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ABSTRACT

A Constrained Torsional Analysis of Thin-Walled Variable Cross-Section Multi-Cell
Laminated Composite Beams has been undertaken . The existing Isotopic theory has
been modified using the effective engineering elastic constants to cater for the Composite
structures under torsional loads. The relevant computer programs for the Composite
structure analysis have also been developed. The results are discussed in detail for single-
cell and multi-cell prismatic/tapered beams for all [0/45/-45/90]; lay up in flanges and
webs, all [45/-45],]; lay-up in flanges and webs, and for flanges [0/45/-45/90], & webs
[45/-45],]s lay-up. The theoretical results obtained are then compared with those
obtained from a finite element method analysis carried out by the author employing MSC
commercial package PATRAN/NASTRAN. This has provided confidence in the validity
and capability of the developed Composite theory in handling the Torsional Analysis of
Variable Cross-section Single-Cell & Multi-Cell Laminated Composite Beams.
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Constant defined in equation 3.20



Ci &G, Coefficient appearing in the equation 3.21
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E Young’s modulus

E. Young’s modulus in web
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E Active Young’s modulus E'= 1—Ev2
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1. INTRODUCTION

1.1 GENERAL INTRODUCTION

The increasing competition in the air transport industry due to de-regulation and the
open sky policy all over the globe is narrowing down the profit margins of airlines. This
mounts pressure on the commercial aircraft manufacturers to develop more fuel efficient
and lighter aircraft with lower Direct Operating Costs (DOC). This has led to the
increase in use of composite materials in the aircraft industry in general. The prime
reason for using fibrous composites is that, substantial weight savings can be achieved
due to their superior strength to weight ratios , as compared with the conventional

materials of aerospace vehicle construction such as aluminium alloys.

The composite materials belong to the class of materials called fibre reinforced plastics
(FRP), comprising of continuous fibres embedded in a resin (or plastic) matrix. All the
structural properties of the composite come from the fibres. The matrix mainly serves to
bond the fibres into structural entity. Some of the main attractions of fibrous composites

for any aircraft designer are as follows:

e high strength and high stiffness to weight ratio

e capability to create smooth aerodynamic surfaces
e high fatigue resistance

e high corrosion resistance

e mechanical properties can be tailored

e aeroelastic tailoring capabilities



e reduced part-count through co-curing

It is for these advantages that the composites have a potential to achieve weight savings
and lower life time costs as compared to conventional light alloy structures. The
capability to produce smooth curvature surfaces improves the aerodynamic efficiency

and can be equated to reduced fuel consumption or increased pay load.

However the fibre reinforced plastics (FRP) are relatively new materials with many

unknown characteristics and disadvantages such as:

¢ highly orthotropic behaviour

e low bearing strength

e environmental degradation ( moisture, temperature and Ultra violet radiation)
e low through thickness strength

e brittle

e difficult to machine

e requirement to inspect for disbonds and delaminations

e environmental protection at all stages of operation

e higher material costs than conventional aluminium alloys

e new manufacturing techniques required

e need for lightning strike protection

These disadvantages have resulted in a slower acceptance of carbon fibre material for use
in aircraft structures than expected. This is so as no aircraft manufacturer would favour
risking the safety of aircraft and passengers for economical gains , unless all the
characteristic properties of composites were fully known. This obviously requires more
in depth study and investigations into the composite behaviour under different applied
load conditions . Hence the full use of composites in aircraft industry will only be made
possible when all the unknowns mentioned above have been successfully tested out and
results verified to the satisfaction of the design engineers working in the aircraft

manufacturing industry .



Inspite of all the factors mentioned above, today almost all new aircraft designs
incorporate significant primary composite structures. Composites are being used by all
major aircraft manufacturers like Boeing and Airbus industries. Composite materials
make upto 15 % of the structural weight of the Airbus A320. However it is apparent that
the full range of applications for composite materials is at this stage only beginning to be
discovered. Hence it is required that the design engineers using FRP should remain
aware of its advantages and disadvantages at all times during and after the design

process.

The aluminium alloy aircraft structure design engineer has usually access to a large data
base of information and guidelines due to many years of experience of aircraft
manufacturing companies in having dealt with metal structures. Metals are isotropic and
homogeneous whereas FRPs consist of high strength, high stiffness continuous fibres
which are held together by a relatively weak matrix material and exhibit a highly
orthotropic behaviour. This difference in the material properties makes the experience
gained over the years with metal structures in the aircraft industry generally non-

transferable to FRPs.

With the advancements in the computer field and the computer power becoming cheaper
and readily available, Finite Element Analysis (FEA) is being commonly used by stress
engineers. However it needs to be kept in mind that the quality of results achieved from
FEA depend directly upon the quality of the created FE model, and how closely does it
resemble the real structure under application of load. Errors in the FE modelling may
lead to errors in the analysis , without the stress engineer being aware of them. It is hence
considered a good practise for a stress engineer to get some analytical analysis results on
a simplified structure to establish the expected approximate FE results. This enables a
suggestive figure to the solution required to be obtained, against which, the results from
FE analysis can be compared. The correlation of the results would confirm the validity of
the FE model and hence will give confidence into using the FE analysis results obtained

for required problem.



Human beings have been using metals since thousands of years, and our mastery and
confidence in their usage stems from this long experience . On the other hand it has not
been more than just 50 years that fibrous composite materials have been introduced to
the industry. It is hence considered that this age of ours is just the beginning of life for

the composite materials.

Thin walled single-cell and multi-cell beams manufactured from isotropic materials have
been used in the aircraft industry extensively. Manufacturing of these beams using
laminated fibrous composite materials can result in further weight reductions over
conventional metal thin beams. There is an ever increasing tendency in the aircraft

industry for using such thin walled composite beams as structural members.

1.1.1 REQUIREMENT OF TORSIONAL ANALYSIS

Torsional loading causes warping displacements in the thin walled beams. Warping is
defined as the axial displacements taking place in a thin walled beam due to a non-axial
loading. The torsional analysis of thin walled beams forms a basis in determining the
longitudinal behaviour of beams which are either restrained against warping or that
induce warping. If a thin walled beam in any way is restrained against warping than this

would always lead to warping stresses, which are axial and direct in nature.

In the actual aircraft wing structure the requirement for the torsional analysis of tapered
boxes stems from the fact that the bending moment is maximum at the root of the aircraft
wing . Hence the root of the wing is required to be kept strong and thus requires
maximum area to manage the maximum moment at root. As the bending moment on the
aircraft wing structure decreases when moving towards wing tip , subsequently the
requirement for large wing area as required at the root diminishes slowly. This decrease
in wing area requirement due to decreased bending moment leads to the taper design of

the wing thus avoiding unnecessary weight of wing structure.



Torsional load on an aircraft wing is caused due to the distance between wing Centre of
Pressure (CP) and wing Centre of Gravity (CG). If these two points existed on same
location on the wing then the requirement of torsional analysis for the tapered wing
could have been avoided. However due to practical limitations and aerodynamic
requirements these two points are invariably located at different locations on the wing
structure thus giving rise to torsional load on the aircraft wing structure. Hence the

requirement to analyse the tapered multi-cell box beams under torsional loads exists.

1.2 LITERATURE SURVEY

1.2.1 GENERAL INTRODUCTION

J.Hadji Argyris & Dunne P.C'° in their torsional analysis of open and closed section
beams published in The Royal Aeronautical Society Journal in 1947 while dealing with
the stressing of single or multi cell tubes particularly of the type encountered in wing
structures had adopted an idealisation in which all the shear stresses acting on the cross
section were assumed to be resisted by shear walls and all the axial stresses by the booms
or stringers. The theory had been developed for conical or cylindrical tubes of arbitrary
cross section whose shape was maintained by the use of closely spaced system of
diaphragms which were rigid in their plane and parallel to the root section. However in
case of thin walled sections without stiffeners this method is not readily applicable as in

such cases both the shear and axial loading has to be resisted by the walls.

Vlasov'' is generally considered to be the first who presented a rigorous treatment of
thin-walled open sections. He considered a thin-walled beam which in its unloaded form

has the shape of a cylindrical shell or a prismatic hipped section. These shapes were



considered as a continuous spatial system composed of plates capable of bearing, in each
point of the middle surface, not only axial stresses but also moments as well. Instead of
analysing deformation of the beam on the basis of the usual hypothesis of plane sections ,
Vlasov'' used the more general and natural hypothesis of an inflexible section contour
and the absence of shear stresses in the middle surface. This constituted the basis for a

new law of distribution of longitudinal stresses in the cross section.

This law, which Vlasov'' calls the law of sectorial areas and which includes the law of
plane sections as a particular case, permits the computation of stresses in the most

general cases of flexural-torsional equilibrium of a beam.

