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ABSTRACT

A programme of research has now been completed in the College of
Aeronautics (CoA) at Cranfield University to investigate the use of a
Modified Stepwise Regression (MSR) procedure. The technique was
applied to data obtained from a small BAe Hawk aircraft model flown 1in
a dynamic wind tunnel facility 1in order to try to estimate the

aerodynamic stability and control derivatives of the model.

A variety of preliminary experiments were performed to enable the
static stability of the Hawk model to be evaluated and estimates for a
limited number of aerodynamic derivatives were obtained. The initial
experiments also allowed data acquisition and processing systems to be
developed. Experience of flying and controlling the model 1n the wind

tunnel was gained.

The MSR technique was implemented in the form of a FORTRAN 77
software program. Computer simulations of both the full scale Hawk
aircraft and scaled wind tunnel model were written. MSR was found to
produce perfect derivative estimates when using noise-free data

produced by the aircraft simulations.

Various mathematical models were produced to represent the reduced
order small perturbation equations of motion for the Hawk in the wind
tunnel. Different methods for re-constructing the perturbation
variables were impliemented. Although the MSR procedure did not perform
optimally with experimental data, some insight into both the MSR method
and the practical difficulties associated with using a small dynamic

rig has been gained.
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NOTATION

wing span [m]

stability and control derivatives

wing mean aerodynamic chord [m]

rol1ing moment coefficient, MX/aSb

pitching moment coefficient, MY/ESE

yawing moment coefficient, MZ/ESb

longitudinal force (ie. drag) coefficient, FX/ES
lateral force (je. sideforce) coefficient, Fy/as
vertical force (ie. 1ift) coefficient, FZ/ES
expectation operator

F-statistic

F-statistic used in partial F-test

forces along 1longitudinal, 1lateral and vertical
body axes respectively [N]

acceleration due to gravity [ms'z]

null and alternative hypotheses respectively

moment of inertia about longitudinal, lateral and
vertical body axes, respectively [kg—mz]

product of inertia [kg—mzl

horizontal tail arm [m]

dimensional rolling moment derivative due to
sideslip, roll rate, yaw rate, aileron and rudder

respectively

aircraft mass [kg]

mach no.
dimensional pitching moment derivative due to
forward velocity, vertical velocity, vertical
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acceleration, pitch rate and elevator respectively
rolling, pitching and yawing moments respectively
[Nm]

number of unknown parameters

number of data points or number of observation
times
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roll rate [rad/s or deg/s]
pitch rate [rad/s or deg/s]
kinematic pressure, 0.5pv2 [Pa]
vyaw rate [rad/s or deg/s]
partial correlation coefficient

partial correlation coefficient after variable x‘1

has been included in the model

squared multiple correlation coefficient

standard error

estimated residual variance

sum of squares

wing area [m2]

time [s]

temperature [ C]
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longitudinal body axis 0z [m/s]

components of velocity [m/s]
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covariance matrix of EB
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stepwise regression

mean of dependent variable
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N x 1 matrix of dependent variables

independent variable used 1in intermediate step of
stepwise regression
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parameter vector
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equation error at time ti (measurement noise)
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CHAPTER 1

INTRODUCTION



1.0 INTRODUCTION.

Parameter Identification (PID) is the computational process by
which the coefficients in a mathematical description of a dynamic
system may be estimated from recorded input-output response data.
Advanced statistical methods for system identification have been
applied to many multiple-input, multiple-output systems. In the case
of aircraft PID typical inputs are the control surface angles and
typical outputs are the responses in terms of speed, attitude angles
and rates. In recent years parameter estimation methods have found
extensive use in aircraft applications since it is often difficult to

obtain estimates for aerodynamic stability and control (S&C)

derivatives by traditional methods with any degree of confidence. Most

of the estimation methods make considerable use of statistical
techniques and therefore have a degree of uncertainty associated with
the results. Thus in order to develop confidence in the methods 1t 1s
desirable to have as much visibility of the computational process as
possible. Clearly this is not always easy to achieve when a complex

method is applied to a complex aircraft model.

It is now standard practice to estimate aircraft stability and
control derivatives in flight conditions where aerodynamic
characteristics can be described in linear terms only and where no
significant external disturbances are present. However, interest 1n
high angle of attack, post stall and spin flight conditions has created
a need to extend parameter estimation into flight areas where

non-linear aerodynamic effects become more pronounced.

