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Abstract

In this paper, the reliability and replacement policy of a k/n(F ) (i.e. k−out−of−n : F )
system with repairable repair-equipment is analyzed. We assume that both the work-
ing and repair times of all components in the system and the repair-equipment follow
exponential distributions, and the repairs on the components are perfect whereas that
on the repair-equipment is imperfect. Under these assumptions, by using the geometric
process, the vector Markov process and the queueing theory, we derive reliability indices
for such a system and discuss its properties. We also optimize a replacement policy N

under which the repair-equipment is replaced whenever its failure number reaches N .
The explicit expression for the expected cost rate (i.e. the expected long-run cost per
unit time) of the repair-equipment is derived, and the corresponding optimal replacement
policy N∗ can be obtained analytically or numerically. Finally, a numerical example for
policy N is given.
Key words: Geometric process, supplementary variables, vector Markov process,
M/M/1 queueing system, repairable repair-equipment.
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1 Introduction

A k/n(F ) system consists of n components: it fails if and only if at least k components
have failed. The dual of a k/n(F ) is k/n(G)(i.e. k-out-of-n : G), which consists of n

components but it works if and only if at least k components work. Obviously, a k/n(F )
system is equivalent to a (n − k + 1)/n(G) system. A 1/n(F ) (or n/n(F )) system is a
n-component series (or parallel) system. If k components are consecutive in a k/n(F
or G) system, the system becomes a C(k, n : F or G) (i.e. consecutive-k-out-of-n:
F or G) system. Therefore, a k/n(F or G) system can be seen as an extension of
various reliability systems, and it plays an important role in the reliability theory and
real applications. This important feature attracts considerable research. For example,
Barlow and Proschan [1], Linton and Saw [2], Phillips [3], Gupta and Sharma [4], Kenyon
and Newell [5], Nakagawa [6], McGrady [7] and Moustafa [8], etc. They studied such
a system with different approaches: they commonly assume that either the system is
not repairable or the repair-equipment does not fail. However, in practice, a piece of
repair-equipment may experience failures.

The purpose of this paper is to analyze the reliability of a k/n(F ) repairable system
with repairable repair-equipment. We assume that a failed component in the system can
be repaired as good as new, whereas the survival times of the repair-equipment after re-
pair form a geometric process. The geometric process has been applied to optimize main-
tenance policies in various repairable systems, including simple systems, two-component
systems and multi-component systems since it was first introduced by Lam [9, 10]. For
more references, the reader is referred to Lam [11], Zhang [12, 13, 14, 15], Lam et al [16],
Zhang et al [17, 18, 19], Lam and Zhang [20, 21, 22], Wu and Clements-Croome [23,24],
Wang and Zhang [25, 26], Zhang and Wang [27, 28, 29], and Lam et al [30].

Using the queueing theory, the vector Markov process and the geometric process, we
not only derive reliability indices of such a k/n(F ) repairable system, but also optimize
replacement policy N . The replacement policy aims to search an optimum failure number
N∗ such that the expected cost rate of the repair-equipment is minimized. Finally, a
numerical example for policy N is given to illustrate some theoretical results.

This paper is structured as follows. Section 2 introduces the definition of the geomet-
ric process and assumptions for the reliability analysis in the paper. Section 3 conducts
system analysis using the vector Markov process. Section 4 discusses properties and
reliability indices of the k/n(F ) system. Section 5 derives replacement policy N∗ and
provides a numerical example. Section 6 concludes this paper.
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2 Definitions and assumptions

Definition 1 Given two random variables ξ and η, ξ is said to be stochastically
larger than η or η is stochastically smaller than ξ, if

P (ξ > α) ≥ P (η > α), for all real α,

denoted by ξ ≥st η or η ≤st ξ (see e.g., Ross[31]). Furthermore, we say that a stochastic
process {Xn, n = 1, 2, · · ·} is stochastically decreasing if Xn ≥st Xn+1 and stochastically
increasing if Xn ≤st Xn+1 for all n = 1, 2, · · ·.

Definition 2 A stochastic process {ξn, n = 1, 2, · · ·} is a geometric process, if there
exists a real a > 0 such that {an−1ξn, n = 1, 2, · · ·} forms a renewal process. The real a

is called the ratio of the geometric process (see e.g., Lam [10], Zhang [12] for more details).

Obviously, from Definition 2, we have:

(i) If a > 1, then {ξn, n = 1, 2, · · ·} is stochastically decreasing, i.e.

ξn ≥st ξn+1, n = 1, 2, · · ·

(ii) If 0 < a < 1, then {ξn, n = 1, 2, · · ·} is stochastically increasing, i.e.

ξn ≤st ξn+1, n = 1, 2, · · ·

(iii) If a = 1, then the geometric process becomes a renewal process.

(iv) If Eξ1 = 1
λ , then Eξn = 1

an−1λ
.

Suppose the following assumptions hold.

Assumption 1 A system consists of n identical components and repairable repair-
equipment. The system fails if and only if at least k components have failed. The n

components are repairable, and the order of repair for failed components is with a ”first
in first out” rule.

Assumption 2 At the beginning, a new k/n(F ) system, repairable repair-equipment
and one repairman are installed. A failed component is repaired by the repair-equipment
and the repair-equipment is repaired by the repairman. Repair for a failed component is
perfect whereas repair for the repair-equipment is imperfect. Assume the survival times
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after repairs for the repair-equipment from a geometric process.

Assumption 3 If the repair-equipment fails while a component is being repaired,
the repairman will repair the repair-equipment immediately and the failed component
will be waiting for repair. The repair-equipment will be re-started immediately after com-
pletion of its repair, and the repair on the failed component will be continued. During
the repair for the repair-equipment, the system is shut down and the un-failed compo-
nents in the system do not fail any more. The repair-equipment does not fail when it
is idle. As soon as at least k components are ready for work, the system will be re-started.

Assumption 4 Assume that the successive working times ξn, n = 1, 2, · · · and the
consecutive repair times ηn, n = 1, 2, · · · of all n components are respectively i.i.d. random
variables, and their survival distributions are

F (t) = P (ξn ≤ t) = 1− e−λt

G(t) = P (ηn ≤ t) = 1− e−µt

where t ≥ 0, λ > 0, µ > 0, n = 1, 2, · · · respectively. Assume that µ > λ.