Vlasov'' method has been summarised by Zbirohowski-Koscia, K'? in the following two

theorems:

The stress, o 4(r), in a longitudinal fibre of a thin-walled beam due to a bimoment, B, is

equal to the product of this bimoment and the principal sectorial co-ordinate, w(r) , of

b

this fibre divided by the principal sectorial moment of inertia , I,, , of its cross section,

ie.

oy(r) = B o

Also:
The shear stress in a fibre of a thin-walled beam caused by a flexural twisting moment,
T, , is equal to the product of this moment and the statical moment, S, (r) , of this point

divided by the principal sectorial moment of inertia and the wall thickness (of this point)

of its cross-section, i.e.

1,8, ()
17

w

7,(r) =



The bimoment, B , and the flexural twisting moment, 7, , at any section of a thin-

walled beam are obtained from the solution of a differential equation and the relationship

i, = A ( reference Zbirohowski-Koscia, K'> ) . The boundary condition used in the
¥4

solution of this differential equation usually involves the angle of twist and the
representation of the applied loads or support reactions as an external bimoment. A
bimoment may be generally defined as the product of a pair of equal and opposite
moments M and the distance , d , between them, thus B = Md. Zbirohowski-Koscia, K"
has given the procedure for the determination of bimoments corresponding to different

loading conditions.

Wagner and Kappus® in their torsion bending theory for the open sections have
proposed a rather specific approach to the restrained torsion problem of open sections.
They have proposed their theory to be applicable in case of application of pure torsional
load only. They obtained an expression for primary warping by considering the distortion
produced by shear stresses in a rectangular element of an open section beam. In
comparison to Wagner and Kappus" torsion bending theory the method of Vlasov'! is
more general and has the added advantage of allowing applied loading systems
(extensional , bending, etc ) other than just pure torsion to be considered. However the
resulting governing equations of Vlasov’s approach for a pure torsional loading of thin

walled open section isotropic beam is the same as the Wagner and Kappus theory.

The primary and secondary warping and associated axial constraint stresses , in an open-
section beam subjected to torsion and completely restrained from warping , can be
determined by either of the two methods , the Wagner and Kappus torsion bending
theory or Vlasov’s method. However in secondary warping, sectorial moment of inertia
is determined in a different manner. Oden'* and Gijelsvik" have given the method of

calculation of secondary warping sectorial moment of inertia for open sections.



1.2.2 CLOSED SECTIONS

Von Karman and Christensen® provided an analysis for an unstiffened beam with
arbitrary multi-cell cross-section. Using the mathematical arguments they arrived at a
transverse distribution of axial displacements and normal stresses proportional to the
axial displacements of St Venant torsion (free torsion). They also obtained correct basic
transverse distributions of primary and secondary shear flows. The spanwise variation of
stresses and rotations obtained by Von Karman and Christensen® was not accurate. This
in-accuracy was the result of their failure to consider the effect of shearing strains upon
deflections. Von Karman and Christensen® gave practical methods for computing the

basic stress distributions by introducing the use of a beam analogy.

An analysis method for the special case of a cantilever beam of infinite length with torque
applied at the tip was presented by Fine and Williams® . They considered a single-cell
cross-section of arbitrary shape with, or without, stiffeners and assumed the transverse
distribution of axial stress to be proportional to the axial displacements of free torsion.
They also assumed the spanwise variation to be given by an exponential function with an
unknown rate of decay determined by the theory of least work. The method is very
similar to one used by Timoshenko'® for solid sections and thin-walled open sections.
They came up with accurate formulas for computing the axial displacements of free
torsion and showed that such computations yield the co-ordinates of the centre of twist.
They also showed, for a single-cell section, that, this centre of twist coincides with the
shear centre. However the special case solved by these authors does not offer any
suggestion as to how to formulate a differential equation relating the stresses or rotations

to the applied loads.



Both the above mentioned approaches of Von Karman and Christensen® and Fine and

Williams® assume that, the shear strain due to warping is zero, and, only the St. Venant
shear strain is significant. This means that the stress-strain relationship between warping
shear stress and strain cannot be used to obtain the warping shear stress, and hence it
must be derived by considering the equilibrium in the longitudinal direction. This is
similar to that used in the simple beam theory where the Bernoulli assumption implies
zero shear strain and the shear stress must be obtained from equilibrium of an element in
the longitudinal direction. However in certain cases, where the warping stresses are large

and change rapidly, this assumption leads to inaccurate results.

Beskin'” in a paper presented an analysis for a single-cell unstiffened section. He used
method similar to Von Karman and Christensen® , and derived an equation relating the
spanwise variation of normal stress to the applied load. However he did not provide any
direct relation between rotations and the applied load. The spanwise distribution of stress
given by Beskin'” does not agree with Fine and Williams® and Benscoter® . Beskin'” gave
the location of the centre of twist and also proved, for a single-cell unstiffened section,
that the centre of twist coincides with the shear centre. In the method of solution given
by Beskin'” and also by Fine and Williams® , the designer is required to calculate an

additional section property which is not required in the Benscoter” theory.

Benscoter” theory provides a more accurate analysis to overcome the problem in finding
warping shear stress as faced by Von Karman and Christensen* and Fine and Williams®,
by starting with developing assumed forms for the components of deformation.
Benscoter” then finds the strains by simple differentiation and then obtains direct and
shear stresses due to warping by using the stress-strain relationship, in this way

Benscoter” provided a more direct approach to the problem.
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Benscoter” considered the loading, end conditions, and cross-sectional shape of the beam
to be arbitrary. He assumed the beam to be non-uniform and of multi-cell design. His
theory is applicable to mono-coque, or unstiffened, sections . Benscoter” theory rests on
the basic assumption that the axial displacements leading to normal stresses have the
same transverse distribution at a section of an arbitrary beam as would occur in Saint
Venant torsion of a uniform beam with that section. He developed differential equations
which relate the spanwise variation of warping displacements to the applied torsional
load and also which relate the rotation (angle of twist) to the load. Benscoter” provided

methods for the calculation of various stress distributions.

The final solution of Benscoter® bears a close resemblance to that of Von Karman and
Christensen® . Infact the governing equations are identical except for section properties
and it can be shown that the method of analysis used by Von Karman and Christensen*
will lead to a solution in complete agreement with Benscoter’ if appropriate
modifications are introduced to correct their spanwise variations of stresses and
rotations. Benscoter” theory has the added advantage of being able to handle different
geometric shapes of multi-cell closed section beams with special application use in the

aircraft industry of incorporating various taper angles in the geometry of the beam.

Waldron' has given a sectorial method of analysis for thin walled beams with open or
closed cross-section subjected to torsional loading. This method enables warping
restraint effects due to non-uniform torsion to be incorporated into a general beam
theory covering all solid, thick walled and thin-walled beams of non-deformable cross-
section. The distribution of warping restraint stresses around the section is defined in a
similar way as for bending by a system of sectorial co-ordinates and several additional
geometric terms. The difficulty in this analysis is the requirement of calculating the
various sectorial functions which becomes quite tedious when performed by using hand
calculation method. However a computer programme can solve this problem and make

the analysis very useful tool.
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1.2.3 COMPOSITE BEAMS

During the course of literature survey no attempt has been encountered which relate to
the torsional analysis of single cell composite tapered beam, multi-cell composite
prismatic beam and multi-cell composite tapered beam. The torsional analysis of various
open section composite beams and single cell composite beam was undertaken by ATA” .
However other direct analytical methods which have been formulated for torsional
analysis of thin-walled composite beams are basically for specific composite box sections

such as helicopter blades.

Reissner and Tsai'® developed shell analysis for bending stretching and twisting of
composite cylindrical shell structures. Mansfield and Sobey'® developed a simple thin-
walled contour analysis and introduced the concept of the aeroelasticity tailored
composite helicopter blade. Using a simple composite beam model, Hong and Chopra®**'
formulated comprehensive analysis for aeroelastic stability of advanced composite rotor
systems. Panda and Chopra® extended this analysis from hover to the forward flight
condition, and demonstrated the potential for composite tailoring to increase aeroelastic

stability and reduce blade vibration. Rehfield” developed a thin-walled contour analysis

for tailored composite beams and applied this formulation to a variety of beam problems.

Bauchau™ developed a thin-walled contour formulation using a refined approach to
warping. Variations of this work have been incorporated into a finite element method®.

Bicos and Springer®® investigated the minimum weight design of a semi-monocoque
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(stringers and webs) composite box beam using a reduced plate model. Libove and
Chang®’ have also developed a thin-walled contour analysis which is similar to the work
of Mansfield and Sobey'’. Klang and Kuo® developed a method using plates and corner
springs to model the composite box beam. Minguet and Dugundji*’ used a reduced plate
formulation to investigate coupled composite beams. The main focus of this experimental

and analytical study was on solid section beams under large deflections.

