

Requirements are presented as a component of the integrated design knowledge framework. The proposed framework enables the application of requirements management as a dynamic process, including capture, analysis and recording of requirements. It takes account of the evolving requirements and the dynamic nature of the interaction between requirements and product structure through the various stages of product development.

© 2007 Elsevier Ltd. All rights reserved.

31 Keywords: Engineering design; Design methodology; Design reuse; Design support; Requirements management

1. Introduction

27

29

33

35

37

39

41

43

45

47

49

51

53

55

57

Engineering design in today's global and competitive business environment is under increasing pressure to perform better in terms of low-time, high-quality and high value output that can provide competitive advantage for the organisation. One approach to improve engineering design is through reusing previous knowledge. Organisations in mature markets are in a special position to benefit from knowledge reuse for three key reasons: (1) they know the product well, so are able to produce high-quality reusable knowledge; (2) the next generation product is likely to have a significant overlap with the previous version; and (3) knowledge reuse allows more time for innovation, which is especially important since competitive advantage is difficult to achieve in mature domains.

Development time, product quality and customer value are all factors which effective requirements management can improve. By ensuring that the right requirements are

*Corresponding author. *E-mail address:* j.gao@gre.ac.uk (J. Gao).

0736-5845/\$ - see front matter \odot 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.rcim.2007.07.010

met, customer satisfaction can be increased and development times can be reduced through less iteration. Product quality and perceived value is likely to be higher if the customer requirements are better understood and systematically addressed. In engineering design, the project team requires a detailed description of the product requirement so that focused design work can take place. Various methods for gathering, analysing, selecting, documenting, verifying and managing requirements have been proposed. Most have been in the software development domain, however increasingly requirements management methods are being incorporated into engineering design as the need for requirements management is recognised.

The research approach begins with a literature review in design knowledge reuse and requirements management, to identify appropriate methods within each domain. A framework is proposed based on the identified requirements. The framework is then demonstrated using a case study example: vacuum pump design. A detailed case study with the participating company took place in the design knowledge area, and for this research an additional case

79 81

59

61

63

65

67

69

71

73

75

77

ARTICLE IN PRESS

D. Baxter et al. / Robotics and Computer-Integrated Manufacturing I (IIII) III-III

1 study took place in requirements management. The proposals for design knowledge reuse are the result of a previous research project, which is reported in the 3 following section on design knowledge reuse. The proposed 5 framework seeks to integrate design knowledge reuse with requirements management.

7 This paper will first describe existing approaches for design reuse. Then, proposed methods for managing requirements will be described. Requirements modelling 9 for engineering design will then be described. Then, 11 findings from a case study are used to describe the participating company's approach to requirements man-13 agement. A proposed framework to support requirements management and design knowledge reuse will then be 15 introduced. The framework is described using the case study data. The final sections will discuss the proposed 17 framework, then introduce suggestions for future work.

19 2. Current research on design knowledge reuse

21 Design knowledge reuse has been approached from a variety of perspectives. Those discussed here include CAD, 23 design methodology, function and ontology-based approaches.

The CAD/CAE research community has contributed a 25 great deal to design knowledge reuse in retrieving CAD 27 models through intelligent systems and case-based reason-

ing (CBR) [1]. A further development to intelligent search methods, as in CBR, is intelligent retrieval of information 29 through designer monitoring [2]. Knowledge-based design also represents design knowledge reuse, and includes a 31

range of approaches such as knowledge-based configuration [3]. Agent-based methods are also applied to problems 33 such as optimising design concepts [4] and informing design team members of project progress [5]. CAD-based 35 approaches do not support design reuse at the conceptual

37 level: their applicability is limited to detailed design, by which time 80% of product costs are fixed.

Design reuse approaches to that are based on a design 39 methodology [6,7] structure the elements of the system around the conceptual framework specified by the design 41 methodology (typically systematic design). Methodologybased approaches are best suited to fundamental design 43 problems, where existing solutions are not available: 45 variant design could apply a more structured and specific method to reuse previous solutions.

Design reuse approaches that apply function base the 47 knowledge structure on a functional decomposition, which 49 is a similar approach to quality function deployment (QFD) [8]. In the CADET system [9,10], a flexible rule base is applied to describe the domain knowledge-relating 51 product attributes such as wheel size to requirement 53 attributes such as 'easy to push'. Another example of a functional perspective on design reuse is the product range model [11] which is intended to support variant design 55 activities through the representation of product functions, relevant design solutions and 'knowledge links' between 57

these attributes. Function enables reuse to take place at a 59 more fundamental level than CAD reuse, and the addition of knowledge links means that product components or assemblies can be retrieved based on the required function. 61 One issue with function-based methods is a lack of standard method to represent function. Efforts have been 63 made to standardise the representation approach [12], however there is still not a commonly accepted method. A 65 further, perhaps more fundamental limitation of the application of function-form mapping for design reuse is 67 that the hierarchical nature of the modelling approaches may mislead the application of a function relationship to a 69 subassembly which by itself does not perform the function. At the base level, none of the individual parts can realise 71 the function. The relationship itself must be described alongside the nature of the relationship in order that it may be successfully reapplied.

