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Abstract 

The recent years, the aerospace industry in particular has embraced and actively 

pursued the development of stronger high performance materials, namely nickel based 

superalloys and hardwearing steels. This has resulted in a need for a more efficient 

method of machining, and this need was answered with the advent of High Efficiency 

Deep Grinding (HEDG). This relatively new process using Cubic Boron Nitride 

(CBN) electroplated grinding wheels has been investigated through experimental and 

theoretical means applied to two widely used materials, M50 bearing steel and IN718 

nickel based superalloy. It has been shown that this grinding method using a stiff 

grinding centre such as the Edgetek 5-axis machine is a viable process. 

Using a number of experimental designs, produced results which were analysed using 

a variety of methods including visual assessment, sub-surface microscopy and surface 

analysis using a Scanning Electron Microscope (SEM), residual stress measurement 

using X-Ray Diffraction (XRD) techniques, Barkhausen Noise Amplitude (BNA) 

measurements, surface roughness and Vickers micro-hardness appraisal. 

It has been shown that the fundamentals of the HEDG process have been understood 

through experimental as well as theoretical means and that through the various 

thermal models used, grinding temperatures can be predicted to give more control 

over this dynamic process. 

The main contributions to knowledge are made up of a number of elements within the 

grinding environment, the most important being the demonstration of the HEDG 

effect, explanation of the phenomenon and the ability to model the process. It has 

also been shown that grinding is a dynamic process and factors such as wheel wear 

will result in a continuous change in the optimum grinding conditions for a given 

material and wheel combination. With the significance of these factors recognised, 

they can be accounted for within an industrial adaptive control scenario with the 

process engineer confident of a more efficient use of time and materials to produce a 

higher quality product at lower cost. 
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INTRODUCTION 

CHAPTER 1 INTRODUCTION 

Abrasive machining has been used in industry for many years but now technological 

advances have encouraged this technology to the forefront of new and exciting areas 

of research. As custom designed grinding centres, more versatile grinding wheels and 

highly engineered grinding fluids become available the requirement of research to 

ascertain the efficiency of these new processes and systems has become a feasible 

option. As industry requires more efficient use of time and resources this research 

program and subsequent thesis is concerned with the development of high efficiency 
deep grinding and associated technologies. 

The aim of this introduction is to provide the necessary background for the 

development of the thesis in the chapters that follow, with particular emphasis on 

grinding technology related to the Edgetek Machine (see Chapter 3) and the HEDG 

process. In addition, the correlation of a wide array of responses is investigated with 

a view to enhance the future working practices regarding HEDG. 

1.1 Background 

High efficiency deep grinding (HEDG) is a relatively new grinding technology. 

HEDG, whilst combining the mechanics of high-speed and creep-feed grinding, offers 

the possibility of achieving very efficient grinding, with values of specific energy 

much lower than in high-speed and creep-feed grinding, Tawakoli (1993). 

As the material removal rate is increased, both the volume of grinding chips and the 

amount of heat increase, which suggests that there should be an upper limit of 

material removal rate. This is readily observed in creep-feed grinding when feed rate 
is increased. With HEDG, the material removal rates are increased substantially 

compared to creep-feed grinding, and thermal damage to the workpiece could be a 

serious concern. However, the thermal phenomena occurring during HEDG are 

thought to be very different from those experienced in shallow, high-speed and creep- 

feed grinding. To reduce the flow of heat into the workpiece a combination of high 

wheel speeds and sufficiently high feed rates and depths of cut are used. Tawakoli 

(1993) stated that high wheel speeds result in short contact times between the abrasive 

grits and the workpiece, and Rowe (2001) reported that the bulk of the heat is 
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removed with the grinding chips and the grinding fluid. As the feed rate is increased 

both the chip thickness and material removal rate increase although the specific 

grinding energy decreases. A significant reduction in specific grinding energy is 

required in order to limit workpiece temperature rise. The HEDG process reduces the 

transmission of heat to the finished surface due to the combined effects of large 

inclination angles and high work speeds. This in theory allows very high removal 

rates to be achieved, without causing thermal damage to the finished component. 

Thus, a fundamental understanding of the mechanical and thermal performance of 

HEDG is essential in order to determine the boundaries for HEDG and achieve a 

robust and reliable model, which validates the HEDG concept. 

Rowe (2001) stated that the initial concept of HEDG was proposed by Gütering in 

1967. The concept was developed further by Werner and Tawakoli during the 1980's 

and 90's. Tawakoli stated quite clearly in his book that HEDG does not conform to 

the conventional mode of grinding. The idea that when the depth of cut is increased 

with elevated feed rates accompanied by higher wheel speeds, a lower grinding work 

piece temperatures results even today sounds outlandish. With this in mind, this 

revolutionary grinding method is required to be tested on various materials using a 

number of different grinding parameters. 

The following chapters provide the necessary background to research area and then 

summarise the work carried out, results generated and conclusions drawn. 

1.2 Reasons for this research 

Grinding or the ability to use abrasive particles to reduce the size of a component or 

change its shape has been used for centuries. Even with the advent of machines 

specifically designed for high efficiency deep grinding operations modem 

conservative attitudes still prevail, so that conventional grinding techniques such as 

creep feed grinding and reciprocating grinding are the main uses for these relatively 

stiff grinding centres. This research was started in order to provide manufacturing 

industry with the confidence that the HEDG process could be operated under 

industrial production conditions. Industrial collaborations across the entire process 

chain -vw-ere involved with the project. 
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Table 1.1 gives details of the individual sponsors and associated business. 

Rolls Royce 

SKF Italy 

Castro! 

Saint Gobain 

Wanner International 

Renold Precision Technologies 

Jones & Shipman 

Gas Turbines 

Aerospace Bearings 

Grinding Fluids 

Abrasive Wheels 

High Pressure Pumps 

Edgetek Grinding Centre 

Edgetek Grinding Centre 

Table 1.1: Sponsors & Associated Interest 

Each sponsor was interested in their own area of expertise in relation to the research. 

Each wished to gain more information as to how their product would react to the 

vigorous environment of high efficiency deep grinding. The research therefore 

focused on both the fundamental principles of HEDG and the industrial application of 

the technology. 

1.3 Aims & Objectives 

The Edgetek test programme was initiated in July 1999. The aims and objectives at 

that point were to monitor different aspects of the grinding process during a number 

of predefined tasks. These tasks, which are shown in Appendix A, were decided by 

the sponsors, to take into account various aspects of grinding while retaining a HEDG 

bias. These decisions also indicated that such parameters as types of grinding fluid, 

grit sizes and grinding mode should be pursued for different material types. The main 

criterion was one of safety when the types of grinding fluid were chosen. As the final 

tests were to manufacture actual aerospace components, it was decided to minimise 

the possibility of corrosion by omitting sulphur and chlorine based additives. In 

addition, it was decided to test the efficiency of the three main types of grinding fluid 

within the project. These were mineral grinding fluid, synthetic ester based grinding 

fluid and water based grinding fluid. The grit sizes were chosen to cater for the 

materials used within the project. M50 bearing steel is an extremely hard material of 

Rockwell Hardness (Re) 62, and was machined with a B151 grit. The other nickel 

based superalloy materials were both ground using the B252 CBN grit; the first was 

IN718 a tough creep resistant material and the second MAR-M-002 an equi-axed 
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material used in the manufacture of high pressure turbine blades in axial flow gas 

turbine engines. The aspect of up or down grinding was decided upon using the work 

carried out by Tawakoli. Tawakoli states that for specific material removal rates of 0 

to 20mm2/s and above 70mm2/s then down grinding should be used. For the specific 

material removal rates from 20-70mm2/s then Tawakoli advocates the use of up 

grinding. Although the methodology changed during the project timescale the main 

aims were kept intact as they were seen to retain their importance throughout the 

study. 

Thus the objectives of this project were to: 

¢ identify the mechanisms of HEDG such that process parameters can be 

optimised to assess maximum material removal rates and acceptable 

surface integrity. 

¢ demonstrate that the HEDG effect exists e. g. specific grinding energy 

and workpiece surface temperature reduce with high material removal 

rates. 

¢ produce predictive tools which can be used within industry, and within 

areas of adaptive control scenarios to enhance the final quality of the 

ground components. 

1.4 Research Rationale 

During the initial acceptance tests the Edgetek machine performed as expected. With 

the initial testing completed loop stiffness tests were concluded with the stiffness 

being calculated at 98N/µm at a distance of 200mm from the z-axis. 

A modified programme of work based on a number of Taguchi 2 level factorial 

experiments was undertaken. This type of design of experiments enables the 

interactions between the most important variables to be considered when using the 

minimum number of tests, which indicate by arithmetical means the possible direction 

of the most optimised parameters. 
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In optimising the grinding process for M50 tool steel and IN718 nickel based 

superalloy, the grinding fluid system and the grit wear characteristics proved to be 

amongst the most sensitive parameters. It is well documented in the technical 

literature that the fundamental characteristics of the grinding fluid delivery system 

have to be understood before any significant headway can be gained. 

Following this work a more appropriate value of the parameters were identified, and a 

number of experiments were undertaken to investigate different aspects of grinding. 

For example how the generation of wear flats affected levels of specific grinding 

energy and the subsequent calculated temperatures over a wide range of specific 

material removal rates. 

Using the burn threshold technique devised by Malkin (1974) the experimental data 

gave a clear indication of when surface burn should occur in relation to the energy 

required. Theoretical calculations were investigated using previously published 

1>.! material by Rowe et al (2001). This thermal modelling is designed to predict the 

onset of surface burn for any given set of parameters. Additional work was required 

to measure temperatures within the grinding zone during grinding operations, using 

up and down grinding. These measurements were then correlated with the predicted 

temperatures, residual stress measurements and surface integrity studies. 

Finally components were manufactured using the information obtained during this 

investigation. The components were nickel based superalloy turbine blade roots and 

M50 steel bearing rings. 

1.5 Structure of Thesis 

The work is presented in 10 chapters, the first being the introduction. The initial step 

in this research was to give background information into HEDG, and give reasons 

why the research was undertaken, list the aims and objectives and describe the 

research rationale. Chapter 2 (Literature Review) details the results of an extensive 

literature review to highlight the main results arising from the research carried out 

within the field. Chapter 3 (Edgetek Machine) describes the acceptance tests carried 

out on the Edgetek 5-axis machine. Chapter 4 (Experimental Technique) gives details 
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of the experimental method followed, regarding the initial tests followed when 

investigating the HEDG process, and using a host of associated engineering analysis 

techniques. Chapter 5 (M50 Bearing Steel) and Chapter 6 (IN718 Nickel Based 

Superalloy) give details of the results of the grinding experiments, and discusses them 

in relation to M50 steel and IN718 respectively. Chapter 7 (Validation Experiments) 

describes and discusses the experiments used to investigate the influence of each 

grinding mode and the thermal measurement experiments which were used to 

corroborate the trends found previously. Chapter 8 (Component Manufacture) 

describes and gives the results of two ground components manufactured, using 

techniques developed within this study. Chapter 9 provides a summary discussion, 

where the grinding response of the different workpiece materials is compared, the 

thermal characteristics of the HEDG process reviewed and some industrial 

implications discussed. Chapter 10 (Conclusions & Recommendations) lists the 

conclusions arising from the research and recommends further areas of work to extend 

knowledge of the HEDG process. There are fourteen appendices added to this thesis. 

Appendix A lists the particulars of the Edgetek research program as a whole. 

Appendices B, C and D give material mechanical and thermal data. Appendix E 

details the results from the Taguchi style screening tests. Appendices F and G list the 

experimental parameters used during the tests carried out on M50 bearing steel and 

IN718 nickel based superalloy respectively. Appendix H lists the procedure followed 

when carrying out the thermal modelling. Appendices I&J list the results from the 

bearing and turbine component manufacture phases respectively. Appendix K 

contains the external report funded by the turbine manufacturer to study blade roots 

formed both at Cranfield and at the manufacturer's plant. Appendices L, M and N are 

datasheets for the three grinding fluids used in this work. 

1.6 Summary 

This chapter has provided a general introduction to this research study. It has 

discussed the reasons why this research is relevant to today's engineering industry and 

the aims and objectives. 

Chapter two gives a detailed review of the up to date literature available. 
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CHAPTER 2 LITERATURE REVIEW 

Chapter Two includes the key areas of theory underlying the research topic. The 

processes involved have been divided into nine parts. Firstly grinding and the 

associated process involved in the work described in this thesis are discussed in part 2.1; 

part 2.2 discusses the abrasives available and the abrasives used in the project; 2.3 looks 

into the grinding wheel technologies; 2.4 explores the project materials; 2.5 considers 

the cutting fluids used currently and various associated aspects. Part 2.6 reviews 

surface integrity testing by techniques such as X-Ray Diffraction and Barkhausen Noise 

techniques which are both used for different styles of stress measurement. Part 2.7 

discusses the thermal modelling, and adaptive control systems are reviewed in 2.8. The 

Chapter is then summarised in part 2.9. 

The aim of this review is to highlight recent research relating to high efficiency deep 

grinding (HEDG) and to show that the project aims and objectives are viable. It should 

be stressed that very little on HEDG has been reported in the literature and it is therefore 

concluded that the research undertaken in this work is particularly timely because of a 

desire to reduce manufacturing costs and improve process efficiency. 

2.1 Grinding 

Mankind's relentless pursuit of a finer finish to his tools regardless of shape or purpose 
has been an on going quest since time immemorial. 
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Figure 2.1 (After Woodbury 1959) depicts the first known "Grinding Machine", where 

the work was held as well as being worked upon. With the advent of the industrial 

revolution, mechanical innovation took grinding, in many shapes and form, to mass 

production levels. By the end of the 1890's more specialised machines were being 

produced to fill niche markets. Woodbury (1959) concluded his book aptly by stating, 

"Grinding.... brought profound changes in the way in which we all live". 

The grinding principle uses hundreds of thousands of extremely hard, single cutting 

grits. These grits cut exceptionally small chips from the parent material or work piece. 

With any mechanical process there is a release of energy and in this process the main 

release is in the manner of excessive heat as depicted in figure 2.2 (after König 1999). 

Here it is clearly shown that energy is released by various sources of heat. These result 

from elastic and plastic deformation when the grit ploughs through the material. In 

addition, when wear flats appear on the grit's cutting face then a sliding action occurs 

creating a friction component. Further, as the chip itself is cut there is a release of 

energy from the shearing action along the shear planes of the worked material. The heat 
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energy released is therefore routed via the chip, workpiece, grit, wheel and grinding 

fluid. Therefore, with the use of grinding fluids the grinding temperature is reduced. 

Grinding, which in theory is a continuous metal removal method, has been described in 

numerous texts as a finishing process. Today's attitudes have altered through diligent 

research and the acceptance of ideas that have thrust grinding into the metal cutting 

arena. With the advent of new technologies such as superabrasive grits, extremely stiff 

machining centres and a greater all round understanding of the grinding processes 

involved, ideas such as HEDG are now more widely accepted. 

2.1.1 Grinding Mode 

Up and down grinding, are words that describe the direction of rotation of the grinding 

wheel in relation to the direction of workpiece travel. Figure 2.3 shows the general 

principles where the up grinding wheel direction is opposite to the workpiece direction 

and in down grinding the wheel rotates in the same direction as the workpiece 

movement. 

N 
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Down- Grinding Up- Grinding 
Figure 2.3: Comparison of up and down grinding 

Both Malkin (1974) and Shaw (1996) have discussed the two grinding regimes and both 

have put forward pros and cons for both concepts. Shaw states that the tangential forces 

calculated from the spindle power are less in the down grinding mode than up grinding 

and this relates to a slightly lower power requirement for this type of grinding. Shaw 

also describes how in down grinding the chip's maximum undefonned thickness is 

produced when a grain enters the contact zone, and the shock of maximum work at the 
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initial contact point could have a detrimental influence on wheel wear. Andrew et al 

(1985) describes how in down grinding the power required is lower than up grinding, 

also that wheel wear is reduced and subsequently the grinding ratio (The ratio of volume 

of material removed to volume of wheel removed) is increased using this mode. 

Tawakoli (1993) explains that the grinding fluid application is more effective when up 

grinding as it is applied at the point at which the chip is just starting to be formed and is 

instantly lubricating the finished surface. He then goes on to describe how the 

measured temperatures were lower when using down grinding to attain specific material 

removal rates of up to 20mm2/s and also those greater than 70mm2/s. Tawakoli 

advocates up grinding through the mid range, of 20 to 70mm2/s. 

Wager & Gu (1991) investigated this topic with a view to shallow surface grinding. It 

was stated that although up grinding has a longer contact length and subsequent peak 

temperatures are higher the differences were not as great as the differences in force 

suggest. This is shown in Figure 2.4 where the characteristics of the temperature traces 

are slightly different for the two cases, but the peak values are similar. 
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Figure 2.4: Temperature Characteristics of Up and Down Grinding 

Rowe (2001) advises that up grinding gives lower temperatures for the intermediate 

metal removal rates due to convection cooling of the workpiece. Rowe advocates for 

high material removal rates down grinding could be best as the grits impact the contact 

surface with greater impact forces enhancing the friability of the grits and thus 

maintaining the sharp cutting edges on the grits. 
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2.1.2 Creep Feed Grinding 

Creep feed grinding entered large-scale industrial use in the late 1960's and early 

1970's. This type of grinding originated from two different types of machining process, 

namely milling and electrolytic grinding and is characterised by slow feed rates and 

extremely high depths of cut Malkin (1989). This grinding process can be divided into 

the two main grinding process areas, the first, finish or form-grinding and the second a 
form of stock removal grinding. The process studied in this research is the latter where 
high material removal rates are attained with good levels of surface integrity. 

During the 1980's and 1990's intensive efforts were made to increase stock removal 

rates and improve work quality. As shown in table 2.1 creep feed grinding increased 

the specific stock removal rate (Q',, which equates to the product of depth of cut - a, 

and work piece feed rate VW) in comparison to reciprocating grinding by increasing the 

depth of cut but retaining the low feed rates to maintain low finished surface 

temperatures. 

2.1.3 High Speed Grinding 

During the 1960's the peripheral speeds of grinding wheels increased, from which, 

evolved a concept called high speed grinding. This method of metal removal 
demonstrated that increased specific metal removal rates were possible, albeit with the 

unwanted side effect of higher grinding temperatures. As further research investigated 

this type of grinding it was found that these temperatures were reduced with the use of 

grinding fluid and with the use of cubic boron nitride (CBN) wheels. 

Both Tönshoff & Falkenberg (1996) and Yui & Lee (1996) showed that with an 

increase in peripheral wheel speed the grinding force (Ft) reduced and with increased 

depth of cut, the unit of energy used to remove a cubic mm of material or specific 

grinding energy (J/mm3) was also reduced. Hwang et al (2000) noted that the lower 

overall values of specific energy were seen to be proportional to the higher wheel 

speeds, and this was attributed to the shorter contact time between the work piece and 

the grit at high wheel speeds. This concurs with Shaw (1972) who stated that the un- 
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deformed chip thickness is directly proportional to work piece feed rate and inversely 

proportional to wheel speed. 

2.1.4 High Efficiency Deep Grinding 

As more efficient ways of metal removal were required, a number of different methods 

were investigated. High efficiency deep grinding is a hybrid of two well known 

grinding processes, these being high speed grinding and creep feed grinding. Grinding 

processes are compared (Inasaki et al 1993) in Figure 2.5, which shows the possibilities 

when using superabrasive electroplated wheels. The figure depicts the increase in stock 

removal rates, without dressing the wheel, and associated productivity improvements. 

Increase in Stock Removal rate in 
grinding 

1- Reciprocating Grinding 4- CD Grinding 
2- Creep Feed Grinding 5- High Speed Grinding with CBN 
3- High Speed Grinding 6- High Efficiency Deep Grinding 

1000 

Specific Stock 100 

Removal Rate 
(mm3/mm. sec) 10 

1 

Year 

Figure 2.5: Increase of Stock Removal Rate in Surface Grinding 

Work by Tawakoli (1993) reported that HEDG is characterised by increases in all the 

following parameters: wheel speed, depth of cut and work feed-rate thus permitting 

extremely high stock removal rates. 
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Creep Feed work Area 

.' Critical Temperature 

HEDG work area 

0 100 200 300 400 
Specific stock removal rate Qµ, (mm3/(mm. sec) 

Work Speed vw 
............ 

Figure 2.6: Qualitative effect of work piece speed and relative stock removal rate 

Mason (1993) introduced the Edgetek 5-Axis grinding machine as the first HEDG 

grinding machine. This stiff versatile machine was hailed as a major step forward in the 

world of metal removal. Mason (1997) also described the HEDG process as a form of 

milling when CBN electroplated wheels were used on the Edgetek machine. 

As shown in Figure 2.6 Tawakoli (1993) stated that there were distinct areas of 

operation which both creep feed grinding and HEDG occupied. In the HEDG area as 

the feed rate of the work piece increases the corresponding temperature decreases, due 

to the decrease in time available for any temperature rise to take place. Tawakoli (1993) 

also found that the specific grinding energy was drastically reduced when using HEDG 

in comparison to creep feed grinding; this is illustrated in Figure 2.7. 
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Figure 2.7: Specific Energy Requirements in Grinding 

Werner (1994) reported that as the maximum grinding wheel speed increased the 

theoretical temperatures experienced within the grinding contact zone should decrease 

and therefore HEDG was a viable concept under the correct conditions. This was also 

reported by Tawakoli (1993) who compared different grinding regimes as shown in 

Table 2.1. 

Reciprocating Creep Feed HEDG 

Grinding Grinding 

Depth of Cut a, (mm) LOW HIGH HIGH 

0.001-0.05 0.1 - 30 0.1 - 30 

Work Speed V", (m/mm) HIGH LOW HIGH 

1 -30 0.05-0.5 0.5-10 

Wheel Speed VS (m/s) LOW LOW HIGH 

20 - 60 20 - 60 80 - 250 

Specific Material Removal LOW LOW HIGH 

Rate Q', (mm3/mm. s) 0.1 - 10 0.1 - 10 50 - 2000 

Table 2.1: Comparison between different Surface Grinding Methods 

Inasaki et al (1993) noted that with the advent of the CBN technology, as well as the 

modem day stiff grinding centres, the technological advances being made in the stock 

removal aspects of surface grinding could be enhanced further. Also, the modem 
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requirements for grinding applications were stated as high accuracy and high material 

removal rates. Tawakoli (1996) took this point further; he researched the stiffness 

requirement of the machines with a view to optimise the process in relation to the 

machines then available. He reported that basic parameters used in the manufacture of 

creep feed grinding machines had to be increased. This was primarily due to the fact 

that the power required for HEDG was 3 to 6 times that required for the creep feed 

grinding processes. 

2.2 Abrasives 

There are many different types of grinding abrasive. Two of the most commonly used 

are aluminium oxide and silicon carbide. These conventional abrasives are still widely 

used in various grinding processes and are still used effectively in various scenarios 

where the experience within these industrial areas is extensive. The abrasives used 

within this project are classed as superabrasives. This classification is reserved for 

ultra-hard compounds such as Cubic Boron Nitride (CBN) and Poly Crystalline 

Diamond (PCD). These man made materials are produced by transforming carbon or 
boron nitride under extreme pressures and temperatures to produce ultra hard abrasive 

grits. 

CBN was first produced by the General Electric Company in the 1950's and was not 

commercially available until the late 1960's. Depending upon the properties required, 

CBN wheels are more expensive than the common abrasive wheels and are relatively 

inert when in contact with steel. 
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Figure 2.8: SEM Micrograph of MBS Synthetic Diamond (After Shaw 1996) 

Figures 2.8 and 2.9 show examples of the highest quality synthetic grits available in 

diamond and CBN respectively. 

0 

Figure 2.9: SEM Micrograph of a single crystal CBN Grit (After Shaw 1996) 

Figure 2.10 shows an example of nickel coated CBN-II grit. This CBN-II type grit has 

obvious imperfections on the surface, the impact of which are reduced due to the 

coating. This enhances the friability and increases the actual dimensions of the grit. 

16 



LITERATURE REVIEW 

Figure 2.10: SEM Micrograph of Nickel Coated CBN-II Grit (After Shaw 1996) 

In addition, Rowe (2001) and Shaw (1996) both reported that, due to CBN's high 

thermal conductivity the grinding temperature experienced at the finished surface may 
be far lower than that experimentally measured when using A1203. 

Rowe & Chen (2000) described how the advantages of CBN grits were realised when 

theoretical temperatures were calculated, which gave the following indications: 

¢ lower final temperatures 

¢ less likelihood of oxidation 
¢ consequently lower residual tensile stresses 

This in turn indicated that, for a required temperature, the depth of cut could be 

increased, or in order to lengthen the wheel life a depth of cut could be retained thus 

generating a much lower grinding temperature. These findings reinforced work by 

Bailley & Juchem (1998) who reported that developments in CBN technology have 

resulted in abrasives which maintain free cutting characteristics during use, and so 

minimise cutting forces and therefore maintain low temperatures within the cutting 

zone. 

Chou & Evans (1999) cited that CBN grits have half the hardness of PCD which has a 

superior thermal conductivity of 560 W/mK. The chemical inertness of CBN regarding 
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ferrous metals makes it more suitable to grind high-speed steels (Bailley 2000). Rowe 

et al (1995) reported that the thermal conductivity of CBN grit was as high as 240 -1300 
W/mK and Alumina as a comparison was 37 W/mK. Morgan et al (1998) also listed the 

thermal conductivity of CBN to be within 200 and 700 W/mK. These figures represent 

a range of thermal conductivity values which may be appropriate for different grinding 

situations. However, exact values are difficult to determine and are sensitive to the 

specific grade of CBN. Althaus (1985) tested the effect of increasing grit concentration 

of a CBN grit B64-P 100-V wheel in comparison to an aluminium oxide wheel AL100- 

L5-V when grinding EN31 steel. It was found that in the case of the CBN wheel, the 

residual stresses increased in magnitude compressively, which was opposite to that 

observed for the aluminium oxide wheel. The production of wear flats on the 

aluminium oxide grits contributed to this effect. 

2.3 Wheel Technologies 

The design and manufacture of grinding wheels is another area of continuous research. 

The methods of bonding these grits to the wheel include resin, metallic, vitrified 

bonding and electroplated types. Although all have their own advantages and 

disadvantages this research is aimed at the use of nickel electroplated CBN wheels. 

Due to the grits being held in place on a steel hub by an electroplated layer of nickel, 

these wheels are known to be able to withstand higher rotational speeds than bonded 

wheels. Klocke & König (1995) noted that with vitrified CBN wheels the conditioning 

of the grinding wheel abrasive surface is a basic pre-requisite for the efficient use of 

CBN bonded grinding wheels, where it was found the sharpness of the wheel manifests 

itself in lower maximum grinding forces. This fact brings forward what could be seen 

to be an advantage of the electroplated wheel by no longer requiring dressing. 

However, the application of the grinding fluid is more difficult due to the lack of 

porosity within the wheel design. 

In 1988 Werner & Tawakoli investigated the use of fully plated, partially plated and 

slotted electroplated CBN wheels when grinding narrow slots in 45NiCr6 which had a 

Rockwell C hardness of 35HRC. It was reported that in this scenario a slot 25mm deep 

by 1.5mm wide Evas cut with a table speed of 600mm/min. These experiments were 
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reported as indicating that the optimum wheel design utilised a partially plated type with 
18 plated segments using B151 CBN grit, 10mm wide and to a height of 1.5mm with an 

angle of 2°. This design is shown in Figure 2.11. 

Figure 2.11: Werner & Tawakoli's Optimum Wheel Design 

As shown in Figure 2.12 Klocke et at (1997) speculated that although CBN 

electroplated wheels could not be dressed in the conventional sense the high cutting 

speeds attainable (>250ms) could enable Q',, values of 10,000mm2/s to be achieved. 

Electro-plated bonding 
Q'_ mcx= 100 to 10000mm'/rrm. s 

metallic bonding 
max= 50 50 to 250mm'/mm. s Q. 

vitrified bonding 
50 to 150mm/mm. s 

Qa 

CBN grinding wheels 
0ýII 
c 
° 
c Resin bondng 

50 to 150mm'/mrn. s 

vitrified/bakelite 
10 to 1 OOmm'/mm. s 

Conventional grinding wheels 

100 150 250 300 

Circumferential speed of the grinding wheel v. 

Figure 2.12: CBN Grinding Wheels 

Savington (1999) reported that resin and metallic bonds are very closed structure 

systems and unless outside agents, such as glass spheres were added, no controlled 
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porosity could assist with chip clearance. Figure 2.13 shows an illustration from Bailley 

(2000) which compares the concept of a bonded matrix to the electroplated wheels. 

The Concept of Bonded Tools 

I Bond tvtotarcii Dermnd or C3t4 
cbrostie gms 

Layers of diamond particles 
in a resin, metal or vitrified 
bond matrix 

obMDýdor CON Single layer of abrasive grits bec-oDkfed meal oaosbe g is 

b°u embedded in an 
electroplated tool. 

Figure 2.13: The Concept of Bonded Tools 

Tönshoff et al (1998) also researched vitrified bonded CBN wheels. They reported that 

when the workpiece feed rate was increased to 60m/min with a wheel speed of 140m/s 

the value of normal and tangential cutting forces reduced. Furthermore a Q'W value of 

40mm3/mm. s, without any thermal damage was obtained. Their findings are shown in 

Figure 2.14. 
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Figure 2.14: Grinding Forces at Different Speeds and Material Removal 

Advances in technology are normally financially based. Redington & Joseph (1998) 

reported that the manufacturing costs per part decreased dramatically with the use of 

CBN abrasives, particularly when electroplated CBN wheels were used. This was 

believed to be due to a) the grit's Knoop hardness value of 4800kg/mm2, b) the 

enhanced production time due to no longer requiring dressing the wheel and also c) the 

low power requirement per cut. It was due to these factors that the increased life of the 

wheel and subsequent reduction in the costs per part were observed. 

Porous wheels and slotted electroplated wheels have also been tested and have been 

shown to increase cooling and lubrication effects, albeit this was done in conjunction 

with an external supply nozzle. There have been a number of investigations which 

attempted to deal with different grinding fluid nozzle types and strategies but a 

comparison of test results has not been possible through the neglect by authors in 

reporting characteristic data such as flow rate (Brinksmeier et al 1999). 

The wheel speed of a solid steel wheel can be increased above that of a bonded type and 

as shown by Tawakoli (1993), the corresponding grinding temperature should increase 

and then reduce. Figure 2.15 epitomises the HEDG concept in three simple graphs. 

Vc=35m/s 

Vc=55m/s 

Vc=140m/s 

LE 

F't ": "" ..... ...... 
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Tawakoli also noted in the top left graph (Figure 2.15), that with the increase of work 

speed and a fixed depth of cut the grinding temperature decreases. In the top right 

graph, with a fixed Q'W and an increasing depth of cut, the grinding temperature 

increases. The bottom left graph shows how an increasing wheel speed results in a 

temperature increase followed by a decrease. 

Grinding wheel 90A 80 04 6H 50/ 100 
Material : t6 MnCr 5 
Wheel speed : vc- 100m/s 
Spot. removal rate : Qý=100mm3/(mm"s) 

800 800 

400 

0 2000 4600 6000 0369 
Workpiece speed v� Imm/mint Depth of cut a (mml 

400 Conventional Grinding wheel : 90A 80 Q4 BH 50/100 
wheel andGYB252N200G 

Material 16 MnCr 5 
200 Depth of cul as- 6mm 

CBN Spec. romoval ºalv O, = IOOmm3/(mm"s) 

wheel Coolant grinding oil 
0 60 100 140 180 

Wheel speed vc (m/si 

Figure 2.15: Influence of Grinding Variables on Temperature 

2.4 Project Materials 

As the jet age developed, the use and requirements for superalloys increased. These 

superalloys can be classified into three main groups: cobalt based, nickel based and 

nickel-iron based. The success of these alloy types is relatively easy to note, as the 

aircraft industry has increased the use of nickel based superalloys and the new 

derivatives are withstanding temperatures of up to 1100°C. The turbine gas-inlet- 

temperature is a true reflection of the efficiency of the gas turbine engine, and the 

alloys that perform tasks within these environments have enhanced these efficiencies a 

great deal. It is to ensure strength retention within these materials over these 

extremely high operating temperatures that superalloys have been developed. 
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2.4.1 IN718 Nickel Superalloy 

IN718 is a wrought alloy and is an iron-containing alloy, providing moderate- 

temperature high-strength properties as well as good resistance to strain age cracking 

in welding. Wrought material is produced in large ingots, which are then rolled, 

forged and/or extruded to finished sizes and then heat treated to obtain the desired 

properties. IN718 is vacuum induction melted for a number of reasons that include 

prevention of the formation of oxides and nitrides, and to avoid the loss of hardening 

elements such as niobium, titanium and aluminium. Table 2.2 shows the chemical 

constituents of IN718, after Sims & Hagel (1972), and the main thermal and 

mechanical properties are listed in Appendix B. 