Smith and Chopra® proposed an analytical method for predicting the effective elastic
stiffness and corresponding load deformation behaviour of composite box beams by
representing the walls of the beam as four laminated plates which are built up from layers
of orthotropic plies. Barrau and Laroze’' used a finite difference method to calculate
torsion stiffness, locate the shear stresses and shear centre of a composite box beam

undergoing free torsion.

Chai Hong Yoo & Samir** applied a numerical procedure to determine the torsional and
flexural properties of multi-cellular cross sections which are used frequently in modern
curved highway bridge girders. The solution of shear flow in multi-cellular sections
becomes indeterminate and hence requires as many number of equations as the number
of cells. Chai Hong Yoo & Samir’* developed an algorithm to evaluate these
indeterminate shear flows and incorporated it into a computer programme. They
examined two hypothetical multi-cellular sections and presented the numerical results
along with input preparation. Their computer programme SECP provides an opportunity
for an automatic evaluation of cross sectional properties of a cross section with a large

number of cells.

Steen Krenk & Bo Jeppesen” have formulated the torsion and shear load problems of
elastic beam cross-sections of moderate wall thickness in terms of finite elements with

warping function as primary unknown variable. They concluded that by introduction of
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suitable internal degrees of freedom in the shear problem the stiffness matrices of both
problems become identical. Their method is applicable to both open and closed cross-
sections. An example was provided for efficient PC implementation. Moderate thickness

of 4 mm to 20 mm were discussed in the examples presented .

J Jonsson®® used simple one dimensional finite elements in the plane of cross-section to
model the axial displacement modes of thin-walled beams. He determined the axial shear
displacement modes, and the torsional and distortional warping functions based on the
weak formulation of axial equilibrium of an infinitesimal section cut out. He then used
the axial displacement functions to determine the shear stress distributions and the
section properties. J Jonsson®® method is applicable to open , closed and multi-celled
cross sections. He found the transverse distortional modes by the use of a frame model in

the plane of cross section.

J Jonsson®. states that in the analysis of thin-walled beams it is often necessary to
consider the effects of distortion of the cross-section. The distortion in the plane of the
cross-section generates axial warping displacements. On the basis of a known in-plane
distortional displacement mode it is possible to derive a unique warping function and the
related stress distributions. J Jonsson used the local axial equilibrium to derive the main
differential equation for determination of the distortional warping function and shear
distributions. J Jonsson stated that in closed single or multi-celled cross-sections it was
necessary to introduce circulation shear force flows around the cells to achieve
compatibility of the axial displacement. He generalised the methods for analysis of closed
single or multi-celled cross-sections to include distortional displacement modes. J
Jonsson* showed that axial extension, flexure and torsional warping are included as
special cases of distortion. J Jonsson®* also presented a generalisation of the conventional
orthogonalization procedure and a normalisation technique for distortional modes. A
triple cell cross-section was used to illustrate the generalised calculation procedure and
computed results. His approach includes the effects of distortion and hence can be used

. . . . . . . 32
in cases where the distortion is occurring in actual practise. However Jonsson *~ has not
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dealt with the theory of composite thin-walled single-cell and multi-cell box beams with
prismatic and tapered geometries. Also he has not validated his theoretical isotropic

results with any experimental or finite element analysis.

J Jonsson™ has generalised the classic thin-walled beam theory for open and closed
cross-sections to include one distortional mode of deformation. J Jonsson® introduced
distortional cross-section parameters and gave the new orthogonality conditions for
uncoupling of the axial displacement modes. His normalisation technique for the
distortional modes leads to unique distortional cross-section properties. Since the
theoretical formulations for torsion and distortion are nearly similar , therefore they
result in nearly identical equilibrium equations. J Jonsson® study of the order of
magnitude of the governing torsional and distortional parameters shows the difference
between open and closed cross-sections and the related solution types. Also the
difference in the order of magnitude of the governing cross-section parameters leads to

approximate solution techniques.

J Loughlan & M. Ata’” presented a detailed experimental work which examines the
constrained torsional response of carbon fibre composite beams for the cantilevered
configuration with torque applied at the free end. J.Loughlan & M. Ata’’ reported and
discussed the behaviour of open-section beams and that of single-cell closed-section box
beams and showed that the experimental findings corroborate simple engineering
theoretical approaches. They carried out tests on zed and angle-section beams and thus
examined the effects of primary and secondary warping restraint respectively on the
torsional response of open section beams. They determined the stress distribution along
the beams and around the cross-sections from the measured strains during test obtained
from surface bonded strain gauges and showed that the comparison of these results with

theory was in good agreement.
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JLoughlan & M. Ata®® presented a simple analytical procedure for determining the
constrained torsional response of a specific class of carbon fibre composite box beams.
Their analysis approach essentially makes use of the existing theories of torsion
appropriate to isotropic construction and these are then suitably modified to account for
the non-isotropic nature of typical carbon fibre composite material. The composite box
beams are devoid of overall elastic couplings through the use of constituent laminates
which are symmetrically laid-up about their own mid-planes and which possess in-plane
orthotropy. The thin walls of the box beam can have different lay-up configurations
provided the stiffness distribution around the sections is of symmetrically disposed
nature. It was thus possible in the analysis to have different lay-up configurations in
flanges and webs. The constrained torsion considered by J.Loughlan & M. Ata®® is that
of the cantilevered box-beam with torque applied at the free end and the torsional and
warping rigidities of the composite box-sections being determined through the use of the
appropriate equivalent engineering elastic constants of the individual thin composite
walls. J Loughlan & M. Ata®® showed that the comparison between finite element and
theory was in close agreement and also that the use of appropriate equivalent engineering
elastic material constants in the theory was able to predict the actual behaviour very

closely.

J Loughlan & M. Ata® gave the details of a simple analytical procedure for determining
the constrained torsional response of a specific class of carbon fibre composite box-
beams. They have given the comparison of the theoretical results for a composite single-
cell box section using the Benscoter and Waldron approaches vis a vis the finite element
results. It is shown that the Benscoter results are closer to the finite element results and
depict the actual behaviour of the structure. The theoretical results for the various
composite configurations of single cell box section have also been compared by
JLoughlan & M. Ata® against their experimental results and found to be in good

agreement.
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J.Loughlan & M. Ata* presented a simple engineering theoretical approach in this paper
to predict the initial constrained torsional response of open and closed section composite
beams. The flat walls of the composite beams are symmetrically laminated about their
own mid-planes and possess membrane orthotropy. The analysis approach of J.Loughlan
& M. Ata® simply makes use of the existing theories of torsion appropriate to isotropic
construction and these are then suitably modified to account for the non-isotropic nature
of the composite material. The torsional and warping rigidities for use in the analysis of
the composite beams are thus duly determined through the use of the appropriate
equivalent engineering elastic constants of the individual thin composite walls and the
concept of effective thickness is employed to account for the different stiffnesses of the
walls. The stress systems set up in open-section and single-cell closed-section carbon
fibre composite beams when subjected to torsion with variable twist are examined in the
paper. The comparison between open and closed section beam theoretical results vis a

vis the finite element results and the experimental results show good comparison.

Grant*' applied the network theory to the problem of Saint-Venant torsion in thin-walled
multi-cell sections by treating the section as a network of interconnected limbs. The
method has considerable advantages over traditional methods of calculation since it
exploits the topological independence of a network from its physical characteristics. Only
routine matrix operations are required to set up and solve a system of linear algebraic
equations. Four distinct network methods are identified, i.e., circuit, cutset, node and
face analysis. Each method requires the solution of far fewer equations than the total
number of problem variables. It is possible to select the appropriate method to minimise

the number of equations.

Shakourzadeh*” formulated finite element for the torsion problems of thin-walled beams.
He based the element on Benscoter’s beam theory, which is valid for open and also
closed cross-sections. The non-polynomial interpolation presented in his paper allows the

exact static solution to be obtained with only one element. Numerical results have been
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presented for three thin-walled cantilever beams, one with channel cross-section and the
two others with rectangular cross-sections. The influence of the transverse shear strain
has been investigated and the different models of torsion compared. The results obtained
with one-dimensional torsion elements were compared with those obtained using shell

elements.

Kaiser® presented a theory for linear analysis of thin-walled beams with a multi-celled
closed cross section made up of general composite laminates containing elastic
couplings. Kaiser* modified theory is based on the Vlasov type theory of Chandra and
Chopra® | which includes non-classical effects, such as transverse-shear deformation and
torsional warping, and includes an approach to take in-plane warping effects into account
. The in-plane warping is caused by the effects of elastic coupling of the laminated
branches of the cross-section and by the strains in the direction of the contour line of the
cross section. Kaiser* was able to achieve good correlation between analytical numerical

and experimental results for the case of a two-celled anisotropic composite beam.