Ontologies in design are developed for a variety of applications, each one enabling reuse of knowledge through creating a representation of the domain. Ontologies enable understanding of concepts, data elements, and relationships between concepts. An automotive seat specification ontology was developed which enables a shared understanding of the product and relationships between product concepts [13]. Another example of an ontology-based approach is the function-way server, which applies a function ontology along with a product ontology to support conceptual design [14]. Ontology can be applied to the whole range of product attributes, including form, function, and behaviour.

Design reuse remains a developing area, and many approaches have been developed. Further effort is required to understand the needs of knowledge users and producers in order that appropriate methods can be applied [15].

2.1. Process-based design reuse

An additional design reuse perspective is that of process: 95 the design process as a central element of a design reuse system [16-18]. It has been suggested that the design 97 process is a driver of design reuse for decision making at all stages of product development [19]. Process-based ap-99 proaches have been characterised as one of three types: engineering (systematic design methodologies), business 101 process, and CAD/CAE based [20]. Notable process-based methods include signposting and the design roadmap. 103 Signposting [21] a parameter driven task-based model of the design process. The method uses a measure of 105 confidence levels in key design parameters as the basis for identifying, or signposting, the next design task. The design 107 roadmap (DR) method provides a formal method to represent the design process [22]. The method enables the 109 representation of feedback and feedforward processes, which are common in design yet uncommon in design 111 process representations. The DR process data model enables a variety of graphical representations, or views. 113 Graph, matrix, tree and list views are supported.

Please cite this article as: Baxter D, et al. A framework to integrate design knowledge reuse and requirements management in engineering.... Robot Comput Integr Manuf (2007), doi:10.1016/j.rcim.2007.07.010

2

73

75

77

70

81 83

85

87

89

91

ARTICLE IN PRESS

D. Baxter et al. / Robotics and Computer-Integrated Manufacturing **I** (**IIII**) **III**-III

1 The principle of the process-based knowledge reuse system is knowledge reuse through interaction between process knowledge, task knowledge and product knowl-3 edge. Assuming that the organisation has developed similar 5 products in the past, a large amount of product knowledge is required for, and embedded in, a design process model. 7 This model is stored in the process knowledge database. Computational methods are applied to product data, and 9 'how-to' knowledge is provided in support of tasks. This task automation and support knowledge is stored in the 11 task knowledge database. During the design process, an ontology-based product model is applied. This product 13 model is stored in the product knowledge database. The resulting system architecture is shown in Fig. 1. The 15 diagram shows that product, task and process knowledge are stored in databases and retrieved by the design reuse 17 application.

In a variant design scenario, a formal representation of process can be applied. The combination of process and ontology based reuse will support a wide range of reuse situations in early design: application of a best practice design process, function based component and assembly selection (through design ontology), recording design decisions and evolving product model (through design ontology) and methodology guidance for fundamental design problems and design analysis (through process representation).

3. Current research on requirements practices

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

Requirements are the subject of an extensive body of literature in the information systems domain. Some of the work from this domain has been investigated with a view to making recommendations for engineering design. Requirements practices include *gathering*, *analysing*, *selecting*, *documenting*, *verifying and managing* [23]. These practices are often discussed together under the umbrella 'requirements management'. Requirement management (RM) methods provide a means to document requirements and check their progress through the project. There are a large number of proposed approaches for managing require-

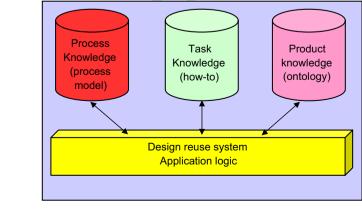


Fig. 1. System architecture.

ments, and several commercial software tools are available. It is important to treat requirements management as a process and not an event, since requirements change and their status must be tracked throughout the project [24].