Composition by weight % of IN718 

IN718 Ni C Mn Fe Si Cu Cr Ti Al Nb 

52.5 0.04 0.2 18 0.2 0.1 15 2.5 0.8 0.85 

Table 2.2: Composition by weight % of IN7l 8 

IN718 as well as other superalloys find their largest application in forged turbine disks 

due to their creep resistant properties. Kawagoishi et al (1999) also mentioned that 

IN718 is used in the manufacture of various critical aircraft engine components, for 

example compressor blades and turbine blades, for the same reason. 

p % 4ý L9; týr- lf"- --. ".. - 

,, ". ., -ý '. 1i. ß--ý ý, , 
ý. 

ý:. r 

rý' f''''ýr� dpi 
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Figure 2.16: A micrograph of an unused specimen of etched IN718. 
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Figure 2.16 shows the structure of IN718, and a few carbides within the structure at 

the grain boundaries are clearly visible. These carbides, which occur in superalloys, 

have a face-centred-cubic lattice, some of which are considered to be the most stable 

compounds in nature. They occur from a combination of carbon and refractory 

metals, usually having a formula such as MC (metal carbide) or M6C23. As IN718 

used niobium for strengthening purposes it is expected that the metal in the MC type 

carbides contain the refractory elements such as niobium and titanium. 

With the introduction of more iron replacing nickel, a far more stable and stronger but 

cheaper alloy was produced, which in this business driven world is a major advantage 

over the pure nickel based alloys. 

IN718 is representative of a group of superalloys where the primary hardening is by 

ordered body-centred-tetragonal (BCT) lattice 7'. It has been highlighted that BCT -J' 

would not form in binary nickel-niobium unless some iron was present. It was also 

shown that IN718 and other iron-nickel based alloys have approximately 2-6% 

niobium and considerable amounts of iron. However only IN718 has the major 

strengthening component which has been identified as BCT -J', Sims & Hagel. (1972). 

Also, P. L. Tso (1999) described IN718 as being more suited for grinding by CBN 

wheels than other abrasives, irrespective of what machinability index was considered. 

The term machinability index can be a measure of a number of responses such as 

normal grinding force, surface roughness or grinding wheel life. 

2.4.2 MAR-M-002 

This tough extremely high creep resistant nickel alloy is the second nickel based 

superalloy to be used in this research. The main use of this alloy is in the high- 

pressure turbine section of the RB 11 high bypass ratio turbo-fan aero engine. This 

poly crystalline material may be directionally cast or used in single crystal form so as 

to enhance the creep resistant properties and an example of the structure is shown in 

Figure 2.17. 

24 



LITERATURE REVIEW 

The composition of MAR-M-002 is shown in Table 2.3 and the main thermal and 

mechanical properties are listed in Appendix C. 

Composition by Weight % MAR-M-002 

MAR M 002 Ni C Cr Co Mo Ti Al B Zr Ta Hf Fe 

Bal 15 19 10 10 1.5 5.5 0.1 0.05 2.5 1.5 1 

Table 2.3: Composition by weight % of MAR M 002 

2.4.3 VIM-VAR M50 Bearing Steel 

Carpenter VIM-VAR M50 Bearing Steel was also used within this project. The name 

gives an indication of the refining process that is required, specifically vacuum 

induction melting (VIM) and vacuum arc re-melting (VAR). 

This material has a number of positive properties including excellent resistance to multi 

axial stresses, good resistance to oxidation and high resistance to softening at high 

operating temperatures. One of the many uses for this material is in the aerospace 

industry for bearings within gas turbine engines operating at a service temperature of up 

to 371 °C. The chemical constituents of M50 are shown in Table 2.4 after Metals 

Handbook (1986), and the main thermal and mechanical properties are listed in 

Appendix D. 
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Composition by weight % of M50 

AISI M50 Fe Cr Mo V Ni C Mn Si 

Bal 4 4.3 1 0.1 0.8 0.25 0.25 

Table 2.4: Composition by weight % of M50 

M50 has a Rockwell C hardness of 62 to 64 and the manufacturers recommend the 

cutting fluid is sulphurised mineral oil. However, this was not used within these trials, 

as a sulphur free mineral oil was the sponsor's choice for two reasons; a) to explore the 

possibility of using an ecologically friendlier alternative; b) the sponsors use this 

material primarily in the aviation industry and it was decided to reduce the possibility of 

the introduction of sulphur and hence a possible source of corrosion. 

Figure 2.18: Micrograph of an unused piece of etched M50 (Nital Etch). 

Figure 2.18 shows a micrograph of an unused specimen of M50 in which a number of 

carbides can easily be seen. A number of studies have been carried out on these 

carbides of which there are two types, namely Molybdenum-rich carbide (M2C carbide) 

and Vanadium-rich carbide (MC- metal carbide). These carbides have been studied due 

to their high hardness values which, together with their Young's Modulus values are 

shown in Table 2.5 below. 
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Type of carbide M2C MC M50 Matrix 

Young's Modulus (GPa) 

Hardness (GPa) 

302 

20.4 

320 

23.9 

214 

7.7 

Table 2.5: Young's Modulus of Primary Carbides in M50 

Chou and Evans (1997) concluded in their study that these large ultra-hard carbides in 

the workpiece enhanced fine scale attrition by micro-fracture and fatigue which results 

in the high wear resistance of the material. 
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Figure 2.19: Time Temperature Transformation Diagram for M50 Bearing Steel 

Figure 2.19 shows the characteristics for heat treating M50 bearing steel. 

2.5 Cutting Fluid 

Environmental concerns, resulting from public opinion and governmental regulations, 

are placing increasing constraints on the use and waste provisions for modern day 

grinding fluids. Waste management is now a basic requirement to take into account 

when considering the cost of fluid recycling. From an ecological viewpoint a dry 

grinding process would obviously be desirable. At present this desire will have to wait 
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for more advanced types of grinding fluid, although in the interim period the use of 

minimum quantity lubrication (MQL) is the vogue. If the flow rate of grinding fluid can 

be reduced then it represents a substantial saving to industry, in terms of manufacturing 

costs, as well as addressing environmental issues. This section investigates the types of 

grinding fluids, their uses and the state of research into this important field. 

2.5.1 Grinding fluid Overview 

Of the three grinding fluid types Brinksmeier (1999) reports that neat oil grinding fluid 

is the most efficient grinding fluid and the most damaging ecologically. Oil based 

grinding fluids also normally provide enhanced corrosion resistance and lubrication 

properties. Water based grinding fluids offer a higher efficiency in cooling and washing 

of the work piece. Other advantages are high chemical stability and transparency. 

The addition of different additives to the fluid gives different properties with each 

additive enhancing specific characteristics of the grinding fluid. The EU released the 

Dangerous Substances Directive entitled - Directive 75/439/EEC on the disposal of 

waste oils, which established criteria for products that are potential hazards to the 

aquatic environment. Bartx (1998) stated that between 13% and 32% of grinding fluids 

in EU member states were deposited into the environment. 

Bienkowski (1993) reported that with the escalation of replacement and displacement 

costs of these fluids and the tighter governmental regulations and environmental 

controls, the modern day engineers have to be aware of these issues and re-evaluate 

their metal working fluid management regimes. Howes et al (1991) also reported that 

these regimes would impact all stages of grinding fluid selection, use, recycling and 

disposal in both the factory and external environments. 

2.5.2 Biodegradable Research 

Biodegradability is the ability of a substance to be decomposed by micro-organisms. In 

North America a number of research programmes are taking place into a variety of 

scenarios which although not of a machining nature are heartening none the less, due to 

the progress being made into this important field (Brinksmeier et al 1999). 

28 



LITERATURE REVIEW 

Genevro & Heineman (1991) reported that in the past engineers took factors such as 

work piece material, cutting tool material, tool life, cutting speed, type of machinery 

operated, method of application and finish desired into account and these were, and still 

are, all important factors. However these will change with a change in modern 

attitudes, to include the bigger picture, i. e. to include environmental responsibilities and 

knowledge of impending health hazards, particularly as new and stricter legislation is 

introduced. 

2.5.3 Grinding fluid Application 

There are many factors that influence productivity including grinding fluid type, 

composition and filtration additives used, grinding fluid supply, grinding fluid 

application method, flow rate and jet characteristics. As the material chip is formed the 

grinding fluid in contact with the zone influences the chip formation by the build up of a 

grinding fluid film. This film reduces frictional forces and cools the material and tool 

surfaces, so the viscosity and application of a grinding fluid is important to the final 

product. The general view that oil grinding fluids lubricate better than water based 

grinding fluids, and water based grinding fluids cool better than oils is constantly 

vindicated in other studies (Brinksmeier et al, 1999 & Howes 1990). 

Recently published research has taken place using various grinding wheel types to 

compare results using two different types of grinding fluid (water soluble 4% and a 

mineral oil), minimum quantity lubrication (MQL) and dry grinding. These results 

indicate that a policy of MQL was of benefit when addressing the related normal and 

tangential grinding forces and RZ (average peak to valley height) values (Uhlmann & 

Laufer, 1998). These results are correlated in Brinksmeier's report (1999). Here the 

inference was that although high grinding fluid delivery pressures could enhance 

surface finish and residual stresses, there was a possibility that the subsequent normal 

forces due to hydrodynamic pressures from the elevated flow rate and wheel 

circumferential speeds disrupted the cutting procedure. When higher cutting speeds 

were employed, damage to the diamond wheel resulted from thermal stresses and this 
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curtailed the experiments. When the cutting speeds were reduced to 30m/s and using 

MQL the forces transmitted were slightly higher compared to those at 15m/s. 

Uhlmann & Laufer (1998) reported that it had also been shown, in the case of dry 

grinding that damage had resulted from insufficient cooling of the work piece, and this 

indicated that a more efficient level of lubrication was desirable i. e. minimum quantity 

lubrication. It was noted that the surface roughness decreased with increased cutting 

speeds. The reason given for this was the smaller chip thickness. At higher cutting 

speeds energy is absorbed into the work piece material resulting in higher surface 

temperatures and hence an increase in material ductility and reduction in strength. 

2.5.4 Grinding Fluid Delivery Systems 

Webster et al (1994) suggest that the various types of grinding fluid delivery systems 

available today are proving to be highly scientific pieces of equipment, which require 

careful design and optimisation. The conventional flooding nozzles i. e. the shoe nozzle 

and the free jet types are at present the most common. Brinksmeier et al (1999) gave 

examples of different grinding fluid supply strategies which are presented in Figure 

2.20, in which QCL represents the flow rate of grinding fluid in each case. 
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Figure 2.20: Examples for grinding fluid supply strategies 

Other research areas have included the positioning of nozzles and their angles in 

relation to the wheels. Ebbrell et al (1999) showed that nozzles positioned at 
intermediate and tangential positions, as shown in Figure 2.21, resulted in a more 

uniform power requirement during the grinding process. 

Angular Position 
/ (15 deg from Horizontal) 

Wheel 
l Intermediate Position Tangential Position 

(6° from horizontal) (horizontal optional) 

Work piece 

Figure 2.21: Advocated nozzle set up 
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Klocke et al (2000) investigated experimentally and theoretically the magnitude of 

hydrodynamic force when using high speed grinding techniques. Using the Navier 

Stokes equations the calculated forces were compared to measured values. A 

reasonable correlation was noted and the results are shown in Figure 2.22. 
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4 

Figure 2.22: Comparison of Grinding Induced Forces 

Also the hydrodynamic force measured seemed to increase with an increase in flow rate. 

In a previous study Werner & Lauer-Schmaltz (1980) also investigated the shoe nozzle, 

and they found that with this low pressure option wheel loading could easily occur. 

This may indicate that the shoe could be a viable alternative to the modern practice of 

high-pressure nozzles if one nozzle were to be retained as a scrubber for the purposes of 

cleaning the wheel matrix. Brinksmeier et al (2000) also looked into these nozzles, 

using four different types of shoe nozzle each with a different design of guide vane. 

The nozzle type that gave indications of reduced fluid swirl was the straight vane 

design. This nozzle produced compressive residual stresses, in the workpiece, when 

used with a vitrified bond CBN wheel with a flow rate of 30 1/min. Also when the 

grinding fluid flow rate was reduced to 5 1/min no thermal damage was observed in the 

work piece microstructure. 
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Klocke et al (2000) compared grinding operations performed using shoe nozzles and 

free flowing nozzles. These trials showed that the use of shoe nozzles could reduce the 

grinding fluid flow rate by 75%, albeit when used on small Q', values of up to 

20mm3/mm. s. 

Ramesh et al (2001) investigated and reported some success in reducing grinding 

damage with a new shoe nozzle as shown in Figure 2.23. This design incorporated a 

scraper to reduced the boundary layer or air around the periphery of the wheel. The first 

drilling was designed to produced a back pressure so that when the actual grinding fluid 

is applied it adheres to the wheel and is drawn to the contacting surfaces. 

Air curtain 

CBN wrwhcel 

Coolant 
shot 

aý 

Grit id component 

Figure 2.23: Outline of Two Orifice Shoe Nozzle 

2.5.5 Contact Zones 

The contact zone between the wheel and the work piece has for a long time been 

identified as a critical factor influencing the ground surface integrity. Webster et al 

(1995) noted that the actual influence of a grinding fluid on the grinding process is of 

great importance. The function of the grinding fluid is to reduce friction and enhance 

swarf removal. There have been studies where the flow rate of the grinding fluid has 

been varied when using two CBN wheels relevant to the current research, namely, B 151 

and B252. The results showed that with an increase in flow rate of the mineral oil 
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grinding fluids from 100 1/min to 130 1/min, the forces normal to the plane increased 

dramatically. It was not stated if reducing the flow rate would have the reverse effect. 

(Brinksmeier et al 1993). 

2.5.6 Cooling Effectiveness 

Through work carried out by Rowe et al (2000) it was stated that the heat generated 

during grinding is conducted away via the work piece, the abrasive and the grinding 

fluid. Wang & Kou (1997) reported that it is also assumed that the total heat flux is 

uniformly distributed over the whole contact region. 

The implication of this study was that with adequate fluid injection into the contact 

zone, the grinding fluid would carry away most of the heat entering the contact area. 

Gu & Wager (1990) also considered that the variations in depths of cut altered the 

grinding fluid effectiveness, i. e. the deeper the cut the greater the temperature increase. 

Although the initial study in this area was based upon creep feed grinding techniques 

more research into this field would be of great benefit to HEDG. 

Campbell (1997) reported on a study in which sensors were used to develop the required 

amount of hydrodynamic pressure for the purpose of optimising a grinding process. 

Also in this study the same piece of equipment was used to test the efficiency of a 

number of nozzles of various sizes. This study concluded that when used in a shallow 

surface grinding environment, a 12mm diameter nozzle with a flowrate of 0.3ltr/min 

gave a higher overall cooling effectiveness compared to a smaller diameter nozzle using 

the same fluid flowrates. 

2.5.7 Grinding fluid Research 

Of the three oil types to be used within the confines of this project the mineral oil has 

the most environmental risks attached to it. 

If mineral oils are to be used with this process then development of successful minimum 

quantity lubrication strategies is therefore a priority. Nozzle design is a further area 
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where considerable developments could be of benefit. The importance of variables such 

as nozzle type, flow rate, delivery pressure and nozzle angle/position are all critical in 

the optimisation of the grinding fluid delivery system. 

In addition to technical requirements, aspects of toxicology and industrial medicine will 

exert an important influence on the formulation of future grinding fluids. The high 

disposal costs reported will inevitably rise further and this will be one way in which 

governmental controls will be wielded and should result in the use of products which 

incorporate environmentally friendly labelling, higher service life and constant long 

term properties as well as in better maintenance procedures. As biodegradability of oils 

becomes more widely required, the market demand should result in wider availability 

and cost reduction. Table 2.6 summarises in general terms the state of grinding research 

in the various fields of interest and ranges of general parameters used, volunteered by 

Prof. John Webster. 
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2.6 Evaluation of Surface Integrity 

This section reviews the techniques used and provides a background to the 

metallurgical analyses required for the characterisation of workpiece surfaces. Shaw 

(1996) stated that finished components have been studied since the 1960's and a 

number of reviews have taken place since, including Fields et al (1971 & 1974). 

2.6.1 Surface Characterisation 

Surface analysis encompasses many techniques to study various aspects of the ground 

surface. Each individual technique gives an insight to the quality of the finished 

component. Tönshoff (1992) reported that the surface roughness gave a keen measure 

of the quality of the workpiece. Also the morphology of the finished surface can 
indicate a number of machining induced imperfections such as chatter. These 

vibrations can be damped out by a number of means including using reduced feed 

rates, depths of cut and wheel speeds and also external parameters such as using softer 

wheels. 

2.6.2 Measures of Surface Roughness 

There are a number of main measures of surface roughness or texture which are 

chosen to highlight different aspects of the surface in question. Also different 

countries use different surface parameters as their own standard. 

Table 2.7 below gives an insight as to the variance of use for these parameters after 
Mainsah (2001). 

Parameter Country 

Designation 

Ra UK, USA & ISO 

Rq UK, USA & ISO 

R, Germany & Russia 

Parameter Description 

Average Roughness 

Root Mean Square Roughness 

Maximum peak to valley height 

Table 2.7: The Main 2D Surface Roughness Parameters 
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There are numerous surface measures used around the world but as stated by Mainsah 

(2001) only a few have been fully accepted by all. The main surface measures are 

described here and more in depth descriptions and explanations can be found in the 

relevant international standards, these being ISO 4287,1996; ANSI/ASMEB46.1, 

1985 and DIN 4772,1979. 

The average roughness of a surface is called Ra and it measures the absolute 

roughness as the deviation of the profile from a mean line. 

Ra is derived as: 

Ra =1LL 
fI zldx 
0 Eqn 2.1 

Rq is used as a measure of the root mean square deviation of a profile about a mean 

line. 

Rq is derived as: 
L 

Rq =1 
jz2ldx 

Lo Eqn 2.2 

Rt is another common measurement and is described by Mainsah (2001) as being an 

extreme value parameter. Rt is the height between the lowest and highest points of 

the surface in question. This measurement is therefore susceptible to significant one 

off anomalies. 

Examples of the measurements not described here but that are available in the 

international standards are measurements for slope, skew and average curvature of a 

surface. 

There are a number of three dimensional measurements also available to both measure 

the surface quality and map the surface topography of samples. Although there is no 

international standard for these measurements there are a number, which are being 
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accepted internationally. These include Sa, which is used to denote the three 

dimensional equivalent of Ra and Sq which has the same relationship to Rq. 

2.6.3 Sub-Surface Characterisation 

Fields & Kahles (1971) describe how samples should be cut, polished and etched so 

that the grain boundaries of the samples can be studied. 

Tönshoff (1991) stated that the influences of mechanical and thermal effects arising 

from grinding a material's surface and sub-surface grain structure are described by the 

surface and sub-surface analysis of a sample. In order to view the grain structure of a 

sample normally involves mounting and polishing the surface to a mirror like finish 

through various processes and examining light reflected from it at magnifications of 

50 to 1500. If the surface is lightly chemically etched in an appropriate solution, the 

grain boundaries and constituent phases will be attacked at different rates and will be 

visible. This makes it possible to establish which phases are present as well as their 

shape, size, and distribution. Metallography is of particular value in the analysis of 

samples which have failed or have performed in an unexpected manner. 

Another technique of sub-surface integrity is the Vickers Hardness Tester. Devised in 

the 1920's by engineers at Vickers, it was designed to measure the hardness of a 

material which was calculated from the size of an impression produced under load by 

a pyramid-shaped diamond indenter. The pyramid, whose opposite sides meet at the 

apex at an angle of 136°, is pressed into the surface of the material at loads ranging up 

to approximately 1000 grams-force, and the size of the impression is measured with 

the aid of a calibrated microscope. 

The Vickers number (HV) is calculated using the following formula: 

HV = 1.854(Load/mm2), 

The applied load is usually specified when HV is cited. The Vickers test is reliable 

for measuring the hardness of metals, and it is also used on ceramic materials. 
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2.6.4 Microstructure Changes 

The area of micro structural change during grinding has been well documented by a 

number of authors. Shaw et al (1993) and Shaw (1996) discussed the minimum 

carbon content in steel to be 0.25% by weight in order to obtain untempered 

martensite. 
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Figure 2.24: Equilibrium phase diagram for Fe-C. 

Figure 2.24 shows the equilibrium phase diagram for Fe-C and indicates where the 

martensitic transformation begins (MS) and ends (Mf). The critical temperature 

relating to over temper burn or the onset of an over tempered region was found for 

ferrous metals in general to be in the region of 450-500°C (Rowe et al 1995). 

McCormack (2001) outlines the effects of abusive grinding in relation to its effects on 

the surface of EN31 steel with regards to hardness, martensitic transition temperatures 

and residual stresses. Figure 2.25 illustrates the changes in molecular structure 

between alpha and gamma iron. 

Shaw et al (1993) and Shaw (1996) describe how during this transition period the 

ferrous material undergoes a substantial phase change at a rapid rate. The plastic 
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deformation during the grinding process of y iron along with the heat generated 

produces an extremely fast reaction time to produce untempered martensite in the 

region of 0.1µs. 

Figure 2.25: Cells of a) Ferrite and b) Austenite 
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Also Chen et al (2000) states that when abnormally high temperature ranges are 

experienced the added disadvantages of thermal expansion and contraction and 

ultimately phase changes within the material could be witnessed. The phase changes 

could interact with these expansions and contractions which could lead to localised 

fractures at or near the surface. 

2.6.5 The X-Ray Diffraction Residual Stress Measurement Technique 

When a component is manufactured some of the energy expended becomes trapped 

within the structure of the component in the form of residual stresses. As Chen et al 

(2000) states these residual stresses are formed due to Hertzian compression and shear 
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forces produced by the action of the grains. These stressed areas may be contained 

within the grains of the material and are called micro-stresses, or if a large volume of 

material is stressed in this way, and as such encompasses more than one grain of 

material, they are called macro-stresses. 

Residual stresses can be induced through thermal or mechanical processes or a 

combination of both. The final design criteria to which the component must conform 

would dictate the allowable magnitude and sign of acceptable levels of residual stress. 

All these considerations should be taken with regard to the level of significance on 

each individual component's service requirement. 

Prevey (1986) states, "The residual stress determined using x-ray diffraction is the 

arithmetic average stress in a volume of material defined by the irradiated area. " X- 

ray diffraction (XRD) methods of residual stress measurement have been used for a 

number of years particularly in the automotive and aerospace industry. Tönshoff et al 

(1992) mentions that the magnitude and sign of residual stress in the material surface, 

are the best indicators of the thermal and mechanical influences on the surface 

integrity. Kruszynski et al (1991) also endorsed the use of residual stress 

measurement as being the most representative parameter of all the properties in the 

surface layer created by grinding. Shaw et al (1996) stated that although residual 

stress measurements gave an indication of the stress regimes involved on the surfaces 

of the workpiece, he warned that these results could be misleading as to the real sub- 

surface residual stress picture. 

It is a well-known fact that the measurement of stress can be described as a misnomer 

as stress is quantified by the measurement of some other intrinsic property such as 

strain. Hooke's Law relating Young's Modulus of Elasticity, calculated stress and 

measured strain is shown in Eqn 2.3: 

o- 
E Eqn 2.3 

42 



LITERATURE REVIEW 

Where : 

E is the Young's Modulus of Elasticity 

Eis the measured strain 

6 is the calculated stress 

Eqn 2.3 is normally used in some form or other to describe the mechanical properties 

of materials. The only major difference with other means of stress calculation and X- 

ray diffraction (XRD) techniques, is that with this highly controllable source of X rays 

and detection, minute changes in stresses within the crystal lattice plain can be 

detected. 

The measurement of residual stress at the surface of the specimen requires the 

following assumptions to be made: 

¢a condition called plane stress is present 

¢ the major principal stress is in line with the machined surface 

Plane stress is when the stresses are present in the x and y direction but the third axis, 

being z, has a value of zero. The largest principal stress (61) is parallel with the 

grinding direction. 

2.6.5.1 Bragg's Law 

Figure 2.26 shows waves 1 and 2, in phase with each other, glancing off atoms A and 

B of a crystal that has a separation distance d between its atomic, or lattice, planes. In 

this case the number (n) of full wavelengths in question is 2. The reflected angle is 

equal to the incident angle. The condition for the two waves to stay in phase after 

both are reflected is that the path length CBD be a whole number (n) of wavelengths. 

Also, CB and BD are equal to each other and to the distance d times the sine of the 

reflected angle, or d sinO. 
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Figure 2.26: Bragg Diffraction Model 

Thus, Bragg's law is shown in equation 2.4. 

nX = 2d sinO Eqn 2.4 

2.6.5.2 Basic Residual Stress Measuring Techniques 

Of the four basic styles of residual stress measurement the two angle technique (sin 2`P 

technique) is widely used in the United Kingdom and Europe. This technique 

measures the lattice spacing between a maximum and minimum range of the angle 
2theta for a number of 'P angle tilts, an example of which is shown in Figure 2.27 

(after Prevey 1986). Once the full angular range has been analysed the 'P angle is 

changed so that further lattice structures will be perpendicular to the emitted X-rays. 

In this way the maximum amount of information relating to any changes in the d- 

spacing can be gathered over a wide range of Y tilts. 
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Figure 2.27: Principles of X-Ray Diffraction Stress Measurement 

Prevey (1986) describes the sin2`Y technique as being widely adopted and states that it 

can be used with samples with polycrystalline structures of either metallic or ceramic 

structures with a moderate to fine grain size. 

McCormack (2001) stated that depending upon the stress regime within a component, 

the magnitude and sign would dictate the life and quality of the component. The 

onset of tensile stresses was noted to be around a critical stress temperature of 

approximately 250°C for EN31 steel. Chen et al (2000) also investigated this and 

found for a medium carbon steel such as EN9 the transition temperature was found to 

be around 200 °C. This was concurred by Mahdi & Zhang (1996) who stated that the 

onset of thermal deformation, and therefore residual stress regimes, was around 300°C 

for EN23 steel when using shallow cut reciprocating grinding processes. 

Osterle et al (1997) investigated the effects of creep feed grinding on IN738 nickel 

superalloy material using corundum abrasives and CBN superabrasives. When 

grinding with CBN grits the microstructure showed that micro cracking had occurred 

in a re-deposited layer at the surface, and that this layer was only a few microns thick. 

This was confirmed in the residual stress measurements where an easily removable 

layer had slight tensile stresses. In a further study Osterle et al (1999) studied the 

effects of grinding a cast nickel based superalloy under different grinding conditions. 

It was found that although the lubrication delivery system was one of the top priorities 

due to the low thermal conductivity, the use of CBN superabrasives induced a greater 

magnitude of compressive stress. These previous studies correlated well with work 
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carried out by Matsuo et al (1987) which indicated that when comparable grinding 

parameters were used, tensile stresses were evident when the grinding medium was 

white alumina and compressive stresses were evident with the use of both CBN and 
diamond superabrasive grits. 

2.6.6 Barkhausen Noise Amplitude 

With the advent of more sophisticated amplifiers, the Barkhausen Noise technique has 

become a more viable alternative to X-Ray Diffraction (XRD) techniques for the 

quality control of manufactured parts. Barkhausen Noise Analysis, which has also 

been referred to as the Magneto-elastic or the Micro-magnetic method, is based on a 

concept of an inductive measurement of a signal that is generated when a magnetic 
field is applied to a ferrous metal sample. The German scientist Professor Heinrich 

Barkhausen explained the nature of this phenomenon in 1919 and the technique was 

subsequently named after him and the signal is called Barkhausen Noise. 

L Orgi gal Barkhausen set-up (1919) : 

iron core 
o 0.5 -1 mm wire 

l1 fl 

70 

r 
^lý 

mirror 
gaivanometer 
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Loudspeaker 

permanent moving direction coil amplifier 
magnet of the permanent o 25 mm 

magnet 300 turns 

Figure 2.28: Historical Barkhausen Noise Set Up 

Figure 2.28 shows the set up used by Prof. Barkhausen, after Karpuschewski, (2000). 

Barkhausen was the first to note that the changes in magnetic field due to the 

rearrangement of Bloch-wall domains were not a gradual one but rather a series of 

jumps (Barkhausen 1919). 

This phenomenon is described in the next section which also investigates the use of 

this technique with regard to the measurement of stresses and micro-structural 

changes induced by grinding. 
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2.6.6.1 The Barkhausen Noise Effect 

Ferromagnetic materials consist of small magnetic regions called domains. Each 

domain is similar to individual bar magnets which are magnetized along a natural 

crystallographic direction and any change in the elastic energy induced by an AC 

current will induce a stress regime within the microstructure of the material. The 

domains are separated by boundaries known as Bloch Walls. It was Barkhausen who 
first noticed that these walls do not have a gradual motion, when polarity changes 

occur through magnetic inducement, but rather a jerky or jumpy one. 

An alternating current induced magnetic field causes these Bloch Walls to oscillate, 

and for this to take place changes in grain size has to occur. The same is true for an 

axial tensile load being applied on the ends of a bar; the bar elongates in the direction 

of the load and reduces in diameter perpendicular to the load. These changes in grain 

size alter the magnetic field strength induced in the sample. These alterations in the 

mechanical properties of a piece of steel are felt in shifts in the stress fields within the 

specimen. Karpuschewski (2000) stated that the Barkhausen output is damped by two 

occurrences, firstly the existence of compressive stresses within the domains and 

secondly the material properties dampen the output, for example materials which are 

of high hardness such as high speed or tool steels. 

2.6.6.2 Applications of Barkhausen Noise Analysis 

The surface treatment of a material can affect the Barkhausen output, be it heat 

treatment after material production or mechanical metal removal. It has been widely 

documented that Barkhausen Noise Techniques have been used as non-destructive 

testing (NDT) for the location or existence of surface and sub surface abnormalities 

within a component. Gupta et al (1996) carried out an extensive study in which it was 

found that a good correlation existed between the Barkhausen effect and visible 

thermal damage on the surface of ground steels. 
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Figure 2.29: Comparison of BNA readings from damaged and undamaged samples. 

Fix (2000) investigated the effects of thermal damage on ground steel crankshafts 

using the Barkhausen Noise response as an output. He found an excellent 

correspondence between BNA and the variable intensity of grinding burn quantified 

by Nital etch. These results are shown in Figure 2.29. Hallet (2000) also utilised the 

BNA effect to optimise the lubrication system of a grinding process using the BNA 

output as a guide as to the efficiency of the process used when varying different 

parameters. Hillman (2000) investigated induction hardening depth making 

comparisons between Eddy Current techniques and Barkhausen Noise. 
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Hillman reported that a good correspondence was noted between the two techniques 

and when a qualitative analysis was made putting the BNA Rollscan output into five 

categories an uncertainty level of ±0.4mm was noted. 

During a study by Desvaux et al (1999) it was also concluded that there was a 

reasonable correlation between XRD measurements and the Barkhausen Noise effect. 

This is shown in Figure 2.30. 
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Figure 2.30: Correlation between Barkhausen Noise and XRD Measurements 

The Barkhausen Noise concept is becoming more widely acclaimed as a legitimate 

NDT method alongside the more quantitative techniques. As further research is 

carried out and the results are shown to be repeatable; the mobility of the equipment, 

speed of testing, reliability of the readings, ease of use and the amount of training 

required could make this method of NDT more attractive to a wider range of 

manufacturers. 
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2.7 Thermal Modelling 

There have been a number of reports / studies carried out regarding the thermal or 

thermally connected aspects of grinding. These have covered a myriad of individual 

subjects but all have included the three basic components of the grinding system: the 

work piece, abrasive and cutting fluid. 

2.7.1 Historical Overview 

The initial theoretical temperature-measuring model was published by Jaeger (1942). 

This model was designed to describe grinding with constant feed rates, light depths of 

cut and the assumption that the majority of the heat generated by the sliding heat 

source enters the work piece. The model predicts the temperature of sliding contacts 

assuming a moving source of heat and is shown Equation 2.5. 

0.754 
Ruvd 

,6 vl Eqn 2.5 

where: 

0 Mean surface temperature 

R Energy partition coefficient 

u Specific grinding energy 

v Feed rate 

d Depth of Cut 

1 Wheel / workpiece contact length 
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ý3 = (kpc)o. s 
Eqn 2.6 

and ß is defined by equation 2.6, relating to the workpiece thermal characteristics as 

follows: 

k Thermal conductivity 

p Density of material 

c Co-efficient of heat capacity 

The Jaeger model relates temperature to the specific grinding energy. Malkin (1974) 

suggested that the total specific grinding energy u may be considered in terms of 

several components, a chip formation energy due to cutting Uch, a ploughing energy 

up, and a sliding energy us,, in the form of. 

u=uch +upl +U 1 Eqn 2.7 

Malkin shows that the ploughing and sliding energies may be expressed in terms of 

the grinding variables such that equation 2.8 can be derived as follows: 

u= it + Bdel4ac-3/4vw1 /2 
Eqn 2.8 

Where: 

uo = 0.45uch Eqn 2.9 

Note: de represents effective wheel diameter, a, depth of cut and vw feed rate. 