Rodriguez** presented a study of a special case of symmetric laminated composite
cantilever beams. His approach models beams that are tapered both in depth and in width
and investigates the effect of the ply lay-up angle and ply taper on bending and
interlaminar shearing stresses. Rodriguez** expressed the beam stiffness matrices as linear
functions of the beam length for the determination of stresses and deflections. Using
classical lamination theory the stiffness matrices are determined and assembled at all the
points of interest along the length of the beam. The stiffness matrices are then inverted by
Rodriguez* and necessary stiffness parameters numerically extracted for determination
of design information at each chosen location. He investigated several ply lay-up
configurations, and presented his design considerations based on the findings.
Rodriguez** also presented the recommendations for the design of these beams and also

a means to anticipate the location of highest stresses encountered on beam.
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Chandra & Chopra® fabricated symmetric and antisymmetric lay-up graphite-epoxy
composite beams with thin-walled rectangular cross sections using autoclave moulding
technique and tested these under bending, torsional, and extensional loads. The bending
slope and elastic twist at any location were measured using an optical system, and the
results were correlated with predicted values from a simple beam analysis as well as finite
element analysis. For symmetric lay-up beams, the bending-induced twist and torsion-
induced bending slope are predicted satisfactorily using simple analytical solution. The
correlation with measured experimental data however generally improved using finite

element solution.

Rehfield” focused on two non-classical effects in the linear theory of thin-walled
composite beams i.e., torsional warping and elastic coupling between bending and
transverse shear. Rehfield* clarified and analysed these non-classical effects with some
simple examples involving cantilever beams. Torsional warping is shown to be important
in box beams having a thin-walled, closed cross section and loaded with a twisting
moment applied at the end. Bending-transverse shear coupling is shown to be important
in the analysis of a beam designed for extension-twist coupling and with a distributed
lateral load. The importance of including these effects in a complete theory has also been

discussed .

Bauchau*’ stated that when simple beam theory was applied to the composite beams, its
accuracy became questionable due to the fact that shearing and warping deformations
become more significant, as the shearing stiffness of the composite laminates is often
very low. Also several elastic couplings can occur that strongly influence the behaviour
of composite beams. The torsional behaviour of thin walled composite beams which have
important implications for aeronautical structures are deeply modified due to these non-
classical effects. Bauchau®’ presents two analysis methodologies for composite beams

and describes experimental results obtained from thin walled, rectangular cross sectional
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beam. Bauchau®’ suggests that the out of plane torsional warping of the cross section is
the key factor for an accurate modelling of the torsional behaviour of such composite

structures.

Wu* derived the governing equations for composite thin-walled beams. His theory is
suitable for open-section or closed section beams of any shape and laminate stacking
sequence. Using more general assumptions than Vlasov, Wu* equilibrium equations
consist of seven ordinary differential equations. These seven equations were further
reduced to four coupled ordinary differential equations, which govern the shear
deformation of the middle surface. Wu** considered the numerical example of
displacements of channel beams of composite laminates according to his beam theory and

compared his results against finite elements and other existing theories.

Chandra® analysed the structural behaviour of coupled, thin walled, composite beams of
open as well as closed section using Vlasov theory, and validated the results by
experiment. Chandra® analysis modelled the walls of beams as general composite
laminates and accounted for the transverse shear deformation of the cross-section. The
out of plane warping deformation of the cross-section was included implicitly in this
formulation. In order to validate the analysis, graphite epoxy beams of various cross
sections such as solid rectangular, I-section, single-cell rectangular and two cell airfoil
were fabricated and tested for their structural response under bending, torsional and
extensional loads. Chandra® observed good correlation between theoretical and

experimental results.

Barbero” developed a simple methodology for the analysis of thin walled composite
beams subjected to bending, torque, shear, and axial forces. He considered members with
open and closed cross-section. Each laminated segment is modelled with the constitutive

equations of classical lamination theory accounting for a linear distribution of normal and
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shear strains through the thickness of the walls, thus allowing for greater accuracy than
classical thin walled theory when the walls are moderately thick. Barbero® did not use
the geometrical properties used in the classical beam theory such as area, first moment of
area, centre of gravity etc , due to the variability of the material properties in the cross
section. Instead he used mechanical properties such as axial stiffness, mechanical first
moment of area, mechanical centre of gravity etc. , which were defined to incorporate
both the geometry and the material properties. Barbero®® finally presented comparison of

theoretical results with the experimental results.

1.3 THE OBJECTIVE OF RESEARCH

Although a lot of work is nowadays being undertaken to understand the true nature and
response of the composite materials under various loading conditions. However it still
remains an area which will need to be looked into by researchers for years to come
before it can finally be brought at par with their older metallic partners. Also none of the
aforementioned literature fully investigates the torsional response of multi-cell prismatic

and tapered composite box beams.

Rodriguez* has dealt with study of a special case of symmetrical laminated cantilever
beam and used his approach for determination of stresses and deflections in these
cantilever beams. However he did not present any study for multi-cell prismatic &
tapered box beams. Moreover he did not verify his single cantilever theory against finite

element or experimental results.

Kaiser” presented a theory for linear analysis of thin-walled beams with multi-celled
closed cross-section. He gave example of two-celled composite beam and compared the

results from his theory with the experimental results. Kaiser* has however not given any
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comparisons for a three celled composite beam. Moreover he did not include the analysis

of multi-celled tapered composite box beam in his theory.

Jonsson **** has given his theory for the multi-cell thin-walled box beams. He has also
shown results for multi-celled tapered box beams. However his paper was presented in
April 1999 in Thin walled journals and by that time the author of this Thesis had already
finished the research work and was in the process of final submission. His approach
includes the effects of distortion and hence can be used in cases where the distortion is
occurring in actual practise. However Jonsson *>** has not dealt with the theory of
composite thin-walled single-cell and multi-cell box beams with prismatic and tapered
geometries. Also he has not validated his theoretical isotropic results with any

experimental or finite element analysis.

The objective of this research is to develop a generalised straightforward analytical
analysis method for restrained torsional problem of thin-walled multi-cell composite box
beams with prismatic and tapered geometrical configuration by incorporating the
complications emerging from the use of such materials into the existing isotropic
theories. This theory assumes no distortion of the box beams and hence can be applied to

structures where either there is no distortion at all or having negligible distortional effect.

To validate the proposed theory, a series of finite element analysis is aimed to be
performed on isotropic box beams , and a wide range of single-cell and multi-cell

prismatic and tapered composite box beams under restrained torsion.
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2 BASIC TORSION THEORY

2.1 DEVELOPMENT OF THE FUNDAMENTAL DIFFERENTIAL EQUATION
GOVERNING THE CONSTRAINED TORSIONAL RESPONSE OF THIN-
WALLED VARIABLE CROSS-SECTION BEAMS.

The fundamental differential equations being developed in this chapter were presented by
Benscoter” for generic beams when the general shape of the cross section does not
change rapidly.

Shear stress is related to shear strain by

=Gy (2.1

Axial Stress is related to strain by

o=F ¢ (2.2)

Two dimensional Stress Strain relationship is given by

E
o, = E, T V €&,
z l_vz ( z s )

Strain &, is assumed to be zero , since no deformation of the box takes place.
Hence we have

E

& = i8]
Here E = l—Evz (2.3)

Strains are expressed in terms of displacement by following two equations
Eq. 2.4 and Eq. 2.5 (Reference figure 2.2)

Shear Strain y = ¢, +¢,

¥,
G

w
== 4 2.4
7 =3 (2.4

143 bbd

here “w” is axial displacement and “V,” is tangential displacement.
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and

Normal Strain &= — (2.5)
&

Shear Flow

q=Tt (2.6)

Normal Stress Flow

N=ot (2.7)

Equation of equilibrium for a differential element of web is given by considering figure
2.1 showing the forces acting on the element.

Following can be deduced from the figure considering the force equilibrium in the z
direction.

oo,

o,tds - o, tds - dztds + qdz - qdz - %ds dz = 0

D qztds + Hds dz = 0
&

Since Force Intensity N= o t
Therefore the equation of equilibrium of a differential element is given by

i

q _
St 30 (2.8)

Equation of equilibrium relating internal shear flows to section torque is given by

_[qrds: T (2.9)

a

where r is the radius for any point on the surface measured from the geometric centre.

Condition of Continuity of axial displacements is given by

§@ds:o (2.10)
&

This is so as there is No Axial load applied i.e. Pasa =0 and hence axial displacement
variation around the box section is self balancing.



