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Abstract

Noise is an environmental concern and due to the increasing interest in helicopters
as an alternative inter-city transportation, research for more environment friendly
helicopters is continuously growing. Building on this demand, this study aims at
finding an efficient and accurate noise prediction tool for rotating sources.
This study therefore investigates the modelling of noise from rotating sources such
as helicopter rotors by addressing noise propagation in both subsonic and transonic/
supersonic regimes. The aim of this research is to explore the field of aeroacoustics
prediction for rotor generated noise and to develop a noise prediction tool for sources
moving in subsonic or supersonic flow regimes. The aeroacoustics predictions pre-
sented have been obtained using a hybrid approach. With such an approach the near
field noise generation process is simulated by means of an aerodynamics prediction
tool while the noise propagation to the near field is computed by mean of the Ffowcs
Williams-Hawkings equation in time domain.
For the near-field aerodynamic calculations different CFD tools have been exploited.
More precisely, three test cases have been analysed. For the first test case of 2D
aerofoil-vortex interaction, reproducing the experimental campaign of Lee et al., the
near-field is computed via the commercial software Fluent. The unsteady implicit
Euler solver with second order discretisation both in space and in time is exploited.
This uses the ROE FDS scheme for the fluxes calculation. The same solver is used
in the near-field simulations of the third test case, where the analysis of a non-lifting
hovering rotor is carried out in delocalised conditions, reproducing the experiments
of Purcell on the UH1H model rotor. The second test case analysed is based on
the HELISHAPE experimental campaign for the ONERA model rotor in BVI con-
ditions. Two comprehensive codes, from Agusta-Westland and Roma Tre, are used
to simulate the complex aeromechanics of the rotor in low speed descent.
The noise propagation phase has been performed via the new noise prediction tool
developed during this study, named HelicA (for Helic-opter A-coustics). This tool
is based on the Emission Surface formulation and exploits a novel root finder and
Emission Surface construction algorithms. It can use control surfaces which are in
subsonic or transonic/supersonic conditions. Verification and validation processes
have been performed on the noise prediction tool before using this code in the afore-
mentioned test cases. These processes are based on the comparison of the tool’s
predictions with available analytical and numerical results. The verification and
validation cases include sources moving at Mach numbers ranging from MT = 0
to MT > 1. The noise prediction tool is applied to the three aforementioned test
cases and the results are in very good agreement with the measurements even for
the strong shock delocalisation cases.
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Chapter 1

Introduction

Aeroacoustics is a research field of growing interest and is becoming even more im-

portant since the preservation of the environment is currently one of the principal

issues for mankind. Environment pollution in fact comprises both air and noise pol-

lution mainly generated by transport vehicles, cars, ships, airborne vehicles, etc. In

parallel with the efforts of lowering the CO2 emissions, noise reduction is a research

challenge which attracts increasing research investments and concerns any type of

vehicle, from cars to airplanes and helicopters.

With the progress achieved in aerospace technology the air transportation is used

much more frequently than in the past, thus requesting higher safety levels, lower

emissions and noise reduction. Both airplanes and helicopters fulfill the human desire

to fly, but they have quite different physical characteristics. Fixed-wing aircrafts,

also called airplane, may have faster cruise speed, higher operation altitude, longer

operation distance, and larger capacity, but they also require large spaces for take-

off and landing operations. Hence, airports are commonly build far away from the

cities. This arises the need for commuting to and from the airport which can add

much time to the trip and increase the traffic, already a big problem for some cities.

The general public has great expectations for helicopters to provide more convenient

inter-city transportation since this kind of vehicle is capable of taking off and landing

in very small spaces with added capabilities of very low speed flying and hovering.

Besides simple transport, many life saving operations are suited for helicopters,

such as heli-ambulances, law enforcement, fire-guard. For instance, operations like

medical evacuation or crime monitoring are very important for the community and

can be carried out only by helicopters. Furthermore this vehicle can often perform
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take-off and landing operations in a constrained space making it the best choice for

rescue mission in mountainous regions or even in deep-sea thanks to its hovering

capabilities.

In this context noise reduction is even more necessary for helicopters in order to be

able to operate closer to populated areas and in any possible hour. With the aim of

meeting these requirements the regulatory bodies are imposing more severe criteria

and regulations, challenging helicopters’ manufacturers to resolve the annoying noise

emission problem. For example, new laws and regulations such as ICAO annex16

chap8, and FAR36 App H impose more stringent limits for noise pollution of heli-

copters. These restrictions have severely limited the deployment of helicopters in

the metropolitan area and the development of the commercial helicopter industry.

A great deal of effort has been devoted to research in the last few decades in order to

reduce helicopter noise on the surrounding environment. Helicopter noise is usually

categorized into three major sources:

Engine noise Since the introduction of turbo-shaft engine replacing the old piston

engines, this is no longer the dominant source of helicopter noise during flyover

and descent. During these phases the main and tail rotors are the primary

helicopter sources of noise. Engine noise is still dominant during take-off. It

is emitted through the air intake (tonal and broadband noise from the com-

pressor) and the exhaust nozzle (combustion noise at low frequencies and core

noise at medium frequencies). Depending on the installation of the helicopter,

air intake noise or exhaust noise can be dominant.

Drive train noise This noise can be reduced via improved mechanical design of

the gearbox and much progress has been made since the early gearbox designs.

This source now affects mainly the cabin environment.

Rotor generated noise This type of noise is still a problem which needs to be

resolved and it is now on the top of the list for helicopter noise research.

1.1 Rotor Generated Noise

Among the various sources of noise which can be identified in a helicopter, the most

recognisable and characteristic one is its main rotor. The rotor is responsible for

the main part of the perceived noise during the helicopter’s flight in urban areas.
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In this section, the main steps towards the current status of helicopter’s rotor noise

research are described.

1.1.1 Early studies

Research on helicopter rotor generated noise began in the late 1930s but the studies

focused on propeller noise since, at that time, helicopter technology was in its infancy

and the rotor mechanics had many similarity with a propeller. Researchers were able

to identify two major noise sources for the propeller: Thickness noise, due to the

displacement of the fluid in the flow field by the blade thickness, and Loading noise,

caused by the accelerating force on the fluid generated by the moving blade surface.

Demming and Ernsthausen contributed together to the development of the theory for

thickness noise [1, 2] while Gutin developed the theory for loading noise [3]. Later,

in the early 1950s, Garrick and Watkins [4] extended Gutin’s work by replacing the

normal-pressure distribution over the propeller by a distribution of acoustic pressure

doublet acting on the propeller subject to uniform rectilinear motion for a rotating

propeller in forward flight. This established the fundamentals of the methodology

for rotor noise prediction.

With the increasing popularity of helicopters, engineers opted for a more compli-

cated design of the rotor mechanism and blade shape, adding many hinges and

hence degrees of freedom in order to improve the flight comfort. This meant that

helicopter’s rotors could not be anymore considered similar to propellers, so that

the acoustic theory developed previously and based on this assumption became less

accurate and unable to capture the complex fluid mechanics of helicopter rotors.

Lowson [5] and Wright [6] were the first to attempt the noise prediction for a real

helicopter’s rotor and Lowson and Ollerhead [7] also developed a computer code

capable of predicting rotor noise.

In 1952 Lighthill developed the Acoustic Analogy,[8]-[10], on which relies a large

part of the modern aeroacoustics theory. In 1969, starting from Lighthill’s idea,

Ffowcs Williams and Hawkings published their classic paper on sound generation

by solid surfaces and turbulence, [11]. The paper generalises the theory introduced

by Lighthill’s to include very general types of surfaces and motions. The brilliant

idea of the paper was to exploit the advance mathematic theory of generalised

functions. Using this powerful mathematical tool the two researchers obtained the

integral solution of the inhomogeneous wave equation known as the Ffowcs Williams-
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Hawkings (FW-H) equation.

Based on Ffowcs Williams - Hawkings findings many researchers began their own

theoretical work on helicopter rotor noise prediction and modelling in the 1970s.

Hawkings and Lowson [12] and Farassat were among the first researchers applying

the FW-H equation to rotor noise prediction. Farassat developed his Formulations

1 [13] and 1A of the FW-H equation in retarded time which have been widely used

in computational prediction tools for rotor noise.

1.1.2 Recent research programmes

The 80s and 90s were decades of very intense research both in USA and in Europe.

NASA together with the major U.S. helicopter companies organized the NASA/AHS

Rotorcraft Noise Reduction Program,[14]. During mid 90s a collaboration between

USA and Europe began in the HART (Higher-harmonic Aeroacoustics Rotor Test)

project, [15], in which the newly build German Dutch Windtunnel (DNW) was

exploited to perform aerodynamics and aeroacoustics tests on a scaled model of the

BO-105 main rotor in the open-jet anechoic test section. In this first HART program,

extensive measurements of aerodynamics and acoustics, blade deformations as well

as some limited rotor wake measurements clarified the understanding of the physical

mechanism involved in rotor noise generation.

In the same period some European research projects were established with the aim

to assist the development of computational aerodynamics and noise prediction tools.

In particular the HELINOISE research programme, [16], formed a cooperative re-

search effort involving some European manufacturers, research establishments and

universities. It was run in parallel with the HART project in the DNW windtunnel

exploiting the same BO105 model rotor. The primary objective of this experimental

study was to generate an extensive aerodynamic and acoustic data base for code val-

idation and as a further objective to obtain initial detailed information on blade-tip

vortex trajectories and blade positions during Blade-Vortex Interactions (BVI).

HELINOISE was shortly followed by the European cooperation research project He-

lishape, [17]. This was essentially a parametric windtunnel test study, in the DNW,

on a scaled model of a fully articulated Eurocopter rotor equipped with blades of

advanced design and two exchangeable blade tips, a more modern and complex ro-

tor compared to the one analysed in the Helinoise tests. The aims of the Helishape

project were the evaluation of noise reduction techniques, the identification of low
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BVI noise descent procedures and also the generation of a database for computa-

tional noise prediction tools validation. Both HELINOISE and HELISHAPE offered

great improvements to the computational noise prediction and the understanding of

the physics involved in the BVI phenomena.

In the end of the 1990s European rotorcraft industries and researchers realised the

need to have common computational tools for both aerodynamics and aeroacous-

tics calculations. With this objective under consideration, two projects, EROS and

ROSAA were launched. The former, [18], had the purpose to provide the Euro-

pean partners with a common CFD Euler solver capable of analysing the 3-D rotor

flow environment and capture rotational phenomena and correctly predict unsteady

blade pressures over a range of different flight conditions, from hover to high speed

forward flight. The latter, the ROSAA project, [19], was aimed at including ad-

vanced aeromechanics in rotorcraft simulation systems together with aerodynamics

and aeroacoustics.

In the same framework programme, BRITE/EURAM III “Industrials and Materials

Technologies”, together with the two aforementioned projects was launched also the

HELIFLOW project, [20], aiming to improve experimental and theoretical tools for

helicopter aeromechanic and aeroacoustic interactions. In particular it was one of

the first projects focused on Main/Tail rotors interactions and on the effects of Main

rotor fuselage interactions.

More recently another collaboration between US and some European countries led

to HART II , [21]. This project was established in order to improve the basic under-

standing and the analytical modelling capabilities of rotor BVI noise applying the

latest experimental techniques such as 3D Particle Image Velocimetry (PIV) mea-

surements. Given the great progress achieved in the knowledge and understanding

of main rotor noise and the necessity of further investigating the problem of Tail

rotor noise, some researchers launched the European project HELINOVI, [22]. This

project, which has been completed in 2006, had the aim to investigate more in detail

the potential of tail-rotor noise and helicopter vibration reduction.

Currently two projects on helicopter research are still running within the 6th Euro-

pean Framework Programme: the GOAHEAD project and the Friendcopter project.

The former is focused on the aerodynamic analysis of complete helicopter config-

urations with the purpose to enhance the aerodynamics prediction capabilities of

Europe’s helicopter industry. This will be achieved via experimental campaigns in

order to create a database which will be then used for validation of 3D CFD un-
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steady viscous URANS solvers on complete helicopter configurations. The European

project Friendcopter was launched in 2004. It is a wide scope project which does

not focus only on rotor generated noise but tries to address also cabin, engine noise

and NOx emissions, as will be discussed in more detail in the following section.

1.2 Friendcopter: Parent Project of this Research

The research presented in this Thesis is carried out as part of the European project

Friendcopter, titled ’Integration of technologies in support of a passenger and en-

vironmentally friendly helicopter’, under the European Union 6th Framework Pro-

gramme for Research and Technological Development. The Friendcopter project,

[23], is a collaborative European project in which are involved the most experienced

European companies, research institutes and academic institutions in the field of

helicopter design. The total number of participating partners is 34, among these

are present four national research establishments NLR, DLR ,ONERA, CIRA, heli-

copters manufacturers such as EUROCOPTER, AGUSTA and universities such as

Cranfield, Roma Tre, Politecnico di Milano.

The participating partners realised that helicopters needed to be improved further

with respect to environmental and public acceptance. The aim of the project is to

obtain environment friendly helicopters addressing the problems of external noise,

cabin noise and vibrations and the NOx emissions. The partners have envisaged in

particular the following goals:

• Acoustic footprint areas reduced between 30% to 50% depending on the flight

condition

• A reduction to fuel consumption up to 6% for high speed flights.

• Cabin noise levels below 75dBA similar to airliner cabins for normal cruise

flight

• Cabin vibrations below 0, 05 g corresponding to jet smooth ride comfort for

the same flight regime

Because of the large and fast rotating rotor, the non-symmetric rotor flow, the close

vicinity of main gearbox and passenger position and the specific requests of engine

performance, the proposed goals are highly challenging. In order to comply with
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the aforementioned targets, an extreme high tech initiative is required and this can

be done only by completion of specific short and long term objectives: Short term

goals include:

• reduction of cabin and engine noise using noise absorbing structures and active

structures control.

• noise abatement flight procedures

The engine noise emission will be tackled by acoustically treating the engine inlet and

outlet ducts with noise absorbing structures. The reduction of the cabin noise level

will be addressed by tackling cabin noise emission at the source via a modification of

the gearbox elements and use of active elements to interrupt the interfaces between

gearbox and fuselage. Furthermore the cabin structure will be acoustically treated.

It is possible to significantly reduce annoyance of both new and already fielded

helicopters by using adequate low noise flight procedures in the vicinity of sensitive

areas. In particular the research presented during this thesis falls inside the noise

abatement flight procedure short term goal. Long term goals include:

• lowering of impulsive exterior noise

• lowering excessive cabin vibrations

• lowering high fuel consumption

The long term goals will be obtained via an advanced blade design including full

Active blade control.

1.2.1 Noise abatement flight procedures

The helicopter noise emission intensity and directivity heavily depend on flight con-

ditions such as: airspeed, rate of climb/descent, acceleration, manoeuvres. Con-

sequently, a noise reduction strategy can be based on some carefully chosen pilot

actions. For instance, the level of noise affecting a sensitive ground populated area

is inversely proportional to the distance from the area. The noise emission reaching

this area can be minimised by choosing a flight path in order to increase the distance

of the helicopter relative to the populated area and expose it only in the directions
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where noise radiation is minimal. Alternatively careful control of the power settings

at take-off and climb-out can be achieved, in order to reduce the engine noise.

Definition of such noise abatement procedures is the first step and it will be accom-

plished via the use of an optimization suit of software, called HELENA, produced

within the Friendcopter framework, which will rely on experimental and numerical

databases. As a short term goal of external noise reduction, the impulsive noise

due to BVI during the specifically sensitive approach operation will be tackled by

dedicated flight procedures taking into account also aspects of safety and certifica-

tion. The goal is to identify a combination of glide path angle and flight speed to

circumvent the area of high blade slap. Noise prediction codes, such the one that

will be presented in this thesis, will be used for noise footprint prediction and will

be included in the HELENA software in order to explore the optimum flight path

choices for a given helicopter configuration.

1.3 Trends in Open Rotors Research

Lower noise emissions and fuel consumption issues are not the only concerns af-

fecting rotorcraft research. In the rotorcraft industries, including helicopters and

Vertical/Short Take-Off Landing(V/STOL) aircrafts, a problem has been identified

which limits helicopters competitiveness towards airplanes. In fact helicopters fly at

lower cruise speed compared to those that fixed wing aircrafts are capable to achieve.

The top cruise speeds of helicopters in service today, roughly 150 to 170 knots, are

only incrementally better than what they were decades ago due to the fundamental

limits of conventional rotor systems. Traditional helicopters suffer from the effect

known as retreating blade stall, which is the main limiting constraint acting to the

top speed.

In forward flight, as opposed to hover, the main rotor blades are subject to a strong

flow asymmetry. The blades rotate towards the incoming airflow on one side the

helicopter, which is commonly called advancing side, while on the other side the

blades rotate following the airflows direction. This side is named retreating side.

The retreating blades experience slower incoming airflow since the relative velocities

of the blades and airflow subtract. This results in a reduction of the lift on the

retreating side, while on the advancing side, the increased relative velocity enhances

the lift. The lift imbalance across the rotor disk was identified since the early

helicopters developments and it was alleviated by the introduction of flapping hinges
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in the rotor hub. The blades flapping produces a variation in the angle of attack,

which is increased in the retreating side and decreased in the advancing side. This

flapping induced variation compensates the lift asymmetry which affect the rotor.

However, as the helicopters forward velocity increases, there exists a limit to the

degree by which dissymmetry of lift can be diminished by this means. Since the

forward speed is important in the phenomenon, this imposes an upper speed limit

upon the helicopter in order to prevent the condition known as retreating blade

stall. This upper speed limit is called “Velocity Never-Exceeded”, and as discussed

above it ranges from 150 to 200 knots for the modern helicopters. Research efforts

towards the defeat of these limitations began in 1976 when a ten-years collabora-

tion in aerodynamic research was established between Westland Helicopters and the

Royal Aircraft Establishment. As a result the so called BERP blade was obtained.

The Lynx helicopter, a Westland demonstrator equipped with this particular blade

design, attained the world absolute speed record for any helicopter, still in place

more than ten years later. The Lynx achieved an average speed of 249.1mph (al-

most 220 knots) over a 15km course, thanks to the BERP blade peculiar design.

Given its success this technology is now being applied to other helicopters.

More recently two main research trends are being investigated to further increase the

flight speed and the helicopter competitiveness towards airplanes. Some industries

such as BELL and AGUSTA are collaborating towards the finalisation of the tiltrotor

idea for the future V/STOL aircraft, the V22 Osprey, [24], which is currently being

flight tested (the military version, started in early 90s is in a more advanced status

than the civil one). This is a hybrid type of rotorcraft which has V/TOL capabilities

and can then rotate its wings by 90◦ so to behave like a traditional airplane in forward

flight conditions.

The Osprey configuration can reach cruise speeds of up to 250 knots but has some

drawbacks with respect to traditional helicopters. The necessity to rotate its wings

in order to operate in hover conditions leads to a degraded hover performance for this

craft and a much higher cost of up to 4−5 times that of a traditional helicopter,[25].

Since the helicopters’ hover capability is one of the most exploited characteristics of

these particular class of airborne vehicles some other industries, such as Sikorsky,

have planned a different design concept to solve the low cruise speed issue without

penalising the important hover performances.

The Sikorsky concept named X2, and announced in the end of 2005, [26],will have

2 coaxial counter rotating main rotors which are supposed to alleviate the lift dis-
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symmetry allowing cruise speed in the range of 250 knots and above. The forward

thrust component will be provided by an aft propeller. The X2 configuration will

then have the same hover capabilities as the conventional helicopters and speeds

that are not reachable with the current helicopter configurations.

1.3.1 Open rotors in aircrafts

Open rotors technology, currently exploited in rotorcrafts and Wind Turbines, had

its first applications during the early developments of aircrafts. In that period

propeller engines were the only mean of producing the required thrust. During the

50’s, for commercial flights, this technology was abandoned in favour of the most

promising turbojet engines which were capable of producing much higher thrust, and

thus increasing the cruise speeds and decreasing the flight duration. The drawback

of turbojet engines was their law efficiency and the high noise levels that they were

generating. Since the 60’s these problems were addressed with the introduction

of Turbofans which had initially Low Bypass-Ratios(BR). This feature of turbofan

engines, on which depends their high efficiency and low noise characteristics has

been steadily improved resulting in the modern High BR Turbofans.

The current aircraft engines, given the High BR of 6 − 8, in fact generate much

lower noise emissions compared with the initial turbojet engines and also have higher

efficiencies. However a further increase in BR ratios, in order to reduce CO2 and

NOx emissions, is technically not achievable. Some manufacturers, [27], are looking

at a different technology, a propulsion system for aircrafts which was designed and

investigated during the mid 70’s and 80’s, know as Propfan.

The Propfan engine could be considered as fusion of the propeller and turbojet

technology. Its main characteristic is the high efficiency due to the ultra high BR

of over 15, obtainable with this design. Since 1988 it was assumed that such design

could bring a reduction in fuel consumption of 15% to 35%, [28], compared to the

turbofan engines available at that time. A recent revision of these figures by Birch,

[29], showed that a possible reduction of 10 − 15% of fuel consumption, and as a

consequence to the CO2 emissions, is achievable with respect to the current turbofan

consumption.

Various versions of the propfan, with different number of blades and blade shapes,

have been designed and tested in wind tunnels in order to find an optimum in

efficiency. General Electric in USA designed also the counter rotating UnDucted
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propFan (UDF). Since the 90’s the actual pace of developments on propfan technol-

ogy has been practically at a stand still. According to Schimming, [30], only few

technical programmes for designing UDFs in terms of aeroacoustics, aerodynamics

and aeroelasticity are still ongoing in different countries. On the contrary, the trends

envisaged by Kehayas, [31] and Garcia, [27] show that the propfan technology, in

particular UDFs could be the answer to the future demands of higher efficiency

aircraft propulsion.

From the technical point of view, in order to allow a wide diffusion of this technology,

two problems need to be addressed: cabin noise and blade containment requirements,

[31]. However some industries, such as CFM, a 50/50 joint company between Snecma

(SAFRAN Group) and General Electric Company, have already announced in 2007

their plans to investigate this efficient mean of propulsion further, for a future version

of the LEAP56 engine.

1.4 Problem Statement

From the arguments above the increasing importance of the use of noise prediction

is clear during the design process in modern aerospace industries. Both theoretical

and experimental studies are being conducted to obtain such predictions. Flight

or wind-tunnel tests have been widely exploited in the past and many current re-

search investigations are based on them given the accuracy achievable in modern

experimental campaigns. However,these tests have a major drawback, the high costs

involved.

For instance an acoustic test on a scale model helicopter in a Wind Tunnel (WT)

costs around 200k Euro per week without taking into account the design and pro-

duction costs of the WT model. In-flight aeroacoustics experiments are even more

expensive given the needs to insure the pilots and the larger number of microphones

and equipments required. Currently, numerical aeroacoustic analysis tools represent

a valid alternative for the prediction and control of aerodynamically generated noise,

given the rapidly increasing computational power and the increased accuracy and

reliability of CFD prediction.

Thus, the development of improved computational noise prediction tools consti-

tutes a very important part in the quest for future environment friendly and high

speed airborne vehicles. Given the aforementioned trends for future open rotors
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applications, a computational noise prediction tool must be capable of dealing with

subsonic, transonic and supersonic flight conditions for rotating noise sources, but

the same tool could be easily extended to other more general external noise appli-

cations.

These are the main reasons which lay behind the research presented in this thesis.

Furthermore the research has the purpose to make a direct contribution to tasks of

the Friendcopter project, described in Par. 1.2.1.

1.5 Thesis Structure

The thesis outline is as follows:

• In the first Chapter is presented an introduction on helicopter’s rotor noise

research and some future trends for open rotors applications followed by the

research problem statement and thesis outline.

• Chapter 2 presents the research design, scope and methodology. The research

aim and objectives are also stated in this Chapter.

• The Third Chapter describes the physics of rotor noise generation identifying

the main sources which contribute to the overall noise. This discussion is then

followed by a description of the current approaches and state of the art in

aeroacoustics prediction.

• The numerical approaches developed during the course of this research are

discussed in Chapter 4. Here a detailed description is presented for both the

novel root finder algorithm and the Emission Surface construction approach

that have been developed in this study.

• In Chapter 5, the test cases used for Verification and Validation are presented.

First the root finder algorithm is applied to the solution of the retarded time

equation in subsonic and supersonic conditions. The efficiency of the algorithm

is compared to the classical methods used in aeroacoustic codes. The noise

prediction tool is then applied to the analysis of 3D monopole dipole and

quadrupole sources for which are available analytical solutions. Finally the

tool is tested for the calculations of the emission surfaces of three different

geometries which are rotating in transonic/supersonic motion.
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• In Chapter 6 the code is applied to test cases in both subsonic and supersonic

regime. The test cases have been chosen to match two renowned experimental

campaigns: in subsonic regime the Helishape experiments, [17], for BVI noise

are analysed; since in supersonic conditions HSI noise is the most important

source, the experimental campaign from Purcell, [32] is chosen. This is a wind-

tunnel experimental study on the UH1H rotor blade in delocalised conditions.

• Finally in Chapter 7 are drawn the conclusions and recommendations for future

investigations.
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Chapter 2

Research Design

In this Chapter the research aim and objectives are stated. Then, the research scope

and methodology adopted in order to carry out the current research are discussed.

2.1 Research Aim

The first aim of this research is to explore the field of computational aeroacoustics

prediction applied to rotor generated noise, and secondly to develop a computational

noise prediction algorithm capable of dealing with noise sources in both subsonic

and transonic/supersonic regimes. The motivation for this work is that many noise

prediction algorithms are available for subsonic cases, while only 2 strategies have

been developed for dealing with transonic and supersonic sources but are not efficient

for the analysis of sources in subsonic regime.

2.2 Research Objectives

The following objectives have been identified for the fulfilment of the proposed re-

search:

• to carry out a literature survey in order to identify the current state of the art

in noise prediction algorithms for external noise applications,

• to develop a computational prediction tool based on the state of the art algo-

rithms identified in the literature survey,
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• to create a novel algorithm for transonic and supersonic sources and to imple-

ment it in the noise prediction tool,

• to identify specific verification and validation cases for both subsonic and tran-

sonic/supersonic regimes,

• to validate the noise prediction tool for the selected cases.

2.3 Research Scope

Based on the research objectives mentioned above, the scope of this research can be

summarised as follows:

Domain: This research focuses only on aeroacoustic analysis of external noise from

stationary and rotating sources, such as helicopter rotor and open rotors. Both

noise generation and propagation are discussed. The analysis does not include full

helicopter configuration with fuselage and tail rotor. The main research domain

comprises hybrid approaches for aeroacoustic predictions with particular focus on

methods based on the FW-H equation. Although CFD calculations have been exe-

cuted successfully for some of the case studies which will be presented in the next

chapters, the primary objective of this study is the development of algorithms to be

exploited during the propagation phase of the hybrid approaches.

Noise prediction techniques: This research considers only algorithms based on

the integral form of the FW-H equation exploring the use of both “Retarded Time”

and “Emission Surface” formulations. These are the most promising techniques for

the particular analysis on which this study is focused.

Literature Survey: The literature survey of the current research covers the prin-

ciples of helicopter rotor noise and the sources which are responsible for the overall

generated noise. Furthermore, a review of the available noise prediction methods

is presented with particular emphasis on those used for the aeroacoustic analysis

of helicopter’s main rotor. The review is divided in methods which can be used in

subsonic flow conditions and methods more appropriate for supersonic regimes.

Test Cases: The test cases included in this thesis have been chosen to represent

the most important noise sources for helicopter rotor noise, Blade Vortex Interaction

and High Speed Impulsive noise. The former is considered here only during sub-

sonic flow conditions, while the latter is typical of transonic and supersonic sources.

Thickness and Loading noise are also included since they are an intrinsic part of

rotor noise sources.
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Verification and Validation: These processes will be performed via the classical

approach in CFD research. The software developed during the current research will

be tested on cases for which analytical or computational results are available in lit-

erature. Then, the prediction tool is applied to the analysis of the aforementioned

test cases and its results are compared against the experimental data available in

literature.

2.4 Methodology

During this research a set of algorithms were developed and tested for their efficiency

and capabilities of handling sources in both subsonic and supersonic regimes. The

current state of the art for helicopter rotor noise prediction is analysed through a

literature based investigation which highlights the scarce availability of aeroacoustic

prediction tools and algorithms for treating sources moving in transonic and super-

sonic conditions. In addition, the literature survey shows the lack of research studies

on the behaviour of the retarded time equation for Mr ≥ 1 when the appearance of

multiple roots does not allow the use of classical root finder algorithms.

This is followed by the development of an algorithmic framework which will imple-

ment the state of the art methods for helicopter rotor noise prediction as the starting

point. In this way, all the strengths of the current status of noise prediction research

are inherited, while during the development the weaknesses will be addressed. The

process will be based on the hypothesis that the noise prediction tool will handle

moving and rotating sources in subsonic as well as supersonic conditions. The de-

velopment is carried out in a systematic, step-by-step fashion, i.e. every feature is

tested after implementation before a new feature is added.

Since the noise prediction tool is based on three main components, i.e. quadrature

algorithm, root finder algorithm, kinematics and Emission Surface (ES) construc-

tion, the verification and validation processes are applied to each one of its com-

ponents. More precisely, the available analytical solutions for 3D monopole, dipole

and quadrupole sources are used to test the quadratures. The root finder algorithm

used to solve the retarded time equation for a rotating point source, represented by

a panel, both in subsonic and supersonic regimes and its computational time and

efficiency are compared against the two classical root finder methods, Newton and

Brent’s scheme and the ”Advanced Time” solution.
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Finally the kinematic and ES construction modules are applied to the computation of

the ES for some geometries which emission surfaces have been presented in literature.

Once the verification and validation processes are completed, the hypothesis is tested

by applying the noise prediction tool to test cases typical of helicopter rotor noise.

The literature survey assists to the definition and identification of rotor noise sources,

and the test cases will comprise those sources, i.e. BVI and HSI, which, as described

in literature, contribute more to the overall rotor generated noise. The results

obtained are compared to the experimental analyses, available in literature and

upon which the test cases are built.
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Chapter 3

Literature Review

In order to better understand the mechanisms involved in rotor noise generation,

the physical phenomena which govern the complex noise source will be described

in the first section of this chapter. This is then followed by a detailed discussion

on the current approaches available for aeroacoustics prediction and in particular

the FW-H equation. Many different formulations based on this equation have been

defined. In the last part of this Chapter those formulations which constitute the

current state of the art in rotor noise prediction will be described, with a more

detailed description of those which have been implemented in the noise prediction

tool developed during this research.

3.1 Rotor Generated Noise: Physics

Rotor generated noise can be considered as the noise generated by both the heli-

copter’s main and tail rotors. These two sources operate in different frequencies

range, the main rotor noise dominates the lower frequencies and the tail rotor noise

dominates the mid frequency range. This research focuses only on the main rotor

generated noise.

