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Abstract

This thesis concerns the numerical investigation of suddenly expanded flows featuring
separation, instabilities and transition, in the context of Implicit Large Eddy Simulation
(ILES). The study of separated flows through suddenly expanded geometries is a clas-
sic yet complex area of research. These types of flows feature instabilities which may
lead to bifurcation. Non-linear bifurcation is of great importance when considering
hydrodynamic stability and the mechanism of laminar to turbulent flow transition.

A detailed numerical investigation of various high-resolution methods and their ability
to correctly predict the flow through a suddenly expanded and contracted geometry
demonstrates that the choice of the particular numerical method employed can lead
to an incorrect solution of the flow. The key difference between the various high-
resolution methods employed is in the calculation of the nonlinear wave-speed de-
pendent term. It is shown that the nonlinearity of this term provides an asymmetric
dissipation to the flow which triggers symmetry-breaking bifurcation in a fully sym-
metric computational set-up. High-resolution simulations of three-dimensional flow
through a plane suddenly expanded channel at low Reynolds numbers show that this
type of flow is characterised by a symmetric separation of the fluid which is nominally
two-dimensional in the spanwise direction. Increasing the Reynolds number reveals
a symmetry-breaking bifurcation of the fluid flow which becomes three-dimensional
as Reynolds number is further increased. Simulations confirm that it is this three-
dimensional disturbance which leads to the onset of time-dependent flow characterised
by the periodic shedding of vortices from the upstream recirculation zones.

Preconditioning techniques which aim to alleviate stiffness in the calculation of the
advective fluxes for low Reynolds number flows are shown to be unsuitable for flows
featuring instabilities. The added dissipation to the flow causes the prediction of an
incorrect stable solution or to an improper estimation of the size of the separation
bubbles.

Simulations of a synthetic jet issuing into quiescent air using various slope limiters
manage to capture the flow physics relatively well. Limiters are used to avoid a scheme
from being oscillatory and provide non-linear dissipation in the region of excessively
large gradients. The various limiters differ with regards to the amount of dissipation
they provide to the flow, hence the solution obtained is dependent on the limiter used.
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C H A P T E R 1

Introduction

The purpose of this Chapter is to review some of the fundamental concepts of Com-
putational Fluid Mechanics and to provide a foundation for the remaining Chapters of
this thesis. This Chapter starts by giving a few examples of everyday fluid mechanics
followed by a brief description of the physical relevance of the non-linear equations
solved during the solution procedure. Three different techniques for numerical dis-
cretisation will be briefly discussed before moving on to a discussion on the various
approaches used in Computational Fluid Dynamics. A discussion of the flow physics
behind the phenomena of flow separation, instabilities and the transition to turbulence
will be presented followed by the outline of the thesis and the resulting publications
from the work carried out during the course of the thesis.

1.1 Everyday Life Fluid Mechanics

‘T flow of a river never ceases to go past, nevertheless it is not the same water
as before. Bubbles floating along on the stagnant water now vanish and then

develop but have never remained’. Stated by Chohmei Kamo, a thirteenth century
Japanese essayist, in the prologue of Hohjohki. The movement of gas or liquid (col-
lectively called fluid) is referred to as the ‘flow’, and the study of this is called ‘fluid
mechanics’. Natural fluid flows such as the flow of the air and the water of rivers and
seas would be the first thoughts of typical everyday life fluid mechanics. Figure 1.1
shows a powerful example of natural fluid mechanics, hurricane Dean approaching the
Yucatan Peninsula. The flow of water, sewage and gas in pipes, in irrigation canals,
and around rockets, aircraft, express trains, automobiles and boats are more industrial
examples of fluid mechanics which also exist in everyday life. The science of fluid
dynamics can be subdivided into three areas: Hydrodynamics, which study the flow
of liquids; Gas dynamics, which study the flow of gases and Aerodynamics, which
concerns the flow of air. These three areas are by no means mutually exclusive and
often coincide with one another. The study of fluid mechanics from a numerical point
of view is referred to as Computational Fluid Dynamics.

Computational Fluid Dynamics has been a constantly developing field of science since
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Figure 1.1: Hurricane Dean, powerful natural fluid mechanics.

the advent of the digital computer, and will continue to develop for many many years
to come. The attraction of the subject is twofold. Firstly, the desire to be able to model
physical fluid phenomena that cannot be easily simulated or measured with a physical
experiment, for example weather systems or hypersonic aerospace vehicles. Secondly,
the desire to be able to investigate physical fluid systems more cost effectively and
more rapidly than with experimental procedures.

There has been considerable growth in the development and application of Computa-
tional Fluid Dynamics to all aspects of fluid dynamics. Commercial CFD programs
are now considered to be a standard numerical tool in the design and development area
of industry. As a consequence there is a considerable demand for specialists in the
subject, to apply and develop CFD methods throughout engineering companies and
research organisations. As the demand for CFD increases in conjunction with the ca-
pabilities to model more and more complex flows, the need for faster, more accurate,
more stable and robust numerical methods becomes pertinent to the forward progres-
sion of CFD.

Understanding the physical events that occur in the flow of fluids around and within
designated objects is an integral part of Computational Fluid Dynamics. These events
are related to the action and interaction of phenomena such as, and by no means limited
to, dissipation, diffusion, convection, shock waves, slip surfaces, boundary layers, and
turbulence. These phenomena are governed by the Navier-Stokes equations which
are inherently non-linear and hence have no analytic solution. This means that the
equations need to be solved numerically. How this is carried out is a whole subsection
of Computational Fluid Mechanics and will be briefly discussed later in this Chapter.
The Reynolds number of the particular flow in question plays in important part in
deciding whether the flow is laminar or turbulent. At low Reynolds numbers the flow
is laminar characterised by a smooth flow. As Reynolds number increases, the flow
becomes transitional and eventually becomes fully turbulent. A turbulent flow field is
extremely complex and features a large range of different scales structures. The process
of laminar transition to turbulence is usually due to some type of instability which
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triggers the flow to become turbulent. Unstable perturbations grow as viscous effects
decrease with increasing Reynolds number. The growth of these perturbations effects
the flow field as it’s ‘energy’ is passed to the different length scales, with the large
scales passing on to smaller scales until this ‘energy’ is small enough to be damped
out by the viscosity effects.

The equations governing the fluid flow problem are the continuity (conservation of
mass), the Navier-Stokes (conservation of momentum) and the energy equations. These
equations form a system of coupled non-linear partial differential equations (PDEs).
These equations can only be solved analytically in closed form by making the PDEs
linear. This can only be true if the non-linear terms naturally drop out for example in
a fully developed flow through a duct or for flows that are inviscid and irrotational ev-
erywhere. In the case that the nonlinear terms are small compared to other terms they
can often be neglected for example, creeping flows or small amplitude sloshing of liq-
uids. If the non-linearities in the governing PDEs cannot be neglected, which is usually
the case for most engineering flows, then solutions need to be obtained by solving the
equations numerically. Computational Fluid Dynamics replaces the differential equa-
tions governing the fluid flow, with a set of algebraic equations. This process is called
discretisation, and the resulting equations can be solved using computers to obtain an
approximate solution. The most commonly used discretisation methods in CFD are
the Finite Difference Method (FDM), Finite Volume Method (FVM), Finite Element
Method (FEM), and Boundary Element Method (BEM).

The use of numerical methods to solve partial differential equations introduces an ap-
proximation that alters the form of the basic partial differential equations themselves.
The new equations, which are the ones actually being solved, are often referred to as
the modified partial differential equations. Since they are not precisely the same as
the original equations, they will never give exactly the same solution as an exact so-
lution to the unmodified original partial differential equation. These differences are
mathematically referred to as truncation errors.

Numerical analysis of fluid mechanics has shown that these errors have a physical
meaning and contribute to the flow being simulated. Depending on the characteristics
of the truncation error terms methods are said to have a lot of “artificial viscosity” or
said to be highly dispersive. This means that the truncation errors which were caused
by the numerical approximation, result in a modified partial differential equation hav-
ing additional terms. These terms can either be identified with the physics of dissipa-
tion or dispersion. There is nothing wrong, with designing a numerical method to be
physically dissipative or dispersive depending on the flow under investigation, as long
as the error remains in some engineering sense “small”, and does not destroy or sub-
stantially alter the actual physics of the flow situation. Most numerical methods used in
solving the non-dissipative Euler equations are created with a modified partial differ-
ential equation that will produce some degree of dissipation. Regardless of the specific
characteristics of the error term, if their effects are not thoroughly understood and con-
trolled, they can lead to serious difficulties, producing answers that have little, if any,
physical reality. On the other hand, even if the errors are kept small enough that they
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can be somewhat neglected from an engineering perspective, the resulting simulation
can still be of little practical use if inappropriate numerical algorithms are used. This
motivates studying the concepts of stiffness and numerical algorithm characteristics in
general.

1.2 Numerical Discretisation

1.2.1 The Finite Difference Method

As discussed above, the governing equations of unsteady fluid flow contain partial
derivatives with respect to both space and time. The spatial derivatives can be first
approximated resulting in a system of ordinary differential equations. Next the time
derivatives are approximated which leads to a time-marching method producing a set
of difference equations. Finite difference approximations can be applied to either the
spatial derivatives or time derivatives. The finite difference method has been shown
to be the easiest method to implement if the geometry being investigated is simple.
By considering the conservation equation in differential form and creating a structured
mesh over the geometry under investigation the differential equation is approximated
by replacing the partial derivatives by approximations in terms of the nodal values of
the functions. This results in a single algebraic equation for each grid node. The vari-
able value at that node and also at other nodes around are unknown. Using Taylor
series expansion or polynomial fitting, approximations to the first and second deriva-
tives of the variables with respect to the coordinates are obtained. Due to the simplicity
of obtaining high-order schemes on structured grids, an increase in accuracy can often
be achieved with little complication to the numerical method. The main disadvantage
to finite difference methods is that conservation is not enforced unless special care is
taken. The problems associated with using a structured grid for complex flow geome-
tries can be overcome by using finite volume methods which will be discussed next.

1.2.2 The Finite Volume Method

The finite volume method is probably the most popular of the three discretisation meth-
ods used in CFD. This method, in some ways, is similar to the finite difference method
discussed above. The finite volume method was primarily developed to solve the equa-
tions of heat transfer and fluid flow and is described in detail by Patanker [126]. The
advantages of finite volume methods over finite difference methods are that they en-
sure that the discretisation is conservative, mass, momentum and energy are conserved
in a discrete sense. Although this can be obtained using finite difference equations,
conservation is obtained naturally with the use of finite volume methods as long as
the surface integral representing the convective and diffusive flux are the same for the
control volumes sharing the boundary. Since finite volume methods do not require a
coordinate transformation in order to be used on irregular meshes, three-dimensional
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unstructured meshes using arbitrary polyhedra can be generated for use in complex
flow geometries. Finite volume methods make use of the governing equations in an
integral form to satisfy the conservation law to some degree of approximation for each
of the control volumes covering the domain of interest. At the centre of each of the
control volumes lies a computational node at which the variable values are calculated.
Interpolation is used in order to express the variable value on the volume face in terms
of the central nodal value. The surface and volume integrals are approximated using
suitable quadrature formulae, which results in an algebraic equation for each control
volume, which in turn consists of neighbouring nodal values. A time-marching method
can then be applied to find the values of the variables in each cell at the next time step.
The finite volume approach ensures that a ‘balance’ of some physical quantity is made
on the control volume in the neighbourhood of a grid point. The discrete nature of the
problem domain is always accounted for in the finite volume approach ensuring that
the physical law is satisfied over a finite region rather than at a point as is the case with
finite difference methods.

1.2.3 The Finite Element Method

The finite element method is similar to the finite volume method in a way that both
methods make use of finite volumes or elements to decompose to computational do-
main. With finite elements the decomposition is usually unstructured. The finite el-
ement method came about from computational techniques used to predict stress and
strain in solid structures and is now a standard computational technique in the area of
structural engineering. The finite element technique has been developed into a more
general computational technique used to solve a wide variety of partial differential
equations and is suitable for many physical problems. The feature which distinguishes
finite element methods from the two previous methods is that in finite element meth-
ods the equations are multiplied by a ‘weight function’ before being integrated over
the entire domain. Over each element a simple variation of the dependent variables is
assumed and this piecewise description is used to build up a picture of how the vari-
ables vary over the whole domain. The discretisation process is far more complex than
that of the finite volume and finite difference methods and for a more in depth discus-
sion of this approach the reader is referred to the text of Zienkiewicz and Taylor [195].
Finite element methods have the advantage of being able to accommodate arbitrary
geometries.

1.3 Numerical Approaches in CFD

There exist several numerical approaches used in computational fluid dynamics, with
the majority concerning the simulation of turbulent flows. A brief description of three
of these methods namely: Direct Numerical Simulation, Large Eddy Simulation and
Implicit Large Eddy Simulation will now be discussed.
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1.3.1 Direct Numerical Simulation (DNS)

DNS is the most simple approach from a conceptual point of view in the simulation
of transitional and turbulent flows. In DNS, the Navier-Stokes system of equations
is solved directly with refined meshes resolving all length scales ranging from large
scale features down to the smallest scale features at the Kolmogorov dissipation scale.
Figure 1.2 shows the wide range of length scale typical of a turbulent flow. The largest
eddies in this flow are the spanwise rollers with a length scale L. It is clear to see a
wide range of small scale eddies present with the smallest being the Kolmogorov scales
η. The DNS approach does not average or approximate the Navier-Stokes equations
apart from numerical discretisation in which the errors can be estimated and controlled.
DNS make it possible to compute and visualise any quantity of interest, including some
that are difficult or impossible to measure experimentally and also to obtain detailed
insight into the kinematics and dynamics of turbulent eddies. There are various limi-
tations to DNS; firstly the use of very high-order schemes is desirable in order to limit
dispersion and dissipation errors, these schemes have little flexibility in handling com-
plex geometries and general boundary conditions. Secondly, the problem associated
with the resolving of all length scales requires grid resolutions with the number of grid
points is proportional to the 9/4 power of the Reynolds number, Re9/4. Due to the
extremely fine grids employed in such simulations the numerical cost of the compu-
tations scales like Re3. For wall bounded flow the number of grid points required for
DNS increases further due to the resulting flow physics in the near wall region. These
are the main reasons as to why DNS have been limited to simple flow configurations at
low Reynolds numbers. It’s application to industrial engineering flows where often the
Reynolds number is in the turbulent regime is unlikely to be practically possible even
with the rapid evolution of computing technologies.

Figure 1.2: Visualisation of the flow in a mixing layer (from Brown and Roshko [23]).

1.3.2 Large-Eddy Simulation (LES)

Large-eddy simulations are a technique intermediate between DNS and Reynolds-
Averaged-Navier-Stokes (not discussed here). As the name suggests LES computes the
contribution of the large, energy carrying structures and the smallest scale turbulence is
modelled. LES are similar to DNS in that they both provide a three-dimensional, time-
dependent solution of the Navier-Stokes equations. Hence, they still require fairly fine
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meshes but not to the extent of DNS. The general concept of LES can be described
with the use of Figure 1.3, showing a plot of energy spectrum verses wave number
space. LES aims to resolve all of the energy containing scales as well as some of the
inertial subrange. The remaining inertial subrange and the energy dissipation range
scales are modelled. This is done by applying low pass filtering to the Navier-Stokes
equations, introducing subgrid stresses which account for the interaction between the
resolved turbulent structures and the subgrid scales. The subgrid scale (SGS) terms are
modelled explicitly by the addition of extra terms to close out the system of equations.
Since the dissipative scales of motion are poorly resolved in LES, the main role of
SGS models is to remove energy from the resolved scales, essentially mimicking the
energy cascade drain. Thus these SGS models do not actually represent the exact SGS
at each point in both space and time, instead accounting for the global effect. This
often leads to excessive dissipation in the flow field. A wide range of SGS models
exit and it is not the intention of this thesis to give an in depth discussion of these
models. Instead the reader is referred to various books including the book by Sagaut
[149] and references therein. Since most of the turbulent energy is contained within
the large scale eddies, modelling the high wave number part of the spectrum seems
to be a much better approach than full Reynolds stress modelling or DNS. However,
if the flow in question was wall bounded then the computational cost of performing
LES is approximately only one order of magnitude ‘cheaper’ than DNS. The physics
at the wall become complex as large eddies decrease in size, hence the grid resolution
in the near wall region must be close to that of a DNS grid. The main drawback to
conventional LES are the difficulties in constructing the SGS models for complex wall
bounded high Reynolds number flows. This has led to the development of alternative
methods such as Implicit LES.

Figure 1.3: Energy spectrum vs. wave number space (log-log scales).
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1.3.3 Implicit Large Eddy Simulation (ILES)

The concept behind Implicit Large Eddy Simulation is that the equations are solved in
their original form without any filtering (hence the commutation error can be dropped)
or explicit modelling leaving the embedded numerical viscosity inherent to the numer-
ical methods used to resolve the small scales. These methods are implicitly based on
the hypothesis; The action of subgrid scales on the resolved scales is equivalent to a
strictly dissipative action, as written by Sagaut [149]. Simulations using these methods
most commonly use dissipation terms introduced in the framework of upwind schemes
for the convection term. This diffusive term adapts itself to the nature of the local solu-
tion in order to obtain a solution that is both accurate and has some physical meaning.
There are several types of numerical methods used in the context of ILES; Godunov
(Yan and Knight [190]), PPM (Colella and Woodward [37]), TVD (Cousteix [38]),
FCT (Boris and Book [17]), MPDATA (Margolin et al. [109, 108]) among others.

In order to further understand the ILES methodology it is important to outline the dif-
ferences between standard LES, and ILES, with some referencing to DNS. In DNS the
dissipation needed in order to maintain numerical stability is provided by the physical
viscosity. As discussed in the previous subsection, in LES a SGS model is provided
to the solver in order to represent the effects of the unresolved scales. An essential
part of these SGS models are that they must provide sufficient dissipation to the flow
else the resulting build up of energy in the smallest resolved scales grows unbound-
edly, until the numerical solution breaks down. The SGS models and filtering of the
equations in LES should ensure that the flow is smooth accordingly without having
to worry about added dissipation from the numerical algorithm which should be kept
to a minimum. Figure 1.4 shows the similarities between standard LES and ILES
methodologies. In LES subgrid models are defined by applying physical theories of
homogeneous isotropic turbulence in Kolmogorov’s framework. These models are
then coupled to the ideal (zero dissipation) Euler equations to provide a representation
of reality. In the case of ILES the model and the numerics are merged together. The
models have theoretical foundations in vanishing viscosity used in the selection of en-
tropy satisfying weak solutions. High-resolution and non-linear stability is achieved
via extensions to the numerics such as monotonicity, TVD, TVB, ENO and other such
physical/mathematical principles. These extensions are a key to the ILES approach
and allow at least second order of accuracy in smooth areas of the flow. Without these
extensions the vanishing viscosity approach produces first-order results which are not
considered as ‘high-resolution’.

High-resolutions scheme have been built upon circumventing Godunov’s theorem (Go-
dunov [66]) which stated that: if an advection scheme preserves the monotonicity of
the solution it is at most first-order accurate. Non-linear discretisation of the advec-
tion equation allows higher orders of accuracy and forms the basis of high-resolution
methods. The history behind the discovery of these schemes will not be presented here
and the reader is referred to the text of Drikakis and Rider [50]. The non-linearity of
these methods differentiates them from classical techniques and guarantees numeri-
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cal stability and physical results. It is this connection between the numerics and flow
physics that makes these methods attractive in the simulation of a wide variety of flows.
There has been an increasing amount of evidence to suggest that high-resolution meth-
ods have an embedded turbulence model (Boris et al. [18]; Drikakis [45]; Drikakis
and Geurts [49]; Fureby and Grinstein [63, 62]; Linden et al. [97]; Margolin and
Rider [107]; Margolin et al. [108]; Oran and Boris [124]; Porter et al. [131]; Youngs
[193, 194, 192]). High-resolution methods have been accepted as powerful and effi-
cient methods in simulating laminar flows and there extension to turbulent flows re-
quire no further changes to the numerical methods employed. The user does not need
to decide whether the flow is laminar or turbulent leaving the numerics to make the
decision themselves. This makes for simple and flexible numerical codes.

Modified Equation Analysis (MEA) can be used to shed light on the embedded similar-
ities between standard LES and ILES. MEA derives the effective differential equation
of a numerical algorithm as a basis to analyse the numerical algorithms behaviour
(Griffiths and Sanz-Serna [69]; Knoll et al. [86]; Warming and Hyett [188]). MEA can
be applied to examine several LES models two of which (Smagorinky and Bardina)
will be now discussed (for a complete analysis see the text of Drikakis and Rider [50]).
The general form of the numerical/modelled solution is:

Ut + ∇ · E(U) = ∇ · τ(U), (1.3.1)

where the subscript t represents the time derivative and τ(U) the subgrid scale stress.
The left hand side is the idealised inviscid equation and the right hand side is the
subgrid model. The model by Smagorinsky [159] can be defined by

τ(U) ∼ C∆2 ‖ ∇U ‖ ∇U, (1.3.2)

where C is a constant and ∆ is the cell size.

Bardina et al. [13] proposed a model based on filtering, which uses the difference in
the subgrid term evaluated at two different filter sizes, and can be defined by

τ(U) ∼ E(Ū) − E(U) ≈ E
′′
(U)∆2∇U∇U. (1.3.3)

Evaluating the differential form of the Smagorinsky model in one spatial direction is a
simple process since the form presented in Eqn. 1.3.2 can be directly used, giving

τ(U) = C∆2 | Ux | Ux, (1.3.4)

For the Bardina model which is based on filtering, MEA is needed to produce the
differential forms. Using a box filter at 2∆ and 4∆ gives,

τ(U) = C∆2(Ux)2. (1.3.5)

It should be noted that the constant C is different for each of the two models. Also
the Smagorinsky model has been found to be explicitly dissipative whereas the Bar-
dina model is unstable without additional dissipation. This additional dissipation is
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provided by adding the Smagorinsky model. Now it will be shown that ILES can pro-
duce the same effect naturally including the same differential terms as the self similar
Bardina model, producing a mixed model through the nonlinear regularisation associ-
ated with nonoscillatory differencing. Analysis of spatial errors in a one-dimensional
high-resolution algorithm can be carried out by considering the following form,

Un+1
j = Un

j −
∆t
∆x

[
E(U j+1/2) − E(U j−1/2)

]
. (1.3.6)

A high-resolution Godunov method based on a reconstruction procedure employing
limited slopes, S j(U), produces two edge values in each cell.

U j±1/2;L/R = U j ± −1
2

S j. (1.3.7)

The two values at each node can be resolved by employing a linearised Riemann solver:

E(U j+1/2) =
1
2

[
E j+1/2;L + E j+1/2;R

]
− | E

′ |
2

(U j+1/2;R − U j+1/2;L), (1.3.8)

where E
′ ≡ ∂E/∂U.

The effective subgrid stress τ̃ from the general form of the modified equation from
(1.3.6), at an order of ∆2 is

τ̃2(U) = c1E
′
(U)Uxx + c2E

′′
(U)(Ux)2. (1.3.9)

The subgrid stress τ2 is a second order approximation and the constants c1 and c2 de-
pending on the specific differencing scheme employed. Margolin and Rider [107] have
shown that the term E

′′
(U)(Ux)2 is a consequence of the conservation form and is not

present if the differencing is not in conservation form. Furthermore, this term is iden-
tical to the leading order term for the self similar model with standard LES shown in
Equation 1.3.5. Hence, with the use of MEA one can show that high-resolution meth-
ods used for solving ILES have embedded similar subgrid stresses as explict models
used for LES.

Further information in Chapter 2 regarding high-resolution methods is presented to-
gether with various Riemann solvers used during this thesis as well as two different
interpolation procedures, one of which incorporates various slope limiting schemes.

1.4 Flow Separation

The term separation is used in fluid mechanics to describe the situation, where part of a
flow has a direction opposite to the mean flow. Separated flows are extremely common
in external flows, examples of which would be flow over cars, trains, planes, ships or
submarines. Internal separated flows are much less obvious and everyday examples
would be suddenly expanded or contracted pipe flows found in various industrial ap-
plications such as environmental instruments and fluid machineries. The separation of
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Figure 1.4: Fundamental similarities between LES and ILES. Figure taken from
Drikakis and Rider [50]

a fluid can be either geometric or dynamic. Geometric separation occurs due to the
fluid flow passing over a sharp edge such such as the corner of a sudden expansion.
The fluid detaches from the sharp edge regardless of how much the fluid velocity has
been reduced by frictional effects.

Separation in a boundary layer occurs where the tangential flow velocity changes sign
and recirculation occurs. Similarly, a separated flow may reattach where the tangential
velocity changes sign in the opposite direction. Alternatively, separation/reattachment
can be defined to occur where the streamwise shear stress at the boundary changes
sign. Dynamic separation is caused by a positive pressure gradient in the streamwise
direction, resulting in a force opposing the flow with a retarding effect. If the opposing
pressure force is strong enough over a sufficiently long time, the tangential velocity
may change sign and separation will occur.

Figure 1.5 illustrates the steady separation process for a given pressure distribution
p. The interface that occurs due to the separation rolls up into one or more vortices.
The reverse flow close to the wall causes a thickening in the boundary layer indicted
by the streamline portrait of the boundary layer flow close to the separation position
A. The wall streamlines departs the wall at a certain angle at the point of separation.
The position of the point of separation is that point on the wall where the velocity
gradient perpendicular to the wall vanishes, i.e., the point where the wall shear stress
τw becomes zero:

τw = µ · ∂u
∂y

∣∣∣∣∣
w

= 0 (1.4.1)

In industry one attempts to avoid a separation of the flow in spite of the pressure rise,
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Figure 1.5: Schematic of the separation process, reproduced from Prandtl [132].

in order to keep flow losses small. This is achieved by permitting channels to expand
only gradually, or by designing the shape of bodies sufficiently narrow so that the ac-
celeration of the outer flow prevails over the pressure rise. This concept is generally
successful when the boundary layer in the decelerated part is turbulent. In a flow fea-
turing a pressure increase such as the flow past a body, the flow can remain laminar up
to the point of separation subject to the surface being smooth and the approach flow
free of turbulence. Just in front of the separation point, the boundary-layer profile has a
turning point. This is a sufficient criterion for the onset of the instability in the bound-
ary layer. The laminar to turbulent transition begins, leading to a reattachment of the
turbulent boundary-layer flow downstream, if the Reynolds number is large enough.
An example of laminar flow separation with turbulent reattachment is the flow over
thin wing profiles with sharp nose curvature and sufficiently large angles of attack.

Flow separation can be influenced via several mechanisms such as rotation, blowing,
suction, and oscillatory suction and blowing. The study of flow control has attracted a
significant interest especially in the aviation industry by reducing drag via the manip-
ulation of the boundary layer over the wing surface. Boundary layer separation can be
delayed by sucking the fluid in the boundary layer into the interior of the body, usually
through small pores in the wall of the body. The suction is implemented in the region
where the flow is reversed. If the suction is significantly strong, the accumulation of
the decelerated fluid is avoided and boundary layer separation can be avoided. Tan-
gential blowing is an alternative to flow control from suction. Fluid is blown into the
boundary layer through a slit parallel to the main flow direction. This extra fluid can
impart enough kinetic energy to the boundary layer to prevent separation. Tangential
blowing onto a wing can significantly increase the maximum lift although this would
be at the cost of a substantial increase in drag. Combining suction with blowing has
been introduced to the world of flow control via synthetic jet actuators. Fluid is pe-
riodically expelled and sucked back through a small slot. A piezoelectric actuator is
the most common device used to generate the expulsion and suction cycle. The most
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desirable aspect of synthetic jet actuators are that there is zero net mass flux across
the slot boundary. This means that no complicated fluidic piping is needed to provide
a constant source of fluid as in the case of tangential blowing. During the expulsion
phase a pair of counter rotating vortices are generated from the edges of the slot and
move away into the downstream region under a self-induced velocity. The suction
phase imparts a stabilising effect onto the flow before the next expulsion cycle be-
gins. The vortices generated on the expulsion phase impart a finite momentum into the
surrounding fluid and the interaction of these vortices with the surrounding fluid can
cause large scale global modifications to the base flow. Synthetic jets have been used
in a variety of applications such as; active flow control, jet vectoring, and triggering
turbulence in boundary layers.

1.5 Transition to Turbulent Flows

From a qualitative point of view the transition from laminar to turbulent flow occurs
if the momentum exchange by molecular transport cannot compete sufficiently effec-
tively with the transport due to macroscopic fluctuations in the flow velocity. Turbu-
lence can only develop in rotational flows and it is due to shear in a basic flow that
small perturbation will develop, through various instabilities, and eventually degener-
ate into turbulence. Reynolds [138, 139] proposed that the transition from laminar to
turbulent flow occurs at some critical Reynolds number. This has been found to work
for flow through a pipe, however for other flow situations the critical Reynolds number
depends on a number of other factors such as initial disturbances. The growth of insta-
bilities are an important factor in most industrial flows and can often be the deciding
factor as to whether a flow stays stable (laminar) or transitions to an unstable turbulent
flow. Some important instabilities related to the types of flow investigated in this thesis
are briefly discussed in the following subsection.

1.5.1 Instabilities

The property of stability is a criterion to determine whether a flow retains or alters its
state. A fluid-mechanical instability can initiate the transition to a turbulent flow and
is therefore an important criterion for the temporal and spatial pattern formation of
transitional and turbulent flows.

Consider the example of a glowing cigarette and the consequent smoke rising from the
lit end. If the surrounding air is assumed to be at rest, the smoke initially moves in
smooth straight path close to the cigarette. After a certain height has been reached,
these smoke paths suddenly disintegrate into an obviously disordered, temporally and
spatially irregular fluctuation structure. The flow carrying the smoke particles is said
to have passed over from the laminar to the turbulent state. In many flow problems,
this laminar to turbulent transition is initiated by instabilities inherently present in the
flow in question or from some external disturbance on the particular flow. The laminar
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flow regime becomes increasingly influenced by small perturbations with increasing
Reynolds number, eventually become unstable and then fully turbulent.

Various types of instabilities exist in everyday life and it would be too exhaustive a
task to consider them all. Shear flow instabilities occur when the amplitude of a local
perturbation in a shear flow is amplified and the transition from laminar to turbulent
flow initiated. Examples of shear flow instabilities are the Kármán vortex street in
wakes and the Tollmien-Schlichting waves in boundary layers. The Kármán vortex
street occurs in the wake of a body flow when the critical Reynolds number is ex-
ceeded as a consequence of shear instabilities leading to temporally and spatially sepa-
rating vortices. Figure 1.6 shows the typical patterns formed in a Kármán vortex street.
Tollmien-Schlichting waves are caused by the laminar to turbulent transition in bound-
ary layers. The state of fully developed turbulence is reached via several intermediate
states in the transition regime. Tollmien-Schlichting waves initially become unstable to
cross-wave perturbations above some second critical Reynolds number. Lambda struc-
tures are formed downstream with local shear layers in the boundary layer as shown in
Fig. 1.7. The turbulent boundary layer flow is fully developed only once these shear
layers decay. Instabilities in boundary layers are not usually initiated with plane har-
monic waves, instead being caused by local perturbations such as surface roughness. It
should be noted that in free-shear flows, such as mixing layers, jets or wakes, primary
instabilities leading to the formation of coherent vortices are inviscid, i.e. they are not
affected by molecular viscosity, if it is small enough. In wall bounded flows such as
boundary layers, pipe flows or channel flows the linear instabilities depend critically
upon the viscosity and tend to vanish in the Euler case.

Figure 1.6: Kármán vortex street from a shipwreck.
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Figure 1.7: Lambda structures in the transition regime of the plate boundary-layer flow,
Saric [150].

1.6 Thesis Outline

The outline of this thesis is as follows:

• Chapter 2 provides a full description of the numerical methods employed through-
out this thesis including various methods for solving incompressible flows, the
mutigrid approach, mutiblock decomposition. Further discussion on high-resolution
methods is presented together with various Riemann solvers and high-order re-
construction methods. Finally some different time-integration methods are pre-
sented.

• The first of five results Chapters, Chapter 3, concerns the effect of precondition-
ing of the incompressible advective flux equations using a pre-existing method
from Turkel [177]. The preconditioning method is applied to two different sud-
denly expanded geometries in which instabilities are manifested in the form of
an asymmetric separation of the fluid flow.

• Chapter 4 investigates various Riemann solvers and their ability to simulate flow
through a suddenly expanded and contracted channel. The effect of the order of
accuracy in the reconstruction of the flux on the cell face is investigated for grid
independent simulations. Experimental flow visualisations have been used as a
comparison for the computational results obtained.

• The investigation of flow through a suddenly expanded channel both in two-
dimensions and three-dimensions is presented in Chapter 5. The effect of ex-
pansion ratio on flow through a two-dimensional geometry is first discussed. In
three-dimensions the effect of the aspect ratio in stabilising the flow is presented
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including an in-depth study of the topology of the flow. The results have been
compared to available experimental data. The transition from steady flow to un-
steady flow is discussed and results are presented for higher Reynolds number
flows.

• Chapter 6 concerns the analysis of high-resolution Godunov-type methods and
their ability to accurately model flows featuring symmetry breaking bifurcation
in a perfectly symmetric computational setup. The nonlinear terms are anal-
ysed and it is believed that these terms act as a trigger mechanism for symmetry
breaking.

• The final results Chapter, Chapter 7, presents the numerical investigation of a
synthetic jet issuing into quiescent air. An investigation into several slope lim-
iters has been carried out and the results have been compared to experimental
data from a workshop held on CFD validation for flows featuring separation,
instabilities and transition to turbulence.

• Chapter 8 provides conclusions to the thesis summarising the key results and
highlights work that could be carried out in the future.

1.7 Journal and Conference Publications

During the course of this thesis several journal and conference papers have been writ-
ten.