A plot of specific grinding energy against the function f= (de /`ýaC-3/4v, 
v1/2 

) should 

yield a linear relationship with the gradient determined by the grinding temperature as 
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shown schematically in Figure 2.31. Malkin (1974) also reported that a line denoting 

the boundary between damaged and undamaged specimens can be drawn and the 

gradient of this line is proportional to the constant maximum grinding zone 

temperature. Therefore any set of parameters used that resulted in any point being 

mapped above this line would produce a damaged workpiece. 

Figure 2.31: Lines of constant grinding zone temperatures. (after Malkin) 

The validity of this approach has been demonstrated by Mayer et al at the University 

of Texas (1999) and Stephenson et al (2001). An example is shown in Figure 2.32 

that depicts the boundary condition between burn and no burn regions for ground X53 

steel. 
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Figure 2.32: Specific Energy U versus f(da, v, ) for X53 steel 

Rowe et al (1995) concluded an experimental investigation into the heat transfer in 

grinding by stating that the partition ratio for CBN grit was lower than aluminium 

oxide abrasives. Also that the effective thermal conductivity of CBN grains was 

within a range of 87-240W/mK which was significantly lower than the theoretical 

value of 1300W/mK used at that time. This gives an indication of the amount of heat 

generated, and which is conducted away from the workpiece using this superabrasive. 

There have been many studies into mathematical modelling of the grinding process 

and the temperature partitions therein. Wang et al (1998) reported that the during 

creep feed tests the fraction of total grinding energy entering the work piece reduced 

due to the high depth of cut and low work piece feed rate. This is in line with the 

characteristic temperature to specific material removal rate curve, on which the rise in 

temperature eventually reaches a critical value where burn is inevitable. 

Guo et al (1999) investigated the energy partitioning when grinding with vitrified 

CBN wheels. Using the moving heat source theoretical temperature equation by 

Carswell & Jaeger (1942) experimental means were used to evaluate the energy 

partitioning coefficients using an AISI 52100 bearing steel with a Rockwell C 

hardness of 60. Energy partitions were found to be within a range of 4.0% - 8.5%. 
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Many assumptions have been taken from this model including one from Outwater and 

Shaw (1952). Here the assumption was made that 65% of the shear energy was 

removed with the chip while 35% flowed into the work piece. 

Hahn (1955) deduced that Outwater & Shaw's reasoning was flawed due to the total 

amount of energy witnessed during grinding which could not be dissipated using 

Outwater & Shaw's theories. He noted that there had to be sliding between the work 

piece and grain, which would account for this energy. At this point we have the first 

indication of the modern idea of grinding where it is generally accepted that there is 

ploughing, sliding and chip forming energies associated with the grinding process. 

Rowe realised that HEDG did not have the same characteristics as shallow grinding as 

the finished surface could be a reasonable distance form the contact surface. To this 

end Rowe (2000) published his ideas using an inclined plane, to depict the contact 

length, as shown in Figure 2.33. Rowe used Equation 2.5 and introduced a new co- 

ordinate structure to predict temperatures of both finished and contact surfaces at any 

point along the contact length. 

Grinding Direction 
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Figure 2.33: Inclined heat source. 
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Further work by Rowe (2001) refined the model by Carslaw & Jaeger (1959), into the 

form as shown in Equation 2.10. 

U(X-acosl) 2Z2 

T_ 
'/ qe 2a K 

{v{(x 
-a cos ýý + (z 

-a cos ýý 
1da -ý o 2a Egn. 2.10 C/2 

where: 

T Calculated temperature in degrees Centigrade 

q Average heat flux along the length of the contact length 

e Exponential function 

k Thermal conductivity of the workpiece 

Ko Bessel Function of the Second Order Zero 

lc Contact length 

v Feed rate 

xX co-ordinate 

zZ co-ordinate 

(P Grinding angle 

a Workpiece thermal diffusivity 

This expression takes into account a number of fluctuating parameters such as how 

the heat source q alters throughout the contact zone. 

In the case studies carried out by Rowe (2000) it was apparent that only a percentage 

of the total heat generated entered the workpiece. This is generally known as the 

energy partition ratio. 

In a later paper Rowe & Jin (2001) further refined equation 2.10 to take into account 

the circular geometry of the contact length (Equation 2.11). This new concept is 

shown in Figure 2.34 after Rowe & Jin (2001). 
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where: 

T Calculated temperature in degrees Centigrade 

q Average heat flux along the length of the contact length 

e Exponential function 

k Thermal conductivity of the workpiece 

Ko Bessel Function of the Second Order Zero 
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Figure 2.34: Circular Arc Heat Source 
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This paper gave the equation for the heat flux to be as follows: 

q=q (n + 1)(1; / 1, ) Eqn. 2.12 

Where n=0 for a uniform heat source and n=1 for a triangular heat source. q is the 

mean heat flux along the total contact arc AFB. 

The calculated outcome of Eqn 2.11 can be expressed as a dimensionless number 

when using the following expressions: 

X= vfx 

4a Eqn 2.13 

Z=vfz 
4a Eqn 2.14 

The Peclet Number is calculated using: 

L= of 1C 

4a Eqn 2.15 

Where: 

xX co-ordinate 

zZ co-ordinate 

of Feedrate 

a Workpiece thermal diffusivity 

IC Contact length 

2.8 Adaptive Control Systems 

The concept of adaptive control is to constantly update grinding parameter input to an 

electronic controller, in order to automatically maintain or achieve higher grinding 

performance in comparison to basic manual control methods. 
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There have been a number of studies carried out into various types of adaptive 

control. Shaw (1975) carried out a study into the cost savings made possible when 

more control of the grinding parameters were set. Through various methods he 

concluded that there were indeed major efficiencies to be made, albeit concessions 
had to be made regarding total wheel and total grinding process costs. Shibata et al 
(1980) reported that by using two parameters such as feed rate and depth of cut in a 
feedback loop via a computer, the conveyer-type belt grinding process could be 

controlled to give a more predictable output. Malkin & Koren (1980) used a 

computer to record the responses from a plunge grinding process and investigated 

how these affected the next set of results. In such research it was found that the 

results suggested a 70% improvement in the process metal removal rate when the 

burning power limit was kept below its maximum value. Malkin (1981) interfaced a 

cylindrical grinder to a computer where the parameters, work, wheel speed and in- 

feed were constantly upgraded by the computer which received grinding power data 

on a continuous basis. Malkin stated that this system maintained a faster in-feed and 

wheel velocity, which resulted in a higher quality surface finish and reduced the 

roughing time through the accelerated spark out conditions. Lezanski et al (1993) 

undertook research using a multi sensor approach on a cylindrical grinding platform 

using vibration, out of roundness, normal and tangential forces and acoustic 

emissions. It was stated that the reduced out of roundness error in the finished 

components was a major achievement but also that more work was required in this 

area. 

Varghese et al (2000) researched the concept of an intelligent wheel design. The 

wheel had an integrated acoustic emission sensor and a force sensor and showed that 

this type of intelligent equipment could be of major use in the overall application of 

adaptive control systems. 

2.9 Summary 

As previously described HEDG is a fast metal removal procedure and as such requires 

a lubricating grinding fluid in the contact zone. Because there is less time for a build 

up of heat there is a smaller requirement for cooling, and it is the reduction in friction 

that is more important. If mineral oils are to be used for grinding processes such as 

HEDG, then ecological considerations will dictate that the quantities of these 
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lubricants being used must be reduced to far lower quantities than current levels. The 

development of successful minimum quantity lubrication strategies for high speed 

grinding and HEDG are therefore a priority. 

Nozzle design is a further area where developments could be of considerable benefit. 

The importance of variables such as nozzle type, flow rate, delivery pressure and 

nozzle angle/position are all critical in the optimisation of the grinding fluid delivery 

system. It is reported in various papers and has been witnessed in the current Edgetek 

programme, that the hydrodynamic forces pose a severe threat to the quality of the 

finished work piece. 

This literature survey has shown a distinct lack of previously published material 

regarding HEDG and the practices used within the process. It has highlighted areas 

where research could contribute significantly to its understanding and these areas 

include correlation between responses to measured outputs such as temperature and 

residual stress measurement, assessed by the use of Barkhausen noise levels. 

Adaptive control techniques could benefit the overall use of HEDG if advances of 

knowledge of the process led to the development of a working model for CNC 

grinding centres. 

Thus the aim of this project has been to understand the mechanism of HEDG such 

that process parameters can be optimised to assess maximum material removal rates 

together with acceptable surface integrity. 
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CHAPTER 3 THE EDGETEK 5-AXIS GRINDING CENTRE 

The previous chapter developed the up to date literature of the day and presented this 
data in such a way as to clarify where the research should be guided. This chapter 

sets out and discusses the prerequisite testing methodology carried out in this study in 

six parts. Part 3.1 describes and gives the specifications of the Edgetek Grinding 

Centre, Part 3.2 explains the experimental procedure used, 3.3 views the calibration 

techniques. Part 3.4 investigates the first moae of natural frequency, with 3.5 

discussing the static loop stiffness results, with the idle power tests described in Part 

3.6. Finally the chapter is summarised in Part 3.7. 

3.1 The Edgetek Grinding Centre 

The Edgetek Grinding Centre is shown in Figure 3.1 and a manufacturer's 

specification is given in Table 1.1 

The Edgetek grinding centre is a5 axis grinding machine with a 26k\V spindle and 

runs from 0- 14000rpm. The base and column are manufactured from a cast- 

polymer material which absorbs vibration from heavy cutting forces more effectively 

than cast iron. The Ed`etek's Standard Specifications are listed in Table 3.1. 
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X-Axis Travel 

Y-Axis Travel 

Z-Axis Travel 

B-Axis Rotary 

5 ̀h Axis 

Spindle Power 

Spindle RPM 

Way System 

Position Feedback 

Feedrate 

427mm 

350mm 

305mm 

317.5mm Diameter 

A or Rotary tilt versions 

27kW Standard up to a 50kW maximum 

14,000 rpm, higher rpm's available 

Schneeberger Hi-precision Linear Roller Bearing Ways 

Heidenhain Linear Scales on X, Y &Z 

0 to 66mm/s 

Rapid Traverse 0 to 126mm/s 

Voltage 200-230 volts 3 phase 50Hz 

Machine Weight 6800kg 

GE Fanuc 16M CNC Control 

Hand held Manual Pulse Generator 

Air/Oil Mist Lubricated Ways and Spindle Bearings 

Air Line Dryer 

Two Zone Programmable Coolant Valves 

Full Splash Guard Enclosure 

Slideways ± 0.005mm per 300mm positioning 

0.005mm per 300mm repeatability 

0.001 mm resolution 

B Axis Rotary ± 20 ARC seconds 0.001' Resolution, 360,000 positions 

Table 3.1: Standard Edgetek Specifications 
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3.2 Experimental Procedure 

During the initial four months of this programme after the machine was delivered to 
Cranfield University and commissioned in October 1999 initial work concentrated on 
the following: 

¢ Modification of the machine including grinding fluid supply system, 

power measurement and force measurement 

¢ Calibration of axis movements 

¢ First mode of natural frequency 

¢ Measurement of static stiffness 

¢ Quantify Power required to Maintain Spindle Speeds 

It was only when this phase was complete could a steady foundation be relied upon 
for the main experimental and analytical stages. 

Using the above areas of research it will be shown that the HEDG process is viable 
for the materials tested and the derived temperature model is a functional and 

worthwhile tool. 

3.3 Calibration of Axis Movements 

Tests were carried out to ascertain if any backlash was present in the system and in 

particular the X, Y and Z axes. This was done by moving the cross-slide using the 

hand wheel control and ensuring that a calibrated capacitance gauge registered this 

movement. The position of the digital read out was noted and another movement was 
initiated. When this second movement registered the system was stopped 
immediately. The difference between the two digital readings would indicate the 

backlash in the system. 
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The incremental procedure was as follows. An input of 4 microns was requested and 

the actual movement registered by the capacitance gauges was then noted. Therefore 

any difference between the digital read-out and the capacitance gauge would infer an 

error. 

Carriage tests were carried out between the two gauges, the distance between the pair 
being 90mm. The capacitance gauges were zeroed to one specific point either side of 

a parallel spacer. As the readings were taken together, and averaged, this ensured that 

the travel between each gauge could be monitored and any error halved between the 

two readings. The spacer was earthed to the control unit to reduce any spurious 

readings. 

All the results from these tests were within the limits stated by the machine 

manufacturer. 

3.4 First Mode of Natural Frequency 

Natural frequencies within an assembly are areas of frequencies, which resonate 

together to cause vibrations of high amplitude. Natural frequencies are always 

present and so with respect to machine tools the aim was to find where they are and if 

possible to avoid them. 

In accordance with the classical approach as described in BS 6897 Part 2 1990, a 

shaker unit was independently mounted from the machine so as to have no influence 

on the frequencies sensed. The procedure for this test was to use the shaker to excite 

the spindle over a range of frequencies with the output being sensed by an 

accelerometer and then compared to the input. When this output reaches an 

extraordinary high peak and the phase angle changes by 180°, this is the first mode of 

natural frequency. It was hoped to test the machine further up the frequency range to 

ascertain the second and perhaps the third mode. 

The set up was initially used with an input range of 100mVpk to 800mVpk. Two 

resonating frequencies were detected, these being at 456.7Hz and 1.34kHz. However, 

these were both higher than the specification for the Edgetek spindle. The actual 

frequency range being explored was narrowed to the Edgetek machine's fundamental 

63 



THE EDGTEK 5-AXIS GRINDING CENTRE 

operating range (0-14,000 rpm), which equated to 0Hz up to 233Hz. With no further 

resonating frequencies being found an independent force dynamometer was 

incorporated into the system in an attempt to maximise any vibrations. 

Again no discernable vibrations were noted, therefore the equipment used was not 

sensitive enough to detect the vibration. Attempts were made to procure a larger 

shaker unit but none was available. 

3.4.1 Spindle Frequency Test 

Additional frequency tests were carried out using the spindle motor essentially as a 

shaker with an eccentric load. Via a program the spindle motor was driven up 

through 0- 7000 rpm, while the frequency waveform was monitored. Throughout 

this procedure no significant dynamic change in vibration amplitude was noted. 

3.5 Static Loop Stiffness 

Zhang (2001) clearly stated that one of the most important parameters which affect 

the workpiece integrity of a grinding process is the machine loop stiffness. The static 

loop stiffness measurement of the Edgetek machine was designed to indicate the 

stiffness of the machine as a complete unit. This test was carried out using a 

Micrometer screw, capacitance gauges and the force dynamometer. 

Figure 3.2 illustrates the set-up used to find the static loop stiffness which is advised 

by BS 6897: Part 2. When a function was performed then any deformation or 

deflection, between the spindle and work piece, was deemed a movement of the 

machine as a whole. 
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Figure 3.2: Static Loop Stiffness Setup 

The calibration procedure for the Kistler dynamometer was as follows. The software 

was initiated and calibrated weights were placed on the dynamometer. From a 

starting point of zero the lkg increments were used up to a maximum of 5kg. A large 

amount of time was allowed to elapse to test the equipment for any leakage from the 

piezo crystal. The plot shown in Figure 3.2 shows the forces registered from the 

applied weights. 

Kistler Dynamometer Calibration Tests 
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Figure 3.3: Kistler Dynamometer Calibration Chart 
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A steel plate was manufactured which incorporated a hole of the same diameter as the 

wheel arbor. The plate was fitted initially to the front of the arbor and so the neutral 

axis lay 10mm from the inner edge from the front of the arbor. Also a LVDT was 

magnetically clamped to the Y axis and positioned and zeroed. The steel plate was 

then positioned onto the top surface of the Kistler Dynamometer. A slight pre-loading 

was introduced by lowering the spindle/plate to make contact with the Kistler unit in 

order to reduce any shock loading of the unit. 

With the equipment in place a number of `bedding-in' oscillations were performed. 

This was to reduce the possibility of hysteresis affecting the results. The spindle was 

then lowered 5µm and then returned to the starting position, then lowered 10 µm and 

returned to the starting position. 

This procedure was repeated up to and including 50µm movement. During this time 

the actual deflection was recorded using a calibrated LVDT, and the forces exerted 

were recorded using the Kistler Dynamometer. The difference between the actual 

movement of the spindle and the requested movement equalled the deflection within 

the machine as a whole. This procedure was repeated for various positions along the 

arbor and the results are shown in Figure 3.4. The illustration of the arbor used 

behind the graph is not drawn to scale and is purely for information purposes only, to 

show the loop stiffness at various points along the length of the arbor. 
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Loop Stiffness Range along Length of Wheel Arbor 
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Figure 3.4: Static Loop Stiffness Results 
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Figure 3.5: Static stiffness Values Along Arbor 

In theory the stiffness should vary according to the cubed distance along the arbor. 

Figure 3.5 shows the linear relationship obtained for the present set-up. 

The initial grinding fluid system, shown in Figure 3.6, was judged to be inefficient in 

providing a laminar flow of grinding fluid as a turbulent flow was noted. Therefore it 

was also apparent that the nozzle design was ineffective in directing the grinding fluid 

flow directly into the grinding zone. The datasheets for the three grinding fluids used 

are shown in Appendices L to N. 
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A new system was designed and manufactured in an attempt to overcome these 

shortcomings. The new system is shown in Figure 3.7 and includes a new nozzle 

design provided by Webster & Cui (1995). The main features of the new system were 

that the nozzles position in 3 axes and the laminar flow nozzle diameter could be 

closely controlled. Also shown in Figure 3.7 is the specimen shroud. This piece of 

equipment was deemed necessary as the high pressure grinding fluid dislodged the 

specimen from the vice holding it. Therefore the shroud reduced the amount of 

grinding fluid to the underside of the specimen. 

Figure 3.7: The Modified Grinding Fluid Delivery System 
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3.6 Idle Power Requirement 

With any unknown process there lies a requirement to know the power required to 

maintain a certain desired velocity of the grinding fluid. This was simply done by 

running the wheel up to a desired speed waiting 10 seconds for any fluctuations in the 

readings to subside and taking a power reading. The spindle power was measured 

using a Universal Power Cell, which utilised three balanced Hall Effect devices. Each 

device sensed changes in phase and after applying a vector multiplication of the 

current flow and voltage the output is shown via a calibrated multi-meter in percent of 

total spindle power. The results are tabulated in Table 3.2 and the results are shown 

in Figure 3.8. 

Wheel 

Speed 

(rpm) 

Power 

Required 

(% of 27kW) 

Wheel 

Speed 

(rpm) 

Power 

Required 

(% of 27kW) 

0 0 0 0 

1000 0.06 8000 4.30 

2000 0.50 9000 5.00 

3000 1.40 10000 5.50 

4000 2.10 11000 6.10 

5000 2.70 12000 6.70 

6000 3.10 13000 7.40 

7000 3.60 14000 8.20 

Table 3.2: Results from Idle Power Test 
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Power Required to Sustain Given Speed 
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Figure 3.8: Plot of Idle Power to Speed Maintained. 

3.7 Summary 

Although these tests took up valuable time and resources, it was deemed important to 

ensure that the following experiments were based upon sound scientific facts. The 

next chapter sets out the grinding trials that investigated the HEDG grinding method 

in greater depth with a view on how the HEDG process performed with different 

materials. 
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CHAPTER 4 EXPERIMENTAL TECHNIQUE 

It was noted that the grinding process was in itself a dynamic procedure, i. e. the system 

responses were varying as the system functioned. A few examples of these parameter 

changes are a variance in the viscosity of the fluid with the build up of heat, the 

inclusion of grit particles within the fluid and the formation of wear flats on the grits. 

The sponsors of the program wished to clarify the influence of various aspects of the 

grinding process and initially laid out predefined tasks which are shown in Appendix A. 

All grinding tests were undertaken on M50 bearing steel and IN718 nickel superalloy 

using an Edgetek 5 axis superabrasive grinding centre. Electroplated CBN grinding 

wheels (B151) supplied by Winter were used for the various test conditions. The 

grinding fluid (a mineral oil Castrol Variocut 600SP) was applied in the form of a free 

jet using circular nozzles designed to provide laminar flow conditions. The range of 

grinding conditions used is summarised in Table 4.1. 

Depth of cut (mm) 0.1 - 10 

Work speed (mm/s) 0.5 - 125 

Wheel speed (m/s) 50 - 135 

Specific Material Removal Rate (mm3/mm. s) 0.1 - 1250 

Table 4.1: Range of conditions used for grinding trials 

The initial grinding tests used blocks of both materials measuring 40 x 40 x 100 mm in 

the down grinding mode. Each test consisted of a series of cuts, between 3 and 15 mm 

wide. Grinding forces were measured using a3 axis dynamometer and the total 

grinding power monitored using a Hall Effect probe. The net grinding power was 

estimated by measuring the power under spark-out conditions and subtracting this from 

the total power. For deep cuts, the "spark out" power was measured during an 

interrupted cut so that the additional power consumption due to the hydrodynamic effect 

of the grinding fluid over the full contact length could be quantified. The net grinding 

power was used to calculate the specific grinding energy. 
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Following grinding, the surface integrity of each test piece was evaluated for burn and 

residual stress. This included surface finish measurement using a Talysurf and visual 

observation of the ground surface to determine the extent of oxidation. Sections were 

also taken through the ground surface, normal to the grinding direction, to assess micro- 

structural changes and to measure micro hardness profiles. Residual stress was 

measured for selected workpieces using a Siemens D500 diffractometer with Brucker 

software. 

The measured values of specific grinding energy were used to predict the finished 

workpiece surface temperature using the circular arc of contact model and the predicted 

temperatures were correlated with the micro-structural observations. In addition, the 

modelling results were also validated through a second series of grinding trials, using 

embedded thin foil thermocouples to estimate the workpiece surface temperatures. The 

K type thermocouples were 10µm thick and had a response time of 2ms. Both up and 

down grinding modes were used, at specific material removal rates of 50,200 and 

375mm2/s with the grinding conditions chosen to provide relatively low values of 

specific grinding energy. 

This chapter is laid out in three parts; parts one and two are intended to explain the 

methodologies used in both the experimental and workpiece characterisation portions of 

the research program. Therefore part one details the experimental designs carried out 

and part two explains the workpiece analysis techniques used, and finally part 4.3 

summarises the chapter. 

4.1 Experimental Methodologies 

To investigate the process as a whole, various experiments were designed to take into 

account the influences of the many different aspects within the grinding process. The 

first three parts describe the use of the two initial systematic tests using M50 steel and 

the main screening tests used in both M50 steel and IN718 nickel superalloy. All used 

the Taguchi orthogonal designs of experiments, where two parameters are altered for 

each run and the software calculates the influence, or significance of these changes, 

regarding the individual parameters used. Part 4.1.4 is concerned with the high Q', v 
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removal rate tests. These tests investigated the influence of up and down grinding with 

regard to the following responses; specific grinding energy, grinding forces and 

grinding damage. Also as part of this section the temperature modelling is described. 

The final section describes the methodology used to complete the component 

manufacturing phase of the initial tasks prescribed by the sponsors. 

Section 4.2 outlines the procedures for the workpiece characterisation and analysis. 

Parts 4.2.1 to 4.2.6 gives explanations for techniques such as visual assessment, 

scanning electron microscopy, chemical etching techniques, surface microscopy, 

surface roughness and Vickers micro hardness. 4.2.7 describes the Barkhausen Noise 

Amplitude tests and section 4.2.8 explains the use of residual stress measurements. 

4.1.1 Taguchi Style Design of Experiments 

It was decided that Taguchi style design of experiments should be utilised to take into 

account as many of the prevalent factors as possible and view the indicated responses, 

while at the same time using the most efficient experimental design. The software 

package called Statistica was used to lay out and randomise the set of experiments. 

The analysis sheet for the construction of Systematic Analysis One and the ultimate 

responses are shown in Table 4.2. The effects of these responses are derived by using 

the averages from each of the two different variables; one can calculate the probabilities 

of how each variable influences the other and therefore the significance of risk for each 

parameter. 

The orthogonal Taguchi array works on the principle of maximum and minimum 

values. Where required, mid-point values can also be employed as references or 

repeatability tests. Therefore in Table 4.2 the minus one indicates where a minimum 

value would lie for that parameter and a plus indicates a maximum value. 
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Lubrication System 

Nozzle 
Support 

Height 

Grinding 
Wheel 

Nozzle 
Angle 

Figure 4.1: Explanation of Terms 

Figure 4.1 shows the main terms with regard to the grinding fluid delivery system. 

Basic Analysis Sheet Completed 

Analysis Sheet 

Experiment Nozzle Angle Nozzle Stiffness Experiment Nozzle Angle Nozzle Stiffness 

Number Height Nozzle A Diameter Range Number Height Nozzle A Diameter Range 

(mm) (degrees) (mm) (N/micron) (mm) (degrees) (mm) (N/micron) 

1 -1 -1 1 1 110 5 7.5 10.7 

2 1 -1 -1 2 120 5 6.7 13.14 

3 -1 1 -1 3 110 10 6.7 8.82 

4 1 1 1 4 120 10 7.5 1.02 

5 -1 -1 -1 5 110 5 6.7 24.02 

6 1 -1 1 6 120 5 7.5 11.84 

7 -1 1 1 7 110 10 7.5 19.15 

8 1 1 -1 8 120 10 6.7 16.41 

Sum+ Sum+ 42.41 45.40 42.71 

Sum- Sum- 62.69 59.70 62.39 

Net Total Net Total -20.28 -14.30 -19.68 

Effect Effect -5.07 -3.58 -4.92 

1/2 Effect 1/2 Effect -2.54 -1.79 -2.46 

Table 4.2: Response Sheets for Systematic Approach Number One 
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The parameters used in Systematic Experiment One are listed in Table 4.3. 

Parameter 

Nozzle Angle (degrees) 

Nozzle Height (mm) 

Nozzle Diameter (mm) 

Minimum Level Maximum Level 

5 10 

110 120 

6.7 7.5 

Table 4.3: Systematic Experiment One Parameters. 

4.1.1.1 Experimental Procedure 

The experimental procedure for systematic test one was as follows. Once a cut was 

taken a second spark out operation was performed and the same responses recorded. 

Outputs were also taken via a digital scope which logged normal force and spindle 

power against a common time scale and peak values of spindle power could be noted 

via a digital multi meter. 
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sed Grinding Wheel 

Specimen Block 
Unused Grinding Whee 

Figure 4.2: Use of Grinding Wheel 

Figure 4.2 shows how only a portion of the wheel grinding edge was used for the tests. 

In this way, a measure of wheel wear could be calculated and subsequent grinding ratios 

determined, this being - volume of material ground / volume of wheel worn. 

4.1.2 Systematic Experiment One Results 

Quantitative measurements from the systematic test one were made except in the case of 

surface bum evaluation. This assessment was purely qualitative. The results from the 

systematic experiment one, which are summarised in Table 4.4, were used for 

determining the range of grinding parameters used for the systematic experiment two. 

As such the parameters which would give the greatest probability of an optimised 

process were reduced to include fewer options. 

The resulting indications were; that a decrease in the height of the nozzle along with a 

smaller nozzle diameter and the smaller angle could result in a more optimum setting of 

the grinding fluid delivery system. The shaded areas show the higher averages of each 

pair, which indicate a possible increase in efficiency when that variable was set towards 

this value. 
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Factor Level Significance Factor 

Nozzle 110 15.67 

Height 120 10.60 

Nozzle 5 14.93 

Angle 10 11.35 

Nozzle 6.7 15.60 

Diameter 7.5 10.68 

Table 4.4: Indicated Results Systematic Approach Number One 

With this in mind Systematic Analysis Two was undertaken using the parameters as 

shown in Table 4.5. 

Nozzle 

Height 

(mm) 

Nozzle 

Angle 

(degrees) 

Depth of 

Cut 

(mm) 

110 5 2 

120 5 2 

110 10 2 

120 10 2 

110 5 3 

120 5 3 

110 10 3 

120 10 3 

Table 4.5: Parameters for Systematic Experiment Two 

The results from this second set of experiments were not repeatable and this implies that 

there are other factors influencing the results. Clearly an understanding of how different 
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variables interact with each other would be of great benefit here. It was therefore 

decided to modify Task 2 and incorporate the original research plan into a more 

extensive and systematic factorial based design of experiments. 

4.1.3 Screening Tests 

Using the results from the previous two systematic tests, the parameters set out in Table 

4.6 were used in a full factorial set of 16 runs with 6 centre points for both project 

materials. In this way the effects and influences of these intricate parameters could be 

evaluated at the same time. The main advantage of this type of testing is that the 

information obtained can be added to in the future to continually develop an 

understanding of the overall process. The series of tests outlined in Appendix E 

provided further information towards this understanding and contributed towards the 

final aim to develop predictive models for the HEDG process. 

Parameter Maximum 

Level 

Mid-Point Minimum Level 

Parameters from Task Two 

Wheel Speed (m/s) 100 75 50 

Grit Size (microns) 181 151 126 

Depth Of Cut (mm) 1 0.55 0.1 

Feed Rate (mm/s) 50 25.25 0.5 

Other External Variables 

Nozzle Angle (degrees) 8 6.5 5 

Nozzle Height (mm) 110 107.5 105 

Nozzle Diameter (mm) 8 6.5 5 

Grinding fluid Pressure (bar) 14 10 6 

Table 4.6: List of the Parameters Investigated 
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Webster & Cui (1995) introduced a new design of nozzle which showed no degradation 

in the jet with a fluid cross section of over a 300mm length. This nozzle was 

manufactured and by precisely setting angles and heights it was incorporated so that the 

fluid jet could be delivered accurately where it was required. 

4.1.4 Thermal Modelling 

Theoretical temperature models were produced using the inclined heat source equations 
developed by Rowe & Jin (2001). Also published were the fluid convection factors for 

water based grinding fluids and oil; these being in the order of 100,000W/m2K and 

23,000W/m2K respectively. Morgan et al (1998) published the thermal conductivity 

value for CBN grit to be 240W/mK, and Rolls Royce volunteered the thermal 

conductivity and specific heat capacity values which covered a wide range of 

temperatures for the M50 tool steel and both nickel super-alloys namely, MARM002 

and IN718. 

The above published values were used to construct a model for the burn thresholds for 

both IN718 nickel super-alloy and M50 tool steel. Rowe & Jin (2001) set out a number 

of equations which culminated in the calculation of the contact surface and finished 

surface temperatures which are shown in Appendix F in the case of M50 and Appendix 

G for IN718. 

4.2 Workpiece Characterisation 

As with any metallurgical study the post experiment analysis can be just as extensive as 

the experiential procedure. Samples were taken for two main streams of analyses, the 

first for polishing, followed by the production of sub surface micrographs, micro 

hardness profiles and surface roughness measurements. The second specimen was used 

for surface analysis and stress analysis. 

These tests were carried out as standard post experiment analyses. Sub-surface 

microscopy was carried out using the procedure laid out by Field et al (1972). Samples 

were cut and mounted in Bakelite then polished through numerous grades of polishing 

media finishing with a1 micron abrasive paste. 
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4.2.1 Visual Assessment 

The samples were visually assessed for the onset of oxidation by viewing for any trace 

of a colour change on the surface of the sample. 

4.2.2 Scanning Electron Microscopy 

Samples were initially ultrasonically cleaned to remove all foreign bodies as well as any 

coatings which could have fluoresced under the electron beam of a scanning electron 

microscope. 

Two microscopes were used, starting with an ABT 55 Scanning Electron Microscope; 

this was used to examine and record the surface defects of the sample. The required 

samples were coated with Gold-Palladium alloy and individual elements could be 

identified on the surface of the sample using the Cambridge Stereo-scan 250MK3. 

4.2.3 Chemical Etching 

Samples were etched to highlight the grain structure of the materials. Etchants were 

taken from Petzow (1978) and in the case of M50; the etchant used was Villelas 

Solution 10%. The ingredients are Methanol 90m1; Distilled Water 10ml; Picric Acid 

and Hydrochloric Acid 5m1. The etchant was applied via a cotton swab for 5- 10 

seconds and then the sample was washed off with water. 

Both the nickel alloys used an Oxalic Acid/Distilled water mix. 100ml of water for lOg 

of acid was mixed together and applied via electrolytic action. The current was applied 
for less than a second at 6V DC and the sample was then washed with water. 

