European Congress on Computational Methods in Applied Sciences and Engineering
ECCOMAS 2004

P. Neittaanméki, T. Rossi, S. Korotov, E. Ofiate, J. Périaux, and D. Knorzer (eds.)
Jyviaskyla, 24-28 July 2004

ISBN 951-39-1869-6

HIGH-LEVEL INTERFACES FOR THE MAD (MATLAB
AUTOMATIC DIFFERENTIATION) PACKAGE

Shaun A. Forth and Robert Ketzscher

Applied Mathematics and Operational Research Group,
Cranfield University (Shrivenham Campus), Swindon, SN6 8LA, UK
e-mails: S.A.Forth@cranfield.ac.uk, R.Ketzscher@cranfield.ac.uk
web page: http://www.rmcs.cranfield.ac.uk/amor

Key words: Automatic Differentiation, Numerical Optimization, Numerical Solution of
Stiff ODEs

Abstract. Presently, the MAD Automatic Differentiation package for matlab comprises
an overloaded implementation of forward mode AD via the fmad class. A key design feature
of the fmad class is a separation of the storage and manipulation of directional derivatives
into a separate derivvec class. Within the derivvec class, directional derivatives are
stored as matrices (2-D arrays) allowing for the use of either full or sparse matrixz storage.
All manipulation of directional derivatives is performed using high-level matriz operations
- thus assuring efficiency. In this paper: we briefly review implementation of the fmad
class; we then present our implementation of high-level interfaces allowing users to utilise
MAD in conjunction with stiff ODE solvers and numerical optimization routines; we then
demonstrate the ease and utility of this approach via several examples; we conclude with
a road-map for future developments.

LI2106
Text Box
ISBN 951-39-1869-6

Shaun A. Forth and Robert Ketzscher

1 Introduction

Automatic Differentiation (AD) enables the calculation of partial derivatives of func-
tions defined by computer code to an accuracy commensurate with floating point round-
off [5]. Well-developed AD packages exist for codes written in Fortran, C and C++, for
which details may be found at the web-site www.autodiff.org. Until recently only the
operator overloading ADMAT tool [13, 2] was available for MATLAB code. Since then a
hybrid source-transformation/operator overloading approach has been investigated [12, 1].

Our own overloaded tool MAD (MATLAB Automatic Differentiation) has been in devel-
opment for several years [10, 3] and is now commercially available via the TOMLAB com-
pany [4]. In [11] we demonstrated how, in conjunction with the designer of a collocation-
based boundary-value solver, the use of AD in MATLAB could be hidden from the appli-
cation programmer. In [11] the choice of the standard AD algorithm was pre-determined.
Small scale Jacobians of insufficient size to warrant sparsity-exploitation demanded use
of forward mode with dense storage of derivatives. In other applications more sophisti-
cation is demanded and a problem-dependent choice of AD technique is required. For
example, in a method-of-lines discretization of a PDE, should dynamic propagation of
derivatives using sparse-matrix storage be preferred to Jacobian compression? In the au-
thors’ opinion, if Automatic Differentiation is to be truly automatic, then such choices
should themselves be automated and hidden from the application programmer. In this
paper we present an approach for doing so in conjunction with MATLAB’s stiff ODE and
optimization solvers and utilizing the MAD tool.

In Section 2 of this paper we review implementation of forward mode AD in MATLAB
using MADJ[3]. In Section 3 we describe the implementation of high-level interfaces for
making use of MAD from within standard MATLAB routines for numerical optimization
and the solution of stiff differential equations. Section 4 presents test cases to demonstrate
the utility and efficiency of this approach. Section 5 presents a road-map for MAD’s future
and concludes.

2 MAD - efficient forward mode AD through overloading

In MATLAB there are a variety of intrinsic classes with associated functions and opera-
tions. We use the object-oriented programming features of MATLAB to introduce two new
classes fmad and derivvec [3]. Whenever MATLAB encounters objects of this class, for
example when two such objects are matrix-multiplied, it will not use the standard times
function designed for objects of class double, but instead will use the times functions
defined in our new classes.

The class fmad is designed to store an array together with its directional derivatives.
These derivatives are then usually of derivvec class.

