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SUMMARY 

This work addresses the problem of tyre tread pattern design for 

optimum wet grip performance. 

A mathematical model of tyre behaviour on wet roads has been 

developed. This utilizes the finite element method in the 

representation of tread pattern geometry. The performance of a 

particular tread pattern is found in terms of the fluid pressures 

and film thicknesses existing within the contact patch, under wet 

conditions. 

Many modern tread patterns are based on 'blocks', and a computer 

model has been developed specifically to assist the tyre designer 

in the design of these blocks for improved wet grip. Numerical 

results are presented both for complete contact patches and for 

individual tread blocks. To allow the use of the computer models 

by the tyre designer, with no specialist knowledge of the finite 

element method, special purpose mesh generation and plotting 

programs have been developed. 

Experiments have been undertaken whereby the fluid pressures and 

film thicknesses existing in the tyre contact patch have been 

measured under high speed conditions in the wet. These measure- 

ments were made on an indoor testing machine, and the techniques 

developed can be used in the routine evaluation of tyre wet grip 

performance. Some results of experiments performed on plain and 

simple patterned tyres are presented. 

The main purpose of this work was the development of the 

mathematical models which can be used for future research into, 

and design of, tyres for improved wet grip. However, some 

conclusions are made as to possible features which could be 

utilized in future tyre designs. 
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NOTATION 

The following list (which is not comprehensive) gives the most 

common usage of variables. Where other meanings are used they are 

explained at the appropriate point in the text. 

Symbol Description Dimensions 

A (element) Area L2 

d Road surface water depth L 

E Tread elastic modulus M L-1 T-2 

E Tread effective elastic modulus M L-1 T-2 

Es Tread effective elastic modulus in semi- M L-1 T-2 

infinite model 

F Force M L' T-2 

FF Groove flow factor - 
IF) Global force vector - 
IFL\ Local force vector - 
g Acceleration due to gravity LT 

h Fluid film thickness L 

hi Inlet fluid film thickness. L 

ho Outlet fluid film thickness L 

Hl, H2, H3 Fluid film thickness at local nodes L 

1,2 and 3 

I Integral formed by variational principle - 
IE Integral formed by variational principle - 

for one element only 
i, j, k Local node numbers - 
[K3 Global stiffness matrix - 
[KL] Local stiffness matrix - 

L Contact patch length L 

LA Additional length at front of contact patch L 

Nl, N2, N3 Area co-ordinates - 
p Fluid pressure M L-1 T-2 

Pi, pi Inlet fluid pressure M L-1 T-2 

Popo Outlet fluid pressure M L-1 T-2 



Symbol Description Dimensions 

P11P29P3 Fluid pressures at local nodes 1,2 and 3 M L-1 T-2 

F Non-dimensional fluid pressure - 
JpI Column vector of unknown fluid pressures - 

Q Volume flow rate L3 T-1 

q Volume flow rate per unit width L2 T-1 

rr Tyre rolling radius L 

Re Reynolds number - 

s Tyre slip - 

S Boundary of the domain - 

U, u Velocity (road speed from Browne) L T-1 

U Mean flow velocity L T-1 

V Velocity L T-1 

Vx Velocity in the x direction L T-1 

Vy Velocity in the y direction L T-1 

Vh Velocity in the -h direction L T-1 

Vs Slip velocity L T-1 

VRCAD Vehicle road speed L T-1 

W Load carrying capacity ML T-2 

W Non-dimensionalload carrying capacity - 

x Co-ordinate axis (front to rear of contact - 

patch) 

y Co-ordinate axis (across width of contact - 

patch) 

z Co-ordinate axis (normal to contact patch - - 

also known as 'h' axis) 
s Tread surface deflection (damping factor in L 

section 4.5.4) 

p 
! 

Water density M L3 

0 Tyre slip angle - 

u 
/ 

Water dynamic viscosity M L-1 T-1 

y Poisso n's ratio - 

(A) Angular velocity - 
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CHAPTER I- INTRODUCTION AND LITERATURE REVIEW 

1.1 INTRODUCTION 

Wet grip refers to the study of tyres operating on wet roads. 

There are, therefore, three component parts: - 

The Tyre. 

The Road. 

The Water in the Tyre/Road Interface. 

This work is mainly concerned with the tyre and its interaction 

with the water. 

When a vehicle is moving along the road in the wet, there will 

always be some penetration of water into the tyre/road contact 

patch (or contact area) which is the part of the tyre flattened 

into contact with the road due to loading from the vehicle. 

This water penetration reduces the friction level between the 

tyre and the road, and the object of improving wet grip is to 

minimise this reduction in friction level. Friction is caused 

by the tyre tread surface interacting with road surface asperities. 

A road surface can be characterised by its microtexture and 

macrotexture levels, which are defined thus: (see figure 1.1.1). 

Macrotexture - is the characteristic which determines the 

bulk water drainage capability of the road 

surface. 

Microtexture - is the characteristic which determines the 

magnitude of the frictional force generated 

at the tyre/road surface interface. 

This work is concerned with the amount of water and the fluid 

pressures existing between the tyre and the road surface. 
Therefore, friction levels are not considered and macrotexture 

is the only road surface property of importance in this work. 



-2- 

SURFACE MACROTEXTURE MICROTEXTURE 

OPEN HARSH 

OPEN POLISHED 

SMOOTH HARSH 

SMOOTH POLISHED 

FIGURE 1.1.1 - ROAD SURFACE 

MACROTEXTURE & MICROTEXTURE 



-3- 

Similarly, there are two tyre properties which determine the wet grip 

level; namely, tread pattern geometry and tread compound. The tread 

pattern geometry determines the bulk water drainage capability of the 

tyre and is analogous to the macrotexture of the road surface. . 
The 

tread compound determines the level of friction between the tyre and 

road surface and is analogous to the road surface microtexture. As 

friction levels are not being considered in this work, then tyre tread 

compound effects will also not be considered. 

The two features which govern the amount of water penetration into 

the contact patch are, therefore, the tyre tread pattern geometry 

and the road surface macrotexture. 

The purpose of this work (see Chapter 2) was to produce a computer 

model which could be used at the design stage to assist in the 

development of tyres with improved wet grip. Detailed geometry of 

individual road surface macrotextures need not, therefore, be considered, 

and the road surface is characterised by its overall drainage capacity 

only. 

The tyre tread pattern requires to be modelled in terms of its geometry 

and groove depth. The depth of grooves in tyre tread patterns 
ham a very large effect on wet grip levels as shown in figure 1.1.2(2), 

where the effect of reducing groove depth on peak brake force co- 

efficient is shown. It can be seen that at higher speeds, the level 

of braking obtainable on tyres worn to the legal limit (lmm) is only 

approximately 25% of that of a new tyre. Whilst the data for 

figure 1.1.2 were obtained on a smooth macrotextured surface (such as 

worn concrete), therefore exaggerating the effect of tyre tread pattern, 

the results still show the importance of a tread pattern performing 

as well as possible, particularly when worn. They also illustrate the 

case for an increase in the legal minimum tread depth. 

It would not be possible however to raise the legal minimum tread 

depth to the level needed to maintain an acceptable level of brake 

force coefficient on smooth road surfaces as this would mean a 

minimum tread depth of at least 4mm. 
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Whilst this would be a boost to tyre sales, it is unlikely to 

happen; therefore, it is important that road surfaces can 

provide an adequate amount of texture. Some work has been 

performed in the past within Dunlop on the development of a 

road surface which has a good macrotexture and a microtexture 

which resists polishing. The practical value of this is 

limited by the need to resurface large amounts of the country's 

roads. Therefore, improvements to the tyre tread pattern 

have a much larger potential for the improvement of wet grip 

levels than do improvements to road surfaces. 

1.2, LITERATURE REVIEW 

The areas of interest for this project can be split into three 

distinct groups: - 

1. Tyre Wet Grip 

2. Fluid Mechanics 

3. The Finite Element Method 

The literature reviewed can also be split this way, and it is 

convenient to consider each area separately. 

1.2.1 Tyre Wet Grip 

There is much published literature on tyre wet grip, but a 
large portion of it is not of direct relevance to the current 

project, being primarily concerned with the testing of specific 

tyres under specific conditions. To allow a mathematical model 

of the tyre/road interface under wet conditions to be developed, 

an understanding of the fundamental behaviour of tyres under 

wet conditions is required and it is literature that deals with 

this that is concentrated on. 
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The behaviour of the tyres on wet roads was noted in the mid- 

1960's (1). A range of peak brake force coefficients for the 

extreme cases of smooth and new patterned tyres and road 

surfaces with open macrotexture/harsh microtexture and smooth 

macrotexture/polished microtexture are shown in figure 1.2.1(2). 

The contribution that the tread pattern makes to the overall wet 

grip level can be seen. The tread pattern used to obtain these 

results was based on longitudinal ribs, and a modern tyre with a 

block tread pattern would probably show a greater contribution to 

the overall wet grip level due to the tread pattern. 

A common method used for the visualisation of tyre behaviour under 

wet conditions is the three zone concept. This is discussed in (1) 

and in the much more recent paper by Moore (3). Figure 1.2.2 

shows a diagrammatic representation of this concept and the three 

zones are defined thus: 

Zone 1- Sinkage or Squeeze-Film Zone 

The forward part of the contact patch is completely separated from 

the road surface by a film of water, the thickness of which decreases 

as individual tread elements pass further into the contact patch. 

When the tyre is rolling freely on the road surface, the water is 

squeezed, due to the action of load on the contact patch. 

Zone 2 Draping or Transition Zone 

The film thickness in this zone is very small and the tyre tread 

elements are starting to drape over the major asperities of the 

road surface. The larger asperities make contact with the contact 

patch. 
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Zone 3- Actual Contact or Traction Zone 

This is the rearmost part of the contact patch and exists 

under all conditions, except total aquaplaning. The tread 

elements are mostly in contact with the road surface and 

almost all the tyres skid-resistance is developed in this 

zone. 

Gough (4) proposed a similar three zone concept and suggested 

that the overall coefficient of friction between the tyre 

and road surface could be expressed as FRICT where: - 

µFRICý 
f 

Al (a + b) + A2 (c + b) + A3 (d + b) 

LOAD 

and 

A1= area of contact of zone 1. 

A2 = area of contact of zone 2. 

A3 = area of contact of zone 3. 

a= hydrodynamic drag/unit area of unbroken water film. 

b= tyre hysteresis loss/unit area. 

c= drag/unit area of partial breakdown of lubricant 

film. 

d= the friction force/unit area of dry contact. 
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The coefficients a, b and c are small compared to d, thus 

allowing the assumption that the coefficient of friction is 

proportional to the area of the contact zone (zone 3). 

A prediction of the area of actual contact between the tyre 

and road surface will, therefore, give a relative measure 

of wet grip friction level. 

A number of papers have been presented (e. g. (5) and (6)) 

which attempt to simplify the tyre/road problem so that an analytical 

solution can be found. Boness (5) makes the assumption that 

lateral flow out of the side of the tyre can be neglected. 

He justifies this on the basis of observations on glass plate 

photographs. However, Bathelt (6) neglects longitudinal 

flow through the tyre contact patch on the basis that until 

complete aquaplaning is achieved, the backward flow of water 

through the contact patch is prevented by tyre/road contact 

at the rear of the contact patch. 

There is obviously an element of truth in both these statements 

but this serves to illustrate the importance of treating the 

flow within the contact patch by a 2-dimensional model. 

In (6)'Bathelt treats the effect of the road surface texture 

by using an equivalent water depth based on the polishing 

depth of the road surface asperities (as per DIN4762). 

Bathelt concludes that the road surface texture (as 

represented by a polishing depth) has a very large part to 

play in determining the overall level of friction. For 

example, he states that the effect of doubling the road 

surface polishing depth from 0.15mm to 0.30mm has a much 

larger effect on the hydroplaning speed than does the 

doubling of the tyre tread pattern depth from lmm to 2mm. 

He also shows that water pockets ("puddles") should be 

avoided as their effect cannot be counteracted even by 

new (unworn) tyre tread patterns. 
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Golden (7) also uses the approach of treating the road surface as an 

effective water depth. He also treats the tyre as acting as a 'balloon', 

as does Moore (3). When a 'balloon' model for the tyre is used, 

the dry contact pressure is assumed equal to the tyre inflation 

pressure throughout the contact patch. This does not appear to be so, 

and it is shown in (8) that the contact pressure is higher in the 

shoulder regions. In chapter 6, some dry contact pressures are 

presented which clearly show their wide variation at different points 

within the contact patch. 

To allow the development of a mathematical model for tyre wet grip, 

one must have a method of modelling tyre deformation under the action 

of the fluid pressure. Browne et al (9) overcome this problem by 

using an experimentally determined fluid film thickness (from (10)) 

and assume that this remains constant. The tyre used for the 

measurement in (10) is plain treaded and the effects of tread pattern 

are added to the model developed in (9) in a further report (11), also 

by Browne. The tread pattern is added, basically by superimposing 

the additional water film thickness at the appropriate points to the 

thickness gained from (10). 

Treating the tyre surface as rigid in this way will severely restrict 

the value of any results gained. In a later paper (12), Browne has 

introduced a deflection model into the fluid model developed for (11). 

This deflection model utilises a full 3-dimensional finite element 

model for the tyre construction. Browne notes that there are problems 

with both the stability of this model and with the generation of the 

finite element model of the tyre structure. Browne in (12) also shows 

a tyre deflection model based on a semi-infinite elastic half space, but 

notes that tyre constructional details cannot be modelled by this. 

A semi-infinite deflection model has also been used by Boness (5). 

A paper by Agrawal and Henry (13) concerns itself entirely with the 

subject of developing a simple tyre deflection model. The method 

chosen is based on a semi-infinite method and is shown to give close 

agreement with experimental results from (14), provided appropriate 

values for the material properties are chosen. 
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In (13) the elastic modulus of the tyre is found from: - 

E= 64LR 

Zl'(CA)2 

where: CA = contact area length. 

L= load per unit width. 

R= cylinder (tyre) radius. 

This is also proposed in (5) and is originally derived from the 

theory of Hertz in Timoshenko (15) by considering the contact 

between an elastic cylinder and a rigid plane. This method of 

calculating elastic modulus is intended to include the effect of 

tyre preload (due to both inflation pressure and normal load). This 

is thought to be a poor way of doing this and an alternative method 

is proposed in this work. 

The above mentioned experimental results for water depth (14) are 

found by a method utilising capacitance plates inside a tyre and 

measuring the change in capacitance due to tyre deformation. The 

main disadvantages with a method of this type are: that only locked 

wheel conditions can be used, the tyre has to be specially modified 

and, the accuracy of the results must be suspect due to the necessity 

of subtracting the measured deflection, plus a constant from the 

measured variable axle height to obtain the actual water film 

thickness. Other methods of measuring the water film thickness 

between a tyre and road surface are based on glass plate photographs, 

such as already discussed (10), where Browne has used a Moire fringe 

technique. Moire fringe techniques are also discussed by Browne 

in (16) and by Roberts in (17). 

From the tests performed by Browne in (10), some very important 

points can be raised which will have a large effect on the results, 

and, subsequently, on the work in (9) and (11). Because of problems 

with the light level reflected from the tyre, Browne used a special 

tyre with the tread moulded from white sidewall rubber. 
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The properties of this rubber would be quite different from those of 

actual tread rubber. The vehicle speed was limited to a 

maximum of 18.8 m/s for safety; therefore the inflation pressure 

was chosen to allow total aquaplaning at this speed by applying an 

approximate formula developed by Horne (18): - 

VH=1.764 

where V is the hydroplaning velocity in m/s and p is the tyre 
H 

inflation pressure in kilopascals. 

The above relationship was determined by Horne for aircraft tyres. 

Browne used an inflation pressure of 1.3 bar on a H78 - 15 steel- 

bel; ted bias ply tyre at a load of 591 Kg. A tyre of this size at 

this load should have an inflation pressure of approximately 2.0 

bar (19), and Browne has purposely under-inflated the tyre. The 

effect of under-inflation is to reduce the contact pressure (and 

stiffness) in the centre of the contact patch, with a corresponding 

increase in contact pressure in the shoulder regions. The fluid 

film thickness resulting from this work is shown in figure 1.2.3. 

The film thickness in the centre of the contact patch is larger 

than would be expected at this relatively low speed (68 Kph), and 

is of the magnitude normally found at 96 Kph. This would seem 

to be explained by the fact that the tyre was under-inflated. 

As this fluid film thickness is used as the basis of the work in 

(9) and (11), the results from these must be treated with a certain 

amount of suspicion. 

A good review of the early work of Browne, and others, can be found 

in the paper "Mathematical Analysis for Pneumatic Tire Hydroplaning" 

(20), although the present author would disagree to some extent 

with the opinions of the usefulness of sipes expressed within this 

publication. If one refers to (1), it is clearly shown that the 

addition of sipes does improve the level of grip attainable in the 

wet. The effect of sipes is 
, however, most noticeable on smooth 

road surfaces, but also has= some beneficial effects on even rough 

surfaces. 
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A paper (21) by Yeager and Tuttle uses a glass plate facility in 

the study of tyres under wet conditions. In this work a tri-axial 

load pin was positioned at the lead edge of the glass plate and a 

photograph taken to record the position of the tyre as it passed 

over the load pin. Unfortunately, the results presented for the 

interfacial fluid pressure are for a specific ribbed tyre which 

makes it difficult to draw general conclusions. 

Another method of using a glass plate facility is to add fluorescent 

dye to the water so that the fluid film between the tyre and the 

glass plate will be visible. A fairly commonly stated fact is 

that the water film thickness can be determined from photographs 

taken under such conditions. Some work has been undertaken to 

improve this technique (22) and is discussed later. 

If one is to produce a mathematical model of the tyre contact patch 

under wet conditions, then the choice of fluid boundary conditions 

becomes an important one. Browne in (9) has produced a thorough 

discussion of this. At both the side edges and rear of the contact 

patch, Browne proposes a pressure boundary condition of p=0 

(atmospheric), whilst the pressure is assumed to be symotrical about 

the tyre centre line. The last assumption restricts the type of 

tread patterns which may be modelled, but will suffice for many 

simple patterns. The front edge of the contact patch, is, however, 

more difficult to specify a boundary condition for. 

Browne proposed two treatments: - 

Treatment 1- VX =U and p=0 implies that all fluid in the path 

of the tyre passes through the lead edge of the contact patch. 

22 

Treatment 2- Vy =0p= Y2)0 (U -VX ) corresponds to no side 

flow and a pressure determined by Bernoulli's equation. 
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There seems to be some contradication in these two treatments. 

Treatment 1 states that all the fluid in the patch of the tyre 

enters the lead edge of the contact patch. Therefore, there can 

be no side flow actually at the front edge (although there may be 

side flow just inside the front of the contact patch) and Treatment 2 

also seems to state the same(Vy 0), yet the pressures are 

specified differently in the two cases. A method is proposed 

in the present work which allows the pressure of the leading edge of 

the contact patch to be determined by flow boundary conditions. 

Browne, with others (23) and (24), has; undertaken some work 

investigating the properties of individual tyre tread elements. 

(23) considers only rectangular tread elements, whilst (24) 

considers both rectangular and circular tread elements. Two further 

papers have been published by the same authors (25) and (26) which 

cover the same work, but are directed at the more general case of 

elastrohydrodynamic squeeze films rather than specifically at 

tyre tread elements. 

As this work concerns itself only with simple shapes, no direct 

evaluation of actual tyre tread elements was performed, although 

a few general conclusions about elast ohydrodynamic squeeze films 

were made. 

The pressure distribution of a rigid tread element and that of a 

flexible tread element are compared in (23), and it is shown that 

the flexible tread element gives a more uniform pressure distribution. 

In (25), the pocket of water trapped as a flexible element approaches 

the rigid surface, is shown, and the significance of this to tyre 

wet grip is discussed in (24). The contact between the tread 

element and the road surface will be established sooner with a 

flexible element rather than with a rigid element, but this contact 

will only be around the perimeter of the tread element. There must, 

therefore, be sufficient road surface macrotexture to allow this 

trapped pocket of water to escape to allow full contact between the 

tread element and the road surface. 
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In (24), a comparison is also made between a rectangular tread 

element and a circular tread element with the same surface area. 

From the curves presented in (24), it can be seen that the time 

to contact is slightly increased in the case of the circular tread 

element. However, the most important feature of changing to a 

circular tread element is that the maximum pocket depth at the 

time of contact (at the element edge) is substantially increased, 

as shown. 

Time to Contact 

SQUARE 19.1 x 19.1 0.612 

Max. Pocket Depth 

0.519 

CIRCULAR rad. 10.8 0.637 0.657 

Browne and Whicker suggest that it is due to a circular tread block 

simultaneously contacting with the road surface at all points on 

its perimeter, whilst the square tread element will have its sides 

bowed and only contact the road surface at the corners. When 

acting on an actual road surface with macrotexture, there will be 

no sealing action by the circular block. However, the greater 

pocket depth may mean that it takes longer for the circular block 

to clear all the water from the tyre/road interface. 

Browne and Whicker in (24) also show the effect of different road 

surface asperities on the minimum film thickness for square tread 

elements. 

The experimental techniques so far discussed have, with the exception 

of (14), been based on outdoor testing facilities. Indoor testing, 

again with the exception of (14),. tends to be concerned with the 

measurement of overall tyre properties, such as braking or cornering 

forces. A description of a typical machine of this type is given 

in (27). 
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Indoor tyre testing machines tend to be based on one of three 

principles: Internal Drum, External Drum, or Flat Belt. The 

Calspan machine (27) is of the latter type. The advantage of a 

flat belt tester is that no errors are introduced due to the 

effects of drum curvature. The main disadvantage of this type of 

machine is that it is not possible to test tyres on realistic road 

surfaces. This is because of the need for the belt to flex as it 

passes around the two drums; see Fig. 1.2.4(a). 

The internal drum type machine (figure 1.2.4(b)), as described in 

(28), can be used for wet grip testing and has the principaj advantage 

that real road surfaces can be utilised. On an external drum 

(figure 1.2.4(c)) (1), it is only possible to use fibre glass 

replica surfaces because the centrifugal force acting on the surface 

would tend to throw the stones out of the surface. On the internal 

drum machine, centrifugal force acts to put the road surface in 

compression. Therefore, real surfaces can be used with safety. 

Internal drums also have the advantage that only a low flow rate 

of water is required to maintain a given water depth in front of 

the tyre, in contrast to the external drum (and flat belt) machine 

where a large flow of water is required to compensate for the water 

thrown off the drum by centrifugal force. 

Another area of work which is relevant to tyre wet grip, is that of 

road surface texture measurement. - If the effect of road surface 

texture is to be included as an , effective water depth as in (6) 

and (7), then some measurement of this depth needs to be made on 

various road surfaces. The use of a so called "outflow meter" 

is described by Henry and Hegmon (29). The outflow meter is 

based on loading a rubber ring against the road surface and measuring 

the length of time for a fixed volume of water to flow from the 

inside to the outside through gaps between the road surface and the 

rubber. Some outflow meters, such as the one in (30) are only 

lightly loaded, onto the road surface. The mean contact pressure of a 

car tyre is approximately 0.3 N/mm2, (based on measurement of the 
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actual 'land' area in the tyre contact patch), and the outflow meter 

used in (30) has a contact pressure of only 0.012 N/mmz. This 

means that the outflow meter tends to 'sit' on the top of the road 

surface asperities and allow drainage much easier than below a 

tyre contact patch. The outflow meter used in (29) was loaded 

to 0.14 N/mm2 which is still rather low, but should give some 

realistic results. Also in (29), the water is pressurised to 

reduce the oui flow time. This will tend to cause the rubber to 

deform and further reduce the outflow time and introduce an error 

in the method. From the outflow time and making some assumptions 

about the viscosity of the water, the effective water depth (mean 

hydraulic radius) can be found from (33). 

wro/ýi) h= 6ýuQTP 

j 1 

where h= effective water depth 

Q= volume flow (volume/out-flow time) 

= water viscosity 

ri= rubber ring inner radius 

ro= rubber ring outer radius 

Pi= pressure applied to water in outflow meter. 

Effective water depths calculated from the data of Henry and Hegmon 

(29) range from 0.35mm to 1.3mm, depending on the road surface, 

but for the reasons described above these are probably high. 

In both (29) and (30), there seems to be some attempt to correlate 

outlfow meter results with friction levels (skid resistance). 
As the outflow meter only measures road surface macrotexture and 

not microtexture, then a prediction of friction level cannot be 

possible by use of the outflow meter alone. In the present work 

and that of Bathelt. '(6), the effective water depth for the road 

surface is only being used as a measure of the road surface's 

drainage capacity and not its friction level. 
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1.2.2 Fluid Mechanics 

The fluid mechanics background for this work falls into the areas 

of hydrodynamic and elast. hydrodynamic lubrication and their 

application to turbulent fluid films. 

Basic thin film lubrication theory (Reynolds equation) is covered 

in many text books, e. g. (31), (32), (33) and (34), where the 

derivation from first principles can be found. 

Solution of Reynolds equation for all but very simple geometry 

necessitates the use of a numerical technique. For this reason 

much work tends to concentrate on the case of one-dimensional flow 

(side leakage neglected) for which there is an analytical solution. 

It seems to be generally accepted (33) that in bearings, if the 

width is at least four times the length, then the effect of side 

leakage can be neglected with sufficient accuracy. It is clear 

that the case of tyres on wet roads does not fall into this category 

and two-dimensional fluid flow will have to be considered. 

A number of approximate methods for finding the load carrying 

capacity of bearings of finite width exist (33) and (35), and these 

will be discussed in Chapter 4. These methods do not give informat- 

ion on pressure distribution and are only applicable to rectangular 

slider bearings of certain width to length and inlet film thickness 

to outlet film thickness ratios. The above work concerns itself 

only with rigid bearings, but to model a tyre under wet conditions 

the bearing surface has to be allowed to deform under the action of 

fluid pressure, the so called elast_o hydrodynamic effect. Solutions 

to the elast. o"hydrodynamic problem for specific cases of simple 

geometry can be found in (36), (37) and (38). 

The case of a tyre on a road is, as well as being elast-o hydro- 

dynamic, preloaded and there seems to be very little literature 

on this subject. One paper that does cover this subject is (39). 
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Gupta (39) postulates that because of the interference fit in a 

preloaded bearing, no fluid flows until a certain pressure is 

reached, at which point the bearing will instantly lift off and at 

this point the fluid pressure will be just equal to the preload 

pressure. 

Reynolds equation is generally used for problems where Reynolds 

Number is low and the flow is laminar. When Reynolds Number is 

high, the flow will tend to become turbulent. A bearing with water 

as the lubricant (low Kinematic Viscosity) will, compared to a 

bearing with oil as the lubricant and the same velocity and dimens- 

ions, have a higher Reynolds Number and it is, therefore, more likely 

to operate in the turbulent regime. A tyre on a wet road can be 

considered as a water lubricated bearing; A number of papers 

(40), (41), (42), (43), (44), (45) and (46), concern themselves 

with the application of Reynolds equation to problems where 

turbulence is likely. 

The basic principle on which all the above papers work, is that the 

effect of turbulence can be included in Reynolds equation by the 

use of an "effective" viscosity, which is dependent on the Reynolds 

Number. The net result of turbulence is, therefore, the same as 

using a fluid with a greater viscosity, i. e. larger film thickness, 

high pressure, etc. 

In (46), Wilcock examines the special case of designing turbulent 

thrust bearings, which is fairly close to the model of a tyre on a 

wet road. Unfortunately, Wilcock concerns himself only with 

bearings in which side leakage can be neglected (i. e. wide bearings). 

As has already been discussed, this is not the case for either a 

tyre contact patch as a whole or an individual tread element. 

Therefore, the model by Wilcock cannot be used in this case. 

The turbulent models developed by different authors concern 

themselves with either Poiseuille flow, where the flow is due to 

pressure only, or with Couette flow, where the flow is due to the 

movement of one of the surfaces (see figure 3.6.1). 
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Typically, for the case of a tyre under operating conditions on a 

wet road, the flow will be neither of these extremes, but a combinat- 

ion of the two. Constantinescu (41) suggested a way in which this 

could be incorporated into a model of turbulent flow. He states 

that the values found for Couette flow should be used provided 

that it will give a larger increase in viscosity than there would be 

by using the Poiseuille values. In other words, the value giving 

the largest increase in viscosity is used. 

The different turbulent lubrication theories are reviewed by 

Taylor and Dowson (42), where the result of work by Ng and Pan for 

dominant Couette flow is presented. This is in either graphical 

or tabular form, but Constantinescu (47) has devised empirical 

expressions to fit this data. These expressions give separate 

factors for the flow in two-dimensions and the viscosity in each 

direction can be multiplied by the appropriate factor. The factors 

depend only on the Couette Reynolds Number based on sliding velocity. 

Also presented in the review by Taylor and Dowson (42) is a 

turbulence factor for dominant Poiseuille flow, which was developed 

by Constantinescu (41) using data from (40). As there is no 

relative movement between the surfaces with Poiseuille flow, then 

the turbulence factor is found from the same equation for both 

directions and is based on the Poiseuille Reynolds Number utilising 

mean flow velocity in that direction. In both cases the empirical 

formulae give close agreement with the graphical results over a 

very wide range of Reynolds Numbers. 

1.2.3 The Finite Element Method 

It has already been noted that a numerical solution technique will 

be required for the solution of Reynolds equation in two-dimensions. 

At the start of the project the decision to use the finite element 

method had already been made, and it had been recognised that 

this type of problem could be solved without any extension to the 

finite element method. 
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There are many text books available which cover the finite element 

method, e. g. (48), (49) and (50) which are typical of these. In 

the main, text books concern themselves with the application of the 

finite element method to the solution of structural problems. 

This is not surprising, as the method was first applied, and is now 

widely used, for this type of problem. However, text books are 

now becoming available on other specific applications of the finite 

element method, such as (51), which deals entirely with the applicat- 

ion of finite elements to a solution of the Navier-Stokes equations. 

Almost all text books on finite elements present some computer 

programs, and (52) in particular, is devoted mainly to the practical 

problems of implementing the finite element method on a digital 

computer. 

If one were developing a finite element model of a structural system, 

then the information in the above text books would probably be 

sufficient. However, it was necessary to search the literature for 

more details on the application of finite elements to lubrication 

problems. 

Two papers by Reddi (53) and (54) use the finite element method to 

solve incompressible (53) and compressible (54) lubrication problems. 

In (54), Reddi states that the compressible problem can be handled 

by an iterative solution to allow for the non-linearity of the 

equations. In (53), the boundary conditions that apply to 

lubrication problems are discussed. There are two basic types of 

boundary conditions available, pressure and flow, and either or 

none of these may be applied to nodes on the boundary of the domain. 

Some results are given in (53) which show that the finite element 

method gives close agreement with the exact solution for a number of 

simple slider bearing cases. 

Reddi notes that the finite element method is initially more 
difficult to implement than the finite-difference method, but that 

once a suitable computer program has been developed, the finite 

element method is simpler to use than the finite-difference method. 
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Reddi also discussed some of the computational implications of the 

bandwidth in the matrix of the final system of equations. The 

variational principle required for the formulation of the basic 

equations is proved in (53) and is also shown in (55). 

The papers (53), (54) and (55), concern themselves with two- 

dimensional lubrication problems, but (56) develops the method for 

the solution of one-dimensional problems where analytical solutions 

are known. Wada et al (56) then show comparisons of finite element 

solutions with varying numbers of elements with the exact solution. 

Typical of these is the table below where the pressure in a journal 

bearing at x= 90 degrees with an eccentricity ratio of 0.2 is 

shown. 

No. of Elements Exact Sol. F. Diff. Sol. F. E. Sol. 

2 1.397 1.132 

4 1.233 1.170 

6 1.176 1.201 1.174 

12 1.183 1.176 

18 1.179 1.176 

24 1.178 1.176 

36 1.177 1.176 

This illustrates the need to use sufficient elements to ensure an 

accurate soltuion. It can also be, seen that the finite element 

solution will give accurate results for a much more coarse mesh 

than the finite-difference solution. For example, the finite element 

method will give a solution within 0.5%'of the exact solution 

with only 4 elements, where the finite difference method requires 

12 elements to achieve the same degree of accuracy. 

Wada and Hayashi extended the work from (56) to include finite width 

(two-dimensional) bearings in (57), and again present results 

comparing finite element solutions with finite-difference solutions. 

These show that the finite element solution for finite width bearings 

can be made with less elements than the finite difference solution, 

in a similar way to the infinite width bearings in (56). 
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Part of the work in (57) is with Reynolds equation transformed into an 

ordinary differential equation, which is applicable when the film 

thickness changes in the sliding direction only. When the film 

thickness changes in the direction normal to movement also, the finite 

element method has to be applied to a partial differential equation. 

Obviously, for the case of tyres on wet roads, the full partial 

differential equation has to be solved, as film thickness changes 

are required in both directions. 

Allaire et al (58) presented a paper which was concerned primarily with 

the size of mesh required to get accurate results in 
, 

lubrication 

problems. They note that by using the mesh with the optimum node 

positions, and thence minimum number of elements, the amount of computer 

time (hence cost) to solve the problem will be substantially reduced. 

An example is given of a plain journal bearing with a mesh of 4x 31 

nodes which are spaced on a variable grid with the element diagonals 

aligned with the pressure gradient direction. This gives similar 

accuracy to a mesh with 5x 31 nodes on a uniform grid and all the 

diagonals orientated in one direction. In numbering the nodes to 

achieve a low bandwidth, Allaire et al numbered the nodes in assending 

order across the smallest side. Therefore, the above increase in 

mesh size will also cause an increase of one in the bandwidth. 

According to Allaire et al, -the first solution will require 50 percent 

less computer time than the second. Therefore, the size of the 

bandwidth will have a very marked effect on the computer time required. 

The bandwidth is not only dependent on the size of the problem however, 

it is also dependant on the node numbering scheme employed, and the 

work of Allaire et al was intended to be using the minimum bandwidth 

for the particular mesh size. 

The application of the finite element method to elasto, hydrodynamic 

problems has been shown by Taylor and O'Callaghan (59) for the case 

of lightly loaded elastic cylinders. This uses an iterative 

technique for the simultaneous solution of the fluid and elastic 

equations. A similar technique is also used by Oh and Huebner 

(60) and Rohde and Oh (61). 
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In (61), it is noted that better convergence was found by using 

higher order interpolation functions (in their case cubic) rather 

than linear interpolation functions in the finite element formulat- 

ion. 

In using the finite element method to solve any type of problem, 

one of the main difficulties (and the most time consuming) is the 

preparation of the numerical input data. 

A common way of easing the mesh generation problem, is to use a 

computer program into which the domain to be represented is idealised 

as a number of quadrilaterals input by the user. The mesh 

generation program then sub-divides each quadrilateral into a number 

of elements as specified by the user. The element sub-divisions 

can usually be unequal by specified input weighting factors. A 

simple mesh generation program which uses this method is given in 

(52). The mesh generation program given in (50) is similar, 

except that the domain may be sub-divided into triangular regions as 

well as quadrilaterals. 

The use of a mesh generation program, such as those above, 

significantly reduces the effort required to produce accurate finite 

element mesh data. However, they still require a relatively large 

amount of data to define the sub-regions and the density of the mesh 

required. This sub-dividing method also restricts the type of mesh 

that can be generated, and Frederick et al (62) in noting this, 

proposed an alternative method. Their method requires the x-y 

co-ordinates of each node in the mesh to be specified, along with 

the material type to allow different materials to be used in the 

same object. The computer program will then automatically form the 

mesh by joining points to produce triangles which are as near to 

equilateral as possible. In this method, there is a problem in 

defining the boundary, and so called 'ghost' points are formed 

outside the domain. The elements formed with ghost points are 

deleted later in the mesh generation process. A large disadvantage 

with this method is that all the node points have to be specified in 

terms of their x-y co-ordinates, and although this can be done 

on a digitising table, it is still a time consuming activity. 
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The precise position of a node is rarely of importance in finite 

element analysis (62), particularly if it is in the interior of the 

domain. 

The above methods, particularly the domain sub-dividing method, 

are most suitable when a mesh is to be produced of a large 

geometrically simple domain. This allows only a few sub-domains 

to be used to specify the whole domain. When a more complex 

(geometrically)domain needs to be meshed, the number of sub-domains 

that would need to be specified would become prohibitive. In the 

present context, the tread blocks within the tyre contact patch 

are complex geometrically and the above methods of mesh generation 

are not particularly suitable. The method proposed in (62) is 

similarly thought to be unsuitable in the present context, due to the 

amount of data the user is required to input to define the x-y co- 

ordinates of all node points. 

The introduction of Computer-Aided-Design (CAD) opens up new 

possibilities in the generation of meshes for finite element analysis 

(63). If a CAD system has been used in design, then the necessary 

geometric information is already stored in the computer and the 

finite element mesh can be produced without the need for the user to 

input this data. The user can then concentrate on producing a 

suitable mesh and can easily display the mesh graphically for 

checking. 

1.3 CONCLUSIONS FROM THE LITERATURE REVIEW 

From the information gained in the literature review, a number of 

conclusions, which will serve to direct the rest of the work, can be 

drawn. 
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Whilst there have been a number of attempts at producing a 

mathematical model of a tyre under wet conditions, there appears 

to be none that will satisfy the current requirements for providing 

the tyre designer with a tool which he can use to aid his selection 

of tyre tread patterns for improved wet grip. There is a need 

for two types of design aid: - 

i) to allow study at the contact patch level to assist 

in the layout of the individual tread elements within 

the contact patch. 

ii) to allow study at the individual block level to allow 
the detail design of blocks to be optimised for wet 

grip. 

It is important to model the flow of water as fully as possible, but 

the modelling of the tyre structure can be simplified as it is not 

necessary to assess the effect of changes in tyre construction within 

the model. The effects of tyre construction can be represented by 

a preload (contact pressure) and a stiffness at all points within 

the contact patch. 

As the object is to aid the geometric design of tread patterns, it is 

not necessary to include the effects of either the tread compound or 

the road surface microtexture on friction levels. The capability 

of a tread pattern can, therefore, be determined from fluid pressure 

and film thickness distributions. The component parts of such a 

model are developed in Chapter 3. 

The implementation of the theory into computer programs for both 

tyre contact patch analysis and individual block analysis is shown 

in Chapter 4. 
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On the experimental side, there is a lack of detailed fluid pressure 

and water film thickness measurements for tyres moving at high speed 

in wet conditions. No facilities are available for this, and the 

development of an existing test facility to allow these measurements 

to be made is discussed in Chapter 5. Results from these 

measurements are presented in Chapter 6 and their comparison with 

results produced by the computer programs are discussed. 

It should be stressed that this work is only a first step towards 

the detailed study of the tyre/road interface under wet conditions. 

