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Abstract

In this paper an efficient algorithm to train general differential recurrent
neural network (DRNN) is developed. The trained network can be directly

used in the nonlinear model predictive control (NMPC) context. The neural

predict the future dynamic behavior of the nonlinear process in real time.
In the new training algorithms, the ODEs of the model and the dynamic
sensitivity are solved simultaneously using Taylor series expansion and au-
tomatic differentiation (AD) techniques. The same approach is also used

to solve the online optimization problem in the predictive controller. The
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efficiency and effectiveness of the DRNN training algorithm and the NMPC
approach are demonstrated through a two-CSTR case study. A good model
fitting for the nonlinear plant at different sampling rates is obtained using
the new method. A comparison with other approaches shows that the new
algorithm can considerably reduce network training time and improve solu-
tion accuracy. The DRNN based NMPC approach results in good control

performance under different operating conditions.

1 Introduction

Model predictive control (MPC) strategies have been well received by indus-
try because they are intuitive and can explicitly handle MIMO systems with
input and output constraints. Until recently, industrial applications of MPC
have relied on linear dynamic models even though most processes are non-
linear. MPC based on linear models is acceptable when the process operates
at a single set-point and the primary use of the controller is the rejection
of small disturbances. Operating points of modern chemical processes vary
over large regions and cannot be modelled adequately using linear mod-
els. These conditions are observed in many situations such as, change over
in continuous processes, tracking problems in start-up and batch processes
and the control of nonlinear reactors. To properly control these processes a
nonlinear dynamic process model should be used. Predictive control with a
nonlinear model is referred as nonlinear model predictive control or NMPC.

In many cases, nonlinear system identification is an inevitable step in
a NMPC project. Possibly, it is also the most costly and time consuming
part ol the project (Zhao et al., 1998). Therefore, an efficient and effec-
tive approach of nonlinear system identification is critical to the success of
NMPC. Unlike linear systems, there is no uniform way to parameterize a
general nonlinear dynamic system. Among many existing techniques, the

universal approximation properties of neural networks makes them a power-



ful tool for modelling nonlinear systems (Funahashi and Nakamura, 1993).
The structure of neural networks may be classified as feed-forward and re-
current. Most of the publications in nonlinear system identification use
feed-forward neural network (FFNN) with back-propagation or some other
variations for training, for example (Temeng et al., 1995; Tan and Cauwen-
berghe, 1996). The main drawback of FFNN is that it can only provide
predictions for a predetermined finite number of steps, in most cases, only
one step. This drawback makes such models not well suited for predictive
control, where variable multi-step predictions are desired. A NMPC based
on multiple FFNN has been proposed (Jazayeri, 2004). In this approach,
a combination of multiple FFNN with one hidden layer are used to model
an m-input n-output nonlinear dynamic system. This system consists of a
two-dimensional array of FFNN blocks and each block consists of a one-step-
ahead predictive neural model, which is identified to represent each output
of the MIMO system. These models are employed to predict the future
outputs over the prediction horizon of P time steps. This approach might
solve the multi-steps ahead prediction problem of the FFNN but it needs
the training of a new FFNN for every extension to the prediction horizon,
or a large number of networks when a long prediction horizon is needed.
Recurrent neural network (RNN) on the other hand are capable of pro-
viding long range predictions even in the presence of measurement noise (Su
and McAvoy, 1997). Therefore, RNN models are better suited for NMPC.
RNN with internal dynamics has been adopted in several recent works. Mod-
els with such networks are shown (Funahashi and Nakamura, 1993; Jin et
al., 1995), to have the capability of capturing various plant nonlinearities.
They have also been shown to be more efficient than FFNN in terms of the
number of neurons required to model a dynamic system of a certain order
(Delgado et al., 1995; Hush and Horne, 1993). In addition, they are more

suitable to be represented in state-space format, which is quite commonly



used in many important control
The static FFNN together with tapped-delay lines provides a way to
model nonlinear dynamic systems in discrete-time (Miller et al., 1990; Narcn-
dra and Parthasarathy, 1990). In general, this type of model is also referred
to the nonlinear autoregressive with exogenous inputs (NARX) model or
neural network autoregressive with exogenous(NNARX) model (Norgaard
et al., 2000).