Shaun A. Forth and Robert Ketzscher

2.1 The fmad class

The purpose of the fmad class is to deal with objects containing both function values
and derivatives. To create an object of such class, the fmad constructor is used. Its syntax
is simply x=fmad (value,derivatives), where the first argument value can either be a
scalar or a (possibly multi-dimensional) array and the second argument derivatives
provides the derivatives in an array of the appropriate form. If there are ny directional
derivatives to be stored, then for a value array of dimensions [iy,is,...,1%,] the supplied
derivatives have to be reshape-able! to dimensions [i1 X iy X ... X i,,ng] with each
column taken as one of the ny directional derivatives of the value array. Within the
constructor a structure is defined with two components containing the two parameters,
i.e. x.value=value and x.derivs=derivatives.

To enable the use of its objects within MATLAB, the fmad class needs to provide a
wide range of functions. When encountering an expression such as z=x*y, MATLAB will
use the default times operation if both arguments x and y are of class double. However,
if one of them is of different class, such as fmad, it will look for an implementation of the
times operation within that class.

Figure 1 shows the implementation of the
times function in fmad. Note that in MAT-
function z=times(x,y) LAB “...” denotes continuation and x.value

if isa(x,’fmad’)&isa(y,’fmad’)
value=x.value.*y.value;
deriv=x.deriv.*y.value...

+x.value.*y.deriv;

elseif isa(x,’fmad’)
value=x.value. *y;
deriv=x.deriv.*y;

else
value=x.*y.value;
deriv=x.*y.deriv;

end

z.value=value;

z.deriv=deriv;

z=class(z,’fmad’);

Figure 1: Implementation of the times func-

tion within fmad

denotes the value component of the object x.
Through the MATLAB intrinsic isa the classes of
the function arguments are tested. If both are of
class fmad we have to use the chain rule to obtain
value and derivative components as illustrated.
Otherwise, if one of the two parameters is not of
class fmad, and hence does not contain deriva-
tive information, then it multiplies the value and
derivative components of the fmad argument.

Once a user defines an fmad object somewhere
in the code, most function calls involving that
object will result in fmad objects which will con-
tain both values and derivatives. Similar to the
times example, most MATLAB functions have
been coded for fmad arguments. Thus, even for
complicated codes, by provision of MATLAB in-
trinsics within fmad the user can obtain numer-
ically exact derivatives.

Rather than worrying about the internal structure of the storage of fmad objects, the

In MATLAB the reshape intrinsic is used as B=reshape (A, [i1,i2,...,in]) to return B as a matrix

of dimensions [i1,i2,...

,in] whose elements are those of A in array element (column-wise) order.

Shaun A. Forth and Robert Ketzscher

user can use the two functions getvalue and getderivs to retrieve value and derivative
information. For example, for the function y = z;23 with x = [2 3], we can calculate

x=fmad([2 3],[1 0]);
y=x(1)*x(2)"2;
yval=getvalue (y)
dydxl=getderivs(y)

which correctly returns a function value of yval=18 and a derivative value dydx1=9.
Hidden from the user, the fmad implementations of the times and the power functions
were used.

We now examine how MAD deals with the storage of the derivative information within
the derivvec class.

2.2 The derivvec class

For more than one directional derivative, the derivative part of an fmad object is stored

in a component of derivvec class. If an array A of dimensions [iy, s, ...,1,] is passed
to fmad and there are n, directional derivatives stored in array DA, then ideally the user
could refer to these derivatives by simply adding another index, i.e. DA(k1,k2,...,kn,1)

should return the i-th directional derivative of the element A(ky, ko, ..., k).
The function getderivs is written for this purpose. After executing the code

x=fmad ([2 3],eye(2));
A=[x(1) x(2); x(D=*x(2) x(1)*x(2)"2];
DA=getderivs(A)

DA contains all partial derivatives of A as required.

The derivvec class is coded such that within the fmad class we may code as if the
derivative component of fmad objects is of the same dimensions as the value component.
However, internal to the derivvec class the derivatives are reshaped to a (2-dimensional)
matrix with each directional derivative stored as one column. This allows us to take
advantage of MATLAB’s optimised matrix operations and use of intrinsic sparse matrices.
For this example the derivatives of A returned in internal storage form are

getinternalderivs(A)
ans =

©O© O W =
= N O

12

where we see that the first column contains derivatives with respect to x; and the second
column with respect to xs.