A helicopter in operation can be easily recognised by the harshness and periodicity of

its noise. The sharp and loud periodic sounds emitted are known as Impulsive noise.

Together with the so called rotational noise, which has similar characteristics to the

impulsive noise but milder amplitude, constitute the discrete frequency component

of the main rotor noise. The other part of the frequencies spectrum is dominated

by the broadband noise sources.
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The sources that produce the overall rotor noise can be divided into deterministic

and non deterministic. Thickness, Loading, BVI and High Speed Impulsive (HSI)

noise belong to the deterministic sources, while broadband noise belongs to non-

deterministic sources. Thickness and Loading noise are also known together as

Rotational noise and are related to linear aerodynamic theory. HSI and BVI are

related to non-linear aerodynamic effects and these two types of Impulsive noise

are very important since they dominate the noise signal when they occur. Impulsive

noise is in fact the most annoying rotor generated noise. The non-deterministic noise,

Broadband noise, is generally classified in three different sources: Blade Self-Noise,

Blade Wake Interaction (BWI) noise and Turbulence Ingestion Noise.

Each one of the sources introduced above will be now described in more detail.

3.1.1 Thickness noise

Thickness noise is generated due to the fluid displacement created by the rotor blade

thickness. It is governed by the rotor speed and airfoil thickness distribution, [33].

Thickness noise propagates primarily along the rotor disk plane in front of the rotor.

The main contribution to thickness noise arises from the blade tip region, where

high rotational speed is recorded. Thickness noise is characterized by a symmetric

negative pulse shape in the acoustic pressure, both in hover conditions and in forward

flight. It was the first rotating noise source to be studied, [1, 2] and, since it only

depends on the geometry and kinematics of the rotor blades, the computation of this

rotor noise source does not require to perform any flow measurements or predictions.

These characteristics made it possible to compute thickness noise since the early

studies and Farassat exploited for the first time an algorithm based on the FW-H

equation in 1979, [13, 34].

3.1.2 Loading noise

This term usually refers to the harmonic noise from non-impulsive loading sources.

Loading noise is caused by both steady and unsteady force distributions on the

fluid generated by moving blade surface. The loading noise propagation direction

is usually concentrated below the rotor disk. Loading noise generally radiates as a

dipole pattern with a maximum along the rotor axis of rotation.

Loading noise becomes the dominant source of rotor noise in the absence of impulsive
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noises. Due to its magnitude and since it radiates below the rotor disks loading noise

has been a major concern for helicopter civil operation. Loading noise was also

studied, like Thickness noise, since the early stages of open rotors noise research, in

propellers by Gutin, [3] and Garrick et al., [4], and in helicopter rotors by Wright,[6]

and Lowson and Ollerand, [7]. This noise source depends on the blade pressure

distribution and hence in order to obtain a noise prediction it is necessary to know

the pressure distribution along the blade. This can be done using experimental

data, as it was common practice,[35], when CFD predictions could not be accurate

because of the lack of computational power, or using the accurate CFD prediction

codes available today.

3.1.3 High Speed Impulsive noise

The thickness noise described above is influenced only by linear effects, when the

blade tip Mach numbers are well below MT = 0.85, [33]. Instead, when the for-

ward flight speed increases, the non-linear effects play an important role. As MT

approaches 0.9 the compressibility effects make the negative pulse to increase dra-

matically in amplitude and a further increase in MT produces also a change in shape,

i.e. the symmetric shape that is characteristic of the thickness noise becomes asym-

metric. In this condition of high-speed forward flight, HSI dominates the waveform

spectrum. HSI is generated by nonlinear effects, appearance of compressibility and

shock delocalisation.

Shock delocalisation is a phenomenon that arises when, due to the increase in MT ,

the localised shock and supersonic flow bubble, close to the advancing blade tip,

reach the so called sonic cylinder. This virtually divides the subsonic and super-

sonic flow around the rotor. When the aforementioned phenomenon happens, the

shocks over the blades are able to radiate in the acoustic far-field, intensifying the

acoustic pressure disturbance perceived by the observer. This means that, when

shock delocalization occurs, this source will dominate the overall perceived noise.

HSI noise usually propagates along the rotor disk plane in a direction similar to

thickness noise, so that it was considered as part of the thickness noise. In early

studies, this phenomenon was in fact considered as transonic thickness noise, [36, 12],

but soon after, researchers identified the importance of the non linear terms, repre-

sented by the quadrupole term in the FW-H equation, which are the main factor in

HSI noise radiation.

The prediction of HSI noise requires the use of unsteady compressible Computational
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Fluid Dynamics (CFD) codes in order to obtain the shock and transonic flow fields.

Some very interesting experimental campaigns, in order to measure HSI noise, have

been performed by Boxwell et al. [37] and the first computational studies for HSI

noise evaluation in helicopters were proposed by Purcell, [32] and Baeder, [38].

Given the importance of the quadrupole term in the propagation of this noise source,

Farassat, [39, 40], Brentner and Holland, [41], introduced the far-field approxima-

tion method for the quadrupole term. This technique was aiming to reduce the

computational time necessary to calculate the contribution to noise generation from

this term, using a surface integral instead of the more time consuming volume inte-

gral. Most of the later studies exploited this simplification in order to perform faster

noise predictions, but almost all of the computations published were performed in

retarded time formulations. The use of this formulation limited the analyses to high

subsonic regimes because the Doppler singularity, 1 − Mr at the denominator of

retarded time integrands, does not allow to consider transonic conditions where the

shock delocalization, and hence HSI noise, is stronger. The only studies exploiting

different formulations, not affected by the Doppler singularity, were the pioneering

works of Farassat [42, 43] and more recently, Brentner, [44], Ianniello, [45]-[48] and

Prieur et al., [49], as will be discussed in the next section.

3.1.4 Blade-Vortex Interaction noise

Blade-Vortex Interaction noise is generated by the tip vortices shed from one blade

and interacting with the following blades. A very rapid fluctuation in the aero-

dynamic forces, particularly strong in the tip region, is produced over the blade

interacting with the incoming vortices generating BVI noise. This phenomenon,

when it occurs, is an extremely annoying noise source. Usually it arises during spe-

cific types of operations such as descent flight with low forward speed. Unlike HSI

noise, which propagates mostly in the plane of the rotor, BVI noise radiates usually

forward and down at about a 30◦ − 40◦ angle. This radiation pattern makes the

noise more audible to observers on the ground as the helicopter is landing.

Extensive research has been carried out, both experimental and computational in

order to understand the physics of BVI noise. The studies highlighted how the

magnitude of BVI noise depends on the tip vortices strength, the core size of the

vortices, the interaction angles and vertical separation between the vortices and the

blade, labelled as miss distance. Experimental studies of BVI noise began with the

work of Leverton and Taylor [50] when community annoyance and aircraft detection
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were initially considered. Some flight testings were also performed, delivered by

Schmitz and Boxwell [51, 52] specifically to study BVI.

The use of an independently generated vortex referred to as “freevortex” was in-

troduced in the experimental studies by Horner et al.,[53] and Kitaplioglu and

Caradonna et al. [54]. The free vortex provides a better control on the aforemen-

tioned BVI parameters, enabling a more detailed study of the individual parameters

which influence the blade load distribution, and hence the resulting acoustic pressure

reaching the observer.

The analytical and computational studies of BVI phenomena were pioneered by

Widnall in the 70’s, [55], and it was proved that the parallel BVI generates the

strongest pulse among all BVI conditions. In the late 80’s Baeder and Srinivasan

[56], performed a computational study of the BVI experiments from Caradonna [54].

In the last two decades, BVI noise has been the focus of much of the helicopter noise

research. In fact, many of the projects described in the first chapter, such as HART,

Helinoise [16], Helishape [17] and HART II, were specifically designed to provide an

aerodynamic and aeroacoustic database for BVI phenomena.

3.1.5 Broadband noise

Broadband noise, the non deterministic source of helicopter rotor noise, is essentially

generated by turbulence and its interactions with the rotor blades. Some of the very

first studies on broadband noise were the experimental investigation conducted by

Brooks et al., [57, 58]. In [57] the researchers identified for the first time the so

called Blade turbulent Wake Interaction (BWI) mechanism while in the parametric

study on airfoil self-noise, [58], the same research group presented for the first time

a detailed list of the different mechanisms which can generate broadband noise. In

particular, the importance of the Trailing Edge (TE) was highlighted in broadband

noise generation, due to vortex shedding or to the interaction between the TE and

the Turbulent Boundary Layer over the blades. In [33] another broadband noise

source is labelled as Turbulence Ingestion noise, that arises when some turbulent

eddies in the atmosphere are “ingested” by the main rotor.

The flows around helicopter rotors are characterised by high Reynolds numbers,

in the order of 106 and above. The importance of turbulence in Boradband noise

generation would require the use of advance turbulence modelling such as Large
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Eddy Simulation (LES) or even Direct Numerical Simulation. Furthermore, since

most of the turbulent scales need to be solved, in this case the use of Unsteady

Reynolds Averaged Navier-Stokes (URANS) would give incorrect results. Given

these high computational requirements, no computational studies for the analysis

of broadband noise have been performed on a full helicopter rotor configuration. In

effect even with the current computational power, a fully 3D CFD analysis of an

helicopter’s main rotor, with the purpose of analysing broadband sources, is not yet

feasible.

The few computational studies on broadband noise which have been published, such

as [59, 60], consider just the simple 2D cases of rod-airfoil interaction noise or airfoil

trailing edge scattering. In this context it is clear why mainly the current methods

for broadband noise prediction are semi-empirical, [61, 62, 63], and based on the

findings of Brooks et al. [58].

3.1.6 Tail Rotor Noise

During the last two decades, the physical understanding of helicopter main rotor

noise and the capability to predict its noise radiation generated by various aeroa-

coustic source mechanisms has significantly been improved. However, research on

tail rotor noise has been almost ignored for a long time. Tail rotor noise contributes

to the overall helicopter noise and during certain flight conditions, e.g. at take-off,

can even dominate the overall noise radiation.

Tail rotors are smaller versions of the main rotors; their plane of rotation is in

vertical position and their rotational speed is much higher than that of main rotors.

It is trivial to understand that the noise generated by tail rotors has the same

characteristics and is composed by similar sources as the noise produced by the

main rotor. The main difference with the respect to main rotor sources is the higher

frequencies at which tail rotor generate noise. It must be highlighted that high

frequencies are more annoying for the human ears than mid to low frequencies.

In addition, the interaction of the main rotor wake with the tail rotor could be a

further source of tail rotor noise that is not necessarily periodic. The main/tail rotor

interaction noise is due to the interaction of tip vortices generated by the main rotor

interacting with the tail rotor. Thus, in order to predict the tail rotor noise it is

necessary to compute also the aerodynamic field around the main rotor, the wake

that this generates and the location of tip vortices generated from the main rotor.



Literature Review 25

The European projects Heliflow, [20], and HELINOVI, [22], were particularly fo-

cused on this kind of interaction noise, investigating also some parameters, such

as Tail Rotor sense of rotation, variation of position between Main and Tail rotor

and variation of rotor rotational speed, which are thought to influence the tail rotor

noise generation.

3.2 Noise Prediction Approaches

Aeroacoustics and aerodynamics could be considered as two different points of view

for the analysis of fluid motion, Computational Aero Acoustics (CAA) problems

in fact have the same governing equations as CFD problems, namely the time-

dependent, compressible Navier-Stokes (NS) equations. The difference between the

two disciplines lies in the modelling of the NS equations and in the scales of interest

for the flow solution.

CFD has had a great development during the last 30 years and many different mod-

els have been proposed in order to resolve the NS equation, with each model being

more suitable for a particular range of Reynolds or Mach numbers. The acoustic

fluctuations in an unsteady fluid flow are orders of magnitude smaller with respect to

the aerodynamic fluctuations. Hence, some simplifying assumptions, such as incom-

pressible flows, steady state flows, laminar flows, which can be used in aerodynamics

are not valid in aeroacoustics. Thus CAA problems must be resolved always consid-

ering an unsteady, compressible flow and in the majority of cases also turbulent. As

a consequence the computational time required in CAA is dramatically increased.

3.2.1 Direct Noise Computation

The possibility of using the so called Direct Noise Computation (DNC), which is

equivalent to the Direct Numerical Simulation , is very recent. The first applications

of this method can be found only from the end of 90s, by Lele et al. [64], Freund

et al., [65], more recently Bogey et al. [66] and Jiang et al. [67]. In effect, the

acoustical field induced by an unsteady flow can be calculated very accurately using

DNC but this accuracy comes at a high computational cost because the number

of grid points required for a DNC computation depend exponentially on the flow

Reynolds number, eq.3.2. Thus, the currently available computational power allows

only to simulate flows with relatively small Reynolds numbers. On the other hand
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the engineering applications, which require noise prediction, are characterised by

high Reynolds number beyond the current capability of the existing computers.

It is known that in DNS the number N3 of spatial grid points required in order to

solve the 3D isotropic turbulent flow is function of the Reynolds number, [68], as

follows:

N3 ≧ Rel

9
4 (3.1)

in which Rel is the turbulent Reynolds number based on the integral length scale

of turbulence, l, which for isotropic turbulence is proportional to the Kolmogorov

scale η as (l/η ∝ Rel

3
4 ).

Sarkar and Hussaini, [69], and more recently Bailly and Bogey,[70] , calculated the

computational costs related with a DNC, i.e. a CFD simulation which must resolve

not only the turbulent near-field, but also the acoustic far-field. For a jet noise

calculation in the hypothesis of isotropic turbulence the number of points required

in the domain discretisation can be calculated as follows.

Defining the integral length scale of turbulence as l ∼ D, where D is the diameter

of the Jet, the dominant wavelength, λs, of the radiated sound can be estimated as

(λs ∝ l/(St ∗Mt)), where Mt is the turbulent Mach number. The time step size for

a DNS is ∆t ∝ η
c

so that the number of time steps needed for the solution of the

turbulent fluctuations is nt ∝ (l/U)/∆t ∝ Rel
3/4/Mt. The total number of spatial

grid points and time steps required in order to resolve both the turbulent near-field

and extend the domain up to the acoustic far-field becomes:

N3
s ∗ nt ∝ Rel

9
4

St ∗Mt
3 ∗ Rel

3/4

Mt

N3
s ∗ nt ∝ Rel

3

(St3 ∗M4
t )

(3.2)

This means that for a subsonic turbulent flow the number of points required to solve

both near and far-field is proportional to Mt
−4 with respect to the grid spacing

needed to solve only the turbulent near-field. In other words, keeping the number

of spatial grid points constant, the Reynolds number achievable decreases with a

factor of Mt
4/3, e.g. for a Mt = 0.01, Rel decreases by a factor of 0.004. Of course

for higher Mach number the dominant wave length λs becomes smaller so a smaller

extension of the domain is required in order to reach the acoustic far-field.
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For a DNC computed using LES instead of DNS the cost can be obtained with similar

arguments but keeping in mind that in the LES case the scales to be resolved go

from the large eddies up to the Taylor microscales,lm, while the smaller scales can

are modelled. lm for isotropic turbulence is related to the integral length scale l as

(l/lm ∝ Rel

1
2 ), hence the total cost for a DNC with LES would be:

N3
s ∗ nt ∝ Rel

2

(St3 ∗M4
t )

(3.3)

Such requirements of computational resources are certainly demanding even for small

Rel so for practical cases a DNC is not yet feasible. Some studies have, although,

been attempted, particularly in Jet Noise analysis from Freund,[65] , for Rel = 2∗103

via DNS using 22.1 ∗ 106 grid points, and from Bogey et al., [66], via LES for

Rel = 4 ∗ 105 and 16.6 ∗ 106 grid points.

3.2.2 Hybrid Approaches

As discussed above, DNC has the advantage of high accuracy but it is very demand-

ing in terms of computational cost and time, hence, real engineering problems cannot

yet be computed using this method. The solution of aeroacoustics problems for en-

gineering applications can be currently obtained via the so called Hybrid Methods.

In these methods the computational domain is divided into two different regions; a

near-field region in which are enclosed all the source terms and a far-field domain in

which the acoustic signal propagates up to the observer. This would involve using

different numerical modelling for each region, such as a CFD prediction tool in the

near-field region and an acoustic solver in the regions outside the near field.

The acoustic prediction tools to be used in the outer region can be grouped into two

categories, integral approaches and differential approaches as follows:

• Differential Methods

– LEE

– APE

• Integral Methods

– Lighthill’s Acoustic Analogy

– Kirchhoff equation
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– FW-H equation

In the following subsections these methods are discussed and then particular focus

is given to the approach used during this research, i.e. the FW-H equation.

3.2.2.1 Linearised Euler Equations (LEE) and Acoustic Perturbation

Equations (APE)

The LEE approach was introduced initially by Tam, [71], and applied by many other

researchers in jet noise prediction. The LEE method is based on two simplifying

assumptions: the magnitude of acoustic fluctuations is very small compared to the

aerodynamic fluctuations and viscous effects can be considered negligible with re-

spect to the acoustic wave propagation. Under these two conditions, the original

non linear system of equations, the NS equations, can be linearised obtaining the

LEE equations.

These linear system of equations, although simpler with respect to the NS system,

it is still a time-dependent partial differential equations system. LEE must be nu-

merically solved exploiting high order low-dispersion and low-dissipation discrete

schemes.

There have been many different forms of this approach. The initial applications

were based on a one step method, i.e. the domain was computed in full, from near-

field to far-field with no division between the noise generation and noise propagation

phases. More recently Bailly et al., [72], introduced two steps approaches. In [72] is

presented the so called Stochastic Noise Generation and Radiation (SNGR) model.

Bailly et al. proposed the use of a steady RANS simulation to calculate the steady

mean flow. Then the Euler equation are linearised around this mean flow and a

stochastic turbulence model is used as a source term in the LEE.

In another approach, the Acoustic Perturbation Equations (APE), similar to LEE,

a division between the dynamic source region and the far-field is implemented. The

APE are derived by decomposition of the flow into acoustic and non-acoustic quanti-

ties, based on a filtering of the non-linear and viscous terms of the NS and continuity

equations. Ewer and Schroder, [73], proposed an approach which exploited LES cal-

culations for the generation step and the APEs to simulate wave propagation.

Careful numerical discretisation of both domain and governing equations is required

in order to obtain accurate noise prediction via LEEs or APEs. This applies to both
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cases, whether no distinction is made between noise generation and propagation

regions or whether the domain has been divided in two parts. Tam [74], and Wells

et al., [75], identified the following points which constitute some challenges for LEE

methods:

• Aeroacoustics problems are intrinsically unsteady

• The frequency range involved in the solution spreads over a wide bandwidth

• Acoustic waves have small amplitudes

• The solution must be computed extending the domain up to the observer which

is usually in the far field, i.e. very large domains are necessary in many cases

• The boundaries of the domain could be reached by the acoustic waves since

these decay very slowly

• Aeroacoustics problems are specifically multiscale problems, i.e. the scales in

the source region and in the far field can be very much different, particularly

at low Mach numbers, where the acoustic length scale is proportional to the

aerodynamic one with a factor of M−1

In order to resolve these issues a very accurate discretisation of both domain and

equations must be exploited. The separation between the flow field and the acoustic

field, as proposed by Ewert et al. [73], offers a solution to the problem of the

disparity of the turbulent and acoustic length scales. But for the discretisation

of the differential equations governing the problem high order low-dispersion and

low-dissipation discrete schemes are required, specifically studied for aeroacoustics

problems, [71, 74], and complex boundary conditions.

This means that, although much smaller than the computational cost required by

DNC or LES methods eqq.(3.2-3.3), the cost for the solution of the LEE is still very

large and more demanding than the one required by the integral methods which will

be discussed in the next section.

3.2.2.2 Integral methods

Integral methods are the less demanding in terms of computational time and re-

sources. They are also the first methods to be considered, as some of the earliest

studies were published already in late 30s,[1]. The breakthrough for the modern
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aeroacoustics theory at the base of the integral methods was presented in the pa-

pers of Lighthill, [8], and Curle, [76], during 1950s and 60s. The three approaches

which are exploited in the current integral methods for noise prediction are:

• Kirchhoff equation

• Lighthill’s Acoustic Analogy

• FW-H equation

Since the approach implemented in this research is based on the FW-H equation,

the first approach does not fall within the scope of this research. Hence, only a brief

discussion of the Kirchhoff method is presented below.

Kirchhoff equation. The Kirchhoff equation was first introduced by Goldstein,

[77], and then used for the first time by Farassat et al. [78]. It is based on the Kirch-

hoff integral theorem. The method is divided in two phases: in the first phase, the

flow field inside the dynamic source region, bounded by the surface S, is obtained via

CFD calculations. In the second phase, the pressure distribution on the boundary

surface S and the variation of pressure along the normal direction to S, provided by

the CFD analysis, are used as inputs for the linear wave equation. This propagates

the acoustic pressure disturbances up to the observer position in the far-field. It

is important to highlight that all the non linearities must be included inside the S

surface.

This is an efficient and simple approach but it has a major drawback. The noise

predictions obtained with this method are very sensitive to the positioning of the

boundary surface S, which defines the extension of near-field domain. This is be-

cause it is unknown a priori whether or not the non linearities have been encapsu-

lated within the near-field boundary. Recent works by Brentner and Farassat, [79]

and again discussed in [80], have shown in fact that the Kirchhoff formulation is

unreliable for aeroacoustic problems given this high sensitivity to the position of the

near-field domain boundary.

In the following sections the Lighthill’s Acoustic Analogy will be described, which is

the base of the FW-H equation. This description will show the steps to obtain the

FW-H equation from LAA and the developments which followed Ffowcs Williams -

Hawkings study and brought to the current status of noise prediction methods for

helicopter rotor noise.
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3.2.3 Lighthill’s Acoustic Analogy

The Acoustic Analogy (AA) was introduced by Lighthill,[8, 9] with the purpose to

study jet noise. Since its introduction the AA has been widely used and reinterpreted

in various forms, such as the FW-H equation for helicopter rotor noise or moving

sources. Although the AA was introduced for jet noise studies the application on

this field has been less successful than the FW-H equation in helicopter rotor blade

noise. This is due to the non-deterministic nature of the jet noise which requires

very sophisticated turbulence modelling in order to be resolved.

Farassat et al. in [81], give a general definition of Acoustic Analogy. It could be

summarised as follows. Given some noise sources generated by turbulence or moving

surfaces confined to a finite region of space V , it is possible to assume that the

time-dependent information, i.e. time histories, are available on all flow parameters

and surface pressure distributions inside V for a sufficiently long period of time.

Assuming that pressure fluctuations outside the volume V satisfy the linear wave

equation, the conservation laws can be rearranged into the following form:

Lp = Q (3.4)

where p is the acoustic pressure, L is a linear or nonlinear partial differential oper-

ator. The inhomogeneous term of this differential operator, Q, depends on the flow

parameters and is assumed known.

Any noise prediction methodology based on eq.(3.4), in which L is the linear wave

operator, can be defined as Acoustic Analogy. In particular Lighthills equation, as

will be discussed later, has the same form of eq.(3.4), where in this case L is the linear

wave operator and the inhomogeneous term is represented by the so called Lighthill

stress tensor Tij , eq.3.12. Given the great advances in turbulence modelling and CFD

predictions, researchers can now obtain very accurate jet noise prediction coupling

accurate near-field CFD calculation with Acoustic Analogy. In effect, some recent

results on jet noise calculations exploiting the LAA, from Hunter and Thomas [82],

are in very good agreement with the measured data. This means that the Lighthill’s

Acoustic analogy coupled with a reliable and accurate CFD prediction represent a

good alternative to the DNC or the LEEs methods.

Its application is though limited to noise prediction in the cases where no surfaces

in motion are involved. In presence of surfaces in motion, such as helicopter rotor

blades, wind turbines or Propfan engines, the noise prediction must be carried out
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exploiting either the Kirchhoff or the FW-H method.

As discussed in the Introduction, by the early 70s noise generation mechanisms

of helicopter rotors and propellers were understood fairly well. At the time, pro-

peller noise predictions were performed exploiting the Gutins formula written in the

late 30s,[3]. Helicopter noise prediction was more advanced and based on Lowsons

formula, [5]. Most noise prediction methods were in the frequency domain. This

was the natural approach for the researchers since time domain methods needed

more computational resources. Many experimental and theoretical works were be-

ing published in Aeroacoustics during that period and a very important one, the

Ffowcs Williams Hawkings paper, [11], was based on the recent Lighthills theory.

Lighthill developed the Acoustic Analogy,[8]-[10], in 1961. On this idea relies a great

part of the aeroacoustics theory of the integral methods. The original Lighthill’s

Acoustic Analogy,[8] is an exact rearrangement of the Navier-Stokes Continuity and

Momentum equations into an inhomogeneous linear wave equation. This rearrange-

ment can be obtained as follows:

The equation of Continuity, or law of mass conservation is:

∂ρ

∂t
+
∂(ρvi)

∂xi
= 0 (3.5)

The Momentum equation, without volume sources:

∂(ρvi)

∂t
+
∂ (ρvivj + pij)

∂xj
= 0 (3.6)

where

pij = pδij − τij (3.7)

τij = µ

(

∂vi

∂xj

+
∂vj

∂xi

)

− 2

3
µ
∂vk

∂xk

δij (3.8)

Lighthill’s equation is obtained by applying a time derivative to eq.(3.5) subtracting

the divergence of eq.(3.6):

∂

∂t

(

∂ρ

∂t
+
∂(ρvi)

∂xi

)

− ∂

∂xi

(

∂(ρvi)

∂t
+
∂ (ρvivj + pij)

∂xj

)

= 0 (3.9)

that can easily be put in a wave equation form starting with:
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∂2ρ

∂t2
=

∂2

∂xixj

(ρvivj + pij) (3.10)

and adding the term −c2o ∂2ρ
∂xi

2 , gives:

∂2ρ

∂t2
− c2o

∂2ρ

∂xi
2

=
∂2

∂xixj

(

ρvivj + pij − c2oρδij
)

= q (3.11)

In which we can define the Lighthill’s Stress Tensor Tij like:

Tij =
(

ρvivj + pij − c2o(ρ− ρ0)δij
)

(3.12)

The final form of the Lighthill’s Analogy is:

∂2ρ′

∂t2
− c2o

∂2ρ′

∂xi
2

= Tij (3.13)

This is the equation obtained by Lighthill [8]. Introducing the wave operator, �2

eq.3.13 can be written in a compact form:

�2ρ′ = Tij (3.14)

In the presence of solid surfaces and discontinuities it is not possible to find the

solution of this differential equation by applying the theory of functions from classical

mathematical analysis. In 1969 Ffowcs Williams and Hawkings in [11] derived the

form of the Lighthill’s Analogy in the case of moving surfaces, and obtained the

solution of the inhomogeneous wave equation in integral form, exploiting the theory

of generalized functions.

3.2.4 FW-H Equation

The FW-H equation is a generalized form of the Lighthill’s Acoustic Analogy and

can be used for arbitrarily moving bodies. It was derived by Ffowcs Williams and

Hawkings in [11]. This approach falls in the broad category of AA, eq.(3.4) as will

be discussed later. The noise prediction is divided in two phases, solution of the

flow field inside the dynamic source region via CFD and propagation of the noise
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waves, via the integral form of the FW-H equation, from the body surface, or from

the near-field boundary in case of porous formulation, up to the far-field observer.

This allows to save computational time and resources because the CFD solution

is limited only to the near-field domain, as opposed to DNC and LEEs where the

solution must be computed in all the domain enclosing noise sources and the ob-

server. The main advantage of this approach with respect to the Kirchhoff equation

is that the results obtained using the FW-H equation are much less sensitive to the

positioning of the near-field domain boundary as well as to the non-linearities in the

flow field,[79] and [80].

The FW-H equation exploits the theory of generalized functions, briefly discussed in

Appendix A and explained in detail in [83, 84]. For this reason the FW-H equation is

applicable in presence of discontinuities and is particularly suitable for solid moving

surfaces, such as the blades of a helicopter rotor. Almost all helicopter rotor noise

prediction codes are based on this equation.

Given a discontinuity such as an impenetrable (solid) moving surface (or body)

described by the function f(x, t) = 0, the domain outside this surface is defined as

f(x, t) > 0 and ∇f = n̂ represents the unit outward normal to the body.

The continuity (3.5) and momentum (3.6) equations in the presence of this disconti-

nuity f(x, t) are correct only if all the quantities are considered as generalized func-

tions and all the derivatives as generalized derivatives. With this position eq.(3.5)

becomes:

∂ρ

∂t
+ ∇ · (ρu) =

∂ρ

∂t
+ (ρ− ρ0)

∂f

∂t
δ(f)+

+
∂ (ρui)

∂xi

+ [ρui]
∂f

∂xi

δ(f) = − (ρ− ρ0) vnδ(f) + ρunδ(f)

= ρ0vnδ(f)

(3.15)

in which vn = −∂f
∂t

is the normal velocity of f = 0 and the condition of impenetra-

bility vn = un was used.

For eq.(3.6) operating in a similar way, the following generalized form in presence

of a solid surface of discontinuity is obtained:

∂

∂t
(ρui) +

∂

∂xj
(ρuiuj + Pij) = [∆Pijnj ] δ(f) (3.16)

in which Pij = τij +(p− p0) δij is the compressive stress tensor and τij is the viscous
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stress tensor. Rearranging equations 3.15,3.16 in a similar fashion as done for the

Lighthill’s equation, but keeping in mind that in this case generalized derivatives

need to be exploited:

�
2
p′ =

∂
2

∂xixj

[Tijh(f)] − ∂

∂xi

{[∆Pijnj] δ(f)} +
∂

∂t
{[ρ0vn] δ(f)} (3.17)

Eq.(3.17) is the FW-H equation, generalized form of the Lighthill’s equation. In

this equation three source terms are visible which, because their mathematical form,

are labelled as monopole, dipole and quadrupole. The first two terms can be also

thought as the sources, respectively, of the thickness, loading noise and, the last

term, as source of broadband noise and part of the impulsive noises. Given this

direct correspondence of each term with a particular noise source for rotor generated

noise, the FW-H equation is the base for almost every rotor noise prediction code.

In their paper Ffowcs Williams and Hawkings presented three different variable rep-

resentations for resolving the above equation in integral form and obtain the acoustic

pressure at the given observer positions. These three different representations are

commonly known as “Retarded Time”, “Emission Surface” and “Collapsing Sphere”,

names which try briefly to describe the surface on which the integrals are evaluated.

3.2.4.1 Retarded time

All the integral representations can be found starting from the eq.3.17 and using

the free space Green’s Function:

G0(y, τ |x, t) =
1

4πr
δ

(

τ − t+
r

c0

)

(3.18)

in which we can define:

g(t, τ, r) = τ − t+
r

c
(3.19)

r(x(x0, t),y(y0, τ)) = |x(x0, t) − y(y0, τ)| (3.20)

where r is the distance between the observer in x and the source in y positions.