NNARX model provides a description of the systems in terms of a non-
linear function of delayed input, output, and prediction error. Many MPC
based on NNARX models were proposed in the literature (Korenberg and
Paarmann, 1991; Mathews, 1991). Recently, (Fabro et al., 2005) developed
a fuzzy predictive controller architecture, tuned by genetic algorithms (GA),
to the startup control of a distillation column. Recurrent neural network
type NNARX was used to identify the nonlinear process and predict its be-
havior based on control actions applied to the system. They developed also,
a constructive algorithm to find the best parameters during the training
process. The modified training algorithm alters the delayed connections,
inserting new delays when the convergence of the training process could
not achieve certain levels of correctness. Also, the same type of RNN was
uscd by (Chu et al., 2004) as an internal model of their proposed NMPC
approach, combined feedforward /feedback MPC (CMPC). They named the
neural network model (which is the same to NNARX structure) as an exter-
nal RNN’ or (ERN). Two ERNs were used to identify the nonlinear process,
a distillation column for ethanol and water mixture (one for the top and the
other for the bottom temperatures). Training and testing of the ERN were
performed with the toolbox of Matlab (version 6.5, The MathWorks Inc).

The main difficulty with NNARX neural networks or other variants even
for SISO systems, is the determination of an appropriate model structure

(i.e. the number of delays units or (model order)), that best represents the



process dynamics. RNN in general state-space model was used by many re-
searchers as the best solution for this problem (Zhao et al., 1998; Zamarrcno
and Vega, 1998; Kambhampati et al., 2000a).

RNN can be discrete-time neural networks, (Zamarreno and Vega, 1998),
or continuous-time (differential) neural network or DRNN, (Funahashi and
Nakamura, 1993; Kambhampati et al., 2000a). The continuous-time RNN
brings further advantages and computational efficiency over the discrete
formulation even if at the end both are represented on the computer us-
ing only discrete values (Pearlmutter, 1995). Discrete-time RNN can only
work for a particular sampling frequency and no information is given about
the model trajectories between the sampling instants. If the sampling fre-
quency is to change, the model has to be re-built. Hence, it is not con-
venient to use discrete-time RNN for multi-rate control. In contrast, once
a continuous-time RNN has been created, it can be used for any sampling
[requency (Kambhampati et al., 2000a; Kambhampati et al., 2000b), cven
for continuous-time NMPC. Although a continuous-time RNN has clear ad-
vantages, it has rare been used in NMPC. The main reason probably is due
to the difficulty to solve the differential parameter optimisation problem as-
sociated with the continuous-time nonlinear model identification problem.

in this work, a continuous time version of recurrent neural networks
in state-space form is used as the internal model of NMPC. The general
form of nonlinear state-space model has been widely used for control system
analysis and design either in white-box or black-box situations. Such a
model is capable of capturing full nonlinear dynamics (Zhao et al., 1998).

Neural network training is actually a nonlinear optimization problem.
Various training strategies have been suggested in the literature, such as the
back-propagation method (Rumelhart et al., 1986), the conjugate gradient
method (Leonard and Kramer, 1999), Levenberg-Marquardt optimization

