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ABSTRACT 

In this thesis consideration is given to a selection 
of nonlinear dynamic problems in the field of offshore 
engineering. Hydrodynamic loading on fixed horizontal and 
vertical tubular members and the dynamic response of articulated 
towers together with the distribution of shear force and 
bending moment along the tower are investigated using various 
wave theories. Effects of nonlinear convective acceleration 
terms in the calculation of fluid inertia forces and moments 
are examined and attention is given to integration of wave 
forces up to the free surface for vertical members. Calculation 

of fluid loading at the displaced position of the articulated 
tower and any Mathieu type instabilities that may occur 
have been considered. The dynamic analysis of a damaged 
Single Anchor Leg Storage (SALS) system subject to loss 

of buoyancy in the yoke chamber is studied. The equations 
of motion of the yoke/riser system are derived assuming 
large displacements and solved in the time domain. Time 
histories of the response, variations of the riser tension, 

velocities of riser top end and the time histories of pivot 
reactions are given. Natural periods and mode shapes for 

small displacements of the system are calculated. Two methods 
of simulating random seas, both represented by a sum of 
harmonic wave components, are used to simulate second order 
low frequency (slow drift) force on a tanker in head seas 
by Pinkster's time domain method. In one method the wave 

amplitudes are generated randomly from a Rayleigh distribution 

and in the other they are obtained deterministically via 
the wave spectrum. Time histories of slow drift force and 
response together with simulation results with various duration 
lengths are presented and compared. Estimates of the extreme 
vessel response and its relation to rms value are compared 
with the result of a commonly used method of determining 

peak/rms ratios. The results of these investigations highlight 
the importance of accurately simulating nonlinear effects 
in both fixed, floating and compliant offshore structures 
from the point of view of safe design and operation of such- 
systems. 
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CHAPTER ONE 

INTRODUCTION 

In the design and analysis of fixed, floating and compliant 

offshore structures many nonlinear physical quantities and 

mechanisms exist that are difficult to quantify and interpret 

in relation to hydrodynamic loading and dynamic response 

in random sea states. For example with small diameter structures 

probably the most controversial and significant nonlinearity 

is the viscous drag force component. There is also the 

choice of finite amplitude wave theory to be made and the 

decision of whether or not to evaluate fluid forces at the 
instantaneous dynamic position of an oscillating structure. 
In addition low frequency second order wave forces in random 

seas derive from a nonlinear mechanism and lead to resonant 
low frequency motions of floating systems that are damped 

primarily by nonlinear fluid forces. 

Structural nonlinearities of practical significance 

are present in catenary moorings for semi-submersible 
vessels and other types of floating structures. Again in a 
damaged state a floating system or one of its components 

may contain nonlinear stiffness or buoyancy forces. 

Thus a strict categorization of nonlinearities is not 

possible for all systems as each design will possess non- 
linearities of varying degree and magnitude. 

It should also be remembered that nonlinear means 
"not linear" thus a linear spring with a time varying 

stiffness coefficient is not a nonlinearity as in the case 

of Mathieu's equation. 
The aim of this thesis is to present a theoretical and 

computational study of a selection of nonlinear mechanisms 

and to demonstrate their importance or otherwise in the 

design context. 
Considerable research has been carried out in this 

field over the past 20 years or so and it is hoped that this 

thesis will enhance the understanding of nonlinear phenomena 

in relation to the safe design of all classes of offshore 

structures. 
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1.1 Linear and Nonlinear Waves 
1.1.1 Morison's equation for fixed structural members 

One of the common types of fixed offshore structure is 

the jacket platform (Fig. 1.1) the substructure of which 

consists of a steel tubular-space frame which is subjected 
to Morison type loading. The fluid induced forces and 

moments in the jacket and at the base of the legs can play 

a major role in the design of both the frame and the piled 
foundations of the structure and for an economic and reliable 
design good estimation of fluid loading is essential. ' 

For small diameter members used in jackets diffraction 

effects are negligible and the formulation proposed by 

Morison et al ( 62- ), known as the Morison equation, is 

most commonly used in research and engineering to estimate 
the fluid loading. For example, the force per unit length 

acting on a fixed vertical member of diameter D is 

L 

-A +V, I ý/. 1Dc ýu (1.1) 
Jt 

where 
_, 

/0 = fluid density, LL = horizontal particle 
velocity, C-,,, c drag and inertia coefficients respectively, 

Vc. = coplanar current velocity. 
The assumption of current and wave induced velocity 

acting in the same direction is a gross idealization as 

waves tend to propagate parallel to the wind whereas currents 
tend to propagate at about 450 to the wind due to the 

Coriolis effects of the earth's rotation. Furthermore the 

current vector rotates with depth in an anti-clockwise 
direction in the northern hemisphere and hence the resultant 
fluid velocity vector u+V is never in reality coplanar. 

For design purposes however the worst case is taken to be 

when both velocity components act in the same direction. 

It is evident that for calculation of the loads realistic 

estimates of fluid particle kinematics are necessary. 

Unfortunately the mathematical modelling of finite amplitude 

wave motion is complex and in spite of many elegant analyses 

simple solutions rarely exist. The derivation of linear and 
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nonlinear wave theories exist in many textbooks on hydro- 
dynamics, e. g. Lamb C 52 ), Ippen ( 311 ) and Le Mehaute ( 
The major difficulty in finding a solution to the nonlinear 
boundary value problem describing the wave motion is that one 
of the boundaries, namely the free surface, is unknown. This 
leads to the inevitable approximate solutions to the 

problem and the development of various kinds of wave theories. 

1.1.2 Nonlinear wave theories 

Assuming infinitesimal waves and neglecting the non- 
linear terms in the equations of fluid motion gives a first 

approximation to the wave motion known as the small 
amplitude, Airy or linear wave theory. In 1847 Stokes 
introduced a perturbation procedure by which successive 
approximations to the solution could be performed and 
Skjelbreia and Hendrickson ( 77 ) extended Stokes finite 

amplitude wave theory to the 5th order. Their approach is 
conceptually simple although algebraically complex and 
involves the numerical solution of a pair of nonlinear 
equations which can easily be performed making the theory 

attractive for engineering use. Dean's ( 15 ) stream 
function theory presented a numerical solution to the two 
dimensional problem by minimising the error in the fit with 
the nonlinear dynamic free surface boundary condition and 
representing the flow field by a stream function. Dean 

16 ) also computed and tabulated various parameters 

suitable for engineering applications, such as the fluid 

velocities and accelerations, for a wide range of environ- 

mental conditions. 
Since higher order solutions to Stokes finite amplitude 

wave theories are obtained using perturbation, they are only 

suitable for weakly nonlinear waves and their application 

to steep waves or for shallow water can lead to large 

errors in wave kinematics. In 1895 Kortweg and DeVries 

developed the fundamental theory for periodic waves in the 

shallow water range in which they expressed the lst order 

approximation to the wave elevation in terms of the Jacobian 

elliptic function Cn and hence it was termed "Cnoidal wave 
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theory". Laitone ( To ) obtained the 2nd order approximation 
to the cnoidal theory and Fenton ( 23 ) extended it to any 
desirable ordert however, he found no practical justification 
in going. beyond the 5th order. 

It must be pointed out that a tremendous amount of 
literature related to the various aspects of the water 
wave theories exists and for brevity most will not be 

mentioned. For an extensive review of the published work 
related to nonlinear wave theories the reader is referred to 
Chapter 4 of the book by Sarpkaya and Isaacson ( 75' ) where 
more than 220 publications are referenced. 

Comparisons between the predictions of different wave 
theories are usually based on estimations of the fluid 

particle kinematics alone, however, it is intended here to 

compare the predicted fluid forces and the response of ocean 
structures corresponding to typical design wave conditions. 
This is carried out in Chapter 2 where predictions of 
linear and nonlinear wave theories suitable for engineering 
purposes are discussed. Derivation of the wave theories 

employed are given in Appendix A. 

1.1.3 Nonlinear inertia forces 

In equation (1.1) it is usually assumed that the only 

nonlinearity arises from the quadratic drag term and the 

acceleration term Oý14 ) in the inertial part is 
dA 

frequently replaced by the local acceleration term 

which is the change in the velocity with respect to time 

only. Therefore in calculating the fluid inertia forces by 

Morison's equation the derivatives of u with respect to 

space, known as the convective acceleration terms, are 

normally ignored. Isaacson ( 40 ) studied the nonlinear 

inertia forces acting on a sphere, a horizontal cylinder 

and a vertical cylinder using Morison's equation and Stokes 

2nd and 5th order theories. He found that the inertia 

forces calculated in the conventional manner, i. e. by 

letting 
JU ,W generally overestimates the actual 

force. Fig. 1.2 shows a comparison of local and total 

acceleration terms indicating that for nonlinear wave flows 
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the effect of convective acceleration terms can become 

significant and therefore it is important to illustrate their 
influence on the fluid loading under typical sea conditions. 
This is investigated in Chapter 2. 

1.1.4 Free surface effects 

Since the small amplitude (linear) wave theory is not 

applicable to regions of the waves above the still water 

level (SWL), for calculation of the total force on vertical 

members, integration of equation (1.1) is usually carried 

only up to SWL and therefore the effect of free surface 

elevation, at which particle velocity is high, is normally 

not taken into account. 
Wheeler ( 98' ) proposed an empirical modification 

('stretching') of the depth decay function to linear wave 

theory to allow for such effects. Although his modification 

has no theoretical justification and its use in the 

expressions for the horizontal and vertical fluid motions 

violate Laplace's equation, Wheeler suggests that this error 
is not necessarily important from a practical point of 

view of performing wave force calculations. For nonlinear 

waves especially in shallow waters the free surface 

elevation can take up a significant portion of the fluid 

region and therefore neglecting the effect of variable 

structural wetted length could lead to large errors in 

calculated wave forces. The effect of variable submergence 

on both fixed and compliant vertical members is examined in 

Chapter 2 using various wave theories. 

1.1.5 Hydrodynamicloading and response of articulated towers 

Equation (1.1) is also commonly used to estimate the 

fluid loads acting on compliant structures. This is done by 

replacing the velocity term in the equation by an expression 

representing the relative velocity and by including the 

added mass effects in the inertia part of the force. Fig. 

1.3 shows a compliant offshore structure, the articulated 

tower, which basically consists of a rigid shaft connected 
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to a gravity base via a ball joint and is maintained in a 
vertical position by the buoyancy force. Apart from 

providing an articulation, the joint design (Fig, 1.4)must 

allow for the passage of pipes and transfer of oil to the 

upper parts of the tower. The sliding faces of the 

spherical shells are normally made of corrosion-proof 

material and are separated by a sliding layer of PTFE 

elements. In order to prevent damage to the internal 

pipelines any rotation of the bearing about the verti cal axis 
is taken up by a cardan joint which transmits all torsional 

moments to the base. The joint connecting the column to 

the gravity base can therefore prove to be expensive to 

manufacture and for its design a reliable estimate of the 

maximum loads or maximum tower inclination must be specified. 
Articulated buoyant towers have been employed as flare 

structures or tanker loading terminals and their application 

to deep water drilling and production units can offer many 

economic advantages. Since the fluid loads due to passage 

of waves are reacted by the inertia relief of the articulated 

structure, the induced stresses are therefore lower than 

those encountered by a fixed tower. Kokkinowrachos and 

Butt (46 ) discussed the design principles, motion 

optimisation and technical feasibility of the articulated 

tower concept and carried out a parameter study for the use 

of concrete articulated towers as loading terminals in 

moderate and deep waters. They concluded that satisfactory 

behaviour of the structure together with high standard of 

safety and efficient maintenance can be achieved and gave 

an account of the fabrication and installation processes 

related to articulated towers. Their parameter studies were 

extended by Kokkinowrachos and Mitzlaff ( 47 ) to 3,4 and 

5 legged structures (Fig. 1.3) for water depths of 250 and 

300 metres with balljoints at both ends of each leg 

allowing the upper deck to move horizontally, however, they 

did not discuss any practical problems associated with 

safety, construction or installation. An example of problems 

experienced is the case of Mobil's SPMI system (Fig-1.3) in 
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the North Sea Beryl field (see Offshore Engineer ( 24 )). 
A few-months after its installation, in December 1975, the 
locking device which secured the Beryl column to the base 
failed during a storm resulting in a freely drifting tower 
which was later caught by a Dutch tug. It was reconnected 
with an extra lock in 1976 but two years later there were 
further problems with the rotating head which had to be 

replaced. In 1980/81 cracks appeared in the welds of the 
lattice structure imposing a need for grinding and rewelding. 
Finally during a storm in January 1985 the top of the tower 
broke from the supporting column, possibly along a weld due 
to fatigue, and the tower was taken out of service. To 

replace the system Mobil considered other alternatives, their 

cost, maintenance, reliability and endurance and again chose 
to use an articulated tower which is reflective of the 

company's belief in the advantages that the system can offer. 
Granville and Fisher (2-1 ) described the concept, design, 

construction and installation of the Maureen field Articulated 
Loading Column (ALC), shown in Fig. 1.5, and suggested that 
the successful completion of the project points the way to 
the development of ALC. It is therefore thought that an 

examination of the hydrodynamic loading and the response of 

articulated towers carried out in Chapter 2 can also yield 

useful results. 
The dynamics of articulated towers have been studied by 

many authors. Kirk and Jain ( ý3 ) gave an analysis of the 

articulated tower subject to non-collinear waves and current 

using linear wave theory and showed that the tower can 

undergo a complex whirling motion even in regular waves. 

Chakrabarti and Cotter ( /0 ) studying the motion of 

articulated tower based their analysis on the assumption that 

the current and wave loads are collinear and linearised the 

quadratic drag terms using linear wave theory and some of 

their theoretical results did not correlate well with the 

experiments. In a later-paper ( It ) they included the 

effect of lift force produced by eddy formation and shedding 

causing transverse oscillations of the tower in a uni- 

directional wave field. They found that such transverse 
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oscillations can be as high as 30% of the inline motions, 
however, it was stressed that their data for the lift 
coefficients were unreliable. A random dynamic analysis in 
the frequency domain, using spectral techniques and linear 

wave theory, of articulated platforms was carried out by 
Kirk and Bose ( 44 ) for the combined action of collinear 
waves and current forces and including the slowly varying 
drift forces and moments. Their results for 3 designs of 
articulated platforms showed that the slowly varying 
resonant motions of the structure can induce considerable 
increases in column bending moments due to the deck weight. 
Olsen et al ( 68 ) analysed the articulated Single Point 
Mooring (SPM) system and developed a computer program 
(NV429) capable of evaluating the system behaviour with 
and without a tanker in regular waves. The computed results 
for horizontal and vertical force at wave frequency acting 
at the base joint together with the bending moment at top 

of the lattice tower, with no tanker present, did not agree 
well with the model test results, and they suggested that 
further experiments should be carried out. The problem of 
dynamic instabilities associated with the parametric , 
excitations of marine structures was brought into focus by 

McIver 57 ) who illustrated that calculation of wave 
forces at the displaced position of a compliant system leads 

to time dependent stiffness coefficients and the Mathieu-Hill 
type equations describing the motion. This is discussed in 

Chapter 2 and the influence of the nonlinear drag damping 

in the dynamic stability of articulated towers is also 
investigated. 

1.2 Large Displacements and the Single Anchor Leg Storage 

(SALS) System 

For marginal oilfields, such as the Beryl field, 

transportation of crude via an offshore loading terminal can 

prove to be more economical than laying a pipeline. Since 

1960 SPM systems have been extensively used as loading or 

offloading oil terminals for tankers and today there are 

about 300 SPMs in operation worldwide. In an SPM system the 
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tanker is moored at one point only, usually the bow, so 
that the vessel can swing freely about the mooring point 
and can take upýthe position of least resistance to the 
combination of wind, waves and current, i. e. it can 
tweathervaneO. One such system in which the vessel is 
moored to the sea bed via a yoke/riser assembly is the 
Single Anchor Leg Storage (SALS) system shown in Fig. 1.6. 
The concept of the SALS was originally proposed by Single 
Buoy Mooring Inc., and was further developed by Shell 
International Petroleum. In this system the tanker is 

permanently moored by a buoyant rigid yoke and a tensioned 

riser. Weathervaning is made possible by means of a roller 
bearing situated at the riser top and the crude can be 

offloaded to a shuttle tanker moored alongside or behind 

the storage vessel. The yoke structure is attached to the 
tanker by hinges allowing it to rotate in the vertical 

plane about the pivot connection and consists of welded 
tubular steel frame. The cylindrical buoyancy tank 

provides the mooring restoring-force (or the riser tension) 
in the system. The riser, articulated at top and bottom, is 

made up of a number of heavy forged steel links (Fig. 1.7) 

connected by steel pins and shackle plates. To allow for 

installation flexibility the ends of the links are set 
at right angles to each other and the flexible production 
riser or hose is attached to the chain by flexible supports. 
More information about various types of SPMs and further 

details of the SALS system can be found in Ref. ( Z ). 

Eykhout and Foolen ( ZI ) give the description, design 

concept and construction of a SALS system installed in 

Castellon field offshore Spain. A linearised random dynamic 

analysis of the SALS system taking account of the lst and 
2nd order wave forces acting on the structure in head seas 

was presented by Langley and Kirk ( 53 ). They gave the 

system transfer functions for motions and yoke pivot 

reactions together with the variation of RMS values for 

various parameters, such as riser tension and pivot 

reactions, as a function of significant wave height Hs. 

Kirk ( 45 ) gave an approximate analytical approach assuming 
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a deterministic wave environment and stressed that for the 
particular system considered, wave heights greater than 
about 20m can cause a loss of tension in the articulated 
riser during part of the load cycle which can lead to 
'snatch' loads in the riser links. The loss of tension in 
the riser can also be initiated by a damaged buoyancy 

cylinder in which flooding of the chamber due to fatigue 

cracks at the welded joints has taken place. This would 
subsequently lead to a slack chain susceptible to high 

stresses caused by snatch loads and detrimental to the 
integrity of the structure. An investigation into-the 
behaviour of the damaged SALS system subject to environmental 
loads is therefore of practical use. This problem is 

considered in Chapter 3 and since large motions of the 

slack yoke/riser system can take place a nonlinear dynamic 

analysis is carried out to predict the system response to 

regular waves. 

1.3 Simulation of Nonlinear and Random Wave Loading and 

Dynamic Response 

Apart from very few cases it is not possible to arrive 

at exact analytical solutions to the differential equations 
describing nonlinear motion. An account of the basic 

ideas relating to the dynamic behaviour of nonlinear systems, 

analytical solution methods in nonlinear vibrations'and 

stability theory can be found in the textbook given by 

Hagedorn ( 32. ). Perturbation, equivalent linearisation, 

harmonic balance or other analytical methods commonly used 

in applied mechanics, electronics, biology and other 

branches of science or engineering can only provide 

approximate solutions but can also give a physical insight 

into the nature of a given Problem, however, owing to the 

present day excellent computational facilities accurate and 

reliable solutions can be found using numerical techniques. 

In connection with statistical analysis and simulation of 

nonlinear random processes the rapid growth in computer 

technology and the advent of the new generation of computers, 

commonly referred to as the supercomputers, means that 
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larger and more complex mathematical models and algorithms 
can be efficiently handled at very high speed. The main 
features of the supercomputer architecture are their use of 
multiple processing units instead of the conventional 
single Central Processing Unit (single CPU), e. g. the 
CRAY X-MP/48 has 4 processor units, together with vector 
processing capabilities, high transfer rate of disk drives 

and a large memory space. Multiple and vector processing 
means that the execution of many operations can be 

performed simultaneously and in parallel rather than one 
by one. For example if in one line of a computer program 
there are a number of multiplications which are then added 
together, all variables involved can be read from the 

central memory at once and all the multiplications can be 

carried out in parallel instead of sequentially. The use 

of supercomputers in both research and industry especially 
in the fields of computational fluid dynamics, weather 
forecasting and oilfield reservoir simulation has increased. 

Many oil producing companies such as EXXON, Chevron, ARAMCO, 

Sun Exploration and Production Co., already use supercomputers 
for exploration data processing, reservoir simulation and 

seismic analysis. Next generation machines, such as HEP72 

manufactured by Denelcor Inc., which are said to be 500 

times faster and more powerful than any currently available 

supercomputer have already been introduced. It is therefore 

anticipated that time domain simulation techniques with 
higher speed and efficiency will be used to solve the 

problems involving nonlinear and random phenomena. 
Random simulation techniques suitable for offshore 

engineering and design purposes were described by Borgman 

(6) who suggested the use of the fast or finite Fourier 

transform (FFT) algorithm introduced by Cooley and Tukey 

( 14 ) which had proved to be an efficient method of 

computing the discrete Fourier transform of a time series. 

Longuet-Higgins ( S1 ). applied the statistical theory of 

stationary random noise developed by Rice ( 73 ) to the 

random process of the sea surface elevation by expressing 

the lst order wave elevation as the sum of a large number 



- 12 - 

of infinitesimal wavelets each having independent phases, 
better known as the wave superposition or the Monte Carlo 
method, i. e. 

tj 

7(t)= > a, C., (w t 

in which Cý, P W, , Ir. are the mth amplitude, frequency and 
random-phase'angle respectively. As shown by Hasselmann 
( 31t ) the second order solution to random seas can be 

derived using the perturbation method for Stokesian waves. 
The second order contributions occur at frequencies which 
are determined by the sum and differences of their lst 

order counterparts (see Appendix A). Hudspeth and Chen 
( 31 ) extended the digital simulation of unidirectional 
linear random seas to the second order utilizing a FFT 

algorithm. In simulating a Gaussian sea by equation (1.2) 
it is commonly assumed that a. can be calculated 
deterministically from the wave spectrum, i. e. the random- 
ness is only due to however as pointed out 
by Rice and Tucker et al ( 83 this is only valid when 

N D. Do and this deterministic method, in which am 

are calculated directly from the wave spectrum, cannot model 
a random Gaussian sea when a limited number of frequency 

components is used. Tucker et al illustrated that for an 
accurate model a,, must be generated randomly from a 
Rayleigh distribution such that the random nature of the 

record arises from both arn and 'Y, and suggested that 

the errors in simulation using the deterministic approach 

can significantly influence the wave group statistics. 
Spansberg and Jacobson ( 79 ) investigated experimentally 
the effect of wave grouping on the 2nd order low frequency 

or slow drift' motions of a semi-submersible and found that 
in beam seas the succession of the waves, or the wave 
1groupiness', has a profound effect on the 2nd order part of 
the force and sway response of the vessel. The two above 

mentioned methods of simulating random seas, one in which 
the wave amplitudes are found deterministically from the 
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wave spectrum the other with randomly generated amplitudes, 
are considered in Chapter 4 in more detail and are used to 
simulate the slow drift force and low frequency response of 
a tanker in head seas. 

While the second order forces are generally small 
compared to the lst order wave forces, the low natural 
frequency of a floating system invariably falls within the 
range of the low'frequency second order spectrum leading to 
large amplitude resonant motions due to low levels of 
damping present. The accurate estimation of extreme vessel 
response then becomes important when the design of the 
vessel mooring system is considered. The second order 
response of the tanker in random seas is considered in 
Chapter 4 where the results of simulated response are 
presented. - 

1.4 Outline of the Main Text and the Scope of the Present 

Work 

A brief introduction to the various problems examined 
in this thesis has been given. Much of the published work 

not mentioned here are referenced in the main text where 
their importance and. relevance become more apparent. 

Chapter 2 investigates the evaluation of hydrodynamic 

forces acting on fixed and moving tubular members using 
linear and nonlinear %oave theories. The theories employed 

are: Linear or Airy, 'stretched' Airy, Stokes 5th, stream 
function and 5th order cnoidal. Morison's equation is 

used and the effect of nonlinear inertia forces arising 
from the convective acceleration terms is considered. Inte- 

gration of fluid forces is extended to the free surface for 

vertical members and results are discussed. The equation of 

motion of the articulated tower is presented taking into 

account the effect of variable submergence. The distribution 

of shear force and bending moments along the tower is 

investigated. Dynamic stability of the tower is examined by 

calculating the fluid loads, predicted by Stokes 5th and 

stream function theories, at the displaced position of the 

tower and the effect of nonlinear drag damping on stability 
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is examined. Results of hydrodynamic loading relating to 
a selection of wave data chosen from typical 50 year 
storm conditions in the North Sea are presented and 
predictions of the various wave theories are compared. 
Simulation results for the response of articulated tower 

are given and discussed. 

Chapter 3. This chapter presents the nonlinear dynamic 

analysis of damaged SALS system. It is assumed that the 

system can undergo large displacements. The marine environ- 
ment is represented by coplanar regular waves and current. 
The constrained nonlinear equations of motion are derived 

using the Lagrangian method. The changes in buoyancy force 
due to yoke submersion are taken into account. Neglecting 
damping and using an incremental method, the natural 
frequencies and mode shapes for small oscillations of the 

system are formulated. Expressions for the riser tension 

and support reactions are given and results for the system 

response are presented. Time histories of the riser top 

tension and forces at the supports are included and snatch 
loads are discussed. 

Chapter 4. Here an introduction is given to the 

efficient method, of simulating linear and nonlinear random 

seas and the evaluation of the slow drift force on a tanker 

using Pinkster's time domain method ( 71 ). Two methods of 

simulating random seas, one with deterministic the other 

with random wave amplitudes, using wave superposition are 

considered and compared. Simulation results for the low 

frequency second order response of a tanker in head seas 

are given and an estimation of the peak values at practical 
levels of damping is considered. 
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CHAPTER TWO 

WAVE FORCES AND RESPONSE OF FIXED AND COMPLIANT OFFSHORE 

STRUCTURES UNDER LINEAR AND NONLINEAR WAVE EXCITATION 

2.0 INTRODUCTION 

This chapter considers hydrodynamic loading on fixed 

horizontal and vertical tubular members, having diameters 

similar to those of a typical jacket member (36 ) and the 

dynamics of a compliant system, the articulated tower. 

Morison's formula is used with various wave theories suitable 
for engineering purposes. Details of nonlinear wave theories 

used here are given in Appendix A. The following are subject 
to investigation: 

Comparison of estimated fluid drag and inertia loading 

and motion response of structures using different wave 

theories. 
2. Effect of integration of forces up to the free surface 

elevation for vertical members 
3. Calculation of fluid loading at instantaneous position 

of articulated tower and prediction of possible dynamic 

instabilities. 

4. Effect of convective acceleration terms in calculation 

of fluid inertia forces and moments in Morison's equation. 

2.1 FIXED CYLINDRICAL MEMBERS 

Figure 2.1 shows a horizontal cylinder of diameter D 

fixed at depth Y, below the mean water level. The x, y 

coordinate system is fixed directly above the cylinder with 

ori§in 0 lying on the undisturbed free surface. The wave 

travels in direction x perpendicular to the longitudinal axis 

of the cylinder. Using Morison's formula ( 62- ) we can write 

Drag force per unit length, 

' V: 
& =L 70 CD 2) ( UZ +y2) 
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where Lk and V are 
horizontal and vertical fluid 

particle velocities respectively. 

f= fluid density, 
CD = drag coefficient, 
C, n = inertia coe fficient 

From (2.1.1) we get 

w 
WAW 

WATrR 

CyLldbek 
Fv 

RA aft) 

Fig. 2.1. Fixed Horizontal 

Horizontal drag force Cylinder 

per unit length, 

,XC,, 
D IA. (2.1.2) 

Vertical drag force 

per unit length, 

(2.1.3) 

Horizontal fluid inertia force 

per unit length, 

fvý'X- 
'= Cm Crý') 

ý% 

4. It 

Vertical fluid inertia force 

per unit length, 

(7tý 
IV 

lk At 

výhere the total acceleration terms are given by the sum of 
linear and nonlinear terms as follows: 
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LOCAL I ve 

JA t 

olt 

Adding (2.1.2) and (2.1.4) we have 

Total horizontal wave force 

per unit length, 

ct, -b t& 
1: 1-" - . 1. 

Total vertical wave force, 

per unit length, 

Ct-t 

and resultant wave force 

per unit length, 

[Fo 
+ FF 

for a vertical cylinder as shown in Figure 2.2 the horizontal 

force at depth y on an element dy is given by 

At 
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Total force at base, 
WAVE 

Ft' 
(2.1.12) 

where wave elevation at 

cylinder. 
Similarly base moment is 

-: 
ý t7 -x 

(LLMCWT 

c- 

SEA BED 

JrF (it (2.1.13) 
Fig. 2.2. Fixed Vertical Cylinde 

In evaluating fluid particle velocities 

and accelerations the following wave 
theories are used: 

1. Airy or Linear wave theory 

2. 'Stretched' or modified Airy due to Wheeler 

3.5th order Stokes (77 ) 

4. Stream Function ( 16 

5. 5th order Cnoidal ( 23 

2.2 ARTICULATED TOWER 

A mathematical model for 

art iculated tower is shown below. 

The following terminology will Peck C& 

be %AWC used: MWL 
0 /1P = deck mass, U 

Ms = structural mass of tower 

per unit length, TOWQ 

Y'a = added mass of tower per 
unit length, BALLATT 

Mb = ballast mass per unit 
length, 

= external diameter of 
tower SCA 
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= wave elevation at instantaneous position of tower, 
= angular displacement of tower from vertical, 
='water depth, 

= coordinate system directly above base joint with 
origin fixed at the mean water level, 

= gravitational acceleration, 
= wave height. 

It is assumed that: 
1. Angular displacements are small. 
2. Bending stiffness of tower is large and rigid body 

motions are dominant 
3. Wave and current act in the same direction 
4. The base joint has zero rotational stiffness and damping. 

2.2.1 Equation of Motion 

The equation of motion of the system can be derived using 
Lagrange's method, details of which can be found in texts 

dealing with the subject of dynamics (e. g. see ( S1 )). 

Motion of tower is represented by Lagrange's equation as 

ýDV 

e -ý & 'lý & 

where 
T= kinetic energy 
V= potential energy 

hj, ý Mb = exciting moment of inertia and drag forces respectively 
C, = wave damping coefficient 

Taking an element of length dy 

along the tower as shown, we 
have 

D6Ck VfL*Cj-rY 

-1p 
tAVJ%- 

ott'l 

_1, J 
seA Be 

I 
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kinetic energy 

ft 

- 

mL[(ft)]L 

From equation (2.2.2) we get 

(e--L. m, j s-r-tic-roei ) 

( COLV14d Abbeb tiAIS) 

( DCck ) 

(BALLAST) 

(2.2.2) 

73T 3 

at 0) 
SA 'F 

j 

(2.2.3) 

and 

-. ) to, 
=0 (2.2.4) 

Assuming small angles, and 

Vertical displacement of deck = /, 6ý' 
I Z. 

Similarly, 

Vertical displacement of 
Centre of Gravity of 
Ballast =k 2ý 

L 

and 
Vertical displacement of 

Centre of Gravity of 
If, 491 Tower P 

f 
846YAWC1 FSACE. 