Shaun A. Forth and Robert Ketzscher

3 High-Level Interfaces

Derivatives are frequently required to be supplied by users to numerical software. For
example, MATLAB’s variable order stiff ODE solver ode15s requires the user to provide a
vector-valued function f(¢,y) to define the ODE dy/dt = f(¢,y). It is also advantageous
for the user to supply a MATLAB function to calculate the Jacobian, Jf = [0f;/0y;], for
use in odelbs’ embedded quasi-Newton solve. If the Jacobian is sparse, and the user
cannot supply the Jacobian code, then they should supply the sparsity pattern of the Ja-
cobian. Of course, using AD we can calculate the Jacobian, taking advantage of sparsity.
As a second example, consider the constrained optimization problem, miny = f(x) such
that C(x) < 0 and c(x) = 0. Derivatives are required for gradient descent algorithms
and their accuracy is crucial in assessing convergence via the Karush-Kuhn-Tucker condi-
tions [9]. Consequently, in the fmincon routine of the MATLAB Optimization Toolbox [6],
users are advised to supply functions to calculate the gradient of the objective function
Vf = [0f(x)/0x;] and the Jacobians of the constraint functions JC = [0C;/0z;] and
Jc = [0c/0x;].

It is important to realise that within a single ODE solve or optimisation calculation,
gradients and/or Jacobians are required many times. In particular for optimisation, the
gradient, and if constraints are present their Jacobians, must be evaluated at each itera-
tion. In stiff ODE solution, strategies are used to minimise the number of times the Jaco-
bian is required, but even so several such evaluations might be performed. Consequently
it might be possible to automate the choice of AD algorithm used and, if techniques can-
not be rejected out of-hand (e.g. due to lack of sparsity), use timings of techniques to
choose the most efficient. The overhead of this strategy will be felt only in the first few
Jacobian evaluations, thereafter the most efficient method shall be used.

In order to facilitate such use of AD in numerical software we have written a generic
Jacobian utility function MADJacInternal which enables the calculation of the Jacobians
of an arbitrary number of outputs with respect to arbitrary inputs of a specified function.
Information about the Jacobian calculation is passed to MADJacInternal and retrieved
back. In so doing, repeated calculations allow it to build up sufficient data to choose an
efficient AD technique. High-level generic functions are then provided for applications
such as ODE solution and numerical optimization, which may then call MADJacInternal,
and consequently make use of the most appropriate AD algorithm provided by MAD.

We now describe MADJacInternal in some detail before describing interfaces for ODEs
and optimization.

3.1 MADJacInternal
The task for MADJacInternal is, given the following:

1. A function whose interface is,
[yl,y2,...,yNout] = f(x1,x2,...,xNin)

5

Shaun A. Forth and Robert Ketzscher

2. A list ActiveIndependents =[i1,i2,...,1iN] of independent variables,
e.g. ActiveIndependents=[1 3] indicates we need Jacobians with respect to x1
and x3.

3. A list ActiveDependents =[j1,j2,...,jM] of dependent variables,

e.g. ActiveDependents=[2 4] indicates we need Jacobians of outputs y2 and y4.

Then MADJacInternal should calculate the required Jacobians. For the lists
ActiveIndependents=[1 3] and ActiveDependents=[2 4] we would require
dy2 dy2 Oy4 Oy4
Dy2Dx1 = —— ,Dy2Dx3 = ——, Dy4Dx1 = —— and Dy4Dx3 = —,
y ox1 y 0x3 y ox1 y 0x3
where the x’s or y’s can be of arbitrary size. Optionally we might also require the function
values themselves y1,y2,...,yNout.
The interface to MADJacInternal is therefore of the form,

[MADobj,Dyj1/Dxil,Dyj1/Dxi2,...,Dyj1/DxiN,Dyj2/Dxil, ... ,DyjM/DxiN]. ..