(Marquardt, 1963), or methods based on genetic algorithms (Goldberge,



1989). To solve the nonlinear optimization problem associated with DRNN
training, the calculation of a large number of dynamic sensitivity equations
is required. Depending on the number of sensitivity equations involved, the
sensitivity calculation could take more than 90 percent of the total com-
putation time required for solving a training problem. Hence, sensitivity
calculation is a bottleneck in training DRNN. Ways to find the sensitiv-
ity of a dynamic system (Storen and Hertzberg, 1999) are: perturbation,
sensitivity equations, and adjoint equations. In a perturbation approach,
finite difference (FD) is used to approximate derivatives. Hence at least N
perturbations to the dynamic system are needed to get the solution of a /N-
parameter sensitivity problem (Storen and Hertzberg, 1999). Alternatively,
sensitivity can also be obtained by simultaneously solving the original ordi-
nary differential equations (ODEs) together with n/N scnsitivily cquations,
where n is the number of states (Schlegel et al., 2001). Finally, sensitivity
can be calculated by solving n adjoint equations (in reverse direction).
Recently, the AD techniques have been applied to tackle the dynamic
optimization problem (Griesse and Walther, 2004). In a previous work, (Cao

and Al-Seyab, 2003), a first-order approximation was derived using AD to

lem so that computation efficiency was improved. In most published works
of using AD for dynamic optimization, AD has only been used to generate
low (first and/or second) order derivatives. Nevertheless, in the new NMPC
formulation proposed by Cao (2005), AD has been successfully adopted to
produce high-order Taylor coefficients, which significantly improved com-
putation efficiency of the NMPC. In this work, this formulation has been
successfully extended to train the DRNN to speed up calculations and to
increase efficiency. The developed DRNN can be directly used for NMPC
within the above formulation. The training and control algorithms of DRNN

are suitable for most process systems. A two-CSTR case study is presented



to demonstrate the usage and benefit of the algorithms proposed. With the
DRINN model developed, the sampling frequency can been freely altered to
improve control performance. The network training time is significantly re-
duced by using the new algorithm comparing with other methods. Using the
trained DRNN as its internal model, the NMPC controller gives satisfactory
control performance at different operating conditions.

The paper is organized as follows. In section 2, a training algorithm is
proposed using AD techniques. Section 3 presents formulations for predic-
tive control to use a DRNN as internal model with AD techniques. These

algorithms are applied to the case study in section 4 and in section 5 some

conclusions of the work are provided.

2 DRNN and training

2.1 Model training

Assume a model-unknown continuous-time nonlinear dynamic system has
n, inputs and n, outputs. N points of input, u(k),k = 0,...,N — 1 and
output, g(k),k =0,..., N — 1 data are collected at sampling rate h. These
data are used to train a recurrent neural network (RNN) so that the RNN
trained can predict the dynamic behavior of the system with reasonable ac-
curacy. According to the universal approximation theory of artificial neural
networks, there are many types of neural networks from multi-layer per-
ceptrons (MLP) to radial basis functions (RBF), which can be constructed
as recurrent networks to approximate the nonlinear system. The training
algorithm to be discussed is suitable for any kind of networks. Hence, the

DRNN to be considered is represented in the following general form.

= f(z,u,0) (1)
y=Cx



where z € R"* is the hidden state of the DRNN, v € R™ the input, y € R™v
the output, 0§ € R™ the parameters of DRNN to be trained, and C' = |1 0,
i.e. the outputs are equal to the first n, states. The collected input data
are directly applied to the DRNN by assuming constant input between two
sampling instants. The initial state of the DRNN is x(0) = [57(0) 0 7.
Then, for a given set of parameters, 8, output can be predicted by (1). The
training algorithm to be proposed aims to minimize the total prediction

error:

1 & 1
_ T, _ LT
Y= 5};_1 €, ek = §E E (2)

where ey, := y(kh) — (k) and E := el ... L /T. To solve this optimization
problem efficiently, the gradient, ¢y := dp/df is to be calculated using the
AD techniques described as follows.

Let the state of (1) be a Taylor series up to d terms, i.c. xz(t) =
Zzzox wl?® , where zj, = %% . Then, the Taylor expansion of f can
be directly obtained using AD techniques(Cao, 2005) as f = Z%:o St

where Taylor cocflicients, f arc [unctions of cocllicients, x; , with j < k

, i.e.