4.2.4 Subsurface Microscopy 

The polished and etched samples were analysed under various magnifications and 

relevant images recorded via digital camera equipment. The digital equipment also 

recorded the relevant magnification scale used. 
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4.2.5 Surface Roughness 

The surface roughness was measured using a Talysurf 120L with a 2µm radius tip 

diamond stylus. Various measurements were taken simultaneously and the responses 

produced were examined via a print out of the surface trace. The main measurements 

examined were the arithmetical mean Ra and peak to valley maximum R, 

4.2.6 Vickers Micro Hardness 

The hardness profiling was carried out using a Vickers micro-hardness machine on the 

polished samples. A load was applied and an indent was measured using the sight glass. 

The size of the indentation was matched to hardness values using the Vickers Hardness 

tables. 

4.2.7 Barkhausen Noise Amplitude 

This comparative style of analysis required the user to become more familiar with the 

Barkhausen Noise Amplitude (BNA) responses to the specific characteristics of M50 

tool steel. As steels have different constituents then the response to BNA analysis of 

one steel type will differ from other types of material. An experimental setup to test the 

BNA output against applied stress advocated by Shaw et al (1999) was unsuccessful due 

to the characteristics of M50 tool steel. The applied load was a bending stress and due 

to the hardness of the steel could not tolerate this type of stress. Therefore two 

calibration tests were designed; the first considered the static and the second the 

dynamic characteristics. The samples were simple 2mm deep slices 100mm long by 

40mm high. Although the sample was fully annealed as per the manufacturer's 

instructions to produce in theory a totally stress free specimen, when the residual stress 

was measured a compressive stress of 200MPa was found to be present this could have 

been due to the fine grinding operation which was performed after the heat treatment 

process. Manufacturer's data sheets for M50 are shown in Appendix D. 

4.2.7.1 Calibration Procedure 

For analysis of the dynamic case, the two millimetre thick slice was cut from one of the 

parent blocks and finely ground. The use of a calibrated mechanical tension tester was 

enlisted to produce a known stress within the sample. The machine's grippers held the 

81 



EXPERIMENTAL TECHNIQUE 

sample, which applied a tensile load, a fifteen second time delay facilitated a steady 

state stress regime and a BNA reading was then taken. As the stress field produced was 

a simple bi-axial stress state and the sample was 2mm thick it was assumed that the 

stress was of a uniform nature throughout the sample. Figure 4.3 shows the profile of 

stress against BNA readings over a wide range of induced stresses. The zero in the 

compressive region in the figure can be explained due to the initial compressive residual 

stress within the sample. 

Investigation of Stress Profile against BNAfor Small 
Sensor 
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Figure 4.3: Comparison of Induced Stress to BNA 

0 

In the case of the static tests, samples were used on a "as is basis". As per the 

operator's manual, samples were measured at a Rollscan level of 50% and the 

magnification voltage which increases the amplification of the signal was stepped from 

0 to 100% in 10% stages. Trend lines were then drawn and the point of calibration was 

to be taken at the largest distance between the maximum and minimum trend lines. 

This is shown in Figure 4.4 and was taken at a magnification level of 35%. All 

consequent measurements used the identical settings and so a direct comparison could 

be made with the virgin material. 
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BNA Calibration Curve For M50 
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Figure 4.4 The Barkhausen Noise Calibration Curve. 

4.2.8 XRD Stress Residual Measurement 

A bearing manufacturing company provided the University with a number of test results 

on M50 steel and Manchester University measured the IN718 samples. The tests on the 

M50 samples were repeated and the results compared so that more experiments could be 

carried out with confidence using Cranfield University's own equipment. 

4.2.8.1 Experimental Procedure 

With any crystalline structure the basic elastic constants for the bulk material have to be 

known for any mechanical testing. However with XRD stress measurement one has to 

go further. One has to know the E{hki} (Young's Modulus of Elasticity) and U (Poissons 

Ratio) values. This {hkl} subscript denotes a plane within the crystal lattice which has 

shown to give the best diffraction of X-rays within the lattice for that specific material 

under examination. Prevey (1986) gives that {hkl} plane for M50 bearing steel and 

IN718 nickel based superalloy to be {211 } and {311 } respectively. Young's Modulus 

of Elasticity (E) for the bulk of the material is a different value to that of the {hkl} plane 

value due to the bulk having depth and in which imperfections are found within the 

structure. Therefore, the bulk E value can be taken as an average value of the {hkl} E 

value. 
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When these elastic constants are known, they are used to calculate the constants used 

within XRD stress measurements, namely S1 and S2/2. 

- -U sl 
E{H1L} Eqn 4.1 

S2 E{Kf_ 

2 1+1) Egn4.2 

The resulting parabolic curve was extremely shallow due to the hardness of the material. 

Figure 4.5 gives a comparison between a soft steel such as 51 CrV4 and M50 tool steel. 

Both tests used identical parameters. Prevey (1986) gave the necessary constants for 

M50 steel and these are listed in Table 4.7. 

Material Radiation Lattice Diffraction Young's Modulus of Elasticity 

Plane Angle 20 GN/m2 

{hkl} Bulk 

M50 Cr Ka (211) 154° 233 270 

Table 4.7: M50 X-Ray Diffraction Constants 
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Also included is an indication that harder materials require longer step times. Because 

of this, a step size of 0.1 ° and a time period of 25 seconds per step were both used. The 

calibration tests were carried out using samples already measured for residual stress by 

a bearing company. The results of these initial tests plotted against Cranfield's in house 

measurements are shown in Figure 4.6. 

Comparison of Bearing Manufacturer's to Cranfield's Measurements for M50 Steel 
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Figure 4.6: Calibration for M50 Steel Residual Stress Measurements 

4.3 Summary 

This Chapter has reviewed the main experimental procedures carried out during this 

research in order to investigate the HEDG process. The next chapter outlines the main 

results obtained highlighting the most significant aspects of the work. 
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CHAPTER 5 M50 BEARING STEEL 

This chapter presents and discusses the experimental results from this research on the 

grinding of M50 bearing steel. Part one discusses the results relating to the Edgetek 

machine and the Taguchi analyses. Part two gives the salient points with regard to 

specific grinding energy and physical evidence such as sub-surface microscopy, Vickers 

hardness profiles and residual stress measurements. The final part contains the chapter 

summary; all experimental parameters used are shown in Appendix F. 

5.1 Experimental Results 

5.1.1 The Edgetek Grinding Centre 

The Edgetek 5-axis machine has been put through vigorous testing and has exceeded all 

specifications as determined by the manufacturers as shown in Table 3.1. The 

maximum backlash was noted on the X-axis as being 0.37microns and the maximum 

overshoot on a 90mm travel of only 0.63microns was on the Z-axis. When taking the 

prescribed use of the machine into account these errors could be deemed negligible. 

Overall, with a static loop stiffness of 98N/µm measured at 210mm from the front face 

of the Z axis, the machine has been proven to be well within the prescribed limits of 

stiffness for a HEDG machining centre as discussed by Tawakoli (1993). As a 

comparison to this high value Shore (1995) investigated the static loop stiffness of a 

NION grinding centre used primarily in the field of brittle grinding, and he noted that it 

had a static loop stiffness value of only 60N/µm. 

5.1.2 Screening Test Results 

Where thousands of experimental runs would be required to investigate a process fully, 

Taguchi orthogonal arrays are designed to reduce the experimental runs required to 

make a derived conclusion on a process, with a view to optimisation. 

Therefore the purpose of the results from the Taguchi Style Screening Tests was an 

attempt to recognise the significance of each parameter's use within an experimental 

environment. These probabilities are purely indicative in nature, but as these 

probabilities are calculated statistically the element of risk is a known factor and 
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therefore more confidence can be shown Throughout the three initial Taguchi style 

experiments a robust fluid application setup was applied that was designated as a mid- 

point model i. e. nozzle height to be 107.5mm, nozzle diameter at 6.5mm and nozzle 

angle to be 6.5° below the horizontal. These parameters are described in Figure 4.1. To 

this end it was decided to utilise this set of parameters at least initially for each 

subsequent test. 

Figure 5.1 below shows a Pareto chart produced using the results from the initial 

grinding trials on M50. As indicated by the P=0.05 value, all columns in this chart 

have been chosen due to their significance value being greater than the prescribed 

minimum of 0.05. The magnitude of each effect is represented by a column, the greater 

the column length the greater the significance of that parameter. A vertical line is 

generated by the computer model and indicates how large a column must be to be 

deemed statistically significant. 

The Pareto chart indicates that feed rate and depth of cut significantly affect the power 

used. Both these significant values are positive, which means that as these factors are 

increased from their lowest to highest levels the power will increase by the numbers 

shown to the right of each horizontal bar. If these values were negative then power 

consumption would decrease accordingly. This observed trend is logical in that a 

deeper cut would be expected to require more power. The experimental parameters 

used are shown in Appendix E, Table E. 1. 
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Pareto Chart of Standardized Effects; Variable: POWER 
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Figure 5.1: Indications of Parameters affecting Power Used 

5.2 Analyses of Responses 

5.2.1 Specific Grinding Energy 

One of the main responses from a grinding process is Specific Grinding Energy. This is 

calculated by dividing the specific grinding power by the specific material removal rate 

and is a measure of how efficient the grinding process is. 

Figure 5.2 illustrates the change in specific grinding energy with specific material 

removal rate for all grinding conditions. The general trend indicates a reduction in the 

upper limit of specific grinding energy as the specific stock removal rate is increased, 

although wide variations in specific grinding energy are observed, particularly at lower 

Q'W values. Values of specific grinding energy show a trend to decrease to a minimum 

limit of around 10 to 13 J/mm3 for M50 tool steel as Q'W increases. 
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Specific Grinding Energy to Specific Material Removal Rate for M50 for all Fluids 
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Figure 5.2: Specific Grinding Energy to Q', for M50 

Illustrated in Figure 5.2 is the trend line which represents the average specific grinding 

energy throughout a wide range of energy values. Using these average specific grinding 

energy trend lines one can predict the range of possible temperatures within the grinding 

zone for theoretical Q' w values for various permutations of feed rate and depth of cut. 

The mathematical expression for this average trend line is shown to be y= 80Q'W-0.3, 

where y represents the average specific grinding energy. Use will be made of this 

function when thermal modelling is discussed in Section 5.2.9. 

As the specific grinding energy increases more energy is required to remove a given 

volume of material, which in turn increases the probability of higher grinding 

temperatures and the onset of oxidation. Figure 5.3 shows an example of a burn 

threshold diagram for M50, which takes into account wheel diameter, depth of cut and 

feed rate through the function f(D1/4a, -3i4V", -lie) as suggested by Malkin (1989). As 

wheel wear increases the grit flats have a greater rubbing component which increases 

the energy required for the operation, and this is observed through increases in the 

specific grinding energy. 
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Burn Threshold Diagram for M50 Steel using all Fluid Types 
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Figure 5.3: Burn Threshold Diagram for M50 

A bum threshold diagram for M50 is shown in Figure 5.3. The criterion chosen to 

define grinding burn was visual signs of surface oxidation. The data generally fell 

within two well defined regimes separated by the dotted line which indicates a burn 

threshold boundary condition. Some scatter around the bum threshold boundary is 

evident and this may in part be due to the reliability of the visual assessment. However, 

the division between the burn and no burn regions is clear, with the intercept of 6J/mm3 

predicting a chip forming energy of around 13J/mm3, a value typical for steels, Malkin 

(1989). 

Malkin (1989) reported that the gradient of the bum threshold line was directly 

proportional to the burn threshold temperature. Table 5.1 shows the equation used to 

determine this temperature. As one can see the final oxidation temperature is shown as 

2916°C and is well above, in fact nearly double, the melting point of the material in 

question. 
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Malkin's Equation for Burn Threshold Oxidation Temperature 

B=k 
enr 

1.13a'., 

When: 

Gradient of Demarcation Line 

Thermal Conductivity 

Thermal Diffusivity = k/pC 

p= Density of Material 

C= Specific Heat 

9m = Oxidation Temperature 

B= 24.267 

k= 25.7W/mK 

a=7.47 x 10-6m2s-1 

p= 7870kg/m3 

C= 434J/m3K 

= 2916°C 

Table 5.1: Burn Threshold Temperature for M50 

As seen in Figure 5.2 for any given Q', value, especially low values, a wide range of 

specific grinding energies is possible. Experimental studies of a fixed Q', value 

suggested that the specific grinding energy gradually increases and this can be related to 

the change in grinding wheel characteristics during both the early conditioning period 

and normal use of the wheel. This is a major factor in the development of wear flats on 

active grits and the increase in active grit concentration as wheel wear proceeds. This 

results in a gradual increase in specific grinding energy as illustrated in Figure 5.9. 

5.2.2 Workpiece Characterisation 

5.2.3 Stress Measurement 

As shown previously in section 4.3.8, the residual stress measurements undertaken on 

samples at Cranfield were in reasonable agreement with the samples measured by the 

bearing manufacturer and therefore the rest of the stress measurements on the M50 

samples were measured using the same procedure. 

Figure 5.4 shows the trend for residual stress to tend towards more tensile values as Q' W 
increases for each of the three different fluid types used. For lower values of Q',, 

(<lOOmm2/s) the surface residual stress tends to be compressive but at higher Q'ý` 
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values tensile residual stresses may result. This suggests that the workpiece temperature 

is likely to increase as Q', increases. 

Comparison of Rsidual Stress Against Specific Material Removal Rate for M50 for all 
Fluids 
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Figure 5.4: Comparison of Residual Stress against Q', for M50 

Figure 5.5 views the same stress data set but against calculated temperatures with added 

information on the visual assessment of oxidation present. The bum threshold shown in 

Figure 5.2 is based only on visual signs of surface oxidation. Other burn threshold 

conditions could be envisaged, for example, a critical level of residual stress. To 

illustrate this, residual stress measurements were made by X-ray diffraction on selected 

workpieces. The level of the residual stress and the nature of the residual stress profile 

are a function of the magnitude of plastic deformation and the temperature reached 

within the grinding zone. In general there is a direct relationship between the level of 

residual tensile stress and temperature and it has been shown previously that the on-set 

of tensile residual stress occurs when a critical transition temperature is exceeded, 

McCormack et al (2001). Thus, one might expect a correlation between the residual 

stress and temperature. Figure 5.5 illustrates the variation in measured residual stress 

with temperature and shows the distribution of burn and no burn data points based on 

visual observation. 
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Comparison of Rsidual Stress Against Calculated Temperature for M50 
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Figure 5.5: Stress against Temperature for M50 

The residual stress values in Figure 5.5 show some scatter at a given temperature as 

might be expected for this type of measurement, but the general trend is clear. Low 

grinding temperatures promote the formation of compressive residual stress whilst high 

temperatures generate tensile stress. The transition between the visual bum and no burn 

observations is around - 400MPa. The transition to tensile stress occurs at around 

600°C. From a practical viewpoint, the results suggest that satisfactory surface integrity 

should be obtained if the maximum grinding zone temperature is maintained below 

400°C, i. e. fluid film boiling of the grinding fluid is prevented. 

5.2.4 Barkhausen Noise Amplitude 

Barkhausen noise amplitude (BNA) is a measure of changes in both stress regime and 

material hardness. When the workpiece surface stress characteristics become tensile the 

BNA signature increases. Also when a hard material is tested, the BNA is lower than 

for softer materials. Therefore BNA measurements are comparative and must be 

considered with respect to the calibrated standards and settings previously found in 

Section 4.2.7. for different hardness and micro-structural conditions. 
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5.2.4.1 Correlation of XRD and BNA Stress Measurements 

Figure 5.6 shows a scatter graph of Barkhausen Noise results compared to XRD 

measurements. Although there is a some scatter present there seems to be a reasonable 

correlation between the two residual stress measurements and the correlations with the 

visual assessment of grinding burn is excellent. 

Comparison of BNA to XRD Stress Measurements Based Upon Visual Assessment for 
M 50 
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Figure 5.6: Comparison of BNA to Residual Stress for M50 

From Shaw (1993) we see that the time required to formulate martensite via the 

grinding process is nanoseconds. Also Chen et al (2002) reported that when the 

thermally induced stresses overcome the yield stress then tensile stress regimes will 

occur on the surface layer. It is known from published datasheets from Stresstech that 

the magnetic domains change polarity and it is this change in polarity which is 

proportional to the amplitude of Barkhausen Noise measured. Tensile stress regimes 

give high Barkhausen Noise Amplitude measurements and compressive stresses low 

readings. When a material is magnetically hard then these domains find the polarity 

change inhibited therefore a hard material will reduce the BNA magnitude and a softer 

will give a higher reading. So a material may have a tensile core on its surface and have 

an overtempered region under this hard core. This could give rise to anomalous 

readings such as those burnt sample points which have given low BNA readings. 
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5.2.5 Surface Characterisation 

The measure of surface roughness, Ra, was also monitored throughout the testing and 

the trend of decreasing Ra values with the rise in specific grinding energy during 

grinding operations carried out at one Q'W value is clearly shown in figures 5.7 to 5.9. 

These figures clearly show that there is the same correlation between the gradual 

increase in specific grinding energy and the improvement in surface finish for all Q'W 

values. This variation in measured energy values and surface finish was also observed 

when grinding IN718 and will be shown in section 6.2.3 to be related to the 

development of wear flats on the CBN grits. 

Comparison of changes In Specific Grinding Energy and R. with Material Removed for 

Condition Tests Q"� of 5mm2/s for M50 using Mineral Oil 
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Figure 5.7 shows the results from the conditioning tests when using a constant Q'W of 

5mm2/s. Although the specific energies were extremely low the same characteristics of 

rising specific grinding energy with decreasing surface roughness were evident in the 

plot. 
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Comparison of changes in Specific Grinding Energy and R. with Material Removed for 
Condition Tests Q'. of 35mm'/s for M50 using Mineral Oil 
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Figures 5.8 shows clearly the initial steep rise in specific grinding energy as the grains 

are conditioned and then a more gradual increase due to more active grits coming into 

contact with the workpiece and also as wear flats are generated more surface area is in 

contact with the workpiece surface producing a better surface finish. This trend is 

mirrored with the surface roughness plot which indicates that the surface finish 

improves as the grit wear flat area increases. 

Comparison of changes In Specific Grinding Energy and R. with Material Removed for 
Condition Tests at 6Y_ of 50mm'/s for M50 using Mineral Oil 
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Figure 5.9 shows the trend when the specific material removal rate of 50mm2/s was 

used for these tests. When analysing the three plots the gradients of the secondary 

portion of the specific grinding energy plot also reflects the rise in specific material 

removal rates. For the specific material removal rate of 5mm2/s the gradient is 0.0058 

and both the specific material removal rates of 35 and 50mm2/s plots have lower 

gradients of 0.0002. Therefore in theory the grinding operation using the specific 

material removal rate of 5mm2/s will exhibit greater wheel wear characteristics than the 

two higher Q' w values. 

5.2.6 Workpiece Characterisation 

The sub-surface microscopy and Vickers hardness profiles were undertaken to highlight 

any damage incurred during the grinding process. Any structural changes due to the 

ingress of substantial heat into the workpiece could alter the structure i. e. over temper 

the steel and in so doing soften the material, or there could be an extremely hard layer of 

untempered martensite at the surface. 

Figure 5.10 shows the results from tests on a Q'W value of 50mm2/s. The micrograph of 

the sub-surface structure shows no darkened area or white layer at the surface. This is 

correlated by the Vickers hardness test results, which showed no deviation from the 

substrate hardness value of approximately 800HV0,1. The sample ground in ester based 

grinding fluid shows slight colour changes in the etched micrograph and there is 

evidence of a white layer forming on the surface. The Vickers hardness profile shows 

definite evidence of a softened area under the surface. 
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Mineral Oil Grinding Fluid Ester Based Oil Grinding Fluid 

Test Number - 50-9 Test Number - 50-265 

Q',,, = 50mm2/s 

Depth of Cut =1 mm 

Feedrate = 50mm/s 

Vickers Hardness Profile for M50 Test 
Number 50-9 in Mineral Oil 

1000 

800 

0 600 

= 400 

200 

0 
0 200 400 600 80 

o =5omm2is Distance from Edge (microns 

Residual Stress -640MPa 

Calculated Temperature 682°C 

Vicker Hardness Profile for M50 Test Number 
50-265 in Synthetic Fluid 

1000 

8000Aý 

e 
600 

= 400 

200 

0 
0 200 400 600 

CYý=/5 Distance from Edge (microns) 

371MPa 

839°C 

Figure 5.10: Workpiece Characterisation for Q'µ, = 50mm2/s 

The residual stress being negative for the mineral oil ground sample gives an indication 

that the predicted temperature is not accurate in this case. In the case of the ester based 

oil ground sample all measures used here corroborate the first impression that the 

finished surface has been damaged. 
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Mineral Oil Grinding Fluid 

Test Number - 50-3 
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Figure 5.11: Workpiece Characterisation for Q'w = 14mm2/s 

Figure 5.11 shows a distinct difference in the two results for a Q'w of 14mm2/s. The 

mineral oil grinding fluid ground surface exhibits no damage and there is no change to 

the Vickers hardness profile. The ester based grinding fluid ground surface shows a 

white layer present and a discolouration which is proven to be an overtempered zone by 

the Vickers hardness profile. Both the measured residual stress figures and predicted 

temperatures are consistent with these observations. 
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Mineral Oil Grinding Fluid Ester Based Oil Grinding Fluid 
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Figure 5.12 shows that for a Q'�- of 5mm2/s there is no real damage to either sample at 

this rate of material removal. This is mirrored by both the measured residual stress 

values and predicted temperatures. 
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Water Based Grinding Fluid 
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Figure 5.13: Workpiece Characterisation for Water Based Ground Samples 

Figure 5.13 shows two samples ground using water based grinding fluid. The 

subsurface micrograph of test number 50-297 shows no white layer and the Vickers 

hardness profile substantiates this. The predicted temperature and measured residual 

stress values also correlate with this observation. One other example of water grinding 
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fluid is given by sample number 50-301. This sample used HEDG conditions and even 

though the micrograph shows a 0.7micron thick white layer with no overtempered zone 

a tensile stress of 481MPa was measured and a predicted temperature of 1133°C was 

calculated. 

Figure 5.14 shows an example of an SEM image from a M50 ground surface. The 

average roughness measure of surface roughness was 2microns and the maximum peak 

to valley height was 19microns, with only 8100mm3 of material removed by the wheel. 

5.2.7 Grinding Damage Analysis 

Shaw (1993) gives one of the few descriptions of how untempered martensite is 

produced. During normal heat treatment the material is heated and allowed to soak at 

around 50 to 100°C above the lower critical temperature, which is around 700°C. With 

the uniform structure formed this would allow the carbon atoms to be uniformly 

distributed in a body centred tetragonal (b. c. t. ) structure. If the material is cooled 

quickly then this b. c. t. structure will remain forming a hard layer on the surface of the 

steel. Shaw states that the higher the concentration of alloying elements the lower the 

temperature required to initiate this process. This agrees with statements by 

McCormack et al (2001). When untempered martensite is produced by grinding, the 

time required is reduced through the ferocious grinding operation which releases a great 
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deal of energy via mechanical means. This energy release enhances the speed at which 
this micro-structural change occurs. So, untempered martensite is reported in this study 

to appear at 800°C and an over tempered zone is produced at around 780 to 800°C. 

All sectioned samples which contained layers of over and untempered martensite had 

these layers measured and this data was corroborated using the Vickers micro-hardness 

profiles. Figure 5.15 shows the measured white layer formation against calculated 

temperature. 

Also it is evident when using this temperature model that no formation of white layer 

has been predicated below 775-800°C. This in itself gives confidence in the 

temperature modelling used. 

Comparison of Changes in White Layer Thickness to Calculated Temperature for All 
Fluids on M50 Steel 
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Figure 5.15: Untempered Martensite Layer Thickness to Calculated Temperature 

Figure 5.16 shows that the trend for the onset of the formation of over tempered 

martensite on M50 steel is around 650°C and Figure 5.15 shows the trend for the 

formation of untempered martensite of around 800°C. Both these values correlate well 

with the findings from McCormack et al (2001). 
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Comparison of Changes in Thickness of Over Tempered Zone to Calculated 
Temperature for All Fluids on M50 Steel 
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Figure 5.16: Over Tempered Martensite against Calculated Temperature 

5.2.8 Wheel Wear 

The monitoring of wheel wear can give an important insight as to the grinding ratio of a 

process for use by the process engineer as a measure of operation efficiency. The 

grinding ratio being the total amount of material removed divided by the total amount of 

wheel removed. From Figure 5.15 it is clear that although no structural damage was 

noted the physical evidence did not always correlate with the measured stress or 

predicted temperatures. Tawakoli (1993) wrote in his book that for HEDG oil is more 

effective than water based grinding fluid as the lubricating action of the oil reduces the 

grinding forces and therefore reduces wheel wear. Also as HEDG is described as 

having a cooler grinding zone than that experienced in shallow cut or creep feed 

grinding, the need for the attributes from a grinding fluid, i. e. heat dissipation, is not as 

high a priority as that required from a grinding fluid type, such as mineral oil. 

As shown in Figure 4.2 only a portion of the wheel was used during a cut, therefore a 

part of the wheel was unused. The wheel was then used to cut a profile in graphite and 

the difference measured. This amount of wheel wear equated to the reduction per radius 

and the volume of wheel removed, which in reality was a cylinder, was calculated. 
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Wheel Number Fluid Type G-Ratio 

B 151-2 Mineral 126.02 

B 151-3 Mineral 129.83 

B 151-4 Synthetic 78.77 

B 151-5 Water 34.12 

Table 5.2: Grinding Ratios 

Table 5.2 shows the results from grinding M50 steel from the point of view of the 

grinding ratios. These ratios were calculated with respect to all conditions and so give 

an indication of the wheel wear characteristics. It can be seen that the worst grinding 

ratio calculated was when water based grinding fluid was used and the best was with 

mineral oil. This could give an indication that indeed the requirement for grinding fluid 

with cooling properties in the grinding zone is not as important as the need for a 

grinding fluid with lubrication properties. 

5.2.9 Theoretical Modelling of Grinding Temperatures 

The measured values of specific grinding energy were used to estimate the temperature 

of the finished workpiece surface through calculations based on the circular arc of 

contact model developed by Rowe & Jin (2001). The complete thermal modelling 

procedure is given in Appendix H. This thermal modelling approach is appropriate for 

deep grinding conditions and enables realistic energy partition coefficients to be 

determined. This is important since the burn threshold temperature estimated from the 

burn threshold diagram, based on the standard Jaeger sliding heat source model, 

considerably overestimates the temperature. Figure 5.17 shows the data from Figure 5.2 

replotted in terms of temperature and illustrates the well defined regions between burn 

and no-burn data. The boundary for the burn threshold condition occurs at around 

105 



M50 BEARING STEEL 

400°C which is consistent with the temperature at which the mineral oil is expected to 

boil. 

Theoretical temperature to Specific Material Removal Rate for M50 for all Fluids 
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Figure 5.17: Predicted Temperature against Q',,, for M50 

However, it should be noted that Figure 5.17 shows the resulting bum threshold 

temperature for all fluids concerned. The initial basis for this type of modelling is 

concerned with the visual assessment of burn on the sample surface, after which the 

specific grinding energy is taken into account specifically where the point lies in Figure 

5.3. Therefore Figure 5.17 is related to the actual burn threshold for the material and 

not the boiling of the specific grinding fluids used throughout these trials. 

5.2.10 Specific Energy Band 

With such a wide variety of specific grinding energies being produced from an even 

wider range of conditions and parameters it was decided that it would be beneficial if 

the data could be viewed in such a way as to isolate unknown factors such as wheel 

wear. Therefore, the data were sorted to only show a narrow band of specific grinding 

energies; these energies could only be produced where the same grinding wheel 

conditions had been experienced and a true representation of the HEDG effect could be 

viewed. 
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Figure 5.18 shows the resulting plot after analysing a band of specific grinding energies 

such as 0.1 - 25J/mm3. One can view the spread of possible contact and finished 

surface temperatures over a wide range of Q'W which are all influenced by similar wheel 

wear characteristics. 

Specific Energy Band 0.1-25J/mm' - Specific Metal Removal Rate versus Calculated 
Temperature using Mineral Oil on M50 
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Figure 5.18: Characteristics of Temperature Q', for M50 

From Figure 5.18 it can be seen how the characteristics of the finished surface 

temperatures rise sharply, reach a maximum then begin to decrease as specific material 

removal rate increases. As this decrease begins the scatter is quite apparent, as if the 

specific grinding energy becomes extremely sensitive to any changes in the grinding 

parameters. 

5.3 Summary 

The work presented, shows that a good all round understanding of the HEDG process 

using the Edgetek 5-axis machine to grind M50 tool steel has been achieved. The 

variety of experiments undertaken has encompassed various feed rates, depths of cut, 

wheel speeds and grinding fluid strategies and has shown that there are fundamental 

trends within this process. These trends and results correlate well with conventional 

measures such as residual stress measurements and new procedures such as BNA. 
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Also the evidence that mineral oil was the more efficient fluid of the three fluid types 

used answers one of the questions asked by the sponsors. The physical evidence is 

quite overwhelming by way of sub-surface microscopy, SEM images and grinding ratio. 

The grinding fluid qualities of the mineral oil used were excellent even without the 

addition of operation enhancing additives such as sulphur and chlorine. These were 

omitted due to requirements from the sponsors as aviation parts were manufactured, and 

these additives may have resulted in corrosion issues. 

The next chapter views and discusses the results from the first nickel based superalloy 

IN718. 
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CHAPTER 6 IN718 NICKEL BASED SUPERALLOY 

Although a large number of experiments have taken place concerning this `tough' 

nickel based superalloy during this research, the salient points relating to experimental 

results are given in part 6.1, and 6.2 describes the procedures followed to carry out the 

workpiece analysis. Part 6.3 summarises the chapter. The experimental results have 

been used to give overall depth and enhance confidence in the results. All 

experimental parameters when grinding with the three types of grinding fluid are 

shown in Appendix G. 

6.1 Experimental Results 

6.1.1 Taguchi Design of Experiments 

The screening test was carried out so that the maximum amount of data would be 

derived from the minimum number of test runs. With this in mind a 16 run 

orthogonal array with 6 centre points was undertaken with a width of cut of 15mm. 

Test Wheel Grit Depth Nozzle Nozzle Feed Nozzle Fluid 

Number Speed Size of Angle Height Rate Diameter Pressure 

Cut 

(m/s) 
, 
(micron) (mm) (degrees) (mm) (mm/s) (mm) (bar) 

718-1 75 252 0.55 6.5 107.5 25.25 6.5 10.75 

718-2 100 301 0.1 5 110 0.5 8 14 

718-3 50 301 0.1 5 105 0.5 5 7.5 

718-4 100 301 1 8 105 0.5 5 14 

718-5 50 301 1 8 110 0.5 8 7.5 

718-6 100 301 1 5 110 50 5 7.5 

718-7 50 301 1 5 105 50 8 14 

718-8 50 301 0.1 8 110 50 5 14 

718-9 100 301 0.1 8 105 50 8 7.5 

718-10 75 252 0.55 6.5 107.5 25.25 6.5 10.75 

718-11 75 252 0.55 6.5 107.5 25.25 6.5 10.75 

718-12 75 252 0.55 6.5 107.5 25.25 6.5 10.75 

718-13 75 252 0.55 6.5 107.5 25.25 6.5 10.75 

718-14 50 181 1 5 110 0.5 5 14 

718-15 100 181 1 5 105 0.5 8 7.5 

718-16 50 181 0.1 8 105 0.5 8 14 

718-17 100 181 0.1 8 110 0.5 5 7.5 

718-18 100 181 1 8 110 50 8 14 

718-19 50 181 I 8 105 50 5 7.5 

718-20 100 181 0.1 5 105 50 5 14 

718-21 50 181 0.1 5 110 50 8 7.5 

718-22 75 252 0.55 6.5 107.5 25.25 6.5 10.75 

Table 6.1: IN718 Screening Test Parameters in Order of Testing 
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This took into account 8 parameters which are shown in Table 6.1. The trends 

produced duplicated results found when the procedure was carried out with M50 steel. 

Plot of Marginal Means and Conf. Limits (95. %) 
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Figure 6.1: Marginal Means for Net Grinding Power for IN718 

Work by Tawakoli (1993) reported that HEDG is characterised by increases in all the 

following parameters: wheel speed, depth of cut and work feed-rate, thus permitting 

extremely high stock removal rates. Figure 6.1 illustrates that although the main 

effects are from depth of cut and feedrate there is an indication of an interaction 

between the two parameters when considering their effect on net grinding power. The 

diagram shows that when the depth of cut is increased from its lowest value of 0.1 mm 

to its highest level of I mm with the lowest feedrate value of 5mm/s the net grinding 

power increases. The second graphic correlates with modern theory by showing that 

at the higher feedrate of 50mm/s and going from the lower 0.1mm depth of cut to the 

higher depth of cut of I mm the tendency is for the grinding power to decrease. This 

indicates that feedrate has a higher significance than depth of cut and the interaction is 

characterised by the crossing lines. 
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6.1.2 High Q',, Removal Rates 

Four high specific material removal rate experiments were undertaken, which were 

designed to investigate the effects of high Q'W values on such a tough material. 

