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Abstract
Current market environments are volatile and unpredictable. The ability for design products to meet
customer’s requirements has become critical to success. The key element to develop such products is
identifying functional requirements and knowledge utilization based on a scientific approach to provide both
designers of new products and redesigners of existing products with a suitable solution that meets to
customer’s needs. This paper presents a method to (re)design mechatronic products by combining the
axiomatic design and case-based reasoning approaches. Innovation has increased the new product value,
which has improved the product efficiency and the need for new engineered design method.
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1 INTRODUCTION

Mechatronic is a technology which combines mechanics
with electronics and information technology to form both
interaction and spatial integration in components,
modules, products and systems [1]. In fact all
electronically controlled mechanical systems are based on
the idea of improving products by adding features from
other types of products. The result is that new product
functionality is created and more efficient technologies
utilized. These caused by industrial circumstances change
and existing product with its function is no longer satisfied.
Thus, existing product life will be extended. In industrial
environment, however, customers need specific machines
to perform specific tasks in their industry, which their
functions and performances may be different or similar to
the previous generation. In this sense, customers’ needs
have become very personalized and the major factor to
guide the development of such products. However, the
success of new product development in satisfying one
customer goes through the reuse of elements of the
responses to previous customers. By reusing previous
designs, an engineer can reduce duration and cost of
development cycle and risks on product quality and
performances. Moreover, the relevant and innovative
information in any design discipline may also be mobilized
and used to update or adapt a previous design in
response to changes in technology or market preferences.

As show in figure 1, the reuse of design is normally
needed for some modification or adaptation, which can
occur in two ways.

The first one is the adaptation of a previous product of the
product family to a new list of requirements; the
advantage is that the producer can adapt the same design
to different requirements and produce different product
models.

The second one is the adaptation across product families.
The advantage comes from reusing the same ‘design’ for

different product families, and lead to the ability of sharing
functions and components.

Hence, organizing, storing and retrieving information on
previous product designs are the most important tasks in
knowledge utilization to provide both designers of new
products and redesigners of existing products with a
suitable solution that meets the customer’s needs.
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Figure 1: The reuse of design output
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Our objective is to develop a new methodology to support
the design of mechatronic products based on principles of
generating new ideas from both new knowledge and
previous solutions based on company experience while
minimizing risks. Section 2 will present the literature
review then section 3 will develop the methodology
proposed and applied on the example of a redesigned
electric vehicle as automated vehicle. Conclusions are
given in section 4.

2 LITERATURE REVIEW

The main technique reviewed was case-based reasoning
(CBR) applied to design. The basic idea of case-based
reasoning is that new problems can be tackled by
adapting solutions that were used to solve previous
problems [2, 3]. Case-Based Reasoning is a general
paradigm for problem solving based on the recall and
reuse of experience. The practice shows that it is often
more efficient to solve a problem by starting from a
solution of a previous, similar problem than to generate
the entire solution from scratch. Due to the mentioned
properties, CBR systems have a multitude of applications
in architecture design [4], in chemical process engineering
[5, 6], in injection mould design [7], and in mechanical
design [8, 9] as well as design for mass customization [10]
etc. The two major research issues in the CBR approach
to design are the representations of design cases and the
process model for recalling and adapting design cases
[11]. Representing design cases requires an abstraction
of the experience into a symbolic form that the system can
manipulate [12, 13]. Design-case recalling involves
finding a relevant design experience: it is broken down
into the subtasks of indexing, retrieval, and selecting.
Indexing design cases is a critical issue in CBR approach,
and CBR systems suffer from an inability to distinguish
between cases if indexing is inadequate [14]. Design-case
adaptation recognizes the differences between the
selected design case and the new design problem, and
changes the design case so that it solves the new design
problem. This process is divided into three steps:
propose, evaluate, and modify.

As the literature review showed, case-based reasoning
techniques have been investigated and the principles and
technology are now mature. The concept of case based
reasoning can be defined in the way to organize
information or data, and this concept is applied to either
‘idea’, innovation or any other kinds of information that is
to be stored and used at a later point in time.