A F'g 
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Therefore, increase in potential energy 

122t 

-3 m bl. 4 Tr 1) 
(It i ýi 

& 1r1. 
-i 

79 
7- (2.2.5) 

Hence 

2. 
F 
%. 

rn 
L6 

+j& 
6p (2.2.6) 

-ý 0a[ f" 'I, LLSzf 

Substituting (2.2.3), (2.2.4) and (2.2.6) into (2.2.1) and 
rearranging we have 

6 Cý + k. 61 M Mp (2.2.7) 

where 

333 

63 
Mfl z 

3 
+1 YA p 

(2.2.8) 

. 
1", Trý 

t VA 6L 2ý f (2.2.9) 

Fluid added mass and potential damping corresponding to 
dissipation of energy in radiated waves can be found 

numerically using finite element and boundary integral 

methods (see 60 ), (26) and ( 1? 2 )). Eatock-Taylor and 
Duncan ( 11 give added inertia and damping coefficients of 
a doubly articulated dolumn in regular waves in non- 
dimensional form (see Appendix C). Damping and added-mass 
coefficients for the first mode of the doubly articulated 
column can be used for a singly articulated tower. From 
Appendix C 

rr b Lf tý 

It 
(2.2.10) 
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and 

ve Ir 

z 
oorrv 0 AII It + (2.2.12) 

where 

non-dimensional added inertia coefficient for first 

mode 
non-dimensional damping coefficient for first mode 
wave frequency 

2.2.2 Fluid Loading 

Fluid inertia and drag forces 

acting on an element at distance 

y from the mean water level are 17 

given by Morison's equation as 

C (2.2.13) Inertia, 

Cb 
[A 

_, rV 
_0 

C' 
Ck + 'A; r (2.2.14) Drag 

Lt J-W ILV 

where VcM= current velocity at element. 
In predicting fluid particle kinematics the following wave 
theories will be used: 

1. Airy 

2. 'Modified' or 'Stretched' Airy 
3. Stokes fifth order 
4. Stream Function. 

In 2 an empirical modification is applied to the Airy wave 

theory. The depth decay function CrAfý (Itý)3 in expressions 

for LL and CZ is replaced by &>4 [, kd LL) I 
d-tj 



- 27 - 

to include surface elevation effects. 
For the above mentioned water wave theories we can 

write; 

L, L 

N. 

11-k P, + t)3 
nzi 

For Airy Wave Theory 

a= 

R77 

For 'Stretched' Airy Theor as above except for 

IZ 

For Stokes Fifth Order Wave Theory 

I 

1ý 
&% =ý 

Vk 

ýB Lt = I- 

(2.2.15) 

(2.2.16) 

(2.2.17) 

(2.2.18) 

(2.2.19) 
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For Stream Function Wave Theory 

a -- 1 
#z ORDCR eri-rxcAh% r-, )tjc-rto, ý 

ým "- m. X(n) 

3(A 
=- -ý ca 

pl, = n1-x(-) 

To find the fluid induced 

inertia moment at any section, 

say we can 

write 

(2.2.20) 

DECK 
wAvC 

MWL ri 

-it 

17 me rý o (2.2.2 1)' 

J4 

1e 
ae 

Substituting for from 

(2.2.16) into (2.2.13) and for 
S-FL into (2.2.21) we have 

L9 

a 

tie 7 

, U, Ln (, kx -c3t)] - e 
0-ýe aý 

(2.2.22) 

Equation (2.2.22) can be evaluated at the instantaneous tower 
position by letting 

; (. (4+)e 
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Substituting for x into (2.2.22) and letting 

(2.2.23) 

Equation (2.2.22) can then be written 

N 
1m 

/0 Trlý zn (2.2.24) 

Integrating (2.2.23) triply by parts gives 

Z a-&Z 
(3) 

(2.2.25) 
r% 0% 'n k 

where 

OL Q 
(2.2.26) 

04 -k (dt? (2.2.27) 

9 (2.2.28) 

CL eZ (2.2.29) r% wt h 

CL (2.2.30) 
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'Eý = n. ± 
(d 4- ýe ) a (2.2.31) 

An 
= 11 

[-ý 
(. f, +%)9-w tj (2.2.32) 

JL) 
(2.2.33) a. & 7- r, 

dzj (0( ). Co-., (i. )-m (2.2.34) 
nk 

+ CL 0- Z- i- zý, 
' v% VN A ri -k 

(2.2.35) 

(7) 

=a Q C, 4 (2.2.36) 

Substituting equations (2.2.26 - 2.2.36) into (2.2.25) and 
neglecting 9z terms for small angles we have 

-n- 
Z- CL Z 

(4) 
1- OL 0z 

(6) (7) 
(2.2.37) 

Note. In the above equations I is calculated at 
instantaneous position of tower hence 

Now total fluid induced moment at e can be written as 

ml 
(2.2.38) 

where 

.DI 
(2.2.39) 
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Similarly fluid induced shear force at e can be expressed 
as 

Fe +Fp (2.2.40) 
e 

where from (2.2.16) 

It41 (2.2.41) 
re = cm flo 

Tr. D I Bt, > P', 
f 

cl; 14 '24 (CL4). 

and 
I Jý 

2 
(2.2.42) 

Integrating (2.2.41) by parts gives 

2.0 - 
C 11) f>,, 57 P (2.2.43) Fe 

4 

where neglecting & terms we have 

L =L a iP L (2), 
m Pi (2.2.44) 

(2.2.45) 

/ (Z) a c, >/. (.. <, ). a, ( ý. )- CÄ ( e. )- (ý> (ý (2.2.46) 
m=7 

Equations (2-2-24) and (2.2.43) give moments and forces at 

depth ý-=ý 
e 

below MWL. To evaluate the moment about the 
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pivot, i. e. KI and M. 
D 

fA 

and 

Evaluating (2.2.47) we get 

in (2.2.7) we can write 

/0 
IT-D P', 

.F crn 
-ý 

31 

where 

= r- 
(0- aF (Z) 

-t OL& za 

m-k ' rl 
i 

t 
(yn 

7T- 

n t -k 

(2.2.47) 

(2.2.48) 

(2.2.49) 

(2.2.50) 

(2.2.51) 

(2.2.52) 

(2.2.53) 

F (3) 0, cn, (no t 
(2.2.54) 

cn, (2.2.55) 
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2.2.3 Distribution of Shear Force 'and Bending Moment 

The total forces on the structure are shown below. 

Neglecting potential damping total shear force at e is 

(/, -xt )2 
.. # I 

:P 

e, r 

t 
M6 t M. 

19 

(2.2.56) 

MW 

ý- II -Ir 
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where buoyancy force on element given by 

SIF (2.2.57) 

Substituting for rF in (2.2.56) and integrating we get 

ep -f m1(i) '+ L]+ -( -(, p 

I'l., [ (ý -ý) -ft +iz-IIz e 

Z. Z, 
li 

+ 

(2.2.58) 

Note 

if e then expressions involving rAt 

in (2.2.58) are set to zero, and if I <4 then 

expressions related to fluid loading are neglected. These 

also apply to expression for bending moment given by the 

following. 

Total bending moment at e, 

eep 
jp 

2q 

0-Ir 
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( le-ii )2 
g"Fß 6, (ý -ýe ) jý + 

- it) 

(2.2.59) 

Integrating (2.2.59) we have 
)3 

3 

pt 
All 

3 

++- xt o 
406--Idp-j 

PIP 
14 

(2.2.60) 

2.2.4 Dynamic Stability 

In this section we consider the possibility of Mathieu 

type instabilities of an articulated column under periodic 

wave forces. For large diameter columns which are inertia 

dominated equation (2.2.7) can be written as 

t4 (2.2.61) 



- 36 - 

Neglecting surface elevation (2.2.8) gives 

It 
P3 

3trpz 
(2.2.62) 3 

6 

and (2.2.9) becomes 

&, az 
yr bz 

(2.2.63) 

/11 is calculated from (2.2.49) in which for Stokes 

Fifth Order or Stream Function wave theories equations 
(2.2.50*- 2.2.55) give 

T- =/, PI Ak (. (-Ut & -, >t) I- 

c,, ý -k (d-. it (.,, j t )] 

16' (r4d) P- 1. jt)] 
n -k 

&, 4 (n P 

(2.2.64) 

For small angles 

, 
2, [. (-h Jt # -,, it )] ::! -k, /j & 

(2.2.65) 

C,.,:, [,, ( ý-fl #- oc )3 ci G, (Kot) nýjf 0&, (-OQ 
(2.2.66) 
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Thus equation (2.2.64) becomes 

't 
(nw-t) (, k a) + '- 

[-. P 

( ,4(, ld) - L- " [nk (J-ft )IJ 
nh 

(2.2.67) 

Substituting (2.2.67) in (2.2.49) we have 

kh 
ri--1 , 

01 
(2.2.68) 

which contains a time varying stiffness term which can 

give rise to Mathieu instabilities. In Stokes Fifth Order 

and Stream Function wave theories 

+ 
P, /' -; - -''*8' (n-k ý1 

(2.2.69) 

t8p 
cm (n -k d) + G. -4 (. 4 d) 

th 

(2.2.70) 

Substituting (2.2.68) into (2.2.61) and rearranging we have 

a linear equation with the time varying stiffness 
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Al 

+ Cb-t Ik 

h 

Assuming that the solution to (2.2.71) consists of transient 

and steady state components we consider the stability of 

tj 

n 
co-ý- ( ,, J t)Ia=o 

(2.2.72) 

A solution is then assumed to consist of product of a 

characteristic component and a periodic function (Floquet's 

theory, Ref. ( 5 )). The periodic function is expanded 
into a Fourier series form and the solution is written as 

>t L1 00 [, £ &., (rCat tZ +2 "% rn (2.2.73) 

1 

M=% 

il 

where x 
J, 

II %M and ý-. are constants. 
Thus the stability of system depends upon the 

parameter A which can be determined using a method 

given by Takahashi ( to ) in which an eigenvalue problem is 

fokmulated and use is made of Bolotin's harmonic balance 

method ( 5' ) in which coef f icients of Cft (-Nwi) and JAý (rnot) 

are equated to form the equations in the unknowns -x, 

and I From (2.2.73) we get 
'00 

b., ýt 1- ý, x Aý, (ynjt) +ý C'.., (VOi) + L tz M=1 

co Zmca 
1 

(2.2.74) 
Mýj 
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and 

zýl 5- rn L) ( rt (VnLjt) -1 
VA 

"I; - 

M=j 

4co 

ynzl 
(2.2.75) 

Substituting (2.2.73 - 2.2.75) into (2.2.72) and 
truncating the Fourier series to M terms, we have 

m 
LmL 

MIR 

V% 
Y-(M4 (, 

x 

rA=% 

j 

K 

i ý. + 2- > 
m=j )i 

tA 

,xC., C 
. 

ý; 7 
m -S; - (mj t) +ý )j +k+t 

YA=% 
tA 

IT ý7 +A- (M-n)wt + 
YA 

2. ý! - (2.2.76) "I 
In order to be able to use the harmonic balance method we 
write the double series 
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r4 K 

m 
7. 

j4, (, nJt) 
>e (rA 

- rt 
)k -x 

5- knx 
MfP% 

ft ý1 
pl. t4-m 

j 

.Y 
rok m >, 0 

(2.2.77) 

where `ý- is the sign of (m-n) 

Also 

nZI 
WN -: ý m V%ý. M-m, rak 

(2.2.78) 

Note that it is assumed that the Fourier series consist of 

at least N frequency components, i. e. M>7,0 

Now applying the harmonic balance method yields the 
following homogeneous equations: 

Coefficients of constant term: 

9 

(IJ + r- At k. k,, (2.2.79) 

n=j 
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Coefficients of C-, ->(-, Jt) : 

-L )ý ý 
rv, + -L ý -t mo- 'X, Mj 

"ý I" -- I 

0- rA 

m 

(2.2.80) 

Coef f icients of J; 
- (rnrit) : 

rn - 
7- ýým 

rn -ý cý, x� - 
r_ ým xr" -t 

ri 

i7ý, (m-#I) ký -x + 
tj 

(2.2.81) 

Equations (2.2.79 - 2.2.81) form (2M+l) homogeneous equations 

which can be written in matrix form as 

ý-, ý- [I, ] , fz j=ý oj 
(2.2.82) 

where T Lj is a diagonal matrix of size (2m+l)x(2M+l) 

with diagonal elements equal to I. 
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and 

ýzj 
im 
X, IXL 

L mj 
and tOý is a null vector. 

Equation (2.2.82) can be written as 

[, 
-I 

t7-j 
= -ý 

ýIxj tZ. 1 
-ý 

[it] tz 

Taking 

ý lzj = jwj 
-1 

and multiplying (2.2.84) by 17. J 
we have 

(2.2.83) 

(2.2.84) 

(2.2.85) 

(2.2.86) 

Equation (2.2.86) can be written in the form 
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izi 

=A 

lzj 

(2.2.87) 

Note: ýItjl is a diagonal matrix with elements 
and to] is a null matrix. [1*3 is the unit matrix. 

Equation (2.2.87) suggests that A is the 

eigenvalue of the real and unsymmetric 2(2M+l)x2(2M+l) 

matrix on the left hand side and consists of pairs of 
complex numbers. If the real part of is 

positive then solution in (2.2.73) is unbounded as t-v vo 
and system'is unstable. If real part of Aý is negative 
or zero then solution is bounded and system is stable. 

Using Stokes fifth order wave theory and truncating 

the Fourier series in (2.2.73) at the fifth component, i. e. 
M=N=5, elements of the 22 x 22 matrix on left hand side 
of (2.2.87), matrix L-D3 , can be written as 

-DI? 
iI 

13 . ..... 

ID = ý.. 
T 's = -1) = ýD - 'D -D- Jl> 't =. bl., 

11 - D,, 
to. - k, / 7.1 13 1 16 4 It 4- 11 S-, zo to 21 

-Dls 2. ,( to' - k. / i. - 
k1li i) 

. DI'S 3=ý, t -L =-( kj f 'ý )/ I 
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_D %i Ir , _Dr z- (ký k )lz i 

A-3 
tI= -bt It -ý, t '7 = -k4 

/ZI 

-pl 3 -7 
c 

-D 13 "D, -D, 3 
/z, 

74 li 

SIt. 
I% j< koll k, /t 

(, k, 

z 14 Vk'ý 
AS- c cj/ 

to, J) 
-D4 Jols 

5-c 
17 'D'7 10 0 

Is c -Dig 7 
/7, t7= (jkj - k. 

-ý% -ý, 
(ký- kz, , -DIV k3 V 2"L 'p 't> Z, l -7 IF 3 

2Ck. 5 - 
k, )/Z"x 

ick 

-DI, c 

-PLI 4CO/ I j)Lj 9L) 

.D 

-D 
k 

. 
DzL jo f. ) 

AWD Tot RcsT oF J> tj 
AA5 COOL -ro ZCRO. 
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2.3 NUMERICAL DATA 

The following wave data are used: 

(11 
25.2m, d= 100m, T= 11.3 sec 

giving 

(H/d) = 0.25, (41 L 41g ) = 3.15 

Stream Function coefficients It, ) are 

X(1)/H. T. g =-0.1312 14 X I; x(2)/H. T. g. 
X(3)/H. T. g =-v. 11 3 94-14 x 1; 7. X(4)/H. T. g. =-o. iMill )00 

X(5)/H. T. g X(6)/H. T. g. -0.9Z3671 jr 10 - 13 

X(7)/H. T. g -9. jqkj6j; (j; '4' 

Phase Angle 
(deg) 0 10 20 30 50 75 100 130 180 

( 2/, H )10. c 11 o-5V6 0.51t 0. ý, 34 0-143 g. ozý7 -0.157 -0.311 -0.39 

(H/Breaking height) H/Hjs= 0.75 

Wave length/( LTý 17.511 
Ur 

Note that phase angle refers to term in Appendix A. 

(2) 

H 22m, d 70.5m, T 15 sec. 

(H/d)= 0.31,1.26 

X(1)/H. T. g =-0.374631x"ý' X(2)/H. T. g 
3 

X(3)/H. T. g =-0.12.4946)(10 X(4)/H. T. g =-0A612-7%j,,,: r7 

X(5)/H. T. g =-0-2-10160$16*1 
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Phase Angle 

(deg) 

01H ) 

0 10 20 30 50 75 100 130 180 

0.5713 0. Y7(. o-S27 0.4.573 0.170 0.039 _V. Isz - 0.3 4,7 --407 

(H/H[)= 0.5, 

H= 18.76m, d= 40m, T= 11.31 sec 

(H/d) = 0.47, (""/2) = 1.26 

X(1)/H. T. g =-, -39q'772x/; 
'., 

X(2)/H. T. 9 = -0-11109'7xic72 
X(3)/H. T. g =-O. Mo37y1ý4. p X(4)/H. T. g =-O-3IIoIyIO-6' 

X (5) /H. T. g 1; 
7.., 

0.5 1.7, X(6)/H. T. g =-c'-3T7144)cIO 

X (7) /H. T. g V 16-4 

Phase Angle 

(deg) 

10 

10 20 30 50 75 100 130 180 

o-653 0.616 O-S21 0.41.0 0. Zcp 7 -0.010 0.165, -0.3t,, 7 

(H/H) = 0.75, 
b 

(4) 

12.8m, d= 100m, T=8 sec 

(H/d) = 0.128, (40 7 J/t) = 6.7-9 

-3 
X (1) /H. T. g v. S'j 49ZZ x 10 X (2) /H. T. g 0.06 x ICT 

x (3) /H. T. g 
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Phase Angle 

(deg) 

1H ) 

0 10 20 30 50 75 loo 130 180 

0.601 V. SIS7 0.527.0.434 0.2-ýr 0.026,0. Itoq -0-330 0. Iq I 

(H/H) = 0.75,1.13 2 913 

(S) 

21.3m, d= 250m, T= 12.65 sec 

(H/d) = 0.085,6.29 

-3 X(1)/H. T. g =-O. (+. 33331)(10 ý- X (2) /H. T. g= 

X (3) /H. T. gpX (4) /H. T. g=-0.33 IV% xI 

Phase Angle 
(deg) 0 10 20 30 50 75 loo 130 180 

(11H) o. S6i v. 55ý, 0.513 o. 4-50 a. zoi 0-092 -0-137 -0.35Z -0 1+31 

(H/H I=0.5, (LIL. ) 
. 5) 

Articulated Towers 

= 1.06ýrzjý 

Two cases are considered, particulars of which are 
given below. 

H 0( T MID M5 ML rn, D fp Jt ý 
.1 i 11 At 

too 11.3 106 
. qa, 5.0so'. 

10 111 14 ZO 1-00 0.031 
1 1006 10 

20 25,0 12.45' 
3-4)9 ss 

4 
6.3s 

" 
IAIX 

f 30 290 7,4v too 1.05 vaco 1, to lo 
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Drag and inertia coefficients are given in Section 2.4 with 
the results. Bending moments and shear forces are 

calculated at 35 stations along the tower as shown below. 

The current profile can be taken as 

I 
+ a/d)7 Itý 150 

where 'Vt = tidal contribution, VW 

(zero below 50m from MWL) 
DECK C-C%- r--j SIATIed 0 

11 5TATioNS 
A-T Zvn C/C. 

GLEMCOT 3 
13c-, Twfcfj 
eviRy rklo 
STATior4s 

t, %WL 

FLUlb 
LoAWA4 
MODEI- 

(- ýt- ) Ylt 

4 
jt 

BASE -Tourr 

© 
-""- L, CILCMEOTS 

0 

= wind induced 

STATIoNS 18 TO ZJ 
Al (A: C/C. 

I cumcj-u SC-TýI(C-J 'C'I(RY -Tý, JG STArlopis 

- 
GD 

ro 21 
.5 TAT I od S 13 
AT(A-14) - CIC, 

z it. 
4 16'cmEJIOI "46"l -r'j* l'rA"r"5 

S-rA'TterJS Z'l To 3S 
A-T -I c/c 

16 
8f-rWCCIJ f"16021 -rwo S-rAri 0J5 

/7-21% 

4armojTs 

4 CLfmcl'T3 



- 49 - 

2.4 Results 
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Wave length predicted by Stream Function theory 

TABLE 2.9. Dimensionless Properties of Wave Cases Considered 
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2.5 DISCUSSION 
(a) Comparison of Wave Forces and Wave Theories 

The wave data selected in Section 2.3 were chosen from 
some typical fifty year storm conditions in the North Sea 
given by BS 6235 (7). Two computer programs, S5 and CN5, 
were developed to give fifth order Stokes and fifth order 
Cnoidal wave coefficients respectively. In program S5, due 
to the large values of sinh and cosh terms, use was made of 
a quadruple precision facility on a VAX 11/782 computer. 
The two parameters N and (40t) given by equations 
(A. 2.29) and (A. 2.30) in Appendix A were calculated correct 
to twelve decimal places in each case. Convergence was 
rapid and in most cases five or six iterations were sufficient 
to give the required accuracy. A modified version of program 
S5 was used to give the wave coefficients for a variety of 
conditions and results are presented graphically in Appendix 
A, together with tables of non-dimensional wave number(ým/)- 
In program CN5 parameter m (see equation A. 4.47 of Appendix 
A) is found using the method of bisection and is calculated 
accurate up to fifteen decimal places. Elliptic functions 

given by equations (A. 4.57 - A. 4.65) are calculated such 
that summation terms involved converge to an accuracy of 
fifteen decimal places. Accuracy in both programs were 

extended to twenty decimal places to check the values of wave 

coefficients but this made no contribution to the results. 
Stream Function wave coefficients were taken from Ref. ( 16 

one of the disadvantages of the Stream Function method is 

that an explicit expression for surface elevation is not 

readily available (wave elevation is found numerically at 

points along the wave length, see Appendix A) and non- 
dimensional values for the surface elevation, at sixteen 

points along the wave length, given by Dean had to be used. 

When integration of loads were carried out up to the 

instantaneous level of surface elevation the intermediate 

values for wave elevation were calculated by interpolation 

using the subroutine E 01 AAF ( 65' ) which interpolates from 
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a table of function values using Aitken's technique of 
successive linear interpolations (see Ref. ( 2r )). 

Selection of drag and inertia coefficients was based 
on the results of experiments of Sarpkaya ( 76 ) who gives 

C. D and Cvn values for cylinders in steady and 
harmonically oscillating flows as function of Reynold's and 
Reulegan-Carpenter numbers (see Fig. ci, cz Appendix C). 
These experiments have been carried out in a U-shaped 
vertical water tunnel and the drag and inertia coefficients 
evaluated through the use of Fourier-averaging technique 
(see Ref. ( 7Y ), pp. 89-92). In the analysis it has been 

assumed that for cases considered the use of a particular 
wave theory does not affect the choice of values of CD 

and CM . Tables-2.1 - 2.8 show values of Reynold's number, 

, Re= V. AV-7 , and Keulegan-Carpenter number, kr = 
1/.,. -r 

(where Offi is taken as the maximum fluid parti cle 
:D 

velocity normal to the cylinder and ? is the 
kinematic viscosity of fluid taken as /-. Tx/J6 -i'Is for sea 
water), calculated for the fixed cylindrical members studied 
here. It can be seen that due to the high values of Re 

(>79 103') C 
: 1, and cr, remain the same values 

for all cases considered here. Bishop's results (*) 
from the second Christchurch Bay tower agree well with 
Sarpkayals results for CD and Cm in oscillating flow 

and show that force coefficients do not vary with Re over 
the range of conditions tested (Re = ZxlOr to LX10 6 ). it 

is expected that as Re is increased still further the position 

of flow transition (from linear to turbulent) behind the 

cylinder becomes insensitive to changes in Re and therefore 

at higher Re, in the order of j0*7 as encountered here, 

the wake width and force coefficients are likely to remain 

constant, however additional expek. iments, 
_although 

difficult 

to perform, are needed to evaluate the coefficients at such 
high Reynold's numbers. 

In table 2.7 Re becomes small at very large depths 

which can result in a different set of values for C. D and 
CM but due to the exponential decay of fluid particle 
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velocities and accelerations with depth the dr 
, 
ag and 

inertia forces at these depths are very small. in this 
case at a depth of 70m velocities and accelerations are 
about 2% of those at the mean water level resulting in 
almost zero contribution to drag force and negligible 
effect on overall fluid inertia loading. 

A great deal of uncertainty still exists when estimating 
values of drag and inertia coefficients. The flow conditions 
in the real ocean environment can significantly differ from 
the idealized steady, harmonically oscillating or wavy 
flows simulated under laboratory conditions. Measurements 
in the ocean environment can be very costly and accurate 
results are not easy to obtain or interpret. The inter- 

action of waves and ocean currents gives rise to an even 
more complex flow around the structure. There is very 
little information available on the effect of wave-current 
interaction on the hydrodynamic loading of offshore 
structures and much investigation remains to be carried out 
to assess the accuracy of conventional methods of vectorially 
superposing wave and current velocity profiles in Morison's 

equation. Also orbital motion of fluid particles can result 
in a different set of CZ and Cm values for 
horizontal members in comparison to vertical cylinders. 
Experimental results of Maull and Norman ( SS ) with 
horizontal cylinders in a wave tank, Koterayama ( 41 ) and 
Ramberg and Niedzwecki (U) have all been carried out at 
low Re and Kc values not applicable here and experiments at 

much higher Reynold's and Keulegan-Carpenter numbers fieed to 

be carried out. 
Figures 2.3 - 2.18 show predictions of hydrodynamic 

loading on a fixed horizontal, cylinder using various wave 
theories. The suitability of one wave theory over another 
for use in a particular engineering situation is not easy 
to assess. It can depend upon the environmental characteristics 

under consideration as well as the ease with which the wave 
kinematics can be estimated to the required accuracy. In 

addition, comparison of wave theories based on theoretical 

grounds may not necessarily reflect the conclusions which 
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might be drawn from experimental investigations carried out 
in the laboratory or in the ocean. Unfortunately accurate 
experimental results for particle velocities and accelerations 
under extreme design conditions and comparisons with wave 
theories are not available and some of the published 
results may be subject to instrumentation errors. For 

example experiments of Le Mehaute et al 56 ) have been 

criticized by other authors (see Ref. ( 1Z and ( 16 )) for 
bad use of apparatus and Chakrabarti (I) has attributed 
the reason for poor correlation between his wave tank results 
for fluid particle velocities and analytical results of 
Stream Function theory partly to the measuring instrument 

that he employed. Clearly then more accurate and extensive 

measurement programs are necessary in order to assess the 

suitability of wave theories for prediction of wave kine- 

matics and fluid loading on offshore structures. In the 

absence of adequate experimental data the theoretical 

comparisons of wave theories by Dean ( 17 ), based on the 

degree to which various wave theories satisfy the free- 

surface boundary conditions, and the range of suitability for 

various wave theories as suggested by Le Mehaute 55 ) 

together with site measurements of Hudspeth et al (38 and 

Ohmart'and Gratz ( 66 ) indicate that the Stream Function 

wave theory can give accurate results for the intermediate 

and deep water conditions. 
Loadings for fixed cklinders were calculated at one 

d6gree intervals in the phase plane. For the cases 

considered predictions of Stream Function and Stokes fifth 

order wave theories, despite the use of two different 

techniques in their development, one perturbation and the 

other error minimization in the free surface boundary 

conditions, are in good agreement. Results of field measure- 

ments by Ohmart and Gratz taken during two storms, Edith 

and Delia, in the Gulf of Mexico also indicate that Stokes 

fifth orderand Stream Function wave theories would yield 

identical results. Since in the development of Stokes 

fifth order theory the higher order terms in the expressions 

for wave kinematics are found using a perturbation method, 
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for accurate results the successive terms in the derived 

expressions must be of an order smaller than their lower 
harmonic counterparts. Referring to equation (A. 2.4) in 
Appendix A the ratio of first two successive terms can be 

written as 7-= I'-Bjj, /X 12' ý 406" 3 (, W) where A 

is a parameter found numerically, and therefore results are 

valid when this ratio becomes small. Noting that for 

shallow water (Ad ) or 34: ýA(-Ad)--9-oand using the first 

order approximation in equation (A. 2.4), 
L13 

where L is the wave length, we have 70= L 

where the term in square brackets is better known as the 

Ursell parameter. This shows that theoretically, results 

of Stokes fifth order wave theory can become inaccurate for 

long waves in shallow waters except for very small wave 
heights. The highest value of for the cases 

considered in this thesis was found to be 4.9 by the 

predictions of Stream Function or Stokes fifth order theories 

and 4.5 using predictions of fifth order cnoidal theory 

(indicating a 9% difference in the estimated value of wave 
lengths) corresponding to a wave height H= 18.76m, period 
T= 11.3 sec and water depth d= 40 metres. For this value 

of (. 6-) or lower wave length/water depth ratios, i. e. 

all cases considered here, the wave tahk results of Iwagaki 

and Sakai ( 41 ) and Le Mehaute et al, as concluded by 

Fenton ( 23 ), suggest that stokes f if th order theory is 

more suitable when -L <9 and fifth order Cnoidal theory 

can be used otherwise. These agree wdll with recommendations 

of Laitone on the limiting conditions for Cnoidal and 

Stokes waves. Therefore it seems that for the wave cases 

considered in this chapter the results of Cnoidal wave 

theory are not accurate. 
Figures 2.3 and 2.4 show the horizontal components of 

fluid induced drag and inertia forces acting on a horizontal 

cylinder fixed at two various levels in the sea. The ratio 
(-L) in this case is approximately 4.6 and prediction 

Ot 
of fifth order Cnoidal theory for the maximum drag force at 

a depth 15m below the mean water level gives an-under- 



- 105 - 

estimation of about 14% as compared to the results given by 
Stream Function and Stokes fifth, For maximum inertia 
force the underprediction is even higher and exceeds a value 
of 26%. Compared to Stream Function and Stokes fifth in this 
case the linear (Airy) theory underestimates the maximum 
horizontal drag force by less than 4%, the maximum resultant 
force by more than 5% and overpredicts the maximum value of 
horizontal inertia force by about 3%. As the waves become 
steeper and in shallower waters predictions of the Airy 
theory can become less accurate. As shown in Figures 2.16- 
2.18 for a wave steepness of 0.11, corresponding to H= 25.2m, 
T= 11.3 sec and d= 100m, at a depth 15m below MWL the 
Airy theory gives much higher values for fluid loading on the 
cylinder as compared to the results of Stream Function and 
Stokes fifth order wave theories. The differences were found 
to be approximately 13.5% for maximum horizontal drag and 
10% for maximum horizontal inertia forces. Note that these 
values correspond to a relative depth and that 
at a larger depth differences become smaller. 
This is mainly due to the fact that the contributions of 
higher harmonics become rapidly small at large depths below 
MWL (see equations 2.2.15 and 2.2.16). Referring to 
Figure 2.13 it can be seen that the difference between 

predictions of Airy and higher order theories for maximum 
drag force acting at a relative depth of 0.1 is about 10% 

while at differences are almost zero. 
Figure 2.15 shows the resultant drag + inertia force on 

a horizontal cylinder in deep water ( 4dt, S--6 by Stream 
Function and Stokes fifth order theories). In this case 

" (-/Z J) d ck ý-) --e Y, e; 
4'ý 

and when using linear 

wave theory the terms for (horizontal and vertical forces) Z 

as in equation (2.1.10) yield sine and cosine terms which 
cancel out giving an almost constant resultant force at each 
depth. It can be seen that in this case the Airy theory in 

comparison to higher order theories overestimates the 

resultant force by more than 5% at a depth 10m below MWL. 
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Figurea 2.8 - 2.12 show the results when the Ursell 
parameter tr 

,q= 11.3 As mentioned earlier at high 
values of UA predictions by Stokes fifth can become 
inaccurate and it can be seen that deviations from the 
results of Stream Function theory are significant. In 
Figure 2.8 at relative depths of 0.25 and 0.5 predictions 
by Stokes fifth for maximum horizontal drag force is 
about 5% higher than the results obtained by Stream 
Function. However differences are less for maximum 
horizontal inertia and re§ultant forces as shown in 
Figures 2.9 and 2.10. 