• S. Patel and D. Drikakis, “On the symmetry-breaking mechanism in suddenly-
expanded flow computations”, (submitted to Computers and Fluids).

• S. Patel and D. Drikakis, “Effects of preconditioning on the accuracy and effi-
ciency of incompressible flows”, International Journal for Numerical Methods
in Fluids, 47:963–970, 2005.

• D. Drikakis, M.Hahn, S. Patel, E. Shapiro, “High-resolution methods for incom-
pressible, compressible and variable density flows”, ERCOFTAC Bulletin, n. 62,
2004.

• S. Patel and D. Drikakis, “Large eddy simulation of transitional and turbulent
flows in synthetic jet actuators”, Proceedings of the IUTAM Symposium on Flow
Control with MEMS, held in London, UK, 19-22nd September 2006, Springer.

• S. Patel and D. Drikakis, “Flux limiting schemes for implicit large eddy simu-
lation of synthetic jets”, In Proceedings of The Fourth International Conference
on Computational Fluid Dynamics, Ghent, Belgium, 2006.
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• S. Patel and D. Drikakis, “Large eddy simulation of bifurcating and transitional
suddenly expanded flows”, In proceedings of ECCOMAS CFD 2006, Nether-
lands.

• S. Patel and D. Drikakis, “Prediction of flow instabilities and transition using
high-resolution methods”, In Proceedings of ECCOMAS Congress, Finland,
2004.
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C H A P T E R 2

Mathematical Model

This chapter concerns the numerical background employed throughout the course of
this thesis. Both incompressible and compressible flow solvers have been available
for use within the High-Resolution and Computing (HIRECOM) library of codes used
by the Fluid Mechanics and Computational Science (FMaCS) group, at Cranfield Uni-
versity. The numerical idealogies behind both solvers are the same with both mak-
ing use of high-resolution numerical methods. The chapter will be broken down into
several sections covering; the fundamental equations governing fluid flow namely the
Navier-Stokes equations; methods of solving the incompressible Navier-Stokes equa-
tions; high-resolution methods; multigrid and multiblock methods; preconditioning
and flux-limiting within the compressible flow solver.

2.1 Governing Equations

T physics of (Newtonian) fluid flow is governed by the Navier-Stokes equations.
These equations can be solved by considering the coupled generalised conserva-

tion laws, namely the continuity, momentum and energy equations. The governing
equations outlined in this section will be presented for a compressible flow. Differ-
ences between the compressible and incompressible equations used in the respective
codes will be highlighted in the text.

2.1.1 Mathematical Modelling

The Navier-Stokes equations for a compressible fluid can be written in conservation
form as,

∂ρ

∂t
+ ∇ · (ρu) = 0, (2.1.1)

∂ρu
∂t

+ ∇ · (ρuu) = −∇ · P, (2.1.2)

∂e
∂t

+ ∇ · (eu) = −∇ · (P · u) − ∇ · q, (2.1.3)
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where u, ρ, e, and q stand for the velocity components (u, v,w), density, total energy per
unit volume and the heat flux, respectively. The volume forces may account for inertial
forces, gravitational forces or electromagnetic forces. The tensor P for a Newtonian
fluid is defined by

P = p(ρ,T )I +
2
3
µ(∇ · u)I − µ

[
(∇u) + (∇u)T

]
, (2.1.4)

where p(ρ,T ) is the scalar pressure, I is a unit diagonal tensor, T is the temperature
and µ is the dynamic viscosity coefficient. The above system of equations is completed
by an equation of state. For a perfect gas the equation of state is given by: p = ρRT ,
where R is the gas constant.

For an incompressible fluid the density remains constant and hence changes the Navier-
Stokes equations to:

∇ · u = 0 (2.1.5)
∂u
∂t

+ ∇ · (uu) = −1
ρ
∇p + µ∇2u (2.1.6)

It should be noted that the pressure used in Eq. 2.1.6 is an incompressible one and not
the thermodynamic pressure. The heuristic notion is that the thermodynamic pressure
is constant in the domain where the incompressible flow equations are valid. Another
difference between the incompressible and compressible solvers used during the course
of the PhD is that the energy equation is not solved for incompressible flows and all
computed cases have isothermal conditions.

Generalised Co-ordinates Formulation

The three-dimensional compressible flow equations can be written in a matrix form as

∂Ū
∂τ

+
∂Ē
∂ξ

+
∂F̄
∂η

+
∂Ḡ
∂ζ

=
∂R̄
∂ξ

+
∂S̄
∂η

+
∂L̄
∂ζ
, (2.1.7)

where,

Ū = JU
Ē = J(Eξx + Fξy + Gξz)
F̄ = J(Eηx + Fηy + Gηz)
Ḡ = J(Eζx + Fζy + Gζz)
R̄ = J(Rξx + S ξy + Lξz)
S̄ = J(Rηx + S ηy + Lηz)
L̄ = J(Rζx + S ζy + Lζz)

where E, F and G denote the inviscid Cartesian fluxes and R, S and L denote the vis-
cous Cartesian fluxes in the x−, y−, z−directions, respectively. The three-dimensional
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Cartesian fluxes are written in a matrix form as

U =



ρ
ρu
ρv
ρw
e


,

E =



ρu
ρu2 + p
ρvu
ρwu

(e + p)u


, F =



ρv
ρuv

ρv2 + p
ρwv

(e + p)v


, G =



ρw
ρuw
ρvw

ρw2 + p
(e + p)w


,

R =



0
τxx

τxy

τxz

uτxx + vτxy + wτxz − q̇x


, S =



0
τyx

τyy

τyz

uτyx + vτyy + wτyz − q̇y


,

L =



0
τzx

τzy

τzz

uτzx + vτzy + wτzz − q̇z


.

The Jacobian and metrics for a three-dimensional grid are defined by

J = xξ(yηzζ − yζzη) + xη(yζzξ − yξzζ) + xζ(yξzη − yηzξ), (2.1.8)

ξx =
yηzζ − yζzη

J
, ξy =

−xηzζ + xζzη
J

, ξz =
xηyζ − xζyη

J
, (2.1.9)

ηx =
−yξzζ + yζzξ

J
, ηy =

xξzζ − xζzξ
J

, ηz =
−xξyζ + xζyξ

J
, (2.1.10)

ζx =
yξzη − yηzξ

J
, ζy =

−xξzη + xηzξ
J

, ζz =
xξyη − xηyξ

J
. (2.1.11)

The discretisation of the viscous terms of the Navier-Stokes equations is fairly straight-
forward since these terms do not encompass any nonlinearities if the fluid under con-
sideration is Newtonian. Both the incompressible and compressible flow solvers dis-
cretise the viscous terms using central differencing and a complete description is given
in the text of Drikakis and Rider [50].
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2.2 Computing Incompressible Flow

The range of flows modelled by the Incompressible Navier-Stokes equations encom-
passes a large number of industrially important applications for which the Mach num-
ber is less than 0.3. This includes use in the automobile industry, architectural flows,
and sub-sea applications to name but a few. All of these applications require accurate
numerical solutions to the Navier-Stokes equations that can be obtained in a realis-
tic time scale using high performance computing facilities. However, the solution of
the incompressible Navier-Stokes equations still presents a significant numerical chal-
lenge. The reason for this is that there is a lack of coupling between the velocity and the
pressure fields. This means that the equations themselves provide no way of explicitly
updating pressure as velocity is advanced. It should be noted that in an incompress-
ible flow the absolute pressure is of no significance and that only the gradient of the
pressure (pressure difference) affects the flow. Several schemes have been developed
to solve this problem, and they can be divided into two categories: primitive variable
and non-primitive variable.

The non-primitive variable formulation is based on the introduction of dependent vari-
ables other than velocity and pressure. Examples of methods in this category are: the
vorticity/stream function method (section 2.3), the vorticity/vector-potential method,
and the vorticity-velocity method (Fasel [58]). All these present problems such as
boundary conditions, amount of data that must be stored and inefficiency.

Methods for solving the incompressible Navier-Stokes equations in primitive variables
can be grouped into two broad categories. The first can be referred to as the pres-
sure correction method approach (also refer to sections 2.4 and 2.5). This approach
is discussed in detail in the texts of Harlow and Welch [74]; Patanker [126]; Raithby
and Scheider [134]. The distinguishing feature of this method is the use of a derived
equation to determine the pressure. Typically, the momentum equations are solved for
the velocity components independently. This produces linearised equations by using
values lagged in iteration level for the other unknowns, including pressure. Since the
velocity components have been obtained without the using the continuity equation as
a constraint, a Poisson equation is usually developed for the pressure that will alter the
velocity field in a direction such as to satisfy the continuity equation.

The second category is a coupled approach where the discretised conservation equa-
tions are solved, treating all dependent variables as simultaneous unknowns. The
method referred to is called the artificial compressibility method (Chorin [35]; Kwak
et al. [91]; Choi and Merkle [34]). A detailed discussion of the artificial compressibil-
ity formulation is given in section 2.6.
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2.3 Vorticity/Stream-Function Formulation

In order to avoid the presence of pressure for a two-dimensional incompressible flow
one can introduce the vorticity and stream function as dependent variables in the gov-
erning equations. The vorticity is defined by

ω = curl u = ∇ × u (2.3.1)

This approach is best suited for a two-dimensional case as vorticity is transformed to a
vector quantity in three dimensions. In two-dimensional flows, the vorticity vector is
orthogonal to the plane of flow and Eq. 2.3.1 reduces to Eq. 2.3.2.

ω =
∂u
∂y
− ∂v
∂x

(2.3.2)

The principle reason of introducing the stream function is that, for flows in which den-
sity and dynamic viscosity are constant, the continuity equation is identically satisfied
and does not need to be dealt with explicitly. Writing the two-dimensional momentum
equations in expanded Cartesian co-ordinate system (x, y) (Eq.2.3.3 and Eq.2.3.4) and
differentiating , with respect to y and x, respectively, and subsequently subtracting the
latter from the former we obtain Eq. 2.3.5

∂u
∂t

+
∂u2

∂x
+
∂uv
∂y

= −1
ρ

∂p
∂x

+ ν

(
∂2u
∂x2 +

∂2u
∂y2

)
(2.3.3)

∂v
∂t

+
∂uv
∂x

+
∂v2

∂y
= −1

ρ

∂p
∂y

+ ν

(
∂2v
∂x2 +

∂2v
∂y2

)
(2.3.4)

∂ω

∂t
+ u

∂ω

∂x
+ v

∂ω

∂y
= ν

(
∂2ω

∂x2 +
∂2ω

∂y2

)
, (2.3.5)

where
ω =

∂u
∂y
− ∂v
∂x
. (2.3.6)

Using the continuity equation, Eq.2.3.5 can be written as

∂ω

∂t
+
∂uω
∂x

+
∂vω
∂y

= ν

(
∂2ω

∂x2 +
∂2ω

∂y2

)
, (2.3.7)

The velocities (u, v) can be calculated via the introduction of the stream function ψ
where

u =
∂ψ

∂y
v = −∂ψ

∂x
(2.3.8)

By substituting Eq.2.3.8 into Eq.2.3.6 we obtain a Poisson equation for the stream
function subject to the given vorticity, (Eq.2.3.9)

∂2ψ

∂x2 +
∂2ψ

∂y2 = ω. (2.3.9)
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Equations 2.3.7, 2.3.8 and 2.3.9 are the three equations that make up the vorticity/stream
function formulation and can be used for solving both steady and unsteady flows. It
should be noted that the velocities u and v in Eq.2.3.7 can also be replaced by the
stream function in Eq.2.3.8.

Equation 2.3.9 can be replaced by a pseudo-transient approach providing a coupled
approach (Eq. 2.3.10) for solving the vorticity (Eq.2.3.7) and stream function (Eq.
2.3.8) equations.

∂ψ

∂τ
−

(
∂2ψ

∂x2 +
∂2ψ

∂y2 − ω
)

= 0. (2.3.10)

The main problem with this approach is in the implementation of boundary conditions.
For a two-dimensional case the derivatives of the stream function can be calculated
from Eq. 2.3.8 only if the velocity components are known e.g. at inflow and far-field
boundaries. No boundary condition is required for the vorticity. At the surface of solid
boundaries and symmetry planes the stream function is constant and the following
boundary conditions need to be implemented.

ψ = 0,
∂ψ

∂n
= 0, (2.3.11)

where n denotes the normal direction to the boundary.

The pressure is calculated using the following equation,

∂2 p
∂x2 +

∂2 p
∂y2 = 2


∂2ψ

∂x2

∂2ψ

∂y2 −
(
∂2ψ

∂x∂y

)2 , (2.3.12)

Neumann boundary conditions for the pressure p are obtained by the momentum equa-
tions.

The vorticity/stream function approach is less popular due to its complicated extension
to three-dimensional flows. Both the vorticity and stream function become three com-
ponent vectors in three dimensions so one ends up with six partial differential equations
in place of the four that are necessary in a velocity-pressure formulation. It also inherits
the difficulties associated with two-dimensional flows regarding variable fluid proper-
ties, compressibility and boundary conditions. Two alternative formulations can be
applied for three-dimensional flows; The vorticity/vector potential formulation and the
vorticity/velocity formulation. These two methods will not be described here instead
refereing the reader to the book by Drikakis and Rider [50].

2.4 Pressure-Poisson Method

The pressure-Poisson formulation derives an explicit equation for the pressure by ap-
plying the continuity equation (divergence constraint) to the equation of motion. The
equation is typically simplified by using the explicit knowledge that the divergence of
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velocity and its time derivative is zero. Taking the divergence of the non-conservative
form of the momentum equation gives,

∇ ·
[
∂u
∂t

+ u · ∇u +
1
ρ
∇p − ν∇2u

]
= 0 (2.4.1)

∇ · u = 0 holds at all times, hence, ∇ · ∂u/∂t = 0, a time-invariant form of the equation
can be formed. Rearranging and simplifying Eq. 2.4.1 gives the pressure Poisson
equation presented for a pure incompressible flow as,

∇2 p = −ρ∇ ·
[
u · ∇u − ν∇2u

]
. (2.4.2)

The LHS is the pressure-Poisson operator, and the RHS is the divergence of the remain-
der of the equation of motion without the time derivative. The inclusion of boundary
conditions, completes the pressure Poisson equation.

2.5 Projection Formulation

Similar to the pressure Poisson approach the projection formulation ultimately pro-
duces a Poisson equation that is solved for the “pressure” in the incompressible flow.
This pressure can be viewed as a potential field used to enforce a divergence-free ve-
locity.

The principle behind projection methods is to advance a vector (velocity) field, V =

(Vx,Vy,Vz)T by some convenient means disregarding the solenoidal nature of V, then
recover the desired solenoidal vector field, Vd i.e.

(
∇ · Vd = 0

)
. The notation V is used

to either denote the velocity u or its time derivative ∂u/∂t since the projection can be
carried out using either form. In order to recover the solenoidal field a projection P
operation is carried out which has the effect, Vd = P(V). The projection uses Hodge
or Helmholtz decomposition (Chorin and Marsden [36]) to decompose the velocity
field into divergence-free and curl-free parts. If one denotes the curl-free portion of the
velocity as the gradient of a potential, ∇ϕ, the decomposition can be written as,

V = Vd + ∇ϕ. (2.5.1)

Taking the divergence of the above equation gives,

∇ · V = ∇ · Vd + ∇ · ∇ϕ→ ∇ · V = ∇2ϕ. (2.5.2)

Once ϕ is known, the solenoidal vector field can be found through,

Vd = V − ∇ϕ. (2.5.3)

The projection operator can be written as, P = I − ∇ (∇ · ∇)−1 ∇. After the application
of P to a vector field, V, this field will be divergence free. An important aspect of
projections are that they are idempotent, i.e. P2 = P, thus repeated application of the
operator will not change the result.
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In the context of incompressible flow, the equations are used in a manner such that
the divergence-free velocity constraint is firstly ignored then imposed via the above
Helmholtz decomposition. Detailed descriptions of approximate and exact projection
methods is presented in Drikakis and Rider [50].

2.6 Artificial Compressiblity Formulation

Methods for solving the compressible flow equations have attracted a significant in-
terest resulting in a number of different methods being developed. Ideally one would
like to be able to use existing compressible methods to solve the incompressible flow
equations. This cannot be carried out directly due to the inherent mathematical char-
acter of the compressible equations. The compressible flow equations are hyperbolic
which means that they have real characteristics on which signals travel at finite prop-
agation speeds; this reflects the ability of compressible fluids to support sound waves.
On the other hand, the incompressible flow equations have a mixed parabolic-elliptic
character. Hence, in order to use numerical methods originally developed for solving
the compressible flow equations, the character of the incompressible flow equations
needs to be modified.

The difference in character between the compressible and incompressible flow equa-
tions lies in the lack of the time derivative term in the incompressible continuity equa-
tion. Hence the simplest way to give the incompressible equations a hyperbolic char-
acter is to include a time derivative in the continuity equation. The compressible con-
tinuity equation contains the time derivative of the density but since density is constant
for the incompressible equations one cannot use this approach. Time derivatives of the
velocity appear in the incompressible momentum equations and hence are not logical
choices. That leaves the time derivative of the pressure as the clear choice.

The addition of a time derivative of the pressure to the incompressible continuity equa-
tion means that the equations being solved are no longer truly incompressible. A result
of this is that the time history generated is no longer accurate and the extension of
the equations to unsteady incompressible flow needs further consideration and will be
discussed later.

For steady flows, Chorin [35] introduced the auxiliary system of equations,

1
β

∂p
∂τ

+
∂u j

∂x j
= 0, (2.6.1)

∂ui

∂t
+
∂ui∂u j

∂x j
= −1

ρ

∂p
∂xi

+ ν
∂2ui

∂x2
j

, (2.6.2)

where β is the artificial compressibility parameter, ui are the velocity components,
p is the pressure, ρ is the density, ν the kinematic viscosity and t is the time. The
indices i, j = 1, 2, 3 refer to the space coordinates x, y, z. For the case of steady flow
τ ≡ t. The artificial compressibility parameter, which has dimensions of a velocity, is



2.6 Artificial Compressiblity Formulation 27

a disposable parameter, which enables the above system of equations to converge to a
solution that satisfies the incompressibility condition as the steady state is approached
(Chang and Kwak [28]). The value chosen for β is a key parameter to the performance
of this method. It is clear that the larger the value of β the more “incompressible”
the equations become. This is an undesired effect leading to the inviscid terms of the
equations becoming very stiff numerically. The choice of the artificial compressibility
parameter will be discussed further later in this section.

Equations 2.6.1 and 2.6.2 also have similarities with low Mach number compressible
flow equations, hence the artificial compressibility parameter can be related to an arti-
ficial speed of sound.

c =
√
β (2.6.3)

The artificial compressibility approach transforms the incompressible flow equations to
fully hyperbolic and hyperbolic-parabolic for inviscid and viscous flows, respectively.
The artificial compressibility approach has been found to be less computationally ex-
pensive in comparison to solving the elliptic equations and has be used extensively
by various researchers. (Temam [170]; Steger and Kutler [169]; Peyret and Taylor
[129]; Chang and Kwak [28]; Choi and Merkle [34]; Rizzi and Eriksson [141]; Kwak
et al. [91]).

Chorin [35] originally designed the artificial compressibility approach for steady flow
problems because the solutions had to be iterated to time convergence for the artificial
term to vanish. It has now been well documented (Merkle and Athavale [112]; Soh
and Goodrich [166]; Rogers and Kwak [144]; Rogers et al. [145]; Breuer and Hänel
[22]; Kim and Menon [85]; Drikakis [45] that by adding a pseudo-time derivative to
the momentum equation the artificial compressibility approach can be extended to un-
steady flows. The system of equations become;

1
β

∂p
∂τ

+
∂u j

∂x j
= 0 (2.6.4)

∂ui

∂τ
+
∂uiu j

∂x j
= −∂ui

∂t
− 1
ρ

∂p
∂xi

+ ν
∂2ui

∂x2
j

(2.6.5)

The above set of equations are iterated to pseudotime τ convergence where the diver-
gence free flow field is satisfied, (i.e., ∂p/∂τ = 0 and ∂ui/∂τ = 0) at each real time
step. This procedure is a dual-time stepping technique and can be commonly found in
the solution of the compressible equations for both steady and unsteady flows.

2.6.1 Estimation of the Artificial Compressibility Parameter

The estimation of the artificial compressibility parameter β can affect the convergence
in both steady and unsteady problems. The optimum value is problem dependent, al-
though some authors have suggested an automatic procedure for choosing it. Chang
and Kwak [28] derived a criterion for a simple channel flow in which they considered
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the interaction of upstream propagating waves with vorticity spreading. With the re-
quirement that the upstream propagating waves must propagate much faster than the
spread of vorticity the following criterion was derived,

β

ure f
�

(
1 +

4L
δRe

)2

− 1, (2.6.6)

where L is the length of the channel and δ is the half-width. The parameter ure f is a
reference velocity used in the calculation of the Reynolds number (Re = ure f L/ν). A
more complete derivation is given in Chang and Kwak [28] and Drikakis and Rider
[50]. Chang and Kwak [28] pointed out that the choice of the artificial compressibility
parameter β, is more important for internal flows with respect to the rate of conver-
gence.

2.7 Multigrid Method

Multigrid methods have long been established as a powerful tool for accelerating the
numerical convergence and thus reducing computing time. Brandt [21] wrote the
“golden rule” for multigrid methods “The amount of computational work should be
proportional to the amount of real physical changes in the computed system”. The
first pioneer of multigrid methods was Fedorenko [60] who formulated a multigrid al-
gorithm for the standard five-point finite difference discretisation of the Poisson equa-
tion on a square, proving that the work required to reach a given precision is O(N),
where N represents the number of unknowns. Bakhvalov [12] generalised this to cen-
tral difference discretisation of the general elliptic partial differential equations with
variable smooth coefficients. Brandt [20] presented the first practical results and then
published another paper (Brandt [19]) outlining the main principles and the practical
utility of multigrid methods. These papers were the beginning of a rapid development
in multigrid methods. The multigrid method was discovered independently by Hack-
busch [72], who laid firm mathematical foundations and provided reliable methods
(Hackbush [73]). It is important to note that most multigrid methods have been devel-
oped for elliptic systems of equations. Very little work has been done using multigrid
methods in conjunction with an artificial compressibility formulation. Farmer et al.
[57] developed a multigrid algorithm combining the artificial compressibility formu-
lation with the Euler equations to enforce the incompressibility constraint for the bulk
flow in reference to free surface flows. The development of a three-level V-cycle multi-
grid algorithm in conjuction with the artificial compressibility approach was carried
out by Lin and Sotiropoulos [96]. They used first order upwind differencing for the
discretisation of the convection terms during the coarse grid iterations and investigated
several other schemes for discretisation of the convection terms on the fine grid. Lin
and Sotiropoulos [96] used the Full Approximation Storage (FAS) scheme proposed by
Brandt [19], providing an estimation of the solution on the finest grid and performing
a fixed number of iterations on the coarser grid levels. A multigrid algorithm for the
simulation of three-dimensional incompressible turbulent flows in conjunction with the



2.7 Multigrid Method 29

artificial compressibility approach and Newton relaxation methods was developed by
Sheng et al. [157]. Two different approaches for building coarse grid equations were
reported. The influence of implicit correction smoothing on increasing the stability of
the scheme was also investigated. It was found that fast convergence rates for the case
of external flows was obtained with relative ease, but the multigrid efficiency appeared
to deteriorate in the case of complex internal flows. The above multigrid method was
similar to that of Jameson [80, 81, 82] whom originally developed multigrid proce-
dures for the solution of the compressible Euler equations which were later applied to
the compressible Navier-Stokes equations by Liu and Jameson [98] and Kuerten and
Geurts [90].

Drikakis et al. [52] combined Full Multigrid (FMG) and Full Approximation storage
(FAS) to solve the artificial compressibility formulation of the incompressible Navier-
Stokes equations. The main differences between the method of Drikakis et al. [52] and
the other methods described above are:

• A combination of Full Multigrid (FMG) and Full Approximation storage (FAS)
was used. FMG not only provides an initial approximation before the V-cycles
are performed but also calculates basic coarse grid functions which are used in
the FAS procedure.

• A third-order upwind characteristics-based method developed by Drikakis et al.
[51] and Drikakis [47] was used in conjunction with the FMG-FAS procedure to
discretise the convective terms at all grid levels.

• Various prolongations operators were developed to be used in conjunction with
the FMG-FAS procedure.

Drikakis et al. [52] opted to use a three-level multigrid (V-cycle) approach justifying
their choice of a “short-multigrid” by pointing out that in order for the multigrid to
work efficiently coarser grid level should provide a good correction to the finer grid
levels. This requires coarse grid levels to have a sufficient number of grid points.
A multiple level multigrid algorithm may not be able to satisfy this condition and
would need to create a fine grid fine enough to make sure that the coarsest grid level
has a sufficient number of grid points. This may often lead to a loss of efficiency.
Several grid levels can increase the complexity of the computer code and the associated
memory requirements. Also shorter-multigrid algorithms are more efficient in parallel
computing rather than using several grids.

2.7.1 Full Multigrid (FMG)

For steady flow cases the Full Multigrid approach can be utilised. The equations are
solved on a series of coarser grid levels to provide a good initial guess for the finest
grid. Once this initial guess has been computed the three-level multigrid procedure is
initialised. Figure 2.1 shows the main stages of the three-level multigrid algorithm.
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Figure 2.1: Schematic of the V-cycle for a three-grid multigrid algorithm (Drikakis
and Rider [50]).

For a detailed description outlining the solution procedure please refer to Drikakis
et al. [52] and Drikakis and Rider [50]. A brief description will be given here for
completeness. Once the equations have been computed on the finest grid level (pre-
smoothing iterations), the fine grid defect is computed. This defect is restricted to
the intermediate grid level where the RHS is computed and the correction equation is
solved. The intermediate grid defect is then computed and is restricted to the coarse
grid. The RHS is computed on the coarse grid and the coarse grid approximate solution
is obtained. The coarse grid correction is then calculated and is prolongated to the
intermediate grid. Post smoothing iterations are carried out followed by computing
the correction on the intermediate grid. This is then prolongated to the finest grid and
the solution is corrected on the finest grid followed by post smoothing iterations. This
cycle is repeated until a steady state solution is reached on the finest grid level.

It should be noted that the Navier-Stokes solver used on the intermediate and coarse
grids is slightly different than that of a single grid solver. This is due to the fact that
for a single grid solver the Navier-Stokes equations have a RHS equal to zero in the
domain. For the multigrid method the RHS of the equations on intermediate and coarse
grids levels is not zero, due to additional terms arising from the FAS linearisation
procedure, which will be discussed further in the following section. The multigrid
method outlined above can be extended to unsteady flows by performing V-cycles at
each time step. The FMG procedure is no longer utilised in this case and iterations
begin on the finest grid without any pre-smoothing on the coarser grid levels.

2.7.2 Full Approximation Storage (FAS)

The Full Approximation Storage (FAS) scheme was first described by Brandt [19].
This scheme forms the coarse-grid equations in a manner that can be successful for
nonlinear problems. For linear equations the “correction” multigrid scheme is suf-
ficient. The correction of the solution on the fine grid can be directly computed on
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coarser grids using the same solution matrix with the right-hand sides of the equa-
tions being the restricted defect. For nonlinear problems the multigrid corrections are
formed as differences between some basic, reference solution and the currently com-
puted approximation of this solution. The discrete problems at each grid level are
solved as in a single grid case but coupled to each other by the FAS prescription in
order to obtain improved convergence of the fine-grid iterations. The three level multi-
grid requires the calculation of the coarse-grid functions which need to be defined
for the coarsest grid V̄cg and intermediate grid V̄ig respectively. According to Brandt’s
original algorithm these functions were computed as projections of the current inter-
mediate and finest grid solutions onto the coarsest and intermediate grids, respectively,

V̄cg = RVig V̄ig = RV f g (2.7.1)

where R is the restricted operator. The approach used by Drikakis et al. [52] computed
the steady state coarsest and intermediate grid solutions via FMG, Ucg and Uig and used
these values as coarsest and intermediate grid functions in Brandt’s FAS algorithm to
obtain;

V̄cg = Ucg V̄ig = Uig. (2.7.2)

Drikakis et al found that using the above coarsest and intermediate grid functions im-
proved the performance of the multigrid algorithm in the case of fine grids.

The relaxation and prolongation procedures will not be discussed here and the reader
is referred the paper of Drikakis et al. [52] for a detailed explanation.

2.8 Multiblock Method

There are many physical problems that exhibit multiple length and time scales in the
form, for example, high velocity and temperature gradients, recirculating zones, and
phase change fronts, as well as geometric complexities due to irregular shapes of the
flow domain. There are many techniques available for generating complex grid ge-
ometries to handle such characteristics. These techniques include unstructured, hybrid,
chimera, and structured multiblock just to name a few. In the field of Computational
Fluid Dynamics (CFD), the methods used to calculate the flow field, and the flow char-
acteristics themselves, place some rather stringent requirements on the computational
grid. For most CFD applications, the structured multiblock technique is usually pre-
ferred over the others for its ability to both resolve the desired characteristics of the
flow and provide for a fair amount of computational efficiency.

The multiblock method is an approach which can break a complicated geometry into
sub domains (blocks) with simple shapes. Structured grids can then be generated
within each block independently. It is not always required for the grid lines to be
continuous across the block interface. This is dependent on the numerical algorithm.
There are certain advantages of using multiblock methods:
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• Multiblock methods can reduce the topological complexity of a single structured
grid system by employing several grid blocks, permitting each individual grid
block to be generated independently so that both geometry and resolution in the
boundary region can be treated more satisfactorily;

• More freedom is allowed in the generation of grid lines, since grid lines can
be discontinuous across the block interface, and local grid refinement can be
conducted more easily to accommodate different physical length scales present
in different regions. More grid lines can be put in high gradient region without
wasting computational resource in other zones.

• With structural grids used in each block, standard structured flow solvers can
be used, which greatly obviate the needs of complicated data structure, book
keeping and algorithm design.

• This approach provides a natural routine for parallel computing.

Multiblock structured grids can be broadly classified as either patched grids (Rai [133])
or overlapping grids (Steger [168]). Patched grids are individual grid blocks of which
any two neighbouring blocks are joined together at a common grid line without over-
lap. With overlapping grids, the grid blocks can be arbitrarily superimposed on each
other to cover the domain of interest. Figure 2.2 shows various types of multiblock
configurations.

(a) Patched grid.

(b) Overlapping grid with discontinuous grid lines.

(c) Overlapping grid with continuous grid lines.

Figure 2.2: Various multiblock grid configurations.

The primary issue of concern for any multiblock solution technique is the transfer of
information in the vicinity of the internal block boundaries. The details of the interface
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setup for “abutting” grids can be described as follows. For ease of information transfer,
the ratio of the resolutions of the abutting grids is restricted to 1:1. Therefore, if a fine
block was matched up to a coarse block the coarse block would have the same number
of nodes as the fine block along the common interface. Also grid connectivity is re-
quired between every grid line in the coarse block and every grid line in the fine block.
This way a compromise between the flexibility of the variation of grid density between
two neighbouring blocks and the ease of maintaining flux conservation across the in-
terface is reached. To facilitate the exchange of information between the two blocks,
two layers of extended control volumes in each block are constructed at the common
interface. These control volumes extend two layers deep into the neighbouring block.
Once constructed using the neighbouring block grid, they are treated as part of the par-
ent block, which now has extended dimensions (compared to its original dimensions).
The spacing of the extended lines along the multiblock interface is the same as that of
the parent block whereas the spacing in the direction normal to the interface is that of
the neighbouring block grid lines. To illustrate the construction of the extended lines a
two block grid is used, as shown in Fig. 2.3. The two layers of extended control vol-

Figure 2.3: Illustration of the multiblock method using abutting grids and extended
lines.

umes in each of the two parent blocks are constructed from appropriate interpolations
of the coordinates of the two grid lines next to the interface in the neighbouring block.
For the left block (block 1) shown in Fig. 2.3, the extended lines 9 and 10 correspond
to the lines 2 and 3 respectively, of the right block (block 2). Likewise, the extended
lines 0 and 1, of the right block correspond to the lines 7 and 8, respectively, of the left
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block. The height of any extended control volume (physical dimension) is the same as
the corresponding control volume of the neighbouring block. The variable values from
the neighbouring block are stored in these extended control volumes and are used in
the computation of the fluxes at or near the interface.

There are some disadvantages with fully boundary-fitted multiblock grids:

• The blocking requires a great deal of user effort, especially for complex config-
urations. A complex configuration may need many blocks with different grid
structures hence increasing the difficulty in generating the grid.

• Changes of geometry in one block can cause changes to many other blocks.

• Changes in the grid point distribution in one block, e.g. adding points near a
sharp feature on an object, will generally cause changes in other blocks if grid
point continuity is to be maintained.

• Requiring grid point continuity makes it difficult to increase resolution in one
block without (unnecessarily) increasing the resolution in other block.

2.9 Preconditioning

The aim of preconditioning techniques is to try and overcome stiffness in the solution
of the Euler and Navier-Stokes equations (Turkel [177, 179]). These techniques can be
categorised into two main streams of research. Firstly, the development of precondi-
tioning for low Mach number and incompressible flows (Choi and Merkle [34]; Turkel
[178, 179]; Hirsch and Hakimi [79]; van Leer et al. [187]). The artificial compressibil-
ity method proposed by Chorin [35] can also be viewed as a type of preconditioning
technique since the artificial compressibility parameter, β, acts in a similar way in pre-
conditioning the flow equations. The second category are methods that aim to alleviate
discrete stiffness in the Euler and Navier-Stokes equations. These include clustering
high frequency eigenvalues away from the origin, thus providing rapid damping by a
multi-stage scheme, directional coarsening multigrid and alternating direction implicit
preconditioners. Preconditioning methods for the compressible equations have been
investigated by several researchers; see Turkel [179] for a review on this topic. They
present generalisations of the incompressible artificial compressibility formulation to
compressible equations. Turkel’s approach modifies the transient behaviour of the
Navier-Stokes equation in such a way that the stiffness is removed from the eigenval-
ues. Lee and van Leer [95] preconditioner uses a minimum range in the characteristic
speeds and a minimum variation from the associated eigenvectors. Lynn [101] further
developed the idea of Lee and van Leer [95] and found that at stagnation points the
preconditioner produced instabilities which could not be fixed.