The particular type of integral formulation that can be obtained depends on the

choice of the variables which will be used to integrate the Dirac delta function. A
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general inhomogeneous wave equation can be written:

�
2
Φ(x, t) = Q(x, t)δ(f) (3.21)

in which f(x, t) = 0 is the surface of discontinuity and Q(x, t) is a generic source.

The solution of this equation using the above Green’s Function is:

4πΦ(x, t) =

∫ t

−∞

∫ ∞

−∞

Q(y, τ)δ(f)δ(g)

r
dydτ (3.22)

From this general solution of the inhomogeneous wave equation it is possible to

obtain every existing formulation for eq.3.17. In particular the Retarded Time

formulation can be obtained by choosing the following variable representation in the

eq.3.22: (y3, τ) → (f, g). This yields to:

dydτ =
dy1dy2dfdg

|∂f/∂y3||1 −Mr|
=

dSdfdg

|1 −Mr|
(3.23)

which brings the following integral form for a generic source term Q(y, τ):

4πΦ(x, t) =

∫

f=0

[

Q(y, τ)

r|1 −Mr|

]

ret

dS (3.24)

All the values in the integral are evaluated at the retarded time:

τ = t− r

c
(3.25)

Where Mr = M · r̂ = Mir̂i and the Doppler factor 1−Mr comes from the derivative
∂g
∂τ

The simplification obtained with this position is visible, and a four dimensional

integral, in space (y1, y2, y3) and time is reduced to a surface integral, on the physical

surface of the body (f = 0), e.g. the rotor blade.

3.2.4.2 Emission Surface

The Emission Surface representation can be obtained by choosing the following

variable representation in the eq.3.22: (y3, τ) → (F, g), where F (x, t,y) = f(y, τ =
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t− r
c
), i.e. the surface f calculated at the retarded time τ = t− r

c
. This yields to:

dydτ =
dy1dy2dFdg

∂(F, g)/∂(y3, τ)
=

dy1dy2dFdg

N3|∇F |
=

dΣdFdg

|∇F | (3.26)

where N3|∇F | = ∂F/∂y3 and Σ = (dy1dy2)/N3. With the position

Λ = |∇F | =
√

1 − 2Mn cos θ +Mn
2. (3.27)

Substituting the expressions above in eq.3.22 this solution can be written:

4πΦ(x, t) =

∫

F=0

1

r

[

Q(y, τ)

Λ

]

ret

dΣ (3.28)

The values in the integral, inside the square brackets, must be evaluated at the

retarded time τ = t − r(τ)
c

. Even in this case the reduction of the number of

dimensions involved in the integral is clear. The integral is reduced from a four

dimensional integral to a surface integral, but this time on the Emission Surface, i.e.

the locus of the points of the geometrical surface f whose disturbance reaches the

observer at the same time t.

3.2.4.3 Collapsing Sphere

The Collapsing Sphere can be obtained by choosing the following variable represen-

tation in the eq.3.22: (y2, y3) → (f, g). This yields to:

dydτ =
dy1dfdgdτ

∂(f, g)/∂(y2, y3)
=

dy1dFdgdτ

(∇f ×∇g) · ê1
=
cdΓdfdgdτ

sin θ
(3.29)

where Γ is the curve intersection between the collapsing sphere and the surface

f = 0, and θ is the angle between ∇f and r. Using this transformation in eq.(3.22)

gives:

4πΦ(x, t) =

∫ t

−∞

∫

f,g=0

Q(y, τ)

r sin θ
dΓdτ (3.30)

The reduction of the four dimensional integral leads this time to two one dimensional

integrals, one in time and the other one over the intersection curve between the

surfaces f = 0, g = 0.

All the existing codes for rotor noise prediction are based on one of the afore-

mentioned formulations. In particular the “retarded time” representation has been
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extensively used since it allows to evaluate the integrands directly on the physical

surface of the body. Hence, a complex surface construction is not required, as would

be for the other two formulations.

3.2.5 Farassat’s Formulations

Farassat can be considered as one of the most active researchers in aeroacoustics.

He developed a formulation based on the FW-H equation in retarded time known as

Farassat’s Formulation 1 in 1975, [13]. Many other studies have followed his effort to

find more efficient and robust formulations. In total, to the knowledge of the author,

Farassat developed 4 different formulations, [13],[85]-[86], for the solution of the FW-

H equation. Two different version of Farassat’s first formulation, also denoted as

Formulation 1 and 1A,[13]and [85], have been exploited during the course of the

research presented here.

3.2.5.1 Formulation 1

This formulation is an integral formulation of the eq.3.17, based on the retarded

time coordinates representation for the general solution obtained applying the free

space 3D Green’s Function. Let’s analyse in more detail the steps to obtain this

integral equation.

It is clear from eq.(3.17) that three different source terms can be identified. Each

term can be treated separately as an inhomogeneous wave equation for the acoustic

pressure fluctuations p′. The free space Green’s function can be applied to find the

solution for each one of the three wave equations:

�
2
p′ =

∂

∂t
{[ρ0vn] δ(f)} (3.31)

�
2
p′ = − ∂

∂xi

{[∆Pijnj] δ(f)} (3.32)

�
2
p′ =

∂
2

∂xixj
[TijH(f)] (3.33)

The solutions for each source term, following [83], can be obtained using a form

similar to eq.(3.22). Using the Retarded Time Formulation, the three terms above
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have the integral form:

4πp′ =
∂

∂t

∫ [

ρ0vn

r|1 −Mr|

]

ret

dS (3.34)

4πp′ = − ∂

∂xi

∫
[

Pijnj

r|1 −Mr|

]

ret

dS (3.35)

4πp′ =
∂2

∂xixj

∫
[

Tij

r|1 −Mr|

]

ret

dS (3.36)

The above results were found from FW-H [11]. In order to arrive to the Farassat’s

Formulation 1, the above space derivatives must be transformed in time derivatives.

This can be done according to the know relationship of the Green’s function:

∂

∂xi

[

δ(f)

4πr

]

= −1

c

∂

∂t

ri

r

[

δ(f)

4πr

]

− ri

r

[

δ(f)

4πr2

]

(3.37)

and applied to (3.34-3.36) leads to:

4πp′ =
∂

∂t

∫
[

ρ0vn

r|1 −Mr|

]

ret

dS +
1

c

∂

∂t

∫
[

Pij r̂inj

r|1 −Mr|

]

ret

dS

+

∫
[

Pij r̂inj

r2|1 −Mr|

]

ret

dS +
1

c2
∂2

∂t2

∫
[

Tij r̂ir̂j

r|1 −Mr|

]

ret

dS

(3.38)

The terms in the above equation still clearly represent the Thickness term in the

first row and the Loading and Quadrupole terms in the second row of the equation,

respectively .

3.2.5.2 Formulation 1A

This formulation is based on the same steps followed to obtain eq.(3.38). In order

to arrive to the Farassat’s Formulation 1A the time derivatives outside the integrals

in eq.(3.38) must be taken inside. This can be done by exploiting the following

relationship between derivatives on observer time and source time:

∂

∂t

∣

∣

∣

∣

x

=

(

1

|1 −Mr|
∂

∂τ

∣

∣

∣

∣

x

)

(3.39)
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by applying eq.3.39 to (3.38) the thickness and loading terms are:

4πp′ =

∫
[

ρ0v̇n + vṅ

r|1 −Mr|2
]

ret

dS

+

∫

[

ρ0vn(rṀr + cMr + cM2)

r2|1 −Mr|3

]

ret

dS

(3.40)

4πp′ =
1

c

∫

[

l̇r
r|1 −Mr|2

]

ret

dS +

∫
[

lr − lM
r2|1 −Mr|2

]

ret

dS

+

∫

[

lr(rṀr + cMr + cM2)

r2|1 −Mr|3

]

ret

dS

(3.41)

3.2.6 Quadrupole term

The Quadrupole term is usually neglected if the blade motion is subsonic because its

contribution is of order o(M4), [8, 9], i.e. turbulence is an inefficient sound source.

In case of high Mach number flows, near transonic and supersonic, the importance

of the quadrupole term is well known, [41],[40] and [46]. The Lighthill’s stress tensor

Tij is defined as:

Tij = ρuiuj +
{

(p− p0) − c20 (ρ− ρ0)
}

δij (3.42)

The integral form of the quadrupole term in eq.(3.17) is:

4πp′ =
∂2

∂xixj

∫ t

−∞

∫ ∞

−∞

[

TijH(f)δ(g)

r

]

dydτ (3.43)

The solution for the acoustic pressure generated from such a term would require the

evaluation of a 4 dimensional integral and a double differentiation in space, which

would be a very computationally expensive task. However, this kind of approach

is not actually necessary because the Lighthill stress tensor Tij vanishes outside of

the source region. For a far-field observer in the plane of rotation of the sources

the collapsing sphere can be locally approximated by a circular cylinder. Since the

observer is assumed to be in the rotor plane, integration in the direction normal to

the rotor plane can be performed independent of the observer position.

The derivatives in observer space can be changed with derivatives computed in the
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observer time t using the same method exploited in eq.(3.37):

∂2

∂xixj

[

δ(g)

r

]

=
1

c2
∂2

∂t2

[

r̂ir̂jδ(g)

r

]

+
1

c

∂

∂t

[

(3r̂ir̂j − δij)δ(g)

r2

]

+

[

(3r̂ir̂j − δij)δ(g)

r3

] (3.44)

Using the above equation in eq.(3.43) the following terms are obtained:

4πp′ =
1

c2
∂2

∂t2

∫ t

−∞

∫ ∞

−∞

[

Trrδ(g)H(f)

r

]

dydτ

+
1

c

∂

∂t

∫ t

−∞

∫ ∞

−∞

[

(3Trr − Tii)δ(g)H(f)

r2

]

dydτ

+

∫ t

−∞

∫ ∞

−∞

[

(3Trr − Tii)δ(g)H(f)

r3

]

dydτ

(3.45)

Where Trr = Tij r̂ir̂j and Tii = Tijδij .

It is clear that this term would require the most of the computational time during

the calculations, so many researchers try to neglect it whenever possible. The term

cannot be neglected during HSI calculations given its important contribution to

HSI noise sources. As discussed above this HSI noise source propagates mainly

along directions parallel to the rotor disk plane with almost no contribution in the

normal direction, for these reasons Brentner and Holland, [41] proposed an efficient

approximation for the above term. They define the quadrupole source strength on

the rotor plane as:

Qij =

∫

f>0

Tijdz (3.46)

This approximation means that the quadrupole is integrated over the direction nor-

mal to the rotor disk, z, but the integration is performed only outside of the rotor

blade. With this position and for the properties of the HSI noise, Qij will be non

zero only in the region close to the rotor blade planform.

Using Qij inside the quadrupole term integrals and after some manipulations, it is

possible to obtain the following form for the far-field quadrupole term approximation
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exploiting the emission surface formulation:

4πp′ =
1

c2

∫

1

r
r̂ir̂j

[

L2
τQij

]

ret
dΣ

+
1

c

∫

1

r2
[3LτQij r̂ir̂j − LτQij ]ret dΣ

+

∫

1

r3
[3Qrr −Qii]ret dΣ

(3.47)

Where Lτ is a differential operator defined as Lτ = ∂
∂τ

− ∂η
∂τ

· ∇η

3.2.7 FWH Porous Formulation

Although less computationally demanding with respect to the original quadrupole

term, the method discussed above is an approximation of the original equation. Di

Francescantonio in [87] proposed an alternative form for the FW-H equation and

the Farassat Formulation 1 eq.(3.38) which allows to neglect the volume integral of

the quadrupole term after a careful choice on the position of the integration surface,

which in this case doesn’t need to be the blade surface. This is known as the Porous

Formulation of the FWH or, as di Francescantonio [87], KFWH meaning that it

combines the 2 approaches of Kirchhoff and Ffowcs Williams - Hawkings.

The FW-H equation (3.17)has been obtained with the assumption that the surface

of discontinuity, represented by δ(f) is impermeable, e.g. the blade surface. It is

possible to drop this assumption, as was already suggested in the paper of Ffowcs

Williams and Hawkings, [11], and reconsidered by di Francescantonio. Going back to

the inhomogeneous wave equation of Lighthill [8] and assuming that S is permeable,

a equation similar to (3.17) is obtained:

�
2
p′ =

∂

∂t
{[ρ0vn] δ(f)} +

∂

∂t
{[(ρ− ρ0)(vn − un)] δ(f)}

− ∂

∂xi

{[

P ′
ijnj

]

δ(f)
}

− ∂

∂xi
{[ρvi(vn − un)] δ(f)} +

∂
2

∂xixj
[Tijh(f)]

(3.48)

where vn is the fluid perturbation velocity normal to S and un is the normal velocity

of S and since S is considered permeable (vn − un) 6= 0. It is possible to rearrange

the terms of this equation in order to obtain a form similar to (3.17), using the

following variables:

Vi = vi + [(ρ/ρ0) − 1](vi − ui) , Lij = P ′
ij + ρvi(vj − uj) (3.49)



Literature Review 43

then (3.48) becomes:

�
2
p′ =

∂

∂t
{[ρ0Vn] δ(f)} − ∂

∂xi
{[Lijnj ] δ(f)} +

∂
2

∂xixj
[Tijh(f)] (3.50)

From eq.(3.50) applying the same consideration made to obtain (3.38), it is now

possible to find the integral form for all the source terms except the quadrupole

term, obtaining:

p′(x, t) =
1

4πc0

∂

∂t

∫

S

[

ρ0c0Vn + Lnr

r|1 −Mr|

]

ret

dS +
1

4π

∫

S

[

Lnr

r2|1 −Mr|

]

ret

dS(3.51)

Equation (3.51) is then the porous surface version of the Farassat Formulation 1.

The quadrupole term can be neglected since now the porous surface can be moved

farther away from the near-field in order to include the non linear terms, in a fashion

similar to Kirchhoff methods. The added advantage of the porous FW-H method

with respect to the standard Kirchhoff method is the much lower sensitivity of the

noise prediction to the surface location, [80].

It should be noted that any acoustic source which falls inside f = 0 surface will only

contribute to the overall noise prediction through the surface-source terms which for

porous surfaces can be considered as “pseudo thickness” and “pseudo loading” terms

(pseudo because they are not referred to a blade but to a porous surface). On the

other hand, any acoustic source outside f = 0 must be included in the computation

via the volume source term.

It follows that with a careful positioning of the porous surface, so that it encloses all

the acoustic sources, the volume sources, i.e. quadrupole term, can be legitimately

neglected. This brings a significant computational saving of time and resources,

but only recently the availability of accurate CFD prediction enables the use of the

FWH equation on a permeable surface

3.2.8 Supersonic formulations

The discussion above referred to subsonic sources and noise prediction methods

based on the classical retarded time algorithms. This representation is in fact widely

used in noise prediction codes for the simplicity of implementation and its compu-

tational efficiency for subsonic conditions. The only flaw which affects algorithms

based on the “retarded time” formulation is the presence of the Doppler factor
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|1 −Mr| at the denominator of every integrand. This becomes a singularity when

Mr = 1 and restricts the use of such algorithms to subsonic cases.

Hence, in cases of transonic and supersonic conditions can only be used noise predic-

tion codes which are based on the Emission Surface or Collapsing Sphere formula-

tions. The use of such formulations has been avoided by the majority of researchers

because , the construction of the required integration surfaces is complex and arises

many issues.

As will be discussed in the following subsections, few studies have investigated the

possibilities of exploiting the two aforementioned representations, [42], [44] and [45].

An alternative to these two complex formulations has been recently proposed by

a group of researchers, [49]. It is based on the retarded time formulation but the

Doppler singularity have been eliminated with careful considerations. The method

exploits a source time dominant or forward time algorithm with the assumption of

fully non compact sources, which eliminates the mathematical singularity.

In the next subsections it follows a description of the aforementioned formulations

for supersonic sources.

3.2.8.1 Collapsing Sphere and Emission Surface Algorithms

In order to avoid the Doppler singularity, one of the two formulations, Collapsing

Sphere or Emission Surface, must be exploited instead of the Retarded Time repre-

sentation. The integral solution of the FW-H equation using these two formulations,

for a generic source Q(y, τ), is given by: Collapsing Sphere

4πΦ(x, t) =

∫ t

−∞

∫

f,g=0

Q(y, τ)

r sin θ
dΓdτ (3.52)

and Emission Surface

4πΦ(x, t) =

∫

F=0

1

r

[

Q(y, τ)

Λ

]

ret

dΣ (3.53)

which are obtained as described in paragraph 3.2.4 but no detail was given on the

meaning of the integration surfaces, f(y, τ), g(t, τ, r) = 0 and F (x, t,y) = 0, and

how to construct them.

It must be noted that although the Doppler singularity does not affect these formu-

lations, two different kind of terms, sin θ and Λ are visible at the denominators of
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the Collapsing sphere and Emission surface integrands. Studies, [13, 78, 80] showed

that the two terms become singular only for particular configurations and for most

of these cases they are integrable singularities. Next follows a description of the

available methods for the construction of the integration surfaces with a discussion

on the behaviour of terms at the integrand denominators.

The Collapsing Sphere algorithm was devised first by Farassat in [13] and it was

first exploited in a computer code by Farassat, [88, 43], during the end of 80s, when

the research on Propfan applications was very active. The way of constructing the

curves along which the integration is performed follows a simple idea which gives

the name to this formulation. A sphere centred on the observer position with a

radius r = t − τ decreasing from r = ∞ when τ = −∞, to r = 0 for τ = t, i.e.

collapsing, will intersect the body along the required curves. It can appear that the

algorithm could have a straight forward implementation in a computer code, but

the calculation of the intersection curves between the sphere and the blade surface

(or the porous surface) requires large computational time. This restricts the use of

the Collapsing Sphere formulation only in the case of supersonic sources, while the

subsonic ones must be analysed via the classical retarded time representation. The

sinθ term at the integrands denominator becomes singular only if the panel over

which the integration is being performed has the unit normal vector n̂ parallel to

the radiation vector r̂.

The Emission Surface representation is the one which shows the most simple

integrands form and is not affected by the Doppler singularity, but the terms can

be singular when Λ = 0. Farassat, [13], demonstrated how this singularity can

be integrated for many of the cases in which Λ = 0. Furthermore Farassat and

Myers, [78], showed how the singularity is eliminated when the quadrupole term

is included in the equation. The fact that the Λ singularity can be integrated or

eliminated makes the Emission Surface formulation the perfect candidate for high

speed sources. Currently though, just two researchers, Brenter, [44] and Ianniello,

[45], implemented this formulation because the construction of the emission surface

is complicated and presents many issues.

The aforementioned surface is the intersection between the collapsing sphere and

the volume described by the motion of the surface on which the flow variables have

been calculated, i.e. the volume described by the motion of the rotor blade or by

the porous surface enclosing the near field domain.

Brentner, [44], devised a particular algorithm to construct the emission surface,
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labelled as the Marching Cubes Algorithm. This algorithm is based on a method

exploited in computer graphics to produce iso-surfaces, the marching cubes method.

Exploiting an advanced time algorithm the observer times are calculated for all the

source times in every grid point. The values are then stored. By using the marching

cubes algorithm it is possible to compute the iso-surfaces of constant observer time,

i.e. the emission surfaces. Similar to the Collapsing Sphere algorithm, this procedure

is also more time consuming with respect to the classical retarded time, and hence

its use is confined mostly to supersonic sources.

The K-algorithm was proposed by Ianniello, first in [45] and recently improved [48].

It is based on a sophisticated method for the construction of the emission surface

where the points are obtained solving the retarded time equation. The multiple

roots, which characterise the retarded time equation in supersonic conditions, are

obtained for every point by sweeping the retarded time function in two different

directions. One direction with increasing source time τ and the other with decreasing

τ . Ianniello then implemented in the algorithm a method of classifying each point

of the surface as single, mixed or multiple source. Each point source could have

in fact up to three roots, i.e. three different locations for a given observer time

instant, or could have one distinct and two coincident roots, or one single root.

The multiple sources are thus divided in the different categories so to have a more

accurate reconstruction of the multiple branches of a supersonic Emission surface.

This Emission Surface algorithm is certainly the one which gives predictions of HSI

noise in very good agreement, as will be shown in Section 6.3, with the experiments,

but it is clear that the surface reconstruction is very sophisticated. The process can

be computationally demanding in certain conditions and the algorithm requires a

careful and complex implementation in a computer code.

3.2.8.2 Advanced Time or Source Time Dominant Algorithm

The solution of the retarded time equation can be obtained much faster if, instead

of considering a particular observer time and then finding the corresponding source

time, the process is inverted, i.e. the source time is fixed (dominant) and the time at

which the acoustic signal reaches the observer is considered as the unknown. From

this assumption derives the name Advance time or Source Time dominant algorithm.

If the observer x is stationary, then t = τ+r/c, can be obtained analytically without

any need to use iterative methods. Otherwise, in case of a moving observer the

equation becomes slightly more complex, t−τ −|x(t)−y(τ)|/c = 0, but its solution
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is still simpler than solving the same equation in τ . In fact, the source motion,

especially for helicopter blades, is much more complex than the observer motion

which could be at most a linear function of t. It should be noted that a sequence

of equally spaced source times will lead to a sequence of unequally spaced observer

times, hence an interpolation is required to obtain an equally spaced observer time

history. Using this approach is possible to further speed up the noise predictions,

as shown in [89]-[91], with respect to the classical retarded time formulation. In the

classical algorithms the largest part of the computational cost for each time step is

due to the solution of the retarded time equation (3.25) using iterative root finder

algorithms such as Newton-Raphson and Brent’s algorithms.

Still the Advanced Time formulations are characterised by the Doppler singularity

forMr = 1. In order to avoid the Doppler singularity Prieur et al., [89] and Kessler et

al., [90] introduced the assumption of considering all the sources, even the smallest

discretisation panels, as non compact. This means that each panel, in which the

integration surface is divided, emits pressure disturbances which reach the observer

over a finite time interval and not in a single time instant.

More precisely, while in the classical algorithms the integration surface is discretised

in panels δSi which are considered to be compact, δSi → 0., in [89, 90] this assump-

tion is dropped considering all the panels as non-compact. The signals emitted at

time t by all the points of δSi are not received at the same instant in x, but in a

finite time interval δti = |δri|
c0

, which corresponds to the difference in propagation

time between the signals emitted by the closest and the farthest points from the

observer.

The non-compactness is basically implemented in the method by replacing δ(g) in

equation (3.22) by the function:

Ki(x, τ, t, ) =

[

[H(g + ∆g) −H(g)]

∆g

]

i

=

[

H(τ − t+ (ri+|δri|)
c0

) −H(τ − t+ ri

c0
)
]

|δri|
c0

(3.54)

where Ki is the Kernel function. Note that Ki → δ(g) when |δri| → 0, so that

the classical Greens function is recovered at the compactness limit when the panel

source tends to a point source. Finally, the acoustic pressure radiated by δSi is
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written:

p′i(x, t) =

∫

τ

Πi(x, τ, t)dτ (3.55)

where:

Πi(x, τ, t) =
QKi(x, τ, t)δSi

4πri

(3.56)

It can be shown that when δri tends to 0, given reception time t and Mri
6= 1, the

emission time interval ∆τ = τa − τb tends to:

|δτi| =
(|δri|/c0)
|1 −Mri

| =
δti

|1 −Mri
| (3.57)

This means that the non-compact result (3.55) tends to the classical compact source

result:

p′i(x, t) =

[

Q(yi, τ)

4πri|1 −Mri
|

]

ret

δSi (3.58)

The Doppler singularity shown in formula (3.58) is avoided, apart from the case

where the element is moving with a constant normal velocity equal to c0 towards

the observer.

3.2.9 Research Gaps in Rotor noise prediction

After presenting a detailed analysis of the noise prediction formulations and algo-

rithms available in literature, it is now possible to classify them into two categories;

the approaches limited to subsonic sources and approaches capable of handling tran-

sonic and supersonic sources. It has been clearly shown that for the aeroacoustic

analysis of sources moving in subsonic conditions the Retarded Time formulation

is the most widely exploited, but recently the classical retarded time algorithm,

[35, 13], has been abandoned by some researchers, [89]-[91], in favour of the more

efficient Advanced Time algorithm. The efficiency and capabilities of noise predic-

tion tools based on the retarded time formulation has been demonstrated for long

time, but these characteristics, as stated earlier, are limited to subsonic conditions

Mr < 1 by the Doppler Singularity.

For the prediction of noise from sources which do not fall within these flow conditions

three different approaches are available in literature: Collapsing Sphere, Emission



Literature Review 49

Surface and non-compact Advanced time algorithms. The Collapsing Sphere, [88,

42], was the first to be implemented, but the high computational time and moderate

accuracy of the noise predictions obtained using this algorithm, [80], make it less

competitive with respect to the two other approaches.

The Emission Surface algorithms from Brenter, [44], and Ianniello, [47, 48], when

used for subsonic sources are still computationally more demanding with respect

to classical retarded time algorithms. However, the noise predictions for transonic

source using the Emission surface representation are in good agreement with experi-

ments. For instance, the noise prediction of the UH-1H rotor blade in HSI condition

obtained by Brentner, are in good agreement with the experimental campaign con-

ducted by Purcell, [32]. Furthermore, the results obtained by Ianniello are in very

good agreement with this experimental campaign even for the most difficult case

with MT = 0.95, this will be shown in Section 6.3.

The third approach, based on non-compact Advanced Time algorithms, does not

require the complex algorithm for the construction of integration surfaces as for the

previous two methods, but it requires complex calculations for the integrands and

the interpolation of unequally spaced observer time history into equally distributed

intervals. The noise predictions obtained via this algorithm are in good agreement

with the experiments but they are less accurate if compared to the predictions

obtained by Ianniello.

The detailed analysis of the current status of rotor noise prediction helps to high-

light some of the existing gaps in this research field. It is clear that both rotor noise

predictions for subsonic and supersonic sources are at a very advanced level, but it

is also clear that no research effort has been invested to explore the possibility of de-

veloping one algorithm which could work efficiently in both subsonic and supersonic

regimes. The main reasons are the high efficiency of retarded time algorithms in

subsonic regimes and the complex algorithms which are required for the construction

of the integration surfaces in supersonic flow conditions.

To the knowledge of the author there has been limited research and a relatively

limited progress towards more efficient methods for the solution of the retarded time

equation, especially during supersonic conditions when multiple roots are present

for a single observer time instant. The difficulties in the solution of the retarded

time equation for rotating sources, in case of supersonic motion, has been reported

by many researchers,[47, 80], and more recently by Lyrintzis in a review of integral

methods for aeroacoustics, [92], but no study on this particular matter have been
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published.

An investigation of the methods for solving the retarded time equation will bring

more efficient algorithms for the construction of supersonic emission surfaces. Fur-

thermore, a detailed analysis of the behaviour of supersonically rotating sources

could lead to the definition of simpler methods to obtain Emission Surfaces. In fact,

as stated, above the noise prediction tools based on this formulation are those which

gives the most accurate noise prediction for transonic sources and in the presence

of strong shock delocalization, i.e. MT = 0.9 and above.

3.3 Summary and conclusions

In the first part of this chapter the main noise sources of helicopter rotor noise have

been presented. It is clear that the two most important noise sources are BVI and

HSI noise. The former is more important in specific maneuvers such as low speed

descent, while the latter is generated when helicopters are moving in high speed

forward flight.

In the second part the latest approaches for noise prediction have been introduced.

From this discussion, the hybrid approaches resulted as the most suited for practical

noise analyses while, given the computational cost, Direct Noise Computation can

be used only for cases at small Rel.

The hybrid approaches using the Ffowcs Williams - Hawkings equation in time

domain, are the most exploited for helicopter rotor noise analysis and they have

been discussed in the last part of the Chapter. They were divided in methods suited

for sources in subsonic motion and methods of sources in supersonic motion. The

latter methods are the main focus of this study and it is clear from the analysis that

only few algorithms are available for the analysis of sources in transonic/supersonic

regimes.
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Chapter 4

Development of Numerical

Approaches

The integral equations, on which the noise prediction formulations are based, have

been presented in Chapter 3, along with the different integral forms and the corre-

sponding integrands. In particular, for the retarded time formulation the general

mathematical form of the integrals was obtained in the Chapter 3. For a generic

source of strength Q(y, τ), function of the source position and time, the integral has

the following expression:

4πΦ(x, t) =

∫

f=0

[

Q(y, τ)

rα1 |1 −Mr|α2

]

ret

dS (4.1)

α1, α2 are integers which depend on the kind of source, i.e. thickness, loading or

quadrupole. The integrals for the Emission Surface formulation have the form:

4πΦ(x, t) =

∫

Σ

[

Q(y, τ)

rα1 |1 − Λ|

]

ret

dΣ (4.2)

where Λ = |∇F | =
√

1 − 2Mn cos θ +Mn
2. The integrands must be evaluated

over the integration surface which is defined by the specific integral representation

used. When the retarded time representation is exploited, the physical surface S,

on which the pressure and velocity distribution are available, will be used as the

integration domain. Otherwise in the cases of Emission Surface or the Collapsing

Sphere approaches the control surface S will be used as input in order to calculate the

corresponding integration domains. The subscript “ret” in the equations indicated

that the integrands must be evaluated at the retarded time τ = t − r/c0. Hence,
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the solution of the retarded time equation is necessary in all the formulations. It is

useful to describe the steps which compose the base of a noise prediction algorithm,

independently from the specific formulation adopted.

• For the time ti and panel δSi, defined by the points (SPi, i = 1, Pp) (where

SPi are the number of points chosen to represent every single panel), find the

corresponding retarded times τPi. (In case of ES formulation calculate the

emission positions y(τ)Pi which form the discretisation of the corresponding

emission surface panel δΣi)

• Calculate the surface area and aeroacoustic integrals over the panel δSi ( or

δΣi )

• Repeat the calculations until ti ≤ TE

• Repeat the process for the total number of panels Np in which the surface is

discretised

The main difference between the two formulations is that in Retarded Time the

integration domain is the physical control surface S used during the CFD calcu-

lations, adopting the ES representation, Σ is the surface generated by the motion

of S. More precisely Σ is the emission surface of S and must be recalculated for

every observer time instant and position. The interpretation of the above scheme

is straight forward, keeping in mind that (x, t) must be fixed during each step, the

complete computation is implemented in three loops. The inner loop evaluates the

contribution of all the source δSi or δΣi in which the control surface is discretised,

for a given (xk, tj), then there is a loop to compute the time history of the sources

for a fixed observer xk and finally, when many observer positions are required, the

process must be iterated for all the xk.