Accurate mathematical models of aircraft and flight control



Systems are essential to minimize the risks associated with flight
control system development. For example, the digital flight control
system (FCS) for EF2000 has, in part, been designed using aerodynamic
S&C data estimated from wind tunnel experiments. Unlike the Tornado,

EF2000 is naturally unstable with no mechanical backup systems and the

safety critical FCS was therefore required to function correctly from
the very first flight. During the developmental flight test programme,
PID techniques are used to confirm, and where necessary correct, the
wind tunnel estimates of the S&C data sets. This then enables further
development of the aircraft to go ahead, for example in high alpha
flight or care free handling, with an increased confidence in the

definition of the characteristics of the aircraft.

One of the more recent advances in parameter estimation is the use
of the Modified Stepwise Regression (MSR) method. The method was
pioneered in the U.S.A. at the NASA Langley Research Center by Klein,
Batterson and Murphy (Ref 1). Linear stepwise regression 1S a
technique employed to estimate a functional relationship of a dependent
variable to one or more independent variables. It is assumed that the
dependent variables can be closely approximated as a linear combination
of the independent variables. MSR is based on an ordinary stepwise
regression which has been modified by adding a constraint to the
parameter selection for the model structure determination. Using only
the recorded data as input, the MSR is constructed to force a linear
model for the aerodynamic coefficients in the first instance. It then
adds significant non-linear terms and deletes insignificant terms from
the mathematical model 1in an iterative process which continues until

the best fit of the model output to recorded data is obtained.



An advantage of the MSR method is its relative simplicity in that
explicit statistical descriptions of the noise associated with the
measured data are not generally required. The method continues to be
developed and has been successfully applied to many free flight

aircraft and aircraft models.

The MSR method most readily lends itself to aircraft applications

where the motion described may result in a non-linear mathematical
mode]l. The complexity of such an application arises from the
additional non-linear terms 1in the equations of motion and this
introduces the probiem of determining how complex the model should be.
Although a more complex model can be justified for proper description
of aircraft motion the most appropriate relationship between model
complexity and measurement information has not always been clear in the
past. If too many parameters are sought from an estimate made on the
basis of a 1limited number of data points, a reduced accuracy 1in
evaluated parameters can be expected due to large covariance or
unrealistic values of some parameters. Alternatively, attempts to
identify all parameters might cause the process to fail altogether.
The question which naturally arises 1is then: "How far can the MSR
method be stretched to cope with incomplete model descriptions and a

limited number of response variable measurements?”. This 1s the main

subject of this research thesis.

1.1 MSR programme and Sponsor.

The Defence Research Agency at Farnborough, DRA(F), has supported

previous research work on PID at Cranfield University using the dynamic



wind tunnel experimental facility in the College of Aeronautics (CoA).
Thus 1interest in the area of aircraft model complexity resulted in the
proposal and setting up of a new programme of research at Cranfield,

sponsored by DRA(F), (Ref 2).

Previous aeronautical applications of the MSR method have
concentrated on the accurate identification of complex mathematical
model structures of aircraft with six degrees of freedom. In such
applications the computational complexities of the method can be
overshadowed by the complexities of the aircraft model under

investigation.

At Cranfield the MSR method was applied to response data obtained
from a small aircraft model mounted 1in a support system which
facilitates dynamic wind tunnel testing, see Figure 1 overleaf. The
aircraft chosen for this work was the British Aerospace (BAe) Hawk.
The Hawk model has four degrees of freedom and only a limited number of
the response variables can be measured directly. It was hoped to
confirm that the MSR method works equally as well with a simple
aircraft model as when it is applied to a more complex model or full
scale aircraft. The use of a simple aircraft model was also expected
to enhance computational visibility whilst allowing scope for

investigating methods of coping with l1imited data.

In order to control the model in a manner appropriate to the
facility it was sometimes found necessary to i1ntroduce feedback loops
for automatic control; the consequent 1increase in model complexity
provides some additional interest 1in an area directly related to the

problem of applying parameter estimation methods to modern aircraft.
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1.2 Structure of the thesis.

