodynamic Optimisation

In general, design optimisation can be considered as the numerical process of

finding a feasible set of design variables that correspond to an optimum design

(solution) that satisfies the minimization or maximization of one or more quan-

titatively modeled objectives (functions), within the allowable design boundaries

(constraints). In other words, design optimisation is the solution of the objective

functions subject to constraints. In solving optimisation problems there exist the

traditional gradient-based methods and the more recent meta-heuristic optimi-

sation techniques such as Simulated Annealing, Genetic Algorithms, Evolution

Strategies and Tabu Search.

Furthermore, in multi-objective aerodynamic optimisation problems, the tra-

ditional gradient-based methods are not appropriate because of the highly con-

strained, non-linear nature of the underlying problem [50]. Consequently, gradient-

based optimisation techniques tend to get locked in the numerous local minima in

the design space of aerodynamic applications [51]. Furthermore it has been found

that the computational time required by, derivative free, stochastic methods has

been comparable to that of gradient-based methods [52]. For the above reasons,

heuristic and meta-heuristic methods became popular. The most widely used

meta-heuristic algorithms are Simulated Annealing [53, 54], Genetic Algorithms

[55] and Tabu Search [56, 57].

Regardless of the underlying optimisation strategy there exist two major ap-

proaches in solving the multi-objective problem. The most common method is to

reduce the multi objective to a single objective optimisation problem, by form-

ing a composite objective function, through the use of a weighting sum of the

individual objective functions [58]. The main disadvantage of this approach is

that the weights must be pre-set and this inherently introduces the designer’s
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1.4 Aerodynamic Optimisation

preconceptions about the relative trade-off between objectives. The second ap-

proach is to search directly for a set of design vectors that represent the optimal

trade-off between the objective functions, known as the Pareto-optimal set. The

advantage of the second approach is that the identification of the Pareto-optimal

set, provides the designer with a clear picture of the achievable trade-offs between

the competing objectives.

For the conduct of the multi-objective optimisation and the identification of

the Pareto front, a variant of the Tabu Search (TS) algorithm, developed by

Jaeggi et al. [59], was employed in the present work. TS comprises an optimiser

that has been proved more effective than the Genetic Algorithm and Simulated

Annealing methods when tested on a number of meta-heuristic methods on a

representative single-objective aerodynamic design optimisation problem [60].

In 1986 Glover [56] postulated a new (meta-heuristic) approach, the Tabu

Search, that enhances the performance of local search (heuristic) methods by

overcoming local optima. In its essence, Tabu search is a meta-heuristic superim-

posed on another heuristic. The basic principle of the TS is to implement a local

search strategy, however, when a local optimum is encountered a non-improving

move is allowed. Key to the realisation of the TS is the use of short, medium

and long term memories. The Short-Term-Memory (STM) records recent history

and prevents the search from tracing back its steps; points stored in the STM are

Tabu and are not accessed by subsequent searches. The Medium-Term-Memory

(MTM), keeps an unbounded record of the generated Pareto-optimal points and

is used for search intensification to reinforce attractive designs. The Long-Term-

Memory (LTM) monitors the region of the explored design space and is accessed

for search diversification, that is, directing the search into previously unexplored

areas.

In 1997 Hansen [61] developed a multi-objective TS optimisation algorithm

that extended the composite-objective approach. In specific, it performed several

component objective Tabu searches in parallel. Every each one of them was

characterized by different, dynamically updated set of weights that resulted in

the exploration of the entire Pareto front. Nevertheless, and although Hansen’s

attempt stands as a good TS implementation, it is presented with problems that

are common to all weight-sum approaches. In particular, when dealing with
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Pareto fronts, problems are identified in non-convex regions of the front that

are not defined by a combination of weights. Later on, in 1999 Baykasoglu et

al. [62] developed a TS algorithm that combined a downhill local search with

an intensification memory. Certain concerns, such as the fact that the search

was restricted to downhill moves without a diversification strategy render the

algorithm of Baykasoglu et al. to be more of an elaborate local search algorithm

rather than a genuine TS algorithm.

On the other hand the multi-objective TS algorithm employed in this work is

based on the single-objective TS implementation of Connor & Tilley [63]. It uses

a Hooke and Jeeves [64] local search algorithm, coupled with short, medium and

long term memories that are accessed to implement search intensification and

diversification, according to Glover and Laguna [57]. A complete description of

the TS algorithm can be found in Kipouros et al. [65], while the performance of

the multi-objective TS on both unconstrained and constrained optimisation was

presented in Jaeggi et al.[59, 66].

1.5 Aims and Objectives

In view of the above, the objectives of this thesis can now be outlined;

• Development of a robust high resolution CFD solver that will efficiently and

accurately simulate various flow phenomena, such as shock/boundary layer

interaction, flow separation and turbulence and also provide the numerical

framework for analysis and aerodynamic design.

• Incorporation of the CFD solver with a state-of-the-art multi-objective op-

timisation algorithm, along with necessary parametrization and grid gener-

ation/deformation techniques, for the development of an integrated design

system capable of generating feasible designs within the Active Camber flow

control concept.

• Study of the effect that very high resolution schemes have in conjunction

with two equation eddy viscosity models both in terms of analysis and

optimisation.
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Chapter 2

Mathematical Modelling of

Turbulent flows

In this chapter the governing equations for the dynamics of a compressible fluid,

such as air, along with closure conditions in the form of equations of state are

presented. Meanwhile, there is no attempt to provide a rigorous derivation of the

equations of classical continuum mechanics, since this is available in numerous

CFD textbooks [1, 28, 30, 67, 68]. Instead a self-contained summary of the fluid

flow equations and the thermodynamics is presented in a manner that it serves

the development of the numerical method employed in the present work.

2.1 Governing equations - Laminar flow

The governing equations of motion for a continuous viscous fluid, such as air, are

the time-dependent compressible Navier-Stokes equations. The Navier-Stokes

equations represent the flow conservation laws of classical physics, namely con-

servation of mass (continuity), momentum and energy. The conservation laws in

compact tensor notation are:

• Continuity equation:
∂ρ

∂t
+

∂ (ρui)

∂xi
= 0 (2.1)

• Momentum equation
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2.1 Governing equations - Laminar flow

∂ (ρui)

∂t
+

∂
(

ρuiuj + pδij − τ l
ij

)

∂xi

= 0 (2.2)

• Energy equation

∂e

∂t
+

∂
[

ρui (e + p) − uiτ
l
ij − ql

i

]

∂xi
= 0 (2.3)

Where ρ is the density of the fluid, ui is the velocity vector, p is the pressure, e

is the total energy, τ l
ij and ql

i are the molecular stress tensor and heat flux vector

respectively, and δij is the Kronecker delta function (δij = 1 if i = j and δij = 0

if i 6= j).

The governing partial differential equation system (2.1) - (2.3) is incomplete,

since there are more unknowns than equations. In order to properly describe the

physical flow processes, constitute relations that describe the physical properties

of the fluid under consideration, are incorporated. Thermodynamic equilibrium

conditions, in the form of equations of state, provide the necessary additional

closure equations. Since air can be considered as a thermally ideal gas, the

thermal equation of state dictates that:

p = ρRT (2.4)

where R is the universal gas constant and T is the temperature of the fluid.

Meanwhile, the caloric equation of state relates the internal energy to tem-

perature:

ein = cvT (2.5)

where einis the internal energy and cvis the specific heat at constant volume.

The thermal and caloric equations of state are closely related and are necessary

for a complete description of the thermodynamic properties of the system. Fur-

thermore, by combining Eq.’s (2.4) and (2.5), while noting that R = (γ − 1) cv,

a simple expression that relates internal energy, pressure and density is obtained

for a calorically ideal gas:

ein =
p

ρ (γ − 1)
(2.6)
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2.1 Governing equations - Laminar flow

where γ is the specific heat ratio, γ = cp

cv
, with cp being the specific heat at

constant pressure.

The total energy e consists of the internal ein and the kinetic 1
2
ρuiui energy

of the fluid according to:

e = ρein +
1

2
ρuiui. (2.7)

By substituting Eq. (2.6) to the latter Eq. (2.7), a direct relation of pressure,

total and kinetic energy is obtained:

e =
p

(γ − 1)
+

1

2
ρuiui (2.8)

In defining the molecular viscous stress tensor τ l
ij, the Newtonian approxima-

tion is employed, according to which the relationship between stress and strain

rate is homogeneous and linear. This is given by:

τ l
ij = 2µSij + λ

∂uk

∂xk
δij (2.9)

where Sij = 1
2

(

∂ui

∂xj
+

∂uj

∂xi

)

is the mean strain rate, µ and λ are the coeffi-

cients of molecular and bulk viscosity, respectively. The latter follows Stokes’s

hypothesis, according to which λ = −2
3
µ.

The molecular viscosity (µ)coefficient is modeled by Sutherland’s law:

µ

µ0

≈
(

T

T0

)
3

2 T0 + S

T + S
(2.10)

where the subscript 0 denotes a reference state, which is usually defined to be

a freestream condition. Typically for air: µ0 = 1.716E−5 Ns
m2 , T0 = 273K, S =

110.5K.

In a fashion similar to which the viscous stresses are related to the gradients

of the velocity vector, the molecular heat flux vector can be linearly related to

the temperature gradient via Fourier’s heat conduction law:

ql
i = −κ

∂T

∂xi

(2.11)
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2.2 Reynolds-Averaged Navier Stokes equations (RANS)

where κ is the heat conduction coefficient. Under the assumption that both the

specific heat at constant pressure, cp, and the laminar Prandtl number Pr = µcp

Pr

are constant then the heat conduction coefficient can be directly determined. In

fact, for air in the temperature range 200K ≤ T ≤ 1000K, Pr can be considered

to have a constant value of 0.7 [30]. The molecular heat flux can be therefore

written as:

ql
i = −

(µcp

Pr

) ∂T

∂xi
(2.12)

2.2 Reynolds-Averaged Navier Stokes equations

(RANS)

Turbulence is characterised by random fluctuations and as such a statistical ap-

proach can be used, according to which pressure and the velocity vectors are

decomposed into the mean and fluctuating parts. This is known as the Reynolds

decomposition. Following the procedure introduced by Reynolds [69], the instan-

taneous flow is expressed as the sum of the mean and the fluctuating component:

ui = ui + u′
i. (2.13)

Applying such an averaging to the nonlinear governing equations, results in

additional momentum fluxes that include unknown quantities. These momentum

fluxes act as turbulent stresses throughout the flow and are known as the Reynolds

stresses.

Furthermore, for flows in which compressible effects are important, in addition

to velocity and pressure, density and energy fluctuations must be also taken under

consideration. This in its turn, leads to a turbulent heat-flux vector. Therefore,

mass (Favre) averaging [70] is considered to be more consistent with the associ-

ated compressible flow physics, according to which the instantaneous velocity is

decomposed to the mass averaged and fluctuating part:
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2.2 Reynolds-Averaged Navier Stokes equations (RANS)

u =
ρu

ρ
+ u” (2.14)

where ρ is the convectional Reynolds-averaged density.

Following the mass averaging procedure described in detail in Wilcox [42], the

Reynolds mass Averaged Navier-Stokes Eq.’s (2.1), (2.2), (2.3) for compressible

fluids can be written as:

∂ρ

∂t
+

∂ (ρui)

∂xi

= 0 (2.15)

∂ (ρui)

∂t
+

∂ (ρuiuj + pδij − τij)

∂xj
= 0 (2.16)

∂e

∂t
+

∂ [ρu (e + p) − uiτij − qi]

∂xi
= 0 (2.17)

where the overbars have been dropped for simplicity.

In Eq.’s (2.15), (2.16), (2.17) ρ is the averaged density (ρ ≡ ρ) and ui is the

averaged velocity vector (ui ≡ ui).

Due to the averaging procedure, the total averaged energy e includes an extra

term, the turbulent kinetic energy k:

e =
p

(γ − 1)
+

1

2
ρuiui + ρk (2.18)

The pressure is evaluated from:

p = (γ − 1)(e − 1

2
ρ(u2 + w2) − ρk) (2.19)

Moreover, the Reynolds mass Averaged Navier Stokes equations differ from

their laminar counterparts by the appearance of the mass-averaged Reynolds-

stresses, τ t
ij , and the turbulent heat fluxes qt

i . Therefore, the total stress tensor is

written as:

τij = τ l
ij + τ t

ij (2.20)

and the heat flux as:
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2.3 Linear Eddy Viscosity Modeling (LEVM)

qi = ql
i + qt

i (2.21)

In the context of two equation, linear, eddy viscosity modeling, the Reynolds

stress tensor is modeled as a linear constitutive relation of the local mean strain

rate and the two turbulence scale variables. This assumption is analogous to the

Newtonian approximation for the laminar stress tensor, and although it is not

universally applicable, it provides an adequate level of modeling for many appli-

cations. The most popular constitutive relation is the Boussinesq approximation

with suitable generalizations for compressible flows:

τ t
ij = 2µtSij −

2

3
µt

∂uk

∂xk
δij −

2

3
ρkδij (2.22)

where k is the turbulence kinetic energy and µt is the turbulent viscosity.

The turbulence heat fluxes are modeled analogous to their laminar counterpart

and thus it is assumed to be proportional to the mean temperature gradient.

qt
i = −

(

µtcp

Prt

)

∂T

∂xi

(2.23)

where Prt is the turbulent Prandtl number. A constant value of Prt = 0.9, in

the case of a boundary layer, is considered satisfactory from subsonic up to low

supersonic flows [42].

2.3 Linear Eddy Viscosity Modeling (LEVM)

Conceptually two equation turbulence models consist of two characteristic parts

(a) the scale determining model and (b) the constitutive model. Instead of solving

a transport equation for each stress component it is assumed that the Reynolds

stress tensor is an algebraic function of the local mean flow velocities (gradients)

and the two turbulent scale variables. In the case of LEVM, the constitutive

relation is the Boussinesq approximation, as defined in Eq. (2.22). A transport

equation is then solved for each of the two scale variables. The most common

turbulent scales are the turbulent kinetic energy k and either the rate of turbulent

dissipation ǫ or the specific rate of turbulent dissipation ω.
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2.3 Linear Eddy Viscosity Modeling (LEVM)

The k − ǫ model is probably the most widely known and extensively used

LEVM. Although numerous versions of this model can be found in the literature,

the main contributions are due to Jones and Launder [71] and Launder and

Sharma [72]. The k − ǫ models provide adequate modeling for free shear layers

flows with zero or small pressure gradients while they are less accurate for large

adverse pressure gradients. The k − ǫ models are insensitive to freestream values

of turbulence, however the models require explicit wall-damping functions

The k−ω two equation eddy-viscosity model has become a widely used turbu-

lence model for wall-bounded, aerodynamic flow for two main reasons: (a) it does

not require any wall-damping functions nor the computation of wall distances and

(b) numerically, it is less stiff than k − ǫ models in the near wall region.

Besides the novel work of Kolmogorov [73], the cornerstone in the evolution of

the k − ω eddy viscosity models is the k − ω model of Wilcox [42]. Later models

developed by Menter [74] and Kok [75] are based on Wilcox’s work. Wilcox’s

model is designed so as to be integrated down to the wall without any near-wall

modifications and it has been shown to perform well in boundary layers under

adverse pressure gradients. Nevertheless, Menter first observed that Wilcox’s

model suffers from sensitivity to the free-stream boundary value of ω. Due to

this free-stream sensitivity, the use of this model is limited to fully turbulent

internal flows.

Menter’s k − ω Shear Stress Transport (SST) [76] model is probably one of

the most popular turbulence models for aeronautical applications. Menter, elim-

inated the free-stream sensitivity of Wilcox’s model by combining it with the

Jones-Launder k − ǫ [71] model. This was achieved by recognizing that the ǫ

transport equation could be transformed to the ω transport equation by vari-

able substitution. Furthermore, a switching function was devised that effectively

blends the robust and accurate formulation of the k − ω in the near-wall region

with the free stream independence of the k − ǫ model in the far-field region. In

addition, the model limits the eddy viscosity by coupling the shear stress with

the turbulent kinetic energy. This reduces the amount of the generated eddy

viscosity and thus favors separation under adverse pressure gradients. However,

Menter’s model requires the wall distance thus loosing one of the advantages of

the k − ω family of two equation eddy viscosity models.
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2.3 Linear Eddy Viscosity Modeling (LEVM)

Relatively recently, Kok designed a k − ω model that resolves the free-stream

dependence of Wilcox’s model and shares the favorable near wall behavior of

Menter’s models, by using only one set of closure coefficients. Kok’s model that

combines relative simplicity without compromising accuracy, is an attractive op-

tion for aerodynamic applications and thus it is incorporated in this work and

described below.

2.3.1 The TNT k − ω model

Kok’s version of the k − ω model equations are given by:

∂ρk

∂t
+

∂ (ρkui)

∂xi

= Pk − β∗ρωk +
∂

∂xi

[

(µ + σkµt)
∂k

∂xi

]

(2.24)

∂ρω

∂t
+

∂ (ρωui)

∂xi
= Pω − β∗ρω2 +

∂

∂xi

[

(µ + σωµt)
∂ω

∂xi

]

+ CD (2.25)

where ω is the specific turbulent dissipation and the eddy viscosity coefficient

is defined as:

µt =
ρk

ω
(2.26)

The production and cross-diffusion terms are given by:

Pk = τ t
ij

∂ui

∂xj
(2.27)

Pω =
αωω

k
Pk (2.28)

and

CD = σd
ρ

ω
max

{

∂k

∂xi

∂ω

∂xi

, 0

}

(2.29)

It is noteworthy that Kok’s model equations include the cross-diffusion term

that essentially switches from k−ω to k−ǫ when approaching the boundary-layer
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2.3 Linear Eddy Viscosity Modeling (LEVM)

edge. However, no blending functions are introduced, instead the model’s closure

coefficients are re-calibrated.

According to Wilcox [42] in order to be consistent with the experimental

decay of the turbulent kinetic energy for homogeneous, isotropic turbulence, β
β∗

=
6
5
. Also to obtain the correct solution in the inner layer of a constant-pressure

boundary layer, consistent with the law of the wall, αω = β
β∗
− σωκ2

√
β∗

(with κ = 0.41

being the Von Kármán constant), and β∗ = 0.09, while σω = 0.5 or otherwise a

low-Reynolds-number modification is needed [75].

For the two remaining diffusion coefficients, Kok performed a turbulent/ non

turbulent (TNT) analysis based on a set of 1D diffusion equations that modeled

free-stream edges of turbulent regions. The values σk = 2
3

and σd = 0.5 satisfied

the constraints of his TNT analysis. Table 2.1 summarizes the closure coefficients:

β∗ = 0.09
β = 0.075
σω = 0.5
σk = 2

3

σd = 0.5

αω = β
β∗

− σωκ2

√
β∗

Table 2.1: The TNT set of closure coefficients for the k − ω model.

2.3.2 Turbulent Boundary Conditions

At a no slip wall, the obvious boundary condition is to set the turbulent kinetic

energy to zero. However, the boundary condition for the specific rate of turbulent

dissipation is quite ambiguous since at solid boundaries, ω tends to infinity. In

this work, ω is determined following a proposition of Menter [74], and is set to:

ω = 10
6µ

βρy2
(2.30)

where y is the normal distance of the first cell center off the wall. According

to Menter the results are not sensitive to the factor (10), while it should be noted

that models based on the ω transport equation produce accurate results, when

the near wall values of ωw are sufficiently large.
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A common approach for the specification of the turbulent kinetic energy at the

far field boundaries is to define the level of free-stream turbulence as a percentage

of the mean kinetic energy of the fluid, according to the relation:

k∞ =
3

2
(TI · u∞)2 (2.31)

where TI is the turbulent intensity. Having specified k∞the free-stream tur-

bulent Reynolds number Ret∞ = (µt/µ)∞ needs to be specified as well, in order

to determine the free-stream specific dissipation rate ω∞from Eq. (2.26). At the

outflow boundary a zero gradient of the turbulence quantities is assumed.