Assumption 5 The time interval between the completions of the (n−1)th and nth
repairs of the repair-equipment is called the nth cycle of the repair-equipment. Let Xn

and Yn be respectively the working and the repair times of the repair-equipment in the
nth cycle, n = 1, 2, · · · . Then {Xn, n = 1, 2, · · ·} and {Yn, n = 1, 2, · · ·} form respectively
a decreasing geometric process with ratio a ≥ 1 and a increasing geometric process with
ratio 0 < b ≤ 1, and survival distributions of Xn and Yn are

Hn(t) = P (Xn ≤ t) = 1− e−an−1αt

Kn(t) = P (Yn ≤ t) = 1− e−bn−1βt

where t ≥ 0, α > 0, β > 0, n = 1, 2, · · · respectively.

Assumption 6 ξn, ηn, Xn, Yn, n = 1, 2, · · · are all independent random variable
sequences.
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Remarks
(1) The assumption µ > λ makes the k/n(F ) repairable system closer to real situa-

tions.

(2) If we regard the three items, the repair-equipment, a failed component and a repair
as a service station, a customer and a service respectively, then the three forms a queue-
ing system. Under the above assumptions, the k/n(F ) repairable system is equivalent to
a repairable M/M/1 queueing system with finite customer-source. Hence, the system in
this paper can be regarded as a repairable M/M(M/M)/1/k/n queueing system, where
symbol (M/M) means that both the working and repair times of the service station (i.e.
the repair-equipment) are exponential. The difference between our queueing system and
the classical M/M/1/k/n queueing system is that the service station in our queueing
system is subject to failure. In this paper, we shall study a k/n(F ) repairable system
with repairable repair-equipment and regard them as a M/M(M/M)/1/k/n queueing
system with repairable service station.

(3) Assumption 3 is reasonable. For example, consider a local area computer network
print system with a repairable printer, and there are several workstations connecting to
printer. Now, we regard the printer and a print job as a service station and a customer in
the print system respectively. Printing jobs submitted from a workstation have to queue
up as customers in the print system. If the printer fails to work, it will be repaired, and
the jobs have to wait for printing. The printer will be restarted immediately after com-
pletion of its repair, and the queueing printing jobs can be conducted. The reader is also
referred to Lam et al [30] for more detailed discussion. From an application perspective,
therefore, the research of this paper is helpful for some maintenance engineers.
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3 System analysis

Now, let N(t) be the system state at time t. According to the model assumptions,
we have

N(t) =





0, if at time t, all components work and the repair-equipment is idle;
the system works,

1w, if at time t, a component fails and the repair-equipment is repairing
the failed component; the system works,

1f , if at time t, a component fails and the repair-equipment is being repaired,
and the failed component is waiting for repair; the system is shut down,

...
...

mw, if at time t, m components fail and the repair-equipment is repairing
one of the failed components, and the rest m− 1 failed components are
waiting for repair; the system is working,

mf , if at time t, m components fail, the repair-equipment is being repaired, and
the m failed components are waiting for repair; the system is shut down,

...
...

(k − 1)w, if at time t, k − 1 components fail, the repair-equipment is repairing
one of the failed components, and the rest k − 2 failed components are
waiting for repair; the system is working,

(k − 1)f , if at time t, k − 1 components fail, the repair-equipment is being repaired,
and k − 1 failed components are waiting for repair; the system is shut down,

kw, if at time t, k components fail, the repair-equipment is repairing one of
the failed components, and the rest k − 1 failed components are waiting
for repair; the system fails,

kf , if at time t, k components fail, the repair-equipment is being repaired, and
the k failed components are waiting for repair; the system fails.

In fact, the state N(t) of the k/n(F ) system as the above-discussed is equivalent to the
following state N(t) of a M/M(M/M)/1/k/n queueing system with a repairable service
station, i.e.
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N(t) =





0, if at time t, there is no customer in the queueing system; the service
station is idle and good,

1w, if at time t, there is one customer in the queueing system; the service
station is serving the customer,

1f , if at time t, there is one customer in the queueing system; the service
station is being repaired, and the customer is waiting for service, no
more new customers arrive,

...
...

mw, if at time t, there are m customers in the queueing system; the service
station is serving one customer, and the rest m− 1 customers are
waiting for service,

mf , if at time t, there are m customers in the queueing system; the service
station is being repaired, and the m customers are waiting for service,
no more new customers arrive,

...
...

(k − 1)w, if at time t, there are k − 1 customers in the queueing system;, the
service station is serving one customer, and the rest k − 2 customers
are waiting for service,

(k − 1)f , if at time t, there are k − 1 customers in the queueing system; the
service station is being repaired, and the k − 1 customers are waiting
for service, no more new customers arrive,

kw, if at time t, there are k customers in the queueing system; the service
station is serving one customer, and the rest k − 1 customers are waiting
for service; no more new customers arrive,

kf , if at time t, there are k customers in the queueing system; the service
station is repaired, and the k customers are waiting for service, no more
new customers arrive.

Obviously, the state space is Ω = {0, 1w, 1f , · · · ,mw,mf , · · · , (k−1)w, (k−1)f , kw, kf},
the set of working states is W = {0, 1w, · · · ,mw, · · · , (k−1)w}, and the set of failure states
is F = {1f , · · · ,mf , · · · , (k − 1)f , kw, kf}. Although the stochastic process {N(t), t ≥
0} is not a Markov process, we can obtain a vector Markov process by introducing a
supplementary variable. Let the supplementary variable S(t) = lw or lf , (l = 1, 2, · · ·) be
the working state or the repair state of the repair-equipment in lth cycle at time t, then
{N(t), S(t), t ≥ 0} forms a vector Markov process.
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Denote the state probability of the system by

pmlw(t) = P (N(t) = mw, S(t) = lw), (m = 0, 1, · · · , k − 1; l = 1, 2, · · ·),

and

pmlf (t) = P (N(t) = mf , S(t) = lf ), (m = 1, 2, · · · , k − 1, k; l = 1, 2, · · ·).