= MADJacInternal (MADobj,Mode,Nout,ActiveIndependents,. ..
ActiveDependents,x1,x2,...,xNin) (1)

when the string Mode="J" for Jacobian calculation, and

[MADobj,y1,y2,...,yNout,...
Dyj1/Dxil,Dyj1/Dxi2,...,Dyj1/DxiN,Dyj2/Dxil,...,DyjM/DxiN]. ..
= MADJacInternal (MADobj,Mode,Nout,ActiveIndependents,. ..
ActiveDependents,x1,x2,...,xNin) (2)

when Mode=’FJ’ for function and Jacobian calculation. MADJacInternal copes with
an arbitrary number of function arguments x1,x2,...,xNin through use of the intrinsic
varargin facility so that within MADJacInternal the arguments are available as a cell
array x{1},x{2},...,x{Nin}. The only argument in the above interfaces yet to be de-
scribed is the structure MADobj which is used to store information concerning the Jacobian
calculation.

3.1.1 The MADobj Structure

We have seen how the MADJacInternal function will make use of an argument MADobj
to store Jacobian calculation information. At the time of writing MADobj has the following
components.

func_handle - function handle to f.

handle_info - function handle information, e.g. full path to file containing function.

Shaun A. Forth and Robert Ketzscher

n - sum of number of elements in all independent variables.
m - sum of number of elements in all dependent variables.

use_ad_fwd_full - takes value 1 if forward mode with full storage should be used, and
value 0 if it should not.

ad_fwd full time - CPU time for forward mode with full storage.

use_ad_fwd_sparse - takes value 1 if forward mode with sparse storage should be used,
and value 0 if it should not.

ad_fwd_sparse_time - CPU time for forward mode with sparse storage.
Sparsity_Pattern - Jacobian sparsity pattern.

use_ad _fwd_compressed - takes value 1 if forward mode with compressed storage should
be used, and value 0 if it should not.

ad_fwd_compressed_time - CPU time for forward mode with compressed storage.

color_groups - coloring of independent variables for compressed storage obtained from
Sparsity_Pattern.

seed - seed matrix for compressed storage obtained from color_groups.

reason - text string giving reasons used by MADJacInternal for choosing or rejecting an
AD technique.

When initialised with MADobj=MADsetup(f), where f is the function handle of the func-
tion to be differentiated, the components func_handle and handle_info are initialised
appropriately and all other components are set to be empty matrices [].

The user can also supply an optional argument ’sparsity_fixed’, followed by a string
'true’ or 'false’, e.g. MADobj=MADsetup(f,’sparsity_fixed’,’true’). This param-
eter specifies whether the sparsity pattern is fixed throughout or not (default). If this
argument is not explicitly set to 'true’, we set MADobj.use_fwd_compressed=0 to ensure
that compressed matrix storage [5, Chap. 7] is never used.

At the time of writing, MAD has 3 techniques available for Jacobian calculation, all
using the forward mode, but with either full matrix storage of derivatives, sparse matrix
storage [5, Chap. 6] or compressed matrix storage. The components use_ad_fwd_full,
use_ad_fwd_sparse and use_ad_fwd_compressed of MADobj are used as follows. Firstly if
one technique is found less efficient than another then its corresponding component is set
to zero. For example, if initially forward mode with compression (if permitted) is faster
than forward mode with full storage, then we should never use full storage again so we
set use_ad_fwd_full=0 but we do not set use_ad_fwd_compressed=1 since it might be

Shaun A. Forth and Robert Ketzscher

inferior to the sparse matrix storage approach of use_ad_fwd _sparse. Once compressed
and sparse mode have been compared, then one is again rejected, leaving the most efficient
technique to be used thereafter. Continuing our example, if sparse storage is more effi-
cient than compressed, then we reject compression by setting use_ad_fwd_compressed=0
and must thereafter use the remaining sparse storage approach and indicate this by
setting use_ad fwd sparse=1. From this we see that values of components of MADobj
must be obtained by performing Jacobian calculations which we do via successive calls to
MADJacInternal.

3.2 Calling MADJacInternal

On the first call of MADJacInternal as in (1) or (2) the following actions are taken.

e The number of eclements in all independent arguments, x{i} with i in
ActiveIndependents, is calculated and stored as MADobj.n.

1. If MADobj.n<MADMinSparseN, with MADMinSparseN a configurable global pa-
rameter of default value 10, then the Jacobian calculation is deemed too small
to be worthy of sparsity exploitation. We set MADobj.use_ad fwd full =1,
MADobj.use_ad fwd_sparse =0, MADobj.use_ad _fwd_compressed =0, indicat-
ing that thereafter forward mode with full storage will be used. The Jaco-
bians are evaluated using the fmad class, the associated CPU time is stored in
MADobj.ad_fwd_full_time and we set the total number of dependent variables
MADobj .m.