Jw = Fe(@opy- o p,u,0) (3)
Since T = f, T 41 = %_ka (-, u,0), ic. all cocflicients, xy, can
be iteratively obtained from g = (0). Then, at next sampling point,

xz(h) = Z?:O:c‘i‘hi and it will be used as the initial value for integration
of next interval. For output, the Taylor coefficients are yy = Cx, and
y(h) = Cx(h). More importantly, AD can be used to calculate sensitivities
of (3)(Christianson, 1992).
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The total derivatives are iteratively accumulated from (4) and (5) as follows.

By =1 )
dw ; 0x; Ox; dx 1 i1
|1] 1 |4 \k\
o dx\O\ Ox Z@xk dx o i ( zli—1 +kzo zli—k—1Dzk|
(7)
dx Ox Ox; dx 1 i-1
. \1\ \z\ li ko
Bei a B Zax‘k‘ do - ; <A97/ 1] +ZA$1 k— 1\B9‘k‘
k=0
(8)

Iiquation (8) requires Byg, which is iteratively calculated from previous
sampling interval as [ollows.

By (0) =0

Boo ((k+ 1)h) = d:c((l;;— 1)h _ 8:0((1;;— 1)h n 8a:(8(l;:(—|i;)1)h d:cc(il;h)

=0 =0

Jacobian matrices of (2) are calculated from Taylor coefficients:

e Oy(kh)
oE T
J = 90 = Jio-- J}\;

Based on Levenberg-Marquardt algorithm(Marquardt, 1963), the parame-

ters can be iteratively updated as follows.
Opir = O — (JTT+AD)I'E (9)
where A is determined by the algorithm to make sure the prediction error is

reduced at each iterative step.

2.2 Model Validation

Many model validity tests for nonlinear models have been developed (Zhang

and Morris, 1999), for example, the Akaike information criterion (AIC), the

d d
= By (kh)h' + (Z By (kh)h’) By (kh), k=0,...



statistical x? tests, the predicted squared error criterion, and the higher-
order correlation tests.

One of common methods of validation is to investigate the residual (pre-
diction errors) by cross validation on a test data set. Here, validation is done
by carrying out a number of tests on correlation functions, including auto-
correlation function of the residual and cross-correlation function between
controls and residuals. If the identified model based on DRNN is adequate,

the prediction errors should satisfy the following conditions of high-order

correlation tests (Billings and Voon, 1986):

Ree(T) = FEle(t —71)e(t) =0(1), Vr (10)

Rye(r) = FEult—r7)e(t) =0, Vr (11)

where R,.(7) indicates the cross-correlation function between z(¢) and z(t),
e is the model residual. These tests look into the cross-correlation amongst
model residuals and inputs, and are normalized to be within a range of +1
so that the tests are independent of signal amplitude and easy to interpret
(Billings and Voon, 1986). The significance of the correlation between vari-
ables is indicated by a confidence interval. For a sufficiently large data set
with length N, the 95% confidence bounds are approximately +1.96/ V/N.
If these correlation tests are satisfied (within the confidence limits) then
the model residuals are a random sequence and are not predictable from
the model inputs. This provides additional evidence of the validity of the

identified model.

3 Predictive control algorithm

The trained DRNN can be directly used as the internal model for a pre-

dictive controller. The control algorithm used in this work is based on the
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general formulation of nonlinear model predictive control using AD pro-
posed in (Cao, 2005). At each sampling instance, a nonlinear least square
optimization (Marquardt, 1963) is performed to minimize the performance
index represented as the integral of square error and control effort. The
Jacobian matrix required by the nonlinear least square optimization is cal-
culated using the algorithm similar to the training algorithm except that
the independent variable is control input rather than network parameters.
More specifically, the optimization problem to be solved at each sampling

instance is as [ollows:

P M
sit. 2(t) = f(z(@),ut)), te iy, tp (13)
y(t) = Cx(l)+d)
x(tg) = o, xp:=z(to+ kh)
d(t) = ym(lo) — Cz(lo), tE€ totp
up = u(ty) =ult), € g tes)
ey = ylp)—re, kel,P
Aug = ugy1 —ug, kel[l,M
up = upy—1, k€M, P—1

where, M and P are the control and prediction horizons respectively, ) €
R™*™ and R € R"™*"™ are the weighting matrices for the output error
and the control signal changes respectively, rp € R™ is the outpul reference
vector at tx, d is a virtual disturbance estimated at the current time and
used to reduce the model-plant mismatch, y,, is the measured output, uw
and u are constant vectors determining the input constraints as element-by-
element inequalities.

The prediction horizon tg,tp is divided into P intervals, tg,t1,--- ,tp

with ¢;41 = t; + h; and Zfi _01 h; = tp — tp. For piecewise constant control,
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assume the optimal solution to (12) is u(t) = u(tr) = ug (k) for tx <t <
tky1, K =0,---, P —1. Then, only the solution in the first interval is to be
implemented and whole procedure will be repeated at next sampling instant.

Let v € RM*nu he defined as v := u‘:g‘ 0) - -u%‘(]V[—l)\T. Problem (12)
is a standard nonlinear programming problem (NLP) which can be solved
by any modern NLP solvers. To efficiently solve the online optimization
problem of the predictive controller the same gradient calculation strategy
of the NMPC approach proposed by (Cao, 2005) is used.

A simple method is used to estimate the initial value of the model states
required to solve the optimization problem at each sample time. In this
method, the new states are updated from the old values using the dynamic
equation (13). Also, the state estimate error was reduced further by adding
the virtual disturbance d to the output. No terminal penalty is used in this

work and a good tuning ol h, P, M, @), and R was found cnough to cnsurc

the close-loop stability for the case study in different operation conditions.

4 Case Study

4.1 Two-CSTR Process

A chemical system common to many chemical processing plants, known as
a Continuous Stirred Tank Reactor (CSTR), was utilized as a suitable test
for many control methods. It suffices to know that the CSTR constituted
by a jacketed, perfectly mixed reactor, where an exothermic, first order and
irreversible chemical transformation from reactant A to product B takes
place.

DRNN training and predictive control algorithms proposed are applied
to a two-CSTR process. A process comprising of two CSTRs (CSTR1 and
CSTR2) in series with an intermediate mixer introducing a second feed

(Cao, 1995) is investigated. The process is schematically shown in Figure 1.
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A full description of the system and a six-state model is available elsewhere
(Cao and Yang, 2004). The control problem is to maintain both tank tem-
peratures, § = T,1,Tuo|”, at desired values in regulating and servo control
problems. The manipulated variables (MV) are the cooling water flow-rates
of two tanks, i.c. v = |Qewi1, Qewz L, which corresponds to the second con-
trol scheme discussed by Cao and Yang (2004). Both MVs are subject to

constraints, 0.05 < Qew1, Qewz < 0.8 m3/s/.

4.2 Model identification

Three sets of 600-second input and output data are collected by applying
random input signals to the 6-state nonlinear simulation model. The sam-
pling rate of the training data is 0.1 |s|, whist the other two sets for validation
are sampled at every 0.05 |s| and 0.02 |s| respectively.

The nonlinear dynamic system is approximated by a MLP DRNN shown

in Figure 2 and represented as follows:

T = Waos(Wex + Wyu + by) + bo
y=Cx

where, W, € R"*"= W, € R"*™ and Wy € R™*™ are conncction
weights, by € R™ and by € R™ are bias vectors, whilst each element of
the vector o4(-) € R™ represents the sigmoid-tanh [unction as the ncural

activation [unction, i.e.