With the classical probability theory, it is straightforward to derive the following differ-
ential equations:

d

dt
p0lw(t) = −nλp0lw(t) + µp1lw(t), (l = 1, 2, · · ·) (1)

d

dt
pm1w(t) = −((n−m)λ + µ + α)pm1w(t) + (n−m + 1)λp(m−1)1w

(t) + µp(m+1)1w
(t),

(m = 1, 2, · · · , k − 1) (2)
d

dt
pk1w(t) = −(µ + α)pk1w(t) + (n− k + 1)λp(k−1)1w

(t) (3)

d

dt
pmlw(t) = −((n−m)λ + µ + al−1α)pmlw(t) + (n−m + 1)λp(m−1)lw(t) + µp(m+1)lw(t)

+bl−2βpm(l−1)f
(t), (m = 1, 2, · · · , k − 1; l = 2, 3, · · ·) (4)

d

dt
pklw(t) = −(µ + al−1α)pklw(t) + (n− k + 1)λp(k−1)lw(t) + bl−2βpk(l−1)f

(t),

(l = 2, 3, · · ·) (5)
d

dt
pmlf (t) = −bl−1β)pmlf (t) + al−1αpmlw(t), (m = 1, 2, · · · , k − 1, k; l = 1, 2, · · ·) (6)

The initial conditions are:

p01w(0) = 1; p0lw(0) = 0 (l = 2, 3, · · ·),

pmlw(0) = 0 (m = 1, 2, · · · , k − 1, k; l = 1, 2, · · ·),
and

pmlf (0) = 0 (m = 0, 1, · · · , k − 1, k; l = 1, 2, · · ·).

4 Some characters of the k/n(F ) system

It is known there are three important indices in the queueing theory, i.e. queue length,
waiting time and busy period and their distributions. This section will derive reliability
indices, including system availability, mean waiting time and the idle probability of the
repair-equipment on the basis of the queueing theory. Let

p∗mlw(s) =
∫ ∞

0
e−stpmlw(t)dt, m = 0, 1, 2, · · · , k; l = 1, 2, · · ·
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p∗mlf
(s) =

∫ ∞

0
e−stpmlf (t)dt, m = 1, 2, · · · , k; l = 1, 2, · · ·

be the Laplace transform of the state probability distribution. Then taking the Laplace
transform on the both sides of the differential equations (1)-(6), considering the initial
conditions, that the following equations are given

(s + nλ)p∗01w
(s) = µp∗11w

(s) + 1 (7)

(s + nλ)p∗0lw(s) = µp∗1lw(s), (l = 2, 3, · · ·) (8)

(s + (n−m)λ + µ + α)p∗m1w
(s) = (n−m + 1)λp∗(m−1)1w

(s) + µp∗(m+1)1w
(s),

(m = 1, 2, · · · , k − 1) (9)

(s + µ + α)p∗k1w
(s) = (n− k + 1)λp∗(k−1)1w

(s) (10)

(s + (n−m)λ + µ + al−1α)p∗mlw(s) = (n−m + 1)λp∗(m−1)lw
(s) + µp∗(m+1)lw

(s)

+bl−2βp∗m(l−1)f
(s),

(m = 1, 2, · · · , k − 1; l = 2, 3, · · ·) (11)

(s + µ + al−1α)p∗klw(s) = (n− k + 1)λp∗(k−1)lw
(s) + bl−2βp∗k(l−1)f

(s),

(l = 2, 3, · · ·) (12)

(s + bl−1β)p∗mlf
(s) = al−1αp∗mlw(s),

(m = 1, 2, · · · , k − 1; l = 1, 2, · · ·) (13)

To solve equations (7)-(13), we recall from classical M/M/1 queueing system, the busy
periods {b1, b2, · · ·} are i.i.d. with distribution B(t) = P (b ≤ t), where b is denoted the
busy length.

Lemma 1 The Laplace-Stieltjes tranform of B(t) is given by

B∗(s) =
∫ ∞

0
e−stdB(t) =

s + λ + µ−√
(s + λ + µ)2 − 4λµ

2λ

The proof of Lemma 1 can be find in Takacs[32] or Kleinrock[33].

Lemma 2 The distribution of
n∑

i=1
Xi is given by

H(n)(t) = 1−
n∑

i=1

n∏

j=1

(j 6=i)

aj−1

aj−1 − ai−1
e−ai−1αt

Proof It is known that if n random variables X1, X2, · · · , Xn are independent, and
Xi has exponential distribution with the parameter λi, i.e.

Hi(t) = 1− e−λit,where, λi = ai−1α; i = 1, 2, · · · , n

9



 

 

 

ACCEPTED MANUSCRIPT 

 

with the definition of Laplace-Stieltjes transform of H(n)(t), we have

H∗(n)(s) =
∫ ∞

0
e−stdH(n)(t)

= E{e
−s(

n∑
i=1

Xi)

} =
n∏

i=1

E{e−sXi}

=
n∏

i=1

∫ ∞

0
e−stdHi(t) =

n∏

i=1

λi

s + λi
=

n∑

i=1

ciλi

s + λi

where

ci =
n∏

j=1

j 6=i

λj

λj − λi

In reverse, we can obtain

H(n)(t) =
n∑

i=1

ciHi(t) =
n∑

i=1

ci(1− e−λit) =
n∑

i=1

ci −
n∑

i=1

cie
−λit

If t −→∞ and H(n)(t) −→ 1,
n∑

i=1
ci = 1. Hence, Lemma 2 holds.

Theorem 1 At time t, the probabilities of all components working in the system
are given by

p01w(t) = e−λt +
∞∑

n=2

∫ t

0
[F (n−1)(t− u)− F (n)(t− u)]e−αudB(n−1)(u)

p0lw(t) =
∞∑

n=2

∫ t

0
[F (n−1) ∗K(l−1)(t− u)− F (n) ∗K(l−1)(t− u)]

·[H(l−1)(u)−H(l)(u)]dB(n−1)(u), (l = 2, 3, · · ·)

where
F (n)(t) = F (t) ∗ F (t) ∗ · · · ∗ F (t)

B(n)(t) = B(t) ∗B(t) ∗ · · · ∗B(t)

H(n)(t) = H(t) ∗H(at) ∗ · · · ∗H(an−1t)

and
K(n)(t) = K(t) ∗K(bt) ∗ · · · ∗K(bn−1t)

are respectively the cumulative probability distribution functions of
n∑

i=1
ξi,

n∑
i=1

bi,
n∑

i=1
Xi

and
n∑

i=1
Yi.
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Proof According to the model assumptions and N(0) = 0, at t = 0, the repair-
equipment is idle. Since the idle period vi and the busy period bi (i = 1, 2, · · ·) occur
alternatively, we have

p01w(t) = P{N(t) = 0, S(t) = 1w}

= P (v1 > t) +
∞∑

n=2

P{
n−1∑

i=1

(vi + bi) ≤ t <
n−1∑

i=1

(vi + bi) + vn;
n−1∑

i=1

bi < X1}

= 1− F (t) +
∞∑

n=2

∫ t

0
P{

n−1∑

i=1

vi ≤ t− u <
n∑

i=1

vi; X1 > u}dB(n−1)(u)