The steady-state incompressible Navier-Srokes equations in their pseudo-compressibil-
ity (artificial compressibility) formulation are written as in Eqns. 2.6.1 and 2.6.2.
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Turkel’s preconditioning approach1 replaces the momentum equation with

(α + 1)
β

ui
∂p
∂τ

+
∂ui

∂τ
+
∂uiu j

∂x j
= − ∂p

∂xi
+

1
Re

∂2ui

∂x2
j

, (2.9.1)

in conservative form2, or

(αui)
β
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∂τ

+
∂ui

∂τ
+ u j

∂ui

∂x j
= − ∂p

∂xi
+

1
Re

∂2ui

∂x2
j

, (2.9.2)

in non-conservative form.

α is yet another parameter controlling the attenuation of the flow divergence towards
zero.

Equations 2.6.1 and 2.9.2 can be written in matrix form as

P−1∂U
∂t

+ A
∂U
∂x

+ B
∂U
∂y

= 0 (2.9.3)

where U = (p, u, v)T and

P−1 =


1/β 0 0
αu/β 1 0
αv/β 0 1

 (2.9.4)

A =


0 1 0
1 u 0
0 0 u

 (2.9.5)

B =


0 0 1
0 v 0
1 0 v

 (2.9.6)

Multiplying Eq.2.9.3 with P yields,

∂U
∂t

+ AP
∂U
∂x

+ BP
∂U
∂y

= 0 (2.9.7)

The system of equations is hyperbolic since its eigenvalues are real. For example,
the eigenvalues associated with the momentum flux in the x−direction (in a Cartesian
system) are given by

λ0 = u , λ1,2 =
(1 − α)u ±

√
(1 − α)2u2 + 4β
2

. (2.9.8)

1Note that in Turkel [177] the derivation was presented for the inviscid incompressible equations,
but it can also be formally applied to the system of the Navier-Stokes equations.

2For time-dependent flows this system is only truly conservative once the steady state has been
reached
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The choice of β needs to be optimised to minimise the largest possible ratio of wave
speeds. Turkel proposed the calculation of β as:

β2 =

{
max[(2 − α)(u2 + v2), ε] α < 1
Kmax[α(u2 + v2), ε] α ≥ 1 (2.9.9)

where β is a function of the fluid speed (u2 + v2). The value of ε should be a fraction
of (u2 + v2)max and the value of K should be chosen slightly larger than one. It should
be noted that the original artificial compressibility formulation in conservative form
can be obtained by selecting α = −1 in Eq. 2.9.1, in conjunction with the continuity
equation (Eq. 2.6.1). For the case that α = 1 the acoustic sound speed is isotropic and
independent of the flow velocity.

2.10 High-Resolution Methods

High-resolution methods employ some sort of nonlinear “recipe” to control oscillations
in the solution. High-resolution methods differ from linear methods, which use the
same differencing stencil everywhere regardless of the local solution, by using the local
solution to adapt the stencil used for the differencing and also to use the nonlinearity to
control oscillations. The inherent nonlinearity of high-resolution methods means that
even if the equations being solved are linear high-resolution methods are still nonlinear.
This means that high-resolution methods are both a function of space and time as well
as being dependent upon the nature of the local solution. Another property which must
be satisfied in order for a numerical method to be classed as high-resolution is that the
nonlinear principle used must remove spurious oscillations as well as allowing at least
second-order accuracy in areas where the solution is smooth.

The above discussion leads to a more general definition of high-resolution. High-
resolution methods select the “best” technique for approximating the solution given the
evidence provided by the local solution. Thus, high-resolution methods adapt them-
selves to their circumstances so that the solution obtained is accurate and has some
physical meaning.

In 1959, Godunov suggested an approach for the numerical solution of fluid flows (Go-
dunov [66]). In this work Godunov states that There are no monotone, linear schemes
for the linear advection equation of second or higher order of accuracy. This sug-
gest that second order accuracy and monotonicity are contradictory requirements. Go-
dunov’s first approach involved solving a general flow field by implementing directly
a numerical solution of the Euler equations written in partial differential equation form
(discretised by the finite difference approach). Godunov suggested that exact solutions
of the Euler equations for a local region of the flow be pieced together to synthesise the
general flow field. The concept here is that you are constructing a general flow field
from elements that are themselves solutions to the Euler equations in a local region of
the flow. In order to construct the general flow field you are piecing together local so-
lutions of a smaller problem, rather than visualising a widely sweeping solution of the
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governing partial differential equations or integral equations over the whole space of
the flow. The evolution of flow to the next time step results from the wave interactions
originating at the boundaries between adjacent cells. The resulting local interaction
can be resolved using an approximate Riemann solver. Riemann solvers are a key to
high-resolution methods and are explained in further detail in section 2.11. The basic
Godunov algorithm is explained graphically in Fig. 2.4.

Initial Data

Riemann Solution

Averaging and Reconstruction

Reaveraging

Figure 2.4: The basic geometric picture of Godunovs method showing the steps of
the algorithm. The piecewise constant reconstruction, the evolution via the Riemann
solution and the averaging associated with the finite volume update (figure taken from
Drikakis and Rider [50]).

The key to circumventing Godunov’s theorem lies in the assumption made by Go-
dunov that the schemes are linear. Thus, in order to design schemes that are higher
than first-order accurate and still preserve monotonicity, nonlinear methods need to be
developed. The development of high-resolution methods needs to be carried out in a
one-dimensional context due to the lack of adequate theory in multi-dimensions. It
should be noted that even though a numerical method can be designed to be second-
order accurate for one-dimensional problems, its accuracy in multi-dimensions is not
guaranteed to be second-order. High-order flux methods can be derived by using a
finite difference approach where the dependent variables are point values. If the de-
pendent variables are viewed as averages over a cell then a mean preserving high-order
interpolation can produce high-order methods. Note, that the description of the exten-
sion to high-order methods is equivalent to that of those for linear problems. Many
non-linear problems develop discontinuities and as such the solution is nominally first-
order accurate (Majda and Osher [103]).

Other methods of interest which have built upon high-resolution Godunov-type meth-
ods are: total variation diminishing (TVD), essentially nonoscillatory (ENO), total
variation bounding (TVB) and weighted ENO (WENO). For further information of
these numerical methods refer to the text of Drikakis and Rider [50] and Toro [174].
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High-resolution Godunov-type methods all have a general form of the intercell Godunov-
flux;

Ei+1/2 =
1
2

(EL + ER) − 1
2
|A|(UR − UL) (2.10.1)

where A approximates ∂E/∂U (the entries of the Jacoby matrix, in general), EL =

EL(UL) and ER = ER(UR) denote the left and right states of the flux respectively, at
the cell face and UL and UR are the left and right states, respectively, of the vector
of the primitive variables U = (p, u, v)T at the cell face of the computational volume.
The second term on the right hand side is the wave-speed dependent term, which, is a
function of the local wave speeds and flow data. It is essentially acting as a nonlinear
numerical viscosity that adjusts the amount of numerical dissipation locally, at the cell
faces, in order to maintain monotonicity and conservation.

2.11 Riemann solvers

The solution of the flow field in the shock tube is frequently called the Riemann prob-
lem, named after the German mathematician G.F. Bernhard Riemann who first at-
tempted its solution in 1858. The Riemann problem lends itself to a direct analytic
solution of the unsteady, one dimensional Euler equations. Details of the Riemann or
shock tube problem will not be presented here and the reader is referred to the text of
Anderson [8] for a detailed explanation.

Approximate Riemann solvers are preferred to exact Riemann solvers due to the high
computational expense of exact Riemann solvers. Moreover, approximate Riemann
solvers are more reasonable for general circumstances (complicated physics, equa-
tions of state) encountered in most applications. A number of approaches have been
developed concerning the purpose of computing the Godunov flux. Harten et al. [76]
presented a novel approach for solving the Riemann problem approximately. The re-
sulting Riemann solvers have been known as the HLL Riemann solvers. In this ap-
proach an approximation for the intercell numerical flux is obtained directly. The cen-
tral idea is to assume a wave configuration for the solution that consists of two waves
separating three contact states. Assuming that the wave speeds are given by some al-
gorithm, application of the integral form of the conservation laws gives a closed-form,
approximate expression for the flux. The approach produced practical schemes after
the contributions of Davis [43] and Einfeldt [56], who independently proposed various
ways of computing the wave speeds required to completely determine the intercell flux.
The resulting Riemann solvers form the bases of very efficient and robust approximate
Godunov-type methods.

2.11.1 HLL Scheme (Harten et al. [76])

Harten, Lax and van Leer [76] proposed a novel approach for approximately solving
the Riemann problem which became known as the HLL Riemann Solver. The HLL
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scheme considers only the left S L, and the right S R, wave speeds by ignoring the con-
tact discontinuity (see Fig. 2.5) and assuming a single intermediate (”star”) region.
The solver is defined as:

Ũ(x, t) =


UL if x

t ≤ S L,
Uhll if S L ≤ x

t ≤ S R,
UR if x

t ≥ S R

(2.11.1)

where Uhll is the constant state vector given by

Uhll =
S RUR − S LUL + EL − ER

S R − S L
(2.11.2)

where EL and ER are the physical flux functions at the left and right respectively. The
speeds S L and S R are assumed to be known. The corresponding flux Ehll is given by

Ehll =
S REL − S LER + S LS R(UR − UL)

S R − S L
(2.11.3)

The intercell flux for the HLL approximate Godunov method is given by

Ehll
i+1/2 =



EL if 0 ≤ S L,
S REL−S LER+S LS R(UR−UL)

S R−S L
if S L ≤ 0 ≤ S R,

ER if 0 ≥ S R

(2.11.4)

The above can be combined into a single formula (Harten et al. [76])

Ehll
i+1/2 =

S −R − S −L
S R − S L

ER +
S +

R − S +
L

S R − S L
EL − 1

2
S R|S L| − S L|S R|

S R − S L
(UR − UL) (2.11.5)

where S −L,R = min(0, S L,R) and S +
L,R = max(0, S L,R).

There are various ways of estimating the wave speeds for the minimum and maximum
signal velocities present in the solution of the Riemann problem for compressible flows
(Davis [43]; Toro et al. [175]; Einfeldt [56]). The most well known is to directly apply
the wave speeds S L and S R. Davis [43] suggested the simple estimates

S L = uL − aL S R = uR + aR

S L = min {uL − aL, uR − aR} S R = max {uL + aL, uR + aR}
where, u and a are the particle speed and the speed of sound respectively. These
estimates for the wave speeds makes use of data values only.

The HLLE scheme proposed by Einfeldt [56] provides an alternative approach to the
above and can be applicable to incompressible flows.
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t
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U hll

S L

S R

U L U R

Figure 2.5: Approximate HLL Riemann solver. Solution in the Star Region consists of
a single state Uhll separated from data states by two waves of speed S l and S R. Figure
taken from Toro [174]

2.11.2 Einfeldt’s Scheme (Einfeldt [56])

Einfeldt’s HLLE scheme is an extension of the Harten-Lax-van Leer (HLL) scheme
(Harten et al. [76]). In contrast to the HLL scheme and other Riemann solvers, where
a numerical approximation for velocities and pressure at contact discontinuities is com-
puted, Einfeldt derived a numerical approximation for the largest and smallest signal
velocity in the Riemann problem. Using the numerical signal velocities, he used theo-
retical results of Harten et al. [76] to obtain the numerical flux.

The difference between the original HLL scheme and the HLLE version lies in the way
that the wave speeds are calculated. According to the HLLE scheme, the intercell flux
Ei+1/2 is defined by

Ei+1/2 =
b+

i+1/2EL − b−i+1/2ER

b+
i+1/2 − b−i+1/2

+
b+

i+1/2b−i+1/2

b+
i+1/2 − b−i+1/2

(UR − UL), (2.11.6)

where b+
i+1/2 = max((λ1)i, (λ1)i+1)), and b−i+1/2 = min((λ2)i, (λ2)i+1)). In the context of

the artificial compressibility approach, the eigenvalues λ1 and λ2 are given by

λ1 = u +
√

u2 + β, λ2 = u −
√

u2 + β. (2.11.7)

2.11.3 Rusanov Scheme (Rusanov [148])

The Rusanov flux at a cell face (i + 1/2) is given by

Ei+1/2 =
1
2

(EL + ER) − 1
2

S +(UR − UL) (2.11.8)
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EL = EL(UL) and ER = ER(UR) denote the left and right states of the flux respectively
at the cell face of the computational volume. Similarly, UL and UR are the left and
right states, respectively, of the vector of the primative variables U = (p, u, v)T at the
cell face of the computational volume. The second term on the right-hand side of
Eq.2.11.8 is the wave-speed dependent term (WST). Davis [43] defined this parameter
as the maximum wave speed, i.e.,

S + = max(|uL − sL|, |uR − sR|, |uL + sL|, |uR + sR|), (2.11.9)

where, in the context of the artificial compressibility approach, s =
√

u2 + β.

2.11.4 Lax-Friedrichs Scheme (Lax [93])

The Lax-Friedrichs scheme can be directly related to the Rusanov scheme above. If
one defines the maximum wave speed in Eq. 2.11.9 by imposing the CFL stability
condition, i.e., S + = S max = C∆x/∆t, where C is the CFL number, then for C = 1, one
obtains the Lax-Friedrichs flux:

Ei+1/2 =
1
2

(EL + ER) − 1
2

∆x
∆t

(UR − UL) (2.11.10)

2.11.5 Characteristics-Based Scheme (Drikakis et al. [51])

The Characteristics-based scheme is a Riemann solver which defines the conserva-
tive variables along the characteristics as functions of their characteristic values. The
method was firstly presented by Eberle [55] for the compressible Euler equations and
was extended by Drikakis et al. [51] and Drikakis [47] to solve the incompressible
Navier-Stokes equations. The method will be presented in the sequence of reconstruc-
tion steps firstly for the incompressible Navier-Stokes equations and secondly for the
compressible equations. For a more detailed explanation of the numerical scheme
please refer to the work of Drikakis et al. [51], Drikakis [47] and Eberle [55].

Incompressible flows

The calculation of the advective flux is summarised as:

1. The three eigenvalues λl for l = 0, 1, 2 are calculated using the velocities u, v,
and w from the previous timestep.

2. The left and right, states of the characteristic variables are calculated by high-
order reconstruction from the variables in the neighbouring cells, for example,
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third-order reconstruction:

Ui+ 1
2 ,R

=
1
6

(5Ui+1 − Ui+2 + 2Ui),

Ui+ 1
2 ,L

=
1
6

(5Ui − Ui−1 + 2Ui+1).
(2.11.11)

It should be noted that the reconstruction in Eq. 2.11.11 is not strictly third-order
accurate, but assures third-order accuracy of the term (UR − UL) in Eq. 2.10.1
(Drikakis et al. [51])

3. For each characteristic (denoted by l = 0, 1, 2), the variables Ul are calculated
using an upwind Godunov scheme

Ul,i+1/2 =
1
2

[(1 + sign(λl))Ui+1/2,L + (1 − sign(λl))Ui+1/2,R], (2.11.12)

where

sign(λl) =

{ −1 for λl > 0
1 for λl < 0 (2.11.13)

4. Using information from above (Ul) the new characteristic reconstructed vari-
ables Ũ are calculated. The variables Ũ associated with the advective flux E (in
Cartesian co-ordinates) are given by

Ũ =



p̃
ũ
ṽ
w̃


=



1
2s(λ1k2 − λ2k1)

Rx̃ + u0(ỹ2 + z̃2) − v0 x̃ỹ − w0 x̃z̃
Rỹ + v0(x̃2 + z̃2) − w0z̃ỹ − u0 x̃ỹ
Rz̃ + w0(ỹ2 + x̃2) − v0z̃ỹ − u0 x̃z̃


, (2.11.14)

where

R =
1
2s

[
p1 − p2 + x̃(λ1u1 − λ2u2) + ỹ(λ1v1 − λ2v2) + z̃(λ1w1 − λ2w2)

]
,

k1 = p1 + λ1(u1 x̃ + v1ỹ + w1z̃),
k2 = p2 + λ2(u2 x̃ + v2ỹ + w2z̃).

5. Finally the reconstructed variables are used to calculate the intercell advective
flux, Ēi+1/2 ≡ [Ē(Ũ)]i+1/2.

The above steps are also performed for the calculation of the advective fluxes in η and
ζ directions. The discretised flux derivatives are then added (including the viscous
fluxes in the case of the Navier-Stokes equations) and the system of the equations is
integrated in time using a time integration scheme.
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Compressible flows

The general approach for computing the incompressible equations using the character-
istics based scheme is employed for computing compressible flows and again will be
outlined in a sequence of reconstruction steps.

1. The three eigenvalues λl for l = 0, 1, 2 are calculated using the velocities u, v,
and w from the previous timestep.

2. The left and right states of the conservative variables at the cell faces are cal-
culated using a MUSCL-type high order interpolation of the neighbouring cell
centred data. The left state (and accordingly the right state) is given by

ŪL,i−1/2 = Ui−1 + S L[(0.5 − S L)∆i−3/2 + (0.5 + S L)∆i−1/2], (2.11.15)

where S L is the smoothing function

S L = 0.5 − (0.5 + nAL)(1 − 2AL)n,

AL is a modified van Albada limiter defined by

AL =
∆i−1/2∆i−3/2

∆2
i−1/2 + ∆2

i−3/2 + ε
,

ε is a small positive value preventing division by zero and ∆ is the vector of
slopes of conserved variables at the corresponding cell face. Sensor functions
are applied to detect strong discontinuities, e.g., shocks in hypersonic flows, and
limit AL in order to obtain a more dissipative (low-order) interpolation scheme.

3. For each characteristic (denoted by l = 0, 1, 2), the variables Ul are calculated
using an upwind Godunov scheme

Ul,i−1/2 = (0.5 + φl)ŪL,i−1/2 + (0.5 − φl)ŪR,i−1/2, (2.11.16)

where the function φl is defined as,

φl = 0.5
λL,l + λR,l

|λL,l| + |λR,l| + ε
.

The parameter ε averts division by zero and λL,l, λR,l are the left and right eigen-
values at the cell face, respectively. Using the Godunov-type up-winding scheme
in Eq. 2.11.16, three sets of characteristic variables are calculated, i.e., for
l = 0, 1, 2.

4. Using information from above (Ul,i−1/2) the new characteristic reconstructed vari-
ables Ũi−1/2 are calculated. The variables Ũi−1/2 associated with the advective
flux E (in Cartesian co-ordinates) are given by

Ũi−1/2 =



ρ̃
ρ̃u
ρ̃v
ρ̃w
ẽ


=



ρ0 + r1 + r2

(ρu)0 + (u + s)r1 + (u − s)r2

(ρv)0 + vr1 + vr2

(ρw)0 + wr1 + wr2

e0 + (H + sλ0)r1 + (H − sλ0)r2


, (2.11.17)
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where

r1 =
1

2s2

[
(ρ0 − ρ1)(sλ0 − γ − 1

2
q2) + ((ρu)0 − (ρu)1)((γ − 1)u − s)

+ ((ρv)0 − (ρv)1)(γ − 1)v

+ ((ρw)0 − (ρw)1)(γ − 1)w − (e0 − e1)(γ − 1)
]
,

r2 =
1

2s2

[
− (ρ0 − ρ2)(sλ0 +

γ − 1
2

q2) + ((ρu)0 − (ρu)2)((γ − 1)u + s)

+ ((ρv)0 − (ρv)2)(γ − 1)v

+ ((ρw)0 − (ρw)2)(γ − 1)w − (e0 − e2)(γ − 1)
]
,

and the total enthalpy is given by

H =
s2

γ − 1
+ 0.5q2.

The velocities u, v,w and the speed of sound s are the average values of their left
and right states and q2 = u2 + v2 + w2. Finally the advective flux Ei−1/2 for the
characteristics-based scheme is calculated using the variables Ũi−1/2, i.e.,

Ei−1/2 = E(Ũi−1/2) (2.11.18)

2.12 High-Order Reconstruction and Slope Limiting

Higher-order spatial accuracy can be achieved by introducing more upwind points in
the scheme. The following description is based on an extension of the Godunov type
approach by van Leer [185]. The projection stage whereby the solution is projected
in each cell (i − 1/2, i + 1/2) on piecewise constant states, is the cause of the first-
order accuracy of the Godunov schemes. This stage is completely decoupled from
the physical stage where the Riemann problems are solved at the interfaces of the
cells. This means that the first projection stage can be modified without modifying
the Riemann solver, in order to generate higher than first-order spatial approximations.
The state variables at the interfaces are thereby obtained from an interpolation between
the neighbouring cell averages.

Two interpolation procedures are presented for the high-order reconstruction. Firstly
a Lagrangian interpolation scheme and secondly a MUSCL interpolation scheme (van
Leer [183]).
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2.12.1 Largangian interpolation

Consider the one-dimensional stencil shown in Fig. 2.6. Two states, left and right, for
the intercell characteristic variables can be defined as follows

Ui+1/2,L = aUi − bUi−1 + cUi+1 + dUi+2, (2.12.1)

for the left state, and

Ui+1/2,R = aUi+1 − bUi+2 + cUi + dUi−1, (2.12.2)

for the right state. The coefficients a, b, c and d need to be determined.

ii-2

i+1/2

i+2i+1i-1

i-1/2

Figure 2.6: One-dimensional stencil used to define the high-order interpolation. Figure
taken from Drikakis and Rider [50].

By taking the derivative of the characteristic variable at the cell centre for the case of
a positive eigenvalue and developing all variables in a Taylor series expansion around
the cell centre i, yields

(
∂U
∂ξ

)

i
= (a − b + c + d)U (1) +

[
c − a + 3(b + d)

]
U (2)

+

[
c + a + 7(d − b)

]
U (3) +

[
c − a + 15(b + d)

]
U (4).

(2.12.3)

Using 2.12.3 schemes of different orders of accuracy can be derived.

• First-order upwind scheme:
The right and left states of the variables at the cell face are defined as:

Ui+ 1
2 ,R

= Ui+1,

Ui+ 1
2 ,L

= Ui.
(2.12.4)

• Second-order scheme:

Ui+ 1
2 ,R

=
1
2

(3Ui+1 − Ui+2),

Ui+ 1
2 ,L

=
1
2

(3Ui − Ui−1).
(2.12.5)
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• Third-order scheme:

Ui+ 1
2 ,R

=
1
6

(5Ui+1 − Ui+2 + 2Ui),

Ui+ 1
2 ,L

=
1
6

(5Ui − Ui−1 + 2Ui+1).
(2.12.6)

The interpolation formulae 2.12.4, 2.12.5 and 2.12.6 can be used for calculating the
characteristic variables pl, ul, vl and wl (l = 0, 1, 2) for each of the three eigenvalues.
The decision on the selection of the left or right state can be made according to the
sign of the local (intercell) eigenvalue according to the formula

Ul,i+1/2 =
1
2

{
[1 + sign(λl)]Ui+1/2,L + [1 − sign(λl)]Ui+1/2,R

}
. (2.12.7)

It should be noted that the interpolation outlined in Eqs. 2.12.4, 2.12.5 and 2.12.6 do
not strictly give schemes which are first-, second-, and third-order accurate, respec-
tively, but do assure this accuracy in the term (UR − UL) in Eq. 2.10.1.

2.12.2 MUSCL method and limiters for variable interpolation

The MUSCL acronym stands for Monotone Upstream-centred Schemes for Conserva-
tion Laws, after the name of the first code applying this method as developed by van
Leer [186]. To represent the numerical approximation of the solution as a piecewise
constant is equivalent to a first-order spatial discretisation. Hence, a linear approxi-
mation of the solution on each cell would produce a second-order space discretisation,
while a quadratic representation on each cell leads to a third-order spatial discretisa-
tion.

The standard MUSCL interpolation can be represented as;

UL
i+1/2 = Ui +

1
4

[(1 − k)(Ui − Ui−1) + (1 + k)(Ui+1 − Ui)]. (2.12.8)

UR
i+1/2 = Ui+1 − 1

4
[(1 − k)(Ui+2 − Ui+1) + (1 + k)(Ui+1 − Ui)]. (2.12.9)

This form of the extrapolation is symmetric about the interface i + 1/2, and k is a free
parameter between -1 and 1. The interface values can be considered as resulting from a
combination of backward and forward extrapolations. In particular k = −1 corresponds
to a linear one-sided extrapolation at the interface between the averaged values at the
two upstream cells i and (i − 1) (see Fig. 2.7):

UL
i+1/2 = Ui +

1
2

(Ui − Ui−1) k = −1

UR
i+1/2 = Ui+1 − 1

2
(Ui+2 − Ui+1) k = −1

(2.12.10)

leading to a second order fully one-sided scheme.
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i
i+3/2

i+2i+1i-1
i-1/2

x

i+1/2

u

Ui+1/2,R

Ui-1

Ui+2

Ui+1/2,L
Ui

Ui+1

Figure 2.7: Linear one-sided extrapolation of interface values for k = −1. Figure taken
from Hirsch [78]

For k = 0 the interface value is approximated by a linear interpolation between one
upstream and one downstream cell:

UL
i+1/2 = Ui +

1
4

(Ui+1 − Ui−1) k = 0

UR
i+1/2 = Ui+1 − 1

4
(Ui+2 − Ui) k = 0

(2.12.11)

It should be noted that when k = 1 the interface values are the arithmetic mean of
the adjacent cell values and the upwind character is totally lost. This corresponds to
a central scheme since there is no discontinuity at the cell interfaces. When k = 1/3
the MUSCL reconstruction is third-order accurate, however, this does not translate to
third-order accuracy in space when the extrapolated variables are used to calculate the
fluxes, instead the fluxes reduce to second order accuracy.

Second-order upwind schemes are naturally oscillatory around discontinuities and on
there own are not stable enough to avoid over- and undershoots in the numerical solu-
tions. The physical solution to the Euler and Navier-Stokes equations, however, do not
seem to allow the appearance of new extrema in the evolution of the flow variables.
This can be proven for one-dimensional flows. Therefore, the numerical generation of
oscillations is due to the treatment of the second-order approximation, since first-order
schemes are free of these over- and undershoots. The extension of Godunov’s method
from a piecewise constant representation of the state variables to a piecewise linear
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representation obtains second-order spatial accuracy. This can create problems in that
the slope of the linear variation can cause oscillations due to large differences of the
slope in one cell compared to the difference of adjacent mean values. As seen in Fig.
2.8 if the slope in cell i is too large, the solution to the linear convection equation at
time step n + 1, obtained after a translation aδt of the distribution at time nδt, will lead
to cell averaged values un+1

i < un+1
i−1 , while at level n one had un

i > un
i−1 and hence an

undershoot in the solution at time n + 1 will appear.

i i+1i-1

(n+1)∆t

x

U

ui+1
n

ui
n+1

n∆t
ui

n

ui-1
n

Figure 2.8: Generation of oscillations in numerical solutions. Figure taken from Hirsch
[78]

In order to define a scheme which is non-oscillatory excessive large gradients should
be avoided. One way to obtain a numerical scheme which is non-oscillatory is to use
limiters. Limiters provide a non-linear correction factor and were initially introduced
by van Leer [182] and separately by Boris and Book [17]. The idea behind limiters is
to ensure that the interpolation procedure itself cannot produce any new extrema in the
data at the cell interface, i.e. that the cell interface value must lie between the values
of the neighbouring cell.

The MUSCL scheme as presented in Eqs. 2.12.8 and 2.12.9 is not stable on it’s own
and hence a limiting method must be incorporated. Limiters are generally defined
using the parameter r where;

rL =
Ui+1 − Ui

Ui − Ui−1
, rR =

Ui+1 − Ui

Ui+2 − Ui
. (2.12.12)

A limiting function φ(r) is defined giving a symmetric limited MUSCL scheme in the
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form;

UL
i+1/2 = Ui +

1
4

[(1 − k)φ(rL)(Ui − Ui−1) + (1 + k)φ
(

1
rL

)
(Ui+1 − Ui)]. (2.12.13)

UR
i+1/2 = Ui+1 − 1

4
[(1 − k)φ(rR)(Ui+2 − Ui+1) + (1 + k)φ

(
1
rR

)
(Ui+1 − Ui)]. (2.12.14)

It is important to point out that for a limiting scheme to be high-resolution it must
satisfy the TVD (total-variation-diminishing) concept. This will not be discussed here
in detail and the reader is referred to the texts of Toro [174] and Drikakis and Rider
[50]. A simple way to describe the TVD concept is to consider the equation below in
conservation form

∂u
∂t

+
∂ f
∂x

= 0 (2.12.15)

where f = f (u). At any given point along the x axis, both u and its derivative, ∂u/∂x,
are known at time level n. An important property of physical solutions governing by
Eq. 2.12.15 is that |∂u/∂x| integrated over the entire domain on the x axis does not
increase with time. This integrated quantity is called the total variation, TV, given by

TV =

∫ ∣∣∣∣∣
∂u
∂x

∣∣∣∣∣ dx (2.12.16)

Hence, for a physically proper solution, TV does not increase with time. In terms of
a numerical solution of Eq. 2.12.15, where ∂u/∂x can be discretised by (ui+1 − ui)/δx,
the Eq. 2.12.16 can be written as;

TV(u) ≡
∑

i

|ui+1 − ui| (2.12.17)

Equation 2.12.17 defines the total-variation in x of a discrete numerical solution. If
TV(un+1) and TV(un) represent Eq. 2.12.17 evaluated at time level n + 1 and n, respec-
tively, and if

TV(un+1) ≤ TV(un) (2.12.18)

the numerical algorithm is said to be total-variation-diminishing (TVD). From the
above discussion, if a numerical solution is to properly follow the physical behaviour
of a given flow field, then the scheme should be a TVD scheme.

Baines and Sweby [11] outlined a TVD region shown in Fig. 2.9 for the design of
slope limiters. They showed that for a negative r the TVD region is a single line φ = 0
and for a positive r the TVD region lies between 0 and min{φL(r), φR(r)}.
Various limiters have been described in the literature of Toro [174] and several have
been used during the course of this thesis, namely: van Albada (VA) (van Albada et al.
[181]); van Leer (VL) (van Leer [184]); Minbee (MB) (Harten [75]); Superbee (SB)
(Roe [143]); the limiter developed by Drikakis (DD) (Zóltak and Drikakis [196]); and
a 5th order limiter (KK5) by Kim and Kim [84]. They can be each be described as;

φVA =
r(1 + r)
1 + r2 (2.12.19)
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1

Figure 2.9: Limiter region for second-order TVD schemes. Figure taken from Hirsch
[78]

φVL =
2r

1 + r
(2.12.20)

φMB = min(1, r) (2.12.21)

φS B = max(0,min(1, 2r),min(r, 2)) (2.12.22)

φDD = 1 −
(
1 +

2Nr
1 + r2

) (
1 − 2r

1 + r2

)N

(2.12.23)

φKK5,L =
−2/rL

i−1 + 11 + 24rL
i − 3rL

i rL
i+1

30
, (2.12.24)

φKK5,R =
−2/rR

i+2 + 11 + 24rR
i+1 − 3rR

i+1rR
i

30
, (2.12.25)

where monotonicity is maintained by limiting Eqs. 2.12.24 and 2.12.25 using

φKK5,L = max(0,min(2, 2rL
i , φM5,L)), (2.12.26)

φKK5,R = max(0,min(2, 2rR
i , φM5,R)). (2.12.27)

The limiter applied by van Albada et al. [181] tends to have a smoother behaviour than
the limiter of van Leer [184]. It has the property of tending to 1 for large values of
r. The Minbee limiter takes the lowest value of the considered TVD domain and is
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a commonly applied limiter. It’s resolution at contact discontinuities is not so good
but is very simple to implement. The Superbee limiter proposed by Roe [143] con-
siders the upper limit of the second-order TVD domain and has been shown to have
excellent resolution properties for contact discontinuities. This limiter actually ampli-
fies certain contribution, when φ > 1, while remaining within the TVD bounds. This
explains the property of the limiter in counteracting the excessive spreading of contact
discontinuities.

The above limiters share the symmetry property

φ(r)
r

= φ

(
1
r

)
(2.12.28)

indicating that forward and backward gradients are treated in the same way. Alterna-
tively, this property ensures that the limited gradients remain associated with a linear
variation of the u variable within each cell.

Thornber et al. [172, 173] have carried out a theoretical analysis of the dissipation of
kinetic energy within Godunov-type schemes for the simulation of low Mach number
flows. In relation to shock flows, Thornber et al. [172] report that the leading order
dissipation rate of a Godunov method is proportional to the velocity jump squared
multiplied by the speed of sound, and is caused by the reaveraging process in the
finite volume method. At low Mach numbers the dissipation due to velocity jumps
dominates the flow. Thornber et al. [173] have proposed a low Mach ‘correction’ to the
finite volume Godunov method and have shown that a significantly improved solution
of low Mach perturbations for use in mixed compressible/incompressible flow can be
obtained. The simple modification of the limiting method is applied only to velocity
jumps across the cell interface and ensures that the leading order dissipation rate is
constant as Mach tends to zero. Thornber et al. [173] originally developed this low
Mach correction for the limiting method of Kim and Kim [84] but has since extended
it for various other limiters. The modification scales the limited velocities by Mach
number, hence removing the dependency of the leading order kinetic energy dissipation
rate on the speed of sound. The modification can be shown for the KK5 limiter as:

uL,KK =
uL + uR

2
+ z

uL − uR

2
,

uR,KK =
uL + uR

2
+ z

uR − uL

2
,

(2.12.29)

where z = min(Mlocal, 1) and Mlocal = max(ML, MR). The parameter u is the velocity.