2

_ = 11
14+e2n (1)

Os (TL) =

T
The parameter vector is 0 = |vec(W,)T  vec(W,)T bl vec(W2)T bl| €

R™ ., where ng = ny X (np, + 1) + np X (ng + ny + 1). For the two-CSTR
process, n, = 6 and ny; = 6 are selected for the DRNN model and n, = 2.
Therclore, ng = 96. For one epoch of training, n, X ng x N = 3456000
sensitivity variables have to be calculated. This causes an enormous compu-

tation load to DRNN training. In a typical situation, sensitivity calculation
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will take more than 90% of the total training time. Hence, it is really a com-
putation bottleneck to DRNN training. The new algorithm proposed can
significantly improve training efficiency as shown in Table 1 by comparison
with sensitivity calculation using ODE23 function in MATLAB. In Table 1,
the computation time is for one training epoch, whilst the error is the max-
imum absolute error with respect to a reference solution obtained using
ODI223 with a tolerance of 10715, AD results are obtained using ADOL-C
(Griewank et al., 1996) with a mex wrap in MATLAB. The results clearly
show that the AD based algorithm can not only reduce computation time
by one to two orders of magnitude, but also significantly improve accuracy.

The training and validating data sets (outputs) at sampling time 0.1
s| is given in Figure 3. The initial values of the first two states of the
network were chosen equal to the nominal values of the two tanks output
temperature (= 362.995 K)), while the other four states were set equal
to zero. The network capability to approximate the two-CSTR dynamic
response at different sampling rates (0.05 s/ and 0.02 's|) were demonstrated
by the validation results shown in Figures 4 and 5 respectively.

The correlation-based model validation results for the two-CSTR model
in sampling time 0.1 [s/, 0.05 s/, and 0.02 |s| were calculated according to
equations (10) and shown in Figures 6 to 8. The dash-dot lines in each plot
are the 95% confidence bounds (£1.96/1/600). It can be seen that only a
small number of points are slightly outside the given bounds. This demon-
strates that the model can be considered as being adequate for modelling
this plant.

The trained network is able to predict dynamic behavior of the plant at

different sampling rates with reasonable accuracy.
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4.3 Predictive control

The control objective in the two-CSTR process is to maintain both tank

temperatures, T, and T,o at the desired values in the presence of

1. Cooling-watcr temperature £10 K f{luctuations in Tow1 and Towe

in the presence of actuator constraints.

2. Set-points change in the two output variables in the presence of actu-

alor constraints.

A multi-loop PI controller was designed to control the process at the
above regulating problem (Cao and Biss, 1996). The controller was success-
ful in rejecting non-zero mean disturbances (10 K| in Ty; and Tiye), but
had somehow a long settling time and high peaks as shown in figures 9 and
10 respectively.

Cao and Yang (2004), designed a linear optimal controller using the Hy
and Hy, norm to control the process at the disturbance rejection test above.
The linear optimal controller was able to reject the disturbance effects in a
short time with some small peaks compared with the PI controller (Cao and
Yang, 2004). Set-point tracking tests were not included in the two works
above.

In this work, the proposed nonlinear predictive controller is used to con-
trol the two-CSTR process at regulating and servo problems given above.
The trained DRNN in subsection 4.2 is used as the internal model of the
predictive controller.

The NMPC parameters are tuned as follows. The cost function is weighted
by output weights, 150,100, and input weights, 1,0.5 respectively. To tunc
control horizon M, prediction horizon P, and sampling time h, initially set
h=0.1 s, and M = 1 sampling interval, and P = M = 1 sampling inter-
val. By varying P from 1 to 20 sampling intervals, a stable performance is

obtained which satisfies all control specifications for 5 < P. In fact, nomi-
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nal stability is strongly affected by the prediction horizon length. However,
the advantages of longer P are outweighed by the increase in computation
time and result in more aggressive control moves (Henson, 1998). When
P > 13 sampling intervals, the improvement on the system performance
is negligible but computation time increases. Therefore P = 10 sampling
intervals is selected to ensure that both the system stability and satisfac-
tory control performance achieved within a reasonable computation time.
The same steps are used to choose a suitable control horizon M, a reason-
able range from the minimum value (M = 1) to 5 sampling intervals has
been tested. A stable response without any constraints violation is detected
within range 1 < M < 4 sampling intervals. No performance improvement
can be observed when M > 3 sampling intervals. Thercfore M = 1 is chosen
to provide a balance between performance and computation.