Requirements management is a critical part of the development process, not only for software, but for all products. [25, p. 4]

Of three levels of RM adoption, most firms are at level 1: an ad hoc RM process, hard to estimate and control costs. 67 poor customer satisfaction, lack of RM planning and review procedures [26]. Requirements management support 69 is needed in engineering design. The requirements management process records and tracks the requirements through 71 the development process. Requirements elicitation method 73 selection must be considered for each specific case [27]. Requirements analysis follows, breaking down the require-75 ment. The selection of analysis method also depends upon the needs of the resulting application [28]. Selection and documentation of requirements are collaborative tasks 77 whose structure depends on the management method. 79

3.1. Engineering design requirements modelling methods

Design requirements, in product modelling terms, are synonymous with product specifications. This section 83 describes a selection of existing work that has taken place in the domain of product modelling with an emphasis on 85 requirements. For a more complete review of research into design requirements, see Ref. [29]. Product modelling has 87 been applied to many aspects of design outside of geometric modelling, including major efforts to include a 89 complete design representation of form, function and behaviour [30]. In information systems, problem/solution 91 mappings can be expressed as logical relations [29]. In engineering design however, mapping between the product 93 and solution remains at the abstract level. There are problems with the tight coupling of product requirements 95 with product structure. This must be considered when assessing whether RE methods are applicable to engineer-97 ing design.

99 McKay claims that software and electronic products differ from mechanical products in that the geometry of mechanical parts influences their functionality, and that a 101 current barrier to innovation is a lack of distinction between product features that enable manufacture and 103 product features required by the customer. Their proposed method provides a means to represent a product require-105 ment that can be linked to the physical product structure [31]. Without a statement of requirements, optimal rede-107 sign is not possible (e.g. redesign based on a previous product shape). The representation scheme for product 109 specifications addresses each of the requirements management stages described by Halbleib [24] excepting trace-111 ability. However, because the product elements are tightly 113 coupled, requirements that are part-met by multiple functional structures will cause problems. Changed re-

3

59

61

63

65

81

ARTICLE IN PRESS

D. Baxter et al. / Robotics and Computer-Integrated Manufacturing I (IIII) III-III

1 quirements or changed physical elements will result in mapping problems. Therefore, due to these apparent dynamic limitations this method supports requirements 3 specification but not requirements management.

5 Methods for modelling product specifications include extensions of the function/means tree in which functional 7 requirements, design parameters and constraints are modelled together with additional information about the requirement [32]. This method assumes a direct relation-9 ship between product function and structure. Again, this 11 tight coupling of solution and structure could cause problems. The solution was tested in an automotive 13 setting, where traditionally, the OEM creates the specification. With the specification in the hands of the OEM, yet a 15 shifting of design expertise from OEM to supplier, this could result in a suboptimal configuration. If the supplier is 17 to recreate the specification to suit their environment, then this doubles the required work. An alternative method is 19 proposed [13] in which the product (seat) specification is produced using an ontology that represents shared understanding of the product. The OEM can make a specifica-21 tion which is directly relevant to the supplier, and which 23 states several important design parameters up front. Not only does this method provide unambiguous specification, it also provides the initial parameter set that can be applied 25 to the configuration of the product. The ontological 27 framework can also be applied to requirements management [33] by adding information and process layers. The 29 process layer was not addressed, and is a key part of the

method proposed in this paper. An alternative function-based hierarchical method [34] 31 proposes a mapping between product structure and function. The representation includes purpose, function 33 realisation and function materialisation. Function can be allocated onto parts on a 'many to any' basis, enabling 35 separate function realisation from the manufacturing. In 37 other words, any number of part structures can be

associated with realising a given function. The system therefore recognises two crucial elements of product 39 modelling: that stakeholders and their requirements must be identified, otherwise important requirements are missed; 41 and that function is not directly linked to the physical

43 product structure. This work was in part based on the requirements intelligent information framework [35], which 45 used fuzzy logic to determine product attributes from qualitative requirements. Each of the product function based modelling approaches described here make reference 47 to the functional requirements and design parameters 49 developed by Suh [36].

Requirements modelling in engineering design must recognise the problems associated with a tight coupling 51 of product requirements and product structure. Whilst a 53 mapping between requirements and product structures can support design reuse in a similar way to function-form mapping, it inherits the need for a shared view. The 55 application of ontology can support the need for a shared view. The mapping problem exists since form/function and 57

requirements/product structure do not have direct relationships other than a logical, or high-level abstract view.

59

61

83

85

87

89

91

93

95

97

99

101

3.2. Requirements definition and design methodology

Several design methodologies exist, and many of them 63 include elements that relate to the translation of customer needs into engineering specifications. Systematic design is a 65 structured approach to product design [37]. This rigorous method ensures that a product specification describing 67 product sub-systems, assemblies and details of their requirements plays a central role in the development 69 process. QFD requires that customer needs are identified, quantified, translated into technical requirements and 71 subsequently measured (against how well the customer need is satisfied). The aim of QFD is to improve the quality 73 of design, and as such many publications are devoted to the application of QFD to product development (see Ref. [8] 75 for an extensive selection). Poor product definition is a factor in 80% of all time-to-market delays [38], and 35% of 77 all product development delays are due to specification creep. Ullman suggests that QFD can help through 70 creating measurable design targets and highlighting gaps in knowledge of the problem. 81

Axiomatic design is a method devoted to the application of fundamental principles that make designs good. The representation of design requirements is addressed as part of a method to redefine them such that the functional requirements remain independent [36]. It is recognised that product requirements can override the desire to make functional requirements independent, as is the case with side opening refrigerators.