2.13 Time Integration

One of the most popular temporal discretisation methods are explicit Runge-Kutta
time-stepping schemes. An explicit scheme starts from some known solution and em-
ploys the corresponding residual in order to obtain a new solution at time (t + ∆t).
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Thus, the new solution depends solely on values already known. This fact makes ex-
plicit schemes very simple and easy to implement. A fourth-order Runge-Kutta time-
stepping method is used for the time integration of the incompressible Navier-Stokes
equations, whereas the compressible solver uses a third-order Runge-Kutta strongly
stability preserving (SSP) method (Gottleib et al. [68]). This method is also known
as Heun’s method and has been documented in the books of Ascher and Petzold [9]
and Oran and Boris [124]. The two methods are described below, starting with the
fourth-order Runge-Kutta method used in the incompressible solver.

The three-dimensional Navier-Stokes equations can be written in the context of the
artificial compressibility formulation in curvilinear coordinates as:

(JU)τ + (JĨU)t + (EI)ξ + (FI)η + (GI)ζ = (EV)ξ + (FV)η + (GV)ζ (2.13.1)

U is the unknown solution vector, Ĩ is a matrix and J is the jacobian of transformation
from cartesian (x, y, z) to curvilinear (ξ, η, ζ) coordinates. Eq. 2.13.1 can be re-written
as,

(Q)τ + (NQ) = 0 (2.13.2)

where Q = JU and the operator N(Q) contains the discretised inviscid and viscous
fluxes as well as the term (ĨQ)t. The time intergration of Eq. 2.13.2 requires iterations
to be performed at the pseudo time level τ. Let ν and n denote the pseudo-iterations
and real time steps, respectively. In order to forward the solution from n to n + 1 we
consider the (m + 1)th TVD Runge-Kutta discretisation of Eq. 2.13.2 as proposed by
Shu and Osher [158]. The general discretisation form is:

Q(i) =

i−1∑

k=0

(
ãikQ(k) + bik∆tN(Qk)

)
, i = 1, 2, .....,m (2.13.3)

with
Q(0) = Q(ν), Q(m) = Q(ν+1) (2.13.4)

lim
Qτ→0

Q(ν+1) → Q(n+1)

The fourth-order Runge-Kutta time-stepping method can be written in consolidated
form as:

Q(0) = Qν (2.13.5)

Q(1) = Qν − ∆τ

2
N(Q(0)) (2.13.6)

Q(2) = Qν − ∆τ

2
N(Q(1)) (2.13.7)

Q(3) = Qν − ∆τ(Q(2)) (2.13.8)

Q(ν+1) = Qν − ∆τ

6
[N(U (0)) + 2N(U (1)) + 2N(U (2)) + N(U (3))] (2.13.9)
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By implementing the above with a non-linear multigrid method high numerical ef-
ficiency can be achieved. The artificial compressibility and dual time stepping for-
mulation allows us to implement the multigrid approach directly to the Navier-Stokes
equations (see section 2.7).

Local time stepping ∆t is used to accelerate the convergence to the steady state solu-
tion.

∆t =
CFL

max(λ j)
j = 0, 1, 2 (2.13.10)

where CFL is the Courant-Friedrichs-Lewy number.

The third-order Runge-Kutta strongly stability preserving (SSP) method used in the
compressible code can be described by firstly showing Heun’s third-order method (As-
cher and Petzold [9]; Oran and Boris [124]) as:

U1 − Un

∆t
= 1

3 f (Un, tn)

U2 − Un

∆t
= 2

3 f (Un, tn)

Un+1 − Un

∆t
= 1

4

[
f (Un, tn) + 3 f (U2, tn+2/3)

]



(2.13.11)

The third-order TVD method can be represented as:

U1 − Un

∆t
= f (Un, tn)

U2 − Un

∆t
= 1

4

[
f (Un, tn + f (U1, tn+1))

]

Un+1 − Un

∆t
= 1

6

[
f (Un, tn) + 4 f (U2, tn+1/2) + f (U1, tn+1)

]



(2.13.12)

The recent work of Spiteri and Ruuth [167] has shown that SSP methods can produce
larger CFL limits at the cost of more function evaluations. A four-stage method is
given as:

U1 − Un

∆t
= 1

2 f (Un, tn)

U2 − Un

∆t
= 1

2 f (U1, tn+1)

Un+1 − 2
3U2 − 1

3U2

∆t
= 1

3

[
f (U2, tn+1/2) + f (U1, tn+1/2)

]



(2.13.13)

This method extends the CFL limit to 2 rather than 1.
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C H A P T E R 3

Preconditioning of Incompressible Flows

This chapter describes the investigation into a form of preconditioning approach for
the incompressible Navier-Stokes equations. Computations have been carried out for
flows through suddenly expanded-contracted and suddenly expanded geometries, for
a broad range of Reynolds numbers, featuring flow separation as well as instabilities.
The instabilities are manifested in a symmetry-breaking bifurcation of the flow. A
comparison of the preconditioned and non-preconditioned solution against experimen-
tal and previous computational results are presented. The effect of preconditioning on
the accuracy of the computed solution and rate of convergence to the steady state has
been investigated.

3.1 Introduction

T aim of preconditioning techniques is to alleviate the stiffness of the Euler and
Navier-Stokes equations for incompressible and low speed compressible flows.

Some would argue that the equations for solving incompressible flow do not experi-
ence the same type of stiffness as with the low speed compressible flow equations.
This however is unfounded. When solving the hyperbolic incompressible flow equa-
tions using the artificial compressibility formulation (2.6), at Reynolds numbers of
Re = 0.1 and below, the advective fluxes behave in much the same manner as solving
the low speed compressible flow equations and require a lengthy time to converge to
a steady state. The artificial compressibility parameter scales inversely to Reynolds
number to obtain the best convergence rate. Hence as Reynolds number becomes very
low the artificial compressibility parameter becomes large. This results in the equa-
tions becoming more “incompressible” which in turn results in the advective equations
becoming more stiff.

There are two main streams of research regarding preconditioning. Firstly, the devel-
opment of preconditioning for low Mach number and incompressible flows (Choi and
Merkle [34]; Turkel [178, 179]; Hirsch and Hakimi [79]; van Leer et al. [187]). The ar-
tificial compressibility method of Chorin [35] can also be viewed as a preconditioning
technique. Secondly, methods that aim to alleviate discrete stiffness in the Euler and
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Navier-Stokes equations, including clustering high frequency eigenvalues away from
the origin, thus providing rapid damping by a multi-stage scheme (Pierce and Giles
[130]), directional coarsening multigrid (Mulder [119]) and alternating direction im-
plicit preconditioners (Allmaras [2]; Buelow et al. [24]). Preconditioning methods for
the compressible equations have been investigated by several researchers; see Turkel
[179] for a review on this topic. They present generalisations of the incompressible
artificial compressibility formulation to compressible equations. Turkel’s approach
modifies the transient behaviour of the Navier-Stokes equation in such a way that the
stiffness is removed from the eigenvalues. Lee and van Leer [95] preconditioner uses a
minimum range in the characteristic speeds and a minimum variation from the associ-
ated eigenvectors. Lynn [101] further developed the idea of Lee and van Leer [95] and
found that at stagnation points the preconditioner produced instabilities which could
not be fixed. The details of the various types of preconditioning techniques for com-
pressible low speed flows will not be presented here and the reader is referred to the
papers by Turkel [179] and Choi and Merkle [34] and the book by Drikakis and Rider
[50] for further details.

As stated above, the artificial compressibility formulation can be considered as a type
of preconditioning technique in which the incompressible equations are marched to a
steady state solution. In 2.9 an overview of the equations for solving the preconditioned
incompressible Navier-Stokes equations in the context of the artificial compressibil-
ity formulations were presented. The method introduced by Turkel [177] considered
a generalisation to the artificial compressibility approach by allowing artificial time
derivatives in all the equations and not only the continuity equation as is the case in
the standard artificial compressibility approach. Turkel [177] reports that this tech-
nique allows for faster convergence and also facilitates a uniform treatment for both
primitive and conservative variables. The equations which results from this technique
form a symmetric hyperbolic system and is hence well posed for both primitive and
conservative formulations. The system of equations have already been presented in
2.9.

The effect of preconditioning on the accuracy and efficiency of separated internal in-
compressible flows featuring instabilities manifested as symmetry-breaking bifurca-
tions was investigated. In general, the aim was to investigate the circumstances in
which preconditioning should be used. The preconditioner of Turkel [177] in con-
junction with the artificial compressibility formulation of the Navier-Stokes equations
was implemented within the characteristics-based scheme used for the discretisation
of the advective terms (Drikakis et al. [51]). An explicit, TVD fourth-order order
Runge-Kutta scheme developed by Shu and Osher [158] and the multigrid algorithm
of Drikakis et al. [52] were used for the time stepping and acceleration to the steady
state.
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3.2 Problem Description

A sudden expansion-contraction geometry was setup following the previous study of
Mizushima and Shiotani [115]. Figure 3.1 shows the considered geometry with the
flow direction left to right. The parameter h is the inlet width and 3h is the width of
the expanded channel. The contracted channel is of the same width (h) as the inlet
width. The expansion ratio is defined as E = 3h/h, and was fixed during the coarse
of this study. The aspect ratio A is defined as A = L0/3h, where L0 is the length of
the expanded channel. The lengths L1 and L2 are set equal to 3h. All the sudden
expansion-contraction cases considered in this thesis have an aspect ratio of A = 7/3.

The second geometry investigated was the plane two-dimensional sudden expansion.
A geometry with a 1:2 expansion ratio defined by the ratio of inlet channel height to
expanded channel height was created in accordance with the study by Drikakis [46].
The length of the outlet channel was 300 step heights in order to ensure that the outflow
gradients of the flow variables in the streamwise direction could be considered equal
to zero.

In both cases the Reynolds number is defined as:

Re =
Umaxh
ν

(3.2.1)

where, Umax is the maximum inlet velocity. A fully-developed plane Poiseuille velocity
profile was specified at the inlet and the outlet condition was consistently checked after
each case in order to make sure a fully developed parabolic profile was obtained. The
boundary conditions on all the walls were the non-slip condition.

X

Y

Z

L2L1 L0

3hh

Figure 3.1: Sudden expansion-contraction geometry

Different computational grid sizes were employed and was found that approximately
30,000 and 14,000 grid points were sufficient to obtain grid independent solution for
the expanded-contracted and suddenly-expanded channels, respectively.
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3.3 Results

The importance of understanding non-linear bifurcation phenomena in fluid mechanics
is motivated by the quest to obtain a deeper understanding of hydrodynamic stability
and laminar-to-turbulent transition. It is also equally important to understand the be-
haviour of numerical methods that are used to simulate such phenomena. Therefore,
several numerical experiments for unstable, separated channel flows with and without
the use of preconditioning have been performed.

Various numerical experiments for flows through suddenly expanded-contracted (SEC)
and suddenly-expanded (SE) geometries at low Reynolds numbers have been car-
ried out. At certain Reynolds numbers these flows feature instabilities manifested in
the form of a symmetry-breaking bifurcation. Visualisations from experiments per-
formed by Mizushima and Shiotani [115] for the suddenly expanded-contracted geom-
etry are available (see Fig. 3.3(a)) for comparing the computational results with and
without preconditioning. The suddenly expanded channel is a classic case and both
computational and numerical results are well documented in the literature (Drikakis
[46]; Chedron et al. [29]; Patel and Drikakis [127]). The suddenly expanded-contracted
and the suddenly expanded geometries have been fully investigated in chapters 4 and
5 respectively.

Computations have been carried out for a broad range of low Reynolds numbers span-
ning from 1 to 250, based on the maximum inlet velocity and upstream channel height.
Both flow geometries lead to symmetric flow separation at lower Reynolds numbers
and present a symmetry-breaking bifurcation as the Reynolds number increases. The
expanded-contracted channel returns to a symmetric flow as the Reynolds number fur-
ther increases.

The variable α was varied to investigate the effect it has on the speed of convergence to
the steady state for both flow geometries. The best convergence results were obtained
for α values between 0 and 1 and was independent of the flow geometry. When α = −1
the original artificial compressibility formulation is obtained, while for α = 1 the
eigenvalues λ1 and λ2 are only functions of β. In some cases, this has dissipative
effects on the solution. It was found that preconditioning does not have any significant
effect on the convergence at Reynolds numbers Re < 10, but it does have a positive
effect at higher Reynolds numbers. In this case the total number of multigrid cycles
can be reduced by 30%. The calculation of β as proposed by Turkel (Eq. 2.9.9) was
found not to work effectively when the Reynolds number was reduced below 20. A
fixed β value was found to provide better convergence results (both for preconditioned
and non-preconditioned solutions) and its precise values can significantly affect the
convergence. For example, for a Reynolds number of 10 and β = 1 the number of
multigrid cycles needed to obtain a converged solution was approximately 1780. For
β = 0.8 a converged solution was reached after 800 multigrid cycles.

The most important, however, effects of preconditioning were found to be on the
accuracy of the flow solution, especially in the range of Reynolds numbers where
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symmetry-breaking bifurcation occurs. For lower Reynolds numbers, where the flow
is symmetrically separated the accuracy of the solution was found not to be altered by
the use of preconditioning for the entire range of α and β values investigated here. Fig-
ure 3.2 shows streamwise velocity contours and streamlines for a non-preconditioned
and a preconditioned solution at Re = 10. The degree of separation in both cases is the
same with the symmetric separation bubbles equal in size. The flow reattachment on
the upper and lower walls is also the same for both flow cases.

(a) Non-preconditioned solution

(b) Preconditioned solution

Figure 3.2: Comparison between non-preconditioned and preconditioned solutions at
Re = 10.

Figures 3.3(b) to 3.4(b) as well as Tables 3.1 and 3.2 summarise the results of the
preconditioned and non-preconditioned solutions. Table 3.2 provides comparisons be-
tween the present results and previous experimental and computational studies. All the
results refer to grid independent solutions. For the expanded-contracted channel the
experimental flow visualisation clearly shows the occurrence of instability in the form
of an asymmetric separation of the fluid flow (Fig. 3.3(a)). This asymmetry is captured
by both the non-preconditioned solution (Fig. 3.3(b)) and preconditioned solution (Fig.
3.3(c)). A second separation bubble exists at the far end of the expanded part on the
upper surface of the non-preconditioned solution. This second separation bubble does
not seem to be present in the experimental visualisation. Mullin et al. [122] described
these small recirculation zones as “moffatt” eddies (Moffatt [118]). Further, for the
same geometry at Re = 200 the flow becomes again symmetric but the preconditioned
solution still remains asymmetric (Table 3.1) with different sized bubbles on the lower
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and upper walls. At Re = 116 the computed distance ∆x between the re-attachment
points of the upper and lower bubbles without using preconditioning agrees well (Ta-
ble 3.2) with the experimental results of Mizushima and Shiotani [115], whereas in the
preconditioned solution the bubble does not re-attach before reaching the wall of the
contracted part of the channel (i.e., ∆x = 0 in Table 3.2).

(a) Experimental results from Mizushima and
Shiotani [115] at Re=116 for the suddenly

contracted-expanded geometry. Reproduced with
permission from Cambridge University Press.

(b) Non-preconditioned solution (c) Preconditioned solution

Figure 3.3: Comparison between non-preconditioned and preconditioned solution to
experimental flow visualisation

(a) Non-preconditioned solution

(b) Preconditioned solution

Figure 3.4: Comparison between non-preconditioned and preconditioned solution Pre-
conditioned solution at Re = 250.
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Table 3.1: Results for preconditioned and non-preconditioned solutions for the two channel
geometries (see text for details).

Case Reynolds number Preconditioned solution Non-preconditioned
solution

SEC 1-20 Symmetric Symmetric
SEC 60 Symmetric (diffusive) Symmetric
SEC 116 Asymmetric (diffusive) Asymmetric
SEC 200 Asymmetric Symmetric
SE 0.1-1 Symmetric Symmetric
SE 100 Symmetric (diffusive) Symmetric
SE 250 Asymmetric (diffusive) Asymmetric

Table 3.2: Comparison of solutions with previously published results of Drikakis [46];
Mizushima and Shiotani [115]; Chedron et al. [29] for the two geometries, for symmetric (S)
and asymmetric (A) cases.

Case Re Published results Preconditioned Non-preconditioned
solution solution

SEC Re=116 ∆x = 0.019 m (A) ∆x = 0 (A) ∆x = 0.018 m (A)
SEC Re=200 Symmetric Asymmetric Symmetric
SE Re=100 Bubble size = Bubble size = Bubble size =

0.016 m (S) 0.019 m (S) 0.0159 m (S)
SE Re=250 ∆x = 0.02 m (A) ∆x = 0.027 m (A) ∆x = 0.02 m (A)

Similarly, the preconditioner has adverse effects on the accuracy of the suddenly-
expanded channel flow. For example, at Re = 250 where the flow exhibits an in-
stability (Figs. 3.4(a) and 3.4(b)) the preconditioned solution is qualitatively correct,
but not with respect to the size of the separation bubble. Table 3.2 compares the present
preconditioned and non-preconditioned solutions with the results of Drikakis [46] and
Chedron et al. [29] for symmetric (stable) flow at Re = 100 and asymmetric (unstable)
flow at Re = 250.

Parallel to this investigation, several numerical experiments (Patel and Drikakis [127])
using different Godunov-type methods without the use of a preconditioning have been
conducted (see chapter 4). These investigations showed that more dissipative advective
schemes generally lead to a stable flow, especially when the solution is under-resolved.
Even though a rigorous analysis of the dissipation effects of non-linear approximations
such as high-resolution Godunov-type schemes in combination with preconditioning
appears very difficult, the similarity in the behaviour of certain Godunov-type schemes
with the preconditioned results obtained here seems to indicate that preconditioning
has an added dissipation effect on the solution, when the flow exhibits symmetry-
breaking bifurcation. Furthermore, this kind of “non-physical” behaviour exhibited
by the preconditioned method at certain Reynolds numbers has also some similari-
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ties with the volatile numerical behaviour of some time integration methods, which
perform differently depending on the solution problem (Miller [113]).

3.4 Summary

A numerical study showing the effects of preconditioning of flows through suddenly
expanded-contracted and suddenly expanded channels was presented. Laminar flow
calculations were performed with and without preconditioning in order to asses its
effects on the accuracy and efficiency of computations. At higher Reynolds number
flows the use of preconditioning reduced the number of multigrid cycles, but adversely
affected the solution results. For Reynolds numbers in the range of symmetry-breaking
bifurcation, the use of preconditioning led to an incorrect stable solution or to an im-
proper estimation of the size of the separation bubble. At lower Reynolds number
flows the present form of preconditioning neither altered the accuracy of the solution
nor had a significant effect on the convergence.



C H A P T E R 4

Prediction of Flow Instabilities in a Suddenly
Expanded Suddenly Contracted Channel

A computational investigation to examine the numerical effects on the prediction of
flow instabilities and bifurcation phenomena for flow through a suddenly expanded-
contracted channel have been carried out. High-resolution Godunov-type methods in
conjunction with first-, second- and third-order accurate interpolation schemes for the
calculation of the intercell flux have been employed and the effect grid resolution has
on these schemes in predicting the flow instabilities has been studied.

4.1 Introduction

T phenomenon of asymmetric separation in a suddenly expanded and contracted
channel has been discussed by Mizushima et al. [117]; Mizushima and Shiotani

[115] both experimentally and numerically. Mizushima et al. [117] carried out numer-
ical simulations for the flow and analysed the data using bifurcation theory. At very
low Reynolds numbers the flow remains symmetric with separation regions of equal
length on both channel walls directly after the sudden expansion and before the sudden
contraction. As Reynolds number is increased the separation length is also increased.
A critical value of Reynolds number (Rec1) upon which the flow separates asymmetri-
cally is reached when one recirculation region grows at the expense of the other. This
symmetry-breaking is due to a pitchfork bifurcation. A further increase in the Reynolds
number makes the asymmetry between the two recirculation regions becoming more
prominent to the extent that both bubbles can reach the size of the entire length of the
expanded part. A second critical value of the Reynolds number (Rec2) is reached as the
Reynolds number is further increased and the asymmetric separation returns to a stable
symmetric solution due to a second pitchfork bifurcation. Mizushima et al. [117] also
found that the symmetric flow became oscillatory at a third critical Reynolds number
(Rec3) due to a Hopf bifurcation. These critical Reynolds numbers were used to obtain
a transition diagram of the flow. The bifurcation diagram obtained was incomplete due
to unexpected discontinuous lines in place of the smooth continuous lines presumed.
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Mizushima and Shiotani [115] built on the previous work discussed above and carried
out an investigation of transition and instabilities of the flow in the same suddenly ex-
panded and contracted channel, experimentally, numerically and theoretically. Veloc-
ity measurements were obtained using Laser Doppler Velocimetry (LDV) experimental
techniques. Flow visualisations were used to examine the flow behaviour. Mizushima
and Shiotani [115] used three different numerical methods in the numerical calcula-
tions, namely; time marching method for dynamical equations; SOR iterative method
and the finite element method for steady state equations. The work of Mizushima et al.
[117] has been extended by applying weakly nonlinear stability theory to the flow to
elucidate the bifurcation structure near the critical Reynolds numbers for the pitchfork
bifurcations. Mizushima and Shiotani [115] also investigated the impinging free shear
layer instability, which was found to make the flow oscillatory. The characterisation
of the impinging free shear layer is described as a stepwise change of the Strouhal
number with a continuous change of parameter and observed when a jet like stream
impinges on an object featuring sharp edges (Rockwell and Naudascher [142]).

More recently Mullin et al. [122] studied the effect of varying the ratio of the inlet
and outlet channel widths in a symmetric two-dimensional channel with an expanded
and contracted section. Mullin et al. [122] carried out both experimental and numeri-
cal studies and found that there is a type of rivalry between the instability associated
with the expansion from the inlet to the expanded section, and the instability associ-
ated with the expansion from the inlet to the outlet. As with the study by Mizushima
and Shiotani [115], Mullin et al. [122] found that the length of the expanded sections
plays a significant role in determining the outcome of the previously discussed rivalry.
Mullin et al. [122] introduced geometric imperfections into the computational domain
to approximate the physical imperfections that must be present in the experimental ge-
ometry. These simulations found that there is a greater sensitivity to imperfections for
the case which the symmetry-breaking bifurcation is associated with the outlet.

4.2 Problem Description

A sudden expansion-contraction geometry was setup following the previous study
of Mizushima and Shiotani [115], which has been described in detail in Chapter 3.
The artificial compressibility formulation of the steady incompressible Navier-Stokes
equations was implemented together with three different high-resolution methods for
the calculation of the advective fluxes, namely; the characteristics-based method of
Drikakis et al. [51]; the Rusanov scheme (Rusanov [148]) and the HLLE scheme
(Einfeldt [56]). An investigation into the effect of the spatial accuracy used in the
reconstruction step of the advective fluxes was undertaken for each of the three high-
resolution methods. The reader is referred to section 2.12 of Chapter 2 for a mathemat-
ical description of the high-order spatial reconstruction. An explicit fourth-order TVD
Runge-Kutta scheme developed by Shu and Osher [158] and the nonlinear multigrid
method of Drikakis et al. [52] are used to drive the numerical solution to a steady state.
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Different grid resolutions were employed and it was found that 30,000 grid points were
sufficient to obtain grid independent solutions. A coarser grid with 7,000 grid points
was also used to investigate the effect of the different numerical schemes at under-
resolved grid conditions. A comparison among the various numerical schemes was
obtained for several flow cases on two different grids in order to test if the asymmetric
separation is affected by the numerical scheme employed.

4.3 Under-resolved simulations

Under-resolved simulations were carried out using three high-resolution schemes in
conjunction with various orders of spatial reconstruction. An extensive range of Reynolds
numbers from 10-200 were investigated in order to cover both critical Reynolds num-
bers as predicted by Mizushima and Shiotani [115]. It should be noted here that the
objective of this study is not to investigate the actual critical Reynolds number for sym-
metry breaking bifurcation or the critical Reynolds number for where the flow regains
symmetry. Mizushima and Shiotani [115] published a critical Reynolds number for
symmetry breaking bifurcation as Rec1 = 47.7 and another for where the flow regains
symmetry as Rec2 = 65.2. These Reynolds numbers were based on the maximum
inlet velocity and half the upstream channel height. Hence, the equivalent Reynolds
numbers based on the definition in Eq. 5.2.1 are Rec1 = 95.4 and Rec1 = 130.4.

Figure 4.1(a) shows streamwise velocity contours and streamlines showing a sym-
metric separation of the fluid entering the expanded channel at a Reynolds number
Re = 10. All three numerical methods predicted a symmetric separation of the fluid
flow and the effect of changing the order of accuracy used in the reconstruction was
negligible. As the Reynolds number is increased the size of the recirculation zones on
the upper and lower walls increase in size. Figure 4.1(b) shows streamlines and veloc-
ity contours for a Reynolds number Re = 80. According to Mizushima and Shiotani
[115] the separation associated with this Reynolds number should be symmetric as it is
lower than the first critical Reynolds number for symmetry-breaking bifurcation. All
three numerical methods correctly predict this symmetric separation of the fluid flow.
The size of the recirculation regions on the upper and lower walls are very similar for
each of the three different numerical methods.

A closer look at Fig. 4.1 shows two small recirculation zones at the upper and lower
corners at the far end of the expanded section. The investigations by Mizushima and
Shiotani [115] and Mizushima et al. [117] do not mention anything regarding these
small recirculation zones and the experimental flow visualisations they present are not
clear enough to see whether these recirculation zones exist or if they are simply nu-
merical artifacts. However, the more recent paper of Mullin et al. [122] does comment
on these small recirculation zones and refer to them as ‘Moffat’ eddies (Moffatt [118]).

According to Mizushima and Shiotani [115] the flow should become asymmetric due
to a pitchfork symmetry breaking bifurcation on exceeding a Reynolds number of
Re = 95.4 (using the definition of Reynolds number based on the maximum velocity
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(a) Re = 10

(b) Re = 80

Figure 4.1: Streamwise velocity contours and streamlines showing a symmetric sepa-
ration of the fluid flow at two different Reynolds numbers.

and inlet channel height). Figure 4.2 shows streamwise velocity contours and stream-
lines for the flow at a Reynolds number of Re = 96. Each different numerical method
correctly predicts the asymmetric separation of the fluid flow. It should be noted here
that the reconstruction used is 3rd order accurate. The differences between the three nu-
merical methods is significant in that the HLLE scheme (Fig. 4.2(b)) and the Rusanov
scheme (Fig. 4.2(c)) predict a much larger degree of asymmetry in comparison to
the characteristics-based scheme (Fig. 4.2(a)). The HLLE scheme predicts the larger
recirculation bubble on the lower wall in comparison to the Rusanov scheme which
shows the larger recirculation bubble on the upper wall. It is believed that the ten-
dency for the fluid to be drawn to the upper or lower wall is purely random especially
in an experimental setup, but in a symmetric computational setup this phenomena can
be attributed to the details of the truncation error. The asymmetry predicted by the
characteristics-based scheme is very slight with the corner recirculation zone at the
lower wall enclosed by the larger recirculation region. As the Reynolds number is only
slightly above the first critical Reynolds number for symmetry-breaking bifurcation,
the expected asymmetry would be small.

Some experimental flow visualisations have been printed in Mizushima and Shiotani
[115] showing the asymmetric separation of the fluid. Figure 4.3 shows a direct com-
parison of the numerical solution obtained using the characteristics-based scheme with
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(a) CB scheme

(b) HLLE scheme

(c) Rusanov scheme

Figure 4.2: Streamwise velocity contours for three numerical schemes at Re = 96.

third-order spatial accuracy and the experimental flow visualisation, at a Reynolds
number of Re = 116. The numerical solution obtained shows the larger recirculation
zone at the upper wall whereas the experimental visualisation shows the larger recircu-
lation zone at the lower wall. As discussed above this is due to the particular properties
of the numerical scheme and in an experimental setup the flow can break either way.
The numerical solution shows the presence of a small corner recirculation zone at the
lower wall which does not appear in the experimental flow visualisation. The lack of
appearance of the small corner recirculation zone in the experimental visualisations
could be due to poor seeding of the flow.

Once symmetry-breaking bifurcation has occurred i.e. on increasing Reynolds number
above the first critical value, one of the recirculation zones increases in size at the
expense of the second recirculation zone. Figure 4.4 shows how the effect of increasing
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Reynolds number changes the degree of asymmetry. The recirculation zone on the
upper wall increases in size until it spans the entire length of the expanded channel.
This leads to the growth of the lower recirculation zone until it itself spans the entire
length of the expanded channel. This is shown clearly in Fig. 4.4(c). At a Reynolds
number of Re = 140, the flow has returned to a stable symmetric separation with both
recirculation zones equally sized, spanning the entire length of the expanded channel
(Fig. 4.4(d)). The re-stabilisation of the flow from asymmetric to symmetric is due
to a second pitchfork bifurcation as reported by Mizushima and Shiotani [115]. The
results shown in Fig. 4.4 have been obtained using the characteristics-based scheme in
conjunction with third-order reconstruction.

(a) Experimental visualisation

(b) CB scheme

Figure 4.3: Comparison between the experimental flow visualisation of Mizushima
and Shiotani [115] and the numerical solution using the characteristics-based scheme,
at Re = 116.
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(a) Re = 116

(b) Re = 120

(c) Re = 130

(d) Re = 140

Figure 4.4: Streamwise velocity contours and streamlines at various Reynolds numbers
using the characteristics-based scheme.
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4.4 Grid-independent simulations

In order to asses the characteristics of the three numerical schemes more accurately,
grid-independent simulations were required. Two grid resolutions were investigated;
an intermediate grid consisting of approximately 30,000 grid points and a finer grid
consisting of approximately 60,000 grid points. The fine grid resolution provided
results which were in agreement to within 0.1% of the intermediate grid resolution
(30,000 grid points). It was hence decided that the grid resolution of approximately
30,000 was sufficient enough to provide grid independent solutions. The reconstruc-
tion accuracy was investigated further to see how the numerical schemes behave un-
der grid-independent conditions. The grid-independency was carried out using first-
order reconstruction hence it was assumed that the same grid-resolution would be grid-
independent for higher-orders of accuracy. The characteristics-based scheme with first-
order interpolation in the calculation of the left and right states led to an asymmetric
flow at a Reynolds number of 120 for grid independent conditions. Whereas, the HLLE
and Rusanov schemes led to symmetric solutions for the same Reynolds number when
using first-order reconstruction. Higher order interpolations (second- and third order)
at the same Reynolds number led to asymmetric separation for all numerical schemes
investigated. Figure 4.5 show grid independent results for the characteristics-based
scheme (CB) and the Rusanov scheme for first-, second-, and third-order interpolation
in the calculation of the left and right states for a Reynolds number of 120.

A comparison between the characteristics-based scheme and the Rusanov scheme with
3rd-order reconstruction (Figs. 4.5(e) and 4.5(f)), shows very little difference with re-
gards to the degree of asymmetry predicted. However, using a 2nd-order reconstruction
the degree of asymmetry predicted by the Rusanov scheme (Fig. 4.5(d)) is larger than
that predicted by the characteristics-based scheme using the same order of reconstruc-
tion (Fig. 4.5(c)). There is very little difference between characteristics-based scheme
when using the 2nd-order or 3rd-order reconstruction. The difference between the three
schemes lies mainly in the calculation of the second term on the right-hand-side of the
Godunov flux (see Eq. 2.10.1). This term is a nonlinear wave-speed dependent term
which encompasses information about the eigenstructure of the system of equations
and is also responsible to adapt the discretisation according to the local solution data.
The Rusanov scheme is based on the calculation of the maximum wave speed (Eq.
2.11.9) and hence cannot recognise the slowest moving acoustic waves thus causing a
larger amount of dissipation. This diffusive nature of the Rusanov scheme will tend to
have a “smoothing” effect on the solution and hence may be the reason as to why the
solutions obtained, especially when using 1st-order reconstruction, do not accurately
represent the physics of the flow.

Mizushima and Shiotani [115] have reported that the first critical Reynolds number for
symmetry-breaking bifurcation occurs at a Reynolds number of Re = 95.4. Under-
resolved simulations showed that at a Reynolds number of Re = 96 the flow is indeed
asymmetric. Grid independent studies have found that the first critical Reynolds num-
ber is somewhat lower than Re = 95.4 and in fact at a Reynolds number of Re = 70 the
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(a) CB scheme with 1st-order interpolation. (b) Rusanov scheme with 1st-order interpolation.

(c) CB scheme with 2nd-order interpolation. (d) Rusanov scheme with 2nd-order interpolation.

(e) CB scheme with 3rd-order interpolation. (f) Rusanov scheme with 3rd-order interpolation.

Figure 4.5: Streamwise velocity contours and streamlines showing the effect of various
interpolation at Re = 120.

fluid flow was already asymmetric. Figure 4.6 shows the streamwise velocity contours
and streamlines for the asymmetric flow at Re = 70 using the characteristics-based
method and third-order reconstruction. The asymmetry in the flow is noticeable if one
considers the reattachment points of the recirculation zone streamlines, to the upper
and lower walls. Even though a full investigation into the critical Reynolds number for
symmetry-breaking bifurcation was not undertaken, it is speculated that this critical
Reynolds number is close to Re = 70 due to the small degree of asymmetry predicted
at this Reynolds number.