2.4 Governing equation - Matrix form

The transport equations for the two scale variables of the turbulence model are

solved in conjunction with the Navier Stokes averaged equations. In order to

facilitate the development of numerical schemes the resulting system of the con-

servative Navier-Stokes equations in Cartesian 2D co-ordinates, are written in a

compact vector-variable form:

∂Ũ

∂t
+

∂F̃

∂x
+

∂G̃

∂z
=

∂R̃

∂x
+

∂S̃

∂z
+ H̃ (2.32)

In the above relation Ũ is the solution vector of the conservative variables,

Ẽ, G̃ and R̃, S̃ are the inviscid and viscous Cartesian flux vectors, respectively,

while H represents the turbulent source vector. It follows that:

Ũ = (ρ, ρu, ρw, e, k, ω)T (2.33)

F̃(Ũ) =

















ρu
ρu2 + p

ρuw
u (e + p)

ρuk
ρuω

















, G̃(Ũ) =

















ρw
ρuw

ρw2 + p
w (e + p)

ρwk
ρwω

















(2.34)

22



2.4 Governing equation - Matrix form

R̃(Ũ) =

















0
τxx

τxz

uτxx + wτxz − qx

(µ + σkµt)
∂k
∂x

(µ + σωµt)
∂ω
∂x

















, S̃(Ũ) =

















0
τzx

τzz

uτzx + wτzz − qz

(µ + σkµt)
∂k
∂z

(µ + σωµt)
∂ω
∂z

















(2.35)

and

H̃ =

















0
0
0
0

Pk − β∗ρωk
Pω − βρω2 + CD

















(2.36)

Due to the Boussinesq assumption the stress tensors include terms of −2
3
ρk.

Some researchers ignore the turbulent kinetic energy contribution to the total

energy and the momentum equations. However, in this work it was decided to

include these terms since this is in a better accordance to physical reasoning

and the averaging procedure. Moving these terms to the LHS and redefining

τij = τi,j + 2
3
ρkδij , so that the stresses are free from the turbulent kinetic energy

terms, the inviscid fluxes are modified as:

F̃(Ũ) =

















ρu
ρu2 + pt

ρuw
u (e + pt)

ρuk
ρuω

















, G̃(Ũ) =

















ρw
ρuw

ρw2 + pt

w (e + pt)
ρwk
ρwω

















(2.37)

where pt is the turbulent pressure, as suggested by Hirsch [77], Venkateswaran

and Merkle [78] and Lee and Choi [79]:

pt = p +
2

3
ρk (2.38)

The total averaged energy e now reads:
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2.4 Governing equation - Matrix form

e =
pt

γ − 1
+ ρ

u2 + w2

2
+ Cρk (2.39)

where the parameter C = 3γ−5
3(γ−1)

.

As will be seen in Chapter 3 the inclusion of the turbulent kinetic energy and

the definition of the turbulent pressure pt affects the eigenvalues of the system.
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Chapter 3

NUMERICAL

IMPLEMENTATION

This chapter details the development of the numerical methodologies imple-

mented in the present work. The governing equations are non-dimensionalised

and transformed to a generalised curvilinear co-ordinate system in order to en-

hance both efficiency and accuracy. The fundamental feature for the calculation

of the inviscid fluxes is a modified HLLC Riemann solver, that properly accounts

for the turbulence transport quantities. Up to fifth order accuracy in space is

achieved by employing different reconstruction schemes for the inviscid fluxes,

while the viscous terms are centrally discretised to second order. Time inte-

gration is performed by a Newton method that solves the unfactored implicit

equations. The implicit operator is constructed through the implementation of

the flux vector splitting method of Steger-Warming along with contributions re-

sulting from the thin layer viscous Jacobians and the turbulence source terms

Jacobian. Convergence to steady state is accelerated with a point Gauss-Seidel

relaxation technique.

3.1 NON-DIMENSIONALISATION

The equations of fluid motion are non-dimensionalised so as to obtain similarity

for geometrically similar situations. The non-dimensionalisation process provides

a direct comparison of values with experimental data and tends to bound the
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3.1 NON-DIMENSIONALISATION

variables between zero and one. Generally, a characteristic dimension, such as

the chord of an aerofoil is selected to non-dimensionalise the independent spatial

variables, while reference conditions are used to non-dimensionalise the depen-

dent variables. Amongst many available choices, characteristic values for length

lc, velocity −→u c, density ρc, temperature Tc and viscosity µc are considered for

non-dimensionalising the fluid flow variables. In this work, the characteristic ve-

locity and temperature are designed to satisfy a modified caloric equation of state

according to which:

e∞ = ρccvTc = ρcu
2
c (3.1)

The characteristic density ρc is chosen to be the free-stream density, i.e.,

ρc = ρ∞.

From Eq. (3.1) it simply follows that:

Tc =
u2

c

cv
(3.2)

Combining Eq.’s (3.1) and (2.17), the characteristic velocity can be defined

as:

uc = s∞

√

1 + 0.5M2
∞γ (γ − 1) (1 + 3CTI2)

γ (γ − 1)
(3.3)

where s∞ =
√

γp∞/ρ∞ and M∞ are respectively the free-stream speed of

sound and Mach number.

The Reynolds number is defined as:

Re =
ρ∞u∞lc

µ∞
=

ρcuclc
µc

(3.4)

from which the characteristic molecular viscosity µc is given to be:

µc = µ∞
uc

u∞
(3.5)

Having defined the characteristic variables, the dimensionless dependent vari-

ables are given below:
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3.1 NON-DIMENSIONALISATION

t∗ =
tuc

lc
, x∗ =

x

lc
, z∗ =

z

lc
, µ∗ =

µ

µc

ρ∗ =
ρ

ρc
, u∗ =

u

uc
, w∗ =

w

uc
, p∗ =

p

ρcu2
c

e∗ =
e

ρcu2
c

, T ∗ =
T

Tc
, k∗ =

k

u2
c

, ω∗ =
ωlc

Reuc

For consistency purposes and in order to provide a direct comparison against

experimental data or other computational results, the non-dimensionalisation of

the free-stream variables is essential.

Accordingly, the free-stream values are defined as:

• Free-stream Velocity:

u∗
∞ =

u∞

uc
=

√

γ (γ − 1)M2
∞

1 + 0.5M2
∞γ (γ − 1) (1 + 3CTI2)

(3.6)

• Free-stream Turbulent Pressure:

p∗t∞ =
pt∞

ρcu2
c

=
u∗2
∞

γM2
∞

(3.7)

• Free-stream Temperature:

T ∗
∞ =

T∞

Tc

=
p∗t∞

(γ − 1)
(3.8)

• Free-stream Viscosity:

The dimensionless viscosity follows directly from Eq. (3.5):

µ∗
∞ =

µ∞

µc

(3.9)

Using the the dimensionless variables, the RANS equations are expressed as:

Continuity equation :

∂ρ∗

∂t∗
+

∂

∂x∗
(ρ∗u∗) +

∂

∂z∗
(ρ∗w∗) = 0 (3.10)
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3.1 NON-DIMENSIONALISATION

X-component of the Momentum equation:

∂

∂t∗
(ρ∗u∗) +

∂

∂x∗
(ρ∗u∗2 + p∗t ) +

∂

∂z∗
(ρ∗u∗w∗) =

∂

∂x∗
(τ ∗

xx) +
∂

∂z∗
(τ ∗

xz)

(3.11)

where the x-component of the normal stress is:

τ ∗
xx =

2

3

1

Re
(µ∗ + µ∗

t )

(

2
∂u∗

∂x∗
− ∂w∗

∂z∗

)

− 2

3
ρ∗k∗ (3.12)

and the shear stress:

τ ∗
xz = τ ∗

zx =
1

Re
(µ∗ + µ∗

t )

(

∂u∗

∂z∗
+

∂w∗

∂x∗

)

(3.13)

Similarly,

Z - component of the Momentum equation:

∂

∂t∗
(ρ∗w∗) +

∂

∂x∗
(ρ∗u∗w∗) +

∂

∂z∗
(ρ∗w∗2 + p∗t ) =

∂

∂x∗
(τ ∗

zx) +
∂

∂z∗
(τ ∗

zz)

(3.14)

where the z-component of the normal stress is:

τ ∗
zz =

2

3

1

Re
(µ∗ + µ∗

t )

(

2
∂w∗

∂z∗
− ∂u∗

∂x∗

)

− 2

3
ρ∗k∗ (3.15)

Energy equation:

∂e∗

∂t∗
+

∂

∂x∗
[u∗ (e∗ + p∗t )] +

∂

∂z∗
[w∗ (e∗ + p∗t )] =

∂

∂x∗
(u∗τ ∗

xx + w∗τ ∗
zx − q∗x) +

∂

∂z∗
(u∗τ ∗

xz + w∗τ ∗
zz − q∗z)

(3.16)

where the heat flux components are:

− q∗x =
1

Re

(

µ∗ γ

Pr
+ µ∗

t

γ

Prτ

)

∂T ∗

∂x∗
(3.17)

and
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3.1 NON-DIMENSIONALISATION

− q∗z =
1

Re

(

µ∗ γ

Pr
+ µ∗

t

γ

Prτ

)

∂T ∗

∂z∗
(3.18)

Turbulent kinetic energy transport equation:

∂

∂t∗
(ρ∗k∗) +

∂

∂x∗
(ρ∗u∗k∗) +

∂

∂z∗
(ρ∗w∗k∗) =

∂

∂x∗

[

1

Re
(µ∗ + σκµ

∗
t )

∂k∗

∂x∗

]

+
∂

∂z∗

[

1

Re
(µ∗ + σκµ

∗
t )

∂k∗

∂z∗

]

+ P ∗
k − Reβ∗ρ∗ω∗k∗

(3.19)

the dimensionless turbulent kinetic energy production term is:

P ∗
k = τ ∗t

xx

∂u∗

∂x∗
+ τ ∗t

zx

∂u∗

∂z∗
+ τ ∗t

xz

∂w∗

∂x∗
+ τ ∗t

zz

∂w∗

∂z∗
(3.20)

with the normal and shear Reynolds stresses:

τ ∗t
xx =

2

3

[

1

Re
µ∗

t

(

2
∂u∗

∂x∗
− ∂w∗

∂z∗

)

− ρ∗k∗

]

(3.21)

τ ∗t
zz =

2

3

[

1

Re
µ∗

t

(

2
∂w∗

∂z∗
− ∂u∗

∂x∗

)

− ρ∗k∗

]

(3.22)

τ ∗t
xz = τ ∗t

zx = µ∗
t

1

Re

(

∂u∗

∂z∗
+

∂w∗

∂x∗

)

(3.23)

Specific rate of turbulent dissipation, transport equation:

∂

∂t∗
(ρ∗ω∗) +

∂

∂x∗
(ρ∗u∗ω∗) +

∂

∂z∗
(ρ∗w∗ω∗) =

∂

∂x∗

[

1

Re
(µ∗ + σωµ∗

t )
∂ω∗

∂x∗

]

+
∂

∂z∗

[

1

Re
(µ∗ + σωµ∗

t )
∂ω∗

∂z∗

]

+ P ∗
ω − Reβρ∗ω∗2 + C∗

D

(3.24)

where the dimensionless production term is:

P ∗
ω =

aωω∗

k∗
P ∗

k (3.25)
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3.1 NON-DIMENSIONALISATION

and the dimensionless cross-diffusion term reads:

C∗
D = σd

ρ∗

Reω∗
max

{

∂k∗

∂x∗

∂w∗

∂x∗
+

∂k∗

∂z∗
∂w∗

∂z∗
, 0

}

(3.26)

The dimensionless conservative Navier-Stokes equations in Cartesian co-ordinates,

in conjunction with the two-equation TNT k − ω eddy viscosity model can now

be written in a compact vector-variable form, where the star superscript (∗) has

been omitted for simplicity:

∂Ũ

∂t
+

∂F̃

∂x
+

∂G̃

∂z
=

∂R̃

∂x
+

∂S̃

∂z
+ H̃ (3.27)

where:

Ũ =

















ρ
ρu
ρw
e
ρk
ρω

















,

F̃(Ũ) =

















ρu
ρu2 + pt

ρuw
u (e + pt)

ρuk
ρuω

















, G̃(Ũ) =

















ρw
ρuw

ρw2 + pt

w (e + pt)
ρwk
ρwω

















R̃(Ũ) =

















0
τxx

τxz

uτxx + wτxz − qx
1

Re
(µ + σkµt)

∂k
∂x

1
Re

(µ + σωµt)
∂ω
∂x

















, S̃(Ũ) =

















0
τzx

τzz

uτzx + wτzz − qz
1

Re
(µ + σkµt)

∂k
∂z

1
Re

(µ + σωµt)
∂ω
∂z
















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3.2 Transformation to Generalized Curvilinear Co-ordinates

H̃ =

















0
0
0
0

Pk − Reβ∗ρωk
Pω − Reβρω2 + CD

















3.2 Transformation to Generalized Curvilinear

Co-ordinates

To enhance the efficiency and accuracy of the numerical scheme, the governing

equations expressed in the 2D Cartesian coordinate system (x, z) are transformed

from the physical space to the computational space. The transformation is such

that the resulting computational domain is a rectangular uniform grid system.

The generalized coordinate transformation can be defined as:

ξ = ξ(x, z, t)
ζ = ζ(x, z, t)

t = t

Applying the chain rule of differentiation:

∂

∂x
= ξx

∂

∂ξ
+ ζx

∂

∂ζ
+ tx

∂

∂t
(3.28)

∂

∂z
= ξz

∂

∂ξ
+ ζz

∂

∂ζ
+ tz

∂

∂t
(3.29)

∂

∂t
= ξt

∂

∂ξ
+ ζt

∂

∂ζ
+ tt

∂

∂t
(3.30)

The total differentials of the Cartesian coordinates are:

dx = xξdξ + xζdζ + xτdt

dz = zξdξ + zζdζ + zτdt

31



3.2 Transformation to Generalized Curvilinear Co-ordinates

dt = tξdξ + tζdζ + tτdt

Noting that tτ = 1 and tξ = tζ = tx = tz = 0, while for a non moving mesh

xt = zt = 0. The Cartesian co-ordinate differentials can be written in matrix

form, :





dx
dz
dt



 =





xξ xζ 0
zξ zζ 0
0 0 1









dξ
dζ
dt





or





dξ
dζ
dt



 =





xξ xζ 0
zξ zζ 0
0 0 1





−1 



dx
dz
dt



 (3.31)

similarly, the differentials of the Generalized coordinates are:

dξ = ξxdx + ξzdz + ξtdt

dζ = ζxdx + ζzdz + ζtdt

dt = txdx + tzdz + ttdt

For a non deforming mesh, the time metrics are equal to zero ξt = ζt = 0, or

in matrix form:





dξ
dζ
dt



 =





ξx ξz 0
ζx ζz 0
0 0 1









dx
dz
dt



 (3.32)

By comparing Eq.’s (3.31) and (3.32) it is evident that:





ξx ξz 0
ζx ζz 0
0 0 1



 =





xξ xζ 0
zξ zζ 0
0 0 1





−1

=
1

J





zζ −xζ 0
−zξ xξ 0
0 0 1




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3.2 Transformation to Generalized Curvilinear Co-ordinates

the determinant of which is defined as the geometric Jacobian of the inverse

transformation, noted in this work as J , i.e.,

J =
∂ (x, z)

∂ (ξ, ζ)
=

∣

∣

∣

∣

∣

∣

xξ xζ xτ

zξ zζ zτ

0 0 1

∣

∣

∣

∣

∣

∣

−1

= xξzζ − xζzξ (3.33)

Therefore, the transformation metrics are:

ξx =
1

J
zζ (3.34)

ξz = − 1

J
xζ (3.35)

ζx = − 1

J
zξ (3.36)

ζz =
1

J
xξ (3.37)

3.2.1 Transformation of the Fluid Flow equations in 2D

The transformation of the governing equation is performed by multiplying Eq.

(3.27) with the geometric Jacobian and expanding the spatial partial differentials

as:

J
∂Ũ

∂t
+ J

(

∂F̃

∂ξ
ξx +

∂F̃

∂ζ
ζx

)

+ J

(

∂G̃

∂ξ
ξz +

∂G̃

∂ζ
ζz

)

=

J

(

∂R̃

∂ξ
ξx +

∂R̃

∂ζ
ζx

)

+ J

(

∂S̃

∂ξ
ξz +

∂S̃

∂ζ
ζz

)

+ JH̃

by collecting common terms:

∂JŨ

∂t
+

∂

∂ξ

(

JξxF̃ + JξzG̃
)

+
∂

∂ζ

(

JζxF̃ + JζzG̃
)

=

∂

∂ξ

(

JξxR̃ + JξzS̃
)

+
∂

∂ζ

(

JζxR̃ + JζzS̃
)

+ JH̃

(3.38)

33



3.2 Transformation to Generalized Curvilinear Co-ordinates

Since the geometric Jacobian is directly related to the metrics, one may wish

to denote:

ξ̂x = Jξx, ξ̂z = Jξz

ζ̂x = Jζx, ζ̂z = Jζz

(3.39)

and Eq. (3.38) becomes:

∂JŨ

∂t
+

∂

∂ξ

(

ξ̂xF̃ + ξ̂zG̃
)

+
∂

∂ζ

[

ζ̂xF̃ + ζ̂zG̃
]

=

∂

∂ξ

(

ξ̂xR̃ + ξ̂zS̃
)

+
∂

∂ζ

(

ζ̂xR̃ + ζ̂zS̃
)

+ JH̃

(3.40)

By further denoting:

U = JŨ, H = JH̃ (3.41)

F =
(

ξ̂xF̃ + ξ̂zG̃
)

, G =
(

ζ̂xF̃ + ζ̂zG̃
)

(3.42)

R =
(

ξ̂xR̃ + ξ̂zS̃
)

, S =
(

ζ̂xR̃ + ζ̂zS̃
)

(3.43)

the governing equations can be written in a compact vector variable form,

similar to Eq. (3.27) as:

∂U

∂t
+

∂F

∂ξ
+

∂G

∂ζ
=

∂R

∂ξ
+

∂S

∂ζ
+ H (3.44)

For completeness, the components of the fluxes are given explicitly as:

F =





























ρ
(

uξ̂x + wξ̂z

)

ρu
(

uξ̂x + wξ̂z

)

+ ptξ̂x

ρw
(

uξ̂x + wξ̂z

)

+ ptξ̂z

(e + pt)
(

uξ̂x + wξ̂z

)

ρk
(

uξ̂x + wξ̂z

)

ρω
(

uξ̂x + wξ̂z

)





























(3.45)
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3.2 Transformation to Generalized Curvilinear Co-ordinates

G =





























ρ
(

uζ̂x + wζ̂z

)

ρu
(

uζ̂x + wζ̂z

)

+ ptζ̂x

ρw
(

uζ̂x + wζ̂z

)

+ ptζ̂z

(e + pt)
(

uζ̂x + wζ̂z

)

ρk
(

uζ̂x + wζ̂z

)

ρω
(

uζ̂x + wζ̂z

)





























(3.46)

R =





















0

τxxξ̂x + τzxξ̂z

τxz ξ̂x + τzzξ̂z

uτxxξ̂x + wτxz ξ̂x − qxξ̂x + uτzxξ̂z + wτzzξ̂z − qz ξ̂z

1
Re

(µ + σκµt)
1
J

[

∂k
∂ξ

(

ξ̂xξ̂x + ξ̂zξ̂z

)

+ ∂k
∂ζ

(

ζ̂xξ̂x + ζ̂z ξ̂z

)]

1
Re

(µ + σωµt)
1
J

[

∂ω
∂ξ

(

ξ̂xξ̂x + ξ̂zξ̂z

)

+ ∂ω
∂ζ

(

ζ̂xξ̂x + ζ̂zξ̂z

)]





















(3.47)

S =





















0

τxxζ̂x + τzxζ̂z

τxz ζ̂x + τzz ζ̂z

uτxxζ̂x + wτxzζ̂x − qxζ̂x + uτzxζ̂z + wτzzζ̂z − qz ζ̂z

1
Re

(µ + σκµt)
1
J

[

∂k
∂ξ

(

ξ̂xζ̂x + ξ̂z ζ̂z

)

+ ∂k
∂ζ

(

ζ̂xζ̂x + ζ̂z ζ̂z

)]

1
Re

(µ + σωµt)
1
J

[

∂ω
∂ξ

(

ξ̂xζ̂x + ξ̂z ζ̂z

)

+ ∂ω
∂ζ

(

ζ̂xζ̂x + ζ̂z ζ̂z

)]





















(3.48)

The normal and shear stresses are transformed to generalized curvilinear co-

ordinates as well. For brevity, the corresponding lengthy equations are included

in Appendix A.