Most design requirements are identified during the design process, and not from the customer [39], therefore a large proportion of the requirement management effort takes place during solution generation and embodiment design. Reinertsen suggests that requirements should be managed using a progressive approach, in which only a limited number of performance characteristics are fixed early on [40]. He proposes that the development team creates a product advert or 'catalogue-page' specification, reasoning that if it is not important enough to be in the catalogue, it is not important enough for the product specification. A more detailed specification simply creates more constraints for the designers without creating more value for the customer. 103

Requirements are emergent; a result of form. With a variant or evolutionary design (the next member or 105 generation of a product family), many of these emergent requirements remain the same as the previous generation of 107 products. By identifying relationships between these requirements and the solution principles, the knowledge 109 can be reused. Additional knowledge of manufacturing, operation, testing and servicing could also be related to the 111 solutions. The literature has shown that the requirement source is a critical element that must be recorded if this 113 knowledge is to be successfully applied: internally gener-

ARTICLE IN PRESS

D. Baxter et al. / Robotics and Computer-Integrated Manufacturing & (*****) ****-****

1

3

5

7

9

11

13

15

19

21

23

25

27

ated requirements need only be considered where the context (product structure) is the same.

3.3. Literature summary

Process-based design reuse will be applied in combination with an ontology-based product model. This will support the application of process (design methodology and best practices) alongside product and task knowledge reuse. Requirements management practices should be recognised, in terms of capturing, analysing and managing the requirement through the NPI process. A minimal requirements set should be sought at the beginning of the project, in order to minimise constraints and focus on the value proposition of the product.

17 4. Requirements management case study

The aim of the research is to develop a framework that supports requirements management as well as design knowledge reuse. The literature review has identified various features that the requirements management method should apply. It has also identified a design knowledge reuse framework. The integrated framework will be presented, and then assessed through a case study. The framework will be evaluated in a qualitative sense. A model of the framework will be presented to the company for evaluation and analysis. It will not be implemented.

This research is taking place in the context of variant 29 design, in which a mature and well known yet at the same time specialist and relatively complex product is required as 31 a subsystem for a larger customer system: vacuum pumps for semiconductor processes. The market is facing ever-33 increasing quality demands, price competition and regulation. The designers are required to achieve their perfor-35 mance goals with varying levels of engineering 37 specification. Vacuum pumps for semiconductor processes must meet very demanding requirements for service life within a harsh operating environment. The exact constitu-39 ents of the process gases used in the semiconductor 41 manufacturing process have a major impact on service life, yet they are competitively sensitive. As a result, the designers may have to work with an incomplete specifica-43 tion. The products are viewed by the tier 1 producer as 45 commodity items, available from a (small) number of (specialist) suppliers. As such, the motivation for the customer to spend time making a detailed engineering 47 specification for these products is relatively low. The 49 capability to determine customer needs without the assistance of the customer offers substantial potential for competitive advantage in such markets. As such, substan-51 tial benefit could be gained from a method that enables 53 requirements management as well as supporting the design process and design reuse. The learning gained from translating customer needs to working solutions could be 55 applied to new projects through such a framework. Internally generated requirements, either through technol-57

ogy led solutions or projections of customer needs, must also be addressed.

4.1. Requirements management process capture

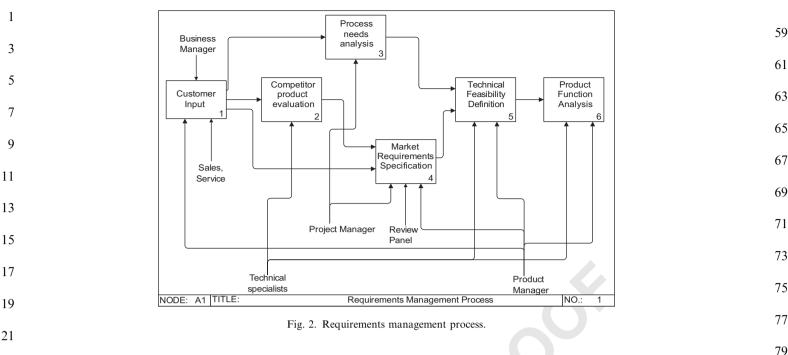
This section will describe a case study that investigated 63 the approach to managing requirements for vacuum pump design. Several managers in the company were interviewed. 65 These included project managers, sales managers, product managers and technical specialists. In total, 12 managers 67 were interviewed. The interview process was semi-structured, with the aim of developing an agreed model of the 69 requirements management process. The modelling method applied was IDEFØ [41]. After each interview, the current 71 understanding of the requirements management process was mapped and sent to the participant for review. Several 73 follow-up interviews took place to validate the model. After several iterations, the process model was agreed 75 upon. The top level of the process is shown in Fig. 2.