Grid independent studies at a Reynolds number Re = 140 which, is higher than the
second critical Reynolds number predicted by Mizushima and Shiotani [115] (Rec2 =

130.4), showed that the flow remained asymmetric. Figure 4.7 shows velocity con-
tours and streamlines of the asymmetric flow at Re = 140. Mizushima and Shiotani
[115] do not present any experimental flow visualisations at this particular Reynolds
number and their predictions for the critical Reynolds numbers are based on the vari-
ous numerical methods they employed. Flow visualisations have however been shown
by Mizushima and Shiotani [115] at a Reynolds number of Re = 200, and are pre-
sented here in Fig. 4.8 together with the grid independent solution obtained using
the characteristics-based scheme in conjunction with third-order reconstruction. The
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experimental visualisation shows a secondary recirculation zone inside of the main
recirculation zones (both upper and lower) located at the far end of the expanded chan-
nel. The computational result does not capture this physical phenomena. However, on
increasing the Reynolds number to Re = 230 (Fig. 4.9) the presence of the secondary
recirculation zones become more apparent.

Reattachment point = 7.83

Reattachment point = 7.89

Figure 4.6: Streamwise velcoity contours and streamlines showing an asymmetric flow
at Re = 70.

Figure 4.7: Streamwise velcoity contours and streamlines showing an asymmetric flow
at Re = 140.
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(a) Experimental visualisation

(b) CB scheme

Figure 4.8: Comparison between the experimental flow visualisation of Mizushima and
Shiotani [115] and the numerical grid independent solution using the characteristics-
based scheme, at Re = 200.

Secondary recirculation zones

Figure 4.9: Streamwise velcoity contours and streamlines showing the presence of
secondary recirculation zones at Re = 230.
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4.5 Summary

A numerical study for bifurcation phenomena in a symmetric plane suddenly expanded
and contracted channel was presented. Laminar flow calculations were performed us-
ing three Godunov-type schemes for various Reynolds numbers on two different sized
grid resolutions in conjunction with first-, second- and third-order interpolation in the
calculation of the intercell flux. The calculations on both grids showed that for low
Reynolds numbers the flow separated symmetrically. As Reynolds number was in-
creased symmetry-breaking bifurcation occurs at a critical Reynolds number and sep-
aration bubbles of different sizes form on the lower and upper walls. The asymmetries
become stronger with increasing Reynolds number till a second critical Reynolds num-
ber is reached and the flow regains symmetry.

Under-resolved grid simulations showed that the choice of numerical scheme effects
the solution obtained especially in the range of Reynolds number where symmetry
breaking bifurcation occurs. The prediction of the degree of asymmetry in the HLLE
and Rusanov schemes was less than that obtained by the characteristics-based scheme.
This may be due to the increased dissipation of the HLLE and Rusanov schemes com-
pared to the characteristics-based scheme. Grid independent cases showed that the
choice of interpolation used in the calculation of the intercell flux has a significant ef-
fect on the solution obtained. First-order interpolation using the characteristics-based
scheme correctly predicted the asymmetric solution at a Reynolds number of Re = 120.
Whereas the HLLE and Rusanov schemes incorrectly predicted a stable symmetric so-
lution. Higher-orders of interpolation at the same Reynolds number led to asymmetric
separation for all numerical schemes investigated with little noticeable difference be-
tween the three schemes when using third-order interpolation.

Two critical Reynolds numbers exist for this particular case of a suddenly expanded
and contracted channel with an aspect ratio (length of expanded part to height of ex-
panded part) of 7/3. The first critical Reynolds number, Rec1, is for the symmetry
breaking bifurcation and the second critical Reynolds number, Rec2, is for the return
from asymmetric flow to stable symmetric flow. Mizushima et al. [117] carried out
a numerical study and have published values of Rec1 = 95.4 and Rec2 = 130.4, for
the two critical Reynolds numbers, based upon the same definition of Reynolds num-
ber used in this investigation. A full investigation into the critical Reynolds number
for symmetry breaking bifurcation was not carried out as this was not the aim of this
study. However, simulations were carried out at Reynolds numbers close to the pub-
lished critical Reynolds numbers using both under-resolved grid and grid independent
conditions. Under-resolved simulations at Reynolds numbers slightly above the pub-
lished critical Reynolds numbers showed a similar representation of the flow physics
as was documented by Mizushima et al. [117]. Grid-independent simulations showed
that the first critical Reynolds numbers for symmetry-breaking bifurcation is some-
what lower than that which was published by Mizushima et al. [117]. Also, the second
critical Reynolds number upon where the flow returns to a stable symmetric solution is
much higher than the Reynolds number published by Mizushima et al. [117]. Possible
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reasons for the discrepancies between the published data and the results produced us-
ing the grid independent model are that the results obtained by Mizushima et al. [117]
were produced from different numerical methods on grid resolutions coarser than the
ones used in the present study.
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C H A P T E R 5

Flow Through Plane Symmetric Suddenly
Expanded Channels

The phenomenon of non-linear bifurcation is studied via computations using high-
resolution numerical methods performed on a suddenly expanded channel in both two-
and three-dimensions. The study includes the effect of expansion ratio on the pre-
diction of the critical Reynolds number for symmetry-breaking bifurcation in a two-
dimensional setup. Extending this to three-dimensions, the stabilising effect of the
vertical side walls on the flow is examined for two different aspect ratio channels. Fi-
nally, the investigation into higher Reynolds number flows where the flow becomes
time-dependent is presented. All simulations have been validated with experimental
and or computational data where available.

5.1 Introduction

I flow in sudden expansions is one of the classical examples in fluid
mechanics which exhibit non-linear bifurcation phenomena. Experimental stud-

ies by Durst et al. [53]; Chedron et al. [29]; Fearn et al. [59] have shown that flows
through suddenly-expanded geometries feature symmetric separation at low Reynolds
numbers and beyond a certain Reynolds number exhibit bifurcation phenomena (insta-
bilities) that are manifested as an asymmetric separation of the fluid flow. It should be
noted that similar asymmetric flow patterns have also been observed in axisymmetric
suddenly-expanded channels by Sheen et al. [156]; Macagno and Hung [102]; Re-
vuelta [136]. The critical Reynolds number for symmetry-breaking depends on the
expansion ratio and upstream flow conditions. As the Reynolds number further in-
creases the flow may encompass unsteadiness, three-dimensionality and chaos (Mullin
and Cliffe [121]).

The early experimental studies by Durst et al. [53] were carried out for two different
expansion ratios 1:2 and 1:3. Both flow geometries revealed similar flow phenomena
with instabilities appearing over a certain critical Reynolds number. Chedron et al. [29]
demonstrated experimentally that a stable symmetric solution could only exist under a
certain critical Reynolds number, beyond which the flow becomes unstable and asym-
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metric. An experimental and numerical study for a 1:3 sudden expansion was pub-
lished by Fearn et al. [59] showing that the change from symmetric stable separation to
an unstable asymmetric separation maybe due to a pitchfork symmetry-breaking bifur-
cation point. The experimental results of Fearn et al. [59] showed that the bifurcation
diagram is disconnected due to small imperfections that are always present in an ex-
perimental setup. They observed no critical Reynolds number for symmetry-breaking
and hence a symmetric state was never observed. Fearn et al. [59] attempted to nu-
merically model the small imperfections observed in the experimental setup in order
to try and account for the disconnection in the experimental bifurcation diagram. They
repeated the numerical simulations with the downstream section of the grid shifted up
by 0.05mm with respect to the axis of symmetry. This perturbation caused a discon-
nection of the bifurcation diagram as observed in the experiments. The size of the
disconnection found experimentally was of the same order as the decoupling produced
by perturbing the numerical problem. Linear stability analysis carried out by Shapira
et al. [155] verified the experimental findings and obtained a good agreement with re-
spect to the critical Reynolds number when compared to the work of Drikakis [46].
Fearn et al. [59] postulated that the transition to asymmetric flow was abrupt, which
disagreed with the finding of Shapira et al. [155], who claimed that the transition is
actually smooth. Numerical simulations carried out by Durst et al. [54] to validate pre-
vious experimental findings (Durst et al. [53]) found that the transition from symmetric
to asymmetric separation caused by a pitchfork bifurcation is in fact smooth.

Computational studies based on high-order methods, (Drikakis [46]) were performed
to numerically investigate the asymmetric flow structure at different Reynolds num-
bers, while continuation and Arnoldi-based iterative methods have been used by Alle-
born et al. [1] to calculate the most unstable eigenmodes for steady flow in a symmetric
channel and the bifurcation structure of the steady state solution of the flow. Drikakis
[46] and Alleborn et al. [1] demonstrated that as the expansion ratio increases the
critical Reynolds number decreases. Battaglia et al. [15] conducted a linear stability
analysis and also performed numerical computations of steady flow through a sud-
denly expanded channel with various expansion ratios. They made use of bifurcation
theory in order to determine numerically the bifurcation point and the results agreed
with those of Drikakis [46] and Alleborn et al. [1]. Luo [100] numerically investi-
gated symmetry-breaking of flow in 2-dimensional channels using Lattice-Boltzmann
methods. Their predictions of the critical Reynolds numbers for a suddenly expanded
channel with an expansion ratio of 1:3 compared well with the studies of Fearn et al.
[59] and Drikakis [46].

Goldstein et al. [67] carried out an experimental investigation of the laminar flow of
air over a downstream-facing step. They observed that the laminar reattachment length
cannot be expressed as a fixed number of step height as is the case for turbulent flow
and provided an equation to predict the reattachment length. Goldstein et al. [67] also
observed the presence of a secondary flow pattern in the separated zone. They found
that when fluid from the boundary layer in the corner of the test section enters the
separated zone at the step it recirculates in a spiral fashion to the geometry centerline
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and leaves the separated region near the reattachment point on the centerline plane.

Furthermore, Neofytou and Drikakis [123] have investigated flow instabilities in sud-
denly expanded channels for non-Newtonian fluids showing similar solutions to the
Newtonian case, which, however, differ with respect to the critical values of Reynolds
number where the symmetry-breaking bifurcation occurs. Simulations of suddenly ex-
panded flows for power-law fluids were carried out by Manica and De Bartoli [106].
They found that power-law fluids (shear-thinning and shear thickening) behaved in a
similar manner as Newtonian fluids. Critical Reynolds numbers, in which the solution
becomes asymmetric, were found to be in close agreement for all cases. The effect
of shear thinning and shear thickening was to increase and decrease, respectively, the
Reynolds number upon where the third downstream separation bubble appears in com-
parison to the Newtonian case. Mizushima and Shiotani [116] used weakly nonlin-
ear stability analysis to investigate the structural instability of the bifurcation for flow
through a sudden expansion showing that the parameter range for weakly nonlinear sta-
bility analysis is limited to the vicinity of the critical point. Hawa and Rusak [77] and
Rusak and Hawa [147] have also performed bifurcation analysis, linear stability and
numerical simulations to study the dynamics of the flow through a sudden expansion.
They showed that the flow instability is a result of the interaction of viscous dissi-
pation, upstream convection induced by the asymmetric disturbances and downstream
convection of perturbations by the symmetric base flow. Other studies which have been
concerned with instabilities and bifurcation phenomena in similar geometries include
the works of Sobey [165]; Sobey and Drazin [164]; Tsui and Wang [176] for two-
dimensional diffuser-like channel flows; Mizushima and Shiotani [115]; Mizushima
et al. [117] for suddenly expanded and contracted channel; Revuelta et al. [137] for ax-
isymmetric laminar jets with large expansion ratios and Mallinger and Drikakis [104]
for three-dimensional flows in pipes with stenosis.

The majority of the numerical studies involving investigations into instabilities in sud-
denly expanded flows have been simulated in 2-dimensions with an infinite aspect
ratio. However, the experimental studies listed in Table 5.1 are 3-dimensional with a
finite aspect ratio. The studies of Durst et al. [53]; Chedron et al. [29]; Fearn et al.
[59]; Ouwa et al. [125] discussed above investigated various aspect ratio channels and
found that the critical Reynolds number is dependent on the size of the aspect ratio.
Chedron et al. [29] found that as aspect ratio was increased the critical Reynolds num-
ber decreased. This suggest that the side walls of the channel act to stabilise the flow
and delay the onset of symmetry-breaking bifurcation.

A three-dimensional numerical study of bifurcation in sudden channel expansions was
undertaken by Schreck and Schäfer [153]. Their investigation focused on the three-
dimensional effects of a suddenly expanded channel for two different aspect ratios.
They found that the critical Reynolds number at which symmetry breaking bifurcation
occurs, increases as the aspect ratio decreases, hence confirming the trend observed by
Chedron et al. [29]. Thiruvengadam et al. [171] simulated bifurcated 3-dimensional
laminar forced convection in a plane symmetric suddenly expanded channel in order
to illustrate how flow bifurcation effects temperature and heat transfer distributions at
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moderately low Reynolds numbers (Re < 800). They found that for a channel with
an expansion ratio of 1:2 and an aspect ratio of 2 defined by the ratio of the spanwise
length to the downstream channel height, the flow was steady and asymmetric in the
transverse direction, but symmetric relative to the centre width of the channel in the
spanwise direction. Several papers by Chiang et al.[31; 32; 33] have been published on
three-dimensional flow through suddenly expanded or suddenly contracted channels.
An in-depth study (Chiang et al. [31]) on the affect aspect-ratio has on the fluid flow
characteristics showed that as the aspect ratio decreased the Reynolds number at which
symmetry-breaking bifurcation occurs increases. This confirmed experimental obser-
vations made by Chedron et al. [29] that a decrease in the aspect ratio has a stabilising
effect on the subsequent fluid flow. Chiang et al. [32] found that there exists a crit-
ical aspect ratio for which the symmetry-breaking pitchfork bifurcation evolves with
different symmetry-breaking orientations on the left and right sides of the channel in
the spanwise direction. This second mode of bifurcation which occurs in the spanwise
direction was found to be difficult to obtain due to the unstable flow symmetry at the
spanwise symmetry plane.

More recently Battaglia and Papadopoulos [14] investigated the effects of three-dimen-
sionality on low Reynolds number flows past a sudden expansion in a channel. The
geometry of the channel investigated had an expansion ratio of 1:2 and an aspect ratio
of 6 defined by the ratio of the spanwise length to the step height. An experimental
investigation using two-dimensional particle image velocimetry to visualise the fluid
flow was carried out in tandem with two- and three-dimensional numerical simulations
for Reynolds numbers in the range of 150-600. Battaglia and Papadopoulos [14] found
that the two-dimensional simulations failed to capture the total expansion effect of the
flow in comparison to the experimental results. The expansion effect of the flow is
influenced by both geometric and hydrodynamic effects. They found that in order to
correctly capture these expansion effects an effective expansion ratio, defined by the
ratio of the downstream and upstream hydraulic diameters, hence taking into account
both expansion and aspect ratios, needs to be defined.

∆h = ER
2 + AR(ER − 1)

2 · ER + AR(ER − 1)
(5.1.1)

where, ER = D2/D1 the expansion ratio defined by the ratio between the height of
the downstream to upstream channel; AR = S/h where h = (D2 − D1)/2 and S the
spanwise length of the channel. Two-dimensional simulations using this effective ex-
pansion ratio were performed and compared very well with three-dimensional sim-
ulations and the experimental results. They also reported that the critical Reynolds
number for symmetry-breaking bifurcation when using this effective expansion ratio
for two-dimensional simulations is much closer to three-dimensional simulated results
with a fixed aspect ratio and also to experimental results (see Tables 5.1 and 5.2). As
reported by various other authors, Battaglia and Papadopoulos [14] also comment on
the stabilising effect of the side wall proximity, in that the lower the aspect ratio the
greater the influence the side walls have in stabilising the flow and hence increasing
the critical Reynolds number for symmetry-breaking bifurcation.
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Mizushima and Inui [114] have used numerical simulations to study transition of three-
dimensional flow through a rectangular duct with a suddenly expanded and contracted
part. Bifurcation analysis was carried out of the numerical simulation data. Similar
physical description of the transition from a steady symmetric flow to a steady asym-
metric flow is reported. The side walls provided a stabilising effect on the critical
Reynolds number for the first pitchfork bifurcation and that the critical Reynolds num-
ber is proportional to the inverse of the width of the duct. Comparisons between a
three-dimensional geometry with a width aspect ratio AW = W/h of 4 (where, W is
the width, and h is the height of the inlet channel), and an essentially two dimensional
configuration with AW = ∞, were reported. They found that the side walls signifi-
cantly extending the stability of the flow by increasing the critical Reynolds number
for symmetry-breaking bifurcation. Also, the symmetry plane in the streamwise direc-
tion showed streamlines with a smaller deviation from the centerline when compared
to the two-dimensional flow case at the same Reynolds number. This in turn reduced
the degree of asymmetry in the flow field and hence confirmed the stabilising effect of
the side walls. Sau [152, 151] studied three dimensional vortex dynamics and mass
entrainment in both a three dimensional rectangular sudden expansion and also for a
suddenly expanded and contracted channel. They focused on vortex generation by the
use of rectangular-shaped protrusions into the flow. They found that the placement of
these tabs could either stop or augment the axis switching mechanism.

Latornell and Pollard [92] and Back and Roshke [10] have carried out experimen-
tal investigations into higher Reynolds number flows in the range 400 < Re < 1000
based on the upstream channel height for axisymmetric sudden expansions. Lator-
nell and Pollard [92] show that the onset of shear layer instabilities is dependent on
the inlet velocity profile. They also show that there is a linear relationship between
the reattachment length of the shear layer and the inlet Reynolds number. This linear
relationship is however dependent on the nature of the expansion inlet velocity pro-
file. Latornell and Pollard [92] identified three different modes of laminar flow which
can exist downstream of the expansion, depending on the inlet Reynolds number. At
low Reynolds number there exists an unconditionally stable mode characterised by a
steady reattachment length and recirculation zone shape. The evolution of shear layer
instability begins with the generation of sinusoidal waves in the shear layer, at higher
Reynolds numbers. Small oscillations in the reattachment length occur due to the in-
teraction of the waves in the shear layer and the wall. A further increase in Reynolds
number causes a grossly unstable mode of flow to develop. Discrete vortices replace
the shear layer waves in the vicinity of the reattachment point. This in turn causes large
oscillations in the reattachment length.

Tables 5.1 and 5.2 summarise the literature to show values of critical Reynolds number
for symmetry-breaking bifurcation with various expansion ratios determined by exper-
iments and numerical methods respectively. These table were partly reproduced from
the recent paper by Battaglia and Papadopoulos [14].



82 Flow Through Plane Symmetric Suddenly Expanded Channels

Table 5.1: Critical Reynolds numbers for symmetry-breaking bifurcation determined using
experimental methods. (Table reproduced from Battaglia and Papadopoulos [14]).

Reference ER AR Recr

Chedron et al. [29] 2 4 368
2 8 267
2 16 194
2 32 153
3 4 112
3 8 65
3 16 40.5
3 32 35

Durst et al. [53] 3 27.6 56-114
Durst et al. [54] 2 32 120-200
Fearn et al. [59] 3 24 70

Ouwa et al. [125] 5 12.5 45
Battaglia and Papadopoulos [14] 2 6 320-380
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Table 5.2: Critical Reynolds numbers for symmetry-breaking bifurcation determined using
numerical methods. (Table reproduced from Battaglia and Papadopoulos [14]).

Reference ER AR Recr

Alleborn et al. [1] 2 ∞ 218
3 80
5 42.5

1000 8.5
Battaglia et al. [15] 2 ∞ 225-233

3 85-87
4 52-60
5 40-45

Battaglia et al. [15] 1.5 ∞ 446
2 215
3 81
4 54
5 43
7 16

Drikakis [46] 2 ∞ 216
3 80
4 53
5 41
6 33
8 28

10 26
Durst et al. [54] 2 ∞ 125-200
Fearn et al. [59] 3 ∞ 80.9

Hawa and Rusak [77] 3 ∞ 80.7
Kadja and Touzopoulos [83] 2 ∞ 200

Kudela [89] 3 ∞ 84-187
Luo [100] 3 ∞ 92.4

Manica and De Bartoli [106] 3 ∞ 80-100
Shapira et al. [155] 2 ∞ 215

3 82.6
Schreck and Schäfer [153] 3 ∞ 81

3 2 113
3 5 91

Battaglia and Papadopoulos [14] 1.61 ∞ 340-345
2 ∞ 217
2 6 340-345
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5.2 2-Dimensional Flow Through Suddenly Expanded
Channels

As described in the introduction above, two-dimensional flow through a plane symmet-
ric suddenly expanded channel has been investigated in the past both experimentally
and computationally. This study aims to show that the phenomenon of symmetry-
breaking bifurcation can be accurately captured with the use of high-resolution meth-
ods.

The suddenly expanded channel geometry was setup following the previous study of
Drikakis [46]. Two different expansion ratios were investigated, namely a 1:2 and 1:3
expansion ratio. The expansion ratio is defined by the ratio of the inlet channel to outlet
channel height. The Reynolds number is defined as:

Re =
Umaxh
ν

(5.2.1)

where, Umax is the maximum inlet velocity and h is the inlet channel height. A fully-
developed plane Poiseuille velocity profile was specified at the inlet and the outlet
condition satisfies the condition of a divergence free flow field. The length of the out-
let channel was 300 step heights in order to ensure that the outflow gradients of the
flow variables in the streamwise direction could be considered equal to zero. In ad-
dition to this the outlet velocity conditions were checked after each case in order to
make sure a fully developed parabolic profile was obtained. The boundary conditions
on all the walls were the non-slip condition. The artificial compressibility formula-
tion of the steady incompressible Navier-Stokes equations was implemented together
with characteristics-based method of Drikakis et al. [51] (high-resolution method) for
the calculation of the advective fluxes. As was shown in Chapter 4 the characteristics-
based methods proved to be the most accurate in computing flows featuring symmetry-
breaking bifurcation. Third-order spatial accuracy was used in the reconstruction step
of the advective fluxes. The reader is referred to section 2.12 of Chapter 2 for a math-
ematical description of the high-order spatial reconstruction. An explicit fourth-order
TVD Runge-Kutta scheme developed by Shu and Osher [158] and the nonlinear multi-
grid method of Drikakis et al. [52] are used to drive the numerical solution to a steady
state. A steady-state solution is said to be achieved when the size of the separation
bubbles stop changing.

In order to determine the effect of grid resolution a grid sensitivity study was performed
at a Reynolds number where the flow separates asymmetrically (Re > 215 for the 1:2
expansion ratio and Re > 80 for the 1:3 expansion ratio). Several grid resolutions
ranging from approximately 3,400 grid points to 208,000 grid points were examined.
It was found that approximately 14,000 grid points were sufficient to obtain grid in-
dependent solutions (within a threshold of 0.5% differences) for both expansion ratios
investigated.

Reynolds numbers in the range of 10 ≤ Re ≤ 600 were investigated in order to assess
the physical mechanism of symmetry-breaking bifurcation. It was found that at low
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Reynolds numbers (below the critical value for symmetry-breaking bifurcation) the
flow separated symmetrically. As Reynolds number within this range was increased
the separation bubbles increased in size along the upper and lower walls. Figure 5.1
shows velocity streamlines at different Reynolds numbers for the 1:2 expansion ra-
tio channel. Symmetry-breaking bifurcation was observed at a Reynolds number of
Re = 216, which agrees with previously computed results of Drikakis [46]; Battaglia
et al. [15]; Alleborn et al. [1]; Shapira et al. [155]. The experimental results of Chedron
et al. [29] with an aspect ratio of 16 predicted a critical Reynolds number of Re = 194.
This ambiguity can be associated with the fact that an experimental setup can never be
fully symmetric and hence these imperfections in the flow setup can trigger symmetry-
breaking earlier than in a symmetric numerical setup (Shapira et al. [155]). Durst et al.
[54] numerically predicted a range for the critical Reynolds number between 125 and
200. This result is much lower than that found in this investigation and in the above
cited literature. Drikakis [46] documented that the reason for this large discrepancy
could be due to the fact that the work by Durst et al. [54] was initialised using an arti-
ficially perturbed flow field in order to accelerate convergence. This then leads to two
possibilities: (1) the results obtained by Durst et al. [54] had not actually reached the
steady-state solution, or (2) the initial artificial perturbation of the flow field led the
stability of the system of equations to predict a much lower critical Reynolds. Drikakis
[46] also pointed out that the standard convergence criteria used in most CFD compu-
tations are poor indicators of convergence when the size of the perturbed velocities is
very small. Drikakis [46] suggested that a more accurate convergence criteria would
be to compare skin friction distribution and the size of the separation bubbles during
iterations. When the two variables do not change a steady-state solution is achieved.

On increasing the Reynolds number further one of the separation bubbles grew at the
expense of the other separation bubble. This growth in one separation bubble causes
a larger deviation of the flow until a point is reached that a third separation bubble
is formed downstream of the smaller separation bubble (Fig. 5.1 Re = 600). The
existing literature, both numerical and experimental, shows that on increasing the
expansion ratio the critical Reynolds number for symmetry-breaking bifurcation de-
creases. Figure 5.2 shows velocity streamlines for a range of Reynolds numbers for
the 1:3 expansion ratio channel. Symmetry-breaking bifurcation was found to occur
at Reynolds numbers greater than 80. This result agrees with the values predicted by
Drikakis [46]; Battaglia et al. [15]; Alleborn et al. [1]; Fearn et al. [59]; Hawa and
Rusak [77]; Manica and De Bartoli [106]; Schreck and Schäfer [153].

In Fig. 5.3 the bifurcation diagram is based on the distance of the re-attachment points
of the separation bubbles on the upper and lower walls of the channel. When the flow
is symmetric the distance is zero and increases its values as the asymmetry develops.
The bifurcation diagrams encompasses two branches that correspond to two kind of
solutions depending on which wall, upper or lower, the larger bubble may appear. The
present results are in agreement with previous investigations of Drikakis [46]; Battaglia
et al. [15]; Alleborn et al. [1].
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Re = 100

Re = 216

Re = 230

Re = 250

Re = 300

Re = 400

Re = 600

Figure 5.1: Streamlines at different Reynolds numbers for a suddenly expanded chan-
nel with a 1:2 expansion ratio.
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Re = 50

Re = 80

Re = 100

Re = 120

Re = 160

Re = 280

Figure 5.2: Streamlines at different Reynolds numbers for a suddenly expanded chan-
nel with a 1:3 expansion ratio.
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Figure 5.3: Bifurcation diagram for two different expansion ratios.
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5.3 3-Dimensional Flow Through a Suddenly-Expanded
Channel

After the work regarding two-dimensional suddenly expanded flows it was a natu-
ral step to investigate the flow in a three-dimensional setup. The introduction to this
chapter already discussed the importance of side wall effects in a three-dimensional
suddenly expanded channel. This section aims to reconfirm the current literature using
high-resolution methods and also to investigate the effects of higher Reynolds numbers
where the flow becomes time-dependent.

5.3.1 Side Wall Effects

Following the work by Schreck and Schäfer [153] a three-dimensional 1:3 sudden ex-
pansion channel was setup. Two different aspect ratios (width to expansion height
ratio), w/H = 2 and w/H = 5 were investigated in order to see how the side wall prox-
imity effected the flow. In order to fully investigate the effect of the side walls on the
flow, Reynolds numbers in the range 75-115 were investigated. This range covers the
regime in which symmetry-breaking bifurcation should occur and has already been re-
ported in the literature by Schreck and Schäfer [153]. The Reynolds number is defined
as in the previous section investigating a two-dimensional suddenly expanded channel.
Figure 5.4 shows the 3-dimensional setup used in the current investigation, where w
is the spanwise length, h is the step height, L is the length of the expanded channel
and H is the height of the expanded channel. As with the two-dimensional case, a
fully-developed plane Poiseuille velocity profile was specified at the inlet and the out-
let condition satisfies the condition of a divergence free flow field. The length of the
outlet channel was 300 step heights in order to ensure that the outflow gradients of the
flow variables in the streamwise direction could be considered equal to zero. All walls
including those in the spanwise direction were prescribed with a no-slip boundary con-
dition. The high-resolution numerical scheme used to solve the advective fluxes is the
characteristics-based scheme using third-order spatial accuracy in the reconstruction
step.

A grid sensitivity study was carried out in order to rule out any grid dependencies in
the solution obtained. The two-dimensional grids used in the previous investigation
were extended in the spanwise direction. By performing computations at a Reynolds
number where the flow separates asymmetrically for various spanwise grid resolutions
it was found that for the aspect ratio of w/H = 2 a grid resolution of 38 cells in the
spanwise direction was sufficient to provide the necessary numerical accuracy. As the
aspect ratio increased to w/H = 5 the spanwise grid resolution was increased and it was
found that 52 cells were adequate in providing relatively grid independent solutions.

It was found that the flow in the centre plane of the channel is purely two-dimensional.
Figure 5.5 shows velocity streamlines of the fluid flow in the centre plane for various
Reynolds numbers with a width to expansion height aspect ratio w/H of 2. It should
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Figure 5.4: Geometry of the three-dimensional channel.

be noted that the critical Reynolds number found in the previous section for a two-
dimensional case was Re = 80 based on maximum inlet velocity and upstream channel
height. It can clearly be seen that even for a Reynolds number Re = 100 (which is
above the critical Reynolds number) the flow separates symmetrically. On increasing
the Reynolds number further i.e. Re = 115 the flow separates asymmetrically. This
confirms the results obtained by Schreck and Schäfer [153] who found that the critical
Reynolds number for a three-dimensional suddenly expanded channel with an aspect
ratio of w/H = 2 is Recr = 113.2.

If the width to expansion height aspect ratio (w/H) is increased the symmetry breaking
occurs at a lower Reynolds number. Figure 5.6 shows velocity streamlines at various
Reynolds numbers for a w/H ratio of 5. It can be seen that for a Reynolds number of
Re = 100 the flow is already significantly asymmetric. This confirms that as the aspect
ratio is decreased the critical Reynolds number for symmetry-breaking bifurcation in-
creases due to the stabilising effect on the fluid flow by the side walls. Schreck and
Schäfer [153] reported a critical Reynolds number for symmetry breaking bifurcation
in a three-dimensional suddenly expanded channel with an aspect ratio of w/H = 5 as
Recr = 91.0. Computed results from the current investigation show that at a Reynolds
number of Re = 92 symmetry-breaking bifurcation has already occurred. Velocity
streamlines of the flow shown in Fig. 5.6 at the Reynolds number of Re = 92 do not
clearly show the asymmetry of the flow due to fact that the Reynolds number is so
close to the critical value. However, detailed examination of the size of the recircula-
tion zones shows that the lower zone is very slightly larger than the upper recirculation
zone. This lower recirculation zone grows at the expense of the upper recirculation
zone as Reynolds number is increased.

Figure 5.7 shows three dimensional plots of streamwise velocity contours at various
spanwise planes of the channel for the two different aspect ratios investigated at a
Reynolds number of Re = 100. It can clearly be seen that for both aspect ratios the
flow is nominally two-dimensional with little variation in the size of the separation



5.3 3-Dimensional Flow Through a Suddenly-Expanded Channel 91

bubbles in the spanwise direction. This remains partly true even when the flow sep-
arates asymmetrically at Reynolds numbers close to the critical value for symmetry-
breaking bifurcation (see Fig. 5.7(b)). To shed more light on this velocity vectors on
the lower and upper planes closest to the lower and upper walls of the expanded chan-
nel for the channel with aspect ratio of w/H = 5 have been plotted in Fig. 5.8. Figure
5.8(a) shows the scenario where the flow separates symmetrically (Re = 70) and Fig.
5.8(b) the asymmetric scenario (Re = 100). The symmetric case shows that the three-
dimensionality of the flow is the same at both the lower and upper walls whereas for the
case where the flow separates asymmetrically it can be seen that the three-dimensional
effects are more pronounced on the bottom wall where the recirculation zone is larger.
This was also observed in the experimental investigation by Durst et al. [53]. It can also
be seen that the smaller recirculation zone shows hardly any variation in the transver-
sal channel direction. The larger recirculation zone shows significant variation in the
transversal channel direction in the region close to the side walls. This is due to the
stabilising effect of the side walls which reduce the size of the recirculation zone close
to the wall.

Another aspect of the three-dimensionality of the the flow can be shown by a stream
trace starting at the side wall of the inlet channel for the case w/H = 5. Figure 5.9(a)
shows the stream trace for a symmetric case Re = 75 and Fig. 5.9(b) the asymmetric
case Re = 100. This figure corresponds to the experiments of Goldstein et al. [67],
who incorporated smoke in a laminar flow over a backward facing step. If one were to
regard the stream trace as a the trace of a particle it can be seen that the after the particle
enters the recirculation area the particle moves in a screwed trace with increasing radius
towards the centre plane and then leaves the recirculation zone. This flow behaviour
agrees completely with one observed in Goldstein et al. [67] and Schreck and Schäfer
[153]. The reasoning behind this screwed particle motion lies in the physics of the side
wall boundary layer. The side wall boundary layer imposes shear drag on the primary
motion of the fluid particles behind the expansion. This in-turn results in pressure
gradients along the spanwise direction giving rise to an increasingly large spanwise
velocity component. It is this increasing velocity component that gives rise to the
spiral motion focused around a vortical core line towards the symmetry plane of the
channel.
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Re = 75
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Re = 85

Re = 92

Re = 100

Re = 115

Figure 5.5: U-velocity streamlines in the x − y middle cross section of the channel,
where the flow is two-dimensional for various Reynolds numbers, w/H = 2.
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Figure 5.6: U-velocity streamlines in the x − y middle cross section of the channel,
where the flow is two-dimensional for various Reynolds numbers, w/H = 5.
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(a) w/H = 2

(b) w/H = 5

Figure 5.7: U-velocity streamlines at various spanwise planes at Re = 100.
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(b) Re = 100

Figure 5.8: Velocity vectors near the top and bottom walls of the channel after the
expansion, w/H = 5.
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Figure 5.9: Streamtrace starting at the side wall of the inlet channel for the case, w/H =

5.