Chapter 8 presents many suggestions for further work, both in the 

mathematical modelling and experimental fields, as well as drawing 

conclusion from the present work. 
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CHAPTER 2- "NON-TECHNICAL"WORK 

2.1 INTRODUCTION TO "NON-TECHNICAL"SECTIONS 

The purpose of this chapter is to document some of the non-technical 

work which was undertaken as part of the Total Technology PhD. 

The work can be considered as falling into three main categories: - 

1. Study of the Tyre Design Process. 

2. Cost/Benefit Analysis of the Project. 

3. Network Analysis of the Project. 

1&2 are linked to a certain extent and will be covered in this 

chapter. The third category is concerned with the monitoring of 

the project and is covered in chapter 7. 

The study of the tyre design process was undertaken in order to 

identify the areas in which a computer model could assist the design 

of the tyres for improved wet grip. This was particularly important 

as the underlying object of this project was to produce a design, 

rather than a research tool. An understanding of the tyre design 

process was necessary to allow the computer model to be directed 

to those areas which would have the greatest impact on tyre design 

for wet grip. 

To assess the financial implications of undertaking this project, 

a Cost/Benefit Analysis was performed. . The costs of the 

conventional design process were assessed for typical design 

activities. The benefits which could be gained by using an improved 

method of design for wet grip were also assessed. The costs of 

actually undertaking the project are estimated, and making 

assumptions based on the benefits analysis, a decision on how 

worthwhile the project was can be made. 
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2.2 STUDY OF THE TYRE DESIGN PROCESS 

2.2.1 Introduction to the Tyre Design Study 

The main purpose of the tread pattern on a tyre is for the improvement 

of wet grip. It is unfortunate that the tread pattern has a 

detrimental effect on most other properties of tyres, such as: 

Noise Generation - the generation of noise as a tyre rolls along 

a road is largely determined by the number of air/rubber transitions. 

Therefore, a plain treaded tyre will produce very little noise 

compared to a patterned tyre, particularly if the pattern is based 

on blocks rather than ribs. 

Wear - the tread pattern influences the wear of the tyre, both in 

terms of the overall wear rate and the evenmss of wear. The 

uneverncss of wear can cause particular tread patterns to promote 
high wear in, say, the shoulder regions. 

Handling & Stability - the addition of a tread pattern to a tyre 

causes the loss of some structural rigidity. 

The design of the tyre tread pattern,, therefore, has to be a 

compromise between the conflicting requirements of different 

properties. The technical work in this project is concerned only 

with the optimisation of tread patterns with respect to wet grip. 

Therefore, it is essential that as a design tool it fits into the 

overall design process where other factors of tyre performance can 

be considered. This study of the tyre design process was 

undertaken with this aim in mind. 

2.2.2 The Design Specification 

The development of a new tyre may be initiated in a number of ways: 

( i) The introduction of a new vehicle range by an original 

equipment (O. E. ) manufacturer. 



- 33 - 

(ii) Noted deficiencies in the performance of a current 

range of tyres. 

(iii) The desire for the Company to enter a new section 

of the market. 

When the need for a new range of tyres has been identified, the 

marketing department set out a series of specifications based on 

one or more current production tyres. This rates the requirements 

of the proposed tyre for all the relevant tyre properties. For 

example the specification for a winter tyre may be: - 

Current Proposed 
Handling 100 95 

Wet Grip 100 110 

Performance on Ice 100 105 

Performance on Snow 100 105 

Noise 100 85 

Wear 100 90 

Liaison between marketing and design departments ensure that targets 

set are realistic. 

Once targets have been set in terms of a current tyre's performance, 

there may be additional constraints imposed on how these targets 

can be met. For instance, a certain style of tread pattern may be 

required, depending on market fashion, or an O. E. manufacturer 

may have a preference for a certain style of tyre, possibly to fit 

in with the image of the vehicle, or possibly because a particular 

style of tyre has performed well in the past. 

2.2.3 Tyre Structural Design 

The type of structural design used will largely be determined by 

the type of tyre required by the design specification. Factors, 

such as if the tyre is for the performance or economy market, 

the aspect ratio (60 series, 70 series, etc. )., will influence 

the type of construction used. 
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The overall dimensions of the tyre for any particular rim size and 

width, are given in European Standards (ETRTO). Therefore, the 

designer is left mainly with the decision about the type of 

construction required. One of the main variables in radial tyre 

construction are the breakers. The number and type of breakers 

effect the profile of the tyre and also the speed rating. Higher 

speed ratings require more complex breaker arrangements and are more 

costly to produce. 

Once the construction and size of the new tyres have been determined 

then plain tread moulds can be designed and manufactured. These 

moulds cost approximately £10,000 each and allow the production of 

plain tread development tyres. 

2.2.4 Initial Tread Pattern Design 

Whilst the plain tread moulds are being manufactured, the overall 

type of tread pattern required is worked. out. The starting point 

for this is the performance specification which should suggest a 

particular style of pattern. It is here that the experience of 

the designer is used to allow some tread patterns to be sketched out, 

and then drawn accurately to scale. The tread pattern consists of 

a series of "building blocks" which are placed together to form the 

total pattern. These "building blocks" or segments are usually 

specified'in 'short', 'medium' and 'long' lengths, so that the pattern 

is not repeated at a regular frequency around the tyre, which is 

detrimental for the generation of noise. 

Masks are made of these segments so that the pattern can be marked 

out on plain tread development tyres. At this stage, a computer 

model can be used to select the best arrangement of segments for 

lowest noise generation. 
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It is usual at this stage to cut the tread pattern on only a section 

of plain tread tyre so that the designer can see the pattern on 

the tyre's curved surface. Any possible weaknesses in the pattern 

can be visually identified and the tyre can also be loaded onto a 

glass plate, so that the contact patch under load can be seen. 

This process is repeated until a number of versions of the tread 

pattern are found which look satisfactory. These will then be 

fully hand-cut onto plain tread tyres. 

2.2.5 Testing Hand Cut Tyres 

The hand cut tyres are tested along with one or two standard 

production tyres as controls. Because there is only one tyre of 

each variant available, machine testing can only be performed at 

this stage. 

Using the results from these machine tests, modifications may be 

made to the designs, and the testing procedure repeated. When 

satisfactory results have been obtained from the machine tests, 

more tyres are hand cut to allow on-vehicle testing. The on-vehicle 

testing is much more thorough than the machine testing, and, again, 

modifications may be required followed by re-testing. On the 

basis of these vehicle tests, one tread pattern will be chosen for 

use in the development mould. 

2.2.6 Development Mould Tyres 

A development mould is manufactured using the construction from the 

plain tread mould and the pattern determined from the testing of 

hand cut tyres. This stage in the tyre design process is both 

expensive (approx. £30,000 per mould) and time consuming (6 to 

8 months), and it is unlikely that there will be time to make any 

changes to the design once this stage has been reached. It is. 

therefore, important that the design is optimised before this stage 

is reached. 
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2.2.7 O. E. Approval 

Providing the results of tests on the development mould tyres 

are satisfactory, tyres are then supplied to the O. E. customer for 

evaluation. The tyres must meet specified standards set by the 

O. E. manufacturer and must be available at the time when the O. E. 

manufacturer is evaluating tyres from all the different suppliers. 

The subject of O. E. approval is again discussed in Section 2.3.11 

when the effect of technical quality on sales performance is 

considered. 

2.2.8 Conclusions From The Tyre Design Study 

From the submssion of tyres for O. E. approval until going into 

full-scale production, generally takes ten to twelve months, 

making the total time from specification to production two to 

three years. This can have a significant effect on the design 

process, as the increased performance continually being demanded 

from tyres makes it more difficult to meet the dead-line for 

O. E. approval. The requirements and style of a tyre may also 

change over this period. Therefore, it is desirable to reduce 

the design lead time if at all possible. 

The critical time in the design is at the early stage when hand 

cut tyres are being used, as once the development mould 

specification has been set, there is little opportunity for major 

change to either the tread pattern or construction without 

serious time penalties. This stage of the tyre design lasts 

for up to six months and is really the only stage that can vary 

in length, as other stages are governed by such factors as 

machine shop lead times in mould manufacture. 

This initial design process is basically an iterative procedure, 

particularly with the detail design of tread blocks. It was 

thought that this is the area in which computer modelling would 

be most useful. 
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The design of tyre tread blocks has become more important in 

recent years with the switch from rib based patterns to block 

based patterns, as construction has changed from cross-ply to 

radial. 

Whilst "blocky" tread patterns have detrimental effects on other 

tyre properties, in particular noise, they do provide the 

potential for improved wet grip levels. A method of assessing 

individual block designs would, therefore, be desirable and should 

reduce the number of design variations which have to be 

evaluated by testing. 

Given the present structure of the tyre design process, a computer 

model for wet grip could be used in a number of different ways. 

For example, it could be used to reduce the number of design 

variations which require testing, and hence reduce the overall 

design time. This could allow a deadline for O. E. approval 

to be met which otherwise would not. A second way of using a 

computer model would be'to allow more design ideas to be evaluated 

and, as a result, to produce a tyre with improved wet grip 

properties. In doing so, the actual time taken, and the amount 

of testing, may be increased, because the results of computer 

modelling could not be used without verification using traditional 

testing methods. In this case, the computer model would be 

used to decide which designs were worth progressing and which 

should be modified at an early stage. 

2.3 COST-BENEFIT ANALYSIS OF THE PROJECT 

2.3.1 Introduction to Cost-Benefit Analysis 

The cost side of this study can be split into two areas: cost of 

the current project, and cost of the tyre design process; in 

particular the cost of testing development tyres. The benefits 

side is approached by identifying the areas where possible 

benefits, due to the introduction of computer modelling for wet 

grip, may be gained. 
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An attempt has then been made to quantify the value of these 

benefits so that a comparison with the costs incurred in 

undertaking the project can be made. 

2.3.2 The Cost of Undertaking the Project 

The actual costs which can be attributed to the undertaking of 

the current project have been calculated and are shown in 

figure 2.3.1. The details of how these figures were obtained 

are now shown: 

i) Direct Labour - this is based on the time for one 

person over the full three year period, including a 

notional amount of £2,000 to cover expenses. The 

actual hourly rates used were £15.93 for year 1: £16.73 

for year 2 and £17.57 for year 3. These figures include 

overheads, such as heat, light, etc., and the number 

of working days per year was taken as 250. 

ii) Computing (IBM) - this is the cost associated with the 

use of the IBM mainframe computer for both development 

and use of the program. The actual cost varies, 

depending on what peripherals are used by a particular 

job, and is between £300 and £500 per CPU hour. The 

figure here is based on an average CPU cost of £400/hour 

and an estimated usage of 50 CPU hours over the three 

year period. 

iii) Cornering Force Machine - the cost for use of the 

cornering force machine is based on the cost of 

performing standard tests on that machine. When the 

time to perform each of these tests is taken into 

consideration, a figure of £900 per day for use of the 

machine is gained. This cost includes direct labour 

(one technician), overheads and depreciation of capital 



- 39 - 

FIGURE 2.3.1 - ESTIMATED TOTAL COST FOR WET GRIP PROJECT 

(COST TOLERANCES SHOWN ON VARIOUS ITEMS) 

i) Direct Labour (including £2,000 expenses) 94,181 ± 5% 

ii) Computing (IBM) 20,000 + 30% 

- 10% 

iii) Cornering Force Machine 36,000 + 
50% 

iv) Image Analyser 

Depreciation 4,615 + 
- 

0% 
10% 

Operator 4,779 + 
- 

5% 
20% 

9,394 9,394 

v) Glass Plate Photographs 1,075 ± 5% 

vi) Testing of Nozzle at Cranfield 2,000 ± 10% 

vii) Electronics Engineer 1,884 + 
30% 

viii) Capital Expenditure: 

Radio Telemetry 1,106 

Surface Shells 2,750 

Pressure Transducer 421 

Fibre Optic Probe 61 

Electronic Components 80 

Nozzle (complete) 273 

Test Tyres 100 

a) Extra Ends for Nozzle 160 

b) Transmitter Mountings 50 

c) Pressure Calibration 200 
Rig 

5,201 5,201 

TOTAL COST: 169,735 

ESTIMATE BASED ON HIGHEST COST £181,031 

ESTIMATE BASED ON LOWEST COSTS £142,792 
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equipment. However, the figure of £900 per day seems 

rather excessive as the machine is 25 years old and has, 

therefore, been completely written off for depreciation 

purposes. There will, of course, be high maintenance 

costs. Therefore, as no other figures are available, 

the one above will be used. In the duration of the 

project, the machine was used for a total of 40 days, 

which included the time taken to set the machine up for 

testing. 

iv) Image Analyser - the image analyser was used for a 

total of 16 weeks over the duration of the project. For 

8 of these weeks an operator was also used with the 

machine. The machine cost is based on a purchase price of 

£75,000, which is to be depreciated over 5 years, giving 

a depreciation cost attributable to this project of 

£4,600. The operator cost at £15.93 per hour (operator 

used in first year of project) is £4,779. 

v) Glass Plate Photographs - as no information is available 

on the cost of the glass plate facility, then the cost of 

the glass plate photographs is based entirely on the 

labour cost of 3 people for 3 days. Again, these 

photographs were taken in the first year. Therefore, 

the hourly rate was £15.93. 

vi) Testing of Nozzle at Cranfield - the cost was estimated 

based on equipment used and labour costs for 4 days. 

vii) Electronics Engineer - the assistance of an Electronics 

Engineer was used for a total of 3 weeks, spread throughout 

the project. 

viii) Capital Expenditure - this is based on the actual 

purchase price of equipment obtained specifically for 

this project. Items a, b and c were manufactured 

'in house'. Therefore, their cost was estimated. 
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2.3.3 Discussion of Proiect Costs 

The greatest component of cost is labour, which is included not 

only in the major single item of direct labour, but also in 

other items such as cornering force machine and electronics 

engineer. To a certain extent, these labour costs are 

misleading in that if the project were not undertaken then 

this amount would not be saved. However, that would then 

free the people involved to undertake alternative work, which 

may or may not be directly profitable. Therefore, the true 

total cost of labour must be used as has been done here. 

In a similar way, the cost of use of the IBM computer is not 

directly payable by the Company, as it is leased on a fixed 

charge. Therefore, if the computing work in this project 

had not been undertaken, then the Company would not have 

saved any money. 

However, the lease cost has to be divided amongst the users; 
therefore, this is done on the basis of time used by each user 

and the computing cost shown in figure 2.3.1 should be 

attributed to this project. 

The actual costs incurred by the Company in undertaking this 

project are mainly those due to capital expenditure, but these 

are a relatively small proportion of the total project cost. 

The total cost of this project can be used as a basis of 

comparison with the possible benefits detailed in Section 2.3.6. 

By also comparing the cost of this project with the normal costs 

incurred with routine testing, it is possible to make a judgement 

as to whether the project was worthwile undertaking. 

The costs shown in figure 2.3.1 have tolerance figures attached 

where appropriate. These are based on discussion with people 
involved with the setting of costs in the appropriate areas. 
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Some of the cost figures are also inaccurate because of time 

estimates. In particular, the amount of CPU time used on the 

IBM mainframe computer is only an estimate. Therefore, the 

tolerance will represent this as well as the tolerance on the 

cost. 

2.3.4 Tyre Testing Costs 

The actual amount of testing to which a series of development 

tyres is subjected, depends on the number of changes that have 

been made from a previous standard design. When a range of 

tyres is being developed, a number of design variants are put 

through the testing process and the most suitable chosen, 

depending on the test results. 

Initial tests are performed with hand cut tyres on machines and, 

as the variants progress, their number will be reduced and a 

smaller number subjected to the full range of on-vehicle tests. 

Usually, the testing commences with 6 to 8 variants, plus 1 or 2 

standard control tyres; this would be reduced to 1 or 2 variants 

in the later (more expensive) stages of testing. 

A typical series of tests to which a new range of tyres would 

be subjected is: - 

Noise 

Cornering Force (wet grip) 

Rolling Resistance 

Thermovision (wear) 

Structural Durability 

Structural - High Speed 

On-Vehicle Braking (wet grip) 

On-Vehicle Handling 

On-Vehicle Wear 
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In addition to the above, if during development a particular type 

of problem arises, then specific tests will be designed to 

investigate it. 

The order in which these tests are performed will vary and it 

is usual to perform the tests which the tyres are expected to 

perform badly at first. 

The actual cost of these tests vary enormously, and as would 

be expected, the on-vehicle tests tend to be the most expensive. 

The costs of individual tests are shown in the table below: - 

TEST COST PER VARIANT 

Noise 85 

Cornering Force 310 

Rolling Resistance 120 

Thermovision 45 

Structural Durability 1,040 

Structural - High Speed 66 

On-Vehicle Braking 480 

On-Vehicle Handling 256 

On-Vehicle Wear 15,600 

TOTAL COST PER VARIANT: 18,002 

The above costs take into account that for certain tests more 

than one tyre of a particular variant has to be tested to obtain 

average values. The cost of these tests include the depreciation 

of capital equipment, plus direct labour costs and overheads. 
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2.3.5 Discussion of Testing Costs 

The tyre testing costs outlined above are incurred during the 

normal iterative tyre design process. As was discussed in 

section 2.2.8, the design process would last for up to 2 or 3 

years and would include a team of 2 or 3 designers. The labour 

cost incurred over this period could, therefore, be as much as 

£800,000. The actual cost of producing the hand cut test 

tyres is approximately £600 per tyre. Therefore, initial tyre 

costs (for a"range of variants) would be approximately £4,000, 

with additional costs of the same magnitude when extra tyres 

are required for on-vehicle testing. 

The cost of performing tests is, therefore, only part of the 

total design cost. The actual cost in a specific case will 

vary depending on the amount of design time and re-testing 

required, and also on the number of development moulds required. 

Unfortunately, it is not possible to quantify the design costs 

for specific cases as figures are not available. 

2.3.6 Possible Benefits Attributable to this Project 

The benefits to the Company, due to work performed in this project 

will depend on how the mathematical model for tyre wet grip is 

used. If the model is used to reduce the amount of iterative 

testing, then there would be savings, both in testing and design 

time costs. It would also help in meeting O. E. manufacturers' 

dead-lines and may mean that an O. E. supply contract is gained 

that would otherwise not be. The model could also be used to 

improve the performance of tyres in the wet with little or no 

effect on design time or testing costs. The benefit here would 

be in increased sales and, to assess the possible benefits to be 

gained, a study of the effect of technical quality on sales 

performance was undertaken. 



- 45 - 

A further area where possible benefits may be gained is in a 

reduction of wet skidding accidents. Government statistics give 

the cost of various types of accidents and, therefore, the 

potential for saving to the Country can be assessed. 

The benefits can be 'divided into four main categories: - 

1. Savings in Design & Testing Costs. 

2. Increased Credibility with O. E. Manufacturers. 

3. Increased Sales. 

4. Savings to the Country due to a reduction in accidents. 

2 and 3 are similar in that they both concern the level of 

sales, and, in particular, sales to O. E. Manufacturers. The 

effect of technical quality on sales performance is covered in 

Section 2.3.11. 

2.3.7 Savings in Design & Testing Costs 

The magnitude of any cost saving in the design function, due to 

the introduction of a computer model for wet grip, depends 

largely on how that model would be used. The most likely use 

would be in the early stages of design where unsuitable tread 

patterns could be identified before any testing were carried out. 

This would save both design time costs and testing costs. 

The actual cost savings are fairly hard to determine, as the 

amount of re-design time and the quantity of re-testing would 

vary in each specific case. However, the typical sort of 

detail change to a tread block design would be, say, the addition 

of a 'cut-out'. In this case the additional costs incurred 

would typically be: - 

Re-design time -1 week 2,000 

Hand cut new pattern 600 

Test Tyre. 25 

Cornering Force Tests 500 

TOTAL: 3,125 
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The above only includes re-testing for wet grip properties, but it 

is possible that other testing, such as noise or thermovision 

would have to be repeated, further increasing the additional 

costs. 

Within the total design time of a tyre, there may be many such 

re-designs, and the above assumes that they are made before the 

original design had progressed further than the first stage of 

testing. If it had, then the re-testing costs would be very 

much higher (Section 2.3.4), especially if on-vehicle tests had 

to be repeated. 

The above case outlines the regular savings that could be made 

during the normal iterative design process. Sometimes 

modifications will be made to a design after the development mould 

has been made, and if a re-design of this type could be avoided 

then the savings would be £30,000 for the mould, plus re-design 

and testing costs. Bearing in mind that more testing would 

have to be repeated in this case, then the total cost may be as 

high as £50,000. 

2.3.8 Increased Credibility with O. E. Manufacturers 

The development and use of a computer model for wet grip can be 

viewed in terms of overall improvements in the understanding of 

tyre technology and in the use of new methods to aid the design 

process. The O. E. Manufacturers themselves are continually 

developing the understanding of their products, and it is, 

therefore, reasonable for them to expect their component 

suppliers to do likewise. It is, therefore, important for the 

supplier to be able to exhibit to the O. E. Manufacturer, both 

his current technical understanding and his developments towards 

improved understanding. 

In many cases the speed of response of its supplier in answer to 

an enquiry is important to an O. E. Manufacturer. Therefore, a 

supplier who can provide a fast service places himself in a 
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favourable position when negotiating future contracts. The 

effect of gaining an additional O. E. supply contäct is discussed 

in Section 2.3.11. 

2.3.9- Increased Sales 

One aspect of increased sales has already been discussed in 

Section 2.3.8 in that gaining O. E. contracts amounts to an 

increase in sales. The other area in which increased sales can 
be had is in the replacement market. It is important in the 

replacement market to keep ahead of one's competitors and to 

be able to provide a tyre which performs well in all aspects. 

Tyres sold for the replacement market are generally more 

profitable than tyres sold for O. E. fitment. However, without 

O. E. fitment, the number of replacement tyres sold will be 

greatly reduced. This is discussed in Section 2.3.11 

where an example is given showing the total effect on 

replacement sales over a5 year period of gaining one O. E. 

supply contract. 

2.3.10 Saving to the Country Due to a Reduction in Accidents 

Wet skidding is a major cause of road accidents, and, therefore, 

any improvement in tyre performance in the wet is likely to 

reduce the number of accidents. It is very difficult to predict 

what reduction in accident rate could be achieved by a given 

improvement in technical performance. However, the cost of 

road accidents can be found from reference (73). The latest 

available figures are for 1981, when a total of 25,342 vehicles 

were involved in skidding accidents on wet roads. The severity 

of these accidents varies enormously, but, again from (73), the 

average cost of all injury accidents is £6,060, and damage only 

accidents £460. The actual cost for injury accidents of 

different categories is made up as follows (73): - 
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Fatal Serious Slight 

Lost Output 105,470 1,430 20 

Medical & Ambulance 500 870 50 

Police, Insurance & Admin. 240 190 150 

Damage to Property 1,390 1,120 770 

Pain, Grief & Suffering 41,600 4,280 90 

TOTAL: £149,200 £ 7,890 £1,080 

As can be seen from the above table, the spread of costs which 

give rise to the average cost per accident are very large. The 

total cost of wet skidding accidents in Great Britain in 1981 

was approximately £153M, and any reduction in the total number 

of accidents would represent a very large potential saving to 

the Country. 

2.3.11 The Effect of Technical Quality on Sales Performance 

There are two distinct markets in which tyres are sold; 

Original Equipment (O. E. ) and replacement. The O. E. sales 

are by far the most important to the tyre manufacturer and, as is 

shown in this section, also have a very great effect on the level 

of replacement sales. 

When selecting which tyres to fit, O. E. Manufacturers use a 

number of factors to rank them: figure 2.3.2. 

Wet grip comes very high in priority for both performance 

orientated and economy orientated categories. Therefore, a 

tyres wet grip performance will have a large influence on its 

acceptability. The exact weighting placed on different 

attributes is not disclosed by the O. E. Manufacturers, as this 

tends to encourage suppliers to build tyres to satisfy the 

ranking requirements rather than service requirements. 
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Figure 2.3.2 - ASSESSED AVERAGE PRODUCT BENEFIT PRIORITIES 

OF O. E. M's. 

Performance Orientated 

1. Handling 

2. Wet Grip 

3. Structural Integrity 

4. Directional Stability 

5. Comfort 

6. Mileage 

7. Low Rolling Resistance 

Economy Orientated 

1. Wet Grip 

2. Low Rolling Resistance 

3. Structural Integrity 

4. Handling 

5. Comfort 

6. Directional Stability 

7. Mileage 
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Before a tyre can be considered for O. E. fitment, samples must 

be supplied for acceptance tests, where minimum standards in the 

categories shown in figure 2.3.2 must be met. It should be 

noted that it is becoming increasingly more difficult to meet 

these standards. The acceptance tests will also only normally 

be carried out at the time of introduction of a new vehicle 

model, so it is very important to be able to supply sample 

tyres at this time, as missing the acceptance date could mean 

missing out on O. E. fitment for the whole of that vehicle's life. 

Once a tyre has been accepted as meeting the minimum standards, 

then, depending on its overall position in the ranking compared 

to other suppliers tyres, the percentage of supply for that 

particular vehicle will be determined. However, this ranking, 

based on technical performance, can be upset by a tyre 

manufacturer who offers to supply tyres at a low price; 

although these tyres would still have to meet the minimum 

performance standards. 

On a large volume fitment there may be as many as 6 or 7 

different tyre manufacturers who will each get a different 

percentage of the fitment, dependent upon their position in the 

ranking. - For a low volume fitment there may be only 1 or 2 

suppliers. The actual position in the ranking can have a large 

influence on the percentage of tyres supplied and the difference 

between third and first in the ranking can mean a difference of 

10% volume of fitment. 

The full implications of gaining O. E. fitment can be seen if a 

5 year period is considered when the original tyres on a vehicle 

are being replaced. If a tyre manufacturer has his tyres 

fitted as original equipment, then he can expect, according to 

the Marketing Department of S. P. Tyres U. K. Limited 

(manufacturing and marketing Dunlop tyres in the U. K. ) to sell 

45 replacement tyres for each 100 sold as original fitment. 
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If he did not get original fitment, then he could only expect to 

gain 6% of replacement sales. In the high volume market it is 

these replacements which represent the most profit, as tyres for 

O. E. fitment may be sold for cost price or even at a small loss, 

so that the benefits of replacement sales can be gained in a 

few years time. In the supply of low volume HR and VR 

tyres the situation may be different and a substantial profit 

may be made on tyres supplied for O. E. fitment. 

To give an indication as to how important this 'knock-on' effect 

on replacement sales is, an example of the case for supply of 

155SR13 tyres for fitment to a high volume selling car will be 

considered. 

Assuming that in one year 140,000 vehicles of this model are 

produced, then there is a need for 700,000 tyres, and Dunlop may 

aim to obtain, say, 20% of this fitment, i. e. 140,000 tyres. 

Therefore, if we consider the effect on replacement sales over 

5 years, of 1 year's O. E. fitment, then the number of replacement 

units it is anticipated will be supplied is approximately 45,000. 

This is detailed in the table below. 

YEAR 

1 .2 3 4 5 

Fraction replaced 
in that year. 0.2 0.4 0.8 1.1 1.1 

Number of units 
replaced if O. E. 
fitment to 
28,000 cars 5,600 11,200 22,400 30,800 30,800 

Number of 
replacement 
units can expect 
to achieve on 45% 
replacement 
rate 2,500 5,040 10,808 13,860 13,860 
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From the table it can be seen that the fraction of tyres replaced 

after 1 year is 0.2, and if Dunlop obtains a fitment rate of 20%, 

then Dunlop tyres will have been fitted to 28,000 vehicles, and, 

assuming that 45% of tyres are replaced with those fitted as 

original equipment, then Dunlop can expect sales of 2,520 units 

after 1 year. If a5 year period is considered, the total 

replacement sales due to O. E. fitment for 1 year on this vehicle 

is 45,360. The total amount of profit that this represents to the 

tyre supplier obviously varies, depending on how much profit is 

made on each individual tyre. As an example, if say £5 profit 

were made per tyre, then the above would represent £227,000 over 

5 years. 

This assumes that Dunlop achieves a 20% fitment rate, and it is 

this which will be ß ffected by the technical performance of the 

tyre. If a tyre does not get O. E. fitment, then any technical 

improvement will have very little affect on the level of sales, 

as the motorist tends to assume that all tyres perform equally 

well and the normal influences, such as cost and advertising, 

have a much greater influence than technical performance. 

2.3.12 Conclusions from the Cost-Benefit Analysis 

The preceding sections have identified areas where a mathematical 

model. to aid tyre design for wet grip could give benefits. 

In Section 2.3.7 it was shown that the cost'of a small 

modification. in the iterative design process, would cost 

approximately £3,0001. This type of change is occurring at the 

rate of approximately 10 per month in the U. K.. Similar design 

activities are also being carried out at Dunlop in Germany, and 

since the take-over of Tyre Technical Division by Sumitomo Rubber 

Industries, in Japan; any savings in design costs by use of the wet 

grip model will also apply to these centres. The cost per year 

in the U. K. of iterative design and testing would, therefore, be 

approximately £360,000. 
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Given the content of this type of iterative design process, it 

is thought that as much as 30% of this could be saved by using 

the wet grip model to eliminate poor designs before any testing 

was performed. The saving from this could, therefore, be as 

high as £120,000 per year. 

Design changes at a later stage in the design process are hard 

to determine, both in their cost and frequency of occurrence. 

The worst case when a mould has to be scrapped and all the 

testing on development tyres repeated, is a fairly rare 

occurrence, say twice a year, but the cost of this is high. 

The saving of one such re-design would -be approximately £50,000. 

From the above, it can be seen that the cost of the project 

(£170,000) could be recouped in one year by savings in design 

costs. However, given the uncertainty of the savings figures, 

it is probably safer to assume that the project would pay for 

itself in under 3 years by savings in design and testing costs. 

This alone makes the project worthwile. 

The items discussed in Sections 2.3.8 & 2.3.9 are both connected 

with obtaining additional O. E. supply contracts, and the 

relationship between O. E. supply and replacement sales was 

discussed in Section 2.3.11. 

An extra O. E. supply contract could be gained if a deadline to 

submit tyres was met that would not have been possible had the 

current amount of testing and re-design been needed. Also,, as 

wet grip is very near the top in importance in the ranking 

of tyres by O. E. manufacturers, then an improvement in wet grip 

performance could easily change the position in the ranking and 

mean an extra 10%, or more, of the fitment. The-example given 

in Section 2.3.11 shows that an extra 10% fitment would represent 

an extra 23,000 tyres sold over a5 year period on one vehicle 

model alone. Any small gains in the level of O. E. sales would 

be able to cover the cost of undertaking this project from the 

profit from these extra sales. 
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The final area of possible benefits, discussed in Section 

2.3.10, E of saving to the country, could also give very large 

potential savings. In 1981 the total cost of wet skidding 

accidents was £153M; therefore, a saving of just 0.1% in wet 

skidding accidents would represent £150,000. To put this into 

context, it would only mean the saving of one fatal accident, or 20 

serious accidents. It would seem that any improvement in wet 

grip performance, no matter how small, could have this potential. 

The costs and possible benefits attributable to this project can, 

therefore, be summarised as in the table below: - 

Total Cost of Project £170,000 

Benefit Type Benefit per annum 

Saving in design and testing costs 

(iterative + saving 1 mould 

scrapping) 170,000 

Additional sales to O. E. M. (on 

one vehicle model only - 10% 

higher fitment) 4,500 per £1 

profit on each unit 

Saving to Country (0.1% 

reduction in wet skidding 

accidents) 150,000 
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CHAPTER 3- THEORETICAL DEVELOPMENT 

3.1 INTRODUCTION TO THEORETICAL DEVELOPMENT 

The object of this chapter is to develop the individual aspects of 
the mathematical model which can then be used in a computer program 
to analyse the wet grip properties of various tyre tread pattern 

configurations. The mathematics developed allow analysis of 

both individual tyre tread blocks and complete tyre tread contact 

patches with any tread patterns. 

3.2 GENERAL ASSUMPTIONS & SIMPLIFICATIONS 

Because of the complex nature of tyre/road interaction, particularly 

under wet conditions, it was necessary to make a number of 

assumptions to simplify the problem before it could be expressed 

mathematically. 

The nature of some of these assumptions was dictated by the object 

of developing the mathematical model; i. e. that the model should 

treat in as full a way as possible the tyre tread pattern and the 

flow of water within the contact patch. 

The problem is complicated by the fact that it involves interaction 

between fluid in the tyre/road interface and the tread material, 

which deforms under the action of fluid pressure. To allow this 

to be mathematically modelled, the problem is split so that a 

solution is obtained on an iterative basis between a fluid problem 

with explicit values of film thickness and a solid problem where 

the fluid pressures determine new film thicknesses for the next 

iteration. 

The tread pattern mainly influences the bulk water drainage, 

as does the road surface macrotexture. Therefore, these features 

can be represented by an analysis of fluid flow and pressure 

existing in the tyre/road interface. 
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The tyre tread compound and the road surface microtexture determine 

the level of friction between the tyre and the road surface under wet 

conditions and will have little effect on the bulk water drainage. 

As the analysis developed here is not concerned with friction levels, 

then these features need not be considered. 

The magnitude of the water film thickness is known to be generally 

less than 1 to 2mm, although at the leading edge of the contact patch, 

film thicknesses greater than this may exist. As the film thickness 

is mostly less than, say, lmm (excluding grooves) and, in many cases, 

much lower than O. lmm, the water film will be treated as "thin", and a 

2-dimensional Reynolds equation will be used to represent the water 

film between the tyre tread and the road surface. Other mathematical 

models of tyre/road interaction in the wet have used Reynolds equation 

(3), (4), (5) & (6). 

In the derivation of Reynolds equation itself, a number of assumptions 

are made which are covered in the literature (particularly (31)). 

However, two important assumptions in the current context are: that 

the pressure is constant throughout the thickness of the fluid film 

and that the fluid flow is laminar. Constant pressure through the 

thickness of the film is reasonable because of the thinness of the 

film. 

Under certain circumstances, it will, however, be possible for 

turbulence to exist. An extreme case would be when a tyre was 

sliding (locked wheel) with a velocity of, say, 96 Kph and an average 

fluid film thickness of 0. lmm between the tyre tread and the road 

surface. Under these circumstances Reynolds Number would be given 

by: 

Re =Pud = 2342 
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It should be emphasised however, that in certain parts of the contact 

patch, Reynolds Number may be very much lower than this, particularly 

if the tyre were freely rolling, (when Reynolds Number is based on 

mean flow velocity and not sliding velocity). 

In lubrication, it is normal to neglect turbulent effects for low 

Reynolds Numbers (say < 1000) (42). In pipe flow analysis, it is 

usual to take Reynolds Numbers of greater than 2,000 to be indicative 

of turbulence. Because in practical tyres Reynolds Number may be 

higher than these limits, a method of adding turbulent effects, 

when required, into Reynolds equation will be used. This method is 

described in detail in section 3.6 and basically involves multiplying 

the fluid viscosity by a factor which is dependent on Reynolds Number. 

Assumptions also have to be made about boundary conditions at the 

edges of the contact patch. This is covered fully in section 3.7. 

The progress of a tyre on a road can be defined by two extreme cases; 

when the wheel is rotating; free rolling, and when the wheel is not 

rotating - locked or sliding. The movements of the tyre tread 

surface, due to either rolling or sliding, are modelled as follows: - 

Rolling: the portion of the wet contact patch ahead of the front 

of the dry contact patch is assumed to rotate about the 

front of the dry contact patch. 

Sliding: all points on the tyre tread will slide relative to the 

road surface. 

The tyre may be completely rolling or completely sliding, or any 

relative proportion of the two. The subject of contact patch 

movements is discussed in section 3.8. 

Probably the area where the most sweeping simplifications are made, 

is that of contact patch deformations. Tyre construction is 

relatively complex and is built up from a number of components as 

shown in figure 3.2.1. 
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tread region 

FIGURE 3.2.1 - SIMPLIFIED TYRE 
CROSS-SECTION 
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To make an attempt at modelling this fully is a very large problem 

and is beyond the scope of this project. The method chosen is 

thought to be adequate to allow the study of different tyre tread 

patterns, which is the overall aim of the project. The effect on 

wet grip levels of tyre construction changes cannot, of course, be 

studied directly when using a simplified model of tyre construction, 

but can be studied indirectly. For example, changes in the tyre 

construction would largely, as far as wet grip levels are concerned, 

affect the contact patch shape, the contact pressure between the 

tyre and the road, and the contact patch vertical stiffness. The 

current mathematical model allows all these factors to be varied, 

and therefore, given that the effect of tyre construction changes on 

these parameters is known, then their effect on wet grip levels can 

be assessed using the model. This is not such a disadvantage as it 

would at first seem, because during the normal tyre design process, 

the tyre construction is one of the first things to be determined. 

A mould is then manufactured to allow tyres with the appropriate 

construction, but with plain treads, to be produced. Simple tests on 

these tyres can then give the required information on contact patch 

shape, contact pressure and vertical stiffness. 

The actual details of the deflection method used and other methods 

which were evaluated, are given in section 3.10. 

3.3 THE BASIC FLUID MECHANICS PROBLEM 

As was stated in section 3.2 the fluid mechanics problem will be 

treated as one of thin film lubrication, and will be represented by 

Reynolds equation. A number of previous mathematical models of tyre/ 

road interaction in the wet ((3), (4), (5), (6) etc. ) have used 

Reynolds equation to represent the behaviour of the water, but some of 

them treated the problem as one-dimensional flow and neglected, for 

various reasons, the flow in either the longitudinal or lateral 

directions. These are discussed in the 'Literature Review', 

section 1.2.1. The current model will treat the problem as two- 

dimensional. 
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The fluid mechanics problem is, therefore, considered basically as 

two surfaces separated by a fluid film, as shown in figure 3.3.1, 

where the upper surface represents the tyre tread and the lower 

surface represents the road. 

The relevant form of Reynolds equation is, therefore, given by 

equation 3.3.1. 

h3 
. 
ap + (V h) +1 (V h) + ah - 3.3.1. 

12p ax) yC12ýy FY 2 Äx x2Yy St 

The derivation of this equation from first principles can be found 

in many text books, such as (31). In its present form, this equation 

is difficult to solve, and for any realistic geometry cannot be 

solved explicitly; resort to a numerical technique must, therefore, 

be made. 

3.4 THE SOLUTION OF REYNOLDS EQUATION BY THE FINITE ELEMENT METHOD 

The Finite Element Method is a numerical technique for solving 

differential equations and relies on the fact that any continuous 

quantity (in this case pressure) varying over a region can be 

approximated by discretising that region into a number of sub- 

domains. These sub-domains are known as elements, and the way in 

which the unknown quantity varies over that element is specified by 

a polynomial. This polynominal is known as a shape function or an 

interpolation function, and is such that the value of the unknown 

within an element can be defined by the values at the interconnection 

points between elements which are known as nodes. The solution, 

therefore, need only be found at the nodes, and by using the inter- 

polation function, the values at other points may be found if 

required. It is usual though only to calculate values at the nodes 

and if a value is required at a specific point then a node would be 

placed at that point. 
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Throughout this work, the type of element used is triangular with 

nodes at each of the three vertices. As there are three points 

defined for each triangular element, then the pressure within 

each element must vary linearly and be represented by the 

equation of a plane surface. A typical three noded element is 

shown in figure 3.4.1. 