2. We now consider the sparsity of the Jacobian.

(a)

If the 'sparsity_fixed’ flag is set to 'true’, we seek the Jacobian spar-
sity pattern. At present this is done by initialising the independent vari-
ables to be of fmad class, with derivatives taken as appropriate rows of
the sparse identity matrix speye(MADobj.n) but with values perturbed
to reduce the probability of (un)fortuitous cancellations or derivatives of
dependent variables (un)fortuitously taking zero values. The function
is then evaluated and the sparsity of the resulting Jacobian stored as
MADobj.Sparsity_Pattern. We note that such an approach is inefficient
since it uses an additional Jacobian calculation, admittedly with efficient
sparse storage of derivatives, in order to determine the sparsity pattern.
The Jacobian is then re-evaluated using unperturbed values, the CPU time
stored in MADobj.ad_fwd_sparse_time and we set the total number of de-
pendent variables MADobj .m.

If the 'sparsity_fixed’ flag is not set, or explicitly set to 'false’, we are
only interested in whether sparse mode outperforms full storage mode.
Thus the derivatives are initialised through speye(MADobj.n) and the

Shaun A. Forth and Robert Ketzscher

CPU time for the Jacobian evaluation stored in MADobj .ad_fwd_sparse_time.
Again the total number of dependent variables is set in MADobj .m.

3. We then check for the case of a large or a sparse Jacobian, in which case we
would never wish to use the non-sparsity exploiting forward mode with full
storage due to excessive CPU and memory requirements. To do this we first
see if MADobj.n>MADMaxDenseN where MADMaxDenseN is a configurable global
variable with default value 100 and corresponds to the largest total number of
independent variables for which we will attempt to use forward mode with full
storage. We then check if

nnz(MADobj .Sparsity_Pattern)
< MADobj.n*MADobj.m*MADMaxSparseFracForFull,

i.e. the fraction of non-zeros in the Jacobian is less than the configurable
parameter MADMaxSparseFracForFull (default value 0.5). In either of these
cases we set MADobj.use_ad fwd full=0 so that forward mode without any
sparsity exploitation is never used.

e In both steps 1 and 2 above the Jacobians, revised MADobj and, if Mode="FJ’, the
function results y1,...,yNout, are passed back to the calling function.

On subsequent calls to MADJacInternal an AD technique yet to be evaluated, including
Jacobian compression, is performed and it’s CPU time obtained. Any technique for which
the CPU time is worse than another is eliminated until one technique remains and that
is used thereafter.

Having developed the MADJacInternal function, interfaces for other numerical software
can now be written.

3.3 High-Level Interfaces

Consider, for example, supplying a function to calculate the Jacobian dy/dt = f(t,y)
for the stiff ODE solver ode15s. We supply a MAD function MADsetupODE as in Figure 2.

function MADsetupODE(varargin)
global MADODE
MADODE=MADsetup (MADODE, varargin{:});

Figure 2: The Function MADsetupODE

On using this function MADsetupODE(@f), a global variable MADODE is initialised by
passing the function handle argument @f to the MADsetup function described in Sec-
tion 3.1.1. We may then use the MADJacODE function of Figure 3 to provide the Jacobian

Shaun A. Forth and Robert Ketzscher

within ode15s. Arguments t, y and any additional user arguments within the varargin
are passed into MADJacODE. If the sparsity pattern does not change, the user can call
MADsetupODE(@f, ’sparsity_fixed’,’true’) for MADJacODE to possibly take advantage
of Jacobian compression when it calls MADJacInternal.

function Jac=MADJacODE(t,y,varargin)

global MADODE

Mode=’J";

Nout=1;

Activelndependents=2;

ActiveDependents=1;

[MADODE, Jac]=MADJacInternal (MADODE,. ..
Mode,Nout,ActiveIndependents,...
ActiveDependents,t,y,varargin{:});

Figure 3: The MADJacODE function

Since only the Jacobian is required we set Mode="J’. Since we need derivatives of the
single function output with respect to the second argument y we accordingly set Nout=1,
ActiveDependents=1 and ActiveIndependents=2. We may then call MADJacInternal
to evaluate the Jacobian, storing the dummy argument and dummy output MADobj of
MADJacInternal as a global variable MADODE in MADJacODE. When MADJacODE is called a
second time then the data of MADODE is still available to MADJacInternal. We may now
use MAD’s automatic differentiation Jacobians within ode15s by nominating MADJacODE
as the function for Jacobian evaluation.