The inclusion of convective acceleration terms in the 
expression for inertia force in Morison's formula was 
investigated for the cases mentioned above using Stream 
Function and Stokes fifth order theories. It was found 
that for two cases with trAzv-15' and 1-25 (see table 2.9) 
the convective acceleration terms made virtually no 
contribution to the values of horizontal inertia and 
resultant forces acting on the horizontal cylinder. Also 
for the case with Zr, =6-5* inclusion of these nonlinear 
terms reduced the maximum horizontal inertia force for 
both 'Y,, --Ir- and -30 m by only 2% as shown in Figure 2.6, 
and the ma: kimum resultant force -was reduced by an even 
smaller amount. For a more extreme case with UýR%11-3 

, as 
shown in figures 2.11 and 2.12, neglecting convective 
acceleration terms resulted in higher, although not more 
than 5%, values for the maximum forces. Therefore for the 
cases considered it is shown that convective acceleration 
terms in the Morison's equation have little effect on the 

values of maximum fluid induced inertia and resultant forces 

acting on a fixed horizontal cylinder, however for highly 

nonlinear waves with large Ursell parameters ( UA >11 such 
effects can become significant. 

Apart from the estimation of maximum wave loads on 
structural members, determination of the stress ranges 
that structural elements may undergo becomes important in 
design. In the deterministic approach to fatigue damage 

calculations it is usually assumed that the equation 
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characterizing the fatigue behhviour under constant 
amplitude loading includes the stress range raised to a 
power, say-q, taken from S-N curves (see for example 
ref. ( 33 ) pp. 269-273). For the types of welded steel 
joints typically used offshore BS 6235 gives average values 
of 3 and 3.5 for the parameter q, and therefore errors in 

estimating stress ranges can significantly affect the 
calculations involved in assessment of fatigue damage. 
For example if q=3 and the stress range is underpredicted 
by 5% then using Miner's rule the contribution of that 

particular wave component to fatigue damage would be under- 
estimated by nearly 16%. For the fixed horizontal cylinders 
studied the Airy theory invariably overpredicted the force 

range compared to the results by Stokes fifth and Stream 
Function. In the worst case (see figure 2.8) the differences 
for estimation of the range in horizontal drag force 

exceeded 26%. Assuming a linear relationship between force 

and stress, this alone can result in more than 100% error 
in the estimated contribution to fatigue damage by this 

wave component. For the same case the differences between 

predictions by Stream Function and Stokes fifth are about 
22% in this respect. Figures 2.6,2.7,2.11 and 2.12 show 
the effect of including the convective acceleration terms 
in Morison's equation on the calculated force range. In 

figure 2.12 at Icz-1011 the range is about 8% less when 
the total acceleration of the fluid is considered indicating 

that although in some cases convective terms have little 

influence on values of maximum loads their effect on values 

of stress range can become significant. However it must be 

pointed out that the overall: effect of such errors in the 

calculation of fatigue damage is not easy to assess and 
depends on the particular long term wave histogram, i. e. 
the number of waves. Also it is emphasised that although 

Airy theory may often overpredict the stress range, when 

the fundamental frequency of the structure lies close to a 

multiple of the exciting frequency then the higher wave 
harmonics may cause resonant vibrations which in turn may 
lead to even higher stress levels not predicted by the Airy 

theory. 
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Figures 2.19 - 2.28 show the hydrodynamic loading on a 
3m diameter fixed vertical cylinder. These results, 
showing the shear forces and bending moments at the base, 
can give an indication of the differences in predicting 
fluid loading on vertical legs and piled foundations of 
a fixed offshore platform using various wave theories. 
Again results of Stream Function and Stokes fifth show good 
agreement and for the cases studied the differences in 
estimating maximum loads were less than 4%. Integration of 
drag force terms along the cylinder was carried out 
numerically using Simpson's rule. For all cases and when 
integration of loads were carried out up to the MVIL only, 
the results of Airy theory for maximum fluid induced base 
shear force were in good agreement with predictions of 
Stream Function and Stokes fifth with differences less than 
6%. For values of maximum bending moment differences were 
slightly higher and for the worst case (see figure 2.22) 
there was an underprediction of about 7.5% by the Airy 
theory. Differences between the results of 'stretched' Airy 
theory and other methods were found toýbe high when 
integration of loads were extended to the surface elevation. 
In &11 cases results of 'stretched' Airy method were lower 
than those predicted by Stream Function and Stokes fifth. 
For the maximum shear force these underpredictions varied 
from 7% (figure 2.26) to more than 34% (figure 2.23). For 

maximum bending moments the corresponding differences are 
even larger and range from 12% up to about 67%. Extension 

of load integrations to the level of the wave elevation had 

a marked effect on all results. For example referring to 
figures 2.27 and 2.28 we can see that when loads are 
calculated up to the free surface level predictions by 
Stream Function theory for maximum shear force increase by 

more than 43% and the value of maximum bending moment is 

almost 80% higher. Similarly for the worst case, as shown 
in figures 2.22 and 2.23, results of Stream Function theory 
differ by almost 50% for maximum shear force and 100% for 

value of maximum bending moment. Note that in this case 
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the wave height is almost half the water depth (t-= o-47 
Ct resulting in such high differences when integrations are 

extended to the surface elevation. If results, of Airy 
theory (calculations up to MWL) and Stream Function theory 
(integrations up to wave elevation) are compared for this 
case the difference in prediction of, maximum, shear force is 
about 52% and for maximum bending moment reaches a value 
of 132%. It is pointed out that the accuracy of nonlinear 
wave theories for particle velocities and accelerations 
under wave crests and troughs is not exactly known. on a 
theoretical basis Chaplin and Anastasiou ( It ) compared 
the predictions of Stream Function and Stokes fifth order 
theories for horizontal velocity and vertical acceleration 
at the crest level of the steepest wave in deep water to 
values of wave celerity and (-1ý)respectively since, as 
suggested by Stokes ( 71 ), a suitable criterion for the 
highest wave is that the crest particle velocity reaches 
wave celerity and any further increase in height i. e. 
increase in particle velocity will cause the crest to spill 
or topple. Their comparisons show that both wave theories 
underestimate the crest horizontal velocity and vertical 
acceleration. However the errors diminish rapidly away 
from the surface. In contrast Gudmestad and Connor ( 31 
with reference to experimental results of Nath and Kobune 
( 63 ) and Delft Hydraulics Laboratory (113 ) suggest that 

Airy, Stream Function and Stokes higher order wave theories 

overpredict the values of horizontal crest velocities and 
underestimate the corresponding values under wave troughs 
in deep water. Clearly more experimental data using 
accurate measurement techniques are required to establish 
the validity of predictions of nonlinear wave theories for 

particle velocities and accelerations near the free surface 
zone. Large differences found in estimated values of 
maximum shear force and bending moments here show that the 
important effect of variable submergence cannot be ignored 

and it can be a major factor in offshore design. The 
importance of load range in connection with fatigue analysis 
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was mentioned earlier. Integration of loads up to the 
instantaneous level of wave elevation showed large increases 
in the values of load range. Comparing predictions of 
Stream Function theory in figures 2.22 and 2.23 the - 

difference between values of shear force range is about 
28% and that of base moment exceeds 52%. Integration of 
loads up to the surface elevation, as pointed out by Basu 

and Jain (3) can also lead to occurence of superharmonic 

resonant excitations at frequencies equal to multiples of 
the wave frequency which in turn induce higher stress 
levels and more fatigue damage. 

Figures 2.21 and 2.24 show the effect of convective 

accelerations terms on fluid l6ading on a vertical cylinder 

when loads are integrated up to the free surface level. 

For the worst case (figure 2.24) studied inclusion of total 

acceleration terms in the fluid inertia force of Morison's 

equation reduced the maximum values of shear force and base 

moment by less than 6%. 

Articulated Column 

Figures 2.29 - 2.40 show the results of computer 

programs ALT1 and ALT2 for the articulated column. The 

equation of motion was solved in the time domain by 

calling the subroutine D02 BBF ( 69 ) which use6 a variable 

step - variable order Runge-Kutta-Merson algorithm for time 

integrations. In order to reduce the initial transient 

oscillations the wave height was gradually increased from 

zero at t=0 to its value H at t= 40 seconds. The 

simulation was then carried further until transients died 
C 

out. Damping ratios of lom and 30m diameter 

towers for cases considered were found to be 0.05 and 0.28 

respectively. The largest diffration parameter (tower 

diameter/wave length ratio, I/L ) for the cases 

considered was found to be 0.11. Since a value L= o-2 can L 
be taken as a limit above which diffraction effects become 

important (see for example Ref. ( 15 )) it was assumed that 

scattering of incident waves due to presence of structure 

is negligible. 
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Figure 2.29 shows the response of an articulated tower 
to a regular wave (with no current) using predictions of 
Airy, Stream Function and Stokes fifth order wave theories 
with loads integrated up to MWL only. This case represents 
a relatively low wave height in deep water conditions with 

1.1 a nd Ursell parameter UR,: eO-1 and as can 
be seen there is good agreement between results of Airy and 
nonlinear theories considered here. Note that where it is 
suggested that loads are integrated up to MWL, the effect of 
variable submergence on the restoring buoyancy moment and 
added inertia terms see equations 2.2.8 and 2.2.9) have 
also been excluded. Figure 2.30 shows the steady state 
response when variable submergence effects are taken into 
account and loads are calculated at the instantaneous 
position of tower. Agreement between results of 'stretched, 
Airy, Stream Function and Stokes fifth order theories are 
within 2-4% however differences with predictions of linear 
wave theory are large. In this case 'stretching' of Airy 
theory increases the maximum response by about 28% and 
comparing results of Stream Function theor. ý in figures 2.29 
and 2.30 there is an increase of about 34% in the value of 
maximum steady state response. The increase appears in the 
form of a mean offset about the initial undisturbed position 
of the tower. Note that there is no current acting and that 
this offset is partly caused by calculation of loads at 
instantaneous location of tower since results of Airy theory 
(with integrations up to MWL only) show a similar trend. 

The reason for such offset can be attributed to additional 
terms with non-zero averages, which are introduced into the 

equation of motion when nonlinear effects are included. A 

perturbed solution to a single degree of freedom dynamical 

system with a time varying stiffness (see Hooft (35 )) also 
shows that such effects can give rise to oscillations at a 
zeroth multiple of exciting frequency. Comparing results of 
Airy theory in figures 2.29 and 2,30 we can see that for this 
case the mean offset increases the maximum response by more 
than 17% therefore although the maximum tower displacement 
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(about Sm at MWL) is less than 2% of the wave length (266m 
by prediction of Stokes fifth)l calculation of loads at 
the instantaneous position of the tower can have a 
significant influence on the maximum response. For 
D= 10m, as shown in figures 2.35 and 2.36, using Airy 
theory this offset implied an increase of about 20% in 
response while the maximum tower displacement at MWL is 
less than 4% of wave length. Comparing figures 2.35 and 
2.36 it can be seen that maximum response, as predicted by 
Stream Function theory, becomes more than 75% higher when 
nonlinear effects of variable submergenc e and tower 
position are taken into account. 

Figures 2.31 -. -. 2.34 show the distribution of extreme 
shear force and bending moments for D= 30m. Both maximum 
and minimum values at steady state have been plotted so 
that the range of force and moment are also given. In the 
analysis (section 2.2.3) it was assumed that loads due to 
potential damping are negligible. As shown by Eatock- 
Taylor et al ( 2-0 ) the radiated wave potential can be 

expressed in a series form having both trigonometric and 
hyperbolic depth, decay functions and it may be possible to 
derive the exact distribution of potential damping forces 

along the tower by some algebraic manipulation however since 
structures considered here are inertia dominated with 
frequency ratios (exciting frequency/natural frequency) 

exceeding a value of 6, potential damping can be 

ignored and the results for distribution of shear force and 
bending moment along the tower would not be affected. 

Referring to the results of Airy theory in figures 

2.31 - 2.34 it can be seen that for this case calculation of 
loads at the instantaneous location of the tower has little 

effect on the shear forces and bending moments. However 

effects of surface elevation are significant and 'stretched' 

Airy theory predicted more than 25% increase in the base 

shear force. Comparing results of Stream Function theory 

for maximum force at the base joint (figures 2.31 and 2.32) 

the difference is about 52% but maximum bending moments in 

the column (figures 2.33 and 2.34) differ by not more than 



- 113 - 

6.5%. Note that since inclusion of surface effects and 
calculation of loads at the instanteous position of the 
tower can influence response characteristics of the structure, 
loads acting at locations above the fluid regiont say'at 
deck C. G., can also be affected-FOr D= lom differences 

between predictions of Airy and nonlinear theories for 

loadings along the tower are large in. 'most cases. Even 

when integration of loads is carried up to MWL only 

maximum base shear force as predicted by Airy theory was 

underestimated by more than 10% in comparison to the results 

of Stream Function and Stokes fifth order theories 

(figure 2.37). The effect of calculating the loads at 
instantaneous position of tower on the results of Airy 

theory, as shown in figures 2.37 - 2.40, was to increase 

the values of base shear force and maximum bending moment 

by 13% and 8% respectivel y. Therefore in this case such 

effect alone has a noticeable influence on the loading of the 

tower. The effect of variable submergence and tower position 

on predictions of Stream Function theory for this case was 

found to be the increase in values of maximum shear force at 

base joint and maximum bending moment along the tower by 

amounts of 28% and 24% respectively. 

C. Dynamic Instability 

Results of computer program STA for dynamic stability 

analysis of towers are given 6n page 16 For calculation 

of the eigenvalues given by equation (2.2.87) subroutine 

F 02 kAF ( 65' ) was called which reduces a real unsymmetric 

matric to Hessenberg form and uses the QR algorithm (see 

Wilkinson and Reinsch ( 10 )) in the main program. k1though 

a 22 x 22 sparse matrix was under consideration the 

necessary reduction'to simpler form and calculation of 

eigenvalues for cases studied took only a few seconds on a 

VAX 11/782 computer. The method presented in section 2.2.4 

includes the effects of higher frequency components tp to 

the fifth harmonic and can also be extended to be used for 

doubly articulated columns or for stability analysis of 
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multidegree of freedom systems with similar time varying 
stiffness terms and linear damping. To assess the effect 
of nonlinear drag moment on the dynamic stability D= 10m 
was considered. The exciting frequency is twice the natural 
frequency of tower and as predicted by the eigenvalue 
analysis, with a damping ratio of 0.02 and no drag loading, 
the system is unstable which is verified by the time 
simulation shown in figure 2.41. Note that although the 
response shown in figure 2.41 does not grow with time this 
does not imply stability since the simulation model 
represented by the equation of motion for small displacements 

cannot accurately predict the response characteristics at 
such unstable conditions. Therefore the large angalar 
displacements exhibited by the system are sufficient 
indication of instability and an unacceptable design 

configuration and in figure 2.42 it is shown that when loads 

are calculated at the mean position of the tower such large 

motions are not predicted. 
Figure 2.43 shows the dynamic response when the effect 

of quadratic drag damping is included and loads are 
calculated at the instantaneous position of the tower. It 

can be seen that transient motions decay with time and the 

system becomes stable with maximum angular displacements of 
about ±10 degrees at steady state. Therefore quadratic 
drag damping can play a significant role in stabilising an 

articulated tower and time domain analysis remains the most 

reliable method of determining the behaviour of the system. 
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CHAPTER THREE 
DYNAMIC ANALYSIS OF DAMAGED SINGLE ANCHOR LEG STORAGE (SALS) 

SYSTEM 

3. o INTRODUCTION 
A physical description of this problem was given in 

Chapter One, in this Chapter a mathematical model is developed 

and equations of motion of the system are derived. It is 

assumed that large displacements may occur and the problem 
is solved in time domain 

3.1 MATHEMATICAL MODEL 
For development of the theoretical model, the initial 

configuration of the SALS in its undisturbed static 

equilibrium position is shown in Figure 3.1. The system is 

assumed to weather vane in the direction of wave propagation 

and under the action of coplanar wind, ocean currents and 

second order slow drift wave forces so that it takes up a 

new position in Figure 3.2, where YS = tanker static 

offset from its initial configuration. 
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FIG. 3.1. INITIAL CONFIGURATION-FIG. 3.2. STATIC OFFSET POSITION 
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The xjý- coordinate system in Figures 3.2 and 3.3 
is the reference for wave loading calculations and is figed 

amidships of the vessel with the origin 0 at M. W. L. 
Figure 3.3 shows the system under the action of waves when 
there is a reduction in riser tension caused by loss of 
buoyancy. -Z P (t) and ý, W denote horizontal and 
vertical high frequency motions of'the pivot respectively. 
In the analysis the vessel motion is assumed to be 
independent of the riser/buoy system and uncoupled from it. 
Thus the prescribed pivot motion Z P, %, due to vessel surge, PP 
heave and pitch act as constraints on the riser system. The 

articulated riser is assumed to consist of N- links 

and the generalised coordinates are chosen as the angles 9,., 

91 " 03 '----' &N etc., with clockwise rotations taken as 

positive. = angle between upper part of yoke 

structure and the vertical. 
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FIG. 3.3 SCHEMATIC OF DAMAGED SALS SYSTEM. 
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The dynamic analysis considers only tanker surge, heave 

and pitch motions and for the riser/yoke system large angular 
displacements may occur and thus hydrodynamic forces are 
calculated at the instantaneous position of the structure. 

The system has (9-1) degrees of freedom and horizontal 

and vertical distances between the pivot and riser bottom 

end impose two geometric constraints. The dynamic analysis 
is based on the following assumptions: 

1) Slow drift oscillations occur at much lower frequencies 

than high frequency motions due to first order wave 
forces. Thus the dynamic response can be evaluated 

with reference to a prescribed static offset position 

and the slowly varying pivot motions can be ignored. 

2) Friction in the riser connections and the elastic 
deformations are negligible 

3) The centre of gravity of the tanker is amidships, thus 

uncoupling heave and pitch motions. 

The ocean environment is represented by a single regular 

wave coplanar with a steady current profile. 

5) Fluid forces on the structure can be obtained from 

Morison's equation using linear wave theory. It is 

assumed that Froude-Krylov hypothesis holds and that 

diffraction and interference effects due to the presence 

of tanker are negligible. 

6) Wave inertia exciting forces on the small cross 

section of the riser links are negligible in comparison 

with the drag force. 

7) Wave forces on yoke bracing members are small in 

comparison to those on the buoy. 
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8) Potential damping forces on the riser and cylindrical 
buoy are small compared to those caused by nonlinear 
viscous effects 

9) Yoke and riser motions have negligible effect on tanker 

motions. 

10) Added mass and potential damping coefficients of the 

vessel are obtained using Grim's data (21 ) and (4S* 
based on strip theory. 

The equations of motion of the constrained riser/yoke 
system can be written by Lagrange's equation 

i (IT )- 'ýýT 
-ý, 

ýV 
=a -t. 

where 

Zý -7ýek 
fel 

; 2,0 

(3.1.1) 

7= total kinetic energy of system =-TL+T: ý 
TL = kinetic energy of riser links 

= T kinetic energy of yoke structur e 
Ir = increase in total potential ene rgy of 

system 
VL = increase in potential energy of links 

V, = increase in potential energy of yoke 
&k = generalised angluar coordinate of kth 

link 
Q = generalised force corresponding to 0. 

IL 

number of constraint equations 
Lagrange multipliers 

Equation (3.1.1) will be developed fully in the following 

sections. 
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3.2 ARTICULATED RISER 
3.2.1 Kinetic Energy of Links (StructuralY 

Taking an element as distance S from the 
lower joint, along the ith link as shown, we have 

Horizontal displacement of Z-1 
element from (3.2.1) 

. 
JW I 

Vertical displacement of 
element jj t's [I - Co-., (3.2.2) 

Differentiating (3.2? 1-)' and (3.2.2) with respect to time 

gives-the velocity components of the element 
I 

Ltk& Wk 
LC 144714 Z Ifli 
krotocraRm- mAss YAL 

RISEA 

t 1,1 
-"q a E'D 

M-M7 P, Ij# #j I11, 
12 1-0 

-i. '= /,. -t- she Ga(s,: ) 
d, jj1 (3.2.3) 

jZ1 

09j +53.2.4 

Taking EML 
as the structural mass per unit length of 

ith link (added mass will be considered later) and fTI 

the associated kinetic energy# then 

, x. j; ý, TZ - 
f. 

'L('. 
' 

tt) as 
(3.2.5) 
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Substituting for ii 
and from (3.2.3) and 

(3.2.4) into (3.2.5) gives 
L 

zi 
-M IiJiJ 

Z-1 
> 

z5ý& C" (0(.. )+5 8j 

as 
(3.2.6) 

where 

0411 =( igi - Oi ) (3.2.7) 

link, , is Total kinetic energy of ith M 

s-ri 
(3.2.8) 

Substituting for J-rc from (3.2.6) in (3.2.8) and 

integrating with respect to 0 gives 
Z-1 2.1 -1 

jIt 
li dc ý A- + P"I 'Y'. 

9 

19 T ý! - jj j. 1 j=1 

(3.2.9) 

Expanding (3.2.9) gives 
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= 
-L mci [ fi di cd-, (kg, )+A hi, cd-. (t9& )+.... 't 1 h. Co_, 1,9.1- -rc 
t 

i., 4. -1 4-1 
)3 

-fe Co, 

[ 11 b, �v- (01 )+f, il, . d;, (, 0& ) +.... Ji 
-, ý- -t 'jý mi- ,)j1+ 

IL. z 

(3.2.10) 

Partial differentiation of (3.2.10) with respect to 19k 
gives 

IM Jk > C" + 'L 
A 

'fk 
hi C"' 

j-1 
JK jL 

(3.2.11) 

+ 
kk> Ak 

(3.2.12) 
Pin 

k>l (3.2.13) 

Differentiating (3.2.11,12 and 13) with respect to time we 

get 

j[(k-h jk) k 
57 

j 7t 6k 

t-'t-'k L 6kO. )4(0k)]4 

19Z 
(3.2.14) 
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a (LT-L-) = 1- , f" 9" 
rt 5b" ýk 

Nk 

h7p C,., ( 
I. X 

)I; )e.; 

(3.2.15) 

J, 

Ti 

(3.2.16) 

Total kinetic energy of all links is then 

A 
TL Te 

(3.2.17) 

Hence 

,I(I T-L 14 &( Im 

TT ZT, 
--ý (3.2.18) 

Substituting in the right hand side of (3.2.18) from 

(3.2.14,15 and 16) and noting in the summation that i>k 

or i- k+l to d gives 
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CL ( «ý TL 

) mz ji - 

5-- ijk 5; 

,A 
-4 J (; - h. ), ä4, (0( Zk)+ 

T 
C* K'k 0 

k-i 

ryl Olkl 
** 

Pt 
) (9 P"P -le 

Co- (0, Pk 

(3.2.19) 

If all links are identical with mass M and length 

(3.2.19) simplifies to 

P1 i-, 
')TL 

MY 
2. b j (k + 

dt ik 
jz I Wj I+ 

_ 

[ý i( 
'k 

- 
'i ) 

IJ: - 
(O(i 

M. 
)+G 

Z= xe 1 

G> (, vek ) jp 11 
(3.2.20) 

In the context of the subsequent matrix formulation of 
the equations of motion, represent 
diagonal terms and 0- & represent off- V 
diagonal terms. We thus have to devise a method for 

separating these terms from equation (3.2.20). By expanding 
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the first term of the equation and substituting values of 
A and ja pattern emerged from which the 

following identity was established. 

Akj (ti- k kr 
Z-Ktf i-I (3.2.21) 

where AKj represents the first term of equation (3.2.20). 

This can then be written as 
j 

k-I 
vL M (r4 K -k ++ 

3 61k > 
ik 72ý ; IX 

rK (3.2.22) 

019 .... 

i 

where 

rs k+1 

. 
Dj ij (hW 

j (3.2.23) 

Note: In (3.2.22) the summation term rcv. +l is set to 

zero when k=tj Similarly from (3.2.9) we get 

)-rz 
ýI 

! -I lk ix > 
z (3.2.24) jK ) *, L )3 ak 

-ým, 
=9 MZ 

j lk 'k 

: j-e -Z 8, i e- 1 

--0 ) ek 

Hence for identical links 

; k>l 
(3.2.26) 

ý &- ( a-, )41 ýz i" &- (. Iik 
5 

.-i jzl 
1 

(3.2.27) 

, jl 
ij A, ( olj X)j; kcZ 

(3.2.25) 
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k-i 

'a 72,1 «. KAI, 
1 b', >- ( 

", )j- , k=i 

-= 0 

Thus using equation (3.2.21) we have 

TL Zý 

= rl%f 't 
(14-k+ ,) 

-i &, x 
1Z 

9-1 

d 
(tjo*-, ý 

L) i, Jý (9 rt 

I*zk+i 

)I 

(3.2.28) 

(3.2.29) 

(3.2.30) 

3.2.2 Potential Energy of Links 

If the links are of uniform cross section, using 

equation (3.2.2) we have 

Vertical displacement of i-1 
(3.2.31) C. G. of ith link =2 -4 oqvaj 

jAP -CO, to. )] +: I- [)- 
jjL 

j--1 
Increase of potential energy 
of ith link vi W! 

(3.2.32) 
L[ 

ý' Y [I j 
J=1 

Where weight of ith link in fluid, Increase in 

total potential energy in links, 
0 

v, -= 
f, VC 
izi (3.2.33) 

wý or VL >>L ii 11 - G, (ep] + 

w'. -: G. [1- cl, (ei) >- 
41 t1j (3.2.34) 

Czi 
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For identical links equation (3-2.34) can be written as 

VL 

L'al J-1 iýI 
(3.2.35) 

where weight of each link in fluid. 

Noting that 

At (3.2.36) 

We get 

Al 
VL 

Z -WV 
%% (f4- i +- -L )11- Co, (49; 2- 1 )1 Lej (3.2.37) 

Partial differentiation of (3.2.37) with respect to I 
,k gives 

! V-L f kv 1, .=-W'. 
1 (iV- k 

-21 qk (3.2.38) 

3.2.3 Generalised Fluid Forces 

The instantaneous x and y coordinate of an element of 
the jth link are shown in Figure 3.4 and referring to 

Figure 3.3 we have 

[ X5 +'P1 +4+L -ý! (Vo - 
Instantaneous x-coordinate 
of element on jth link, Lai 

(3.2.39) 
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where L is the tanker length. 

Instantaneous y-coordinate of 
element of jth jL link i-S I 

15 
C'. t 6i, )j 

(3.2.40) 

rIG. 3.4 INSTANTANEOUS POSITION OF RISER LINKS 

The velocity components of fluid and element are 

shnwn hPInw- 

S-Lk UFA 

FLUID VELOCITY COMPONENTS 

o Co., I+s ii cft (op z 

(0, c) + .5 
hj A4, (oj, ) 

STRUCTURAL VELOCITY COMPONENTS 



- 128 - 

where Uj and Y- horizontal and vertical fluid U 
particle velocities respectively and current 

velocity at element. 
Fluid velocity component normal to the link is shown 

below: 

it, 
k LIWK 

-m 
vc 

FLUID VELOCITY NORMAL TO i th LINK 

i-i 
ce, (o 

!-0 

J-1 
[ : 

th 
ý- Ä- ( 0; )+5 j9i 14- 

(19i )3(, q %> 
-(0; ) f- sgi 

j) 
ý2C 

hi6 

ist 

STRUCTURAL VELOCITY COMPONENT NORMAL TO j th LINK 

5-1 

Relative fluid velocity V. - (4j -t Vj jj iz G. (0y) - 

normal to jth link 
6,1 

(0j) 
- 

(3.2.41) 
[Vi ; sAk, ý: -, pd 

From linear wave theory 
tZI s bj 

0 (, (+ yj xj -, Jtý 

(3.2.42) 
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-LJ 
14 

(3.2.43) 

and w? -k 

where 

circular wave frequency 

wave height 

wave number 31 S-F, so, 

IA 

Drag force on element is given by 9F" 
JOS jx 

D 

S, r.. D_ cjý I 
V. IV-1 ds 

(3.2.44) 

where 

Drag coefficient (assumed to be equal 
C 

for all links) 

-pj = Link diameter or width 

/'0 = Fluid density 

Horizontal components of drag force 

on element of jth link 

tFj V. IvC, (ap is 
(3: 2.45) 
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Vertically, 

vi (si, 
(3.2.46) 

Now work done by drag force acting on element of jth 
link when the kth link undergoes a virtual displacement fg 

and all other displacements remain fixed can be found as 
k 

follows: 

Removing the constraints from th 
*e 

system, i. e. 
assuming that top end of riser is free, horizontal dis- 

placement of element on jth link after a virtual displacement 
Se 

k at k th link is 

I -Ix. 
--, f, j, G C., (& jk kk; 

j: pk 

(3.2.47) 

vertically, 

kt%, L%. jl. 

! 
G"/ ., 

v V- 
-t 

Sek 

,f5 -k ý(v "4; * 10 
jar it 

(3.2.48) 

Jk r&k 

. 00, 1 

. 1.0 
op 

00, A trold 
ktý 

elk 

. 1,9k 

.D Note: 14 causes displacements in the direction of 
k 

but in the opposite direction to 4 
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Work done by drag force acting 
on element of j th link when k th 

link undergoes a virtual dis- 

placement 4k is 

rv 
4. =, 

fF.., I, 
- Cý-x -+9 Fj 

JK j gL Jk 

(3.2.49) 

Substituting for Kand 
4jy from (3.2.47) and 

(3.2.48) into (3.2.49) and integrating gives 

Work done by drag force on i th link,, 

15, - Ci, k) Fi 
(3.2.50) 

Similarly, work done by drag force 

acting on kth link itself 

Yk 

[ 9-F G- (0, S8, Wkk 

Therefore the total work done by drag force acting on links 

when the k th link undergoes a virtual displacement is 

given by 0AXD 

+ 10 [S ! . "44'm - 
3=k+l -k 

J% k )] I Oki 

YI 
69 kX- 

ýok F 
t 0/ kz il 

(3.2.52) 



- 132 - 

For identical links equation (3.2.52) simplifies to 

tj 
9'Fj3x. F 6, p 

jcKtl 

t jo j 

3) D 
SF (*, k )] S- St9k 

jo 

L 
le 

YFiký 

(3.2.53) 

The generalispd force 0-k., corresponding to the kth 
link is then given by 

w Qkl ý kl (3.2.54) 

Using (3.2.45), (3.2.46) and (3.2.53), equation (3.2.54) 

can be written as 

.P tj 
CD C" (oe v, v kj) 

IjIj IV 
k 

kJ 
41 

jo 

jc 

k 'ýJIS 

(3.2.55) 

where cc = (V, ý - &. ) 
kii 
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130 

/ 

/ h & L , 
t) kS G 

ý \\V EJ) 1A p 
41 

�I 

kL 

V.. 

* 
F, 

I' 
p 

ii 
'' 

- 

z 
0 
H 

rA4 
z 
0 
u 

>4 

P4 
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3.3 YOKE STRUCTURE 

For the purpose of incorporating the constraints on the 

system it is necessary and convenient to derive the kinetic 

energy of the yoke in terms of the riser coordinates 

and yoke rigid body rotation 
The dimensions and geometrical configuration of the yoke 

structure are shown in Fig. 3.5 in which 0 indicates 

the j th 
member and Mj its structural mass. 

3.3.1 Yoke Kinetic Energy (Structural) 

Expressions for the structural kinetic energy and its 
derivatives are developed by considering individual members 
of the yoke framework and cylindrical buoy in Fig. 3.5. 

Upper plane members: 
For the upper part we consider a bracing member 

shown below lever arm, 
OL 

-T 

(3.3.1) 

"1 

r F14 
41 TA. 

140-rs 

urtio. fART 

PIVOT 

LC49K ARM rota-M AVIS 4x R*, TAri,. A 

Assuming identical riser links of length It we have 

Horizontal displacement 

of element on + jj (3.3.2) 

Vertical displacement 

2: 1% -C.. (b,; )I+- of element = It , 
(3.3.3) 

C=I A 11 - CP2 (0)j 
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where = angle of yoke upper plane to vertical. 