The requirements management method shown in Fig. 2 77 has a typically fuzzy front end. Customer input is provided to the product development team via sales, service and 79 field-based product specialists. A competitor product evaluation is carried out by the technical specialists. This 81 is a fairly typical approach to competitor product analysis: buy a competitor product and carry out a detailed analysis. 83 The process needs analysis relates to the product requirement. The product forms part of a manufacturing process, 85 so the specification of that process includes required vacuum performance and the chemicals involved in the 87 process. The market requirements specification is a significant document, and is the main source of the product 89 target requirement. It contains details of customer requirements alongside competitive targets based on competitor 91 pricing and performance. The process needs analysis is the major source of constraints on the target requirements, so 93 together these two requirements sources lead to the development of the engineering specification, which is 95 referred to as the technical feasibility definition. The reference to feasibility ensures that the specified product 97 is within the current capability. What this process does not 99 show is the R&D input to product development: internal development is a means to achieve competitive advantage rather than a customer requirement. 101

The process is managed without a formal requirements management methodology. It has been found that the 103 quality of requirements management methods has a strong impact on the quality of the emergent design [42]. The 105 predominant view expressed in the literature is that a requirements management methodology is an essential 107 element of the product development process, and that without it a project is more likely to fail. However, whilst 109 there is correlation of good requirements management with product success, not all good practices result in a good 111 product, and some good products are created without a clear RM method [23]. The capability to produce a good 113 result without a good RM method is likely to represent a

Please cite this article as: Baxter D, et al. A framework to integrate design knowledge reuse and requirements management in engineering.... Robot Comput Integr Manuf (2007), doi:10.1016/j.rcim.2007.07.010

5


59

ARTICLE IN PRESS

6

37

D. Baxter et al. / Robotics and Computer-Integrated Manufacturing I (IIII) III-III

23 good understanding of the user needs by the development team. The case study company are market leaders. Because they do not apply a formal RM method does not mean that 25 their products will not meet the customer requirements. 27 However, growing pressure to reduce development time, increase product quality and produce increasingly complex 29 products is resulting in an increased interest in requirements management methods. At a basic level, a require-31 ments management system may simply be an aid for recording and recall of product requirements: even in a small sized project, experienced designers leave a number 33 of requirements unsatisfied [42]. In a large project, a structured RM method would help to support the 35 satisfaction of requirements.

39 5. Integrated product model: proposed framework

41 The aim of this proposed framework is to manage product requirements as part of an integrated product 43 knowledge reuse method. The requirements management element should support gathering, analysing, selecting, 45 documenting, verifying and managing. It should also reflect the minimum specification approach, and must be dynamic, to deal with changing requirements. Design 47 knowledge reuse will be achieved through the process-49 based method described in Section 2. A design process model, task knowledge and product knowledge (product ontology) are combined to enable reuse of design knowl-51 edge.

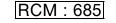
Fig. 3 shows a diagram of the framework components. The arrows indicate general process flow: relationships can
be created between all of the constituent elements. The remainder of this section discusses the constituent elements
of the framework. The process for applying the framework begins with requirements capture. In the second stage, the requirements are analysed and selected and used to create a technical specification and product function structure. This specification is applied to a parameterised product specification and a product structure. The process-based knowledge reuse method is applied to the process and data transactions throughout the application of the framework. The framework components will now be described in turn, in more detail.