Any number of triangular elements can be combined to form more 

complex shapes. Therefore, there is very little restriction 

on the geometry that can be modelled, although a high concentration 

of elements may be needed to model certain highly curved boundaries. 

The spacing of elements and nodes within the domain will, to some 

extent, affect the accuracy of the results. To improve the 

results, it is generally recognised that, a higher concentration 

of elements should be placed in areas of high pressure gradient. 

This can be difficult because these areas may not be know before 

the solution is attempted. The normal procedure in such a case 

would be to produce a uniformly spaced mesh and obtain a trial 

solution. The results of the trial solution would then indicate 

the areas of high pressure gradient and the mesh could be refined 

in these areas and the problem solved using the new mesh. 

This procedure has not been generally used in this work as the 

accuracy of the finite element solution is thought not to be 

the limiting factor in the present model of tyres under wet 

conditions, but these points should be considered if one is 

attempting an optimum finite element solution. 

The problem, in terms of nodal pressures, can now be solved by 

Reynolds equation. When the finite element method is used to 

solve structural problems', where the relationship between stress 

and strain (displacement) is sought, the finite element properties 

can be formulated by minimising the potential energy within the 

system. 
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ELEMENT 
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When a problem such as the solution of Reynolds equation is being 

attempted, then an integral is used, which when minimised will 

form the solution. This integral is obtained by a variational 

method,. and for the case of Reynolds equation can be found in 

much of the literature. In particular, Booker and Heubner (55) 

or Reddi(53) and wiil'. be stated here without any proof. 

I= h3 ap 2+h3 6p 2- 
1 hV ap 

-1 hV +plh dA 
24 ýx'Ö x 

( 
) 24µy 

) 
ay 2 Xr 2y Tt 

qn ds -----3.4.1 

The second integral of equation 3.4.1 represents flow boundary 

conditions over the boundary 'c'. 

The appropriate interpolation function for three noded triangles 

can be substituted into equation 3.4.1 and the equation minimised 

over the whole domain. This procedure is discussed in detail 

in Appendix A. 

The resulting set of equations for the whole domain can be expressed 

in the usual finite element matrix notation as, 

[KJ. 
pi _F -----3.4.2 

where C K) is known as the global stiffness matrix, tpI is a column 

vector of the unknown nodal pressures, and(Ft is the generalised 

force vector. 
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Equation 3.4.2 is obtained by considering each element separately 

and forming the local stiffness matrix and local generalised force 

vector for each element. The local stiffness matrix defines the 

physical properties of that particular element and includes the 

x and y co-ordinates of the nodes, the properties of the fluid 

(in terms of its viscosity), and also the fluid film thickness over 

that element. The local generalised force vector includes the 

terms which 'generate' the fluid pressure, such as the sliding 

or squeezing velocities, and in the case of elements on the edge 

of the mesh, any flow into or out of the domain. 

When the local generalised force vector is being assembled, the 

term representing fluid flow into or out of the domain is only 

used for elements which have at least one of their sides on the 

edge of the domain, and then it is only used for those nodes within 

that element which are actually on the edge of the domain. 

Once the local stiffness matrices and the local generalised force 

vectors have been formed for each element, they are added into 

the global stiffness matrix and generalised force vector, taking 

into consideration the continuity of pressure across element 

boundaries. The stiffness matrix and force vector can then be 

considered as forming, along with the unknown pressures, equation 

3.4.2. Before solving equation 3.4.2, it is necessary to add 

any geometric boundary conditions which, in this case, will be 

pressures. The solution of equation 3.4.2 can then be carried 

out by one of the standard methods of solving large orders of 

simultaneous equations. 

The foregoing section has given a general outline of how the 

finite element method can be used to solve Reynolds equation. 

Some of the practical details of this will be covered in chapter 4 

and the complete details of the computer programs, which perform 

the calculations, are given in Appendix B. 
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The reader who is unfamiliar with, or who requires more details 

of, the finite element method is referred to the many text books 

on the subject, such as (48), (49), (50) and (51), as some aspects 

of the method have not been covered here. 

The solution of Reynolds equation is in terms of fluid pressures, 

but it is also useful to know the fluid flow velocities within 

the domain, and the calculation of these is covered in the next 

section. 

3.5 CALCULATION OF FLUID FLOW 

The volume flow per unit width in the x and y directions can be 

expressed as (31). 

qX = VXh - h3 ýp 3.5.1 

2 12' ýý 

Qy = h3 ap 
3.5.2 

2 12t 'Ty 

The pressure gradients öp and ý can be found from the element 
dy 

interpolation functions. As in this case linear interpolation 

functions are being used then the pressure gradients will be 

constant over each element. 



- 67 - 

It follows, therefore, that there is a discontinuity in pressure 

gradient. between elements, and thus a discontinuity in fluid flow. 

This feature could be avoided if higher order elements were used 

which possessed interelement continuity of the derivative of the 

primary variable. 

If the fluid flows are calculated at nodes, then a different value 

will be obtained, depending on which of the elements surrounding that 

node is used for the calculation. It is possible to smooth this 

difference by various methods, ranging upwards in complexity from a 

simple averaging tof the different values for flow. This problem of 

interelement discontinuity is discussed in a paper by Hinton and 

Campbell (65). 

Based on suggestions made by Hinton and Campbell, the method used 

here is to find the value of fluid flow at the centroid of each 

element. This has the attraction that it is known that the inter- 

polation functions perform badly at the edges of elements (and hence 

better at the centres of elements), and also the fluid flow velocity 

at the centroid of each element is required in the modelling of 

turbulence. The fluid flow velocity is found from'the volume flow 

per unit width (equations 3.5.1 and 3.5.2) by dividing by the mean 

fluid film thickness for that element. 

To check the effect of interelement discontinuities on fluid flow, 

and the extent to which using centroid values overcomes this, values 

of flow predicted by the computer program for one-dimensional cases 

were compared with analytical solutions. Figure 3.5.1 shows the 

result of such a comparison for a case using velocities and fluid 

film thicknesses appropriate to a tyre under wet conditions. It can 

be seen that the use of centroid values for the fluid flow gives 

close agreement with analytical results. 
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3.6 TURBULENCE MODELLING 

As was discussed in section 3.2, tyres under wet conditions 

(particularly when locked) may operate in the turbulent region; 

therefore, some form of modelling turbulence is necessary. When 

a tyre is free rolling, then there is less likely to be turbulence, 

and the model should only add turbulent effects where appropriate. 

A number of papers discussing turbulence modelling found in the 

literature (40), (41), (42), (43), (44), (45) and (46) (discussed 

in section 1.2.2), all take basically the same form in providing 

a "factor" by which the fluid viscosity may be multiplied (or 

divided) to provide an "effective viscosity". This factor is in 

all cases a function of Reynolds Number and the different theories 

apply to either Couette or Poiseuille flow. 

In the case of modelling a tyre under wet conditions, the degree 

of slip between the tyre and road surface will vary. If the wheel 

is freely rolling, there will be dominant Poiseuille flow, and if 

the wheel is locked there will be dominant Couette flow. In most 

cases there will be a combination of these two flows, as shown 

in figure 3.6.1. 

When turbulence is to be modelled, Reynolds equation is modified 

slightly from the form shown in equation 3.3.1 giving, 

h3 p+ h3 öý =1 (V h) +11 (V h) +öh: ----- 3.6 .1 ax 12jdx dy 12jy/1ydy 2öx x2 öy y ýt 
xlg 

where 'jx' and 'jy' are 'x' and 'y' factors, dependent on Reynolds 

Number. The purpose of the turbulent lubrication theories 

presented in the following two sections is to specify values for 

'jX' and 'jy' under specific conditions. If 'jX' and 'jy' are 

equal to unity, then equation 3.6.1 represents the laminar case. 
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The turbulence theories used here are described in full by Taylor 

and Dowson (42) in their review of existing turbulent lubrication 

theories. We shall consider the cases of Couette and Poiseuille 

flow separately. 

3.6.1 Turbulence Theory for Couette Flow 

The Couette flow turbulence theory used here will be that derived 

by Ng and Pan and discussed in (42). The results of Ng and Pan's 

work is presented in graphical form, from which empirical expressions 

have been developed by curve fitting (42), (66) to yield: 

n 
x 3 is =1+ Kx Rey 

-----3.6 .2 

n 
jy =1+ Ky Rey ------3.6.3 

This theory is for dominant Couette flow, therefore, Reynolds 

number is based on the slider velocity. The theory also assumes 

that there is a sliding velocity in only one direction (the x 

direction). In the application to tyres on wet roads, with the 

x direction defined as from front to rear of the contact patch, 

it is possible, when a slip angle is applied to the tyre, to have 

sliding in both the x and y directions. However, as the slip 

angles obtained in practice on the road are small (typically43°), 

the y component of sliding velocity will be neglected as far as 

its effect on turbulence modelling. 

The terms Ký, x and y, ny in equations 3.6.2 and 3.6.3 are 

expressed in tabular form in (42). However, for the purpose of 

calculation, it is more convenient to have the data in an explicit 

form, and this has been achieved by Constantinescu (47), 
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jx, =1+0.001133 (Rec) 0.9 
------3.6.4 

jy =1+0.000358 (Ree) 0.96 
_--___3.6.5 

where Rec is the Couette Reynolds Number,, based on slider velocity 

in the x direction. The limiting case for jx and jy must be that 

their value cannot fall below unity, i. e. that the 'effective 

viscosity' cannot fall below the laminar viscosity. This 

condition is automatically fulfilled in equations 3.6.4 and 3.6.5. 

3.6.2 Turbulence Theory for Poiseuille Flow 

The Poiseuille turbulent lubrication theory used here is that derived 

by Constantinescu (41). In (41), Constantinescu noted that for 

pressure (Poiseuille) flow, the factors jx and jy would be functions 

of the pressure gradient and hence the flow velocity. Constantinescu 

then used existing theoretical data from (40) to express j and j 
xy 

as functions of the Poiseuille Reynolds Number. In Poiseuille 

flow there are no sliding velocities, therefore, jx is based on 

the mean flow velocity in the x direction and jy is based on the 

mean flow velocity in the y direction. 

0.681 
ix = 0.01225 (Repx) 3.6.6 

jy = 0.01225 (Repy) 0.681 
--_3.6.7. 

where Repx )px and Repy = Jp h 

Care must be taken when using 3.6.6 and 3.6.7 to ensure that the 

values jx and jy do not fall below unity. 
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3.6.3 Use of the Turbulent Theories 

As has already been discussed, the proportions of Couette and 

Poiseuille flow existing in the case of tyres on wet roads will vary. 

A scheme has been used which was suggested by Constantinescu (41), 

where the maximum value of the jx or jy -factor, found by either 

Couette or Poiseuille methods, is used. This allows the automatic 

handling of the case of mixed flows. 

3.7 BOUNDARY CONDITIONS 

There are two types of boundary conditions which can be used in this 

type of problem: flow boundary conditions and pressure boundary 

conditions. As was discussed in section 1.2.1, a number of different 

methods have been used in the past to specify boundary conditions in 

wet grip models, particularly on the front edge of the contact patch. 

In addition to boundary conditions applied on the edges of the tyre 

contact patch, it is also necessary to consider boundary conditions on 

the centre line, so that if the tyre is symmetrical about this line, 

only half the contact patch need be modelled. 

3.7.1 Side Edges of the Contact Patch 

At the side edges of the contact patch the pressure is assumed to be 

zero (atmospheric). This can be justified by the fact that outside 

the contact patch the water on the road must have a free surface, 

and therefore, must be at atmospheric pressure. At the edge 

of the contact patch there is also an abrupt change in the film 

thickness which will tend to cause the flow to separate and hence the 

pressure to fall to atmospheric. 
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3.7.2 Rear of the Contact Patch 

The pressure at the rear edge of the contact patch is also assumed 

to be zero. The reasons for this are similar to those for the 

side edges of the contact patch. At the rear of the contact patch 

there is, however, not such an abrupt change in the film thickness 

as at the side edges, but behind the contact patch there is water 

with a free surface which must be at atmospheric pressure. 

The thickness of the film of water on the road surface, behind the 

contact patch, will be very small because the majority of the water 

will have been removed to the sides by the passing of the tyre. 

This situation can be seen in glass plate photographs, such as 

those in figure 5.3.1. Therefore, the point at which the tyre 

tread surface meets the free surface of the water will be very close 

to the actual rear edge of the contact patch; it will be considered 

for this work to be actually at the rear edge of the contact patch. 

Because of this, the pressure at the rear edge of the contact patch 

will be atmospheric. 

When the wheel is rotating, there will be some upward movement at the 

rear of the contact patch, which will tend to promote separation and, 

under certain circumstances, cavitation. This is a further argument 

in favour of making the pressure atmospheric at the rear edge of the 

contact patch. Browne in (9) uses similar arguments to these for 

the boundary conditions at both the rear and sides of the contact 

patch. 

3.7.3 Centre Line of the Contact Patch 

If the possible existence of symntry about the contact patch centre 
line is to be taken advantage of, then it is necessary to specify 

zero flow across this boundary. This method of introducing an 

axis of symnitry into a fluid problem is equivalent to the centre 

line being a streamline. 
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It is worth mentioning here that when using the finite element 

method to solve both fluids and structural problems, where a line 

of symmetry is used, the correct solution is not always obtained. 

This is due to the discretisation process, introducing errors 

and distorting the results near to the axis of sym. Ary. Because 

of this possible distortion of results, it is best to model the 

whole of the contact patch whenever possible. 

3.7.4 Front Edge of the Contact Patch 

The front edge boundary conditions are the most difficult to 

specify. Two strategies are discussed, the second of which has 

been developed here and is implemented in the computer program. 

The first is included as being typical of the type that has been 

used in past work. (e. g. Browne (9)). This is based on the 

assumption that fluid impinging on the front of the contact patch 

has its velocity changed. It is convenient to consider the wheel 

axle stationary with the road surface moving beneath it, as shown 

in figure 3.7.1. 

Considering the energy at position Q1 -(D neglecting elevation, 

EOl V12 + p1 

2g 10g 

as there is a free surface at Q 
-(D then pi = 0, also 

V1 = VROAD, therefore: 

E 01 = VROAD 

23 
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Similarly, considering the energy at position Q -© 

E V22 + P2 ---- --3.7.2 
2g Fg 

If it is assumed that there is no loss of energy between Q 
-(D 

and ©-®; in this case, mainly assuming that there is no 

side flow, then 

E© EO 

and 3.7.1 and 3.7.2 give 

P2 = ý? (VROAD - V2 
2 

If one is to use the above representation of the front edge 

boundary conditions, it should be noted that the pressure P2 is 

dependent on the velocity V2, the average flow velocity into the 

front edge of the contact patch. V2 is unknown and, in turn, will 

depend on the level of the pressure P2. An iterative solution of 

equation 3.7.3 would, therefore, be necessary. 

The second strategy which has been developed here is based on the 

fact that there cannot be any side flow at the front edge of the 

contact patch. This can be shown to be so by considering the 

water, which has a free surface ahead of the front of the contact 

patch. The wave propogation speed in that water is governed by 

the critical velocity (34). 

UCRIT - gd 

which is equivalent to a Froude Number of unity. 
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Typical conditions on a road surface would be with water depths 

('d') of 1 to 3mm, and taking the 3mm case this gives a critical 

velocity of: 

UCRIT = 0.17 m/s 

The implication of this is that if the vehicle road speed is greater 

than the wave propagation speed in the road surface water, then water 

cannot be deflected around the sides of the contact patch, and all 

water in the path of the tyre must enter the front of the contact. 

patch. 

A critical velocity of 0.17 m/s represents a vehicle road speed of 

0.6 Kph. Therefore, under all conditions of relevance the vehicle 

will be travelling at a speed very much greater than the wave 

propagation speed in the road surface water. 

The neglect_-- of side flow in the formulation of equation 3.7.3 

is therefore valid, providing the front of the contact patch 

(position 02 ) is defined as the point where the free surface film 

meets the tyre tread surface. If position Q2 were to be taken 

further into the contact patch then there would no longer, be a free 

surface and there could be side flow. Under these circumstances the 

fluid velocity at © must be equal to the road speed, - 

and equation 3.7.3 gives p2 =0 (atmospheric). This must also be 

true because there is a free surface immediately ahead of the front 

of the contact path. 

Pressure equal to atmospheric could therefore be used as a boundary 

condition at the front of the contact patch, but the limitation on 

flow at the front of the contact patch was thought to be more 

important; and, as it is only possible to use either flow or pressure 

boundary conditions at one point, then flow boundary conditions were 

imposed at the front of the contact patch. 
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As all the water in the road surface film must enter the front of 

the contact patch, it is simply a matter of using flow boundary 

conditions within the finite element method to obtain a representation 

of this. The details of how flow boundary conditions are included in 

the finite element method are given in section 3.4 and Appendix A. 

Flow boundary conditions are specified as volumetric flow per unit 

width normal to the boundary at that point. 

In this case we have 

Qx = VROAD d cos 0" -----------3.7.4 

qy = VROAD d sin 0 -----------3.7.5. 

where 0 is the tyre slip angle and 'd' the road surface water depth. 

For the straight ahead position, 

qx = VROAD d 

and ql =0 

By specifying c and q__ separately, they can be entered as such into 

the finite element formulation without the need to calculate their 

resultant normal to the front edge of the contact patch. In 

the computer program velocities are measured relative to the contact 

patch and not the axle as here, therefore equations 3.7.4 and 3.7.5 are 

modified slightly when used in the program. 

In (9) Browne only considers tyres with square fronted contact 

patches, and presumably, with zero slip angle, although this is not 

explicitly stated. By using the flow boundary conditions developed 

here, contact patches of any shape and with any slip angle can be 

modelled realistically. 

The position of the front of the wet contact patch also follows from 

the preceding argument. If all the fluid enters the front of the 

contact patch, then the front of the contact patch will be defined as 
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the point where the tyre surface and the free water surface meet, 

as shown in figure 3.7.2. 

Therefore, in the wet there is an extra region to the contact patch 

which is capable of supporting a load. This region is also 

important in determining the movements in the contact patch when 

the tyre is rolling. This is covered in section 3.8. 

3.8 MOVEMENT WITHIN THE CONTACT PATCH 

It is the movement of the tyre tread surface relative to the road 

surface, together with water flow at the front of the contact 

patch, that causes a pressure to exist between the tyre and the 

road surface. These movements can be classified by the two 

extreme conditions of free rolling and locked wheel. 

Free rolling is defined as the condition when a vehicle is moving 

with no relative slip between the tyre and road surface. When 

rolling, as a point on the tyre circumference enters the contact 

patch, the radius of the tyre at that point reduces. therefore, 

the linear velocity of the tyre periphery must also reduce as the 

front of the contact patch is entered. 

The converse is true at the rear of the contact patch with the 

linear velocity increasing as the contact patch is exited. This 

situation means that there must be some slippage between parts of 

the tyre and the road surface, and this is known as 'microslip'. 

In the context of this work, microslip will be neglected. 

The other extreme condition, locked wheel, is when the wheel is not 

rotating and all vehicle movement is reflected in slip between the 

tyre contact patch and the road surface. 
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There are a number of slightly differing definitions of slip, 
but the one which will be used here is: 

s=V 
s 

VROAD 

where Vs is the relative velocity between the tyre contact patch 

and the road surface, i. e. the slip velocity. The value of s 

therefore varies between 0.0 (free rolling) and 1.0 (locked wheel). 

3.8.1. Sliding 

Where the tyre is sliding on the road surface, the x and y components 

of slip velocity are given by, 

VX = VS cos 0 

Vy = Vs sin 0 

3.8.2. 

---__3.8.3. 

where 0 is the tyre slip angle. 

Therefore, combining equations 3.8.1., 3.8.2 and 3.8.3 gives: 

Vx s VROAD cos 0 ----------3.8.4 

Vy =s VROAD sin 0 ---- 3.8.5 

These are the x and y components of sliding velocity as functions 

of vehicle road speed, slip and slip angle. 
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The x and y components of relative velocities are now specified 

requiring only the h (vertical) component to be specified to 

describe completely movement within the contact patch. 

3.8.2 Rolling 

It has already been stated that under rolling conditions, the rear 

of the contact patch will tend to separate from the road surface 

with a vertical velocity. Under these circumstances the water 

film will tend to break-up; therefore, upward movement of the 

tread behind the contact patch need not be included in the model. 

At the front of the contact patch, the converse is true, the tyre 

tread is approaching the road surface with a vertical velocity 

which acts as a 'squeeze film' 

As has already been discussed in section 3.7.4, there is an area in 

front of the dry contact patch which is considered in the application 

of boundary conditions. When the tyre tread is undeformed and 

there is no water film thickness between the dry contact patch 

and the road surface, then only this additional part of the wet 

contact patch is able to approach the road surface with a vertical 

velocity. 

The whole aspect of vertical movements within the contact patch is 

little understood. Therefore, a very much simplified method of 

treating these movements is used here, as a full study of this is 

outside the scope of this project (see section 8.3.1). 

It is shown in (72) that a rolling tyre can be considered to be 

instantaneously rotating about a point 'R' beneath the road 

surface, as shown in figure 3.8.1. 
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The front of the wet contact patch is defined in section 3.7.4 

as the point when the tyre tread surface meets the free surface 

of the road surface water. By considering the geometry of the 

situation shown in figure 3.8.1., it can be shown that the 

treadsurface at the front of the wet contact patch will be on 

the undeformed tyre circumference. Therefore, this point is 

rotating about 'R' and its vertical velocity (VVERT) is given by 

(notation as figure 3.8.1). 

VVERT - (L + LA) VROAD 
----3.8.6 

r 
r 

Further into the front of the wet contact patch, the tread surface 

deviates from the circumference of the tyre. At the front of the 

dry contact patch, the vertical component of velocity must be zero. 

The variation of velocity from that given by equation 3.8.6, at the 

front of the wet contact patch, to zero at the front of the dry 

contact patch is however not linear. The overall constraint 

is that a point on the tyre surface must move down by a distance 

'd' (figure 3.8.1) in the time taken for the tyre to move forward 

a distance 'LA'. The mean velocity must, therefore, be 

VMEA =d VROAD ------3.8.7 
LA 

The vertical velocity variation in the front of the contact patch 

is shown diagrammatically in figure 3.8.2. 
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The exact nature of the curve shown in figure 3.8.2 is not known. 

If one were to use a linear velocity distribution based on the 

velocity in equation 3.8.6, then the velocity profile would be 

as shown by the dashed line Q in figure 3.8.2. In this case, 
the overall movements (area under curve) would be greatly 

exaggerated. Alternatively, one could use a velocity distribution 

based on the mean velocity given by equation 3.8.7, i. e. 2x VMEAN 

at the front of the wet contact patch and linearly tapering to 

zero at the front of the dry contact patch, as shown by the dashed 

line 2©. In this case, the effect of the high velocities at the 

front of the wet contact patch is ignored. 

In practice, neither of the above methods proved satisfactory and 

a simplified technique was used based on considering the additional 

length 'LA' to be rotating, with angular velocity W, about the 

front of the dry contact patch as shown in figure 3.8.3. 

The resulting vertical velocity distribution falls between those 

by the above two methods, and gives a compromise between high 

front edge velocities and correct overall movement. The vertical 

velocity at any point in this area is, therefore, given by 

Vh =a VROAD 
-- 3.8.8 

r 
r 

where 'a' is the distance from the point to the front of the dry 

contact patch. Equation 3.8.8 is valid only for a freely rotating 

tyre and for the more general case of a tyre under any slip 

condition, 

Vh =a VROAD C1 - s) - 3.8.9 
r 

r 
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By considering tyre data (19), an approximate value for the length 

Lp can be found for various values of road surface water depth. 

For a 155R13 tyre, this was estimated to be between 38 and 42mm 

for water depth ranging from 1 to 3mm. 'LA' can also be 

estimated from static glass plate photographs where the water 

surface/tyre surface contact can be seen. The values of 'LA' found 

by these two methods agree well. 

In reality, the vertical movements of the tyre contact patch will 

be much more complex than have so far been considered. It was 

stated that the only portion of the wet contact patch that can 

have a vertical velocity is the area ahead of the front of the 

dry contact patch. When a film of water exists between the 

tyre and the road, then it is possible that other areas of the 

contact patch also have vertical velocities. 

The expected velocity profile shown in figure 3.8.2 is based on 

a tyre undeformed due to fluid pressure, but the deformation due 

to fluid pressure will alter the shape of the tyre in this region. 

If the tyre is 'flattened' by the fluid pressure so that its 

rate of approach to the road surface is less in this region, 

then there will be a vertical velocity further to the rear of 

the contact patch. In fact, one could consider that the tyre 

will, to some extent, rotate about the furthest point forward, 

which is in contact with the road surface. 

Having vertical velocities further to the rear of the contact 

patch, with velocities of lower magnitude at the front of the 

contact patch, will cause there to be higher fluid pressures to 

the rear of the contact patch. Considering the experimental 

values of fluid pressure for a free rolling tyre, given in 

chapter 6, it can be seen that this will give better correlation 

between analytical and experimental results. 
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If the vertical velocity modelling is to be improved, then as 

discussed above, it will be dependent to some extent on the fluid 

film thickness shape of the deformed tyre. The vertical velocities 

would, therefore, need to be calculated at each iteration through 

the solution procedure. Before this can be done however, more 

experimental work is required, studying the vertical movements of 

tyres, both in, and on entry to the contact patch. For this 

reason, the simplified method of considering rotation about the 

front of the dry contact patch has been used in the present version 

of the computer program. The tyre tread block analysis computer 

program treats the velocities differently, as these are local 

velocities within the contact patch. Therefore, the user 

explicitly specifies the three components of velocity for the 

block when using this program. 

3.9 GROOVE FLOW FACTOR 

A "groove flow factor" is used to modify the fluid flow for elements 

which are defined to be the tyre grooves. This is necessary 

because of the very different magnitudes of water film thickness 

found under a tyre tread block and in the grooves of a tyre. 

Typically, a groove in a new tyre would be 8mm deep,. and the fluid 

film under the block of a tyre would be, say, 0. lmm. As well as 

this difference in film thickness, the side walls of a groove 

affect the flow and no allowance is made for side walls in an 

analysis using Reynolds equation. 

The numerical analysis used here is two-dimensional using Reynolds 

equation for fluid film lubrication. A more appropriate method of 

analysing the flow in tyre grooves would be to treat the grooves as 

rectangular 'pipes'. Pipe flow is essentially one. -dimensional, 

i. e. flow is along the axis of the pipe, but in the case of tyre 

grooves, there will be some flow into or out of the grooves along 

their length -a leaky pipe! This 'leakage' will, however, be 

small compared to the flow along the groove because of the large 

difference in film thickness between a groove and a block. 
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A flow factor FF will now be developed which can be used in the f n; fg 

element formulation for elements which are in tyre grooves to 

modify the flow properties within these elements. 

If we consider flow through a rectangular slot, as given by a one- 

dimensional Reynolds equation, then the volume flow per unit 

width q is given by (31). 

q= Vh - h3 
0 

dp 
2 12 dx ----------3.9.1 

To allow a direct comparison with the properties of a rectangular 

pipe, it will be assumed that there is no relative movement between 

the two surfaces, i. e. V=0, and that the water film thickness is 

constant; therefore, 3.9.1 becomes, 

q=- h3 dp 
12p. dx 

--3.9.2 

As the two surfaces through which flow takes place are parallel, 

the volume flow per unit width must be constant through the slot. 

Therefore dp must also be a constant, from equation 3.9.2. 
dx 

dp constant implies that there is a linear pressure drop through 
dx 

the slot, i. e. 

P= Pi -x (Pi - Po) 
1 

----------3.9.3 

where the particular notation is shown in figure 3.9.1. 
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Differentiating equation 3.9.3 gives, 

aP =- (Pi - Po) ---- -3.9.4 
dx 

1 

and if we let 'O'pR ="Pi-Pa and substitute 3.9.4 in 3.9.2, then 

4= h' A PR 

12 µ1 

--- -3.9.5 

Equation 3.9.5 gives the volume flow per unit width, but if the 

slot has a width of W (figure 3.9.1) then 

Q= h3w &p 
R-3.9.6 

12 p. 1 

where Q is the total volume flow through the slot. 

Equation 3.9.6-is the relationship between pressure drop and 

volume flow given by Reynolds equation and is only 1really applicable 
for slots where a)>h, so that the effect of the slots sidewalls may 

be neglected. 

The flow in a pipe is given by Darcys equation (34), 

PD = flu Z 

pg m2g 
3.9.7 

(Note that the 'f' here incorporates the constant '4') 

In equation 3.9.7, 'm' is the hydraulic mean depth and for a 

rectangular pipe, using the notation of figure 3.9.1, 

m= cross-sectional area = wh ----3.9.8 
perimeter 2(w+h) 



- 94 - 

To allow a direct comparison between the pressure drop/flow 

relationship given by Reynolds equation (3.9.6), and the similar 

relationship given by Darcys equation for pipe flow, the flow in 

the pipe will be considered laminar, i. e. (34), 

16 
Re 

-------3.9.9 

where Re is Reynolds Number in the pipe based on mean flow velocity. 

For a rectangular pipe, Re is given by 

Re = joü4m 3.9.10 

where '4m' replaces"'d', the pipe diameter as normally found for 

circular pipes. Equations 3.9.9 and 3.9.10 give 

f= 4'- ; -- --3.9.11 
UmT 

substituting 3.9.11 in 3.9.7 gives 

L1pD 2 
=mm 

3.9.12 

In equation 3.9.12, U is the mean flow velocity. Therefore, the 

mean volumetric flow through the rectangular pipe is given by 

Q= UA; 

therefore 

U=Q=Q 
A wh 

-_ --__3.9.13 

Substituting equation 3.9.13 onto equation 3.9.12 gives, 

ýpD =2Q 
m wh 

----------3.9.14 
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and equation 3.9.8 in equation 3.9.14 gives 

dpD = 8µ1Q(w+h)2 3.9.15 

w3h3 

Equation 3.9.15 is the relationship between pressure drop and 

volume flow given by Darcy's equation for pipe flow. 

If equation 3.9.6 for Reynolds equation flow is re-arranged to 

be of the same form as 3.9.15, then 3.9.6 gives 

dpR = 12 µ1Q 3.9.16 
Ow 

Re-arranging equation 3.9.15 gives 

ApD 
=2 (w+h)2.12 M1Q -----3.9.17 

3 
w2 

-hw4_ 

If we compare equations 3.9.16 and 3.9.17, we see that the pressure 

drop '&pD, given by Darcy's equation for pipe flow, is greater 

than ApR given by Reynolds equation, by a factor of 2 (w + h)2 
32 

w 

As the analysis developed in section 3.3 and 3.4 uses Reynolds 

equation, then to effectively use pipe flow theory for elements 

within a groove it is necessary to multiply the pressure drop 

by the factor 2 (w + h)2 

3w2 

Let FF =2 (w + h)2 3.9.18 
3 

w2 
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Referring to equation 3.9.16 and 3.9.17, it is convenient to 

consider FF to be a factor by which the viscosity in Reynolds 

equation should be multiplied. This should not be confused 

with the effective viscosity calculations described in section 

3.6. Equation 3.3.1 (section 33) could be re-written to 

include the groove flow factor. 

h3 + 
(h3 

p) =1 (V h) +1 ý(V h) + 
ah 

F ----3.9.19 
x 12FF) öxy ýy 2xxy Tt 

FF is applied to flow in both the x and y directions, as the axis 

of a groove may be orientated in any direction. If, for example, 

a groove ran from front to rear of the contact patch,. the x direction, 

then FF would also be applied to flow in the y direction. However, 

as was stated earlier, the flow is predominantly along the axis 

of the groove, therefore, in this case there would be little 

flow in the y direction. The use of FF in the y direction would 

therefore only have a small effect on the result compared with its 

effect in the x direction. 

3.9.1 The Limiting Case for the Groove Flow Factor 

The limiting case for the use of the groove flow factor is when 

FF = 1. That is to say, when FF <1 then Reynolds equation is 

applicable and when FF >1 Darcy's pipe flow equation is applicable. 

Limiting case when, 

2 (w + h)2 =1 
32 

w 

i. e. w 4.45 3.9.20 
h 
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Equation 3.9.20 states that grooves with a width of less than 

approximately 41/2-times their depth will need to use the groove 

flow factor to correctly predict the relationship between pressure 

drop and fluid flow. w< 4.45h covers all the grooves normally 

found in tyres, except for the case of very worn tyres. 

The variation of FF for different values of w is shown in figure 

3.9.2. 
h 

3.9.2 The Physical Significance of the Groove Flow Factor 

With reference to figure 3.9.2, it can be seen that for tyre 

grooves in the region of practical interest the value of FF 

is sensitive to changes in w. If one considers just the drainage 

capacity of tyre grooves, then by examining equation 3.9.17, the 

pressure drop in a section of groove, due to changes in groove 

depth, is 

p ýc FF =2 (w + h)2 

haw 
3h3w3 

The drainage capacity can be expressed as 

drainage capacity ac 1 
ap 

therefore, 

drainage capacity oc hW ------3.9.21 
(h+w)2 
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The approximate relationship (3.9.21) between drainage capacity 

and groove depth and width can be used to show the effects on 

drainage of a reducing groove depth. Figure 3.9.3 shows such 

a relationship with the drainage expressed as a proportion of 

the new tyre (8mm deep groove) drainage capacity. Also shown- 

on figure 3.9.3 are figures showing the reduction in peak brake 

force coefficient. The brake force coefficient figures are 

taken for a tyre travelling at high speed. This is because in 

the formulation of the fluid problem, it is assumed that the area 

under consideration (in this case the grooves) is flooded with 

water, and when the tyre is moving at high speed there will be 

the greatest tendency for the contact patch to be flooded with 

water. 

In the model when the contact patch is not flooded (specified by 

the user), the elements which have been defined as being in 

grooves are removed from the mesh and zero pressure boundary 

conditions are applied to nodes on the edges of all the blocks. 

This can be done because if a groove is not flooded there must 

be a free surface within the groove and therefore the pressure 

must be atmospheric. The use of the groove flow factor developed 

here is, therefore, limited to the case of flooded contact patches. 
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with 4mm wide grooves 

Drainage Capacity Brake Force Co- 
Groove depth Relative to New efficient Relative 

(mm) w/h Tyre to New Tyre 

8 0.5 100% 100% 

6 0.667 61% 79% 

4 1.0 28% 55.5% 

2 2.0 6% 47% 

1 4.0 1.1% 24% 

0 oc 0% 9% 

FIGURE 3.9.3 - DRAINAGE CAPACITY 

AND BRAKE FORCE COEFFICIENT 

FOR DIFFERENT GROOVE ASPECT RATIOS 
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3.10 CONTACT PATCH DEFORMATIONS 

As a tyre is constructed mainly from rubber, it will tend to 

deform elastically under the influence of fluid pressure. This 

has the effect of modifying the fluid film thickness, and thus 

the fluid pressures in the tyre/road contact area. It is; 

therefore, essential that any model of tyre behaviour in the wet 

should include tyre deformation under the action of fluid pressure. 

However, the complex nature of a tyre's construction makes a 

detailed analysis of tyre deformation difficult. To overcome 

this, in some past work a rigid shape has been chosen for the 

tyre under typical operating conditions. The complexity of 

this has ranged from a simple tapering wedge shape to the complex 

shape used by Browne in (11) and much of his other work. 

The shape used by Browne was estimated from glass plate photographs 

of a plain tread tyre under typical operating conditions (10). 

This deformation is for a steel belted bias ply tyre under free 

rolling conditions, but Browne (11) states that the data can be 

used with reasonable accuracy on tyres of different construction 

and under different operating conditions. As the deformation 

used in (11) is for a plain tread tyre, when grooves are required 

the additional film thickness due to the grooves is superimposed 

on these deformations. 

This method of incorporating tyre deformation into a model of 

tyre behaviour under wet conditions, is thought by the present 

author to be inadequate. In fairness though, Browne in a later 

paper (12) has introduced tyre deformation into tyre/fluid model 

developed for (11). In (12), Browne appears to use a full 

three-dimensional finite element model of the complete tyre 

structure using a commercially available computer package (NASTRAN). 

Browne (12) notes that it is very complex (expensive) to generate 

the stiffness matrix for the tyre structure, and also that there 

are convergence problems with the model. 
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In modelling the complete tyre structure to get any reasonable accuracy 

the various components within the tyre, such as cords, breakers, etc., 

have to be included in the model. It is also necessary to have 

finite element programs which can handle large deflections and non- 

linear materials. The analysis of tyre structures by the finite 

element method therefore requires special purpose computer programs, 

such as the ones available within Dunlop and described in (67). 

These special computer programs only handle axi-symmdric and plane 

strain problems in two-dimensions and are, therefore, unsuitable for 

calculating the deflections of the contact patch surface due to fluid 

pressure. Because of the need to handle large deflections and non- 

linear materials, the deflections would have to be found by an 

incremental/iterative method in addition to the iterations between 

fluid pressure and deflection. The possibility of obtaining a 

stable converging solution under such conditions is small; therefore, 

a full finite element solution of the tyre structure was not attempted, 

and the deflections of the contact patch, due to fluid pressure, were 

approximated by a simplified model. 

One approach would be to use a simplified model using the finite 

element method, where only the tyre contact patch is modelled. 

The problem with modelling only the tyre contact patch is in the 

specification of boundary conditions for the structural model. The 

only part of the tyre which does not deform is. the bead area, which is 

in contact with the wheel rim. Therefore at no point within the 

contact patch can a fixed deflection be specified. If only the 

contact patch is being modelled then there must be some deflection 

specified, and, in effect, the finite element model of the tyre 

contact patch becomes a model of a slab of rubber on a rigid backing. 

With this simplification, the effect of internal detail within the 

tyre's structure is lost. This means that the effects on wet grip 

of changing the tyre's internal construction cannot be evaluated. 

This is not too much of a disadvantage as the object of this work is 

to allow evaluation of tyre tread patterns, and not construction, for 

wet grip properties. 
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As a finite element model of only the tyre contact patch simplifies 

the model to the extent that internal construction is not modelled, 

then there is little to be gained by using this method over other 

simplified models. Three different methods of modelling the 

contact patch deformation were evaluated. 

3.10.1 The Strip Method 

The strip method is a very simple method of modelling tyre contact 

patch deformations and was only used early on in the project. 

The tyre contact patch is divided into strips which run from the 

front to the rear of the contact patch. These strips coincide with 

'lines' of nodes in a rectangular grid based finite element mesh. 

The front edge of the contact patch is given a fixed film thickness 

and initially all 'strips' form a tapering film thickness from 

front to rear of the contact patch. The contact point for each 

strip is defined, and this point can move from front to rear of 

the contact patch. The geometry of an individual strip can, 

therefore, be varied as shown in figure 3.10.1. 