A literature survey was carried out 1initially to 1investigate
current aircraft parameter estimation techniques and in particular to
establish a database of previous MSR research programmes and their
results. A brief review of parameter estimation methods is therefore

presented in the following chapter.

The various components of the small scale wind tunnel experimental
facility 1in the College of Aeronautics are described. Design
parameters for both the full scale Hawk and the 1/12th scale model are
defined and S&C derivatives estimated for particular flight conditions.
Small perturbation equations of motion for the semi-free flight mode]
aircraft are established and the mathematical modelling and scaling law

requirements considered. Alternative representations of the equations

of motion in the wind tunnel are evaluated.

A number of preliminary experiments were carried out using the
dynamic rig and Hawk model and during the course of this research a
number of reports were written and published (Refs 3 to 12). Where
necessary, a limited amount of this work 1is also described 1in this
thesis; for example, calibrations of the model aircraft’s control

surface angles and estimation of the moments of inertia are reported.

The modified stepwise regression procedure has been implemented on
computer in the form of a FORTRAN 77 program. Various digital computer
simulations were written in the Advanced Continuous Language (ACSL) and
covered the longitudinal and lateral equations of motion of aircraft

such as the McDonnell Douglas F-4 Phantom and BAe Hawk. Data produced



by the aircraft simulations were subsequently used to verify the MSR

Computer progranm.

A data acquisition system was developed, based on a CED140f
analogue-to-digital converter and the subsequent storage of wind tunnel
data on an IBM personal computer. The design and application of
digital filters and techniques to facilitate the derivation of various
angular attitude rates is explained. The MSR method requires 1input
data (e.g. pitch rate) which cannot be measured directly from the

experimental rig.

The experimental work undertaken to record aircraft response data
to various inputs and model flight conditions 1is described. The S&C
estimates obtained are compared wherever possible with previous CoOA
work, theoretical predictions and limited data published on the Hawk.
The results obtained when the MSR method was applied to wind tunnel
data were somewhat disappointing and this is thought to be mainly due
to practical problems in obtaining data from the rig rather than in the
method itself. MSR was investigated further using a small set of data
for which the iterative stages involved in obtaining the best fit model

were well Known. MSR was shown to work extremely well using data

obtained from digital aircraft simulations.

It is considered that MSR still has potential as an alternative
parameter estimation method, especially when more directly-measured
input variables are available than 1is the case with the current
experimental facility. The research presented in this thesis thus aims
to improve the understanding of the modified stepwise regression

technique and its application to aircraft in general.




CHAPTER 2

A REVIEW OF PARAMETER ESTIMATION METHODS
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2.0 A REVIEW OF PARAMETER ESTIMATION METHODS.

In November 1988 an on-line literature search of relevant data

bases was carried out at Cranfield. This survey was used to compliment

literature already held on the subject of parameter identification. A

second on-line search was conducted in July 1992. A good proportion of
the references found as a result of these searches was obtained and
evaluated. It was considered that these were quite comprehensive and
provided a sound basis for the research described in this report on the

application of a modified stepwise regression.

There are many different parameter estimation techniques used in
engineering and scientific fields, flight dynamics being a good
example. A variety of parameter estimation methods are discussed later
in this chapter. Before this however, various applications of MSR in
the aeronautical field are discussed, followed by an introduction to
Stepwise Regression and Modified Stepwise Regression. A more rigorous

description of the MSR method is presented in Chapter 8 of this thesis.

2.1 MSR research programmes.

Many of the references obtained as a result of the literature
search related to work carried out by V. Klein and his colleagues 1n
the U.S.A. This team performed much of the pioneering work 1in the

application of the MSR method to identify aircraft stability anag

control parameters in the late 1970°s (Ref 1).

other applications of MSR have been concerned with the
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identification of the stability and control derivatives of a
large-scale free-flying fighter aircraft model. This work was carried
Out by the RAE and used flight test data obtained from their High
Incidence Research Model aircraft, "HIRM2“, which was flown in the
U.S.A. with NASA assistance (Ref 13). Within the U.K., the DRA at
Farnborough and Mulkens at Cranfield (Ref 14) have continued to use the
HIRM aircraft for parameter estimation work. There 1s also some

helicopter related parameter identification work being carried out at

DRA(Bedford).