4.1 Retarded time equation

The first requirement in any noise prediction code, independently on the imple-

mented formulation, is the solution of the retarded time equation g(τ, t, r/c) = 0

or τ = t − r/c. In the following paragraphs will be discussed the behaviour of the

function g = 0 and a novel method for finding the g = 0 roots.
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For the CS and ES formulations, the construction of the integration domain, which

consist of curves in the CS formulation and emission surfaces Σ in the ES repre-

sentation, can be performed only after the roots of the retarded time equation have

been obtained. This is due to the fact that in these formulations both integrands

and the domains are function of the retarded time τ , while in the Retarded Time

formulation only the integrands depend on τ . For these reasons is clear the ne-

cessity of including a fast and efficient root finder algorithm in a noise prediction

framework.

Several well known and widely spread root finder algorithms are described in the

literature. Considering their efficiency, the Newton-Raphson and the Brent’s algo-

rithms are the best exploited methods to accomplish this task,[93]. These techniques

are included in many computational tools and exploited in a wide variety of appli-

cations, whenever it is required to find the roots of a given function. In the specific

case of the retarded time equation the use of one of these methods can identify

the roots quite efficiently in subsonic conditions but in supersonic regime, where

the retarded time equation has multiple roots for a given observer time instant, the

aforementioned methods can easily fail. These two root finder algorithms require

the bracketing and initial approximation of each root in order to start the search.

Such procedures, and especially the bracketing, will take a considerable part of the

computational time, and given the characteristics of the retarded time equation and

the presence of local minima and maxima, the solution cannot be guaranteed.

In order to better understand the issues involved in the solution of the retarded time

equation, it is helpful to describe the kinematics of the helicopter’s main rotor.

4.1.1 Main Rotor Kinematics

The aerodynamic design of the helicopter’s main rotor is extremely complex since

the first machines were introduced. Today, as described in [94], there are four main

types of rotor hubs in use, which vary with the number and position of their hinges.

These have been introduced in order to add more degrees of freedom to the blade

motion and hence, decrease the aerodynamic loading on the rotor shaft and controls.

In particular, the fully articulated hub design has two hinges plus a bearing:

flapping hinge allows the blades movement normal to the rotor disk, i.e. the

blades can flap up and down depending on the aerodynamic loading
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lead/lag hinge adds the in plane movement for the blades which is driven by the

drag

pitch bearing allows the blades to feather and is used to control the blades’ pitch.

This can be operated on all the blades collectively, i.e. collective pitch, chang-

ing the magnitude of the rotor’s thrust, or cyclically with respect to the blade

azimuth, changing the phasing of the aerodynamic loads

The fully articulated rotor is the most complex design considering the number of

components and the assembly procedure. Other hub design configurations are the

teetering rotor, the hingeless rotor and the bearingless rotor. The teetering rotor has

two blades which are hinged on the shaft, i.e. does not use any independent flap or

lead/lag hinge. As a consequence, the blades will move like a teetering board, when

one flaps up the other will flap down, and hence the name of this rotor configuration.

The hingeless rotor design eliminates the need of flap and lead/lag hinges by using an

advanced and sophisticated aeroelastic design of the blades. The hinges are virtual

and obtained by flexures in the blade. In this hub design the pitch bearing for the

control of the blades is still in use. On the other hand, in the bearingless hub design

all hinges and the bearing are eliminated and included in the bending flexing and

twisting of the blade structure.

From the discussion above is clear that, for any type of helicopter rotor, the degrees of

freedom of the rotor’s blades comprise at least flapping, feathering and, for exception

of the teetering design, the lead/lagging motion. This means that the motion of a

reference frame connected to the main rotor blades with respect to a fixed observer

on the ground must include at least all the above degrees of freedom in addition to

rotation and translation with respect to the ground fixed reference frame. When

considering fuselage and tail rotor the number of intermediate reference frames,

which must be taken into account, is much higher. In the current analyses though,

the main rotor is assumed as stand alone.

Then, in order to calculate the motion of a point attached to the rotor blades

with respect to the absolute ground observer frame, or viceversa, it is necessary to

consider at least five intermediate reference frame. It should be noted here that both

aerodynamic and aeroacoustic analysis of helicopter rotors must take into account

all the aforementioned reference frames, in order to evaluate correctly the blades

motion, [35] and [13]. Another reason is that the normal and tangent vectors to

the rotor blade surfaces can be easily obtained in a blade fixed frame and, in this
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reference frame, they are independent of time.

The reasons above identify the need for an efficient method to describe in the same

reference frame (RF) all the variables and vectors which are required for aerody-

namics or aeroacoustics calculations, whether the chosen RF is a ground fixed frame

or a blade fixed frame. In order to obtain a general expression for the required frame

transformations it is better to start from a simple case involving only two reference

frames.

Given two generic frames, F1 and F2 with the same origin O1 = O2 but rotating

with respect to each other at an angle α21 around the axis x1, the transformation

matrix from F1 to F2 is:







x2

y2

z2






=







1 0 0

0 sinα21 cosα21

0 − cosα21 sinα21













x1

y1

z1






(4.3)

Eq.4.3 ca be written in a compact form using the following notation:

T21 =







1 0 0

0 sinα21 cosα21

0 − cosα21 sinα21






(4.4)

Considering now the particular case of helicopter blades, the above operation must

be repeated for the 3 reference frames of flapping, lead/lagging and pitching motion.

After these 3 transformations the point motion is known in the frame which is rotat-

ing and translating with respect to the rotor shaft. Hence two more transformations

are necessary to be implemented in order to obtain the motion with respect to a

ground fixed frame, a total of 5 reference frame transformations. An additional ro-

tation is usually required to consider the orientation of the rotor shaft with respect

to the ground frame.

Figure 4.1 clarifies the meaning of these latter three frames, the observer frame OF ,

the GF which is the reference frame fixed to the ground but with the Z axis oriented

as the rotor shaft, i.e. rotated at an angle αs with respect to the ground. The frame

MF is oriented in the same fashion as the previous one but is translated with a

velocity VH and with the origin on the rotor shaft. Finally the rotating frame RF

is connected to the MF and rotates with a rotational speed Ω around zMF . The

angular, or azimuth, position of RF with respect to MF is ψ = ψ0 + Ωτ , where

ψ0 is the initial azimuth position. This is the position with xRF pointing towards
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the tail rotor and yRF always fixed to the quarter chord line of the blade number 1.

From the RF it is possible to obtain the absolute motion of a blade fixed point using

the further three frame transformations which account for the flapping, lead/lagging

and pitching motions.

Figure 4.1: Reference frames form Observer to Rotating frame.

Based on the above discussion it is now possible to write the complete equation for

the calculation of the radiation vector r = x − y which connects the observer x to

the source point y, fixed with the blade surface:

r = [[TGO]xOB + VOBt]

− [([TGM ][TMR][TRF ][TFL][TLB])yB + H + Vhτ ]
(4.5)

where H = ([TRF ][TFL][TLB])flh + ([TFL][TLB]) llh + ([TLB])pth accounts for the

movements of flh, llh and pth. These are respectively the offsets for flapping hinge,

lead-lagging hinge and pitching hinge. The subscripts OG,GM,MR,RF, FL, LB

represent the transformations from Observer to Ground, Ground to Moving, Moving

to Rotating, Rotating to Flapping, Flapping to Lead/lagging, Lead/lagging to Blade

frame respectively.

It is reminded that the vector r defined above is a function of r((x0), t,y, τ) and

x = x(x0, t) and y = y(y0, τ). All the matrixes written above in compact form are

functions of t and τ . In order to better understand this dependance it is useful to

analyse in more detail one of these transformation matrixes.
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Defining the flapping angle as β = β(ψ), this can be represented in the most general

case of forward flight as an infinite Fourier series of ψ as:

β(ψ) = β0 + β1c cosψ + β1s sinψ + β2c cos 2ψ + β2s sin 2ψ + . . . (4.6)

so that the transformation matrix between the flapping and the rotating reference

frame will be, considering that the flapping motion is around the xRF = xFF axis:

TFR =







1 0 0

0 sin β(ψ) cos β(ψ)

0 − cosβ(ψ) sin β(ψ)






(4.7)

This is valid for all the other matrices involving a rotational transformation. The

flapping angle β, the lead/lag angle ζ and the pitch angle θ are included in the

current software by means of Fourier series truncated at the second harmonic, as

illustrated above for β. This approximation is considered sufficiently accurate for

noise prediction, [35]. In helicopter aerodynamic analysis the angles connected to the

motion of the main rotor are always described via the Fourier series coefficients both

during experimental and computational campaigns. It is an efficient approximation

to include the strong dependency of these angles on the azimuth position ψ(τ), and

thus indirectly on τ .

The details of the calculation of these coefficients are outside the scope of the current

thesis since the procedure is more relevant to aerodynamic analyses, where the forces

and moments depend on the aforementioned angles and viceversa. In order to obtain

the required Fourier series coefficients that describe the kinematics of the helicopter,

the complex equations of the forces and moments must be resolved. This procedure

is called rotor trim and for a given helicopter gross weight, centre of gravity and

forward speed the trim solution must evaluate: the rotor controls, collective pitch

θ0, cyclic pitches θ1c and θ1s; the rotor disk orientation described by β0, β1c, β1s; and

the vehicle orientation.

This complex coupling of aerodynamic and aeroelasticity, which governs helicopter

rotor aeromechanics, has led researchers to develop the so called comprehensive

tools. These tools are capable of resolving the helicopter trim using iterative cou-

pling between structural and aerodynamic equations. A very detailed discussion on

helicopter rotor trim, design and more in general helicopter’s aerodynamics can be

found in Leishman, [94].
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4.1.2 Retarded time behaviour

The definition of the radiation vector r has been introduced above for a source

which is fixed to the helicopter main rotor blades. Without loosing any generality

it is possible to analyse here the behaviour of the retarded time solutions for a

source fixed to the rotating frame RF , hence neglecting the flapping, led/lagging and

pitching motions. The same analysis in effect could be easily extended to include

these motions by just adding the further three transformation matrices required.

The equation of r for a source fixed to RF becomes, in the ground frame GF :

r = [[TGO]xOB + VOBt] − [([TGM ][TMR])yB + VHτ ] (4.8)

The retarded time equation was defined in 3.25 but it is useful to write it again

along with the definition of r = |r|:

τ = t− |r|
c

(4.9)

x = [[TGO]xOB + VOBt] (4.10)

y = [([TGM ][TMR])yB + VHτ ] (4.11)

(4.12)

|r| =
√

rT r

=
√

xTx + yTy − 2xTy
(4.13)

It is now evident that even for this simplified analysis the retarded time equation,

because of the definition of r, is an implicit function of τ and cannot be resolved an-

alytically. In fact, the motion of the source y is complex and involves transcendental

functions. On the other hand, even if the equation is implicit in t, the motion of the

observer x is always simpler to evaluate with respect to the rotating source. The

observer could be fixed or moving with a constant velocity, i.e. a linear function of t,

so that the roots of g for fixed τ can be easily found. The Forward Time Algorithms

exploit this characteristic of the retarded time equation by fixing τ and calculating

the time t when the signal reaches the observer, i.e. propagating the signal forward

in time at an instant t > τ .

In case of retarded time algorithms, it is necessary to analyse the behaviour of τ and

its derivatives with respect to t under several different conditions of motion, in order

to devise a more efficient root finder process. It should be noted that the solution
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of this equation, given a source point yB and an observer point xOB, represents the

intersection between the spherical waves centred in xOB whose radius is varying as

r = (t− τ), and the curve in space described by the motion of the source point yB

for the same t and τ .
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Figure 4.2: Influence of Mach number on t, τ behaviour, t and τ non-dimensionalised
over the period T = 2π

Ω

The radiation distance r is covered by the pressure signal in the time r/c and hence

the existence of single or multiple roots of τ depends on the speed at which the

source moves along the radiation vector. More precisely, this speed is defined as

vs · r̂ or in terms of Mach number as Mr = vs · r̂/c. The same variable is found when

calculating the derivative of the retarded time equation g = 0 with respect to τ at

constant yB:

g(t, τ, r) = τ − t+
r

c
∂g(t, τ, r)

∂τ
= 1 +

1

c

∂r

∂yi

∂yi

∂τ

= 1 − 1

c

(r

r
· vs

)

= 1 −Mr

(4.14)
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where it was used the relation ∂r
∂yi

= −r/r = −r̂ derived from the definition of r and

the subscript s indicates the source. yi is the ithcomponent of y(yB, τ). It must be

highlighted that, when g = 0, t is directly connected to τ . In fact, considering the

function g(t, τ, r) = 0, and calculating its derivatives in t and τ for constant xOB

and yB, the following relation is obtained:

∂g(t, τ, r)

∂τ
dτ +

∂g(t, τ, r)

∂t
dt = 0

(1 +
1

c

∂r

∂yi

∂yi

∂τ
)dτ − (1)dt = 0

dt = (1 −Mr)dτ

(4.15)

From equation 4.15 is clear that the use of equally spaced ∆τ intervals, as in the

case of forward time algorithms, will yield to unequally spaced observer time history,

and hence interpolation is required. Eq.4.15 is equivalent to:

∂τ

∂t
=

1

(1 −Mr)
(4.16)

From equations 4.16 and 4.15 is clear that the sign of 1 −Mr, expressed as partial

derivative of g with respect to τ , will always be positive when the point source yB is

moving with subsonic motion |M| < 1, i.e. the function is monotonically increasing

and there will be only one root τ for every observer time instant t. This is visible

in figure 4.2 for the lines with M < 1.

The source’s Mach number M depends on the rotational speed Ω, the distance of

the source from the rotation point (in yR = 0), i.e. |yB|, and the sound speed c (and

hence the fluid temperature). By increasing the Mach number of the source, which

in the current case is done by increasing Ω, it is possible to observe the behaviour

of τ versus the corresponding t. In particular, the steepness of the curve increases,

until M = 1, and in transonic conditions a part of the curve is perpendicular to the

t axis.

Along the trajectory described by the point source there will be only one position

for which the condition Mr = 1 is satisfied. In particular, considering that for the

chosen motion of the source yB the trajectory is represented by a circumference of

radius |yB|, the condition Mr = 1 is verified when the radiation vector r is tangent

to this path. When the source point passes from this specific position, along its

trajectory, is moving toward the observer with the same speed, i.e. the speed of

sound c, of its acoustic signal.
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The analysis of the second partial derivative of the function g with respect to τ will

help to clarify this condition:

∂2g

∂τ 2
=
∂1 −Mr

∂τ

= −1

c

(

∂vs

∂τ
· r̂ + vs ·

∂r̂

∂τ

)

= −∂vs

∂τ
· r̂

(4.17)

where the ∂r̂

∂τ
= 0 always.

From the expression of ∂2g
∂τ2 it is clearly visible that for a rotating point source,

∂2g
∂τ2 = 0 in the same position, along the trajectory of the source, where ∂g

∂τ
= 0. This

happens because the acceleration vector ∂vs

∂τ
is normal to the velocity vector which in

that point is parallel to r̂. Thus, the dot product in Eq.4.17 is 0. The combination of

these two conditions, i.e. first and second derivative equal to 0, means that function

g has a cusp and that there is a caustic in the emission surface.
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Figure 4.3: Behaviour of 1 −Mr by varying source rotational speed Ω

When the source Mach number isM > 1 the equation g(t, τ, r) = 0 will have multiple

roots of τ for a given observer time instant t. This is shown as an S shape in the

curves τ(t) obtained as solutions of g = 0. The observer time equation t(τ) = τ−1(t)

has in this cases two points of local minima or maxima, i.e. two points in which
∂t
∂τ

= 0 or ∂g
∂τ

= 0.

The meaning of the multiple positions of the emission point can be clarified analysing

the point source kinematics and physics. There will be three segments of the source
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point trajectory from which the emitted acoustic signals will reach the observer at

the same time instant. The multiple roots segments of the source point trajectory

can be found in proximity of the point where the radiation vector is tangent to yB

path. It is obvious that at the tangent point Mr will be exactly Mr = |M|. This

means that the two points in which ∂t
∂τ

= ∂g
∂τ

= 0, i.e. Mr = 1, can be found via the

following equation:

(1 −Mr) = (1 − |M|cosθrM) = 0 (4.18)

=⇒ cosθrM =
1

|M| (4.19)

The solution of equation 4.18 can be calculated in terms of azimuth values ψ. The

two roots of this equation are at a symmetric positions with respect to the tangent

point ψtn. The azimuthal distance of the two roots from ψtn tends to increase with

the increase of M and will reach a value ∆ψ as close to 90◦ as much M tends to ∞.

In Figure, 4.2, the function τ(t) when g = 0 is plotted for several different values

of Mach number M which varies in the range M = 0.4 up to M = 3.0. The curves

show exactly the behaviours described above. Some more insight on the retarded

time equation can be gained by looking at the plots of ∂g
∂τ

and ∂2g
∂τ2 , in Figures 4.3 and

4.4 for Mach numbers varying in the same range as the previous figure. It is clearly

visible that the first partial derivative, 1 −Mr decreases reaching 0 when M = 1

and the cusp is visible. For further increases in M the curves reach the negative

quadrant and the existence of multiple roots is obvious.

The analysis in this section was focused on the motion of a single source point. Next

follows a discussion on the root finder algorithm developed during this research. Af-

ter having defined this algorithm, on which is based the construction of the emission

surfaces, it will be presented the Σ surface corresponding to the motion of a single

panel. The analysis of a simple panel, which is the basic element of surface discreti-

sation, could lead to interesting insights and further clarify the physical behaviour

of noise generation from supersonically rotating surfaces. In literature can be found

only another study which shows some details on the generation of emission surfaces,

[48].

4.1.3 Root finder algorithm

As discussed in the research methodology, Section 2.4, the noise prediction tool

developed during the current research is build in a step-by-step fashion, hence, the
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aforementioned root finder algorithms have been included in the initial version of

the software. The novel numerical approach to finding the roots of g = 0 was then

obtained after a detailed investigation based on the knowledge of the problem, on

the kinematics of the helicopter rotors and on the observed behaviour of the roots of

g = 0 in various flow conditions. Some of the ideas at the base of the development

of the current algorithm have been introduced above. In the following paragraphs

will be shown how the aforementioned analysis leads to the final version of the root

finder algorithm implemented during this research.

The analysis of the function g = 0, equivalent to τ(t, r/c), presented above, high-

lighted the importance of ∂g
∂τ

, as an indicator for the behaviour of τ . For this reason

the Newton algorithm was considered as the optimum starting point for the pro-

posed root finder method, which could be considered a modified version of the

Newton method.

It is now necessary to show the issues which affect the classical algorithms making

them inefficient or not suited for particular conditions, such as supersonic source

motion.

The main issue arising in the search of the g = 0 roots is the appearance, during

the analysis of supersonically moving sources, of multiple roots τ corresponding to

the same instant t, whenever Mr > 1 along the source’s path. It is possible to

find these multiple roots by mean of the classical version of Newton’s and Brent’s

algorithms, but in order to do so the roots must be first bracketed. Given an interval

[τ1, τ2], where supposedly the multiple roots are located, the bracketing algorithm

will divide the input interval in a user set Nsi number of sub intervals. The function

f under analysis will then be evaluated on the extremes of each sub interval. The

process is iterated until is found the sub interval in which f has two opposite signs.

It appears that the process described can be quite inefficient.

Assuming that the function g could have up to three multiple roots, the bracketing

process must be repeated until the three sub-intervals containing the roots are found.

Though, for the function g, the existence of multiple roots is confined only in a small

part of the observer time history, while in the most of the observer time axis there

will be only one single root. Hence, it is evident that even when g has single τ roots,

i.e. during the majority of observer time history, the root bracketing algorithm

will inefficiently seek for the other two roots sweeping all the defined Nsi and thus

increasing the computational time. It should be reminded that the root bracketing

process must be repeated for every observer time t along the overall observer time
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interval [ts, te] defined in the calculation.

The loop described above takes into account only one source point, and hence it

must be repeated for all the source points which define the integration domain of

interest. This means that the highlighted inefficient behaviour must be repeated

for the whole time history [ts, te] and for all the source points under analysis. This

process will add many unnecessary steps to the overall computational time.

Unfortunately the root bracketing process is a fundamental step for both Newton’s

and Brent’s algorithms and cannot be avoided. The only possible answer to this

issue is to define a root finder method which does not require this time consuming

procedure. In order to do so it is helpful to understand how the two aforementioned

root finder algorithms work and why they require root bracketing.

It should be noted, once again, that the focus in the analysis which follows is on those

cases where g shows a non-monotonic behaviour, i.e. for M > 1. For functions f(x)

that are non-monotone the two algorithms under analysis can encounter additional

difficulties, [93], around local minima and maxima, df
dx

= 0, and inflection points,
d2f
dx2 = 0.

It is well known that the Newton-Raphson method is based on a linear approximation

of the function under analysis via a Taylor series expansion truncated at the first

order. The method has quadratic convergence and, near the roots will converge very

fast, but when the evaluation point is far from a root or close to critical points the

method loses its high convergence properties and becomes linear. In the worst cases

the algorithm could reach a stall situation, i.e. the evaluation point starts oscillating

around the function inflection point and the method cannot reach convergence. It is

obvious that the closest to the root will be the first evaluation point, the faster and

more certain the method will converge. Hence, the root bracketing process will play

an important role in this task both for the Newton’s method convergence and to

minimize the likelihood of failure in the root search. While for monotonic functions

this improvement could be considered optional, in case of non-monotonic functions

the root bracketing step is indispensable. The Newton method alone will otherwise

fail to provide all the required roots for such functions.

Brents method combines bisection, and inverse quadratic interpolation to obtain

the root of a function f(x), within a defined accuracy, inside the neighbourhood

of a zero crossing interval. Inverse quadratic interpolation uses three prior points

[xi, f(xi)] to fit an inverse quadratic function, i.e. x as a quadratic function of

f(x), whose value at f(x) = 0 is considered the next estimate of the root x. The
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algorithm includes also an internal root bracketing which is used in order to prevent

the search from jumping outside the brackets of the input interval. Even for the

Brent’s algorithm it is required a pre-step of a root bracketing algorithm in order to

concentrate the search in smaller domains. Furthermore, the Brent’s method alone

is not suited to compute multiple roots. Only in combination with a root bracketing

algorithm, which establishes the multiple roots’ intervals, Brent’s method can find

multiple roots, working separately in each sub-interval.

From the discussion above it can be observed that the linear behaviour of the two

methods when the evaluation point is far from the root is the main reason for

which the pre-step procedure of root bracketing is required. Another reason is the

fact that the Newton’s algorithm is better suited for monotonic functions and the

Brent’s algorithm cannot provide the multiple roots without a previous search of the

sub-interval in which these roots exist. A possible solution then, can be to consider

a method which is not linear, i.e. which implements an higher order approximation

of the function under analysis.

In helicopter rotor aeromechanic analysis, described in the previous section, the mo-

tion of the main rotor blades can be defined via transformation matrices between the

different reference frames involved. Furthermore the angles, flapping, lead/lagging

and pitching are generally represented via Fourier series of the azimuth ψ = ψ(τ).

For these reasons the calculations of ∂g
∂τ

can be obtained analytically. Thus, New-

ton’s method is the best candidate as a starting point for the improved root finder

method developed in this research.

In the Newton-Raphson algorithm, the generic function f(x) is calculated in the

point xi as a Taylor series approximation truncated to the first order, i.e. a straight

line tangent to the function f in the point x. Adopting a similar idea, in the proposed

algorithm the Taylor series expansion of the function f(x) is truncated instead at

the third order. The function is thus approximated as a third order curve which

is tangent to f in x. This enhances the accuracy of the approximation which will

remain close to the actual function for larger intervals, with respect to the first order

series.

Starting from a Taylor series expansion of g(t, τ, r) around the point τ and keeping

constant the other variables:

g(t, τ + ∆τ, r) = g(t, τ, r) +
∂g

∂τ
∗ ∆τ+

+
1

2!

∂2g

∂τ 2
∗ ∆τ 2+

1

3!

∂3g

∂τ 3
∗ ∆τ 3 + . . .

(4.20)
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and imposing that the ∆τ increment will bring g → 0 the following polynomial

equation is obtained:

1

3!

∂3g

∂τ 3
∗ ∆τ 3 +

1

2!

∂2g

∂τ 2
∗ ∆τ 2 ∂g

∂τ
∗ ∆τ + g(t, τ, r) = 0 (4.21)

whose roots will provide three values of ∆τ and hence of τ ∗ = τ + ∆τ where

g(t, τ ∗, r) = 0.

In addition, by approximating the function with a 3rd order polynomial, three ∆τ

are obtained instead of one. The smallest of the three roots of the approximating

Taylor series will be, most of the times, under the set tolerance already in the first

evaluation. This reduces dramatically the computational time required to solve

the whole problem. The gain in computational time remains positive even when

considering the additional time required by the calculation of the second and third

derivatives of the function.

The solution of the third order polynomial while Newton’s algorithm equation is

just linear, is another operation which could affect the efficiency and efficacy of the

proposed method. If computed efficiently, this process will not increase the compu-

tational cost. In the proposed algorithm, the solution of the third order polynomial

is obtained by implementing a fast analytical method capable of providing the three

roots with a limited number of operations. This analytical method is based on an

approach similar to the classical solution of the second order polynomials and was

recently proposed by Nickalls, [95]. A description of this solution follows in the

paragraphs below.

Considering a generic third order polynomial y(x)

y = ax3 + bx2 + cx+ d (4.22)

The solution of the cubic equation 4.22 is based on the same ideas as the Cardano

solution but introduces the following parameters:

δ =
b2 − 3ac

9a2
(4.23)

h = 2aδ3 (4.24)

λ = 3δ2 (4.25)

xN =
−b
3a

(4.26)

yN = ax3
N + bx2

N + cxN + d (4.27)
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These parameters are characteristic of the particular polynomial and are used to

first to define the expected root patterns, e.g. one real and 2 complex roots or

three real roots etc., and then to evaluate the roots. Essentially, these parameters

reveal how the solution is connected to the curve’s geometry. The Nickalls’ method

can evaluate the roots of a generic third order polynomial more efficiently than the

classical third order Cardano method.
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Figure 4.5: Function g(τ) and approximating polynomials Π(τ) along with the rel-
ative errors. (Π3(τ) is the 3rd order polynomial, ∆τ0 = 2π

Ω∗360)

The third order polynomial approximation enables to find τ ∗ even if the evaluation

point τ is not very close to the root. This is a great advantage compared to the

classical Newton’s method which requires close proximity to the root in order to

accelerate the convergence. In Figure 4.5 is evident that the approximation errors

between the Π(τ) and g(τ) is, on average, 2 or 3 orders of magnitude smaller with

respect to the linear method. In most of the cases, using Π3, the approximate root of

g is already below the set tolerance in the first evaluation. For those cases when this

does not happen, it is possible to converge under the limit tolerance by including

just one iteration of the linear Newton’s method.

Furthermore the three ∆τ roots of the polynomial can be ordered by increasing

magnitude. The first, smallest, ∆τ represents the actual increment required to reach

the closest root of the function under analysis. In the cases when g has multiple

roots, the second ∆τ represents a fairly good estimate of the second closest multiple

root of g.
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4.1.4 Improved Retarded Time Algorithm

The classic retarded time algorithms are based on the following steps:

• define a starting observer time ts and a constant positive time increment ∆t;

• find for ts + i ∗ ∆t, i = 0, Nt the time τ for which g(t, τ, r) = 0, and if M > 1

search for 3 roots;

• if t = te stop.

The main issue with this particular approach is that the search for multiple roots,

when M > 1, will be performed in any case whether or not they exist, wasting a lot

of computational time in those intervals where only one single root is available. The

behaviour of the retarded time τ for several different Mach numbers, fig.4.2, was

highlighted in the previous section. In the cases of supersonic motion it is clearly

visible the existence of an observer time range where, increasing τ the observer time

t first increases then decreases and then finally increases again. Thus, for a positive

increment of τ the corresponding increment in t is not always positive.

This observation suggests an approach for the solution of the retarded time equation.

The definition of the ∆t sign should not be constant and hard-coded in the algorithm

but should lean on the behaviour of the retarded time function. An improvement

in the efficiency of the standard retarded time algorithm can be obtained by using

an increment ∆t which is not always positive but can also be negative or zero when

required.

It is possible to do this by adding one more step to the base algorithm described

above. During this step the algorithm, given the approximating polynomial in the

point g(t, τ ∗, r), verifies whether a new approximating polynomial computed in g(t+

∆t, τ ∗, r) can be solved. Then, the adjustments on ∆t sign are made based on the

results from this query. The sign must change in order to sweep the τ(t) curve

along the positive direction of τ . The value ∆t = 0 instead is necessary to take into

account those instants when g derivative, i.e. 1−Mr, is 0. ∆t will change sign just

after these instants.

Exploiting the aforementioned idea it is possible to reduce the multiple roots search

to a single root search. The other roots will be obtained by sweeping τ along its “S”

shaped curve, i.e. varying ∆t. Furthermore it is not necessary to know the number

of roots, and hence emission surface branches, a priori. The right number of roots
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in the [ts, te] will be obtained by the sweeping process. All these features make the

improved algorithm more efficient and better suited to handle both subsonic and

supersonic motions.

Thus, the solution of the Retarded time equation is much faster when compared

to the first order Newton-Raphson method, up to 5 times faster for high subsonic

and near transonic conditions. The proposed approach has also the capability of

finding multiple roots in supersonic condition without requiring the expensive roots

bracketing process. This latter feature makes the algorithm efficient and less prone

to failing the search.

4.2 Emission Surface construction

In the previous section was discussed the novel root finder method developed during

this research. It is now necessary to define an algorithm which is capable to construct

the ES of supersonically rotating sources exploiting the aforementioned method.

Since the proposed root finder algorithm is designed as a retarded time approach, it

is obvious that the emission surface reconstruction will be based on such approach

and not on an “Advanced Time” or “Forward Time” method, [44].

In this latter process, as proposed by Brentener [44], the source time τ is set and the

corresponding observer time t is calculated for each of the discrete source points. The

observer time and source positions are then stored at each defined source time. The

discrete data become a three-dimensional arrayindices (i, j, k) where i and j indexes

describe the surface spatially while k represents the source time. The Emission

surface Σ is obtained by calculating the isosurfaces of constant observer time t in

the 3D computational space described by the matrix (i, j, k). This isosurfaces are,

by definition, distinct representations of the Σ surface for a given t.

With this position the construction of Σ, proposed in [44], becomes equivalent to

the problem of isosurfaces reconstruction in computer graphics. Thus, the accuracy

of the results will depend on the accuracy of the isosurfaces reconstruction which is

a sophisticated interpolation process to be performed both in space and in time.

On the other hand, by applying a retarded time algorithm, the retarded time equa-

tion will be solved for every point source, belonging to the starting physical surface,

and considering fixed the observer time t. The corresponding single or multiple re-

tarded positions of the original source point are then obtained. These are elements



Development of Numerical Approaches 71

of the final emission surface domain at the chosen time instant t.