The incorporation of a turbulence model results in a modification of both the

pressure and total kinetic energy. Furthermore, all eigenvalues and flux Jacobians

have to be modified accordingly.
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3.3 Approximate Riemann Solvers

Godunov type, upwind, methods have become popular due to their robustness

and potential to achieve high resolution at discontinuities. In the pioneering

work of Godunov [80], the key ingredient for capturing shocks, without introduc-

ing spurious oscillations is the solution of a Riemann problem. The solution of

the Riemann problem, otherwise known as the shock-tube problem, represents

the physical and mathematical characteristics of the relevant set of conservation

laws. However, since there is no closed-form to the exact solution of the Riemann

problem, an iterative exact Riemann solver would result in significant computa-

tional costs. Research has thus been focused on the construction of approximate

solutions with acceptable accuracy.

Although vacuum conditions, resulting for hypersonic speeds are rarely en-

countered in most aeronautical engineering applications, vacuum or near-vacuum

can occur in initial transients. Linearised approximate Riemann solvers are known

to fail, due to negative pressures, well before a vacuum state is reached [81]. In

linearised Riemann solvers, such as those presented by Eberle [82] and Roe [83] all

wave speeds, eigenvalues, are obtained from a single average state, either an arith-

metic mean or a square-root average. Wave speeds determined in this manner

tend to underestimate the expansion wave velocity, leading to negative energies

and expansion shocks [84].

These difficulties have motivated the investigation of a class of upwind fluxes,

based on the construction of integral average-state approximations to the Rie-

mann problem, first introduced by Harten, Lax and van Leer [85] in their HLL

solver. The HLL flux can resolve accurately isolated shocks but its inability to

preserve an isolated contact or shear wave, can be significant for Navier-Stokes

computations, resulting in excessive dissipation of boundary layers. Toro et al.

[86] restored the contact wave in the HLL solver by following a procedure similar

to that of Harten, Lax and van Leer. The resulting HLLC solver, where C stands

for contact wave, contains the most detailed physics of any of the average-state

Riemann solvers, known to the author.
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3.3.1 The HLLC Riemann Solver

The HLLC solver is an approximate Riemann solver that is essential an exten-

sion of the HLL solver. Due to its ability to resolve accurately and effectively

isolated shocks and contact waves, the HLLC Riemann solver is incorporated

in the present work. In this section the HLLC solver is presented in detail. Al-

though, the turbulence scales k and ω are treated as passive scalars, the definition

of turbulent pressure, Eq. (2.38), and the consideration of the turbulent kinetic

energy as part of the total energy, Eq.(2.39), necessitate the re-derivation of the

HLLC solver.

For a structured curvilinear mesh coordinate system after denoting the con-

travariant velocity components in the two coordinate directions as:

uξ̂x + wξ̂z = qξ (3.49)

uζ̂x + wζ̂z = qζ (3.50)

the split one dimensional, say in ξ- direction, convective part of Eq. (3.44)

assumes the form:

J

















ρ
ρu
ρw
e
ρk
ρω

















t

+

















ρq̂ξ

ρuq̂ξ + ptξ̂x

ρwq̂ξ + ptξ̂z

(e + pt) q̂ξ

ρkq̂ξ

ρωq̂ξ

















ξ

= 0 (3.51)

Introducing, H , the total enthalpy H = (e+pt)
ρ

= γ
γ−1

pt

ρ
+ q2

2
+ Ck, where

q = [u w]T is the velocity vector, then Eq. (3.51) reads:

J

















ρ
ρu
ρw
e
ρk
ρω

















t

+

















ρq̂ξ

ρuq̂ξ + ptξ̂x

ρwq̂ξ + ptξ̂z

Hρq̂ξ

ρkq̂ξ

ρωq̂ξ

















ξ

= 0 (3.52)
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3.3 Approximate Riemann Solvers

or written symbolically as:

Ut + Fξ = 0 (3.53)

Applying Rankine-Hugoniot conditions δF = SδU across each of the wave of

speeds SL, SM SR one can obtain:

F∗
L = FL + SL (U∗

L −UL) (3.54)

and

F∗
R = FR + SR (U∗

R − UR) (3.55)

or more conveniently:

SOU∗
O − F∗

O = SOUO − FO (3.56)

where the subscript O = L, R denotes either left (L) or right (R) states.

Then, the one-dimensional split governing equations, Eq. (3.52), with states

UL, UR separated by an interface become:

ŜO

















ρ∗
O

ρ∗
Ou∗

O

ρ∗
Ow∗

O

e∗O
ρ∗Ok∗O

ρ∗Oω∗O

















−



















ρ∗
Oq̂∗ξ,O

ρ∗
Ou∗

Oq̂∗ξO + p∗t,Oξ̂x

ρ∗
Ow∗

Oq̂∗ξO + p∗t,O ξ̂z

ρ∗
OH∗

Oq̂∗ξ,O

ρ∗
Ok∗

Oq̂∗ξ,O

ρ∗
Oω∗

Oq̂∗ξ,O



















= ŜO

















ρO

ρOuO

ρOwO

eO

ρOkO

ρOωO

















−

















ρOq̂ξ,O

ρOuOq̂ξ,O + pt,O ξ̂x

ρOwOq̂ξ,O + pt,Oξ̂z

ρOHOq̂ξ,O

ρOkOq̂ξ,O

ρOωOq̂ξ,O

















(3.57)

where ŜO = JSO.

In order to find the state vectors U∗
O and hence determine the intercell fluxes

F∗
O, an assumption is being made that the particle velocity is constant across the

Riemann fan and that is:

q̂∗ξ,L = q̂∗ξ,R = q̂∗ξ = ŜM (3.58)
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Inserting Eq. (3.58), to continuity equation and rearranging gives:

ρ∗
O = ρO

(

ŜO − q̂ξ O

)

(

ŜO − ŜM

) (3.59)

Furthermore, by multiplying the x and z components of the continuity equa-

tion by ξ̂x, ξ̂z respectively, summing and inserting Eq. (3.59) yields:

p∗t,O = ρO

[(

q̂ξ O − ŜO

)(

q̂ξ O − ŜM

)]

/A2 + pt O (3.60)

where A2 = ξ̂xξ̂x + ξ̂z ξ̂z is the squared unit length.

For the definition of the, all important, contact wave speed SM , the latter

equation is expanded for the left and right states and since pressure is not dis-

continuous across a contact wave, that is:

p∗t,R = p∗t,L (3.61)

then Eq. (3.60) reads:

ρR

[(

q̂ξ,R − ŜR

)(

q̂ξ,R − ŜM

)]

/A2+pt,R = ρL

[(

q̂ξ,L − ŜL

)(

q̂ξ,L − ŜM

)]

/A2+pt,L

Expanding the terms in the brackets, rearranging and solving for SM gives:

ŜM =
ρRq̂ξ,R

(

ŜR − q̂ξ,R

)

− ρLq̂ξ,L

(

ŜL − q̂ξ,L

)

+ (pt,L − pt R) A2

ρR

(

ŜR − q̂ξ,R

)

− ρL

(

ŜL − q̂ξ,L

) (3.62)

Having specified ρ∗
O, p∗t O and ŜMthen (ρu)∗O, (ρw)∗O, e∗O, (ρk)∗O and (ρω)∗O can

be directly obtained from Eq. (3.57):

(ρu)∗O =
ρOuO

(

ŜO − q̂ξ O

)

+ (p∗t O − pt O) ξ̂x
(

ŜO − ŜM

) (3.63)
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(ρw)∗O =
ρOwO

(

ŜO − q̂ξ O

)

+ (p∗t O − pt O) ξ̂z
(

ŜO − ŜM

) (3.64)

e∗O =
eO

(

ŜO − q̂ξ O

)

− pt O

(

q̂ξ O − ξ̂t

)

+ p∗t,O

(

ŜM − ξ̂t

)

(

ŜO − ŜM

) (3.65)

(ρk)∗O = (ρk)O

(

ŜO − q̂ξ O

)

(

ŜO − ŜM

) (3.66)

(ρω)∗O = (ρω)O

(

ŜO − q̂ξ O

)

(

ŜO − ŜM

) (3.67)

Rewriting the components of the HLLC flux in vector form:

U∗
L =

















ρ∗
L

(ρu)∗L
(ρw)∗L

e∗L
(ρk)∗L
(ρω)∗L

















=
1

(

ŜL − ŜM

)





























ρL

(

ŜL − q̂ξ,L

)

(ρu)L

(

ŜL − q̂ξ,L

)

+ (p∗t L − pt L) ξ̂x

(ρw)L

(

ŜL − q̂ξ,L

)

+ (p∗t L − pt L) ξ̂x

eL

(

ŜL − q̂ξ,L

)

− pt L

(

q̂ξ,L − ξ̂t

)

+ p∗t,L

(

ŜM − ξ̂t

)

(ρk)L

(

ŜL − q̂ξ,L

)

(ρω)L

(

ŜL − q̂ξ,L

)





























(3.68)

while the intercell convective flux is:

F ∗
L =



















ρ∗
LŜM

(ρu)∗L ŜM + p∗t ξ̂x

(ρw)∗L ŜM + p∗t ξ̂z

(e∗L + p∗t ) ŜM − p∗t ξ̂t

(ρk)∗L ŜM

(ρω)∗L ŜM



















(3.69)

The derivation of the star values is different from the one presented in Batten

et al. [84], in that the actual metrics instead of the unit normals are being used.
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3.3 Approximate Riemann Solvers

This does not affect the solution itself, but effectively reduces the floating point

arithmetics performed per iteration.

3.3.2 Wave Speed Estimates

According to Batten et al. [87], the following wave speed estimates yield the

exact particle velocity at isolated shocks and are proven to be very robust:

ŜL = min

[

q̂ξ L − cL

√

ξ̂2
x + ξ̂2

z , ˆ̃qξ − c̃

√

ξ̂2
x + ξ̂2

z

]

(3.70)

ŜR = max

[

q̂ξ R + cR

√

ξ̂2
x + ξ̂2

z , ˆ̃qξ + c̃

√

ξ̂2
x + ξ̂2

z

]

(3.71)

where the superscript˜denotes the Roe averaged values:

ˆ̃qξ = ũξ̂x + w̃ξ̂z (3.72)

ũ =
uL + uRRρ

1 + Rρ

(3.73)

w̃ =
wL + wRRρ

1 + Rρ
(3.74)

c̃2 = (γ − 1)

(

H̃ − q̃2

2
− Ck̃

)

(3.75)

q̃2 = ũ2 + w̃2 (3.76)

k̃ =
kL + kRRρ

1 + Rρ
(3.77)

H̃ =
HL + HRRρ

1 + Rρ

(3.78)

and

Rρ =

√

ρL

ρR
(3.79)
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3.4 High Order Upwind Scheme

The divergence of the inviscid fluxes is approximated by the implementation of

different reconstruction methods. High order reconstruction of the conservative

variables at the cell faces is realized by employing 2nd order MUSCL type lim-

iters, van Albada [36] and van Leer [32, 33], while higher order resolution is ac-

complished via the implementation of 3rd and 5th order WENO reconstructions,

according to Shu [37]. The interpolation stencils, used for the flux reconstruction

at the cell interface, of the different discretisation schemes are shown in Figure

3.1.

• MUSCL scheme

According to the upwind MUSCL scheme, the left and right states are defined

as:

UL i+1/2 = Ui + 0.5φ (ri) ▽ Ui

UR i+1/2 = Ui+1 − 0.5φ (ri+1) △Ui+1

}

, (3.80)

where φ (ri) is either the van Albada:

φ (ri) =
r + r2

1 + r2 + ǫ
(3.81)

or the van Leer limiter:

φ (ri) =
r + |r|

1 + r + ǫ
(3.82)

where r = ▽Ui/△Ui, ▽Ui = Ui −Ui−1, △Ui = Ui+1 −Ui, and ǫ is a small

positive number preventing division by zero.

• WENO scheme

The 3rd order WENO reconstruction for the left state can be written as:

UL i+1/2 = ω̃0q0 + ω̃1q1 (3.83)

where
q0 = 1

2
Ui + 1

2
Ui+1

q1 = −1
2
Ui−1 + 3

2
Ui

}

(3.84)
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and

ω̃r =
α̃r

α̃0 + α̃1 + α̃2

, α̃r =
d̃r

(ǫ + βr)
2 , with r = 0, 1 (3.85)

d̃0 =
2

3
, d̃1 =

1

3
(3.86)

and
β0 = (Ui+1 − Ui)

2

β1 = (Ui − Ui−1)
2

}

(3.87)

The more elaborate 5th order WENO reconstruction for the left state can be

written as:

UL i+1/2 = ω̃0q0 + ω̃1q1 + ω̃2q2 (3.88)

where
q0 = 1

3
Ui + 5

6
Ui+1 − 1

6
Ui+2

q1 = −1
6
Ui−1 + 5

6
Ui + 1

3
Ui+1

q2 = 1
3
Ui−2 − 7

6
Ui−1 + 11

6
Ui







(3.89)

and

ω̃r =
α̃r

α̃0 + α̃1 + α̃2

, α̃r =
d̃r

(ǫ + βr)
2 , with r = 0, 1, 2 (3.90)

d̃0 = 0.3, d̃1 = 0.6, d̃2 = 0.1 (3.91)

and

β0 = 13
12

(Ui − 2Ui+1 + Ui+2)
2 + 1

4
(3Ui − 4Ui+1 + Ui+2)

2

β1 = 13
12

(Ui−1 − 2Ui + Ui+1)
2 + 1

4
(Ui−1 + Ui+1)

2

β2 = 13
12

(Ui−2 − 2Ui−1 + Ui)
2 + 1

4
(Ui−2 − 4Ui−1 + 3Ui)

2







(3.92)

where, similarly to the MUSCL scheme, ǫ is introduced to avoid the denom-

inator becoming zero. Numerical tests in [37] indicate that the results are not

sensitive to the value of ǫ when it is in the range 10−7 < ǫ < 10−5.
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3.5 Implicit Unfactored Method

Figure 3.1: Interpolation stencils according to the Upwind, MUSCL and WENO
schemes. Blue areas indicate the cells used for the interpolation.

3.5 Implicit Unfactored Method

The time integration of the Navier-Stokes and turbulence model equations is ob-

tained by an implicit unfactored method [88] which allows high CFL numbers to

be used. The implicit unfactored discretisation of the governing equations is com-

bined with Newton sub-iterations and point-successive Gauss-Seidel relaxation.

This algorithm was found to provide high efficiency in both vector and parallel

computations [89, 90]. According to this method Eq. (3.44) is written after a

first-order implicit discretisation in time as:
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Un+1 − Un

∆t
+ Fn+1

ξ + Gn+1
ζ = Rn+1

ξ + Sn+1
ζ + Hn+1. (3.93)

Since Eq. (3.93) is not directly solvable for the dependent variable Un+1, due

to its nonlinearity, a sequence of approximations denoted by Uν is constructed

such that limv→∞Uν → Un+1:

Uν+1 −Un

∆t
+ Fν+1

ξ + Gν+1
ζ = Rν+1

ξ + Sν+1
ζ + Hν+1. (3.94)

Linearising the inviscid fluxes and the source terms:

Fν+1 = Fν + Aν
inv∆U,

Gν+1 = Gν + Cν
inv∆U,

Hν+1 = Hν + Dν
inv∆U

(3.95)

where ∆U = Uν+1 −Uν is the variation of the solution vector in time, and

Ainv =
∂F

∂U
, Cinv =

∂G

∂U
, D =

∂H

∂U
(3.96)

The linearisation of the viscous fluxes must be handled with special care,

owning to the fact that the components of the viscous flux vector are composed

of gradients of the dependent variables. Therefore,

Rν+1 = Rν + Aν
vis,ξ∆Uξ + Aν

vis,ζ∆Uζ ,
Gν+1 = Gν + Cν

vis,ξ∆Uξ + Cν
vis,ζ∆Uζ

(3.97)

where:

Avis,ξ =
∂R

∂Uξ
, Avis,ζ =

∂R

∂Uζ
, Cvis,ξ =

∂G

∂Uξ
, Cvis,ζ =

∂G

∂Uζ
(3.98)

However, for the construction of the implicit scheme it is not necessary to

balance the resulting equation perfectly since the left-hand-side is required only

to guarantee stability [91, 92]. Thus the viscous Jacobians can be reduced by

assuming thin-layer approximations, but for both directions at the same time,

leading to:
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Rν+1 = Rν + Aν
vis,ξ∆Uξ,

Gν+1 = Gν + Cν
vis,ζ∆Uζ

(3.99)

A non-linear Newton method for Uν+1 can be developed around the subiter-

ation state ν, such that:

∆U

∆t
+ (Aν

inv∆U)ξ + (Cν
inv∆U)ζ − (Aν

vis,ξ∆Uξ)ξ − (Cν
vis,ζ∆Uζ)ζ −Dν∆U =

−
(

Uν−Un

∆t
+ Fν

ξ + Gν
ζ − Rν

ξ − Sν
ζ −Hν

)

≡ RHS
(3.100)

The inviscid Jacobians are written in terms of their eigenvector and eigenvalue

matrices as:

Ainv = TΛT−1 (3.101)

where Λ is the eigenvalue matrix and T, T−1 are the left and right eigenvector

matrices, respectively.