The fluid film thickness ahead of the contact point therefore 

tapers from the fixed film thickness at the front of the contact 

patch to zero film thickness at the contact point. If a base 

line film thickness to simulate road surface drainage is required, 

then this must be added to. the film thickness at all points. 

The position of the contact point is determined by the pressures at 

nodes along the strip. The contact point is moved to the node on 

the strip whose fluid pressure is nearest to the dry contact 

pressure at. that node. 

The above process is repeated for each of the strips across the tyre, 

and each strip will therefore show the extent of water penetration 

into the contact patch as illustrated in figure 3.10.2. 
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DIRECTION OF TRAVEL 

wet contact patch length 

fixed 
film 
thick. 

fixed 
film 
thick. 

fixed 
film 
thick. 

FIGURE 3.10.1 - CONTACT POINT POSITION 
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Considering the very great simplifying assumptions made in this 

deflection model, the results obtained by it were remarkably 

good, exhibiting the classic "horse-shoe" type of water penetration 

into the front of the contact patch. 

The restrictions on the type of fluid film that can be formed by 

this method seriously limit its usefulness and the need for a 

more realistic model was quickly identified. 

3.10.2 'Column' Method 

The column method of tyre contact patch deflection is based on 

the principle of treating each element as an independent column of 

material which compresses under the action of fluid pressure. 

The different deflections at each node due to the deflections of 

surrounding elements are then averaged to find the actual deflection 

of a particular node. 

If we consider pressure acting over a triangular element, as shown 
in figure 3.10.3, then the mean pressure acting on that element will 

be, 

Pm = (P + P2 + P3) 
_3.10.1 

3 

Pm can also be considered as the pressure acting at the centroid 

of the triangle. The total force acting on that element would, 

of course, be 

FPA 
m ----_3.10.2 

Under equalibrium conditions, we can consider that the stress in 

the tyre normal to the tread surface is equal to the fluid pressure 

in the tyre/road interface. If we use the normal stress/strain 

relationship of 
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Er = stress (or fluid pressure) 
strain 

where E' is the effective elastic modulus of the material and 

strain is given by 

strain =ý 
t 

where S is the vertical deflection of the element and t is the 

effective thickness of the material, we can therefore write 

S= Pmt 

E' 

As 6 is the mean deflection of an element, the deflection of a 

node can be found by averaging. 

If this method is used, both the effective modulus and the 

effective material thickness must be known. Dowson & Taylor (37) 

show a method of finding the effective modulus for this type of 

problem, resulting in, 

11 (1-2112'1 3.10.4 
E' E (. 1- yJ 

Care must be taken when applying equation 3.10.4 as Poiss ö n's ratio 

for rubber is close to 0.5 and when ')= 0.5 equation 3.10.4 will 

give an infinite effective modulus. The effective material 

thickness t is the thickness of rubber that can be considered 

attached to a rigid backing. In the case of a tyre contact patch, 

there is no such rigid backing, but the breakers within the tyre 

casing (figure 3.2.1) form a relatively stiff portion of the tyre; 

therefore, the effective thickness can be taken as the thickness of 

the tread rubber to the breakers. In most radial ply car tyres, 

this would given an effective material thickness of approximately 

15mm. It is felt that for the purpose of this work the exact 

values taken for E, y and t are not critical, as the main purpose 

of this work is to evaluate tyre tread patterns. 
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At the design stage various tread patterns can be analysed and their 

results compared; provided that the same values of E, V and t 

are used in all cases (and that the values chosen are realistic), 

the comparison will be valid. 

This type of simple structural model, therefore, only allows limited 

analysis of the effects of tyre construction. Construction effects, 

such as the overall effect of stiffening the contact patch can be 

evaluated by either increasing the elastic modulus or reducing 

the effective material thickness. This effect may, however, be 

gained by a totally different method in practice, such as changing 

the type of breaker construction and not by changing either 

material properties or thickness. 

As the properties of each element are formed separately and the 

deflection for each element calculated, it is possible for the 

values-"of E, ')or t to be different for each element. This allows 

some parts (such as the shoulders) of the tyre contact area to be 

stiffer than others (such as the crown), allowing a more realistic 

representation of the tyre structure. 

Solar we have not considered the effects of the tyre preload 

(contact pressure) on the deflections, but as this effect is the 

same for both the 'column' method and the 'semi-infinite' method 

it will be considered later in section 3.11. 

3.10.3 The 'Semi-Infinite' Method 

As an alternative to the 'column' method, a semi-infinite body 

method of calculating tyre contact patch deformation can be used. 

This method treats the tyre contact patch material as a semi-infinite 

half space, i. e. the material is infinitely thick in the z(h) 

direction, and stretches, to infinity in both positive and negative 

x and y directions. 
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The x, y plane, therefore, is the only free surface of the material. 
The tyre contact patch is clearly not a true semi-infinite half 

space, but a number of physical factors of tyres make this assumption 

a valid approximation. 

In a model of tyre deflection, such as the 'column' model already 

discussed, the tyre contact patch is idealised as a thickness of 

rubber on a rigid backing, and a value for that thickness must be 

given. Because there is actually no solid backing in a tyre contact 

patch, it can be argued that the semi-infinite method is more 

appropriate. The most rigid part of the contact patch is the 

breaker package which will deform, but more stiffly than the rubber. 

Some of the load will ultimately be supported by air pressure 

inside the tyre, although the tyre in no way behaves as a "balloon". 

Near the edges of the contact patch it would initially seem that 

the semi-infinite method would give a poor approximation to contact 

patch behaviour. At the front and rear edges of the contact patch 

the tyre perifery continues outside the contact patch. 

. 
The semi-infinite method considers the material to extend to 

infinity in the plane of the free surface; therefore, at the 

front and rear of the contact patch this is not a bad approximation, 

and in fact, it is a better approximation than the alternative' 

of considering that the contact patch material ends suddenly at the 

front and rear of the contact patch, which use of the 'column' method 

would imply. 

The sides of the contact patch are rather more of a problem. As 

was discussed with reference to boundary conditions (section 3.7.1) 

there is an abrupt change in the fluid film thickness and tyre 

shape here. 

The side edges of the contact patch are greatly influenced by 

effects from the side walls of the tyre which tends to restrict 

lateral movement of the contact patch material. This is a similar 
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effect to the presence of more contact patch material outside the 

side edge of the contact patch, and therefore approximates to a 

certain extent the situation required for using a semi-infinite model. 

It must be stressed however that the use of a semi-infinite model of 

tyre contact patch deformation will inevitably introduce some errors 

into the model, particularly in the region of the shoulders. 

As was stressed earlier, the deflection methods presented here are 

not intended to model accurately the tyre structure, but are 

intended to give an approximate deformation model which can be 

used on a comparative basis in the full model to allow the evaluation 

of tyre tread patterns for wet grip performance. 

A semi-infinite method of predicting tyre contact patch deformation 

is used in reference (13) which is discussed in section 1.2.1. 

In (13), the deflection at a point is found as the sum of the 

deflection at that point due to pressure at the area immediately 

surrounding it, and the deflection due to pressure at areas a' 

specified distance away. To facilitate this, Agrawal and Henry 

subdivide the contact patch into a rectangular grid, as shown in 

figure 3.10.4, and then assign an area (shown dotted) to each node 

formed by the grid. 

A uniform pressure is then assumed over each of these areas, and 

it is this pressure which is used to calculate the surface deflection. 

The method of implementing the semi-infinite model used here is 

slightly different'from that used by Agrawal and Henry. The 

requirement here is for a deflection method which will work with any 

mesh built up of triangular elements. As the method used by 

Agrawal and Henry requires a weighting factor dependent on the shape 

of the area associated with each node, then it is not suitable for 

use with a mesh built up of 'random' sized elements. 

To overcome this problem here, the method used is to calculate the 

deflection of nodes due to loads at the centroids of elements, and 
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therefore, the case of deflection at a point due to load at that 

point never arises. The loading at the centre of each element 

is found in the same way as in the 'column' method, i. e. 

Pm = (P1 + P2 + P3) (see figure 3.10.3) 

3 

and the total force acting on that element would be 

FPA 
m 

The assumption is now made that the pressure acting over the contact 

patch can be treated as a series of point loads applied at the 

centroids of each element. F is therefore the load at the centroid 

of the element under consideration. The deflection of a node due 

to the force at the centroid of one element can, therefore, be found 

from semi-infinite body theory (Timoshenko 15). 

S= F(1-y2) 3.10.5 
'Ir Esr 

where E' is the effective elastic modulus and r is the distance 
s 

from the point at which 6 is measured to the point where the load (F) 

is applied. The total deflection of a node, due to the loads at 

the centroids of all elements, can be found by assuming that the 

principle of superposition is valid and that the total deflection 

can be found by summing the deflections due to the load on each 

element'in a similar way to Agrawal and Henry (13). 

From Timoshenko (15), the displacement u, in the plane of the surface 

is 

LL (1 - 2y) (1 +10-)F 3.10.6 
2 Ti E'r 

s 
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where the notation is as for equation 3.10.5. It can be seen from 

equation 3.10.6 that as l tends to 0.5, then u tends to zero. For 

rubber, poiss. o. ns ratio is almost 0.5 (denoting that rubber is almost 

incompressible), and therefore t- is very small; movements of nodes 

in the plane of the contact patch can thus reasonably be neglected. 

The calculation of vertical deflection &, using equation 3.10.5 

requires both Es' and Ito be known. From 3.10.5 it can be seen 

that 9 is insensitive to values of V close to 0.5, and y= 0.5 can be 

used safely. The physical reasoning behind this is that equation 

3.10.5 assumes infinite thickness of the material, making deflections 

less sensitive to the compressibility of the material. The elastic 

modulus of the material has been denoted here by Es', the effective 

elastic modulus. Because the tyre contact patch is not infinitely 

thick, some form of correction should be applied to equation 

3.10.5 to allow for this. The method chosen is to modify the 

value of the elastic modulus. In the case of the 'column' model, 

the elastic modulus was modified to allow the effects of Poiss o ns 

ratio to be included. Poiss. v ns ratio effects are already included 

in equation 3.10.5; therefore, this need not be done in this 

case, and the modification of the modulus is solely to make 

allowance for the fact that the contact patch material has a 

finite thickness. 

A number of different approaches could be used to find a value for 

ES. Bond (2) in his study of the penetration into tread rubber 

of idealised road surface asperities, used a semi-infinite model of 

the tyre contact patch with spherical road asperities. To account 

for the finite thickness of the tread rubber, Bond conducted 

experiments indenting different diameter spheres into various 

thicknesses of rubber and obtained the load/deflection curves. 

These were then compared with the theoretical case and a correction 

factor determined which was a function of sphere radius and material 

thickness. Figure 3.10.5 shows a typical one of these load/ 
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deflection curves. As can be seen, the deviation from theory at a 

material thickness of 12mm, is 10 or 15%, but this is obtained by 

indenting a sphere of radius 9.5mm. Bond has also indented spheres 

of 6.4mm radius and the deviation from theory at 12mm material 

thickness is then only 5%. The indenter radius therefore, has a 

large effect on the deviation from theory, and, as in this case; 

there is no spherical indenter this correction cannot be used. « 

, 7he nearest analogy with Bonds work would be to consider that the 

fluid pressure acting on the tread surface was like an indenter of 

large radius. The effect of the finite thickness of the contact 

patch in this case will therefore, have a much larger effect on the 

deformation, than that found by Bond. 

If one were to attempt to find a correction factor by experiment 

using a flat indenter, then the area of the indenter chosen would 

affect the value of the correction factor in the same way as Bond 

found the radius of the sphere affected the correction factor, 

as well as the thickness of the material. Also, as has been discussed 

earlier, there is no actual rigid backing to the contact patch, 

but rather the steel breaker which, whilst being much stiffer than 

the tread rubber, still deforms to some extent. It would therefore, 

be more appropriate that any experiments to determine a correction 

factor for deflection would take place on an actual tyre. This is 

discussed in section 8.8.1. 

To get a feel for the magnitude by which the modulus would be 

modified, a theoretical comparison between the deflection predicted 

by the 'column' method (which includes material thickness) and the 

deflection predicted by the semi-infinite method, was performed. 

Combining equations 3.10.2,3.10.3 and 3.10.4 'gives the deflection 

by the 'column' method as 

= Ft 
r1-2 

\)2 ----------3,10.7 
EA L l- V 



- 117 - 

Equation 3.10.7 gives the deflection over an area due to a force 

applied over that area. A similar equation based on semi-infinite 

theory can be found in (15) and is 

SAV 
= mF (1 - y2) --3.10.8 

Es A 

where SAV is the average deflection over the area A, and Es is the 

effective elastic modulus. 'm' is a numerical factor depend nt on 

the shape of area A and can be found from (15). 

Assuming 6= SAV and combining equations 3.10.7 and 3.10.8 gives 

Es = E. m, IA 
. 

(1 -U )2 3.10.9 
t (1 - 2V) 

The relationship between Es' and E can now be found for specific 

cases. 

In (37), it is shown that the use of a 'column' model with an 

effective modulus gives good results for Poiss o ns ratio up to 

0.45; therefore, this value of P oiss o ns ratio will be used in 

3.10.9. The two extreme cases are to consider the whole area of 

a typical contact patch, and to consider only one small block within 

the contact patch. 

Whole Contact Patch: 

length = 150mm 

width = 100mm 

A= 15,000mm2 and m=0.94 (15) 

therefore ES' = 348 E 
t 
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Single Block: 

length = 20mm 

width = 20mm 

A= 400mm2 and m=0.95 (15) 

therefore ES' = 57.5 E 
t 

A typical thickness for the tread rubber is 15mm. Therefore Es' 

ranges from approximately 23E to approximately 4E. Because the 

backing is not rigid (i. e. 't' could be considered effectively 

larger), then the low end of this range would seem most appropriate. 

In conclusion, therefore, the value entered into the computer 

program for the modulus of the material (when using the semi- 

infinite deflection method) should be treated as an effective 

modulus. When more experience of the program has been gained or 

experiments on the stiffness of tyre contact patches performed, 

a more exact. method of determining the effective modulus can be 

found. The actual value of modulus chosen is not critical 

as the results from the computer program will be used on a 

comparative basis, and, to a large extent, the effects of tyre 

preload dominate over the effects of tyre modulus. 

3.11 TYRE PRELOAD 

The tyre contact patch is preloaded onto the road surface owing 

to the weight of the vehicle. This preloading causes the 

toroidal shape of the tyre to be flattened where it contacts 

with the road surface to form the contact patch. 

The value of the tyre/road preload is known as the contact pressure 

and can be measured by rolling a tyre over a load sensor. If 

we consider the case of a tyre loaded onto a road surface (figure 3.11.1), 
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the drainage capacity of the road surface can be represented as an 

effective film thickness and the simplified representation shown in 

figure 3.11.1(b) given. 

Before the tyre tread surface can deform, the fluid pressure of the 

water in the tyre/road interface must exceed the local contact 

pressure. If the tyre then deforms. linearly with increasing 

fluid pressure, the response of one point on the contact patch 

to fluid pressure will be as shown in figure 3.11.2. 

From figure 3.11.2 it can be seen that the fluid pressure used in 

the deflection model should have had the contact pressure 

subtracted from it. In practice, the fluid pressure is averaged 

over an element; therefore, the contact pressure is also 

averaged over an element and the difference between these two 

values is used in the deflection model. 

If the vehicle axle were fixed, then the tyre contact pressure 

would remain constant. It follows that any deformation of the 

tyre contact patch by fluid pressure would cause an increase in the 

load supported by that tyre. This is not the case for a tyre on 

a vehicle as the load on the tyre is fixed by the vehicle mass; 

therefore the axle height must vary. The case of fixed axle 

height can be simulated on a test machine and can be useful, as 

this allows the variation in load carrying capacity of the tyre 

under various wet conditions to be examined. 

The modelling of the tyre with the type of response in figure 

3.11.2 would give this fixed axle height case and the computer 

model can use this to find the predicted load carrying capacity 

under wet conditions. Obviously, it is desirable that the tyre 

should have as low a load carrying capacity as possible under wet 

conditions. 
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To allow modelling of the situation of a tyre on a vehicle, the 

axle height has to be allowed to vary and the total load on the 

contact patch remain constant, at the value found by integrating 

the dry contact pressure over the area of the contact patch. 

If one considers only the tyre contact patch, then the effect of 

varying the axle height reflects itself in changes in the contact 

pressure. If the axle is raised, the contact pressure will 

reduce and, if the axle is lowered, the contact pressure will 
increase. As well as changes in contact pressure, changing the 

axle height will also alter the contact patch size. Tests have 

shown that the width of the contact patch is virtually independent 

of the axle height and also that the length of the contact patch 

only varies by a small amount for changes in the axle height 

near to the height at schedule load. As a result of this, the 

area of the contact patch will be considered not to vary with 

changes in the contact pressure caused by adjusting the axle 

height. 

To allow the constant load situation to be modelled, one can 

consider that changes in axle height will affect, as far as fluid 

in the tyre/road interface is concerned, only the contact pressure. 

To aid the convergence of the computer program, the contact pressure 

is applied in a number of steps, as discussed in section 4.5.5. 

This procedure has been extended, allowing the contact pressure 

level to be modified, to achieve matching of the total load in the 

wet with the total load in the dry. In practice, the contact 

pressure level required to achieve this is close to the dry contact 

pressure level; confirming that the assumption of constant 

contact patch area, due to variation in axle height, is valid. 
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CHAPTER 4- COMPUTING DEVELOPMENT 

4.1 INTRODUCTION TO COMPUTING DEVELOPMENT 

The purpose of this chapter is to describe the operation of the 

computer programs which form an integral part of this project. 

The finite element programs, one for contact patch analysis and 

one for individual tread block analysis, basically differ only in 

their input, the loading procedure and the boundary conditions. 

The overall structure of the two programs is similar, and the initial 

work shown here on their verification applies equally to both. Later 

on in this chapter operating procedures and flow diagrams for the 

two programs are presented; . 
the actual source listings are in 

Appendix B. 

The other computer programs which have been developed in conjunction 

with this project are for finite element mesh generation and for the 

plotting of results from the finite element programs. The mesh 

generation program in particular will be described later in this 

chapter. The source listings for both the mesh generation and the 

plotting programs are also in Appendix B. 

The finite element programs are written in FORTRAN IV and are 

implemented on an IBM 3031. The mesh generation and plotting 

programs are also written in FORTRAN IV, but are implemented on 

DEC PDP11 computers. The mesh generation programv. also requires 

the use of the special facilities of a Cambridge Instruments 

Quantimet image analyser with image store. 

4.2 1-DIMENSIONAL VERIFICATION OF THE FINITE ELEMENT COMPUTER 

PROGRAMS 

These verification tests were performed using the block design 

program, with modifications to allow the viscosity to be held 

constant rather than to use an effective viscosity (section 3.6). 

This was to enable the results to be easily compared with theory. 
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The tests performed fall into the following categories and allow the 

verification of the fluid dynamical parts of the computer programs. 

1. Slider with taper. 

2. Composite slider with taper + parallel. 
3. Squeezing - parallel. 

4. Squeezing - tapered. 

All cases are for rigid bearings with no elastic deformation. The 

viscosity used was 1.0 Ns/mm2, and where appropriate the sliding 

velocity was 1.0 mm/s. Therefore, the actual pressure values 

predicted were not realistic, but allowed verification of the computer 

programs by comparison with the analytical solution of Reynolds 

equation. The mathematical details of the analytical solutions are 

not presented here, but can be derived relatively easily from informat- 

ion in the literature (31), (32), (33), (34). 
. 

4.2.1 1-Dimensional Slider 

The 1-Dimensional slider is the simplest case of hydrodynamic lubricat- 

ion. A convenient way of characterising a slider bearing is by the 

ratio of inlet to outlet film thickness hi. (see figure 4.2.1). 

hi = hi 
---------- 4.2.1 

i7- 
0 

The results for three different values of hi are shown in Figure 

4.2.2(a) - (c). The three values of hi represent a shallow, medium 

and steeply sloping bearing. 

The outlet film thickness h0 is arbitary and will not affect the 

pressure distribution, only the overall magnitude of the pressures. 

For this, and the reasoning given earlier, the graphs presented do 

not have any units on the pressure axis. Similarly, the bearing 

length is presented with respect to the maximum length. 



- 125 - 

hi 

FIGURE 4.2.1 - 1-DIMENSIONAL 

ho 

SLIDER - 
GEOMETRY AND NOTATION 

VX 



- 126 - 

O-FF Solution 

W 
x 

xo 
CL 

J LL 

o. 

FIGURE 4.2.2a - 1-DIMENSIONAL SLIDER - 
COMPARISON BETWEEN THEORETICAL 

AND NUMERICAL SOLUTIONS 

0.0 0.5 1.0 
DISTANCE INTO SLIDER 



- 127 - 

0-F. E. Solution 

.y 

w x D U) U) w Ix CL 

J 
U- 

DISTANCE INTO SLIDER 

FIGURE 4.2.2b - 1-DIMENSIONAL SLIDER - 
COMPARISON BETWEEN THEORETICAL 

AND NUMERICAL SOLUTIONS 

0.0 0.5 1.0 



- 128 - 

O-F. E. Solution 

Theory 

W 
x 
M 
U) 
W 
cl: 
a- 

J 
L 

DISTANCE INTO SLIDER 

FIGURE 4.2.2c - 1-DIMENSIONAL SLIDER - 
COMPARISON BETWEEN THEORETICAL 

AND NUMERICAL SOLUTIONS 

0.0 0.5 1.0 



- 129 - 

From figure 4.2.2 it can be seen that the finite element results 

agree very closely with the theoretical solutions. However, a 

little more insight can be gained by looking at the percentage 

error between theory and finite element at the mid-point (x = 0.5). 

The mid-point was chosen as this is furthest from the influence of 

the fixed boundary conditions at the ends. The errors are shown 

below: - 

hi % error at x=0.5 

4.0 -0.412 

2.0 -0.101 

1.25 -0.011 

The error here is defined as: 

% error = 
(finite 

element solution - theoretical solution, x 100 

theoretical solution -4.2.2 

The error is greatest for the steeply sloping case. This will 

generally occur for plain slider bearings and the accuracy with 

hi = 4.0 could be improved to the level attained with hi = 1.25 

by increasing the number of nodes in the x direction. The accuracy 

in all the above cases is more than adequate and if a lower degree 

of accuracy could be tolerated, the number of nodes in the x 

direction could be substantially reduced. This would give a 

saving in computer cost and illustrates the general trade-off 

between accuracy and costs when dealing with finite element 

solutions. 
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4.2.2 1-Dimensional Composite Slider 

The geometry of the composite slider bearing is shown in figure 

4.2.3. 

The results of the finite element and theoretical solutions are 

given in figure 4.2.4(a) and (b). 

Again, the finite element solutions agree well with the theoretical 

solutions. In this case, it is not possible to draw any firm 

conclusions about the nature of the errors because in this case 

there is a discontinuity in the surface, and the error level is 

dependent on the position within the slider (value of x). Also 

the behaviour cannot be entirely defined by the value of hi 

(equation 4.2.1) because the value of ho alone will determine the 

behaviour in the parallel region. For comparison, the error 

levels at the mid-point position (x = 0.5) are shown for two values 

of hi. 

hi % error at x=0.5 (equation 4.2.2) 

2.0 0.327 

1.1 0.599 

The error in this case is greater for the smallest value of hi; 

however, noting that the errors are now positive, (i. e. the finite 

element solution over-estimates the pressure), the trend is the 

same as in the case of the slider in the previous section. 

That is to say, the smaller the value of hi, the greater the 

pressure predicted, with respect to the theoretical pressure 

at that point and the actual bearing configuration will determine 

whether the finite element solution will over or under estimate 
the theoretical solution. 
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4.2.3 1-Dimensional Squeezing (parallel) 

In this case the sliding velocity is zero, as effects of squeezing 

the two surfaces of the bearing are being considered (figure 4.2.5). 

Because the surfaces are parallel (hi = 1.0), only one case is 

considered, and the squeezing velocity will be taken as lmm/s, 

with the instantaneous film thickness lmm. The results of both 

: the finite element and the theoretical solutions are 

shown in figure 4.2.6. 

The finite element values agree exactly (within the limits of 

computer accuracy) with the theoretical solution. From figure 

4.2.6 it can be seen that the pressure profile is symmorical about 

the point x=0.5, as would be expected. 

4.2.4 1-Dimensional Squeezing (tapered) 

This is similar to the previous case, except that the two surfaces 

are not parallel (figure 4.2.7). 

The same constants were used as in the previous case, except that 

was taken as 2.0 and 1.1 with h=1.0mm. The results of 
i0 

these tests are shown in figure 4.2.8(a) and (b). 

The errors 0.5 for the two values of hi are shown below: 

h1 

2.0 

1.1 

error at x=0.5 

-0.451 

-0.008 

As usual, the finite element solution is close to the theoretical 

solution, and, as with the tapered slider, the error is less for 

the case with the lower value of hi. 
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4.3' 2-DIMENSIONAL VERIFICATION OF THE FINITE ELEMENT COMPUTER 

PROGRAMS 

There is no general analytical solution for Reynolds equation in 

two dimensions; however, under certain circumstances a solution can 
be found by an approximate method. Two separate cases will be 

considered; 2-dimensional rectangular sliders and a circular 

pressurised pad. The solutions for 2-dimensional sliders 

presented here are in terms of the load carrying capacity only. 

This is defined as the integral of pressure over the area of the 

slider, i. e. 

W= 
fA 

pdA 
J 

4.3.1 2-Dimensional Rectangular Slider 

Three slightly different methods of finding the load carrying 

capacity were used from the literature and compared with a 

fourth, from the finite element model presented here. 

In his book (33), Fuller presented two similar methods of finding 

the load carrying capacity of rectangular bearings with side 

leakage. The first, originally by Kingsbury and Needs, was found 

by expressing Reynolds equation in terms of electrical units and 
building a corresponding model to measure the relationship among 

the variables. The second method presented by Fuller (33) is by 

Michell who was able to solve Reynolds equation for a few particular 

cases by using a special co-ordinate system and expanding the 

relationship into an infinite series. 

The third method is by Jakobsson and Floberg (35), who used a 

relaxation solution by the finite difference method to obtain 
the load capacity of various bearings. The bearing used in all 

these cases (including the present finite element solution) is 

shown in figure 4.3.1. 
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In all the cases considered here, the viscosity was taken as the 
laminar viscosity, i. e. no allowance was made for turbulence; 

the sliding velocity used was 1000mm/s. The values chosen for 

ho and B (the length of the bearing) will affect the magnitude of 

the pressure and thus the-load carrying capacity; however, they 

will not affect the characteristics of the bearing which are 

determined by the ratios hi/ho and b/B. The values of ho and B 

were arbitrarily taken as 0.1mm and 100mm respectively. 

Alternatively, these verification tests could have been performed in 

terms of non-dimensional load carrying capacity, removing the need 

to make assumptions about viscosity, velocity, film thickness and 

bearing length. However, as the purpose of this section was to 

verify the results of a computer program, it was felt important to 

use realistic numerical values in as many cases as possible so 

that the program was being checked under near normal operating 

conditions. 

The actual load carrying capacity for a 2-dimensional rectangular 

slider bearing is given by (33), 

W=6 VB2b Kp ---------4.3.1 
h 

0 

where 47 (eta) and Kp are factors, dependent on the width/length 

ratio and the slope of the slider respectively. The factor Kp can 

be found by the analysis of a slider neglecting side leakage and the 

factor I "corrects" the result to account for side leakage. 

Fuller (33) calculates the following values of Kp 
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m= hi 
-1= hi -1 

h 
0 

0.6 

0.7 

0.8 

0.9 

1.0 

1.2 

1.4 

1.5 

2.0 

K 
P 

0.0235 

0.0247 

0.0255 

0.0261 

0.0265 

0.0267 

0.0265 

0.0263 

0.0246 

From the above it can be seen that the load carrying capacity is 

relatively insensitive to changes in the slope of the slider. The 

factor 9 was determined by Kingsbury and Needs for various ratios 

of b/B for the case when m'= 1 (hi = 2h0 ). These values of 

are shown in the table below 
1 

b/B ( M. =l) 

0.25 0.060 

0.33 0.090 

0.50 0.185 

0.67 0.278 

1.00 0.440 

1.33 0.550 

2.00 0.680 

4.00 0.835 

5.75 0.920 

00 1.000 

Michell obtained values of for two different values of m' , 
although for fewer values ofb/B. The values of q by Michell are 

shown over. 
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b/B i mI = 1) m' = 2) 

0.5 0.19 0.22 

1.0 0.44 0.45 

2.0 0.69 0.71 

4.0 0.84 0.85 

co 1.00 1.00 

It can be seen that the values of found by Michell (for m'= 1) 

agree very well with those found by Kingsbury and Needs. 

In the work by Jakobsson and Floberg (35), the results are presented 

in a slightly different manner. The load carried by a 2-dimensional 

rectangular slider is defined as 

W= AL VB 
2bW 

-4.3.2 
h2 

0 

where W is a non-dimensional load carrying capacity and is, in 

effect, a combination of the factors q and Kp (and the constant 

'6'). The values for W are shown below (35) where hi is as 

defined in equation 4.2.1 (hi = hi/ho). 

w 

b/B h = 1.0 = 1.5 h h 2.0 h 2.5 h 3.0. = 4.0 h 
i i i 

0.50 0 0.0229 0.0289 0.0301 0.0295 0.0268 

0.75 0 0.0404 0.0504 0.0516 0.0498 0.0441 

1.00 0 0.0558 0.0689 0.0700 0.0670 0.0584 

1.50 0 0.0772 0.0946 0.0950 0.0900 0.0769 

2.00 0 0.0900 0.1096 0.1095 0.1032 0.0872 

00 0 0.1312 0.1589 0.1577 0.1479 0.1242 
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The load carrying capacities predicted by the above methods can 

now be compared with the load carrying capacity preducted by the 

current finite element model for various values of b/B and hi. 

As the values of q are only given for m' = 1.0 (hi = 2.0) by 

Kingsbury and Needs, hi = 2.0 will be used for the initial set of 

comparisons. In the table in figure 4.3.2, the load carrying 

capacity predicted by the method of Kingsbury and Needs, is 

denoted as WKN : by the method of Michell on WM, and by the method 

of Jakobsson and Floberg as WJF. The finite element solution-is 

denoted by WFE and the % error is given by, 

error = 
(WFE 

- mean load capacity by KN, M and JF)x 100 

mean load capacity by KN, M and JF 

The load carrying capacities are in each case given in Newtons, but 

as was discussed earlier, their actual value is not as important 

here as the'error existing between the different methods, in 

particular, between the methods from the literature and the finite 

element solution. 

Figure 4.3.2 shows that the load carrying capacity predicted by 

the finite element model agrees closely with that predicted by the 

three methods from the literature. 

The load capacities predicted by the three methods from the 

literature are very similar. Therefore, a further set of comparisons 

with the finite element method can be justified for hi = 4.0, 

where only the Jakobsson and Floberg solution is available. The 

results'of this are shown in figure 4.3.3 and, again, the load 

capacities are shown in Newtons, and the percentage error is defined as 

% error = 
(WFE 

- WJF, x 100 

WJF 

Once again there is close agreement between the finite element model 

and the results from the literature. A typical 2-dimensional pressure 
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b/B WKN WM WJF WFE % error 

0.50 1.6840 1.7295 1.6545 1.6436 -2.71 

0.75 - - 4.3281 4.2926 -0.82 

1.00 8.0104 8.0104 7.8891 7.8295 -1.76 

1.50 - - 16.248 16.133 -0.71 

2.00 24.759 25.124 25.098 24.949 -0.18 

4.00 60.806 61.170 - 60.550 -0.72 

FIGURE 4.3.2 - LOAD CARRYING CAPACITIES 9, =2--O 

b/B WJF WFE % error 

0.50 1.5343 1.5127' -1.41 

0.75 3.7871 3.7332 -1.42 

1.00 6.6868 6.5886 -1.47 

1.50 13.208 13.115 -0.70 

2.00 19.969 19.959 -0.05 

FIGURE 4.3.3 - LOAD CARRYING CAPACITIES I- 4. o 
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distribution, as predicted by the finite element model is shown in 

figure 4.3.4. This pressure distribution was produced using 

triangular finite elements based on a rectangular grid, and the 

diagonals forming the triangles have been omitted from figure 4.3.4 

in the interests of clarity. Figure 4.3.4 clearly shows the loss 

in load carrying capacity due to side leakage as the pressure falls to 

atmospheric at the sides of the bearing. - This loss in load carrying 

capacity is, of course, beneficial in the case of a tyre on wet 

roads. 

4.3.2. Circular Pressurised Pad 

The circular pressurised pad is a special case of 2-dimensional flow, 

for which an analytical solution exists and can be found in (33), 

p=. In 
I 01 -4.3.3 

Thý 1 
where p 

h 

r 
0 

ri 

and Q 

pressure at radius r 

constant film thickness 

outside radius of the pad 

inside radius of the pad 

volume flow rate. 

as shown in figure 4.3.5 

The inlet pressure (from 4.3.3) is, therefore, given by 

pi = 6IAQ , In 

riro 

- 4.3.4 

and the non-dimensional pressure'(with respect to inlet pressure) at 

any point in the pad is given by 
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r 

P== In 

(i: 
0) 

4.3.5 
Pi In r0 

ri 

For the sake of comparison, a pad with ri = 2mm and r0 = 100mm was 

considered. Figure 4.3.6 shows the analytical curve given by 

equation 4.3.5, together with points from two finite element solutions. 

The finite element solutions differ only in the type of mesh that 

they used. FE SOL. 1 used a mesh with nodes spaced uniformly in the 

radial direction every 10mm (except the centre most nodes at r. 2mm). 

FE SOL. 2 is the same as FE SOL. 1, except that extra nodes are 

placed at radii of 5,15 and 25mm in the area of high pressure 

gradient. The use of these extra nodes improves the accuracy of the 

solution and demonstrates the need to have sufficient nodes in areas 

of high pressure gradient. Normally, however, the areas of high 

pressure gradient would not be known and the mesh could not be arranged 

for greatest accuracy. It is important, therefore, that a simple 

uniform mesh will give adequately accurate results. If required, 

the mesh can then be subsequently refined based on the results 

of the uniform mesh. 

In the example shown, the largest errors are in the region r= 10mm 

to r= 40mm (figure 4.3.6). The values of 5 in this region are 

shown together with the percentage error for each of the two finite 

element solutions. The percentage error is defined as 

error = 
(FE' Solution - thedretical Solution )x 100 

theoretical Solution . 

r(mm) 
Analytical 

p 
FE SOL. 1 

p 
FE SOL. 2 

p 
FE SOL. 1 

% error 
FE SOL. *2 

% error 

10 0.5886 0.6296 0.6005 6.97 2.02 

. 
20 0.4114 0.4444 0.4206 8.02 2.24 

30 0.3078 0.3333 0.3147 8.28 2.24 

40 0.2342 0.2540 0.2398 8.45 2.39 
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From the table above it can be seen that the errors from FE SOL. 2 

are smaller than those from FE SOL. 1, but both would be acceptable, 

as the errors shown are only for the worst region of this case with 

a very high pressure gradient. 

4.4 DISCUSSION OF PROGRAM VERIFICATION 

The prec eding sections have presented a number of test cases which 

were performed to allow verification of the computer programs. 

These have shown that this implementation of the finite element 

method is capable of solving Reynolds equation and giving answers 

which agree well with analytical solutions. During the development 

of these computer programs many aspects were tested and verified, 

but it would not be appropriate to cover all these details here. 

One important aspect of the program operation is the application 

of boundary conditions. The pressure boundary conditions are used 

on the ends of the 1-dimensional sliders and on all edges of the 

2-dimensional sliders, described in the previous sections. 

The correct application of flow boundary conditions is slightly less 

easy to verify and a number of test cases of flow through wide slots 

were considered. 

Flow through a wide slot is given by (33) and also section 3.9 as, 

QA Pbh3 --------4.4,1 
12». B 

where Q= total volume flow 

b= width of slot 

B= length of slot 
h= thickness of slot 

and AP = pressure drop over the length of the slot. 

Equation 4.4.1 assumes that the width is very large compared to the 

film thickness, and that the length is also very large. By using an 

infinite width parallel slider bearing with zero sliding velocity, 

and specifying a volume flow per unit width into this bearing, the 

case of viscous flow through a slot can be modelled by the finite 
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element method. As the infinite width case is to be considered 
to remove the effect of bearing width, equation 4.4.1 can be 

modified to 

q= APh3 4.4.2 
12yß B 

where q is the volume flow/unit width. The pressure at the exit of 

the slot can be considered zero; therefore, AP is equal to the 

inlet pressure. This inlet pressure is not specified, but from 

4.4.2 is a function of flow, slot dimensions and viscosity. 
Comparing the inlet pressure given by equation 4.4.2 with that given 

by the finite element solution for a number of test cases, shows 

that the error in all cases is much less than 0.1%. The computer 

programs therefore apply the flow boundary conditions correctly. 

The finite element computer programs have been verified in all 

aspects of their operation related to fluid mechanics. The various 

details of the finite element method, such as the solution of 

the simultaneous equations, are also verified in the process of 

solving the test cases in this and previous sections. The computer 

programs use three subroutines which have been derived from ones 

published in the literature (49). These subroutines perform the 

routine functions of assembling the local element matrices into the 

global matrices, adding the geometric (pressure) boundary conditions 

and solving the simultaneous equations by the Gauss-Doolittle 

method of back substitution. 

The verification of the tyre contact patch deflection model is only 

possible to the extent that the computer implementation of the 

theory derived in section 3.10 has been checked and agrees with hand 

calculated values. As was stated in section 3.10, the tyre contact 

patch deflection model is not intended to model accurately the 

behaviour of the tyre due to changes in construction, etc.. 
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The calculation of the fluid flow velocities and subsequently the 

effective viscosities were checked with hand calculated values and 
found to be in agreement. 

4.5 DESCRIPTION OF THE FINITE ELEMENT COMPUTER PROGRAMS 

The discussion so far in this chapter on the verification of the 

finite element computer programs has been equally valid for both 

the block design program and the contact patch analysis program. 

This work is aimed at producing a computer program to analyse 

the behaviour of the tyre contact patch under wet conditions. 

However, it was realised that to assist in the design process 

(see Chapter 2) it would be useful if a program were available to 

help in the detailed design of individual tyre tread blocks. 

The differences between the two finite element programs can be 

seen from the following. two sections where the flow diagrams for each 

are presented and discussed. These. differences are mainly limited 

to the boundary conditions and the type of loading involved. 

The Block Design Program analyses the effects of fluid.. pressure and 

block deformation for an individual tyre tread block, such as the 

one shown in figure 4.5.1. 