The emission surface, using the retarded time approach, is the direct intersection

between the spherical waves and the volume described by the motion of every single

discretisation panel. This intersection is represented by the solution of the retarded

time and retarded positions. Since the variables are calculated at an equally spaced

time history, with predefined time step size, there is no need to perform the complex

space and time interpolation as in [44]. Hence, for the ES construction developed

during this thesis the accuracy will depend on the accuracy of the retarded time

equation solver, i.e. the root finder method.

The computational time required for the direct solution of each panel emission sur-

face could appear higher than in the forward time approach. It must be reminded

though that in the latter case the effort is shifted from the solution of the retarded

time to the sophisticated space and time interpolation required. Furthermore, the ef-

ficiency of the process, in the case of retarded time surface reconstruction, is heavily

dependant on the efficiency of solution process of g = 0.

Such approaches have been considered computationally expensive because the stan-

dard root finder techniques are not well suited in the presence of multiple roots,

when M > 1. In the current research, the overall noise prediction tool efficiency has

been enhanced by exploiting the improved and more efficient root finder method

described above.

The behaviour of the retarded time roots of a single source point has been clearly

analysed above. In the next subsection the focus is shifted on the behaviour of

a finite panel source, the basic element upon which the emission surface is build.

Furthermore the analysis of the motion and behaviour of one single panel will help

to highlight other key features of supersonically moving sources. It then follows a

description of the Emission surface discretisation and surface integrals evaluation.

4.2.1 Single panel analysis

In figure 4.6, the (t, τ) plots for the 4 vertices of a quadrilateral panel are shown.

Following the curve of point 1, along the positive observer time line, it is visible the

existence of only one single root for t < t1m1, even if M = 1.4. The single root, at

t = t1m1 is followed by the appearance of a second root, but this configuration is only

existing for the specific time instant t1m1 and for t > t1m1 there will be a third source.
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Figure 4.6: t, τ curves for a single panel with 4 points.M = 1.4
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The appearance of this last root could be explained by assuming that the second

root which appeared in t = t1m1 has now split into 2 different emission points: one

which is moving towards the positive τ and t directions, hence by definition positive

ψ(τ); and the other one moving toward negative τ direction, i.e. counter rotating

with respect to the previous one.

The second root of the equation effectively rotates in opposite direction with respect

to the other 2 roots, as indicated by the negative slope of the (t, τ) curve, i.e. the

derivative of τ and hence ψ. To summarise, following the τ(t) curve of the panel point

1 the acoustic waves in t < t1m1 and t > t1m2 are radiated only by one emission point.

On the other hand, three emission sources exist inside the interval tm1 < t < tm2. It

is important to highlight the existence of 2 critical points along the vertex retarded

time history: t = t1m1 in which two coincident sources will appear in the same

retarded position and t = t1m2 where two of the three sources will collide to occupy

the same emission point and then disappear.
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Figure 4.7: Close up of t, τ curves for a 4 points panel with M = 1.4

The analysis above is accurate for the single source point analysed, but for a discrete

source panel a slightly different behaviour will appear. Observing the t, τ plots,

fig.4.6, solution of the panel emission surface Σp, it is evident that the intervals in
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which the multiple retarded sources appear or disappear are not the same for all

the source points describing the panel, i.e. the intervals ([tjm1, t
j
m2], j = 1, 5) will

be different. In this case it is possible to define the interval [tm1, tm2], which is the

union
⋃4

j=1([t
j
m1, t

j
m2]) of all the single intervals of each discretisation point.

During [tm1, tm2] the multiple emission panels will appear and disappear as single

points, i.e. two emission panels will appear in a single point when t = tm1 and collide

to a single point at the extreme t = tm2 of the interval defined above. In Figure

4.7 it is evident that the discrete points will not have the second and third roots

outside their own [tjm1, t
j
m2], i.e. the second and third emission panels do not always

preserve the same number of points of the corresponding source panel. In the figure

in fact the lines at constant τ are fictitious, i.e. they have been introduced in order

to preserve the panel integrity.

Based on the results of this analysis, it is clear that the emission surface construction

algorithm must be capable of handling this apperance/disapperance phenomenon of

the discrete vertices. By defining a method which takes into account the described

behaviour, it is possible to obtain smooth emission surfaces without holes and hence,

the accuracy of the numerical integrals is increased.

The main reason for the improved accuracy is that the differences between the over-

lapping intervals (tjm1, t
j
m2) is strongly dependent on the dimensions of the starting

panel, i.e. on the number of points used for the discretisation of the input surface

S. For finer discretisations the difference between each tjm1 (or tjm2) will be lower.

In Figure 4.8 are shown three panels with different dimensions demonstrating the

previous statement. The blue lines indicate the base panel δS1 while the black lines

represent a panel of size δS2 = δS1/4 and the panel described by the red lines has

area δS3 = δS1/16.

The differences between the τ curves of the panel’s points will tend to 0 as δSi → 0,

becoming a single source point. Thus, taking into account the described phe-

nomenon, means accounting for the finite extension of the δSi panels, improving

the accuracy and the efficiency of the prediction tool. All the existing emission sur-

face algorithms require mesh refinement procedures for most of the CFD input grids.

The proposed algorithm will require less mesh adaptation steps because it allows

the consideration of larger panel dimensions with respect to standard methods. In

Figures 4.9 and 4.10 are shown the differences between two discretisations of the

same quadrilateral panel, one with 2x2 points and the other with 8× 8 points. It is

interesting to observe that by taking into account the phenomena described above,
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Figure 4.8: Effect of the panel size on the panel t, τ curves. (Blue lines reference
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Figure 4.9: Emission panels 2 × 2 corresponding to roots 1 and 2 during collision
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(b) Panel 8 × 8, t1 + ∆t, after collision

Figure 4.10: Emission panels 8 × 8 corresponding to roots 1 and 2 during collision

the panel surface in Figure 4.9 does not show any holes during the collision of the

two emission surfaces. On the other hand, even though the results in Figure 4.10

are obtained with a much larger number of discretisation points, some voids are

visible between the panels. This is because the algorithm used to obtain Fig.4.10

does not take into account the finite behaviour of the discretisation panels discussed

above, and does not use any interpolation or refinement in order to smooth, [47],

the emission surface.
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4.3 Integrals evaluation

After the description of the approaches developed for the calculation of the retarded

time roots and of the corresponding retarded sources position, it is necessary to

describe the integration methods used in the noise prediction tool. It must be high-

lighted that all aeroacoustic formulations require the evaluation of surface integrals

and, for those methods which take into account the quadrupole term, also volume

integrals must be computed.

A generic integration algorithm requires the surface S to be discretised in NS panels

δSi, and the integrals are evaluated on every single δSi and then summed. The

task can be accomplished using different panel representations, i.e. using different

number of points Pp which describe the panel. It is obvious that the more points are

used to discretise a panel the more accurate the results obtained for both emission

surface construction and noise prediction will be. The issue with this assumption

is that it does not take into account computational time but only accuracy. It is

better in fact to restore a balance between these two requirements, i.e. to try and

have the higher accuracy possible with the lower number of points used.

Observing the physical control surface panel, in this case discretised with 5 points,

in figure 4.11 and its corresponding emission surface it is clear that the a simple

four points discretisation would be inadequate for an emission surface description.

This is because even if the original panel could be modelled by a simple bilinear

representation, it is not possible to describe the corresponding emission surface

panel via a bilinear equation without loosing accuracy. The description of one panel

should be obtained then using a number of points Pp > 4.

It should be noted that the more points are added to the panel model the more

complex will be the emission surface which is possible to represent within one single

panel. This allows larger dimensions for the source panels, which means less grid

points and faster calculations. It must be taken into account that increasing the

number of points per panel will dramatically increase the computational time for

each panel, so a compromise between accuracy and efficiency should be considered

also in the choice of Pp.

Brentner and Farassat in their reviews of helicopter rotor noise prediction methods,[96]

and [80], identified the importance of using high order integration schemes, in order

to have an efficient and robust method to resolve the aeroacoustic integral equa-

tions. Thus, a description of the integral methods which have been implemented in
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Figure 4.11: Starting and emission surface panels. M = 1.4

the computational tool must follow.

Many different quadrature algorithms are available. During this research three inte-

gration methods have been investigated and implemented, the Midpoint quadrature,

the Simpson’s method and the Gauss Legendre integration. These are in fact the

most widely used and renowned integration approaches.

4.3.1 Isoparametric representation

Most integration methods could benefit from a very general panel description, which

is independent from the actual panel shape or dimensions. For instance in the use of

integration techniques such as Gauss-Legendre the coefficients and integration co-

ordinates, as will be described later, are easily calculated for elements which extend

from −1, 1 in both x and y directions.

It is useful then to describe the panels in local coordinates which vary in the inter-

val −1, 1 and which are always 2 dimensional, i.e. a coordinate transformation is

required from the physical space (x, y, z) to the 2D (ξ, η) space local to the panel,

which is called Reference Plane. The (ξ, η) coordinates are called Natural Coordi-

nates. The transformation between the starting coordinates of the panel , which in

general are in the R3(x, y, z), to the Natural coordinates requires two steps.

First the panel tangent plane and normal must be defined, using respectively the

two panel’s diagonals ξ̂ = P3P1/P3P1, η̂ = P4P2/P4P2 and their products ζ̂ =

(P3P1 ∧ P4P2)/|P3P1 ∧ P4P2|, so that vertexes Pi can be described in terms of
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ξ̂, η̂, ζ̂, and then a mapping of Pi into the ranges −1, 1.

In a panel can be defined actually three kinds of nodes:

• function nodes, used to store Field values;

• mapping nodes which are used to determine the element geometry with the

mapping process defined above;

• nodes used for both purposes.

Elements with the same number of function and mapping nodes are called isopara-

metric, [97]. When an element is described using more function nodes than mapping

nodes is called subparametric element, and elements with more mapping nodes than

function nodes are called superparametric. The panel representations used during

this thesis are only the isoparametric or iso-P elements.

Two widely used higher order quadrilateral isoparametric elements are the 8 and 9

points elements. During the development of the noise prediction tool the 9 and the

5 points quadrilateral have been implemented and tested. The former was used as

a benchmark test for its high accuracy while the latter was introduced to explore

the effects of adding one point, and testing whether it would enhance the accuracy

of the discretisation.

The mapping described here can be generalised. The mapping nodes determine the

element geometry by defining a mapping from a master element with a standard

shape and position to the actual element. In order to explain more clearly the

meaning of isoparametric elements it is necessary to start from the description of

a simple monodimensional cell, that is a segment, with natural coordinate system

such as its vertexes are −1 and 1.

Given a displacement function u = u(ξ), which varies linearly inside the element,

described as u = a1 + a2ξ, the two coefficients can be easily found by imposing that

u(ξ = −1) = u1 and u(ξ = 1) = u2. This leads to the equation for u:

u(ξ) = u1
(1 − ξ)

2
+ u2

(1 + ξ)

2
(4.28)

That is:

u(ξ) =

Pp
∑

k=1

ukΦk (4.29)
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With the above relations it is then possible to obtain the shape functions for the

linear isoparametric element:

Φ1 =
(1 − ξ)

2
(4.30)

Φ2 =
(1 + ξ)

2
(4.31)

which must respect the following condition:

Pp
∑

k=1

Φk = 1 (4.32)

A generic point along the segment x1 ≤ x ≤ x2 is represented by:

x = x1Φ1 + x2Φ2 =

Pp
∑

k=1

xkΦk (4.33)

These three relations, eqq.4.32,4.33,4.29, can be put into a matrix form:
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(4.34)

Applying the same steps for the 2D quadrilateral element represented by Pp = 4

points the following matrix is obtained:
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(4.35)

Where the shape functions Φi can be calculated assuming a bilinear function Φi =

ci(1 + ξiξ)((1 + ηiη)) and ξi, ηi are the natural coordinates of the point Pi. The

coefficients ci can be found by imposing that Φi must be equal to 1 at the point i
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plus the condition
∑Pp

k=1 Φk = 1. This brings to the following shape functions:
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(4.36)

Only the shape function for the 5 nodes panel will be presented here:

Φi =
1

4
(1 + ξiξ)(1 + ηiη) −

1

4
(1 − ξ2)(1 − η2) (4.37)

where (i = 1, 4) and

Φ5 = (1 − ξ2)(1 − η2) (4.38)

It is clear now, from these equations, that the mapping nodes of the master element

are mapped to the nodes of the actual element. All the other points are mapped

by using the mapping nodes’ shape functions for interpolation, e.g. in the case of

the 1D segment a generic point x is found as x =
∑Pp

k=1 xkΦk. Using the iso-P

representation all the scalar and vector fields can be modelled using the element’s

shape functions, for instance the pressure P (x, y, z) can be written, knowing the

pressure P (xi, yi, zi) on the element’s points, after the isoparametric mapping, as:

P (ξ, η) =

Pp
∑

k=1

PkΦk (4.39)

And the same procedure is valid for each component of a vector field.

4.3.2 Mid-point quadrature

Using the midpoint quadrature, the discretised version of the generic retarded-time

integral, defined in eq.4.1, can be written as follows:

4πΦ(x, t) ≈
Np
∑

i=1

[

Q(yc, t− rc/c0)

rα1
c |1 −Mr|α2

c

]

ret

ASi
(4.40)

Where the integrand is evaluated at the centre of each panel, yc, and at the retarded

time τc = t− rc/c0 at this point. Because the source strength, Q, is evaluated at τc

which, in general, is not one of the input data time instants, temporal interpolations
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are required.

Mid-point quadrature is the most exploited method for integrals evaluations, espe-

cially when the integrand inputs are available only in the centre of the panel. The

method is very fast, and it consists of applying the simple geometrical rule for which

the area of a quadrilateral is give by the vector product:

ASi
= P1P2 × P1P3 (4.41)

which represents the normal vector to the panel surface with a magnitude equal to

the panel area:

ASi
=
√

ASi
· ASi

(4.42)

An improved version of the mid-point quadrature can be obtained if the two diago-

nals of the panel are used, in the vector product, instead of the two edges. By doing

this in fact the formula will be accurate even for highly skewed and non symmetrical

panels. The accuracy is improved because in the standard method the use of 2 edges

does not take into account the position of the fourth point of the panel, which is

included when using the diagonals.

4.3.3 Simpson’s quadrature

The accuracy of the midpoint algorithm is second order, since the integrand quan-

tities are approximated with a constant distribution at the centre of the panel.

By replacing the single point evaluation of the integrand at the panel centre with

multi-point methods the accuracy of the variables distribution can be improved:

4πΦ(x, t) ≈
Np
∑

i=1

NSim
∑

k=1

[

ak
Q(yk, t− rk/c0)

rα1
k |1 −Mr|α2

k

]

ret

|Jk|ASi
(4.43)

where ak and |Jk| are the quadrature weight coefficient and determinant of the

Jacobian of the transformation, respectively, for the kth point in the panel quadrature

algorithm. In particular for the Simpson’s quadrature approximation, the general

numeric discrete formula of the integral is:

Np
∑

i=1

NSim
∑

k=1

[

ak
Q(yk, t− rk/c0)

rα1

k |1 −Mr|α2

k

]

ret

1
∑

k = 1N
Simak

|Jk|ASi
(4.44)
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where t is one observer time instant, and, for NSim = 9:

• y1 . . .y4 are the vertexes of the Quadrilateral Panel

• y5 . . .y8 are the edges midpoints

• y9 is the panel centre

The corresponding coefficients ai are: a1, . . . , a4 = 1,a5, . . . , a8 = 4,a9 = 16. It is

then clear that, while for the midpoint quadrature is required only the value at the

panel central point, for the Simpson’s quadrature NSim = 9 on the same panel, are

required the source information on 9 points. Hence, the Simpson’s quadrature is

more accurate but also more computationally expensive.

4.3.4 Gauss-Legendre quadrature

Gauss-Legendre quadrature is the method of choice when high accuracy is required

in the integrals evaluation. In fact, with this method high accuracy can be reached

with a relatively low number of points compared to the aforementioned quadrature

algorithms. It is useful to introduce this method first in a one dimensional example.

Given a function y = f(x) in which −1 6 x 6 1, it is possible to evaluate its

integral
∫ 1

−1
yudx more accurately than the Simpson’s rule. The basic idea is to use

2 function evaluations as in the Simpson’s rule, but by choosing the evaluation point

in a sophisticated manner. The 2 point Gauss rule is based on the following idea:

∫ 1

−1

f(x)dx = w1f(x1) + w2f(x2) (4.45)

The approximating formula can be made exact for a cubic polynomial Π(x) =

a3x
3 + a2x

2 + a1x + a0 by exploiting the four coefficients w1, w2, x1, x2. To com-

pute the coefficients it is required the solution of 4 equations obtained by imposing

the following conditions on the integral:

f(x) = 1
∫ 1

−1
1dx = 2 w1 + w2 = 1 (4.46)

f(x) = x
∫ 1

−1
xdx = 0 w1x1 + w2x2 = 0 (4.47)

f(x) = x2
∫ 1

−1
x2dx = 2

3
w1x

2
1 + w2x

2
2 =

2

3
(4.48)

f(x) = x3
∫ 1

−1
x3dx = 0 w1x

3
1 + w2x

3
2 = 0 (4.49)
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The solution of this system leads to the values of Gauss-Legendre two point rule:

w1 = w2 = 1 −x1 = x2 = 1√
3

(4.50)
∫ 1

−1

f(x)dx =
∫ 1

−1
f(− 1√

3
) + f( 1√

3
)dx (4.51)

Using the same procedure, with a chosen number of point N in the interval, it is

possible to obtain the weight and abscissas for the Nth point G-L rule. The general

N -point rule is:

∫ 1

−1

f(x)dx = GN(f) =
N
∑

k=1

wN,kf(xN,k) (4.52)

and the accuracy for the rule is of order of 2N−1, i.e. the approximation is exact for

a polynomial of order 2N − 1. The main issue with the formula is that the weights

wi and positions xi are known only for standard elements which extends in the range

−1, 1. This can be solved using the isoparametric representation described before.

In particular for a generic segment xi, xi+1 the Gauss-Legendre rule can be written,

exploiting and iso-P segment, as:

∫ xi+1

xi

F (x)dx =

∫ 1

−1

F [x(ξ)]Jdξ = GN(f) =

N
∑

k=1

wN,kF [x(ξN,k)]JN,k (4.53)

The Jacobian J for the 1D linear element it is equal to:

J =
∥

∥

∥

∂x
∂ξ

∥

∥

∥
(4.54)

From the properties of the iso-P elements x =
∑Nod

i=1 xiSi, which gives the value of
∂x
∂ξ

:

∂x

∂ξ
=

Nod
∑

i=1

xi
∂

∂ξ
Si(ξ) (4.55)

The extension to more than one dimension is straight forward. In particular, for a



Development of Numerical Approaches 85

panel δSi, the generic 2D Gauss rule of order (2Nξ − 1) × (2Nη − 1) is:

∫

Si

F (x, y)dSi =

∫ 1

−1

∫ 1

−1

F (ξ, η)|J |dξdη =

Nη
∑

kη=1

Nξ
∑

kξ=1

wNξ,kξ
wNη ,kη

|JNξ,Nη
|F (ξNξ,kξ

, ηNη ,kη
)

(4.56)

It has to be noted that, in eq.4.56, the Jacobian, the weights and the abscissas for

each element depend on the choice of the number of pointsNξ, Nη in Gauss-Legendre

(G-L) rule along the ξ and η directions.

It is clear that the G-L quadrature is very accurate, but even in this case the

iso-P mapping, the calculation of weights and abscissas and the evaluation of the

integrands over the NG points make this algorithm much more computationally ex-

pensive than the midpoint quadrature. An adaptive multi-point quadrature would

be the optimum choice, this could be done using the midpoint quadrature approx-

imation in non-sensitive regions, i.e. the zones with low gradients, while exploiting

a multi-point rule only over the sensitive regions of the control surface.

The highest efficiency and accuracy quadrature can be realized with a solution-

adaptive multi-point quadrature scheme. With this scheme the number of quadra-

ture points used for a panel depends on some characteristics of the solution. In

particular the solution adaptive method proposed by Brentner et al., [80], defines

the number of quadrature points Nq over each panel using the following relation:

Nq(Mr, ASi
) ∝ ASi

|1 −Mr|i
(4.57)

That is Nq is directly proportional to the area of the panel, i.e. larger panel will

require more points. And inversely proportional to 1 −Mr over the panel, i.e. near

transonic panels, whose radiation much number is closer to one, will require more

points. Such schemes can provide high accuracy and minimise the computational

effort.

4.3.5 Integrals for Emission panels

The quadrature methods described above are certainly applicable for retarded time

formulations but in the case of Emission Surface their requirements of multiple eval-

uation of the integrands yields a high computational cost. In this case a better



86 Development of Numerical Approaches

option would be to use the midpoint quadrature. A further improvement to the

diagonals midpoint quadrature has been developed during this research, by consid-

ering a 5th point on the panel. This point is used to describe the centre of the panel

and with its introduction it is possible to divide the panel surface in 4 triangles

namely Tr1 = P1P2P5, T r2 = P2P3P5, T r3 = P3P4P5, T r4 = P4P1P5.

The triangles can then be used to calculate the overall panel area by means of the

simple vector product of the triangle edges:

Tr1Si
=

|P5P1 ∧P5P2|
2

(4.58)

And the total panel area ASi
will then be:

ASi
=

4
∑

k=1

TrkSi
(4.59)

In this way, the accuracy of the midpoint quadrature is improved since the emission

panel it is not anymore considered to lay on one plane. In fact, in figure 4.11 is

visible that the emission surface panel does not lay on one plane. The interesting

characteristic of this scheme is that it requires only the calculation of one more

point with respect to the classical midpoint algorithm, but can handle much more

complex emission surface representations.

4.4 Summary and conclusions

In this Chapter, a detailed analysis of the numerical models implemented and devel-

oped during this study have been presented. The helicopter rotor kinematics and the

behaviour of the retarded time equation roots have been analysed in detail. From

these analyses some ideas for the development of a “tailored” root finder algorithm

and emission surface construction are suggested.

A particular focus is given to the development of a novel root finder algorithm

which is based on the Newton’s method. More precisely in the proposed algorithm

the function is approximated via a 3rd order Taylor series as opposed to the 1st order

Taylor series of the Newton’s method. The corresponding polynomial is then solved

via the Nickalls method. This is a solution of the 3rd order polynomials similar to

the Cardano solution.
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Using the aforementioned root finder algorithm and from the considerations on both

kinematics and retarded time equation the Emission Surface construction approach

is developed. The approach is tested on the case of a rotating panel. Finally, the

quadrature methods implemented in the noise prediction tool are discussed.
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Chapter 5

Verification and Validation

Any new computational tool must undergo through the verification and validation

processes. The verification process is required in order to establish that the code

solves the implemented equations correctly, Roache [98]. The validation process,

instead, is required to demonstrate whether the code solves the right equations. In

the current Chapter both steps are applied to the noise prediction tool developed

during this research.

The algorithm described in Chapter 4 can be divided into four components: root

finder algorithm, quadrature, kinematics and emission surface reconstruction. Each

component of the tool will be tested separately in order to identify that the equations

have been implemented correctly and the algorithm is capable of providing a correct

solution for each of these parts.

The verification and validation should be ideally carried out by comparing the results

to analytical solutions of the governing equations. In this way the numerical errors

are directly obtained through the comparison between the two solutions. Such

analytical solutions though, are available only for some specific cases which do not

allow testing the full capabilities of the code. In the present analysis, the core of the

testing process for the aeroacoustic prediction is based on the analytical solutions

of the 3D monopole, dipole and quadrupole sources.

The analytical expressions of these sources can be obtained from the solution of the

Helmholtz equation in spherical coordinates, as will be described later. The solution

though is easily available only for stationary sources and observer positions. This is

useful to test the quadrature algorithms and the differences between the predictions

of Farassat Formulations 1, eq.3.38, and 1A, eq.3.40,3.41. However, it should be
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noted that for stationary sources and observers the retarded time formulation and

Emission surface formulation coincide.

On the other hand, the root finder algorithms, kinematics and emission surface con-

struction will be tested for moving sources both in subsonic and transonic-supersonic

regimes. The next section presents a comparison of the root finder algorithms for

the solution of the retarded time equation.

5.1 Comparison of Root finder algorithms

The importance of a fast and efficient method to obtain the roots of the retarded

time equation has been highlighted in the previous Chapter. The proposed novel

root finder method, is described in Section 4.1.3. In the following subsections the

root finder algorithm is compared with the classical Newton’s and Brent’s algorithms

in order to verify the relative efficiency and computational cost. Given the different

behaviour of the retarded time roots in subsonic and supersonic regimes, the analysis

will consider both regimes.

A rotating point source, or panel, represents an optimum case for comparing the

performance of each of the different root finder methods. Considering a point P1

which is in a Reference Frame RF rotating with respect to the ground fixed frame,

the kinematics of P1 can be described with the equation:

r = (xOB − ([TGR])yP1
) (5.1)

Which is obtained by assuming VH = VOB = 0 in eq.4.8 and by considering only

the rotational motion of P1.

Although the above equation is much simpler with respect to the complete eq.4.5,

it is still not possible to obtain an analytical solution for g(t, τ, r) = 0.. For this

reason, the results from the different root finder algorithms must be compared with

the numerical solution obtained via a forward time approach.

The forward time equation, t(τ) can easily be solved numerically, and in the case of

a stationary observer it is also possible to obtain an analytical solution for t(τg=0).

Hence, the forward or “advanced” time numerical solution, could be considered

equivalent to the analytical solution of τ(t), through the solution of the inverse

problem t(τ).
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(b) 200 intervals
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(c) 400 intervals
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(d) Equivalent 400 intervals

Figure 5.1: Comparison of CPU times with different root finder algorithms, figures
are shown with different number of intervals for the bracketing step required by
Brent and Newton methods (the time is normalised dividing by the CPU time of
the “ADVanced” time solution; 1P and 5P indicates the number of points per panel.
Equivalent indicates that all the codes solve 5P per panel)
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Fig.5.1 illustrates the computational cost for each approach considered for the so-

lution of rotating panels. The Mach number is evaluated at the centre of the panel

and the computational time is normalised dividing by the computational time of the

Advanced Time solution. The variation in Mach number is obtained by increasing

the rotational speed ω. The number of intervals which is specified in Figure 5.1

represents the number of sub-intervals used in the bracketing step. This step is a

requirement of the two classic methods, and while in subsonic conditions only 2

sub-intervals are used for both methods, during supersonic regime the number of

interval must be 2 orders of magnitude larger.

The computational time, plotted in Fig.5.1, refers to the solution of 500 panels.

This is necessary in order to capture the average solution time for each algorithm.

By considering 500 configurations the solution time will not be dependent on the

particular panel geometry or observer position.

Observing the plots in subsonic regime, it is clear that all the algorithms require a

similar computational time. Under these conditions, the Brent’s algorithm provides

the faster solution, but it should be highlighted that both Newton and Brent’s

methods consider only the panel centre in the solution. This is reported in the

legend of Fig.5.1 with 1P, i.e. 1 point per panel. On the other hand the “Advanced

Time” and the HelicA algorithms were executed considering 5P points per panel,

the centre and the four panel vertices.

In Fig.5.1(d) the Newton’s and Brent’s algorithms were executed resolving the same

number of points per panel as the other two methods. In this case it is clear that

also in subsonic regime the novel root finder algorithm performs faster than the

classical methods. The computational time for this latter approach is comparable

to the Advanced Time algorithm.

A more complex challenge arises when the sources are in supersonic motion, due

to the existence of multiple retarded times τ and positions y(τ) corresponding to

a single point source y0 and observer time t. This increased complexity is visible

in Fig.5.1, where a steep gradient and a sudden increase in computational time is

evident in the curves representing the two classical methods for M ≈ 1. This is due

to the increase in the number of bracketing sub-intervals which is required in order

to find all the multiple roots for a given observer time. The computational time

increases proportional to the number of sub-intervals considered.

When a low number of sub-intervals is used during the bracketing step, the solutions

obtained with the Newton’s and Brent’s algorithms do not capture the multiple τ
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Figure 5.2: Solution of τ(t) via different root finder algorithms, M = 1.6 (non
dimensional t∗ = (t− t0)/T and τ ∗ = (τ − τ0)/T )

roots for all the different Mach numbers. Hence, increasing the number of sub-

intervals in the bracketing step has a positive effect on the search of multiple roots.

In Fig. 5.1, only the calculations performed with 400 sub-intervals could provide

the multiple roots for all the supersonic conditions.

On the other hand the Advanced Time and the root finder algorithm proposed in

the present study do not show a strong dependance on the Mach number. The

computational time required by the latter method remains almost constant and

around 10 to 20% higher with respect to the time required by the Advanced Time

algorithm.

Considering a direct comparison between the HelicA root finder and the two classical

methods, is evident the much higher computational time that is required by the

latter two approaches, , more than 5 times. Furthermore, in Fig.5.2 is clear that

both Newton’s and Brent’s algorithms do not capture the full range of multiple roots
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τ , while the proposed algorithm follows closely the Advanced Time prediction. The

two classical algorithms fail to identify the roots close to the local minimum and

maximum of the inverse function t(τ), where the roots become so much close to

each other that they fall in the same sub-interval of the bracketing step. A possible

solution to this problem could be to deploy an even finer sub-interval bracketing

step, which in this case was executed with a value of 400 sub-intervals.

5.2 Comparison with analytical solutions

The monopole, dipole and quadrupole sources are generated respectively by the

fluctuations of mass fluxes, forces and stresses in an unsteady flow field. These

sources can be considered as the basic components of a more general and complex

aerodynamic source. Only 3D linear monopole, dipole and quadrupole sources are

considered in the present Chapter. A source is considered linear when the particle

displacement of the fluid near the source is d << λ, where λ is the wavelength of

the propagating fluid properties fluctuations, i.e. the source is compact with respect

to λ. A more precise definition of compact source can be obtained by considering

the typical time scale τ of the flow under analysis, or the frequency Ω and length

scale L in the problem.

He =
L

c0τ
(5.2)

Also He = ΩL
c0

= 2πL
λ

= kL. The dimensionless number He is called the Helmholtz

number and for compact sources it is easy to demonstrate that He << 1.

The analytical solutions of 3D monopole, dipole or quadrupole sources have been

used in the present research to verify and validate the numerical errors induced by

the spatial and temporal discretisation and by the integration algorithms. A 3D

monopole can be identified with a pulsating sphere as the small sphere in Fig.5.3.

In this Figure, the Control Surface is shown, which in this case is a large sphere of

radius rs containing the sources. The small pulsating sphere produces a volume flux

in the near-field and a sound pressure wave in the far-field, which are uniform in all

directions. More precisely, a pulsating sphere can be called monopole only if it is

compact and hence can be approximated as a point source, i.e. a monopole.