The inviscid terms (Aν
inv∆U)ξ and (Cν

inv∆U)ζ are discretised up to second-

order of accuracy, i.e., the left-hand-side term in ξ-direction is discretised as:

(Aν
inv∆U)ξ = (Aν

inv∆U)i+1/2,k − (Aν
inv∆U)i−1/2,k (3.102)

At this stage the flux vector splitting method of Steger-Warming [93] is em-

ployed whereby, the homogeneous property of the Euler equations is exploited

and, the fluxes are decomposed to positive and negative parts with respect to the

sign of the eigenvalues:

(Aν
inv∆U)i+1/2,k =

(

TΛ+T−1
)ν

i+1/2,k
∆U+

i+1/2,k +
(

TΛ−T−1
)ν

i+1/2,k
∆U−

i+1/2,k,

(3.103)

(Aν
inv∆U)i−1/2,k =

(

TΛ+T−1
)ν

i−1/2,k
∆U+

i−1/2,k +
(

TΛ−T−1
)ν

i−1/2,k
∆U−

i−1/2,k

(3.104)

and similarly for the ζ- direction;

(Cν
inv∆U)ζ = (Cν

inv∆U)i,k+1/2 − (Cν
inv∆U)i,k−1/2 (3.105)
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3.5 Implicit Unfactored Method

with

(Cν
inv∆U)i+1/2,k =

(

TΛ+T−1
)ν

i,k+1/2
∆U+

i,k+1/2 +
(

TΛ−T−1
)ν

i,k+1/2
∆U−

i,k+1/2,

(3.106)

(Cν
inv∆U)i−1/2,k =

(

TΛ+T−1
)ν

i,k−1/2
∆U+

i,k−1/2 +
(

TΛ−T−1
)ν

i,k−1/2
∆U−

i,k−1/2

(3.107)

where, Λ+ = max(0, Λ) and Λ− = min(0, Λ) are the diagonal matrices of the

positive and negative eigenvalues of the inviscid Jacobians. The differences ∆U+

and ∆U− are defined at the cell faces up to first order as:

∆U+
i+1/2,k = ∆U−

i−1/2,k = ∆U+
i,k+1/2 = ∆U−

i,k−1/2 = ∆Ui,k (3.108)

∆U−
i+1/2,k = ∆Ui+1,k, ∆U+

i−1/2,k = ∆Ui−1,k (3.109)

∆U−
i,k+1/2 = ∆Ui,k+1, ∆U+

i,k−1/2 = ∆Ui,k−1 (3.110)

The viscous terms are similarly discretised as,

(

Aν
vis,ξ∆Uξ

)

ξ
=

(

Aν
vis,ξ∆Uξ

)

i+1/2,k
−
(

Aν
vis,ξ∆Uξ

)

i−1/2,k (3.111)

where the term Avis,ξ is calculated by simple averaging, while the gradient

∆Uξ is evaluated by central differencing. Hence,

(

Aν
vis,ξ∆Uξ

)

ξ
= 1

2

(

Aν
vis,ξ

∣

∣

i,k
+ Aν

vis,ξ

∣

∣

i+1,k

)

(∆Ui+1,k − ∆Ui,k)

−1
2

(

Aν
vis,ξ

∣

∣

i,k
+ Aν

vis,ξ

∣

∣

i−1,k

)

(∆Ui,k − ∆Ui−1,k)
(3.112)

Performing inner operations, collecting common terms and denoting:
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3.5 Implicit Unfactored Method

Li+1/2,k = 1
2

(

Avis,ξ|i,k + Avis,ξ|i+1,k

)

Li−1/2,k = 1
2

(

Avis,ξ|i,k + Avis,ξ|i−1,k

)

Li,k = 1
2

(

Avis,ξ|i−1,k + 2 Avis,ξ|i,k + Avis,ξ|i+1,k

)

= Li+1/2,k + Li−1/2,k

(3.113)

result in:

(

Aν
vis,ξ∆Uξ

)

ξ
= Lν

i+1/2,k∆Ui+1,k − Lν
i,k∆Ui,k + Lν

i−1/2,k∆Ui−1,k (3.114)

Similarly for the ζ- direction:

(

Cν
vis,ζ∆Uζ

)

ζ
= Nν

i,k+1/2∆Ui,k+1 −Nν
i,k∆Ui,k + Nν

i,k−1/2∆Ui,k−1 (3.115)

where,

Ni,k+1/2 = 1
2

(

Cvis,ζ |i,k + Cvis,ζ |i,k+1

)

Ni,k−1/2 = 1
2

(

Cvis,ζ |i,k + Cvis,ζ |i,k−1

)

Ni,k = 1
2

(

Cvis,ζ|i,k−1 + 2 Cvis,ζ |i,k + Cvis,ζ|i,k+1

)

= Ni,k+1/2 + Ni,k−1/2

(3.116)

Since the numerical solution of the Newton method is too time-consuming

and the application of an approximate-factorization scheme leads to significant

time-step restrictions, a Gauss-Seidel (GS) relaxation technique is used to solve

the unfactored implicit governing equations. The discretised form of Eq. (3.100)

for a point GS iteration reads:

[

I

∆t
+ (DIAG)ν

i,k

]

∆Uµ
i,k = ω (RHS)i,k + (ODIAG)ν

ik (3.117)

where,
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3.5 Implicit Unfactored Method

(DIAG)ν
i,k = (TΛ+T−1)

ν
i+1/2,k − (TΛ−T−1)

ν
i−1/2,k

+ (TΛ+T−1)
ν
i,k+1/2 − (TΛ−T−1)

ν
i,k−1/2

+ Lν
i,k + Nν

i,k − Dν
i,k

(3.118)

(DIAG)ν
i,k is a matrix including the diagonal elements of the eigenvalue-split

inviscid and the viscous thin-layer Jacobians together with the source Jacobian

Dν
i,k. (ODIAG)ν

i,k includes the complementary off-diagonal elements and is a

function of the neighboring points ∆Ui+1,k, ∆Ui−1,k, ∆Ui,k+1, ∆Ui,k−1:

(ODIAG)ν
i,k = − (TΛ−T−1 − L)

ν
i+1/2,k ∆Ui+1,k

+ (TΛ+T−1 + L)
ν
i−1/2,k ∆Ui−1,k

− (TΛ−T−1 −N)
ν
i,k+1/2 ∆Ui,k+1

+ (TΛ+T−1 + N)
ν
i,k−1/2 ∆Ui,k−1

(3.119)

The under-relaxation factor ω compensates for errors of different spatial orders

of accuracy on RHS and LHS, and is also used to accelerate convergence to steady

state. The RHS term is the divergence of the fluxes at each time step n during

the µ Gauss-Seidel iterations. For steady flows, four Gauss-Seidel steps (µ = 4)

and two Newton sub-iteration (ν = 2) are usually performed.

The time step ∆t is calculated by:

∆t =
J CFL

[

max|λi,k| + 2µcp

Pr

√

(ξ2
x + ξ2

z + ζ2
x + ζ2

z )
] . (3.120)

For multi-dimensional problems the matrix (DIAG)ν
i,k has zero or negative

diagonal elements and is, therefore, ill-posed for Gauss-elimination. To recover

high values of the CFL number, right preconditioning is performed on each Gauss-

Seidel sub-iteration [82, 94]. The term
[

I

∆t
+ (DIAG)ν

i,k

]

of the left-hand-side of

Eq. (3.117) is multiplied with the transformation matrix M =
∂U

∂u
from the

right,

[

I

∆t
+ (DIAG)ν

i,k

]

M∆uµ
i,k = ω (RHS)i,k + (ODIAG)ν

ik (3.121)

with ∆u = M−1∆U being the vector of the non-conservative variables.
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3.5 Implicit Unfactored Method

After every Gauss-elimination the conservative solution vector ∆U is recov-

ered by:

(∆U) = M (∆u) (3.122)

Finally, for completeness the inviscid Jacobians, transformation matrix, eigen-

vectors and the components of the eigenvalue split Jacobians are given in Ap-

pendices B, C, D, while the Jacobians of the viscous fluxes are summarized in

Appendix E.

3.5.1 Implicit Treatment of the Source Term

The numerical treatment of the source terms of the turbulence equations models

are of critical importance for the stability of the scheme. For this reason all

destruction terms are treated implicitly, while the production terms are defined

explicitly in the right hand side. This procedure leads to an increase in the

diagonal dominance of the implicit operator and thereby enhances its stability.

The following representation of the approximate Jacobian for the source terms,

is indicative of the method employed here.

Considering the equation:

∂U

∂t
= H ≡ H(U) (3.123)

the following first order implicit time discretisation can be obtained :

Un+1 = Un + ∆tHn+1 (3.124)

After linearisation of the source matrix Hn+1 (in terms of U):

Hn+1 = Hn +
∂H

∂U

(

Un+1 − Un
)

(3.125)

Eq. (3.124) is written as:

(

Un+1 − Un
)

(

I − ∆t
∂H

∂U

)

= ∆tHn. (3.126)

The source terms Jacobian can be calculated as:
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∂H

∂U
= J

















0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

k
Reω

S + Reβ∗ωk 0 0 0 1
Reω

S − 2
3
D − Reβ∗ω − k

Reω2 S − Reβ∗k
aω

1
Re

S + Reβω2 0 0 0 0 −2
3
aωD − 2Reβω

















(3.127)

where S is the strain rate invariant, S =
(

∂ui

∂xj
+

∂uj

∂xi

)

∂ui

∂xj
− 2

3
D2 and D is the

dilatation D = ∂uk

∂xk
.

However, for stability reasons only destruction terms are treated implicitly

[79]. Then the Jacobian matrix for the source terms becomes:

∂H

∂U
= J

















0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

Reβ∗ωk 0 0 0 −Reβ∗ω −Reβ∗k
Reβω2 0 0 0 0 −2Reβω

















(3.128)

The elements of the source Jacobian (∂H

∂U
) are added to the (DIAG)n

i,k term

of Eq. (3.121), thus increasing diagonal dominance.
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Chapter 4

Investigation of the Numerical

Scheme Effects

In the following chapter, steady state investigations that have been performed on

a subsonic flow over the NACA4412 aerofoil and a transonic flow over the Rae2822

aerofoil are presented. The objective of this study is to validate the performance

and accuracy of the numerical schemes and turbulence model employed, with

varying grid and reconstruction resolution, on two highly diverse flow situations.

The body-fitted, structured, C-type meshes used in the following calculations

range from 277 × 65 (coarse), 397 × 95 (medium) to 517 × 125 (fine) in order to

evaluate the sensitivity of the simulation to the spatial resolution. Besides the

apparent differences in the grid density, all of the generated meshes share similar

qualitative charecteristics. In particular: a) the mesh points are exponentially

spaced away from the aerofoil surface and the cell spacing adjacent to the wall

surface corresponds to a y+ < 1, based on a flat plate assumption, b) the grid

lines are clustered near the body surface in the normal direction, such that a

minimum of 20 mesh points are contained in the boundary layer in order to

resolve it effectively, c) the far field boundary is placed at 20 chord lengths away

from the aerofoil and d) in the streamwise direction the clustering at the wall is

finer at the leading and trailing edge to capture accurately geometric curvatures

and singularities.

The order of reconstruction of the convective fluxes is increased from first up

to fifth order, while the viscous fluxes are centrally discretized to second order

52



4.1 Transonic flow over the RAE 2822 aerofoil

accuracy. The resulting non linear system is marched in time with the implicit

unfactored method described in Chapter 3. The numerical results obtained are

validated against experimental data regarding pressure coefficient distribution

and streamwise velocity profiles, where available. It is noteworthy that the ve-

locity profiles are calculated normal to the aerofoil surface, while the velocity is

non-dimensionalized with respect to the boundary layer edge velocity, designated

in this work by Ue, in agreement with the experiments of Cook et al. [95]. The

findings of this investigation are presented in the following sections.

4.1 Transonic flow over the RAE 2822 aerofoil

The RAE 2822 supercritical aerofoil has been used extensively for code valida-

tion, of compressible flow solvers, under turbulent transonic flow conditions. A

comprehensive experimental database has been established by Cook et al., that

covers subcritical as well as supercritical local flow conditions. The present com-

putation corresponds to their Test Case 10, with the adopted corrections of the

EUROVAL project [96], that suggest a Mach number of M∞ = 0.754, Reynolds

number of R∞ = 6.2 × 106 and angle of incidence of α = 2.57o. In the experi-

ment, the flow was tripped at 3% from the leading edge. However, in the present

simulation transition was not modelled or fixed, deliberately, in order to inves-

tigate the capabilities and /or limitations of the turbulence model with varying

the order of spatial resolution.

In order evaluate the sensitivity of the simulation to the grid resolution, nu-

merical computations were performed on three different meshes, shown in Figure

4.1. The results obtained from the grid convergence study regarding pressure

distribution velocity profiles and aerodynamic loads are summarized in Figure

4.2, Figures 4.3 - 4.6 and Table 4.2 respectively. Overall it is observed that by

increasing the order of the underlying numerics the grid dependency decreases

asymptotically, while no major discrepancies are observed amongst the medium

(M2) and fine (M3) meshes. For this reason and due to inevitable time and

computational resources constraints, further simulations were carried out on the

medium mesh in order to investigate the effect of the numerical spatial accu-
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4.1 Transonic flow over the RAE 2822 aerofoil

racy on the flow field characteristics. In the subsequent paragraphs a detailed

discussion of this investigation is presented.

(a) RAE2822 M1 mesh (277x65)

(b) RAE2822 M2 mesh (397x95)

(c) RAE2822 M3 mesh (512x125)

Figure 4.1: Full and close-up views of the RAE2822 meshes
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4.1 Transonic flow over the RAE 2822 aerofoil

Computed Mach number and eddy viscosity (dimensionless) contours which

give a qualitative description of the flow field, and indicate overall computational

quality are shown in Figure 4.7. It is evident that different resolution schemes

result in discrepancies on the local Mach number, shock location and wake thick-

ness. The flow is accelerated at the suction surface of the aerofoil, where due to

local supercritical flow conditions, a strong shock is formed that interacts with the

boundary layer. Downstream the shock formation, the induced separation results

in a thicker boundary layer that is sharply captured as the order of the method

increases. Aft the shock induced separation the flow becomes highly turbulent

and the increased levels of turbulence kinetic energy give rise to high values of

eddy viscosity.
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Figure 4.2: Grid convergence of the computed pressure-coefficient distributions
along the RAE2822 aerofoil surface.
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4.1 Transonic flow over the RAE 2822 aerofoil
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Figure 4.3: Grid convergence of the computed velocity profiles with first order
upwind flux reconstruction, along the RAE2822 aerofoil surface.
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Figure 4.4: Grid convergence of the computed velocity profiles with second order
Van Albada MUSCL flux reconstructions, along the RAE2822 aerofoil surface.
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Figure 4.5: Grid convergence of the computed velocity profiles with third order
WENO flux reconstructions, along the RAE2822 aerofoil surface.
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Figure 4.6: Grid convergence of the computed velocity profiles with fifth order
WENO flux reconstructions, along the RAE2822 aerofoil surface.
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4.1 Transonic flow over the RAE 2822 aerofoil

(a) First order upwind method

(b) Second order Van Albada method

(c) Third order Weno method

(d) Fifth order Weno method

Figure 4.7: Mach number (left) and eddy viscosity (dimensionless) (right) con-
tours of the RAE2822 aerofoil at M∞ = 0.754, R∞ = 6.2 × 106 and α = 2.57oas
predicted by different order methods.

58

Chapter4/Chapter4Figs/Contours/1st_Rae_MachN.eps
Chapter4/Chapter4Figs/Contours/1st_Rae_Turb_V.eps
Chapter4/Chapter4Figs/Contours/2VA_Rae_MachN.eps
Chapter4/Chapter4Figs/Contours/2VA_Rae_TurbV.eps
Chapter4/Chapter4Figs/Contours/3WE_Rae_MachNo.eps
Chapter4/Chapter4Figs/Contours/3WE_Rae_TurbV.eps
Chapter4/Chapter4Figs/Contours/5WE_Rae_MachNo.eps
Chapter4/Chapter4Figs/Contours/5WE_Rae_Turb_V.eps


4.1 Transonic flow over the RAE 2822 aerofoil

Figure 4.8 presents the comparison of the predicted surface pressure coeffi-

cient distribution of different orders of resolution. As shown in the plot, the

higher resolution method compares more favorably to the experimental data.

However, the k − ω model predicts the shock location further downstream than

what was observed in the experiment. Furthermore, the poor pressure recovery,

on the suction surface, downstream of the shock indicates that the model fails

to predict reattachment of the flow. In all calculations the leading edge peak is

not captured correctly, which is mainly attributed to the fact that transition was

not modelled and further demonstrates the limitations of the turbulence model.

The aforementioned deficiencies of turbulence modelling, are also reported in the

published works of Spalart and Almaras [49] who compared their one equation

model against the models of Baldwin and Lomax [46] and Johnson and King [47],

Moryossef and Levy [97] who used the TNT model of Kok [75], Catalano and

Amato [98] who investigated several k−ω and k− ǫ models, and also in the work

of Lien and Kalitzin [99] who used the more elaborate υ2−f , four equation, eddy

viscosity model.
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Figure 4.8: Computed and measured pressure-coefficients distribution along the
RAE2822 surface.
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4.1 Transonic flow over the RAE 2822 aerofoil

Besides the well known limitations of the eddy viscosity models, each method

converged to a different result manifesting that the solution is dominated by the

underlying numerics. It is remarkable that the increase of the numerical resolu-

tion improves significantly the predictions in terms of shock location, and pressure

distribution both near the leading edge and trailing edge. It is also noteworthy

that the pressure distribution predicted by the high resolution fifth order WENO

scheme is much less sensitive to the grid resolution than the more diffusive first

and second order schemes (see Figures 4.3-4.6). The same is true for the cal-

culated velocity profiles along the suction surface of the aerofoil. Therefore, an

assumption can be made at this point that the additional cost of the computa-

tionally more expensive WENO scheme can be, somewhat, counterbalanced by

the use of a much coarser grid than what would be normally used for a widely

commissioned second order scheme to produce results of similar quality.

A comparison of the calculated stream-wise velocity profiles at various stations

along the upper airfoil surface is shown in Figure 4.9. At stations x/c = 0.404

and x/c = 0.498 that are located upstream of the shock all resolution schemes

perform similarly. The flow remains attached to the aerofoil surface and the

velocity profiles agree well with the experiment. The same agreement in results

is not evident in the case of locations that are stationed further downstream.

The shock predicted is too far downstream, as indicated by the velocity profile

at station x/c = 0.571, which is close to the shock. The TNT model fails to

accurately predict the boundary layer growth, which is particularly apparent in

the velocity profiles at stations x/c = 0.650, x/c = 0.750 and x/c = 0.900.

Furthermore, the incorrect “hook” shape of the velocity profile in the defect

layer indicates the inability of the model to resolve the mixing layer between the

retarded recirculating fluid and the contiguous high momentum fluid. In fact,

as the numerical resolution increases this effect becomes more profound as the

turbulence model is inadequate of modelling the escalated mixing of momentum,

dictated by the momentum equation. The slow growth and the unphysical sharp

edge of the boundary layer reveal the inability of the model to predict separation

correctly under adverse pressure gradients.
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4.1 Transonic flow over the RAE 2822 aerofoil
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Figure 4.9: Computed and measured velocity profiles along the RAE2822 suction
surface.
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4.1 Transonic flow over the RAE 2822 aerofoil

The integrated aerodynamic loads around the aerofoil surface using different

of orders of accuracy on grids of varying resolution, are summarized in Table 4.2.

The observed low errors for the lift coefficient obtained with the first order upwind

scheme are incidental and are attributed to the incorrect pressure prediction

near the shock and the high pressure value at the lower surface of the aerofoil’s

leading edge, as seen in Figure 4.2. This is further confirmed by the high values

of the more sensitive drag and moment coefficients. By refining the grid, the

discrepancies between the predicted and measured aerodynamic loads decrease.

However, the relative errors of the first and second order scheme are considered

high even for the fine grid.

In contrast, the higher order schemes perform very well, with the fifth order

scheme indicating grid independent results, regarding the coefficient of lift, even

on the coarse grid. The observed error increase of the drag and pitching mo-

ment coefficients predicted with fifth order WENO scheme is attributed to the

precedence of viscous terms on the fine grids and possibly due to the interaction

between the non uniform discretisations of the convective and viscous terms. Vis-

cous terms become increasingly important when a turbulence model is employed

since the numerical error associated with the viscous flux discretization is aug-

mented by the turbulence viscosity quantity µt. A possible remedy would be a

globally uniform accurate scheme. Nevertheless, the results in Table 4.2 highlight

the superiority of the high resolution methods over the lower order methods.