Test Number Depth of Cut Feedrate 

(mm) (mm/s) 

718-92 2.5 125 

718-93 3 125 

718-94 3.5 125 

718-95 4 125 

Table 6.2: IN718 Deep Cut Parameters 

The set of four parameters as shown in Table 6.2 were chosen for the grinding 

experiments. These conditions were selected to investigate the influence of high 

specific material removal rates on this type of material. 

After the first cut, numbered 718-92, was completed the surface was assessed visually 

for signs of oxidation and in this instance there was no sign of burn. The three 

subsequent cuts had oxidisation on the surface. Figure 6.2 shows that the specific 

grinding energy increased for each subsequent cut, which is a result of excessive grit 

wear. 
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Comparison of Specific Grinding Energy of High Q'� Values on IN718 using Mineral Oil 
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Figure 6.2: Specific Grinding Energy values for Deep Cuts on IN718 

Figure 6.3 shows a typical IN718 grain structure with no evidence of grain drag or 

redeposition of material after grinding. 
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Figure 6.4: Vickers Hardness Technique 

Figure 6.4 shows the general technique followed to acquire the Vickers hardness 

profiles for all samples. For IN718 a load of 300grammes force was used for a 

duration of 15 seconds. At this load and time setting nominal indentation sizes were 

35microns. Tests were taken at 50micron intervals; this reduced the possibility of 

indentations interfering with each other to produce ambiguous results. Tests were 

then taken 50microns measured laterally along the sample and the first test being 

performed 60microns longitudinally into the sample subsurface and each subsequent 

test taken using 50 micron intervals. The width in two directions of the indentations 

were measured and an average was calculated. This average was used in the Vickers 

tables to produce a hardness value. This procedure was repeated until a nominal 

substrate hardness had been found, then the testing was moved along another 

50microns with the first test being taken 70microns from the edge. With the sample 

being tested in this manner, and assuming that the hardness was reasonably uniform 

throughout the sample, an accurate test profile could be acquired. 

The Vickers Hardness profile for sample 718-92 is shown in Figure 6.5. From this 

figure, it is possible that the first two points may have been compromised due to 

inconsistencies within the material or weaknesses close to the edge of the sample. 
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Vicker Hardness Profile for IN718 Deep Cuts #1 
in Mineral Oil 
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Figure 6.5: Vickers Hardness Profile for sample 718-92 

After the set of cuts was completed the wheel was used to cut a profile in a graphite 

test piece. The difference in height of the two levels was measured using the 

Talysurf. 

Figure 6.6 shows the surface of the actual graphite block used to calculate the wheel 

wear after the deep cut experiments were completed. 

An example of a worn portion in Figure 6.7 is indicative of the surface of the wheel 

after conditioning of the active grits and grinding wear. The trace shows two levels of 

CBN grain heights, the difference in these heights is indicative of the volume of 
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wheel worn away during the set of tests, and from this figure the grinding ratio can be 

calculated. 
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Figure 6.7: Example of Wheel Wear Profiles taken after Grinding Operation 

The highest grinding ratio recorded for this material during the deep cut tests was 20, 

which is relatively low in relation to what is required from modern grinding wheels, 
but at this stage of experimentation the operating parameters were in no way finally 

optimised. 

Wheel Number Grinding Fluid Type Grinding Ratio 

B252-4 Mineral Oil 39.18 

B252-6 Mineral Oil 19.63 

B252-5 Water 18.18 

Table 6.3: IN718 Grinding Ratios 

Table 6.3 shows the three grinding ratios calculated using B252 wheels for this 

material. Carius (1989) reported that when grinding IN718 with CBN using mineral 

oil as a grinding fluid, this outperformed grinding with water based grinding fluid by 

1.5 to 9 times. This was due to CBN being broken down to boric acid in the presence 

of high temperature steam when using water based fluids. 
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Table 6.4 shows the results of a study carried out by Abrasive Technology Inc. (1989) 

where I indicates the poorest and 4 the best response. It can be seen that the straight 

mineral oil has virtually the opposite set of results to that of the water based grinding 
fluid. 

Water Based Straight Oil 

Grinding fluid Grinding Fluid 

Heat Removal 4 1 

Lubricity 1 4 

Maintenance 3 4 

Filter Ability 4 1 

Environmental 4 1 

Cost 4 1 

Wheel Life 1 4 

Table 6.4: Grinding Fluid Characteristics 

6.2 Analysis of Responses 

6.2.1 Specific Grinding Energy 

Figure 6.8 shows that the specific grinding energy reduces with an increase in specific 

material removal rate. For this material the values of specific grinding energy seem to 

be around 13 J/mm3 to 21 J/mm3 for the highest removal rate tried in these tests. Also 

included in this figure is the best fit of the average specific grinding energy trend line, 

which is y= 85Q'W 0'3, where y represents the calculated average specific grinding 

energy of the experimental set. This expression will be used to calculate predictive 

temperatures using Rowe & Jin's thermal modelling approach in Part 6.2.4 of this 

chapter, Rowe & Jin (2001). 
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Variation In Specific Grinding Energy with Q. for IN718 Nickel Alloy for all 
Fluids Tested 
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Figure 6.8: Specific Grinding Energy to Q', for IN718 

Figure 6.8 shows the complete dataset for IN718 for all conditions and fluid types 

used throughout these tests. The three fluids were a mineral oil; ester based synthetic 

oil and a water based fluid. Throughout these tests water based fluid and ester based 

fluid produced the least efficient results with the highest wheel wear characteristics. 

It can be seen in Figure 6.8 that both the crosses and boxes, which denote these fluids 

respectively, are consistently at the upper edges of the dataset. Howes (1987) tested 

water based fluid and found that in a shallow cut environment fluid boiling limits 

cooling effectiveness and lubricating properties. He also found that grinding 

conditions were reasonably stable until the 130°C fluid temperature was surpassed, 

when the water based fluid boiled away and the energy partition ratio to the 

workpiece increased. The boiling of the fluid would increase wheel wear and finished 

workpiece temperatures through the production of flats on the grits due to lack of 

grinding fluid and higher frictional forces. For this reason, the mineral oil based fluid 

produced the lowest specific grinding energy and the best wheel wear characteristics. 
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One can also view the specific grinding energy with regard to equivalent chip 

thickness. Equivalent chip thickness is calculated by dividing the specific material 

removal rate by the wheel speed. Figure 6.9 shows that as the equivalent chip 

thickness increases the specific grinding energy reduces, thereby indicating a more 

efficient process. 

Comparison of Specific Grinding Energy to Equivalent Chip Thickness for IN718 Tests 
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Figure 6.9: Specific Grinding Energy to Equivalent Chip Thickness 

Figure 6.10 shows the burn threshold diagram for the complete data set for IN718. 

The dotted line denotes a nominal boundary between burn and no burn samples. This 

diagram shows the whole range of results where the surface was assessed visually for 

the onset of burn, and it can be seen that the demarcation line is quite distinct even at 

higher f(D1/4ae"3i4Vw 1/2) values. 
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Burn Threshold for IN718 
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Figure 6.10: Burn Threshold Diagram for IN718 

As previously shown, Malkin's equations calculate the bum temperature based upon 

the gradient of the demarcation line in Figure 6.10. This technique was shown in 

Chapter 5, Figure 5.3. Using the same equation the temperature for this material is 

calculated to be 4782°C. This figure is virtually double that calculated for M50 steel. 

This is probably due to the thermal conductivity of IN718 being less than half of that 

for M50. 

6.2.2 Stress Measurement 

Cullity (1967) states the plastic deformation of a material can be induced through 

thermal or mechanical means. An added concern when grinding IN718 is the thermal 

conductivity which has a value of 11.4W/mK. This indicates that the material retains 

much of the heat generated at the surface further enhancing the probability of high 

temperatures being retained at the surface and subsequent tensile stress profiles being 

formed. 
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Residual Stress against Specific Metal Removal Rate for IN718 Nickel Alloy 
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Figure 6.11: Residual Stress Measurements against Specific Material Removal Rate 

Due to the need to use a Manganese K alpha radiation as prescribed by Prevey (1986), 

stress measurements were carried out at the University of Manchester Institute of 

Science and Technology (UMIST) in Manchester. Figure 6.11 shows the change in 

measured surface residual stress with specific material removal rate and demonstrates 

how compressive stresses can be generated at lower Q' w values. However these 

quickly become tensile as the material removal rate is increased which suggests that 

the surface temperature also increases. It should be noted that it is common for this 

type of alloy to exhibit tensile residual stress profiles after grinding. Figure 6.11 also 

indicates that at the highest value of Q'W the tensile residual stress is levelling off or 

even decreasing, as might be expected if the HEDG effect (Chapter 2, Figure 2.6) 

occurs. 

6.2.3 Surface Characterisation 

The specific grinding energy is determined by components associated with cutting, 

ploughing and sliding. Stock removal is primarily associated with the cutting 

component. Thus, this suggests that for a given value of equivalent chip thickness, 

the ploughing and sliding components must change. This should be expected as the 

abrasive grit geometry changes as a result of wheel wear. The development of wear 

flats and an increase in the total grit/workpiece contact area will result in an increase 

in specific grinding energy. Similar observations have been made recently by Hwang 
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et al (2000) for electroplated diamond wheels grinding silicon nitride. Hwang et al 

also showed that the change in grit geometry resulted in a reduction in the maximum 

undeformed chip thickness and hence an increase in specific grinding energy. 

This effect can be seen in the present work by considering a fixed set of grinding 

parameters and measuring the change in specific grinding energy. Figure 6.12 

illustrates the increase in specific grinding energy with total stock removed for a Q, 

value of 24 mm2/s and wheel speed of 75 m/s. The linear increase in specific grinding 

energy is related to the development of wear flats, an example of which is shown in 

Chapter 7, Figure 7.25. An increase in the wear flat area also influences surface 

finish. Figure 6.12 shows how the Ra value decreases as specific grinding energy and 

hence wear flat area, increase. 

Increase In Specific Grinding Energy and Reduction In Surface Roughness as a 
function of Total Stock Removal for IN718 (Q'w 24mm2/s, wheel speed 75m/s. 
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Figure 6.13: Typical Example of a Scanning Electron Micrograph of IN718 Surface 

Figure 6.13 shows a typical IN718 surface as viewed by a scanning electron 

microscope. Figure 5.14 shows an SEM image of a comparable cut taken using the 

same parameters from M50 steel. 

Test Number Ra R, 

(microns) (microns) 

50-11 2 19 

718-13 7.1 41 

Table 6.5: Comparison of Surface Roughness between Materials 

Table 6.5 highlights that the surface for IN718 is a poorer surface finish and has been 

subjected to higher proportions of grit rubbing, sliding and ploughing actions. If these 

components of the total specific grinding energy are increased then the temperature 

experienced by the sample is increased and therefore the requirement of an efficient 

grinding fluid strategy is of paramount importance especially with this type of 

material. 
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6.2.4 Theoretical Modelling 

The responses of each of the individual grinding operations have been noted and 

visual assessment of the level of oxidation has been carried out and cross referenced 

to the predicted temperature that this oxidation occurred in relation to the specific 

grinding energy. Rowe & Jin's analysis has been applied to the measured specific 

grinding energy levels to produce a plot which is designed to predict the temperature 

at which oxidation will occur during grinding IN718. The plot replaces the measured 

specific grinding energy values with calculated temperatures for the finished 

workpiece surface. This diagram is shown in Figure 6.14 and the process engineer 

can use this type of diagram to predict the onset of oxidation/grinding burn with 

regard to specific grinding energy for any given variation of depth of cut and feedrate. 

Figure 6.14 indicates that the boundary line between burn and no burn regions for 

IN718 is around 550°C. 

Variation In Workplece Surface Temperature with f(D. 114a. °'4V�'1n) Showing Critical 
Temperature for Burn on IN 718 using Circular Arc Model 
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6.3 Summary 

This Chapter has highlighted and discussed the difficulties associated with grinding 

the nickel based superalloy IN718. The results for IN718 have correlated well with 

results found in Chapter 5 for M50 steel. This implies that the trends are common 

within this type of grinding to all materials and so heightened the importance of this 

fundamental study. Taking these findings as a reference, the research has been taken 

forward to be implemented in the component manufacturing phase which is described 

in Chapter 7. 
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CHAPTER 7 VALIDATION EXPERIMENTS 

The previous chapters investigated the HEDG effect with regard to various 

experimental outputs and theoretical predictions concerning M50 steel and IN718 nickel 
based superalloy. This chapter investigates two basic areas of grinding both regarding 
M50 steel; 

- influence of ultra high specific material removal rates upon the finished 

workpiece surface for M50 steel concerning both up and down grinding 

¢ thermal characteristics within the grinding zone 

Therefore part one investigates the high specific material removal rates, part two 

presents experimental temperature measurements and the chapter summary is given in 

part 7.3. 

7.1 High Q', Removal Rates 

These experiments were designed to investigate the influence of wheel direction and 

depth of cut at one specific material removal rate. 

7.1.1 Experimental Procedure 

It was calculated by graphical means that when using a 100mm long specimen it would 

take a 200mm diameter wheel 43mm from point of initial contact to actually experience 

a full 10mm depth of cut. This is shown in Figure 7.1. 
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Figure 7.1: Position of the True I Omm Depth of Cut 

In addition, this true depth of cut would be experienced for only 20mm of the cut length 

after which point the depth of cut decreases for each test. Two samples were taken from 

each of the 20mm full depth of cut lengths for analysis purposes. At all times the 

spindle power was measured by the Hall Effect Probe and the grinding forces were 

measured via the Kistler Dynamometer. 

With the sample fixed to the Kistler Dynamometer a `touch on' cut was performed and 

then a full 10mm depth of cut was taken at a feed rate of 125mm/s giving a Q'W value of 

1250mm2/s. The series of tests, outlined in Table 7.1, were designed to investigate the 

influence of up and down grinding and wheel speed on the finished surface. 

The initial cut was taken in a down grinding mode using the nozzles designed by 

Webster et al (1995), who advocated that the impinging fluid velocity should match the 

peripheral wheel speed and that the nozzle diameter should be that of the width of cut 

undertaken. A 2mm diameter nozzle was first used with a fluid velocity of 100m/s. 

Extreme oxidation of the surface deemed this cut to be unsuccessful, and so the cut was 

repeated but with a 3mm nozzle with the fluid pressure increased to maintain the 

100m/s wheel velocity. When using the 3mm diameter nozzle the maximum fluid 

velocity was calculated as being 126m/s, which was the closest match to the 146m/s 

wheel speed used in the later experiments. 
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Test Grinding Wheel Fluid Nozzle 

Number Mode Speed Velocity Diameter 

(m/s) (m/s) (mm) 

50-249 Down 100 100 2 

50-250 Down 100 100 3 

50-251 Down 146 126 3 

50-252 Up 100 100 3 

50-253 Up 146 126 3 

Table 7.1: Parameters used for Deep Cuts 

In order to measure the values for spark out power and forces a partial cut at 10mm 

deep was taken and stopped 45mm from the end of the specimen. In this way it was 

known that the actual depth of cut was l0mm. The parameters were then repeated, 

moving the workpiece at the prescribed feedrate until a forward cut of approximately 

0.5mm was taken. The feedrate was stopped and the rotating wheel dwelled in that 

position. Spindle power and forces were recorded and subtracted from the total values 

taken during the cut. Figure 7.2 shows the samples in position after the spark out 

operations were carried out. 
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Spark Out Grinding Power Profile 
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Figure 7.3: Spark Out Power Trace 

The spark out power trace shown in Figure 7.3 indicates how the information logged 

was interpreted. The actual value of spark out power was taken to be the value just after 

the 0.5mm forward cut power. Using this technique, for each deep cut condition, 

retained a consistency throughout the deep cut tests and therefore minimised any error. 

7.1.2 Analyses of High Q', Removal Rate Results 

7.1.2.1 Specific Grinding Energy 

All of the five conditions tested showed visual evidence of oxidation, although as 

shown in Figure 7.4, the values of specific grinding energy varied which could indicate 

that the higher wheel speeds were more successful at these high specific material 

removal rates. Figure 7.4 shows that the 100m/s wheel speed produced a higher surface 

roughness measure and specific grinding energies than those recorded for the 146m/s 

peripheral wheel speed. One could speculate that for these conditions, up grinding 

seems to produce a more favourable result. 

128 



VALIDATION EXPERIMENTS 

Comparison of Up and Down Grinding for High Q'� Values on M50 using Mineral Oil 
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Figure 7.4: Response during Deep Cuts on M50 

Figure 7.5 shows the power usage during the deep cuts on M50. It can be seen that at 

the higher peripheral wheel speeds the net grinding power required for the cut decreases 

but the spark out power increases. This concurs with the theory put forward by 

Tawakoli (1993) that with increased wheel speed the temperature decreases. When the 

wheel speed increases the amount of active grits increase during a cut which would 

reduce the wear on each individual grit, reducing the production of flats on the grits and 

thereby reducing specific grinding energy. 

Spindle Output as a Function Of Wheel Speed for M50 Deep Cuts of Q'w of 1250mm2/s 
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Figure 7.5: Power Distribution for M50 Deep Cuts 
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Figure 7.6 shows the burn threshold diagram for all tests carried out on M50. The 

f(DaVw) value for the high specific material removal rates was 0.06. It can be seen that 

these points are all above the burn threshold line, thereby following the trend shown 

previously. Figure 5.3 can now be replotted to include the deep cut results. 

Burn Threshold Diagram for M50 Steel using all Fluid Types 
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Figure 7.6: Burn Threshold Diagram for M50 

The results in Figure 7.6 can be re-plotted to illustrate the variation in predicted 

workpiece temperature with specific stock removal rate. 
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Theoretical temperature to Specific Material Removal Rate for M50 for all Fluids 
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Figure 7.7: Calculated Temperature against Specific Material Removal Rate 

Figure 7.7 shows the variation in temperature for Q'W values ranging between 1 and 

1250mm2/s. The predicted burning temperature for this material is shown to be around 

400-450°C, which correlates well with other authors such as McCormack et al (2001). 

7.1.2.2 Surface Characterisation 

The sub surface microscopy results shown in Figure 7.8 illustrates severe grinding 

damage was evident in all the down grinding operations carried out. Also the 

micrograph results matched reasonably well with the Vickers hardness profiles. These 

correlated well with the specific grinding energy results and the burn threshold diagram 

plots. 
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Sample 50-249 
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Figure 7.8: Workpiece analysis Result for Down Grinding Deep Cuts 

As well as excessive grinding damage the down grinding mode sample showed 

evidence of surface cracking and surface oxidation damage. 
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50-253 

Vickers Hardness Profile for M50 Test 
Number 50-252 in Mineral Oil 
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Figure 7.9: Workpiece analysis for Test Numbers 50-252 and 50-253 

Figure 7.9 illustrates the sub-surface microscopy, SEM images and Vickers hardness 

profiles for the "up grinding" mode operations. The depth of both the overtempered and 

untempered martensite layers is lower than that of the `down grinding' results. One can 

only surmise that when comparing Figures 7.8 and 7.9 in these circumstances up 

grinding is more efficient than down grinding. Even though the surface of test number 
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50-253 shows slight damage one should recall that the process used here is for stock 

removal purposes and that a finishing cut would be required. 

7.1.2.3 Stress Measurement 

The M50 deep cut test's residual stress measurements carried on the trend seen in 

Chapter 5. Figure 7.10 shows the complete M50 experimental dataset for all M50 tests 

and even taking into account that these tests have used a host of depths of cut, feedrates 

and wheel speeds the same general trend can be seen. 

Comparison of Rsidual Stress Against Specific Material Removal Rate for M50 for all 
Fluids 
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Figure 7.10: Comparison of Residual Stress to Specific Material Removal Rate 

7.1.2.4 M50 Burn Analysis 

Questions arose during this research as to when the browning upon the finished surface 

was oxidation or due to some other effect. To answer this query three samples were 

prepared, one from a known oxidised sample, one clean M50 sample which had oil 

heated until the surface was dry and a control sample free from oil and oxidation. 

The samples were analysed using a Scanning Electron Microscope (SEM), and the three 

results are shown in Figures 7.11 to 7.13. Taking the background noise into account the 

only discernable difference is the large Carbon peak which is prevalent in the burned 

sample shown in Figure 7.11, but not in the other two plots. 
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The results would indicate that because there was no evidence of a large 02 peak and 
hence no real evidence of oxidation, we could be seeing the effects of excess carbon 
deposited from the breakdown of the oil during the ultra high pressures and 

temperatures experienced in the grinding zone where oxidation occurred. This could 
indicate that the burn threshold results which are based on a visual assessment of the 

surface, could be residual effects from the breakdown of the grinding fluid and not in 

fact oxidation of the material. 
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Figure 7.11: Oxidised Sample 
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Figure 7.12: Un-oxidised Sample 
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Figure 7.13: Control Sample 

7.1.2.5 Wheel Wear 

Figure 7.14 shows the wheel profile from the M50 steel deep cuts. After each sample 

was cut the wheel was moved 4mm to the right and therefore each cut used a "new" part 

of the wheel. The wheel wear profile shown in Figure 7.14 was produced by the 

Talysurf which followed the wheel profile taken from a graphite block. The numbers 
below the profiles relate to the wear recorded from the radius of the wheel after each 
initial cut. 
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Figure 7.14: Wheel Wear Profiles after Up & Down Grinding 
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The grinding ratios shown in Table 7.2 are all relatively low, and so could give a false 

impression, as this is due to these cuts being the first from a new wheel. A new wheel 

undergoes a conditioning operation when first used which removes all the high points 
from the grits and so wheel wear from this early part of the wheel life is relatively high. 

Grinding 

Test Number Ratio 

50-249 15.92 

50-250 21.51 

50-251 24.87 

50-252 34.59 

50-253 32.48 

Table 7.2: Grinding Ratios from Deep Cut Experiments 

7.1.2.6 Thermal Modelling 

The theoretical thermal modeling used in this research was based on the circular arc 

model of Rowe & Jin (2001). The background to the thermal modeling work is 

presented in Chapter 2, section 2.7 and a greater degree of explanation of the process 

used is shown in Appendix H. Also when untempered martensite was witnessed the 

heat transfer equations were used as a comparison. 

7.2 Experimental Temperature Measurements 

This aspect of the research was undertaken to correlate the predicted temperatures with 

experimentally measured values for both up and down grinding modes. In this way 

greater confidence can be shown in the predictive tools produced by previous 

experimental trends and theoretical calculations using techniques published by Rowe 

(2001). This section describes the procedure followed. 
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7.2.1 Experimental Procedure 

A series of tests to investigate the influence of feed rate and depth of cut were designed. 

The parameters chosen are shown in Table 7.3 and were repeated for both modes of 

grinding. 

Depth of Cut Feed Rate Specific Material 

Removal Rate 

(mm) (mm/s) (mm2/s) 

0.4 125 50 

1.6 125 200 

3 125 375 

3 66.67 200 

3 16.67 50 

Table 7.3: Temperature Measurement Parameters 

Four samples were manufactured to make 2 pairs, one sample from each pair had a slot 

spark eroded along the centre line to accommodate the thermocouple wires. Figure 7.15 

shows an illustration of the M50 blocks used for temperature measurement. 

t 

25 
THIS DIMENSIONS MILLED TO SIZE 
BY ALTERING 3MM WIDE 
SLOT HEIGHT 

L. _.., 15 

20 

il 

i 0.1 -º f- 

ALL DIMENSIONS IN MM 

NOT DRAWN TO SCALE MATERILAL M50 STEEL 

Figure 7.15: Temperature Measurement Blocks 
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The slot was coated with high temperature cement (OMEGA TYPE CC High 

Temperature Cement) and a standard K-Type foil thermocouple (Type CO-2) was 

bonded to this face. A protective layer of cement was applied upon the thermocouple, 

allowed to cure and the two halves of the specimen were clamped together in a fixture 

which in turn was bolted upon the Kistler Dynamometer. 

With the thermocouple bonded on to the high temperature cemented surface the distance 

between the end of the thermocouple and the sample edge was measured using a 

calibrated eyepiece fitted to a CNC milling machine. The two halves were then 

positioned and assembled together, as shown in Figure 7.16. Due to the 25µm thickness 

of the thermocouple cables continuity tests were carried out to ensure electrical 

continuity of the system. The in-house written software which logged the data, was 

then run to ensure the system was working satisfactorily. 

0 
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----------------------- 

fi 

--------- ---- ---- - ------ 

National Instruments Computerised 
Miniature connector and DAQ Pad with data-logging 
25.4micron wires internal Cold Junction using Labview 6 

compensation 

Figure 7.16: Experimental Setup for Temperature Measurement 

The thermocouple was calibrated using a vessel of water heated to between 29°C and 

90°C. Figure 7.17 shows the calibration points taken using a calibrated thermometer 

RS(650-419). 
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Type K Foil Thermocouple Calibration Check 
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Figure 7.17: Thermocouple Calibration Check 

The distance between the edge of the thermocouple and the sample edge was measured. 

A number of small cuts were then taken to control the actual predetermined depth of cut 

and the system was constantly tested to ensure functionality. When the correct depth of 

cut was achieved the following procedure was followed. The grinding program and the 

force dynamometer were both initiated, and the wheel rotated up to speed. The 

manually initiated signal was set so that information was logged during both the initial 

and final transient response phases of the operation. 

The data logger used was a National Instruments DAQPad (Type -MIO-16XE-50). and 

an in house designed piece of software using the LabView software package. This 

logged 20,000 bits of information per second for 6 seconds. Therefore at maximum 

feed rate, and with the distance between the two samples which housed thermocouple 

being around 150 microns, the software would log 24 bits of information in 1.2ms 

during this period. 

The most important issue in this experiment was not to touch the thermocouple 

assembly in any way. If contact was made between the wheel and the thermocouple 

assembly the circuit would be broken and would cause wild fluctuations due to noise. 

Therefore 50µm was left between the surface and the thermocouple tip. 
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7.2.2 Temperature Measurement Results 

The response time of the foil thermocouple used is 2ms and, this measure indicates that 

it would require 2ms for the thermocouple to react to 66% of the signal. This meant 

that in theory the thermocouples may not be fast enough to show the maximum peak 

temperature experienced by the workpiece. Figure 7.18 shows a comparison of the raw 
data responses for test numbers 50-254 which represents the down grinding example 

and the up grinding comparison shown is test number 50-259. Wager (1991) noted that 

the contact length was higher for up grinding and that the subsequent temperatures were 

relatively equal for both modes of grinding; this temperature characteristic was not 

mirrored here during these higher Q', values. As each experimental run was carried out 

the net grinding power was used to calculate the finished surface temperature using the 

circular arc contact model. 
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Figure 7.18: Comparison of Up and Down Grinding 

Figure 7.18 has been graphed using the raw data logged at 2000 bits per second. There 

is evidence of a constant frequency noise signal in the down grinding example which 

had a lower peak temperature value but still had a high signal to noise ratio. From the 

curves one can see that the heat distribution in both cases is relatively equal albeit at 

different temperature levels. 
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The experimental results shown in Figure 7.19 investigate the influence of feedrate 

when using the three feedrates involved, which were 16.66,66.67 and 125mm/s. It is 

quite obvious that the thermocouples slow response time is responsible for the constant 

disparity but the general trend of increasing then decreasing temperature is followed by 

both measures. 

Comparison of Theoretical and Experimental Temperatures to Q'w varying Feedrate 
with Constant Depth of Cut in the Down Grinding Mode 
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Figure 7.19: Varied Feedrate when Down Grinding M50 

Figure 7.20 shows the results when the influence of depth of cut is investigated. Figures 

7.19 and 7.20 show the same trend is followed by both plots, and as the depth of cut is 

increased both the predicted and measured temperatures increase and then decrease. 

Also, the response time of the thermocouple is the time required to reach 66% of the 

total temperature change. Therefore one could increase the temperature plots by a half 

which would bring the measured and predicted values closer together. 
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Comparison of Theoretical and Experimental Temperatures to Cl'. varying Depth of Cut 

with Constant Feedrate In the Down Grinding Mode grinding M50 
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Figure 7.20: Varied Depth of Cut when Down Grinding M50 

Figure 7.21 and Figure 7.22 shows the results for the up grinding mode. Overall higher 

temperatures were measured by the thermocouples and the corresponding calculated 

temperatures were higher. 

Comparison of Theoretical and Experimental Temperatures to Q'w varying Feedrate 

with Constant Depth of Cut in the Up Grinding Mode grinding M50 
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Figure 7.21: Varied Feedrate when Up Grinding M50 
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Comparison of Theoretical and Experimental Temperatures to Q'� varying Depth of Cut 

with Constant Feedrate In the Up Grinding Mode grinding M50 
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Figure 7.22: Varied Depth of Cut when Up Grinding M50 

Comparing Figures 7.19 to 7.22 with a view to mode of grinding there have been a 

number of discussions as to the efficiency of the two modes. Tawakoli (1993) 

advocated an up grinding mode for Q'W values between 20 to 70mm2/s and down 

grinding for values above 70mm2/s. It can be seen that the general trend is for higher 

temperatures during up grinding for these intermediate specific material removal rates. 

Test Number Surface 

Roughness Ra 

(microns) 

50-259 1.328 

50-260 1.341 

50-261 1.415 

50-262 1.360 

50-263 1.109 

Table 7.4: Surface Roughness after Up Grinding Operations 

Table 7.4 gives the surface roughness measure Ra results which indicates that the wheel 

used in these experiments has merely been conditioned by these grinding operations. 
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The inference is that the excessive heat witnessed could actually be due to the mode of 

grinding. 

A low Ra surface roughness measure would infer that the grits had worn to a more flat 

topography, which would be shown by an increase in the rubbing portion and an 

increase in both specific grinding energy and finished surface temperatures. Figure 

7.23: gives examples of conditioned and worn grits. A worn flat area would create a 

greater rubbing or sliding portion of the total specific grinding energy and therefore 

higher temperatures due to excessive wheel wear. 

Figure 7.23: Examples of grit wear 

7.2.3 Up Grinding Workpiece Analysis 

Figure 7.24 gives details of parameters used, sub-surface micrographs at the area of 

material adjacent to the thermocouple position and Vickers hardness profiles for the up- 

grinding tests. From Figure 7.24 it can be seen that all samples received no real 

grinding damage other than the sample 50-262 for which it could be construed that the 

surface had been slightly over-tempered. 
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Figure 7.25 shows details of grinding damage prior to the thermocouple position. 
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50-262 50-263 

Q'W = 200mm2/s 375mm2/s 

Feedrate = 66.67mm/s 125mm/s 

Depth of Cut = 3mm 3mm 

ý ý. e. rr. ýyiN 

50-264 

200mm2/s 

125mm/s 

1.6mm 

Figure 7.25: Evidence of Tapering Grinding Damage 

The total length of samples used was 60mm, and it should be noted that the maximum 

depth of cut is only achieved midway through the cut when the contact length has 

increased to its maximum value. For a 3mm depth of cut this occurs after 29.9mm. 

Figure 7.25 shows that as the specific material removal rate is increased through the cut 

the temperature increases then decreases and as the full depth of cut is experienced there 

seems to be a lag time for the grinding damage to cease. The depth of grinding damage 

varies for each test, 50-262 - 70microns, 50-263 - 90microns and finally 50-264 - 

40microns. 

Using the heat transfer equations we can use the depth of white layer penetration to 

calculate the temperature experienced by the finished surface. A worked example for 

50-263, parameters are depth of cut - 3mm, feedrate 125mm/s and 100m/s wheel speed, 

is shown in Appendix H, Figure H. 3. 

Figure 7.26 gives an illustration of the sample's finished surface. The first triangle 

represents the white layer grinding damage which is measured 1.1 mm from the end of 

the cut. This point is when the true depth of cut had been reached. The second triangle 

represents the true grinding depth when using a depth of cut of 1.6mm. For reasons of 
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comparison the grinding damage was measured for both instances at the same distance 

from the end of the grind. 