5.3 3-Dimensional Flow Through a Suddenly-Expanded Channel 97

5.3.2 Higher Reynolds Number Effects

Unsteady flow through a three-dimensional suddenly expanded channel at moderately
high Reynolds numbers have been experimentally investigated by Fearn et al. [59]. The
present study aims to shed light on the physics of unsteady flow through a suddenly
expanded channel with an expansion ratio of 1:3 and an aspect ratio of 8. The aspect
ratio is defined to be the width to the height ratio of the downstream channel as in the
previous section. A range of moderately high Reynolds numbers have been investi-
gated beyond the point of symmetry-breaking bifurcation and into the regime where
the flow becomes time-dependent. The aim is to show, using high resolution numeri-
cal methods, that the time-dependency of the flow is characterised by the shedding of
vortices from the shear layer of the upstream recirculation bubbles. Furthermore, it
has been found that three-dimensional effects become more pronounced with increas-
ing Reynolds number and that the flow becomes three-dimensional before becoming
time-dependent.

Following the previous study of Fearn et al. [59], a sudden expansion geometry with an
1:3 expansion ratio and aspect ratio of 8 was used in the simulations. Fully developed
channel flow conditions were used at the inlet to the upstream channel. The Reynolds
number was defined by the maximum inlet velocity and the upstream channel height.
The outflow conditions were checked after each computational case in order to make
sure a fully parabolic profile was obtained. No-slip boundary conditions were used for
the walls in both the cross-streamwise and spanwise directions. Low Reynolds number
flows were initially computed and compared to the experimental data from Fearn et al.
[59] in order to partially validate the setup before moving onto higher Reynolds number
flows where quantitative experimental validation could not be found.

At low Reynolds numbers the fluid flow was found to separate symmetrically with
equal sized bubbles attached to the upper and lower walls as expected. As Reynolds
number was increased the separation regions increased in size and upon exceeding the
critical Reynolds number for symmetry-breaking bifurcation the flow became unstable
with an instability manifested as an asymmetric separation of the flow. Although the
solution is regarded to be unstable the flow remained steady. The aim of this investi-
gation was not to investigate the critical Reynolds number since this is dependent on
the aspect ratio and has been investigated in the past by various authors. It was found
that at low Reynolds numbers the flow in the centre plane of the channel was purely
two-dimensional. Figure 5.10 shows velocity streamlines of the fluid flow in the cen-
tre plane for various Reynolds numbers. The figure shows the progression of the flow
from a stable symmetric separation to unstable asymmetric separation with increasing
Reynolds number. At a Reynolds number of Re = 280 a third separation bubble ap-
pears on the same side wall as the smaller upstream separation bubble. This has been
confirmed experimentally and numerically by Fearn et al. [59].

Fearn et al. [59] provide experimental velocity profiles for various low Reynolds num-
ber flows. This data has been compared to the present results and are presented in
Fig. 5.11. For Re = 50 the flow is shown to separate symmetrically and agrees well
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Re = 50

Re = 120

Re = 280

Figure 5.10: Streamlines at different Reynolds numbers.

with the experimental data from Fearn et al. [59]. The size of the recirculation zones
is also captured well by the numerical simulation and can be seen from the region
of flow reversal represented by the negative flow velocity. The flow has regained the
fully developed parabolic profile at a downstream position of 10 step heights which
corresponds well with the experimental data. As the flow separates asymmetrically at
Re = 120 the profile shows that at downstream positions of 1.25 and 2.5 the velocity
is negative close to both the lower and upper wall since both positions lie in the region
of the recirculation zones. As we move further down the channel at a position of 5
step heights the velocity profile is positive at the lower wall but negative at the upper
wall. This shows that the flow has separated asymmetrically with a larger recirculation
bubble situated at the upper wall (see Fig. 5.10). Due to the asymmetric separation,
the flow takes longer to regain the fully developed symmetric profile which is achieved
at a downstream position of 20 step heights. The percentage difference between the
computed results and the experimental data is within 5%. Figure 5.11(c) shows the ve-
locity profile corresponding to Re = 280. The main feature of the flow at this Reynolds
number is the third recirculation region situated at the top wall downstream from the
small upstream recirculation region. The third recirculation bubble is shown at a down-
stream position of 20 step heights by a positive velocity at the lower wall and negative
velocity at the upper wall. The velocity profiles at downstream positions of 5 and 10
step heights show an inconsistency when compared to the experimental data. This is
primarily due to the difference in size and shape of the separation bubble at the lower
wall obtained with the computations compared to the experiments. A fully developed
profile is attained at a downstream position of 40 step heights.

In order to be sure that the solutions obtained are relatively grid independent veloc-
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Figure 5.11: Velocity profiles at various streamwise positions comparison to experi-
mental data of Fearn et al. [59].

ity profiles at Reynolds numbers of Re = 120 and Re = 280 at various streamwise
positions on the centre plane have been plotted in Fig. 5.12. The line legend in the
figures correspond to two different grid resolutions. Grid 1 refers to a grid resolution
of approximately 420,000 grid points and Grid 2 refers to a grid resolution of approxi-
mately 805,000 grid points. It can clearly been seen that there is very little difference
between the two solutions obtained from the two different grid resolutions. A small
difference can be seen in the prediction of the third recirculation bubble at a position
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of 20 step heights. It should be noted that the solution obtained on the finer grid res-
olution predicted the larger recirculation bubble formed immediately after the sudden
expansion to be situated on the upper wall, whereas the coarser grid predicted this bub-
ble to be formed on the lower wall. For ease of comparison the coarser grid solution
has been inverted to coincide with the finer grid solution. It has already been discussed
in this thesis that the formation of the asymmetry can have two orientations depend-
ing on which wall the larger recirculation bubble attaches itself to. In the experiments
this switching of the large recirculation zone can occur due to small imperfections in
the upstream channel or at the sudden expansion entrance. Durst et al. [53] revealed
that this switching can be manipulated even once a steady state had been achieved.
The inversion was achieved by blowing into one of the recirculation regions through a
small tube. They reported that strong blowing was needed in order to disturb the flow
position from the steady state solution.
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Figure 5.12: Velocity profiles at various streamwise positions comparing two different
grid resolutions.

To shed light on the surface topology streamlines were plotted on the upper and lower
surfaces of the channel (see, Fig. 5.13). The streamlines show clearly lines of reattach-
ment for two different Reynolds numbers. At Re = 160 the flow separates asymmet-
rically and the two lines of reattachment can be clearly seen on the upper and lower
surfaces. The streamlines show that the flow is very nearly invariant in the spanwise di-
rection except in the regions close to the side walls. For the case of Re = 280 there are
two lines of reattachment on the upper surface corresponding to the two recirculation
zones. The tendency of the streamlines within the recirculation zones to move from
the side walls towards the centre plane is a characteristic of the three-dimensionality
of the flow.

In order to best depict the three-dimensionality of the flow, velocity streamlines at var-
ious spanwise planes parallel to the side wall plane have been plotted in Figs. 5.14
and 5.15. Both figures show that the flow is nominally two-dimensional, except in
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Figure 5.13: Velocity streamlines of the upper and lower surface flow topology for two
different Reynolds numbers.

the planes closest to the side wall where boundary layer phenomenon prevails. Shear
forces due to the side wall boundary layer resist fluid particles to proceed to the side
wall. Chiang et al. [31] reported that a secondary flow results due to the complex inter-
action between the curved flow, manifested by the presence of the primary recirculation
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regions directly behind the step, and the boundary layer which develops over the verti-
cal side wall. It should be noted that in Fig. 5.14 there exists a floor eddy in the vicinity
of the vertical side wall. This secondary eddy is not found in two-dimensional analysis
and is too weak to extend it’s influence into the whole span of the expanded channel.
As Reynolds number is increased (Fig. 5.15) to Re = 280 the three-dimensional effects
become more pronounced especially in the region close of the vertical side wall. The
effect of the secondary eddy is strong enough to extend the whole spanwise direction
towards the symmetry plane. This secondary eddy varies significantly in the region
close to the vertical side wall where the boundary layer exists until settling to a stable
separation region at planes closer to the symmetry plane.

As Reynolds number was increased the third separation bubble grew in length and
eventually the flow became unsteady. It has been suggested by Fearn et al. [59] that
the flow becomes fully three-dimensional before becoming time-dependent. This has
been proven to be correct from the above analysis of the flow topology via the use of
streamlines at various spanwise planes as well as analysing the flow topology on the
upper and lower planes of the expanded channel. In order to study the physics of the
flow at higher Reynolds number where the flow is fully three-dimensional and time-
dependent a range of Reynolds numbers was investigated up to Re = 800. At higher
Reynolds numbers the unsteady flow was characterised by the shedding of vortices
which alternate from one side to the other with consequent asymmetry of the mean
flow. This shedding pattern is due to small disturbances at the edge of the sudden
expansion being amplified in the shear layer formed between the main flow and the
recirculation flow in the corners of the channel. Fearn et al. [59] and Chedron et al. [29]
both observed the same physical behaviour with regards to the shedding of vortices
from the upstream recirculation regions. The shedding of the vortices was observed to
increase in frequency as Reynolds number was further increased.

Betchov and Criminale [16] referred to the amplification of disturbances in shear lay-
ers, and the existence of oscillations maintained by appropriate feedback mechanisms
was postulated by Martin [110]; Martin et al. [111] with regards to single regions of
flow. The same mechanisms can be applied to the current flow but are further compli-
cated by the interaction between the two shear layers. Velocity fluctuations normal to
the main flow in one half of the channel generated from the vortex patterns influence
the flow in the opposite half of the channel. These velocity fluctuations extend from
each shear layer to the duct centre. Chedron et al. [29] reports that the flow generated
at these higher Reynolds numbers can only exist if the fluctuating normal velocities
originating from one shear are out of phase with those from the other shear layer. As a
result of this the shedding of the vortex structures are antisymmetric. The existence of
velocity oscillations perpendicular to the mean separation line causes the flow in the
separated regions to be continuously entrained into the shear layers and replaced by
fluid from the main flow. Martin [110] postulated a requirement for stable recircula-
tion regions to exist. This ‘locking-on’ condition stated that only an uneven number of
complete oscillation cycles will feed back the correct in-phase disturbance to the edge
of the expansion from which the separation occurs.
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Figures (5.16-5.19) show instantaneous streamlines parallel to the side wall plane at
various time instances for two different Reynolds numbers. At a Reynolds number
of Re = 400 the flow takes longer to develop to a fully three-dimensional flow with
streamline patterns changing significantly in the spanwise direction. Although, it can
clearly be seen that due to the side wall shear layer the flow possess three-dimensional
characteristics. Vortices are shed periodically from both the upper and lower main re-
circulation regions formed directly after the sudden expansion. The shed vortices on
the lower wall interact with the third recirculation zone downstream from the main re-
circulation regions. At later times (see Fig. 5.17) the structure of the third recirculation
zone has been destroyed by the shedding of vortices from the lower main recirculation
region. As Reynolds number was increased to Re = 800, the shedding of vortices from
the main recirculation regions increased in frequency. Figures 5.18-5.19 show velocity
streamlines at various spanwise planes at three different time instances for Re = 800.
The shedding of vortices is initiated earlier in comparison to that of Re = 400. Again
the streamline pattern constantly changes in time and also as the flow traverses from the
side wall to the centre plane. The shed vortices move faster downstream as expected in
comparison to the lower Reynolds number of Re = 400. An interesting point to note is
how the structure of the large main recirculation region, directly behind the expansion,
changes with time. As fluid is periodically entrained and replaced in the recirculation
zone multiple recirculation zones appear to be formed within the large recirculation
zone. This then forces the large recirculation zone to shed vortices in order to remain
relatively stable.

Figure 5.20 shows iso-surfaces of vorticity for Re = 280. From this figure one can see
that there is an increase in vorticity at the upper surface in the region of the third recir-
culation zone. The vorticity increases towards the centre plane with a regular pattern.
There are no small scale irregular areas of vorticity which could disrupt the solution
and cause unsteadiness. Figure 5.21 shows iso-surfaces of vorticity for two different
Reynolds numbers in the unsteady regime. It can clearly be seen that as Reynolds num-
ber increases the vorticity becomes more complex with small scale structures become
more prominent. High values of vorticity are shown to appear at the upper wall down-
stream from the expansion in the region where there is periodic shedding of vortices.
The vorticity contours at the top wall show an irregular distribution, whereas for lower
Reynolds numbers this distribution has a regular pattern. This is due to the vortical
shedding taking place in this region.
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Figure 5.14: Velocity streamlines at various spanwise planes for Re = 160.
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Figure 5.15: Velocity streamlines at various spanwise planes for Re = 280.
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(b) t = 16.077 (non-dimensional time).

Figure 5.16: Three-dimensional flow patterns plotted at different spanwise positions
for Re = 400.
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Figure 5.17: Three-dimensional flow patterns plotted at different spanwise positions
for Re = 400 at t = 32.154 (non-dimensional time).
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Figure 5.18: Three-dimensional flow patterns plotted at different spanwise positions
for Re = 800.
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Figure 5.19: Three-dimensional flow patterns plotted at different spanwise positions
for Re = 800 at t = 32.154 (non-dimensional time).
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Figure 5.20: Iso-surfaces of vorticity for a Re = 280.

(a) Re = 400

(b) Re = 800

Figure 5.21: Iso-surfaces of vorticity for two different Reynolds numbers at t = 16.077
(non-dimensional time).
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5.4 Summary

A numerical study of flow through suddenly expanded channels has been presented
for both two-, and three-dimensional geometries. The study included the investiga-
tion of two different expansion ratios and the transition from a stable symmetric sep-
arated flow to stable asymmetric separated flow. The calculations showed that for
low Reynolds numbers the flow separated symmetrically. As Reynolds number was
increased symmetry-breaking bifurcation occurs at a critical Reynolds number and re-
circulation region of different sizes form on the lower and upper walls. The asymme-
tries become stronger with increasing Reynolds as the size of one recirculation region
grows at the expense of the other. The effect of increasing the expansion ratio lead to
an earlier onset, with respect to Reynolds number, of symmetry-breaking bifurcation.
Computed results were compared to previous works by Drikakis [46] and Alleborn
et al. [1] via velocity streamline plots and bifurcation diagrams. A three-dimensional
investigation concerning an expansion ratio of 1:3 was presented in order to investigate
side wall effects, three-dimensionality and transition to time-dependent flow at higher
Reynolds numbers. Two different aspect ratios were considered following the work
by Schreck and Schäfer [153] and it was confirmed that as aspect ratio decreases the
critical Reynolds number for symmetry-breaking bifurcation increases. This is due to
a stabilising effect from the vertical side walls on the subsequent fluid flow. At lower
Reynolds numbers in the regime of asymmetric separation of the fluid flow, the flow
in the expanded channel is nominally two-dimensional except at planes closest to the
vertical side walls. This irregularity at the side walls is due to the effects of the side
wall boundary layer acting to stabilise the flow. On increasing Reynolds number the
flow take on more of a three-dimensional character with side wall effects extending
the whole spanwise domain. Further increases in Reynolds number lead to the flow to
become time-dependent characterised by the time-periodic shedding of vortices from
the two main recirculation regions formed directly behind the sudden expansion. The
loss of stability of the steady asymmetric flow to a time-dependent one is a conse-
quence of the three-dimensional effects in the channel. Therefore one can conclude
that the flow in this particular configuration becomes three-dimensional before becom-
ing unsteady and that the unsteadiness is caused by a three-dimensional disturbance in
the flow. It has been shown that high-resolution numerical methods can correctly pre-
dict non-linear bifurcation phenomena in both two- and three-dimensions. The present
computational results have been compared to available experimental data over a range
of Reynolds numbers and have shown to agree to within a percentage difference of
approximately 5% of the available data. At Reynolds numbers where quantitative data
was unavailable the computed results have shown to qualitatively capture the flow
physics which so importantly characterises the flow through such geometries during
both steady and unsteady computations.
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C H A P T E R 6

Symmetry-Breaking Mechanism for a
Suddenly Expanded Channel

It has been shown in chapter 5 that above some critical Reynolds number symmetry-
breaking bifurcation occurs in flow through a suddenly expanded channel. This insta-
bility has been well documented in both experimental and computational studies. The
reader is referred to chapter 5 for a more complete discussion of the existing literature.
This chapter aims to shed light on the mechanism of symmetry-breaking bifurcation
in the context of a numerical simulation. The common question often raised is why in
a fully symmetric numerical setup does this symmetry-breaking bifurcation occur. A
closer look into the numerical methods used throughout this thesis shows us that the
non-linearity of high-resolution methods is the “trigger” mechanism for the onset of
symmetry-breaking bifurcation.

6.1 Introduction

B experimental and computational studies agree that there is a critical point
above which the flow through suddenly expanded channels features symmetry-

breaking bifurcations. In the experiments the instabilities may be triggered by geo-
metrical imperfections and asymmetries in the inflow conditions upstream of the ex-
pansion. With regard to the triggering mechanism for asymmetric flow, the main dif-
ference between laboratory and numerical experiments is that a perfectly symmetric
laboratory experiment cannot be performed while a symmetric set-up can be created
in the numerical simulation framework (with only exception being the round-off er-
ror of the computer). The computational set-up should preserve symmetry in terms
of initial and boundary conditions; discretisation of the equations in space and time,
including discretisation at the boundaries; symmetry in the inversion of the system of
equations including acceleration techniques (e.g., multigrid); coding issues and com-
putational mesh. If one has taken care of the above then the numerical solution (con-
verged to the machine zero in 64-bit mode) has to be symmetric. However, this is not
the case. Foumeny et al. [61] argued that symmetry-breaking bifurcation was due to
truncation and rounding errors in the numerical calculations, but De Zilwa et al. [44]
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found that steady simulations always returned symmetric results for the flow separa-
tion. De Zilwa et al. [44] state that the asymmetry in the solution results from an un-
steady phenomenon and that the symmetric solutions of the time-dependent equations
become unstable beyond some critical Reynolds number.

The flow separation in a sudden expansion using a fully symmetric set-up as described
above, as well as in the framework of different methods, has been investigated. It was
found that although these precautions have been taken, asymmetric flow is still pre-
dicted by high-resolution schemes. This numerical behaviour is also found in agree-
ment with several other papers published in the literature. If one argues that the asym-
metric computational solution is not correct but instead it is an artifact, then this would
be paradoxical because the asymmetric solution happens to agree both with the ex-
periment and stability analysis (Drikakis [46])! Therefore, the asymmetric solution is
correctly captured and is due to a mechanism embedded in high-resolution numerical
methods which is yet unknown. The quest is to understand this mechanism.

The aim of the present study is twofold: (i) to shed light on the onset of symmetry-
breaking bifurcation in two-dimensional direct numerical simulations of suddenly-
expanded flows; (ii) to show the extent to which the numerical (non-linear) dissipa-
tion of modern computational methods models the imperfections of an experimental
set-up responsible for triggering symmetry-breaking in fluid flows. It is shown that the
symmetry-breaking of the flow is associated with the dissipation mechanism encom-
passed by high-resolution methods used in the discretisation of the convective terms.
This mechanism responds automatically to the Reynolds number change and triggers
the onset of the flow asymmetry.

6.2 Problem Description

A two-dimensional plane symmetric suddenly expanded channel with an expansion
ratio of 1:2 was setup as described in chapter 5. No-slip boundary conditions for the
velocities are implemented on the channel walls and zero pressure gradient normal to
the wall. Similar to previous studies (Drikakis [46]; Battaglia et al. [15]; Alleborn
et al. [1]; Fearn et al. [59]), a fully parabolic velocity profile (Poiseuille flow) is con-
sidered at the inlet of the upstream channel. In contrast to previous computational
studies where the upstream inlet condition was implemented at the entrance of the ex-
pansion, in the present study the condition was implemented farther upstream in order
to allow downstream disturbances to be convected upstream. A fully developed flow
is assumed at the outlet of the downstream channel, thus the outflow gradients of the
flow variables in the streamwise direction could be considered equal to zero, assuming
and computationally verifying that the downstream channel is long enough. Moreover,
the numerical methods used in this study take into account the characteristic infor-
mation of the travelling waves at the inflow and outflow boundaries thus ensuring no
artificial reflections of the pressure waves at the boundaries. In order to ensure in-
dependence of the numerical solution from the outflow boundary condition, another
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condition was also employed, this one considering a travelling wave to describe the
open boundary. The latter was used in previous sudden-expansion flow studies (Durst
et al. [53]; Drikakis [46]). The two boundary conditions yielded identical results.

A brief description of the numerical methods used in this study is presented below for
completeness. For more details the reader is referred to chapter 2. The numerical dis-
cretisation of the convective fluxes is obtained by high-resolution schemes. To exam-
ine the behaviour of the dissipation mechanism let us focus attention on the x-direction
convective flux in all three equations of the system of equations: E ≡ (u, u2+p, uv)T . In
all methods employed in this study, the convective flux derivative ∂E/∂x is discretised
at the centre of the control volume (i, j) using the values of the intercell fluxes, i.e.,
∂E/∂x = (Ei+1/2, j−Ei−1/2, j)/h, where h is the grid spacing; to simplify the notation, the
subscript j will be omitted below. The general form for a Godunov (first-order) flux is
given by

Ei+1/2 =
1
2

(Ei + Ei+1) − 1
2
|A|(Ui+1 − Ui) , (6.2.1)

where A approximates ∂E/∂U (the entries of the Jacobian matrix). Higher-order ver-
sions of the fluxes can be obtained by writing the flux as

Ei+1/2 =
1
2

[E(UL) + E(UR)] − 1
2
|A|(UR − UL) , (6.2.2)

where EL and ER denote the left and right states of the flux respectively, at the cell
face of the computational volume. Similarly, UL and UR are the left and right states
of the vector of the primitive variables U = (p, u, v)T at the cell face of the computa-
tional volume. The left and right states can be computed by second- or higher-order
interpolation schemes (2.12.1).

The second term on the rhs of (6.2.1) is the wave-speed dependent term (WST), which
effectively contains the non-linear numerical dissipation that is embedded in the high-
resolution method. The averaged part of the flux, [E(UL) + E(UR)]/2, is calculated
according to the left and right states of the primitive variables. Note, however, that
in some methods (e.g., Drikakis et al. [51]) the calculation of the flux Ei+1/2 is re-
constructed by solving locally a one-dimensional Riemann problem (see Drikakis and
Rider [50] for more details). Thus, the flux cannot explicitly be written in the form
(6.2.1) or (6.2.2). In this case the dissipation of the flux can be extracted by writing
the flux as: Ecb

i+1/2 ≡ Ea
i+1/2 − (Ea

i+1/2 − Ecb
i+1/2), where Ea

i+1/2 = [E(UL) + E(UR)]/2 and
Ecb

i+1/2 is the reconstructed flux, for example, the characteristics-based (cb) scheme of
Drikakis et al. [51], or another method based on numerical reconstruction. The term
(Ea

i+1/2 − Ecb
i+1/2) is the equivalent of the WST term in the rhs of (6.2.1) and (6.2.2).

Non-linear numerical dissipation terms emerge from the convective fluxes associated
with each of the system’s equation. In this investigation we have employed a vari-
ety of numerical methods such as characteristics-based scheme (Drikakis et al. [51]);
Einfendt’s HLLE (Einfeldt [56]); Rusanov’s scheme (Rusanov [148]); Lax-Friedrichs
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scheme (Lax [93]), as well as variants of these schemes in conjunction with first, sec-
ond and higher-order reconstructions. Details of these methods can be found in chapter
2 section 2.11.

The built-in dissipation and numerical reconstruction of the above family of meth-
ods, principally aiming at increasing numerical accuracy, result in non-linear (high-
resolution) schemes. This numerical framework provides monotonic and non-oscillatory
properties to the numerical solution, which are essential elements for achieving accu-
racy in the computation of complex flows spanning from laminar to transitional and
turbulent flows (Grinstein and DeVore [70]; Fureby and Grinstein [62]; Drikakis [48]).
Examination of the modified equations associated with high-resolution methods has
yielded the enticing hint that characteristics implicit in these methods describe cer-
tain aspects of turbulence flow modelling (Margolin and Rider [107]). The central
objective of the study is to understand if there is a physical mechanism embedded in
modern numerical methods that returns the correct physical behaviour with respect to
symmetry-breaking in a class of flows prone to develop instabilities.

Computations were performed using several variants of numerical methods to examine
symmetry-breaking scenarios for the flow through a sudden-expansion. In all simula-
tions the computational mesh was sufficiently fine (200 × 68) to provide mesh inde-
pendent solutions with respect to symmetry-breaking bifurcation. The length of the
downstream and upstream channels were 300 and 1 step heights, respectively. Nu-
merical experiments using different downstream channel lengths confirmed that 300
step heights are sufficient to allow the independence of the solutions from the down-
stream boundary conditions, i.e., a zero outflow gradient of the flow variables in the
streamwise direction.

6.3 Results

Previous experiments and computations have revealed that for the 1:2 sudden-expansion
geometry the flow remains symmetric for Reynolds numbers up to 215 (the critical
Reynolds number based on the maximum inlet velocity and upstream channel diame-
ter). On exceeding this critical Reynolds number the flow develops as an asymmetric
separation of the fluid flow (see chapter 5 for further details). Symmetry-breaking re-
alisations can be numerically predicted using the high-resolution methods mentioned
in the preceding section. We have performed hundreds of numerical simulations and
found that the symmetry-breaking mechanism is similar for all these methods. The ob-
jective of this study is not to compare in a quantitative manner the results obtained by
different methods but to discuss the mechanism leading to symmetry-breaking in the
framework of computations, as well as to show the physical relevance (and its numer-
ical behaviour) of the non-linear dissipation encompassed by high-resolution meth-
ods. Clearly, these two issues are interwoven. Although the objective of this work
is not to compare different methods, in the course of this and other studies, central
finite-difference schemes (linear schemes, fourth-order accurate) in conjunction with
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symmetric time-integration have been investigated and have found that symmetric so-
lutions can indeed be obtained. Moreover, we have also investigated classical central
schemes in conjunction with explicitly added dissipation, thus still linear schemes, and
have found that the solution remains symmetric due to excessive numerical diffusion.
On the other hand, in the case of high-resolution schemes the numerical reconstruction
of the convective terms results in non-linear dissipation (implicitly embedded onto the
numerics) and this leads, as will be shown below, to asymmetric flow solutions. Most
importantly, it should be noted that in both the ‘simpler’ and high-resolution based
scheme computations, the same discretisation scheme for the viscous terms and time
integration have been used in order to eliminate doubts about the contribution of these
terms to the symmetry-breaking. The above behaviour clearly proved that the non-
linear dissipation of the (non-linear) convective terms triggers the asymmetry and not
the (linear) viscous terms. Euler computations (i.e., very high Reynolds number limit)
have also been carried out and shown that the flow separates asymmetrically for a fully
inviscid case. This further proves that the asymmetry is due to the non-linear advective
flux term and not the viscous terms.

An examination of the non-linear dissipation for Reynolds numbers at which the flow
is stably symmetric shows that the dissipation remains symmetric throughout the chan-
nel, both upstream and downstream. This is shown in Figure 6.1 by means of contour
lines of dissipation associated with the momentum flux in the x (streamwise) and y
(cross-streamwise) direction, for the flow at Re = 100. The dissipation values range
from −10−7 to 10−5 (dimensionless) in double precision computations. Simulations us-
ing several different methods have confirmed that the dissipation patterns are unfolded
in a similar fashion preserving a symmetry throughout the channel. This behaviour
persists throughout the Reynolds numbers where experiments also show that the flow
retains its symmetry.

Increasing the Reynolds number beyond its critical value unravels an interesting be-
haviour. The non-linear dissipation begins to develop asymmetric patterns, which
mostly appear downstream of the separation region (Figure 6.2). Note that both the
flow and the non-linear dissipation retain symmetry farther downstream as well as
near the entrance of the expansion. It can clearly be seen from Figs. 6.2-6.6 that the
distribution of the dissipation associated with the flux in the streamwise direction is
more asymmetric than the distribution of the flux in the cross-streamwise direction. It
should be noted that the dissipation contour values are of the same order of magnitude
in both directions.

At higher Reynolds numbers we observe that the symmetry-breaking of the dissipation
patterns spreads in both upstream and downstream direction (Figure 6.3). Even though
the flow may have developed a significant asymmetry at higher Reynolds numbers (for
example, see the streamlines for Re = 230 Fig. 5.1 in Chapter 5) the dissipation still
retains its symmetry around the orifice of the upstream channel in both the streamwise
and cross-streamwise directions. The simulations showed that the symmetry-breaking
of the dissipation starts to spread in the upstream channel for Reynolds numbers larger
than Re = 230. For Re = 250 and Re = 300 the dissipation patterns of both the x
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(a) momentum flux in the x direction

(b) momentum flux in the y direction

Figure 6.1: Contours showing the symmetric patterns of the non-linear dissipation at
Re = 100.

and y momentum flux show that the asymmetries have occupied large regions of the
upstream and downstream channels (Figs. 6.5 and 6.6). Interestingly, for all Reynolds
numbers where symmetry-breaking is observed, the extent of the asymmetric dissipa-
tion patterns goes beyond the separation regions. Analysis of the averaged part of the
flux ([E(UL) + E(UR)]/2) found no signs of contribution to the “triggering” effect of
symmetry-breaking bifurcation. Hence, the symmetry breaking mechanism in flows
computed using high-resolution methods is due to the non-linear dissipation contribu-
tion of the wave-speed dependent term in computing the convective fluxes.

The physical mechanism of the symmetry-breaking as captured by the simulations
is not a surprise. As pointed out in Margolin and Rider [107] the success of non-
oscillatory methods is a reflection of their more accurate approximation of the gov-
erning equations for the motion of a finite volume of fluid and the associated entropy
production. The physically correct behaviour of the schemes dissipation is strongly
related to the inherent properties of non-oscillatory finite volume methods, often re-
ferred to as high-resolution methods. Note that these properties have also led to the
increasing interest in the implicit large eddy simulations of complex flows using high-
resolution methods (Grinstein and DeVore [70]; Fureby and Grinstein [62]; Margolin
and Rider [107]; Youngs [192]; Drikakis [48]). To understand the physical relevance
of the non-linear dissipation that correctly leads to symmetry-breaking in the simula-
tions, we need to bear in mind that all the numerical methods encompass dissipation
which acts to regularise the flow, thereby allowing flow features to be captured phys-
ically realistically even if the flow is not fully resolved on the computational mesh.
The development of numerical schemes is carried out with two competing criteria in
mind: a desire for high accuracy coupled with protections against catastrophic failure
due to nonlinear wave steepening or unresolved features. Nonlinear mechanisms in
high-resolution methods guard the methods from such catastrophic failures by trigger-
ing entropy producing mechanisms that safeguard the calculation when the need arises.
The key question is to what extent numerical dissipation accounts for transitional (and
turbulent) flow effects.
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6.4 Summary

The above simulations show the physical relevance of the non-linear dissipation pro-
vided by high-resolution methods with respect to the symmetry-breaking in suddenly-
expanded flows. In particular, the asymmetric dissipation arising downstream of the
separation regions is responsible for triggering the symmetry-breaking in the flow. This
effect is convected both upstream and downstream as the Reynolds number increases.
It also seems that the non-linear dissipation has a significant effect on flow separation.
In a laboratory experimental set-up the flow asymmetries may be triggered by geomet-
rical imperfections, asymmetries in the upstream flow profile and small perturbations
that exist throughout system. The present results suggest that this mechanism is also
provided in the simulations as a result of a delicate balance of truncation ’errors’ due
to wave-speed-dependent terms (chiefly responsible for numerical dissipation) of non-
oscillatory finite volume methods. Therefore, these terms are not numerical error, but
legitimately describe the physics.
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(a) momentum flux in the x direction

(b) momentum flux in the y direction

Figure 6.2: Contours showing the convection of the non-linear dissipation at the critical
Reynolds number, Re = 216.
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(a) momentum flux in the x direction

(b) momentum flux in the y direction

Figure 6.3: Contours showing the convection of the non-linear dissipation at a
Reynolds number of, Re = 220.
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(a) momentum flux in the x direction

(b) momentum flux in the y direction

Figure 6.4: Contours showing the convection of the non-linear dissipation at a
Reynolds number of, Re = 230.
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(a) momentum flux in the x direction

(b) momentum flux in the y direction

Figure 6.5: Contours showing the convection of the non-linear dissipation at a
Reynolds numbers of Re = 250 exhibiting symmetry-breaking bifurcation of the dissi-
pation both upstream and downstream of the expansion.
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(a) momentum flux in the x direction

(b) momentum flux in the y direction

Figure 6.6: Contours showing the convection of the non-linear dissipation at a
Reynolds numbers of Re = 300 exhibiting symmetry-breaking bifurcation of the dissi-
pation both upstream and downstream of the expansion.
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Slope Limiting Schemes for the Simulation of
Synthetic Jets

A computational investigation concerning the study of various slope limiters in the
context of a synthetic jet issuing into quiescent air has been carried out. The results
obtained from this study have been compared to experimental data from NASA Lang-
ley, who had previously organised a workshop on CFD validation of synthetic jet and
turbulent separation control.

7.1 Introduction

T term “Synthetic Jet” refers to a flow created with no net mass flux and are hence
sometimes referred to as “zero-net-mass-flux” jets. They are generally generated

using a device where flow is alternately pushed in and out of an orifice. The distinc-
tion between this and a classical streaming flow is that the mean motions are of the
same order as the oscillation amplitude, while for streaming flows, the mean motion
is 2nd order. The exiting fluid separates and rolls into a vortex ring (or vortex pair
for 2-D geometries) and propagates away from the exit plane due to its self induced
velocity. Figure 7.1 shows a schematic of a synthetic jet generated from an oscillating
diaphragm. A slug of fluid is discharged through the orifice which separates at the
orifice edges forming a vortex sheet. This sheet rolls up into an isolated vortex which
is advected downstream under its own self-induced velocity. The flow produced from
the synthetic jet can significantly vary depending on the geometry and design of the
actuator device driving the jet.