24

Substituting Eq. (2.2) into (2.7) and (2.1) into (2.6) we get Eqs (2.11) and (2.12)

respectively.

N=(E &)t (2.11)

q=(Gy )t (2.12)

Next substituting Eq. (2.5) into (2.11) and (2.4) into (2.12) we get Eqgs (2.13) and
(2.14) respectively.

N=(E/%)t (2.13)
g%, X
q—G(&+ &)t (2.14)

Putting values of N and q from above in the equation of equilibrium Eq (2.8), we have

Yy _
~t) =0 (2.15)

E2e2)+ 6202y + 6¢l¢
& & & & s
Warping displacement may be expressed as the product of a basic transverse distribution

(the unit warping function) and the rate of twist

w= W6 (2.16)

The unit warping function W is referred as sectorial co-ordinate w(s) in chapter 3 and
chapter 4.

Substituting Eq (2.4) into Eq (2.1)

ad
&

r = G(% + ) (2.17)

As spanwise derivative of tangential displacement is given by the product 1.6

Here 1 is the perpendicular distance from shear centre to the tangent at any point in the
mid-plane of the beam section. This r, is referred to as Pg in chapter 3 .
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so Eq 2.17 above becomes

= &2 G @ (2.18)
&

Also Shear stress may be expressed as product of a basic transverse distribution and
Go

Hence

t=7G 6 (2.19)

Here 7 is the basic transverse distribution and is defined as the transverse distribution
for unit rate of twist,

where

Unit rate of twist is defined as G@ =1

Substituting Eq 2.16 and 2.19 into 2.18 we get

?G9=G@9 + G O
&
?'_‘@'Frt
&
w
5= Ten @)

Integrating Eq (2.20)

W = j (7 -rr)ds + C (2.21)

Warping displacement may be expressed as follows
w=w f(z) (2.22)
Eq of equilibrium Eq. (2.15) is multiplied by W and then solved by Glerikan’s method

Integrating over cross section , 1st, 2nd and 3rd integrals of the equation are evaluated
and finally the equation of equilibrium reaches the form below



d

174

d d o _ &,
Z(E’Iw—fz) - G_[t (7 -1) ds - G!t (7 -r) Ztds =0 (2.23)

I, is warping moment of inertia given by

I, = Iw(s)z tds

where w(s) is the Sectorial coordinate
and “t” is thickness

Now
Substituting Eq.(2.14) into (2.9) we have

I Gt + Gt Pyras =T
g & &

G_[ tr,@ds+ GI tr,éV’
& @ 12

a

ds =T

(2.24)

Opening equation of equilibrium Eq. (2.23) we can write as

i(Eflwdl) - Grz W s - Gtz
dz dz / 17\ a

+(Gjtrt%ds + G [t Zt ds) = 0

—1t ds
174

(2.25)

Substituting the value of Torque T from Eq. (2.24) into (2.25) we have

d ., df _ _
—(E1,=) - G!trgds - G_[tr
Since q=tt (2.27)

The 2nd Integral of Eq. (2.26) becomes

Lt
[l
S| ®
e
1]

2 ey
|
SN

ds =-T (226
- ds (226)

ds =37, § %ds (2.28)

26
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The RHS of Eq. 2.28 becomes zero using the continuity equation Eq (2.10)

Hence

[tz M s =0 (2.29)
T B

Now substituting Eq. 2.29 in Eq. 2.26, the 2nd Integral of 2.26 becomes zero and we
have

7 P 4

d df
—(E'I,) - G|t =-T (230
—(E1,~) j X (2.30)

This equation 2.30 is the equation of equilibrium

Now for the solutions of Eq. 2.24 and 2.30 we consider
Vi=r1 ¢ (2.31)

Substituting Eq. (2.22) w=w f(z) and (2.31)into Eq. (2.24) we have

o _ 0
G_[ trtg(w f)ds + GI tr,(g (. ¢))ds =T

Jin® ol ined
Gfa tr,—og ds + Ga tr,(g (. ¢)ds =T (2.32)
Substituting o _ T -,
17
and %= 6 into Eq. 2.32 we have

ij tr( 7 -r)ds + Gej tr>ds =T (2.33)

Second Moment of Area introduced by Benscoter 1. = I t r,2ds (2.34)
a
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Putting (2.34) into (2.33) we have

fo t7 rds - GLf +GL.& =T  (235)

Sincewehave 7 =7 G 6 (2.19)

Multiplying both sides by r,t ds and integrating over the cross section
we have

_[ Trttds=_[ T GO tds

a a

Left hand side above is the definition of Torque, hence we have

T:I ?rttdSGQ

a

Here _[ 7 it ds s defined as Unit Torque = 7'

a

Hence
T=T7G 64
; - T
Hence Unit Torque 7 = —
Go

We know that T= GJ @

Therefore J = l
Go

So we can conclude that Torsion constant J = Unit Torque T
=T

Hence we can write J as below

J=I tT r,ds

a
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we have Eq. (2.35) as

Gf(J-L) + GLO = T (2.36)

A dimension-less section constant has been defined by Benscoter” as follows

7 =1L (2.37)
IC

where
J 1s the torsion constant
and

I. is Second Moment of Area

This constant 7° indicates the slenderness of the cross section or the amount by which

the section is non regular. For a regular polygon it is zero. For a very thin supersonic
wing it approaches unity. For a subsonic aeroplane with a fairly thick wing the value of
n* will be in the neighbourhood of 0.5.

Substituting Eq. 2.37 into Eq. 2.36 we have

-GfIc(l-%) + GLO = T (2.38)

-GfLyp* + GLO = T (2.39)
Rate of twist @ is given by Benscoter as follows
6 = =2 + (2.40)
Gl,
where “f” is the spanwise variation of axial displacements

The first term here gives the rate of twist due to shearing strains and the second term
gives the rate of twist due to axial warping displacements.

f can be written as below



(2.41)

Now substituting Eq. 2.31 into Equation of equilibrium 2.30 we get

d df _ 0
—(E'l =)= G |1 —_ ds =-T
(2%, j T — () ds

i(E/lwﬂ - GOt 7 rds=-T
dz dz /

Si 6= 7
ince 6 = ?&—(qﬁ)

Torque “T” is given by Benscoter as follows

i(E/IWéJ—C) - Gl = - T (2.42)
dz dz

E
1-v

Here E =

2

Now putting value of f into Eq. 2.42 we have

T
n*GI,

d d 6
BT S - - Gl = - T
dz( wdz(nz )

T
n°Gl,

d ., d. 6 d ., d
el BT e J) = =[] — -GJg = - T
ZET GG - E (D)
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d T

d ., d_ @ d,
—(E'l,—(—=)) -Gl = - T+ —(&£'],—
A CERep) A CEN feerer )
where 6, = I

G,
Hence we have
d d, 6 d d o
—[E'],—(5)] -GI8 = -T + —[ET, —(= 2.43
pal ”dz(nz)] ! wdz(nz)] (2.43)

. . 0

In solving equation 2.43 , —- may be regarded as unknown.

n
Equation 2.37 suggests that 7 will have only a small variation along span if the general

shape of the cross section does not change rapidly. The section properties J and 1. are
both properties of the shear carrying area. If the variation of “n”

neglected then equation 2.43 takes the form

«“,_»

along “z” is

i[E’Ciq] - GJo = -T + i[E’C%] (2.44)
dz dz dz dz

where Torsion bending constant has been defined below by Eq. 2.45

IW
—

n

Ee (2.45)

The differential equation 2.44 being presented here can be used for analysing torsional

response of single-cell and multi-cell isotropic prismatic and tapered box beams. The
solution procedure for using this equation in the analysis of isotropic materials and
composite materials has been discussed in chapter 3 and chapter 4 respectively.
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Fig 2.1 Direct stress and shear flow system on an element of a closed section

Fig 2.2 Distorted shape of element due to shear stresses in an element of the beam

section wall



33

3 TORSION THEORY OF MULTI-CELL THIN -WALLED ISOTROPIC
BEAMS

3.1 INTRODUCTION

Warping is considered to be the most significant effect of the application of torsion on
single cell and multi-cell thin walled beams. When there are no axial restraints applied on
the beam i.e. free torsion case , the beam is not restrained at any end then according to
the classical St.Venant’s theory the only stress that could exist in the thin walled beam
under such conditions is the shear stress. However if the beam is restrained axially at an
end then under such restrained torsion case direct (axial) stresses do exist on the

torsionally loaded beam.

The reason for the existence of these direct (axial) stresses is simple, since the beam
wants to warp due to the application of torsional load and is not allowed to warp at the
restrained end then this gives rise to direct (axial) stresses in the beam. These direct
(axial) stresses are a maximum at the restrained end and drop down to zero at the free
end. The rate of twist which is constant along the length of the beam in free torsion case
of prismatic uniform beam does no longer remain constant in the restrained torsion case
due to the existence of the warping restraint , which produces variable twist and also

gives rise to the direct (axial ) stresses.