The pressure fluctuations generated by a small pulsating sphere can be represented
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Figure 5.3: Monopole source and Control Surface

by an harmonic spherical wave,

p̂ = A
ej(ωt−kr)

r
(5.3)

which is a solution for the Helmholtz equation in spherical coordinates:

∂2rp̂

∂r2
+ k2p̂ = 0 (5.4)

and ûr from the Euler equation is:

ûr = − 1

jωρ

∂p̂

∂r
(5.5)

After some considerations on the sphere dimensions and position, the analytical

equations for the pressure fluctuations induced by a pulsating sphere is:

p̂ =
jρωQej(ωt−k(r−a))

4πr(1 + jka)
(5.6)

and ûr is easily found by Eq.5.5. Where Q = 4πa2U , a is the radius of the pulsating

sphere and ω and k are respectively the angular velocity and the wave number of
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the fluctuations.

It is evident from Eq.5.6 that, for a very small sphere He = ka << 1, the pressure

fluctuation p̂ becomes

p̂ =
jρωQej(ωt−kr)

4πr
(5.7)

which is the expression for a monopole with volume velocity Qejωt.

Once the concept of monopole and its model are defined, it is easy to model the

other two sources, dipoles and quadrupoles, by considering respectively two or four

monopoles. More precisely, it is possible to approximate a dipolar point source or

3D dipole by considering two closely positioned compact oscillating spheres, with

opposite fluctuation phases. The axis of the dipole is defined as the line connecting

the centres of the two nearby monopoles.

Proceeding in a similar fashion, a combination of two very closely positioned compact

dipolar sources forms a 3D quadrupole. Given the number of combined monopoles

or dipoles, more degrees of freedom are available. It is possible to obtain different

quadrupoles altering the spatial disposition of the basic components. It is common

to classify the quadrupoles in two types: lateral and longitudinal quadrupoles.

In the longitudinal quadrupole the separation between the combined dipoles is along

the direction of their axes, i.e. the four monopoles are aligned. The separation

between the two dipoles, for a lateral quadrupole, is perpendicular to the axis of

the dipoles. This latter type of quadrupole source will be considered during the

verification process.

The FW-H integral formulations satisfy non-reflecting outgoing far-field boundary

conditions, so that the numerical errors in algorithms implementing such kind of

integral formulations are mainly caused by the spatial and temporal discretisations.

These errors should converge to zero as the spatial and temporal resolutions tend to

infinity. In the present analysis, the spatial and temporal discretisation errors are

decoupled using the following procedures.

The integrand terms in the FW-H formulations, eqq.3.38,3.40 and eqq.3.41, 3.51,

depend both on retarded time τ and observer position x. In order to avoid the

time discretisation errors all the integrands time histories and time derivative are

calculated analytically at each panel position. In this way the input information on

the control surface is continuous in time, and the surface integrations are affected
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only by the spatial discretisation and numerical quadrature errors.

The average error, εav is defined as follows and is used as a comparison measure:

εav =

∑Nt
i=1

∑Nx
j=1 |(P (xj, ti) − PA(xj, ti))|
∑Nt

i=1

∑Nx
j=1 |PA(xj , ti)|

(5.8)

where P (xj, ti) and PA(xj, ti) represent respectively the numerical and analytical

solutions of sound pressure at the observer position, xj , and at the observer time, ti

. Nx and Nt are respectively the total number of the observation points and times.

It is clear that εav is the error averaged over all the observer positions and all the

observation times.

Once the spatial discretisation error, which is labelled as εs
av, is quantified, the

calculations are performed using discrete time histories for the integrands and their

derivatives. The integrand time histories are calculated via the analytical solution for

several discrete retarded time values and stored in an array. During the calculations

the required integrand values for a given retarded time τ , are interpolated from the

discrete array and the derivatives are calculated numerically.

In this way, the total discretisation error εav, i.e. spatial and temporal, is obtained

and the temporal discretisation error, εt
av, can be calculated as εt

av = εav − εs
av.

A parametric study was undertaken to understand the behaviour of the prediction

tool for different discretisation levels. The values of the parameters chosen for the

analytical sources are :

a [m] d [m] Un [m
s
] rs [m] ω [ rad

s
] c0 [m

s
] ρ [ kg

m3 ]
0.005 0.025 35.0 0.6 3π 340 1.1825

Table 5.1: Initial parameter values of the analytical sources

The source is surrounded by a control surface of radius rs, over which the FW-H

integrals are evaluated. The pressure and velocity values over this control surface

are obtained from the analytical solution. The Mach number Mn = Un/c0, at which

the pulsating spheres contract and expand, is Mn ≈ 0.1. The parameters a, d, ω are

respectively the radius of the pulsating spheres, the distance between the centres of 2

pulsating spheres and the angular velocity at which the spheres pulsate. The chosen

observer positions were distributed evenly along a circle surrounding the source,

with a resolution of 4◦, i.e. 90 points per circle, and at a distance of rob = 40m from

the source position.
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Three parameters were varied during the study: rs, ω and the number of points

used to discretise the control surface. More precisely the following values have

been considered: (rs = 0.6, 1.2, 2.4, 4.8) and (ω/(2π) = 3, 5, 15, 30, 60, 120, 240, 360).

These values of ω still preserve the linearity of the source since the maximum He ≈
0.005 << 1

In order to discretise the control surface, 4 different grid resolutions have been

chosen. The number of nodes used are (Imax × Jmax) = (16 × 14), (24 × 22), (48 ×
46), (88×86), which are evenly distributed along the sphere. The computational grid

was created analytically using a mapping between polar and rectangular coordinates

and patching the singularity points, i.e. the two vertices on top and bottom of the

sphere, with two “spherical rectangles”. This kind of discretisation is illustrated in

Fig.5.4.

X ZY

Figure 5.4: Discretisation of the Control surface

The following non-dimensional parameters were defined to classify the grid resolu-

tion. These are the largest panel’s angle, ∆θmax, which is proportional to level of
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discretisation of the sphere and becomes large for coarse grids; the largest panel diag-

onal length, ∆Lmax ∝ ∆θmax ·rs which is divided by the characteristic wavelength of

the source, λs; and the radius of the control surface, rs/λs, which is nominated with

the characteristic wavelength. It should be noted that only two of these three non-

dimensional parameters are independent, since having set two of them the third one

is also defined. The ∆θmax values which correspond to the number of nodes defined

above are in order: ∆θmax = 25◦, 16◦, 8◦, 4◦.
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(b) Dipole Directivity

Figure 5.5: Sound pressure directivities of 3D monopole and dipole

The spatial discretisation errors for the numerical simulation of the 3D monopole,

dipole and quadrupole sources are presented in Figures 5.5 to 5.10. The predic-

tions were obtained exploiting all the quadrature methods described in the previous

Chapter.

The prediction errors for a 3D monopole source are shown in Figures 5.6 and 5.7,

where both the spatial discretisation errors behaviour with the aforementioned pa-

rameters and the polar error distribution are presented. Figures 5.6(a) and 5.7(a)

show the results obtained via the midpoint quadrature based on the product of

the panel’s diagonals. Figures 5.6(b) and 5.7(b) are the prediction errors using the

higher order Simpson’s quadrature. The results obtained with the Gauss-Legendre

quadrature illustrated in Figures 5.6(c) and 5.7(c).

In Figure 5.6, the discretisation errors for the different quadrature schemes are

analysed in more detail. More precisely the relative error, εs
av, is plotted against

∆Lmax, and for each line ∆θmax is constant. By decreasing ∆Lmax with fixed ∆θmax,

the εs
av reduces continuously up to a minimum which is a function of ∆θmax, directly
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(c) Gauss-Legendre quadrature

Figure 5.6: Monopole source: discretisation error εav using different quadrature
schemes
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proportional to ∆θmax. This behaviour is shown for all the quadrature schemes, with

the difference that the Simpson and G-L calculations converge more rapidly towards

the minimum error and for larger values of ∆Lmax.
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(c) Gauss-Legendre quadrature

Figure 5.7: Monopole source: polar distribution of εav using different quadrature
schemes

After εs
av reaches the aforementioned minimum it remains almost constant even if

∆Lmax is further decreased. It is interesting to highlight the polar distribution

of the error εs
av which in this case has been averaged only in time. The error

for the Midpoint quadrature is very sensitive to the observer position. When the

source radiation vector r is exactly parallel to the normal vector of one of the

discretisation panels, and passes from the centre of this same panel, the Midpoint

accuracy becomes higher than the accuracy of the more complex Simpson and GL

quadratures for the same case.

This is visible in Figure 5.7, where in Fig.5.7(a) the distribution of the discretisation
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error for the Midpoint quadrature is plotted as a polar directivity. Comparing this

with Fig.5.7(b) and (c), it is clear that the minimum values of εs
av for the Midpoint

are much lower than the errors in the other two schemes along certain position.

Simpson and GL errors have a flat “directivity error”. It is interesting to observe

that the same behaviour in the “directivity error” is present when considering a

dipole source, Fig.5.9. Here the Midpoint quadrature, Fig.5.9(a) shows a lower

error with respect to the Simpson’s quadrature, Fig.5.9(b), along the 30◦ and 150◦

directions.

It should be noted that the higher error around 90◦ direction is due to the topol-

ogy of the dipole directivity, which has 0 magnitude in the regions close to 90◦,

Fig.5.5(b). A similar behaviour can be recognised in the “polar error” of the

quadrupole source,5.10(b), which is high in the regions around 0−180◦ and 90−270◦.

This can be explained by observing the quadrupole directivity, Fig.5.10(a).

From Figures 5.6(a) and 5.6(b), it is possible to draw the following conclusions:

given a ∆θmax there is a limit value of ∆Lmax, which defines the maximum accuracy

that can be achieved by decreasing ∆Lmax. A reduction of ∆Lmax below this limit

value does not improve the accuracy of the solution. This happens because the error,

in these conditions, is dominated by the grid panel angular resolution, i.e. ∆θmax.

In these Figures it is clear that both Midpoint and Simpson’s quadrature are in very

good agreement with the analytical solution. For a coarse spatial resolution, e.g.

∆θmax = 25◦, the errors εav are in the range of 1 to 3% for both quadrature schemes.

When the spatial resolution is fine, e.g. ∆θmax = 4◦ then the εav becomes much

smaller and reaches εav ∼ 0.05% for the Midpoint quadrature and εav ∼ 0.01% for

Simpson’s quadrature, at low ∆Lmax. The error ε < 3%, even for coarse surface

meshes with ∆Lmax ≤ 5e − 2 and becomes εav < 1% for ∆Lmax ≤ 1e − 2. This is

similar for all the quadrature methods analysed, i.e. Midpoint, Simpson and Gauss-

Legendre quadratures, with the difference that the latter two methods reach ε ≤ 1%

at larger ∆Lmax, more precisely for ∆Lmax ≤ 1e− 1.

Analysing the accuracy of the Midpoint quadrature scheme, in Figure 5.8, it is

evident that the curves lay along the line with second order slope, which means that

the theoretical accuracy of the method is preserved. On the other hand, moving at

constant ∆Lmax, in Fig. 5.6(b) and Fig. 5.6(c), between the four curves, it appears

that with ∆θ decreasing one order of magnitude the error εav decreases around 2

order of magnitude. Hence, the accuracy of Simpson and Gauss-Legendre schemes

can only reach second order and not their theoretical higher order.
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Figure 5.8: Accuracy of Midpoint quadrature

From the discussion above the use of Midpoint quadrature should be preferred when

∆Lmax ≤ 5e− 2. The Simpson and Gauss-Legendre quadratures improve the accu-

racy only slightly with respect to the Midpoint quadrature, but they require many

more evaluation points per panel. In the present calculations 9 points per panel

were used in both Simpson scheme and Gauss-Legendre schemes, which compared

to the single point evaluation of the Midpoint scheme yield a large increase in com-

putational time.

The analysis presented above suggests the use of the Midpoint quadrature, which

allows to save computational time at the cost of a slightly lower accuracy with

respect to the other two approaches. Using higher order quadratures requires a

computational time between 1.5 and 2 times compared with the Midpoint method,

while the accuracy of the higher order methods is comparable to the second order

Midpoint scheme.

Finally it is interesting to compare the results obtained using the Farassat Formu-
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Figure 5.9: Dipole source: polar distribution of εav using different quadrature
schemes

lations 1, Eq.3.38, and 1A, Eqq.3.40,3.41. Fig.5.11 presents the errors between the

predictions and the analytical results. The predictions in the figure were obtained

using the two aforementioned formulations. From Fig.5.11 it is clear that the differ-

ence between the predictions can be neglected since it represent only a small fraction

of the overall discretisation error.

The noise prediction algorithm and the implemented quadrature schemes are thus

verified from the results presented in Figures 5.6-5.11, and following the discus-

sion above, the following results in this Chapter are obtained using the Midpoint

quadrature.

5.3 Emission Surface construction

In the previous Chapter, the correct solution of the retarded times and retarded

positions was indicated, as the fundamental step for the construction of the Emission

Surface. Another important part in this task is the correct implementation of the

kinematics and the link to the retarded time roots of the problem. After having

verified the correctness of the retarded time solution provided by the prediction

tool, the direct computation of Emission Surfaces and their comparison with some

cases available in literature will assist to test the surface construction and kinematics

modules of the code. Furthermore, the examples of ES presented in the following

subsections will help clarifying the meaning of these entities.
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Figure 5.10: Quadrupole source: directivities and εav polar distribution (Midpoint
quadruature)
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Figure 5.12: Geometry of Cylindrical strip and observer position

5.3.1 Cylindrical Strip

The first geometry considered during this analysis is a cylindrical strip where the

axis is defined parallel to the plane of rotation (x, y) and it is rotating around z axis

with a Mach number MT = 1.1 calculated at the centre of the strip, i.e. the radial

distance from the axis origin is RT = 1.1A0/Ω. The geometry of the cylindrical strip

and the observer position are illustrated in Figure 5.12. The diameter of the strip is

dcyl = .44m and the width is wcyl = dcyl/5. The observer position is xob = (5, 0, 0)m.

It is important to note the two lines indicated in Fig.5.12 with t1 and t2. These lines

indicate the points in which the radiation vector connecting the centre of the strip

and the observer in xOb is tangent to the path of the cylindrical strip. More precisely

in the point t2 the velocity vectors of the cylinder’s points will have always M · r̂ < 0

so that |1−Mr| > 1. On the other hand in t1 the condition is the opposite, since the

velocity vectors are directed towards the observer. Here Mr > 0, thus |1 −Mr| < 1

and it is obvious that in t1 there will be maximum value of Mr which in this case is

Mr = MT = 1.1. In the proximity of t1 then there will be the two azimuth values

for which Mr = 1. Within these positions will exist multiple sources for the same

observer time instant.

In Fig. 5.13 is shown the emission surface generated by the motion of the cylinder at

6 different observer time instants. Observing Fig.5.13(a) it is evident the appearance

of a second strip which is counter rotating with respect to the first one. This second

cylindrical strip grows reaching the same dimension of the first one and then the



Verification and Validation 107

two strips arrive in contact, Fig.5.13(b). These two strips continue moving into

each other and in Fig. 5.13(c) only one very large cylindrical strip is visible, which

is the union of all the cylindrical strips locus of the multiple retarded positions

corresponding to the roots of the retarded time equation.

This large cylindrical strip continues moving in the direction of rotation and the

two sides of the strip come closer to each other. Again, in Fig.5.13(d), two strips

are visible which are connected along a curve. The larger strip is the locus of

the retarded positions corresponding to the first and second roots of the retarded

time equation while the smaller is the locus of the positions corresponding to the

third root. The two strips are divided and this is apparent in Fig.5.13(e). While the

strips locus of the first and third roots are rotating in the positive direction, the strip

corresponding to the second root is counter-rotating. In Fig.5.13(f) the cylindrical

strip union of first and second roots is shrinking and will disappear, while the strip

locus of the third root remains constant and moves further from the tangent point

t1.

The Emission Surface for a similar case, a cylinder strip rotating with Mt = 1.1,

was calculated also by Ianniello [48]. Although in the paper was not specified any

detail on the exact dimensions of the cylinder, it is still possible to have a qualitative

comparison on the prediction of the ES. In Fig. 5.14 the ES prediction from [48]

for similar observer time instants is shown. It is clear that the HelicA prediction

tool correctly predicts the features and the geometry of the Emission Surface of a

Cylindrical strip.

5.3.2 Blade Planform

The prediction tool is applied here to calculate the Emission Surface of a blade

planform. The analysis of a blade planform with supersonically rotating tip,MT > 1,

is an interesting case which was studied for the first time by Wells, [99]. The

geometry analysed by Wells consists of a rectangular blade extending from regions

at very low Mach number, M ≈ 0.2 at the blade root, to supersonic regions rotating

with MT = 1.5, at the planform tip.

The blade planform is the 1/7th UH1H model scale rotor blade, with an aspect ratio

of AR = 13.71. This blade is symmetrical with respect to the rotational plane. Thus

it is possible to analyse only the upper or the lower part of the geometry. Figure

5.16 shows the corresponding Emission Surface for two different time instants. Two
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Figure 5.13: Emission Surface of Cylinder strip for different observer time instants
showing the appearance and disappearance of the multiple surface branches corre-
sponding to the multiple roots of τ
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Figure 5.14: Emission Surface of Cylinder strip for different observer time instants
as computed by Ianniello, [48]
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Figure 5.15: Time history of [1/Λ]max and comparison with the result in [48]
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ES branches are present in Fig.5.16(a), which are curved towards the point at which

Mr = 1. After few instants only one single ES is visible, Fig.5.16(b). It should

be highlighted the large extension of the surface in Fig.5.16(b), where the initially

rectangular blade reflects a shape similar to an anchor. The points close to the sonic

circle have “escaped” from Mr = 1 forming the large “wings-like” extension in the

surface.

X

Y

ZSonic Circle

(a)

X

Y

ZSonic Circle

(b)

Figure 5.16: Emission Surface of blade planform rotating at Mt = 1.5 for two
different observer time instants

The same shape was predicted by Wells, [99] and later by Ianniello, [45]. More

recently Ianniello, [47], explored and revealed the distribution Σ(τ), i.e. the time

history of the area of the planform ES and its time derivative, for two different cases,

one with Mach number range of 0.95 < M < 1.1 and another case with 1.13 < M <

1.55. In Fig.5.17 are shown both these quantities for the case 1.13 < M < 1.55. The

blade surface was discretised using an initial mesh of 40 chordwise by 70 spanwise

nodes, which is then automatically refined by the code around the points with lower

1 −Mr. From Fig.5.17 is clear that HelicA prediction is very close to the result

presented in [47], which means that the shape and time history of the planform

ES is correctly predicted. Some small differences are visible in the time derivative

of Σ, Fig.5.17(b), which are connected with the smoothness of the ES. HelicA ES

prediction is based on a panel by panel discretisation, which is very helpful in the

case of non-structured surface meshes, as the ones provided by the Fluent CFD

package. In contrast, the prediction tool, implemented by Ianniello, is based on a

structured approach, i.e. considering all the points of the ES as forming one entity.

In this latter case it is possible to apply, as described in [47], a smoothing step to

interpolate the unevenly distributed grid on an evenly distributed ES mesh. To
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Figure 5.17: Blade planform ES Area vs Time, comparisons with [47],, MT = 1.55

the author’s point of view it is this last step in [47] which produces the differences

in Fig.5.17(b). Although the ES surface predicted with HelicA has a less smooth

behaviour, it is clear that the prediction remains still very accurate and acceptable.

5.3.3 Panel normal to the rotation plane

Given the tendency of the Emission Surface points to escape from the Mr = 1

position, it is interesting to analyse the Emission Surface of a panel which is per-

pendicular to its rotational plane and has a finite extension, rotating in a transonic

regime, with the panel overlapping the sonic circle. The panel shown in Fig.5.18(a)

has an extension of lpan = 0.6m and is rotating at Mt = 1.1, with a radius of

RT = 1.1(A0/Ω) = 1.1m, since A0 = 340(m/s) and Ω = 340(1/s), which means

that almost half the panel is in subsonic regime.

This case is very challenging for the ES construction algorithm because there is a

point of the panel whose Λ = 0 and thus will present a discontinuity for the ES

formulation. HelicA ES construction is still capable of computing the ES waveform

but because of the Λ discontinuity the thickness noise for this case has a very large

pulse. In Fig.5.18(f), which shows a view normal to the rotational plane, is visible

a very similar shape to the one obtained in the blade planform analysis, Fig.5.16(b)

points close to Mr = 1. More interesting is the view in Fig.5.18(c) and (d) were the

multiple ES branches have appeared and are travelling toward each other. In the

contact between the two branches a hole is clearly visible, exactly around Λ = 0.
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Figure 5.18: Emission Surface of a panel normal to the rotational plane
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This is not a mistake in the prediction and it is due to the differences in the curvature

of the ES branches locus of the first and third roots of the retarded time equation.

The hole grows until the two branches are again separated.

5.3.4 Summary and conclusions

In this Chapter the verification and validation tests, for the noise prediction tool

developed in this study, have been presented. First the root finder algorithm is

applied to the solution of rotating sources with Mach numbers ranging from subsonic

to supersonic conditions. From the comparison is clear that the proposed algorithm

is faster than the Newton’s and Brent’s methods and that the required computational

time is comparable to that of Advanced Time algorithms.

After these comparisons, the prediction tool is used for the analysis of 3D monopole

dipole and quadrupole sources and the results are compared with analytical solu-

tions. The analyses show that the accuracy of Midpoint quadrature is comparable to

that of Simpson’s and Gauss-Legendre methods in the cases of a discretisation with

∆Lmax ≤ 5e− 2. This suggests the use of the Midpoint method which is more effi-

cient and has a similar accuracy to the other two methods when the aforementioned

condition on ∆Lmax is satisfied.

The calculations of the Emission Surfaces from three different geometries rotating at

transonic/supersonic speed are then presented and compared with numerical results

available in literature. These analyses demonstrate the capabilities, efficiency and

accuracy of the noise prediction tool developed during this research.
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Chapter 6

Subsonic and Transonic Studies of

Noise Propagation around

Aerofoils and Blades

As discussed in the Introduction and in Chapter 3, BVI and HSI noise are the two

sources which contribute the most to the overall noise generation of an helicopter

rotor. Thus, in this Chapter the prediction tool is applied to two cases comprising

these noise sources: the HELISHAPE experiment for a rotor in BVI conditions,

[17],[19]; and the transonic noise experiment on the 1/7th UH1H model scale rotor

in delocalised conditions, [32].

Before the analysis of the more complex 3D BVI problem, a study on 2D aerofoil-

vortex interaction is presented. This study is useful to discuss the problem from a

simpler point of view. Furthermore, the following 2D analysis allows to illustrate the

phenomenon of spurious noise generation due to the passage of the vortex through

the control porous surface. This problem is known to affect all the prediction codes

based on porous surface formulations and can alter the quality of noise prediction

as found for jet-noise calculations, [100].

In Table 6.1 are summarised all the methods used to obtain the predictions presented

in the following sections. The cases show a variety of Re numbers, ranging between

6E5 and 2E6 and Mach numbers, between 0.5 and 0.95. The CFD solvers used

during this research are all inviscid and more detail on each case will be given in

the relevant sections.
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Test Case Re n. Ma n. CFD solver Acoustic solver
2D-BVI Subsect.6.1.2.2 ≈ 6.0E5 0.5 Euler Unst. HelicA RET
2D-BVI Subsect. 6.1.2.3 ≈ 8.0E5 0.8 Euler Unst. HelicA RET

3D-BVI Sect. 6.2 ≈ 2.0E6 ≈ 0.6 BEM
HelicA RET
HelicA ADV
HelicA ES

HSI Sect. 6.3 ≈ 2.0E6 0.85 − 0.95 Euler Rot.RF
HelicA RET
HelicA ES

Table 6.1: Summary of methods used for the calculations

6.1 Aerofoil-Vortex Interaction

Various semi-empirical vortex models are exploited in aerodynamics applications.

Yet, researchers are still focusing on the optimisation of the existing models or on

creating novel models with increased capabilities for capturing the complex vortical

structures of the vortices observed during experiments.

Semi-empirical vortex models are required during both experimental campaigns and

computational analyses. Bagai and Leishman, [101], proposed the use of density

gradient methods which combined with semi-empirical vortex models allow to obtain

analytic results for the contrast variation of two dimensional compressible vortices.

The mathematical results are strongly dependant on the particular choice of the

vortex model.

On the computational side, extensive use of potential codes combined with wake

simulation and semi empirical vortex models have enhanced the accuracy of aerody-

namic predictions for fixed and rotary wing aircrafts. In particular, during the last

two decades, the introduction of comprehensive codes has greatly improved aerody-

namics and aeroacoustics predictions for helicopter rotors. In fact, these tools are

capable of resolving the coupling of aeroelasticity and aerodynamics, which drives

the complex aeromechanics of helicopter rotors.

Currently, most of the comprehensive codes implement free wake simulation as op-

posed to the less accurate prescribed wake. While the latter method makes assump-

tions on the rotor wake geometry, the free wake simulation computes the complete

wake geometry by means of time marching algorithms which update the wake shape

and position at every time step.

Although comprehensive tools which exploit the free wake analysis have higher ac-

curacy, they can still present instabilities when the wake panels approach the body
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surface control points. The instabilities are mainly caused by the unrealistic mod-

elling of the Blade Vortex Interaction (BVI) physics where a zero-thickness wake

is used. These instabilities can be avoided using thick vortices with semi-empirical

models for the vortex core, i.e. a non-zero thickness wake. Such a wake model is

essential during vortex body interaction because the local fluid flow around the im-

pact region is determined by the spatial distribution of vorticity. Furthermore, the

use of finite thickness vortex cores allows the calculations of Blade Wake Interaction

phenomena such as the interactions between two close blade trailing vortices.

Hence, semi-empirical vortex models play a major role in order to obtain a more

accurate and realistic modelling of a close interaction between wake and body. In

fact, in recent years more sophisticated wake simulation and blade tip vortex models

have been implemented in comprehensive codes with the aim of further improving

the overall predictions [102]. On the other hand, the numerical solution of 3D

unsteady NavierStokes equations using a mesh fine enough to allow the resolution of

the blade tip vortices is not yet feasible. Therefore, in many engineering aerodynamic

computations free-wake simulation with algebraic semi-empirical vortex models are

used.

It is important to highlight that the particular choice of wake simulation and vortex

model exploited in the aerodynamic calculations influences the quality of the com-

puted predictions. In the case of aeroacoustic modelling of the noise generation a

possibly stronger influence was identified by Baghwat et al. [103]. Vortex models

differ not only with respect to the tangential and axial velocity distributions but

also in the density and pressure field which they produce. Such differences could be

considered to have negligible influence on aerodynamic calculations, however they

will certainly have an effect on aeroacoustic predictions.

Vatistas et al., [104], pointed out the lack of knowledge about noise generated by the

deforming vortices during vortex body interactions. They presented the different

effects produced by two semi-empirical vortex models, the Taylor vortex and the

Vatistas n=2 vortex, applied to two theoretical types of vortex body interaction:

vortex impinging on a flat plate and on a circular cylinder.

The aim of this analysis is to identify the effects of different vortex models on both

aerodynamic and aeroacoustic calculations of vortex body interactions. In fact,

helicopter rotor BVI is a particular and interesting case of vortex body interaction

because it is the most loud source, among helicopter’s rotor noise sources, during

specific maneuvers such as approach.
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Furthermore, the noise produced by helicopter rotors during BVI depends on the

strength of the blade tip vortices, the vortex core size, the interaction angles and

vertical separation between the vortex and the blade, labelled as miss distance. BVI

noise is therefore among all the helicopter rotor noise sources the one which is most

influenced by the particular choice of rotor wake simulation and tip vortices models.

Given the importance of BVI noise, in this analysis the attention is focused on the

effect of different vortex models on a two dimensional version of this phenomenon:

aerofoil-vortex interaction. This is in fact a representative case which has similar

characteristics with respect to the three dimensional BVI phenomenon and has a

simple two dimensional geometry.

The comparisons will focus on the differences induced by the vortex models. This

will improve the understanding of the vortex models influence, on the density and

pressure distribution, during noise generation phenomena due to vortex-body inter-

actions.

6.1.1 Vortex Models

Several semi-empirical models have been developed, first by Rankine,[105], Lamb

and Oseen, [106], then by Taylor, [107] and more recently by Vatistas, [108], who

proposed a family of self similar vortices comprising some of the previous existing

models.

The most exploited vortex profiles in aerodynamic predictions are certainly the

Scully model, the Lamb-Oseen, and the Rankine vortex profile. Baghawt and Leish-

man, [103], demonstrated that the Lamb-Oseen model can be closely approximated

using the self similar vortex family of Vatistas with n = 2. In the present study this

latter vortex model will be considered in place of the Lamb-Oseen model, and the

different effects of all the aforementioned models will be analysed.

Until here the models have only been mentioned with no details on their represen-

tation. Thus, it follows a description of the analytical formulae for the velocity,

density and pressure profiles of each vortex core model considered in this study.

A generic vortex model is given as a tangential velocity distribution which is only

function of the distance from the vortex core centre, which can be written in polar
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coordinates as:

vθ = vθ(r,Γ, Rc) (6.1)

vr = 0 (6.2)

Where Γ represents the total circulation of the vortex, defined as Γ =
∫

Ωdrdθ (Ω

is the vorticity) and Rc is the vortex core radius. With the assumption, Eq.(6.1),

that the velocity profile is only a function of r, it is possible to obtain an expression

for the pressure field induced by the vortex from the momentum equations in polar

coordinates:

∂p

∂r
= ρ

v2
θ

r
(6.3)

∂p

∂θ
= 0 (6.4)

which means that p = p(r). Considering a compressible fluid in isoentropic condi-

tions, the pressure field is connected to the density field by means of the following

relation:

p

ργ
=

p∞
ργ
∞

(6.5)

The above relation leads to the definition of the constant parameter k0 = p∞
ργ
∞

, and

can be used in eq.(6.3) to obtain the following differential equation for ρ:

1

ρ

dρ

dr
=

ρ∞
γp∞

v2
θ

r
(6.6)

Eq.(6.5) and (6.6) can be used to obtain the pressure and density filed for every

semi-empirical vortex model.

The Taylor vortex model, a compact vortex, has been proposed by Taylor, [107], and

used by many authors including Vatistas et al., [104] and Colonius et al., [109]. The

tangential velocity distribution of the Taylor vortex has the following expression:

vθ = vθmax
r

Rc
e





1−( r
Rc )

2

2





(6.7)

where vθmax is the maximum tangential velocity and Rc is the radius of the vortex

core, corresponding to the maximum tangential velocity.
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Integrating Eq.(6.6) and substituting Eq.6.7, the density and pressure distributions

for the Taylor vortex are given by:

ρ(r) = ρ∞

[

1 − v2
θmax

k0

γ − 1

2
e

(

1−( r
Rc

)
2
)

]
1

γ−1

(6.8)

p(r) = k0ρ
γ (6.9)

Scully et al., [110], defined a vortex velocity profile in the following form:

vθ = VΓ
r

(1 + r2)
(6.10)

where r = r
Rc

and VΓ = Γ
2πRc

.