The effect on accuracy of the high order methods when used in conjunction

with a turbulence model is emphasized below. Table 4.3 compares the integrated

aerodynamic loads of this work with the ones from Barakos [100] who investigated

different turbulence models, with linear and non-linear constitutive relations, for

the same case using comparable grids (260× 80). Although striking, it is evident

that the aerodynamic loads are more sensitive to the order of the convective flux

reconstruction than to the turbulence model employed itself. The pattern here

is similar; lower resolution schemes tend to underpredict the coefficient of lift

and overpredict the coefficient of drag, whereas higher order reconstructions are

in a better agreement with the experimental values, with the fifth order scheme

comparing more favorably with only 1.9 % relative error regarding both cl and

cm. A value that is well within the experimental uncertainty.
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4.1 Transonic flow over the RAE 2822 aerofoil

Spatial Resolution Grid cl (% error) cd (% error) cm(% error)

1storder upwind
M1
M2
M3

0.701 (5.7)
0.737 (0.8)
0.749 (0.8)

0.0527 (117.8)
0.0467 (93.8)
0.0433 (78.9)

-0.124 (17.0)
-0.126 (18.9)
-0.125 (17.9)

2ndorder Van Albada
M1
M2
M3

0.653 (12.1)
0.689 (7.3)
0.704 (5.2)

0.0514 (112.4)
0.0448 (85.1)
0.0412 (70.2)

-0.117 (10.4)
-0.117 (10.4)
-0.117 (10.4)

2ndorder Van Leer M2 0.685 (7.8) 0.0446 (84.3) -0.116 (9.4)

3rdorder WENO
M1
M2
M3

0.757 (1.9)
0.749 (0.8)
0.753 (1.3)

0.0286 (18.2)
0.0272 (12.4)
0.0274 (13.2)

-0.114 (7.5)
0.110 (3.8)
-0.112 (5.7)

5thorder WENO
M1
M2
M3

0.729 (1.9)
0.741 (0.3)
0.746 (0.4)

0.0257 (6.2)
0.0263 (8.7)
0.0268 (10.7)

-0.104 (1.9)
-0.107 (0.9)
-0.109 (2.8)

Experiment 0.743 0.0242 -0.106

Table 4.2: Spatial resolution and grid dependency effect on the lift and drag
coefficients of the RAE2822 aerofoil.

Turbulence Model cl (% error) cd (% error) cm(% error)
k − ω TNT (current, WENO5) 0.729 (1.9) 0.0257 (6.2) -0.104 (1.9)
Non -Linear k − ǫ − A2 (Barakos) 0.802 (7.9) 0.0301 (24.4) -0.110 (3.8)
Non -Linear k − ǫ (Barakos) 0.813 (9.4) 0.0312 (28.9) -0.112 (5.7)
One equation SA (Barakos) 0.803 (8.1) 0.0322 (33.1) -0.113 (6.6)
Experiment 0.743 0.0242 -0.106

Table 4.3: Lift drag and pitching moment coefficients of the RAE2822 aerofoil.

Overall, the results obtained with the fifth order WENO scheme are in better

accordance with the experimental data. The observed discrepancies are mainly

attributed to the assumed linear dependency of the Reynolds stress to the mean

strain rate tensor, via the Boussinesq relation. The isotropic assumption of turbu-

lence is no longer valid at high strain rates, caused by rapid dilatation and stream-

line curvature. This condition renders any linear constitutive turbulence model
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4.1 Transonic flow over the RAE 2822 aerofoil

unreliable for separated flows, especially for shock-induced separation where a

multitude of flow phenomena are present.

An estimate of the CPU time required by the different convective flux recon-

struction methods to run a fixed number of iterations is summarized in Table

4.4. The first order upwind method on the coarse M1 grid is considered as refer-

ence. The CPU time increases linearly with respect to the order of the method,

since for the higher order methods more floating point arithmetics are performed.

However, the effect of increasing the grid resolution is much more profound in

terms of computational cost. Therefore the required CPU time of the lower order

schemes to run on the fine grid is significantly greater to the time that the fifth

order WENO reconstruction required to run on the coarse grid or even on the

medium grid. If one considers that the more grid sensitive lower order methods

require much finer grids to produce results of similar quality to the higher resolu-

tion schemes, then the assumption made earlier is valid. That is, the additional

cost of the fifth order WENO scheme can be, indeed, counterbalanced by the

use of a much coarser grid than what would be normally used for a lower order

method to yield comparable results. In that sense, it turns out that the higher

resolution methods is much more efficient.

Spatial Resolution Grid CPU time

1storder upwind
M1
M2
M3

1.000
2.059
3.570

2ndorder Van Albada
M1
M2
M3

1.016
2.103
3.757

3rdorder WENO
M1
M2
M3

1.096
2.213
3.819

5thorder WENO
M1
M2
M3

1.144
2.448
4.169

Table 4.4: Reconstruction CPU time
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4.2 Subsonic flow over the NACA 4412 aerofoil

4.2 Subsonic flow over the NACA 4412 aerofoil

The next case considered is the subsonic flow around the NACA 4412 aerofoil near

maximum lift, as an example of a two dimensional high-lift aerofoil with flow sep-

aration. Experiments regarding this case were conducted by Coles and Wadcock

[101] at subsonic flow conditions at a Reynolds number of Re∞ = 1.52× 106 and

an angle of incidence α = 13.87o. This is a computationally challenging case since

turbulence models tend to predict time dependent results at the separation region

as the spatial resolution is increased. The same case has been chosen as the basis

of validation and assessment of different turbulence models such as the original

k − ω model by Menter [76] and the non-linear EARSM model of Hellsten and

Laine [102]. Kim et al. [103] used this test case to benchmark linear k − ǫ and

k − ω models while Schmidt et al. [104] performed LES around a NACA 4412

aerofoil to evaluate subgrid-scale models. However no wind tunnel corrections

have been reported in the literature.

To examine grid convergence, three grids comprising of 277×65, 397×95 and

512 × 125 control volumes were used for the computations and are illustrated in

Figure 4.10. Similar to procedure in Section 4.1 the spatial resolution of the nu-

merical scheme was gradually increased by employing first, second, third and fifth

order flux reconstructions. Figures 4.11 - 4.15 demonstrate the grid sensitivity of

each scheme via surface pressure coefficients distribution and streamwise veloc-

ity profiles. Consistent with the observations made for the RAE 2822 transonic

case, grid sensitivity decreases asymptotically with increasing the order of accu-

racy. First and second order methods behave similarly, showing high dependence

on the resolution of the grid, while the third and fifth order WENO schemes

outperform the more diffusive lower order methods in terms of grid sensitivity.
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4.2 Subsonic flow over the NACA 4412 aerofoil

(a) NACAM1 mesh (277x65)

(b) NACAM2 mesh (397x95)

(c) NACAM3 mesh (512x125)

Figure 4.10: Full and close-up views of the NACA4412 meshes
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4.2 Subsonic flow over the NACA 4412 aerofoil
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Figure 4.11: Grid convergence of the computed pressure-coefficient distributions
along the NACA 4412 aerofoil surface.
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Figure 4.12: Grid convergence of the computed velocity profiles with first order
upwind flux reconstruction, along the NACA 4412 aerofoil surface.
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4.2 Subsonic flow over the NACA 4412 aerofoil
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Figure 4.13: Grid convergence of the computed velocity profiles with second order
Van Albada MUSCL flux reconstructions, along the NACA 4412 aerofoil surface.
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Figure 4.14: Grid convergence of the computed velocity profiles with third order
WENO flux reconstructions, along the NACA 4412 aerofoil surface.
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4.2 Subsonic flow over the NACA 4412 aerofoil
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Figure 4.15: Grid convergence of the computed velocity profiles with fifth order
WENO flux reconstructions, along the NACA 4412aerofoil surface.

A first qualitative comparison between the different resolution methods can

be made by observing closely Figure 4.16 that represents eddy viscosity and Mach

contours of the computed flow field. The flow scenery changes noticeably with

respect to the order of resolution. First and second order methods predict sim-

ilar flow fields to each other, whereas, as the order increases the flow is locally

accelerated near the leading edge on the suction surface, more than what is ob-

served with the lower order methods. Meanwhile the higher resolution methods,

WENO3 and WENO5 result in a thinner wake while the turbulence quantities

are convected further downstream, as indicated by the contours of eddy viscosity.
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4.2 Subsonic flow over the NACA 4412 aerofoil

(a) First order upwind

(b) Second order Van Albada

(c) Third order WENO

(d) Fifth order WENO

Figure 4.16: Mach number (left) and eddy viscosity (dimensionless) (right) con-
tours of the Naca4412 aerofoil at R∞ = 1.52×106 and α = 13.87oas predicted by
different order methods.
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4.2 Subsonic flow over the NACA 4412 aerofoil

A direct comparison of the pressure coefficients curves, resulting from different

resolution methods, is given in Figure 4.17. It is evident that the pressure plateau

at the trailing edge is notably coupled with the suction peak near the leading

edge of the aerofoil. The computations generally agree well with each other.

However, all of the computed pressure curves do not match closely the measured

distribution near the trailing edge, while visible discrepancies occur around the

suction peak near the leading edge. Besides the slight overshoot at the leading

edge and the coupled undershoot at the trailing edge the higher order WENO3

and WENO5 outperform the lower order methods.
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Figure 4.17: Computed and measured pressure-coefficients distribution along the
NACA 4412 aerofoil surface
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4.2 Subsonic flow over the NACA 4412 aerofoil

The effect of increasing the order of the method is more clearly seen in the plot

of the velocity streamlines, Figure 4.18. The inherent diffusivity of the first and

second order schemes in conjunction with the limitations of the turbulence model

resulted in capturing a smaller, in extend, separation bubble towards the trailing

edge of the aerofoil. On the other hand the higher resolution schemes, WENO3

and especially WENO5, predicted a separation bubble to a better agreement with

what was observed in the experiment. This is justified by the velocity profiles

studied next.

The velocity profiles are compared with experimental measurements at six

stations on the suction surface. The sections are located at x/c =0.620, 0.731,

0.786, 0.842, 0.897 and 0.953, while the respective streanwise velocity profiles are

shown in Figure 4.19. Discrepancies with the experimental profiles are evident for

all stations. The first and second order methods predicted too retarded velocity

profiles at stations located before the separation and at the same time the in-

herent diffusivity of these methods failed to capture correctly the separated flow.

The separated flow is dominated by coherent structures that are different from

the relatively ordered structure of attached boundary layers. For this reason the

turbulence model employed, which is designed for boundary layers displays seri-

ous difficulties in modelling the separated motion accurately. By increasing the

spatial resolution the mixing of momentum and the shear stress become more re-

solved in the recirculation area. This in turn explains why the fifth order WENO

scheme results in a better agreement of the computed velocity profiles with the

measured ones. However, even with the high resolution method, the maximum

adverse streamwise velocity component is slightly low, which suggests an under

estimation of the shear stress and shear strain, mainly due to the isotropic as-

sumption inherent in the linear model that cannot simulate the behavior of near

wall turbulence anisotropy.
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4.2 Subsonic flow over the NACA 4412 aerofoil

(a) First order upwind

(b) Second order Van Albada

(c) Third order WENO

(d) Fifth order WENO

Figure 4.18: Effect of the order of resolution to the recirculating flow region near
the trailing edge of the NACA 4412 aerofoil surface.
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4.2 Subsonic flow over the NACA 4412 aerofoil
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Figure 4.19: Computed and measured velocity profiles along the NACA 4412
suction surface.
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4.2 Subsonic flow over the NACA 4412 aerofoil

A comparison of the integrated aerodynamic loads using different order meth-

ods and grids is given in Table 4.5. An obscure inconsistency with theory is

noticed and regards the accuracy of the second order scheme with respect to the

first order upwind scheme. One would expect the second order scheme to out-

perform the more diffusive first order scheme. Although in the transonic flow

regime this is true (see Table 4.2), in the present subsonic simulation near max-

imum lift this is not the case. In fact the first order method predicts better lift

coefficients than the second order methods, while the drag coefficients are com-

parable between the two schemes. Since in both cases grid convergence has not

been achieved no decisive conclusions can be made. However, this abnormality

in behavior is noteworthy.

Spatial Resolution Grid cl (% error) cd

1storder upwind
M1
M2
M3

1.588 (5.0)
1.605 (3.9)
1.651 (1.1)

0.1960
0.1507
0.1353

2ndorder Van Albada
M1
M2
M3

1.531 (8.7)
1.557 (7.0)
1.620 (3.0)

0.1939
0.1507
0.1336

2ndorder Van Leer M2 1.556 (7.0) 0.1507

3rdorder WENO
M1
M2
M3

1.707 (2.2)
1.742 (4.2)
1.722 (3.1)

0.0427
0.0380
0.0383

5thorder WENO
M1
M2
M3

1.680 (0.6)
1.686 (0.9)
1.686 (0.9)

0.0375
0.0373
0.0375

Experiment 1.67 -

Table 4.5: Spatial resolution and grid dependency of the lift and drag coefficients
of the NACA4412 aerofoil at α = 13.87o.

On the other hand the higher order methods prove to be more consistent both

in terms of accuracy and grid sensitivity. The third order WENO scheme produces

reasonable coefficients of lift, when compared to the experimental value, while the

performance of the fifth order WENO scheme is remarkable; not only the 0.6 %

error -resulting from the coarse grid computation- between the numerical and
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4.2 Subsonic flow over the NACA 4412 aerofoil

measured cl is within the experimental uncertainty but the values of lift and drag

coefficients are virtually the same regardless of the grid resolution.

Table 4.6 compares the current computations with the calculations of Hellsten

who used the same test case to validate his version of k−ω EARSM model using

a grid that consisted of 320× 96 control volumes, similar to the M2 grid used in

this work. The relative comparison strengthens the hypothesis that at least in

2d RANS computations, the effect of high resolution methods is more profound

than the turbulence model. Although Hellsten [44] employed a more sophisticated

non-linear model, calibrated specifically for flows around high lift configurations,

the relative discrepancies of the results, favor the present high resolution method

coupled with a modest and thus computationally more efficient two equation

linear model.

Turbulence Model cl (%error) cd

k − ω TNT (Current:WENO5) 1.686 (0.9) 0.0373
k − ω EARSM (Hellsten) 1.56 (6.6) 0.037
Experiment 1.67 -

Table 4.6: Comparison of lift and drag coefficients of the NACA4412 aerofoil.
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Chapter 5

Active Camber Optimisation

Although CFD based aerodynamic optimisation has been performed by many au-

thors, most of the times CFD methods of low flow-descriptive capacity have been

used. To name a few, Bowen and Zhilde [105] performed multi objective optimi-

sation of a transonic aerofoil using a combination of a potential and boundary

layer method, while Kumar et al. [106] performed aerodynamic aerofoil shape

optimisation using a hybrid variant of Genetic Algorithm and Ant Colony Opti-

misation coupled with a 2D meshless Euler solver. Hazra et al. [107] employed a

gradient based optimisation using the Euler variant of the FLOWer CFD solver of

the German Aerospace Center (DLR). In fact it has not been up to very recently

that Epstein and Peigin [108] performed 3D optimisation on lifting surfaces using

GA coupled with a full Navier-Stokes code that employed the incomplete alge-

braic turbulence model of Baldwin and Lomax. The same turbulence model has

been also employed in the work of Kipouros [51], who performed TS optimisation

on compressor blades.

It is clear that low order CFD methods and relatively simple turbulence mod-

els have been employed for their cost effectiveness, however the question that

quickly rises is as to what expense, if any. Furthermore, a systematic approach

to answer that question has not been performed, up to date. Having said that,

the objective of the subsequent study is twofold: (a) to improve the aerodynamic

performance of an aerofoil within the Active Camber concept, described in Chap-

ter 1 and furthermost (b) to demonstrate that the use of high resolution CFD

methods coupled with a meta-heuristic multi-objective optimisation algorithm,
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5.1 Definition of the Optimisation Problem

can have significant impact on the resulting optimised shapes and hence on their

aerodynamic performance.

5.1 Definition of the Optimisation Problem

As already outlined in Chapter 1, the performance requirements for the next gen-

eration helicopters include both higher forward flight speeds and more maneuver-

ability, requiring higher lift loads on the retreating rotor blade. The additional

loading can be accommodated by increases in the aerofoil section maximum lift

coefficient and/or an increase in the blade solidity. Since a higher solidity results

in greater blade weight and drag, improving, real-time, the lift capability of the

aerofoil, by means of flow control, is the more efficient approach. Employing flow

control in the sense of aerofoil morphing, the effective aerofoil geometry adjusts

to the changing flow and load requirements. This allows to further explore the

aerodynamic flow potential of the flight envelope resulting not only in aerody-

namic performance gains but also in an improved structural design. The use of

smart materials and structures can be used as an efficient means of achieving

aerofoil morphing that can be reconfigured in response to changing conditions

with potential aerodynamic benefits. A preliminary parametric investigation of

the aerofoil morphing concept has been performed by Zachariadis et al. [109]

that demonstrated potential performance gains.

Under the ”FRIENDCOPTER” EUROPEAN FP6 project no (AIP3-CT-

2003-502773) a new concept for an IBC actuator, the Active Camber concept,

has been investigated with an emphasis on aerodynamic benefits. The variation

of the aerofoil geometry is accomplished by a set of on-board piezoelectric actu-

ators capable of moving the aerofoil surface. For the employed, non-disclosed,

piezoelectric actuator design the active chord percentage, xa, may be varied in

the range of 80% to 20%. Furthermore, it is assumed that upward and downward

actuation result in the same deflection shape neglecting asymmetries from aerody-

namic loading or actuator design. What is more, the chord length of the aerofoil

is assumed constant. With the above assumptions, a sixth order polynomial is
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5.1 Definition of the Optimisation Problem

employed to parametrize the actively deformed camber line:

f (x̄) = a6x̄
6 + a5x̄

5 + a4x̄
4 + a3x̄

3 + a2x̄
2 + a1x̄ + a0 (5.1)

where x̄ = x−(1−xa)
c−(1−xa)

and c being the chord of the aerofoil.

The authority of the actuator is introduced by the maximum achievable non-

dimensional deflection z∗max = zmax/c that varies depending on the actuator de-

sign: −0.01 ≤ z∗max ≤ 0.01. The polynomial function (5.1) is scaled with the

actuator authority thus forming the actual shape function,

Φ (x̄) = z∗maxf (x̄) (5.2)

that is superimposed to the skeleton line of the underlying aerofoil.

The optimisation effort was undertaken in order to identify the aerodynamic

effectiveness in terms of servo effect cm or direct lift effect cl of the Active Camber

concept when applied to the OA 312 aerofoil. In general the desired characteristics

for an inboard region aerofoil of a main rotor blade are (a) the highest possible

maximum lift coefficients at Mach numbers ranging from 0.3 to 0.5, for increased

blade loading on the retreating side of the rotor disk and (b) pitching-moment

coefficients nearly equal to zero, for low pitch-link loads and blade torsion loads

[110]. In order to identify the aerodynamic characteristics of the baseline OA 312

aerofoil and to be able to specify the design goals of the present investigation, a

set of two dimensional polars were computed.

Computations are performed at typical flow conditions encountered by the

retreating blades on a full scale helicopter rotor. These conditions correspond to

a Mach number of 0.4 and a Reynolds number of 3.0×106. For the polar compu-

tations the angle of attack varied between 8 and 15 degrees, while for increased

accuracy the 5th order WENO scheme is employed for the discretization of the

divergence of the inviscid fluxes. Table 5.1 compares the computed results at 9.8

and 10.5 degrees against experimental data that were provided by ONERA, an

industrial partner within the FRIENDCOPTER project. The computed aerody-

namic loads are in a close agreement with the experimental values. Therefore,
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5.1 Definition of the Optimisation Problem

it is expected that the rest of the polar computations provide an accurate aero-

dynamic characterization of the OA 312 aerofoil. However, lack of experimental

data for the entire polar set designate the last statement an unavoidable specula-

tion. The computed polars are presented in Figure 5.1 and reveal that maximum

lift occurs at 13.5 degrees, while the actual flow metrics for the datum design are:

cl = 1.486, cm = 0.004 and cd = 0.0354. Therefore the design goals of the present

investigation are set to be: 1) cl > 1.5 and 2) cm ≃ 0.

AoA (deg.) cl cm cd

Experiment (ONERA)
9.8
10.5

1.27
1.34

-0.0122
-0.0113

0.0137
0.0149

Computational
9.8
10.5

1.29
1.35

-0.0125
-0.0115

0.0158
0.0177

Table 5.1: Comparison between experimental and computational lift, drag and
pitching moment coefficients for the baseline OA 312 aerofoil.