However, mechatronic products designs are especially
difficult to represent as a well-structured list of features.
The representations of design cases require various
models of knowledge from each domain. Highly structured
representations of design knowledge can be used for
reasoning. However, case-based reasoning usually
require manual pre or post processing, structuring and
indexing of design knowledge to identify the information
needed by designers. There is a need to develop a
method that clearly determines mechatronic products
design requirements. One such a method that rigorously
defines the design requirements could be Axiomatic
Design.

Axiomatic Design defines design as the creation of
synthesized solutions in the form of products, processes
or systems that satisfy perceived needs through mappings
between Functional Requirements (FRs) and Design
Parameters (DPs) [15]. The implementation issues were
discussed by many publications [16, 17, 18, 19, 20, 21]. A
fundamental aspect of the mapping process is the idea of
break down through zigzagging. The design progresses

from a higher, abstract level down to a more detailed
level. This result in the formation of design hierarchies in
the FRs and DPs which are similar in nature to standard
product functional and structural hierarchies. Thus it can
identify which parts of the design structure are used to
perform specific functions.

To facilitate (re)designing mechatronics product, this
paper combines the axiomatic design and case-based
reasoning approaches. The case based reasoning is used
as a general framework for the reuse of product designs
and applied when a similar function is required. The
axiomatic design principle is used for creating cases by
analyzing existing products which FRs and DPs were
decomposed. These FRs and DPs are utilized as case
index and case representation in case libraries. It is also
used for creating design databases or design libraries by
identifying relationships between FRs and possible DPs of
each component in a design library. The information
content is used for evaluating design solutions (DPs) from
design libraries or design databases composed of various
components to fulfill a new functional requirement which is
not yet existing in the case libraries. The design with
satisfy independence axiom provides the sequence to
modify DPs in the adaptation process.

3 DESIGN METHODOLOGY

The methodology as shown in figure 2 is based on the
assumption that the designers do not need to design
products from scratch every time. They go through their
ability to access to existing designs from related products
and components, then revise them to fulfill specific
customers’ needs. Figure 3 is an example of real world
problems that we solved based on the concepts afore
mentioned. The function structure and the physical
structure of products from past design experiences were
stored in a case library. Moreover, the design library kept
the designs which included components information and
their function definition, which come from supplier’s
standard catalogue. Both the case library and the design
library were utilized to create suitable design solutions to
achieve the new functionalities. Reuse case when new
customers’ requirements have similar function combines
with new design sub-functions when retrieved case
doesn’t have function that customer wanted. It is the basic
concept for combining case based reasoning and
Axiomatic design principles. The process started by the
comparison of new customers’ requirements and
constraints to function structures and physical structures
of existing products that perform similar requirements and
constraints. The result is that functions can be separated
in product functions that have already been developed in
existing designs, and add-on functions that did not exist
and require to be fulfilled through the designs process. To
achieve that, add-on functions are decomposed in terms
of functional requirements; physical solutions are retrieved
by comparison to other products of the family and by
searching in design databases and standard components
libraries. The retrieval process based on functionality and
other specifications is accomplished by the aid of an
inference engine. Both rules and cases are necessary for
the reasoning process. Then, adaptations of the design is
needed to re-configure and integrate components to
achieve the new design. Thus, product architecture,
platforms, modules as well as functional and physical
structures are the main drivers to create the case base.
The adaptation process needs to follow the most suitable
sequence.



Figure 2: Design Methodology

Figure 3: An example of add-on functions

3.1 Case Representation

The basic idea is to organize specific cases, which share
similar properties under a general structure. The scheme
of a case consists of four parts as shown in figure 4,
including customer’s requirements, customers’
constraints, functional requirements, and design
parameters. The case represented in terms of a design
hierarchy in each of the domains: functional and physical.
The hierarchical structure in the FR-domain and the DP-
domain correspond to customers’ requirements. An
advantage of this representation is that it allows a case to
be accessed on its whole or by its parts when a new
problem must be solved. Similar cases at appropriate
levels of abstraction are retrieved from the case base and
the solutions from these cases are combined and refined;
the constraints can be used to guide adaptation.