Thin walled beams subjected to torsion experience two types of warping. Primary
warping is the warping of the mid-plane of the cross-section which is constant across the
wall thickness. Secondary warping is the warping of the section across its wall thickness .

In such sections which posses primary warping the effects of secondary warping are
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usually neglected as they are generally much less than primary warping. However if a
section only exhibits secondary warping then this must be accounted for.
The assumptions in the evaluation of the theory of torsion of thin walled beams are listed

below.

(a) Cross-section of any beam, is stiffened against distortion, i.e. , it remains

undistorted in its own plane after loading.
(b) Shear stresses normal to beam surface are neglected.

() It is generally agreed that thin wall theory may be applied with reasonable

accuracy to sections for which the ratio
taasf/ b £ 0.1

where tmax 1s the maximum thickness in the section and b is the typical cross-
sectional dimension. A general view of thin walled multi-cell box beam cross

section is shown in figure 3.1 .
3.2 TORSIONAL ANALYSIS OF MULTI-CELL SECTION

By considering the connectivity condition of a single cell, an expression may be derived
in terms of constant shear flow “F” and the rate of twist ‘@’ which has been given by

Waldron' as follows
§ (F/8)ds = G Q8

For multi cellular sections it can be restated as

= 1 ﬁds

GQ, "o
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Here G is the shear modulus , 6 is the thickness and “@’ refers to rate of twist of
complete section about its shear centre. The contour integral is evaluated around the
entire perimeter of the ith cell only. The area of the ith cell is €2;/2. When pure torque is
applied, the shear flow ‘F;’ around each of the separate cells is constant , and in the
shared walls it is the difference in shear flow of both adjacent cells. When applying the

above equation to ‘n’ cells we get ‘n’ simultaneous equations of the general form

i1
0GQ. = - Fia .
o

S,
+ F; §? - Fir oo (3.1)

ii+1

i—-1,1
here s ;1 , 8 ii+1 are the length and thickness respectively of the shared wall connecting
cellsiand i+1.

For the single cell an extra expression is available from the Torsion equilibrium

condition

T = 2AF; (Bredt Batho Formula)

we may write above for multi-cell sections as follows
T= Z Fi O (3.2)

Hence it is now possible to solve for the shear flows ‘ F; * and rate of twist ‘&’ for the
multi cellular box section using equations 3.1 and 3.2 .

Example
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The following example refers to figures 3.6 and 3.7, and shows the application of
equations 3.1 and 3.2 in calculating the rate of twist and the Bredt Batho shear flows in
each of the three cells for a multi- cell box with given dimensions as shown in referred

figure.

First we set up three equations using eq. 3.1, one for each of the three cells.

6GQ, = -Fi,y ;’:’ + F §g—f - Fin ;’l’:l 3.1
Here we have

T= 1,000,000 Nmm

Q. = 2*Area = 2*(200*150)= 60,000 mm” for each of the three cells

G = 80700 N/mm® ( steel)

thickness &= 1 mm for each cell

Hence for cell i-1 we have

6*(80700)*(60,000) = + Fi; *(700 ) - F; *(150)

and for cell i we have

6 *(80700)*(60,000) = - Fi; *(150) + F; *(700 ) -  Fiy *(150)

finally for cell i+1 we have

6*(80700)*(60,000) = -F; *(150 ) + Fi *(700)

Next the fourth equation is written from eq. 3.2 as below

T= i Fi Q.i (3.2)

i=1

T= 1,000,000 = 60,000 *F;.,; + 60,000 *F; + 60,000 *F;;
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Now solving above four equations we get the following rate of twist € , and the Bredt

Batho shear flows in the three cells i-1 , i and i+1 as shown in figure 3.7 .

6 = 5.673 E - 7 rad/mm
Fi.1=5.25 N/mm

F; = 6.17 N/mm
Fit1=5.25 N/mm

3.2.1 SECTORIAL CO-ORDINATE w(s)

Sectorial co-ordinate around the isotropic single-cell box section is given by M.Fine

&Williams D*  as follows

5 lI]
we) = (P =—)ds (3.3)
0
24 :
where ¥ = 7 for closed section (3.4)
2
Hence
24
| as
w(s) = pr- —L d
©®) J [Pe- =L 1 ds
w(s) = IPRds —I 34 ds



Since q =7t

K 7

Here “q

is shear flow and “ 7 ” is shear stress

“T” 1s applied Torque and “t” is thickness

T
also =
17 %4
therefore Tt= l
24
or 2A=1
Tt
hence
r
W(S): I PRdS 'I %ds
0 %k
$=*1
4
since rate of twist 6 = @ = @:L
dz 24
therefore
1= 90§49 4
2A4° Gt

using above T , w(s) becomes

Gt

(3.5)



w(s) =

w(s) =

w(s) =

since 6@

therefore

PR ds

O ey

PR ds

O ey

PR ds

O L &y

GJ ¢4 4
_i 244 ° Gt ds
0 (§g§*t)

Sectorial co-ordinate is given as follows

j. PRdS
0

f ) (3.6)

5

.1
6G

39



40

(3P

Here §E;S_ has cancelled out top and bottom and thus “q” and “G” are considered

constant for the single cell box , but we can have different thickness “t” .

This can be written for multi cellular sections as follows

w(s) = [ Peds - %J; ~ids (3.7)

Since the integration must be started at point of zero warping , therefore an imaginary
cut is made in the closed box section for this reason. Above formula for w(s) takes into

consideration the effect of imaginary cut in the closed section.
Warping distribution for a multi-cell box beam is shown in figure 3.2 .
Example

Referring to figures 3.6 and 3.8 , and the example mentioned in section 3.2 for the
calculation of the rate of twist and shear flows for a three cell box, now the same
example is being extended for calculation of the w(s) at each location of the multi-cell

box section using equation 3.7

We have defined w(s) for multi-cell section as

w(s) = Prds - ds 3.7

ISR s
© Cm—y
D=
Qe
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Now calculating the 1st and 2nd integral of eq. 3.7 for each of the three cells of the

multi-cell section we have as follows.

1st Integral
cell i-1

Pg is considered positive when going around Shear centre in Anti-Clockwise direction.

w(S)an= [ Prds = [ 300ds=22500 at B
0

w(S)s.c= [ Prds = 22500+ [ 75ds=37500 at C
0

w(s)ep= [ Prds = 37500 -[ 100 ds=22500 at D
0

w(s)D_Ezj Prds = 22500+ 75ds=37500 atE
0

w(S)er= [ Prds =37500+ j 300 ds = 60000 atF
0

1st Integral

cell 1

w(S)on= [ Prds =7500 at H
0

W(S)u1 = J Prds =22500 atI
0

W(S)I.J:j Prds =37500 at]J

o

w(s)ix = [ Prds=52500 atK

O ey

w(s)s= [ Prds=60000 at L
0
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1st Integral

cell i+1

w(Suxn= [ Prds = [ 300ds=22500 atN

O C—

w(shvo= | Prds = 22500+ [ 75ds=37500 at O

© ey

w(s)or = [ Prds = 37500 - [ 100 ds=22500 at P

(SR

w()eq= [ Prds = 22500+ [ 75 ds=37500 at Q

o

w(s)or = | Prds =37500+ j 300 ds = 60000 atR
0

Now 2nd Integral

cell i-1

ﬂ B 525 J‘ ds = 114.60(s) = 8595.5 atB

1
6 Gt,  (567E-11)*(80700) 3

w(s)aB = JS-

w(s)g.c =8595.5+(114.60 * s) =31516.83 at C

w(s)cp = 31516.83 - (20.22 * 5) = 28483 at D

( Fjis -ve when going from C to D as actually +ve shear flow of 6.17-5.25 = 0.92 is
flowing from D to C )

w(s)pe =28483 +(114.60 * s) = 51404.5 at E

w(s)er =51404.5+ (114.60 * s) = 60,000 atF
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2nd Integral

cell 1

cut! [ ds=134.83(s)=13483 atH

W(S)G =
! 0 Gt ~ (567E—11)*(80700) )

w(s)mr =13483 +(20.22 * s) = 16516.8 at I
w(s)y = 16516.8 + (134.83 * 5) = 43483 at J
w(s)x = 43483 +(20.22 * s) = 46516.7 atK
w(s)ki =46516.7+(134.83 * 5) = 60,000 atL

2nd Integral
cell i+1
p ) 525
w(Shwx = | L g [ ds=114.60(s)=85955 atN
6 Gt,  (567E—11)*(80700)

0
W(sheo =8595.5+ (114.60 * s)=31516.83 at O

w(s)or = 31516.83 - (20.22 * 5) = 28483 at P

( Fiis -ve when going from O to P as actually +ve shear flow of 6.17-5.25 =10.92 is
flowing from P to O )

w(s)p.q =28483 +(114.60 * s) = 51404.5 at Q
w(s)or =51404.5 + (114.60 * 5) = 60,000 at R

Net effect of w(s) i.e. 1st Integral - 2nd Integral for all the three cells is shown in figure
3.9.