This analysis is valid if the grooves within the tyre contact patch 

are not filled with water, i. e. the tyre is not flooded. This 

condition is met in many cases when the amount of water on the road 

surface is small due to either low rainfall or a well drained road 

surface. As the grooves are not filled with water, the pressure in 

the interfacial fluid will drop to atmospheric (zero) at the edges 

of the tread blocks and, because of this, there is no interaction 

within the fluid between adjacent blocks and the behaviour of each 

block can be analysed separately. The contact patch analysis 

computer program also allows the situation of an unflooded tyre to 

be, wodelled by making the pressure at all nodes within grooves 

zero. 
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If the contact patch computer program is to be used to model 

accurately the behaviour of a commercial tread pattern, then this 

would require the use of very many nodes and elements within the 

finite element mesh. This would cause problems both in the effort 

involved in the generation of the mesh and in the amount of computer 

time required to obtain a solution. By using the block design 

computer program where only one block is modelled, a mesh which will 

give accurate results can be used without imposing large penalties 

on mesh generation and computer time. 

Both the block and the contact patch computer programs allow 

calculations to be made at a series of 'time' steps. Each step is 

actually a steady state condition, but allows variation of a number 

of factors to be studied by using a different value at each step. 

The present uses of the contact patch analysis program are seen in 

the areas of broad research into various simple tread patterns and 

the shape of the contact patch, whilst the block design program can 

be used for the detailed analysis of specific tyre tread blocks. 

Both of the programs are written in a modular form so that as research 

into the modelling of tyres on wet roads advances, the programs can 

easily be modified to take advantage of new techniques. For example, 

if a new contact patch deflection model were developed, this could be 

incorporated into a FORTRAN subroutine and substituted for the 

original deflection subroutine without affecting the operation of 

other parts of the computer program. Whilst this type of modular 

programming also makes the testing and de-bugging processes much 

simpler, it is particularly relevant in this case, as the computer 

model here only represents the first stage in the development of 

computer modelling techniques for tyres on wet roads. 

4.5.1 The Tread Block Design Program 

The flow diagram showing the overall structure of the tread block 

design program is shown in figure 4.5.2. The intention of this 

section is to show the logic of the computer program and not to 

deal with the details of the implementation into FORTRAN. 
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FIGURE 4.5.2 - FLOW DIAGRAM OF THE BLOCK DESIGN PROGRAM. 
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AIIBIICI ID 
FIGURE 4.5.2 (continued) 
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The actual source listing can be found in Appendix B along with the 

user guide, which explains in detail the input variable usage. 

The various sections in figure 4.5.2 are explained below: 

B1 The title of the job is written on the program output and also 

as the title to the graphs for the plotting programs. The 

control data set up the maximum number of iterations that will 

be allowed, the final convergence criteria and the damping 

and limiting factors to aid convergence (discussed later). 

The mesh data set up the mesh type that will be used (see 

section 4.6.1) and the number of nodes in the x and y directions. 

B2 The node and element numbering is performed for the reference 

mesh from the data given in B1 . The details of this are 

given in section 4.6.1. 

B3 The 'physical' data gives the details of the length and width 

of the block or the spacing of the x and y node rows, the 

position of nodes if they are not on the grid, the elements 

which are in grooves and the groove widths. The details of 

any time stepping are also given here, as are the sliding and 

squeezing velocities and details of nodes which are in sipes 

or on axes of symdry. 

B4 Because of the way the mesh is generated, some elements will 

need to be removed from the reference mesh and the nodes and 

elements will then be renumbered. 

B5 The pressure on all nodes on the edge of the block will be zero, 

and this is automatically set, without the user needing to 

know which nodes are actually on the edge. 

If sipes are required then the nodes defined as being in sipes 

will also have a zero pressure boundary condition. Nodes on 

an axis of syxn ry do not have zero pressure boundary conditions 

applied. 
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B6 The deflections are initialised to zero and various other 

variables are also initialised to their starting values. 

B7 The first set of calculations is always at time step '0' and 

the various factors which can vary with time steps are 

initialised to their step '0' values. 'filze time step number 

'NSTP' is initialised to zero. 

B8 The number of iteration counter, 'NIT', is initialised to 

one. 

B9 The effective viscosity is calculated which allows for the 

effects of turbulence, as shown in section 3.6. The velocities 

and film thicknesses from the previous iteration are used in 

the calculation of Reynolds Number. On the first iteration, 

the effective viscosity is set to the laminar viscosity of 

water. 

B10 Based on the block deflections and any grooves, etc. set up in 

section B3 , the fluid film thickness at each node of each 

element is calculated. Calculating a film thickness for the 

local node within each element rather than a value for each 

global node number allows discontinuities in film thickness 

between elements to exist such as is required to model the 

geometry of a groove. 

Bii The local stiffness matrix and generalised force vector for 

each element are calculated. If the fluid film thickness over 

a particular element is zero, then the pressure from Reynolds 

equation would behtdeterminate; therefore, elements of this 

type are removed from the mesh and their local stiffness matrix 

and generalised force vector are not calculated. 

For elements within a groove, the 'groove flow factor' 

developed in section 3.9 will be calculated and used in the 

formulation of the local stiffness matrix. 
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B12 A check is made for any nodes which need to be removed from the 

mesh due to the removal of elements in section. Bil , and 

any such nodes have a "dummy" boundary condition applied to 

them. This will not affect any other part of the mesh as, by 

definition, these nodes are unconnected. The boundary 

condition is needed because the unconnection to the mesh means 

that the pressure at these nodes cannot be found and an error 

would occur in the solution method if a "dummy" boundary 

condition were not used. 

B13 The local stiffness matrices are assembled into their correct 

position in the global stiffness matrix. Similarly, for 

the generalised force vector. Any element which has been 

removed from the mesh in B11 is not added to the global 

stiffness matrix or force vector. 

B14 The geometric (pressure) boundary conditions are added into 

the global stiffness matrix and force vector. 

B15 The system of simultaneous equations formed by B13 and B14 

is solved for the unknown pressures by the Gauss-Doolittle 

back substitution method. 

B16 From the now known pressures (and hence pressure gradients) and 

the fluid film thicknesses, the fluid flow velocities can be 

calculated. As well as being useful output data, these are 

required by B9 in the calculation of effective viscosity on 

the next iteration. The fluid flow velocities are calculated 

at the element centroids for reasons discussed in section 3.5. 

B17 Using the deflection model developed in section 3.10, the 

deflection at each node is calculated from the fluid pressures 

found in section B15 . 



- 162 - 

B18 The deflections calculated in section B17 are compared with 

those from the last iteration and if they agree to within the 

convergence criteria defined in section Bl at all nodes, then 

control is passed to section B20 , otherwise control is 

passed to section B19 . 

B19 If the deflections have not converged, then this section 

increments the iteration counter 'NIT', and damps and limits 

the deflections as described in section 4.5.3, to help 

convergence. Control is then passed to section B9 and the 

iterative process repeated through to section B18 where the 

convergence is again checked. 

B20 When the deflections have converged, the total load due to the 

fluid pressure is found by the method described in section 4.3. 

This load can be used as a measure of the blocks wet grip 

properties, i. e. low load is good for wet grip, high load is 

bad. 

B21 The bulk of the results are written to the output stream for 

printing or display on a VDU. Histograms are produced showing 

the distribution of pressure and fluid film thickness. 

Tables are produced showing fluid pressure, block deflection, 

film thickness and flow velocity. 

B22 A data file is produced with the data for the plotting programs 

to give graphical output of pressure, film thickness and flow 

velocity as well as a plot of the finite element mesh if 

required. 

B23 The current time step number 'NSTP' is compared with the 

required number of time steps and if the maximum has been 

reached the program passes control to section B25 , otherwise 

control is passed to section B24 . 
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B24 Another time step is required so the time step counter 'NSTP' 

is incremented and the various factors which can change with 

time steps are set to the appropriate values; control is 

passed to section B8 , from where the whole solution procedure 

can be repeated. 

B25 This set of results is now complete. The program allows 

concatenation of data files so that within one job there can 

be a number of different problems considered. If there is a 

further set of data, control is passed back to section B1 

and the complete program is repeated with the new data. If 

there are no further data, the program is halted and the 

plotting file is transferred to a special storage area, so 

that it can be accessed by the PDP11 at a later stage. The 

job then terminates. 

4.5.2 The Contact Patch Analysis Program 

The operation of the contact patch analysis computer program will now 

be described in a similar way to the block design program. When 

modules are the same or similar to those used in the block design 

program reference will be made to the appropriate 'B' number in 

section 4.5.1. The flow diagram of the contact patch analysis 

program is shown in figure 4.5.3 and the source listing is given in 

Appendix B. 

The various sections in figure 4.5.3 are explained below: 

C1 Similar to Bl , where title, number of iterations, convergence 

criteria, mesh type, nodes in x and y directions, etc., are set 

up. 

C2 Same as B2 , mesh is generated. 
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FIGURE 4.5.3 - FLOW DIAGRAM OF THE CONTACT PATCH ANALYSIS PROGRAM 
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CI ID 
FIGURE 4.5.3 (continued) 
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EIIFI IG 
FIGURE 4.5.3 (continued) 
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C3 Similar to B3 , with the addition of data on tyre dry 

contact pressures, slip and slip angle, vehicle road speed, 

and the nodes which are on the front edge of the contact 

patch (to allow the application of flow boundary 

conditions, section 3.7.4). 

C4 Same as B4 , unwanted elements removed. 

C5 Similar to B5 , except that no pressure boundary condition 

is placed on nodes on the front edge of the contact patch, 

to allow the application of flow boundary conditions. The 

contact patch can also be symirical in which case no pressure 

boundary condition is placed on nodes on the axis of symrry. 

C6 Similar to B6 , except that in this case the deflections are 

not initialised to zero. An initial slope of 0.2mm is 

superimposed on the film thickness distribution. This has 

been found to give a solution more quickly than starting the 

problem with the whole of the dry contact area in contact 

with the road surface. The starting value taken for the slope 

does not affect the results. 

C7 Same as B7 , the time varying factors are set to their step 

'0' values and the time step number 'NSTP' is initialised to 

zero. 

C8 The values of the preload due to the dry contact patch are 

initalised to zero. The preload will be applied in a series of 

steps, as an aid to convergence (see section 4.5.3). Initially, 

this will be preload '0' and the preload number'IFPRL'is set to 

zero. 

C9 Same as B8 , iteration counter initialised to one. 

C10 Same as B9 , effective viscosity calculated. 
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C11 Same as B10 , fluid film thickness calculated. 

C12 Similar to B11 , except that the fluid flow boundary conditions 

are added to the local generalised force vector. 

C13 Same as B12 , check for nodes not connected to mesh. 

C14 Same as B13 , assemble global matrix, etc. 

C15 Same as B14 , add in pressure boundary conditions. 

C16 Same as B15 , solve equations. 

C17 Same as B16 , calculate fluid flow velocities. 

C18 Similar to B17 , except that the preload on the contact 

patch must be taken into account as discussed in section 3.11. 

C19 Similar to B18 . convergence of deflections is checked. 

If converged control is passed to section C21 otherwise to 

section C20 

C20 Similar to B19 , deflections have not converged; therefore 

increment counter 'NIT' and damp & limit deflections. Control, 

is then passed to section C10 and the iterative process 

through to section C19 is repeated. 

C21 If this is the first preload and the first time step, then 

the actual load on the tyre in the dry, due to dry contact 

pressure is calculated. This is used as a 'target' for the 

wet load of subsequent preload iterations. 

C22 Similar to B20 , except that the load due to both the fluid 

pressure (the wet load) and due to the applied preload at 

this preload step (the dry load) are calculated, by the 

method shown in section 4.3. 
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C23 Similar to B21 , output tables of fluid pressure, contact 

pressure, deflection, water depth and fluid velocity are written 

to the output stream. 

C24 Test to see if the wet load calculated in section C22 is 

within 2% of the actual tyre load found in section C21 . 
If it is, then control is transferred to the plotting data 

file creation section C25 . If the loads have not converged, 

control is passed to C26 

C25 Same as B22 ;a data file to be used with the plotting 

programs is created; control is then passed to section C32 

C26 Test to see if this is the last allowable preload step. 
A number of steps are used to apply the tyre preload for reasons 

discussed in section __ ` 4.5.5. The allowable number of 

preload steps is always greater than the number of steps taken 

to apply the contact pressure preload. This allows the wet 

and actual loads to converge, even after the full load is 

applied to the tyre. If this is the last allowable preload 

step, then there will be no fully converged solution; however, 

it is useful if these results are fully available and, 

therefore, control is passed to section C25 to create a 

plotting data file. If this is not the last allowable 

preload step control passes directly to section C27. 

C27 Same as B23 ; check to see if the maximum number of time 

steps has been reached, and if it has pass control to section 

C29 otherwise to section C28 . 

C28 Same as B24 , set up for further time step and pass control to 

section C9 . 

C29 Check to see if all the required preload has been applied; 

if it has, pass control to section C31 otherwise to section 

C30 . 
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C30 A further preload step is to be performed; therefore, the 

preload counter 'IFPRL' is incremented and the contact patch 

preload is set up for the next step. Control is then passed 

to section C9 . 

C31 All the preload from contact pressure is now applied; 

therefore, need to modify preload in an attempt to match 

wet load with actual tyre load on the next iteration. 

Control is then passed to section C9 . 

C32 Same as B25 ,a check is made to see if there are more 

data; if there are then control is passed to section Cl 

otherwise the program is halted, the plotting file is 

transferred and the job terminated. 

A comparison of the flow diagrams for the block design program 
(figure 4.5.2) and the contact patch analysis program (figure 4.5.3) 

shows the main difference to be the use of a preload in the latter 

case. The majority of the program modules are either the same or 

very similar for the two programs. 

In both the flow diagrams, the action when the program will terminate 

abnormally is not shown. Abnormal termination will take place 

if the maximum specified number of iterations are used without a 

converged solution being found or by error in the input data. 

In both the finite element computer programs a certain amount of 

remedial action has been taken to improve the convergence speed of 

the deflections, and in the case of the contact patch analysis 

program also the preloading. This is described in the following 

section. 

Two further common aspects of the two programs are mesh generation 

and plotting and these are covered in sections 4.6 and 4.7 

respectively. 
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4.5.3 Modifications to the Finite Element Computer Programs 

to Improve Convergence 

Modifications to improve convergence were made in two areas of the 

computer programs. The first, which is common to both programs, 

affects the value of the deflection which is passed on to the 

subsequent iteration. The second area affects the contact patch 

analysis program only and relates to the way the preload is applied. 

These two areas will now be dealt with separately. 

4.5.4 Modifications to Deflections 

Two forms of modifications are made to the deflections. If one 

assumes that the initial film thickness is small compared to the 

film thickness at the converged solution, then the pressures 

calculated from this initial film thickness will be very large 

and overestimate the true pressures. Then on the following, 

iteration these exaggerated pressures will, in turn, exaggerate 

the displacements. The displacements will now be highly over- 

estimated; therefore, the next set of pressures calculated will be 

highly underestimated, then the following deflections underestimated 

followed by overestimated pressures, and so on. This situation 

is highly unstable and can be avoided by limiting the change in 

nodal displacement on any one iteration. Oh and Huebner (60) 

discuss this type of problem and use a similar solution. The 

method used here is that the deflection at a node can only change by 

a fixed percentage of the deflection at the previous iteration. 

Usually, it is sufficient to use 100% as the limit, that is to say, 

in one iteration the deflection due to fluid pressure may either 

double its value or be reduced to zero. This limiting is only 

needed in the first few iterations when the solution at that 

particular iteration is a long way from the converged solution. 
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The other way in which the deflections are modified is by damping. 

This is also discussed by Oh and Huebner (60) and by Taylor and 

O'Callaghan (59). If the simple method of taking the actual 

predicted deflections (allowing for any limiting) and using them as 

the basis of the next iteration is used, then an underdamped 

response with oscillations about the converged solution will result. 

Typically, this would yield the response shown in figure 4.5.4. 

The convergence (if any) is necessarily very slow in this case. 

The speed of convergence can be improved if each new deflection is 

weighted with the deflection from the previous iteration, thus 

preventing-a large change of film profile in one iteration. 

This can be expressed as follows: 

dl+l = dI + S(d -dI) ------4.5.1 

where 'dl+l' is the new deflection that will be used on the next 

iteration, 'dI' is the deflection found by applying equation 4.5.1 

on the previous iteration and 'd' is the actual deflection predicted 

by the pressures resulting from the deflection 'd1'. Equation 4.5.1 

can be applied to the deflections at each node. The factor 6 is 

chosen between 0 and 1 to give the fastest convergence and would, 

typically, be about 0.2. 

An alternative to using a damping factor ' ö' is suggested by Oh and 

Heubner (60). This involves weighting the new deflection with the 

deflections from a number of previous iterations. The new 

deflection in this case would be given by 

i=I 

dI 
+1 

1rd+ý di ---------4.5 .2 
nL i=I-n+2 

where n-1 is the number of previous iterations to be used in the 

weighting. 
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The predicted deflection 'd' is also used in the averaging, making 

a total of 'n' deflections from which the new deflection is to be 

found. 'n' has to be kept relatively small, otherwise the estimated 

solution will become very insensitive to the deflections of the 

immediately prec e ding iteration. In practice it is found that 

'n' should be less than 6 for the best results. 

The actual damping method used in section B19 and C20 of the 

computer programs is a combination of the above two methods. 

This was found to give a good compromise between stopping wild 

oscillations and making the solution too insensitive to the last 

iteration. Equations 4.5.1 and 4.5.2 can be combined to give 

i=I 
dI+l = dI + 

(11d+ 
dL - dI --4.5.3 

nL i= I-n+ 2 

Because in this case an averaged deflection is being used in place 

of the actual predicted deflection in equation 4.5.1, the damping 

required is much less. A value of 0.8 for '&' is typical. 

The value of 'n', the number of deflections that are to be averaged 

(including the current predicted one), would typically be 3. This 

means that averaging is taking place between the current predicted 

deflection, the last iteration and the iteration previous to that. 

When a preloaded case, such as a tyre contact patch is being 

modelled, the solution is more unstable than without a preload. 

This requires more careful choosing of the damping factor 

It was found that the convergence was improved if the value of 

was reduced (i. e. damping increased) as the preload was 

increased. Oh and Huebner (60) applying their averaging of 

previous estimates method to a journal bearing, suggest that the 

value of 'n' (equation 4.5.2) should be dependent on the eccentricity 

ratio of the bearing. Increasing the eccentricity ratio of a 

journal bearing makes the solution more unstable and, from that 

point of view, is similar to increasing the preload in the contact 

patch model. Therefore, the value of 'n' can be increased as the 
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preload is increased. Both this, and the reduction in 'd ', make 

the new deflection less sensitive to the deflection of the 

previous iteration and slows the rate of change of deflection 

between successive iterations. 

This damping, and the limiting of initial iterations, was found 

to be very effective in speeding convergence in most problems. 

However, in some cases of a plain tread tyre on a smooth road, the 

damping factor has to be chosen carefully to ensure convergence. 

This type of problem is the worst for the instability of the 

solution, because any film thickness existing will be due entirely 

to tyre deflection and, therefore, the fluid pressure is very 

sensitive to changes in the contact patch deflections. The 

situation of all film thickness being due to deflection can 

also exist with the block design program, when a block that would 
just be touching a smooth road surface (had there been no water 

in the interface), is being modelled. However, this poses no 

convergence problem because the block is not preloaded, and it 

is the combination of high sensitivity to pressure/deflection 

changes with a preload that gives rise to convergence problems. 

4.5.5 Modifications to Preload 

Because non-preloaded solutions were found to pose no convergence 

problem, a scheme was devised for preloaded problems to reduce the 

effect of preload on the solution technique. This was done by 

finding an initial solution with no preload and then applying the 

preload due to contact pressure in a number of steps, specified by 

the user. This eases the problem because the starting point for 

each solution is the result from the previous preload step, and, 

therefore, the solution at one preload step is never very far from 

the starting point at that step. Once the full amount of preload 

has been added (or the actual tyre load has been exceeded by the 

wet load), the preload is modified to match the actual and wet loads 

on the next iteration. This is required because in the case of a 

tyre on a vehicle, the total load on that tyre is fixed, whilst the 

axle height can vary. It is also possible to model the fixed axle 
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height case by taking the final solution at the point when the full 

preload has been applied and the wet load will be greater than the 

actual load. This difference in the actual and wet loads can be 

used as a measure of that tyre's wet grip performance. 

4.5.6 Conclusions on Computer Program Instabilities 

From the information available at present it is not possible to 

determine the exact nature of instabilities in the computer program. 

Two main possibilities exist: - 

i) The instabilities are caused by the numerical solution 

process, whereby the combined fluid/structural problem is 

split up and successive solutions are obtained, first for the 

fluid problem and then for the structural problem. This 

process could introduce instabilities into an otherwise 

physically stable problem. 

ii) The problem is inherently physically unstable, at least 

under certain conditions and the computer program reflects 

this. 

It should be emphasised, however, that these instabilities only 

manifest themselves under certain conditions, such as a smooth 

tyre on a smooth road surface and can be overcome by modifications 

to the damping factor 'a' and/or the number of iterations to be 

averaged 'n' (equation 4.5.3). If the instabilities are physically 

based, then there exists the possibility that they may be utilised 

in the design of tyres for improved wet grip. Further work, 

therefore, needs to be done in this area and this is discussed in 

section 8.3.1. 

4.6 MESH GENERATION 

The problem of mesh generation was recognised early on in the 

project, as a particular barrier to the use of a finite element 
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based model within the tyre design process. The methods of mesh 

generation discussed in the literature were thought to be unsuitable 

for this application (section 1.2.3), because they still required a 

relatively large amount of data to be provided by the user. It was 

therefore decided to approach the mesh generation problem from a 

different point of view and develop a method with the specific 

case of tyre tread patterns in mind. The method is, in fact, a 

computerisation of a manual method developed early in the project. 

4.6.1 Principles of the Mesh Generation Method 

The required result of any mesh generation process is a list 

containing the co-ordinates of all the nodes within the mesh and the 

element connectivity data, i. e. which nodes are in which elements 

and, therefore, which elements are connected to each other. Also 

required are the details of which nodes are to have boundary 

conditions applied and the value of those boundary conditions. 

Various other pieces of information, such as material properties, 

are also required, but as these are not dependent on the finite 

element mesh, they will not be considered as part of the mesh 

generation process. 

In this particular case, the boundary condition specification can 

be simplified somewhat, as it is known that in the case of pressure 

boundary conditions, the value on the boundary will always be 0.0 

N/mm2 (i. e. atmospheric). This is not necessary for the finite 

element solution, but as in all envisaged problems, this will be 

the case, the program has been designed to assume pressure boundary 

conditions of zero pressure (this could easily be changed if 

required). The nodes on which the zero pressure condition is to be 

applied still have to be defined, although this is relatively 

simple. For a tread block it is known that zero pressure boundary 

conditions need to be applied to all nodes on the edge of the block, 

and to nodes which are specified as being in sipes. The nodes 
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which are in sipes are supplied by the user by interactively selecting 

them at the time of mesh generation on the image analyser. The 

nodes on the edge of the block are defined in the finite element 

programs (section B5 or C5 ). This is achieved by working 

through the elements and selecting the edges which are only in one 

'included' element ('included'means an element which is actually 

part of the block as discussed later). These will then form the 

edge of the block and the nodes on these edges are those on which 

the boundary conditions are applied. 

In the contact patch analysis program, the procedure is modified 

slightly to account for nodes on the front of the contact patch. 

As discussed in section 3.7.4, the boundary conditions on the 

front edge of the contact patch are specified in terms of volume 

flow. Therefore, no pressure boundary conditions are required on 

these nodes. Section C5 of the contact patch analysis program 

uses a user supplied list of nodes which are on the front of the 

contact patch and applies pressure boundary conditions only to nodes 

on the side and rear edges of the contact patch. 

The application of the boundary conditions (except for specifying 

the nodes in sipes or on the front of the contact patch) takes 

place within the finite element programs, and, therefore, the mesh 

generation program is left with the task of providing data on the 

x-y co-ordinates of the nodes and on element connectivity. The 

mesh generation program used on the image analyser outputs a data 

file which is used to direct the mesh generation process in the 

finite element programs (sections B2 , B3 , B4 and C2 , C3 

C4 ). Whilst this means that each time a finite element job is run 

a certain amount of mesh generation has to be performed (automatically 

with no user intervention); the amount of time used to do this is 

negligible compared with that taken by the finite element solution 

procedure. This arrangement allows the input data files to be 

kept relatively small. 
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The mesh generation program is based on generating a rectangular 

grid which covers the area of the block (or contact patch) for 

which the mesh is required. The spacing of this grid can either 

be uniform or be set in any way by the user to give a mesh with 

elements concentrated in a particular area of interest or to fit 

an unusual geometry. Figure 4.6.1(a) shows the grid and is the 

first stage of the mesh generation process. 

The actual positioning of the 'x' and 'y' rows (if a non-uniform 

spacing is required) is performed interactively on the image 

analyser by moving each of the rows in turn to its required 

position, viewed superimposed over an image of the block. Once 

the rectangular grid is specified, it is divided into triangles 

to yield the typical result shown in figure 4.6.1(b). 

The positioning of the diagonals to form the triangles can be 

performed in a number of different ways, shown in figure 4.6.2 

and these are known as 'node numbering methods'. (Note: that 

node numbering method 1 denotes user input mesh data). 

There now exists a valid finite element mesh of a rectangular 

area which covers the required block area. All elements which 

have more than half their area actually on the block are then 
'included' in the mesh and other elements are 'not included'. 

In practice, this procedure is modified in an attempt to prevent 

a 'saw-tooth' edge to the mesh being formed. The mesh (with only 

'included' elements) now approximately fits the area for which 

it is required. The nodes on the edge of this modified mesh are 
then moved until they are on the edge of the block and the mesh 

accurately fits the block. 

When a node is to be moved to fit the edge of the block, a search 

is made PIXEL by PIXEL until the transition from block to no , 

block(cr no blockto block) is found. This search is performed 

in eight directions simultaneously as shown in figure 4.6.3. 
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The shortest distance to the edge of the block from the original 

node position is found, taking into account that moving one PIXEL 

diagonally is a greater absolute distance than moving one PIXEL 

horizontally or vertically. 

The user may then make any modifications to this mesh by moving 

nodes or by inserting/deleting elements until a satisfactory mesh 

is produced. Usually there are very few modifications to be made 

by the user. Any sipes required can now be specified and these 

will be used in the generation of the boundary conditions, as 

already discussed. All that now remains is for the data file to 

be created which will be used (together with data on material 

properties, speeds, etc. ) as input to the finite element programs. 

The mesh generation procedure described here can be used to generate 

meshes for either tyre tread blocks or tyre contact patches. 

The mesh generation program does not specify the fluid film 

thickness, and if a number of different film thicknesses are 

required, such as when different depth grooves are present, these 

must be specified on the input to the finite element programs by 

treating the elements within the groove as a specific element 

type. The element types possible are shown below: - 

0- element not to be included in mesh. 
1- normal element on a block. 

2-9- element is in a groove. 

During the mesh generation procedure and until section B4 / C4 

in the finite element programs, the mesh is considered to be the 

whole of the rectangular grid based mesh, and any elements within 

the grid which are not required have their element type set to '0'. 

These elements are then removed in section B4 / C4 . Normal 

elements, whose film thickness will be specified by the base-line 

film thickness and deflections, have the type '1' and all 'included' 

elements have this type set by the mesh generation program. If an 

element is required to be in a groove or at a step depth, then its 



- 184 - 

type can be set to '2' - '9'. The step depth for the appropriate 

element type is set in the finite element programs (section B3 / C3) 

as well as the width of the groove. The groove width is used in 

the calculation of the groove flow factor which was developed in 

section 3.9. The use of the groove flow factor can be suppressed 

when, for example, a cut-out in a block is being modelled. 

4.7 THE PLOTTING SYSTEM 

Two special purpose plotting programs were developed to provide 

graphical output of the results from the finite element programs. 

This was found necessary because of the difficulty in interpret- 

ing the large amount of data produced in tabular form by the programs. 

In particular, it was difficult to picture the 3-dimensional shape 

of the contact patch (or tread block) surface when it had been 

deformed by fluid pressure. 

Ideally, some form of graphical output directly from the finite 

element program was required, but this was not possible because 

of hardware limitations. Therefore, a plotting system was developed 

on a PDP11 computer, and a data file produced by the finite element 

programs (section B22 / C25 ) was made available for transmission 

to the'PDP11 from the IBM. It was also found most convenient 

to divide the plotting function between two separate computer 

programs. This was partly due to the limited amount of memory 

available on the PDP11, and the large amount of data required to 

perform the plotting. One of the plotting programs produces output 

of the finite element mesh (with node and/or element numbers), 

the flow velocities at element centroids, and the volume flow 

velocities at element centroids. The other plotting program 

provides output of a 3-dimensional representation of the contact 

patch or block, showing either fluid pressure or film thickness. 

The source listings of these two programs are given in Appendix B. 
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CHAPTER 5- EXPERIMENTAL DEVELOPMENT 

5.1 INTRODUCTION TO EXPERIMENTAL DEVELOPMENT 

There are two main testing facilities used at Fort Dunlop to 

evaluate the wet grip performance of tyres. These are a glass- 

plate, and an external drum machine. The results from the external 

drum machine could also be obtained from either an internal drum, 

or a flat belt machine, and the relative merits of these machines 

were discussed in section 1.2.1. Because of the very high cost, 

it was not possible to design and build a machine specifically 

for this project, and the available external drum machine was used 

for the test work. The main purpose of the test work was to 

indicate the level of success of the mathematical model, although 

the techniques developed can be used to increase the amount of 

information available from routine testing. 

5.2 ROUTINE USE OF TESTING FACILITIES 

The routine uses of the glass plate facility and the High Speed 

Cornering Force Machine are described in the following two 

sections. 

5.2.1 Glass Plate Facility 

The glass plate is situated on the proving ground at Fort Dunlop, 

Birmingham. 

The glass plate itself is mounted level and flush with the road 

surface, and is approximately two metres in length and half a metre 

in width. Beneath the glass plate is a pit approximately half a 

metre in depth and when a photograph is to be taken the camera is 

placed on the base of the pit facing upwards at the glass plate. 

The photograph is taken by the vehicle breaking a light beam, which 

then triggers both the camera shutter and the high speed flash gun. 
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Glass plate photographs are usually used to assess performance in 

the wet, the glass plate being covered by a specified (usually 2mm) 

thickness of water before the vehicle starts its run. To make, the 

water visible on the photographs fluorescein is added to it. 

Fluorescein is a very strong fluorescent indicator which shows up as 

green on the photographs. Figure 5.3.1 shows typical glass plate 

photographs and the penetration of water into the contact patch can 

be clearly seen as the green area. The dark areas within the tyre 

contact patch are what are normally considered as dry contact 

between the tyre and the glass plate. However, the current work 

tends to suggest that this is not in fact dry contact, but merely 

a film thickness of perhaps one order of magnitude less than the 

film thickness which shows up as green. The concentration of 

fluorescein added to the water is uncontrolled; therefore no 

conclusions can be drawn from the differences in light intensity 

between different photographs. 

The glass plate photographs are used purely to give a qualitative 

judgement of wet grip performance. An attempt to obtain more 

quantitative measurements will be discussed in section 5.3. 

5.2.2 High Speed Cornerine Force Machine 

The cornering force machine is situated within the Indoor Tyre 

Testing Department at Fort Dunlop, Birmingham, and, as already 

mentioned is an external drum type machine. The overall layout of 

the machine is shown in figure 5.2.1. 

Figures 5.2.2 (a) and (b) show general views of the machine and the 

control room. 

As its name suggests one of the main uses of this machine is 

in the measurement of cornering force. This is the sideways force 

developed by a tyre when a slip angle is applied. The machine can 

also be used for the measurement of braking force, aligning torque 

etc.. These measurements can be carried out under any combination of 

slip angles, camber angles and loading conditions, and can be 

performed in the wet or in the dry. However, dry testing is 
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limited because the level of forces developed in the dry by modern 

tyres is greater than anticipated by the machinds designers some 

twenty five years ago. The original design of this machine did not 

allow for the application of water for testing in the wet; this was 

added approximately twenty years ago, and is the only major change 

to the original machine. This machine is one of only a small 

number which allow the testing of full size tyres at high speeds 

under wet conditions. 

There are available a number of fibreglass replica road surfaces 

which can be fitted to the machines- drum. Real road surfaces can 

not be used because of the effects of centrifugal force, as 

discussed in section 1.2.1. These fibreglass surfaces provide a 

realistic amount of macrotexture, giving the approximate drainage 

capacity of an actual road surface of that type. However, they do 

not provide any significant mit rotexture , and therefore the 

friction level attainable on these fibreglass surfaces is very 

much lower than that on a real road surface. It has been shown in 

the past that, whilst the correlation between the forces predicted 

on the cornering force machine and those measured on the road is 

poor, the actual ranking of tyres is broadly similar. As most tyre 

testing involves comparing the results of tests with the results 

on a control tyre, the overall values of forces etc. are less 

important than the correct ranking, and therefore the cornering 

force machine can be used to perform comparative tests. Because of 

the lack of microtexture on the fibreglass replica surfaces, there 

will be a tendency for a very thin film of water to exist between 

the tyre and the surface which would under normal circumstances 

be broken up by contact with the road surface asperities. A tyre 

tread pattern can be made to remove this very thin film by the use 

of sipes; therefore on the cornering force machine the effect of 

sipes will tend to be exaggerated and any comparison of highly 

siped with sparsely siped tyres should be treated with caution. 

The application of water to the tyre/drum interface on an external 

drum machine poses a number of problems. Normally the road surface 

and the water on the road surface are stationary. In the case of 

the external drum machine the road surface (drum periphery) is 
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moving at the linear speed of that particular test condition, 

i. e. the speed that would normally be the vehicle road speed. 

The water should be stationary relative to the drum surface, so 

a jet of water has to be applied to the tyre/drum interface. As 

well as being at the correct speed this water jet must also be of 

the correct depth required for the test condition. The test methods 

normally used on the cornering force machine do not attempt to 

simulate realistic conditions for the application of water. Two 

types of water test conditions are used. If only a small amount 

of water is required, 'damp conditions', the water is applied to 

the drum via a spray bar with a number of small holes. If a 

greater amount of water is required it is applied through a nozzle 

of the type specified in reference (68). With this nozzle the 

water is directed, as a number of small jets, at the front of the 

tyre contact patch. These small jets are produced by a nozzle 

having 37 holes of two different diameters. Reference (68) sets out 

a complete standard for the testing of tyres using a trailer towed 

behind a vehicle, and the above described nozzle is the one 

specified for this testing. However no reasons for the 

specification of a nozzle of this type are given. This nozzle with 

an uncontrolled flow velocity and water depth was thought 

unsuitable for the current work, and the design of a new nozzle is 

described in section 5.4.6. 

5.3 DEVELOPMENTS MADE TO GLASS PLATE PHOTOGRAPH TECHNIQUES 

As was mentioned in the previous section, glass plate photographs 

are currently only used to provide a qualitative estimate of water 

penetration into the tyre contact patch. To obtain more 

information from these photographs, developments were made in two 

areas; improvements to the photographs themselves, and the 

development of an analysis technique using an image analyser. 

These areas will now be dealt with separately. 

5.3.1 Improvements to Photographs 

One of the main problems with the photographs is that a large 

amount of spurious light is included. The majority comes from the 
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flash which is used to take the photograph. This light is 

reflected from the underside of the glass plate directly into the 

camera lens. The required light is that which has been absorbed 

and then re-emitted by the fluorescein, where the amount re-emitted 

will depend on the quantity of fluorescein which in turn depends 

upon the thickness of the water film. 

The quality of the glass plate photographs could therefore be 

improved by removing the effects of light reflected from the 

underside of the glass plate. To achieve this use was made of the 

fact that when un-polarized light is incident on the surface of any 

transparent material the reflected beam of light will be partially 

plane polarized (69). 

A polarizing filter placed over the camera lens will therefore 

remove a large proportion of the reflected light from the 

photograph. Figure 5.3.1 shows a comparison between photographs 

taken with and without a polarizing filter. Because more of the 

light on the photograph taken with the polarizing filter is due to 

emission from the fluorescein, then more water penetration can be 

seen compared to the photograph taken without a polarizing filter. 

5.3.2 Improvements to the Analysis Technique 

In theory it would seem that it should be possible to obtain actual 

fluid film thicknesses from glass plate photographs. In practice 

it was found that problems in controlling the absolute value of 

light intensity, both when the photograph was taken and when it was 

viewed, meant that this was not possible. Glass plate photographs 

can however be used to obtain estimates of the fluid film thickness 

shape. 

One problem with obtaining fluid film shapes in this way is that 

there is a distribution of light over the photograph which is not 

due to changes in the fluid film thickness, but is due to the 

distribution of light from the flash gun. The distribution of 

light due to the flash gun is of much greater magnitude than any 
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distribution of Tight due to variations in water film thickness; 

therefore it must be removed before glass plate photographs can be 

used to estimate fluid film thickness shape. 

This was done by utilizing the fact that with a parallel film the 

changes in light intensity are due only to lighting distribution. 

Therefore, the difference in grey levels (intensity) between 

photographs of parallel and varying films will represent changes 

due only to the variation in fluid film thickness. This 

subtraction between images was performed using an image analyser. 

When the above technique is applied to glass plate photographs of 

tyres under wet conditions, the static tyre photograph is used to 

obtain the lighting distribution due to the flash. To improve the 

visability of the variation in light distribution every 10 by 10 

square of pixels was averaged, and the result of this averaging 

on a static photograph of a plain treaded tyre is shown in figure 

5.3.2(a). The lighting distribution manifests itself as an 

apparent water penetration into the rear of the contact patch, but 

as the tyre is static it is known that there can be no actual water 

penetration. Figure 5.3.2(b) shows the same tyre but this time 

moving from left to right. It would appear that there is a large 

amount of water penetration into the rear of the contact patch, but 

with reference to figure 5.3.2(a) it is known that this is largely 

due to the light distribution from the flash gun. By subtracting 

one image from the other, thus obtaining the difference in grey 

levels and then performing the pixel averaging the effects of 

lighting distribution were removed. The resulting image is shown 

in figure 5.3.2(c), and shows a more realistic water penetration 

shape into the front of the contact patch. There also appears to 

be an area at the rear of the contact patch where the water film 

thickness is large. By examining results presented in chapter 6 it 

can be seen that this would appear to be correct. 

Because of the difficulty in obtaining actual film thickness 

measurements from glass plate photographs, techniques on the high 

speed cornering force machine were developed (section 5.4.5). 

However the techniques developed here for use with glass plate 
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photographs, show a qualitative correlation with fluid film 

thickness shapes found by both the fibre optic probe and analytical 

methods, and as such show that the glass plate can reasonably be 

used in the evaluation of tyres for wet grip. 