Differentiating (3.3.2) and (3-3.3) with respect to time 

Horizontal vblocity A0 

=p (j9Z )J +, fj C., (3.3.4) of element 

Vertical velocity 9 

of element 
> ie J4, ('ge )1+, /$ 

(3.3.5) 

Therefore kinetic energy of j th upper plane member, "r! " 

is 

L- 14 

j07 
ij + Jr j C., Ti =7 , 

4 

+ yj W3 

(3.3.6) 

where structural mass per unit length of jth 

member 
The kinetic energy of the fluid added mass is considered 

later. 
From (3.3.6) we get 

1 (11-") 
. . 

111 ("+, ) 
At -ý, 0zI 

6, (vo 
fi 

r.. > (0) [>- e-i c� (ei) - (e) 1 
Zei 

ý c"(p) '> , &c iz. (ei) 

, 
4Z- (e) i ec Ce, ( Oi 1- -L mj (, AL t 

ý) ** 1 
)li 3e 

tzt (3.3.7) 
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Referring to Fig. 3.5, the derivatives of kinetic energy of 
upper plane are 

't 

Ii( 
%L 

At 

(3.3.8) 

Table 3.1 gives a and b parameters appearing in (3.3.7) for 
various members of upper part. Substituting for a and b 
from Table 3.1 into (3.3.7) for each member and using (3.3.8) 
we get equation (3.3.9) 

Member a b 
1 + 

& 1446 
3 
4 

it 
A Al -tt let 

5 
, 

0 

6 
7 
8 
9 

TABLE 3.1. a AND b PARAMETERS FOR YOKE UPPER PLANE 

tj 
L-rt ) =, f 7 tz w! T -5 ý izi (? 

'tAl 
(Zjl f-10 + MS. 

"4 -+ tl'7 0AVfJ2, /Z)]+ 

1-[ý3. fl jiý +2 se lz, ) 
+ 3j,. IZ, 

(3.3.9) 
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where 
De 1e= 

(19i - 4>') 

similarly 
tj 

ýyr, Iz.. * 't )=2 MI M7)f Pi C'- (. (i k) Ir 
' (9A 

,0[Z 
MI (Z ', t JZ, ) + My -10 1- m7 (-t 11 t 

lt A )] 9 

t e** C., (x )tý (ý - b, ) 'j; - (W, e) k0 
i 

(3.3.10) 

1) Tt N 

iT P 
t45 

_t, + t4l (Zj, + 

(3.3.11) 

"'Fri 
4+0 

+ MS 0a 
I M7 

1 (3.3.12) 

Lower Plane: 

For the lower plane of yoke as shown in Fig. 3.5 and 
below, taking an element on jth member we can write 
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'X5 

Horizontal dis]ýlacement 

of element 

1 ýý2- (gi )-?. L (A -, d; - (f+ 4» 3 

(3.3.13) 
ith memme 

,40, 
4ý) PI VOT 

J) 
LOVJf9 PLANf 

71LLO 

I 
L p PLAPIE 

Yokf 

6,1"y 
CILIAORICAL p Is EA. Bosy 

ti 

.tZ: t- (gpj )+, 1 -t- 
i r. 1 

.rL c� (4, ) - c4, (i ei 

(3.3.14) 

Differentiating (3.3.13) and (3.3.14) with respect to time 

gives 

Horizontal velocity 

of element , LLX j 4c ce, (, gi )+ 
izi 

ýL 
-x;, c-.. ) ( e) - ä, t- ( ý) 3 (3.3.15) 

ova 7 

Vertical displacement 

of element 
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Vertical velocity 
of eleinent u (, g t 

ý[ -X, x- (0) tý, C- (oI 
I 

Kinetic energy due 
to member j 

., -r. - L- 
jI 

'fM 
v 

44, zL T jJ0 ( X. -f- U 
)js 

(3.3.16) 

(3.3.17) 

Substituting for (AV_ and (Aý from (3.3-15) and 
(3.3.16) into (3.3.17) and differentiating with respect 
to gives 

L. tj 
-rrj 

.f, 
(. ei 0)+ 

(3.3.18) 

For total kinetic energy of lower planet we have 

-)7 
-5-) 
aT 

Jt It 
julo (3.3.19) 

Evaluating (3.3.18) for individual members using values 

'S and given in Table 3.2, and adding of IX 
up and differentiating using (3-3-19) we have 
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z MIO (Z. (, 
, jf [2111, + Miz /Z, + m15 3 �v- (-, ce) 3 

bj 
f 

-- 
E 114 to (ZA +- 

A) mn. (A 4/a ) 

M, 5- JO, ] (ý'. - 
ý) JZ. (die)+ 

. 
ey [zmlo + Mit, /Z, f tIls, 3 (AZ - ý) t 

MIO (zi, 

(11' +jl 

(3.3.20) 

Member V-3 -Its 
10 A +A - 's A, A A. A A, /% . 10. 
11 D%TTO blr-ro 

12 + JX / Z. A/z. 

13 + . 
11, A, A Is/, * I 

14 PI "ro WrTo 

15 is 

TABLE 3.2. PARAMETERS '4$ AND FOR YOKE LOWER PLANE 
s 
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Similarly 

MI" 

IL 

Ck t (0(1 k 

,fe 
»* ifZ 

MI- (Z-(' ' '/ý 
) ". 12- 

(-1' + jl- /2') 
-m 15' -1' 

3 G('oke ) 

AL rmio + Mil /Z, t 
mig 3 Aj- (, dke) j 

-1 
ý (ýx 

- 
ý) 1 

15- [2- f' I* +t'12- A 
-t Mir 3 C, -. (dký )- 

fttil* (Z I, 
+yt)* M12. 

1115.1 1 

(3.3.21) 

-. -)-r 
4 

!. =I 

f 

MIS-J, 

, 
tv [?. ti,. + -L ., t4., +3 (G(i 

(3.3.22) 

MOO + MIL + M15, W> 

ý ex E-S I 

ZMl* (2""+11-) 
-t411, 

4 MIS'] 

(3.3.23) 
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Side Members: 
For the sides of yoke structure, we consider an element 

on member j as shown below. 
P%4dT 

Horizontal displacement h EMV-Rj 

of element TA ZLj 

61 

0c YL%FAD It %CAL. 

sool (3.3.24) 

Vertical displacement 

of element 
9 

"so r co, (Y) - coý, (i -t 01 
(3.3.25) 

Noting that 

JS + Is. 

Horizontal velocity 

Z of element U, 

ý[Cfflý- (ý)- (at 

, (3-3.26) 

Vertical velocity P 

of element j LI >+ 

C-I 

ý ['t, (0) -(ats Gý (P» -t (-ý, (0) -s- Jý- (A) j 
(3.3.27) 
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Using (3.3.26) and (3.3.27) in (3.3.17) and differentiating 

we get 

"Yri ,i)t 
i. t 

(P. 
+. 

L C, 

Li toe + 

a Lj Co,, (, e)+ -I Lj 

(3.3.28) 

Noting that derivatives corresponding to kinetic energy of 

sides, T, can be written as 
.S 

dt 
j=I& (3.3.29) 

and using parameters a and /G as given in Table 3.3 for 

individual members we can write 

Member a A 

16 0 0 
17 (A + (- A, /17 

18 + 
19 
20 
21 

TABLE 3.3 PARAMETERS a AND le FOR SIDES OF YOKE 

37- 

M, 
f 

f Z. (11 + 14 ý+-! - Js- Z1 
a. 

'17 
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m 10 + mv + 

t4l? +t+t, 19 
(z J, 

-f 

Al (zMz,, +Mll)] 

1. tIll + 
tA 

'([+i +. tili *tli.. -i. Ilu]Jc - 

e) 
1 m16 (J. + 11) f(m17 + Mit V0148) + 

MIA A-) t 11 + 
MLOJ 

J1 

(3.3.30) 

Similarly 
tj 

t 

ct -bTs tz ST> M 
7-). = I 

t( -ýbjc ý-IL 
uIL. 

&I 

ji Cn (. (, t 
Mm (mruf Mit) 
mil (týl+ ji (zmt. + /, 111) 1 

ko Li 

It+ t111 )4 t4l* 0(6k-ý) JS'Cr"(O"kfýf 

(Ats, + Oill+ MIS) (Z), +), )+ 

W, 

(3.3.31) 
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TS L0 Mic (it+ 

(t M20tM ti)jl Ix- (. (i 0) - 
ii(Mit+Mii>+M 1- 

+mt13 c4>(oeie) j 

(3.3.32) 

and 

mj 
2 el, 

1 

j. lk 1-1 

ý [is C. 
-.,, -ýM-Lo -ý A-LI) - 

, 
4:, (a 

le 0) 
(K 

I& t( ý'17 t (2'10*14) -t 

m Iq (01 *It, At ) -t (tmM. 
" ) ), )IJ 

(3.3.33) 

For total kinetic, energy of yoke, 

Tr, 

ý 't i "' ý o(t "'ö e 

Ts 

At r at It 

, ýlý 
=% 

-rt -ý T, 
-f 

-3 -rs 
7i- 

'ä T> TS 
ek 

, we can write 

(3.3.34) 

(3.3.35) 

(3.3.36) 

(3.3.37) 



- 146 - 

Substituting for right hand side of (3.3.34) from (3.3.9), 

(3.3.20) and (3.3.30) gives 

I aT 
- 

(71 ý-) 
d+- I 

f (3.3.38) 

where 

A#n= ý 
1. ) 0,7 *My I+ A,, )+ 

K %I ( It + -114 ) -+ 

M14 (A tA)+A (Ms +Mly t 02A mv )i 

(3.3.39) 

MIS +lili -tmLo+m It + 

(3.3.40) 

.=ý -L , (3. IJ Z+31,11, 
+ )"t MS, /, 7 (91. '% )+ 

zmt. (ZJ. z pa, ++ Mit (lit+J, 11 

t I' 40 hil ('LJ71 

Iz m It Cz(l. ++++ LI, A 

(3.3.41) 

Substituting for the right hand side of (3-3-35) from (3.3.10), 

(3.3.21) and (3.3.31) gives 
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Tt 't' 

IýI (" (, I Iq ). Aln týý04ko )"Bm i 

Arn - GýD 
of ý)fb h%i 

(3.3.42) 

where I 

1.1 

41iio ttia-tMis, tz- 

(3.3.43) 

Substituting for the right hand side of (3.3.36) from 
(3.3.11), (3.3.22) and (3.3.32) we have 

-: -rý ti 
--ä e=2ý 

bi LA, Jý. (di e) - ß'. c, > (0(; e)1 
i=I 

(3.3.44) 

Substituting for the right hand side of (3.3.37) from 

(3.3.12), (3.3.23) and (3.3-33) gives 

ek 

C" (3.3.45) 
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3.3.2 Potential Energy of Yoke 
Variation in buoyancy due to yoke motion is considered 

in section 3.3.4. Assuming that the total buoyancy force, 
K acts at the centre of the submerged buoy as 5 

shown in Fig. 3; 6 we have 

Vertical displacement 

of C. G. (upwards) 

-/4 [. J,:, (, ýU) -t C. (/t+ +)] 
(3.3.46) 

Itiscit 

rot 

4, -4) Z 

CN 

RISCR 
re F 

FIG. 3.6 VERTICAL DISPLACEMENT OF YOKE CENTRE OF GRAVITY 

total structural mass of yoke 

distance'of yoke centre of gravity 
(C. G. )from riser top 
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Vertical displacement 
of buoy (upwards) ei 

-jýý 11- C., ow ) +- 
i-gl 

'/', [, ýL (ab)+ c. » (. 11 t e)j 
(3.3.47) 

Increase in potential energy 
due to displacement of C. G. 

+ -14 + 031 
(3.3.48) 

Increase in potential energy 
due to buoyancy forcef-' B 

(3.3.49) 

Adding up (3.3.48) and (3.3.49) we have 

Total increase in potential energy 
of yoke 

a 

V-[F 
-M 5-] jjý; 

- 

[I 
- 

ce, (ve) 

I- B IZI 
Ij 

M2 aA[&, (, P) -t 6. oK 03 - 

(3.3.50) 

Differentiating (3.3.50) with respect to we have 
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A- op + 
ri fa , J: - ( x' +ý) 

(3.3.51) 

Substituting forA., (, p+p) and. 4: 
-(Mjtt) in (3.3.51) from 

the following 

6A+ 0) 

(3.3.52) 

'jý ( iL s. A= Gq) t (e) ju- P1,1 (3.3.53) 

we get 

Js- - G> (e) + Ji (e) 3 
a 

(3.3.54) 

Differentiating (3.3.50) with respect tO 9, K 

, ýv >. j[ rß -, m ;j AZ, (ex) 
(3.3.55) 



- 151 - 

ror the yoke structure under consideration, X(4 and 
YC C, found by moment equilibrium can be expressed as 

JL 

i: (5»M7t"gl+3t'il) M, 5'*Mi6 +t11-7 +Mlgj 

1, [ AS -tMT lia + Im ts Ij 
/ M, 

(3.3.56) 

yce. 
=1 tr [1 (3m7 

-t Mit t Plii )+Z (Mio +Mio) + t 

MIT +til-7 +M It +t'Zl Ij /Mý, 

(3.3.57) 

Note: F is a function of time and changes with ý5 
variations in yoke submergence level and is given in 
Section 3.3.4. 

3.3.3 Generalised Wave Forces on Buoy 
In this section we derive expressions for the 

generalised wave inertia and drag forces on the buoy due 
to wave motion. As shown in Fig. 3-7, the coordinates of 
the buoy can be written as 

A 

(3.3.58) 
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MWL 

0 

C-> or- m- 
bVvy 

JrA BED 

FIG-3.7. INSTANTANEOUS POSITION OF YOKE STRUCTURE 

Substituting for, &, (JL+f) from (3.3.53) into (3.3.58) gives 

14 
- Xs - f--ft L+ oz + is- + 

(3.3.59) 
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A 
1=-1-. 1� c--, (JI. + ol 

(3.3.60) 

Noting that 

-fit G> (.. n, + 1) =, ei c.. (e) 

Equation (3.3.60) can be written as 

Pl 

9z)tJiC(4)_is#(4') 

11 
FIVOT 

tFs 

111114">" 0--. " F, cl 

(3.3.61) 

inertia Force 
Fluid inertia force on buoy from Morison's formula is 

In X-direction, 

e 
In y-direction, 

Tr X 11 
F; r C, Li 

where J) I- buoy diameter 
C-1 = inertia coefficient 

(3.3.62) 

(3.3.63) 

a 
and 

i- 
are horizontal and vertical f luid 

particle accelerations respectively given by linear wave 
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theory as 

" 
'i4 4'Lt-) 

u= 
L 

(3.3.64) 

1- 14 , dZ. 4 4 (d f4) 
-ý-z ýdw di t) 

1 A.; ii (-ki) h 

(3.3.65) 

Drag Force 
Horizontal displacement 

of buoy 

Velocity of cylinder 
in x-direction 

+ IS- -t 

Jq 

fz: k. c". (3.3.66) 

Prom (3.3.47) 
--* 'Y' 

Velocity of cylinder 
in y-direction 

ti i, 
(3.3.67) 

rluid particle velocities at instantaneous position of 

buoy are: 
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In x-direction 

ri m G., 4 4 (d f ýj. ) 

ub -- - C., (. k-x - (it) 
, J" (. 4-1) 

(3.3.68) 

In y-direction 

&. 1 N g. 4 4 (d f ý-6 ) J,:. (. k -x 4 -, ") 2 
'J" (Al ) (3.3.69) 

Relative velocities at instantaneous position of buoy are 

In x-direction 

Tj t+ V' (3.3.70) 

In y-direction 

(3.3.71) 

Resultant drag force 

on buoy 

FL TTI, L+ V&, I) 
R 

CP 
-L 

(3.3.72) 

Fj' 
ý- -- I 

FR V, - 

Horizontal component 
of drag force D Er'. 'r, 6 F; - Ft F 

or Ft 
(3.3.73) I. L 

ý16 I. 
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Similarly vertical component of drag force on cylinder, 

cp -ý 
lb , 11, 

FUI-IL (3.3.74) 

Total forces acting on cylinder are F 
t 

Pjoy In x-direction, 

1- J) 
F (3.3.75) 

In y-direction, 

r., -- (3.3.76) 

Generalised wave forces on bu2y, -. 

Horizontal displacement of buoy 
due to a virtual link displacement 

CO, of kth link, 

9, x. i. 
- 
fi 

- ci >( f'. ' ) (3.3.77) ßk k 

Vertically, 

"ýbk 
.) (3.3.78) 
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Let r 
b, denote total x and y components , 6z and F, 

of wave force on buoy. Then work done by K is 
b 

F,. x -r-x ,kt 
F�2 - r2�j, 

]FIG. 3.8. 

f ex C*, , -f 
/ 

/ 

7/Ilk 

F1,10T 

"ti, 

(3.3.79) 

171"I'MrMly th 
VIRTUAL DISPLACEMENTS OF BUOY DUE TO k LINK 

VIRTUAL DISPLACEMENTS 

Substituting for SýLjjt 
and 

46X from (3.3.77) and 
(3.3.78) into (3.3.79) gives 

S'Vi 
6 =. f[, FbA (ex (3.3-. 80) 

k 

Generalised wave force on buoy corresponding to t9j ,k 

IF�, 
x - , t) - F, 

kß ick ' 
(3.3.81) 

Work done due to a virtual displacement of yoke 

can be found by reference to rigure 3.9. 
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r,, loT 

I 

dý, -,.. 11 
if +x 

A 

16 

FIG. 3.9. VIRTUAL DISPLACEMENT OF YOKE 

Horizontal displacement of buoy, 

97- (3.3.82) 1, -- 
fe 

Vertical displacement of buoy, 

ih 
=- 

[-ff c- (e) + je 
-, 

L: - (e) 1 
(3.3.83) 

Work done by forces acting on buoy# 

sw, 
=. At 

1. c iý (3.3.84) Fk, 
x t &;, k 

GenerAlised force corresponding to 0 is 

Qý = I(W3 
/ J'ý (3.3.85) 
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Substituting for 1% 
and from (3.3.82) and 

(3.3.83) into (3.3.84) and then (3.3.85) we have 

:;: 
L [J1C() -. 4A. ()J 1j (44 IsC(ç)J 

(3.3.86) 

3.3.4 Change of Buoyancy Force due to Yoke Submersion 

In reality the change in buoyancy due to motion of the 

yoke relative to the wave free surface elevation should be 

considered. However, since the wave forces are calculated 
using linear wave theory up to the mean water level only, 
a similar simplification is made for calculation of the 

variation in the submerged volume of the yoke. 
To find the variation in buoyancy force due to yoke 

motion, we derive a relationship between the wetted lengths 

Of Yoke Members relative to mean water level and angle 
ý- For an arbitrary side member as shown below (also see 

Fig. 3.5) we can write 

PIVOT lifeT 

buoy 
of 

'I, L tj &ý (A - 

A 
2: Lý G-i (0)4. ( L-s, - Lw ) X- (P - -4 ) (3.3.87) 
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but 
Tr 

L 

Substituting for cc 

. f, , (. 4 t. f)- Lwu Lx, 4; 
C-o (, 4 + (3.3.88) 

Note: For top longitudinals ý6='T in (3.3.88) and(L-x+Lj) 
is length of member. 

if LW60 member is not submerged. 
For verticals 

For the upper and lower planes of yoke, as shown below, the 

wetted length of diagonal bracing members can be found from 

4e 4 

- 10 

PAot 

Lj 

VJAT9 Ot 
ý1(-< L*14 

, 

Aw 

Once the wetted length of all 
members at each value of + 

are found, buoyancy force can 
be calculated as a function 
of 
Total buoyancy force can be 
written as 

where 

LW (3.3.89) 

tF. 
i 

(3.3.90) 

L W! - wetted length of ith member 

- total number of submerged members 

(including the buoy) 
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I)z 
- diameter of ith member 

3.4 Tanker Bow Pivot Motions 
Tanker surge heave and pitch 04 7C, 

caused by regular wave motions# give rise to bow Pivot 

motions as follows; 

Horizontal Displacement (3.4.1) 

Horizontal velocity, ;4 a (3.4.2) 

Horizontal Acceleration 
J C. 

(3.4.3) 

Vertical Dis lacement p P= 4 
vc (3.4.4) 

Vertical Velocity 4 
(3.4.5) 

Vertical Acceleration 
L (3.4.6) 

PIVOT 

MW9L 
4- 

4* 

C 

Tanker motions can be evaluated using transfer functions 

given by Kirk 45' ) (see Appendix B) 

3.5 Geometric Constraints 
The two geometric constraints on the system arise from 

P the prescribed hoirzontal and vertical displacements 4 

Referring to figure 3.3 and equation (3.1.1) the 

two equations of constraint are 

Horizontally, 

ti 
4f, ) 

-'Z 
jai 
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Vertically, 
pi 

(3.5.2) 

3.6 Lagrange's Constrained Equationsof Motion 

For an M-degree of freedom system the equations of motion 
are usually written in terms of generalised coordinates, 
however, in some cases the set of coordinates involved in 

the dynamic analysis exceeds the number of degrees of 
freedom of the system, say by JVC , and therefore one 
must impose 14 equations of constraint to the system. 
Equations of constraint are related to equations of motion 
by the use of time functions Aj U known as 
Lagrange multipliers as in equation 

Differentiating (3.5.1) and (3.5.2) with respect to the 

generalised coordinates 9jr and 4) we get 

1, Z, 

,ý1. 
- (f (3.6.2) 

-)t, + lj, ) C'n, 

1ý K); 
k1, R (3.6.3) 

'), 9, 

IJL 
_ (f) (3.6.4) 

5T - 

Substituting equations (3.6.1) to (3.6.4) into (3.1-1) we 
have 

Z «ýT -, D-r 
dt 

(-iT 
4-= Q +X - 

XZ-l'IJ4- (9, 
k) 

;) kge 
(3.6.5) 
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where 
LWKS YOKE 

-3T L 
7t ,)+ -ji (3.6.6) 

; kali Ip... ý* N 

are given by equations (3.2.22) and (3.3.38) respectively and 

->-ri- 
+ 

-D-rj (3.6.7) 

are given by equations (3.2.30) and (3.3.45). Also 

--ý v 
1= 

-ý VL 
t- 

-ý 
(3.6.8) 

-ý ýjc , 
'ý 0*. ; ka 

are evaluated from equations (3.2.38) and (3.3.55). The 

generalised forces are given by 

xx 1, d 
(3.6.9) 

which can be evaluated using equations (3.2.55) and (3.3.81). 

For the yoke: 

J T.. t. --ý V, ( 
-t- wQ tA, dt f --ýp cp 

+ 
(3.6.10) 

where the left hand tide is evaluated using equations (3.3.42, 

3.3.44 and 3.3.54) and Qý is found from (3.3.86). 

Equations (3.6.5) and (3.6.10) provide (N+I) equations to be 
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solved. The (N+3) unknowns are 9. ,0. 
Making and the Lagrange multipliers A, and ý1. 

use of the two constraints, equations (3.5.1) and (3.5.2), 

all unknowns can thus be found. Lagrange multipliers can be 

found from the equations of motion of the yoke and the Nth 
(K link in terms of 

Substituting these into the remaining equations gives (N-1) 

equations involving 6& 49 
Now '911 - 

ýo 
, 9*9d and can be evaluated from the 

constraint equations as follows: 
The constraint equations (3.5.1rand 3.5.2) can be 

Written as 

pj- 1 

+ ja. +Z _I, ,p tri 

p 
; pý> 

(3.6.12) 

Let 

f4-1 

A-x, 
$ + to -f-(3,4. x- (3.6.13) 

o -1 
(3.6.14) 

L. 1 

Squaring (3.6.11), (3.6.12) and adding using (3.6.13) and 

(3.6.14) gives 

bi co, (, P. 4 ) 
(3.6.15) 
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where 

42l = zAt (3.6.16) 

(3.6.17) 

cl 
(3.6.18) 

To solve (3.6.15) for 9; 4 assume 

(3.6.19) 

low (3.6.20) 

W) =-1 (3.6.21) 

if 

Substituting for A(0,1) and C"(0, j) from (3.6.2o and 3.6.21) 

into (3.6.15) we have 

(ci -b, ) Ixt e2a. 0 
(3.6.22) 

giving 
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I= 

Z- I t 
ýa, 

c, + 
(3.6.23) 

(C, -) 

Substituting for T, from (3.6.23) into 
(3.6-.. 21) gives 19rj in terms of & 
Now can be found from (3.6.11 aný 

A-. ( Opi )]/0,70 *I Z) 

8-j Cft ('9W 1/ (A +Yt ) 

(3.6.20) and 
(, k z 1,2"t (1/- 1)) - 
3.6.12) 

(3.6.24) 

(3.6.25) 

Differentiating (3.6.11, -and 3.6.12) with respect to t gives 

C,: " (49 19i (3.6.26) 

(19i (3.6.27) 

From equations (3.6.13 and 3.6.14) 

(3.6.28) 

fj- I 
oz (3.6.29) 
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To solve for 

we can write 

giving 

,ýee: 
(-ii )( e) 

(3.6.30) 

e) 
(3.6.31) 

(3.6.32) 

cl I (3.6.33) 

and in (3.6.26 and 3.6.27) 

Cp41 11 A 

i tf {} 
ý=(A -ýIj 

where 

A= 4. ýt4 -ýý* CO 

(3.6.34) 

(3.6.35) 

(3.6.36) 

(3.6.37) 
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Differentiating (3.6.26 and 3.6.27) with respect to t and 
writing the resulting equations in matrix form we have 

19m 

where 

c=A+, 5e -ý+ý, - i�' 

ý2 
,ý2 t C', 

v 

C 

W-1 

CO>( (9.. )1 

Z-i 

Equations (3.6.8) to (3.6.42) give 
.0 0-t 

%tIT[W. A, ý, (. e. )+ p+ 

o, +1 
'A + C11 

(3.6.38) 

(3.6.39) 

(3.6.40) 

(3.6.41) 

(3.6.42) 

(3.6.43) 

* Z» C-�. ( p 
isl 

()I+Jz)l 4 
(3.6.44) 
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where 

a! 
N (3.6.45) 

OZ ý 
(3.6.46) 

tio vii p 
(3.6.47) 

Lagrange multipliers, A, , 
A,. , can be found from the 

equations of motion of the yoke and the Nth link using 
(3.6.5) and (3.6.10) 

Etj -AI. ri -, A. 
L . ts, 4 (3.6.48) 

CO - (3.6.49) 

where 

EN 
rj 

ýv a 
' (3.6.50) J0 

E: " ___ ___ (3.6.51) 
4' 

- 

Equations (3.6.48. -and 3.6.49) give 

A= 
-L- 

( t- m (3.6.52) 1A s4 - 'C - 
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Cý (3.6.53) 

Note: When A=O i. e. ý= '9'j (see equation 3.6.37), 
A, and AU cannot be evaluated from equations 

of motion of yoke and the Nth link but must be found from 

another pair of equations, say corresponding to 49ý 
and a given by (3.6.5). If b'=0 for all 
equations then we 

' 
have Ok indicating 

that system is fully taut, as shown below, and that Lagrange 

multipliers introduce infinitely large stiffness terms in 

the equations of motion * 

TAOULA Evaluating equations 

joke (3.6.6) to (3.6.8) and 

substituting into (3.6.5) 
Ok 

gives the left hand side 

of (3.6.5) 

i. -ý -r -ý-r 
A( *ýbit )- -ýO 

rnf k+ 

j=I 
j "4ý% ( dkj )] «ý 

04 

rtl 
ý, >).. 

+Z4: ý (« 

tj 
> 6ý' (dik ljý" 0(lk 
t-I 

(O(ký), Aln t 

J 4L [, &- G-> (oeý, 0) 3 

09X Fa - t4 (3.6.54) 

'. ks 1, , 04 
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Substituting for and from (3.6.43 and 19N 
3.6.44) into (3.6.54) we have 

yr *bV 
dt 

d 
')& 1ý Ok k 

+t bx 13k 
)i 

ot kj +&k +'6, ' G-J(cýjk 

, 
ýL -2 a 

Xt 
C4k C2 + Ok C' (04 kd 

k-I 
(N-k + ki le. 

�4-, 

jL > )+)(. 4)6 . 46(o )+HCo(o(ri4)j+ 

.1ý, C.,, > ( 
01 

G> I 
Ic &i 

.f 
; Lj, 1 

(4 
k( 

f) +ýk 1'1ý' (Od )i 
.+ 

J5U + 

aI Fa k 

(3.6.55) 
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where I 

cl, cm+. LM 
kw) k ý-( t) 

ce> (d 
(3.6.56) 

H Z. fAG, 
A (3.6.57) 

Using (3.6.50) and (3.6.54) we can write 

=F 19C 13L > Az tI 
>7 + C* (3.6.58) 

where 

ALý (, K 

(3.6.59) 

CL 
*=1 2- 

m 
713 

tj = in 
(1, * lz ) 

(3.6.60) 

(3.6.61) 

Note that the term in (3.6.56) must be set to zero 

when k= tj as it arises from terms in Ar le. Ar wNed 

?* >V_ 14 . 
01=1(tj 

H'J Z : 
ý- G2 (CZi 0)+ Am "44% (, ti ý) 3 (3.6.62) bb 

C*(a tL C"I( OL. 0 

(3.6.63) 
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%. 1 c* 

=1 +Jt )e c` (WO 4, )+ 2- 14 a C. -» (V(W e)H, 4 -f 

JO + ON, t 94 dý (0 

CL* 4+H, 4 )i 

-2 ý, ý 1. N w 
G> (awý» +A, )iý- 

(-i 

ti l> 
)- ßrA G (0ý4 

4 
)1 

(3.6.64) 

Similarly using (3.6.51) we have 

+I +F 
(3.6.65) 

where 

(3.6.66) 

Ei l* G, (d. 

(3.6.67) 
F*-=j 

;v 'm - 
(Ji + tZ, ) Hý 1G( 0(W e) - Arn d: - (O(ti 0)+1 -+ 

ci 

P 
Hd + -DWI 

+j+ 1) 
C*, 

3 
(6(t4 

Fil Fa 11 a Of +. Iz-xcl; )] 

(3.6.68) 

Substituting for Ej and 90 from (3.6.58) and 
(3.6.65) into (3.6.48) and (3.6.49) and rearranging we get 
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0- 1 
fýij (b! 5 -A 

p, 2, 
t 

#--c 
(r Q )+ (at4 

14-1 
(3.6.69) 

We ( DjF C, -A .1C 4, + C+ + 

C, v 
(F -Q 4) 

)+ C4 (Gt 
14 - 

C) j 

(3.6.70) 

Substituting for the left hand side of equation (3.6.5) from 
(3.6.55) and for A, and At, from (3.6.69 and 
3.6.70) and rearranging gives 

Aj diý 

Co. 
) (dj<r) t Cni, + '5� C> nk 

IJ:, 

(dý 

k-I 

ý; 7 6, c" (dj 0) L 
jzl 

Z' i kw 4j keý - 
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+ Ok 15ý'O"47"(04kpd - 

f2 liý 

k* I 
Hk 

f* 

i: jr (j, * -P, ) j; - (a /C 0) 
J- 

,e 
ýt 1 

(11 +)1 )L qK -ý 4 oo)j 

BM C. " (d 1,0) 

140 + 

ýw H. 
ko 

44, (. t 
tj t)-Z, 

C, -, ( -it, t)] 

'I iýl 
14k 

C11(dq)+ (dkt4) + Hk+ 

'I [( D" - (it 7 
"'ý" ( 01 k0) 

(A JI 
Ceti 2+ CL 

A 
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+RIC (A +A) jz- )+ kit 

A:, + Hjt jlý, (o + id + A pk 

+ (0( a* S qo + Ho (all 
& ký 

W' (tJ-, k + 
.j"a, - 

it 
A, (a 

. 
)- krJ Yc f- 

ß k(P Z 

(�-g) 

(3.6.71) 

Equation (3.6.71) can be solved using a time step integration 

algorithm. At each time step values of 8,4 j 
are evaluated in terms of Ok (Jk . ..... I using equations 
(3.6.20,3.6.21,3.6.24,3.6.25,3.6.35 and ý. 6.36). Equation 
(3.6.71) for k=l, 2, ----, (N-1) can be written in matrix form 

as 

-1 [C] 6 11 tL 
f9l 

= 111 
it. 