Figure 4: The scheme of a case representation

3.2 Case Indexing

Case indexing involves assigning indices to cases for their
quick and easy retrieval from a case library. Axiomatic
design decomposition principles are used to determine
the indexing of both design cases and their solutions as
shown in figure 5. A hierarchical case library is similar in
nature to the product architecture; designers often care of
design the entire systems down to the lowest component
levels that compose the systems. Thus, cases are
indexed by their functions allowing a case to be retrieved
in several ways. This indexing structure scheme also
allows the composition of different case pieces to create a
new solution.

However, it usually require manual pre or post processing,
structuring and indexing of design knowledge to identify
the information needed by designers. Based on axiomatic
design principle, designers map from the requirements
what they want the design do to the solutions of how the
design will achieve these. As the design progresses,
broad, high-level requirements are broken down into
smaller sub-requirements, which are then satisfied met
by sub-solutions. It is also important to maintain the
functional independence. That is why the index structure
was created to distinguish between the cases in the case
library.

An example of the index structure and solutions of high lift
stacker product is shown in figure 6. It shows that there
are many different ways to satisfy the FRs. FR skeleton
sets can be generated for each of the design cases in the
case library. Each step down the hierarchy represents a
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Figure 5: An index structure in case library

Figure 6: An example index structure of modified high lift stacker



3.3 Case retrieval

As afore mentioned, when new customers’ requirements
and constraints are given, similar historical design cases
are searched, matched and retrieved. The result is that
two major functions are classified, namely product
functions from existing products in case library that have
similar functions according to problem inputs and add-on
functions that are not on the retrieved existing products.
Thus, the case retrieval process includes two phases – (i)
similarity matching of product functions and (ii) similarity
matching of add-on functions. Each phase relies on
achieving two goals: finding a similar case set and finding
the most similar case in this set.

Figure 7: Case retrieval based on similarity of product
function matching

In the first phase, the similarity matching of product
functions as shown in figure 7, finds the similar case set
from customers’ requirements (CAi) that are compared to
product function hierarchy of each case (Casei(FRi)). The
simplest similarity measure is to score 1 for equality and 0
for inequality as follow:
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Thus, a set of cases from the case base that are similar to
the current input case is equal to the intersection of (CAi)
and (Casei(FRi )) as follows :
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After all similar cases are found, a mechanism to find the
most similar case in this set is needed. The input
constraints (CSi) are used to compare to design
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where: Csi - Casei(DPi) is the difference between the
feature values of the input and the retrieved case and
system range(DPi) is the range which each DP can satisfy
FR based on the capacity of the producer. Then to turn a
normalized distance function into a similarity measure, its
value subtracts from 1. The set of cases are ranked by
these similarity scores and retrieves case with the highest
similarity score.

In the second phase, the add-on functions (as shown in
figure 8) are the customer’s attributes (CAi) that did not
match (Casei(FRi)) in the first phase. There are two
possibilities for the remaining CAs. The first one is when
the function does not exist in the retrieved cases but could
be in other product families: the system is called to search
in the other product libraries by the same procedure as
the first phase.

Figure 8: Case retrieval based on similarity of add-on
functions matching

The second one is when the function does not exist at all
in any cases of the database: the producer never did this
function before for any product they did. A new design of
the function of the product must be created. The add-on
library and the designs database include mechanical
parts, electrical parts, software modules etc. These add-
on components are defined as pairs of FR and DP for
single component and hierarchy of FR and DP in case of
assembly components.

Similar to matching CAi with Casei(FRi) in the first phase,
Designi(FRi) are defined to distinguish the sources of
information between case library for reuse design and
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olution to satisfy each FR must be evaluated by
izing the information content of the design based on
axiomatic design principle as follows:
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onent from high lift stacker satisfying the function.