Simulation results shown in Figures 9 to 10 clearly indicate that the
predictive controller with the DRNN model successfully achieves satisfactory
performance without violating input constraints in the regulating control
problem. The NMPC response also shows a short settling time with small
peaks compared with the PI controller. The NMPC performance when
M =1 and P = 5 was approximately similar to that of the linear optimal
controller (Cao and Yang, 2004) (see Figure 11). In the case of M = 1
and P = 10, the linear controller was faster than the NMPC. In order to
getting more smooth MVs response in both regulating and set-point tracking
problems, the sccond sct of M and P has been chosen for all tests.

In the set-point tracking test, the performance of both outputs and MVs
using the proposed DRNN based NMPC algorithm was the best comparing
with the other two linear controllers as shown in Figures 12 and 13 respec-
tively. To get a clear picture about the MVs behavior, Figure 14 shows
a magnified plot for MVs response (part of Figure 13) during T, and Tj»
set-point change from 367.5 K| to 365.995 K]|.
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To test the controller sensitivity to the sampling time, simulations have
also been done by varying h from 0.01 s| to 0.3 |s|. A stable performance is
detected in the range 0.02 < h < 0.25 |s|. Figure 15 shows the two-CSTR
performance at unmeasured disturbance rejection test using different values
of the sampling time. Note that, the DRNN (trained at sampling time 0.1 's|)
is used as the internal model of the predictive controller during these tests.
In fact, small sampling period generally improve performance but require a
longer prediction horizon to adequately capture the process dynamics which
means an increase in the online computation time. On the other hand, a
large sampling period reduces online computation, but it can result in poor
performance such as ringing between sample points (Henson, 1998). This
fact has been proved by the results given in this work as shown in Figure
15. Sampling time is chosen to be 0.1 |s| for the best performance and less

compulation time.

5 Conclusions

This paper demonstrates the reliability of artificial neural networks in pro-
cess control. An efficient algorithm has been proposed to train differential
(continuous-time) recurrent neural networks to approximate nonlinear dy-
namic systems so that the trained network can be used as the internal model
for a nonlinear predictive controller. The new training algorithm is based on
the efficient Levenberg-Marquardt method combined with an efficient and
accurate tool: automatic differentiation. The dynamic sensitivity equations
and the ODEs of the recurrent neural network are solved accurately and
simultaneously via AD. Big time saving to solve sensitivity equations with
a higher accuracy are observed using the new algorithm compared with
a traditional method. Also, the trained network shows the capability to
approximated the multivariable nonlinear plant at different sampling time

without the need to re-train the networks. Based on the identified neural
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network model, a NMPC controller has been developed. The similar strat-
egy that used in the network training has been used to solve the online
optimization problem of the predictive controller. The capability of the new
nonlinear identification algorithm and NMPC algorithm are demonstrated

through the two-CSTR case study with satisfactory results.
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Table 1: DRNN Training, Computing Time and Accuracy Comparison

Traditional Sensitivity Approach ADOL-C

Tolerance  Time, ms Lrror Actual Order Time, ms| Error
1073 10.61 1.5899 3 2437 0.001
10°6 162.281 0.0738 6 1.078 1.562¢-7
1078 272.657  1.551leA1 8 5.391 2.606e-10
10710 316.375  1.864c-6 10 6.937 1.0729¢-12
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