Synthetic jet flows can be similar to pulsed jets in that they are both produced by the
advection and interaction of trains of vortices. However, synthetic jets have a unique
property in that they are zero-mass-flux in nature; i.e., they are synthesised from the
working fluid of the flow system in which they are deployed. Thus, in contrast to
conventional continuous or pulsed jets, synthetic jets transfer linear momentum to the
flow without net mass injection across the flow boundary. The zero-net-mass nature
of a synthetic jet makes them attractive for flow-control applications. They are able to
provide momentum flux, alter pressure distribution, and to introduce arbitrary scales
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Figure 7.1: Schematic of a synthetic jet, reproduced from Smith and Glezer [160].

to another flow. For the 2-D case in the far field, the synthetic jet is similar to con-
ventional jets in that cross-stream distributions of the time-averaged velocity and the
corresponding rms fluctuations appear to collapse when plotted in the usual similarity
coordinates (Smith and Glezer [160]). However compared to conventional 2-D jets, the
streamwise decrease of the mean centerline velocity of the synthetic jet is a somewhat
higher, and the streamwise increase of its width and volume flow rate is lower. This
departure from conventional self similarity is associated with the streamwise decrease
in the jet’s momentum flux as a result of an adverse streamwise pressure gradient near
its orifice. The self induced velocity which drives the vortex rings in the streamwise
direction comes from the fact that a counter rotating pair of vortices exist within the
vortex ring itself. The left vortex pushes the right one forward and the right one returns
the favour, hence inducing a self imparted velocity.

Applications of synthetic jets can range from thrust vectoring of jet engines to active
control of separation and turbulence in boundary layers. The interaction of synthetic
jets with an external cross flow over the surface in which they are mounted can displace
the local streamlines and induce an apparent or virtual change in the shape of the
surface and thereby effecting flow changes on scales that are one to two orders of
magnitude larger than the characteristic scale of the jets (Smith and Glezer [160]).

A vast interest in the use of synthetic jets as a device for flow control has been es-
tablished in both the experimental and computational fluid dynamics community. An
exhaustive description of the current literature concerning synthetic jets will not be
presented in this thesis as the subject is so vast. However, several key experimental
and computational papers will be discussed. A comprehensive review of synthetic jets
was written by Glezer and Amitay [65] in which both synthetic jets in quiescent con-
ditions and the interaction with a cross-flow are discussed. Plane and round synthetic
jets formed by time-periodic changes of the working fluid flowing through an orifice
have been investigated both experimentally (Smith and Glezer [161, 160]; Smith et al.
[163]; Mallinson et al. [105]; Crook and Wood [39]; Rediniotis et al. [135]; Chen et al.
[30]; Cater and Soria [27]; Cannelle and Amitay [25]; Amitay and Cannelle [3]) and
numerically (Kral et al. [88]; Rizzetta et al. [140]; Guo and Kral [71]; Muller et al.
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[120]; Cui and Argarwal [41]; Utturkar et al. [180]; Kotapati and Mittal [87]).

Investigations by Smith and Glezer [161, 160] have shown that close to the jet exit
plane the synthetic jet flow is dominated by time-periodic formation, advection and
interactions of discrete vortical structures, which will ultimately become turbulent,
slow down and lose their coherence. The suction phase causes the time-averaged static
pressure close to the exit plane to be lower than the ambient pressure hence both the
streamwise and cross-stream velocity components reverse their direction during the
suction cycle.

The majority of the investigations concerning the physics of synthetic jets have fo-
cused on two-dimensional flow and have neglected to address the formation of three-
dimensional structures that may exist in the flow field. These three-dimensional struc-
tures are important to the flow and may have a direct influence on entrainment, mixing,
turbulence production and noise generation. It is therefore essential that these flows are
studied in a three-dimensional context in order to further the understanding of synthetic
jet flow. Amitay and Cannelle [3] carried out an experimental investigation into the ef-
fect of the orifice aspect ratio on the development of the synthetic jet, and the spatial
evolution of secondary three-dimensional vortical structures in the flow field. They
found that the flow close to the orifice exit is two-dimensional, however at positions
further downstream the vortex pair lines develop secondary counter-rotating structures.
Amitay and Cannelle [3] also found that the effect of aspect ratio increases as aspect
ratio decreases. Hence the secondary structures in the flow are more pronounced for
low aspect ratio geometry orifices.

The flow within the actuator cavity has been numerically investigated by Rizzetta et al.
[140]. They solved the compressible Navier-Stokes equations for both the flow within
the cavity and for the jet formation above the orifice. The motion of the actuator was
modelled via a moving wall boundary condition applied to the boundary opposite the
orifice exit. Rizzetta et al. [140] conducted two-dimensional simulations for either a
fixed Reynolds number or a fixed cavity height. They found that on the suction stroke,
a pair of counter rotating vortices were formed from the inner edges of the orifice.
These vortex pairs impinge onto the opposite wall and dissipate towards the centre of
the cavity before the consequent ejection cycle begins. As cavity height is decreased,
the strength of the vortex pairs produced on both sides of the orifice increases at a given
Reynolds number. This has been confirmed by Lee and Goldstein [94].

The interaction of synthetic jets with an external cross flow has attracted a wide range
of interest. This interaction can displace the local streamlines and induce an apparent
change in the shape of the surface and is hence considered an interesting concept for
flow control applications. The idea of flow control by changing the the apparent shape
to the aerosurfaces in order to prescribe the streamwise pressure distribution, is not new
and investigations have been carried out since the 1940s and 1950s, Perkins and Hazen
[128]. The main attraction of synthetic jets are that they can be coupled with actuators
which can easily be integrated into the flow surface without the need of complex piping
and fluidic packaging. This feature makes them very attractive as fluidic actuators for
flow control for both internal and external flows. The apparent surface modification is
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achieved by operating the synthetic jet actuator on timescales which are smaller than
the characteristic timescale of the base flow. Significant global changes on scales that
are one or two orders of magnitude greater than the characteristic length scale of the
jets themselves can be obtained by using the unsteady effects of the actuation and cou-
pling these to the inherent instabilities of the base flow. Flow control using synthetic
jets using vectoring of conventional jets in the absence of extended control surfaces
was demonstrated by Smith and Glezer [162, 161] and in more detail by Smith et al.
[163]. Since then this approach has been adopted in a number of other applications,
including the modification of the aerodynamic characteristics of bluff bodies (Ami-
tay et al. [4]), control of lift and drag on airfoils, (Kral et al. [88]; Smith and Glezer
[160]; Amitay et al. [5, 7]; Seifert and Pack [154]), reduction of skin friction of a flat-
plate boundary layer, (Lorkowski et al. [99]), mixing in circular jets, (Davis and Glezer
[42]), and control of internal flow separation (Amitay et al. [6]).

7.2 Problem Description

Gatski and Rumsey [64] organised a workshop concerning CFD validation of synthetic
jets and turbulent separation control. This workshop was held in order to assess the
current CFD capabilities in predicting unsteady flows for flow control. Three cases
were proposed for the workshop: (1) a synthetic jet issuing into quiescent air, (2) a
synthetic jet in a cross-flow and (3) the control of separated flow over a wall-mounted
hump model by means of both steady suction and synthetic jets. A summary of the
validation workshop was written by Rumsey et al. [146] containing brief descriptions
and results obtained for the three different cases. This Chapter of the thesis concerns
the investigation of high-resolution methods for the problem of a synthetic jet issuing
into quiescent air (case 1). A brief description of the experimental setup as well as a
summary of the workshop results is presented in Appendix A.

7.3 Results

The investigation proceeded in two stages; Firstly the synthetic jet was modelled in 3-
dimensions without the cavity section followed by modelling the cavity section in quasi
3-dimensional simulations prescribing periodic boundary conditions in the long-axis of
the slot, in correspondence with the study by Kotapati and Mittal [87]. A compressible
solver was chosen due to the fact that the Mach number at the slot exit is approximately
0.1. The numerical methods associated with the compressible flow equations are de-
scribed in Chapter 2. Various limiting approaches have been considered in the context
of high-resolution methods. Limiters are the general nonlinear mechanism that distin-
guishes modern methods from classical linear schemes. Their role is to act as a nonlin-
ear switch between more than one underlying linear method thus adapting the choice
of numerical method based upon the behaviour of the local solution. Limiters result in
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nonlinear methods even for linear equations in order to achieve second-order accuracy
simultaneously with monotonicity. Limiters can act like dynamic, self-adjusting mod-
els, modifying the numerical viscosity to produce a nonlinear eddy viscosity (Drikakis
[48]; Margolin and Rider [107]). The high-resolution scheme employed here is the
Godunov-type, characteristics-based scheme by Eberle [55]. The scheme has been
presented in detail in Chapter 2 section 2.11.5. The cell centred data is interpolated
to the cell faces using a MUSCL-type high-order interpolation which incorporates the
various slope limiters studied in this Chapter. The limiters investigated in this study are
the van Albada (VA), Minbee (MB), Superbee (SB), van Leer (VL) (see Toro [174] for
more details) a limiter developed by Drikakis (DD) Zóltak and Drikakis [196] and a
5th order limiter developed by Kim and Kim [84](KK5). Further details of the limiters
were outlined in section 2.12.

7.3.1 Simulations Without Cavity Section

A fully three-dimensional domain was created with dimensions conforming to the ex-
perimental setup. The slot was located at the centre of the domain and a sinusoidal
blowing/suction velocity boundary condition (Usin(2π f t)) was prescribed to the slot
exit due to the absence of the cavity section. The Reynolds number based on the slot
width and average velocity over the discharge phase of a cycle was 1150. The forcing
frequency ( f ) that the diaphragm oscillates at was 444.7 Hz taken from the experimen-
tal data. No-slip boundary conditions were applied to the sides of the enclosed domain
and an outflow boundary condition applied to the upper surface opposite to the slot
exit. The flow was allowed to develop over several cycles in order to obtain a fully
developed flow. Once this was achieved the results were post-processed to calculate
both phase- and time-averaged velocity profiles in order to compare with the experi-
mental data. Figure 7.2 shows the grid used for the simulations. It should be noted that
the coordinates x, y and z are in the streamwise, cross-streamwise and spanwise direc-
tions respectively. In order to capture the vortices that form at the slot exit, sufficient
clustering of the grid cells in both the streamwise and cross-streamwise directions was
provided. The grid resolution was approximately 3.2 millon grid points. The domain
was split into 9 or 27 blocks to enable the code to be used in parallel on the high
performance computer (hpc). Approximately 15800 time-steps were needed for one
complete ejection/suction cycle and typically each case was run for 5-7 cycles in order
to obtain phase-averaged results over a sufficient number of cycles.

Figures 7.3-7.5 show a comparison between computed streamwise velocity contours
and experimental PIV contours of the flow at various phase angles in the blowing/suction
cycle. Comparing the computational and experimental results it can be seen that the
flow structures are captured well by the computations. The vortices are shown to travel
under there own self induced velocity in the streamwise direction during the expulsion
phase (phase angles 0◦ to 180◦, Figs. 7.3(a)-7.4(c)) . The experimental data shows
that the vortices formed either side of the slot exit travel faster downstream than in the
computational results during the expulsion phase. This behaviour is also present in the
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Figure 7.2: Computational mesh used in the simulation.

suction phase with the fluid being drawn back in faster during the experiments than in
the computations (phase angles 225◦ to 315◦, Figs. 7.4(e)-7.5(c)).

Comparing the workshop results of phase-averaged contours at 90◦, (Figs. A.7-A.8) to
those obtained in this study, it can be seen that none of the results actually manage to
capture the vortex core in the same position as the experimental PIV data. Furthermore
the results obtained from Washington University shown in Figs. A.7(e) and A.7(f)
show an asymmetry in the flow with respect to the slot centre line. This asymmetry is
not present in the current study or in the PIV data plots. A much stronger asymmetry
in the flow is also predicted by the results submitted by NC A&T State U. shown in
Fig. A.8(b). A reasoning as to why this asymmetry occurred could be due to effects
from the domain boundaries interfering with the computed flow or due to specifics of
the numerical setup. Cui and Agarwal [40] and Yamaleev and Carpenter [189] do not
discuss why this asymmetry occurs in the flow and hence one can only guess as to why
it occurs. Suction phase contour comparisons at a phase angle of 225◦ show a good
likeness to the experimental PIV data. Results from the workshop at the same phase
angle show some unusual behaviour (Figs. A.9 and A.10). Contour plots from George
Washington University (Figs. A.9(c) and A.9(d)) show an incorrect flow pattern in
comparison to that obtained by the PIV data. This discrepancy can be attributed to
a Reynolds number which doesn’t correspond to the experimental Reynolds number.
As mentioned before Kotapati and Mittal [87] based their flow Reynolds number on
the lower bound of the averaged expulsion velocity, hence the vortices generated move
through the domain much slower than in the experimental data. The asymmetry in the
flow is again predicted by the results of Washington University and NC A&T State U.
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Some discrepancies between the present results and the experimental data can be partly
explained by considering the phase averaged streamwise velocity profile at a position
of 0.1mm above the slot exit, shown in Fig. 7.6. The figure shows velocity profiles of
the experimental data from the three different measurement techniques as well as re-
sults obtained with the various slope limiters discussed at the beginning of this section.
It can obviously be seen that the data obtained by three experimental measurement
techniques disagree with each other, both with regards to velocity profile and relative
velocity magnitude. Also, the profile obtained from the experiments are far from a
perfect sine wave, whereas the computed profile is almost a perfect sine wave. This
irregular velocity profile is obtained in the experiments due to the fluid having to travel
through the complex cavity section which was not modelled in these computations.
The computed results compare well with the PIV data with regards to both profile
shape and velocity magnitude during the expulsion phase. All three experimental tech-
niques show that the maximum velocity is obtained earlier in the ejection cycle in
comparison to the computational results. This results in a type of ‘phase-lag’ between
the experimental data and the computed results. This phase-lag accounts for the fact
that the experimental vortices appear to move faster downstream than the computed
vortices. The absolute value of maximum velocity obtained during the suction phase
is much higher than that obtained in the ejection phase as shown by the experimental
PIV and LDV profiles. The Hot-wire data does however show a much higher max-
imum velocity in comparison to the two other experimental techniques. As the inlet
boundary condition in the computational setup was a perfect sine wave prescribed to
the slot exit, the profile would not be expected to change much at a position of 0.1mm
downstream. This is proven to be true as the suction phase shows a absolute maximum
velocity comparable to that predicted by the ejection phase. Clearly one would need
to adapt the inlet boundary condition if the flow close to the slot exit is to be modelled
correctly. The various limiters, as expected, showed very little deviation from one an-
other at a position so close to the slot exit. Velocity profiles from the workshop at the
same position above the slot exit (Fig. A.2) show that it was difficult to match the max-
imum and minimum velocity magnitudes as well as phase angles to the experimental
data. Large discrepancies can be seen with regards to the suction phase mainly due to
whether or not the cavity section was modelled.

Further comparisons at various distances above the slot exit can be seen in Figs. 7.7
and 7.8. At 1mm above the orifice exit the various limiters show little difference and
compare well with the PIV data on the expulsion phase capturing the peak velocity.
The presence of the phase-lag between the computed results and the experimental data
is still present, with the experimental data showing a peak velocity earlier in the ex-
pulsion cycle than in the simulations. The suction phase over predicts the minimum
velocity in comparison to the PIV data but compares well with the hot wire data. As
distance increases away from the slot exit the discrepancies between the various lim-
iters used in the calculations become more apparent. The main differences between
the various limiters lie in there predictions of the maximum and minimum velocities.
Figures 7.8(c) and 7.8(d) also show a phase difference between the various limiters in
their prediction of the peak velocity. The computed results also show a large difference
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in the prediction of the magnitude of peak velocity in comparison to the experimental
PIV data but compare much better with the hot-wire data. The various limiters com-
pare well with the experimental PIV data during the suction phase, with the DD limiter
and the van Albada giving the best results.

Phase averaged results of the cross-stream distributions of u- and v-velocity profiles
along the horizontal line 2mm, 4mm and 6mm above the orifice exit at phase angles
of 90◦ and 270◦ are shown in Figs. 7.9 and 7.10 respectively. At a position of 2mm
above the slot exit the various limiters slightly over predict the peak u-velocity at phase
of 90◦. It should be noted that the slot width is between -0.5mm and 0.5mm. In
contrast the cross stream velocity (v-velocity) is under predicted by all limiters except
the superbee limiter which provides a good comparison with the PIV data with regards
to profile and velocity magnitude. Workshop results at the same streamwise position
above the slot exit can be seen in Fig. A.4. These results show that the peak velocity
at the centre of the slot is not captured accurately by most of the numerical methods
used. Also, many of the methods used do not manage to predict the velocity profile
at the edges of the slot, predicting a much lower velocity in comparison to the PIV
data. At a position of 4mm above the slot exit the PIV data shows a much higher
peak velocity compared to the present results (Fig. 7.9(c)). This discrepancy is due
to the positioning of the counter rotating vortices. It has already been shown by the
means of velocity contours that the vortices formed at the edges of the slot travel faster
downstream in the PIV data compared to the computed results. At a phase angle of
90◦ the centre of the vortices is approximately at a position of 3.5mm above the slot
exit obtained from the PIV data, whereas the computed results show the centre of
the vortices to be approximately 2.8mm above the slot exit. It is this reason that the
computed velocity profile at 4mm shows a much lower peak velocity in comparison
to the PIV data. The cross-stream velocity profile however show a good comparison
across the slot using the DD and Superbee limiters. Away from the slot edge all limiters
tend to give a poor representation of the flow, especially the van Albada and Minbee
limiters. Workshop results shown in figure A.5 show a similar trend with respect to
the streamwise velocity profile. Further away from the slot exit at a position of 6mm
the DD and Superbee limiters give a good prediction of the u-velocity magnitude and
flow profile. The Minbee and van Albada limiters tend to over-predict the maximum
velocity at the centre of the slot. However, the cross-stream velocity is predicted better
by the Minbee, Superbee and van Albada limiters with the DD limiter tending to under-
predict the velocity magnitude.

At maximum suction (270◦) all four limiters give different results (Fig. 7.10) in com-
parison with the PIV u-velocity data. At a position of 2mm above the slot exit all
limiters over predict the minimum u-velocity with van Albada and the DD limiter
showing the best results with respect to the velocity profile distribution. The computed
v-velocity profile shows a steep gradient across the slot exit whereas the PIV data
shows a more smoother transition across the slot. At distances further downstream
from the slot exit 4mm and 6mm, the u-velocity is best predicted by the van Albada
limiter and DD limiter, respectively. The magnitude of the computed v-velocity out-
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side the core region of the jet is consistently higher than the experimental measure-
ments which implies that there is greater entrainment in the computed flow field than
that of the experiments.

A comparison of phase averaged centerline streamwise velocity at maximum expulsion
and suction are shown in Fig. 7.11. Both plots show that the velocity at the slot exit is
over predicted by all the different limiters. No limiter manages to capture the position
and magnitude of the maximum expulsion velocity. The computed results show that
the maximum velocity is reached at a position closer to the slot exit in comparison
to the PIV data. This is the reason as to why the counter rotating vortices formed at
the slot edges move slower in the downstream direction compared to the PIV data.
The maximum velocity is found at a position of approximately 3mm above the slot
exit. This position is related to the vortex core of the counter rotating vortices. The
van Albada and DD limiters are shown to best predict the velocity at positions further
downstream at both phase angles. Workshop results shown in Fig. A.6 show that
an accurate prediction of the peak velocity was extremely difficult to obtain with the
majority of results showing a peak velocity at a streamwise position much closer to the
slot exit than that given by the PIV data.

In order to study the structure of the vortices formed at the slot edges, iso-surfaces of
vorticity coloured by streamwise velocity were plotted at various phase angles (Fig.
7.12). It can clearly be seen that a ring type vortex forms as the flow separates at the
edges of the slot. This vortex ring then starts to moves away from the slot under it’s
own self induced velocity. The suction phase allows the ring vortex to fully detach
itself from the slot edges to move further away in the downstream direction.
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Figure 7.3: Comparison of computed streamwise velocity contours and experimental
PIV data at various phase angles.
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Figure 7.4: Comparison of computed streamwise velocity contours and experimental
PIV data at various phase angles.
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PIV data at various phase angles.
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Figure 7.6: Phase-averaged u-velocity at 0.1mm above the centre of the slot exit.
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Figure 7.7: Phase-averaged u-velocity at 1mm (a) and 2mm (b) above the centre of the
slot exit.
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Figure 7.8: Phase-averaged u-velocity at various downstream positions above the cen-
tre of the slot exit.
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Figure 7.9: Phase-averaged velocity profiles along various downstream horizontal lines
above the jet exit plane at 90◦.
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Figure 7.10: Phase-averaged velocity profiles along various downstream horizontal
lines above the jet exit plane at 270◦.
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Figure 7.11: Phase-averaged centerline u-velocity at 90◦ (a) and 270◦ (b).
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7.3.2 Simulations With Cavity Section

In order to obtain a good representation of the flow close to the slot exit one needs
to take into account the cavity section. The following section will show results ob-
tained by including the cavity section. The computational geometry was created in
accordance with the investigation of Kotapati and Mittal [87] who simplified the cav-
ity section by approximating the experimental cavity to a rectangular box. The details
that make up the interior of the experimental cavity were neglected and the oscillat-
ing diaphragm was positioned at the base of the rectangular box. Figure 7.13 shows a
schematic of the computational domain used in the simulations. Utturkar et al. [180]
showed that large differences in the internal cavity flow, with symmetric forcing, do
not translate into similar differences in the external flow. The coordinates x, y and z
are in the streamwise, cross-streamwise and spanwise directions respectively. As in
the study by Kotapati and Mittal [87] the cavity is defined by the width (W) and the
height (H). Kotapati and Mittal [87] tried to match the dimensions of the experimental
geometry as closely as possible, however the cavity height and the slot height (h) could
not be properly defined as in the experiments due to the variable width of the channel
between the cavity and the slot exit defined in the experimental setup. The experiments
were carried out using a finite aspect ratio but as found in the previous investigation
and from the workshop results, this did not significantly affect the flow in the centre
plane of the jet. The experimental aspect ratio of the slot is large and hence one can
assume that the flow is nominally two-dimensional except at the spanwise slot edges.
Hence the following study made use of periodic boundary conditions in the spanwise
direction. Outflow boundary conditions are applied to the upper surface as well as the
two side surfaces to allow them to freely respond to the flow created by the jet. The
dimensions Lx, Ly and Lz are 60d, 60d, 6d respectively, where d is the slot width.

The oscillating diaphragm is modelled using the same definition provided by Kotapati
and Mittal [87]. They specified a sinusoidal velocity boundary condition V0sin(2π f t)
at the bottom of the cavity. The value of V0 was determined by matching the Reynolds
number in the experiments and the frequency ( f ) was determined by matching the
Stokes number (S t =

√
2π f d2/ν). The Reynolds number in the computations is de-

fined by Re = V̄ jd/ν where V̄ j is the average velocity over the discharge phase of the
cycle, obtained from the experimental data. A Reynolds number of 1150 was used in
the present simulations. Two different grid resolutions have been used in the present
simulations. Both grids are non-uniform in the streamwise (x) and cross streamwise
(y) directions and uniform in the spanwise (z) direction. Figure 7.14 shows the compu-
tational mesh for the case of the coarser grid. Sufficient clustering has been provided in
the region closest to the slot exit in order to resolve the vortex structures formed at the
edges of the slot and also to capture the shear layer in the slot. Coarse and fine grids
corresponding to 750,000 grid points and 3 million grid points, respectively, needed
approximately 16000 and 36000 time steps per oscillation cycle, respectively. The do-
main was split into a number of blocks in order to compute the flow on a number of
processors. Typically between 4 and 29 processors were used in the parallel compu-
tations. The flow was allowed to evolve over a number of cycles in order to calculate
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phase-averaged and time-averaged data over a sufficient number of cycles. It should
be noted that only two limiters were chosen to compute the flow on the fine grid (van
Leer and KK5) due to the computational expense.

Figure 7.13: Computational domain reproduced from Kotapati and Mittal [87].

Figure 7.14: Computational mesh including cavity section.

Figure 7.15 shows phase-averaged u-velocity at the centre of the slot at a position of
0.1mm above the slot exit. The figure compares the various limiters used for the two
grid resolutions as well as two of the experimental measuring techniques. One imme-
diately sees that the velocity profile is no longer strictly sinusoidal as in the previous
section. This is due to the presence of the cavity section. The expulsion peak veloc-
ity no longer compares with the suction peak velocity. However, the peak expulsion
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velocity predicted by all limiters except the van Albada and DD limiters show the ve-
locity is higher than the PIV data and compares close to that predicted by the HW data.
From Fig. 7.15 it can be seen that maximum suction is reached at a phase angle of
245◦. At this phase angle the Low Mach Van Leer limiter provides the most accurate
prediction of the velocity and agrees to within 5% of the PIV data. There appears to
be little difference between the two different grid resolutions if one compares the same
limiters used on both grids. The discrepancy which was shown in the previous sec-
tion with regards to a phase ‘lag’ is already starting to show in the computed results.
The PIV data as well as the HW data seem to reach a maximum velocity at an earlier
position in the cycle compared to the computed results. The minimum velocity on
the suction phase seems to coincide with that shown by the PIV data. It has already
been discussed that the computational results presented at the workshop also encoun-
tered problems in matching phase with the experimental data. This could be due to
processing results over insufficient positions in the cycle or due to the phase definition
calculation provided by the workshop organisers.
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Figure 7.15: Phase-averaged u-velocity at 0.1mm above the centre of the slot exit.

Further comparisons of velocity distribution over a cycle at various position above the
the slot exit are shown in Fig. 7.16. At all positions above the slot exit very little
difference can be seen with regards to the choice of limiter used with the exception of
the van Albada and DD limiters which consistently predict a lower maximum velocity
in the expulsion phase. At a position of 1mm above the slot exit the computed results
compare well with the HW data with regards to the maximum velocity in the expulsion
phase. However, the PIV data shows a lower maximum velocity which compares to
within a 3% difference with that predicted by the DD limiter. Moving further away
from the slot exit, the trend observed is that the computed results tend to agree more
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with the PIV data with regards to the predicted value of the peak velocity. A noticeable
feature is that the phase lag between the computational results in the previous section
and the PIV data changes to a phase lead. The computed results reach a peak velocity
at an earlier phase than the PIV data. This is true for all limiters with the exception
of the DD limiter which remains roughly in phase with the PIV data at all streamwise
positions above the slot. The computed results from the suction phase agree extremely
well with the PIV data with all limiters predicting a similar trend at all positions above
the slot exit.

Phase averaged results of the cross-stream distributions of u- and v-velocity profiles
along various horizontal lines above the orifice exit at phase angles of 90◦ and 270◦

are shown in Figs. 7.17-7.18 and 7.19-7.20 respectively. At a position of 1mm above
the slot exit at a phase angle of 90◦ the streamwise velocity over predicts the peak
velocity for all limiters except the DD limiter. The jet width is defined by the width
of the jet at the average velocity defined by vavg = (vmax + vmin)/2. Taking the
maximum and minimum velocities predicted by the computations the jet width agrees
to within a 6% difference to the PIV data. The various limiters predict the v-velocity
at this position above the slot exit to within 5% of the PIV data except in the region
towards the centre of the slot, where the PIV data shows a flatter profile in comparison
to that predicted by the various limiters. Slightly further away from the slot exit at
2mm, the u-velocity profile tends to agree rather well with the PIV data. Although the
computational results show that the peak velocity is slightly over-predicted the PIV
data shows a rather flat profile over the slot width with no real peak at the centre line.
The v-velocity, however, show large discrepancies between the computed results and
the experimental PIV data. The relative peak magnitude either side of the slot edges
is much larger than that predicted by the computational results. This anomaly can
be attributed to the positioning of the counter rotating vortices formed either side of
the slot edges and will be discussed later in this section with the use of contour plots.
Further downstream at positions of 3mm and 4mm above the slot exit, the peak velocity
is captured best by the van Leer limiter, predicting the peak velocity to within 4% and
7.5% of the PIV data at positions of 3mm and 4mm above the slot exit respectively.
It should be noted that the effect of grid resolution did not change the peak velocity
obtained, with the fine van Leer case predicting a peak velocity to within 0.2% of
that predicted by the coarser van Leer case. The computed results do not however
correspond well with the PIV data in the region beyond the slot edges. At both these
streamwise positions the computed results show large discrepancies in the prediction
of the v-velocity profile. As explained earlier, this is due to the positioning of the
vortices either side of the slot.

Velocity profiles at maximum suction (Figs. 7.19-7.20) show very good comparisons
with the PIV data especially at streamwise positions close to the slot exit. V-velocity
profiles are captured to within 2% of the PIV data at positions close to the slot exit
(Figs. 7.19(b) and 7.19(d)). As streamwise distance increases away from the slot the
computed results show a small deviation away from the PIV data towards the centre of
the slot. Away from the slot edges the comparison remains within 2% of the PIV data.
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Comparing these results with those of the previous section (Fig. 7.10) one can see that
the effect of the cavity allows a more realistic representation of the flow in the suction
phase.

Centreline velocity at various positions above the slot exit at maximum expulsion and
maximum suction have been plotted in Fig. 7.21. It can clearly be seen that none of
the limiters used manage to capture the correct position and magnitude of the peak
velocity at maximum expulsion. The DD limiter gives the best representation of the
peak velocity position and compares well at positions further downstream, however
fails to predict the peak velocity magnitude compared to the PIV data. All limiters
over-predict the velocity at the slot exit and a maximum velocity is reached further
downstream than the PIV data. Kotapati and Mittal [87] attribute the discrepancy in
the magnitude of the peak velocity to end wall effects in the experiments that cause the
fluid to accelerate between shear layers formed at the slot end walls. Comparing the
present results with those presented at the workshop (Fig. A.6), one can see that all
investigations found it difficult to match both the peak velocity magnitude and stream-
wise position. At maximum suction the computed results agree well with the PIV data
at all streamwise positions except directly at the slot exit. The Superbee limiter pre-
dicts a type of plateau in velocity between approximately 2mm and 7mm upon which
the flow rapidly increases. This trend is not observed by any of the other limiters.

Figures 7.22-7.24 show u-velocity contour comparisons at various phase angles. It
should be noted that the contour plots correspond to simulations carried out using
the KK5 limiter on the coarser grid. Velocity contours during the expulsion phase of
the cycle show that the counter rotating vortices formed either side of the slot exit
move faster downstream than those obtained by the PIV experiments. At a phase
angle of 90◦ the computed vortex cores are approximately at a streamwise position
of 5mm whereas the PIV data shows the vortex cores at a position of approximately
3.5mm. This is the reason as to why the v-velocity distribution plots across the slot
exit at various streamwise positions shown in Fig. 7.18 do not coincide with the PIV
data. This also accounts for the anomalies in the computed results for the centreline
u-velocity at maximum expulsion. Velocity contours during the suction phase show
a good comparison with the PIV data. It should be noted that all numerical limiters
predict a symmetric separation of the fluid flow as opposed to some of the presented
results from the workshop which were discussed in the previous section.

Computed time-averaged results of u-, and v-velocity profiles across the slot exit at
various positions above the slot are presented in Figs. 7.25-7.27. At a position of
0.1mm above the slot exit all limiters with the exception of the DD and van Albada
limiter give an accurate prediction of the u-velocity profile compared with the PIV
data. Results presented at the workshop at the same streamwise position above the slot
are shown in Fig. A.11. These results show a very poor comparison with the PIV data
with some contributions failing to predict the actual shape of the velocity profile (UKY
results). The reason as to why the results from UKY show a net suction velocity is
possibly due to the input velocity profile specification at the diaphragm. The computed
v-velocity at this position compares well with the PIV data in the region across the slot
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exit and close to the slot edges. Further away from the slot edge the velocity profile
deviates away from the PIV data. Moving to a downstream position of 1mm above the
slot exit the computed u-velocity profile compares well with the PIV data in the region
directly over the slot exit. The computed results do not predict very well the spread of
the jet in the region just beyond the slot edges. The workshop results of time-averaged
streamwise velocity profiles at this position above the slot exit (Fig. A.12) show a
relatively poor comparison with the PIV data. Most of the results tend to under-predict
the peak velocity at the centre of the slot and the spread of the jet across the slot
is poorly captured. The computed v-velocity shows an extremely good comparison
with the PIV data with all limiters predicting the same result. Cross-stream velocity
profiles presented at the workshop shown in Fig. A.14 reveal that most of the numerical
methods used tended to over-predict the maximum and minimum velocity either side
of the slot exit. Further away from the slot exit the computed velocity profiles continue
to show a good comparison with the PIV data, with little variation between the various
limiters used except for the DD and van Albada limiters. Workshop results at a position
of 4mm above the slot exit tend to give a better agreement between streamwise velocity
and PIV data than at positions closer to the slot exit (Fig. A.13). However, the cross-
streamwise results shown in Fig. A.15 show that the agreement with the PIV data
deteriorates with distance away from the slot exit.

The workshop results showed a greater disparity between laminar and turbulent sim-
ulations, with the turbulent simulations providing a much better representation of the
velocity profile. High-resolution methods inherently decide whether the flow is turbu-
lent or laminar and hence adapt themselves to the particular nature of the flow. This
maybe the reason as to why such a good agreement of time-averaged velocity profiles
were obtained.