5.4 DEVELOPMENTS MADE TO TESTING ON THE HIGH SPEED CORNERING 
FORCE MACHINE 

The object of developing new experimental techniques using the High 

Speed Cornering Force Machine was to allow the measurement of 

fluid pressure and film thickness distributions within the tyre 

contact patch. To achieve this a number of modifications and 

additions were made to the machine: 

1. Smooth road surface 

2. Pressure transducer 

3. Radio telemetry 

4. Data logging 

5. Fluid film thickness probe - 
6. Nozzle. 

The instrumentation to allow the measurement of fluid pressure was 

developed first. To allow the measurement of fluid film thickness 

the pressure transducer was replaced by the fluid film thickness 

probe and the rest of the instrumentation remained unchanged. 

The instrumentation as developed here is suitable for measurements 

on any tyre tread pattern under locked wheel conditions. However 

when the tyre is rotating, measurements can only be made on tyres 

with plain tread patterns or circumferential grooves. This is 

because the rotational position of the tyre is not recorded. The 

addition of an encoder to the wheel axle would remove this 

restriction, and this is discussed in section 8.3.2. For the 

purpose of the work here it was required to obtain pressure and 

film thickness distributions for plain and simple patterned tyres, 

therefore the lack of an encoder on the wheel axle did not pose 

any limitations on the results presented in chapter 6. 
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5.4.1 Smooth Road Surface 

As was discussed in section 5.2.2 there are a number of fibre glass 

replica road surfaces available to fit the cornering force machine 

drum. However, as the purpose of the current work is to study the 

effect of tyre tread patterns on fluid pressure and film thickness, 

a smooth road surface was required. A set of surface shells with 

a completely smooth surface was manufactured specifically for this 

project. 

As well as providing the correct type of surface for the tyre to 

run on, the surface shells also have to provide the mounting for 

both the pressure and fluid depth transducers. This was achieved 

by moulding a threaded insert into each of the three sections of 

the surface shells. It was not possible to make any modifications 

to the actual machine drum, therefore all the instrumentation had 

to fit inside the thickness of the fibre glass surface shells 

(20 mm). 

5.4.2 Pressure Transducer 

The pressure transducer must measure the interfacial fluid pressure 

between the tyre tread and the drum surface, and must fit into the 

limited space available. 

The size of the active area of the pressure transducer was very 

important as the requirement of this work was to gain details of 

the pressure distribution within the contact patch. 

The frequency response of the pressure transducer had also to be 

considered carefully. When the tyre/wheel assembly is locked the 

pressure transducer (or film thickness transducer) is moving past 

the tyre tread surface at the full test speed, and must be able to 

respond to the sharp drop in pressure as a lateral groove is 

passed. A typical lateral groove would be 4 to 6 mm wide, and it 

was decided that the frequency response should be such that the 

output could respond to changes occurring within 1 to 2 mm movement 
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through the contact patch. If a maximum test speed of 100 Kph is 

assumed, then this requires a frequency response in the range 

13.5 to 27 KHz. 

The typical maximum fluid pressure expected from a car tyre is 

0.69 N/mm2 (100 psi), but after discussion with manufacturers of 

pressure transducers it was thought safe if a transducer with a 

rated maximum pressure of 500 psi was used. This was so that the 

transducer would be more physically robust against possible damage 

caused by the tyre passing over it. The disadvantage of this was 

that the accuracy of the pressure transducer would be reduced, and 

this is discussed in section 5.5. 

A pressure transducer was obtained which met all the above 

criteria. The active pressure sensing area was 2.54 mm in 

diameter; which it was thought would give good discrimination for 

the measurement of pressure distributions. The frequency response 

was easily met as this transducer had a usable flat response to 

40 KHz. 

Because of the size limitation imposed by the requirement to fit 

the transducer into the fibre glass surface shells, a special 

version of the pressure transducer was supplied. This consisted 

of the measurement module normally fitted into a threaded type of 

transducer, and was 12.7 mm from the pressure sensing surface to 

its rear. The transducer was supplied by Kulite Sensors under 

their reference number XCQM-1-147-500, and was mounted by bonding 

into a threaded plug. This plug could then be inserted into the 

hole provided in the surface shells. 

As the pressure transducer is effectively a full strain gauge 

bridge, a stabilized power supply is required. In this case this 

can be supplied directly from the, radio telemetry transmitter. 
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5.4.3 Radio Telemetry 

Because both the pressure and film thickness transducers are 

mounted on a rotating drum, the resulting electrical signal must 

be taken to a stationary point. The traditional method of 

achieving this is by the use of slip rings, and many excellent 

units such as those discussed in (70), are available. However the 

use of a pre-packaged slip ring assembly was not possible in this 

case for a number of reasons. It is most convenient when using 

slip rings if the slip ring assembly can be mounted on the end of 

a shaft. Whilst there is a shaft end available on the High Speed 

Cornering Force Machine, any connections between the drum and the 

shaft end would have to pass through one of the drum support 

bearings. This would have necessitated drilling the main drum 

support shaft which was not possible. Also, the drum support 

bearings are mounted close (approximately 50 mm) to the drum which 

gives little room for a slip ring assembly to be mounted around 

the shaft, between the bearing and drum. 

The use of slip rings was therefore not possible in this case and 

an alternative method of transferring the electrical signal from 

the rotating drum to a stationary point had to be found. 

The use of a radio telemetry system is the main alternative to 

slip rings, and uses either capacitive or inductive coupling. 

This transfers the required signal, which has been used to modulate 

a carrier, across a small air gap between an aerial fixed to the 

rotating drum and a stationary receiver. 

The specification of the radio telemetry system was based on fluid 

pressure measurement. For convenience, when the fluid film 

thickness measurement system was designed it was made to produce 

an output which looked to the transmitter like the pressure 

transducer output. This meant that no modifications needed to be 

made to the transmitter. Details of the fluid film thickness 

measurement system are given in section 5.4.5. 
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Remembering the system frequency response requirement (section 

1 5.4.2) of 27 KHz, it was found that Astech Electronics' could 

supply a special version-of their transmitter which would have 

a bandwidth of 70 KHz. This system was obtained and may be 

considered as two main units: 

i) The transmitter, with associated components and transmitting 

aerial. 

ii) The pickup aerial unit and receiver (indicator) unit. 

A schematic of the radio telemetry system is shown in figure 5.4.1. 

The mode of operation of the radio telemetry system is as follows. 

As the pressure transducer is behaving (as far as the transmitter 

is concerned) as a full strain gauge bridge, its output is a 

voltage of the order of a few millivolts. The pressure transducer 

excitation voltage is supplied directly from the transmitter. 

The output voltage of the transducer controls the frequency of a 

square wave oscillator, whose output is applied to the transmitting 

aerial mounted on the rotating drum. As the aerial is driven by 

the oscillator an electric field is generated around it. A 

receiving aerial is placed in the vicinity of this (alternating) 

electric field and will experience small voltage changes with 

respect to earth, since it becomes the second 'plate' of what is 

in effect a very low value capacitor. 

The pickup unit amplifies this small voltage and feeds it to the 

indicator unit via co-axial cable. The indicator unit then 

converts this signal, which is in the form of a frequency, back 

to a voltage which is directly proportional to the output voltage 

from the transducer. As the signal is passed from the moving drum 

to the stationary pickup in the form of a frequency modulated 

signal then any variation in the signal strength will not effect 

the output. This means that variations in the distance between 

the moving transmitting aerial and the pickup aerial will not cause 

errors. Also variations in signal strength due to battery voltage 
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fluctuations (strain gauge bridge supply is stabilized) will not 

affect the output. 

The transmitter has facilities for changing the input sensitivity 

and this was set so that full scale output was obtained at a 

pressure of 0.69 N/mm2 (100 psi). The indicator unit has a zero 

offset and gain adjustment facility for the analogue voltage 

output, and this was set so that 0.69 N/mm2 was represented by an 

output voltage of 4 volts. The output from the indicator unit 

was fed to a data tape recorder for later analysis. 

As the tests to be performed were concerned with the measurement 

of dynamic values of pressure and fluid film thickness, the radio 

telemetry system was bench tested on its ability to handle high 

frequency signals. It was found that the manufacturers estimated 

bandwidth of 70 KHz was reasonable, and that the radio telemetry 

system. would easily be able to cope with the required frequency 

response. 

A number of problems with the mounting of the transmitter and its 

associated battery pack on the drum had to be overcome. It was 

not possible to make any modifications to the drum itself, 

therefore the transmitter and battery pack could not be mounted 
directly. Special mountings were designed which allowed the 

transmitter and battery pack to be fixed to the drum using the 

existing bolts which attach the fibre glass surface shells. 

The other major problem associated with the mounting of the radio 

telemetry system was the ingress of water into the telemetry 

electronics. A large amount of water (see section 5.4.6) is 

applied to the drum surface at high velocity which makes the 

protection of the transmitter and batteries very difficult. 

The prevention of water ingress was achieved by mounting the 

transmitter and batteries (and the electronics associated with the 

film thickness probe), in water-proof enclosures, and using water 

proof connectors for all electrical interconnections between the 

different units. 
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5.4.4 Data Logging and Analysis 

The voltage signal representing either fluid pressure or film 

thickness from the radio telemetry system was recorded on magnetic 

tape. The tape recorder used was a Racal Store 7 model, which 

provides seven data channels plus one voice channel. One channel 

was used to record the signal from the radio telemetry and a second 

channel to record a synchronizing pulse. This synchronizing pulse 

was obtained by using a reflective switch, and reflective tape on 

the cornering force machine drum. One pulse was obtained for each 

revolution of the drum. The position of the pulse was set so that 

it occurred just before the transducer in use entered the front 

of the tyre contact patch. 

The bandwidth of the tape recorder is determined by the tape speed, 

and 15 ips (inches per second) was used which gave a bandwidth 

of 10 KHz on the wideband setting. As the tyres tested here(with 

one exception) did not have lateral grooves, it was not necessary 

to use a bandwidth of the maximum value (27 KHz). The one test 

case that did have lateral grooves was a tyre with a tread pattern 

made up of blocks 25 mm square, which was tested under locked 

wheel conditions. However, the test speed was only 50 Kph, 

therefore the tape bandwidth met the criteria, set out in section 

5.4.2, for the measurement of changes in 1 to 2 mm movement 

through the contact patch. The bandwidth of the tape recorder 

can be improved simply by increasing the tape speed, and if tyres 

with lateral grooves are to be tested at high speeds, then there 

is no alternative but to do this. 

Initial proposals for the experimental work on the cornering force 

machine were to use a computer with a high speed Analogue to 

Digital Convertor, which would directly sample the pressure or 

film thickness signal and store it in computer memory for immediate 

analysis. This would overcome any problem of tape recorder 

bandwidth and make the results available immediately; however, 

there was not time for this to be achieved within the scope of this 

project. The subject of data capture by computer is discussed in 

section 8.3.2. 
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Once the test data had been stored on magnetic tape they were 

analysed using a Nicolet 660A spectral analyser. Use of the 

Nicolet allowed the individual test samples, taken for each pass 

of the transducer through the contact patch, to be averaged. For 

each test condition, of tyre type, test speed, and lateral position, 

a number (say 50) samples were recorded by allowing the tape 

recorder to record the output from the transducer continuously over 

a period of time. This was then played back into the Nicolet 

and by using the synchronizing pulse to trigger each sample, the 

Nicolet could be made to average automatically all the samples. 

The results presented in chapter 6 are as a result of this 

averaging process. 

When the signal being analysed is a pressure signal there is very 

little difference between successive samples. Figure 5.4.2(a) 

shows a number of individual pressure samples for one test 

condition, and figure 5.4.2(b) shows the averaged value obtained 

from the values in figure 5.4.2(a) and others. It can be seen 

that the pressure measurements obtained are extremely repeatable 

between successive samples. 

The fluid film thickness measurement system (see section 5.4.5) 

utilizes the reflectivity of the tyre tread surface. As this may 

vary around the tyre circumference, owing to variations in surface 

finish, it is necessary to average a number of samples taken at 

different positions on the tyre. The calibration of the film 

thickness measurement system was also performed at a number of 

positions around the tyre circumference, and is discussed in 

section 5.6. When the test being performed is with the wheel 

rolling, then each time the transducer passes through the tyre 

contact patch it will be at a different point on the tyre 

circumference, and therefore the correct samples for averaging the 

effects of reflectivity will automatically be obtained. When the 

test being performed is with the wheel locked, then the same point 

on the tyre circumference will be met at each subsequent sample. 

Therefore, on locked wheel tests a small number of samples were 

taken with the wheel in one position, and then the wheel rotated 

and another set of samples taken at a second wheel position. This 

procedure was repeated a number of times until samples at 
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sufficient positions to average the effects of reflectivity, had 

been made. 

In the case of fluid pressure measurements the voltage which is 

recorded on magnetic tape is directly proportional to the fluid 

pressure in the tyre/surface interface. The voltage which is 

recorded when fluid film thickness measurements are being made, 

however is not directly proportional to the fluid film thickness 

(see section 5.6). The output plot from the Nicolet (after 

averaging) is one of transducer output voltage. This plot is then 

digitized and the voltage converted to a depth value by use of an 

equation derived from the calibration procedure described in 

section 5.6. The resulting data can then be replotted as a fluid 

depth plot. 

The data logging and analysis system is therefore able to handle 

information gained both from the pressure transducer discussed in 

section 5.4.2, and from the fluid film thickness transducer to be 

described in section 5.4.5. 

5.4.5 Fluid Film Thickness Transducer 

One method of fluid film thickness measurement has already been 

discussed (see section 5.3), whereby the glass plate facility was 

utilized. As this method was unable to provide actual film 

thickness values, a further method was developed on the cornering 

force machine. 

There are various physical phenomena- which could be utilized to 

provide a measurement of the thickness of the fluid film existing 

between a tyre and the surface of the drum. These include 

capacitance, inductance, mechanical, and optical methods. Of these 

the first was used by Benson et at (14) in their tyre tread 

deflection measurement system. 
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Their system basically consisted of a specially modified tyre 

which had a number of capacitor plates mounted on its inside 

surface, with a second plate for the capacitors mounted on the 

wheel rim. The separation between these plates can be measured 

indirectly as a function of their capacitance. The fluid film 

thickness itself is not measured directly, but is obtained from 

simultaneous measurement of tread deflection and the wheel rim 

vertical displacement. This highlights one of the serious faults 

in this technique, in that a fluid film thickness of perhaps 0.1 mm 

or less is being derived from measurements of the axle heigit and 

tread deflection, the combined errors of which could be of the 

same order of magnitude as the fluid film thickness which is being 

measured. 

It would also be very difficult to use a method, such as that used 

by Benson et al, on a rolling tyre. The ultimate objective 

(outside the scope of this thesis) of this development of testing 

facilities on the High Speed Cornering Force Machine, is that 

routine measurements of fluid pressure and film thickness can be 

made on standard production tyres. Therefore certain features, 

such as bandwidth and the ability to test rotating tyres, were 

specified with this ultimate objective in mind. 

If an inductive method were to be utilized in the measurement of 

fluid film thickness, then similar problems to those encountered 

in a capacitive method would be found. A mechanical system where 

a probe would be mounted in the drum surface would not be able to 

provide the frequency response required. There would also be 

problems with the discontinuity in film thickness at grooves, and 

the probe itself would disturb the fluid film. 

The major alternative to the above methods of film thickness 

measurement was to use an optical device. Because of the limited 

space available at the position where the measurement was to be 

made, it would have been difficult to position an actual film 

thickness measuring device in situ. The method chosen was to use 
fibre optics so that the transducer could be positioned remotely 
from the point of measurement. 
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A fibre optic element is a flexible glass (or plastic) rod capable 

of transmitting light along its length by maintaining near total 

internal reflection of the input light source. In practice a 

large number of fibres are used together to form a bundle. The 

fibre optic probe which was utilized in the film thickness 

measurement system developed here, was of the bifurcated type 

(figure 5.4.3). 

In this type of unit one group of fibres is used to transmit light 

from a stable source, onto the target surface. The second group 

of fibres receives light which has been reflected from the target, 

and converts it via a photosensitive detector into an electrical 

signal which is proportional to the intensity of reflected light. 

The actual response of the intensity of reflected light to changes 

in the distance to the target surface', can be explained with 

reference to the action of an adjacent pair of fibre optic light 

transmitters and receivers, as shown in figure 5.4.4. 

As the surface moves away from the fibres, the area A which is 

illuminated by the transmitting optical fibre will become larger. 

The lighted area in the interface B1, which is giving light to the 

surface of the receiving element as B2 will also grow larger. 

There is a rapid growth in the signal output as more of the surface 

C is illuminated. This section of the output/displacement curve is 

usually referred to as the frontslope region. The point when all 

the area C is just illuminated is referred to as the optical peak 

and is the point of maximum output. As the surface moves further 

away the size of the area B2 will become larger than area C, and 

therefore the intensity of the detected light will fall. This is 

usually referred to as the backslope region. The full curve 

showing output against displacement for a bifurcated type probe 

is shown in figure 5.4.5, from reference (71). 
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The sensitivity of the output, and the position of the optical peak 

are determined primarily by the distribution of fibres at the 

common end of the probe. The size and number of fibres used will 

also have some effect on sensitivity. Changing the distribution 

of transmit and receive fibres from hemispherical (figure 5.4.6) 

to random will cause a reduction in the stand-off distance of the 

optical peak by a factor of approximately 8 (reference (71)). 

Because of the position of the optical peak, a probe with a random 

distribution of fibres will only have a limited measuring range, 

and for this reason a probe with a hemispherical distribution was 

chosen. It was found, after water film thickness measurements had 

been made, that under some circumstances the response of a random 

distribution probe would be more appropriate, and this is further 

discussed in chapters 6 and 8. 

The actual probe used was manufactured by Dolen Jenner and 

included a. right angle bend at the common end as shown in figure 

5.4.7. This right angle bend allowed the whole of the probe to 

be contained within the fibre glass road surface shells. 

As the probe would be viewing the tyre surface through a film of 

water, an infrared light source was used so that the variation in 

light level received would be further enhanced by the fact that 

some of the infrared light would be absorbed by the water, the 

level of absorption depending on the thickness of the water. An 

infrared phototransistor was used as the sensing element on the end 

of the receive fibres. The output from this was then amplified 

to give a strain gauge level output over the required measuring 

range, which allowed direct interchangeability between depth and 

pressure measurement without modifications to the sensitivity of 

the telemetry transmitter. The infrared source and sensor were 

mounted in a water-proof enclosure, along with a stabilizer for 

the source power supply and the amplifier for the output signal. 



- 214 - 

O Transmitt fibre 

" Receive fibre 

RANDOM HEMISPHERICAL 

FIGURE 5.4.6 - DISTRIBUTION OF FIBRES 

AT THE COMMON END OF PROBE 



- 215 - 

Tyre 

Fibregla: 
Surface 

FIGURE 5.4.7 - RIGHT-ANGLE BEND 

AT. COMMON END OF PROBE 



- 216 - 

Once built, the depth measurement system was bench tested to obtain 

the position of the optical peak and the degree of nonlinearity in 

the system. The relationship between output and stand-off 

distance is shown in figure 5.4.8, and is of the shape expected 

from reference (71). 

The optical peak can be seen to be situated at a stand-off distance 

of 2.1 mm. Checks were carried out to ensure that this peak 

position was independesit of such factors as source supply current 

and surface reflectivity. At this stage it was noted that the 

output was approximately linear, with respect to changes in 

deflection, over the range 0.5 mm to 1.5 mm. The ncnlinearity 

outside this range (particularly below 0.5 mm) is discussed in 

section 5.6. The actual output level was found to be sensitive 

to changes in the reflectivity of the tyre surface, and the test 

procedure used to cope with this was discussed in section 5.4.4. 

5.4.6 Nozzle 

As was discussed in section 5.2.2 a nozzle has to be used to apply 

water to the periphery of the cornering force-machine drum. The 

requirement for this work was for a nozzle which would produce a 

flow of water at the same velocity as the drum surface and with 

the required depth. The water supply for the nozzle is direct 

from the mains and no reliable method of flow measurement. was 

available. The nozzle design therefore had to include a method of 

measuring the volume flow and hence the mean velocity of the water. 

The width of the nozzle had to be large enough to cover the range 

of car tyre widths commonly tested and allow for the lateral 

movement of the tyre for positioning over the pressure or depth 

transducer. A width of 250 mm was chosen as being suitable. It 

was thought desirable that the depth of water should be capable of 

being varied up to 3 mm, which would cover most conditions found on 

British roads. Initially the nozzle was intended to produce a 

water depth which could be continuously varied up to the above 

maximum. The resulting design proved to be unnecessarily complex 
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and it was decided to design a nozzle with a fixed geometry, body, 

with separate 'outlet ends' which would provide alternative water 

depths of 1,2 or 3 mm. In this respect the nozzle would be similar 

to that in reference (68), except that in the outlet would be a 

slot rather than a series of holes. The resulting design is shown 

in figure 5.4.9. Particular care was taken to produce as constant 

a reduction in cross-sectional area as possible, to improve the 

stability of the outlet jet of water. 

The requirement for the measurement of flow volume (velocity) 

through the nozzle was met by the installation of a pressure 

transducer in the nozzle inlet pipe. The pressure indicated by 

this transducer will be related to the volume flow by the 

characteristics of the nozzle. Because of the unusual shape of the 

nozzle there was no information available in the literature which 

would allow the accurate prediction of pressure drop for a given 

volume flow. It was therefore necessary to conduct experiments to 

calibrate the pressure indicated by the transducer with the 

actual volume flow. This was achieved by utilizing a test rig at 

Cranfield Institute of Technology. This rig is normally used for 

the calibration of flow meters, but it was modified to allow the 

flow through the nozzle to be measured using an ultrasonic flow 

meter. The results of this calibration procedure are shown in 

figures 5.4.10(a), (b) and (c) for the nozzle set for 1,2 and 3 mm 

water depths respectively. The volume flow measured was converted 

into average flow velocity simply by dividing by the appropriate 

cross-sectional area of the nozzle outlet (at 1,2 or 3 mm water 

depth). 

When in use on the high speed cornering force machine the flow 

through the nozzle is controlled so the average flow velocity of 

water exiting the nozzle is matched to the speed of the drum 

periphery. 



FIGURE 5.4.9- NOZZLE 
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5.5 CALIBRATION OF THE PRESSURE MEASUREMENT SYSTEM 

To allow the calibration of the pressure measurement system, 

comprising the pressure transducer, the telemetry' transmitter, 

and the telemetry receiver, it was necessary to be able to apply 

a known pressure to the transducer whilst measuring the output 

voltage from the telemetry. To account for installation effects, 

such as pre-stresses on the pressure transducer diaphragm, it was 

necessary to be able to apply a known pressure to the transducer 

whilst it was mounted in the cornering force machine drum. A 

calibration rig (shown in figure 5.5.1) was designed to allow this. 

A chamber is clamped in position over the pressure transducer and 

air pressure applied via a regulator. As this calibration is 

performed with the drum stationary, any effects of acceleration 

on the pressure transducer are neglected. When the drum is 

rotating the transducer will be subject to perpendicular (radial) 

acceleration, and the pressure transducer manufacturer's quoted 

sensitivity to perpendicular acceleration is 0.0003% FS/g_. As 

the pressure transducer used is rated to 500 psi and the pressure 

measurement system is set up for 100 psi full scale, then the 

acceleration sensitivity is 0.0015% of system full scale per g. 

The acceleration acting on the pressure transducer at theperiptieral 

speed of 96 Kph is 84g, therefore the effect on the transducer 

output will be 0.13% of system fullscale i. e. 0.13 psi maximum. 

As this is negligible to the accuracy that these measurements 

are required, the method of calibration outlined above will 

provide a satisfactory calibration of the pressure measurement 

system. 

The relationship between applied pressure and telemetry system 

output voltage is shown in figure 5.5.2. The assumed relationship 

is linear with 4 volts equal to 0.69 N/mm2 (100 psi), and it can 

be seen that this gives close agreement with calibration values 

taken at various times during the testing programme. 
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5.6 CALIBRATION OF THE FILM THICKNESS MEASUREMENT SYSTEM 

In a similar way to the calibration of the pressure measurement 

system, the requirement to calibrate the water film thickness 

measurement system was to provide a known water film thickness 

between a tyre and the drum surface, whilst measuring the output 

voltage from the telemetry. 

The known water depth was obtained by using two shims, one either 

side of the depth probe, to support a tyre. The whole of the tyre 

contact patch area was immersed in water during the calibration 

procedure. A cross-section through the contact patch showing the 

tyre supported above the depth probe is shown in figure 5.6.1. 

There will be a certain amount of 'sagging' of the tyre tread 

surface between the two supports owing to the loading applied by 

the tyre contact pressure. By considering the portion of the tyre 

between the two shims as a beam, built in at both ends and carrying 

a uniformly distributed load, the amount of this 'sag' has been 

estimated, and found to be of the order of 0.0004 mm. This amount 

of 'sag' is negligibly small and can be neglected for the purpose 

of calibrating the fluid film thickness measurement system. 

As has been mentioned in section 5.4.4 the gain of the fluid film 

thickness measurement system is affected by the reflectivity of 

the tyre tread surface. Because of this, calibration readings 

with each set of shim thicknesses were taken at a large number of 

points around the tyre circumference. The spread of values for 

each calibration point is shown on figure 5.6.2. This spread of 

values is not too great a disadvantage as when a test is being 

performed a number of samples are taken at different points on 

the tyre circumference (see section 5.4.4). 

In a similar way to this, the calibration of the film thickness 

measurement system is made by averaging the values for each 

calibration film thickness (shown in figure 5.6.2). The resulting 

averaged values are shown on figure 5.6.3. A curve was fitted 

to these points to give the relationship between telemetry output 
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voltage and fluid film thickness, for any value of output voltage 

within the required range. This relationship can be expressed as: 

v -0.03482d + 0.74975d2 - 0.17150d3 --- 5.6.1 

where v= telemetry output voltage and d= water film thickness, 

and was obtained by using a standard curve fitting' technique. 

This curve is shown on figure 5.6.3 and it can be seen that it 

closely fits the averaged points. Equation 5.6.1 can therefore 

be solved for any value of v. It can be seen from the curve in 

figure 5.6.3, that at low water film thicknesses (less than 0.1 mm) 

there is very little output from the system. This caused problems 

in tests at 50 Kph where the water film thickness expected is 

of the order of 0.1 mm, and this signal was almost totally lost in 

system noise. The remedy for this problem has already been 

discussed in section 5.4.5, and involves the use of a random 

rather than hemispherical distribution of fibres in the measurement 

probe. To allow the voltage output from the telemetry system to 

be converted into fluid film thickness via equation 5.6.1, a 

computer program was written which takes the digitized form of the 

voltage/time output and converts it to film thickness/distance 

data ready for plotting. 



- 231 - 

CHAPTER 6- EXPERIMENTAL AND ANALYTICAL RESULTS 

6.1 INTRODUCTION TO EXPERIMENTAL AND ANALYTICAL RESULTS 

In this chapter the results of some of the experiments which were 

performed are presented. Tests were carried out on tyres at a 

number of different road speeds, namely 8,16,24,32,50 and 

100 Kph. The results of only the 50 and 100 Kph tests are 

presented here. The low speed tests were performed because, the 

road surface used was completely smooth; therefore there would be 

no drainage from the road and particularly when a plain tread tyre 

was used, the tyre would completely aquaplane at low speed. 

However, examining-the results of these low speed tests shows that 

they do not differ significantly from the-50 Kph results, but are 

merely scaled down in terms of the fluid pressure levels etc. (more 

contact). The 50 and 100 Kph results show differences in the shape 

of the pressure distributions etc., therefore the presentation 

here concentrates on these two speeds. Tests were performed with 

the tyre both freely rolling and locked and results are given for 

both these cases. As the tyres tested here were symmetrical about 

the contact patch centre-line, the experimental results are 

presented for only half the contact patch. Tests were performed 

in some cases over the whole width of the contact patch, and the 

results showed symmetry. 

The problems encountered in the measurement of fluid film thickness, 

have already been discussed in section 5.4.5. The distribution 

of fibres in the common end of the probe meant that it was only 

suitable for measurements on tyres travelling at 100 Kph, when the 

magnitude of the film thickness being measured was greatest. To 

-allow measurements at lower speeds (film thickness) an alternative 

distribution of fibres is required and this is discussed in 

section 8.3.2. The second problem of the film thickness 

measurement system, that of the tyre 'polishing' under locked 

wheel conditions, meant that only results on free rolling tyres were 

available. The experimental film thickness results presented here 

are therefore only for the case of 100 Kph free rolling. 
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The experimental measurements were performed mainly for two 

different tyres. One was completely smooth (plain tread) and the 

other had two circumferential grooves. The contact patch prints 

showing the contact patch shape and the position and size of the 

grooves are shown in figures 6.1.1 and 6.1.2 for the plain and 

grooved tyres respectively. The measurement of fluid film 

thickness was made only for the case of the plain tread tyre. 

There are six different test conditions which will be considered 

here: 

1.50 Kph plain tyre - free rolling. 
2.50 Kph plain tyre - locked. 

3.100 Kph plain tyre -'free rolling. 

4.100 Kph plain tyre - locked. 

5.50 Kph grooved tyre - locked. 

6.100 Kph grooved tyre - locked. 

The analytical results produced by the contact patch computer 

program are also presented for these 6 test conditions. In 

addition to these analytical results, an example of the detailed 

flow on a single tyre tread block, from the block analysis computer 

program, is given. 

Experimental results showing the fluid pressure distribution over 

square blocks of a locked tyre are also presented and show the 

pressure measurement system's capacity to handle the pressure 

variations due to lateral grooves. 

The static contact patch shapes for the plain and grooved tyres 

are shown in figures 6.1.1 and 6.1.2. However, it is not known 

exactly what effect speed will have on this shape, although 

inevitably the experimental results will be affected. A more 

serious effect on the experimental results is due to testing the 

tyres on a drum, rather than on a flat road surface. Drum 

curvature presents two problems as far as wet grip testing is 

concerned. The first is that the contact pressure distribution is 
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modified from that found on a flat surface. There is little 

information available on this, therefore the contact pressure 

distribution used to produce the analytical results is based on 

the 'static' distribution measured on a flat surface. The contact 

pressure distributions for the plain and grooved tyres are shown 

in figures 6.1.3 and 6.1.4 respectively. These contact pressure 

distributions were actually obtained by rolling at 0.01 Kph over a 

load transducer mounted flush with a smooth surface. The lateral 

positions on the tyres at which dry contact pressure measurements 

were taken, are shown on figures 6.1.1 and 6.1.2. The measurements 

were actually made for positions over the full width of the tyres, 

but as these showed symmetry (as did the fluid pressure 

measurements), results for only one half of each tyre are shown. 

Some care must be taken when interpreting dry contact pressure 

measurements, particularly in the shoulder regions, as the 

magnitude can be very sensitive to lateral position. The contact 

pressure distributions used in the analytical solutions were 

derived from those in figures 6.1.3 and 6.1.4. 

The second effect due to drum curvature is the shortening of the 

contact patch length. This is due to the road surface (drum 

periphery) curving away from the tyre at both the front and rear 

of the contact patch. As has already been discussed in sections 

3.7.4 and 3.8.2 there isen area ahead of the front of the dry 

contact patch which can support a load in the wet. This area is 

formed as the tyre approaches the road surface, from the point at 

which the gap between the tyre and the road is equal to the road 

surface water depth. This additional length to the wet contact 

patch will also be shortened by the effect of drum curvature. 

The overall static contact patch length is approximately 150 mm and 

the additional length in the wet was estimated to be approximately 

40 mm (section 3.8.2). Examining the fluid pressure and film 

thickness experimental results shows that the contact patch length 

is substantially shortened to approximately 120 mm due to 

curvature effects at both the front and rear of the contact patch. 
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The low pressure area at the leading edge of the contact patch 

allows the size of the additional length to be estimated as 30 mm, 

giving an overall contact patch length in the wet of 150 mm. 

As the purpose of the analytical results for contact patches 

presented here, is comparison with experimental results, the above 

values for lengths were used to model the situation on the drum. 

Analytical results can be found for the case of a tyre on a flat 

road surface by using contact patch and additional lengths based 

on measurements on a flat surface. 

As was discussed in section 5.4.1 the tests on the cornering force 

machine were carried out on a smooth surface. The analytical 

results are also for a tyre on a smooth surface, although the 

effect of a road surface can easily be added by specifying its 

drainage capacity. 

When the grooved tyre was modelled no allowance was made for groove 

closure. It is possible that under high speed conditions the 

grooves within the contact patch will close up, effectively 

reducing their width. As no information is available on the 

extent of this, the widths of the grooves were considered not to 

change from their static values. 

In addition to the distribution of contact pressure it is also 

thought that the vertical stiffness of the tyre will vary within 

the contact patch. No information is available on this, and. 

suggestions as to how this could be obtained are made in section 

8.3.1. The analytical results were obtained using a uniform 

vertical stiffness at all points within the contact patch, and 

inevitably this will cause there to be some differences between 

the analytical and experimental results. 

The experimental pressure distributions for the plain and grooved 

tyres are presented in two forms; both for half the contact patch 

width. The first is a set of individual pressure profiles obtained 

as the transducer in the drum surface moved from front to rear of 
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the contact patch. In all cases the front of the contact patch is 

to the left hand side of the diagram. The lateral positions of 

these pressure profiles are shown in the relevant sections. The 

vertical axis shows fluid pressure with a centre zero (atmospheric) 

and a full scale of 0.689 N/mm2 (6.89 Bar). The horizontal axis 

represents distance through the contact patch (200 mm full scale). 

The positioning of the 200 mm length for which the pressures are 

presented, is determined by, a trigger pulse which was generated 

once per revolution of the drum. The second method of presenting 

the pressure distributions is as a three-dimensional plot showing 

the pressure distribution over half the width of the contact 

patch. The axis, at width equal to zero, represents the contact 

patch centre-line. The values at widths from 0 to 50 mm on the 

experimental pressure distributions, correspond to values at 

widths from 50 to 100 mm on the analytical pressure distributions. 

Therefore, the half of the contact patch furthest from the point 

of viewing is represented in the experimental cases. The three- 

dimensional plots were formed by taking pressure values from the 

individual pressure profiles at different points in the contact 

patch. To achieve clarity, in the three-dimensional plots, only a 

limited number of points could be used; there is therefore 

inevitably some loss of detail. The individual profiles should 

therefore be used if details are required, and the three- 

dimensional plots if an overview of the distribution is required. 

The three-dimensional plots also give a more direct comparison with 

the results from the computer program. 

Unless otherwise stated, the figures showing pressure, film 

thickness and flows are analytically predicted values. 

6.2 RESULTS FOR THE PLAIN TREAD TYRE 

The analytical and experimental results of pressure and film 

thickness for the following four cases with a plain tread 155SR13 

tyre will be considered. 



- 240 - 

1.50 Kph free rolling. 

2.50 Kph locked. 

3.100 Kph free rolling. 

4.100 Kph locked. 

In all cases the tyre was loaded to 385 Kg with an inflation 

pressure of 1.9 Bar. The water depth on the road surface was 1 mm. 

In addition to film thickness and pressure results, analytically 

predicted values of flow velocity and volumetric flow per unit 

width are presented. 

Figure 6.2.1 shows the positions within the contact patch where 
the experimental pressure measurements, presented as individual 

profiles, were taken. These positions are used for all cases of 

measurements on the plain tread tyre. 

The analytical results were obtained by using a rectangular finite 

element mesh of the whole of the contact patch, as shown in 

figure 6.2.2. 

As was discussed in section 6.1, the first 30 mm at the front of 

the wet contact patch is considered to be sloping in its undeformed 

state. The film thickness in this area is therefore of a greater 

magnitude than the film thickness in the rest of the contact patch. 

To allow the film thicknesses in each of these areas to be seen 

clearly, they are shown on separate figures. 

All the three-dimensional plots of results for tyre contact patches 

are with a finite element mesh based on a rectangular grid. In the 

interests of clarity the diagonals which divide this rectangular 

grid into triangles are omitted from the plots. 

The plots showing fluid flow velocity and volumetric flow per unit 

width give values at element centroids for the reasons discussed 

in section 3.5. By considering the volumetric flow, an indication 

can be gained as to where the largest amounts of water are flowing, 

and by considering flow velocity areas of high fluid velocity can 

be identified. 
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6.2.1 50 Kph Free Rolling 

The individual experimental pressure profiles for the case of 

50 Kph free rolling are shown in figures 6.2.3 and 6.2.4. The 

pressure distribution predicted by the contact patch computer 

program is shown in figure 6.2.5. As can be seen from the computer 

predicted fluid film thicknesses (figure 6.2.6a) the tyre is in 

contact with the road in much of the contact patch. The pressures 

shown in figure 6.2.5 are therefore fluid pressures in the areas 

where there is water penetration, and in the areas of tyre/road 

contact the pressures are the proportion of the dry contact 

pressures which are applied by the load stepping procedure (section 

4.5.5). The computed film thicknesses in the front 30 mm of the 

wet contact patch are shown in figure 6.2.6b. 

When it was attempted to measure experimentally the fluid film 

thicknesses under this condition no significant voltage output 

was obtained from the instrumentation. With reference to the 

calibration of the film thickness measurement system (figure 5.6.3) 

the film thickness under these conditions would be less than 0.2mm. 

The error between the analytical results where an amount of 

tyre/road contact is shown and the experimental results where 

fluid pressures were measured at all points within the contact 

patch are therefore not great in terms of the magnitude of the 

fluid film thicknesses. In fact it is possible that there could be 

some tyre/road contact in the experimental results and that the 

fluid pressure measured is that in the 0.25 mm deep cavity above 

the pressure transducer. The pressure transducer had to be 

recessed slightly from the road surface to prevent physical damage 

as the tyre passed over it. 

Figure 6.2.7 shows the analytically predicted fluid flow 

velocities, and figure 6.2.8 the volumetric flows per unit width. 
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6.2.2 50 Kph Locked 

Figure 6.2.9 shows the individual experimental pressure profiles 

for the case of 50 Kph with a locked (sliding) tyre. These results 

are combined to give a three-dimensional plot in figure 6.2.10. 

The analytically predicted pressure distribution is shown in figure 

6.2.11. In this case a fluid film exists over virtually the whole 

of the contact patch; therefore the pressures shown are fluid 

pressures. The magnitude of this theoretical fluid film thickness 

in the main part of the contact patch is shown in figure 6.2.12a 

and in the front of the contact patch in figure 6.2.12b. 

There are no experimental values of fluid film thickness for this 

case, but as in the previous case their values are known to be 

less than approximately 0.2 mm. There was however, the additional 

problem of the tyre surface polishing whilst the film thickness 

measurements were being made. 

The calculated distributions of fluid flow velocity and volumetric 

flow per unit width are shown in figures 6.2.13 and 6.2.14 

respectively. Figure 6.2.13 shows a small area towards the rear 

of the shoulders where there is tyre/road contact (no flow 

velocities). 