It is possible, by defining ζ =
V 2
Γ

2k0
, to write the density and pressure field for the

Scully vortex in a compact form:

ρ(r) = ρ∞

[

1 − ζ

(

(γ − 1)
1

1 + r2

)] 1
γ−1

(6.11)

p(r) = k0ρ
γ (6.12)

Recently, Vatistas, [108], proposed a family of algebraic vortex velocity profiles,

comprising some of the aforementioned models, which can be written in the form:

vθ = VΓ
r

(1 + r2)
1
n

(6.13)

The exponent n can vary from n = 1 to n = ∞. It is obvious that for n = 1 the

profile coincides with the Scully model. As discussed above, the Vatistas vortex

with n = 2 will be analysed in this paper.

The following assumptions are made in order to compare the effects of the different

models on the numerical predictions:

• the same vortex core radius Rc is used for all the vortex models

• the same total circulation Γ is used in every model

Two test cases with are considered during the calculations, with Rc = .018c and

Rc = .05c where c is the aerofoil chord. For the smaller Rc Γ = .283 while for the

other case Γ = .2. It should be noted that fixing the two parameters of the model,
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Figure 6.1: Vortex-induced profiles

Rc,Γ produces different maximum tangential velocities for each vortex model, this is

visible in Fig.6.1(a). In this Figure the tangential velocities are non-dimensionalised

using Vγ which is constant for a given set of Rc,Γ. The maximum tangential veloc-

ity for Taylor and Rankine vortices is equal to 1, while the maximum velocity for

Vatistas vortex is equal to 0.74 and for Scully is 0.5. From the same Figure 6.1(a)

is also clear that the Taylor vortex velocity profile influences only a very compact

zone within the limit of r = 4. The behaviour is similar also for pressure and den-

sity distributions where the peaks of Taylor and Rankine vortices are much higher

compared to the other models.

6.1.2 Results and Discussion

6.1.2.1 Numerical method

Vortex body interaction is one of the most challenging problems for aerodynamic

and aeroacoustic predictions. For instance, in the case of aerofoil-vortex interaction,

different levels of numerical approximations, [111], [112], [113], have been adopted

depending on the computational resources and flow discretisations. Several dif-

ficulties arise during numerical prediction of vortex body interaction. The main

problem encountered is the numerical dissipation which characterises CFD codes.

This severely affects the strength of the vortices, particularly in the flow regions

where the grid resolution is low, e.g. far away from the aerofoil.
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In the present study, the two-dimensional implicit Euler solver of the commercial

software Fluent was exploited. The Euler solver is based on a cell centred finite

volume method with Roe Flux-Difference Splitting (FDS) scheme for the convective

fluxes. The governing equations are integrated in time using a second order implicit

time-marching method with dual time stepping. The inner iterations of the dual

time stepping were performed until residual convergence dropped by three orders of

magnitude.

A second order upwind scheme was used for the spatial discretisation. In order to

limit the numerical dissipation which is induced by large cells, three different mesh

levels have been tested during this study. In effect, as discussed above, researchers

have tried to resolve the dissipation problem by means of several different techniques

such as Compressible Vorticity Confinement (CVC), [112] or Adaptive Algorithms,

[111] and [113]. These efforts were aimed at defining a method which allows the use

larger mesh cells, and hence less computational resources.

In the current study, the efficiency of the mesh distribution and the computational

time of the CFD algorithm were not the main concern and it was decided to use a

large number of nodes in order to preserve the vortex strength as long as possible.

Three mesh levels have been considered with a number of nodes varying from 100

up to 210 thousand, and after a comparison of the preserved vortex strengths, the

finer mesh was chosen for all the calculations. This latter mesh is shown in Fig.6.2,

where the different blocks used can be observed. A very fine mesh is visible upstream

of the aerofoil leading edge with an average resolution of 8 nodes per vortex core.

The blocks are connected using non-conformal interfaces which allow the use of a

different node distribution on each side of the faces connecting the different blocks.

6.1.2.2 Subcritical Head-on Interaction

Aerofoil-vortex interaction has been studied by various researchers. The experiment

conducted by Lee and Bershader, [114], is a well documented example. During their

experimental campaign the authors analysed a head-on parallel interaction with a

M∞ = 0.5 and non-dimensionalised values for Γ = 0.283 and Rc = 0.018. In the

head-on case the miss distance between the aerofoil leading edge and the centre of

the vortex core is 0.

This experiment is of particular significance since it was used as a reference case
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(a) Overall (b) Close up

Figure 6.2: Mesh used during calculations

for previous computational analyses, [111],[112],[113]. All these numerical analyses

were conducted by superimposing the Scully semi-empirical vortex model to a steady

solution of the flow around the NACA 0012 aerofoil with the same flow conditions

as in [114]. To the knowledge of the author, no numerical study so far exploited a

vortex model other than the Scully model in this particular analysis.

The unsteady Euler calculations for this case have been performed adopting the

numerical method described in the previous section with a physical time step size,

non-dimensionalised by the time tc = c/U∞, of δt = 0.01 , i.e. 1/100th of the time

that a signal travelling with the free stream velocity needs to cover one aerofoil

chord length c. This means that the vortex, which is convected by the free stream

velocity, was moving every time step of δxv = 0.01c, approximately half the core

radius, δxv ≈ Rc/2.

The comparisons of the pressure coefficient cp time history with the experimental

data in [114], are shown in Fig.6.3. The plots refer to the case of subcritical Head-on

interaction with M∞ = 0.5 and are calculated in the point x = 0.02c, i.e. 2% from

the aerofoil leading edge (L.E.). It is interesting to see the effect of the time step

size on the calculations, in Fig.6.3(a). By using a larger ∆t, the cp peak value over

the upper surface of the aerofoil is underestimated of around 50%. The same effect

can be found for the cp distribution over the lower surface of the aerofoil.

In Fig.6.4 are presented the effects of the time step size and the order of temporal

discretisation on the convected vortex strength. In this Figure it is shown the

vorticity magnitude of the vortex, Ω, divided by the initial vorticity ΩMax versus
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the vortex position normalised by the vortex radius x/Rc. It is clear that with the

second order discretisation and δt∗ = 0.01 the vorticity magnitude remains around

0.7ΩMax after the vortex is convected 55Rc upstream of the initial position and then

Ω becomes .6ΩMax after a total distance of 110Rc from the initial vortex position.

On the other hand, by using, for the same spatial resolution, a first order temporal

discretisation with δt∗ = 0.05, the vorticity strength is 0.15ΩMax after 55Rc and

becomes ≤ 0.1ΩMax at 110Rc from the initial vortex position.

The differences in pressure fields induced by the Scully and Vatistas models are

presented in Fig.6.5. In particular, this Figure shows four different positions of the

vortex, starting from the point where the vortex was initially superimposed to the

steady solution, 6.5(a). The contours in this case have been clipped to 20Pa, i.e.

the regions in red, such as the vortex core, have higher differences.

(a) xv = −3c (b) xv = −2c

Figure 6.5: Difference in pressure field between Scully and Vatistas models, for two
locations of the impinging vortex.(The contours are clipped [0-20]Pa)

From Fig.6.5(a) it is clear that the initial difference, when the two vortices are

superimposed, is concentrated just on the vortex cores, with some scattering from

the aerofoil leading edge. The vortex is then convected with M∞ = 0.5 and when it

reaches a distance of 2 chords from the leading edge, Fig.6.5(b), the pressure field

difference, which is emitted by the centre of the vortex core at M = 1, has now a

radius of 2 chords, i.e. 1/(M∞) times the distance travelled by the vortex. The ∆P

field now reaches the aerofoil leading edge and the region in proximity of the aerofoil

is altered by the presence of the solid body.
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(a) xv = −1c (b) xv = 0c

Figure 6.6: Difference in pressure field between Scully and Vatistas models, for two
locations of the impinging vortex.(The contours are clipped [0-20]Pa)

Following the vortex further downstream at 1 chord distance from the L.E., Fig.6.6(a),

the ∆P field has now a radius of 4 chords and the aerofoil is fully immersed. The side

of the ∆P field containing the aerofoil is apparently quite different from the clean

side. A part from the differences induced by the aerofoil solid surfaces, it is quite

evident the presence of ∆P waves scattered from the aerofoil leading edge. These

were generated when the ∆P disturbance reached for the first time the aerofoil’s

L.E. In Fig.6.6(a), the centre of the scattered ∆P can be found on the aerofoil’s

T.E. and the outer scattered wave has radius of 2 chords. This scattered wave tends

to attenuate the ∆P difference between the two vortex models. The effect can be

recognised by the darker colour circle centred in the aerofoil trailing edge (T.E),

which coincide with the wave front of the scattered ∆P waves.

A very similar behaviour can be recognised in Fig.6.6(b), but in this case the vortex

has reached the aerofoil L.E. and the ∆P field in proximity of the aerofoil surface

has large magnitude, indicated by the dark red region enclosing the aerofoil. The

wave front of the ∆P field extends now over a radius of 6 chords around the aerofoils

L.E. The location of the vortex’s centre is at the L.E.

Figures 6.5(b),6.6(a) and 6.6(b) clearly show four spirals staring from the vortex

centre and extending up to the ∆P wave front. These are generated by the dif-

ference in tangential velocities between the vortex models and as a consequence of

the rotational movement of the vortex. The lengths of the spirals depend on the

differences of the vortex-induced velocity fields between the two models, as shown
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in Fig.6.1(a).

Figure 6.7, shows the comparison between the pressure field induced by the Scully,

Vatistas and Rankine models. The ∆P magnitudes are much higher than those

presented in Fig.6.5, highlighted in the red colour regions, and the differences in

∆P between Rankine and Scully are much larger than those between Rankine-

Vatistas. This could be expected considering the formulations of the equations

of the models, 6.13. The behaviour of the ∆P is similar to the one described

in the previous paragraph and the spirals are more intense in the Scully Rankine

comparison. Furthermore, the spirals are longer in this last case since the difference

between the maximum tangential velocities between Rankine and Scully models are

larger than those between the Rankine and Vatistas models.

(a) ∆P Scully-Rankine (b) ∆P Vatistas-Rankine

Figure 6.7: ∆P differences between three vortex models, (Contours clipped [0-20]Pa,
xv = −2c)

It must be noted here that even if the Vatistas, Scully and Rankine models belong

to the same family, the ∆P difference fields between the models are of considerable

magnitude, especially if compared with the human hearing threshold which is 2µPa.

In the case of the Taylor model, which has a different mathematical form, the ∆P

difference field, between this vortex and the others, reaches higher magnitudes. In

Figure 6.8 the contour ranges have been extended up to 2kPa, i.e. 100 times the

one used in Figure 6.5.
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(a) Contours (0 − 20)Pa (b) Contours (0 − 2000)Pa

Figure 6.8: ∆P differences between Taylor and Scully models, ( xv = −2c)

6.1.2.3 Supercritical Parallel Interaction

The case presented in the previous subsection was an Head-on interaction and the

vortex was convected with a subcritical Mach number. In the following case the

Mach number is M∞ = 0.8 and the vortex has a miss distance of yv = 0.25c from

the aerofoil L.E. The parameters for the vortex models are: non-dimensionalised

Γ = 0.2 and Rc = 0.05, as in [111],[113] and [115]. Since the Mach number is super-

critical, two shocks are present in the steady state solution of the NACA0012. This

means that the aerofoil vortex interaction is more complex because of the additional

interaction of the vortex with the shocks over the aerofoil. In effect, the presence of

the shocks influences the ∆P field as shown in Fig.6.9, where the maximum pressure

contour was maintained at 20 Pa for consistency with the previous plots. In this

case there are 3 scattered waves which originate from the L.E. and from the two

shocks over the aerofoil. Furthermore the ∆P magnitude is much higher than that

of the subcritical case and the shock positions and magnitudes are affected by the

differences in the models.

6.1.2.4 Acoustic Pressures

The near-field ∆P differences between the vortex models have been presented in

the previous section. From the discussion above and by analysing the contour plots,

it appears that the differences between the models are smoothed during the propa-
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Figure 6.9: ∆P differences between Scully and Vatistas models, ( M∞ = 0.8, xv =
−1c, Contours (0 − 20)Pa)

gation. Hence, it is necessary to analyse the far-field acoustic pressure in order to

understand whether the smoothing is due to the intrinsic dissipation of the CFD or

the physical dispersion of the pressure signal.

In the following results the far-field acoustic pressure is predicted using the noise

prediction code on permeable surfaces developed during this research. Four observer

positions have been considered, 2c, 5c, 10c and 20c from the aerofoil. The following

analysis is focused on the subcritical head-on case which presented a lower ∆P

magnitude and hence weaker front waves, Fig.6.6(b).

In Fig.6.10 the acoustic pressure prediction at an observer 2c above the aerofoil,

Fig.6.10(a), and 2c below the aerofoil, Fig.6.10(b), are compared with the prediction

from Morvant et al. [112]. Both plots follow very closely the predictions in [112]

which to the knowledge of the author have the only acoustic pressure data for the

head-on aerofoil-vortex interaction case.

The acoustic pressure time history at an observer yob = 20c above the aerofoil is

shown in Fig.6.11. It should be noted that in Fig.6.11 a small oscillation in the

acoustic pressure is apparent, this oscillation was identified as spurious noise due to

the passage of the vortex through the permeable surface. The spurious source was

identified by performing the calculations of the vortex in free stream, i.e. without

the airfoil, and computing the emitted acoustic pressure, which in this case should

be equal to 0. The problem of spurious noise affects permeable surface algorithms

when turbulent fluctuations or vortices pass through the control surface, [100].
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Figure 6.10: Comparison Acoustic Pressure at 2 observer positions above and below
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Despite the existence of the spurious sources, it is still possible to evaluate the

differences in the far field acoustic pressure between the Vatistas and the Scully

Vortex models, as presented in Fig.6.12. These differences are around 50Pa for

the observer in yob = 10c, Fig.6.12(a). Moving further away from the aerofoil, an

observer positioned at yob = 20c, Fig.6.12(b) perceives a ∆P signal which has half

the magnitude of the one in Fig.6.12(a).

This trend suggests a linear behaviour, i.e. the amplitude of the acoustic signal

decays as the inverse of the radiation distance, as expected from the theory. Hence

the excessive decay presented in Fig.6.6 must be attributed to the intrinsic numerical

dissipation. It must be highlighted that the initial difference in the induced pressure

fields is contained only in the vortex core, which in the case under analysis is 0.0184

chords. This means that the initial pressure difference can be perceived in a region

of 1000Rc, at the observer yob = 20c.
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Figure 6.12: Differences in the far field acoustic pressure between Vatistas and Scully
models for two observer positions

It is interesting to observe the differences in Sound Pressure Levels (SPL) and direc-

tivity patterns between the different vortex models. More precisely in Fig.6.13 the

directivity patterns for the Vatistas, Scully and Taylor vortices are presented. It is

clear that between the Vatistas and Scully models, 6.13(a), the differences in both

directivities and SPL magnitude are very small, around ∆SPLV −S 1dB. On the

other hand, the differences between Vatistas and Taylor are apparent not only in the

directivity patterns but even more in the SPL magnitude ∆SPLV −T ≥ 15dB. In the

case of the Rankine vortex these values should be in between the above boundaries,
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i.e. ∆SPLV −S ≤ ∆SPLV −R ≤ ∆SPLV −T and closer to the difference between

Vatistas and Scully vortices.
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Figure 6.13: Directivities Comparisons between three vortex models at an observer
yob = 10c

6.2 3D Blade Vortex Interactions

In the previous section, the analysis of 2D aerofoil-vortex interaction was presented

in order to examine the issues involved during the complex problem of vortex body

interaction. In this section the study of vortex body interaction problems is extended

to three dimensions by analysing two model scale helicopter rotors during Blade

Vortex interaction.

The analysis of such a problem is useful to further testing the capabilities of the

aeroacoustic prediction tool developed during the current research. The aeroacoustic

results will be compared against the measurements from the wind tunnel experiments

[17], performed by the HELISHAPE consortium in the nineties. These experimental

results have been already documented in other European projects [19], and used for

validation purposes, [116].
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Figure 6.14: Model Rotor Blade geometries in the Helishape campaign, [117]

6.2.1 Experiments description

Within the framework of a previous European cooperative research program on

rotorcraft aerodynamics and acoustics (HELISHAPE), a parametric model rotor

test was conducted in the open test section of the DNW. These tests used the

MWM test rig of DLR and a highly instrumented model of a fully articulated ECF

rotor equipped with blades of advanced design and two exchangeable blade tips.

The two blade geometries shown in Fig.6.14 were considered during the Helishape

experimental campaign.

One set of blade tips had a rectangular shape whilst the other one had a swept-

back parabolic/anhedral shape. The objectives of those experimental tests were to

evaluate noise reduction techniques and to validate the partners’ aerodynamic and

aeroacoustic codes. The aeroelastic blade deflections, especially the torsional and

flap-wise deflections that represent important parameters affecting BVI noise and

vibrations, were determined from the measured data by means of elementary beam

bending theory . In addition, valuable information on the tip-vortex geometry and

blade-vortex miss distance was obtained by means of the LLS flow visualization
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technique.

A comprehensive set of simultaneous acoustic and aerodynamic blade surface pres-

sure data, as well as blade dynamic and performance data, were measured during

the HELISHAPE tests.

Test Case No. Rotor Type Aerodynamic Conditions

TC08.4 7A

Low-speed
6◦ descent
µ = 0.16616

CT/σ = 0.08155
MΩR = 0.61651
αTPP = 4.5◦

θ.70 = 2.90◦

θ1c = 2.76◦

θ1s = −1.42◦

TC09.5 7AD1

Low-speed
6◦ descent
µ = 0.16599

CT/σ = 0.08147
MΩR = 0.61816
αTPP = 4.22◦

θ.70 = 3.01◦

θ1c = 2.99◦

θ1s = −1.69◦

Table 6.2: Helishape low speed descent cases chosen for validation. µarxi
=

Uxi

Utip

For each acoustic measurement point, the ensemble averaged sound pressure time

histories as well as the averaged narrow band power spectra (via FFT) have been

calculated. A time domain window was not applied to these data. The conditional

sampling approach employed minimised leakage of acoustic energy at the blade

passage frequency (bpf) and its harmonics, and thus a time domain window was

not required to improve the spectral estimates at these frequencies. The data were

further evaluated in terms of A-weighted summary levels.

The two test cases chosen for the assessment of the computational tools discussed

above are presented in Table 6.2. Both of them are at low speed 6◦ descent, a

condition in which the wake coming from one blade impinge directly on the following

blade generating strong BVI events and thus fluctuations in the blades’ loading. This

unsteady pressure distribution is the main factor of the noise produced by the rotor

in subsonic flights.
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6.2.2 Computational tools

The complex motion and aeromechanics of the helicopter rotor was discussed in

Chapters 3 and 4. Given this complexity, a stand alone aerodynamic prediction tool

is not capable of accurately computing all the flow features necessary for a reliable

aeroacoustic analysis of helicopters rotors in descent or in forward flight. Only the

comprehensive tools, described in the previous section, can produce an accurate

aerodynamic prediction for BVI noise analysis.

Since no in-house comprehensive code was available at Cranfield, the following aero-

dynamic predictions were obtained as a collaboration with AGUSTA and University

of Roma Tre as a part of the Friendcopter project, Task 2.1 described in the intro-

ductory Chapter. The aim of this task is to define noise abatement procedures,

which is a fundamental step towards a more environmentally friendly helicopter.

BVI noise is the source more affected by the particular flight procedure.

It follows a brief description of the comprehensive tools of Augusta [118], identified

with Comprehensive Tool 1 (CT1) and Roma Tre, [119], identified with CT2.

6.2.2.1 Aeroelasticity

The aeroelasticity calculations in CT1 uses an AGUSTA in-house code. The formu-

lation of the code is entirely based on a Finite Element Method (FEM) approach

providing modal and frequency response to aerodynamic and inertial loads acting

on the blades. This is done via the lifting surface method in order to determine the

aerodynamic load on the deformed blades by means of a free wake vortex lattice

formulation.

The evaluation of the blade structural dynamics for the CT2 is based upon the

non linear flap-lag-torsion equations of motion developed by Hodges and Dowell,

[120]. These are based on a beam-like model and are valid for straight, slender,

homogeneous, isotropic, nonuniform, twisted blades and undergoing moderate dis-

placement. In the present calculations the kinematics of the blade are included

through a simplified model in which the blade deformations vary linearly along the

radial direction, with the tip flap, lead-lag and torsion deflections coinciding with

those measured in the wind tunnel tests.
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Figure 6.15: Pressure time history on the blade upper and lower surfaces, case
TC08.4, for the point x/c = 0.02 y/R = .98

6.2.2.2 Aerodynamics and wake modelling

The aerodynamics prediction modules of the two comprehensive tools exploited

herein are quite similar and are based on the Boundary Element Method (BEM).

This is the most widely used approach in helicopters’ analysis due to the complexity

of the geometry and motions of the vehicle. Other approaches such as Finite Volume

Method (FVM) would require: firstly the generation of a domain grid, whereas the

BEM methods are based only on boundary surfaces grids, and secondly the compu-

tational resources and convergence time are much greater than the BEM case.

In particular, CT1 utilizes an unsteady 3D panel method where the prediction of

the flow field around complex multi-component configurations in arbitrary motion

is possible. The methodology is based on the solution of the Drichlet problem for

Laplace’s equation written for a discrete singularities’ distribution simulating the

bodies’ surfaces. Tangency of the fluid flow to solid boundaries is adopted at every

time step following Morino’s formulation and the mutual interactions of bodies and

wakes are taken into account.

The aerodynamic module of CT2 is based on a boundary integral formulation for

the velocity potential that is suitable for helicopter configurations where wake/blade

interactions (BVI) occurs. This formulation is fully 3D, and can be applied to bodies

with arbitrary shape and motion, and allows the calculation of both wake distortion

and blade pressure field. For a realistic modelling of a close interaction between

the wake and a body, a non-zero thickness wake model is essential because of the
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Figure 6.16: Normal force coefficient, case TC08.4 at two blade sections

fundamental role played by the vorticity spatial distribution when determining the

local fluid flow around the impact region.

In particular, both in CT1 and CT2 the contribution of the wake portion experienc-

ing BVI is expressed in terms of thick vortex distributions (i.e. Rankine vortices)

rather than in terms of doublets distributions. The two comprehensive tools can

perform prescribed or free wake calculations. Using the latter approach the solu-

tion is obtained by a time marching integration scheme in which the wake is moved

according to the velocity field computed from the potential solution.

6.2.2.3 Results

In Figures 6.15(b) to 6.16(b) are presented the pressure, at the L.E., and the normal

force coefficient Cn time histories for the case TC08.4, as described in Table 6.2. The

time is represented as the blade azimuth position. The pressure distributions along

the blade surface have been computed by AGUSTA and Roma Tre exploiting the

tools described above. The Cn distributions in Fig. 6.16(a) and 6.16(b), have been

computed using the quadratures and the kinematic tools implemented in the HelicA

aeroacoustic code. All the results are compared with the available experimental

data. It is clear from the plots that the prediction codes are capable of capturing

the measurements very closely. The zones close to 90 and 270 degrees of azimuth

are of particular interest to check the quality of the predictions because they are the

positions where all the BVI encounters happen.
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Figure 6.17: Noise footprints comparisons for the case TC08.4, left numerical and
right experimental. Represented in OASPL [dB]

The codes predict the characteristics of the pressure fluctuations in good agreement

with the experimental data, both in terms of phase and amplitude. Higher differ-

ences are visible around the peaks of both pressure and Cn. It should be noted that

the spanwise positions presented, r/R = 0.92 and r/R = 0.98 are the ones in which

BVI phenomena are more intense, hence, the predictions can be considered in very

good agreement. Furthermore, the Cn plots, Fig. 6.16(a) and 6.16(b), at the same

spanwise sections, show that the blade aerodynamics and kinematics have been well

resolved.

Figure 6.18: Noise footprints comparisons for the case TC09.5, left numerical and
right experimental. Represented in OASPL [dB]
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The above discussion demonstrates that the dynamics and aerodynamics of the rotor

have been predicted correctly. Hence, based on the above predictions, it is possible to

compute the noise generated during BVI conditions for the two rotor geometries. It

should be noted that in the Figures 6.17-6.18 are presented only the results obtained

by coupling CT1 with the HelicA noise prediction tool. This is because the results

obtained with the other computational chain, i.e. CT2 + HelicA, are very similar

to the ones presented here.

Several HelicA formulations, as shown in Table 6.3, have been applied for the noise

prediction of the 3D-BVI cases. From the table is evident that the time required by

HelicA ES is comparable with both HelicA ADV and HelicA RET, but in this latter

case there is a difference when the Brent root finder is used instead of Newton-

Raphson. Although the different formulations require slightly different computa-

tional times, Tab.6.3, the acoustic prediction are coinciding. For this reason only

the result from the HelicA ES algorithm are presented here.

Acoustic solver Comp. Time∗

HelicA RET (Newton root finder) ≈ 1.2
HelicA RET (Brent root finder) ≈ 0.7

HelicA ADV 1.0
HelicA ES ≈ 1.1

Table 6.3: Summary of time required by different formulations, subsonic sources.
(∗All times are divided by the time required by the ADV formulation.)

The control surface used for the FW-H approach and the aeroacoustic calculations

coincide with the solid surface of the rotor blade. Figures 6.17 and 6.18 present the

comparisons between the computational and the experimental noise footprints for

the two test cases. Figure 6.17 refers to the case TC08.4 which corresponds to the

standard untapered blade ONERA 7A, while the results presented in Fig.6.18 are

for the ONERA 7AD rotor with blades of advanced design. The OASPL are about

2dBA lower than the ones in Fig.6.17 and also the extension of the dark red region,

i.e. higher dBA levels on the rotor advancing, is smaller which suggest that the 7AD

design is able to lower some of the BVI noise.

Both characteristics described above are captured also by the computational results

which are in fair agreement with the directivity patterns of the measurements, but

it is visible a shift of about 40 deg in the maximum OASPL in the patterns which is

attributed to the difficulties in capturing the complex 3D vortex-body interaction

problem. The higher discrepancies between the predictions and the measurements

are visible in the retreating side of the rotor. This is thought to be connected
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with the CT, both CT1 and CT2, which are not able to fully capture the complex

aerodynamic phenomena taking place in this region. The oncoming flow is much

slower in this region, and hence a degree of flow separation could appear over the

blade. The use of Finite Volumes Methods with turbulence modelling could improve

the predictions over this region.

It is useful to examine in detail the acoustic pressure time histories on the micro-

phones. This will enable to assess whether the physics of BVI (number of peaks,

magnitude and position of the dominant peak) are well captured by the aeroacoustic

computations as was the case for the aerodynamic predictions.

t/T REV

A
c
o
u
s
tic

P
re

s
s
u
re

[P
a

]

0 0.2 0.4 0.6 0.8 1
-80

-60

-40

-20

0

20

40

60

(a) Experimental

t/T REV

A
c
o
u
s
tic

P
re

s
s
u
re

[P
a

]

0 0.2 0.4 0.6 0.8 1
-80

-60

-40

-20

0

20

40

60

(b) Numerical

Figure 6.19: Experimental and numerical acoustic pressure time history for the
microphone in the advancing side, indicated in figure 6.17 by a black square.

The pressure time histories in Fig.6.19 refer to the microphone, indicated by a black

square in Fig.6.17 and 6.18, which is positioned just under the Psi = 90 position,

i.e. under the rotor advancing side. The Figure shows that the computational chain

used here has been able to capture the physics of the BVI phenomena. The number

of peaks and the positions of the dominant peak are close to the experimental

ones, which is demonstrated also from the frequency spectrum in Fig.6.20(b). Fair

agreement is obtained for the magnitude of the peaks, also visible in Fig.6.20(b)

where the peaks are appearing at the same frequencies but their magnitudes are

underestimated.

For instance, the numerical prediction is about 20dB lower for the peak at bpf
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∼ 64Hz, the highest magnitude peak for the measurements. It should also be noted

that the highest peak for the numerical prediction is at a frequency ∼ 780Hz which

is ∼ 12 times the bpf, where the measurements are overestimated of ≈ 5dB. Thus,

the numerical predictions are largely underestimating the amplitude of the BVI peak

at bpf which is the main indication of the strength of the blade vortex interaction

phenomenon.

As discussed in Subsection 3.1.4, the amplitude of this peak is connected with the

oncoming vortex properties: miss distance, vortex strength, position and core size,

which are very complex properties to capture via numerical simulation. From the

results shown in Fig.6.19 and Fig.6.20 it is clear that some of the aforementioned

quantities driving the BVI intensity are not correctly simulated by the aerodynamic

prediction codes. While the OASPL footprints in Fig.6.17 and 6.18 have an am-

plitude difference of around 2dB, the detailed analysis at one microphone position,

Fig.6.19 and Fig.6.20, suggests that a low difference in OASPL can hide lager dis-

crepancies at particularly important frequencies, such as the bpf.

In conclusion, the results obtained from the two computational tool chains presented

herein confirm their capabilities to provide aeroacoustic predictions that are overall

in fair agreement with the experimental data for the complex phenomenon presented

here. Furthermore, from the discussion above is clear that the analysis of OASPL

results should always be accompanied by acoustic pressure time histories and SPL

frequency spectra at significant microphone positions, such as the microphone at

maximum OASPL value.

6.3 Transonic rotor noise

As discussed in Chapter 3, the High Speed Impulsive noise is the main source of rotor

noise generation during transonic conditions. The intensity of this phenomenon is a

non linear function of the rotor tip Mach number MT and becomes very intense as

the MT −→ 1. In particular, the HSI intensity is connected with the extension of

the supersonic flow pocket which appears over the blade when MT ≥ Mc (aerofoil

critical Mach number). In these conditions a shock appears over the upper surface of

the blade forming a supersonic flow pocket. With the increase of MT the extension

of the supersonic bubble increases until a shock delocalization appears.

Shock delocalisation was discussed in Section 3.1.3. In Fig. 6.21(a) and (b) the
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Figure 6.20: Experimental and numerical frequency spectra of the time histories in
Fig. 6.19. (a) shows the spectrum for frequencies up to 3kHz, while (b) shows a
zoom in [0 − 1]kHz.

phenomenon is illustrated by means of CFD flow visualisation from the analyses

conducted in this research. Fig.6.21(a) shows the extension of the supersonic bubble,

in a reference frame rotating with the blade, for MT = 0.85 where there is no

delocalisation. In this Figure is also visible the sonic circle, which is defined as the

radius beyond which the undisturbed flows appears supersonic to an observer in the

blade frame.