Having identified the design goals, the optimisation task can now be described

as a constrained bi-objective minimization problem, with the following objective

functions:

f1 = −cl , (5.3)

f2 = |cm| (5.4)

Obvious constraints of the current optimisation task are the active part of the

aerofoil and the authority of the piezo-electric actuator:

20% ≤ xa ≤ 80% (5.5)

− 0.01 ≤ z∗max ≤ 0.01 (5.6)

A not so obvious constraint, is related to the amplitude of the polynomial

itself. It is imperative that the maximum deflection of the polynomial shape does

not exceed unity, in order to prevent large deformations that are not realizable

by the piezoelectric actuator. This constraint is clearly satisfied by setting a0 = 0
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5.1 Definition of the Optimisation Problem

and most importantly by:

∑

|an| ≤ 1, with n = 1, ..., 6 (5.7)

In fact, this constraint will turn out to be very stringent, since it limits con-

siderably the allowable design variable step-size.

Besides the identification and definition of the objectives and constraints of

the optimisation problem and the parametrization of the datum geometry, an ef-

ficient mesh generation process is necessary to create the computational domain

around the deforming body. Generating a grid by means of an elliptic method

or other iterative methods for each new design vector is a non-trivial and time

consuming task. The geometry of the aerofoil must be updated frequently during

the optimisation cycle. In fact, the number of mesh generations required is pro-

portional to the number of design variables. Therefore, it is imperative to keep

the method simple, fast and robust. It is also essential that the computational

meshes are of high quality in order not to impair computational accuracy. Subse-

quently, a method of propagating geometric perturbations into an existing high

quality initial grid while preserving the initial grid characteristics is employed

and presented below.
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5.1 Definition of the Optimisation Problem
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Figure 5.1: OA312 2D polars at Mach =0.4 and Re=3.0 × 106, at various angles
of attack (AoA).

82

Chapter5/Chapter5Figs/5WE/Polars/5WE_CL.eps
Chapter5/Chapter5Figs/5WE/Polars/5WE_CM.eps
Chapter5/Chapter5Figs/5WE/Polars/5WE_CD.eps


5.2 Arc-length Transfinite Interpolation

5.2 Arc-length Transfinite Interpolation

Assuming that the displacement of the vertexes and the edge of the aerofoil body

is already defined by the design vector, the displacement of the interior points

is computed by transfinite interpolation (TFI). Moreover the TFI is arc-length-

based in order to preserve the characteristics of the initial grid.

A 2-d grid consists of a face {F}, edges {E} and vertexes {V} and is the

connectivity relations between these elements that define the topology of the

grid. Moreover, the face {F} is defined by:

XF =
{−→x i,k

∣

∣i = 1, ..., NIF , k = 1, ..., NKF
}

(5.8)

In the parametrization process, grid points are parametrized according to the

global i, k indices of the normalized arc-lengths s, t respectively. Therefore the

normalized arch-length in the i direction is defined as [111, 112]:

si,k =

∑

i

m=2
‖−→x m,k −−→x m−1,k‖

∑

NI

m=2
‖−→x m,k −−→x m−1,k‖

(5.9)

with s1,k = 0 and sNI,k = 1. Similarly the normalized arch-length in the i

direction is defined as:

ti,k =

∑

k

m=2
‖−→x i,m −−→x i,m−1‖

∑

NK

m=2
‖−→x i,m −−→x i,m−1‖

(5.10)

with ti,1 = 0 and ti,NK = 1.

Following the parametrization process and the already known edge and cor-

ner point deformations of the newly deformed body, a one dimensional linear

projector which computes the displacements in the i- direction can be defined as

[113]:

Pξ (i, k) =
−→
dx

i
(i, k) = (1 − si,k)

−→
dx (1, k) + si,k

−→
dx (NI, k) (5.11)

while for the k- direction:

Pζ (i, k) =
−→
dx

k
(i, k) = (1 − ti,k)

−→
dx (i, 1) + ti,k

−→
dx (i, NK) (5.12)

83



5.2 Arc-length Transfinite Interpolation

Having specified the uni-variate interpolations in each of the computational di-

rections, what follows is the formation of the tensor products of the projectors.

Therefore, forming the composite mapping PξPζ (tensor product) of Eq.’s (5.11)

and (5.12) such that:

Pξ (Pζ (i, k)) = (1 − si,k)
[

(1 − ti,k)
−→
dx (1, 1) + ti,k

−→
dx (1, NK)

]

+

si,k

[

(1 − ti,k)
−→
dx (NI, 1) + ti,k

−→
dx (NI, NK)

] (5.13)

It is easily shown that this tensor product is commutative, simply by collecting

common terms:

PξPζ = (1 − ti,k)
[

(1 − si,k)
−→
dx (1, 1) + si,k

−→
dx (NI, 1)

]

+

ti,k

[

(1 − si,k)
−→
dx (1, NK) + si,k

−→
dx (NI, NK)

]

= PζPξ

(5.14)

or in condensed form:

PζPξ = (1 − ti,k)
−→
dx

i
(i, 1) + ti,k

−→
dx

i
(i, NK) (5.15)

In essence, TFI is the Boolean sum of the previously defined projections:

−→
dx

ik
(i, k) = Pξ ⊕ Pζ =

−→
dx

i
(i, k) +

−→
dx

k
(i, k) − PξPζ (5.16)

−→
dx

ik
(i, k) = Pξ (i, k) +

[

(1 − ti,k)
−→
dx (i, 1) + ti,k

−→
dx (i, NK) +

]

−
[

(1 − ti,k)
−→
dx

i
(i, 1) + ti,k

−→
dx

i
(i, NK)

]

By gathering common terms the 2-D TFI can be most easily defined as a two

step recursion formula [114]:

−→
dx

ik
(i, k) =

−→
dx

i
(i, k) + (1 − ti,k)

[−→
dx (i, 1) −−→

dx
i
(i, 1)

]

+ ti,k

[−→
dx (i, NK) −−→

dx
i
(i, NK)

] (5.17)

Finally, the displacements in the interior of the 2-D grid are defined as:

−→
dx (i, k) =

−→
dx

ik
(i, k) (5.18)
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5.2 Arc-length Transfinite Interpolation

5.2.1 Orthogonality Enforcement at solid boundaries.

Although TFI provides an efficient and robust way of grid deformation, it does

not guarantee an orthogonal mesh near the solid boundaries. For the sake of com-

putational accuracy, orthogonality at the boundary is enforced by the following

procedure:

Consider a grid node on the boundary with co-ordinates (x1, z1), at which

the tangential gradient is calculated to be m1, then the straight line normal to

the boundary, through node (x1, z1) has equation:

z − z1 = − 1

m1
(x − x1) (5.19)

Suppose that the corresponding node off the boundary has co-ordinates (x2, z2)

and a tangential gradient m2. Then the straight line tangent to this node has

equation:

z − z2 = m2 (x − x2) (5.20)

By solving simultaneously Eq.’s (5.19), (5.20) orthogonality at the wall is en-

forced. However, this technique may result in severe slope discontinuities near

the solid boundary. In order to circumvent this, a grid blending method is em-

ployed.

5.2.2 Grid Blending near solid boundaries.

At large deformations, crossover of cells may occur near the solid boundary or at

sharp corners as in the trailing edge of the airfoil. In order to improve the quality

of the grid near the wall and to prevent crossover of cells, a blending function is

implemented. The blending function is a weighting function of the arc-tangent

that makes the deformed grid lines extend the same angle from the surface as the

original line and is defined as follows [115]:

F1 =
2

π
tan−1

[

k − kmin

TRI
NK

(kmax − kmin)

]bp

(5.21)

85



5.3 Description of the Aerodynamic Optimisation System

F2 =
2

π
tan−1

[

TRI
NK

(kmax − kmin)

k − kmin

]bp

(5.22)

where TRI is the transition index, kbmin, kbmax define the maximum and mini-

mum grid index of the region where the blending is to occur, and bp, the blending

power, is used to control the blending.

The blended values are given by the sum of the product F1 with the non-

blended grid points −→x (i, k) and the product of F2 with the projection of the

non-blended original grid points:

−→x (i, k)blend = F1
−→x (i, k)project + F2

−→x (i, k) (5.23)

Figure 5.2 below demonstrates the evolution of the deformed mesh and the

impact that the developed analytic method has on the smoothness and orthogo-

nality of the generated grid. In order to check the validity of the method at large,

unrealistic, deformations the maximum displacement was defined to be 10×z∗max.

(a) Initial Mesh (b) Deformed Mesh

Figure 5.2: Demonstration of the TFI implementation.

5.3 Description of the Aerodynamic Optimisa-

tion System

The Multi-OBjective Integrated Design system (MOBID 2D) that was build for

the needs of the present work consists of a series of codes, written in FORTRAN77,

C and C++. It incorporates the recently developed CFD solver, described and
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5.3 Description of the Aerodynamic Optimisation System

validated in Chapters 3 and 4, coupled with TS algorithm that has been developed

by Jaeggi et al. [59], a simple and efficient geometry parametrization technique

and a fast and robust analytic mesh perturbation method that is based on an arc

length transfinite interpolation (TFI), detailed in the preceding Section 5.2.

The first step of the entire optimisation process is the parametrization of the

initial geometry, that is the transformation of the active part of the aerofoil into

the parametrized design vector. The produced design vector consists of 8 variables

in total, of which the first two describe the chordwise length of the active part of

the aerofoil and the authority of the piezoelectric actuator, whereas the next 6

variables define the actual shape of the active camber.

Soon after the parametrization process is complete, the master, optimiser,

and the slave, CFD solver, processes of the parallelized optimisation applica-

tion are initialized. In the master process the optimisation problem is defined,

according to which the objective functions, design variables and initial design

vector are assigned and the initial step size of the design parameters are set. The

Multi-Objective Tabu Search (MOTS) libraries are invoked and the optimisation

process is started, at which point the slave processes are launched. The main

characteristic of the slave process is the CFD interface that is effectively the

communication medium between the optimiser and the CFD solver. It receives

the design vector from the optimiser and tranceives the objective function values,

evaluated by the flow solver. On receipt of a new design vector the computational

mesh is deformed according to the geometry specification. Then a detailed CFD

analysis is performed. Based on this simulation, the objective functions are eval-

uated and passed on to the optimiser. The optimiser generates the new design

vector, that is in turn evaluated. This loop continues until a stopping criterion is

met. Figure 5.3 presents a schematic description of the main components of the

design system.
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5.4 Bi-objective Optimisation of the OA312 aerofoil

Figure 5.3: Design Core System flowchart.

5.4 Bi-objective Optimisation of the OA312 aero-

foil

One of the main objectives of this research effort is to investigate the effect that

high resolution CFD methods have on the optimised shapes and aerodynamic

performance, resulting from an optimisation process whereby the CFD solver is

coupled with a state-of-the art heuristic optimisation algorithm. For this reason a

methodical investigation was undertaken. The optimisation process, described in

the preceding chapters, was performed with gradually increasing the spatial reso-

lution of the numerical scheme by employing second, third and fifth order inviscid

flux reconstructions. Meanwhile, for consistency reasons, the same computation

mesh was used in all of the variants of the optimisation system.

The number of CFD iterations in conjunction with the number of the grid

nodes have great impact on the computational cost while the optimisation pro-

cess progresses. However, as observed in Chapter 4 the effect of increasing the

88

Chapter5/Chapter5Figs/Core_Design.eps


5.4 Bi-objective Optimisation of the OA312 aerofoil

resolution of the grid is more constraining in terms of CPU time than the effect

of increasing the order of the numerical method. Therefore and in order to keep

the optimisation cost to a minimum without comprising in accuracy, computa-

tion grids comprising 280× 90 control volumes have been employed for all of the

optimisation cycles. At this point, it should be stressed that the grid used for

the present investigation is considered much finer than what is generally used

for CFD based optimisation - Peigin & Epstein [108] and Hazra et al. [107] per-

formed CFD based optimisation using grids that consisted of 81×25 and 193×33

control volumes, respectively. This adds another level of confidence regarding the

reduction of numerical errors in the CFD simulation and allows to investigate

solely the effect of varying the order of the numerical method.

To increase computational efficiency of the process, the CFD computations

during each optimisation step are restarted from the converged solution of the

datum design, obtained with the highest resolution method available in the solver.

For each optimisation process, the initial design vector corresponds to the baseline

geometry and the flow metrics resulting from the very first CFD evaluation are

used to aerodynamically characterize the datum design. Therefore, it is expected

that the objective functions of the datum design will vary with respect to the

nominal order of accuracy of the CFD method.

Ideally the reduction of the residuals should be brought down to machine

zero. However, this would result in significant time costs. In this work, the con-

vergence criterion for the CFD simulation is the reduction of the residuals under

a predefined threshold. Numerical experiments have shown that reducing the

total maximum residual by five orders of magnitude, the flow metrics of interest

remained constant. Furthermore, a maximum number of iterations is specified in

order to avoid possible stagnation of the pseudo-unsteady time marching scheme

due to potential flow unsteadiness, which would significantly increase compu-

tational time. Each CFD evaluation stage terminates when either the residual

convergence criterion is met or the maximum number of iterations is reached.

Moreover, to assure that no fictitious optima are obtained when the convergence

criterion is not met, an exception flag is passed on to the optimiser that neglects

the non-converged designs, which constitute the infeasible design vectors of the

optimisation process.

89



5.4 Bi-objective Optimisation of the OA312 aerofoil

The findings of the optimisation processes are summarized in Figures 5.4 -

5.6, which correspond to the second, third and fifth order CFD method em-

ployed in the optimisation design system, respectively. Qualitative similarities

and differences in the optimisation search pattern between the different optimi-

sation processes are visible. All of the optimisation variants display numerous

discontinuities in the search pattern and the Pareto front that is indicative of the

non-linear nature of the aerodynamic problem. The observed gaps in the search

pattern is attributed to geometrically and aerodynamically infeasible designs as

well as aerofoil designs of poor aerodynamic performance. The high density areas

of the search pattern is a combined result of the stringent constraint, defined in

Eq. 5.7, and the small step size of the design vector. However, the compromise

design areas of all optimisation variants, are well explored and the corresponding

aerofoil shapes cover a wide range of the Pareto fronts. Moreover, it is apparent

that improvements in both the objective functions have been achieved relative

to the datum design for each of the optimisation variants. The aforementioned

commonalities are attributed to the effectiveness of the optimisation algorithm

employed as well as in the nature and definition of the optimisation problem.

On the other hand significant differences are observed as the numerical ac-

curacy is increased. In terms of computational time it is evident that the 2nd

order optimisation variant performed the most CFD evaluations when compared

with the higher order variants. This testifies the computational efficiency of the

lower order method. This is expected since the larger discretisation stencil of the

higher order methods increases the floating point operations. More important

however, is that the results of the search pattern changes noticeably with re-

spect to the order of resolution of the CFD method. From the results of 5thorder

optimisation variant, Figure 5.6, it is clear that the design space is strongly con-

strained in the region where designs with the lowest absolute pitching moment

occur. In fact, the resulted feasible designs have similar values of this objective

function and the trade-off surface in this area is almost horizontal, indicating that

small improvements in pitching moment are obtained at the cost of lift deterio-

ration. A similar behavior in results is observed from the 3thorder optimisation

variant, Figure 5.5, where the achievable trade-off between lift and minimum ab-

solute pitching moment is manifested through a clear discontinuity in the Pareto
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5.4 Bi-objective Optimisation of the OA312 aerofoil

front. On the contrary, the Pareto front resulted from a 2nd order accurate CFD

evaluations exhibits a nearly linear relation between minimum moment and lift

coefficient. This indicates that although significantly more optimisation steps

have been performed, the inherent diffusivity of the lower order method, failed to

accurately predict the flow metrics. As a result the optimisation search pattern

got trapped in a local optimum but globally sub-optimum region, at least as far

as the minimisation of the pitching moment is concerned.

Max cL

Min |cm|

Compromise Design

A

cL

|c
m
|

1.3 1.32 1.34 1.36 1.38 1.4

0.036
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0.066

0.072

0.078

0.084

Feasible Designs
Pareto Front
Datum Design

2nd order Van Albada

5000 CFD EVALUATIONS

Figure 5.4: Optimisation Search Pattern: Feasible Designs and the Pareto Front
as resulted from the 2nd order Van Albada CFD method.
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Figure 5.5: Optimisation Search Pattern: Feasible Designs and the Pareto Front
as resulted from the 3rd order WENO CFD method.
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Figure 5.6: Optimisation Search Pattern: Feasible Designs and the Pareto Front
as resulted from the 5th order WENO CFD method.
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5.5 Discussion of Results

To draw a more decisive conclusion on the effect that high resolution methods

have on aerodynamic shape optimisation, a comparative analysis of the optimum

designs obtained by different optimisation cycles has been performed. The opti-

mum, as well as a compromise design that were the outcome of the optimisation

process, using low resolution methods, have been numerically investigated us-

ing the higher resolution method available in the present computational method,

namely the fifth order WENO scheme. Figures 5.8 - 5.19 display the geometric

characteristics of the optimum designs along with pressure coefficient distribu-

tions and the resulting flow field, while Table 5.2 summarizes the flow metrics of

this analysis.

The optimised aerofoil geometries found with the 5th order WENO scheme are

presented in Figures 5.14 - 5.19, which show, respectively, the highest coefficient

of lift, the lowest, in absolute value, pitching moment coefficient design and com-

promise designs for the trade-off, Pareto, surface. These aerofoil designs are quite

different to the baseline geometry and in addition there are significant differences

amongst them. The aerofoil design for the highest lift has a completely different

camber variation, compared to the design for lowest absolute pitching moment.

In contrast the compromise designs display similar geometrical characteristics

with each other.

Comparing Figures 5.8, 5.11 and 5.14, it is evident that the maximum lift de-

signs resulting from the different optimisation processes show similar geometric

characteristics, whereas this is not true for the designs corresponding to mini-

mum moments coefficients as can be seen from Figures 5.8, 5.12 and 5.15. The

latter manifests the sensitivity of the moment coefficient objective function to the

employed resolution of the numerical method.

There are some general geometrical characteristics that distinguish the op-

timum designs from the baseline aerofoil design. Geometries that result in a

higher camber tend to exhibit higher lift coefficient. The flow is accelerated on

the suction surface increasing the lift, drag and moment coefficients. Furthermore

throughout the optimisation processes maximum lift coefficients are obtained with
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almost maximum piezo-electric actuator authority. Meanwhile the design vari-

able that corresponds to the extension of the active part of the camber reaches

the lower part of the constraint, which makes the effect of the actuator authority

more profound, as it is observed from Figures 5.8, 5.11 and 5.14. On the other

hand the minimisation of the more sensitive pitching moment coefficient requires

more subtle geometric changes dictating mediocre piezo-electric authority and

active camber width as can be seen from Figure 5.15.

The changes made to the aerofoil geometry during the search demonstrate the

flexibility of the geometry parametrization system used, while the geometrical

differences amongst the optimal designs indicate the richness of the design space

and highlight the need for an efficient optimisation tool to support the designer

in exploring the design space.

Table 5.2 summarises the flow metrics of the optimisation investigation. Over-

all, it is observed that the attainment of higher lift is in conflict with the need for

low drag coefficients and pitching moment characteristics. Furthermore it is obvi-

ous that high accuracy CFD methods result in optimised shapes that outperform

significantly the datum design. On the other hand the lower order methods, can

yield designs that satisfy the first objective, while they fail to meet the second

design goal, that is pitching moments nearly equal to zero. In fact, even the

minimum cm designs of both the 2nd and 3rd order methods yield higher pitch-

ing moments than the datum design. This in turn is attributed to the incorrect

evaluation of the initial flow metrics of the datum design and illustrates the de-

terministic nature of the optimisation process,i.e., the entire optimisation process

and the resulting search pattern are highly dependent on the initial flow metrics

of the datum design configuration.
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CFD method Design cl cm cd

Datum 1.48625 0.00403 0.03543

5thOrder

Max. cl

Min. cm

Comp. A
Comp. B
Comp. C
Comp. D

1.62183
1.51211
1.55664
1.54586
1.54126
1.53842

-0.02388
-0.00002
-0.00763
-0.00244
-0.00063
0.00039

0.04079
0.03671
0.03889
0.03888
0.03874
0.03857

3thOrder
Max. cl

Min. cm

Comp. A

1.598101
1.504994
1.526962

-0.017023
0.004946
0.004888

0.039646
0.036718
0.038101

2thOrder
Max. cl

Min. cm

Comp. A

1.637523
1.452454
1.52236

-0.027933
0.023553
0.006204

0.041407
0.034088
0.037963

Table 5.2: Aerodynamic Loads Comparison between optimum shapes resulted
from different order methods.