= e−λt +
∞∑

n=2

∫ t

0
[F (n−1)(t− u)− F (n)(t− u)]e−αudB(n−1)(u)

p0lw(t) = P{N(t) = 0, S(t) = lw}

=
∞∑

n=2

P{
n−1∑

i=1

(vi + bi) +
l−1∑

i=1

Yi ≤ t <
n−1∑

i=1

(vi + bi) + vn +
l−1∑

i=1

Yi;

l−1∑

i=1

Xi ≤
n−1∑

i=1

bi <
l∑

i=1

Xi}

=
∞∑

n=2

∫ t

0
P{

n−1∑

i=1

vi +
l−1∑

i=1

Yi ≤ t− u <
n∑

i=1

vi +
l−1∑

i=1

Yi;
l−1∑

i=1

Xi ≤ u <
l∑

i=1

Xi}

dB(n−1)(u)

=
∞∑

n=2

∫ t

0
[F (n−1) ∗K(l−1)(t− u)− F (n) ∗K(l−1)(t− u)]

·[H(l−1)(u)−H(l)(u)]dB(n−1)(u), (l = 2, 3, · · ·)

Theorem 2

p∗01w
(s) =

1
s + λ− λB∗(s + α)

, (14)

p∗0lw(s) =
l−1∏

j=1

(ab)j−1β

s + bj−1β

l∑

i=1

[
l∏

r=1

r 6=i

1
ar−1 − ai−1

]
λB∗(s + ai−1α)

(s + λ)[s + λ− λB∗(s + ai−1α)]
, (15)

(l = 2, 3, · · ·).

Proof It follows from Theorem 1 that

p∗01w
(s) =

∫ ∞

0
e−stp01w(t)dt

=
∫ ∞

0
e−st{

∞∑

n=2

∫ t

0
[F (n−1)(t− u)− F (n)(t− u)]e−αudB(n−1)(u) + e−λt}dt
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=
∞∑

n=2

∫ ∞

0
{
∫ ∞

u
e−st[F (n−1)(t− u)− F (n)(t− u)]dt}e−αudB(n−1)(u) +

1
s + λ

=
∞∑

n=2

∫ ∞

0
[
∫ ∞

0
e−s(u+v)(F (n−1)(v)− F (n)(v))dv]e−αudB(n−1)(u) +

1
s + λ

=
∞∑

n=2

∫ ∞

0
e−su[

∫ ∞

0
e−svF (n−1)(v)dv −

∫ ∞

0
e−svF (n)(v)dv]e−αudB(n−1)(u) +

1
s + λ

=
1

s + λ
+

∞∑

n=2

1
s
[(

λ

s + λ
)n−1 − (

λ

s + λ
)n]

∫ ∞

0
e−(s+α)udB(n−1)(u)

=
1

s + λ
+

∞∑

n=2

λn−1

(s + λ)n
[B∗(s + α)]n−1

=
1

s + λ− λB∗(s + α)

Similarly, from Theorem 1 and Lemma 2, we have

p∗0lw(s) =
∫ ∞

0
e−stp0lw(t)dt

=
∫ ∞

0
e−st{

∞∑

n=2

∫ t

0
[F (n−1) ∗K(l−1)(t− u)− F (n) ∗K(l−1)(t− u)]

[H(l−1)(u)−H(l)(u)]dB(n−1)(u)}dt

=
∞∑

n=2

∫ ∞

0
{
∫ ∞

u
e−st[F (n−1) ∗K(l−1)(t− u)− F (n) ∗K(l−1)(t− u)]dt}

[H(l−1)(u)−H(l)(u)]dB(n−1)(u)

=
∞∑

n=2

∫ ∞

0
{
∫ ∞

0
e−s(u+v)[F (n−1) ∗K(l−1)(v)− F (n) ∗K(l−1)(v)]dv}

[H(l−1)(u)−H(l)(u)]dB(n−1)(u)

=
∞∑

n=2

1
s
[

λn−1

(s + λ)n−1
− λn

(s + λ)n
](

l−1∏

j=1

bj−1β

s + bj−1β
)
∫ ∞

0
e−su[H(l−1)(u)−H(l)(u)]

dB(n−1)(u)

=
l−1∏

j=1

bj−1β

s + bj−1β

∞∑

n=2

λn−1

(s + λ)n

∫ ∞

0
e−su[

l∑

i=1

l∏

r=1

(r 6=i)

ar−1

ar−1 − ai−1
e−ai−1αu −

l−1∑

i=1

l−1∏

r=1

(r 6=i)

ar−1

ar−1 − ai−1
e−ai−1αu]dB(n−1)(u)
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=
l−1∏

j=1

bj−1β

s + bj−1β
[

l∑

i=1

l∏

r=1

(r 6=i)

ar−1

ar−1 − ai−1

∞∑

n=2

λn−1

(s + λ)n
(B∗(s + ai−1α))n−1 −

l−1∑

i=1

l−1∏

r=1

(r 6=i)

ar−1

ar−1 − ai−1

∞∑

n=2

λn−1

(s + λ)n
(B∗(s + ai−1α))n−1]

=
l−1∏

j=1

bj−1β

s + bj−1β
[

l∑

i=1

l∏

r=1

(r 6=i)

ar−1

ar−1 − ai−1

λB∗(s + ai−1α)
(s + λ)[s + λ− λB∗(s + ai−1α)]

−

l−1∑

i=1

l−1∏

r=1

(r 6=i)

ar−1

ar−1 − ai−1

λB∗(s + ai−1α)
(s + λ)[s + λ− λB∗(s + ai−1α)]

]

=
l−1∏

j=1

(ab)j−1β

s + bj−1β

l∑

i=1

[
l∏

r=1

(r 6=i)

1
ar−1 − ai−1

]
λB∗(s + ai−1α)

(s + λ)[s + λ− λB∗(s + ai−1α)]

On the basis of Theorem 2, we can derive the Laplace transform p∗mlw
(s) of pmlw(t).