Figure 9: The design retrieval concept

Figure 10: An example or retrieved product model and
add-on components

3.4 Case Adaptation

If an exact matching case is found from the case retrieval
process, its design can be used for the new order without
any modification. Otherwise, and adaptation process is
invoked to detect the discrepancies between the most
similar case and the new order, and to reconcile the
discrepancies by adapting the past design to the new
situation.

The adaptation knowledge is usually represented as rules.
The adaptation rules specify, under a certain situation,
how to modify the value of a feature, or how to insert or
delete certain features of the case representation in order
to generate a solution for the new problem. According to
axiomatic design principles when the relationships
between FRs and DPs is uncoupled design, the set of
adaptation rules can be easily and automatically selected
by the system to make effect on similar old case and to
produce the new one. Uncoupled design occurs when
each FR is satisfied by exactly one DP. The resulting
matrix is diagonal and the design equation has an exact
solution. The selection of adaptation rules is done easily
by comparing the conflicting differences between the new
problem and the current retrieved case.

In addition, the sequence of applying the adaptation rules
is also important because when the design matrix is lower
triangular the resulting design is decoupled, which means
that a sequence exists, where the FRs can be satisfied by
adjusting DPs in a certain order. This is a very important
finding, as the design process is determined to a great
extent by this sequence.

Figure 11 shows the simple case to express the
application of the concept mentioned above. Axiomatic
design is applied in case adaptation process of the
customized leg of the high lift stacker (customers’
requirement comes from the size of the pallet). The
resulting matrix is lower triangular; the resulting design is
decoupled. It means that the adaptation rules first need to
adjust parameter DP1 to achieve FR1 and then adjust
parameter DP2 to satisfy FR2. If the case adaptation
process does not follow the sequence specified by the
triangular design matrix, the system appears to be very
complex, which is defined as the imaginary complexity
[22].



Figure 11: An example of applying axiomatic design
principle in the case adaptation process

While the traditional approach of case based reasoning
does not specify how to consider the sequence to adjust
parameters of old case features, so there is no clear way
to guarantee the correct sequence to apply adaptation
rules. The axiomatic design principle can help designers
make decisions in order to adapt old cases to solve new
cases without a random manner to satisfy the desired
system function.

4 CONCLUSIONS AND FURTURE WORK

This paper has presented the concept of combining
axiomatic design and case-based reasoning, to assist the
design process of evolving systems of industrial products.
The paper illustrates how companies can react to
customers’ demand of industrial products in very
competitive market. The company knowledge can be
stored, then reused and integrated with various
technologies from design databases and generate new
functionalities for improving the existing products. With
this methodology, the customer can extend existing
product’s life (refer to machine they already used) and the
producer can provide customized products which have
new functionalities suited customer’s needs (refer to
ability to create a variety of product).

Currently a software implementation based on this
methodology is being developed. It consisted in
formalizing the case in two main parts: the problem
(customers’ requirement and constraints) and the product
(functional requirements, design parameters and
components), to create the library of cases and design
database. The problem was formalized in an adequate
manner enable the calculation of the similarity function.
The product was formalized to highlight the driven
parameters of the design.

Two critical processes in case based reasoning were
addressed namely case retrieval process and case
adaptation process. The critical process in case retrieval
process is functions classification, namely product
functions when existing products in case library have
similar functions according to input problem, and add-on
functions when the retrieved existing product does not
have such function. In addition, case adaptation process
is most important to achieve reusability past designs for
new situation. Axiomatic design principle is the systematic
approach in engineering design which can assist design
engineers to design products and also case based

systems. Function and physical decompositions are the
basic method to represent cases and are also used to
define indexes in case library as well as used to
determine new designs when no case exists in case
library. It also supports design engineers to achieve the
adaptable design by the defined sequence of the
adaptable process when the design is decoupled.

However, the quality of the design solution depends on
the set of FRs and DPs in the case and add-on library.
Design engineers must carefully decompose the set of
FRs and DPs in existing product functions and add-on
component library functions that will be further reused.
The next step in this project is to address the adaptation
process by extending the system with knowledge on the
global behavior of the product to fulfill the (re)design of
mechatronic products.
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