The reason for using a function argument and returned value MADODE stored as a global
variable in an application interface such as MADJacODE is that then we can simultaneously
use MADJacInternal for calculating multiple Jacobians, provided the information for each
is stored in a separate global variable. For example, in constrained optimization with the
Optimization Toolbox routine fmincon, we use global variable MADOBJOPT within the func-
tion MADFandGradObjOpt for calculating the objective function’s gradient, and the global
variable MADCONSTROPT within the function MADFandJacConstrOpt of Figure 4. This func-
tion shows how MADJacInternal may be used to calculate Jacobians of several function
outputs, in this case the value of the equality and inequality constraint functions. We
may now use fmincon, with function and constraint derivatives enabled by first initialis-
ing the MADOBJOPT and MADCONSTROPT via MADsetupObjOpt and MADsetupConstrOpt, by
the following code.

MADsetupObjOpt (Gobjfun)

MADsetupConstrOpt (@confun, ’sparsity_fixed’,’true’)

[x,fval] = fmincon(@MADFandGradObjOpt,x0,[1,[1,[1,[1,00,0],...
O@MADFandJacConstrOpt,options) ;

10

Shaun A. Forth and Robert Ketzscher

function [C,c,JC,Jc]=MADFandJacConstrOpt (x,varargin)
global MADCONSTROPT
if nargout==2 % just constraints needed
[C,c]=feval (MADCONSTROPT.func_handle,x,varargin{:});
elseif nargout==
Mode=’FJ’; % need constraints and Jacobians
Nout=2; % two outputs from function
ActiveIndependents=1; % only 1st arg x is active
ActiveDependents=[1 2];
[MADCONSTROPT,C,c,JC,Jc]=MADJacInternal (MADCONSTROPT,Mode,Nout, ...
ActiveIndependents,ActiveDependents,x,varargin{:});
JC=full(JC’); % needed for Toolbox convention
Je=full(Jc’); % needed for Toolbox convention
end

Figure 4: The MADFandJacConstrOpt Function

Here @objfun and @confun are function handles for objective and constraints respectively.
Note that for the the calculations of the objective function we calculate a gradient, i.e. a
Jacobian with one row, where compression will save nothing and hence sparsity_fixed
is not set.

Functions MADreportODE, MADreport0ObjOpt and MADreportConstrOpt are also pro-
vided to display information regarding the corresponding Jacobian calculation.

4 Results

Here we present a stiff ODE, an unconstrained and a constrained optimization test
case. All CPU timings are in seconds based on the average of 10 runs on a 2.4 GHz
Pentium IV running Windows 2000 and using MATLAB 6.5.

4.1 Ordinary Differential Equations - Brusselator

We used MATLAB’s stiff ODE Brusselator example (brussode) which makes use of
odel5s to test performance of MADJacODE. Table 1 shows the CPU times obtained for 3
problem sizes N. From row 1, we see that use of finite-differencing without compression is
much slower than MADJacODE of row 4. However, compressed finite-differencing with (row
3) or without (row 2) vectorization is substantially faster and outperforms MADJacODE.
Within a single execution of this example the ODE solver ode15s only recalculates the
Jacobian twice. Consequently MADJacODE will effectively calculate the Jacobian 3 times,
the first to calculate the sparsity pattern (see Section 3.2). If we repeat the ODE solution
with MADJacODE a second time then the sparsity pattern is already computed, the appro-
priate AD technique selected and there is a consequent improvement in efficiency as shown

11

Shaun A. Forth and Robert Ketzscher

Number of grid points N
Jacobian Technique 50 100 200
Jacobian by Finite-Differencing 0.2265 0.6453 2.7281
Jacobian by Compressed Finite-Differencing 0.1406 0.2016 0.3313
Jacobian by Compressed, Vectorized Finite-Differencing | 0.1375 0.1969 0.3282
Jacobian by MADJacODE 0.1844 0.2531 0.4275
Repeat of Jacobian by MADJacODE 0.1562 0.2062 0.3110

Table 1: CPU times (s) for the Brusselator problem

in row 4 of Table 1. The CPU times are now on a par with compressed, vectorized finite-
differencing without the necessity of supplying the sparsity pattern. From MADreportODE
we observe that for n = 50 sparse forward mode, and for n > 50 compressed forward
mode are selected.