Figure 7.28 shows contours of phase-averaged spanwise vorticity Ωz at various phase
angles, computed using the KK5 limiter on the coarser grid resolution. At 0◦, the vor-
ticity plot shows the previous vortex pair which have moved away in the downstream
region over the period of the previous cycle. The plot also shows the initiation of the
roll up process of the vortices either side of the slot exit. At phase angles of 45◦ and
90◦ the roll up process of the vortices is completed and it can clearly be seen that they
have grown significantly in size. Upon the start of the suction phase i.e. at a phase
angle of 180◦ the vortex pair detach themselves from the slot exit plane and begin to
advect downstream. The suction phase generates vortex rollup in the interior of the
cavity. This continues through the suction phase with the vortices growing in size un-
til the whole of the cavity section is filled before the beginning of the next cycle. It
is important to note that the suction phase does not harm the counter rotating vortex
pair formed during the expulsion cycle. This is due to the frequency of the oscillating
diaphragm. If the frequency is too high then the vortex pair do not have a chance to
move sufficiently downstream in order to escape the suction phase and can in fact get
destroyed by the suction phase and hence nullify any benefit in the use of the synthetic
jet.
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Figure 7.16: Phase-averaged u-velocity at various downstream positions above the
centre of the slot exit.
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(a) U-velocity 1mm
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(b) V-velocity 1mm

position across slot mm

ve
lo

ci
ty

m
/s

-2 -1 0 1 2
-10

-5

0

5

10

15

20

25

30

35
PIV data
DD
van Albada
Superbee
van Leer
kk5
fine kk5
fine van Leer
lowmach_vanleer

(c) U-velocity 2mm
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(d) V-velocity 2mm

Figure 7.17: Phase-averaged velocity profiles along various downstream horizontal
lines above the jet exit plane at 90◦.
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(a) U-velocity 3mm
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(c) U-velocity 4mm
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(d) V-velocity 4mm

Figure 7.18: Phase-averaged velocity profiles along various downstream horizontal
lines above the jet exit plane at 90◦.
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(d) V-velocity 2mm

Figure 7.19: Phase-averaged velocity profiles along various downstream horizontal
lines above the jet exit plane at 270◦.
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(d) V-velocity 4mm

Figure 7.20: Phase-averaged velocity profiles along various downstream horizontal
lines above the jet exit plane at 270◦.
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Figure 7.21: Phase-averaged centerline u-velocity.
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Figure 7.22: Comparison of computed streamwise velocity contours and experimental
PIV data at various phase angles.
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Figure 7.23: Comparison of computed streamwise velocity contours and experimental
PIV data at various phase angles.
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Figure 7.24: Comparison of computed streamwise velocity contours and experimental
PIV data at various phase angles.
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(b) V-velocity 0.1mm

Position across slot mm

ve
lo

ci
ty

m
/s

-2 0 2
-2

0

2

4

6

8

10
PIV
DD
van Albada
Superbee
van Leer
kk5
fine kk5
fine vanLeer
lowmach_vanLeer

(c) U-velocity 1mm

Position across slot mm

ve
lo

ci
ty

m
/s

-2 0 2
-6

-4

-2

0

2

4

6

8
PIV
DD
van Albada
Superbee
van Leer
kk5
fine kk5
fine vanLeer
lowmach_vanLeer

(d) V-velocity 1mm

Position across slot mm

ve
lo

ci
ty

m
/s

-3 -2 -1 0 1 2 3
-2

0

2

4

6

8

10
PIV
DD
van Albada
Superbee
van Leer
kk5
fine kk5
fine vanLeer
lowmach_vanLeer
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(f) V-velocity 2mm

Figure 7.25: Time-averaged velocity profiles across the slot exit at various downstream
positions above the slot exit.
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(f) V-velocity 5mm

Figure 7.26: Time-averaged velocity profiles across the slot exit at various downstream
positions above the slot exit.
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(f) V-velocity 8mm

Figure 7.27: Time-averaged velocity profiles across the slot exit at various downstream
positions above the slot exit.
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Figure 7.28: Contours of phase-averaged spanwise vorticity (Ωz) at various phase an-
gles, computed using the KK5 limiter.



162 Slope Limiting Schemes for the Simulation of Synthetic Jets

7.4 Summary

Simulations concerning the fluid flow of a synthetic jet issuing into quiescent air have
been carried out. The simulations revealed that the flow is characterised by the gen-
eration of a counter rotating vortex pair at the edges of the slot exit. The vortices
move away from the slot exit under their own self induced velocity during the expul-
sion/suction cycle. The simulations were carried out for two geometries. Firstly, a full
three-dimensional setup was modelled with the exception of the cavity section. A si-
nusoidal velocity boundary condition was applied directly to the slot exit. The results
of phase-averaged velocity profiles predicted that the flow at a position close to the
slot exit remains sinusoidal. This was shown to be incorrect by the experimental data
which revealed that the magnitude of the velocity is greater in the expulsion phase than
in the suction phase. This was partly due to the design of the oscillating diaphragm
but also due to the characteristics of the flow in the cavity. A good representation of
the physics of the flow were captured and the difference between the various limiters
employed only became significant at downstream positions further away from the slot
exit.

The investigation was extended to include the cavity section and the computational
domain was changed to a quasi-three-dimensional domain with the use of periodic
boundary conditions in the spanwise direction. The aspect ratio of the slot is large
enough to assume that the flow is nominally two-dimensional except close to the slot
edges where side wall effects occur. Modelling the flow as periodic in the spanwise
direction led to a significant saving in the computational cost. The results revealed that
the effect of adding the cavity section corrected the suction phase velocity profile in
accordance with the PIV data. The computations failed to predict the correct position
and magnitude of the maximum streamwise velocity during the expulsion phase of the
cycle. Increasing the grid resolution did not provide a substantial difference in the
results obtained.

The data from the workshop firstly showed that there are significant differences be-
tween the three different experimental measuring techniques employed, especially in
the region close to the slot exit. The computational contributions showed significant
variations from the different groups. The effect of grid density and time-step refine-
ment did not provide any substantial improvement to the results obtained. Laminar
contributions resulted in the most inaccurate behaviour, however there was no particu-
lar turbulence model which proved to be superior to other models. Modelling the flow
in three-dimensions did not appear to improve the correlation with the experimental
data. Problems were found to occur in the comparison of phase at the slot exit with
the experimental data leading to a mismatch of velocity profiles at the slot exit with
regards to both phase and amplitude. This contributed to large errors in the results
obtained.

Discrepancies between the various limiters investigated in the second study became
more apparent at positions further away from the slot exit. However, the DD and van
Albada limiters consistently predicted lower velocities during the expulsion phase of
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the cycle. The Superbee limiter tended to predict erroneous results at positions far
away from the slot where the grid resolution was coarser. The Superbee limiter is well
known for being inherently anti-diffusive and this may account for the unusual be-
haviour further from the slot exit. Overall the best results were obtained from the van
Leer and KK5 limiters at all positions in the flow during both expulsion and suction.
The low Mach correction limiting did not provide any significant benefit to the results
obtained. The study of various limiters is complex with limiters behaving differently
depending on the characteristics of the flow situation. Hence in deciding which lim-
iter to use one needs to be fully aware of the flow characteristics being modelled and
choose the limiter accordingly. It is hoped that this investigation helps to further the
understanding of limiting flows featuring separation, vortical structures and the possi-
ble transition to turbulence.
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C H A P T E R 8

Conclusion

T aim of this thesis was to investigate the ability of high-resolution methods to
accurately capture flows featuring separation, instabilities, bifurcation and tran-

sition at relatively low Reynolds numbers. The above mentioned flow features are
essentially non-linear in nature and the use of high-resolution methods, which are in-
herently non-linear, have shown, in the course of this thesis, to be able to accurately
predict such flow phenomena. A secondary aim of this thesis was to further shed
light on the non-linear mechanisms embedded in high-resolution numerical methods
which enable these methods to accurately model the physics of complicated flows.
The implementation and investigation of various Riemann solvers in the context of
incompressible flows has been carried out and will be further discussed below.

It is well known that at low Reynolds numbers the Euler and Navier-Stokes equa-
tions exhibit stiffness making convergence difficult. In the context of the artificial
compressibility approach to solving the hyperbolic incompressible equations, the ad-
vective fluxes behave in much the same manner as solving the low speed compressible
flow equations and require a lengthy time to converge to a steady state at very low
Reynolds numbers. Best convergence rates are obtained by inversely scaling the artifi-
cial compressibility parameter with Reynolds number. Hence as Reynolds number be-
comes very low the artificial compressibility parameter becomes large. This results in
the equations becoming more “incompressible” which in turn results in the advective
equations becoming more stiff. The effect of preconditioning is aimed at alleviating
this stiffness.

The preconditioning technique of Turkel [177] was implemented and tested for a range
of Reynolds numbers for flow through suddenly expanded and suddenly expanded-
contracted geometries. Both these geometries are well know for exhibiting instabili-
ties manifested as a symmetry breaking bifurcation of the flow, upon exceeding some
critical Reynolds number. Laminar flow calculations were performed with and without
preconditioning in order to assess its effects on the accuracy and efficiency of com-
putations. At higher Reynolds number flows the use of preconditioning reduced the
number of multigrid cycles, but adversely affected the solution results. For Reynolds
numbers in the range of symmetry-breaking bifurcation, the use of preconditioning led
to an incorrect stable solution or to an improper estimation of the size of the separation
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bubble. This leads to the belief that the effect of preconditioning on the solution is
similar to that of adding a significant amount of extra dissipation to the flow. At lower
Reynolds number flows, below the critical Reynolds number, the present form of pre-
conditioning neither altered the accuracy of the solution nor had a significant effect on
the rate of convergence. Overall, the ability to accurately predict flows featuring sym-
metry breaking bifurcation was diminished due to the effect of preconditioning and an
increase in efficiency was obtained only for higher Reynolds number flows.

A detailed investigation into the prediction of flow instabilities in a suddenly expanded-
contracted channel using various Riemann solvers in conjunction with first-, second-
and third-order interpolation in the calculation of the intercell flux was carried out. Re-
sults were presented for three different Riemann solvers, namely; The HLLE scheme,
Rusanov scheme and the Characteristics-based scheme. The calculations showed that
for low Reynolds numbers the flow separated symmetrically. As Reynolds number was
increased symmetry-breaking bifurcation occurs at a critical Reynolds number and sep-
aration bubbles of different sizes form on the lower and upper walls. The asymmetries
become stronger with increasing Reynolds number until a second critical Reynolds
number is reached and the flow regains symmetry.

Under-resolved grid simulations showed that the choice of numerical scheme effects
the solution obtained especially in the range of Reynolds number where symmetry
breaking bifurcation occurs. The prediction of the degree of asymmetry in the HLLE
and Rusanov schemes was less than that obtained by the characteristics-based scheme.
Grid independent cases showed that the choice of interpolation used in the calculation
of the intercell flux can have a significant effect on the solution obtained for Reynolds
numbers where symmetry breaking bifurcation occurs. First-order interpolation using
the characteristics-based scheme correctly predicted the asymmetric solution, whereas
the HLLE and Rusanov schemes incorrectly predicted a stable symmetric solution.
Higher-orders of interpolation at the same Reynolds number led to asymmetric sepa-
ration for all numerical schemes investigated with little noticeable difference between
the three schemes when using third-order interpolation.

The three-different schemes differ in the calculation of the wave-speed dependent
term which encompasses information about the eigenstructure of the system of equa-
tions and is also responsible to adapt the discretisation according to the local solution
data. The Rusanov scheme is based on the calculation of the maximum wave speed
and hence cannot recognise the slowest moving acoustic waves thus causing a larger
amount of dissipation. This diffusive nature of the Rusanov scheme will tend to have a
“smoothing” effect on the solution and hence may be the reason as to why the solutions
obtained, especially when using 1st-order reconstruction, do not accurately represent
the physics of the flow. Hence, it has been shown that the choice of numerical scheme
together with the choice of reconstruction used in the calculation of the intercell flux
can effect the solution obtained, even for grid-independent solutions.

A numerical study of flow through a plane suddenly expanded channel was conducted
for both two-, and three-dimensional geometries. Suddenly expanded channel flow is
well documented with a substantial amount of work, both experimental and compu-
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tational, present in the current literature. The aim of this investigation was to show
that non-linear bifurcation can be accurately captured using high-resolution numerical
methods for both two-, and three-dimensional flows. The flow characteristics showed
that at low Reynolds numbers the flow separates symmetrically and upon reaching a
critical Reynolds number symmetry-breaking bifurcation is achieved. The asymmetry
in the flow continues to grow with one recirculation zone growing at the expense of the
other. The effect of varying the expansion ratio showed that the critical Reynolds num-
ber for symmetry-breaking bifurcation decreases as expansion ratio increases. This
result is in accord with various experimental and computational data obtained from
the literature. Values for the critical Reynolds number obtained compared extremely
closely to the experimental values of Fearn et al. [59] and CFD results of Drikakis [46].

Three-dimensional simulations showed that the effect of the vertical side wall prox-
imity (aspect ratio) provided a stabilising effect on the flow. This corresponded to an
increase in critical Reynolds number as aspect ratio was decreased. Lower Reynolds
numbers in the regime of asymmetric separation of the fluid flow, showed that the flow
in the expanded channel is nominally two-dimensional except at planes closest to the
vertical side walls. This irregularity at the side walls is due to the effects of the side
wall boundary layer acting to stabilise the flow. On increasing Reynolds number the
flow take on more of a three-dimensional character with side wall effects extending the
whole spanwise domain. Streamlines at the side wall were found to move in a spiral
motion towards the centre symmetry plane of the channel. This is due to the side wall
boundary layer, which imposes shear drag on the primary motion of the fluid particles
behind the expansion. This in-turn results in pressure gradients along the spanwise
direction giving rise to an increasingly large spanwise velocity component. It is this
increasing velocity component that gives rise to the spiral motion focused around a
vortical core line towards the symmetry plane of the channel.

Furthermore, it was also confirmed that three-dimensional effects become more pro-
nounced with increasing Reynolds number and that the flow becomes three-dimensional
before becoming time-dependent. A secondary eddy is formed in the vicinity of the
vertical side wall and as Reynolds number increases the effect of the secondary eddy
becomes strong enough to extend the whole spanwise direction towards the symme-
try plane. This secondary eddy varies significantly in the region close to the vertical
side wall where the boundary layer exists until settling to a stable separation region at
planes closer to the symmetry plane. Further increases in Reynolds number showed
that the steady asymmetric flow becomes time-dependent, characterised by the shed-
ding of vortices from the shear layer of the upstream recirculation bubbles. The shed-
ding of the vortices was observed to increase in frequency as Reynolds number was
further increased. It has been shown that high-resolution numerical methods can cor-
rectly predict non-linear bifurcation phenomena in both two- and three-dimensions.
The computed results have been compared to available experimental data over a range
of Reynolds numbers and have shown to agree to within 5% of the experimental data.
At Reynolds numbers where quantitative comparison data was unavailable the com-
puted results have shown to qualitatively capture the flow physics which so impor-



168 Conclusion

tantly characterise the flow through such geometries during both steady and unsteady
computations.

To further shed light on the embedded ‘artificial viscosity’ of high-resolution methods,
analysis of the non-linear wave speed dependent term (dissipation term) was carried
out in the context of flow through a two-dimensional suddenly expanded channel. In
a laboratory experimental set-up the flow asymmetries may be triggered by geomet-
rical imperfections, asymmetries in the upstream flow profile and small perturbations
that exist throughout system. The investigation showed that even in a fully symmetric
computational set-up these asymmetries are still present, proving the ability of high-
resolution methods to accurately model the physics of a particular flow. The contribu-
tion of the wave-speed dependent term to the flow solution was plotted via contours
which showed that the the asymmetric dissipation arising downstream of the separation
regions is responsible for triggering the symmetry-breaking in the flow. This effect is
convected both upstream and downstream as the Reynolds number increases. It also
seems that the non-linear dissipation has a significant effect on flow separation. Hence,
the present investigation suggest that the mechanism of symmetry-breaking bifurcation
is provided in the simulations as a result of a delicate balance of truncation ‘errors’ due
to wave-speed-dependent terms (chiefly responsible for numerical dissipation) of non-
oscillatory finite volume methods. Therefore, these terms are not numerical error, but
legitimately describe the physics. This analysis of the symmetry-breaking bifurcation
using high-resolution methods further proves that this family of numerical methods
have embedded characteristics which enable them to correctly model the physics of
flows featuring instabilities.

The final test case involved the simulation of a synthetic jet actuator issuing into quies-
cent air. The investigation focused on various slope limiters used in conjunction with
the MUSCL scheme for high-order interpolation of the cell centred values. The com-
puted results were compared to the experimental data generated by NASA Langley
for a workshop on CFD validation of synthetic jets and turbulent separation control.
Various CFD contributions to this workshop were also used as a comparison to the
current results. The simulations were carried out for two geometries. Firstly a full
three-dimensional geometry without a cavity section was modelled, using a sinusoidal
velocity profile imposed directly to the slot exit. The results of phase-averaged velocity
profiles predicted that the flow at a position close to the slot exit remains sinusoidal.
This was shown to be incorrect by the experimental data which revealed that the mag-
nitude of the velocity is greater in the expulsion phase than in the suction phase. A
good representation of the physics of the flow were captured and the difference be-
tween the various limiters employed only became significant at downstream positions
further away from the slot exit. The second phase of the simulations extended the
geometry to simulate the cavity section and quasi-three-dimensional simulations were
carried out with periodic boundary conditions in the spanwise direction of the slot. The
results revealed that the effect of adding the cavity section corrected the suction phase
velocity profile in accordance with the PIV data. The computations failed to predict
the correct position and magnitude of the maximum peak streamwise velocity during
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the expulsion phase of the cycle.

The various computational contributions to the workshop showed significant varia-
tion between different groups. The effect of grid density and time-step refinement did
not provide any substantial improvement to the results obtained. Also, laminar con-
tributions resulted in the most inaccurate behaviour, however there was no particular
turbulence model which proved to be superior to other models. Modelling the flow
in three-dimensions did not appear to improve the correlation with the experimental
data. Problems were found to occur in the comparison of phase at the slot exit with
the experimental data leading to a mismatch of velocity profiles at the slot exit with
regards to both phase and amplitude. This contributed to the large errors in the results
obtained.

Discrepancies between the various limiters investigated in the second study became
more apparent at positions further away from the slot exit. However, the DD and
van Albada limiters consistently predicted lower velocities during the expulsion phase
of the cycle. The Superbee limiter tended to predict erroneous results at positions
far away from the slot where the grid resolution was coarser. The Superbee limiter
is well known for being inherently anti-diffusive and this may account for the unusual
behaviour further from the slot exit. Overall the best results were obtained from the van
Leer and KK5 limiters at all positions in the flow during both expulsion and suction.
The study of various limiters is complex with limiters behaving differently depending
on the characteristics of the flow situation. Hence in deciding which limiter to use
one needs to be fully aware of the flow characteristics being modelled and choose the
limiter accordingly.

8.1 Summary of Contributions

This thesis has

• Shown that the preconditioning method of Turkel [177] fails to accurately predict
instabilities manifested as an asymmetric separation of the fluid flow in suddenly
expanded channels. Also the preconditioning method does not provide any sub-
stantial acceleration in convergence of low Reynolds number flows where the
solution is a symmetric separation of the fluid flow.

• Investigated various Riemann solvers in the context of flow through a suddenly
expanded-contracted channel. The choice in Riemann solver can substantially
alter the result obtained especially at Reynolds number above the critical value
where symmetry-breaking bifurcation occurs.

• Shown that the choice in the order of reconstruction used in obtaining the cell
faced values from the cell centres can also significantly effect the flow solution
obtained even for grid-independent simulations. Depending on the choice of Rie-
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mann solver, orders of reconstruction lower than second-order fail to correctly
predict the symmetry breaking bifurcation.

• Investigated the flow physics of symmetry-breaking bifurcation in a plane sym-
metric suddenly expanded channel, both in two-, and three-dimensions.

• Corroborated previous experimental and computational investigations to show
that the effect of the vertical side walls acts to stabilise the flow leading to higher
critical Reynolds numbers for symmetry breaking bifurcation.

• Shown that the onset of time dependent flow in a three-dimensional suddenly
expanded channel is due to three-dimensional spanwise instabilities initiated in
the side wall boundary layer.

• Shown that time-dependency is characterised by the time-periodic shedding of
vortices from the upstream recirculation zones.

• Provided an explanation as to the mechanism of symmetry breaking bifurca-
tion using high-resolution numerical methods in the context of a fully symmet-
ric computational set-up. The non-linear wave speed dependent term provides
the ‘trigger’ mechanism via added asymmetric dissipation downstream of the
separation region. As Reynolds number increases this asymmetric dissipation
convects both upstream and downstream.

• Demonstrated that the choice of slope limiter can effect the solution obtained.
Different limiters have various degrees of dissipative properties and should be
chosen in conjunction to the flow being simulated.

8.2 Future Research

The work described in this thesis has concentrated on the key aspects of instabilities
and transition in suddenly expanded channels using high-resolution numerical meth-
ods. It is expected that this work will be used as a guide in future simulations of flows
featuring instabilities, separation and transition. Areas that can be addressed by future
studies are outlined below.

The simulation of unsteady three-dimensional suddenly expanded flows using high-
order methods such as Essentially Non-Oscillatory (ENO) and Weighted ENO (WENO)
methods would compliment the current work carried out in this thesis. These schemes
do not incorporate monotonicity limiting methods, instead ENO schemes, use uniform
orders of accuracy by controlling any increase of the total variation of the numerical
solution through an adaptive stencil in such a way that each grid point attempts to
use the smoothest information available. Alternatively WENO schemes, use a convex
combination of all the corresponding interpolating polynomials on the stencil in order
to compute an approximate polynomial for each cell. The interpolating polynomials
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are combined by assigning weights to the convex combination. For further details re-
garding higher-order methods the reader is referred to the text of Drikakis and Rider
[50].

A key addition to complete the work carried out for a plane sudden expansion geom-
etry would be to carry out stability analysis and use bifurcation theory to numerically
determine the bifurcation point. This may further shed light on the details of the bifur-
cation mechanism. The symmetry-breaking in a suddenly expanded channel could be
further investigated by performing time-dependent simulations for steady flows, i.e. at
Reynolds number slightly above and below the critical Reynolds number. This type of
investigation would show the onset of the bifurcation in a time-dependent context such
as that observed in an experimental set-up.

Finally, with regards to the work carried out on synthetic jet flows, an interesting para-
metric study would be to investigate various Reynolds numbers to see if this type of
oscillatory suddenly expanded flow breaks symmetry at some critical Reynolds num-
ber similar to flow through a plane sudden expansion.
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A P P E N D I X A

Overview of the NASA Langley Workshop on
CFD Validation of Synthetic Jets and

Turbulent Separation Control

A summary of the validation workshop was written by Rumsey et al. [146] containing
brief descriptions and results obtained for the three different cases. This Appendix
provides a brief description of the experimental setup as well as a summary of the
workshop results.

A.1 Experimental Setup

The actuator used in the experiments was based on the earlier design by Chen et al.
[30]. Figure A.1 shows the design of the actuator cavity. The synthetic jet emanates
from a high aspect ratio rectangular slot of dimensions 1.25mm wide and 35.56mm
long. The slot is covered by a glass enclosure, 2 ft × 2 ft × 2 ft in dimension. This
glass enclosure isolates the synthetic jet from the ambient air and provides a means of
containing the seeding particles used in the experimental measurements. The flow was
driven by a side mounted piezoelectric diaphragm with an approximate diameter of 2
inches. The diaphragm was operated at a frequency of 444.7 Hz, which was slightly
away from the cavity resonant frequency of 500 Hz. The flow medium was air at stan-
dard atmospheric conditions at sea level and the resulting maximum velocity obtained
at a position slightly downstream of the slot exit by Particle Image Velocimetry (PIV)
was 28 m/s. Three experimental measuring techniques, namely: PIV, Laser Doppler
Velocimetry (LDV) and Hot-wire Anemometry (HW), were used to obtain velocity
distributions and flow field visualisations. The details of these techniques will not be
discussed here and the reader is referred to the text of Yao et al. [191] for further de-
tails. For each measurement technique a new diaphragm was installed in the actuator
due to actuator failures or changes in the actuator performance. The experiments found
that a close comparison was obtained between the LDV and PIV results with respect of
the velocity profile, but found large discrepancies in the velocity magnitude predicted
by these two techniques. The hot-wire data showed a faster decay of the synthetic jet
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and matched well with the LDV data in the far-fields.

Figure A.1: Schematic diagram of cavity, reproduced from Yao et al. [191].

In order to be able to compare CFD results with each other and also with the experi-
mental data a definition for the phase computation was outlined for the workshop. This
definition has hence been implemented for the current investigation and is described
below in a series of steps.

1. Output vertical phase-averaged velocity at the following point in space (above
the slot) as a function of time step number: (x, y, z) = (0, 0.1, 0)mm. Find the
maximum (umax)and minimum (umin) streamwise velocities over the course of
one phase-averaged period.

2. Compute the mid-value uavg = (umax − umin)/2

3. Define Phase = 340◦ as the time when the velocity at this location approximately
equals uavg (INCREASING). All other phases can be referenced from this, via
the following relationship:

Phase = (iter − it340) × 360/nstep + 360 (A.1.1)

where:
iter = iteration (or time step) number

nstep = number of time steps per cycle
it340 = iteration number when Phase = 340 according to the above.

A.2 Summary of Results

As this case was part of a workshop on CFD validation, it is important to discuss the
various contributions and outcomes to the workshop. Overall, there were 8 contribu-
tors who ran in total 25 separate cases. Tables A.1 and A.2 summarise the methods
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and grids used respectively, by the various contributors. Most of the runs were com-
puted in 2-dimensions with only a few people opting to compute the full 3-dimensional
domain. It should be noted that at the time of the workshop none of the contributors
who ran 3-dimensional computations modelled the actual shape of the cavity, includ-
ing the circular diaphragm and instead opted to compute the flow using periodicity in
the direction aligned with the slot’s long axis. The paper by Cui and Argarwal [41]
which followed shortly after the workshop shows results for both 2-dimensional and
fully 3-dimensional simulations. The cavity and diaphragm were modelled as based
on the actual experimental setup. Cui and Argarwal [41] found that the 3-dimensional
simulations predicted most of the flow field quantities in better agreement than the 2-
dimensional simulations in relation to the experimental data. The 3-dimensional results
also predicted the spreading of the jet width more accurately than the 2-dimensional
results. However, they conclude that the 3-dimensional simulations do not have a
clear advantage in predicting the over all flow field features for this case. Many of
the contributors to the workshop did not model the cavity choosing instead to apply
a sinusoidal velocity profile boundary condition directly to the slot exit. Those who
did model the cavity either applied a time varying velocity profile to the side of the
cavity where the diaphragm was located, derived from diaphragm-centre-displacement
(ONERA-flu3m and UKY-ghost) or applied a similar boundary condition but based
on best matching of the data at the slot exit (WASHU-wind and NASA-tlns3d). The
contributors from GWU altered the cavity shape and applied a time-varying velocity
boundary condition to the bottom wall. Kotapati and Mittal [87] carried out direct
numerical simulations for this particular workshop case. They built on their previous
contribution (GWU) using the same geometry but adjusted the Reynolds number to the
upper bound of the average velocity during the ejection phase from the experimental
data. Their contribution at the workshop used the Reynolds number calculated from the
lower bound of the average velocity during the ejection phase. Various other contribu-
tors have published their results from the workshop including; Yamaleev and Carpenter
[189]; Carpy and Manceau [26]. Some of the above results from the workshop have
been used as a comparison to the data obtained in this thesis and are discussed in detail
in Chapter 7.

The results from the workshop can be grouped into three sections, i.e., phase-averaged
velocity profiles, phase-averaged velocity contours and time-averaged velocity pro-
files. Figures A.2-A.15 show a selection of the results submitted to the workshop by
various contributors. A full documentation of the workshop summary can be found at
the workshop website [64] or in the report written by Rumsey et al. [146].
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Table A.1: Summary of submissions. (Table reproduced from Rumsey et al. [146]).

Label Organisation Authors Method
ONERA-flu3m-les-3d ONERA Mary LES, 3-D
ONERA-flu3m-lam Laminar N-S
ONERA-flu3m-sa URANS, SA model

UKY-ghost-sst U. Kentucky Huang URANS, SST model
UKY-ghost-sst (fine) et al URANS, SST model(f)

GWU-vicar3d-3d (fine) GWU Rupesh LaminarN-S, (f), 3-D
GWU-vicar3d-3d et al Laminar N-S, 3-D
GWU-vicar3d-3d Laminar N-S, larger

domain, 3-D
NCAT-quas1d+rans NC A&T State U. Yamaleev Reduced-order method

& NASA LaRC et al in slot +4th order
laminar N-S

POIT-saturne-ke0.5c U. Poitiers Carpy & URANS, k-e model,
Manceau dt = 0.5, coarse grid

POIT-saturne-ke0.25c URANS, k-e model,
dt = 0.25, coarse grid

POIT-saturne-ke0.25f URANS, k-e model,
dt = 0.25, fine grid

POIT-saturne-rsm0.5c URANS, RSM model,
dt = 0.5, coarse grid

POIT-saturne-rsm0.125c URANS, RSM model,
dt = 0.125, coarse grid

WARWICK-neat-ke U. Warwick Preece URANS, k-e model
WARWICK-neat-kenon & U. Wales et al URANS, nonlinear k-e
WARWICK-neat-easm URANS, EASM model

WASHU-wind-sa Washington U. Cui & URANS, SA model
WASHU-wind-sst Agarwal URANS, SST model

WASHU-wind-sstles SST-LES
NASA-tlns3d-sa NASA LaRC Vatsa & URANS, SA model

NASA-tlns3d-sa(coar) Turkel URANS, SA coarse
NASA-tlns3d-sa(fine) URANS, SA fine

NASA-tlns3d-sa(low-dt) URANS, SA model,
with lower dt

NASA-tlns3d-sst URANS, SST model
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Table A.2: Summary of grids and time steps. (Table reproduced from Rumsey et al. [146]).

Label Grid type Grid size Time steps/
cycles

ONERA-flu3m-les-3d 3D structured (P) 930,000 cells 5000
ONERA-flu3m-lam 2D structured 51,700 cells 5000
ONERA-flu3m-sa 2D structured 51,700 cells 5000

UKY-ghost-sst 2D structured 63,553 points 2880
UKY-ghost-sst (fine) 2D structured 198,545 points 2880

GWU-vicar3d-3d (fine) 3D structured (P) 696,960 points 14,000
GWU-vicar3d-3d 3D structured (P) 464,640 points 14,000
GWU-vicar3d-3d 3D structured (P) 696,960 points 14,000

NCAT-quas1d+rans 3D structured 98,379 points 118,567
POIT-saturne-ke0.5c 2D structured (no cav) 15,707 cells 720
POIT-saturne-ke0.25c 2D structured (no cav) 15,707 cells 1440
POIT-saturne-ke0.25f 2D structured (no cav) 62,828 cells 1440
POIT-saturne-rsm0.5c 2D structured (no cav) 15,707 cells 720

POIT-saturne-rsm0.125c 2D structured (no cav) 15,707 cells 2880
WARWICK-neat-ke 2D structured (no cav) 4851 points 3600

WARWICK-neat-kenon 2D structured (no cav) 4851 points 3600
WARWICK-neat-easm 2D structured (no cav) 4851 points 3600

WASHU-wind-sa 2D structured 35,986 points 10,000
WASHU-wind-sst 2D structured 35,986 points 10,000

WASHU-wind-sstles 2D structured 35,986 points 10,000
NASA-tlns3d-sa 2D structured 63,553 points 72

NASA-tlns3d-sa(coar) 2D structured 16,107 points 72
NASA-tlns3d-sa(fine) 2D structured 87,753 points 72

NASA-tlns3d-sa(low-dt) 2D structured 63,553 points 144
NASA-tlns3d-sst 2D structured 63,553 points 72
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(a) (b)

(c) (d)

(e) (f)

Figure A.2: Computed results from the CFD validation workshop of phase-averaged
u-velocity at 0.1mm above the centre of the slot exit.
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(a) (b)

(c) (d)

(e) (f)

Figure A.3: Computed results from the CFD validation workshop of phase-averaged
u-velocity at 2mm above the centre of the slot exit.
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(a) (b)

(c) (d)

(e) (f)

Figure A.4: Computed results from the CFD validation workshop of phase-averaged
streamwise velocity across the slot exit at 2mm above the slot exit.
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(a) (b)

(c) (d)

(e) (f)

Figure A.5: Computed results from the CFD validation workshop of phase-averaged
streamwise velocity across the slot exit at 4mm above the slot exit.
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(a) (b)

(c) (d)

(e) (f)

Figure A.6: Computed results from the CFD validation workshop of phase-averaged
centreline streamwise velocity at 90◦.



A.2 Summary of Results A-11
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(e) WASHU-wind-sa (f) WASHU-wind-sst/les

Figure A.7: Phase-averaged streamwise velocity contours at 90◦ taken from the CFD
validation workshop.



A-12 Overview of the NASA Langley CFD Workshop

(a) NASA-tlns3d-sa (b) NCAT-quasi1d

(c) POITIERS-satume-ke0.25f

Figure A.8: Phase-averaged streamwise velocity contours at 90◦ taken from the CFD
validation workshop.



A.2 Summary of Results A-13
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Figure A.9: Phase-averaged streamwise velocity contours at 225◦ taken from the CFD
validation workshop.



A-14 Overview of the NASA Langley CFD Workshop
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Figure A.10: Phase-averaged streamwise velocity contours at 225◦ taken from the CFD
validation workshop.



A.2 Summary of Results A-15
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Figure A.11: Computed results from the CFD validation workshop of time-averaged
streamwise velocity at 0.1mm above the slot exit.



A-16 Overview of the NASA Langley CFD Workshop
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Figure A.12: Computed results from the CFD validation workshop of time-averaged
streamwise velocity at 1mm above the slot exit.



A.2 Summary of Results A-17
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Figure A.13: Computed results from the CFD validation workshop of time-averaged
streamwise velocity at 4mm above the slot exit.



A-18 Overview of the NASA Langley CFD Workshop
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Figure A.14: Computed results from the CFD validation workshop of time-averaged
cross-streamwise velocity at 1mm above the slot exit.



A.2 Summary of Results A-19
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Figure A.15: Computed results from the CFD validation workshop of time-averaged
cross-streamwise velocity at 4mm above the slot exit.