(a) MT = 0.85 non delocalised shock (b) MT = 0.95 delocalised shock

Figure 6.21: Shock delocalisation phenomenon. (dark blue lines M = 1)

When the tip Mach number increases, for MT ≥ 0.92, the shock bubble extends up

to the sonic circle. This is shown in Fig. 6.21(b), for MT = 0.95, where the shock

bubble is connected with the sonic circle and the strong pressure disturbance on the
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rotor disk plane goes far beyond the sonic circle. The extension of the high pressure

gradient is more clear in Figure 6.22.

Figure 6.22: Shock distribution in the rotor disk plane

6.3.1 Experiment description

Purcell, [32], identified the importance of HSI noise , which mainly occurs in high

speed forward flight conditions, and devised an experimental set-up which allows to

obtain HSI and shock delocalisation by using a hovering rotor. The HSI phenomenon

can be obtained by considering a hovering rotor with MT values similar to the

advancing tip Mach numbers reached during high speed forward flights.

The experimental study in [32] was conducted in the NASA Anechoic Hover Cham-

ber using a 1/7th scale model of the UH1H main rotor, which has straight un-

twisted blades with NACA 0012 aerofoil sections. The rotor has a blade span of

RT = 1.044m and a constant chord of ch = 0.0762m which gives a blade aspect

ratio of AR = 13.71. Such a simple blade geometry was intentionally chosen by

Purcell in order to produce a database for aeroacoustic code validation. For these

reasons the experiment has been exploited by many researchers for validating and
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testing the capabilities of rotor noise predictions tools, [38], [44] and [121], [48].

In this experiment were analysed 5 different Mach number values, ranging from

MT = 0.85 up to MT = 0.95, hence considering both non-delocalised and delocalised

conditions. The acoustic pressure data were measured along the sonic circle, R = Ω
A0

and at R = 2.18RT and R = 3.09RT . In the present thesis the aeroacoustic analysis

of all the aforementioned flow conditions has been performed using the numerical

approach described in the following subsection.

6.3.2 Numerical method

The most important parameters contributing to the overall intensity of HSI sources

are the shock position, strength and extension. Hence, the viscous effects play a

secondary role for this specific rotor noise source. For these reasons the aerodynamic

predictions have been calculated using the 3D inviscid Euler solver of the commercial

software Fluent. The Euler solver is based on a cell centred finite volume method

with Roe Flux-Difference Splitting (FDS) scheme for calculation of the convective

fluxes. For the spatial discretisation a second order upwind scheme was adopted.

Other simplifying assumptions can be obtained via a careful consideration of the

flow conditions and rotor kinematics:

• The hovering condition implies that the flow is rotationally periodic, thus it is

possible to divide the domain in as many sectors as the number of blades and

consider only the domain sector surrounding one blade

• The UH1H rotor has symmetric aerofoil sections with angle of attack α = 0, i.e.

it is possible to analyse only the upper surface of the blade. The combination

of the two hypotheses brings the domain extension, and hence the nodes count,

to one quarter of the initial domain

• In a reference frame rotating with the blades, the fluid flow around the rotor

can be considered steady. This means that using a relative velocity formula-

tion, it is possible to perform steady state CFD calculations instead of unsteady

time accurate simulations

It should be noted that the aforementioned assumptions do not bring any approx-

imation to the computed solution. They are not based on a simplification of the

model, but on physical considerations on the particular case under analysis.
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Following the above assumptions, the chosen domain starts from the rotor disk plane

and extends 2RT above this plane and 2.5RT from the rotor hub, i.e. 1.5RT from

the blade tip. The domain was discretised using a mesh of (121x86x52) respectively

in the chordwise, spanwise and blade normal directions. A grid sensitivity study

was also performed to check the dependance of the solution on the number of grid

nodes in each direction. Four different meshes were considered, one obtained from

the fine mesh considering every other node respectively in the I, thus obtaining a

mesh with (61x86x52), a second mesh which has half of the node of the previous

one in the I direction, i.e. (31x86x52) and the fourth mesh with (121x43x52), i.e.

half the nodes of the fine mesh in the spanwise direction.

In Fig.6.23, are shown the comparisons between the results in Baeder [122] and

three meshes from coarse to fine in the chordwise direction. From Fig. 6.23(a) it

is clear that the coarse mesh can capture the pressure distribution over the blade

with acceptable accuracy. The difference in the predictions between the coarse and

the fine mesh becomes much higher further away from the blade. Figure 6.23(b)

shows the same comparison at the sonic circle where an underestimation of the

peak negative pressure clearly visible. Furthermore, although the shape and the

amplitude of the expansion are in reasonable agreement, the position of the shock

at the sonic circle is very different between the coarse and fine mesh, while the

medium mesh has a much closer agreement to the fine one.

Given the good agreement between the results computed on the fine mesh and the

Euler computations for the predicted acoustic pressure at the sonic circle, presented

by Baeder [122], the flow solutions presented in the following section were obtained

using the fine mesh.

Since the correct prediction of shock delocalisation plays a major role in the calcu-

lation of HSI noise, careful consideration was given to the node distribution in the

region outside the sonic circle. Usually the grid nodes are clustered around the blade

surface and the clustering extends for a short distance span-wise after the blade tip.

Using such an approach leads to a well resolved flow field in the proximity of the

blade surface, but the accuracy of the solution strongly decreases going further away

from the blade.

In effect, the standard clustering, adopted during aerodynamic analysis of fixed and

rotating wings, can provide correct results for the position and extension of the

supersonic pocket over the blade surface, but it fails in the presence of moderate to

strong delocalisation.



146 Subsonic and Transonic Studies of Noise Propagation

A
co

us
tic

P
re

ss
ur

e
[k

P
a]

-0.2 -0.1 0 0.1 0.2
-50

-25

0

25

50

75

100
31x86x52
61x86x52
121x86x52

Rψ

Euler calc.[122]

(a) Acoustic Pressure at r = 0.99RT

A
co

us
tic

P
re

ss
ur

e
[k

P
a]

-0.2 -0.1 0 0.1 0.2
-20

-15

-10

-5

0

5

10
31x86x52
61x86x52
121x86x52

Rψ

Euler calc.[122]

(b) Acoustic Pressure at r = RT /MT

Figure 6.23: Grid Sensitivity I direction for MT = 0.92

In order to enhance the accuracy of the CFD prediction in the regions further away

from the blade surface, especially in the span-wise direction, the clustering of the

nodes must be carefully devised. Isom et al. [123] demonstrated that once a shock

reaches the sonic cylinder, it propagates from the contact point along curves with a

specific slope. These curves are known as “linear acoustic characteristics”, and are

defined by the following expressions:

x =
c0
Ω

(cos t+ t sin t) (6.14)

y =
c0
Ω

(sin t− t cos t) (6.15)

Equation (6.14) expresses the involute of the sonic circle, i.e. the locus described by

a point on a straight line that rolls around the sonic circle. These curves identify

the wave front of the propagating shock disturbance. Both Isom et al. [123] and

Baeder [38] enhanced the accuracy of their CFD predictions by clustering the grid

nodes in the region outside the sonic circle, along the linear characteristic curves.

This same node clustering was exploited in the CFD calculations performed during

this study. The final mesh is presented in Fig. 6.24 which shows that the clustering

in proximity of the blade and outside the sonic circle is following eq.(6.14). In order

to understand the effect of the clustering, the flow was also calculated using a mesh

with a conventional clustering, i.e. distributed along straight lines in the region

outside the sonic circle.

In Fig.6.25(b) are shown the comparisons of the acoustic pressure predicted using
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Figure 6.24: Grid nodes distribution on rotor disk plane
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the grid clustered along the linear acoustic characteristic, red line, and the one pre-

dicted using the grid with the clustering along straight lines, dashed green line. It is

obvious that the pressure signal, which compares well at the sonic circle Fig.6.25(a),

is completely dissipated because of the lack of grid points along the linear charac-

teristic.
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Figure 6.25: Comparison of Spanwise Clustering

In the following section the aerodynamic results are presented, followed by the aeroa-

coustic predictions.

6.3.3 Results

Detailed Aerodynamic measurements are not available from the experiments of Pur-

cell, which were conducted for an aeroacoustic campaign. For this reason, the

predicted chordwise pressure distributions are compared to the numerical results

presented by Baeder in [38] and [122]. These data have also been used by many

researchers, [89],[124], [45] and [41], as the aerodynamic input for their aeroacoustic

prediction tools.

The flow conditions considered during this study are based on those of Purcell, [32],

with tip Mach numbers ranging from MT = 0.85 to MT = 0.95. The chordwise pres-

sure distribution over the blade, in sections close to the tip, and the relative Mach

number contour plots are the most appropriate indicator to identify the supersonic

pocket over the blade.

In Fig. 6.26-6.28 are shown the comparisons with the predictions presented in [122].
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Each group of Figures is for a different Mach number and shows the chordwise

pressure distribution in four position , three over the blade (r/RT = 0.89 , 0.95

, 0.99) and one at the sonic circle r = RT /MT = c0/Ω. Observing the plots in

Fig.6.26 is clear that the present CFD calculations follow very closely the CFD

predictions in [122] for all the positions considered.

Also in Figures 6.27 and 6.28 the predictions are in very good agreement. It should

be noted that the magnitudes of the peak negative pressure at the sonic circle is

increasing with MT , 6.26(d), 6.27(d), 6.28(d) and in all cases the current CFD

simulation captures both peak values and shape of the pressure wave. As expected

from the theory, earlier discussed in Section 3.1.3, the waveform is almost symmetric

for MT = 0.88 and becomes increasingly asymmetric at higher MT as in 6.28(d).

While the prediction for non-delocalised conditions, MT = 0.85, does not present

many issues, the clustering along the linear acoustic characteristic greatly improves

the prediction during delocalised conditions.

The results above prove that the CFD predictions are in good agreement with the

results in [122]. It is thus possible to use these data as an input to the noise prediction

tool.

Figure 6.29 shows the contribution of the lateral surface to the overall prediction.

The lateral surface is indicated in Fig.6.29(a). It is clear that even if the surface

is fairly close to the blade its contribution is one tenth of the overall predicted

waveform. For this reason it was decided to extend the control surfaces further

away form the blade so that the contribution of the lateral surface becomes 0. The

End Surfaces chosen as control surfaces extend until the domain’s outer boundary,

as illustrated in Fig.6.30. These control surfaces are at constant j, spanwise index,

and hence at constant relative Mach number Mj which is indicated in this Figure

for each surface.

All the control surfaces in Fig.6.30 were used to calculate the predicted sound pres-

sure at an observer Rob = 3.09RT from the origin of the domain. The results in

Fig.6.31 are compared with the experimental data from [32] in order to verify for

which of the chosen control surfaces the solution converges closer to the measured

data.

Fig.6.31(a) shows a much lower negative peak pressure and a quasi-symmetric wave-

form shape, which were calculated using both the Retarded Time and the ES for-

mulations. Increasing the relative Mach number Mj , i.e. choosing a control surface

further away from the blade tip, the predicted waveform starts to look more like the
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measured one. For Mj = 1.1, Fig.6.31(b), the predicted waveform is asymmetric

following the measured data, but both the negative and positive pressure peaks are

overpredicted. Furthermore, in the predicted curve some oscillations are present just

after the positive pressure peak.

In Fig.6.31(c), using the surface with Mj = 1.3, the predicted waveform is now

following the measured data both in shape and in magnitude. Negative and positive

pressure peaks are now correctly predicted by the ES algorithm. Using a surface at

Mj = 1.5 the prediction is not much affected, the shape and the negative pressure

peak are correct like in the prediction with Mj = 1.3. The only difference is visible in

the positive pressure peak which is slightly underpredicted. One possible reason for

this could be the clustering in the spanwise direction. For the surface at Mj = 1.3

the cell size in the spanwise direction is smaller than the large cells close to the

surface at Mj = 1.5, and comparable to the zone just after the blade tip clustering,

this is visible in Fig.6.30.

From the discussion above it is clear that using a surface atMj ≥ 1.3 will ensure that

the predicted waveform is not anymore affected by the surface positioning, i.e. all

the non linearities in the flow are contained within the control surface. The results

for MT = 0.92 and MT = 0.95 using the control surface Mj = 1.3 are presented

in Fig.6.32 and 6.33 respectively. It should be noted that in these two cases there

is a strong shock delocalisation, hence these are the most challenging cases for HSI

prediction. The tool developed during this research is capable of capturing very

well the shape and peaks in both pressure waveforms for MT = 0.92, Fig.6.32, as

opposed to the use of Retarded Time formulation (indicated with HelicA RET in

the Figure).

It is evident how the HelicA RET result, calculated along a subsonic porous surface

at Mj = 0.95 6.30, under predicts the negative pressure peak and does not capture

the asymmetric shape of the experimental pressure wave. On the other hand, HelicA

algorithm with ES formulation allows to move the control surface further away from

the blade, along the surface at Mj = 1.3 6.30, thus accounting for the non linearities

due to the shock delocalisation. The prediction with HelicA ES is in very good

agreement with the experiment at MT = 0.92, Fig.6.32, and also at MT = 0.95,

Fig.6.33.

In this latter Figure are presented also comparisons with all the other numerical

predictions available in literature for supersonic cases, as discussed in Subsection

3.2.8. More precisely in Fig.6.33(a) are shown the comparisons with Brentner et
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al. [80], using the Marching Cube Algorithm, with Ianniello [48], which exploits

an Emission Surface algorithm called K-algorithm. While in Fig.6.33(b) are shown

the comparisons with Delrieux et al. [124], using the Non-Compact forward time

algorithm, and with Kessler et al. [90], which exploits a different Non-Compact

forward time algorithm.

Clearly all the results in Fig.6.33 follow closely the measured values, but as discussed

in Subsection 3.2.8 the results from Ianniello [48], using an ES formulation, can

predict the negative peak pressure at the same level as the experimental value and

give an very close value also for the peak to peak difference, i.e. the jump from

the negative peak to the positive peak. In Fig.6.33(a), HelicA result shows an error

level comparable with the one presented in [48] for both the negative peak and the

peak to peak difference, which further demonstrates the capabilities of the HelicA

prediction tool.

It is not possible to show a precise comparison of the computational effort required

by the different methods in literature because the other studies do not provide

such information. Computational time values are discussed briefly by Ianniello in

[47],[48], but they dependent on the particular computer used and not applicable to

a more general comparison, independent from the machine. Some considerations on

the computational effort required by different formulations of HelicA are presented

in the following Subsection.

6.3.4 Summary and conclusions

In this Chapter the noise prediction tool has been applied to the analysis of three

test cases. In the first test case four different semi-empirical vortex models have

been implemented in the analysis of aerofoil-vortex interaction. From the analysis is

clear that the ∆P difference field between the vortex models is non negligible both

for low and high Mach number cases. ∆P is clearly more intense for supercritical

conditions and for vortices with very different mathematical form, such as the Taylor

and the Scully. The aeroacoustic analysis has shown that the ∆P differences in the

far-field acoustic pressures cannot be neglected even for an observer at large distance.

Furthermore, differences can be noted in both in SPL magnitude and directivities

for different vortex models.

The analysis of the BVI noise test cases shows the capability of the computational

tool in the analysis of sources in subsonic conditions. This is confirmed by compar-
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Figure 6.26: Comparisons of Acoustic pressure distribution for MT = 0.88
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Figure 6.27: Comparisons of Acoustic pressure distribution for MT = 0.90
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Figure 6.28: Comparisons of Acoustic pressure distribution for MT = 0.92
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Figure 6.29: Contribution of Lateral Surface with respect to the overall prediction,
(lateral surface at an average distance of 6c from the blade surface)
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Figure 6.30: Control Surfaces used as input in the FW-H calculations to verify the
convergence of the solution, Mj indicates the relative Mach number of the surface
at j constant
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Figure 6.31: Comparisons of Acoustic pressure distribution for MT = 0.92 at an ob-
server Xob = 3.09RT . The different plots are obtained for Control surface positioned
further away form the blade starting from Mj = 0.95, the only case for which the
retarded time formulation is applicable
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Figure 6.32: Far-field comparisons of Acoustic pressure distribution for MT = 0.92
at ROb = 3.09 (HelicA RET refers to retarded time formulation as opposed to HelicA
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Figure 6.33: Far-field comparisons of Acoustic pressure distribution for MT = 0.95
at ROb = 3.09
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ing the calculated and measured noise footprints and from the good agreement of

the computed acoustic pressure time history with that measured at a microphone

position close to the maximum OASPL.

The third test case is presented in the last part of the Chapter. This is the analysis

of a helicopter’s rotor in delocalised conditions rotating at 5 different tip Mach

numbers ranging from MT = 0.85 to MT = 0.95. A particular focus is given to

the analysis of the cases at MT = 0.92 and MT = 0.95 which present a strong

shock delocalisation. These cases are the most challenging for both aerodynamic and

aeroacoustic predictions. The use of the porous FW-H in Retarded Time formulation

was also explored for the case at MT = 0.92, but the results obtained with this

formulation clearly underestimate the negative pressure peak. On the other hand,

the results obtained with the HelicA’s Emission Surface algorithm on supersonically

rotating control surfaces are in very good agreement with the measurements in both

MT = 0.92 and MT = 0.95 cases. Using such control surfaces all the non-linearities

of the flow are contained in the domain enclosed by the control surface.

From the results presented in Chapter 5 and 6 it is possible to make a comparison

between the computational effort required by the HelicA RET, the HelicA ADV and

the Helica ES formulations. Comparisons between the time required by the differ-

ent formulations, for the solution of the retarded time equation, were presented in

Fig.5.1. The different formulations have also been applied for the acoustic predic-

tions in Section 6.2, Table 6.3 and finally results from HelicA RET and HelicA ES

were compared in the Subsection 6.3.3, Fig.6.32.

From the aforementioned comparisons it is possible to conclude that, for the solution

of sources in subsonic motion, the proposed HelicA algorithm in Emission surface

formulation, with the improved root finder algorithm, requires a computational time

comparable to those required by HelicA RET and HelicA ADV formulations, Fig.5.1.

For the solution of sources in supersonic motion the other algorithms based on RET

and ADV formulations, because of the Doppler singularity 1 −Mr, cannot predict

the pressure waveforms as well as the HelicA ES algorithm, Fig.6.32.
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Chapter 7

Conclusions

This chapter concludes the thesis describing the contribution to knowledge provided

and discussing the findings of this research. Furthermore, some limitations of this

work are identified and the corresponding future research activities are proposed.

Section 7.1 is an outline of the research study. Section 7.2 then presents the accom-

plishment of the objectives proposed in Chapter 4. Section 7.3 lays out the main

contributions of the current study. Finally Section 7.4 discusses the limitations of

this work and of the proposed noise prediction tool. These limitations are used to

define the future research activities.

7.1 Outline of research study

The aim of this research was to explore the field of computational aeroacoustics

prediction applied to rotor generated noise and to develop a computational noise

prediction algorithm capable of dealing with noise sources in both subsonic and

transonic/supersonic regimes.

Noise prediction for rotating sources in transonic/supersonic regimes is difficult to

accomplish because the classical Retarded Time Formulation is affected by the

Doppler singularity for Mr = 1 and cannot be applied in these conditions. For

this reason it is required the use of either Collapsing Sphere or Emission Surface

Formulations which have the added complexity of a time dependent integration do-

main. Furthermore, as discussed in Chapter 4, the existence of multiple τ roots for

one single observer instant t renders the solution of the retarded time equation by

means of classical root finder algorithms, almost impossible.
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In order to achieve the aforementioned research aim, the current research was based

on the following methodological steps: first a literature survey was conducted in

order to identify the current state of the art methodologies for both subsonic and

transonic/superonic rotating sources; then a detailed analysis of the kinematics of

rotating sources and helicopter rotor blades was performed, which helped to un-

derstand in more depth the retarded time equation. It was then possible to anal-

yse the behaviour of this equation for rotating sources in both subsonic and tran-

sonic/superonic regimes and to identify a novel method for obtaining the τ roots

more efficiently. This latter method was then implemented in a noise prediction

tool based on the Emission Surface formulation, which was verified and validated

benchmarking against results available in literature. Finally the tool was applied to

the analysis of three experimental campaigns.

7.2 Accomplishment of research objectives

In Chapter 4 the aim and objectives of this thesis were defined. In this section we

discuss the steps undertaken for the accomplishment of research objectives.

To carry out a literature survey in order to identify the current state of

the art in noise prediction algorithms for external noise applications

An extensive literature survey was performed and presented in Chapter 3.

With the help of this survey it was then possible to define the current state

of the art in noise prediction algorithms and to identify the existing research

gaps.

To develop a computational prediction tool based on the state of the art

algorithms identified in the literature survey

Following the literature survey the novel noise prediction tool was developed

starting from the state of the art algorithms which were identified

To create a novel algorithm for transonic and supersonic sources and

incorporate it in the noise prediction tool

The algorithm and its components are defined in Chapter 4. In this chapter,

a detailed discussion is presented on the different parts of the newly devel-

oped algorithm, i.e. the root finder algorithm, the kinematics module, the

quadrature methods and the Emission Surface construction algorithm.
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To identify specific verification and validation cases for both subsonic

and transonic/supersonic regimes

Based on the review presented in Chapter 3 the test cases were identified and

described in the Chapters 5 and 6.

To validate the noise prediction tool for the selected cases

Along with the description of the chosen cases in Chapters 5 and 6 the re-

sults that have been obtained with the noise prediction tool are presented and

compared to the data available in literature.

7.3 Research Contributions

The following points highlight the contribution to knowledge as a result of this work.

This study fills in the research gaps which were identified from the literature survey.

Identification of the currently used approaches for rotating sources in

transonic/supersonic regimes

Using a literature survey the current state of the art approaches and algorithms

used for the noise prediction of rotating sources were identified. In the case of

sources in subsonic regime the wide use of Retarded Time formulations based

on the Farassat Formulation 1A was highlighted. The majority of the codes

based on this approach use the Retarded Time algorithms while only few are

based on the Advanced Time algorithm. On the other hand, only few algo-

rithms are capable of handling sources in transonic/supersonic regime in time

domain. More precisely, in literature 5 noise prediction tools for these condi-

tions have been identified. Two are based on the Emission Surface formulation,

[44] and [45], the first of which exploits an Advanced Time approach and the

“Marching Cubes algorithm” from computer graphics while the second uses a

sophisticated retarded time algorithm, named “K-algorithm”. Only one Col-

lapsing Sphere algorithm, [88, 43] and finally two “Non-Compact” Advanced

Time algorithms, [89] and [90].

Detailed analysis of retarded time equation in the two flow regimes

In the literature survey there was clear the lack of a detailed analysis on the

retarded time equation g(t, τ, r) = 0, especially in the case of sources moving

or rotating in transonic/supersonic regime. By focusing on the kinematics of

single point and then of a panel, rotating from subsonic up to high supersonic
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conditions, it was possible to illustrate the behaviour of the τ roots of this

equation. It was found that the multiple ES branches of a source with finite

extension, such as a panel, will “appear” and “collapse” in a single point at

those locations, along their path, where 1−Mr = 0. Furthermore, some more

insights on the τ roots were gained by observing both ∂g
∂τ

and ∂2g
∂τ2 , first and

second partial derivatives of g.

Definition of a root finder algorithm for supersonically rotating sources

Following the analysis of g(t, τ, r) = 0, and the behaviour of its τ roots, a

novel root finder algorithm was defined. This algorithm is capable efficiently

providing the τ roots of g by literally “tracking” the curves τ(t) even in the

presence of multiple roots.

Implementation of the proposed root finder algorithm

The aforementioned algorithm was then implemented and applied to the solu-

tion of g(t, τ, r) = 0 in the case of points rotating from subsonic to supersonic

speeds. The implementation was carried out by exploiting the solution of the

3rd order polynomials proposed by Nickalls, [95]. To the knowledge of the

author it is the first time that this solution is exploited in the current field.

The proposed root finder algorithm was the compared with the classical New-

ton’s and Brent’s methods which are usually exploited for the solution of the

retarded time equation. In Chapter 5 it was shown that the efficiency of the

proposed method is comparable to the efficiency of the Advanced Time algo-

rithm and the method is in some cases more than 5 times faster than the two

classical root finder algorithms.

Development and implementation of the Noise Prediction tool

During this study a noise prediction tool named Helic(opter)A(coustics) and

based on the ES formulation was developed. This tool exploits the above men-

tioned findings and the proposed root finder algorithm. In this way the ES

construction algorithm results simpler than the “K-algorithm” in [45]. The

noise prediction tool is verified and validated using test cases available in lit-

erature, and the comparisons in Chapter 5 shows good agreement between the

results. More precisely, the accuracy of the tool was demonstrated by com-

paring the results with the analytical solutions for 3D monopole, dipole and

quadrupole sources. This study highlighted the numerical errors produced

by both spatial and temporal discretisations, which remain under ε < 3%,

even for coarse surface meshes with ∆Lmax ≤ 0.05 and become εav < 1%

for ∆Lmax ≤ 0.01. This is similar for all the quadrature methods analysed,
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i.e. Midpoint, Simpson and Gauss-Legendre quadratures, with the difference

that the latter two methods reach ε ≤ 1% for higher values ∆Lmax ≤ 0.1

. The comparisons suggested the used of Midpoint quadrature in the cases

of a discretisation with ∆Lmax ≤ 0.05. This is because of its efficiency and

the fact that the other two methods give only slightly higher accuracies but

at a much higher computational time. The capabilities of the Emission Sur-

face construction algorithm were tested on a rotating cylindrical strip, [48], a

supersonically rotating blade planform, [99] and on a supersonically rotating

panel with Λ = 0 singularity. In all cases the tool was capable of capturing the

correct shapes and topologies of the corresponding Emission Surfaces. Finally

the noise prediction tool was applied to the analysis of three experimental

campaigns, [114], [17] and [32]. In these analyses the results obtained, Chap-

ter 6, were in fair agreement with the measurements for the 3D BVI and in

good agreement with [32], for the HSI noise test case. It should be highlighted

that in Section 6.3, the comparisons with the measurements [32] is presented

for the cases with stronger shock delocalisation, MT = 0.92 and MT = 0.95,

hence the most difficult tests for aeroacoustic prediction. For the analysis of

the first condition also the classical Farassat Formulation 1A was applied, with

a Retarded Time algorithm, on a Control Surface rotating at subsonic speed,

Mj = 0.95. It was demonstrated that using this SC the non linear terms pass

through the surface and the noise prediction is underestimated. While using

the ES formulation on a SC at Mj = 1.3 all the non linearities are contained

in SC and the prediction is in very good agreement with the measurements.

7.4 Future work

The research was focused only on the analysis of rotating sources and

in particular on helicopter rotors From the Introduction Chapter is clear that

a more general scope for future research could be on Open Rotors. These form a

general class containing Wind Turbines, Turboprop engines, Tilt rotor, helicopter

rotors and high speed Propfans. It is evident that a generalised research on the full

range of open rotors would be impossible, but it would be interesting to analyse

each of these rotary machines separately. It should be noted that Propfans are un-

der the attention of many current research efforts to obtain more efficient aircraft

engines. Despite the attractive efficiency, Propfan rotates at high speed and in the

regions close to the tip are often present supersonic conditions. Furthermore, all
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the proposed Propfan configurations are based on double counter rotating rotors,

so that both BVI and HSI phenomena affect these engines. For these reasons, the

noise prediction tool developed during this research would be very well suited for

the analysis of supersonically rotating flow around Propfans. Another very interest-

ing application, pointed out in the Introduction, is the X2 helicopter rotor concept.

This exploits two axial counter rotating rotors in order to reach higher forward flight

speed without being affected by the asymmetric flows which penalises the classical

helicopter main-rotor configurations. Given the high speeds at which these rotors

would fly it is certain that HSI phenomena will arise. An aerodynamic and aeroa-

coustic research on this novel concept will be helpful to highlight both performance

and noise characteristics of such rotors. It should be noted that although the noise

prediction tool was developed and tested for rotating sources, HelicA could be ap-

plied with minor modifications to other kind of problems, such as the analysis of Jet

Noise.

The presented test cases did not include any HSI analysis in forward

flight An Euler/N-S CFD tool which could handle the complex kinematics of the

helicopter rotor in forward flight and which could be coupled with a comprehensive

code for aeroelastic analysis was not available at Cranfield University during the

course of this study, . If in the future such a coupled code becomes available, the

analysis of helicopter in forward flight in HSI conditions could be accomplished.

This would bring more insight into such complex phenomena and could be used to

improve the design of helicopter rotors to handle these conditions.

The algorithm was defined to handle unstructured surface grids This is

clearly an advantage when using unstructured gird and data such as the output file

format of Fluent computations. Future research efforts could aim at optimising the

handling of the surface grids and data structures which would improve the perfor-

mance and the efficiency of the specific noise prediction tool. In the presence of

structured (i, j) nodes and data distributions it would be possible to save computa-

tional time. Furthermore, even though the current tool can perform automatic grid

adaptations both in space and time, it lacks a smoothing procedure for the gener-

ated Emission Surfaces. Such a procedure was exploited in [48] and it was shown

to yield smoother pressure waveforms. Further investigation on how to improve the

Emission Surface construction at low computational cost would be of great interest.
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Appendix A

Generalized Functions: basics

In this appendix, the basic properties and definitions of Generalized Functions are
shown. These are the tools which allow to obtain the FW-H equation from Lighthill’s
Analogy.

Let f(x) be a piecewise continuous function with a discontinuity at x0 such that
∆f = f(x0+) − f(x0−). If we want to take the generalized derivative of f, we have:

df

dx
= f

′
(x) = f ′(x) + ∆fδ(x− x0) (A.1)

In which δ(x) is the Dirac delta function. The useful properties of generalized
derivatives is that:

∫ x

a

df

dx
dx = f(x) − f(a) 6=

∫ x

a

f ′(x)dx (A.2)

More in general, if we refer to a function q(x) that is discontinuous across a surface
h(x) = 0, we can define the jump of q as ∆q = q(f = 0+) − q(f = 0−). Thus the
partial generalized derivative of q(x) is:

∂q

∂xi

=
∂q

∂xi

+ ∆q
∂f

∂xi

δ(f) (A.3)

It easy to derive from the previous equation the form of ∇q.

Certainly a good property to show for the Dirac delta function is:

∫

V

F (x)|∇f |δ(f)dx =

∫

f=0

F (x)dS

In which the integral in the right part is a surface integral on the surface f = 0.

Another important property of the generalized derivatives it that the order of the



178 Generalized Functions: basics

operators can be exchanged, for instance:

∂

∂xj

∫

V

F (x)dx =

∫

V

∂

∂xj
F (x)dx

supposed that the limits of the integral are not a function of xj .

All these properties stated above are useful when we have to deal with discontinuities
of any type.
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