4.2 Unconstrained Optimization - Extended Rosenbrook

To test the performance of MADFandGradObjOpt we considered the extended Rosen-
brook function [8, 7],

n/2

f(x) = Z 100(2g; — a5, _1)% + (1 — 23i-1)?,

which has a global minimum at x = (1,1,...,1). Using the default BFGS algorithm of
fminunc for medium sized problems we obtained timings and the L, norm of the absolute
errors in x as given in Table 2. By default fminunc uses finite differences to approximate

Size of x (n)
10 20 30
Gradient Technique Time(s) Error | Time(s) Error | Time(s) Error
Finite Differencing 0.0781 0.0139 | 0.1906 0.0213 | 0.3844 0.0086
FD and reduced tolerance | 0.1828 0.0021 | 0.4891 0.0016 | 0.3640 0.0086
Analytically supplied 0.0360 0.0001 | 0.0500 0.0002 | 0.0672 0.0001
MADFandGradQObjOpt 0.0344 0.0001 | 0.0907 0.0002 | 0.1468 0.0001

Table 2: CPU Times and final solution error for the Rosenbrook Example

the gradient. Due to the flat bottom of the function, it is difficult to obtain the gradient
sufficiently accurately from finite differences and fminunc returns with poor solutions.
Thus the default convergence tolerances were changed to the square root of relative preci-
sion y/epsilon for both z and function values giving the second row of results, generally

12

Shaun A. Forth and Robert Ketzscher

reducing the error. The third row shows the results with the gradient supplied analytically
and the final row obtained via use MADFandGradObjOpt. We see that for n = 10 finite
differencing is not only slower, but also less accurate than analytically supplied deriva-
tives or our AD. As we increase the problem size, even with reduced tolerances the FD
approach maintains a large error. Although as expected AD is slower than analytically
supplied derivatives, it is still much faster than FD and achieves the solution accuracy of
analytic derivatives.

Through MADreportObjOpt we see that for n > 10 sparse AD mode is selected, as
sparse storage was faster than full, but compression failed to reduce costs since m = 1.

4.3 Constrained Optimization - Multivariate Regression Model

We compared the finite differences and automatic differentiation for constrained opti-
mization by fitting regression models as in [10]. A quadratic model is used within a data-
fitting problem, with constraints being set on the eigen-decomposition of the quadratic
term. Table 3 shows the results for one particular sets of constraints. The objective

Number of unknowns 66 180 384
Number of constraints 18 75 168
Derivative Technique CPU Time
Finite Differencing Time 12.234 61.203 743.219
MADFandGradObjOpt,MADFandJacConstrOpt | 3.422 25.954 496.266
AD Mode for MADFandJacConstrOpt Full Sparse Compressed

Table 3: Regression Model

function and constraints are now sufficiently involved that analytic derivatives are not
available. As well as the improved run time obtained with MAD we also note that the
error in the position of the minimum obtained was 2 orders of magnitude smaller than
that obtained using finite-differencing. Interestingly, the bottom row of Table 3 shows the
mode of AD for the constraints shifting automatically from full, to sparse to compressed
as the problem size increases.

5 Conclusions and Future Developments

In this paper we have presented the MADJacInternal function which enables auto-
mated, performance driven selection of a Jacobian evaluation algorithm via the forward
mode fmad class of the MAD package. By wrapping calls to MADJacInternal in interface
functions designed to inter-operate with higher level numerical algorithms, such as stiff
ODE solution and optimization, the use of AD becomes trivial. If the user confirms that
the sparsity pattern is fixed, we will try compression techniques. The user does not have
to supply the sparsity pattern (as is required with present generation numerical pack-
ages such as ode15s). In the 3 cases presented here, the use of AD gave comparable or

13

Shaun A. Forth and Robert Ketzscher

improved run-times compared to finite-difference generated Jacobians. In addition, for
optimization problems the error in the solution was reduced. Given its well-defined in-
terface and ease of use, we foresee MADJacInternal being used directly within numerical
packages in MATLAB. This will ease the transition of AD into application software.