If I+ i-t 
it it IQ-)I 

(3.6.72) 

where 

f9i 
is accelerations-vector of size (N-1) 

[I. ] is inertia matrix of size (N-l)x(N-1) whose 

elements are 
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lk! ý-- C. I., (a 
ki )I rm, ( 14- t+ L'. )+ Cý I+ (ý " A-:. (d 

1ý) 

H4(11,, ) 

1 Y Ai e (J, +-lz )J; - ( C(k e); kt- Z 
A 

(3.6.73) 

kX 

61 (ce )( Hý k14 A 

(3.6.74) 

where a dash indicates structural mass + added mass in the 

corresponding expression. [r-3 is an (N-l)x(N-1) 

matrix with elements 

1q, C) H, 

+ + 

(3.6.75) 

CkK'c 4, 
k; 
Ic C4-3(akO)tH'Ikc 

A 

(3.6.76) 

(vekt) 3 +4ok C'. 3 (X t04 Hic C"(0(Z 0 )- ký, *": 1 

J 
6l' Oýk 

; K>1 
(3.6.77) 
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Elements of ýIpl ,a vector of size (N-l)j are 

+j AM C7 (dk 

A&qý)I- 

C" (do 

(got) (cit4 ý)] 3- 

;ALt C4k C'Oý' 

10(k, 4 

,0 (A + j. ) >U- (, 0( )[c. , (. e'e) (- ( 1. + J� ) 0. ' N +t4 t- Im ( b ke ii j- 
- 

ýý 
JH; , 

ým- 
ýý ]- 1 ZP 

1 
&ý, 

k "r- (ý) Ir Hlk (e 
k, - 

10 

i (Z +AI) ) [-d* ýe 1- Cn', ý >jj, (e) +Hý j- 
A 

C"k C*2 M; C' ke) 
H'd G, 

LA(dk)[_C4, Hý&. C, ] 

Z 4Aý. ( s<kj )1G, ( e) f Fa PS. - M, 3- Yc,. ]+ 
A 

A; -( 0) [Fa A -M, a (1,41, - Xg. )]- C-Lo i -t I 

(. 1, +Jz )t ý4, [ Fs -M GL 
A 

(Olký ) 

(3.6.78) 
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NJ 
is an (N-l)x(N-1) diagonal stiffness matrix 

with elements 

(3.6.79) 

fal is the generalised force vector of size (N-1) 
whose elements can be evaluated using equation (3.6.9) 

3.7 Natural Frequencies and Mode_Shapes for Small oscillations 
Neglecting damping terms equation (3.6.71) gives the 

equation of motion of the kth link as 

60*'c 

i=I Kx #V-$ 04 

where 
II ýJýl (dko 

--)iV- 4)[FS-Mýa-` 
]. og 

1[ W(II- + L) 
-Fýý3 bV- (ok) 7L8 -f M 

I loi 
, 

JC4 ] +, X- (f )[Fe -. y Julf-to 
'44:, 

(gtjf) 

i 
C&, Fa Js M3 3.1 

C4 )II 

;k, 1ý, Z, ... .., )4-1 
(3.7.2) 

and Fk is the force which in the case of free 

vibrations only includes static loads. Expanding (3.7.1) 

about a static equilibkium position (with no tanker motions) 

gives 

F kz 
>k 

i-I (3.7.3) 

where ,& indicates a small increment and we have 
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lK 

i=l 

Is 

s 

is 

N-1 (3.7.4) 

where 
is 

indicates evaluation about static equilibrium 
position. Substituting (3.7.4) into (3.7.3) we get 

,10N 

tj t 
-) ta 

Jý 0 
; 2L 

&ý=0 WI) -ý xIS 
') - -ý Oz 

; im l, 2ti-i 
(3.7.5) 

Constraint equations (3.6.11 and 3.6.12) with zero tanker 

motions can be written as 

0- 1 

+A #c '90 (3.7.6) 

and 

('? 14. C" CL t -1 c" e ce. (9, (3.7.7) 

In incremental form (3.7.6) and (3.7.7) give 

Pi- 1 
c., D(O) =-15- hoc C->(&i) (3.7.8) 

i-r-i 
and 

(3.7.9) 

Note that here and (i=1,2, ---- N) are static 

equilibrium angles. From (3.7.8 and 3.7.9) we have 
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, &ý=z b, (9i - a- ( V( 

(3.7.10) 

& ej = 
b6 

ý: boz A (OC i+) 
! =I 

Substituting for Aý and Ab, 904 from (3.7.10) and 
(3.7.11) into (3.7.5) we get 

ic 
+Z: 

i 

lj; -(dze) - 

lzi L=I 

1W5 

Is I t, ge =0 

(3.7.12) 

Equation (3.7.12) for k=1,2,......, N-l* can be written in matrix 
form as 

1[ 

(3.7.13) 

where (K 13 is the 'tangent' stiffness matrix of size 
(N-l)x(N-1) whose elements are 

k, 
-1 fx fk 

ki ') 0 
s 

is 

; R.., z %ý 1, L, .... , tl- 1 (3.7.14) 
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and from (3.7,2) we get 

=-, 
A-(19 )IF-+ 2 x z 

Jýl (v( klJ )- 15' 
- My) Ycr. 3 + "I: _ (19, 

[FS 
C4 

and 

, 
g, (. ýk e) [r 

=. 
2. 

j5 -AA- 
-ý 19 1 dZ. ý (. g 

.)Z 

ti li e 
I- (ýn (vF. 

Ul A) 
Jz 

; k= 1,1, ... . ýp ti-I 
(3.7.16) 

and noting that =0 for we have 

WO Co"O'k 0 'ý lic =- 1- "C. (0, )f F- -m & 

.1aIa13 k . &;. (d 

ý11 wl (w- k+ L) 
- 

55 + mä.; 3 c4, (0 

1 CM (Q(kr) )G( ý) t rß- Mi 

oe ý*J, 3 A' (aw e) 

1 

;k= IV z, . -.. p 14- 1 
(3.7.17) 

In equation (3-7.13) 
ý0ý is the null vector of size 

(N-1). Substituting for derivatives of ýx from 

(3.7.15,3.7.16 and 3.7.17) into (3.7.14) we get 
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k' Jt(jýJ ([_Fi. J ý(4'ýl 

, dZ., (a (Olkpj )*15#4 

[Fo-, ts. (Oct 

, J4, (Deti ) (0ekki ) *CJ4 11 

; kt t 

(3.7.18) 

I Note that k. = K' 
IIK xc 

k1 

, and 

[ 
-2ý 

(01 ký )* JS ý -ý '41ý 
(OekJ ) *A/ I 

L 17ÄS* IS 
-M ý*j *IC4 

] ['42(Otk 
ý) -C- 0 

, 
42 (O(k 

IJ )* 
Ci 11+ 

-ý ý, x --D ex (3.7.19) 

letting 

fR]['T' ['J 
(3.7.20) 

and referring to equation (3.7.13), eigenvalues of [R] 

give natural frequencies of the system and eigenvector of 
ERI gives the mode shape coefficients. 
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3.8 Velocity of Riser Top Articulated Joint 
Equations (3.2.3) and (3.2.4) give 

Horizontal velocity 9 
of riser top, 2:? 

z C" (&1) (3.8.1) 
iml 

Vertical velocity of N 
riser top 

Zbt 
'4: ' 

(OZ (3.8.2) 
i=j 

But from (3.6.23tto 3.6.33) we have 

YY40 I( F 

c 
p (3.8.3) 

(3.8.4) 

Substituting (3.8.3) into (3.8-1) and (3.8.4) into (3.8.2) 

P,. +1s4, " 

Velocity along the Nth link, 

V- - ;, -J, 4, (, g, ) -ý 
i- C', 

(3.8.5) 

(3.8.6) 

(3.8.7) 

'6) Substituting for lia and ý14 from (3-8.5) and (3.8. 

into (3.8.7) gives 
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R1 -ip - 

(3.8.8) 

3.9 Riser Top Tension and Support Reactions 

Forces acting on the system and support reactions are 

shown in figure 3.10. 

AZý 
jZ1 

(A+A-XCOIýý(V+ 
Yc; C-ý, 

A+A+A+ I-,. 

RI IPIVOT 

i5c0, (4)+J 4(4) 

A4 

sib 

H 

Fl, v 
H 

tj, 

A3 

RISER 

.S 

'S 

Ficure 3.10. Forces Acting on the System 

e- 

HV 
Fxs and FA are the horizontal and vertical components 

'S 
of force acting on element 

Js of kth link and at 

distance 
. 19 

from lower pin respectively. For 
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horizontal force eauilibrium 

a- l 
)i H Fks F' f F4H P, 3 t5b 

A=10 

vertically, 

v 
irks 

Kzi 0 (3.9.2) 

where 

horizontal reaction at tanker bow pivot 

'ýZ = vertical reaction at pivot 

R3 
= horizontal reaction at sea bed 

94= 
vertical reaction at sea bed 

HV Fý jo FC horizontal and vertical forces acting on centre 
of gravity of yoke respectively 

HV Ft, horizontal and vertical forces acting on cylindrical 
buoy respectively. 

Taking bending moments about the riser top articulated joint 

we have 
91 RI. 

F, " [ Y, 
'j: -W -( it +. fz, CA C4 

Ft; " (47 + 

F. c02 

Fi, "[ Jy G, ( 0) + e, ( ý) ]=0 (3.9.3) 
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and taking moments about the pin joint at sea bed 

(jf. 13 +ý? )-A z 
()(5 +Jl -f It +Ap )* 

ti 

4; 
U 

F, av 
[2 "dZ-(ej ) +(-ei -f-12. -X C4 ) (ý) t YC(, C--> *] * 

Fý" >+ (e)i 

Ft v (0j) ++ 

k-1 

57 5; 
(o r, ( Ok Fk (9 

'rk SH 
p+ 

kýI 
10 

F= i 
pr. 1 

(3.9.4) 

Equations (3.9.1) to (3.9.4) can be written in the form 

cý -, S 4) 
91 

00 F2. 

0F 

0 Rq Fý 

where 

(3.9.5) 

+ (3.9.6) 
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Xz =-( Xs +A +-oz. -f zp ) 

YCG, 
144- 

( e) 
-(21 4-it -x ct, 

) C-1 ( ý) 3 

(3.9.7) 

+ 
,6 F, fl. ýr Ci> 

(3.9.8) 
ZCo-., (igj)] [Fc"+F43+Fc" 

6 
jM1 

Fl, m fl, C. -3 (l? )- 25- �iZ, (e)] + F� vf Js. G( e) -f f. '34, ( e) 3- 

m2 k-i 

+3 Co> 
: ýý ý 

Fks 
kzi 

Fv 
$ 

[. f - k 

zli: 

Pzl 

Fýs F3 

NI 
fV Fl, Fv 
0 

1ý5 

K=j 

(3.9.9) 

(3.9.10) 

(3.9.11) 

Equation (3.9.5) gives 
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Ri XZIX3 ýo IX3 

RZ -XI /)(3 0 Fz. 

XL 1)(3 0 r3 

R4 )(I IX3 Cý /X3 F, 

(3.9.12) 

where 

x3zcý, X7 +ý e' xi 
(3.9.13) 

Force components Fk5 and F; ý 

written as 

Fkt £cFH 
D 

t 
Tr 

ks 

in figure 3.10 can be 

(3.9.14) 

(3.9.15) 

where rr 
.1 

S-F "ý 
= horizontal and vertical components of 

drag force on the element given by equations (3.2.45) and 
(3.2.46) respedtively. 

v horizontal and vertical components kK 
of inertia (structural) force. 

Differentiating equations (3.2.31 and (3.2.4) with 

respect to t gives the horizontal and vertical components 

of acceleration at the element. Therefore we can write 
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K a, (ei jzi 
k-i 

is &k c-- (ex ) 

49' k 

K-1 

k-I I ids > (dj (4. 
)(Ojgt 

izi 

s"', is b" -X- (6" ) 

(3.9.16) 

ým 
.sas 

9" z C, (, 9" ) (3-9.17) 

where Srw 
= structural + added mass of each link per 

unit length. Similarly forces acting on yoke (see figure 
3.10)'can be expressed as 

FC 
-j p) C4 

ý 111ý 0) 
LOjz L )+YC4 

19i 

j=1 (3.9.18) 

F6 V 
M, (Lgj + )(cr, q) C07 qý + 

M, C4, + (-f, + A. -x c C, ý( qj - 

(3.9.19) 
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Ft Wj 09j) 
j=j 

+ 

(3.9.20) 

F'V-= F' + 11'6 > ej I+ 

J. 1 X, 

is' ý C'"(p) j 
(3.9.21) 

where MI = structural mass of yoke + added mass of 
bracing members 

= added mass of cylindrical buoy 

F 
Lxý and are given by (3.3.75) and (3.3.76) bolt 

respectively. 

Now reactions R, I 'R Z- A 'R3 -1 
"ý4 can be evaluated using 

(3.9.12). The horizontal and vertical forces, r and k 
as shown below, at top of kth link can be found as 

follows: 

rx v 

", 4je 

J(A BED > R3 
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Horizontal force equilibirum gives 

HK1 #4 
r tý7 3 +R 

j=1 

Vertical force equilibrium 

vKIFv jo 

j=1 

(3.9.22) 

(3.9.23) 

Alternatively we can write 

-r H= 
74 

HIC, 9 
Ar k-I 

j" 

ks 
0 

y 

; kz Z,. 3, N 

; kc 

(3.9.24) 

(3.9.25) 

with 

1 
�4 I3 F' 

Is 

-Rif is 

T Force along the kth link, k 

rk' 

(3.9.26) 

(3.9.27) 

(tension + vf- ) is 

(3.9.28) 

Riser top tension can be obtained from (3.9.28) by letting 

k=N. 
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3.1o. Static Offset of Tanker 

The mean wind and current forces acting on the tanker 
in x-direction are given by the following empirical formulae 
for VLCCs ( 67 ): 

Longitudinal wind force (in tf), 

lp /IV F 

xw 
(3.10.1) 

Current force, 

4 
.7,, 

)v Fx', n =C'. A. L 
Xc. 76, (3.10.2) 

where 

CKV4 
wind and current force coefficients respectively 

VW mean wind speed at 10m above MWL (kts) 

current velocity at surface (kts) 

AT 
= projected cross sectional area ( wý ) 

/0, air and sea water densities (expressed in 

tanker draft (m) 

Mean slow drift force on tanker in surge given by Faltinsen 

( 21 ) can be written as 

/'3 LkL1 

(3.10.3) 
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where 

0. al = coefficient given in Appendix 

H5 significant wave height for irregular 

seas which can be taken as H 
2 (half design wave) here. 

Mean drag force on buoy due to interaction of waves and 
current (see Ref. 45' ) is given by 

CP z- + ur" 4 

1 Lka 
Z, rn 'jý, (7, e)3 (3.10.4) 

where 

VCb current velocity at buoyancy cylinder 

( VcI6 / Urn ); VC6 -, Urn 
(3.10.5) 

-IT vcb>, U, 
7 

(3.10.6) 

u 
0, = 

[i 

U. C" [-A( +IX )l 
-071, 

ý 
U"g: ý-! [-k 4 

+J, )] 

(3.10.7) 

ci 14 -A ýj 
7- e (3.10.8) 

High frequency motions of the system can be calculated at 

various arbitrary positions falling within the static offset 

and slowly varying positions of tanker. Therefore only a 
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rough estimate of the static offset will be carried out 
here. Static forces acting on the system are shown M! low. 

Assuming that resultant wind load acts at the tanker pivot 

and taking moments about the pivot we have 

Xc, (K 'F JL)1.13 - Fjb -, 
15- 

(A *, P, ) 

(3.10.9) 

Static offset can now be found by horizontal force equilibrium 

(Fxw *F + 
xs 

T. 

Fj 6 )-N 

(3.10.10) 

1, 
PIVOT 

IS F, t 6 

-I- / 

.I- N. J 

YS 
114 

t Mi 
1F 

FXW 
c 

TAMKEik 

+ Fj 
. Sa 
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Numerical'Data 

Tanker: 

Full'Draft Half Draft 

Structural mass (t) 240,000 120,000 

Added mass in surge (t) 12,000 6,000 

Draft, h (m) 18.9 9.45 

4M 423 846 

13.0 21.45 

#13 3.55 13.0 

Length, L (m) 310 

Beam, B (m) 47.0 

Table 3.4 Particulars of Tanker 

Yoke: 

Cylindrical buoy diameter, 
length, 40m; 

CM = 2.0; 
CD 1.5 

All bracing members 876.3mrn 

diameter except members 37. Z7m 

in figure 3.5 which are 
965.2mm dia. 

Mi z MZ- = M3 'm Mt Z" 22.77 -t M. Tet16=21-7Zi , M7, r Mg= Mf =, MII»=Z4.7q t, 

MIO =Mil-mM1,3=14, e=Z3.3et pt1,5-. a361.34 t, M16 w 26--01 t 

MISr=S,. 14ýb, M,,.. jo. q It )120= lo. lq t; , 
/4i, IS'. 11 -t 
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Riser Links: 
No. of links N 9; Length A= 12.78m; 

Diameter , 0.2286m; Mass m= 3975.3kg; 1.5 
Water Depth, d= 115m 
Current velocity, X=1.23m/s 

From Fig. 7 Re f. ( 67 ), Cxc. = 0.07; Fig. 2 of Ref. ( 67 ) 

gives C., = 0.83. Using rigs. 2.2,2.3 and Table 2.2 of 
Ref. ( 7) together with equations in section 3.10 gives 
the results summarised in Table 3.5 

j0 20 30 

S. o 11.3 ilf. 0 

Vw (kU) 54 S"7 

u 

e (raa) ll O. it99 0- S'l 3 0. Z 14. 

Fxw (MPJ) 0.43 0-41 0. s-e 0.69 

F 
. $Z (mý) 0.32. 0.4.1 0- ý4 0-71 

F6 (MA 
C( 

0. lf 1 o. 66 0.93 1.47 

YS (VV%) 

Table 3.5. Approximate Mean Loads and Static Offset of Tanker 
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3.12 ResUlts 

22 
YOE 

20- TAWKcs% 
-: r 

18, tF 

Qk 

14. 
n 0 

12 

8- 
U A, 46 
N% 

A HALF DRAFT 

2- OFULL DRAFT 

0r 

50 ........ 60 70 80 90 Ceg 

rod 
. 87 1.1 1.57 

ANGLE 

BES r Fi r Pa nvolv& s FoR quo YANcy FoRm 
FU L DRA F 

FA =)LrjA%_ 
(-3'%. ZZI 4 1-14-12-S' #- M-151 

I'SLAO 43 
_ 104. aiiZ flý 

----- HALF DRAFT 

1,111.0il f -t M 

f3 1 91-614 

0 RAbiAJS) 

FIC311 VARIArION 0, A--, 9Z10r, 4NCr FORCF WrIl 'Oo(', F SZ191; SRSION 
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DAMAGED SALS SYSTEM 

YOKE MASS8 1278.0 t 
PORTION OF EUOY VOLUME FLOODED- 20.0% 
STATIC OFFSET OF TANKER= 15. Cm 

FULL DRAFT 

STATIC EQUILIBRIUM POSITION: 
------------------------ 

LINK In 7.7 dog 
22 7.7 
3a 7.7 
4a 7.6 
58 7.6 
69 7.6 A 7z 7.5 0 
as 7.5 0 
98 7.5 J YOKE ANGLEw 84.8 do; 

NATURAL PERIODS AND MCDE SHAOES! 
-------------------------------- 

NATURAL PERICD (sec) MOCE SMAPE COEFFICIENTS 

1.52 

0.53 0.4t 0.34 C. le 

-O. Cl -0.15 -0.34'-C. 4t 

0.75 

0.49 

0.35 

0.27 

0*22 

0.18 

-0. SC -C. 2t 0.10 C. 41 

0.52 C. 4C 0.08 -C-2f 

-0.45 0.01 0.45 C. 44 

-O. Cl -0.45 -0.44 C. 01 

0.39 -0.26 -0.47 CAC 

C. Sc C. Ca -0.48 -C. 24 

0.32 -C. 44 -0.10 C-49 

-O. C2 -C. 4e 0.18 C. 42 

-0.24 0.49 -0.26 C. 23 

0.48 -C. 2d -0.23 C. 4t 

0.16 -0.41 0.45 -C. 32 

O. C2 C. 21, -0.46 C. 41 

0.10 

o. cs -0.23 0-35 -C. 44 

0.47 -0.45 C-37 'C-25 
CRTHOGONALITY OF MODES O. K. 
GINO-F MARK 2.6 01/05/80 

GINO-F MARK 2. o Cl/05/30 



-zol- 

w ul u z 

r5 - u 
OL 

I. - 

ui 

LU 

Lj 
I. - V) 
W 

ce < ce 

0 
ui 
W 

-_ 

Cc, 

IZS 

. 
tz* 
!4 



-, Zoz- 

cy uj m z 
I. - - u IA 

:; V, -1 r) 
. 

0 
w V; 

UJ 
C: j 

ui 03 
0- LU 
An a. 

% C4 
z I- 

% 

% 
% 

% 

LLJ 
% 

% 
ie 
0 

uj 

LU 

< Ex -0 ---- u 
lp- --- 

fy LLJ 
lz Ea z 

- u 
A 0) 

I-- W 
CL UJ ; 

LO 

to CL 

z $. - 
% 

% 
% 
% 
% 
% 

ui % 
% 

v 1, 

0 
ui 
P. - 

u ly LU 
;: ui 

!ý 
Cr 
< ce ui 

V) 

K" 

F) I 
tlz ýZs 



-Zo3- 

cz w bz 
Z 

c2 

CL 
iL 

-c c . 

w %% 

% 

c2 
w 

< 

in 

cz w 

tn > 
CL b. - w 

% 

w % 

c2 
w 

c3 

w 

KZ In w < w 

ts 
Q 

0) 



W ui 
Z 

u 

@ to 0. 
ý 

lý 

w ß! 

% 
% 

% 
% 

c3 
w 

c2 
w 

(Z- 

its 

Lli 
q- IES 

rc 

Rj K" 



-. Zo5'- 

DAMAGED SALS SYSTEM 

V A:; 
*=**2; 

24 
PORTION OF BUOY VCLUMF FLOODEDý 75.0% 
STATIC OFFSET OF TANKER= 15. Om 

FULL DRAFT 
STATIC EQUILIBRIUM POSITION: 
--------------------------- 

LINK 1= 9.5 deg 
2= 8.9 f 
3.8.3 0 
4z 7.9 0 
5z 7.5 0 
6.7.1 
7z 6.7 
8ý 0.4 
9.6.1 

YOKE ANGLEý 84.8 deg 
NATURAL PERIODS AND MODE SHAPES: 
-------- --- ;E 

NATU; AL RIOD (see) POOE SHAPE COEFFICIENTS 
------------------- 

5.77 

0.61 0.47 0.29 0.11 

-9.06 -0.21 -0.32 -0.40 

2. bS 

1.84 

1.28 

4 1.02 

0.79 

0.67 

0.55 0.22 -0.18 -0.46 

-0.49 -0.31 -0.01 0.27 

-0.47 0.12 0.51 0.37 

-0.10 -0.45 -0.40 -0.03 

0.43 -0.33 -0.46 0.18 

0.48 0.01 -0.44 -0.22 

-0.29 0.51 0.03 -0-50 

0.09 0.45 -0.14 -0.41 

-0.26 0.53 -0.36 -0.11 

0.45 -0.30 -0.18 0.42 

0.12 -0.38 0.52 -0.45 

0.19 0.18 -0.41 0.3c 

0.57 

-0.06 0.10 -0.20 0.38 

-0-47 0.51 -0.45 0.28 
ORTHOGONALITY OF MCDES O. K. 
GINO-F MARK 2.78 01-JUL-1985 - ISSUE I 

FORTRAN STOP 
SOEASSIGN/ALL 
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3.13 Discussion 
The equations of motion of the eight degree of freedom, 

9-link, yoke/riser system were solved in the time domain 
by reducing them to 16 first order differential equations 
and using the Adams variable step - variable order numerical 
integration algorithm (subroutine D02 CBF (65')) which 
is suitable for problems in which large numbers of function 

evaluations are involved and is used in many simulation 
packages such as ACSL ( 61 *). For the system considered 
this algorithm proved to be almost 30% faster than a Runge- 

Kutta-Merson algorithm (subroutine D02BBF ( 6T )) . The inverse 

of the inertia matrix [1] was determined using subroutine 
F01AAF( 9T ) which employs Crout's method (see Ref. ( qO 

Since [11 is a 16x16 time varying matrix (see equations 
3.6.72 - 3.6.74), its inversion at each time step could 

prolong the computer run time leading to high costs. It 

was found that inversion of [1] only at times when variation 
of angular displacements are larger than 3 degrees would 
lead to considerable reduction in computing time without 
affecting the accuracy of results. In order to incorporate 

variation of buoyancy force F. in the computer program, 
use was made of a curve fitting subroutine, E02ACF( 6.7 ),, 
by finding the best 5th order minimax polynomial fit to 
the calculated values. Changes in fa- with yoke angle 
are shown in Fig. 3.11. It can be seen that for large rotations 
of the yoke assembly changes in Fe' can become significant, 
the large increases being mainly due to submersion of long 

cylindircal members comprising the yoke upper and lower 

parts. The polynomial coefficients were found for ý, < Icr 
For larger rotations ( ý45*00 ) the lower part of the yoke 
structure could come into contact with the tanker hull 

leading to impact damage. For W<' 0< /05" changes 
in Fa were found to be minimal (less than 2%) except 
for the case of the tanker at half draft where buoyancy 

cylinder may become only partly submerged. In Fig. 3.11 F14MAL 

Corresponds to the buoyancy force at (ý=10* - In the, 

analysis it was assumed that the Centre of buoyancy coincides 
with the Centre of cylindrical chamber at all times, i. e. 
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the lever arm of the buoyancy force in the equations of 
motion, which is the horizontal distance from K to 
the riser top articulated joint, is always measured from 
the cylindrical buoy and not from the actual centre of 
buoyancy. This assumption, despite significant changes 
in F was found to be valid for the yoke geometry 
under consideration. For example, in the case of an 18% 
increase in F. , corresponding to ý=. 'roo with the 
tanker at half draft, the difference between the two lever 
arms, one measured from the cylinder the other from centre 
Of buoyancy, was found to be less than 2%. 

In deriving an accurate expression for the yoke kinetic 

energy in section 3.3, its members were considered individually. 
An approximate method would be to consider the yoke as 
a concentrated mass acting at its centre of gravity. This 
led to values of A,, (see section 3.3 and 
equations 3.3.39 - 3.3.41) that were accurate to within 
4% of the exact values. Therefore it was found that taking 
the yoke as a concentrated mass acting at its centre of 
gravity, an assumption used later in section 3.9 for 

calculation of riser tension and support reactions and 
which involves less algebra, could lead to accurate results. 
It was also assumed that the kinetic energy due to flexural 
displacements, i. e. bending of links, could be ignored. 
Simple calculations prove that the natural periods of links 
in bending are as expected well below the periods of exciting 
waves. Hence the contribution of link elastic bending 
to the kinetic energy was found to be very small. For 

example a wave having H= 30m, T =14 sec, the angular 
velocity of links for the rigid body motions are in the 

order of 0.035 rad/s (see slope of displacements in Fig. 3.26) 

giving a velocity at the top links of the order of 
'i = 3-4m/s. Treating the links as simply supported 

beams subject to uniformly distributed drag load F. with 
fluid particle velocity Ut! 7 m/s (linear wave theory, 
deep water approximation +1 m/s current) plus the link 4 
self weight in fluid gives the maximum deflection 9= 

394 r"L -0-Z, rn 
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and assuming simple harmonic vibrations of amplitude 
9 

and frequency W, gives velocity 
ý_f 

= Cas C-_ 0- 13 M/s. d+ 
This would roughly make a 7% increase in the kinetic energy 

which is negligible bearing in mind that the above procedure, 

although very approximate, is conservative because the 
inertia relief terms have not been taken into account. 
In any case flexural kinetic and strain energies do not 

affect the equations of motion and their effect can be 

considered separately if a detailed stressing of individual 

members is required. 
The static equilibrium position of the partially flooded 

yoke/riser system in still water can be found by setting 
the wave loading to zero. Fig. 3.12 shows the response 

of the system when 20% of the buoy volume is flooded (p=20%) 

and when there are no waves or current. Note that increase 

in p with time is assumed to be small and p is taken constant 
during the simulation. Time histories on the left hand 

Side of Fig. 3.12 show that although the initial values 

0f 0'ý ,ý are not far from the final values, i. e. the 

initial disturbance about the static equilibrium position 
is not large, transients can take a long time to die out. 
This is mainly due to small drag damping present. To overcome 
this problem an artificial linear damping term was used 
in the program which decreased linearly with time reaching 

zero after 10 seconds of simulation. The result is shown 

on the right hand side of Fig. 3.12. where despite a higher 

initial disturbance about the equilibrium position transients 

died out in less than 10 seconds. Values of angular dis- 

placements for this case and the natural periods and mode 

shapes for small oscillations are given on page zoo . 
Here, despite a 20% loss of buoyancy the riser remains 

almost taut. rigs. 3.13-3.16 show natural periods and mode 

shapes of the system for this case. For the higher modes 
the natural frequencies are shown to be closely spaced 

which if excited by fluid drag forces can possibly lead 

to interactions between the modes. The low natural periods 

are mainly due to the large buoyancy stiffness or tension 
in the riser. Fig. 3.17 shows the static riser top tension 
(8.03 MN C! t 800 tf for p= 20%) and the support reactions 
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when current velocity Vc = 1.23 m1s. Results of the eigenvalue 
analysis for p= 75% are given on page ZoS . The static 
equilibrium angles show that the riser becomes less taut 

and the increase in yoke mass, due to flooding, together 

with the reduction in buoyancy stiffness have increased 

the natural periods. The first natural period for this 

case is about 6 seconds indicating the possibility of resonant 
motions in presence of waves at low sea states (e. g. JONSWAP 

spectrum, Hs = 4m). For p> 75% (Fig. 3.18) the riser 
becomes very slack resembling the configuration of a catenary 
mooring chain with the bottom link inclined at 28* to the 

vertical. If the buoyancy loss is increased further, the 

stiffness terms in the equations of motion become negative 

resulting in an unstable system and, as shown in Fig. 3.19, 

the system will continue to sink. -Fig. 3.20 shows the response 

of the system to H= 10m, T=8 sec$ Vc = 1.23 m/s, p= 20%. 