To do this, first of all it follows from the equation (7) that

p∗11w
(s) =

s + nλ

µ
p∗01w

(s)− 1
µ

=
(n− 1)λB∗(s + α)

µ[s + λ− λB∗(s + α)]
(16)

Furthermore, we have the following theorem.
Theorem 3

p∗m1w
(s) =

(n− 1)λB∗(s + α)(Mm −Nm) + µ(MNm −NMm)
µ(M −N)[s + λ− λB∗(s + α)]

, (m = 0, 1, 2, · · · , k−1)

where M and N are two roots of the quadratic equation

t2−s + (n−m)λ + µ + α

µ
t+

(n−m + 1)λ
µ

= 0 (17)

proof According to (9), we have

p∗(m+1)1w
(s) =

s + (n−m)λ + µ + α

µ
p∗m1w

(s)− (n−m + 1)λ
µ

p∗(m−1)1w
(s), (18)

(m = 1, 2, · · · , k − 1)

Because M and N are two roots of the equation (17),then

M + N =
s + (n−m)λ + µ + α

µ
, MN =

(n−m + 1)λ
µ
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and equation (18) becomes

p∗(m+1)1w
(s)−Mp∗m1w

(s) = N [p∗m1w
(s)−Mp∗(m−1)1w

(s)]

or
p∗(m+1)1w

(s)−Np∗m1w
(s) = M [p∗m1w

(s)−Np∗(m−1)1w
(s)]

By iteration, it is straightforward that

p∗m1w
(s)−Mp∗(m−1)1w

(s) = Nm−1[p∗11w
(s)−Mp∗01w

(s)] (19)

and

p∗m1w
(s)−Np∗(m−1)1w

(s) = Mm−1[p∗11w
(s)−Np∗01w

(s)] (20)

According to the equations (14), (16), (19) and (20), we can obtain

p∗m1w
(s) =

Mm −Nm

M −N
p∗11w

(s) +
MNm −NMm

M −N
p∗01w

(s)

=
(n− 1)λB∗(s + α)(Mm −Nm) + µ(MNm −NMm)

µ(M −N)[s + λ− λB∗(s + α)]
, (m = 0, 1, 2, · · · , k − 1)

According to the equation (13) and Theorem 3, we have

p∗m1f
(s) =

α

s + β
p∗m1w

(s)

=
(n− 1)λαB∗(s + α)(Mm −Nm) + µα(MNm −NMm)

µ(M −N)(s + β)[s + λ− λB∗(s + α)]
, (m = 1, 2, · · · , k) (21)

According to the equation (15) in Theorem 2, we have

p∗02w
(s) =

λβ

(s + β)(a− 1)
B∗(s + α)−B∗(s + aα)

[s + λ− λB∗(s + α)][s + λ− λB∗(s + aα)]
(22)

According to the equations (8), (11), (12), (21) and (22), we can obtain

p∗12w
(s) =

λβ(s + nλ)
µ(s + β)(a− 1)

· B∗(s + α)−B∗(s + aα)
[s + λ− λB∗(s + α)][s + λ− λB∗(s + aα)]

p∗22w
(s) =

λβ[(s + nλ)(s + (n− 1)λ + µ + aα)− nλµ][B∗(s + α)−B∗(s + aα)]
µ2(s + β)(a− 1)[s + λ− λB∗(s + α)][s + λ− λB∗(s + aα)]

− (n− 1)λαβB∗(s + α)
µ2(s + β)[s + λ− λB∗(s + α)]

Then we can determine p∗m2w
(s), for m = 3, 4, · · · , k−1, k by using the equations (11),

(12) and the above obtained results again and again. And by using the equation (13),
we can get p∗m2f

(s), for m = 1, 2, · · · , k − 1, k. In general, on the basis of Theorem 2 and
3, we can also determine the Laplace transform p∗mlw

(s) and p∗mlf
(s) from the equations

(7) to (13) recurrently.
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4.1 System availability

By the definition, the availability of the system at time t is given by

A(t) = P{N(t) ∈ W} =
∞∑

l=1

[
k−1∑

m=0

pmlw(t)]

= p01w(t) +
∞∑

l=1

[
k−1∑

m=1

pmlw(t)]

and the Laplace transform of A(t) is given by

A∗(s) = p∗01w
(s) +

∞∑

l=1

[
k−1∑

m=1

p∗mlw(s)]

4.2 Mean of waiting time

A failed component at time t is repaired immediately when the repair-equipment is
idle, otherwise it will wait for repair according to the ”first in first out” rule. Thus, the
mean waiting time of a failed component at time t is an interesting index for the k/n(F )
system. Let Wt be the waiting time for repair of a failed component at time t, and let
Gm be the total chain-repair time for m failed components in the system and denote the
distribution of Gm by G(m). Moreover, let X̂i be the residual life of Xi. Then we can
obtain the following theorem about the distribution of waiting time.

Theorem 4 Let the distribution of Wt be Wt(x), then

Wt(x) =
∞∑

l=1

k−1∑

m=1

pmlw(t)
∞∑

n=0

∫ x

0
K

(n)
l (x− u)[H(n)

l (u)−H
(n+1)
l (u)]dG(m)(u)

where n is the failed number of the repair-equipment during the time Gm. And

K
(n)
l (u) = Kl(u) ∗Kl+1(u) ∗ · · · ∗Kl+n−1(u)

H
(n)
l (u) = Hl(u) ∗Hl+1(u) ∗ · · · ∗Hl+n−1(u)

G(m)(u) = G(u) ∗G(u) ∗ · · · ∗G(u)

Proof According to the conditional probability and the formula of total probability,
we have

Wt(x) = P{Wt ≤ x}

=
∞∑

l=1

k−1∑

m=1

P{Wt ≤ x,N(t) = mw, S(t) = lw}
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=
∞∑

l=1

k−1∑

m=1

P{N(t) = mw, S(t) = lw}P{Wt ≤ x|N(t) = mw, S(t) = lw}

=
∞∑

l=1

k−1∑

m=1

pmlw(t)
∞∑

n=0

P{Gm +
l+n−1∑

i=l

Yi ≤ x, X̂l +
l+n−1∑

i=l+1

Xi ≤ Gm < X̂l +
l+n∑

i=l+1

Xi}

=
∞∑

l=1

k−1∑

m=1

pmlw(t)
∞∑

n=0

∫ x

0
P{

l+n−1∑

i=l

Yi ≤ x− u, X̂l +
l+n−1∑

i=l+1

Xi ≤ u < X̂l +
l+n∑

i=l+1

Xi}

dG(m)(u)

=
∞∑

l=1

k−1∑

m=1

pmlw(t)
∞∑

n=0

∫ x

0
K

(n)
l (x− u)[H(n)

l (u)−H
(n+1)
l (u)]dG(m)(u)

Thus, the mean of waiting time to a failed component for repair is given by

EWt =
∫ ∞

0
xdWt(x)

Clearly, if the value of EWt is larger, we should improve the repair efficiency of the
repair-equipment so that the cost of the system is decreased.