At the time of writing, MAD’s capabilities are being extended in two ways. To avoid
the user specifying whether the sparsity pattern is fixed or not, a sparsity detection class
is under development, broadly similar to that of [13], but featuring capabilities to detect
branching based on the value of active variables, and consequently warning if the sparsity
pattern may not be fixed. Secondly, an extended Jacobian based approach enabling
reverse mode calculation for small to medium size problems is being written. Plans are
in place for a tape based reverse mode and some preliminary investigations into source
transformation are underway.

Acknowledgements

We thank Trevor Ringrose for use of the test case of Section 4.3.

14

Shaun A. Forth and Robert Ketzscher

REFERENCES

[1] C. Bischof, H. Biicker, B. Lang, A. Rasch, and A. Vehreschild. Combining source
transformation and operator overloading techniques to compute derivatives for MAT-
LAB programs. In Proceedings of the Second IEEE International Workshop on Source
Code Analysis and Manipulation (SCAM 2002), pages p. 65-72. IEEE Computer So-
ciety, 2002.

[2] T. F. Coleman and A. Verma. ADMAT: An automatic differentiation toolbox for
MATLAB. Technical report, Computer Science Department, Cornell University,
1998.

[3] S. A. Forth. An implementation of forward mode automatic differentiation in MAT-
LAB. In Preparation, 2004.

[4] S. A. Forth and M. M. Edvall. User Guide for MAD - a MATLAB Automatic
Differentiation Toolbox TOMLAB/MAD. TOMLAB, Tomlab Optimization Inc.,
455 Union St. No 13, Arcata CA, USA, version 1.1 edition, March 2004. See
http://tomlab.biz/docs/TOMLAB_MAD.pdf.

[5] A. Griewank. Fvaluating Derivatives: Principles and Techniques of Algorithmic Dif-
ferentiation. Number 19 in Frontiers in Appl. Math. SIAM, Philadelphia, Penn.,
2000.

[6] The Mathworks Inc., 3 Apple Hill Drive, Natick MA 01760-
2098. Optimization Toolbox User’s Guide, July 2002. Online at
http://www.mathworks.com/access/helpdesk/help/pdf_doc/optim/optim tb.pdf.

[7] J. J. Moré, B. S. Garbow, and K. E. Hillstrom. Algorithm 566: FORTRAN subrou-
tines for testing unconstrained optimization software [C5 [E4]]. ACM Transactions
on Mathematical Software, 7(1):136-140, Mar. 1981.

[8] J. J. Moré, B. S. Garbow, and K. E. Hillstrom. Testing unconstrained optimization
software. ACM Transactions on Mathematical Software, 7(1):17-41, Mar. 1981.

[9] J. Nocedal and S. J. Wright. Numerical Optimization. Springer Series in Operational
Research. Springer, New York, 1999.

[10] T. J. Ringrose and S. A. Forth. Improved fitting of constrained multivariate regres-
sion models using automatic differentiation. In W. Hardle and B. Ronz, editors,
COMPSTAT 2002: Proceedings in Computational Statistics, 15th Symposium, pages
383-388, Berlin, Germany, 2002. Physica-Verlag, Heidelberg.

[11] L. Shampine, R. Ketzscher, and S. A. Forth. Using AD to solve BVPs in MATLAB.
Applied Mathematics and Operational Research Report AMOR 2003/4, Cranfield
University (RMCS Shrivenham), Swindon, SN6 8LA, UK, 2003.

15

Shaun A. Forth and Robert Ketzscher

[12] A. Vehreschild. Semantic augmentation of MATLAB programs to compute deriva-
tives. Diploma thesis, Institute for Scientific Computing, Aachen University of Tech-
nology (RWTH Aachen), Germany, Nov. 2001.

[13] A. Verma. Structured Automatic Differentiation. PhD thesis, Cornell University
Department of Computer Science, Ithaca, NY, 1998.

16