Since 1,6 = 7.68m and the buoy centre is more than 20 metres 
below the M. W. L. any potential damping is small and therefore, 

to reduce the transient oscillations, in addition to the 

artificial damping mentioned earlier H was linearly increased 

from zero at t=0 to 10m at t= 20 sec. The steady state 

response is shown to consist of oscillations at the exciting 
wave frequency together with superharmonic components appearing 

at a 5th of the wave period. The drag force can be expressed 
in a Fourier series expansion containing harmonics at odd 

multiples of the exciting frequency (e. g. see Gudmestad 

and Connor ( 30 )) and therefore the appearance of super- 

harmonic components in the response can be attributed to 

quadratic drag resonance due to the fact that the first 

natural period of the system (T1 = 1.52 sec as shown in 

Fig. 3.13) is very near to 0.2T. Fig. 3.21 shows the tanker 

pivot motions and velocity of the top of the riser for 

this case. Maximum horizontal and vertical pivot motions 

are shown to be about to-Tm. -to-lsm respectively. Referring 

to Fig. B3 in Appendix B the vessel transfer functions are 

relatively small at high wave frequencies therefore the 

small amplitude pivot motions are due to the low vessel 
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response at the wave frequency (0.785 rad/s) under consideration. 
Time histories of. riser. tensiOn 'TR and support reactions 
are shown in Fig'. 3.22. Comparing, the maximum value of -r. 
(11.10 MN) with the static tension -rp, in rig; 3.17 (8.03MN) 
shows that there is an increase in riser top tension of 
more than 38%. Also comparing the results of Fi4s. 3.22 
and 3.23 (no flooding) it is shown that for this: case p=20% 
would reduce the maximum -r. by more than 24%. In Fig'. 3.22, 

TKM'O '=4.8 MN = 0.6 -TRs (Fig. 3.17Y. Therefore 
the maximum tension caused solely by dynamic loads is 
approximately 40% of the static-tension. It was also found 
that the minimum tension in this case was about 45% of 
the static tension for the undamaged case ( -rRs := 10.6MN) 
i. e. the 10m wave together with p= 20% can reduce the 
riser tension by about 55% during a wave cycle. For H=20m, 
T=11.3 sec (W=0.556 rad/s) the maximum horizontal 

and vertical pivot motions were found to be t I-S -, t2 '1 
(Fig. 3.24) respectively which appear to be approximately 
73 degrees out of phase with each other. Here the vessel 
transfer functions (see Fig. B3 Appendix B) and fluid loading 
are higher than the previous case which togethe'r: lead to 
larger angular, displacements of the yoke as shown in Fig. 3.25. 
Similarly with H=30m, T=14 sec ( CJ = 0.449 rad/s) the 
vessel pitch transfer function becomes very large causing 
vertical pivot motions greater than : tIS metres leading 
to large variations in the yoke angle as shown in Fig. 3.26. 
Time histories of -rA and support reactions for the 
H=20m, with no flooding, are shown in Fig. 3.27. -and a 
summary of all results, obtained is presented in Table 3.6. 
All cases considered correspond to a wave steepness of 
1/10 with the tanker at full draft. Despite all-efforts 
to minimize the costs, the computer program which was developed 
to simulate motions of the system proved to be qQite expensive 
to run. For example, to obtain an 80 second simulation 
record, in some cases, it took 18 hours of. CPU time to 
execute the program on a VAX 11/750 computer. This was 
generally the case when extreme wave heights and/or high 
amounts of tension loss in the riser were under consideration 
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where variations in displacements at both transient and 
steady states are larger, requiring shorter time steps for 
the numerical integration of equations of motion. in most 
cases specification of lower accuracy requirements in order 
to speed up the numerical integration process resulted 
in unrealistically large values of angular velocities and 
displacements which subsequently lead to aborted program 
runs due to numerical overflow in the mathematics library 

of the computer system. 
The sudden application of axial force at the time 

when the slack riser becomes taut can lead to transient 

rigid body link oscillations. For the cases considered 
the slack in the riser was very small and did not lead 
to high stress levels due to snatch loads. It must be 

pointed out that when the tanker is at half draft the buoy 
is nearer to the M. W. L. (10m when ý= 90*) undergoing 
higher fluid loading which can lead to more severe stresses. 
In the analysis the effect of elastic riser extension and 
internal material damping were ignored. A-better mathematical 
model for the study of snatch loads would include the effects 
of link elasticity. Walton and Polachek ( SY ) studied 
the dynamics of submerged inextensible cables and later 
( 96 ) added the effects of cable elasticity to their analysis 
in which they showed that neglecting cable elasticity would 
lead to highly conservative (almost double) values of 
snap loads. An approximate method to find snap loads would 
be to assume that the kinetic energy at snatch is equal 
to the strain energy in the links i. e. 1 Me -VI = -I- 2 Z. 

where M e, is an equivalent mass for the yoke, V is 
the velocity of riser top just prior to snatch, k 
is the longitudinal stiffness of the links and X= 

total link extension. This gives a snap load, F= *7- -qFK. Mp 

where me can be taken as a mass concentrated at the 

riser topýand which gives a moment of inertia equal to 
that of the yoke mass about the tanker bow pivot. For 

P=20%, Me = 647.5 tons, -X= 
74.95X'06 N/m (Young's 

modulus x cross sectional area / riser length) and steel 
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yield stress of 300-600 N/MM2' the velocity, of riser top 
to cause yielding of the material at snatch would be in 
the order of 2-4 m/s. Failure can also occur in the 12 
inch diameter pins connecting adjacent links. At each 
joint the pin acts as a beam supported by two plate connectors 
at both ends and is subject to snatch load acting at say 
midspan which can induce excessive bending stresses. Taking 
the span as 12-13 inches would give riser top velocities, 
to cause snatch, of the same order as those quoted above 
for the links. Failure in pure shear for connector plates 
Wthick) and the pin were found to be less critical. 

Although fluid loading and tension are a maximum at the 
riser top, since the static tension is less at the lower 

end, segments closer to seabed may experience the slack- 
taut condition before the upper parts. The extent to which 
the tension varies along the riser is determined by comparing 
axial forces in the top and bottom links. For example 
With H=10m and p=20% (Fig. 3.21) bottom tension (in link 1), 
found from the reactions at the sea bed i. e. by resolving 
horizontally or vertically, is TR = _R4 - R3 

where C--, ('91) 44- (191) 

at time t= 44 sec (when _TR_ is a maximum) the horizontal 

and vertical reactions at the sea bed are R3= -1.45MN and 
R4= -10.70MN respectively. From Fig. 3.20,491 = 7.7* 

giving TA = 10.8 MN which is 3% less than maximum Te 

at top however-when _rR is a minimum (t = 48 sec) the 
difference is about 7% and reaches 10% when p=30%. A question 
arises whether at any particular situation -rR can be 

completely lost leading to compressive axial loads in the 
links. Treating each segment of riser as a pin ended column 
the Euler buckling load P= 'r zEI 

, where effective 
length of segment = 6.39m, is approximately 6.8MN. Assuming 
that the riser is hanging freely and is in tension under 
its own weight only (mass cý 31 tons), the downward 

acceleration of yoke at the top needed to induce a 6.8MN 

Compressive force in the links would have to be higher 
than 20g which is impossible. A more likely possibility 
is when the slack riser is subject to high fluid loading 
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acting in the opposite direction to its sag while the yoke 
motions cannot compensate for changes in system configuration 
i. e. the riser acts as an arched beam., In such cases the 
induced axial compressive force will depend on the riser 
deflected shape, phase angles between the motions and fluid 
loads which is not very easy to assess. 

The analysis presented in this chapter which made 
use of Lagrange's constrained equations of motion can also 
be used for the dynamic analysis of Single Point Mooring 
(SPM) systems comprising multi-articulated columns and 

a tanker. Since the algebra involved in determination 

Of Lagrange multipliers can be tedious, a possible alternative 
analytical method is that presented by Kane ( ý-l ) which 
automatically eliminates the computation of these multipliers 
and which has been used by Wampler et al ( 87 ) to generate 
dynamical equations of motion for constrained systems directly 
from expressions governing systems without constraints. 
However Kane's method requires determination of components 
of body accelerations which can prove to be cumbersome 
whereas the Lagrangian method, involving kinetic and potential 
energies, systematically avoids such difficulties. Passerello 

and Huston ( 61 ) combined the advantages of the two methods, 
that is avoidance of the determination of components of 
accelerations and automatic elimination of non-working 
constraint forces i. e. Lagrange multipliers, and Winget 

and Huston ( 11 ) applied the method to cable dynamics. 
However the method and advantages it can offer here require 
further investigation. Note that once the riser failure 
has occurred, say by breaking at the top or the bottom, 
the system becomes unconstrained and one is interested 
in the motion of the yoke and freely hanging riser or the 

yoke alone regarding possible impact with the vessel causing 
hull damage. Since the mass of the riser is relatively 
small in comparison with the mass of the yoke, it is expected 
that the motion of the system would resemble that of the 

constrained system with the riser in a slack configuration. 
To ensure safety for the SALS system it is recommended 
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that parts of the cylindrical buoy susceptible to damage 

and subsequent flooding be separated in the form of air- 
tight compartments using bulkheads inside the cylinder 
such that at the event of any leakage fluid cannot reach 
the whole length of the cylinder minimizing losses in the 
riser tension and eliminating possibilities of structural 
failure due to snatch loads. 
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CHAPTER FOUR 
SIMULATION OF RANDOM SEAS AND ASSOCIATED SECOND ORDER RANDOM 
PHENOMENA 

0 

4.0 INTRODUCTION 

As mentioned in the first chapter here we are concerned 

with two methods of simulating random seas represented by- 

a sum of harmonic wave components and known as wave super- 

Position. The two methods will be used to simulate the * 

low frequency second order response of the tanker in order 
to estimate the peak slow drift response and its relation 
to RMS value. 

4.1 First order Random Seas 

A general stationary random process having 

a Gaussian distribution can be represented by a Fourier 

series expansion ( 73 ) as 

in rm 

where Ix V^ and ý 
rn are independent random variables 

with a Gaussian distribution having zero mean and ensemble 
expected values given by 

4)) i, (. )) 
F 

2, 

01.1 -M 

(4.1.2) 

' C4? 

where is the one sided power spectral densit of y 
the process yo at frequency By changing 
to polar coordinates and using the expression for joint 

probability density function of x and equation 
(4-1.1) can be written as 

60 
T 

a., 

Mal 

Y, 
= t,,:, ( Tm / -Im ) 
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where amplitude (or peak value) a,, has a Rayleigh 
distribution and is commonly taken as 

OL 

rA F-17 (4.1.4) 
0--, ' =R M$ OF 

is a random variable (phase In the Monte Carlo method 
angle) uniformly distributed between 0 and ITr 0 
Equations of the form of (4.1.3) represent a linear random 
sea surface elevation or wave particle kinematics and can 
be efficiently simulated using an FFT algorithm. This is 

achieved by truncating the series of frequency components 
in (4.1.3) to (LX) terms where (LX) must be sufficiently 
large. in most FFT subroutines LX = ir where r 
is an integer. Equation (4.1.3), can also be writtenin 

complex form 

LX 

a) > 
in which 

x W% -a OL, ap (Y, ) 

= OL V" ( I?,, ) 

Taking constant frequency and time intervals, 

we have 

CJ,, =( rn -I). is ca .9 llr% = 1, ) 2, LY, 

(4.1.5) 

(4.1.6) 

- 

(4.1.8) 

ho and &t 

(4.1 . 9) 

f- =. (I - 
0- Ai- ýI-: r- 1, Zý, --- -j 
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For the inverse Fourier transform to be exact we must have 

ilT 
LY. 

giving 

LX 

Atj = Re > 
84M Or 

12 Tri (M-1)(1- )/, LXJI 

The length of the time history is then 'r. = (L. X 
In using (4.1.9) it is necessary to include frequencies 
which fall outside the main spectral range as shown in Figure 
4.1(a). This results in unnecessary calculations for Im 
and and generation of random phase angles of a larger 
number than is required, which subsequently leads to higher 
computation costs especially when long time histories are 
required. A more economic approach is to use only N frequencies 
within the range of interest, say f rom OmZm to WWI" as 
shown in Figure 4.1(b), and set the remaining values of a,,., 

COOM and - 1ý"A in equation (4.1.12) equal to zero. In 

(4.1.11) 

LX FR(, QvCmcics 

A (,. )) 21 A (0) 
71 

0 FRCQjr,, JC 

0 

FIGURE 4.1. POWER SPECTRAL DENSITY r', , 
4h(j C-1-.. j 

> (L) 
wwk=(fn-, )AW (CL ) 
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this case 

cj mn t. 'Z l> Z., 
v", - �Z� + b. w; m 

In order to cover the spectruni we must have 

40 t f4. hej 

which from (4.1.11) gives 

tj,, a, ) LA - ht 

also 

L)c - &,, 3 >, 4).;, -t A- Wz 

giving 

LA(I- 0., &L *) 
I-IT 

Note: must be chosen as a multiple of &Q- 

For example if a sea surface elevation is to be simulated 
and we have - 

OJU rml/s P Or', 
', ' = ZOLI-1 c=o. 1 "/j 

ý, 
L X= 2, 

then from (4.1.14) and (4.1.15) we have 7f<, N4ý206. Therefore 
by. using say one hundred frequencies only we can get a time 
history with 2048 points. 

4.2 Second Order'Random-Seas 
Dud to the linearization of free surface boundary conditions 

used in linear wave theory it is not possible to estimate 
accurately the statistical and spectral properties of wave 
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kinematics near the free surface and ignoring the nonlinearities 
can make the random model unrealistic, especially for steeper 
waves. The second order perturbation solution to the random 
wave problem ( 34 ) is explained in detail in Appendix A 
where it is proved that the second order components of the 

random wave field act at frequencies which are determined 
by the sum and differences of the linear interacting frequency 

components, i. e. the random model for J(t-) including 
the seocnd order terms is 

L-X 

ý (t) =7 -x c02 (ii. �, t)-1J: - (0., t) 
M=l 

LIK ILX 

F" C, > (w ew, 

LX %, X 

5-- 57 m 
Mzl 

(4.2.1) 

where jlýnp Gv"V% 1 )Awn, 
% .7 

PM., 
are functions of the first 

order components. The double summation terms in (4.2.1) 

can be reduced to single summations if the frequency interval 

. &&a is kept constant, i. e. we can write 
LK L Y, 

572 Fý 
1% 

C&D f 0, + On Ic + 1311% 

AL 
Mk 

kýj 

(4.2.2) 

and 
Lx L*A 

T>H 

(, J, t 
Z- 1 (4.2.3) 
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where 

C4-) 

ký 
(k - 1) AIJ = Om + 0, 

(4.2.4) 

CJL = (ý-I) b-0 =I cjlf^ -011 (4.2.5) 

and we note that largest summation frequency is(W,, tQ,,,, )r-2(Lx-, )ACj= 

(k giving k =: ZLX -I and largest 

dif f erence f requency is (LX - Q, &CJ AO 

resulting in L% Using (4.1.13) we can write 

Wk =(k- 1) A 63 = (rn" + n') b0 (4.2.6) 

J. = 
(ý-I) YA C &I - (4.2.7) 

Dividing (4.2.6) and (4.2.7) throughout by we get 

jk =m1+htt 
-L 0";., 

.& (Z (4.2.8) 

z=I 

We can then write 

(4.2.9) 

L=ZZ Fý, 
,, 

(4.2.10) 
rh 

vnl nip 

M, 
t 

T- TCAMIng 
(4.2.11) 

MI no 

where WI and m' must satisfy equation (4.2.8). 

Qý T- 
m, r%, (4.2.12) 
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(4.2.13) 

where and ril must satisfy equation (4.2.9) 

Note: 

(1) When a difference frequency is negative, i. e. nl>rv%ý 
the sign of P,, 'nf in equation (4.2.13) must be adjusted 

accordingly 

(2) The number of single summation terms in (4.2.2) and 
(4.2.3) can be extended to LY=ZL)( instead of (2-LX-1) 

. 
by adding terms LLI =M LY =0 

Equation (4.2.1) can then be written 

LY 
> a, ar L 'LITZ 0 -I)ILY Ij 

NI 

I=1.1 

Ll 

where 

(4.2.14) 

Ll = 7-LX =23. 

A?. (4.2.16) 

Aý 
pp (4.2.17) 

Sp = 51 p Mp + Rp (4.2.18) 
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0 

where L, M, 0- 
., 

)Z are given by (4.2.10) to (4.2.13). 
Thus using (4.2.14) to (4.2.18), ýto can be simulated 
up to second order. 

4.3 A Statistically Realistic Model of Random Seas 

As mentioned earlier the amplitudes a, in equation 
(4.1.3) are usually calculated deterministically using (4.1.4). 

This method as noted by Rice ( 73 ) can only model a random 
Gaussian process when infinite number of frequency components 

are included and truncation of series in (4.1.5) to LX 

frequencies is not correct unless LX --, v oo . In this 

method the random nature of ý(i) arises only from the 

random phase angles generated with a uniform probability 
in the range 0- ? -'TT . Thus different time histories of 
the process always produce spectra equal to . 

5,,, (&J) 

whereas the signal represented by (4.1.5) repeats itself 

after a time-r= 7'r and is therefore only a sample of the 

infinite time history 1110 indicating that the spectrum 

of simulated time history need not be exactly that of the 

entire signal. 
A more accurate way of simulating JR) is to generate 

XVM and T, in (4.1.1) randomly from a process with 

a Gaussian distribution and zero mean, having a variance 
A, 

I or alternatively generate CL"M in (4.1.3) from 

a Rayleigh distribution with an RMS value of Z$ Ný ho 

Therefore the two approaches are: 

Deterministic, in which amplitudes are found deterministically 

and directly from the spectrum of the process 

2. Random, in which amplitudes are generated randomly 

using a Rayleigh distribution. 

As mentioned in Chapter One the deterministic approach 
cannot accurately predict the wave group statistics of a 
random sea while the wave grouping can have significant 
influence on the second order excitations and low frequency 

oscillations of floating structures. 
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4.4 Slow Drift Force on Tanker (Pinkster's Time Domain 

Method) 
The method presented by Pihkster ( 71 ) for calculating 

second order forces and moments acting on a floating body 
involves the direct integration of the first and second 
order fluid pressure over the body surface. The pressure 
p at any point within the fluid region is given by Bernoulli's 
equation 

WAA- -rAO KEA 
MW%- 

lb --04) %, Z l' 
7- -ý-> . 5t -- _Z «Ä' + -r +w) 

where 

total velocity potential 
vertical distance of the point below the mean 
water level 

fluid particle velocities in x, y and z directions 

where (x, y, z) is the cartesian coordinate system 
as shown 

The total fluid force acting on the body is then determined 
by integration, i. e. 

Force, CL$ (4.4.2) 

in which 

instantaneous wetted surface 
instantaneous outward normal vector to the 

surface element 

If equation (4.4.1) is expanded up to second order terms 
then, assuming simple harmonic motions in all six degrees 
of freedom of the floating structure, the second order part 
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of P in (4.4.2) will be produced by the following: 

Integration of first order terms over the region of 
relative surface elevation (between wave elevation 
and displaced water line) 

2. First order velocity squAred terms integrated over 
the mean position of vessel. 

3. Integration of pressure gradient over the mean position 
of submerged surface. 

4. Rotation of body which produces second order hydrodynamic 

force components equal to products of structural inertia 

forces and first order angular displacements 

Integration of terms due to second order potential 

consisting of undisturbed incoming wave potential, 
diffracted wave potential and body motion potentials 
over the mean position of vessel. 

Detailed derivation of above is given in ( 71 ) and for 
irregular waves the low frequency second order longitudinal 
force is expressed by 

a, a,, (4.4.3) 

C in which -f-,, and -r4 are quadratic transfer functions 

With the property 

-i--c WI, ' 

AA 7-nm = -Tý,, 
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and 

cZ = (o. )cJ, t 

Assuming that the second order potential contribution is 

negligible we have 

-r 's = V%W% (4.4.4) 

and using values of transfer functions for mean forces in 

regular waves we can write 

T c' tjý )=T birn. + W., ) fn 2. (4.4.5) 

Equations (4.4.4) and (4.4.5) together 
( 6j ). Equation (4.4.5) implies that 
by a mean value lying on the diagonal 
functions at a mean frequency equal to 
Equation (4.4.3) then becomes 

form Newman's approximation 
r- Th"t is replaced 

Df the matrix of quadratic 
+ 

CL OL -Tý 
C, 

cft (z) M WA (4.4.6) 

Then (4.4.6) can be reduced to a single summation term as 
described in the previous section and simulated using a 
FFT algorithm. Thus 

L'A 

Aý Cr., (0 t)- J3 Jý- N -t ) 

LA 

Re (A Ut (4.4.7) 
ý+Ib 

ýxl 
f 
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where 

ý= I r%-m 
1 (4.4.8) 

(4.4.9) 

(4.4.10) 

Cv,,,, = a-, oL. -C c, ( i?,, -, yr. ) 

a -r'- 
'g; - 

( Y" 
-) 

(4.4.12) 
_km ir- n 

CLM 
hr. ' 

The one sided power spectral density of F"" can then 
be written as 

A OL" OL"TOW% 
2, AW (4.4.13) 

m, n 

where m, n satisfy equation (4.4.8) and we have 

w 14). 
% -01 m (4.4.14) 

4.5 Second order Surge Response Of Tanker- 
Taking the equation of motion of tanker in surge as 

(M Ma, ) ; X, + c; - + k- 7- =F 
(1) 

+F (2) 

in which 
(M f, M&%) Tanker structural mass + added mass in surge 
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Approximate damping and stiffness coefficients 
respectively 

First order force 

The second order steady state surge response can then be 
found by substituting (4.4.7) into (4.5.1) to give 

L Y. 

Z! 
L) 

= ý; - X, CP:, ((j , t; )-7, , &- (0 0= 
LX 

Rie 017A. (Ilt 

(4.5.2) 

where 

B )/Z (4.5.3) 

ý. Aplz (4.5.4) 

L 

cip (4.5.5) 

(4.5.6) 

+r (4.5.7) 

Equation (4.5.2) can be simulated using the two previously 
mentioned methods, one deterministic the other random, in 

section 4.3. Simulation is carried out for a number of 
times, each one with different sets of phase angles and 
in the case of random approach, with different sets of wave 
amplitudes. The following statistical properties of response 
are investigated: 



- 240 - 

(a) Mean response from ith time history, 

L Y. 
(Z) 

z , ýZj 
= 

1- (4.5.8) 
LK 

(b) mean squared response from ith time history 

L LX 
7z 

=Iz Iz. - 
ill (4.5.9) 7x- 

-Lj jul 
(c) Peakyalues and number of peaks in each record. 

(d) Highest peak value in each record, and ensemble 
average of highest peaks, 

(9R) 

PMOIX, (, VR) 
>--- 

(4 . 5. ' 10) 
! =I 

where (8R) = 'number of records or simulations 

(e) Ensemble rms defined as 

Peak/rms ratio 

(JV&) 

L 
R= 

(A )xt 

,x Rmg 



-2 it I- 

4.6 Numerical Data 

Tanker: Mass = 240000t, surge added mass = 12000t, 

Beam = 47.2m, Length = 310.0m, Draft = 18.9m 

I 

0.354 0.444 0.523 0.600 0.713 0.803 0.887 

0.354 2.0 8.7 10.4 24.5 10.0 38.4 37.5 

0.444 1.0 20.8 19.4 25.7 12.1 35.2 

0.523 12.4 16.4 8.3 14.3 14.2 

0.600 14.0 9.5 18.0 14.9 

0.713 2 8.6 4.3 6.7 
T 12 in tf/m 

0.803 9.2 4.7 
Frequencies in rad. / sec. 

0.887 1 8.6 

TABLE 4.1. Quadratic Transfer Function of Longitudinal 

Slow Drift Force on a Tanker in Head Seas ( 71 

4.7 Results. 



-24x- 

9; 

LLJ 
-j LU 

uj 
u 

U. 

---------- LINEAR 

NON-LINEAR(STOKES 2nd ORDER) 
PIERSON-MOSKOWITZ SPECTRUM(Hs= 4.9 m) 
MEAN WIND VEL. = 15.0 (m/s) 
NO. OF WAVES= 30 
WATER DEPTH= 100.0 (m) 

FIG42RANDOM SEA SURFACE REALIZATIONS 

i. 00 

3.60 

3.20 

2.80, 

C4 

. 80 

LINEAR 

100 X NON-LINEAR CONTRIBUTIONS 

blFrEoLcom -rooems 

MMA-flops TEAMS 

"IT 3.00 . 60 1.20 1 80 

FREQUENCY Crad/s) 

I. ' 
�I 
I' 
"� 

II 
II 
II 
II 
II 
II 
II 
I 

LLX 

29 

IME(sec) 

FIG. J. 3POWER SPECTRAL DENSITY OF SIMULATED RANDOM SEA SURFACE 



-20- 

. 4rm 

LL 
cz 
w 
U» 

16 

14' 

12. ' 

10 

2 

0 
0.00 0.20 0'. 40 0.60 0.80 1.00 1.20 1.40 

FREQUENCY (rod/s) 

TANKER 

Beam 47.17 m 
Length 310.0 m 
DraFt 18.9 m 

VIAMN, 4L COSIME TRANSFER FlIN6'rION 0,1 LOWITMOZN-4L 
SL OJ/ ORIFI' FMCE ON A LANWER IN I-1, FA0 k4 YES CR., ýnkg i 



-244- 

co CD 
V, 
ts) 

CD 
ýr 
CS) 

CD 

u u 

%n 

C: 
. 

Li 
E 
0 
'D 

E 
L 
4, 

a) 
C4 
cr) 

1 (, 4 

cr) 
N 
a) 

, &, 
Ito 
en 

(D 
Cl) 
tr) tr) 

(D 

LO 

Ge 
Lli 

0. 
J9 

-9- 
y 

(1) 
CC) 
C*4 

w 
C14 

IID 
C14 

cp 
CC) 
(14 < 

w 

u 
0 U- 

(S) 
N 
ca 

C14 (14 
LL 

0 

(n 
LL 

CD 
(D 

CD . 
CD 
(D 
El 

CD 
(D 

w 
0 

x 
LLI 

4 

-tr) LO . -, 
I -tr) L. - 

- Lr) U. 

(D 

ei) ,. r-4 eb GD (S) (!; ) (S) CD CD ZD CD Im CD 
(D G) CS) ei CD CD (9 (9 CD 
Ir Ir i- CD Ir CI) 

'(auuol) 33NOJ 



-2j5- 

120030 
----- Deterministic 

80000 - Random 
JONSWAP 

GOOOO Hs= 7.5 m 
Peak Freq= . 5310 rod-Is 
250 Frequencies 

20000 

L- - 

. 02 . 20 . 40 . 60 . 80 1.00 

I 

F.. 

U 

U, 

100000 
80000 

I 

00 

00 

. 03 . 20 . 10 . 60 . 80 1.00 

FREQUENCY Crodls) 

FIGJ. 6POWER SPECTRAL DENSITIES OF SLOW DRIFT FORCE ON A TANKER 

If 



CD 
V- 

ts 0) cr) 

(D 

Z: 

cý 
Z 

1 
Co 

lký 
C14 
G) 

co 

a) 

IIW CC) 

CS) 

CD 

LLP 
V) 

- 

(UI) 9flS 

co CD 

ca 

u 

tn 

Lu 
E: 

I 

e 
CID CD . 

OD CD (D (D 

C4 N 

w LLJ 
ý. e 
z 

LL 
0 
ui 
W 
z 
0 
CL 
V) 
ui 
ly 
ui 
LO 
(Y 
D 

z 

0 
-i (n 
LL 
0 
(n 
ul 

0 
I- 
in 
X 
LU 
E: 

LL 



-247- 

CID CD 
V- W, 

Co 

u d) 
in 

LLJ 

w LLJ 
y 
z 

1 

CaUU01) 3080-3 

i 
ED iim -r 



-48- 

I oooooý 

80000. 

60000. 

40000. 

20000 

o 

. 00 

100000- 

-S 

U 

Ui 

C0 
C 
0 

%-. 

100000 
0 

B0000 

I 

Deterministic 
Random 

JONSWAP 
Hs= 15.0 m 
Peak Freq= . 3156 rad1s 
500 Frequencies 

Ao . 60 . 80 1.00 

00 

lao 

00 
FREQUENCY (rad/s) 

FIG4,. jPOWER SPECTRAL DENSITIES OF SLOW DRIFT FORCE'ON A TANKER 



-2441- 

u 
in 
c 
E 
4, 

a lb 
cl 

I cr) 
t- 

I 
I 
I 

E to (1) 
10 

V) 
ir 

W 
z 

CD 
w 
N 

CD 

Co (D 

OD 

If 

I. D 
m 
Ln 

CD 

CD 

N 

w CD CV CD (2 

(-) 3EWS 

CD 

u 

41 
in 

w 

(D 
(1) 
tr) 

" 

-0 OD 
C14 

CD 
LO 

CD 

12 w x Z 

LL 
0 

w 
to 
Z 
0 
0- 
0 
w 
W- 

w 

Z 

Ve 
«c 

LL 
0 

(1) 
w 

w 
Z 

. JA 
(D 
u. 



-250- 

SLOW CRIFT RESPuNSE OF A TANKER IN SURGE 

JONS6AP SPECIRUMpHS- 15. COCM)gPEAK FgE^. u 0.3456CRAD/SEC) 
SURGE NATURAL PERIOD OF TANKER- 4.00(MIN), DAVPING RATIOR 0.070 

CRANDOM***DETERMINISTIC) 

RECCRO NO. PEAK RESFONSE CM) Nil. OF PEAKS RMS (m) 

mu. s. x. m. m. 

1 1.98*** 1.47 34*** 33 0.63*** 0.54 

2 1.48*** 2.32 34*** 34 0.56*** 0.73 

3 1.75*** 1.81 
. 
34*** 33 0.58*** 0.67 

4 1.76*4* 2.37 34*** 35 0.61*** 0.61 

5 2.02*** 1.62 33*** 34 0.75*** 0.62 
NO. £F FREG. CGMFONENTSw 750 
DURATICN OF E4C4 RECCRD* 2.13 CHRS) 

ENSEMBLE AVE9AGE OF FEAKS- 2.35*** 2.47 (M) 
RMS- 0.63*** 0.6A CM) 
PEAK/RMS RATIO* 2.85*** 2.97 

FCRTRAN STOP 

SLOW CRIFI RESPCNSE 13F A TANKER IN SU; GE 

JONS6AP SPECIRUM#HS- 15.00(M), PEAK FREQ. m 0.3456(RAD/SEC) 
SURGE NATuRAL PERIOD OF IANKERz 4.00(MIN)90APPING RATID- 0.070 

CRANOCt4***DETERMIKISTIC) 

RECCRD NO. FEAK RESFONSE (M) N3. CF PEAKS RMS (M) 
msm. =92.8.2 xsmzz=z=uxa2x=. xm .. was. susess awasusawassus 

1 2.10*** 2.94 30*** 31 0.65*** 0.71 

2 1.55*** 1.97 36*** 33 0.57*** 0.65 

3 2.34*** 1.53 34*** 32 0.67*** 0. S8 

4 2.60*** 2.06 35*** 35 0.88*** 0.67 

5 2.72*** 1.83 33*** 33 0.82*** 0.76 

h3. OF FRE44 COMPJNENTS= 750 
DURATION OF EACH RECORD- 2.13 (MRS) 

ENSEPBLE AVERAGE OF PEAKS- 2.82*** 2.43 CM) 
RHSz 0.73*** 0.69 (M) 
PEAURMS RATIO- 3.20*** 2.71 

FCRTRAN STOP 

SLOW CRIFT RESPONS! OF A TANKER IN SURGE 

JQNS6AP SPECTRum, MS. IS. COCM)#PEAK FREQ. z 0.3456CRAD/SEC) 
SURGE NATURAL PER103 OF 7ANKERz 4.00CMIN)tDAPPING RATIC* 0.070 

p 
CRAN3rM***DETERMINISTIC) 

RECCRC No. FiAK RESFONSE (M) NO. GO: PEAKS RMS C4) assum.. wass msxxzx*. zz. a=zw.. .. uswassaux wasen-causes. 