1.1 mm from end of Cut 

Grinding Damage 

Q'W = 375mm2/s Depth of Cut - 3mm 

Circular Arc Model 762 - 824 

Heat Transfer Method 835 

Q', y = 200mm2/s Depth of Cut - 3mm 

Circular Arc Model 532 - 758 

Heat Transfer Method 815 

569 - 865 

12.2 mm from end of Cut 

01 

Undamaged 

Portion 
Grinding Damage 

Q'W = 200mm2/s Depth of Cut - 1.6mm 

Circular Arc Model 589 - 865 

Heat Transfer Method 827 

625 - 854 

Figure 7.26: Calculated Temperatures 

Undamaged 

Portion 

Feedrate - 125mm/s 

882 - 1025 

Feedrate - 66.67mm/s 

Feedrate - 125mm/s 
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It was noted that even after the maximum specific material removal rate had been 

reached the power usage increased to a peak which correlated with the mid-point of the 

samples, then the power decreased. Therefore the predicted temperatures shown in 

Figure 7.26 were calculated using both net and total power to investigate the use of the 

maximum spread of power readings. Two models were used to calculate finished 

surface temperatures; Rowe & Jin's Circular Are Model Rowe & Jin (2001) and the 

heat transfer equations. McCormack et al (2001) stated that tempering of the surface 

begins at approximately 450°C and untempered martensite begins to form at around 

800°C. It can be seen that there is reasonable correlation between the contact model and 

the heat transfer equations. However it could be unfair to compare these two sets of 

results, as all the heat transfer equation results lean toward the maximum power 

readings. 

One theory as to why this has occurred could be due to the surface temperature at this 

point being extremely high and the workpiece partition ratio would also be high. Any 

heat conducted into the workpiece prior to the 1.1 mm point would still be present and 

even as the finished surface temperature decreases due to HEDG principles after this 

point the thermal flux could diffuse further into the workpiece so that a thermal lag 

occurs. Temperatures could therefore be higher than predicted from the power 

measurements. The heat transfer equations would then predict higher temperatures than 

is possible when calculated from the net grinding power. 

Also, as the circular arc contact model is based upon the maximum grinding angle for 

each temperature calculated and Jin et al (2002) assumed that for HEDG conditions the 

temperature of the chip (TCH) varies linearly with a maximum workpiece surface 

temperature Tmax, in the range 1000°C - 1500°C, the temperatures calculated would be 

slightly higher overall in comparison to the inclined plane model. 
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7.3 Summary 

Figure 7.27 shows the general shape of response that has been noted throughout this 

research when investigating responses such as predicted temperature, measured residual 

stress and specific grinding energy. This type of curve illustrates reasonably well what 
has been noted in Chapter 5, Figure 5.21 when plotting the specific grinding energy 
band of 0.1 - 25J/mm3. 

Expected Variations in Temperature & 
Residual Stress with Q'W 

Temp 
B 

or A 

XRD " I. ' 

Q/ 
w 

Figure 7.27: Expected Trends for HEDG 

Here it was seen that when the specific material removal rate is increased from zero at 

the point marked "A" in Figure 7.27, the specific grinding energy levels rises quickly 

with large oscillations in values resulting in relatively small changes in the calculated 

temperatures. Point B indicates an area where small changes in specific grinding energy 

result in extreme changes in calculated temperature. Also the small variations in 

specific grinding energy at point B could indicate a limitation of the HEDG process. 

Therefore methodologies should be devised and utilised in a bid to control these 

variations in specific grinding energy during the grinding process. These trends are 

mirrored when looking at residual stress measurements, as shown in, Figure 7.10. 
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The results from this chapter have correlated well with the overall trends noted 

throughout this research. The circular arc contact model predicts temperatures which 

can be correlated with the sub-surface microstructure and residual stress measurements. 

The temperature measuring experiments showed that the thermocouple response time 

was inadequate for both the high feedrates and depths of cut employed. Also, the 

temperature measurement experiments highlighted a possible finished surface integrity 

problem at the start and finish of cuts which could be unique to the HEDG process. 

With the completion of these experiments a more complete picture is now available of 

the principles of HEDG. The next chapter presents and discusses the component 

manufacture stage of this research to which these HEDG principles have been applied. 
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CHAPTER 8 COMPONENT MANUFACTURE 

The following chapter presents examples of components ground using HEDG 

principles. The grinding conditions were chosen based on the previous experimental 

findings and have been used to demonstrate the potential of the HEDG process. The 

grinding trials on components also provided a further means of validating the grinding 

models proposed for HEDG. For each component the aim was to remove material at 

rates that were substantially higher than currently achieved whilst achieving the 

required level of surface integrity. 

This chapter is presented in five parts. Part 8.1 describes the procedures followed in the 

experimental stage when producing M50 bearings. Part 8.2 discusses and summarises 

the results found. Part 8.3 explains the MARM-M-002 turbine blade experimental 

procedure, 8.4 discusses the results found and the turbine manufacture stage and results 
is summarised in Part 8.5. 

8.1 M50 Bearing Manufacture Experimental Procedure 

At present the bearings are produced by a combination of milling and finish grinding 

operations to achieve the surface finish requirement. Aluminium oxide wheels are used 
for the finish grinding and as such are prone to generate grinding burn of the workpiece. 

This is primarily due to the low thermal conductivity of this type of wheel. Shaw 

(1993) states that the thermal conductivity of alumina is around 50W/mK, and this also 

contributes to a high workpiece partition ratios when using a shallow cut grinding 

procedure. 

This experiment required the grinding of four slots 50mm wide by 4mm deep into a 

M50 bearing ring. The machining parameters were decided using the information 

obtained during the project and from published literature as reviewed in Chapter 2. 

152 



COMPONENT MANUFACTURE 

The objectives of the grinding tasks were as follows: 

carry out the prescribed grinding operation on each component in a 

grinding time of less than 60 minutes 

¢ achieve a Ra surface roughness target of better than 2µm 

¢ ensure that the grinding procedures produced only compressive residual 

stress characteristics 

Thirty two component manufacturing tasks were carried out using the rotary axis fixture 

on the B-axis of the Edgetek machine along with a shoe nozzle and associated tooling 

which were designed and manufactured at Cranfield University. The first two numbers 

of the numbering system used, describe the material, in this case 50 as in M50, then two 

more digits designate the tests in numbered order. The machining set up is shown in 

Figure 8.1 where a component is being held in place before the start of a grinding test. 

The tests used mineral oil (Castrol Ilogrind 600SP) that was supplied at a rate of 

1101/min via a shoe nozzle with a maximum grinding fluid output velocity from the 

shoe nozzle of 350mm/s. Saint-Gobain supplied the B151 CBN electroplated grinding 

wheels which were 50mm wide by 200mm diameter. 
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The experimental procedure was divided into several stages as follows: 

r design and manufacture of tooling and associated equipment 

y grinding trials 

¢ initial Q' W testing 

¢ evaluation of surface integrity 

8.1.1 Design and Manufacture of Tooling and Associated Equipment 

The fixture to hold the bearing in a rigid manner is of critical importance as any free 

movement may give rise to vibration and/or chatter. A shoe nozzle also was designed 

to take into account the following requirements: 

¢ deliver adequate grinding fluid along the whole width of the wheel 

¢ give adequate clearance to facilitate ease of finished component removal 

and the fitment of a new component 

8.1.2 Bearing Grinding Trials 

Five rings were delivered for grinding trials and these were divided into three 

categories: 

Initial Q', Testing 

Conditioning Tests 

Final Grinding Operations 

- Test Numbers 50-58 to 50-65 

- Test Numbers 50-66 to 50-81 

- Test Numbers 50-82 to 50-89 

The test results are summarised in Appendix I. 
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8.1.2.1 Initial Q',, Testing 

As the slots would be produced in one operational run with a constant 4mm depth of 

cut, four different feedrates were used initially to investigate four Q', values; these 

were 1,20,50 and 100mm2/s. The machining process used two different wheel speeds, 

3000 and 14000rpm which are equivalent to a peripheral speed of 30 and 146 m/s 

respectively. Using these broad grinding parameters enabled the component surface 

integrity to be correlated with the grinding conditions. 

At specific times the pallet holding the bearing fixture was replaced with one holding a 

graphite block. When using a new wheel an initial datum cut was taken, and any 

discrepancy between the initial and any subsequent cuts of the same nominal depth were 

compared using the Edgetek's control system. The set depth of cut could be compared 

with the actual depth of cut and any discrepancy would represent a measure of any 

wheel wear. Figure 8.2 shows an illustration of the set up. 

Figure 8.2: Illustration of Wheel Wear Measuring Set Up 

During all cuts the Hall Effect device monitored the spindle power which was displayed 

via a calibrated multi meter. From these calibrated readings the total, spark-out and net 

power used for each cut could be ascertained. 

8.1.2.2 Evaluation of Surface Integrity 

From the onset it was noted that due to the wheel being 50mm wide and with a 

maximum depth of cut of 4mm, the feedrate would need to be restricted in order to keep 

within the machine's maximum power capacity. This restricted the maximum 
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attainable material removal rate. The first ring was used to investigate the influence of 

wheel speed and specific material removal rate. Table 8.1 shows the initial parameters 

used. 

Test 

Number 

Wheel 

Speed 

(m/s) 

Q'w 

(mm2/s) 

Depth 

Of Cut 

(mm) 

Feed 

Rate 

(mm/s) 

50-58 30 1 4 0.25 

50-59 30 20 4 5.00 

50-60 30 50 4 12.50 

50-61 30 100 4 25.00 

50-62 146 1 4 0.25 

50-63 146 20 4 5.00 

50-64 146 50 4 12.50 

50-65 146 100 4 25.00 

Table 8.1: Initial Bearing Tests 

The responses illustrated in Figure 8.3 confirm that the operations undertaken with a 

wheel speed of 146m/s show a slight increase in the specific grinding energy compared 

to those undertaken with a 30m/s wheel speed. This indicates that the extra power is 

required to rotate the wheel at this higher peripheral speed and also, as the surface 

roughness shows, more grits are sharing the load, producing a finer surface finish. 

Also, the chip thickness will be smaller at the higher wheel speed. 
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Comparison of changes In Specific Grinding Energy and Ra Material Removed for 
Wheel One to Initial Tests 
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Figure 8.3: Initial Test Results 

Further tests were performed using the maximum wheel speed of 146m/s and two 

specific material removal rates; a maximum of 25mm2/s and for reasons of comparison 

lOmm2/s. In these tests one ring was used a total of sixteen times. Test numbers 50-66 

to 50-73 were taken on one side at a Q'", of 25mm2/s and test numbers 50-74 to 50-81 

were taken on the other side at a Q'W of I Omm2/s. This gave a greater understanding of 

the wheel wear characteristics in relation to this type of grinding process, in relation to 

this type of wheel with different removal rates using this type of grinding fluid delivery 

strategy. 

For test numbers 50-66 and 50-74, samples were removed from the 10mm2/s edge and 

50-75 and 50-77 from the Q'W = 25mm2/s tests. The resulting residual stress 

measurements were taken using the Siemens XRD Diffractometer. 

8.2 M50 Bearing Results 

The analysis of the sectioned bearing rings utilised a number of procedures varying 

from surface, sub-surface analysis to XRD residual stress measurements. A Talysurf 

profilometer was used to quantify the Ra and Rt surface roughness measurements and 

these proved to be consistently below the stipulated roughness of 2µm Ra. 
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The four samples removed were analysed using the Scanning Electron Microscope, sub- 

surface microscopy, Vickers micro-hardness profiles and residual stress measurements 

taken using the X-Ray diffractometer. Of all the test results the most interesting feature 

was that all the samples showed characteristics of high compressive stresses. The 

results are shown in Table 8.2. 

Ring 103 Sigma Sigma 

x y 

Test 

Designation (MPa) (MPa) 

50-66 -1032 -826 
50-74 -1001 -801 
50-75 -897 -979 
50-77 -992 -959 

Table 8.2: XRD Residual Stress Measurements 

Sub-surface micrographs were taken from the four specimens chosen. For all four 

samples no sub-surface damage was noted, which correlates well with the residual stress 

measurements listed in Table 8.2, sub-surface microscopy and Vickers hardness 

profiles. 
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Test Number 50-66 
-� 

Vicker Hardness Profile for SKF M50 Bearing 

1000 
Rin 103 Test 1 

800 

600 

= 400 

200 

0 
0 200 400 600 800 10 001 

Q'N, 25mm2/s Distance from Edge (microns)F 

Vickers Hardness Profile 

Figure 8.4: Example of Bearing Test Number 50-66 

Figure 8.4 shows no damage was evident and the Vickers hardness profile is consistent 

with this result. 

Due to the various Q'", values and wheel speeds tested, one way in which this array of 

parameters can be analysed is by the measure of specific grinding energy against Q'w. 

Figure 8: 5 shows that as the chip thickness increases in size the specific energy required 

for the process decreases showing that indeed, when Q'W is increased a more efficient 

process is produced, as expected for HEDG. 
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Comparison of Specific Energy versus Specific Material Removal Rate for M50 steel 
Bearing Manufacture 
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Figure 8.5: Comparison of Grinding Energy to Q', for M50 Bearings 

Figure 8.6 illustrates the results obtained from tests 50-82 to 50-89, which were used for 

the final testing of two specific material removal rates with four tests being undertaken 

at each rate. Firstly a Q',; value of 25mm2/s was used, then one of lOmm2/s for four 

tests. 

Comparison of changes in Specific Grinding Energy and Ra for Wheel Two to Material 
Removed 

O Specific Energy " Ra 

18 ............ ...... _.. _......... _... _... _... _. _... .... -_.. ------... -------------- -. -.... --... _----. _.. 2.00 

" 0 
15 

0 0 
1.50 E 

E 

v 
12 

"""""" " 
oýi 0 

m 9 
O0 

m 

1.00 

w 
U 

CL 
p 

0 
025 

0 
010 0.50 

3 

0 00 p . 
N 

(O J 

jjNN Np N 

i4N t0 
N 

Om 
ý ( 

p 
p p1 

A 0ý 
N 

Of Oý m 

Total Material Removed (mm) 

1 ,5u, v U. v. LILAS ALlvv 
.5 

.v Nb, ", vvv . -- ava 11 -- ., - 

i 
i 

f 

" I i 
t 

160 



COMPONENT MANUFACTURE 

Figure 8.6 shows a rise in specific grinding energy as the wheel is conditioned and more 

grits become active. The main interesting feature is that with a Q'W of 25mm2/s the 

specific grinding energy is consistently lower than when the Q',, is 10mm2/s. This 

indicates that the earlier tests were more efficient with regard to wheel wear. Also the 

surface roughness measure Ra correlates with this theory because the Ra value seems to 

be more stable as more grits come into contact with the workpiece surface. 
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Test Number 50-75 

M50 Ground with mineral oil - Q' = 10 mm2/s 

Wheel Speed = 100m/s 

Depth of Cut = 4mm 
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Figure 8.7: Test Number 50-75 

Figure 8.7 shows an example of a test summary for test number 50-75 
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Barkhuasen Noise Amplitude Against Wheel Usage 
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Figure 8.8: Comparison of BNA to Wheel Usage 

Figure 8.8 shows a slight rise in BNA with wheel usage. Using the evidence collected 

from the grinding tests shown in Figure 5.7 of Chapter 5, it can be seen that the onset of 

tensile stress occurs with a BNA number of around 85 to 90. If the responses to further 

grinding operations follow a linear trend such as the trend line shown in Figure 8.9 and 

this trend line is extended as shown in Figure 8.9, the trend line cuts the 90 BNA mark 

when 66,500mm3 of material has been removed. This equates to 82 cuts, which could 

be easily exceeded with a more optimised grinding fluid delivery strategy. 
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Barkhuasen Noise Amplitude Against Wheel Usage 
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Figure 8.9: Comparison of BNA to Wheel Usage with extended Trend line 

8.2.1 Summary 

The main objectives laid down by the sponsoring bearing company have been 

consistently equaled and surpassed. The timescale was easily surpassed from the 60 

minutes prescribed to approximately 7 seconds at the maximum specific metal r: moval 

rate attempted. At present a number of passes are required for the completion of a 

bearing whereas only one was used during these tests. Conventional abrasives are 

currently used and these are not as tough as CBN grits and the thermal characteristics of 

the grits are less efficient than those of CBN. Therefore the depths of cut taken have to 

be lower which in turn means higher specific grinding energies and subsequent higher 

temperatures being experienced by the workpiece. The HEDG concept of high depths 

of cut and high feed rates enabled, through the excellent mechanical and thermal 

properties of CBN grits, the attainment of higher efficiencies which can be of major 

benefit to industry. 

Even when using the highest specific metal removal rate no grinding damage was 

witnessed. The benefits of this process over the original manufacturer's process are 

considerable. By using a grinding centre such as the Edgetek, the operator's skill 

requirement can be reduced due to the process being totally automated. Because the 

time required for the completion of the process is cut so dramatically the economical 

benefits of an increase in production levels will be substantial. This could be further 
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enhanced by the use of an automatic part changer within the system. The use of 

Barkhausen Noise Amplitude techniques has shown that these measurements are quick 

and easy to take and correlate well with the X-Ray diffraction measurements. Using 

this technique has enabled the prediction of when the onset of tensile stresses occur. 
This in itself could be a major benefit to aviation bearing manufacturers where tensile 

stresses are not acceptable for safety reasons. 

8.3 Turbine Blade Manufacture 

This section summarises the final assignment with respect to the manufacture of MAR- 

M-002 turbine blades for an aero-engine manufacturer. This task required the grinding 

of `fir tree' blade roots which were to be ground in one pass. The actual depths of cut 

experienced by the wheel varied from 1.2mm to a maximum of 7.8mm using the 

Edgetek 5-axis superabrasive-grinding machine. The parameters used and experimental 

responses are shown in Appendix J. 

The objectives of the programme of work were as follows: 

¢ achieve an Ra surface roughness target value of better than 1.6µm 

¢ ensure that the grinding procedures produced samples with only 

compressive residual stress characteristics 

> compare CBN HEDG grinding with the current Viper process 

With both the final dimensions of the finished blades and the depth of cut to be used 

already decided, the only other variables were feed rate and wheel speed. The Viper 

process cuts the material using Aluminium Oxide wheels at a peripheral wheel speed of 

30m/s, at a feed rate of 1 m/min with a depth of cut of 1 mm. This equates to a Q'W value 

of 16mm2/s, and one of the aims of this project was to surpass this figure. 

165 



COMPONENT MANUFACTURE 

8.3.1 Experimental Procedure 

The manufacturing tasks on the component were carried out using an in house designed 

fixture as shown in Figure 8.10 which illustrates how each blade was held in place 
during the test runs. 

The tests used mineral oil (Castrol Ilogrind 600SP) that was supplied at a rate of 

1101/min via a 6.7mm diameter jet nozzle at a pressure of l5bar which was the mid- 

point set up previously found in Chapter 5, section 5.1.2. The grinding wheels were 

supplied as a pre-conditioned and balanced set which were pre-profiled for the task. 

The roughing outer wheel was 270mm in diameter and was B252 type grit, and the 

finishing B 126 grit wheel was 200mm in diameter. Figure 8.11 shows a wheel and the 

grinding fluid nozzles fitted to the Edgetek. 
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Grinding fluid Application 
Grinding Wheel 

Nozzles 

Direction of Grinding Fluid 

Figure 8.12: Turbine Blade Grinding Wheel Setup 

Figure 8.12 shows an illustration of the grinding wheel- grinding fluid setup. 
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The experimental procedure was divided into several stages as follows: 

r tool design and manufacture 

¢ initial exploratory blade cuts 

¢ flat surface grinding 

¢ workpiece analysis 

¢ finished blade analysis 

8.3.1.1 Tool Design and Manufacture 

The fixture to hold the blades in a rigid manner was of critical importance as any free 

movement would give rise to vibration and/or chatter and distortion. The design 

specification of the wheel and the tooling used are given in Appendix J, Figures J. 1 to 

J. 3. 

8.3.1.2 Initial Exploratory Blade Cuts 

Five blades were ground using various feed rates to test the tooling and grinding fluid 

supply. The test parameters and responses are detailed in Appendix J, Table J. 1. As the 

depth of cut of the roughing operation was fixed to that required for a complete 

operation to be carried out in one pass, followed by a 50micron finishing operation, the 

only two parameters to be altered were the feed rate and wheel speed. The feed rates 

used were 2,4,8 and 12.5m/min with the wheel speed being rated to a maximum safe 

wheel speed of 130m/s. The aero engine manufacturer arranged for the ground blade 

specimens to be analysed by an independent laboratory. This independent analysis was 

carried out and the results are presented in Appendix K. Although the conclusions were 

related to a non-optimised scenario the initial indications were that the CBN HEDG 

grinding process produced less localised deformation on the surface and it was noted 

that "the CBN process resulted in a cleaner cut". 
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8.3.1.3 Flat Surface Grinding 

Three flat samples of equi-axed MAR-M-002 material were produced to make a direct 

comparison with a current state-of-the-art industrial process and the HEDG process. A 

sample had already been prepared by the company and so this was included as an 

example of a surface ground under conventional industrial conditions. 

As the profiled wheels used in the grinding of the MAR M 002 blades were of specific 

grit size, the same sized grits were used in the flat surface grinding operations. Thus, 

roughing cuts were taken by B252 CBN grit wheels and the finishing cuts were taken 

using aB 126 grit wheel. All wheels were 15mm wide with a diameter of 200mm. 

Six separate cuts were undertaken and were numbered 1 to 6. The first set of three were 

purely exploratory in terms of setting up suitable grinding fluid parameters. Three 

further cuts were then performed. - The first (cut 4) was a direct comparison with the 

competing process but using a CBN electroplated wheel rather than an aluminium oxide 

wheel. Cuts 5 and 6 investigated the influence between two wheel speeds, these being 

100m/s and 146m/s. The depths of cut and feed rates were 2mm and 25mm/s 

respectively. 

8.3.1.4 Workpiece Analysis 

The analysis of the final blades utilised a number of procedures varying from surface, 

sub-surface analysis to XRD residual stress measurements. A Talysurf profilometer 

was used to quantify the Ra and Rt surface roughness measurements and residual 

stresses were measured at University of Manchester Institute of Science and 

Technology (UMIST). 

8.3.1.5 Final Grinding Operations 

Utilising the knowledge gained from the initial series of experiments, the final grinding 

operations were carried out on MAR-M-002 blades. As the depth of cut was essentially 

fixed to the full amount, the main parameters which were varied were wheel speed and 

feed rate. 
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It became clear that as the geometry of the cut was quite complex the normal calculation 
for specific grinding energy would not be appropriate under these conditions. The 

depth of cut varied from 2.2mm to 7.8mm, therefore as the maximum depth of cut could 

not be used to calculate the specific grinding energy, it was decided that a calculated 

mean specific grinding energy would be used based upon the mean depth of cut of 4mm 

and width of cut of 10.5mm. To this end all calculations, assumptions and conclusions 
have been based on this measure. 

8.4 Blade Analysis 

The analysis of the final blades utilised a number of procedures varying from surface, 

sub-surface analysis to XRD residual stress measurements. A Talysurf profilometer 

was used to quantify the Ra and Rt surface roughness measurements and these proved to 

be consistently below the stipulated maximum surface finish requirement of 1.6µm. 

Also the residual stress measurements were consistently compressive in nature. 

Two blades were sectioned and the end 4mm wide parts of the blade roots were 
dispatched to UMIST for XRD residual stress analysis. The remaining samples were 

used for surface analysis using the Scanning Electron Microscope, sub-surface 

examination and Vickers micro-hardness profiles 
listed in Table 8.4. 

The measured residual stresses are 
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Test Residual Process 

Number Stress Used 

(MPa) 

002-04 -651 HEDG 

002-06 -707 HEDG 

002-07 -1894 HEDG 

002-10 +905 VIPER 

002-46 -916 HEDG 

002-48 -805 HEDG 

002-54 -468 HEDG 

002-56 -219 HEDG 

Table 8.3: MAR-M-002 XRD Residual Stress Measurements 

Test number 002-04 used a feedrate of 17mm/s with a wheel speed of 39m/s. These 

relatively low parameters were used to compare the influence of CBN directly with the 

flat cut sample produced by the turbine blade manufacturer's process. The 

manufacturer's sample had a residual stress of +905MPa and the CBN sample was - 
651 MPa. This can probably be attributable to the thermal characteristics and toughness 

of the grit in comparison to Aluminium Oxide grit. Sample 002-06 used a feedrate of 

25mm/s with a wheel speed of 100m/s. Again this sample produced a compressive 

stress which is a mandatory requirement for an aviation turbine blade. One could argue 

that it is an added advantage of HEDG that no post process such as shot-peening was 

required to produce these stresses. Sample 002-07 used the same parameters as 002-06 

but the wheel speed was increased to the maximum value of 146m/s. The residual 

stress was found to be compressive with a value of -1894MPa. 

These results indicated that grinding operations using CBN grits would be more 

efficient than those using aluminium oxide wheels. Taking into account the radical 
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levels of compressive stress it was deduced that a wheel speed of 100m/s was the most 

efficient for this type of procedure which on the evidence seen here would produce mid- 

range compressive stresses. 

The micro hardness profiles which are shown in Figure 8.13 gave some evidence of 

hardening at the surface of flat sample 002-04 which could be due to the extremely slow 

feed rate used. The remainder had similar characteristics of relatively undamaged 

material. 
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Figure 8.13: Comparison of Micro Hardness Profiles for Initial Tests 

Figures 8: 14 and 8: 15 show micrograph comparisons of the Viper process with a cut 

using similar parameters but with CBN grit. The same dendritic structure with large 

carbides can easily be seen in both figures, and in the case of Figure 8.14 it can be seen 

that the wheel used was in an unconditioned state and the cut edge of Figure 8.15 has 

been performed using an extremely well conditioned aluminium oxide wheel. Even 

taking this into account both surfaces seem quite jagged in appearance. 
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Figure 8.14: Micrograph of 002-04 using CBN grit (electrolytic etch) 

Figure 8.15: Micrograph of 002-10 cut using A1203 grit (electrolytic etch) 

Following these initial tests a number of further operations were undertaken using 

various feedrates and wheel speeds. The fastest feedrate used was 1000mm/min, and 

this gave a variable specific material removal rate of between 19mm2/s and 130mm2/s, 

with an average value of 75mm2/s. When taking into account that the stock removal 

was performed with one cut at these high feedrates on this tough material, it is quite 
impressive in comparison to the specific material removal rate of the Viper process. 

The finish grinding operation was performed using the same feedrates but the depth of 

cut was reduced to 50microns. 
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Test Feed Ra Rt 

Number Rate 

(mm/min) (mic rons) 

002-47 400 0.749 4.478 

002-49 400 0.694 5.215 

002-51 1000 0.604 4.754 

002-53 1000 0.118 1.563 

002-55 1000 0.125 1.485 

002-57 1000 0.112 1.554 

002-61 1000 0.111 0.865 

002-65 1000 0.120 0.875 

Table 8.4: Surface Roughness Results 

With the wheel quickly conditioned, the surface roughness Ra measure was consistently 

around 0.1micron, which again was an excellent achievement for this type of grinding 

centre. Figures 8.16 and 8.17 show scanning electron microscope images and sub- 

surface microscopy images of sample 002-55 respectively, which demonstrate the very 
high quality surface. 
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Figure 8.17 shows no evidence of a redeposited or damaged layer and one can also see 

the smooth surface finish which could be due to the higher wheel speeds used than those 

employed during the Viper process. 
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Figure 8.1 /: Micro graph of 002-55 Root 
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Figure 8.18 shows the Vickers micro hardness results associated with sample 002-55. 

Although there seems to be an increase of hardness close to the surface one could 

associate this with the diamond impacting upon carbide. 
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Figure 8.18: Micro hardness profile of 002-55 
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Figure 8.19: Changes in Grinding Power with increase in Q'W 

Figure 8.19 shows the trend of how both the net and total grinding power increases with 

an increase in specific material removal rate. The maximum spindle power is marked 

on the machine as being 125% of 27kW; this figure equates to 34kW, and as such, 
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Figure 8.19 shows that a Q'W of 100mm2/s is around the maximum this grinding centre 

can handle. 

8.5 Summary 

For the following reasons these tests have been particularly successful. The Viper 

process used by the turbine blade manufacturer utilised a depth of cut of lmm at a speed 

of 16mm/s when grinding blade roots. Using these settings eight roughing passes and a 

final finishing pass would be required. The process used on the Edgetek machine was 

one roughing pass and one finishing pass without any degradation in workpiece 

integrity. The total time required was 10 seconds. Also with the use of X-Ray 

diffraction techniques measuring the residual stress, a consistent compressive stress 

regime within the blade root was produced before any final shot-peening operation had 

been performed. Also, the surface roughness Ra was consistently measured to be below 

0.1 µm which is a great achievement for the type of machining centre used. In addition, 

the externally produced report stated that the CBN produced blade roots that had a 

cleaner cut with less metallurgical surface and sub-surface damage (see Appendix K). 

Overall this process has far surpassed the previous process in lead time, surface 

roughness, residual stress and workpiece integrity. In all, these test have yielded further 

proof that the HEDG process has a definite practical potential within a real industrial 

environment. 
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CHAPTER 9 SUMMARY DISCUSSION 

The previous experimental chapters have shown that if grinding temperature and hence 

surface integrity can be controlled, then HEDG in itself can be viewed as a contender as 

a mainstream manufacturing process. This chapter discusses the thermal modelling, its 

significance in terms of the grinding process, and compares the thermal responses for 

the two main materials. 

Therefore, 9.1 considers the thermal modelling, Part 9.2 discusses the energy partition 

ratios, Part 9.3 examines the stress map concept and the industrial application of HEDG 

is discussed in Part 9.4. 

9.1 Thermal Modelling 

Using the mean trend lines shown in Figures 5.2 and 6.8 theoretical temperature plots 
have been calculated to indicate the thermal characteristics of M50 and IN718 during 

grinding. Figures 9.1 was produced using the mathematical software package MatLab; 

Figures (i) and (ii) apply to M50 steel and Figures (iii) and (iv) apply to IN718. 

Of the minimum and maximum values shown, the minimum value is based on ideal 

cooling by the fluid i. e. hf = 23,000W/m2K, whilst the maximum value assumes fluid 

boiling, i. e. hf =0 and represents a worst case situation. Parameters such as wheel wear 

and grinding fluid delivery strategy can have major effects upon the specific grinding 

energy levels measured. The poorer grinding fluid effectiveness gives rise to greater 

wheel wear, and this in itself increases the rubbing or sliding fraction of the total 

specific grinding energy within the grinding zone, which would raise the temperature on 

the workpiece surface. This escalates the temperature rise by boiling the grinding fluid 

which enhances the onset of oxidation. 

Figure 9.1 (i-iv) shows that the predicted temperature characteristics conform to the 

trends expected from HEDG reported by Tawakoli (1993) as shown in Chapter 2, 

Figure 2.6. In fact, if there is any inefficiency within the system then the specific 

grinding energy will increase or the energy partition coefficients may change and a 

range of temperatures are possible from one set of grinding parameters. For example, 
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the convection coefficient of a fluid may change as illustrated in Figure 9.1 or the 

specific grinding energy may increase as wear flats develop on individual grits. Since 

grinding is a highly dynamic process, such changes may occur continuously over a 

period of time. The workpiece temperature may therefore range from well below the 

burn threshold to temperatures approaching the workpiece melting point under HEDG 

conditions. The concept of HEDG grinding reported by Tawakoli (1993) therefore 

represents the ideal conditions but in reality, actual grinding conditions will always be 

moving towards higher grinding zone temperatures and hence less favourable 

conditions. This study has highlighted that the major challenge is to control the HEDG 

process and ensure that the critical burn threshold temperature is not exceeded. From 

this point of view the need to monitor the grinding process becomes essential and 

clearly one way of doing this, is to measure the net grinding power and hence changes 
in specific grinding energy. 
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Differences in material thermal characteristics such as the thermal conductivity and 

specific heat capacity are fundamental in quantifying a material's thermal diffusivity, 

also, these material specific values vary with temperature. As shown in Appendix H, 

Equation H. 2, the thermal diffusivity (a) is directly proportional to the thermal 

conductivity (k) and indirectly proportional to the specific heat capacity (c). Therefore, 

in a material such as IN718 with a low k value the amount of heat dissipated from the 

surface is calculated to be low. It can be seen that in the case of IN718 in Figure 9.1 

(iv) that when using high feedrates the HEDG characteristics are shown quite clearly 

and lower temperatures are possible at high depths of cut. This would be due to heat 

retention at the surface for a longer period of time and ultimately being removed with 

the grinding chips. In addition, as the material is heated at the surface generating higher 

contact temperatures, it could be argued that with more energy within the material to be 

removed, the material could be easier to remove i. e. the material strength will be lower 

as the temperature is increased. The melting point (solidus) of the IN718 is documented 

as being 1260°C. If the contact surface temperature does reach this melting 

temperature, such a high temperature could cause damage or loading of the grinding 

wheel and thereby reduce the life of the grinding wheel. In the case of M50 steel where 

the k value is more than double that for IN718, the reduction in temperature is lower 

due to the thermal energy being dissipated more quickly into the material substrate. 