6.2.3 100 Kph Free Rolling 

The individual experimental pressure profiles for 100 Kph with a 

free rolling tyre are shown in figure 6.2.15. These results are 

combined into a three-dimensional plot in figure 6.2.16. The 

pressure distribution produced by the computer program is shown 

in figure 6.2.17. As with the case of 50 Kph free rolling there 

is a significant area of the tyre which is in contact with the road 

surface: the rear most part of each of the shoulders. The 

pressures in this area are therefore derived from the loading on 

the contact patch and not fluid pressures. The fluid film 

thickness predicted by the computer program is shown in figures 

6.2.18a and 6.2.18b and the above areas of tyre/road contact can 

be seen. 
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The experimentally measured fluid film thicknesses are shown in 

figure 6.2.19. The reference positions are the same as those used 

for the pressure measurements. The magnitudes of these film 

thicknesses are different from those predicted by the computer 

program and this is discussed in section 6.6. 

The fluid flow velocities and volumetric flows per unit width 

are shown in figures 6.2.20 and 6.2.21. 

6.2.4 100 Kph Locked 

The individual experimental pressure profiles for the case of 

100 Kph with a locked (sliding) tyre are shown in figure 6.2.22. 

For this case, experimental pressure values are only available at 

positions 1,3 and 5. This was due to a problem with the 

instrumentation when these measurements were made. The pressure 

at position 6 (the edge of the contact patch) is in all cases 

almost atmospheric at all points; therefore no useful information 

is lost by its omission. In producing the three-dimensional plot 

of the experimental pressures (figure 6.2.23) the pressure values 

for the case of 100 Kph free rolling were used for position 6. 

Suggested explanations for the sharp dip in the measured pressure 

at the centre of the contact patch are given in section 6.6. 

The fluid pressures predicted by the computer program are shown in 

figure 6.2.24 and the corresponding film thicknesses in figures 

6.2.25a and 6.2.25b. In this case there is a water film between 

the tyre and road at all points within the contact patch. The 

fluid flow velocities and the volumetric flows per unit width are 

shown in figures 6.2.26 and 6.2.27 respectively. 

6.3 RESULTS FOR THE GROOVED TYRE 

The grooved tyre which was used for this work was identical in 

construction and size to the plain tread tyre, but had two 5 mm 

wide by 8 mm deep grooves hand cut circumferentially. The position 

of these grooves can be seen from the contact print, figure 6.1.2. 
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Two cases for both experimental and analytical results will be 

considered. 

1.50 Kph locked. 

2.100 Kph locked. 

The load, inflation pressure, and road surface water depth were as 

for the plain tread tyre. The instrumentation in its present form 

is capable of producing results for this type of tyre under free 

rolling conditions, but due to limitations on the cornering force 

machine when these experiments were undertaken, only locked wheel 

testing was performed. 

Figure 6.3.1 shows the positions within the contact patch where 

the experimental pressure measurements were taken. Position 2A is 

in the centre of the groove. Results in these cases were not 

obtained for position 6, for the reasons discussed in section 

6.2.4, and the values of pressure at position 6 used when 

constructing the three-dimensional plots. are taken from the plain 

tread tyre at the appropriate speed. 

As in the case of the plain tyre the analytical results were 

obtained by using a rectangular mesh of the whole of the contact 

patch. This finite element mesh for the grooved tyre is shown in 

figure 6.3.2, and the elements that define the grooves are shown 

shaded. 

6.3.1 50 Kph Locked 

The experimentally measured fluid pressure profiles for the grooved 

tyre moving at 50 Kph with the wheel locked are shown in figure 

6.3.3. By comparing this with figure 6.2.9, for a plain tread tyre 

under the same conditions, it can be seen that the grooves have a 

very large effect on the pressure distribution. The individual 

pressure profiles are combined into a three-dimensional plot in 
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figure 6.3.4. As with the plain tread tyre, the experimental 

three-dimensional plots for the grooved tyre are for half the 

contact patch and the zero width axis represents the tyre 

centre-line. 

The analytically predicted pressure distribution is shown in 

figure 6.3.5, and the fluid film thickness distribution in 

figures 6.3.6a and 6.3.6b. In the fluid film thickness plots the 

elements which define the grooves of the tyre are not shown. This 

is because the thickness of water for these elements is much 

larger than that on the surrounding ribs of the tyre. The grooves 

in this tyre were 8 mm deep and a plot which would allow this 

thickness to be shown would not allow the film thickness on the 

ribs (0.01 mm) to be seen. This large difference in the film 

thickness between blocks (ribs) and grooves had to be given special 

attention in the development of the analytical model (section 3.9). 

One interesting feature of the analytical results for film 

thickness is that there is no area of actual tyre/road contact, 

as there was in the case of a plain tread tyre under the same 

conditions. The actual magnitudes of the film thicknesses in the 

case of the grooved tyre are approximately one tenth those of the 

plain tyre. It is this which is important for improved wet grip, 

not having small areas of tyre/road contact (with a relatively 

thick film of water in the major part of the contact patch). This 

is further discussed in section 6.6. 

The analytically predicted fluid flow velocity and fluid volumetric 

flow per unit width distributions are shown in figures 6.3.7 and 

6.3.8 respectively. The difference that the grooves make to the 

way in which water is removed from the contact patch can be cearly 

seen by comparison with the corresponding plots for the plain 

tread tyre (figures 6.2.13 and 6.2.14). 
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6.3.2 100 Kph Locked 

The pressure profiles measured experimentally, for the condition 

of 100 Kph with a locked wheel, are shown in figure 6.3.9. Again 

it can be seen that the grooves have a very large effect on the 

fluid pressure distribution, compared to a plain tread tyre 

(figure 6.2.22). Position 2A is for the centre of the groove and 

it can be seen that in this case there is a build-up of pressure 

at the front of the groove. This is due to the larger volume flow 

of water which must be handled at this higher speed. The three- 

dimensional plot of experimental fluid pressures is shown in 

figure 6.3.10, and as usual this is for half the contact patch 

width only. 

The analytically predicted fluid pressure distribution is shown in 

figure 6.3.11 and is for the complete contact patch. The 

analytically predicted fluid film thicknesses are shown in figures 

6.3.12a and 6.3.12b for the main part and the front of the contact 

patch respectively. As in the 50 Kph case with the grooved tyre, 

the elements which define the grooves are not shown in the film 

thickness plots because of the difference in the order of magnitude 

of the film thickness in grooves and on the ribs of the tyre. 

The analytically predicted fluid flow velocities at element 

centroids are shown in figure 6.3.13, and the analytically 

predicted volume flows per unit width in figure 6.3.14. Because 

of the very high volume of water flowing in the grooves, the scale 

of the volumetric flow vectors (in figure 6.3.14) was reduced from 

that used in the case of the plain tread tyre under the same 

conditions. To. allow easy comparison between the plain and grooved 

tyres the volumetric flows per unit width for all parts of the 

grooved tyre except the grooves themselves, are shown in figure 

6.3.15, on the same scale as those for the plain tread tyre. 
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6.4 SQUARE TREAD BLOCK 

Experimental measurements were made on a tyre whose tread pattern 

was composed of 25 mm square blocks separated by 5 mm wide grooves. 

These were made only for the central row of blocks within the 

contact patch, as shown in figure 6.4.1. Also shown in figure 

6.4.1 are the actual positions where the experimental measurements 

were made. The pressure profiles presented in figure 6.4.2 are for 

half the width of the central blocks at 2.5 mm spacing. Figure 

6.4.2 shows that there are six individual blocks from front to rear 

at the centre of the contact patch. The pressure measurements on 

this tyre were made at 50 Kph with the wheel locked, and a road 

surface water depth of 1 mm. Only locked wheel measurements could 

be made because of the lateral grooves, and the lack of any 

measurement of tyre angular position with the present experimental 

set-up. The addition of this facility is discussed in section 

8.3.2. 

As can be seen from figure 6.4.2 the pressure distribution on the 

same shape block at, different longitudinal positions within the 

contact patch is different. This is owing to a number of factors, 

the main one being that there will be differing amounts of water 
flowing into the block in different parts of the contact patch. 

The magnitude of this flow is not known, although future studies 

utilizing the contact patch computer program may be able to help 

in this. At present therefore, when using the block analysis 

computer program, flow boundary conditions are not specified. A 

second difference between the conditions under which the different 

blocks in figure 6.4.2 are operating is their inclination relative 

to the horizontal. There will be a general reduction in the film 

thickness from the front to rear of the contact patch with the tyre 

operating under locked conditions (figures 6.2.12 and 6.2.25), 

although under free rolling condition there tends to be an area of 

thicker film towards the rear of the contact patch (figures 5.3.2 

and 6.2.19). In the case of a locked tyre there must be this 

reduction in film thickness as this is the only means of developing 

hydrodynamic pressures, because there is no squeezing, as there is 

in the case of a rolling tyre. 
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The block analysis computer program has been used to assess the 

effects of different inclinations on a single block of the type 

used in the tyre which produced the results in figure 6.4.2. For 

the purpose of this exercise it was assumed that the edge of the 

block nearest the rear of the contact patch would, if there were 

no deformation, just touch the road surface. The height of the 

front of the block from the road surface was varied. It must be 

stressed that this inclination of the block is only for its 

undeformed shape änd that under the action of fluid pressure the 

block will deform. 

To assess the effect of inclination, various values of undeformed 

'inlet' film thicknesses, ranging from 0.02 mm to 0.30 mm, were 

used in a series of examples. The total load carrying capacity 

of the block was used an an indication of the effect of inclination 

and values are shown in figure 6.4.3. In each of these cases the 

pressures at edges of the block were taken to be atmospheric. 

It can be seen that the load carrying capacity of this square tread 

block is sensitive to its inclination to the road surface. The 

peak load capacity is with an undeformed 'inlet' film thickness 

of approximately 0.07 mm. 

The fluid pressure distribution predicted by the block analysis 

computer program is shown in figure 6.4.4, and is for the case 

with the inclination to give the maximum load capacity. If this 

pressure distribution is compared with those measured experimen- 

tally (shown in figure 6.4.2), it can be seen that the predicted 

pressure distribution builds up much more slowly to a maximum than 

the measured distribution. This is due to the lack of flow 

boundary conditions specifying flow into the front edge of the 

block. The analytically predicted fluid film thickness 

distribution is shown in figure 6.4.5. This shows the extent to 

which the block has deformed from its original shape (tapering 

from-0.07 mm to zero film thickness). 



- 299 - 

ý-I 

'rI 
VI 

Vi 

OI 

JI 

il 
VI 
OI 
JI 
ml 

Xj 
lb 

il 

.I 

ýI 

lLl 

O 
C! ) 
0 

ui 
N 
Ö 

E 
E 

O 

0 

L 

ui .. 

d 

0 
ö 

ui 0 
ö 

0 
0 
ö 

F- 
W 
J 
Z 

0 
w 
cx 
0 
LL 
w 
0 
z 

(N) AI I JddVB OVO1 N80-18 

id ui ° W) 
NN .r 



- 300 - 

(Z. WW/N) OOO IX 'SS3dd 

mcýNa ao. 

(2. wW/N) 000 tX 'SS3dd 

1 
\, 

7. 
0 

a° 

vi 
of JI 
ml 

QI 

LLII 

C-31 
U)i 

, q-I 
J. 

111: tI 

LL1I 
jt 

(3I 

lui 

aý 



- 301 - 

(WW) OOOIX) 3IH1 Wil=l 
0000 

99 -Cr, 9 
0 
°0. 

ö 
ý0 

d -v- 

4 

d1 
`ýj 

', 

0. 0 
a 

vi 
of 
m 

fI 
W 

Wt 
jt 
Ot 
(nl 

II 

llýI 
.I 

ULJI 

rmdNd 

(WW) 000IXM3IH1 Wild 



- 302 - 

An alternative method of using the block design program, which 

lessens the problem of specifying flow boundary conditions, is 

discussed in the following section. 

6.5 DUNLOP SP ELITE TREAD BLOCK 

To illustrate the capability of the tread block analysis computer 

program to analyse actual tyre tread blocks, an example is 

presented here which shows results for a Dunlop SP Elite centre 

block. The actual shape of this block was shown in figure 4.5.1, 

and the finite element mesh which was used to represent this is 

shown in figure 6.5.1. 

In the previous section it was shown how the block analysis 

program could be used to analyse a block under sliding conditions. 

An alternative is to consider a block 'squeezing' towards the road 

surface. This squeezing condition for a single tread block 

corresponds to the situation with a free rolling tyre when the 

block is within the contact patch, with a water film separating it 

from the road surface. To gain contact with the road the block 

must be able to squeeze through this water film, and the design of 

block which is able to achieve this with the least application of 

load will provide the best performance in the wet. On a tyre this 

load is provided by the contact pressure and there will therefore 

tend to be some squeezing at all points within the contact patch; 

not only in the additional area in front of the dry contact patch. 

This is discussed in sections 6.6 and 8.3.1, with reference to the 

contact patch results presented in section 6.2. 

By considering the block under squeezing conditions the problem, 

mentioned in the previous section, with the specification of flow 

boundary conditions is lessened. This is because when there is no 

relative velocity (in the plane of the contact patch) between the 

tyre and the road then the fluid flow velocities are also of a 

lower magnitude. 
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The magnitude of the squeezing velocity used in this example was 

determined by considering the situation when a block is just 

entering the front of the wet contact patch, with a road surface 

water depth of the maximum normally found: 3 mm. To achieve 

contact with the road surface without any loss of contact area this 

block must move vertically downwards a distance of 3 mm in the 

time taken for the tyre to move forward 40 mm (the length of the 

additional part of the contact patch). The average vertical 

velocity is therefore given by 0.075x VROAD. If a road speed of 

say 100 Kph is considered then this gives a mean'vertical velocity 

of approximately 2000 mm/s, which was used in this example. As 

the purpose of the block analysis computer program is to allow 

comparisons to be made between alternative block designs, the 

actual value of the velocity is not critical provided it remains 

consistant. 

Because the analysis is provided at one instant in time, the height 

above the road surface of the block must be specified. If a number 

of different positions above the road surface are required then the 

'time stepping' facility within the program can be utilized. As 

the worst case for vertical velocity was used, then the worst case 

for film thickness was also used. This is when there would be no 

film thickness between the block and the road surface if there were 

no deformation of the block. All film thickness is therefore due 

to block deformation, and the amount of this deformation gives a 

measure of how near to the required situation, of no film 

thickness, that particular block design comes. There are two 

simple ways of characterising this, maximum film thickness and 

total volume of 'trapped' water. As well as using these as a 

measure of a particular block's performance the load carrying 

capacity generated by that block can be compared with that of other 

alternative designs to assess which is most suitable. It is 

obviously desirable to have a low film thickness (trapped volume) 

and a low load carrying capacity. As with the square tread block, 

the fluid pressures at the edges of the ELITE block were assumed to be 

atmospheric. This models the case when the grooves of the tyre 

are not filled with water. 
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The fluid pressure distribution predicted for the ELITE block is 

shown in figure 6.5.2. Because the mesh in this case is not based 

on a rectangular grid, it is not possible to remove the 'diagonals' 

from the plots of pressure and film thickness. The fluid film 

thickness distribution is shown in figure 6.5.3 and is relatively 

large considering that the block should now be in contact with the 

road surface. The fluid flow velocities are shown in figure 6.5.4 

and the volumetric flows per unit width in figure 6.5.5. 

6.6 DISCUSSION OF EXPERIMENTAL AND ANALYTICAL RESULTS 

This discussion is divided into three sections. The first two will 

deal with results for whole tyre contact patches, and the third with 

results for individual tread blocks. 

The results (both analytical and experimental) presented here are 

for the two extreme cases of locked wheel and free rolling. In 

actual fact, under operating conditions, a tyre will develop its 

peak brake force coefficient at a slip of between 10% and 20% under 

straight ahead braking. Under cornering, where there are large 

sideways forces, the situation will be even more complex. The 

contact patch computer program has been designed so that any slip 

condition between free rolling and locked wheel can be specified. 

Also a slip angle can be specified. If it is required to model a 

tyre under cornering conditions, as well as specifying a slip 

angle, because a significant amount of the cornering effects will 

be due to a change in the contact pressure distribution, this must 

also be modified. The test conditions used here are only those for 

which experimental results are available (i. e. zero slip angle, 

free rolling or looked). 

Because the main purpose of the analytical results is to show the 

areas of agreement (and disagreement) with the experimental 

results, the contact patch lengths, etc. were those that were found 

when testing on the drum (see section 6.1). There will still be 

some discrepancy between the conditions for the analytical and 
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experimental results because the analytical results assume a flat 

road surface. Further areas of the analytical solution where there 

is not accurate modelling of the actual situation, are for the 

contact pressure distribution, and the contact patch vertical 

stiffnesses. As has already been discussed the contact pressure 

distribution will be modified from that measured, owing to both 

drum curvature and speed. No information is at present available 

on the distribution of contact patch vertical stiffness and a 

possible method of measuring this is discussed in section 8.3.1. 

For both the plain and the grooved tyres the analytical represen- 

tation of the contact patch is as a rectangle. This was done for 

simplicity, but the method allows contact patches with rounded ends 

to be modelled. However, with reference to figures 6.1.1 and 6.1.2 

it can be seen that the actual contact patch shapes are not very 

rounded and it is thought that the mesh used here will give a 

reasonable representation of this. 

6.6.1 Discussion of Tyre Contact Patch Results (50 Kph) 

For the case of the plain tread tyre under free rolling conditions, 

the experimental pressure distribution is shown in figures 6.2.3 

and 6.2.4. It can be seen that there tends to be an area of higher 

pressure at the front of the dry contact patch (i. e. approximately 

30 mm into the front of the wet contact patch). This is due to the 

squeezing action as the forward part of the contact patch attempts 

to make contact with the road surface. 

When the contact patch program was used to model this condition it 

was found that a large part of the contact patch was predicted to 

be in contact with the road surface. This obviously has an effect 

on the predicted pressures as it is not possible to have a fluid 

pressure where there is no actual fluid film thickness. The result 

(figure 6.2.5) therefore shows the proportion of the dry contact 

pressure that was applied in the region of tyre/road contact when 

the converged solution was obtained. The actual film thickness 

between the tyre and the road surface was measured using the fibre 

optic probe, but it was found that no significant output could be 

obtained under these conditions. This suggests that tIe magnitude 
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of the fluid film thickness is such that it is in the area where 
the sensitivity of the film thickness measurement system is poor 
(figure 5.6.3), and that the film thickness is therefore less than 

0.2 mm. 

As has already been discussed, in section 3.8.2, the subject of 
tread movements under free rolling conditions is little understood. 

The analytical model is therefore thought to be poorest at 

modelling the condition of a free rolling tyre. Some suggestions 

as to how this should be improved are made in sections 3.8.2 and 

8.3.1. 

As would be expected, from the fact that the tyre is predicted to 

be in contact with the road in much of the contact patch, the fluid 

flow velocities (figure 6.2.7) are very high as water is 'squeezed' 

out of the sides of the front section of the contact patch. 

Similarily the volumetric flows per unit width show a large 

quantity of water exiting from the contact patch in the front 

region. As has already been discussed the experimental fluid film 

thicknesses within the contact patch were very small, therefore the 

volumetric flows would not be greatly different to those predicted. 

This ejection of large quantities of water in the front of the 

contact patch can be seen in glass plate photographs, such as 

figure 5.3.1. 

With the tyre moving at 50 Kph, but now with the wheel locked, the 

experimentally measured pressures(figures 6.2.9 and 6.2.10) show a 

general rise in pressure level towards the rear of the contact 

patch. This would be expected as the tyre is acting, to some 

extent, as a slider bearing. The low pressure area at the front of 

the contact patch is the additional contact patch length, where the 

fluid film thickness is greatest (due to the sloping of the tread 

surface). The pressure levels are shown to be higher in the 

shoulders than the-centre of the contact patch. This is also shown 

in the analytically predicted fluid pressure distribution, which 

shows good agreement with the measured values. This analytical 
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solution shows small areas towards the rear of the shoulders which 
are in contact with the road surface. The film thickness predicted 

throughout the centre of the contact patch is however relatively 

large (0.1 mm), and shows an area towards the rear of the contact 

patch where the film thickness becomes larger. This is similar to 

the situation shown when a glass plate photograph was analysed 
(section 5.3.2), although in this case the wheel was not locked. 

The effect of adding grooves to the plain tread tyre can be seen 
by comparing the above discussed case of 50 Kph locked wheel, with 

the grooved tyre under the same conditions. The film thickness 

distribution predicted for the grooved tyre is very different to 

that predicted for the plain tyre. With the grooved tyre the film 

thickness is one order of magnitude lower (0.01 mm rather than 

0.1 mm) in general, than those for the plain tread tyre. However, 

the film thickness in the case of the grooved tyre is very much 

more uniform over the contact patch, i. e. no significantly lower 

films in the shoulders. In fact with the grooved tyre there are no 

areas of actual tyre/road contact, as these were with the plain 

tread tyre. For improved wet grip it is felt that it is important 

to have a low film thickness over the whole of the contact patch, 

because with a real road surface this film would then be broken-up 

by the road surface asperities (microtexture). It is this general 

reduction in fluid film thicknesses that gives the grooved tyre its 

improved wet grip level over that of the plain tread tyre. 

The fluid pressure distribution which was measured for the grooved 

tyre shows that the grooves have a large effect on pressures, and 

that the pressures are very low within the grooves themselves. The 

pressure levels in the shoulder and the centre of the contact 

patch are broadly similar for plain and grooved tyres, although 

because the load capacity must be the same in both cases, the high 

shoulder pressures are maintained over a greater width in the case 

of the grooved tyre. This compensates for the lack of load 

capacity in the groove areas. The experimental measurement of 
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pressure' shovsthat the pressure in the centre of the contact 

patch is raised slightly in the case of the grooved tyre. The 

analytically predicted pressure distribution for the grooved tyre 

shows good agreement with the measured values. The analytically 

predicted pressures show a dip in the shoulders which is not 

present in the measurements. This is probably due to the discreti- 

zation of the contact pressure into values at nodes. 

The flows of water within the contact patch, as analytically 

predicted, are as would be expected, very different for the grooved 

and plain'tyres. Figure 6.2.13 shows the flow velocities for the 

plain tyre and figure 6.3.7 for the grooved tyre. The velocity of 

water ejected from the side of the contact patch is reduced by over 

50% for the grooved tyre, as some of the water flows towards the 

grooves. By considering the volumetric flows per unit width 

(figures 6.2.14 and 6.3.8) a greater insight to the differences in 

flow can be gained. With the grooved tyre (noting the different 

volumetric flow scales) the volume of water exiting the contact 

patch to the sides can be seen to be approximately 25% of that in the 

case of the plain tyre. This is because the water in the centre of 

the contact patch passes through the grooves. In both cases the 
volume of water flowing in the main part of the contact patch 

(excluding grooves) is small compared to that in the front section. 

Because, with the grooved tyre, the water does not mainly get 

removed from the side, there is very little deformation of the 

front of the contact patch (6.3.6b). This in itself is beneficial 

as it prevents the formation of a 'pocket' where water can become 

trapped in the front of the contact patch, and if the tyre had a 

tread pattern with blocks, it would reduce the inclination of those 

blocks (section 6.6.3). 
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6.6.2 Discussion of Tyre Contact Patch Results (100 Kph) 

For the case of 100 Kph free rolling with the plain tread tyre, the 

experimental pressure distribution is shown in figures 6.2.15 and 
6.2.16. In the centre of the contact patch there are high 

pressures towards the front which are due to the squeezing action. 

However, there are also high pressures at the rear of the contact 

patch. This coincides with the area of high film thickness which 

was measured in the centre rear of this tyre under this condition. 

The measured fluid film thicknesses are larger than those predicted 

by the computer program, particularly towards the rear of the 

contact patch. This is thought to be due to the poor modelling of 

contact patch movements under rolling conditions as already 

discussed. As the film thickness measurement system relied on the 

tyre surface reflectivity remaining constant for the duration of 

the test, it is possible that the measured values are also in 

error. The effect of tyre polishing would be to increase the gain 

of the measurement system and therefore exaggerate the results. 

The presence of an area of thicker film towards the rear of the 

contact patch would not-be affected by this. This area coincides 

with that shown by the glass plate/image analysis method discussed 

in section 5.3.2. The fluid film thickness shape measured by 

Browne, figure 1.2.3, shows film thicknesses even higher than those 

that have been measured here. Browne's results are for a plain 

tyre travelling at 68 Kph, but as was discussed in section 1.2.1, 

the tread was made from white sidewall rubber and the tyre was 

under'inflated. The shape of the film measured by Browne is very 

close to that measured here. It is thought that the film 

thicknesses measured here are closer to being correct than those 

measured by Browne as the tyre is under the correct conditions and 

the only errors involved are those due to the measurement method 

(and drum curvature). 
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A further reason for the analytical film thicknesses not coin- 

ciding well with the experimental ones is the tyre vertical 

stiffness being considered uniform over the contact patch. It is 

felt that if measurements were made, the stiffness would be lower 

in the centre of the contact patch than in the shoulders. This 

would allow the analytically predicted film thicknesses to be 

greater for the same level of fluid pressure distribution in the 

centre of the contact patch. 

Because of the relatively large film thickneses predicted at the 

front of the contact patch there are flow velocities showing a loss 

of water to the side in the front half of the contact patch. The 

rear of the shoulders are in contact with the road surface, 

therefore no flow velocities (figure 6.2.20) or volumetric flows 

per unit width (figure 6.2.21) are shown in these regions. 

Figure 6.2.22 shows the individual pressure profiles for the case 

of 100 Kph locked with the plain tread tyre. As has already been 

discussed pressure values are only available for three lateral 

positions on the tyre, owing to a problem with the instrumentation. 

From figures 6.2.22 and 6.2.23 it can be seen that there is a 

general increase in pressure towards the rear of the contact patch. 

The pressure is also very even across the width of the contact 

patch, and this is also reflected in the analytically predicted 

pressures (figure 6.2.24). However as there are only a limited 

number of experimental pressure profiles available, it is possible 

that a high area of pressure has been missed (position 4). If one 

compares this 100 Kph locked pressure distribution with the 

corresponding one at 50 Kph, it can be seen that at the higher 

speed both analytical and experimental pressures show a much more 

even distribution over the contact patch. Reference (21) presents 

pressure profiles for the centre and shoulders of a rolling tyre at 

40,50 and 60 Mph, and this also shows that there is some evening 

up of pressures at the high speed, compared to the lower speed 

distribution with high shoulder pressures (as shown here in 

figure 6.2.11). 
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The experimental pressure profiles (figure 6.2.22) show a sharp 

drop in pressure (almost to atmospheric) in the centre of the 

contact patch. This would appear to be due to some form of 

buckling of the contact patch surface under these conditions. 

It should be remembered that the pressure profiles presented here 

are as a result of averaging the values from a number of 

consecutive passes of the pressure transducer through the contact 

patch. This sharp drop in pressure appeared on all these different 

samples. 

It is thought that this type of buckling of the contact patch 

would only occur for plain tread tyres (it did not appear with the 

grooved tyre), and that it is due to the effect of 'straightening' 

the tyre tread surface from the curved shape outside the contact 

patch. This would cause the tread surface to be under compression. 

In a tyre with a tread pattern this effect would be prevented by 

closure of the grooves. 

The experimental pressures for the grooved tyre under the same 

conditions (figure 6.3.9) show, by comparison with figure 6.2.22, 

the difference that the grooves make to the pressure distribution. 

Apart from the lack of any dip in the pressure, the distribution in 

the very centre of the contact patch is virtually unaffected by 

the addition of the grooves. However, near to the grooves the 

pressure falls and this loss of load capacity is compensated by 

higher pressures in the shoulders. 

Compared to the grooved tyre at 50 Kph, at 100 Kph the pressures in 

the grooves are much higher. This is due to the extra volume of 

water which has to be removed from the contact patch at the higher 

speed, which causes a pressure build-up in the grooves as they 

fill with water. 

The analytically predicted pressure distribution for the grooved 

tyre at 100 Kph (figure 6.3.11) shows good agreement with the 

measured values. In the shoulder regions the analytical distri- 

bution has a number of peaks. It is thought that this is due to 
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the discretization of the contact pressure into values at nodes, 

and that if more nodes were used then these peaks would at least 

be smoothed. At 100 Kph the pressures at the front of the grooves 

are predicted to be higher than at 50 Kph, but are lower than those 

measured. Examining the predicted film thickness distribution for 

the grooved tyre at 100 Kph (figure 6.3.12a) shows that there are 

relatively large film thicknesses in the areas at the front of the 

grooves. This is probably the reason why the pressures in this 

area are predicted lower than those that were measured. 

Comparing the analytical film thickness distributions for the plain 

and grooved tyres at 100 Kph with locked wheels shows, as would be 

expected, that the film thicknesses for the grooved tyre are 

generally lower than those for the plain tyre. The distribution of 

film thickness is also much more even for the grooved tyre; 

although it is not as even as the grooved tyre at 50 Kph, 

indicating that the grooved tyre at 100 Kph is lt, S. ing some of the 

advantage in wet grip level given by the grooves. The film 

thickness distribution for the plain tread tyre shows low. film 

thickness in the shoulder regions with a large film thickness from 

front to rear of the contact patch in the centre. The actual shape 

of this distribution is almost identical to that measured by Browne 

(figure 1.2.3) although in this case the tyre is locked. This film 

thickness also shows the area of thicker film towards the rear of 

the contact patch as shown from glass plate photographs in section 

5.3.2. Again the glass plate photographs are for free rolling 

whilst figure 6.2.25a is for locked wheel. However as glass plate 

photographs are taken with the tyre mounted on a vehicle, the 

amount of slip can not be guaranteed to be zero, and-the tyre may 

have been sliding to some extent. This area of deeper water to the 

rear of the contact patch therefore, may exist under both rolling 

and sliding conditions. 

Figure 6.3.12b shows that the deformation of the tyre at the front 

of the contact patch is very much lower for the grooved tyre than 

for the plain tread tyre (figure 6.2.25b). This is due to the 
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ability of water - 
to flow through the contact patch (down 

grooves) rather than having to flow out of the side. 

The analytically predicted fluid flow velocities show that the 

velocity at which water is ejected from the sides of the contact 

patch, is reduced in the case of the grooved tyre (figure 6.3.13) 

compared to the plain tyre (figure 6.2.26), as was also found at 

50 Kph. With the plain tread tyre some water flows through the 

centre of the contact patch (figure 6.2.27) because of the high 

deformation there. There is also some water flowing out of the 

side, throughout the whole length of the contact patch, in the 

case of the plain tread tyre. The volumetric flow velocities for 

the grooved tyre are shown in figures 6.3.14 and 6.3.15. Figure 

6.3.15 has the volumetric flows in the grooves omitted so that they 

can be plotted on the same scale as the volumetric flows for the 

plain tyre (figure 6.2.27) to allow easier comparison. The volume 

of water flowing out of the side of the contact patch is 

substantially reduced for the case of the grooved tyre. Water 

flows down the grooves (figure 6.3.14) rather than out of the side 

of the contact patch. With the plain tread tyre there is also 

some water which flows out of the side, well into the contact 

patch. With the grooved tyre all water which passes past the front 

portion of the contact patch, passes out of the rear. 

The grooves therefore encourage water to pass through the contact 

patch rather than out of the sides. Whilst in overall terms the 

grooves improve performance in the wet, they do appear to have some 

detrimental effects, as well as beneficial ones. The challenge to 

the tyre designer is to gain the benefits only, without the 

detrimental effects of grooves. It would seem, from examining the 

results here, that the most advantage could be gained from the two 

grooves if it were possible to arrange that the grooves were closed 

at the front, preventing water flow into the main body of the 

contact patch, and to have the grooves open in the main body of 

the contact patch to allow what water was there to flow easily so 

as to reduce fluid pressures and, it would be hoped, film 



- 319 - 

thickness. It is this reduction in film thickness that must be the 

overall aim to improve wet grip levels. 

6.6.3 Discussion of Results for Individual Tread Blocks 

The experimental pressures for the central row of blocks, with the 

'blocky' tyre are shown in figure 6.4.2. The pressure at the 

lateral grooves falls very rapidly, in some cases to below 

atmospheric. The pressure also builds up very quickly at the front 

edges of the blocks. This is'because of the flow of water into the 

front of each block, as was discussed in section 6.4. The 

variation of the amount of this flow is one of the major features 

which causes different pressures on the same size block in different 

parts of the contact patch. 

The analytically predicted fluid pressure distribution for a single 

tread block of the type used in the 'blocky' tyre is shown in 

figure 6.4.4. The pressure builds up slowly in this case as no 

flow velocities are specified into the front of the block. 

By considering different inclinations to the horizontal, it was 

shown (figure 6.4.3) that as the block becomes more parallel to 

the road surface then the load carrying capacity will drop rapidly. 

This reduction in inclination would be achieved if the deformation 

of the tyre is reduced at the front of the contact patch. In fact 

if the contact patch deformation is made more even then it would 

appear to be beneficial to the load capacity of individual blocks. 

Because the block deforms under the action of fluid pressure 

(figure 6.4.5) the amount of water lost from the edge of the block 

will be less than in the rigid case, and the pressure will be more 

even across the width of the block. 

As was noted in section 6.4, before the block analysis computer 

program can be used to assess block characteristics under sliding 

conditions more information has to be gained on the flow 



- 320 - 

characteristics into blocks at different parts of the contact 

patch. 

An alternative method of assessing block performance is to consider 

the block under squeezing. Normal operating conditions for a tyre 

are with predominant rolling, therefore there is squeezing in the 

front of the contact patch. The Dunlop SP ELITE centre block 

analysis shown here is an example of an analysis on an actual 

production tread block. The finite element mesh (figure 6.5.1) 

for this block was produced by using the mesh generation program, 

described in section 4.6. 

In the example shown, the block would be touching the road 

surface if it were not for the water film. The analytical pressure 

distribution shows very even pressures over the block with a sharp 

drop at the edges. This is because the deformation of the block 

(figure 6.5.2) is less at the edges, which in turn causes the 

pressure at the edges to be higher than would be expected for a' 

rigid block. 

Figure 6.5.4 shows the flow velocities and it can be seen that 

these are relatively high at the edges of the'block, and into the 

two 'cut-outs'. The volumetric flows per unit width (figure 6.5.5) 

show that a large volume of water is flowing into the cut-outs. To 

assess the effect on load capacity of these cut-outs, the block 

was modelled under the same conditions but without the cut-outs. 

The load capacity in this case was increased by approximately 20% 

from the load found for the standard block. A number of 

alternative positions for the two cut-outs were investigated and it 

was found that a 15% to 20% improvement (reduction) in load 

capacity could be gained over the standard design. 

The overall effect of this on a tyre's performance is difficult to 

determine, but it is safe to assume that a reduction in load 

capacity for an individual tread block will cause an improvement in 

the wet grip performance of the tyre as a whole. 
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In modelling the SP ELITE, sipes were not considered. This is 

because the sipes in an ELITE are closed-ended, and therefore by 

not considering them it is the same as assuming that they are 

filled with water. 

A different tread block, which had open ended sipes was modelled. 

The sipes were considered to be completely drained and therefore 

the pressure was atmospheric within the whole of the sipes. The 

same block was also modelled without the sipes and it was found 

that the sipes caused a 25% reduction in the wet load capacity of 

the block. Treating the sipes in this way gives the best possible 

effect which could be gained, and it is likely that in practice 

the pressure will not be completely zero within the sipes. A 

method of improving the modelling of sipes is suggested in section 

8.3.1. 

It can be seen from the above that the use of sipes, particularly 

if placed in the optimum positions, can give very large improve- 

ments in wet grip levels. The major problem with sipes is that 

they tend to close owing to the loading on the block. One way of 

reducing the effects of closure on sipes is to make them wider, 

when they in effect become narrow cut-outs of the type shown in 

the ELITE block. Another method of reducing closure is to reduce 

the depth of the sipe, but this will cause problems when the tyre 

is partly worn. 

The performance of blocks can be improved by the use of cut-outs 

and/or sipes which give low resistance to flow paths to allow 

water to reach the edges of the block. If one considers the 

context in which the block is being used, then to some extent the 

size of the grooves should be taken into account when positioning 

cut-outs eta so that the additional flow of water at that point 

will not cause problems by filling the grooves. 
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CHAPTER 7- NETWORK ANALYSIS 

7.1 INTRODUCTION TO NETWORK ANALYSIS 

Network Analysis is a technique that can be used in the planning 

and control of projects. The basic principle is that the project 

is split into a number of activities, and the interconnectionS 

(constraints) between these activities determine the order in 

which the activities must be undertaken. In very large projects 

the level of subdivision (into individual activities) necessary can 

be difficult to determine, and often an overall network of the 

project is produced, with subnetworks detailing areas which were 

shown as only one activity on the main network. 

This level of detail of the network obviously varies depending on 

the type of activity being represented. If for example a network 

was being produced to assist in the planning of the assembly of a 

car, then the level of detail would be great and the activities 

would be well defined, and importantly the time to undertake each 

activity would also be well defined. In the case of a research 

project, such as here, the activities are not well defined and 

may change as the project progresses. The time assigned to each 

activity in this case is therefore very much a rough estimate. To 

allow network analysis to be useful in this type of project regular 

updating is necessary. 

The updating of the network serves two purposes, the activities 

which have been completed can be deleted and new activities can be 

added, and also the time for all the activities can be reassessed. 

This allows the anticipated finish date to be continuously updated. 

By using the information on activity times, the critical patch for 

the network can be found. Activities on the critical path have no 

slack (or float) and any increase in their event time will cause 

a corresponding increase in the total project time. Knowing which 

activities are on the critical path allows work to be scheduled so 

that these activities are given the most priority. During the life 
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of the project the activities which are on the critical path may 

change and by updating the network this can be seen and the 

priority of activities modified accordingly. 

A further problem in research projects is that some activities 

will be outside direct control, and network analysis allows these 

to be closely monitored and other work to be rescheduled to best 

fit in with them. 

7.2 THE USE OF NETWORK ANALYSIS FOR THE WET GRIP PROJECT 

To allow the monitoring of progress on the wet grip project a 

network was produced and then updated at regular (6 monthly) 

intervals. To illustrate this the original network and one updated 

network will be shown, along with charts showing the earliest start 

date and total float for each activity. The notation used in 

figures 7.2.2 and 7.2.4 is as follows: - 

I- start node for activity 

J- end node for activity 

DU - duration of activity (weeks) 

TF - total float for activity (weeks) 

ES - earliest start for activity (weeks from start of project) 

A- ascending order. 

7.2.1 Original Network 

The original network was produced some time after the start of 

the project, after the first major problem had occurred. This was 

a fault in the radio telemetry system which necessitated its 

return to the manufacturer. The activity "have fault repaired" 

represents this and the estimated time to repair was 18 weeks. 