3.2.2 WARPING RIGIDITY (E T),

Warping rigidity according to Von Karman and Christnesen® is given as follows
ET) =  §$w (ES tds (3.8)

From figure 3.3 showing Sectorial Co-ordinate distribution,

for single cell plate element we have w(s) as follows

w(s) =LLW")S+WZ,

It satisfies conditions at all points along s
If s=0 wehave w(s) = w;
If s=L we have  w(s) = wy

W, +w,

5 )

If s=§ we have  w(s) = (

Hence above equation is valid at all points along s

So we have

w, —Ww,
k ’)s+wi]2

w(s) = [(

44



w,—w

wX(s) = (—Wk;wf ) 5> w2 Py x,
2 s, 2 2 2s 2
w (S) = Z{(wk +w; _2wkwi) tow o+ _L—(wkwi _wi)
Now for a single plate element we have
L 3 2
2 _ 1 2 2 x S 2 % 2 S
_!; wi(s)ds = F(wk+w,. -2w,w,) N + w *s + Z(wkw,. w) 5
Putting limits we have
T &
j wi(s)ds = ;(w,f +wl =2wow,) + wP*L + (wow,—wl)*L
0
r L
j w(s) ds =§(w,f +w =2w,w, +3w? +3w,w, —3w?)
0
¢ L
I w(s) ds =§(w,f +wl +w,w,) (3.9
0

Hence the Warping Rigidity (E I");defined above as

ET) = $w'(s)E; tds

45
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can now be written as follows
1 N
(ET) = EZ LtE* (wp +w. +w, w,) (3.10)
i=1

Example

Referring to figures 3.6, 3.8 and 3.9 , and the example mentioned in section 3.2 for
calculation of the rate of twist and shear flows for a three cell box, now the same

example is being extended for calculation of (E I')s for the multi-cell box beam.

(E )= = {(2*%(150)*(1)*(2.30769E5)*(13904)* ) +

W | =

(2*(150)*(1)*(2.30769E5)*(5983)* ) +
(2*(200)*(1)*(2.30769E5)*(5983)* ) +
(4*(200)*(1)*(2.30769E5)*( (13904)*+(5983)* +(13904*5983) ) }

(E T), = 2.560917534638936 E 16

3.2.3 SECTORIAL SHEAR FUNCTION S,(s)

Sectorial shear function for open sections is defined as
SW(s) = S,,(s) = [w(syds
0

in which case the integration must be started at a free edge.
However for closed section , we do not have any free edge and hence starting point must
be chosen arbitrarily. Therefore first an imaginary cut at any point of the section is

assumed and SSF (Sectorial shear function) distribution S, ; (s) of this quasi isotropic
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section is calculated by above equation. Afterwards it is modified by a constant to

provide final reduced value of the closed section SSF distribution S, .(s) . The S, ()

for a single cell box section is as follows.

S,.(5) = S,,0) - ﬁ [8,5(5)Pyds (3.11)

Here the second term on the RHS of the equation gives the constant which modifies the

final SSF distribution.

However in case of multi-cell box section the final reduced value of the closed section

SSF distribution S, () is given as

S . (s) at any location of cell i-1 = Fii - S »o(s) ofthe given location

S, .(s)at any location of celli = F; - S »o(s) ofthe given location

*

S, .(s)at any location of cell i+1 = Fy - S, ,(s) ofthe given location

* * * . . . .
Here Fi,,F; & F;: are the warping shear flows under constrained torsion in each of

the three cells and are calculated using following set of equations defined by Waldron' .

* _ « Sy i ds * Sii+1 Sw,O
6'GQ, = -Fu - 4F; §6— % § ds (3.12)

i-1,i i i,i+1 i

Three set of equations i.e. one for each of the cells are obtained from eq. 3.12

and the fourth equation is obtained using eq. 3.13

T = §F,Peds = le Fi Qi - §S,,Pds = 0 (3.13)

(Fw in eq. 3.13 is the self equilibrating shear flow)
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Solving these four equations , the four unknowns 8", F'y, , F'; & F'i, are obtained and

used to get the final reduced value of S, .(s) at all required locations in the multi-cell

S
box section. The detailed procedure showing the calculation of § ;’0 ds &

§SW,0PRds and hence the calculation of final reduced value of S,  (s) is shown in the

following example in detail.

In case of restrained torsion , the shear flow consists of two factors Bredt Batho shear
flow and warping shear flow. The applied torque on the beam is balanced by the Bredt
Batho shear flow , where as the warping shear flow does not take any part in the
balancing of the applied torque. Warping shear flow comes into effect only for the case
of restrained torsion, when the restraint applied at the end of the beam stops the warping
displacement of the beam at this end and hence gives rise to axial stresses all along the
length of the beam. In addition to the axial stresses , there exists a warping shear flow
which is self equilibrating around the beam cross-section. The reason for warping shear

flow being self equilibrating is that since no axial force is being applied on the beam

therefore §%ds: 0 , which means that axial displacement variation around the box

surface is self equilibrating. Therefore warping shear flow must also be self equilibrating

and should balance itself out on its own at any given cross-section of the beam.

Example

Referring figures 3.6, 3.8 and 3.9 , and the example mentioned above in section 3.2 for
calculation of the rate of twist and shear flows for a three cell box, now the same
example is being extended for calculation of S, (s) for the multi-cell box beam.

We need to first calculate S, ;(s) for each of the three cells and then later on it will be

modified to S, (s)

We know that



w(s) =K =¥, )3 —Lw,.)s +w,
and
S.,0(® = jw(s)tds

For Cell i-1 we have as follows

_ (13904-0) ,
75

w(s)ag = 18538 * s

w(S)a + 0

s

SW)O(S)AB=jw(s)tds = [ (18538*5)* (1) ds

0
s=75 for A-B
S,o()as = 521418 is the value at point B

Next

(5983-13904)
200

w(s)sc = 13904 - 39.60 * s

w(S)sc = w(s)s +

S,o(S)Bc=S8,,(8)B + jw(s)tds

= 521418 +j (13904 -39.60 * 5 ) * (1) ds
0
s=200 for B-C

S.,o(s)sc = 2510182 is the value at point C

Similarly for other points we find S, , (s) as below

S,,(s)at D=2510182

49



S, (s)at E= 521418

S,o(s)atF= 0

Now for cell 1 we have as follows

S, (s) at H=-299157
S, (s) at I=-299157
S, (s)atJ=-299157
S, (s) at K =-299157

S,o(s)atL= 0

Next for cell i+1 we have as follows

S,o(s)atN =521418

S,,(s) at 0= 2510182
S,o(s)atP =2510182
S,o(s)atQ = 521418

S,o(®atR =0

Now after finding S, ,(s) for all the three cells above , next we need to find §

for each of the three cells.

For cell i-1 ,

S

w,0
t.

1

50

ds
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]2 Suo ds =]‘5S’{’° ds
o i 0

Now we know S, ; (s)ap from above calculation as

s s 2
S,o()as=[w(s)ds = [ (18538 *s)* (1) ds=185.38 * %
0

0

So we have

1

1

B S 75S
J‘ %0 ds = j ;’0 ds = 13034942.0646067
o 0

next
€ 200
8 S
[ =tds= [ =2ds
>, )

Suo(®mc=S,,()s + [ws)ds = 521418 + [ (13904-39.60 *s) * (1) ds
0 0

2

S, (S)sc=521418 + 13904 *s - 39.60 * %

Hence we have

tn

C 200 S
j :") ds = j 1’"’° ds =329566719.101124
B 0

i

Similarly we calculate

;”0 ds = 398965980.337079

1

Q—y g
Tn



S;’O ds =329566719.101124

1

U t—t

S0 4= 13034942.0646067

& ey

S
Hence for complete cell i+1 we have § :’0 ds =1084169302.66854

1

Now for cell 1,

so we have

S
%0 ds =-9971511.23595506

1

Q=1

S
*2 ds=-67328342.6966292

o —

S
tw"’ ds =-19911910.1123595

ey

Sw 0
—ds =-67328342.6966292

1

NN
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4

i

L

S
j 0 Js=-9967921.34831457
K

S
»2 ds =-174508028.089888

t

For complete cell i we have §

7

*2 ds  for cell i-1 and cell i+1 are same ,

1

We calculate and find that §

S,
4

hence we have

S
§ tw"’ ds for cell i+1 = 1084169302.66854

1

Now

Next we need to find §SW,OPRds for the complete three cell box , which will be the

addition of §SW,OPRds for all the three cells i-1, i and I+1.