4.3 Mean of busy period

It is known that a busy period for the repair-equipment will start when a component
in the system fails and the number of failed component in the system is 1, it will end
at the time that the number of the failed components in the system reduces to 0. To
determine the mean of busy period for the repair-equipment, we study a stochastic
process {Ñ(t), t ≥ 0}. The only difference between the processes {N(t), t ≥ 0} and
{Ñ(t), t ≥ 0} is that the state 0 is an absorbing state in {Ñ(t), t ≥ 0}.

Let B̃ be the length of a busy period, then the distribution function is given by

B̃(t) = P{B̃ ≤ t} = P{Ñ(t) = 0}

Furthermore, we can obtain the following theorem about the distribution of busy period.

Theorem 5

B̃(t) =
∞∑

l=1

B(t)[1−Hl(t)] +
∞∑

l=1

∞∑

n=1

∫ t

0
B(t− u)[H(n)

l (t− u)−H
(n+1)
l (t− u)]dK

(n)
l (u)

where B(t) is the distribution of a busy period in the classical M/M/1 queueing system.

Proof First of all, we introduce a supplementary variable S̃(t) which is the same
as the S(t) in the process {N(t), t ≥ 0}, such that S̃(t) = lw, if the (l − 1)th repair has
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been completed. Thus we can also obtain a vector Markov process {Ñ(t), S̃(t), t ≥ 0}.
Thus

B̃(t) = P{Ñ(t) = 0}

=
∞∑

l=1

∞∑

j=l

P{Ñ(t) = 0, S̃(t) = jw, S̃(0) = lw}

=
∞∑

l=1

P{Ñ(t) = 0, S̃(t) = lw, S̃(0) = lw}

+
∞∑

l=1

∞∑

j=l+1

P{Ñ(t) = 0, S̃(t) = jw, S̃(0) = lw}

=
∞∑

l=1

P{Ñ(t) = 0, the repair-equipment works in(0, t], S̃(0) = lw}

+
∞∑

l=1

∞∑

n
∆
=j−l=1

P{Ñ(t) = 0, the repair-equipment fails for n times in(0, t], S̃(0) = lw}

=
∞∑

l=1

P{B ≤ t, X̂l > t}+
∞∑

l=1

∞∑

n=1

P{B +
l+n−1∑

i=l

Yi ≤ t, X̂l +
l+n−1∑

i=l

Yi +
l+n−1∑

i=l+1

Xi ≤ t

< X̂l +
l+n−1∑

i=l

Yi +
l+n∑

i=l+1

Xi}

=
∞∑

l=1

B(t)[1−Hl(t)]

+
∞∑

l=1

∞∑

n=1

∫ t

0
P{B ≤ t− u, X̂l +

l+n−1∑

i=l+1

Xi ≤ t− u < X̂l +
l+n∑

i=l+1

Xi}dK
(n)
l (u)

=
∞∑

l=1

B(t)[1−Hl(t)] +
∞∑

l=1

∞∑

n=1

∫ t

0
B(t− u)[H(n)

l (t− u)−H
(n+1)
l (t− u)]dK

(n)
l (u)

Thus, the mean of busy period for the repair-equipment is given by

EB̃ =
∫ ∞

0
tdB̃(t)

4.4 The idle probability of the repair-equipment

Clearly, the repair-equipment will be idle when all components are working at time
t.Thus, according to Theorem 1, the idle probability of the repair-equipment at time t is
given by

I(t) = P{N(t) = 0} = p01w(t) + p0lw(t)
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= e−λt +
∞∑

n=2

∫ t

0
[F (n−1)(t− u)− F (n)(t− u)]e−αudB(n−1)(u)

+
∞∑

n=2

∫ t

0
[F (n−1) ∗K(l−1)(t− u)− F (n) ∗K(l−1)(t− u)]

·[H(l−1)(u)−H(l)(u)]dB(n−1)(u), (l = 1, 2, · · ·)

4.5 Repair-equipment MTTFF

To determine the mean time to first failure(MTTFF) of the repair-equipment, we
derive the distribution of the time to first failure of the repair-equipment. Given that
there is no failed component in the system at the beginning, let Tf be the time to the
first failure of the repair-equipment, and let the distribution of Tf be

Ψ0(t) = P{Tf ≤ t|N(0) = 0} (23)

and denote the Laplace-Stieltjes tranform of Ψ0(t) by Ψ∗
0(s) =

∫∞
0 e−stdΨ0(t). Then we

have the following theorem.

Theorem 6

Ψ∗
0(s) =

λα[1−B∗(s + α)]
(s + α)[s + λ− λB∗(s + α)]

Proof As before, let vi be the ith idle period, then it follows from the equation
(23) that

Ψ0(t) = P{Tf ≤ t|N(0) = 0}

=
∞∑

n=1

P{
n∑

i=1

vi + X1 ≤ t,
n−1∑

i=1

bi < X1 ≤
n∑

i=1

bi}

=
∞∑

n=1

∫ t

0
P{

n∑

i=1

vi ≤ t− u,
n−1∑

i=1

bi < u ≤
n∑

i=1

bi}dH1(u)

=
∞∑

n=1

∫ t

0
F (n)(t− u)[B(n−1)(u)−B(n)(u)]dH1(u)

Consequently, we have

Ψ∗
0(s) =

∫ ∞

0
e−stdΨ0(t)

=
∞∑

n=1

(
λ

s + λ
)n

∫ ∞

0
e−st[B(n−1)(t)−B(n)(t)]dH1(t)

=
∞∑

n=1

(
λ

s + λ
)n

∫ ∞

0
αe−(s+α)t[B(n−1)(t)−B(n)(t)]dH1(t)
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=
∞∑

n=1

(
λ

s + λ
)n[

α

s + α
(B∗(s + α))n−1 − α

s + α
(B∗(s + α))n]

=
α

s + α

∞∑

n=1

[
λ

s + λ
(
λB∗(s + α)

s + λ
)n−1 − (

λB∗(s + α)
s + λ

)n]

=
λα[1−B∗(s + α)]

(s + α)[s + λ− λB∗(s + α)]

Thus, the mean time to first failure (MTTFF) of the repair-equipment is given by

ETf = − d

ds
Ψ∗

0(s)|s=0 =
1
α

+
1

λ[1−B∗(α)]

4.6 Availability of the repair-equipment

Let the availability of the repair-equipment at time t be

Af (t) = P{the repair-equipment works at time t|N(0) = 0}.
Then

Āf (t) = P{the repair-equipment fails at time t|N(0) = 0}
is the probability that the repair-equipment fails at time t. Now, denote the Laplace
transforms of Af (t) and Āf (t) by A∗f (s) and Ā∗f (s) respectively. Then, the following
theorem follows directly.