91

93

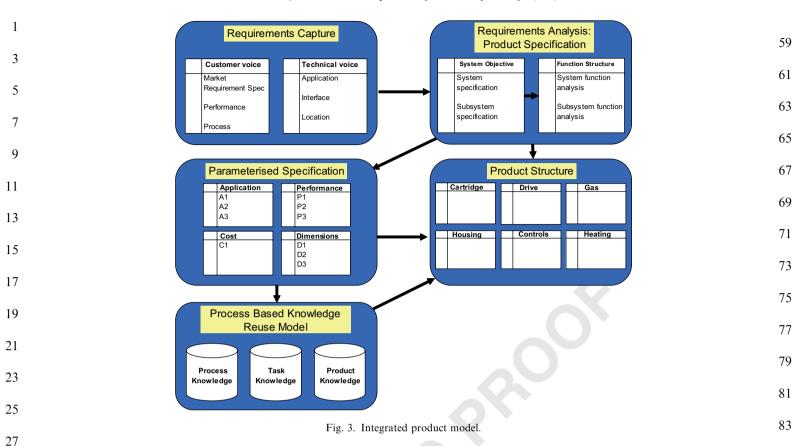
81

83


85

87

89


5.1. Requirements capture

The requirements capture process applied by the case 95 study company has been described in Fig. 2. This is intended to enhance that process through the addition of a 97 clearly defined structure. It also applies the 'minimal 99 requirements' approach, as identified in the literature. The initial requirements set is gathered. The customer perspective is supported by a technical perspective, to 101 support internal development and to overcome the requirements specification problems described in Section 103 4. Customer facing personnel including sales, staff and product managers come together to share their views and 105 generate the 'customer voice' specification. The requirement will include details of required product performance 107 and the operating environment of the target process. The technical viewpoint includes specific application challenges, 109 required software or hardware interfaces and location class (i.e. 00 clean room). The result of the requirements capture 111 process is recorded in a database.

ARTICLE IN PRESS

D. Baxter et al. / Robotics and Computer-Integrated Manufacturing I (IIII) III-III

5.2. Requirements analysis: product specification

Analysis of the requirements is carried out, and an objective specification for the product is created along with a system function analysis. Each of these is broken down in a hierarchical fashion to describe subsystem specifications and subsystem functional analysis. This specification and functional structure represents the product requirement to be managed dynamically through the design process. The mapping between requirements capture and analysis is indirect and conceptual; there is not a direct relationship between the customer requirement and product specification. There is a conceptual link. Making this link visible and maintaining the original data helps support the progression from customer requirement to engineering specification. It is also necessary to maintain a requirements history throughout the project, since the requirements change.

47

49

29

31

33

35

37

39

41

43

45

5.3. Parameterised specification

In order to provide a link between product structure
elements and product function, a parameter set is defined. In the case study example, the parameterised specification
data set has four categories: application, cost, dimensions and performance. Each category can have several attributes: A₁, A₂, ..., A_n; C₁, C₂, ..., C_n; D₁, D₂, ..., D_n; P₁, P₂, ..., P_n. The data set should remain as small as possible, to
minimise unnecessary constraints for the design team. In general, it should describe the main value proposition of the product in the 'catalogue description' sense [40]. Some of the data are represented not as single numbers, but as a complex set such as the vacuum requirement performance curve.

85

87

89

91

111

5.4. Process-based knowledge reuse model

93 The parameterised specification is linked to the processbased knowledge reuse model. The specification data are 95 stored in the product knowledge database. The product knowledge database is structured by a design ontology, 97 which defines the terminology, product hierarchy and data types. The stored data are used as an input to design 99 process tasks. A detailed task model guides the designers through the various product design tasks. As the tasks are 101 completed, design data are stored in the system: as product parameters are generated or updated by specific design 103 tasks. The integrated product model stores the result of the requirements process as parameters of the product knowl-105 edge model. A more complete description of the processbased knowledge reuse model can be found in Ref. [18]. 107 The key addition in this framework is the method to capture, analyse and manage product requirements. 109

5.5. Product structure model

The simple parameterised specification represents a 113 combined market and technical perspective of what the

ARTICLE IN PRESS

8

D. Baxter et al. / Robotics and Computer-Integrated Manufacturing I (IIII) III-III

product requirements are in terms of application, performance, size and cost targets. The product structure model
 comprises of a data set describing the solution concept to

5 meet the needs of that requirements set. The product 5 structure model is arranged in a modular fashion to enable

the reuse of complete product modules where appropriate.
The future intention is to build a series of parametric CAD models that use the completed product structure objects as
inputs. The current situation is that the designers manually

apply the parameters to the development of the 3D model.

6. Discussion

13

The development of this integrated product model is 15 taking place as part of a research project which aims to provide a method to reuse engineering design knowledge 17 [16–18]. The approach is based on the premise that the design process itself represents a large amount of design 19 knowledge, and that by creating a formal representation of the design process there is an opportunity to provide structure to enable the retrieval of information that is task 21 relevant. Developing the design process model highlighted 23 the fact that many of the product parameters are a decomposition of the product requirements. Product model parameters are used as inputs to the design tasks. These 25 include early performance analysis tasks like product performance modelling and dynamic analysis, through to 27 the initial product layout tasks. Because the product 29 parameters can be related (through the process model and product model) to the product requirements, the method of capturing the requirements was shown to be a 31 critical input to the process.