9.2 Energy Partition Ratios 

As shown in Chapter 2, Figure 2.34, the depth of cut combined with the equivalent 

diameter of grinding wheel will affect the contact length between wheel and workpiece. 

Jin et al (2002) stated that the effect of contact angle increases with Peclet Number, and 

therefore the HEDG process is more sensitive to the contact angle than creep feed 

grinding. Creep feed grinding operations can have a large contact length but low Peclet 

Number due to the low feedrate. This means that the heat transfer conditions within 

creep feed and HEDG grinding are clearly very different. This can be highlighted by 

considering how energy partition coefficients vary under different grinding conditions. 
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Predicted temperatures have been calculated from the thermal models and as part of that 

process, energy partition ratios have been determined for each set of parameters used. 

This work has shown that at such low values of specific grinding energy, namely 

between 10 to 15J/mm3 relevant to HEDG, the energy partition coefficient to the 

workpiece is also low, typically less than 10%, and that the majority of the thermal 

energy (>50%) is removed with the grinding chips. The energy partition coefficients 

can be calculated from the estimated conduction and convection coefficients and 

equations listed. in Appendix H, equations H. 1 to H. 18. An example of typical values 

for M50 is shown in Figures 9.2 to 9.4 assuming that hf = 23,000W/m2K and as such the 

grinding fluid does not boil. The value of Rti, increases sharply at low specific energies, 

rising to values around 15% - 20% at high specific grinding energy values, more typical 

of creep feed conditions. 

However, Figure 9.2 also shows that small increases in the specific grinding energy can 

result in a sharp increase in the fluid energy partition coefficient particularly within the 

HEDG range of 10 to 20 J/mm3, and this is likely to influence the workpiece 

temperature. 

Energy Partition Coefficients for M50 Workpiece and Grinding Fluid at 200m/s Wheel 
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Figure 9.3 demonstrates that for true HEDG conditions for M50, Rch is 50% to 70%, 

suggesting that a high percentage of the thermal energy is indeed removed with the 

chip. 

On further inspection of Figures 9.2 and 9.3 one can see the main areas of operation 

with regard to the specific grinding energy for HEDG and creep feed grinding. Creep 

feed grinding operates at around the 50 J/mm3 level and HEDG around 10 - 20 J/mm3. 

It can be seen that at the 50 J/mm3 level the chip removes around 10% of the heat and 

the fluid convects away around 50%. When applying the HEDG concept the opposite is 

shown. The fluid removes around 10% and the chip removes between 50 - 70% of the 

total heat produced. 

Energy Partition Coefficients for M50 Grinding Chips and Wheel at a Wheel Speed of 
200m/s in Mineral Oil 
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Figure 9.3: Energy Partition Coefficients for M50 Steel Grinding Chips & Wheel 

Figure 9.3 indicates that when HEDG conditions are used the majority of the heat 

generated is convected away by the chip, and accordingly the finished workpiece 

surface temperature can be expected to be low. This is the key factor that differentiates 

the HEDG grinding regime from other types of grinding and explains why HEDG 

grinding is in some ways more akin to a conventional cutting process, e. g. high speed 

milling, when specific energy values are typically only a few J/mm3. The exceptionally 

low values of specific grinding energy during HEDG are consistent with the large 
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depths of cut and high feedrates which give rise to a large chip thickness, normally 

associated with conventional cutting processes. 

The foregoing discussion has highlighted how changes in specific grinding energy may 

occur during the grinding process and this may also be associated with significant 

changes in the energy partition coefficients. Thus, the workpiece surface temperature 

will change as the conditions within the grinding zone change. The energy partition 

coefficients can also be determined for the grinding of IN718, as shown in Figures 9.4 

and 9.5. 

0.70 

Energy Partition Coefficients for 1N718 Workplece and Fluid at Wheel Speeds of 200m/s 
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Figure 9.4: Energy Partition Coefficients for 1N718 Workpiece & Fluid 

Figure 9.4 shows the partition coefficients for workpiece and fluid and Figure 9.5 shows 

the coefficients for the chip and CBN grinding wheel. 
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Energy Partition Coefficients for IN718 CBN Grits and Grinding Chips at a Wheelspeed 
of 200m/s in Mineral Oil 
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Figure 9.5: Energy Partition Coefficients for IN718 Grinding Chips & Wheel 

The energy partition coefficients have been tabulated in Tables 9.1 and 9.2 for typical 

HEDG and creep feed grinding conditions respectively so that a direct comparison can 
be made. 

Energy Partition Ratio IN718 M50 
(%) 

RW - workpiece 1 -6 2-9 

Rf - fluid 28 - 42 27 - 40 

RS - grinding wheel 1- 47 1 -5 
RR - chip 47-70 47-70 

Table 9.1: Comparison of Percentage Energy Partition Coefficients for IN718 and M50 

under HEDG Conditions 
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Energy Partition Ratio IN718 M50 
(%) 

R, - workpiece 14 18 

Rf - fluid 61 57 

RS - grinding wheel 11 10 

Re - chip 14 14 

Table 9.2: Comparison of Percentage Energy Partition Coefficients for IN718 and M50 

under Creep Feed Grinding Conditions 

Table 9.1 shows that although the thermal constants are quite different the ratios as to 

how the heat energy is removed are remarkably similar for the two materials. This is 

also apparent for creep feed grinding conditions as shown in Table 9.2. 

This goes some way to explain why such an extensive range of temperatures are 

predicted with only slight changes in specific grinding energies. To illustrate these 

fluctuations in specific grinding energy Table 9.3 takes a Q',, of 200mm2/s as an 

example where the scatter in specific grinding energy is relatively small but the 

predicted temperature variation is quite large. 
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Test Depth of Feedrate Fluid Specific Predicted 

Number Cut Type Grinding 

Energy Temperature 

(mm) (mm/s) (J/mm3) (°C) 

50-272 2 100 Ester 15.92 1022 

50-49 2 100 Mineral 13.20 852 

50-260 1.4 125 Mineral 11.93 615 

50-255 1.4 125 Mineral 11.87 610 

50-262 3 66.67 Mineral 10.99 585 
m_t_ 1_nn1. 
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One can go further and plot a sample of data from the conditions shown in Appendix F, 

test numbers 50-167 to 50-243 that compare the predicted temperature rise from the Q'W 

values 35mm2/s and 200mm2/s. 
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Figure 9.6: Comparison of Temperature Gradients for two Q'ýL, values 

Figure 9.6 illustrates the change in gradient for a comparatively low specific material 

removal rate to a reasonably high one. The gradient of temperature rise for a relatively 
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low variation in specific grinding energy is very important as this illustrates the 

sensitivity of temperature to variations in specific grinding energy within the HEDG 

process. 

Table 9.2 shows the ester based grinding fluid example produced the highest specific 

grinding energy and although the remaining points had only 3.19J/mm3 between them 

the calculated temperature range was over 260°C. Although there are wide variations of 

specific grinding energy when the specific material removal rates are low, the calculated 

temperature range is also low. Figure 9.6 shows that the gradient increases by about a 
factor of 2.5 when the Q'W value is increased from 35 to 200mm2/s. Hence, the 

sensitivity of the grinding temperature to changes in specific grinding energy is much 
lower for low Q'W values. 

These observations reinforce the need to monitor the grinding process when operating 

within the HEDG regime since small changes in grinding conditions may have a marked 

effect on grinding temperatures. The most logical way of achieving this would be to 

measure the grinding power and hence monitor the change in specific grinding energy. 

9.3 Stress Maps 

The discussion so far has highlighted the importance of grinding temperature and the 

control of temperature during the grinding process. In Chapter 5 the concept of burn 

threshold diagrams was used and from this a burn threshold temperature was obtained. 

However, these basic burn threshold diagrams are based around visual observation of 

grinding burn on the workpiece surface. The general issue of surface integrity was 

discussed in Chapter 5 Part 5.2.6, and it was shown that grinding burn may encompass 

various factors such as surface oxidation, micro-structural change including white layer 

formation and the generation of undesirable residual stress profiles. It has been shown 

recently by McCormack et al (2001) that these different types of grinding damage may 

commence at quite different workpiece surface temperatures. In particular the 

generation of tensile residual stresses in steels (EN3 1) has been shown, under shallow 

cut grinding conditions, to occur at temperatures over 250°C. Under such conditions, 

no visible evidence of grinding damage would be present but the component would still 
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be unfit for service. Hence, in the current research a new approach is suggested which 

can provide the industrial end user with greater confidence when surface integrity issues 

are of paramount importance. This new approach is based on the bum threshold 

diagram principle presented previously, but provides information on surface residual 

stress. There should be some commonality since residual stress is generally a strong 

function of the grinding zone temperature. 

With a high level of confidence placed in the residual stress measurements, Figures 9.7 

and 9.8 show the concept of a stress map for both project materials. These maps were 

designed to utilise all the basic data acquired during this research in the most productive 

way for a common wheel speed of 100m/s. All test results contained within this figure 

were plotted against the f(DaVw) function which took into account the diameter of the 

wheel, depths of cut used and the various feed rates. The y-axis, specific grinding 

energy, is a function of the grinding parameters and other factors such as wheel wear 

characteristics. Both filled and uncoloured dots are indicative of the points tested 

representing burn and no burn observations respectively. The stress contours are 

representative of changes in residual stress levels between the points tested and these 

were calculated using the mathematical software package MathCAD 2000. 

From previous results we now understand that for a given Q'W value the specific 

grinding energy increases as wear flats develop on the grits. It can be seen that the 

onset of tensile stress regimes occur before any oxidation can be visually noted. With 

this type of tool the process engineer can predict and so enhance the possibility of 

avoiding the formation of tensile stress regimes on the finished component surface, as 

tensile stresses could have a detrimental effect upon the quality of the manufactured 

parts. As IN718 has a thermal conductivity value of 11.4W/mK at 20°C any heat 

generated would produce a much steeper temperature gradient at the surface of the 

material. As an example Figure 9.1 (iii & iv) show how the produced temperatures for 

a depth of cut of a few millimetres is much higher for IN718 compared to M50. 

This could explain why IN718 normally has tensile stress regimes on the ground 

surface. Figure 9.1 suggests that only by using very gentle grinding conditions or 
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severe HEDG conditions, can the temperature be maintained at low values (say <500°C) 

in order to ensure compressive stresses. These conclusions are consistent with the 

experimental results shown in Figure 6.11, where the residual stresses were only 

compressive for Q', values less than about 25mm2/s. It is also interesting to note that 

IN718 ground under creep feed conditions is known to generate tensile residual stresses, 

Sullivan (2002). The generation of compressive residual stress within the ground 

surface of these nickel based superalloys is recognised to be very difficult. This 

research has indicated that HEDG grinding should be able to generate compressive 

stresses as long as a grinding machine is available that has the necessary power to 

achieve the high Q' w values. 
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9.4 Implications for the Industrial Applications of HEDG 

Using Figure 9.9 two grinding process regimes can be compared namely shallow cut / 

creep feed grinding and HEDG. In the case of shallow cut or creep feed grinding, the 

specific material removal rate increases from zero to a maximum value (steady state) 

and then decreases to zero at the end of the cut so long as the maximum specific 

material removal rate is below the critical temperature, e. g. point 3 on Figure 9.9, then 

no bum should result. When HEDG grinding at point I on Figure 9.9 or at even higher 

Q'W values, problems may occur during the initial or latter stages of the grind since the 

temperature will exceed the critical value for a short time as the Q'W increases or 
decreases towards zero. 

When applying a HEDG procedure incorporating a form grinding process the added 

problem of a variable depth of cut is present. This type of grinding makes the choice of 

grinding conditions even more precarious. One could have a small depth of cut at one 

portion and a depth of cut an order of magnitude greater at another part of the cut. 

When attempting to monitor this style of grinding through a plot such as Figure 9.9, one 

can either use a mean specific grinding energy or the minimum depth of cut for the 

worst case scenario to give an indication of grinding temperatures. 

For conventional grinding the critical temperature is never exceeded so when the steady 

state position at point 3 is reached and the final part of the cut begins, point 4 is reached 

with no hint of grinding damage what so ever. 
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Comparison of Possible Temperatures 
for Conventional and HEDG Processes 

A 

Critical Temperature 

HEDG 

a_ 
Conventional 
Shallow Cut 
Grinding 

Specific Material Removal Rate (mm2/s) 

Figure 9.9: Comparison of Initial and Final Transient Responses to Temperature 

One way which could counter this issue for HEDG grinding would be in the form of 

adaptive control which could be used to increase the feedrate thereby increasing the 

specific material removal rate and reduce the risk of jeopardizing workpiece integrity. 

Also these models could use other parameters to control the grinding process such as 

normal force. These outputs could be used to map out the wheel wear rate as laid out in 

the predictive tools described in previous chapters, thereby controlling this dynamic 

process to extend wheel life and ultimately to produce higher quality finished 

workpieces. At this juncture it can be said that the adaptive control system could be a 

more viable concept, and indeed is a vital development if HEDG grinding is to be 

adopted by industry. 
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CHAPTER 10 CONCLUSIONS AND RECOMMENDATIONS 

10.1 Introduction 

The main aim of this research project has been to gain an in depth understanding of 

the HEDG process and to develop process models, to enable companies to increase 

significantly their grinding machine productivity, whilst ensuring good component 

surface and sub-surface integrity. 

10.2 Contributions to Knowledge 

The main contribution to knowledge has been to demonstrate the potential of applying 

the HEDG process within industry, through the development of process models for 

two advanced materials, in which the processing parameters were mapped against: 

¢ Different grinding fluid strategies 

¢ Burn threshold diagrams 

¢ Residual stress levels 

¢ Specific grinding energies 

Researchers may reference this work when investigating different materials. The 

basic methodology, and results arising from this work should save considerable time 

when selecting optimum processing parameters for a wide range of materials. 

10.3 Conclusions 

Through the experimental approach taken, workpiece characterisation and theoretical 

results the following conclusions can be made: 

1. The HEDG process has the potential to be a robust industrial manufacturing 

process, and it has been shown that Q' w values of at least one order of 

magnitude greater are possible when compared to creep feed grinding. 
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2. Specific grinding energy is a good indicator for the on-set of grinding burn. 

Hence the monitoring of the power during the process is a critical factor in 

controlling system output and reducing the possibility of burn within the 

HEDG regime. 

3. When taking the changes in microstructure into account a good all round 

correlation has been shown between Barkhausen Noise results and surface 

residual stress measurements. In turn the predicted temperatures show the 

same trend as the residual stress measurements when plotted against specific 

material removal rate. The transition temperature at which residual stress 

changes from compressive to tensile values is shown not to be the same as the 

real burn threshold temperature. Therefore when the process engineer selects 

parameters for an operation, the engineer can take into account the possible 

micro-structural effects of these choices and thereby exercise a greater amount 

of control over the HEDG process. 

4. A major advantage of HEDG is that one can combine a highly efficient 

material removal process (similar to conventional cutting processes) with the 

precision and surface integrity benefits associated with conventional grinding 

processes. 

5. HEDG is associated with low values of specific grinding energy, for example 

IOJ/mm3 or less, and it has been shown from the thermal modelling from this 

research that the majority of the total energy is removed with the grinding 

chips, typically 50 to 70%. The successful application of HEDG relies on the 

ability to reduce and maintain specific grinding energy at a low level. At 

intermediate to high stock removal rates typically 200 to 1250mm2/s, small 

changes in the specific grinding energy may result in a large increase in 

grinding temperature. 
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6. Grinding temperatures predicted using the circular arc of contact model 

correlate well with experimental observations of grinding burn. Thermal 

modelling has demonstrated the potential benefits of HEDG, using high work 

speeds and large depth of cut to minimise the workpiece finished surface 

temperature. 

7. Under true HEDG conditions only a few percent of the total thermal energy 

enters the workpiece. However this increases as the specific grinding energy 
increases, up to a limiting value dependent on the wheel speed, wheel wear 

and type of abrasive. For CBN abrasives the workpiece energy partition 

coefficients have been calculated to be typically between 5 and 20%. CBN is 

an extremely hard, tough wear resistant material with excellent thermal 

properties which enhance the grinding process through the removal of a 

greater amount of heat in comparison to aluminium oxide grits. 

10.4 Recommendations 

The concept of HEDG is a relatively recent derivative of grinding and as such there 

are many interesting areas to investigate. There is a real requirement to further 

enhance the theoretical temperature modeling so that the actual grinding process can 
be characterized more completely. One area in particular is boiling of a grinding 

fluid, and its effect on the fluid convection factor. 

Choi et al (2001) researched the area of light reciprocating grinding using compressed 

air as a grinding fluid. Although this technology seems more suited to the 

conventional shallow grinding spectrum it is an attempt at finding an alternative 

grinding fluid supply. Shaji et al (2002) published an article detailing work carried 

out on AISI 52100 steel using a light depth of cut and low feed rates whilst using 

graphite as a solid grinding fluid. Indications were that the graphite gave reduced 

forces in the normal and tangential directions as well as a marked reduction in the 

specific grinding energy. This indicates that the use of a solid grinding fluid could 

enhance the efficiency of the grinding process as a whole. This research paper 

highlights the possible uses of solid grinding fluids as another major area to research. 

The use of greases such as boric acid, molybdenum disulphide or even graphite 
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should reduce the power requirement of the process as a whole and the ecological 
benefits are quite obvious. Further work would be worthwhile to investigate the 

influence of solid grinding additives on the HEDG process, and also the mechanical 

properties of the superabrasive grits used, such as CBN or PCD. 

Characteristics of wheel wear and how this relates to the rise in specific energy, also 

as an extension of this, the mapping of the complete life cycle of a wheel relating to a 

particular process with set parameters, such as to the limits of acceptable workpiece 
integrity levels, for specific applications, could of great interest to industry. In this 

way process engineers could map out wheel life, and adapt this information to reduce 
further the possible onset of oxidation and tensile residual stresses. 

It has been previously shown that hardness profiles and the measurement of residual 

stresses give an indication of the effects of a machining process. One new area of 

research could be to examine the stress depth profiles using a new non-destructive 

Barkhausen Noise process called Micro-Scan and to correlate this with the more 

conventional applications such as XRD residual stress measurements and Vickers 

Micro-hardness profiles. 

It has been noted in this research program that the BNA response can be sensitive to 

changes in hardness, micro-structural changes and residual stress levels. Research 

into this area to quantify the relevance of each of these factors and their possible 

interactions would enhance the confidence of BNA techniques and could further its 

use in the industrial arena. 

One area which could be enhanced with more research is the area of grinding fluid 

shoe nozzle technology with regard to HEDG. Although there have been studies 

published (Brinskmeier et al (1999)) more research is required into the actual 

influence of nozzle flowrate, fluid velocity, nozzle area and fluid pressure on 

workpiece integrity. 

Butler et al (2002) investigated the characterisation of grinding wheel topography by 

using 3D surface measurements. This research studied the influence of stock removal 

in relation to wheel wear and found there to be a reasonable correlation. 
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Chattapadhyay et al (1990 & 1991) investigated this area using equi-spaced grits 
bonded on to the grinding wheel hub. These experiments improved grit protrusion 

through reduced bond loading during this stage of wheel manufacture. Taking the 

results of these studies in a HEDG context, it is suggested that the quality of the 

grinding wheel manufacture and grit laying process could be questioned. The quality 

control used in these areas could be reviewed to take into account the large volumes 

of space required to facilitate the removal of the large chips which are evident within 

the HEDG process, and the ingress of grinding fluid. 

Finally the complete dataset would be a great asset within a modern adaptive control 

grinding system. In this way up to date data arising from the research results could be 

used to decrease the possibility of grinding damage. 
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Edgetek Test Programme 

The following test programme is based around the initial schedule prepared by SKF and 
Rolls-Royce in July 1999. The work programmes will involve grinding studies on both IN718 

and a bearing steel, M50. 

The basic grinding research outlined in Tasks 1-6 will be undertaken on flat blocks, 100 x 40 x 
40 mm to be provided by SKF and Rolls-Royce. Standard conditions will use electroplated 

CBN wheels and a mineral oil coolant eg Castrol Ilogrind 500FG or Ilogrind 600SP. Other 

types of coolant and grinding wheel will be evaluated within the programme. 

For each specimen, the grinding forces will be measured and related to grinding power, grinding 

zone temperature and grinding wheel performance. Surface roughness measurements will also 

be made together with a visual assessment of surface burn. Selected samples will be studied in 

greater detail to provide further information on surface and sub-surface grinding damage 

through a combination of optical and electron microscopy and surface analysis. Residual stress 

measurements will be undertaken by Rolls-Royce and SKF. 

The following series of tasks will be completed for each of the two workpiece materials. 

Task 1. Assess machine dynamic performance 

Task Leader- Cranfield 

Duration- 0.5 months 

It is proposed that the dynamic performance of the Edgetek machine be analysed by modal 

testing, the objective being to identify the maximum loop compliance, its frequency, the first 

few such 'resonant' peaks, and the mode shapes and thus physical origin of these peaks, on a 

fully active machine. This modal testing, expected to take around 2 weeks on a commissioned 

machine, will be achieved using spectral analysis of the transfer function between variously 

located accelerometers, and calibrated force excitation, applied using 'shaker' coil and 

instrumented hammer. 
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This process will identify 'weak' points among the machine's structure and elements, and give 

quantitative comparisons with other machines, which can be related to machining performance. 

Task 2. Initial grinding assessment 

Task Leader- Cranfield 

Duration- 1 month 

2.1 Influence of depth of cut 

Material removal rate, Qw= 50 mm3/mm. s for Inco 718 and 5 mm3/mm. s for M50 

Grit size = B252 (for Inco 718) and B 151 (for M50) 

Wheel speed, Vc = 100 m/s 
Grinding will be undertaken at 3 depths of cut ac with feed rate maintained to give the required 

Qx, value as follows: 

ac (mm) ac (mm) Vw(mm/s) 

(Inco 718) (M50) 

1 0.1 50 

2.5 - 20 

5 0.5 10 

1 5 

2.2 Influence of wheel speed 

Material removal rate, QIN718 = 50 mm3/mm. s, QM50 =5 mm3/mm. s 

Depth of cut, ac =5 mm / 0.5mm 

Feed rate, Vw = 10 mm/s 
Grit size = B252 (for Inco 718) and B 151 (for M50) 

3 different wheel speeds will be considered: Vc (m/s) = 50,100,150 
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Influence of grit size 

Material removal rate, QIN718= 50 mm3/rnm. s, QM50 =5 mm3/mm. s 
Depth of cut, ac =5 mm / 0.5mm 

Wheel speed, Vc = 100 m/s 

Feed rate, Vw = 10 mm/s 

2.4 different grit sizes will be considered, as follows: 

Inco 718 - B181, B252, B301 

M50 - B126, B151, B181 

2.5 Influence of material removal rate 

Grit size = B252 (for Inco 718) and B 151 (for M50) 

Wheel speed, Vc = 100 m/s 
Depth of cut, ac = 10 mm & 0.5mm 

Different feed rates will be used at a constant depth of cut to vary the material removal rate, Qw 

as follows: 

Vw (mm/s) QIN718 (mm3/mm. s) QM50 (mm3/mm. s) 

5 50 2.5 

10 100 5 

50 500 25 

Depending on the results from this sub-task, further tests will be undertaken to identify the 

critical value of Q at which surface integrity issues become important. 

The experiments in Task 2 will provide an understanding of how basic grinding parameters 

influence the surface produced. 
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Task 3. Wheel life and coolant type 

Task Leaders Unicorn, Castrol and Rolls-Royce 

Duration 1.5 months 

This task will study grinding wheel life and relate wheel performance to surface integrity. 

Wheel life will be monitored through the measurement of the variation in power and normal 

grinding force and degradation of surface quality. The influence of coolant type on wheel life 

will also be studied. 

Material removal rate 

Wheel speed Vc = 100 m/s 

Grit size, g 

Coolants: 

QIN718 = 50 mm3/mm. s 

B252 (for Inco 718) 

Mineral oil, Ilogrind 500FG or Ilogrind 600SP 

Ester based, CareCut ES2 

Water based, Hysol X 

QM50 =5 mm3/mm. s 

B 151 (for M50) 

Extended grinding trials will be made to determine wheel performance as a function of usage. 
Repeatability of wheel performance will be assessed on three samples and using the three 

different coolants. 

Task 4. Optimisation of coolant application 

Task Leaders- Unicorn, Wanner and SKF 

Duration- 1 month 

This task will investigate the influence of coolant application on surface quality. 

Material removal rate QIN718 = 50 mm3/mm. s QM50 =5 mm3 

/mm- s 

Wheel speed Vc will be varied between 50 and 150 m/s and for a given depth of cut 

Grit size, g B252 (for Inco 718) B 151 (for M50) 
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Six levels of coolant application will be studied by control of exit velocity and flow rate using 

nozzles provided by Unicorn. Three depths of cut, (1,2.5 and 5 mm for IN718 and 0.1,0.5 and 
1mm for M50) will be studied. The type of coolant will be determined following an assessment 
in Task 3. 

Task 5. Grinding wheel optimisation 

Task Leaders- DeBeers and Unicorn 

Duration- 1 month 

Task 5 will evaluate the performance of various grinding wheel types and highlight the 

influence of bond type and abrasive. 

Material removal rate, QIN718 = 50 mm3/mm. s, QM50 =5 mm3/mm. s 

Depth of cut ac =5 mm & 0.5mm 

Wheel speed, Vc = 100 m/s 

Three bond types and three grain types will be supplied to evaluate the importance of wheel 

design in HEDG. These are likely to be one electroplated wheel and two vitrified bond wheels 

for each material. The coolant and application method will be determined following Tasks 3 and 

4. 

ask 6. Loadina avoidance 

Task Leader - Cranfield and Wanner 

Duration -1 month testing 

This task will investigate the problem of wheel loading, its influence on surface quality and 

evaluate methods to overcome the problem. Grinding conditions will be determined following 

results from tasks 2-5. 

The work programme will investigate type and frequency of dressing, high pressure cleaning of 

the wheel and will build on observations of wheel performance in previous work, particularly 

task 3. 
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Task 7. Rolls-Royce 'Specific component test' 

Task Leader - Rolls-Royce 

Duration - 2 month testing 

Objective: - Activities to be defined. 

Task 8. SKF (Avio) 'Specific component tests' 

Task Leader - SKF 

Duration -1 month testing 

Objective: - Activities to be defined. 
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Density8220kg/m3 Melting Point (Solidus)1260°C 

Specific Heat Capacity 

Temperature(°C) Specific heat (kJ/(kg. K)) 

20.0 0.4240 

100.0 0.4340 

200.0 0.4480 

300.0 0.4630 

400.0 0.480 

500.0 0.50 

550.0 0.5110 

600.0 0.5250 

650.0 0.5410 

700.0 0.560 

750.0 0.5820 

800.0 0.6050 

850.0 0.6250 

Thermal Conductivity 

Temperature(°C) Conductivity (W/(m. K)) 

20.0 11.45 

100.0 12.75 

200.0 14.36 

300.0 15.96 

400.0 17.60 

500.0 19.18 

550.0 19.98 

600.0 20.77 

650.0 21.56 

700.0 22.36 

750.0 23.15 

800.0 23.95 

900.0 25.10 

1000.0 26.83 

1100.0 28.56 
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ELASTIC DATA All at 20°C 

Young's Modulus207.6GPa 

Torsion Modulus80. OGPa 

Poisson's RatioO. 29 

TENSILE DATA All at 20°C 

0.2% Proof Stress 1172MPa 

Ultimate Strengthl441MPa 
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Density8560kg/m3 Melting Point (Solidus) 1270°C 

Specific Heat Capacity 

Temperature(°C) Specific heat (kJ/(kg. K)) 

20 0.416 

100 0.428 

200 0.443 

300 0.458 

400 0.473 

500 0.488 

600 0.505 

700 0.533 

800 0.58 

900 0.646 

1000 0.72 

1100 0.797 

1200 0.875 

Thermal Conductivity 

Temperature(°C) Conductivity (W/(m. K)) 

20 12.6 

100 13.7 

200 14.9 

300 16.1 

400 17.4 

500 18.4 

600 19.5 

700 20.8 

800 22.1 

900 24.1 

1000 25.4 

1100 27.5 

1200 30 
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ELASTIC DATA All at 20°C 

Young's Modulus207.5Gpa 

Torsion Modulus83. OGpa 

Poisson's RatioO. 25 

TENSILE DATA All at 20°C 

0.2% Proof Stress823.2MPa 

Ultimate Strength947MPa 
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Appendix D- M50 Data Sheets 
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Density7870kg/m3 

Melting Point (Solidus)1570°C 

Specific Heat 

Temperature (°C) Thermal Conductivity W/(m. K) 

20 25.7 

50 26.6 

100 28.1 

150 29.2 

200 30.3 

250 31 

300 31.6 

350 32 

400 32.2 

450 32.5 

500 32.6 

550 32.6 

600 32.6 

650 32.6 

700 32.6 

750 32.7 

800 32.9 

850 33.2 

900 33.7 

950 34.3 

1000 35 
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Thermal Conductivity 

Temperature (°C) Specific heat kJ/(kg. K) 

20 0.437 

50 0.447 

100 0.467 

150 0.488 

200 0.508 

250 0.529 

300 0.55 

350 0.572 

400 0.593 

450 0.615 

500 0.637 

550 0.658 

600 0.68 
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Appendix E- Taguchi Style Screening Tests 
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IN718 Screening Test Results in Mineral Grinding Fluid 

Responses 

Net Specific 

Test Grinding Calculated Grinding 

Number Spindle Temperature Energy 

Power 

(kW) (degrees C) (J/mm3) 

1 1.207 47.50 5.80 

6 0.082 35.33 110.00 

7 0.110 47.10 146.67 

12 0.358 86.09 47.67 

18 0.803 193.37 107.07 

3 2.778 66.88 3.70 

8 8.800 211.91 11.73 

2 0.523 22.37 6.97 

16 1.650 70.66 22.00 

10a 3.850 151.49 18.48 

10b 4.730 186.12 22.71 

Oc 5.060 199.10 24.29 

10d 5.500 216.42 26.40 

4 0.611 147.01 81.40 

15 0.330 79.47 44.00 

5 0.479 204.90 638.00 

9 0.113 48.28 150.33 

14 13.778 331.77 18.37 

17 14.960 360.25 19.95 

11 1.788 76.54 23.83 

13 1.843 78.90 24.57 

19 5.363 211.01 25.74 

Table E. 2: Responses for IN718 Screening Test 
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Appendix F- M50 Experimental Parameters 
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Appendix H- Thermal Modelling Procedure 
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Initially the contact length can be calculated using: 

1c - Deae Eqn. H. I 

Where: 

D, Effective Diameter of Grinding Wheel 

a, Depth of Cut 

Also the thermal constants can be calculated. 

The thermal diffusivity of the material is calculated using: 
k 

a=- 
!x Eqn. H. 2 

Where: 

k Thermal Conductivity 

p Density 

c Specific Heat Capacity 

The mean thermal property is calculated using: 

Eqn. H. 3 

Where: 

k Thermal Conductivity 

p Density 

c Specific Heat Capacity 

The Peclet Number is a dimensionless value given by: 

P =v"1` 4a Eqn. H. 4 

Where: 

a Thermal Diffusivity 

V, Feed Rate 

I, Contact Length 
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The grinding angle phi in radians is calculated by: 

0= sin ' ae 
1C 

Where: 

a, 

ic 

Depth of Cut 

Contact Length 

Eqn. H. 5 

Using the net spindle power the total heat flux in the system is calculated by: 

W 
q 1Cb Eqn. H. 6 

Where: 

W Spindle Power 

1, Contact Length 

b Breadth of Cut 

The heat flux going in to the workpiece, wheel, chip and fluid are given by: 

9� = h,,, Tmax Eqn. H. 7 

qs = h5Tmax Eqn. H. 8 

9c =- hcTmax Eqn. H. 9 

qf =hfTmax Eqn. H. 10 

Where: 

q Heat Flux 

h Heat Convection Factor 

Tmax Maximum Contact Surface Temperature 

Subscripts Contact Length 

w workpiece 

f fluid 

c chip 

s wheel 
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The convection factor for the work piece can be calculated by: 
rv 

µ' h}v 
c 1ý Eqn. H. l 1 

Where: 

P Mean Thermal Property 

c Specific Heat Capacity 

V, Feed Rate 

1, Contact Length 

The maximum contact temperature based upon Jaegers sliding heat source is given by: 

T=Cy,., 
lý. 

max 
ý/7ý Eqn. H. 12 

Pw 
Vw 

Where: 

C the Conduction / Convection factor 

qw Heat Flux Entering Workpiece 

Mean Thermal Property 

lý Contact Length 

v, N Feed Rate 

Ir>ckied 'ane 'n d 

f_. 