2.2 Stepwise regression.

Linear regression is employed to estimate a functional
relationship of a dependent variable to one or more independent
variables. It is assumed that the dependent variable can be closely
approximated as a linear combination of the independent variables. For
the system 1identification of an aircraft operating at low angles of
attack, the mathematical model structure for aerodynamic forces and

moments is linear and may be written in the form

y(t) =6 +6x (t) +8x (t)+ ... +86 x (t) (2.1]

n-1 n-1

where:

y(t) represents the resultant coefficient of aerodynamic force or

moment (C ,C ,Cz,Cm,Cl,Cn) at time t. These are the dependent
X Y
variables.
6 ,0 ;...,6 are the stability and control derivatives. 6 is

1° 2 n-1 0
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the value of any particular coefficient corresponding to the initial

steady trimmed flight condition.

Xi,xz,...xn_1 are the 1independent aircraft state and control

variables for example, (u,v,w,p,q,r,n,&,C) and may also include

combinations of these variables at time t.

When a sequence of N observations on both y and x has been made at

times t1’tz’ ceea ,tN, then the measured data can be related by the

following set of N linear equations:

y(1) = 60 + 61x1(1) t...+ 06 x (1) + (i) ;1 = 1,2,...,N [2.2]

n-1 n-1

Because [2.1] 1s only an approximation of the actual aerodynamic
relations, the right-hand side of [2.2] includes an additional term,
(i), often referred to as the equation error. For N>n the unknown
parameters can be estimated from the measurements by a least—-squares

technique in which the square of the equation error is minimised.

Stepwise Regression 1is a procedure which 1inserts 1independent
variables into the regression model one term at a time until the best
fit of the regression equation to experimental data is achieved. The
order of insertion of the variables is determined by using the partial
correlation coefficient as a measure of the importance of variables not

yet in the regression equation.

At every step of the regression the variables incorporated into
the model in previous stages and the new variable entering the model

are re—-examined using the F statistic. A variable may be taken out of
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the model depending on the value of the partial F statistic:
p

F = 9_2/32(9_) ) = 1,2,...n [2.3]
p ] J

where ej is the estimate of the parameter 6 , and 82(9_) 1s the
J J

variance of estimate 6 .
J

The process of selecting and checking variables continues until no

more variables will be admitted to the equation and no more are

rejected. The complete computing scheme for the stepwise regression

may be found in Refs 7, 15 and 16.

2.3 Introduction to MSR.

The stepwise regression technique 1is only changed slightly to
obtain the MSR method i1n that a constraint is applied, hence the name
‘modified stepwise regression . The MSR constraint 1is that all the
linear terms are entered into the initial model and are examined first.
That is, the linear terms are entered into the regression according to
their partial correlation coefficients and are kept 1in the model
regardless of the value of Fp. This means that during this part of the
procedure no hypothesis testing is applied to reject a term from the
model. when all linear terms are 1included, the non-linear terms

postulated are searched and the null hypothesis concerning their

significance and the significance of all terms already included in the

model is tested.

Selecting parameters which guarantee a good fit to the data does

not necessarily mean that the final model selected will be a good
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predictor. However, there 1is a rule known as the "Principle of
Parsimony” which may be applied to assist in the final model structure
determination. The rule states that given two models fitted to the
same data with residual variances which are close to each other, choose
the model which involves the smaller number of parameters. MSR uses
the prediction sum of squares (PRESS) criterion for the selection of a

parsimonious model. The PRESS for the kth model is defined as:

N
PRESS = 1 { y(1) = y[i[x(1),...,x(i=1),x(i+1),...,x(N)], }4 [2.4)]
1=1

The model with the lowest value for the PRESS should be the model
with the smallest number of parameters. This would then indicate the

model to select as the "best final model”.

2.4 An application of MSR.

The MSR method has been applied many times to sets of simulated
data and real measured data from an aircraft. In the following
example, (Ref 1), a simulated data set was created using a fourth-order
Runge-Kutta integration computer program with a step size of 0.001sec.
Equations for the aerodynamic model integration were estimated by
applying the MSR to flight measurements of a high-angle-of-attack
lateral manoeuvre which exhibited 1longitudinal oscillations due to
coupling effects and the model therefore 1included non-linear terms.
When applied to the simulated data, the MSR selected the correct model

structure and parameter estimates, thus verifying the MSR 1n a

noise-free environment.