Process, task and product knowledge are the three key 33 elements of the design reuse system [18]. Originally, the approach to managing requirements was through an 35 interaction between the process model and product 37 parameters-that is, the requirements parameters were a part of the product knowledge. The extended mapping proposed in this paper recognises the high importance of 39 requirements not only in terms of recording the parameters, but also in terms of the method of capturing the 41 requirement and the dynamic interaction between the 43 requirement and the product structure through the development cycle. This is achieved through the mapping 45 between both the functional and physical product models, which becomes more tightly defined as product develop-47 ment progresses. A further contribution of the method is project support. The process model provides a method 49 based on company best practices, which describes the sequence, data, information inputs and outputs for each task in the product development project. 51

The capability to link requirements to product structures through function analysis has been shown in previous work [31,34]. This work extends the modelling domain to include

 a design knowledge framework that includes design parameters, a design process model, and knowledge-based
 methods. The relationships between the domains are often multiple and complex. Sources of requirements, design parameters, and design changes can be lost. The application of the design process model provides an additional framework within which the design work can be carried out using a best practice method. The process model has relationships with design parameter model, which ensures that required parameters are assigned at the correct time.

7. Conclusion and further research

The framework proposed in the paper adds requirements management capability to a design knowledge reuse method. Mapping between the various product domains (requirements capture, requirements analysis, specification, and product structure) links the product structure to the requirement source. The database structure provided by the design knowledge reuse system supports dynamic management of the emergent requirements and developing design data. The proposal was based on the findings from a literature review that identified the components of a requirements management method: gathering, analysing, selecting, documenting, verifying and managing.

81

83

59

61

63

65

67

69

71

73

75

77

70

7.1. Further research

The requirements management method described85through the case study could be improved through85systematic analysis and a comparison with best practices87in the literature. This best practices process could then be87transferred to the design knowledge reuse system. The first89stage of this is process modelling. Product and requirements data should then be added to the process model.91Finally, task descriptions (how-to) and links to additional93requirements management must be carefully verified.93

A second area for further work is creating a formal link 95 between the product structure and 3D CAD through parametric modelling. By selecting high value parts, the 97 development of parametric models could further enhance the design process. This approach requires careful analysis 99 in order to determine the appropriate parts: not all components will warrant the high effort required to 101 develop parametric models. It could benefit from design knowledge support: a process model with supporting 103 product data and how-to task descriptions for the parametric modelling process. There is not currently a 105 clear path for storing such data. 107

Acknowledgements

109

The authors would like to acknowledge the continued 111 professional support of BOC Edwards, and the EPSRC in funding this project through the Cranfield University 113 IMRC and Loughborough University IMRC.

ARTICLE IN PRESS

D. Baxter et al. / Robotics and Computer-Integrated Manufacturing I (IIII) III-III

References

1

3

5

7

9

11

13

15

17

19

21

23

25

31

33

35

37

43

45

47

- [1] Wang L, Shen W, Xie H, Neelamkavil J, Pardasani A. Collaborative conceptual design—state of the art and future trends. Comput Aided Q1 Des 2002;34(13):981–96.
 - [2] Leake DB, Wilson DC. A case-based framework for interactive capture and reuse of design knowledge. Appl Intell 2001;14:77–94.
- [3] Roller D, Kreuz I. Selecting and parameterising components using knowledge based configuration and a heuristic that learns and forgets. Comput Aided Des 2003;35(12):1085–98.
- [4] Campbell MI, Cagan J, Kotovsky K. A-design: an agent-based approach to conceptual design in a dynamic environment. Res Eng Des 1999;11(3):172–92.
- [5] Harding JA, Popplewell K, Cook D. Manufacturing system engineering moderator: an aid for multidiscipline project teams. Int J Product Res 2003;41(9):1973–86.
 - [6] Shahin TMM, Andrews PTJ, Sivaloganathan S. A design reuse system. Proc Inst Mech Eng, Pt B: J Eng Manuf 1999;213(6):621–7.
- [7] Blessing LTM. A process-based approach to design. Colloquium Digest-IEE 1995:49.
- [8] Chan L-K, Wu M-L. Quality function deployment: a literature review. Eur J Oper Res 2002;143(3):463–97.
- [9] Rodgers PA, Caldwell NHM, Clarkson PJ, Huxor AP. The management of concept design knowledge in modern product development organizations. Int J Comput Integr Manuf 2001;14(1):108–15.
- [10] Rodgers PA, Huxor AP, Caldwell NHM. Design support using distributed web-based AI tools. Res Eng Des 1999;11(1):31–44.
- [11] Costa CA, Young RIM. Product range models supporting design knowledge reuse. Proc Inst Mech Eng, Pt B: Eng Manuf 2001;215(3):323–38.
- [12] Hirtz J, Stone RB, McAdams DA, Szykman S, Wood KL. A functional basis for engineering design: reconciling and evolving previous efforts. Res Eng Des 2002;13(2):65–82.
 - [13] Kerr C, Roy R, Sackett P. A product ontology for automotive seat specification. In: Proceedings of the 2004 ASME international design engineering technical conferences and the computer and information in engineering conference (ASME DETC/CIE 2004)—30th design automation conference (DAC), Salt Lake City, UT, USA; 2004.
 - [14] Kitamura Y, Mizoguchi R. Ontology-based description of functional design knowledge and its use in a functional way server. Expert Syst Appl 2003;24(2):153–66.
 - [15] Markus ML. Toward a theory of knowledge reuse: types of knowledge reuse situations and factors in reuse success. J Manage Inf Syst 2001;18(1):57–93.
- [16] Baxter DI, Gao JX. Process based representation for design knowledge. In: Proceedings of the second international conference on manufacturing research 2004 (ICMR 2004), Sheffield Hallam University, Sheffield, UK.
 - [17] Baxter DI, Gao JX. Process based design knowledge reuse through process and product representation. In: Proceedings of the 12th CIRP life cycle engineering seminar (CIRP LCE) 2005, Grenoble, France.
 - [18] Baxter DI, Gao JX, Case K, Harding J, Young R, Cochrane S, Dani S. An engineering design knowledge reuse methodology using process modelling. Res Eng Des, 2006, in press₁