1 1.42*** 3.. *9 34*** 34 0.54*** 0.99 
2 1.63*** 1.86 35*** 32 0-64*** 0.76 

3 2.33*** 2.06 34*** 34 0.65*** 0.61 

4 2.38 **vc 1.6: 35*** 35 0-86*** 0.54 
5 2. i2**m 2.3e 33*** 34 0.7e*** 0-93 hO. CF FREQ. COMFaNENT$x 750 

CURATION OF EACH RECCROA 2.13 (hRS) 

ViSEMBLE AVERAGE OF PEAKS- 2.72**-gl 2.85 (M) 
RMSa 0.71*** 0.76 (4) 
PEAK. PRMS RATIOx 3.02*** 2.99 

FCRTRAN STOP 
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SLOW CRIFT RESPCNS! OF A TANKER IN SURGE 

JONShAP SPEC7RUM*HS" 15.00(M)tPEAK FREQ. = 0.3456CRAD/SEC) 
SURGE NATURAL PERIOD OF TANKER= 4.00(MIN), DAPPING RATIO= 0.070 

(RAN JO M**40E TERM IN IS TIC) 

RECCRL NO. FsAK RESFONSE (4) NJ. 01 PEAKS R4S (4) 

1 11.51-4-* 2.17 36m*, --* -42 0.49*** 0-67 

2 1.51-4.4-4, 1.92 33 36 0.53** 0.63 

3 2.04**' 2.01 30*** 33 0.69*"w* 0.69 

4 2.06*ý'* 1.57 36**ft-- 32 0.52*** 0.68 

5 2.20-*** 1.64 34*** 33 0.71*'* 0.62 

6 2.93*** 1.71 35-"** 35 0.65ý'** 0.58 

7 1.98*4-11ft 2.16 34 34 0.56*** 0.. 73 

6 1.93V, 9, r-, 2.04 33 *** 31 0.73*'V-* 0.77 

9 '2.13*"e*' 1-59 ""', * 34 ýý 32 0.67*"r* 0.66 

10 1.75*'r-'v- 2-16 33*-v-* 36 0.5E*'*-* 0.79 

11 2.56----**- 2.80 33*** 33 0.7! *** 0.88 

12 2.99*4-r 2.29 34*** 35 0.80*** 0.77 

13 1.80*** 1.81 34*** 35 0.60*** 0.61 

14 2.19. -*,. 2.51 34*** 34 0.85*** 0.79 

15 1.64**-" 2*00 33*** 36 0.63*** 0.56 

16 2.10*** 1.53 34*** 33 0.68*ft* 0*64 

-17 2.28**:;: 2.66 34-'Y-** 34 0.70'v-** 0.79 

is 2.68*'N--' 1.62 34*** 36 0.77*** 0.57 

19 2.29'v*** 1-93 34*-w-* 33 0-66*** 0.76 

20 2.06YA'v-* lo96 32*** 35 0-69*** 0.63 
NO. CF FREQo '-DMFONENTS = 750 
CURATION OF E ACH RECCt"%D = 2.13 (HRS) 

ENS'PZLE AVER 'GE OF F--: A KS= 2.64 *--'- 2*5E 01) 
RMS= U,; 7:; c*!;: 

3.70 
(M) 

PEAK/RMS RATI O= 
I- v ft. ft. . 1% 

FCRTRAN STOP 
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4.8 Discussion 
For the simulation of the 1st and 2nd order random 

processes considered here use was made of the pseudo-random 
number generator routines G05DAF, G05DPF and GOSDDF 65 

on a VAX 11/750 computer. All pseudo-random numbers have 

a finite cycle length after which the sequence repeats itself 

and it has been recommended ( 6Y ) never to use more numbers 
than the square root of the cycle length in any one sequence 
of numbers so that the statistical properties are not impaired. 
The cycle length of-the routines mentioned above is 2 57 

and initialisation of the sequences was performed by calling 
the subroutine G05CCF ( 65 ) which sets the basic generator 
routine to a non-repeatable initial state using the setting 
of the real-time clock. In this way different sequences 
of random numbers are generated in various runs of the computer 
program yielding different time histories of the process 
at each run. Note that the statistical properties are guaranteed 
witbin the sequences of random numbers and not between the 

sequences. Fig. 4.2 shows the 1st and 2nd order random sea 
surface realisations using the deterministic method of simulation 
mentioned in the previous sections. Use was made of the 
Pierson-Moskowitz spectrum ( 7o ), shown in Fig. 4.3, and 
the simulation was carried out via the FFT algorithm subroutine 
C06ADF ( 65 ). This routine was also used to simulate the 

slow drift force and the response of a tanker in head seas. 
Pinkster's results for the diagonal transfer functions of 
the slow drift force on a tanker were plotted and the graph 
is presented in Fig. 4.4. In order to incorporate this 

graph into the computer program the curve was approximated 
by short linear segments. The curve represents the data 

on the diagonal of the matrix of transfer functions (0, % 
given in Section 4.6. which are the amplitudes of the force 
for zero difference frequencies corresponding to the mean 
drift force in regular waves. These are analogous to reflection 
coefficients used in the calculation of the 2nd order low 
frequency forces on floating bodies and tend to a constant 
value at high frequencies at which the vessel motions become 
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negligible and it can be assumed that total reflection of 
the waves occurs. Note that the Newman approximation is 

only valid for cases where the contribution of the 2nd order 
nonlinear potentials (item 5 in Section 4.4) and the difference 
frequencies are small. Pinkster's comparisons with model 
tests and computations indicate that the approximation is 

valid for mean frequencies above 0.4 rad/s. However the 

objective here is not the accurate estimation of the slow 
drift force but to find the statistics of the tanker response. 
It is also pointed out that more computations and model 
tests are required to verify the accuracy of available results 
for slow drift force. A sample of simulation results for 
the slow drift force on a tanker is shown in Fig. 4.5. The 
JONSWAP spectrum with Hs = 7.5m was used with only one simulation 
using the deterministic approach being shown. Also in this 

case the random phase angles were the same for both simulation 
methods. Fig. 4.6 shows the power spectral densities of 
the force when the first order wave spectrum was split into 
250 frequency components. It can be seen that the differences 
between the two approaches can be quite large in each simulation 
record. Fig. 4.7 shows a sample of the results for the slowly 
varying surge response of a tanker in head seas. Roberts 
( 74 ) has shown that when damping is very light it can 

be assumed that the response statistics are independent 

of the exciting force statistics, however this assumption 
may not be justified when the actual levels of damping on 

a floating structure are considered. In Section 4.5 the 
low frequency damping of the tanker was assumed linear, 
based on the model test results of Wichers and Sluijs ( Sq 
for a LNG carrier and a VLCC. They concluded that due to 

small velocities of the low frequency surge motion the damping 

coefficient can be considered linear. Based on results 
of a 200,000 DWT VLCC a damping ratio of 0.07 was chosen 
for further time simulations. It was also assumed that 
the stiffness term in the equation of motion is linear which 
is applicable to some floating structures such as a sALs 

system or a TLP, however, when structures such as a Single 
Buoy Storage (SBS) system or a semi-submersible are considered 
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the catenary moorings can introduce highly nonlinear stiffness 
into the equations of motion which can play a dominant role 
in determining the statistics of vessel response for large 
displacements. 

To simulate tanker response various time histories 
with different durations were considered. The number of 
simulations (records) in the computer program varied from 
NR =2 to 200 and the duration of each record was between 
1 and 8.5 hours. The program was run 3 times for each case. 
Some of the simulation results are presented on pages ZSO-ZSZ 
The two values appearing in each column correspond to the 
results of M the random approach (on the left) and (ii) 
the deterministic method (on the right). The results for 

all cases considered and relating to the extreme response 
of the tanker in head seas are presented in Figs. 4.11 - 
4.18. With NR < 20 the scatter in the results can become 

very large but as NR is increased they converge. For example 
in Figs. 4.17 and 4.18 it is shown that for NR >- 50 the 

ensemble average of peaks X PPUW = 3.1m and the peak/rms 
ratio is R=3.6. However when NR = 2, in one case 57p...., 

was found to be underestimated by about 15% or in another 
record with NR =5 the value of R was underestimated by 

nearly 40%. Therefore in order to arrive at accurate results 
it is extremely important to obtain a sufficient number 
of simulation records, say NR *; /; p 50, in each program run. 
The length of each record can be adjusted to the estimated 
duration of the sea state. For all cases considered here 
the random approach did not offer any advantages over the 
deterministic method and for accurate results (at high values 
Of NR) the predictions of both methods were identical. Although 
here the values of R and -2 F-&X are predicted accurately 
by the deterministic approach points made by Tucker et al 
( 93 ) concerning wave group statistics and the results 
of Langley ( 54 ) show that this approximate method can 
underpredict the 4th statistical moments of the force and 
response. As mentioned earlier when damping tends to zero 
the response of the system becomes Gaussian and is independent 
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of the statistics of the exciting force. For a narrow banded 
Gaussian process Cartwright and Longudt-Higgins 8) 
derived Rz + O-T77Z in which' jVP number 
of peaks in the simulated record. Regarding the levels 
of damping present in the equations of motion and the random 
dynamic analysis of offshore structures, this equation is 
frequently used for the estimation of the peak values. Here 
the number of peaks occuring in the 8.5 hour records was 
found to be in the range 129-142 giving R=3.3 by the 
Cartwright-Longuet-Higgins formula which is about 8% less 
than the simulation results. Such differences would increase 
with higher levels of damping and therefore the use of the 

above formula could result in a gross underestimation of 
the peak values. It-must also be added that although exact 
simulation results are presented here, in order to improve 
the accuracy of the simulations and to arrive at more realistic 
predictions the directionality of the sea spectra and the 

non-stationary nature of the force and the response processes 
should also be taken into account. 
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CHAPTER FIVE 

CONCLUSIONS 

For the fixed horizontal and vertical cylinders and 
the environmental conditions considered the use of 
a particular wave theory did not affect the choice 
of C-Iý and Cm - 

2. Predictions of Stokes Vth and stream function wave 
theories were found to be in good agreement except 
at high Ursell parameters. 

3. For the fixed horizontal cylinders Airy theory invariably 

overpredicted the load range within a cycle which can 
lead to, large errors in the estimated contribution 
to fatigue damage of jacket members. For the fixed 

vertical cylinder, the results of linear wave theory 
for the maximum shear force were in good agreement 
with those by the stream function and Stokes Vth theories 
when integration of forces were carried up to the MWL, 
however, in some cases the maximum bending moments 
were underestimated. In most cases the differences 
between predictions of Airy and nonlinear wave theories 
were large especially for calculation of forces at 
locations near theIree surface. 

4. When integration of forces were extended to the free 

surface the increase in base shear force, bending moment 
and stress range were very large, indicating that variable 
submergence effects cannot be neglected. However more 
experimental data are required to validate the predictions 
of wave theories for the particle kinematics near the 
free surface zone. 

5. Convective acceleration terms in the Morison's equation 
had little effect on the maximum values of the fluid 
inertia forces. For highly nonlinear waves with large 
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Ursell parameters and when stress ranges for fatigue 

calculations are under consideration the differences 
between the local and total acceleration terms can 
become important. 

6. Although displacements of the articulated towers were 
small relative to wave length, calculation of forces 

at the instantaneous position of the tower resulted 
in large increases in response (about 20%). In some 
cases this effect considerably influenced the distributed 
fluid loading causing an increase in the maximum shear 
force and bending moment. The effect of both variable 
submergence and calculation of forces at the displaced 

position of the tower was to increase the loading by 
52% and the tower response by 75% in the worst case 
which require experimental verification. 

7. Predictions of the eigenvalue analysis for the dynamic 

stability of the tower was justified by the simulation 
results. However it was shown that when drag loads 

are mobilised, viscous damping can play an important 

role in limiting the response of the tower and for 

more reliable results a time domain analysis should 
be performed. 

B. For the SALS system considered it was found that variations 
of the buoyancy force with yoke submersion can become 

significant at large rotations of the yoke assembly. 

9. The natural periods of the yoke/riser system at moderate 
levels of buoyancy loss were found to be low indicating 

that resonant motions are unlikely to occur except 
in the form of superharmonic excitations caused by 
drag loading when a natural frequency of the system 
coincides with an odd multiple of the exciting wave 
frequency. At high levels of flooding in the buoyancy 

chamber the increase in the natural periods of the 

yoke/riser system can lead to resonant motions or 
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result in total submersion of the yoke structure causing 
impact damage to the tanker hull. 

10. For the cases considered the slack (curvature) in the 

articulated riser was found to be small and did not 
lead to high stresses due to snatch loads. Riser links 

nearer to the sea bed may experience slack-taut condition 
before the upper segments and it is unlikely that the 
links can undergo compression leading to buckling failure. 

Exclusion of riser elastic extension in the analysis 

can lead to conservative estimates of snatch loads 

(Ref. ss, 86) and a better mathematical model for the 

study of such conditions would include the effects 

of link elasticity. 

12. Time simulation of random second order phenomena, such 

as the slow drift force on a tanker, represented by 

a sum of wave harmonics can be efficiently performed 

via the FFT algorithm by reducing the double summation 
terms in the time series to a single summation term 

using a constant frequency interval for the wave harmonics 

and by considering only the wave amplitudes which 

correspond to the main frequency components in the 

wave spectrum. 

13. The limited number of simulation records in some cases 

resulted in gross underestimation of extreme tanker 

response values and it is extremely important to perform 

sufficient simulation runs. 

14. Comparing the results of the extreme vessel response 

obtained by the random and deterministic methods of 

simulation, the random approach did not offer any 

advantages over the deterministic method and for accurate 

results with sufficiently large numbers of simulations, 
the predictions of both methods yield identical values. 
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15. The simulation records indicate that for practical 
levels of damping the commonly used method of calculating 
the peak values based on the Cartwright-Longuet-Higgins 
formula can underestimate the extreme low frequency 

response of the vessel by about 8%. 
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I APPENDIX A 

NONLINEAR WAVE THEORIES AND SECOND ORDER NONLINEAR RANDOM WAVES 

GENERAL 

The following give details of some of the nonlinear wave 
theories suitable for calculating hydrodynamic forces on 

offshore structures and used in this thesis. 

Much of the theoretical development and many points not 

mentioned in the referenced published work are included. 

Also many of the equations presented do not appear in the 
literature and it is hoped that these will provide a better 

understanding of the nonlinear wave theories and enable the 

reader more readily to use them on practical problems. 

A. l. STOKES SECOND ORDER RANDOM WAVES (34. ) 

The boundary value problem of two dimensional flow with 

a horizontal sea bed and assuming incompressible, irrotational 

fluid is formulated bleow, the derivation of which can be 

found in many text books on wave theory and hydrodynamics 

(e. g. see (3j) or (52)). 

FACE s4AFACE 

FIGURE A. l. Coordinate System, Definition Sketch. 
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The IX., 5- coordinate system, fixed at the still 
water level, is defined as shown and the following terminology 
will be used. 

mean water depth 

= free surface elevation 

velocity potential of flow field 

a- 1)0 
) It 

horizontal fluid particle velocity 

V--? 0 
Ilc4t- vertical fluid particle velocity 

The differential equation to be solved is Laplace's 
equation of continuity 

(A. 1.1) 

The boundary condition to be satisfied at the sea bed 
is that of zero vertical particle velocity 

(A. 1.2) 

The kinematic free surface boundary condition (KFSBC) 

states that a particle on the free surface always remains 
on the surface, i. e. a particle on the surface at time tj 

with y-coordinate -MI, will have a y-coordinate 

at time tz and will not inove to say 
below the surface elevation as shown below. 

WAV4C rot" StjQfA C4 

MWL 1VJL TIME, & ts Time 
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Thus 

but 

Jý 
-v Tt, - 

hence 

, 

A-L ox., o ý-a 7 tt-)l 
oLt 

The KFSBC can then be written as 

'ýI 
+f 

-ý'L )$ 
-=O 1P 

AT (A. 1.3) 
TC Tx * 5; ý7 - -2ý0'f, 

The dynamic free surface boundary condition (DFSBC), 

assuming zero air pressure, is given by Bernoulli's 

equation as 

ZI = an akbitrary constant 
usually set to zero (A. 1.4) 

This can be written as 

=-, 
[ 2± 

, !. ('Di m-D4 1- 
-r ezl 1aý7, - 

) 
-IL 

(, 
y, - 

)1' 
'N 1.5) 

Differentiating (A. 1.5) with respect to t and x gives 

(A. 1.6) 

AT 
'? z ý11 -) 7--5t I- iz 

) 

in equation (A. 1.3) Substituting for and 
and multiplying both sides by (-g) gives 
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Uf 12L ,L 3- t ("> 0)ß 
t t Ull -bý. Z «; it, la- 

it 

4. r 

now 

-a (ýI Z- 
= 57- 5,2 

) 
., ý- -- t (A. 1.9) 

-')t 
'DZ 

similarly 

(A. 1.10) 

Adding (A. 1.9) and (A. 1.10) gives 

'ý L oit- ý 
-t 

.)t 
(- ýt ý ]'= 

-t 
W 

- - -A ' 
. 
-3-0 1 

- - 70ý ;I% ,) 7- q - ; T> t 
As I is a function of x and t only, differentiating 

(A. 1.5) with respect to y gives 

--)I 
=-1[ 

ýL 
-ý 1- C4- )L + AT (A. 1.12) 

7, ý J- 1ý'bt IL Z-4 

(, 
7,7 

ýI-, 
(A. 1.13) Ft ,x 

Substituting (A. 1.13) into (A. 1.11) gives 
L + 

xz -21 L I- 7t 

AT 
3ý 7ýý V)Iý) 

Substituting from (A. 1.14) into the last term of (A. 1.8) 

yields 
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. )Li W, E 2- ý i. -ý 0- -) 

Mý -I (A. 1.15) 

If J(ý). v at using a Taylor series expan! gion we 
have 

_D ýL j(» t tKýI , 2ý 
AT "6 %0 (A. 1.16) 

Assume a perturbation solution for the nonlinear potential 
0 and wave profile I 

(A. 1.17) 1L ý3 
(A. 1.18) 

where & is a perturbation parameter. 

Applying (A. 1.16) to (A. 1.15) we have 

)t ji Ut 21ý- 

)a -0 j? ý 

Al I ir 0 1.19) 

Substituting for and I from (A. 1.17) and (A. 1.18) 
into (A. 1.19) and neglecting third and higher order terms 
(i. e. including & and L2 terms only) we have 
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+ 
IT 157 

e ýLl 
+ c V, ) -t F, I 

tL 

JE -tL- -t *L( f- 

L, t .... is* 

A-1 

(A. 1.20) 

Multiplying throughout and retaining terms of up to second 
order only and equating the equal powers of & we get 

-t-. 

which is the result of linear wave theory, and 

21 

Yl (A. 1.21) 

)t 

Similarly (A. 1.5) gives 

% [-)0, '1 -ýJl I r) 4 1. -) 0L (A. 1.2 2) I 

T( )+.! -( )I Z. zPL *)% -L -) ý 

Euqations (A. 1.21) and (A. 1.22) express 
02, 

and 

directly in terms of 01 and 'I, which are the results 

of linear wave theory, also and I have exact 
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solutions therefore F, can be set equal to unity. 

RANDOM NONLINEAR WAVES 

The boundary value problem presented above was 
originally developed f6r a single wave. Since the fluid 
is inviscid, the potential for the superposition of 
N-coplanar waves representing a random sea is given by the 

sum of the separate potentials. 

where from linear wave theory 

ot.. - CJ4 3 (A. 1.2 3) 

A; - (-k,, - -x - 4ý- . -, -y.. ) where 
amplitude of mth wave component 

F2- ý -2 
,P '". 0 1, Do 

power spectral density of wave 

surface elevation 

-1 40% 
= mth wave number 

W"% = frequency of mth wave component 

IL), = width of spectral element 

mth random phase angle, uniformly 
distributed between 0 and 'LTr 

For linear waves therefore we can write 
t 
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pw=' 

where for linear waves 

x- oA (A. 1.24) 

ss 
Similarly since fluid particle velocities and accelerations 
are also linear derivatives of they can be superposed. 

Substituting for 1, and into (A. 1.21) and 
(A. 1.22), after some algebraic manipulation gives 

0 a. ý4 01, = 0&6::. (a+ a, Oý A++ 
Mal nzi 
0 A-t 

mat nzj 

tj a 

it- >> 

1.25) 

1.2 6) 

I 
&]ý. 1.1 iF 

13 )(ý-, .ý)+L. )O. % ( 4., ý- 00% P% ) 
AM^ r- 

ý Lý- 4ýý t( )ý *- -). ), -1 (4 rA 4- 1, ) to'd L(A" + ý, ) 13 1 

a. iC+ I' 

OL OL 

2 7) 
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I( 41 

bw%t% is 
4 o- ot (A. 1.28) 

AP% + tj, ý cjý,, +p+ ti., )3Y1, ý 0., '). 
(A. 1.29) 

I 
,, =t 

6'.. (0. 
- W. ) 

- 
I-L4, 

(A. 1.30) 

(Lt)'x. - 
('+') _(lj) -rv) 

3 1) 

r. ()()(t\) 
1.32) 

Note that in the above expressions some symmetrizations are 
made for computational convenience, e. g. 

ernn 
z. - 

68%. 
w%- 

(A. 1.33) 

The particle velocity and acceleration terms up to second 
order can now be written as 
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ti 4, C, ý (4., 12 t»] 

eý-ý ý c77 
A, 

n-161 

ri 0 
57 

dw^ OL, 

M-WI r%zi 

wI 

." 
fq, 

1.34) 

el Jýj Jk.., (i , a)] 

4.0 4 

1 
('&-14) �L 

(. L) 

a C, 4 [-4- m3 
5) 

- 
on -% ) 

r%--l "(4,1) 
ei U ý4, + 4. ý) 7 &.., tt, A. � - », - (, e )- 
v%mýI 

Otj J 

MZI ftzj Cog L(4,. -3 (-)n) 

1.3 6) 
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0a 

"4, -. 
144th, 04)3 

a, a, 

j_ 

0-'% CL, 
1 - 

(4, 
-, - 

4-, 
) 

'Aý 
(4- 

- 

4-, 
) (A t»- 

C-2 ( j- ) 57 57 
N%, ml 1%-zl (a, 

- 

1.3 7) 

A. 2 STOKES FIFTH ORDER WAVE THEORY ( 77 ) 

The development of the fifth order wave theory by 

Skjelbreia and Hendrickson(1960) required a prodigious 
degree of algebraic manipulation which in the early days 
inevitably lead to errors. This section represents a 

summary of a detailed derivation by the author of the fifth 

order wave theory which is used in this thesis. 

A convenient starting point is the simpler second order 

waves discussed in the previous section. Assuming that the 

coordinate system x, y in Figure A. l. moves with ihe wave 

under its crest, and with velocity (wave celerity 

= 
L/-r ), the time depende nt terms in the boundary 

conditions will vanish. Thus the free surface boundary 

conditions can be written as (c. f. A. 1.3 and A. 1.4). 

-; ) I -r 
, 

A-T 
W, 

14 - -c- 

AT 

2.1) 

2.2) 
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where Q is a new constant in Bernoulli's equation. 
Following a perturbation technique discussed in the 

previous section, a solution up to the fifth order can be 

given. Thus for the potential 

Ali tý A13 t, 
ý Air) 

(ýA,,,, + A' [2, lk (A *ý- )] J"ý- ?, & 

(A A3s *ývA 35. 
) &, ý [34 (A"Ok )] oLA: - 3& -t 

it A4ý UIý, 4 (J +1 )I , 
I; 

- tt & 

ý" A55 J-54 IJ +ý )] ý 
4- sý& 

2.3) 

and for the wave profile 

CJ> 
+(f8 '1, "- 9 14 e**4 10 't 

(A 
3 933 +1%5* Tr 

) clýl 30 + 

A't 644 C-4 4 0' + 

S' 8 3ýý a 
, 5.0, 

2.4) 
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-AQ = )ý. C3 
-i- 

Alf. 

4"C% Ca Z' (. Cl , ý4 
. 

C2, ) (A. 2.6) 

where 

phase angle = 

wave number = L 

wave length 

parameter to be determined 

Coefficients Aij and CL are obtained as 
follows: 

Find and from (A. 2.3) and 
L from 

(A. 2.4) 
Z: 

2. Substitute these into (A. 2.1) and (A. 2.2) including 
terms up to fifth order (i. e. up to 

3. Expand (A. 2.1) and (A. 2.2) about =0 using a Taylor 
series up to fifth order terms. 

4. Group the resulting equations in powers of A 
and 

subgroup them according to powers of AV-& or 
on the left hand side of the equation. 

5. The equations must hold for any value of 491, , thus 
terms in each subgroup are set to zero and coefficients 

are obtained by solving the resulting equations. 
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Taking 5 -Z 'I" 
(4j) 

All -Z -, Z 

A13 

and c=W (-44) 

a-4 C, 
Al-s C, 

13,14 sll 

An . :1 
9 S! r 

(lit C', clýl -t 

A33 13 - 

we get 

(A. 2.7) 

2.8) 

(A. 2.9) 

(A. 2.10) 

2.11) 

(A. 2.12) 

2.13) 

Aar cril, d* 

,. 2.14) 

A (A. 2.15) 4 
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Ass- 2 fo - 12- 4 fo c. ' * SL4 op- c 142.0to c 
lp 

4 

431t7o c 1424ý "J 
3)] 

(A. 2.16) 

BLL 
-= 

ý e* I), - 
43 3 

C (LIZ Cc -450ý C& -M. Cip ti) 
(A. 2 . 17) 

3(4 sl 

(A. 2.18) 

. 4i) 

�. 5' 

C 
14 

- to fz"Zý C'ý 21114 
(A. 2.19) 

Itiq Cýe -s 4- 4a 
1'. it j/I 

Illif 'S' 

(A. 2.2o) 

C-(Uftý'- 1+41r 4- VC-6 t4c 

3 Jr4 S, Ucl- 

2.2 1) 

111,004, cI -t 
*7 16* foo C-4 (rct. lict-t 3)3 

(A. 2.22) 

VC, 4 
_, Vcý+ I 

8134 
2.2 3) 

Cz, f 4- Ir -1061( c4 -+SUý C4-%rsoct+14 

S-1-L 41* 

(A. 2.24) 

C% 
4 S. r- 2.2 5) 
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Il 
-19L C+ 141 f- IZ 31 C (A. 2.2 6) 

aý 
lilý C. sl 

Now to find and we can write 
wave height, 

1 

19 woI& ý-r s 

and using (A. 2.4) gives 

1 '- týý ý3.8 S- (gist 955- 
(A. 2.2 7) L+ 33 

Multiplying both sides of (A. 2.26) by and 

substituting for C. ' from (A. 2.7) gives 

( all ) (44 ) t#" (-Aý )tI -V 
)% )ý- C, ý =0 (A. 2.2 7) 

and (Iki) can now be determined by solving (A. 2.27) 

and (A. 2.28) numerically. Using Newton's iterative method 
(see (13 )) we have 

(A. 2.2 9) 

-ar, _c.? (-id) -L-1 

.1 
zscci) 

(A. 2.30) 
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where 

u- ( ro fl- ) '= -. » * -5Zk-a) 
-ý> «') (* 4) 

2 

2.1) 

and 

D F, %, t- lý 11 g33 tsý 
4 (ß-ii, + 6se 

i7 -. (-ka) 
ý 13 

(A. 2.3 2) 

-ý 'r- 
= (4-j ) t" (, ki )z ýi:, -t 4- ý'. C,. 

15-31 
1 

(A. 2.3 3) 

9133 1033' 
"1' 9*SS)3 

-t- 33 t ess 
(T-w 

ý, 11 

(A. 2.3 4) 

(44) C', -tAý c 
(A. 2.35) 

where a dash indicates partial differentiation with respect 

to (-Aa) 
Taking 

C, ý -M &?, ý ( 1% -ka ), V% a. Z., 1, (A. 2.3 6) 

(--kJ) p 
(A. 2.37) 
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We have 

c c- 
3+ Sc- V 1,37 (A. 2 . 38) 

C'Z, ZZ. -T + l4s"S", 4.51L Sg -t loil st4 3Y6.5 + TO W j, - 
IL 

- 4 

L 1.115 cil, + 14-5 C-1, -r tit Cf -t 113 CC * lo 91.1 ISC,, j. -t Z51 3. SCl. + 17/3) x 

D0 
. 51S - 10 Sf + 1770 St -4 TO $4. *+ ItIO SV ) I$ +IS. - Yz, I/ (it 

-it 
) 1. 

2.3 9) 

where 

It =3 ct -t L (A. 2.40) 

Yu = C,. -10 Cq, -t4f C6 - Cý- +'%*Ct, -%U (A. 2.4 1) 

it+ IF S4 tt-L-r SL, ) (&., 7s, cc + Cl, j-11-17 Cl., tIO. S) x 

S, 
- 

14, So, S 46014 S 
%% 

(A. 2.42) 

L 143 1 SIt t 
Ll IT7 4S, 

IS' c- ýj 
64.4. & 0+ 

SLY Mfl Ir Il. 14 

rl 11110 - 
III, C 31I. V1 "T 

its lif I ILI 

ý'. f7 c 3311 " C2. YL 
16 Itr 

51,, -%%St SjL +4. slo Sla - jolly Sr fS 

I Mrs (6 CS. - 1) 3 

2.4 3) 

1. 
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-s" s 
it + 14 + 3SIto -SOL + 

S'7 95' 
-t- ? il'70 ýs+ 64 Z. 

z S, 4- Sý4 + J)" + 3SS; zo 

54 31J Itt'le JL][ 37f 7flS- 
4* 

ar 
04 

zir ell- 11,414-5, CIO 
rr 

Cr + S'84-iyr 
12s, 11 ILI( 

14-3 1112745, rs, 
LC 4- + ar , ct. + 

ý. 
I 

ILl fit slo 16 C- It C, I 

(A. 2.4 4) 

Note that in derivation above the following have been used: 

ct-lc 17 (C', *I) (A. 2.4 5) 

Lc *Lc if (A. 2.4 6) 

+1 C, ITq -+ 1. ) (A. 2.4 7) 

c (A. 2.48) 

c=I( CID i-10 C8 1- 47(6 tlzacý +-Zi. Cl, -jilt (A .2.49 SOL 
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C 
it 

IL 
2- 

'I'll Cie 4, +tl*Ct -t 41-7 C4t -ir 711 C-,, t4-9z-) 7041f 
C"- 

(A. 2. So) 

Cl- *141t Clf 't 1*0 1 CC 2- t-4 +30#3 C& -f 1714) 
(A. 2.5 1) 

21= 1 (Cot +11C4. +, L,, CIL+ 5,40 cl, +Ifl#cr+fufcJ + 31: 7 9 (A. 2 
. 

52) 
1144"OCZ, +k4.3S' ) 

which have been derived using the following formulae (841. ) 

I%- %n3. 
CY%-] 

Vý S. 
Sr, z v%. $ - r- +( .3$t 

(5) 
4 

ft (n) St. C: %- tý(n) 
'St. cv-4 I. IL It 

where 

Ip% n! 

(n-k)t k! 