Theorem 7

A∗f (s) =
k−1∑

m=0

∞∑

l=1

p∗mlw(s)

Proof It is clear that

Af (t) = P{the repair-equipment works at time t|N(0) = 0}

=
k−1∑

m=0

∞∑

l=1

P{N(t) = mw, S(t) = lw|N(0) = 0}

=
k−1∑

m=0

∞∑

l=1

pmlw(t)

Therefore

A∗f (s) =
k−1∑

m=0

∞∑

l=1

p∗mlw(s)

Furthermore, due to the fact Af (t) + Āf (t) = 1, we have

A∗f (s) + Ā∗f (s) =
1
s

Consequently, Ā∗f (s) can also be determined.
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4.7 Repair-equipment ROCOF

The ROCOF is one of important indices in reliability theory. Let Mf (t) be the mean
failure number of the repair-equipment in (0, t], then its derivative mf (t) = d

dtMf (t) is
called the rate of occurrence of failure (ROCOF). According to Lam [34], the ROCOF
can be evaluated in the following way:

mf (t) =
∑

m∈W,n∈F

∞∑

l=1

pmlw(t)rmnl

where rmnl is transition rate from state m to state n in lth cycle. Thus, we can obtain

m∗
f (s) =

k∑

m=1

∞∑

l=1

al−1αp∗mlw(s)

where m∗
f (s) is the Laplace transform of mf (t). Since p∗mlw

(s) has been determined in
Section 4, we can then evaluate m∗

f (s).

5 Replacement policy for the repair-equipment

5.1 Expected cost rate under policy N

In this section, we consider a replacement policy N based on the number of failures
of the repair-equipment. The repair-equipment will be replaced by a new and identical
one whenever the failure number of the repair-equipment reaches N . Our objective is
to search an optimal replacement policy N∗ such that the expected cost rate of the
repair-equipment is minimized. To do this, we add the following assumptions.

Assumption 7 A replacement policy N based on the number of failures of the
repair-equipment is used. The repair-equipment will be replaced sometime by a new and
identical one, and the replacement time is negligible.

Assumption 8 The repair cost rate of the repair-equipment is cr, the working
reward rate of the repair-equipment is cw, and the fixed replacement cost of the repair-
equipment is C.

Let τ1 be the first replacement time of the repair-equipment after installation, and
τn(n ≥ 2) be the time between the (n − 1)th and the nth replacements of the repair-
equipment under policy N. Clearly, {τ1, τ2, · · ·} forms a renewal process, and the time
between two consecutive replacements is called a renewal cycle.

Let C(N) be the expected cost rate of the repair-equipment under policy N . Thus,
according to the model assumptions and the renewal reward theorem (see, for example
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Ross [31]), we have

C(N) =
the expected cost incurred in a renewal cycle

the expected length of a renewal cycle

=
E(cr

N−1∑
j=1

Yj + C − cw

N∑
j=1

Xj)

E(
N−1∑
j=1

Yj +
N∑

j=1
Xj)

=
cr

N−1∑
j=1

1
bj−1β

+ C − cw

N∑
j=1

1
aj−1α

N−1∑
j=1

1
bj−1β

+
N∑

j=1

1
aj−1α

(24)

Obviously, we can determine an optimal replacement policy N∗ by analytical or
numerical methods such that C(N) is minimized.

5.2 Optimal replacement policy N ∗

In order to determine the optimal replacement policy N∗ for minimizing C(N) ex-
plicitly, we rewrite the equation (24) as

C(N) = A(N)− cw,

where

A(N) =
(cr + cw)

N−1∑
j=1

1
bj−1β

+ C

N∑
j=1

1
aj−1α

+
N−1∑
j=1

1
bj−1β

.

Thus, to minimize C(N) is equivalent to minimize A(N). The difference of A(N + 1)
and A(N) is given as:

A(N + 1)−A(N) =
(cr + cw)

N∑
j=1

1
bj−1β

+ C

N+1∑
j=1

1
aj−1α

+
N∑

j=1

1
bj−1β

−
(cr + cw)

N−1∑
j=1

1
bj−1β

+ C

N∑
j=1

1
aj−1α

+
N−1∑
j=1

1
bi−1β

=

cr+cw

bN−1β

N∑
j=1

bj−1 + C

1
aNα

N+1∑
j=1

aj−1 + 1
bN−1β

N∑
j=1

bj−1

−
cr+cw

bN−2β

N−1∑
j=1

bj−1 + C

1
aN−1α

N∑
j=1

aj−1 + 1
bN−2β

N−1∑
j=1

bj−1

=
(cr + cw)h(N)− C(aNα + bN−1β)

aNbN−1αβ[ 1
aNα

N+1∑
j=1

aj−1 + 1
bN−1β

N∑
j=1

bj−1][ 1
aN−1α

N∑
j=1

aj−1 + 1
bN−2β

N−1∑
j=1

bj−1]
,
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where h(N) =
N∑

j=1
aj −

N−1∑
j=1

bj .

We now structure an auxiliary function

B(N) =
(cr + cw)h(N)

C(aNα + bN−1β)
(25)

Because the denominator of A(N + 1)−A(N) is always positive, the sign of A(N + 1)−
A(N) is the same as the sign of its numerator. Thus, the following lemma is straightfor-
ward.

Lemma 3
A(N + 1)

>

<
A(N) ⇐⇒ B(N)

>

<
1.

Lemma 1 shows that the monotonicity of A(N) is determined by the value of B(N).
We can simplify the difference of B(N + 1) and B(N) as follows.

B(N + 1)−B(N) =
(cr + cw)h(N + 1)
C(aN+1α + bNβ)

− (cr + cw)h(N)
C(aNα + bN−1β)

=
cr + cw

C
(
h(N + 1)(aNα + bN−1β)− h(N)(aN+1α + bNβ)

(aN+1α + bNβ)(aNα + bN−1β)
)

=
cr + cw

C
(
aNα[h(N + 1)− ah(N)] + bN−1β[h(N + 1)− bh(N)]

(aN+1α + bNβ)(aNα + bN−1β)
),

where

h(N +1)−ah(N) = (
N+1∑

j=1

aj−
N∑

j=1

bj)−a(
N∑

j=1

aj−
N−1∑

j=1

bj) = (a− bN )+(a−1)
N−1∑

j=1

bj ≥ 0,

h(N +1)−bh(N) = (
N+1∑

j=1

aj−
N∑

j=1

bj)−b(
N∑

j=1

aj−
N−1∑

j=1

bj) = (1−b)
N∑

j=1

aj +(aN+1−b) ≥ 0.