Nevertheless, it is noteworthy that the more diffusive second order method

has resulted in an optimum shape that performs better with respect to cl than

WENO5. Although the relative difference between the two methods is a merely

0.9 %, this observation cannot be neglected or be thought of as incidental. In fact

the comparison of the coefficients of pressure distribution, in Figure 5.7, depicts

the physical reasoning behind this finding. Although the pressure distributions

match closely, there is a noticeable difference in the pressure plateau at the trail-

ing edge, especially on the pressure surface. The optimum shape resulted from

the optimisation task with the WENO5 method is more deflected than the one

obtained with the second order method. This practically results in an increase

in camber. Inviscid theory assumes that the increase in camber will result in

higher lift gains through the Kutta condition. In real viscous flows a separation

bubble occurs near the trailing edge that has an adverse effect on lift. The more

deflected shape increases the extend of the separation bubble towards the wake

which causes the flow to decelerate on both suction and pressure surfaces. As Fig-

ure 5.7 shows, the resulting pressure drop on the lower surface is more profound

and is what causes the net reduction in lift.
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Figure 5.7: Comparison of optimum design for maximum lift coefficient between
the 2ndorder and 5th order method. Polynomial design function (top left) and re-
sulting aerofoil shape (top right), cp distribution (middle), Mach number contours
with superimposed streamlines (bottom).
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This observation however does not diminish the importance of high resolution

methods. Instead, it highlights the effectiveness of the optimisation algorithm

employed, when a large amount of optimisation cycles are performed, at least

as far as the less sensitive lift coefficient is concerned. It further illustrates how

subtle shape differences can have a significant impact on the local flow physics and

hence on aerodynamic performance. In fact the sensitivity of the flow metrics to

the geometric perturbations is more profound as the resolution and thus quality

and accuracy of the CFD simulation increases.

Depending on the flow metrics of interest the use of low accuracy computa-

tional methods can result in undesirable and misleading conclusions. This has

been most clearly demonstrated for the case of the very sensitive cm. On the

other hand the objective function regarding the cl was less sensitive to the accu-

racy of the numerical method. In fact the higher and lower numerical schemes

performed comparably well when it came to satisfying the first objective function.

However, to control the introduction of fictitious virtual maxima or minima into

the objective function front, it is imperative that the CFD solution is as precise as

possible. The correct and accurate integration of the aerodynamic loads is highly

dependent on the underlying nominal order of accuracy of the CFD methods.
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Optimum Designs resulting from the Second Order Method
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Figure 5.8: Maximum cl design, resulting from 2ndorder VanAlbada scheme.
Polynomial design function (top left) and resulting aerofoil shape (top right),
cp distribution (middle), Mach number contours with superimposed streamlines
(bottom).
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Figure 5.9: Minimum cm design, resulting from 2ndorder VanAlbada scheme.
Polynomial design function (top left) and resulting aerofoil shape (top right),
cp distribution (middle), Mach number contours with superimposed streamlines
(bottom).
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Figure 5.10: Compromise design A, resulting from 2ndorder VanAlbada scheme.
Polynomial design function (top left) and resulting aerofoil shape (top right),
cp distribution (middle), Mach number contours with superimposed streamlines
(bottom).
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Optimum Designs resulting from the Third Order Method
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Figure 5.11: Maximum cl design, resulting from 3rdorder WENO scheme. Polyno-
mial design function (top left) and resulting aerofoil shape (top right), cp distribu-
tion (middle), Mach number contours with superimposed streamlines (bottom).
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Figure 5.12: Maximum cm design, resulting from 3rdorder WENO scheme. Poly-
nomial design function (top left) and resulting aerofoil shape (top right), cp distri-
bution (middle), Mach number contours with superimposed streamlines (bottom).
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Figure 5.13: Compromise design A, resulting from 3rdorder WENO scheme. Poly-
nomial design function (top left) and resulting aerofoil shape (top right), cp distri-
bution (middle), Mach number contours with superimposed streamlines (bottom).
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5.5 Discussion of Results
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Figure 5.14: Maximum cl design, resulting from 5thorder WENO scheme. Polyno-
mial design function (top left) and resulting aerofoil shape (top right), cp distribu-
tion (middle), Mach number contours with superimposed streamlines (bottom).
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Figure 5.15: Minimum cm design, resulting from 5thorder WENO scheme. Poly-
nomial design function (top left) and resulting aerofoil shape (top right), cp distri-
bution (middle), Mach number contours with superimposed streamlines(bottom).
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Figure 5.16: Compromise design A, resulting from 5thorder WENO CFD scheme.
Polynomial design function (top left) and resulting aerofoil shape (top right),
cp distribution (middle), Mach number contours with superimposed stream-
lines(bottom)
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Figure 5.17: Compromise design B, resulting from 5thorder WENO scheme. Poly-
nomial design function (top left) and resulting aerofoil shape (top right), cp distri-
bution (middle), Mach number contours with superimposed streamlines (bottom).
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Figure 5.18: Compromise design C, resulting from 5thorder WENO scheme. Poly-
nomial design function (top left) and resulting aerofoil shape (top right), cp distri-
bution (middle), Mach number contours with superimposed streamlines (bottom).
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Figure 5.19: Compromise design D, resulting from 5thorder WENO scheme. Poly-
nomial design function (top left) and resulting aerofoil shape (top right), cp distri-
bution (middle), Mach number contours with superimposed streamlines (bottom).
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Chapter 6

Conclusions

The results of the foregoing studies demonstrate the importance of high reso-

lution methods for RANS modeling and aerodynamic optimisation. The effect

that the increased numerical accuracy has on RANS computation was signified

in Chapter 4, where computations were performed for two highly diverse flow

regimes and computationally demanding test cases with complex flow phenom-

ena. The transonic flow over the RAE 2822 aerofoil features shock boundary layer

interaction and shock induced separation, while the subsonic flow over the NACA

4412 near maximum lift is substantially separated near the trailing edge and a

steady separation bubble is formed. For both cases a grid convergence study

was performed and it was observed that the 5th order method displayed signs of

grid independence. Furthermore, the relative timings of the different numerical

schemes on different grids proved that it is much more efficient to employ a high

resolution method on a coarser grid than to use a lower order method on a finer

computational mesh.

As it was expected the highest order method outperformed all other meth-

ods in terms of accuracy. Any observed discrepancies with the experimental data

were partially attributed to the assumed linear dependency of the Reynolds stress

to the mean strain rate tensor, via the Boussinesq relation. Since each method

converged to a different result, it became evident that besides the constitutive

relation (Boussinesq), the solution was greatly affected by the discretisation of

the convected fluxes. In fact, the increase of the numerical resolution improved

significantly the predictions. The aerodynamic loads resulting from the present
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work were compared with the aerodynamic loads reported by other authors for

the same cases using similar grids, but with lower order methods and more so-

phisticated non linear eddy viscosity models. The comparison strongly favors and

justifies the use of high, 5th, order methods for turbulent flow computations in

the context of RANS. The relative comparison strengthens the hypothesis that

at least in 2d RANS computations, the effect of high resolution methods is more

profound than the turbulence model. This is not to diminish the importance of

the eddy viscosity models but to rather highlight the need for high accuracy both

in terms of turbulence modeling and numerical methods in engineering analysis

and design.

Regarding aerodynamic design optimisation, a Multi-Objective Integrated De-

sign system (MOBID) has been built in order to identify feasible designs of the

novel Active Camber, flow control concept. The system encompasses the devel-

oped CFD solver with a state of the art heuristic optimisation algorithm, along

with an efficient parametrization technique and a fast and robust method of

propagating geometric displacements. The methodologies in the MOBID system

resulted in the identification of the design vectors that revealed aerodynamic per-

formance gains over the datum aerofoil design. The Pareto front provided a clear

picture of the achievable trade-offs between the competing objectives.

For the present investigation a much finer computational mesh was used and

a more accurate turbulence model was employed than what is generally the case

in aerodynamic optimisation. The same optimisation problem was iterated with

the resolution scheme varying. Remarkably, it was found that the results of the

search pattern change noticeably with respect to the order of the CFD method.

In fact the search pattern resulted from the 2nd order method got trapped in a

sub-optimum region, making evident that in order to control the introduction of

fictitious optima into the objective function front, it is imperative to employ a

high precision CFD solver. The high accuracy CFD method resulted in optimised

shapes that outperformed significantly the datum design. Whereas, the lower

order methods failed to satisfy the more sensitive objective regarding cm.

However, the search patterns of the 3rd and 5thorder optimisation variants,

displayed similar characteristics. The 3rdorder variant managed to capture the

design space morphology compared to 5th order Pareto front, thus one could
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6.1 Future Work

suggest to use the lower order, and thus faster, CFD method for optimisation

algorithm development and adaptation to complex engineering design problems,

and more specifically to aerodynamics. Nevertheless, when it comes to the ac-

tual optimisation process there is no choice but to employ the highest resolution

available in order not to compromise the accuracy of the evaluation.

6.1 Future Work

The efficacy of high resolution methods points towards a new direction regard-

ing turbulence modeling for large scale engineering applications. In the present

study it became apparent that by increasing the nominal order of accuracy of

the scheme, more of the flow physics are resolved than modeled and thus some

of the shortcomings of the turbulence modeling assumption are somewhat alle-

viated. Nevertheless, the inability of the models to predict transition results in

a globally present eddy viscosity that results in excessive damping of fluctua-

tions, loss of information and effectively pollutes the solution. There is a clear

need to extract large-scale features at minimal computational expense and for

real life-applications. This is the main drive of emerging computational methods

that combine the cost-effectiveness of RANS with the accuracy of LES, such as

detached-eddy simulations (DES) [116], and hybrid RANS/LES

Quite recently Girimaji [117], presented a method of intermediate cost/accuracy

ratio, the Partially-Averaged Navier Stokes (PANS). The intriguing idea of PANS

is that by defining filter-type “unresolved-to-total” ratios of kinetic energy (fk)and

dissipation (fǫ) the method ranges from RANS to DNS. The filters delimiting re-

solved and modeled motion are implied rather than explicitly defined, while the

parameters fk and fǫ can be constant or vary as a function of time and space

(in the spirit of DES). Such concepts, make the PANS method a promising way

towards robust CFD solvers that can be either used for DNS studies or as part

of an engineering design system.

In order to improve the newly developed multi-objective integrated design

system a restart strategy is suggested for implementation. The Epanechnikov

function [118] can be used as a statistical quantity, measuring the density of
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6.1 Future Work

visited designs. The search pattern should be directed towards the least inves-

tigated region, according to the relative densities of the design area. The step

size of the design variables should be also adapted according to the respective

density. Large step sizes should be assigned for low percentage density and small

for high percentage density. This way a broader design space can be explored in

a more efficient manner, while the possibility of a sub-optimum region lock will

be alleviated.
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Appendix A

Transformation of Viscous Fluxes

to Generalized Curvilinear

Coordinates

The viscous fluxes can be written explicitely as;

• In ξ- direction;

R =





















0

τxxξ̂x + τzxξ̂z

τxz ξ̂x + τzz ξ̂z

uτxxξ̂x + wτxzξ̂x − qxξ̂x + uτzxξ̂z + wτzz ξ̂z − qz ξ̂z

1
Re

(µ + σκµt)
(

∂k
∂x

ξ̂x + ∂k
∂z

ξ̂z

)

1
Re

(µ + σωµt)
(

∂ω
∂x

ξ̂x + ∂ω
∂z

ξ̂z

)





















where also the stresses and the heat transfer are transformed to generalized

coordinates such that;

τxx = 4
3

1
Re

(µ + µt)
(

∂u
∂x

)

− 2
3

1
Re

(µ + µt)
(

∂w
∂z

)

− 2
3
ρκ

remembering that ξ̂x = Jξx, ξ̂z = Jξz, then

τxx = 1
J

1
Re

[

4
3
(µ + µt)

(

∂u
∂ξ

ξ̂x + ∂u
∂ζ

ζ̂x

)

− 2
3
(µ + µt)

(

∂w
∂ξ

ξ̂z + ∂w
∂ζ

ζ̂z

)]
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Similarly;

τzz = 1
J

1
Re

[

4
3
(µ + µt)

(

∂w
∂ξ

ξ̂z + ∂w
∂ζ

ζ̂z

)

− 2
3
(µ + µt)

(

∂u
∂ξ

ξ̂x + ∂u
∂ζ

ζ̂x

)]

and

τxz = τzx = 1
J

1
Re

(µ + µt)
[(

∂u
∂ξ

ξ̂z + ∂u
∂ζ

ζ̂z

)

+
(

∂w
∂ξ

ξ̂x + ∂w
∂ζ

ζ̂x

)]

The non-dimensional heat fluxes read;

qx = − 1
J

1
Re

(

µ γ
Pr

+ µt
γ

Prτ

)(

∂T
∂ξ

ξ̂x + ∂T
∂ζ

ζ̂x

)

and

qz = − 1
J

(

V ISTL
γ

Pr
+ µt

γ
Prτ

)(

∂T
∂ξ

ξ̂z + ∂T
∂ζ

ζ̂z

)

while the turbulent viscous terms;

∂k
∂x

=
(

∂k
∂ξ

ξx + ∂k
∂ζ

ζx

)

= 1
J

(

∂k
∂ξ

ξ̂x + ∂k
∂ζ

ζ̂x

)

,

∂k
∂z

=
(

∂k
∂ξ

ξz + ∂k
∂ζ

ζz

)

= 1
J

(

∂k
∂ξ

ξ̂z + ∂k
∂ζ

ζ̂z

)

and

∂ω
∂x

=
(

∂ω
∂ξ

ξx + ∂ω
∂ζ

ζx

)

= 1
J

(

∂ω
∂ξ

ξ̂x + ∂ω
∂ζ

ζ̂x

)

,

∂ω
∂z

=
(

∂ω
∂ξ

ξz + ∂ω
∂ζ

ζz

)

= 1
J

(

∂ω
∂ξ

ξ̂z + ∂ω
∂ζ

ζ̂z

)

115



Appendix B

Inviscid Jacobians

The conservative Flux Jacobians in generalized time dependent curvilinear coor-

dinates can be written as:

Ainv =























0

(γ − 1)
(

q2

2

)

ξ̂x − uqξ

(γ − 1)
(

q2

2

)

ξ̂z − wqξ
[

(γ − 1)
(

q2

2

)

− H
]

qξ

−kqξ

−ωqξ

ξ̂x

qξ − (γ − 2)uξ̂x

wξ̂x − (γ − 1)uξ̂z

Hξ̂x − (γ − 1)uqξ

kξ̂x

ωξ̂x

ξ̂z

uξ̂z − (γ − 1)wξ̂x

qξ − (γ − 2) wξ̂z

Hξ̂z − (γ − 1)wqξ

kξ̂z

ωξ̂z

0

(γ − 1) ξ̂x

(γ − 1) ξ̂z

γqξ

0
0

0

−C (γ − 1) ξ̂x

−C (γ − 1) ξ̂z

−C (γ − 1)
−→
U

qξ

0

0
0
0
0
0
qξ

















and
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Cinv =























0

(γ − 1)
(

q2

2

)

ζ̂x − uqζ

(γ − 1)
(

q2

2

)

ζ̂z − wqζ
[

(γ − 1)
(

q2

2

)

− H
]

−→qζ

−kqζ

−ωqζ

ζ̂x

qζ − (γ − 2) uζ̂x

wζ̂x − (γ − 1) uζ̂z

Hζ̂x − (γ − 1)uqζ

kζ̂x

ωζ̂x

ζ̂z

uζ̂z − (γ − 1)wξ̂x

qζ − (γ − 2)wξ̂z

Hζ̂z − (γ − 1) wqζ

kζ̂z

ωζ̂z

0

(γ − 1) ζ̂x

(γ − 1) ζ̂z

γqζ

0
0

0

−C (γ − 1) ζ̂x

−C (γ − 1) ζ̂z

−C (γ − 1) qζ

qζ

0

0
0
0
0
0
qζ
















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Appendix C

Diagonalization of the Jacobian

matrices and compatibility

relations

Since there are few zero elements in Jacobians A, C it is difficult to determine

their eigenvalues-eigenvectors necessary for the intended splitting. Hence it is

more convenient to consider the non-conservative form of inviscid equations in

curvilinear co-ordinates. Upon definition of the non conservative solution vector;

υ = [ρ, u, w, pt, k, ω]T

and

M =
∂U

∂υ
=

















1
u
w

q2

2
+ Ck
k
ω

0
ρ
0
ρu
0
0

0
0
ρ

ρw
0
0

0
0
0
1

γ−1

0
0

0
0
0

Cρ
ρ
0

0
0
0
0
0
ρ
















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M−1 =
∂υ

∂U
=



















1 0 0 0 0 0
−u

ρ
1
ρ

0 0 0 0

−w
ρ

0 1
ρ

0 0 0

(γ − 1) q2

2
−(γ − 1)u −(γ − 1)w γ − 1 −C(γ − 1) 0

−k
ρ

0 0 0 1
ρ

0

−ω
ρ

0 0 0 0 1
ρ



















the non-concervative convective Flux Jacobians are defined as;

ainv = M−1AinvM, cinv = M−1CinvM

therefore the matrices ainv, cinv are (given that the speed of sound c2 = γpt

ρ
);

ainv =



















qξ ρξ̂x ρξ̂z 0 0 0

0 qξ 0 ξ̂x

ρ
0 0

0 0 qξ
ξ̂z

ρ
0 0

0 ρc2ξ̂x ρc2ξ̂x qξ 0 0
0 0 0 0 qξ 0
0 0 0 0 0 qξ



















,

cinv =



















qζ ρζ̂x ρζ̂z 0 0 0

0 qζ 0 ζ̂x

ρ
0 0

0 0 qζ
ζ̂z

ρ
0 0

0 ρc2ζ̂x ρc2ζ̂x qζ 0 0
0 0 0 0 qζ 0
0 0 0 0 0 qζ



















Because of their relative simplicity, the eigensystem of the non-conservative

equations will be derived first and the these will be transformed to the conserva-

tive form using compatibility relations.