Therefore by specifying values of and in 
(A. 2.27T and (A. 2.28) we can now find (44) and 

IL A 

using (A. 2.29) to (A. 2.44). The starting values for (A. 2.29) 

and (A. 2.30) can be the linear deep water approximations, 
i. e. and from (A. 2.4), XjwfAH=-L(T)()4 

Returning to the fixed coordinate system X, y for a wave 
travelling from left to right we have 

(A. 2.5 3) 

where 

2.5 4) 

I. 
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0, lý =( 
ýz-. ßl_I, if ýý. 81gF) / (-hi ) 

'r / (. kd), OL 3.933 +A' (A. 2 . 56) 

jxý -A ý 4t 444 / (ýkj) (A. 2.5 7) 

ct s- = ff .6s. T /( ýk) ) 2.5 8) 

From (A. 2.6) and (A. 2.7) 

, ==- X. 
.1t 

e= ( _c 
154 2.5 9) 

Using this and differentiating (A. 2.3) with respect to x we 

arrive at expression for horizontal particle velocity: 

lot (*a b _A(dI)l fv'(ýk"-'Jt)3 (A. 2.6 0) 

where 

Ll !=C*(ý. t 
ý3 

. 13 + )ý. A7) 

bi *zCk(ýt. All, +A4. k'L4) 

2.6 1) 

2.6 2) 
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La= 3C ; F( ý3. A33 + 
f. A3s ) 

(A. 2.6 3) 

III, = ltck. Aý. 44 
(A. 2.6 4) 

L5- . S, C .4- ý5. A55 (A. 2.6 5) 

Similarly the vertic&l particle velocity is given by 

15, 

& (47L-wt b,, (A. 2.66) 

Horizontal particle acceleration, 

(A. 2.67) 

vertically, 

-) -r .- -A " fý )I- (4x - &J 03 

where 

2.6 8) 

(A. 2.6 9) 
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Global acceleration terms can be written as 

bt lt ), x 

(A. 2.70) 

Lot 4 (JI) j C" 

(A. 2.7 1) 

y 

f) qL (A. 2.72) 

IA. 2.73) 

For deep water or large values of (K44) , coefficients 

and d, become too small and we can write 

(A. 2.7 4) Z 
Yt IN) 

Lot ( 4, x &J Q3 (A. 2.7 5) 
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where 

Lit w (A. 2.76) 

[n (-kx, - ii o3 
(A. 2.7 7) 

T 
n*ý 5-- 

(A. 2.7 8) 

(A. 2.7 9) 

=- .4 
/-; A ,9"e, A [st Iýk2 -,, -4 )] (A. 2.80) 

lie" t -&3-[n0%-Qt)j (A. 2.81) 

Equations of this section were implemented in a computer 
program and coefficients were computed for a range of 

(4/4) and (u"I/I ) values. Results are presented graphically 
in Figures A. 2 to A. 35. Values of are given in 
Tables A. 1 to A. 3. Coefficients for n=3,4 and 5 

can be found in terms of S., using (A. 2.76). Values of 
dK 

cýn be found in terms of bn using (A. 2.69). 

Similarly -D, can be found in terms of B, using (A. 2.79). 
Coefficients $4 and 95- for small values of (A14) 

become negligible and are not given. 
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w2d/3= 1 . 50 2. C0 2.5C 

H/d 

0.03 1. t209 2. C6315 2.52E3 
C. 04 1. o202 2. C620 2.52.56 
0.05 1.6193 2. C6C2 2.5221 
0.0c, 1. o182 2. C579 2.5179 
0.07 1.6168 2. C552 2.5130 
0.08 1.6153 2. CJ22 2.5C74 
0.09 1.6136 2. C. '988 2.5011 
C. 10 1.6117 2. C450 2.4941 
0.11 1.6096 2. C4C8 2.4866 
0.12 let074 2. C3c3 2.4784 
C. 13 1.6049 2. C! 15 2.4698 
0.14 1.0023 2. C263 2.46C6 
0.15 1.5994 2. C2C9 2.45C9 
C. 16 1.59t4 2. C151 2.44C8 

C. 17 1.5933 2. CC91 2.43C3 
0.18 1.5900 2. CC28 2.4194 
0.19 1.5865 1.9962 2.4CE2 
0.20 1.5829 1*9894 2.3Q67 
0.21 1.5791 1.9224 2.3850 
0.22 1.5752 1.9752 2.3730 
0.23 1.5712 1.9678 2.36C9 
0.24 1.5670 1.9603 2,. 34E6 
0.25 1.5627 1.9526 2.3362 
0.26 1.5583 1.9448 2.3237 
0.27 1.5538 1.9369 2.3111 
0.28 1.5492 1.9288 2.29Z5 
0.29 1.5445 1.9207 2.2858 
0.30 1.5397 1.9125 2.2732 
0.31 1.5348 1.9C42 2.26C6 
0.32 1.5298 1.8959 2.2480 
0.33 1.524S l. 8a75 2.2355 
0.34 1.5197 1.8791 2.2230 
0.35 1.5146 1. e707 2.21C7 
0.3o 1.5094 1.8623 2.1984 
0.37 1.5042 1.8539 2.1862 
0.38 1.4989 1.8455 2.1741 
0.39 1.4936 1.8371 2-1622 
0.40 1,4882 1.8288 2-15C3 
0.41 1.4829 1. e205 2.1386 
0.42 1.4775 1.8122 
0.43 1.4721 leEC40 

0.44 1.4667 1.7958 

TABLE Al VALUES Cr: ka. 
Stckes 5th Order waves. 
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A. 3. STREAM FUNCTION THEORY (16 ) 

Considering the coordinate system in Figure A. 1 and 
assuming that it moves with the wave at velocity E7= L/T 

a stream function must satisfy the Laplace 

equation 

!_ 

where velocity components 
as 

U_ -Z = --? 
IV 

Ir «m = 2, e -ý, ýL `ý > 

and 

3.1) 

are defined 

3.2) 

3.3) 

The bottom boundary condition, (A. 1.2), and the free surface 
kinematic and dynamic boundary conditions, (A. 2.1) and 
(A. 2.2), still hold. The solution can be written as a 

Fourier series of linear wave components 

a 

2- vbu[n-4(J+3) 2». ý, + 
', x(") ý3Knýkx) (A. 3.4) 

nz, 1 

where N represents the order of stream function and 
)((I%) are coefficients to be determined. 

Substituting in (A. 3.4) we get the surface 
elevation as 

(A. 3.5) Z: Z: 
Mr-I 
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satisfies all boundary conditions exactly except 
for the dynamic free surface boundary condition. 

(A. 3.5) can be written as 

A 

(A. 3.6) 
n e. 1 

giving 

ir 5-7 
: ý; 

-D -L -ý (A. 3.7) 
'Y%Ial 

where 

)((-) - ,. -k . (A. 3.8) 
71- , ý' 

')If% 
,=-X(I -o -, Ak (A. 3.9) 

-'b, x 

Substituting these into (A. 3.7) gives 

-ýq1 13 )(JV%). r�h. C., i pý 4 (-It ý )J C, ('t 4-£) - 
-äl 

- 7ý'K 1%-Zl ý(., ) . n., 4 (d f1j �4ý (M 4 -x) 
)% 
(A. 3. lo) 

From (A. 3.2) and (A. 3.3) 

fi - 
LA IM -Z,. Ar ý. 1 

hýI 

)«, A) Al 

C- 
n-r- I 
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Thus (A. 3.7) becomes 

t 

(A. 3.11) 
Ir 

The kinematic free surface boundary condition, equation 
(A. 2.1), suggests that (A. 3.11) is equal to zero, i. e. 

is constant for all X. Therefore 
Taking where is the deepwater wave 

2W 
length predicted by linear wave theory, equation (A. 3.5) can 

be nondimensionalised as 

(A. 12) 

Also the nondimensional velocity components are 

[, 
jk4Fj4# (, t* t 1*)3 (A. 3.13) 

ei #* je # 4- 
ne 

l* 
) 
(A. 3.14) 

and nondimensional celerity 

-T ir 

La 
3.15) 

The nondimensional dynamic free surface boundary condition 

is then given by equation (A. 2.2) as 

I* Al 'r, R., Oe L 
-, v)- "" e= Q* (A. 3.16) 
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where 

1A (A. 3.17) 

(A. 18) 

(A. 3.19) 

9 "c. 
ý 1-x(, %)/ 3 li -r (A. 3.20) 

R* = vt / L. 
3.2 1) 

(A. 3.2 2) 

0*= 
-Q/14 (A. 3.2 3) 

The unknowns to be determined are X*(.. ) , 'A 
0 

and 
which are found by minimizing the mean squared error 
in the equation (A. 3.16) 

-j 

>7 (qj* (A. 3.2 4) 
j=l 
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's, - where is the nondimensionalised constant 
in Bernoulli's equation and can be taken as 

( t//,; ) where P= atmospheric pressure. The 
index is in the range 1" 34 a' as % 
takes successive values spanning one complete wave length. 
Note that Q"wQ( X*(%) 

j, -A 'i ), thus a nonlinear least 

square method is used to determine the changes in the 
unknowns, I. X4 ta) and is such that error is 

Minimized, i. e. 

(A. 3.2 5) 

Therefore the value of Q, for jth x-coordinate and at 
(i+l)th iteration can be found from 

0 
(. ý 10 Cei (1) 

3 Nk WO. (A. 3.26) 

and 

k 
(ii-0 

* 
(i) 4 X (-) = tv%) 3.2 7) 

-k 
* (;, to) 

_A* 

Ot 
1,4# 3.2 8) 

Substituting (A. 3.26) into (A. 3.24) gives the error at 

(i+l)th iteration as 

+ 

j. 1 

(A. 3.29) 
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Using (A. 3.29) and (A. 3.25) we have NO equations in 
the unknwons h. X* 61) and 1ý -A " 

7 --ý QI-; 6) -ý C 
r- -L ý> (Qý (3+ 

Qj4 + 
jIL 

te) -ý q* 6) =0 )-(S. 
It, X! ln) 

I LAI* 

(A. 3.3 0) 

hx ; 7, > Nj 
)QJ a) 

_. _4 (1) 
\ j8 

-1 + 

i li ý)Qý (i) -) Q (L ) 
Z(J) 

(A. 3.3 1) 

Equations (A. 3.30) and (A. 3.31) can be written in matrix 
form 

111w [Aj ý61 

(A. 3.3 2) 

where and 
I 

-b 
I 

are vectors of size (Nt 1) and 
[ A3 is in which 
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ji 
= b9 0 (1) 

,. ý '114 
11 21 4 3.3 3) 

1 1I14Ql 3.3 4) 

Z' 

-* (i) -*(! ) 
(A. 3.35) 

ij 

Air Z 
(i) ,L »e fil 

P J. - 1, ti 
(A. 3.3 6) 

Air 
zo) 

(41 
J-MI 

(A. 3.3 7) 

1. Z. 
(A. 3.3 8) 

> 

(A. 3.3 9) 

and derivatives of are found as follows and will be 

substituted into equations (A-3.32) to (A. 3.39) 

#I I ;I Yi' d- 1,1, ... , Ij 

j (A. 3.40) 

ý k* -ý 11 -DXO -ý Lei 1 hW ID-tris 574, * 577 
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taking 

,k0. -% 0- =- 7j = 2tr 
( 3-) 3.4 2) 

j L. ; 5-% 

where is the jth x-coordinate along the wave length. 

Equation (A. 3.12) can be written as 

PJ 't 
ji 

then 

. 5cf) 1) )%(i) 

giving 

).: cj ) '_1! 4_ 
- (jzcI) / 

thus 

-Air O'l ("'-t I*)] C-6v 
v 

3.4# 

1/4 

ýz oo -*I Kn6,4f, 
4"s 

3.4 3) 

From (A. 3.16) 

--a Qj* -ýQj* ý Qý -;, N, , 
= -. it, -j - Ij 
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also 

? i_ j7i3 
? ))t'(I) 

J 

ý ýj, 
= 

-) -Ij 
, --ý I *j 

-k 
-P [4'0 A'y 

Wa) 

(A. 3.4 4) 

.ý (4 "+1" )JJý, y&p 

3.4 5) 

Substituting these into (A. 3-40) we get 

j 
00) Ii 

where from (A. 3.16) 

Z TT 
A 

4- 

ITr A .0 
tj 

(A. 3.4 6) 

4 st ol 0 
V% X (. ) -A C. >4 [n-A*A*(l I., )) , 

IT, 

:k# (A. 3.4 7) 

(A. 3.4 8) 

ni x*C. ) e me 24Z-4 
[ r, 

em' (411 *e )j ci, (A 0. - ) 1- >-- h=A 

3.4 9) 
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IF 
7. 

)3 

Similarly (A. 3.41) is written as 

qj Z ,, i*' - 
Qj* ll- Wil = . 

I 

-, )t 'I -ý, ri t : T. Fi * I -) ýj , o )- W" 

tj 

Lj 

3.5 0) 

-t 'ýj ) C-14 [I (A" Ij 
j 

2-' )'A ik iv 
2m9 lv(�) C, >4 [nd Cl, (rt 9.1 

dir 

3.5 1) 

where from (A. 3.12) we get 

(P-v * )I 

(, % Pj ý)C, 4 H 

(A. 3.5 2) 
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Values of 
", )Q* -D Q* 

-an now be found using Vý__ and ? j* 
equations (A-3-40) to (A. 3.52) and equation (A. 3.32) can be 
solved for and Subsequently values of 

Qj >( and at (i+, )th iteration are 
determined from (A. 3.26) to (A. 3.28) and mean squared error 

.C is found from (A-3.29). Values of at 
(i+, )th iteration can be recalculated from (A. 3.12) as 

(1) 61 

X 0%) 

A ol +! ")jI ZY 

(A. 3.5 3) 

Also is redetermined such that the mean water level 

remains constant, i. e. 

(LA) ý-rg/ 

00 
2 j% - -j lý jm - c. 

Using (A. 3.12) this gives 

tat%) 

x* 
(W) (Z*%) t(14. 

t14ýtt) 

Co, ( 
)LO . IL 

j je, 3.5 4) 

which can be integrated numerically using say Simpson's 

rule. Summary of the steps to be taken to find )(*1,, )j and 
4* is then: 

Assume an initial value of . 
4* r. Z'T-r (linear wave theory 

for deep water) 
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2. Using (A. 3.43) to (A. 3.50) find 
0j: 

and using 
(A. 3.47) to (A. 3.52) find for 

and' 
TA-# 

3. Using (A. 3.33) to (A. 3.39) form [, A and 
i ,ý 

to solve equation (A. 3.32) and find and 

Q. * (it 0 
)(, XC(L*I) 4. Find n) and from (A. 3.26) to 

(A. 3.28) 

5. Find error at (i+, )th iteration from (A. 3.29) 

6. Find for ja AAý, ---j"Zr and Ifi (W) from (A. 3.53) 

and (A. 3.54) 

7. Repeat steps 2 to 6 until successive reductions in the 

error E are sufficiently small and-the crest 
to trough distance is within an acceptable limit of the 
original wave height (say 1%) 

8. Values of )((., ) 14 and can be found 

using (A. 3.18) to (A. 3.20). 

Note that for a fixed frame of reference x, y we have 

(A. 3. 

li 

(A. 3 . 56) 

IJ 03 (A. 3.5 7) 
0% zi. I 
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«ý %k 

ý= -ý. 
5; 

(A. 3.58) _b4- A-% 
-ý X (') C'"4 ("k ('( -ý )3 "ý: - b( 

A- 

), ZU 
(A. 3.5 9) 

ti -ä%k 

= -h 
Z (A. 3.60) 

-e Z> hýI 

A 

(A. 3.61) 
-ý -x 

ft Z% 

Values of coefficients for a wide range of conditions are 
given by Dean (16 ). 
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A. 4. FIFTH ORDER CNOIDAL WAVE THEORY 1 23 ) 
Considering the coordinate system X, Y on the sea bed 

and moving beneath the wave crest in phase with the wave, 
the boundary value problem, as already mentioned in the 
previous sections, can be written in terms of a stream 
function v as 

(A. 4. 

V= --)y (A. 4.2. Ix 

(A. 4.3. 

ý, 
- 0 -0 00 1=0 (A. 4.4. ) 

-Y- --YL = Coal-TAOT , AT 1.7 (9) 

(A. 

x 
FIG. A. 36. CNOIDAL WAVES - COORDINATE SYSTEM 
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A general power series solution to Ir which 
satisfies Laplace equation (A. 4.3. ) as well as the bottom 
boundary condition (A. 4.4. ) can be given by 

iv 

= -, A-, 17 oi (x) 1 4.7. ) 

where 03 is the differential operator and Joo 
is a function to be determined by free surface boundary conditions 
Equation (A. 4.7. ) can be expanded as 

33 S' S' 
J(X) jf (. () yA RX) 

3t 4 X3 
(A. 4.8. 

Ax S! ý xl' 
* 

and (, x)= is the horizontal fluid velocity at Ix 
Y=0. From (A. 4.8. ) we have 

YI 

, p. p -- 
ýPX) ag (x) 

* -ii '& XJ -71 (A. 

-1 'r 
Y 

(A. 4.10) 
Ax a Sl A 

(A. 4.5. ) and (A. 4.6. ) can be written as 

33 as J(X) 
+ 

Ax3 571 A)C-l (A. 4.11) 

e a4j(y. ) 
31 

3 14 
(A. 4.12) 

dxZ! 7i- -7jJ 
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To non-dimensionalise these let 

X. t -Z %/A (A. 4.13) 

I* -I (A. 4.14) 

J, 
v ,s (A)/ if, 4.1'5) 

ý, = 3, 
ý/ 1ý 

(A. 4.16) 

1. L (A. 4.17) 

Note that distance from sea bed to surface 

elevation and distance from sea bed to wave 
trough. 

Therefore (A. 4.11) and (A. 4.12) become 

33 
Alf jo 

(A. 4.18) 
ax, 

7y-. -7 + 
(A. 4.19) 

A )<o 2, LYkj 41 

Differentiating (A. 4.18) with respect to X4 and noting 
that 

13[w. L )3 
33 

1, ). 31 (- IX-) --z" X0 

L X* 

(- LX) ( -, x- ) 
ý+ -II 
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or generally 

Intl t" 

we get 

All* 
t 

Ldl Isi'l 

A X, * 

f1 

X4, aX*l - ---) 31 

Using this in (A. 4.19) we have 

41z 1# , 
'fit 

7-1 41 a x5' 

-NIL 

(A. 4.2 

Equations (A. 4.18) and (A. 4.20) can be written in terms 
of tjjr 

as 

'T (48) 1'* 0o"o) 
, Lqjw- 

Axt 
(A. 4.2 1) 

41 L t, Äý W4 ) ý, 4ý (j �& )1 
.L le ( :Z0 4 

(A. 4.22) 

Equations (A. 4.21) and (A. 4.22) have the trivial solution of 

a J" IL and ro and all quantities 
will be expanded about this state. Assuming variations with 
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4 to be as OL Xj where PC is a 
parameter to be determined and because even deritratives of 

oddur in (A. 4.21) and (A. 4.22) terms like 

ILL ('"(S) I will occur. Noting that 

ý4( 0( Xf ) 

in 

' 

11 
"4ý 

( 

x tv% 

e. g. If n=1 and J4 C-f Xw) -at (-I)(*) -t (G(Y, [P -t -t 

ITI+W )4, v +3 Aw 

tj II, 
I 

ot 
X 

JO_ 
,4+2, ý 

giving 

ag" ok (01 V. It ) 2 
It can be seen that powers of 91 

1 occur in the 

expansions. Hence we can expand in terms of Clez. i. e. 

we can write 

00 
T co(2Y 

(A. 4.2 3) 
1-al 
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(A. 4.2 4) 

w 
(W&, )L 

It h (A. 4.2 5) 

(A. 4.2 6) 

Substitution of these into (A. 4.21) and using derivatives of 
(A. 4.24) gives 

(4 r ,. + [it chr, 3+ 

33LF, F F7 
13 (A. 4.2 7) 

Where a dash indicates differentiation with respect to 
Equating coefficients of each OZ 

U to zero we have 

CK 
tt 

P, . 01 -ý D (A. 4.2 8) 

riOttlo-ro 
-() 4.2 9) 

h, o( . 

F- 
-t Y, -t F; ý) - 1- le =0 1. t (A. 4.30) 

Fl* + Fý (A. 4.3 1) 
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Subtracting (A. 4.30) from (A-4-31) gives 

r // 3 
I, 3F, 4LF, 

(A. 4.3 2) 

Multiplying this by F, and integrating with respect 
to (a %, V- ) we get 

3E1 
Z. 2, )ý-3ý, F»% i 

Implying that F, # can be written as 

Note that *4 and Y, are always positive (see 

A. 4.23) and using (A. 4.28) it can be seen that r, 

is negative. Writing the standard Jacobian elliptic 
integral of the first kind as 

CIX* 

where r-I is the Jacobian elliptic function with 

modulus Mv Pl)mýe (see ( Z8 )) and noting that 

14zý 0 here, we get a solution of the form 

F, 
'C) 

and 
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This gives 

v. ,=-tY (l. S-11 . il 111 

It S, CA 

Substituting these into (A. 4.32) and using 
and cký" - %* r^(Cvý - 1) we get 

7,1 
m Cý 

-ý (- 

3 

Z, J(V-%- %) 
- -ý 1.4 z 

3 21 
(A. 4.3 3) 

Now each power of C^ 

): 

must satisfy (A. 4.33), giving 

(A. 4.3 4) 

3= !t(%- 13 

9 

and 

4.3 5) 

(A. 4.36) 

Ck X. 0 \M) 
3 (A. 4.3 7) 

Functions of C11% and C- have real periods of 

and IK(M) respectively, where k is the complete 

elliptic integral of the first kind given by (see (I )) 



- A82 - 

VVN ,. t 
(I - 

2- 

1t 

(A. 4.3 8) 

Using (A. 4.37) and (A. 4.28) equation (A. 4.23) gives 

t A- 

Using the boundary condition that %. t-IA/h at crest 
we get 

'3 1 + 
It 

and 

1= it (HA ) cý ( 0' +0 
(v/ k)") 

Similarly by considering higher order ter s of L 
z 

jj ( C-ý and assuming that F 
where 

C, F. 4. e are coeff ents found by requiring that 

each power of Cý satisfies the appropriate differential 

equation (as in A. 4.33), higher order solutions can be 

obtained. Note that parameter a is found in terms of 
(H/h) and m using 11(0)= 1-tS/k To 

convert the expansion parameter C/I to the more commonly 
used dimensionless wave height parameter, F, =A/k , the 

series in C4 
a can be reverted using a computer to give 

vký as a series in & 
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Taking 

Z. li/A (A. 4.3 9) 

£= K/4 = 
V(A/a) 

(A. 4.40) 

( F, /m )= OL (A. 4.41Y 

(A. 4.4 2) 

Pý up to the fifth order can be expressed as 

(2 «! - 9=-a )% 
%. t rvi) -0.1437.5, vv% + 0.1r6711 M')+ 

3 
& (- 0.3111+3 t o. S'i I 44m t 03143 "%? ' -o. t33 rv% r. 

3 
-f 0. '14773 m" )I 

(A. 4.4 3) 

and the wave profile is given by 

It 
't % 4) 

rn C', IL I 
V-13r " (- 

a3f 0.105'mt( -040)+ rv%3( 1.3f7YC, "- 24T'C. ý*+ I. 'WS Cý)ý 

I. 
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o. lo533 -z' (- C-L -f C-4 ) 
-t on'3 (Z-4iIO4 C-1"- 4.3314-IC-4 -t 1-02 42 6,6 ) 

64 '46 C &+ )] Pn4 (- 3- 0-7111 C+7.4ý0444 
ý-4.57t15 

S, 9 ý341,3 m- (Cýý- 4- z. 7ajreC, )+ 

rA4 0 5, g e C. ý -713 C -j- 11.45"5'41 6ý4 - 15.314177 C,, C 4.10 , 
ýV )+ 

7C46 ZT-3ý10 C., 

n. 3001 C. 'r 

It-Z4417 C, 'o ) 

(A. 4.4 4) 

Defining the wave celerity as C LA. 
JA 

and L 
taking 

b=9 (-) / k(,. ) (A. 4.4 5) 

where E(m) is the complete elliptic integral of second kind 

given by 

7r 

4.4 6) 
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Results of this theory are as follows: 

DIMCA510OLESS WAVE PCRIOD k( ) Lý 00 
RZ, [ 0.0 i47f - 1.01333 )+ 

V. S410 0.07b5i m7, + 0-361LI +Z*5'0417 L-4. rLz+ Ze-+ 

2.. 504 116 6ý ) -t P%I(0.41 ZI& + *. 33211 6)- o-11579 m33+ at L-1.4.. J. Ljýj 6+ 

15'. 11til IL 13-49197 +4 bý +m (3. "13110 + &. 'S4-Zfl 6- Is'. 11ill + 16-13333 (-Z-73031 

1.. 3 + (Q. Ti, 147-o. ii4q$6)-c,. o7Sg2v-4j i 

( A. ý-47) 

1- 6t O-'L 
I 

--. s + ., y L+ Ili OAW 

4. 
1.14s, 6 fQ-T 6+ A- -O. Z'F L3+ vAt [0.33,50 

-0.0ý b] i+ FL I- I-4Z447 + 

3.10667 6- Z. oj L"+o. SL3+ vn[J. 27333 - 4-. 6 16 4 1-0 1 i%o. IF ej 
+ m"t- 1-45'1# +2.11433 6 

5 
4.44451-10-744011, + f3ZIYO e-344T 

+ 4. + 

6. olo, ZS'J- IP-3o«ISO &33 + tn3[-57. Y3&47 + SU6398 l> 
-0.2917041 

j +r4411.033o6 -0. Z OSSS' lij 

(A-4-41) 

DIMEwSt"LESS vJAVC CO-Lit%TY 

+ 4L + 4t 10133 + 0.33333 + wn 
(ar h )l 

0. @2333 LI-0.017 Wý 
i+ 

CL 
I- 

M3116 + *. *444.3 +t0.91017 * e. 37o&iob+ rnfo. 1'7113 - o. tlZ*L lol + 

1 [0.31 fil - 0-T6661 LI- 0-0 4 
f- 63 15,31 _%, j+ asl 

o. 1 4 032 6+mFv. 31195' -t 1.11117 16 1+0.1116 1+0.353 14 b] + -310-ilPS' 
1.153 LT L3+ rp%4 [-o. l 3 gg I+1. vo 61qLj+ 0- Cr76 3 PnS ) 

(A-4-41) 

11 C(ý) 
o. 3. o ý)+(%. 0 - ?. Z ) ]j 

-t OL 1-0.079 
91 + bt IN 
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- 0.3 go It 1- 6016 ý4+o. OPT& ý6 5-5-4 11 g+ 1% 0.70 411 + 
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1% It 
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k- It -70703 CZ T. 1,11 86 91.4.4 61-13&715'ý'L 
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Changing the coordinates to a stationary frame x, y on the 

sea bed we have 

-x =x -+ C. t 

,x =ý=x +, X *M 

A 
(A. 4.55) 

-x -W M=ý. ý 
where ch (A. 4.5 6) 

and 

c4v- 
IJW 

also 

X, Y) 
v (-; t., pt) xp Y) 

and arguments of all elliptic functions used will be 

y= ve (% 0- %*, (t)) instead of OC %* 
C- 

Note that for calculation of elliptic functions the following 

can be used (I) 

Do 
tir Z- 

(A. 4.5 7) Fm 
V%= 0 

wl (A. 4.5 8) 

Tr Tr Do 

ctn 

It (A. 4.5 9) 
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where 

_Tr 

(A. 4.60) 

WZ ir Z g(, n) 
(A. 4.6 1) 

rn, - I- 

(A. 4.6 2) 

.4 (-, )=m 
-I. 

3 7* 
vn 

II-3*52.3 

IL 
II++) It '**"*] (A. 4.63) I 2-o 4 

(Z. 
it. &) '" 

Also note that 
a has a period of 2K(m). Therefore 

if is phase angle in degrees, then 

Z= 'q - 
/ý (P-) 

(A. 4.64) 
)JO 

-vr. 0 
(A. 4.6 5) 

360 

Given wave height, period and water depth, equations (A. 4.50 

-A. 4.54) can be evaluated taking the following steps: 

Find m from (A. 4.47) by iteration using say the method 
of bisection (the starting value can be taken as 0.5). 
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2. Find h from (A. 4.48) 

3. Determine C( from (A. 4.43) 

4. can be found using (A. 4.49) 

5. Elliptic functions can be evaluated using (A. 4.57 - 
A. 4.65). 
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APPENDIX B 

SALS SYSTEM RESPONSE TRANSFER FUNCTIONS 

B. I. SURGE MOTION 

The high frequency motion is Y*KF 
inertia force dominated therefore 

neglecting damping the steady state 

surge is 

P 

cc. + 

L/L 

FIG. B. 1. SCHEMATIC OF SALS 

l4a i. -A. I'&; - 
(Ij +- ) 

where 

'X& GiL 
w- (Mt maLlt') gil- 

(B. 1" 1) 

1.2) 

-4 wil 
(B. 1.3) 

wave frequency 

wave height 

tanke r width 
L tanke r length 

16 hull shape factor 

/0 fluid density 
C, x, x = added mass coefficient in surge 

= added mass in surge (taken as 5% of 
structural mass) 

h= tanker draft 
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water depth 

wave number 

From equation (B. 1.1) 

4C4 
= cj X� C, -, (wt) 

. 
1.4) 

(B. 1.5) 

B. 2. HEAVE MOTION 

Assuming heave and pitch motions are uncoupled, 

averaging the vertical acceleration over the volume 

of fluid and taking the mean of wave elevation over 
the water plane area, equation of heave motion is 

2, 

r 
(C j6 'Jr -ý %al . Co., tit c aL (B. 2.1 

where 

C4 
t, COA k. 1 (B. 2.2) 

0- 1- 'L 
, &:, (I -k L) 4'0& 

-I- -" 
-A(J-k) XA (B. 2.3) 

(M'fMAJ) 

E 

C-14 44 

R 

kwý 

Undamped natural frequency. 

1- 
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damping ratio 
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191-jeP 
2. 

L/ej 2 

(B. 2.6) 

added mass in heave 

generated wave amplitude/heave amplitude 
given by ( 21 ) 

heave added mass coefficient (zi 

Steady state solution is 

(B. 2.7) 

where 
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t %, 

(B. 2.8) 
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B. 3. PITCH MOTION 

Neglecting pitch moments due to horizontal fluid forces, 

the equation of pitch motion is 

3.1 

where 

COA 40 k) J-40--L iL C, ý(t A L) 2. 
CAP 

'A 
.t 

(B. 3.2) 

JL) 

CI, 
9 Z- 

e> 

9- 

1> 
4L 

- Z- 
- 

(1-tl ) A, ýaý " -ki 

3.3) 

Natural frequency 

,06, =1 ý'. tA. GA /( -1 + le )2 
li 

3. 

where oý-M- is the pitch metacentre height. 

Damping ratio 

lao, ý 
B6, /z(I+I.. ) 0. (B. 3.5) 

£0 
- 

(21 Ä, t! /, 0 (B. 3.6) 



I- B5 - 

Total moment of inertia 

ý (M-t vAcop Lzm- (B. 3.7) 

Steady state solution to (B. 3.1) is 

'04 ýý C-n- (lit t -'r') 

where 
'4 

p0 [c +6:; 
T (L * (z4.. j)L ] 

GIs 2. z 

also 

3.8) 

3.9) 

(B. 3.10) 

64 
=-P. C. 3,, LZ, ( 6) t" -Y ) (B. 3.11) 

.01 

(B. 3.12) 
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FIGURE B. 2. Vessel transfer functions for surge, heave 

and pitch - half draft 

FIGURE B. 3. Vessel transfer functions for surge, heave 

and pitch - full draft 
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APPENDIX C 

FORCE COEFFICIENTS 

FIGURE C. l. Drag coefficient versus Reynold's number ( 75' ) 
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FIGURE C. 2. Inertia Coefficient versus Reynold's number ( 75' ) 
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FIGURE C. 3. Slow drift force coefficient on VLCC 
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COLUMN (111 ) 
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