15

As a measure of the robustness of the MSR, it was also applied to

two cases in which both the aerodynamic coefficients CY, C , Cn and the

1
linear model variables «, B, p and r were corrupted by zero—-mean

Gaussian noise. The standard deviation of the model variable noise in
case 1 was that estimated from the ground calibration of the
instrumentation system. In the second case, five times higher noise

levels were applied to the same model variables.

With the lower level of noise, the MSR reached a maximum F value
with six variables for the side force equation. The Fp’s for each of
the variables in the regression at a given point can also be examined.
If newly added variables have significantly lower Fp’s than those
already in the model, one should apply the principle of parsimony and
pick the less complex model providing its F value is at least equal to

the maximum F value.

The parameter estimates in the higher noise level environment
deviated slightly for the true values and in some runs the chosen mode!
structures were slightly different from those 1n case 1. This
reflected the lower signal to noise ratio and the effort made by the
MSR to fit the noise. Furthermore, the noise in the state variables

decreased the uniqueness of the selection in both the F and PRESS

criteria.

The modification which constrains the MSR to first fit the linear
model is an important feature. For the cases in which noise was added
to the model variables, an unconstrained stepwise regression was
inconsistent as to which was the best model structure. Also, terms

that were not in the simulated model were accepted 1in certain "best
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models™ for an unconstrained stepwise regression. Klein and Batterson
(Ref 1) concluded that the use of the MSR provided better parameter

estimates than an ordinary stepwise regression without constraint.

2.5 Measurements and errors.

In all experimental work it is important to locate the primary
source of measurement errors. In flight dynamics there are
measurements of time, position, velocity and attitude angles, among
others. Errors can exist in each of these, but accurate measurements
of speed, for example, are usually much more difficult to obtain than
those of time. 1In such cases the velocity measurements can be assumed

to contain the major sources of error or uncertainty.

Assuming that any known systematic effects are removed, such as
errors due to calibration or presence of a sensor, then any remaining
errors can be considered to be random. These random errors may be
described statistically by the standard statistical assumptions below,
(Ref 17). These eight assumptions provide a yardstick with which to
compare the actual conditions and may or may not all be valid for a
particular case. They also provide a basis for selection of estimation
criteria (such as minimising a sum of squares) and for statistical

statements such as those regarding confidence intervals.

2 5.1 Statistical description of errors:

(i) Errors are additive; that is,

Y =T + ¢ [2.5]
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where, for example,

Y 1s a temperature measurement at time t (or position x ),
1 1

) |

T 1is the ’true’ temperature at time t ,

1 i

€. s the random error at time t .
1
A characteristic of additive errors, in contrast to multiplicative
errors, 1s that the errors. do not vary greatly with the independent
variables such as time and position. It 1s possible to have both
position x and time dependence such as in Y , but for simplicity only

) J1
the i dependence will be noted in this section.

(17) The error'ei has a zero mean;
E(ei) =0 [2.6]
where

E(.-) 1s the ’expected value operator’.

This equation indicates that the errors average to zero, that 1is,

there is no bias. The expected value of a continuous random variable Y

with the probability density function f(y) is given by

E(Y) = __(z y.f(y).dy [2.7]
(i77i) Errors have a constant variance,
V(e ) = o° [2.8]

where

V(.) is the variance operator and o° denotes the variance of £ .
1l

2

The absence of an i subscript on ¢ means that all the errors have

the same variance (i.e. the same variability) on average. The square
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root of the variance is the standard deviation, which has the same

units as Y .

|

The variance operator is related to the expected value operator by

V(e ) = E(eiz) - Ez(ei) [2.9]

(iv) The errors are uncorrelated,

cov(ei,ej) =0 for i # j [2.10]
where

cov(s) is the covariance operator.

This assumption means that, for example, the error at time ti 1S

uncorrelated with the error at time t (for t # t ).
j i j

The covariance operator is related to the expected value operator

cov(ei,ej) = E(eiej) - E(ei)E(sj) [2.11]

(v) Errors have a Gaussian i.e. normal probability density function

2
1 '”2['5:&]
f(x) :___17'2:_6 for -o < x < ® , [2.12]
(2n) " "o

where

u is the mean (equal to 0) and o is the standard deviation.