0,8 

ißt 
1, ;i arc u lhhr hgr guar<: p 

º0 
Pcm, 

, Yum 
rL3 "-_, 

Z1 
2 

,a 10 In , 

Figure H. 1: C Co-efficient Diagram 

The value of C can be taken from Figure H. l by cross referring the values of Peclet Number and 

grinding angle phi. 
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Hahn's model for the percentage heat flux entering both the workpiece and the wheel is given 
by: 

Rws =q�= 
q'" 

= 
h'" 

=1+0.97kg Eqn. H. 13 qws qW + qs hw + hs '8K, ovs 

Where: 

qw Heat Flux Entering Workpiece 

qs Heat Flux Entering Wheel 

hw Convection Factor for heat flux entering Workpiece 

hs Convection Factor for heat flux entering Wheel 

kg Thermal Conductivity of grit 
(3w Mean Thermal Property for Workpiece 

ro Radius of grit 

vs Wheel Speed 

The convection factor for the heat entering the wheel is given by: 

h =h -1 S jl Eqn. H. 14 
Wý 

Where: 

Rws Percentage of Heat Flux entering both Workpiece and Wheel 

hw Convection Factor for heat flux entering Workpiece 

hs Convection Factor for heat flux entering Wheel 

qs Heat Flux Entering Wheel 
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Values for the flux entering the chip h, were published by Malkin (1989) to be close to the 

melting point of the workpiece material. For ferrous metals this is quoted by Malkin (1984) as 
being 13J/mm3. For other materials the value of h, is calculated using Equation H. 9, with 
initially calculating qch given by: 

9, h= eh 
Qevw 

Ic Eqn. H. 15 

Where: 

ech Energy within Chip 

ae Depth of Cut 

vw Feed Rate 

Ic Contact Length 

The fluid convection factor has been experimentally obtained by Rowe (2001) for various fluid 

types. In general the value for water based fluids is 290,000W/m2K, for oil fluids the general 

value is 23,000W/m2K. 

It should be remembered that heat convection from the contact zone will only occur by the fluid 

before the boiling temperature of the coolant is exceeded, after which there will be no cooling 

affect when qf=0. 

Therefore before fluid boiling the heat removed by the fluid is given by: 

qf =hf Tmax Eqn. H. 16 

Therefore two values of Tn,,, can be calculated, one with coolant and one with no coolant. It 

can be seen that the Tma,, value with coolant would be the value before the onset of burn and 

vice versa. 

The value of T,,, a,, with the effects of coolant is given by: 

_ Tmax 
qt - 

hchTmp 

7_ h,,. 
+ hf 

R 
, ýs 

Eqn. H. 17 
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The value of Tmax with no effects of coolant is given by: 

T=9, - hý'j, T 
P 

_ max h' 

Rwý 

Where: 

Tmax Maximum Finished Surface Temperature 

qt Total Heat Flux 

hch Convection Factor for heat flux entering Chip 

Tmp Melting Temperature of Workpiece Material 

hw Convection Factor for heat flux entering Workpiece 

Rws Percentage of Heat Flux entering both Workpiece and Wheel 

As stated in Rowe & Jin (2001) the fluid conduction/convection factor is related to the mean 

contact surface temperature. The threshold at the boiling point of the fluid or when the fluid 

burns out is Tmcan = Tbo; i and the finished surface temperatures rise sharply. Therefore Tmcan = 

0.667Tmax. 

Rowe & Jin (2001) published Figure H. 2 which shows the relationship between the ratio 

Tiin/Tmax, the Peclet Number and grind angle phi. This figure gives the maximum finished 

surface temperature as a fraction of the maximum contact surface temperature for various values 

of phi and Peclet Number. 

lang tr la heal sour 
e 

CT 
fY3Ä ý <ý 

tt 

0.4 
31ei 

Pec numb rL 
0. 

Dý ý0 60 01 CO 

Eqn. H. 18 

Figure H. 2: Relationship of Tfr, / Tmax, Peclet Number and phi. 

249 



APPENDIX H 

a Thermal Diffusivity for M50 Steel 7.47 x 10- 
6m2/s 

y Depth of Damaged Layer 0.09 x 10-3m 

D Diameter of Wheel 0.2m 

a Depth of Cut 0.03 x 10-3m 

V Feedrate 0.125m/s 

t Temperature at which Martensite begins to form 800°C 

1 Contact Length 0.024m 

T the time constant or the time in which the heat source T: = - is concentrated above each part of the sample surface V 

0.196/s 

z the terms which are proportional the temperature y 

change 2- 

The main temperature response is equated to initiation temperature divided by 1 minus 

the Gaussian error function (erf) of z. 

t= 835.029°C 
1-erf(z) 

Therefore for this example the actual temperature witnessed by the workpiece surface 

would be 835°C 

Figure H. 3: Heat Transfer Equation Worked Example 
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Appendix I- Bearing Manufacture 
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Test Wheel Q Depth Feed Barklhausen Residual Surface Surface Specific Specific 

Number Speed Prime Of Cut Rate Noise Stress Roughness Roughness Grinding Grinding 

Amplitude OX Ra R, Power Energy 

(m/s) (mm2/s) (mm) (mm/s) E(HKQ (Mpa) (microns) (microns) (W/mm) (J/mm3) 

50-58 30.00 1 4.000 0.25 57 2.004 16.209 11.24 11.24 

50-59 30.00 20 4.000 5.00 58 1.42 15.705 113.76 5.69 

50-60 30.00 50 4.000 12.50 53 1.585 12.785 46.07 0.92 

50-61 30.00 100 4.000 25.00 52 1.552 15.316 242.70 2.43 

50-62 1 4.000 0.25 52 1.406 9.802 188.20 188.20 

50-63 146.00 20 4.000 5.00 62 0.949 8.025 174.16 8.71 

50-64 146.00 50 4.000 12.50 57 0.921 7.117 316.85 6.34 

50-65 100 4.000 25.00 61 0.862 6.079 

50-66 146.00 25 4.000 6.25 n/a -1163 0.785 5.937 193.26 7.73 

50-67 146.00 25 4.000 6.25 57 1.058 8.673 93.26 3.73 

50-68 146.00 25 4.000 6.25 61 0.953 8.517 207.30 8.29 

50-69 146.00 25 4.000 6.25 65 0.856 6.835 230.34 9.21 

50-70 146.00 25 4.000 6.25 65 0.808 6.212 136.80 5.47 

50-71 146.00 25 4.000 6.25 62 0.864 6.705 254.78 10.19 

50-72 146.00 25 4.000 6.25 65 0.793 6.098 325.28 13.01 

50-73 146.00 25 4.000 6.25 n/a -1127 0.794 6.434 198.03 7.92 

50-74 146.00 10 4.000 2.50 n/a -1009 0.858 6.884 190.73 19.07 

50-75 146.00 10 4.000 2.50 58 0.804 6.775 156.46 15.65 

50-76 146.00 10 4.000 2.50 62 0.750 6.545 238.48 23.85 

50-77 146.00 10 4.000 2.50 n/a -1118 0.774 6.395 171.91 17.19 

50-78 146.00 10 4.000 2.50 72 0.754 5.863 171.91 17.19 

50-79 146.00 10 4.000 2.50 65 0.756 5.688 172.19 17.22 

50 80 146.00 10 4.000 2.50 64 0.772 6.142 203.37 20.34 

50-81 146.00 10 4.000 2.50 65 0.727 5.730 171.91 17.19 

50-82 146.00 20 4.000 5.00 49 1.734 12.952 105.34 5.27 

50-83 146.00 20 4.000 5.00 52 1.257 8.600 169.38 8.47 

50-84 146.00 20 4.000 5.00 52 1.247 9.213 177.25 8.86 

50-85 146.00 20 4.000 5.00 51 1.202 9.257 183.43 9.17 

50-86 146.00 10 4.000 2.50 50 1.312 8.603 53.93 5.39 

50-87 146.00 10 4.000 2.50 52 1.296 10.23 142.13 14.21 

50 88 146.00 10 4.000 2.50 53 1.282 10.009 158.71 15.87 

50-89 146.00 10 4.000 2.50 54 1.214 8.326 142.13 14.21 

Table I. 1: Results from Experimental Stage 
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Appendix J- Fir Tree Root Manufacture 
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Appendix K- Minton, Treharne & Davies Limited Report 
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Our ref: x 1299 

Order Number: 5000056238 

Manufacturing Technology 
Rolls-Royce 
PO Box 3 
Filton 
Bristol 
BS35 7QE 

For the attention of Mr. John Sullivan EW4 - 14. 

APPENDIX K 

7MTD 

MINTON, 

TREHARNE & 

DAVIES LIMITED 

Consulting Scientists, 

Mariners & Engineers 

Analytical & Testing 

Laboratories 

Public Analysts 

4th April 2001. 

METALLOGRAPHIC COMPARISON OF SURFACES PRODUCED 

BY CBN AND VIPER GRINDING 

1. SUMMARY 

The roots of two blades in Mar M002 material were finished by grinding. One was ground on both 

sides using Viper grinding technology and the other was ground using a wheel impregnated by CBN 

particles. They were submitted to MTD for metallographic assessment of the surface condition and 

comparison to CME 5043. This report details the results of this investigation where it appeared that 
both techniques comfortably satisfied CME 5043. 

2. CONCLUSIONS 

2.1. Both techniques were acceptable to CME 5043 subject to the provisos detailed in the report. 

2.2. The work hardening effect of the Viper grinding was estimated by metallographic examination to 

be approximately 5pm. 

2.3. The work hardening effect of CBN grinding was estimated by metallographic examination to be 

approximately I Otm. 

2.4. There were indications that the CBN grinding resulted in a cleaner cut than the Viper grinding. 

3. RECOMMENDATIONS 

3.1. The actual values for the hardening must be obtained by X ray Diffraction Techniques. 

Scanning electron microscope can only give the depth but more accurately than metallographic 

techniques. 

K. C. Moloney 

Minton, Treharne and Davies Ltd 
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4. EXAMINATION 

The blade aerofoil was removed from each blade. The root was cut in half vertically. One half was 
kept for Electron Diffraction techniques to obtain the true depth of hardening. The other halves 

were placed on their bottom faces, mounted together one mount and then polished back to the base 

of the first groove. (This then enabled a measurement to be taken at right angles to the grinding 
surface). The samples were prepared for metallographic examination using colloidal silica for 
final polish. 

The sections were examined in the unetched condition. 
Figure 1 shows some features that were witnessed on the Viper ground surface. There were four 

instances of "smearing" or surface drag along the face. The depth 2Ftm and the length was 
100-tm. The debris at the end of the cut was measured at 15pm. Plucking was measured at 41. tm. 

Figure 2 shows typical feature seen on the CBN ground surface. Plucking to a depth of 4 pin was 

seen together with some small laps at a "height" of 5pm. 

Figure 3 shows typical features of the Viper ground surface in the etched condition. The depth of 
the visually disturbed layer was estimated at 5pm. 

Figure 4 details some typical features of the CBN ground surface. The depth of visual disturbed 

layer was estimated at 10µm. 

5. DISCUSSION 

Both samples appeared to be comfortably within the levels set in appendix I of CME 5043. There 

are two provisos. Firstly, the surfaces were not examined for "black" spot defects because this 

entails macro etching. This will interfere with the depth of strained lattice values to be 

accomplished by Electron Diffraction techniques. Secondly, an in-depth microhardness traverse of 
the surface was not possible because of the very segregated nature of the microstructure. It was 

attempted but the results were unsatisfactory and are not included in the report. 

The defects seen on the surface were usually associated with the various phases seen in the 

material. This was exemplified by the smearing or surface drag defect that appeared to be 

associated with the large gamma prime particles. 

Minton, Trehame and Davies Ltd 

This was only seen in the Viper ground specimens. This may indicate that the CBN grinding may give 

a cleaner cut than the Viper grinding. 
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Magnification x 1000. Unetched 
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Appendix L- Mineral Grinding Fluid Datasheets 
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Ca 

6 

Product Information 
CASTROL ILOGRIND 600 SP 

Castrol International 
Marketing and Technology Division 

Low viscosity chlorine and zinc free neat grinding oil most suited to high 
speed creep feed and especially gear grinding using the latest technology 
machines from KAPP and NILES. Its low viscosity also gives it good 
performance in the process of belt or tape finishing where a thin oil with 
exceptional flushing properties is required. 
NOTE - Product can stain yellow metals such as copper and brass 

BENEFITS _ 
Excellent lubricity and flushing has given this product a proven advantage in helping resist 
burning on gear teeth from the grinding process 

Gives good wheel life and can extend life between regrinds dramatically so compared with 
water based products 

Backed by approvals from the major manufacturers of gear grinding machines in Germany 

Low misting and foaming even when used at high pressures and flowrates found on the latest 
technology machinery. 

Zinc and chlorine free formulation can reduce the problem of disposal in certain countries. 

PROPERTY 

KINEMATIC VISCOSITY AT. 40 C 

APPEARANCE 

STANDARD TYPICAL DATA 

IP 71 9.4 cSt 

BAM 300 CLEAR AMBER LIQUID 

DENSITY AT 20 C IP 365 B7 glml 

FLASH POINT IPM CLOSED) IP 34 >130 degC 

Product Informadon - CASTROL ILOGRIND 600 SP 

ýr 
i' 

- 

yý., ýrý 
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ýº Castrol International 
Marketing and Technology Division 

Product Specification 
Brand: CASTROL ILOGRIND 600 SP 

Version: 2 

Technical 
Responsiblity: Metalworking 

Product 
Classification: 

Quality Control Tests 

Teat " Method Minimum Maximum Typical 
Appearance BAM 300 Clear amber liquid 

Odour BAM 300 Bland 

Density at 20 °C (g/ml) IP 365 0.87 

Kinematic Viscosity at 40 °C (c5t) IP 71 7 11 9.4 

Flash Point (PM Closed) (°C) IP 34 130 >130 

Foam Sequence 1- Tendency (ml) IP 146 50 

Foam Sequence 2- Tendency (mt) IP 146 50 

Foam Sequence 3- Tendency (ml) IP 146 50 

Sulphur (%wt) BAM 037 1 
. 05 1.15 

Phosphorus {%wt) BAM 036 0.085 0.095 

Type Approval Tests 

Test Method Minimum Maximum Typical 
Kinematic Viscosity at 20 °C (cSt) IP 71 16 23 

Cleveland Open Cup Flash Point ('C) IP 36 140 

Reason For Change 

No longer classed as Asia Pacific core range product 

Product Specification " CASTRO). ILOGRIND 600 SP Page 1 
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Castrol (U. K. ) Limited 
The Leading Lubrication Specialist [S() 

SAFETY DATA SHEET 
1: IDENTIFICATION OF THE SUBSTANCE ! PREPARATION AND OF THE 
COMPANY / UNDERTAKING 

Product Name: 
Variocut G600 SP 

Code: 7470-UK 
Application: Metalworking fluid " Neat. 

Company: Cartrot (U. K) Limited 

Address: Burmah Castrol House, Pipers Way, Swindon, Wiltshire, SN3 IRE 

Telephone (24 hours): 01793 512712 Far: 01793 491442 

2: COMPOSIT ION/INFORMATION ON INGREDIENTS 

Composition: Highly refined mineral oil and additiven 

Hazardous Ingredient(s) Symbol Risk Phrases Other Information % 

This product contains ingredients 
classified as hazardous. However, they 
are NOT present in sufficient quantities 
to warrant classifying the product as 
hazardous. 

All constituents of this product are hated in EINECS (European Inventory of Existing Commercial Chemical 
Substances) or ELINCS (European List of Notified Chemical Substances) or are exempt. 

Refer to Section 8 for Occupational Exposure Limits. 

3: HAZARDS IDENTIFICATION 

This product is NOT classified as hazardous. 

4: FIRST AID MEASURES 

Eyes: Irrigate immediately with copious quantities of water for several minutes. 

Skin: Wash thoroughly with soap and water or suitable skin cleanser as soon as possible. 

Inhalation: Remove from exposure. 

Ingestion: Obtain medical attention Do NOT induce vomiting. 

5: FIRE FIGHTING MEASURES 

Suitable Extinguishing Media: Carbon dioxide, powder, foam or water fog - Do not use water jets. 

Special Exposure Hazards: None. 

Special Protective Equipment: None. 

6: ACCIDENTAL RELEASE MEASURES 

Personal Precautions: Spilt product presents a significant slip hazard. 

Environmental Precautions: event entry into drains, sewers and water courses. 

Decontamination Procedures: Soak up with inert absorbent or contain and remove by best available means. 
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7: HANDLING AND STORAGE 

Handling: Avoid breathing spray mist. 
To avoid the possibility of an disorders, repeated or prolonged contact with products of this type must 
be avoided. It is essential to maintain a high standard of personal hygiene 

Storage: No special precautions. 

8: EXPOSURE CONTROLS/PERSONAL PROTECTION 

Occupational Exposure Limits: - 
Substance 8 Hr. TWA STEL Source/Other Information 

Mineral oil (see Oil mist, mineral) 5mg/m3 l Omg/m3 El-{40 (OES) 

Engineering Control Measures: Mechanical methods to minimise exposure must take precedence over 
personal protective measures. 
Local exhaust ventilation is recommended. 

Personal Protective Equipment: Safety glasses. Plastic apron Wear impervious gloves (eg of PVC), in case 
of repeated or prolonged contact 
Change contaminated clothing and clean before re-use. 

9: PHYSICAL AND CHEMICAL PROPERTIES 

Physical State: Liquid 

Colour: Amber 

Odour: Mild 

Boiling Point/Range (°C): Above 250 

Pour Point: (°C): Below minus 9 

Kinematic Viscosity @ 40°C (cSt): 9.4 

Flash Point (closed, °C): Above 130 

Autoignition (°C): Above 230 

Explosive Properties Explosive limit range (%): Approximately 0.6 - 10.0 

Vapour Pressure (kPa at 20°C): Below 0.1 

Relative Density (at 20°C): 0.87 

Water Solubility: Insoluble 

Fat Solubility: Not determined 

10: STABILITY AND REACTMTY 

Stability: Stable, will not polymerise. 

Conditions to Avoid: Temperatures (°C) above 60. 

Materials to Avoid: Strong oxidising agents. 

Hazardous Decomposition Products: Imlant fumes. 

11: TOXICOLOGICAL INFORMATION 

The following toxicological a Txnt is based on a knowledge of the toxicity of the product's components 
Expected oral LD,, rat > 2g/kg. ExTected dcrmal LD,, rabbit > 2g/kg. 

Health Effects 

On Eyes: May cause transient irritation 
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Persistence and Degradability: lnherentty biodegradable. 

Bloaccumulative Potential: Bioaccumulation is unlikely to be significant because of the low water 
solubility of this product. 

Ecotoxicity: Not expected to be toxic to aquatic organisms. 
Not expected to be inhibitory to sewage bacteria. 

On Skin: Unlikely to cause harm on brief or occasional contact 

By Inhalation: Mist and vapours may cause irritation to nose and respiratory tract. 

By Ingestion: May cause nausea, vomiting and diarrhoea 

Chronic: Repeated and prolonged skin contact may lead to skin disorders. 

Other: None known. 

12: ECOLOGICAL INFORMATION 

Environmental Assessment: When used and disposed of as intended, no adverse environmental effects are 
foreseen. 

Mobility: Non-volatile. Liquid. Insoluble in water. 

13: DISPOSAL CONSIDERATIONS 

Disposal must be in accordance with local and national legislation. 

Unused Product: May be sent for reclamation 

Used/Contaminated Product: Dispose of through an authorised waste contractor to a licensed site 
May be incinerated For further information see Section 16. 

Packaging: Must be disposed of through an authorised waste eontiactor. 
May be steam cleaned and recycled. 

14: TRANSPORT INFORMATION 

This product is NOT classified as dangerous for transport. 

15: REGULATORY INFORMATION 

This product is NOT classified as dangerous for supply in the UK. 

Hazard Label Data: 
EC Directives: Waste Oil Directive, 87/101/EEC. 

Framework Waste Directive, 91/156/EEC 

Statutory Instruments: Health & Safety at Work, etc. Act 1974. 
Consumer Protection Act 1987. 
Environmental Protection Act 1990. 

Codes of Practice: Waste Management. The Duty of Care. 

Guidance Notes: Occupational exposure limits (Efi 40). 
Carcinogenicity of mineral oils (EH 58). 
Metalworking fluids - health precautions (EH 62). 
Skin cancer caused by oil [MS(B)5]. 
Save your skin! - Occupational Contact Dermatitis [MS(B)6). 
Dermatitis - cautionary notice [SHW 367]. 
Effects of mineral oil on the skin 1SHW 397]. 
Health and safety in engineering workshops [HS(G)129]. 

The above publications are avai lable from HMSO or HSE 
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APPENDIX M 

Castrol (U. K. ) Limited nýj_ 

The Lending Lubrication Specialist 

SAFETY DATA SHEET 
00 

1: IDENTIFICATION OF THE SUBSTANCE I PREPARATION AND OF THE 
COMPANY / UNDERTAKING 

Product Name: 
Carecut ESI 

Code: 
7443-UK 

Application: Metalworking fluid - Neat. 

Company: Cautrol (U. K) Limited 

Address: Burmah Castrol House, Pipers Way, Swindon, Wiltshire, SN3 IRE 

Telephone (24 hours): 01793 512712 Fax: 01793 491442 

2: COMPOSITION/INFORMATION ON INGREDIENTS 

Composition: Ester basestocks and additives. 

Hazardous Ingredient(s) Symbol Risk Phrases Other Information % 

This product contains ingredients 
classified as hazardous. However, they 
are NOT present in sufficient quantities 
to warrant classifying the product as 
hazardous. 

All constituents of this product are listed in EINECS (European Inventory of Existing Commercial Chemical 
Substances) or ELINCS (European List of Notified Chemical Substances) or are exempt. 

Refer to Section 8 for Occupational Exposure Limits. 

3: HAZARDS IDENTIFICATION 

This product is NOT classified as hazardous. 

4: FIRST AID MEASURES 

Eyes: Irrigate immediately with copious quantities of water for several minutes. 

Skin: Wash thoroughly with soap and water or suitable skin cleanser as soon as possible. 

Inhalation: Remove from exposure. 

Ingestion: Obtain medical attention. Do NOT induce vomiting. 

5: FIRE FIGHTING MEASURES 

Suitable Extinguishing Media: Carbon dioxide, powder, foam or water fog - Do not use water jets. 

Special Exposure Hazards: None. 

Special Protective Equipment: None. 

6: ACCIDENTAL RELEASE MEASURES 

Personal Precautions: Spih product presents a significant slip hazard. 

Environmental Precautions: Prevent entry into drains, sewers and water courses. 

Decontamination Procedures: Soak up with inert absorbent or contain and remove by best available means. 
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7: HANDLING AND STORAGE 

Handling: Avoid brcathing spray mist. 
To avoid the possibility of skin disorders, repeated or prolonged contact with products of this type muse 
be avoided. It is essential to maintain a high standard of personal hygiene. 

Storage: No special precautions. 

8: EXPOSURE CONTROLS/PERSONAL PROTECTION 

Occupational Exposure Limits: - None. 

Engineering Control Measures: Mechanical methods to minimise exposure must take precedence over 
personal protective measures. 
Local exhaust ventilation is recommended. 

Personal Protective Equipment: Safety glasses. Plastic apron. Wear impervious gloves (eg of PVC), in case 
of repeated or prolonged contact. 
Change contaminated clothing and clean before re-use. 

9: PHYSICAL AND CHEMICAL PROPERTIES 

Physical State: Liquid 
Colour: Straw 

Odour: Mild 

Boiling Point/Range (°C): Above 200 

Kinematic Viscosity @ 40°C (cSt): 27 

Kinematic Viscosity @ 100°C (cSt): 6 

Flash Point (closed, °C): 240 

Autoignition (°C): Above 250 

Explosive Properties (%): Not detemtined 

Vapour Pressure (kPa at 20°C): Below 0.1 

Relative Density (at 20°C): Below 1.0 

Water Solubility: Insoluble 

Fat Solubility: Not determined 

10: STABILITY AND REACTIVITY 

Stability: Stable, will not polymerise. 

Conditions to Avoid: Temperatures (IC) above 120 

Materials to Avoid. Strong oxidising agents. 

Hazardous Decomposition Products: Irritant fumes. 

1I: TOXICOLOGICAL INFORMATION 

The following toxicological assessment is based on a knowledge of the toxicity of the product's components 
Expected oral LD.. rat > 2g/kg. 

Health Effects 

On Eyes: May cause transient irritation. 

On Skin: Unlikely to cause harm on brief or occasional contact. 

By Inhalation: Mist and vapours may cause irritation to nose and respiratory tract. 
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By Ingestion: May cause nausea, vomiting and diarrhoea. 

Chronic: Repeated and prolonged skin contact may lead to skin disorders. 

Other: None known. 

12: ECOLOGICAL INFORMATION 

Environmental Assessment: When used and disposed of as intended, no adverse environmental effects are 
foreseen. 

Mobility: Non-volatile. Mobile liquid. Insoluble in water. 

Persistence and Degradability: Not known. 

Bioaccumulative Potential: Not determined. 

Ecotoxicity: Not expected to be toxic to aquatic organisms. 
Not expected to be inhibitory to sewage bacteria 

13: DISPOSAL CONSIDERATIONS 

Disposal must be in accordance with local and national legislation 

Unused Product: May be sent for reclamation. 

Used/Contaminated Product: Dispose of through an authorised waste contractor to a licensed site. 
May be incinerated. For further information see Section 16. 

Packaging: Must be disposed of through an authorised waste contractor. 
May be steam cleaned and recycled. 

14: TRANSPORT INFORMATION 

This product is NOT classified as dangerous for transport. 

15: REGULATORY INFORMATION 

This product is NOT classified as dangerous for supply in the UK 

Hazard Label Data: - 
EC Directives: Framework Waste Directive, 91l156/EEC. 

Statutory Instruments: Health & Safety at Work, etc. Act 1974. 
Consumer Protection Act 1987. 
Environmental Protection Act I990. 

Codes of Practice: Waste Management. The Duty of Care. 

Guidance Notes: Save your skin! - Occupational Contact Dermatitis [MS(B)6). 
Dermatitis - cautionary notice [SHW 367). 
Health and safety in engineering workshops [HS(G)129). 

The above publications are available from HMSO or HSE 

16: OTHER INFORMATION 

Castrol Advice Sheet: The Disposal of Used Metalworking Fluids 
Castrol publication: Talking about Cutting Fluids. 
Code of Practice for Metalworking Fluids (IP). 

Several publications relating to the use of metalworking fluids are available from the HSE 
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Castrol (U. K. ) Limited 
castiol The Leading Lubrication Specialist ] SO 

SAFETY DATA SHEET 
1: IDENTIFICATION OF THE SUBSTANCE ! PREPARATION AND OF THE 
COMPANY / UNDERTAKING 

Product Name: Hysol XH 
Code: 7049-UK 

Application: Metalworking fluid - Soluble. 

Company: Castrol (U. K. ) Limited 

Address: Burmah Castrol House, Pipers Way, Swindon, Wiltshire, SN3 IRE 

Telephone (24 hours): 01793 512712 Fax: 01793 491442 

2: COMPOSITION/INFORMATION ON INGREDIENTS 

Composition: Highly refined mineral oil, emulsifiers and additives. 
Contains biocide. Contains Polysulphide. 

Hazardous Ingredient(s) Symbol Risk Phrases Other Information % 

This product contains ingredients 
classified as hazardous. However, they 
are NOT present in sufficient quantities 
to warrant classifying the product as 
hazardous. 

All constituents of this product are listed in EINECS (European Inventory of Existing Commercial Chemical 
Substances) or ELINCS (European List of Notified Chemical Substances) or are exempt. 

Refer to Section 8 for Occupational Exposure Lints. 

3: HAZARDS IDENTIFICATION 

This product is NOT classified as hazardous. 

4: FIRST AID MEASURES 

Eyes: Irrigate immediately with copious quantities of water for several minutes. 
Obtain medical attention if irritation persists. 

Skin: Wash thoroughly with soap and water or suitable skin cleanser as on as possible. 

Inhalation: Remove from exposure. 

Ingestion: Obtain medical attention Do NOT induce vomiting. Washout mouth with water. 

5: FIRE FIGHTING MEASURES 

Suitable Extinguishing Media: Carbon dioxide, powder, foam or water fog - Do not use water jets. 
Prevent contaminated extinguishing media from entering drains, sewers 
and water courses. 

Special Exposure Hazards: Sulphur compounds including hydrogen sulphide. 
Nitrogen compounds. 

Special Protective Equipment: Self-contained breathing apparatus 
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6: ACCIDENTAL RELEASE MEASURES 

Personal Precautions: Spilt product presents a significant slip hazard 

Environmental Precautions: Prevent entry into drains, sewers and water courses. 

Decontamination Procedures: Soak up with inert absorbent or contain and remove by best available means 

7: HANDLING AND STORAGE 

Handling: Avoid breathing spray mist. 
To avoid the possibility of skin disorders, repeated or prolonged contact with products of this type must 
be avoided. It is essential to maintain a high standard of personal hygiene. 
This product has been formulated to be used diluted with water. The dilution rate will need to be varied 
depending on the application. For this information, please refer to the Castrol Technical Data Sheet 

Storage: Protect from frost. Store out of direct sunlight. Store between (°C): 5- 40. 

8: EXPOSURE CONTROLS/PERSONAL PROTECTION 

Occupational Exposure Limits: - 
Substance 8 Hr. TWA STEL Source/Other Information 

Mineral oil (see Oil mist, mineral) 5mg/m& 10mg/m3 EH40 (OES) 

Formaldehyde (formed in solution) 2ppm 2ppm EH40 (MEL) 

Engineering Control Measures: Mechanical methods to minimise exposure must tale precedence over 
personal protective measures. 
Local exhaust ventilation is recommended. 

Personal Protective Equipment: Safety glasses. Plastic apron. Wear impervious gloves (eg of PVC), in case 
of repeated or prolonged contact. 
Change contaminated clothing and clean before re-use 

9: PHYSICAL AND CHEMICAL PROPERTIES 

Physical State: Liquid 

Colour: Amber 

Odour: Mild 

pH(working dilution): 9.3(5%) 

Boiling Point/Range (°C): Above 100 

Pour Point: (°C): Below 0 

Flash Point (closed, °C): Above 100 

Autoignition (°C): Not dete mi ed 

Explosive Properties (%): Not determmed 

Vapour Pressure (kPa at 20°C): Not determn°d 

Relative Density (at 20°C): 0.97 

Water Solubility: Emulsifiable 

Fat Solubility: Not determined 

10: STABILITY AND REACTIVITY 

Stability: Stable, will not polymerise. 

Conditions to Avoid: Temperatures (°C) above 50. 
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Materials to Avoid: Strong oxidising agents. Strong acids 

Hazardous Decomposition Products: Sulphur compounds including hydrogen sulphide. 
Nitrogen compounds 

11: TOXICOLOGICAL INFORMATION 

The following toxicological assessment is based on a knowledge of the toxicity of the product's components. Expected 
oral LD,,, rat > 2g/kg. Expected dermal LDya, rabbit > 2g/kg. 
Not classified as an eye or skin irritant. 

Health Effects 

On Eyes: May cause transient irritation. 

On Skin: May defat the skin. 

By Inhalation: Mist and vapours may cause imitation to nose and respiratory tract. 

By Ingestion: May cause nausea, vomiting and diarrhoea. 

Chronic: Repeated and prolonged skin contact may lead to skin disorders. 

Other: None known. 

12: ECOLOGICAL INFORMATION 

Environmental Assessment: May cause ecological damage in aquatic systeatt and must be used and 
disposed of in accordance with the recommendations made in this safety data 
sheet. 

Mobility: Mobile liquid. Emulsifiable in water. 

Persistence and Degradability: Inherently biodegradable. 

Bioaccumulative Potential: Not detemt; ned. 

Ecotoxicity: Not determined 

13: DISPOSAL CONSIDERATIONS 

Disposal must be in accordance with local and national legislation. 

Unused Product: Dispose of through an authorised waste contractor to a licensed site. 
European Waste Code. 12 0107. 

Used/Contaminated Product: Diluted product may be separated by chemical means before removal by an 
authorised waste contractor. For further information see Section 16. 
European Waste Code: 12 0109. 

Packaging: Must be disposed of through an authorised waste contractor. 
May be steam cleaned and recycled. 

14: TRANSPORT INFORMATION 

This product is NOT classified as dangerous for transport. 

15: REGULATORY INFORMATION 

This product is NOT classified as dangerous for supply in the UX 

Hazard Label Data: - 
EC Directives: 

Statutory Instruments: 

Codes of Practice: 

Waste Oil Directive, 87/101/EEC. 

Health & Safety at Work, etc. Act 1974. 
Consumer Protection Act 1987. 
Environmental Protection Act 1990. 

Waste Management. The Duty of Care. 
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