In reality this took longer, but considering the original network 

(figures 7.2.1 and 7.2.2), it can be seen that this activity was 

not on the critical path, with its time at 18 weeks, and that 

there was a total float of 14 weeks (figure 7.2.2). The total 
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FIGURE 7.2.2 - TIME ANALYSIS OF ORIGINAL 

NETWORK 

SCHEDULE BY TF ;J THEN ES ;J 
IJ OU TF ES DESCRIPTION 

10 20 8 0 D ;]*, "L! 29,010-V 
20 130 12 0 8 `wL't. "Müll '  
20 120 12 0 8 il: ! 1ºaMýý; ý; I. I. i 

130 210 44 0 20 : L' . 1ý4*ý: ýº ýIý 
120 130 0 0 20 "I'-" 
210 300 35 0 . 64 : LLl3. lýIýRº5[. lýlýq 
300 430 9 0 99 il: ý Jý'tL Lý! 1ý 
430 470 1e1 0 log 011; iIBY[. l. Mel 
470 490 23 0 118 WWII 
500 510 13 0 141 
490 500 0 0 141 11,. 1E M 

20 30 6 14 8 A12-EVAL PRIN 
30 40 6 14 14 813-ID COMP 
40 80 28 14 20 A24-FIND SUPLI 
80 160 *15 14 48 814-OOR TELEM 

160 150 2 14 63 815-BEN TES TEL 
180 251 13 14 6S 816-FAULT 
250 260 2 14 83 A17 TES TELEM 
270 400 4 14 SS A30-INTER TO TEL 

SCHEDULE BY TF 30 THEN ES 10 
IJ DU TF ES DESCRIPTION 

260 270 0 14 85 DUMMY 
400.410 2 14 89 A31-T DEP MEAS 
410 420 3 14 91 A32-DEPTH TESTS 
420 430 0 14 94 DUMMY 
370 380 4 17 85 A21-T P MEAS SY 
260 370 0 17 85 DUMMY 
380 390 2 17 89 A22-P MEAS TEST 
390 430 0 17 91 DUMMY 
480 490 6 17 118 A56-DEV MODEL 
470 480 0 17 118 DUMMY 
390 440 16 24 91 A23-DAT ACQ COM 
440 460 4 24 107 A26-PATTERN TEST 
460 480 0 24 111 DUMMY 

20 60 10 25 8 A50-STD DES PROC 
60 140 5 25 13 A53-CAD TO DES 

140 210 16 25 23 A48-GRA OUT 
80 250 24 25 48 A25-ORD SHELLS 

160 170 2 27 63 A18-D MOUNT 

176 250 5 27 65 A19-M MOUNT 

(continued) 
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FIGURE 7.2.2 - continued 

SCHEDULE BY TF �] THEN ES ;] 
IJ DU TF ES DESCRIPTION 

30 110 16 31 14 A36-EVAL IMALAAL 
110 200 5 31 30 A3? -WEDGE FILM 
200 280 20 31 35 A38-ANALYS PRO 
230 290 10 31 55 A39-ANAL FIL SHP 
290 430 12 31 65 840-ANAL DEPTH 
420 440 0 37 94 DUMMY 

80 100 9 38 48 A27-ORD IB PROB 
100 190 2 38 57 A28-ORD ELEC COMP 
190 270 2 38 59 A29-BEN T DEPTH 

80 90 3 42 48 A33-D P CAL RIG 
80 370 12 42 48 820-ORD P TRANS 
90 370 9 42 51 A34-M PCAL RIG 
40 50 2 46 20 Al-SPEC WATER 
50 70 2 46 22 A2-D NOZ END 
70 150 6. 45 24 A3-M NOZ END 

150 230 1 46 30 A4-T N02 END 
230 240 3 46 31 A5-D NEW NOZ 
240 320 16 46' 34 A6-M NEW NOZ 
320 330 1 45 50 Ar-T NEW NOZ 

SCHEDULE BY TF 10 THEN ES 11 
IJ DU TF ES DESCRIPTION 

330 340 6 46 51 810-M ALT END 
350 360 2 46 57 All-CAL NOZ 
340 350 0 46 57 DUMMY 
360 410 0 46 59 DUMMY 
360 380 0 47 59 DUMMY 
330 350 4 48 51 A8-F&CAL PT 

40 360 12 73 20 A35-TEST TYRES 
140 220 6 95 23 A52-COS TESTS 
220 310 5 95 29 A54-COS PROJECT 
310 450 4 95 34 ASS-BEN PROJECT 
450 500 8 95 38 A5 r' -OTH HONTEC 

50 51 20 99 22 A9-SPEC PUMP 
51 500 0 9g 42 DUMMY 

(TIME UNITS = WEEKS) 
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time for this activity could therefore have increased to as much 
as 32 weeks before affecting the critical path at which point all 

the activities shown in figure 7.2.2 with a total float of 14 weeks 

would have been on the critical path. In reality it did not take 

32 weeks to have the telemetry repaired, therefore the critical 

path was unaffected. 

From figure 7.2.2 it can be seen that the critical path was through 

the development of the computer model, but it should be borne in 

mind that time estimates for computer programing are very 

difficult to determine accurately. 

The networks shown here do not take account of the resources 

required, and in certain cases this will delay the time from that 

given. Many of the activities rely on human resources which in 

this case amounted to one person. There inevitably had to be 

some trade-off in the scheduling of activities to allow for this, 

and whenever possible activities with the least amount of float 

were undertaken first. Some of the activities rely on items 

being manufactured or delivered and in this case no resource is 

being utilized during that activity. The fault in the telemetry 

system also falls into this category as it was possible to perform 

different activities whilst waiting for it to be repaired. 

7.2.2 Updated Network 

The updated network presented here is one of a number that were 

produced throughout the project. The updated network shown in 

figure 7.2.3 was produced at the time when the second major set- 

back in the experimental programme had taken place. This was a 

breakdown of the cornering force machine on which the tests were 

to take place. The machine had in fact been broken down a number 

of weeks when this network was drawn up and the time of 8 weeks 

was an estimate for the remaining time. However the fault on the 

machine turned out to be more serious than was thought at this 

time and the actual time to repair (from week 100) was in fact 



cc 

ö 
0 ö 

X 
mz 

y G 

Iv w 
ma zZ 

om 
W 
N 

F 

2D 
<N 
U< 

n . ri 

m 
{fll 

O0 

DEVELOP MODEL 
0 _,.. 

& 
0 

FURTHER 
Vf 

0 

61N 
\ 

yS 
ZF 

> \N 

db 

z to -3 
\ 

N 
N 

U3 
[t 
F 

ca 0. 
\ 

OO 
F ý< 

Z Z O 

O 
o 

O 
Fw 
I" 
a m 

0 0 
o z 

W 96 cc 

ý w 

ö N 
cw 

v z 
N n ü 

p3 
F 
N 

F 

F 
o. 

O 
4 

H 
ö5� 
<z / 

0 
öm N/ 

U) 
N 

N 

IO 

F 
U) F 

d N 

C4 0. 

4 
m 
a 

mO 
z 

01 
mn 

Cö - i 
ä 
li 

i 
, 

Ü 

K ýy 

H N 
IM, 

z 

OC 

w 9.3 
m N 
F 

Ö Z 

t 

M 

=F 
N 
F 

h 

N 
s 
a 

F hl 
Od 

dý 

U) <N 
yF 

i7 

N7 

ºy J 
C9 

s0 

Gý 

4% 

ýý ti 

, ný 
0 

t 

v 
0 

r 

ofa 

O% 

ö 

ýO n 

L 

0 lip N 
W 

tY, ý 

so 

dý3 
F fr ö 

dM 

i -A Q 

Q 

t 
a 
ý. 
OW 

Z 

h N 

i V 

N 
M 
fr 
W 
W 
Z 
W 
m 

0 



Text cut off in original 



- 329 - 

20 weeks, and even then this was only a temporary repair which 

allowed limited testing on locked tyres. Some testing was carried 

out with this temporary repair, but it was a further 10 weeks 

before the machine was completely repaired. The machine had then 

been out of commission for a total of 36 weeks, and understandably 

a considerable backlog of work had built up. This meant that the 

rest of the testing could not be carried out immediately and "data 

acquisition by computer" could not be achieved, as discussed in 

section 5.4.4. Because the repair to the cornering force machine 

was on the critical path (figure 7.2.4) then all delays outlined 

above would have affected the finish date of the project. However, 

as the acquisition of data by computer was not performed this saved 

time, as did the activity "develop input-output methods" which was 

shortened considerably. The finish date for the project was still 

delayed and this was largely due to the breakdown of the cornering 

force machine. 

The updated network (figure 7.2.3) shows two activities which have 

been added, and these are "develop tread block design program" and 

"develop automatic mesh generation". These activities resulted 

from the study of the tyre design process (see chapter 2), and were 

carried out whilst waiting for the temporary repair to be made to 

the cornering force machine. 

From figure 7.2.4 it can be seen that all the main items of the 

project have very little float and with the errors in time 

estimating, and possible delays, virtually any activity could have 

gone on to the critical path. 

7.3 CONCLUSIONS FROM THE USE OF NETWORK ANALYSIS ON THE WET 

GRIP PROJECT 

By comparing the two networks shown in figures 7.2.1 and 7.2.3 and 

detailed in figures 7.2.2 and 7.2.4 respectively, it can be seen 

that the large amount of float available on many activities early 

in the project was lost by the time the update shown here was 

produced. This can be attributed to a number of factors, the 

fault on the telemetry, the breakdown on the cornering force 
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FIGURE 7.2.4 - TIME ANALYSIS OF UPDATED 

NETWORK (AT WEEK 100) 

SCHEDULE BY TF A THEN ES ;. ] 
IJ DU TF ES DESCRIPTION 

380 385 8 0 100 
385 390 2 0 108 
390 440 16 0 110 
430 470 10 0 110 
390 430 0 0 110 
470 490 16 0 120 
440 460 4 0 126 
480 490 6 0 130 
460 480 0 0 130 
500 510 13 0 136 
490 500 0 0 136 
270 400 3 2 100 
400 410 2 2 103 
410 420 3 2 105 
420 430 0 2 108 
300 430 C 4 100 
280 290 2 8 100 
290 430 0 8 102 
300 445 4 10 100 

ý1. -i 11: NAN; [. l. IM: 9117 

Ku "d 

: '1G'Iý'ýl117ýý' m  

  S' . 

 I ' 
R30-INTER TO TEL. 
R31-T DEP MERS 
A32-DEPTH TESTS 
DUMMY 
R46-DEL MOD FUR 
R39-ANAL FIL SHP 
DUMMY 
A81-DEV TR BLk 

SCHEDULE BY TF ä1 THEN ES 11 
IJ DU TF ES DESCRIPTION 

445-470 6 10 104 A82-DEV MESH GEN 
470 480 0 10 120 DUMMY 
420 440 0 18 108 DUMMY 
310 450 3 25 100 R55-BEN PROJECT 
450 500 8 25 103 A57-OTH NONTEC 

(TIME UNITS = WEEKS) 
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machine, and poor time estimating. This highlights the problem 
of using network analysis on research projects, as by their very 

nature they are unique, and therefore time estimates are difficult 

to predict accurately. 

As has been mentioned the allocation of resources has not been 

considered here, and in practice this is probably a further reason 

why the initial completion date was not met. However, despite 

all the problems it is felt that the use of network analysis on 

this project was useful, particularly when discussing progress with 

other people, as this allowed them to build up a picture of the 

project and the remaining activities. The network was also useful 

when adding extra activities, such as the block design and mesh 

generation computer programs, so that their effect on the rest of 

the project could be seen. 
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CHAPTER 8- CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK 

8.1 INTRODUCTION TO CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK 

The work undertaken in this project represents the first stage of 

development in computer modelling of wet grip for use in the tyre 

design process. Also, the experimental techniques developed here 

are the first stage in the development of tests which will allow 

the routine testing of tyres during the design process. The tests 

also provide verification of the mathematical model. The 

"suggestions for further work" section is particularly important 

as it gives the author's views on what developments should be made 
both to the mathematical model and to the experimental facilities. 

Whilst the broad aim of this project was to produce a computer 

model of a tyre operating under wet conditions, it was clearly 

not possible to achieve this completely in the duration of this 

project. The conclusions therefore reflect the success achieved 

in progressing towards this overall aim. 

8.2 CONCLUSIONS 

The computer models that have been developed, allow the further 

study of many aspects of tyre wet grip. The contact patch model 

allows research in the area of broad contact patch features, such 

as the effects of contact patch shape, the number and size of 

grooves, the amount of lateral drainage, etc.. The practical use 

of the contact patch program to analyse car tyre contact patches 

is limited by the complexity of the mesh required (and hence the 

computer time for solution). The contact patch program can, 

however, certainly be used to model truck tyres, as the tread 

patterns are much simpler and therefore the finite element mesh 

required to model them is also simpler. 
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To gain the most benefit from the contact patch computer program 

in its present form it would be desirable that the contact patch 

stiffnesses, for any tyre that was to be modelled, were measured. 
Once typical values for the variation in contact patch stiffnesses 

are known, these could be used on new tyre designs of similar size 

and construction, to allow the prediction of the properties before 

any new tyre is manufactured. 

The contact patch computer program produces results which are in 

closest agreement with those measured experimentally for the case 

of tyres under locked conditions. As will be discussed in section 

8.3.1 this is thought to be due to the method of modelling the 

contact patch movements in this case. The results for both the 

plain and grooved tyres show good agreement with measured values 

under locked conditions. 

The results that were presented in chapter 6 allow some conclusions 

on the behaviour of tyre contact patches to be made. The fluid 

pressures in the tyre/road interface are not of primary importance 

in determining the_wet grip level. The important feature is the 

fluid film thickness. As has been discussed in sections 6.6.1 and 

6.6.2, the effect of adding grooves to a plain tyre is to reduce 

the general level of film thickness in the tyre/road interface. 

If this is achieved, then in practice, the microtexture of the 

road surface will have a greater opportunity of breaking-down this 

film and establishing tyre/road contact. In section 1.2.1, the 

relationship between tyre/road friction and the actual area of 

tyre/road contact was discussed, and it was shown in (4) that the 

friction is proportional to the area of contact. Therefore, by 

maximizing the area of actual contact (lower film thicknesses) 

the friction level will also be maximized, assuming that the tyre 

tread compound and road surface microtexture effects remain 

constant. 
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By comparing the results for the grooved and plain tyres it can 

be seen that, whilst the grooves improve the wet grip level, they 

do encourage more of the water in the path of the tyre to pass 

through the contact patch. A design of tread pattern which 

provides the benefits of grooves within the contact patch, whilst 

preventing the flow of water into the front of the contact patch 

would seem attractive. In practice this could possibly mean 

reducing the amount of longitudinal grooving in favour of more 

lateral grooving. Lateral grooves also have the advantage that 

they allow water to escape out of the side of the contact patch. 

Without lateral grooves this is restricted because of the low film 

thicknesses in the shoulder regions. A tread pattern design which 

allows the longitudinal grooves to close-up at the front of the 

contact patch and open within the contact patch would also reduce 

the amount of water passing through the contact patch.. 

The block analysis computer program allows the detailed study of 

tyre tread blocks. The example shown of a square tread block 

shows poor agreement with measured values. This is because of 

the lack of flow boundary conditions in the case of a sliding 

block. Further work needs to be performed (possibly with the 

contact patch program) to allow the specification of flow boundary 

conditions for a sliding block. 

The analysis of blocks under squeezing conditions allows the 

evaluation of block performance without the problems associated 

with flow boundary conditions. The analysis of the effects of 

cut-outs and sipes on blocks is an important area of use for this 

model. It was shown for the ELITE block that the addition of 

cut-outs provided a significant improvement in the wet grip level. 

At present these cut-outs are often included for aesthetic reasons, 

and not to improve the wet grip level. In future, the sizelposition, 

and number of these cut-outs should be considered carefully from 

the point of view of improving wet grip. 
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The block analysis program, when used in conjunction with the mesh 

generation program, provides a useful tool which the designer 

can use without specialist knowledge of the finite element method. 
The results of such an analysis can easily be displayed in 

graphical form, such as the results presented in chapter 6. This 

allows a comparison to be made between alternative block designs. 

The experimental techniques which have been developed here, allow 

the routine measurement of fluid presure for all tread patterns 

under locked conditions, and with the extensions suggested in 

section 8.3.2 also for all rolling tyres. The technique developed 

for the measurement of fluid film thickness, given that there are 

still a number of problems, is capable of measuring film thickness 

on unmodified tyres. This is something which does not appear to 

have been possible with other methods (discussed in section 1.2.1). 

As the level of fluid film thickness is thought to be very 

important in determining wet grip level, the development of a 

technique for measuring this is also very important. 

8.3 SUGGESTIONS FOR FURTHER WORK 

The further work to extend that performed in this project can be 

split into two categories: 

Computer Model 

Experimental Techniques 

These will now be dealt with separately. 

8.3.1 Computer Model 

The computer programs presented in chapter 4 could be extended in 

many ways. The following suggestions are mainly concerned with 

areas of tyre wet grip behaviour which are little understood. and 

therefore, for which the greatest assumptions had to be made in 

developing the mathematical model. 
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As was discussed in the conclusions (section 8.2), the area where 

the results of the analytical solution differ most from those of 

the experiments, is for free rolling tyres. The reasons for this 

appear to be in the assumptions made about the movements within the 

contact patch, particularly vertical movements. In section 3.8.2 

when the method used was being developed, it was realised that it 

would not be an accurate model, but owing to a lack of any further 

information some assumptions had to be made. 

Suggestions are made in section 3.8.2 as to the possible behaviour 

of a tyre under free rolling conditions. If experiments are 

performed to confirm this then the modifications to the computer 

program would be relatively simple. This would involve there being 

vertical 'squeezing' velocities at points other than those in 

the area ahead of the dry contact patch, and those velocities 

would depend on the deformed shape of the tyre. 

The actual movements of the tyre tread surface under both low and 

high speed conditions could be studied, by recording the path 

followed by a particular point on the tyre periphery as it entered 

and left the contact patch. It would also be desirable if a 

technique were developed so that the movement of a point on the 

tyre periphery could be studied under wet conditions. 

Connected with the above work, to some extent, is the need for 

further study of the behaviour of water ahead of the front of the 

contact patch. This is an area which does not appear to have been 

studied in the past, and if further information were gained, either 

experimentally or theoretically, then it may be possible to 

improve the specification of boundary conditions at the front edge 

of the contact patch. 

A second area of the computer model where assumptions are made is 

in the deflection of the tyre due to fluid pressure. The technique 

used is based on a semi-infinite method and, as is discussed in 
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section 3.10.3, gives a good compromise between complexity and 

accuracy. The method used could be changed to a more complex one, 

perhaps based on the finite element method, or alternatively the 

basic method used here could be developed. The second of these 

alternatives would seem to be the more promising. The area where 

the semi-infinite technique models the case of a tyre contact 

patch least well, is in the assumption of infinite thickness of 

the tread material. The thickness of the tread rubber is actually 

approximately 15 mm to the breakers, although the breakers are not 

completely rigid. Experiments could be performed on tyres to give 

a correction factor to the deflections predicted by the semi- 

infinite method. This could then be extended to allow the tyre to 

be stiffer in different parts of the contact patch. A simpler 

method of obtaining the same result would be to use the facility 

already built into the contact patch computer program, where the 

stiffness of the contact patch at each node is supplied as input 

data, in a similar way to the dry contact pressures. There is 

then no need for any assumptions about the modulus etc. of the tread 

material, and also no need for modification of the computer 

program. 

At present no values are available for local vertical stiffnesses 

at different parts of the contact patch. Experiments would 

therefore have to be performed, and it is envisaged that the 

following method would yield the desired results. The tyre could 

be loaded against a flat plate and a probe. in this plate would 

measure the dry contact pressure. If this probe were then adjusted 

so that it indented into the contact patch, a higher 'contact 

pressure' would be measured corresponding to a given local 

deflection. This could then be repeated for other values of local 

deflection. If the local deflections (indentations) were kept 

small (say less than 3 mm), then the response would probably be 

relatively linear and the stiffness could be found from the slope 

of the local load/local deflection curve. If the relationship. was 

found not to be linear (to a first approximation) then the computer 

program could be modified to account for this by using different 

local stiffnesses for different values of local deformation. By 

using actual experimental values of stiffness to link fluid 



- 338 - 

pressure and the tyre deformation, it is thought that a good 

representation of tyre contact patch behaviour would be given. 

At present within the contact patch computer program, instabilities 

can occur (under certain conditions) in the iterative process 

between the fluid pressures and contact patch deflections. These 

could be due to either a physical phenomenon, or the iterative 

solution technique as discussed in section 4.5.6. The very high 

repeatability between successive pressure measurements tends to 

suggest that this is not a physical phenomenon, although further 

work is required to confirm this conclusively. If one assumes 

that these instabilities are due to the iterative solution 

technique, then the problem could be overcome by formulating the 

complete problem in terms of one differential equation. The 

appropriate variational principle could then be found and the 

finite element method used to gain a discrete, solution without 

the pressure/deflection iterations required at present. To enable 

this to be possible the deflection of the contact patch, as 

discussed above, would have to be further investigated. 

At present the tread block analysis computer program allows the 

modelling of sipes by a very much simplified method. The pressure 

within the sipes is taken to be atmospheric (zero). This is the 

case when sipes will have the most effect, and is the opposite 

extreme case to neglecting the effect of sipes in the analysis. 

In the case of a closed end sipe the above assumption is that the 

sipe is empty of water and that it provides a perfect sink. Whilst 

this may or may not be true when the sipe enters the contact patch, 

it is certainly not true for any length of time, as water will 

quickly flow into the sipe and fill it. An open end sipe will not 

fill in the same way as a closed end sipe, as it is able to drain 

some water to the adjacent groove. This drainage of water from an 

open end sipe means that there is a pressure gradient along the 

sipe. 
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Based on the above assumptions about the action of sipes the 

following modifications could be made to the sipe modelling method: 

Closed End Sipes - the 'time' stepping facility could be utilized 
and the pressure in a closed end sipe allowed to build up to that 
of the surrounding block in a number of steps. 

Open End Sipes - the sipe could be treated as a narrow slot and a 

pressure distribution from the inner to outer end used. In a 

narrow slot the pressure drop is linear; therefore an approximation 
to the behaviour of an open ended sipe could be made by using the 

surrounding block pressure at the inner end of the sipe, with a 
linear drop to the groove pressure (atmospheric) at the outer end 

of the sipe. 

Both the above would be relatively simple to incorporate into the 

block analysis computer program and would give some improvement 

in sipe modelling, although further experimental work on the 

fundamental behaviour of sipes is needed before they can be 

modelled accurately. 

In common with all finite element problems the solution here is 

sensitive to the bandwidth of the finite element mesh. A bandwidth 

minimization, node renumbering, technique could be incorporated 

into the computer programs and would give a reduction in the 

amount of computer time required. This would be important if the 

computer techniques, particularly the block analysis program, were 

to be incorporated into a Computer-Aided-Design System, so that 

analysis could be carried out during the actual design process. 
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8.3.2 Experimental Techniques 

Some future experimental work has already been discussed in the 

previous section, where that work is required to allow the 

computer programs to be further developed. The suggestions in 

this section are for developments to the testing techniques 

developed in this project, in particular on the High Speed Cornering 

Force Machine. 

As was discussed in section 5.4, the test techniques on the 

cornering force machine are at present only suitable for free 

rolling tests on tyres with plain or circumferentially grooved 

patterns, and for locked wheel tests on any tread pattern. This is 

because the rotational position of the wheel is not recorded. If 

the rotational position of the wheel is known then it is possible 

to build up a "picture" of the pressure (or film thickness) for any 

tread pattern. This can be achieved by use of a shaft encoder on 

the wheel axle and also it would be beneficial if an encoder were 

also used on the drum axle, rather than the present single pulse 

per revolution. Therefore, with knowledge on the position of both 

the transducer and the tread pattern a map of the distribution over 

the contact patch could be built up. 

To achieve the most value from the above extension to testing on 

the cornering force machine, it would also be desirable to improve 

the data logging and analysis techniques. As was discussed in 

section 5.4.4 the use of a computer to log the data directly by 

use of an analogue to digital converter (ADC) was considered, but 

was not possible because of time constraints. If encoders are 

added, then their output as well as the pressure or film thickness 

output could be fed to a computer so that the data could be 

syncronized and analysed immediately. 

The above two extensions to the testing technique would allow the 

measurement of fluid pressure in the tyre/road contact area on a 

routine basis on standard tyres. Before this can be achieved with 

fluid film thickness measurements further developments are required. 
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In section 5.4.5 the need to use a random distribution of fibres 

in the common end of the film thickness measurement probe was 

discussed. This is because at the low film thicknesses found in 

tyres moving at 50 Kph the signal output is lost in noise. 

Thereforepto cover the full range of film thicknesses found for 

tyres moving at all speeds two separate fibre optic probes are 

required, each with a different distribution of transmit and 

receive fibres. 

An identical fibre optic probe to the one used is available but 

with a random distribution of fibres; this would be directly 

interchangeable. However, as there is a spare mounting position 

available in the surface shells, the second probe could be added 

(along with the necessary electronics) to allow the selection of 

the appropriate probe to suit the test conditions. 

A further problem with the film thickness measurement method is 

that it utilizes the reflectivity of the tyre tread surface; 

therefore a method of monitoring any changes in this is required. 

This is particularly important when tests with locked tyres are 

being performed as it was found that under these circumstances the 

tread surface in the contact patch tended to 'polish', therefore 

effecting the gain of the film thickness output signal. 

When an improved glass plate facility is available, the possibility 

of gaining quantitative values of fluid film thickness can be 

further explored. To achieve this there needs to be more control 

over the lighting conditions both when the photograph is taken, and 

when it is being analysed. 
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APPENDIX A- FORMULATION OF THE GOVERNING EQUATIONS 

As was stated in section 3.3 the equation governing the fluid flow 

between a tyre and a road surface will beýrepresented by Reynolds 

equation in the form: 

ö h3 
ýaP 

+ö h3 
ýöE 

=1 (VXh) +1 tý (Vyh) + 
Öh (1-2 

)X bx Sy 12µi, dy 2ä 2äy rt 
J 

A. 1 

To solve this equation using the Finite Element method a functional 
Tis found such that the pressure which minimizes it satisfies 

equation A. 1 and the boundary conditions. This functional is 

widely quoted in the literature and its proof is shown in Reddi 
(53) in particular. 

For Reynolds equation with sliding in both the x and y directions 

and squeezing in the h direction this functional is given by: 

I_ h3 rö- p-)2 h3 (ý 2_1 hVx aý 
_1 

hVy Ö+ pah 
] 

dA 
4 ax J+ 24ý `ay f Ix dy at 

R 

+ qp dS -A. 2 

c 

where R is. the whole of the region in question, and c that part of 

its boundary on which flow boundary conditions are required. It 

is possible in certain cases to asign a physical significance to 

the functional I, especially in solids problems where the case 

of minimum potential energy for the system-is being found, but in 

this case no such physical significance will be used and I will be 

treated purely as a convenient mathematical formulation of the 

problem. 

The second integral in equation A. 2 

i. e. IFB 
fc 

qp dS 
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allows the specification of flow boundary conditions (53). 'q' is 

the outward normal volumetric flow per unit width, and it will be 

shown later that the discretization of the problem into elements 

allows the value of 'q' to be specified differently for different 

elements on the edge of the domain. 

The remaining portion of the boundary (i. e. not c) may have 

pressure boundary conditions applied; that is to say the value of 

'p' may be specified explicitly, and typically in this application: 

p0 on the boundary 

However if no boundary condition is specified on a portion of the 

boundary this implies that there is zero flow (q = 0) across that 

boundary. 

This is a very useful feature of the finite element method, which 

allows an axis of symmetry to be modelled simply by leaving an 

edge of the domain with no boundary conditions. This can be 

utilized in the current application when the contact patch of a 
tyre is symmetric about its centre line, allowing solution by 
discretising only half of the contact patch. 

The value of 'p' which minimizes the functional I is the solution 
to equation A. 1, therefore equation A. 2 must now be differentiated 

with respect to Pi, where i is a global node number. 

öI 
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I is a minimum when 

ýI 
ýi 0; i=1,2,3,..., n :n= total number of nodes 

i. e. 

h3 11Ö0 öýE dA 
12 

ýJxp Cxý 
+ py 

P. ()J 

h VX ai (ks) 
+ 

Vy ý_ dh[ 

ay)J at ' 

q 
------A. 4 Pi 

c 

The solution to equation A. 4, is the required solution over the 

whole domain R in terms of the general presstre 'p'. 

The functional I is the sum, over the whole of the domain, of 

functionals IE; where IE is defined similarly to I in equation A. 2 

except that it now refers to one element only. The values of IE 

can be evaluated for each element, and then summed to allow the 

solution over the whole domain. 

If we consider equation A. 3 as being for one node of one element, 

and calculate each of the terms for the three nodes within that 

element we can find [KLj the local stiffness matrix, and 
IFLI the 

local generalized force vector for that element. When these are 

combined with the local stiffness matrices and force vectors for 

all other elements which include the same node, then 

0 
li 

= ai 

at that node i. 
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In the assembly of the global stiffness matrix and force vector 

this is repeated for each node such that 

aI 

STi 

is true and an equation of the form of A. 4 can be written for the 

whole of the domain. This equation is normally expressed in 

matrix form as 

JFJ 

where 
LK]is the global stiffness matrix, (p) is a column vector 

of the unknown pressures, and 
{F) is the global force vector. 

Therefore we shall consider equation A. 3 for one element where Pi 

represents one of the three nodes within that element. The 

pressure at any point within that element can be expressed by 

the interpolation function, and for three noded triangular elements 

this is given by (50), 

P= N1P1 + N2P2 + N3P3 

where Ni =1 ,r ai + bix + ciyy ;i=1,2,3 A. 5 
2A L 

and ai, bi, ci are as defined in (50); the nodes for the element 

in question are now numbered 1,2 and 3 for convenience. 

Therefore öp 
_ 

aN1 P1 aN2 P2 ; N3 P3 A. 6 
öx -Ix + -x + öx 

and, 
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4N1 P1 aN2 P2 
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aN3 P3 A. 7 
ay ay + Ty 
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Equation A. 5 gives 

ANi bi 
ax - 2A 

i=1,2,3 -A. 9 

and, 

öNi Ci 
i=1,2,3 A. 10 

Substituting equation A. 9 into equation A. 6 gives 

b1P1 + b2P2 + 
b3P3 

A. 11 a= 
2A 

and substituting equation A. 10 into equation A. 7 gives 

ap c1P1 + c2P2 + c3P3 
A. 12 py - 2A 

Equation A. 3 can now be expressed in terms of nodal pressures for 

one element within the domain by substituting equations A. 11, A. 12 

and A. 8 into equation A. 3 (i = 1,2 or 3 representing one node of 
the element). 
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Equation A. 13 applies to the three nodes of the element, and 'dA' 

now refers to the area of that element and not the area of the 

domain. Similarly 'dS' refers to the edge of the element (if any) 

which is on that part of the boundary which is to have flow 

boundary conditions applied. 

Simplifying gives, 

3Ig 
h3 (bl'l + b2P2 + b3P3) bi (dlPl + c2P2 + c3P3) Ci dA 

. 2A + 2A ý2A 
J 

12 

[ 

2A VAX 

h Vx bi Vy c1 dA öh (ai + bix + °iy) dA 
2[ 2A + 2A + It 2A 

$q(aj 
+ bix + ciy) dS A. 14 + 2A 

Equation A. 14 initially looks rather difficult to integrate 

explicitly, but the only variables involved are x, y and h. 

Once again the linear interpolation function is (50), 

p= N1P1 + N2P2 + N3P3 

where N1, N2 and N3 are known as the area coordinates of the 

element. The fluid film thickness variation throughout the element 

can also be expressed in terms of area coordinates i. e. 

h= N1H1 + N2H2 + N3H3 A. 15 

A useful property of area coordinates which was shown by Stricklin 

(64) and is quoted in many referances such as (50) or (54), is 

that integrals of the form 

I= Ni Nm Nk dA 

A 
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where Ni, Nj, Nk are the area coordinates, 1, m, n, are integers 

and-A is the area of the triangular element, have a closed-form 

solution: 

(1: m! n. . 
2A A. 16 (1+m+n+2)! 

This solution was obtained by Stricklin by inspection and can 
easily be verified. 

It is convenient to consider equation A. 14 as 

aIE 

Tpi 

and perform each of the integrals separately. 

Integral I 

Consider IO to be 

IQ= Kk h3 dA A. 17 

where Kk is a constant, given by 

1 (b1P1 + b2P2 
+ b3P3) bi (C1P1 + c2P2 + c3P3) Ci Kk = 12 2Aj 2A + 2A ý2A 

Substituting A. 15 into A. 17 gives 

IO = Kk (N1H1 + N2H2 + N3H3), (N1H1 + N2H2 + N3H3). (N1H1 + NZ H2 + N3 Ei3) dA 

Expanding and collecting terms gives 

r= Kk (N1n 33 3- 
+N2H2+ N3H3 + 3N1N2H, H2 + 3N1N3H1H3 

+ 3NZN1H2H1 + 3N2N3H H3 + 3N3N1H3H1 

+ 3N2N2H2-H2 + 6N1N2N3H1H2H3) dA A. 18 
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Using the closed-form solution given in A. 16, A. 18 can now be 

integrated to give, 

I ®= 2AKki3: Hi + 3: H2 + 3. H3 + 3.2: 1: HIH2 + 3.2: 1: H1H3 
L5: 5: 5: 5: 5. 

+ 3.5! 1: H2H1 + 3.5! 1: H2H3 + 3.21.1 ! H3H1 

+ 3.21.1: H3H2 + 6.1: 1: 1: H1 H2H31 
5: 5: J 

Therefore, 

I ®= ýk r Hi + H2 + H3 + H1H2 22 
2+ H1H3 + H2H1 +H2H3 

10 

+ H3 1+ H2H2 + H1H2H3 
1 

A. 19 

For the sake of simplicity we shall define h3 as, 

3= (Hi + Hi + H3 + HiH2 + HiHi3 + H2H1 + H2H3 

+ H3H1 + H3 H2 + H1H2H3)/10 

which makes equation A. 19 

IO = AKkh3 A. 20 

Integral I©; 

I® = (Vxbi + Vyci) h dA A. 21 
4A 

(assuming that Vx and Vy are uniform across the element) 

Substituting A. 15 into A. 21 gives, 

I® = (Vxbi + Vyci) (Nl1l + N2H2 + N3H3) dA ------A. 22 

4A 
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Using A. 16, A. 22 can now be integrated: 

I© = (Vxbi + Vy°i) 
. 

2A lt Hl + 1: H2 + 1: H31 

4A 

[ 

3. ' 7.. - 3-. 1 ,J 

Therefore, 

Iý = (uxbi + Vyoi) H1 + H2 + H3 1 

43J 
--A. 23 

It can be seen that the term in square brackets in equation A. 23 

is the mean fluid film thickness of the element, which we shall 

represent by h, where, 

K= H1 + H2 + H3 
------A. 24 

3 

Therefore substituting A. 24 into A. 23 gives, 

I® = (Vxbi + Vyci) h A. 25 
4 

Integral I© 

I® = öh (ai + bix 
+ oiy) dA 

T' 2A A. 26 

but (ai + bix 
+ oiy) 

2A = Ni, from A. 5 

Therefore A. 26 becomes, 

Iý = Öh Ni dA 
at A. 27 

and using A. 16, A. 27 can be integrated: 

IO = Ih 11: 2A 
at 3:, 

Therefore, 

I 

ät 
'3 -- A. 28 
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Integral IQ 

Integral TO which represents the flow boundary conditions on 

specified 
sides- 

of certain elements, cannot be treated in the 

same manner as integrals T(v TO and Tay as T@ is to be integrated 

with respect to 'S', the edge of the element and not the area of 

the element as in the other cases. 

I®q (ai + bix + °iy) dS ------A. 29 
2A 

Also q is the outward normal flow across the boundary S, and it 

would be more covenient in this application to have separate 

x and y components of q, so that as is discussed in section 3.7.4, 

q can be easily related to vehicle motion. 

Figure A. l shows a typical element. If edge 1-3 is on the edge 

of the region where a flow boundary condition is imposed, it can 
be seen that 

qdS = -gxdy + gydx 

therefore qdS = 
(-gxLY 

+ gYLx ) 
dS 

LLA. 30 

where L is the length of the side, and LX and Ly are the 
projections of the side on the two coordinate axes. 

We shall assume that the flow across the edge of one element is 

constant over that edge. 

As before, 

ai + bix + ciy = Ni 
2A 
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r '�F 

Ly 

FIGURE A. 1 - FLOW . BOUNDARY CONDITIONS 

FOR A TYPICAL ELEMENT 

L2 x 
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therefore A. 29 becomes, 

I(D _ 
(xT+ 

gyLH) Ni dS 
-- -A. 31 

L 

1-3 

A second identity, similar to the one (A. 16) which allowed 

integration over the area of the element, exists and is quoted 

in Segerlind (50); this allows integration along the edge of an 

element for an expression in terms of area coordinates: 

I= Ni N3 dS -A. 32 

edge ij 
where Ni and N3 are area coordinates, and 1 and m are integers. 

The closed-form solution is given by, 

I= (1: m: ) L 
(1 +m+ 1) A. 33 

where L is the length of the edge i, j. A. 31 can thus be 

integrated to give, 

I®=2 
YLX - qx( t y) 

Assembly of the Integrated Form of Equation A. 14 

The four integrals can now be assembled in the form 

AIE 
= I© - I© + I© + I® 

to give the integrated form of equation A. 14. 

A. 34 

ýIE h3 1(b1P1 
+ b2P2 + b3P3). bi + (C1P1 + c2P2 + C3P3). ci1 

-h. (VXbi + Vyci) +A ah +J1 , 
(gyLX - gxLy) A. 35 

4 3*öt 2 
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A. 35 is for one node of one element, and there will be a total 

of three equations of this type for each element. The term in 

brackets will only be applied in elements which have an edge on 

the edge of the domain and then only to nodes which lie on that 

edge (provided that portion of the edge of the domain is to 

have flow boundary conditions applied). 

Equation A. 35 must therefore be evaluated for each node of each 

element within the mesh, so then when combined 

aI 
=0 at every node i=1,2,3,..., n 

The equations governing the complete system can then be 

expressed as 

f 
K, P_ 

(F) 
------A. 36 

where 
[K] is made up of the first term on the RHS of equation A. 35, 

for each node of each element. IF1 is made up of the remaining 

terms on the RHS of equation A. 35. 

The resulting system of simultaneous equations can then be solved 
by one of the standard methods. 
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APPENDIX B- SOURCE LISTINGS OF COMPUTER PROGRAMS 

FOR REFERENCE ONLY - IN SEPARATE FOLDER IN DEPARTMENT OF FLUID 

ENGINEERING AND INSTRUMENTATION. 