The eigenvalues of ainvare given by;

det |ainv − Λ| = 0
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with Λ = λI

from which, one can find that;

λ0 = λ1 = λ2 = λ5 = λ6 = qξ

λ3 = λ0 + c

√

ξ̂2
x + ξ̂2

z

λ4 = λ0 − c

√

ξ̂2
x + ξ̂2

z

Although matrix ainv has an eigenvalue of multiplicity four, it has a com-

plete set of linearly independent eigenvectors and can be defined up to arbitrary

normalization factors. Consequently the matrix P is constructed using these

eigenvectors as columns (right eigenvector)[Beam Warming], by solving ;

ainvP = ΛP

P =





















0
1
c2

1
2c2

1
2c2

0 0

− ξ̂z√
ξ̂2
x+ξ̂2

z

0
ξ̂x

2ρc
√

ξ̂2
x+ξ̂2

z

− ξ̂x

2ρc
√

ξ̂2
x+ξ̂2

z

0 0

ξ̂x√
ξ̂2
x+ξ̂2

z

0
ξ̂z

2ρc
√

ξ̂2
x+ξ̂2

z

− ξ̂z

2ρc
√

ξ̂2
x+ξ̂2

z

0 0

0 0
1
2

1
2

0 0

0 0 0 0 1 0

0 0 0 0 0 1





















and the left eigenvectors of matrix of ainv is;

P−1 =























0 − ξ̂z√
ξ̂2
x+ξ̂2

z

ξ̂x√
ξ̂2
x+ξ̂2

z

0 0 0

c2 0 0 −1 0 0

0
ρcξ̂x√
ξ̂2
x+ξ̂2

z

ρcξ̂z√
ξ̂2
x+ξ̂2

z

1 0 0

0 − ρcξ̂x√
ξ̂2
x+ξ̂2

z

− ρcξ̂z√
ξ̂2
x+ξ̂2

z

1 0 0

0 0 0 0 1 0

0 0 0 0 0 1























Therefore matrix ainv can be rewritten as;

a = PΛP−1 = M−1AM
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A = MPΛP−1M−1

or if one defines the conservative left/righ eigenvectors asT = MPand T−1 =

P−1M−1

then:

A = TΛT−1

where T and T−1 are:

T =

























0
1
c2

1
2c2

1
2c2

0 0

− ρξ̂z√
ξ̂2
x+ξ̂2

z

u
c2

u
2c2

+ ξ̂x

2c
√

ξ̂2
x+ξ̂2

z

u
2c2

− ξ̂x

2c
√

ξ̂2
x+ξ̂2

z

0 0

ρξ̂x√
ξ̂2
x+ξ̂2

z

w
c2

w
2c2

+ ξ̂z

2c
√

ξ̂2
x+ξ̂2

z

w
2c2

− ξ̂z

2c
√

ξ̂2
x+ξ̂2

z

0 0

ρ(wξ̂x−uξ̂z)√
ξ̂2
x+ξ̂2

z

Ck+ 1

2
q2

c2
Ck+ 1

2
q2

2c2
+ 1

2(γ−1)
+

(uξ̂x+wξ̂z)
2c
√

ξ̂2
x+ξ̂2

z

Ck+ q2

2

2c2
+ 1

2(γ−1)
− (uξ̂x+wξ̂z)

2c
√

ξ̂2
x+ξ̂2

z

Cρ 0

0
k
c2

k
2c2

k
2c2

ρ 0

0
ω
c2

ω
2c2

ω
2c2

0 ρ

























and

T−1 =



























uξ̂z−wξ̂x

ρ
√

ξ̂2
x+ξ̂2

z

− ξ̂z

ρ
√

ξ̂2
x+ξ̂2

z

ξ̂x

ρ
√

ξ̂2
x+ξ̂2

z

0 0 0

c2− 1

2
q2(γ−1) (γ−1)u (γ−1)w −(γ−1) C(γ−1) 0

q2(γ−1)
2

− c(uξ̂x+wξ̂z)√
ξ̂2
x+ξ̂2

z

−
[

(γ−1)u − cξ̂x√
ξ̂2
x+ξ̂2

z

]

−
[

(γ−1)w − cξ̂z√
ξ̂2
x+ξ̂2

z

]

(γ−1) −C(γ−1) 0

q2(γ−1)
2

+
c(uξ̂x+wξ̂z)√

ξ̂2
x+ξ̂2

z

−
[

(γ−1)u + cξ̂x√
ξ̂2
x+ξ̂2

z

]

−
[

(γ−1)w + cξ̂z√
ξ̂2
x+ξ̂2

z

]

(γ−1) −C(γ−1) 0

−k
ρ

0 0 0
1
ρ

0

−ω
ρ

0 0 0 0
1
ρ


























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Eigenvalue Split Jacobians

The eigenvalue split Jacobian is:

Ainv =

















TΛT−1
11 TΛT−1

12 TΛT−1
13 TΛT−1

14 TΛT−1
15 0

TΛT−1
21 TΛT−1

22 TΛT−1
23 TΛT−1

24 TΛT−1
25 0

TΛT−1
31 TΛT−1

32 TΛT−1
33 TΛT−1

34 TΛT−1
35 0

TΛT−1
41 TΛT−1

42 TΛT−1
43 TΛT−1

44 TΛT−1
45 0

TΛT−1
51 TΛT−1

52 TΛT−1
53 TΛT−1

54 TΛT−1
55 0

TΛT−1
61 TΛT−1

62 TΛT−1
63 TΛT−1

64 TΛT−1
65 TΛT−1

66

















where:

TΛT−1
11 = λ0 + (λ1−λ0)

2c2

[

q2(γ−1)
2

− cλ0√
ξ2
x+ξ2

z

]

+ (λ2−λ0)
2c2

[

q2(γ−1)
2

+ cλ0√
ξ2
x+ξ2

z

]

,

TΛT−1
12 = (λ1−λ0)

2c2

[

cξx√
ξ2
x+ξ2

z

− u (γ − 1)

]

− (λ2−λ0)
2c2

[

cξx√
ξ2
x+ξ2

z

+ u (γ − 1)

]

,

TΛT−1
13 = (λ1−λ0)

2c2

[

cξz√
ξ2
x+ξ2

z

− w (γ − 1)

]

− (λ2−λ0)
2c2

[

cξz√
ξ2
x+ξ2

z

+ w (γ − 1)

]

,

TΛT−1
14 = (λ1 − λ0)

(γ − 1)

2c2
+ (λ2 − λ0)

(γ − 1)

2c2
,

TΛT−1
15 = − (λ1 − λ0)

C (γ − 1)

2c2
− (λ2 − λ0)

C (γ − 1)

2c2
,

TΛT−1
21 = λ1−λ0

2c2

(

u + cξx√
ξ2
x+ξ2

z

)[

1
2
q2 (γ − 1) − cλ0√

ξ2
x+ξ2

z

]

+

λ2−λ0

2c2

(

u − cξx√
ξ2
x+ξ2

z

)[

1
2
q2 (γ − 1) + cλ0√

ξ2
x+ξ2

z

]

,
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TΛT−1
22 = λ0+

(λ1−λ0)
2c2

(

u + cξx√
ξ2
x+ξ2

z

)[

cξx√
ξ2
x+ξ2

z

− u (γ − 1)

]

+

(λ2−λ0)
2c2

(

u − cξx√
ξ2
x+ξ2

z

)[

− cξx√
ξ2
x+ξ2

z

− u (γ − 1)

]

,

TΛT−1
23 = λ1−λ0

2c2

(

u + cξx√
ξ2
x+ξ2

z

)[

cξz√
ξ2
x+ξ2

z

− w (γ − 1)

]

+

λ2−λ0

2c2

(

u − cξx√
ξ2
x+ξ2

z

)[

− cξz√
ξ2
x+ξ2

z

− w (γ − 1)

] ,

TΛT−1
24 = λ1−λ0

2c2
(γ − 1)

(

u + cξx√
ξ2
x+ξ2

z

)

+λ2−λ0

2c2
(γ − 1)

(

u − cξx√
ξ2
x+ξ2

z

)

TΛT−1
25 = − (λ1−λ0)

2c2
C (γ − 1)

(

u + cξx√
ξ2
x+ξ2

z

)

− (λ2−λ0)
2c2

C (γ − 1)

(

u − cξx√
ξ2
x+ξ2

z

)

TΛT−1
31 = λ1−λ0

2c2

(

w + cξz√
ξ2
x+ξ2

z

)[

1
2
q2 (γ − 1) − cλ0√

ξ2
x+ξ2

z

]

+

λ2−λ0

2s2

(

w − cξz√
ξ2
x+ξ2

z

)[

1
2
q2 (γ − 1) + cλ0√

ξ2
x+ξ2

z

]

,

TΛT−1
32 = (λ1−λ0)

2c2

(

w + cξz√
ξ2
x+ξ2

z

)[

cξx√
ξ2
x+ξ2

z

− u (γ − 1)

]

+

(λ2−λ0)
2c2

(

w − cξz√
ξ2
x+ξ2

z

)[

− cξx√
ξ2
x+ξ2

z

− u (γ − 1)

] ,
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TΛT−1
33 = λ0+

(λ1−λ0)
2c2

(

w + cξz√
ξ2
x+ξ2

z

)[

cξz√
ξ2
x+ξ2

z

− w (γ − 1)

]

+

(λ2−λ0)
2c2

(

w − cξz√
ξ2
x+ξ2

z

)[

− cξz√
ξ2
x+ξ2

z

− w (γ − 1)

]

,

TΛT−1
34 = λ1−λ0

2c2
(γ − 1)

(

w + cξz√
ξ2
x+ξ2

z

)

+

λ2−λ0

2c2
(γ − 1)

(

w − cξz√
ξ2
x+ξ2

z

)

TΛT−1
35 = − (λ1−λ0)

2c2
C (γ − 1)

(

w + cξz√
ξ2
x+ξ2

z

)

− (λ2−λ0)
2c2

C (γ − 1)

(

w − cξz√
ξ2
x+ξ2

z

)

TΛT−1
41 = λ1−λ0

2c2

[

H + cλ0√
ξ2
x+ξ2

z

] [

q2

2
(γ − 1) − cλ0√

ξ2
x+ξ2

z

]

+

λ2−λ0

2c2

[

H − cλ0√
ξ2
x+ξ2

z

] [

q2

2
(γ − 1) + cλ0√

ξ2
x+ξ2

z

]

TΛT−1
42 = λ1−λ0

2c2

[

H + cλ0√
ξ2
x+ξ2

z

] [

cξx√
ξ2
x+ξ2

z

− u (γ − 1)

]

λ2−λ0

2c2

[

H − cλ0√
ξ2
x+ξ2

z

] [

− cξx√
ξ2
x+ξ2

z

− u (γ − 1)

]

TΛT−1
43 = λ1−λ0

2c2

[

H + cλ0√
ξ2
x+ξ2

z

] [

cξz√
ξ2
x+ξ2

z

− w (γ − 1)

]

λ2−λ0

2c2

[

H − cλ0√
ξ2
x+ξ2

z

] [

− cξz√
ξ2
x+ξ2

z

− w (γ − 1)

]
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TΛT−1
44 = λ0+

λ1−λ0

2c2

[

H + cλ0√
ξ2
x+ξ2

z

]

(γ − 1)+

λ2−λ0

2c2

[

H − cλ0√
ξ2
x+ξ2

z

]

(γ − 1)

TΛT−1
45 = − (λ1−λ0)

2c2

[

H + cλ0√
ξ2
x+ξ2

z

]

C (γ − 1)

− (λ2−λ0)
2s2

[

H − cλ0√
ξ2
x+ξ2

z

]

C (γ − 1)

TΛT−1
51 = + (λ1−λ0)

2c2
k

[

q2

2
(γ − 1) − cλ0√

ξ2
x+ξ2

z

]

+ (λ2−λ0)
2c2

k

[

q2

2
(γ − 1) + cλ0√

ξ2
x+ξ2

z

]

TΛT−1
52 = + (λ1−λ0)

2c2
k

[

cξx√
ξ2
x+ξ2

z

− u (γ − 1)

]

+ (λ2−λ0)
2c2

k

[

− cξx√
ξ2
x+ξ2

z

− u (γ − 1)

]

TΛT−1
53 = + (λ1−λ0)

2c2
k

[

cξz√
ξ2
x+ξ2

z

− w (γ − 1)

]

+ (λ2−λ0)
2c2

k

[

− cξz√
ξ2
x+ξ2

z

− w (γ − 1)

]

TΛT−1
54 = (λ1−λ0)

2c2
k (γ − 1) + (λ2−λ0)

2c2
k (γ − 1)

TΛT−1
55 = λ0− (λ1−λ0)

2c2
kC (γ − 1) − (λ2−λ0)

2c2
kC (γ − 1)
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TΛT−1
61 = + (λ1−λ0)

2c2
ω

[

q2

2
(γ − 1) − cλ0√

ξ2
x+ξ2

z

]

+ (λ2−λ0)
2c2

ω

[

q2

2
(γ − 1) + cλ0√

ξ2
x+ξ2

z

]

TΛT−1
62 = + (λ1−λ0)

2c2
ω

[

cξx√
ξ2
x+ξ2

z

− u (γ − 1)

]

+ (λ2−λ0)
2c2

ω

[

− cξx√
ξ2
x+ξ2

z

− u (γ − 1)

]

[TΛT−1]63 = + (λ1−λ0)
2c2

ω

[

cξz√
ξ2
x+ξ2

z

− w (γ − 1)

]

+ (λ2−λ0)
2c2

ω

[

− cξz√
ξ2
x+ξ2

z

− w (γ − 1)

]

TΛT−1
64 = (λ1−λ0)

2c2
ω (γ − 1) + (λ2−λ0)

2c2
ω (γ − 1)

TΛT−1
65 = − (λ1−λ0)

2c2
ωC (γ − 1) − (λ2−λ0)

2c2
ωC (γ − 1)

TΛT−1
66 = λ0
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Appendix D

Viscous Jacobians

• ξ Viscous Jacobian

Avis,ξ =
∂R

∂Uξ
=

















0 0 0 0 0 0
Avis,ξ21 Avis,ξ22 Avis,ξ23 0 0 0
Avis,ξ31 Avis,ξ32 Avis,ξ33 0 0 0
Avis,ξ41 Avis,ξ42 Avis,ξ43 Avis,ξ44 Avis,ξ45 0
Avis,ξ51 0 0 0 Avis,ξ55 0
Avis,ξ61 0 0 0 0 Avis,ξ66

















where:

Avis,ξ21 = − 1

J

1

Re
(µ + µt)

[(

4

3
ξ̂xξ̂x + ξ̂z ξ̂z

)(

u

ρ

)

+

(

1

3
ξ̂xξ̂z

)(

w

ρ

)]

Avis,ξ22 =
1

J

1

Re
(µ + µt)

(

4

3
ξ̂xξ̂x + ξ̂z ξ̂z

)(

1

ρ

)

Avis,ξ23 = Avis,ξ32 =
1

J

1

Re
(µ + µt)

(

1

3
ξ̂xξ̂z

)(

1

ρ

)

Avis,ξ31 = − 1

J

1

Re
(µ + µt)

[(

1

3
ξ̂xξ̂z

)(

u

ρ

)

+

(

ξ̂xξ̂x +
4

3
ξ̂zξ̂z

)(

w

ρ

)]
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Avis,ξ33 =
1

J

1

Re
(µ + µt)

(

ξ̂xξ̂x +
4

3
ξ̂z ξ̂z

)(

1

ρ

)

Avis,ξ41 =
− 1

J
1

Re
(µ + µt)

{[

u
(

4
3
ξ̂xξ̂x + ξ̂z ξ̂z

)

+ w
(

1
3
ξ̂xξ̂z

)](

u
ρ

)

+
[

u
(

1
3
ξ̂xξ̂z

)

+ w
(

ξ̂xξ̂x + 4
3
ξ̂z ξ̂z

)](

w
ρ

)}

+ 1
J

1
Re

(

µ γ
Pr

+ µt
γ

Prτ

) [(

ξ̂xξ̂x + ξ̂z ξ̂z

)

1
ρ

(

u2+w2

2
− T

)]

Avis,ξ42 =
+ 1

J
1

Re
(µ + µt)

[

u
(

4
3
ξ̂xξ̂x + ξ̂zξ̂z

)

+ w
(

1
3
ξ̂xξ̂z

)] (

1
ρ

)

− 1
J

1
Re

(

µ γ
Pr

+ µt
γ

Prτ

)(

ξ̂xξ̂x + ξ̂zξ̂z

)(

u
ρ

)

Avis,ξ43 =
+ 1

J
1

Re
(µ + µt)

[

u
(

1
3
ξ̂xξ̂z

)

+ w
(

ξ̂xξ̂x + 4
3
ξ̂zξ̂z

)] (

1
ρ

)

− 1
J

1
Re

(

µ γ
Pr

+ µt
γ

Prτ

)(

ξ̂xξ̂x + ξ̂z ξ̂z

)(

w
ρ

)

Avis,ξ44 =
1

J

1

Re

(

µ
γ

Pr
+ µt

γ

Prτ

)

(

ξ̂xξ̂x + ξ̂zξ̂z

) 1

ρ

Avis,ξ45 = − 1

J

1

Re

(

µ
γ

Pr
+ µt

γ

Prτ

)

(

ξ̂xξ̂x + ξ̂z ξ̂z

)

(

1

ρ

)

Avis,ξ51 = − 1

J

1

Re
(µ + σκµt)

(

ξ̂xξ̂x + ξ̂zξ̂z

)

(

k

ρ

)

Avis,ξ55 =
1

J

1

Re
(µ + σkµt)

(

ξ̂xξ̂x + ξ̂zξ̂z

)

(

1

ρ

)

Avis,ξ61 = − 1

J

1

Re
(µ + σωµt)

(

ξ̂xξ̂x + ξ̂zξ̂z

)

(

ω

ρ

)
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Avis,ξ66 =
1

J

1

Re
(µ + σωµt)

(

ξ̂xξ̂x + ξ̂zξ̂z

)

(

1

ρ

)

• ξ Viscous cross term Jacobian

Avis,ζ =
∂R

∂Uζ
=

















0 0 0 0 0 0
Avis,ζ21 Avis,ζ22 Avis,ζ23 0 0 0
Avis,ζ31 Avis,ζ32 Avis,ζ33 0 0 0
Avis,ζ41 Avis,ζ42 Avis,ζ43 Avis,ζ44 Avis,ζ45 0
Avis,ζ51 0 0 0 Avis,ζ55 0
Avis,ζ61 0 0 0 0 Avis,ζ66

















where:

Avis,ζ21 = − 1

J

1

Re
(µ + µt)

[(

4

3
ζ̂xξ̂x + ζ̂z ξ̂z

)(

u

ρ

)

+

(

ζ̂xξ̂z −
2

3
ζ̂zξ̂x

)(

w

ρ

)]

Avis,ζ22 =
1

J

1

Re
(µ + µt)

(

4

3
ζ̂xξ̂x + ζ̂z ξ̂z

)(

1

ρ

)

Avis,ζ23 = Avis,ζ32 =
1

J

1

Re
(µ + µt)

(

ζ̂xξ̂z −
2

3
ζ̂zξ̂x

)(

1

ρ

)

Avis,ζ33 =
1

J

1

Re
(µ + µt)

(

ζ̂xξ̂x +
4

3
ζ̂z ξ̂z

)(

1

ρ
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Avis,ζ31 = − 1

J

1

Re
(µ + µt)
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ζ̂z ξ̂x −
2

3
ζ̂xξ̂z

)(

u

ρ

)
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(

ζ̂xξ̂x +
4

3
ζ̂zξ̂z

)(

w

ρ

)]

Avis,ζ41 =
− 1

J
1

Re
(µ + µt)

{[

u
(

4
3
ζ̂xξ̂x + ζ̂zξ̂z

)

+ w
(

ζ̂zξ̂x − 2
3
ζ̂xξ̂z

)] (

u
ρ

)

+
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u
(

ζ̂xξ̂z − 2
3
ζ̂z ξ̂x
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+ w
(

ζ̂xξ̂x + 4
3
ζ̂zξ̂z

)] (

w
ρ

)}

+ 1
J

1
Re

(

µ γ
Pr

+ µt
γ

Prτ

) [(

ζ̂xξ̂x + ζ̂zξ̂z

)

1
ρ

(

u2+w2

2
− T

)]
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Avis,ζ42 =

1
J

1
Re

(µ + µt)
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µ γ
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Avis,ζ44 =
1
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ρ
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1
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ζ̂xξ̂x + ζ̂zξ̂z

)

(

1

ρ
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Avis,ζ61 = − 1

J

1

Re
(µ + σωµt)

(
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(

ω

ρ
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1

J

1

Re
(µ + σωµt)

(
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)

(

1

ρ

)

The viscous Jacobian Cvis,ζ follows by simple substitution of ξ with ζ in Avis,ξ.

For the viscous cross term Jacobian, it can be proved that Cvis,ξ = Avis,ζ
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