Thus, B(N + 1)−B(N) ≥ 0, this implies:

Lemma 4 B(N) is nondecreasing in N .

According to Lemmas 3 and 4, an analytic expression for an optimal policy for min-
imizing A(N) can be obtained. The following theorem can be obtained.

Theorem 8 The optimal replacement policy N∗ can be determined by

N∗ = min{N | B(N) ≥ 1} (26)
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Furthermore, if B(N∗) > 1, then the optimal policy N∗ is unique.
Because B(N) is nondecreasing in N , there exists an integer N∗ such that

B(N) ≥ 1 ⇐⇒ N ≥ N∗

and
B(N) < 1 ⇐⇒ N < N∗.

Note that N∗ is the minimum satisfying (26), and the policy N∗ is an optimal re-
placement policy. Furthermore, it is easy to see that if B(N∗) > 1, then the optimal
policy is also uniquely existent.

5.3 A numerical example for policy N

In this section, we provide a numerical example to illustrate the optimal replacement
policy N∗ for minimizing C(N). Now, let

l1 =
N∑

j=1

1
aj−1

, l2 =
N−1∑

j=1

1
bj−1

, l3 =
N∑

j=1

aj , l4 =
N−1∑

j=1

bj ,

then equations (24) and (25) become respectively

C(N) =
cr
β l2 + C − cw

α l1
l1
α + l2

β

(27)

and
B(N) =

(cr + cw)(l3 − l4)
C(aNα + bN−1β)

. (28)

Further let a = 1.15, b = 0.85, α = 0.02, β = 1, cr = 15, cw = 60 and C = 4000.

Substituting the above values into equations (27) and (28), we can respectively obtain
the results presented in Figure 1 and Table 1.

It is easy to find that C(10) = −42.3998 is the minimum of the expected cost rate
of the repair-equipment. In other words, the optimal policy is N∗ = 10 and we should
replace the repair-equipment at the time of the 10th failure. And the optimal policy
N = 10 is unique from Figure 1, Table 1 or the conclusion of Theorem 8 because B(10) =
1.1396 > 1.
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Fig.1  The plots of C(N) and B(N) against failure number N

C(N)

B(N)

N

Table 1: Results obtained from Equations (27) and (28)

N C(N) B(N) N C(N) B(N) N C(N) B(N)

1 20.0000 0.0211 11 -42.3063 1.5166 21 -31.1221 5.9243
2 -16.8684 0.0347 12 -42.0093 1.9569 22 -29.0294 6.1500
3 -28.8058 0.0603 13 -41.5236 2.4485 23 -26.7891 6.3349
4 -34.5588 0.1027 14 -40.8560 2.9723 24 -24.4224 6.4856
5 -37.8255 0.1682 15 -40.0090 3.5050 25 -21.9552 6.6080
6 -39.8282 0.2646 16 -38.9820 4.0234 26 -19.4178 6.7074
7 -41.0853 0.4007 17 -37.7733 4.5075 27 -16.8432 6.7882
8 -41.8512 0.5862 18 -36.3815 4.9439 28 -14.2662 6.8541
9 -42.2633 0.8302 19 -34.8067 5.3255 29 -11.7212 6.9080
10 -42.3998 1.1396 20 -33.0515 5.6513 30 -9.2408 6.9523
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6 Concluding remarks

In this paper, the reliability and replacement policy of a k/n(F ) system with repairable
repair-equipment are analyzed. We assume that the working time distributions and the
repair time distributions of all components, and the repair-equipment in the system are
exponential, repair on a failed component is perfect, and repair on the repair-equipment
is imperfect, i.e. the survival times of the repair-equipment after repair form a geometric
process. We then derive properties and reliability indices for such a system, as well as
replacement policy for the repair-equipment, using theories from the geometric process,
the vector Markov process and the queueing theory. The results in this paper are inter-
esting from a theoretical perspective and useful from a practical application perspective.
The following findings are also achieved.

(1) According to the assumptions in Section 2, we have indicated that the k/n(F ) re-
pairable system with repairable repair-equipment is equivalent to a M/M(M/M)/1/k/n

queueing system with repairable service station. By using the queueing theory, we de-
rived properties and reliability indices of the k/n(F ) repairable system on the basis of
the concept of busy period for classical M/M/1 queueing system. It is a generalization
of the existing work. For example, if we let a = b = 1, the M/M(M/M)/1/k/n queue-
ing system with repairable service station in which repair is imperfect will reduce to a
M/M(M/M)/1/k/n queueing system with repairable service station in which repair is
perfect. Therefore, the method introduced in this paper is new for analyzing the relia-
bility of the k/n(F ) repairable system with repairable repair-equipment.

(2) Although the geometric process has been wildly applied to the maintenance op-
timization for the simple repairable system and the multi-component series, parallel and
cold standby repairable systems, this is the first work to apply the geometric process to
a k/n(F ) system with repairable repair-equipment.

(3) Let N(t) be the state of the k/n(F ) system with repairable repair-equipment at
time t. It is clear from model assumptions that {N(t), t ≥ 0} is not a Markov pro-
cess. However, it can be extended to be a vector Markov process (i.e. a two-dimensional
Markov process) by introducing a supplementary variable. To obtain properties and
reliability indices of the system, we need to determine the state probabilities of the
system at time t. Accordingly, we can derive the system of differential equations about
pmlw(t), (m = 0, 1, · · · , k−1; l = 1, 2, · · ·) and pmlf (t), (m = 1, 2, · · · , k−1, k; l = 1, 2, · · ·).
Finally, the Laplace transform results of reliability indices of the system are obtained.
In general, conducting an inverse Laplace transformation to obtain transient results of
reliability indices is not easy, and results from Laplace transformation of reliability in-
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dices of the system are hard to obtain for practical application. Thus, for practical use, a
numerical method based on the Runge-Kutta method is often adopted (see, e.g., Zhang
and Wang [29]).

(4) In this paper, we consider a replacement policy N based on the number of failures
of the repairable repair-equipment. An optimal replacement policy N∗ for minimizing
C(N) is determined. The uniqueness of the optimal replacement policy N∗ is proved.
And a given numerical example can also illustrate the theoretical result. Theorem 8
can be used in practice, as based on this theorem one can stop searching the optimum
whenever B(N) crosses over 1.

(5) Our future work will be to conduct research for the situation where all components
in the system are not ”as good as new” or there are r(r > 1) repairable repair-equipment.
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