In electronic engineering, random noise having a normal

distribution is often referred to as Gaussian.
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2

(vi) Statistical parameters such as the variance c° are known.

(vii) The errors are only in the dependent variables.

For the example of temperature measured as a function of time at a

given position, the major errors would be in temperature, not in time

or position.
(vi1i1) There is no prior information.

If there is prior information regarding the parameters, however,

1ts proper use may improve the parameter estimates.

2.6 Parameter estimation criteria

Estimation criteria can incorporate various statistical aspects.
The simplest criterion 1is the minimisation with respect to the
parameters of the sum of squares between the measured values Y and
corresponding calculated values, which is denoted by B. The sum of

squares 1S given by

= rveenTrv By - o - 2
SOLS = (Y-B) (Y-B) = i_Z__:I(Yi Bi) [2.13]

Minimisation of Sor.s does not include any statistical assumptions
and is the ordinary least squares (OLS) method. The matrix notation of
[2.13] can represent a single summation over time, for example, a total

of n measurements. It might also represent measurements over time, t ,
) |

and space, x , as follows
j
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T (Y -B ) [2.14]
where m could be the number of sensors and n the number of ’times’.

A more general criterion is the minimisation of

s = (Y-B)" ¥°' (Y-B) [2.15]

The square matrix ¥ 1in [2.15] 1is the covariance matrix of the
errors. The role of the ¥~ ' matrix is to introduce unequal weights for
the measurements - the smaller the variability of a given measurement,
the greater 1its weight. This matrix, which has a statistical bias,
also includes weighting to compensate for correlation between
measurements, since highly correlated measurements do not contribute as

much information as uncorrelated ones. For the case of additive mean

errors, ¥ is given by

2
o E(€162)"'E(€1€n)
v = | . o° , [2.16]
] 2 &
E(E E ) ° ®* a0 0'2
n 1 n

where

cov(e ,¢.) = E(e ¢ ) - E(e )E(e ) = E(e € ) for zero mean errors.
1 J 1 ) 1 ] 1 )

The use of equation [2.14] does not require that the errors have a

constant variance or that they be uncorrelated (the third and fourth

standard assumptions). The presence of non-zero off-diagonal terms in

y indicates that the measurements are correlated.
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If the errors are additive and have zero mean and ¥ is known
within a multiplicative constant, then the minimisation of [2.15] gives
Gauss—-Markov estimates. If, moreover, the model 1is 1linear in

parameters then the criterion gives the minimum variance parameter

estimates.

If the first, second, fifth, sixth and seventh standard
statistical assumptions are valid (i.e., additive, zero mean, normal
errors with known statistical parameters, and errorless independent

variables), minimisation of [2.15] vyields Maximum Likelihood (ML)

estimates.

If the eight standard statistical assumptions are valid, each
sum-of-squares criterion reduces to that given for the OLS method, as

shown 1in equation [2.13].

Another criterion of note 1is one which has a number of
interpretations. If all the standard assumptions, except the third,
fourth, and eighth, are valid, the Maximum A Posteriori (MAP) criterion
1s obtained. This criterion includes the effect of prior information.
If the prior estimates of the parameters (before the information in the
measurement vector Y 1s used) are such that the prior parameter
estimation vector p has a normal (i.e. Gaussian) probability density

with a covariance matrix of V_, the MAP criterion is the minimisation

of

S ap = (Y-B)" ¢! (Y-B) + (uB)] _\_/_é‘ (u-B) [2.17]
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where B is the parameter vector containing p parameters, 31""’Bp

The additional second term in SMAP [2.17] compared to SML
[2.15] incorporates the prior information regarding the parameters. By
including this term, better than ML parameter estimates can be found if
there 1is enough prior information. The MAP criterion can also be
interpreted to provide ridge regression estimates and to introduce
regularisation; these two techniques are needed when the OLS and ML
criteria give estimates with large parameter variances. A further
benefit of the MAP method 1is that it can be utilised to develop
sequential estimation. Sequential estimation is very powerful because
1t gives insights into the adequacy of the model and the accuracy of

the parameters, (Ref 17 contains examples of two sequential procedure<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>