- [19] Inns T, Neville P. Establishing a company-level design process to facilitate design reuse. In: Proceedings of the engineering design conference 1998, Brunel University, UK.
- [20] Lu S, Cai J, Burkett W, Udwadia F. A methodology for collaborative design process and conflict analysis. <u>ANNALS-CIRP</u> 2000;49(1):69–74.
- [21] Clarkson PJ, Hamilton JR. Signposting, a parameter-driven taskbased model of the design process. Res Eng Des 2000;12(1):18–38.
- [22] Park H, Cutosky MR. Framework for modeling dependencies in collaborative engineering processes. Res Eng Des 1999;11(2):84–102.
- [23] Davis A, Zowghi D. Good requirements practices are neither necessary nor sufficient. Require Eng 2006;11:1–3.
 [24] Halbleib H Requirements management Inf Syst Manage 59
- [24] Halbleib H. Requirements management. Inf Syst Manage 2004;21:8–14.
- [25] Turk W. Requirements management. Defense AT-L 2005;34:10-3.
- [26] Sawyer P, Sommerville I, Viller S. Capturing the benefits of requirements engineering. IEEE Software 1999;16:78–85. Q3
- [27] Hickey A, Davis A. A unified model of requirements elicitation. J Manage Inf Syst 2004;20:65–84.
- [28] Alistair GS, Papamargaritis G, Zhao L. Comparing requirements Q4 65 analysis methods for developing reusable component libraries. J Syst Software 2006;79:273–89.
- [29] Culley SJ. Current research in the engineering design requirement. Proc Inst Mech Eng, Pt B: Eng Manuf 2002;216(3):375–89.
- [30] Szykman S, Sriram RD, Bocheneck C. Design repositories: engineering design's new knowledge base. IEEE Intell Syst Appl [H.W. Wilson—AST] 2000;15(3):48–55.
- [31] McKay A, Pennington AD, Baxter J. Requirements management: a representation scheme for product specifications. Comput Aided Des 2001;33:511–20.
- [32] Schachinger P, Johannesson HL. Computer modelling of design specifications. J Eng Des 2000;11:317–29.
- [33] Roy R, Kerr C, Corbett J. Design requirements management using an ontological framework. CIRP Ann Manuf Technol 2004;54:109–12.
- [34] Nilsson P, Fagerstrom B. Managing stakeholder requirements in a product modelling system. Comput Ind 2006;57:167–77.
- [35] Harding JA, Popplewell K, Fung RYK, Omar AR. An intelligent information framework relating customer requirements and product characteristics. Comput Ind 2001;44(1):51–65.
 81
- [36] Suh NP. The principles of design. Oxford: Oxford University Press; 1990.
- [37] Pahl G, Beitz W. Engineering design: a systematic approach. London: 83 The Design Council; 1988.
- [38] Ullman DG. The mechanical design process. London: McGraw-Hill; 85 2003.
- [39] Blessing L, Chakrabarti A, Wallace K. A design research methodology. In: Proceedings of the international conference on engineering design (ICED '95), 1995.
- [40] Reinertsen D. Managing the design factory. New York: The Free 89 Press; 1997.
- [41] NIST. Integration definition for function modeling (IDEF0), 1993. 91
- [42] Chakrabarti A, Morgenstern S, Knaab H. Identification and application of requirements and their impact on the design process: a protocol study. Res Eng Des 2004;15(1):22–39.

95

93

9

49

51

53

55

61

63

67

69

71

73

75