Hence first we find §SW,OPRds for cell i-1 which will be the addition of §SW,OPRds for all

the sides of this cell.

For cell i-1 we have

B
[8,0Pds = 3910482619.38202 ( Py for side AB is 300 )
A

¢
[8,0Pds = 24717503932.5843 (P for side BC is 75 )
B
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D

[ 8, Peds = -39896598033.7079 (P for side CD is -100 )
c

E

[ 8, 0Peds = 24717503932.5843 (P for side DE is 75 )

D

F
[8,0Peds =3910482619.38202 (P for side EF is 300)
E

Hence §SW,OPRds for complete cell i-1 is addition of all above =17359375070.2247
Similarly §SW,OPRds for complete cell i is calculated as =-16454519241.5730

and §SW,OPRds for complete cell i +1 is calculated as =17359375070.2247

Hence §SW,OPRds for complete three-cell box is calculated by adding all the three cells

§5,,0Peds and is found to be = 18264230898.8764

Next we need to calculate warping shear flows for restrained torsion Fi; , F; & Fi

in each cell of the three-cell box and also the restrained rate of twist 8" using Waldron'

equation mentioned below by setting up three equations i.e. one for each cell.

* * 8 1.
QGQI = -F, 51_1" +Fi — -Fi+1
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Here we have

T=1000,000 Nmm

Q.= 2*Area = 2*(200*150)= 60,000 mm” for each of the three cells
G = 80700 N/mm® ( steel)

thickness 6= 1 mm for each cell

Hence for cell i-1 we have

0" *(80700)*(60,000)= + Fi; *(700 ) - F;*(150) - 1084169302.66854

and for cell i we have

6" *(80700)*(60,000) = - F'y *(150 ) + F; *( 700 )-F'iy *(150)+ 174508028.0898

finally for cell i+1 we have

6" *(80700)*(60,000)= -F5 *(150 ) + F'iu *(700) - 1084169302.66854

the fourth equation is written from considering following equation

i Fs Qi - §8,,Pds = 0
i=1

60,000 * F.; + 60,000 * F'; + 60,000 * F",.; - 18264230898.8764 = 0

Now solving above four equations we get the following rate of twist 8" , and the

warping shear flows in the three cellsi-1,1 and i+1 .

0" = -0.117270187858295 rad/mm
F'.i= 562007.630305868 N/mm
F', = -819611.412297129 N/mm

Fin= 562007.630305868 N/mm
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Now we need to finally get the S, (s) at each location around the three cell box by

using following relation
S,.(s)at point B = Fi1 - 8 wo(8) atpoint B

and similarly for all other points around the three cells i-1,i and I+1.

Hence for cell i-1, we get the S, _(s) values as follows

S,.(s)s = 40589.0909800251

S,.(5)c = -1948174.95396380
S,.(5)p = -1948174.95396380
S,.(5)e = 40589.0909800249

S,.(8)r = 562007.630305868

and for cell i, we get the S, _(s) values as follows

S,.(5)n = -520454.108926342
S,.(s)1 = -520454.108926342
S,.(s)1 =-520454.108926342

S,.(5)x =-520454.108926342

S,.(s5)L =-819611.412297129

Cell i+1 has same S, (s) results as that of cell i+1, results of S (s) and S, (s) for

the three cell box is shown in figures 3.10 and 3.11.
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3.2.4 BENSCOTER? APPROACH

Ata’ has shown that the spanwise variation of stresses and rotations obtained by Von
Karman and Christnesen’ was NOT accurate as they did not consider accurately the
effect of warping shearing strains upon deflections. A more accurate analysis was
provided by Benscoter’ to overcome this problem in Von Karman and Christnesen®

approach due to neglecting of » . .

Hence Benscoter” gave his “1” (Benscoter factor) which when multiplied by warping

rigidity (ET") changes it to (ET)p thus making it accurate.

Benscoter factor “ A ”has been defined by Benscoter® to modify the Sectorial moment of

inertia “I"” as below. It has been defined as 7” in chapter 2.

(3.14)

where . is named as polar constant and is defined as follows

N
L= § Pords = ;P,fnth (3.15)

and J is the torsion constant, defined for single cell as

3 44*
J = T (3.16)

f
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T=GJ 6

hence J 4 (3.17)
G6

and its sample calculation is shown in next example.

and hence after calculating 77°, then (E I'), is modified by using Benscoter factor as

follows

ET
(E T')s Benscoter =~ = % (3.18)
Example

Referring to figures 3.6 and 3.8 , and the example mentioned in section 3.2 for
calculation of the rate of twist and shear flows for a three cell box, now the same

example is being extended for calculation of the I. and J for the multi-cell box.

Here in this example we have

Pri = 300 mm (Perpendicular distance from line MN to shear centre of box)
Pr; = 75 mm (Perpendicular distance from line NO to shear centre of box)
Prs = 100 mm (Perpendicular distance from line OP to shear centre of box)

Hence we have for complete multi-cell box
N

L= §Pids =Y PIL,
i=1

L= 2% (Pri® ¥ty *W) + 6% (Pra® *t; *F) + 2% (Prs” *ty * W)
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L = 2* [(300)**(1)*(150) ] + 6* [(75)**(1)*(200) ] + 2* [(100)**(1)*(150) ]

L=3675E7

Example

Calculation of Torsion constant J for multi-cell box beam

We know that
T= GJ@
Therefore

Since we know the applied Torque T, and also the rate of twist &

6
i 2 = 2.1843070E 7

J —4
GO  80700*(5.6737)

Also J for multi-cell section can be defined as follows

We may write 8 G using eq 3.1 , hence expression for J becomes

n

> EQ,

i=1
S. .. ds S. .
_ F i—-1,i + F il _ F«+ ii+1 /Q
(CRy 524 B -Fo 5 ) /Q)

iji+1

which can be re stated as
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4423 F
i=1
S

" ds S. .
i-1,i + F b —F-+ i,i+1
5,»_1’1- 1§5i i+l 5 )

(-E,

i,i+1

This can be used to evaluate J for any number of cells in a multi-cell beam.

However in case when all the three cells have same dimensions then it takes the form as

shown below

2 b d d
J= 2*A%> F / (F*(—+—) - Fu—
2, B ( (5 5) s )
2¥APY F
J = i=1
b, d d
+ F *(=+-) -F, —
(+F (5 5) " )

Using this expression to calculate J for our example we have as follows

J= {2*% [ (200*%150)* ] * [ 5.24+6.17+5.24 1}/ {6.17 * [%WHSTO]- 5.24 * ISTO}

J= 21828114

This J for multi-cell box beam is approximately same as the one calculated using
T

J:—
G6

The difference in both values of J is approximately only 0.06 %
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3.3 Mathematical solution using Benscoter approach to get Warping, Axial stress
and Shear stress for a Multi-cell Tapered / Prismatic Box.

The differential equation 2.44 presented in chapter 2 can be used for analysing torsional
response of single-cell and multi-cell isotropic prismatic and tapered box beams. The
solution procedure for using this equation in the analysis of isotropic materials is being
discussed below .

Equation 2.44 is now written as 3.19 .

d deo d deo

—[E'C—] - GJ§ = -T + —[EC—= 3.19
dz[ dz] dz[ dz | (3.19)

Equation 3.19 can be written in the general form given below as 3.20 at any particular
location z along length of beam and then this standard form can have a solution @ as
given in equation 3.21.

In order to write equation 3.19 inthe general form given below by 3.20

d*6 deo

AL +BZ +coe =D (3.20)
dz dz

we define following terms

6, = 4
GI,
d
fy = 5(00)
d
f> = ;Z(fl)
f = (E r )BENSCOTER
d
fs = E(fs)

f7 = G*J



A= 1.0

1
B= _*6
(D0
/,
C= - (£L
)
p- (L FE) () @) @) )
7, 7,

The general form of equation 3.20 has the solution as given by equation 3.21 below

2

A%P + B Lpg =D (3.20)
dz dz

9= §+ Ce™ +C,e™ (.21)

The Boundary condition at the restraint end (z=0) is
=0 at z=0mm

So we have at the restraint end

D
0 = E(O) + C] + Cz

_ . D
C, +C = - C(O) (3.22)

The Boundary condition at the Free end (z=L) is

aw

—=0 at z=L
dz

since w = - w(s) @

therefore
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% = —w(s)% + 9%(—w(s))

At z=L we have

;’ﬂz = —w(s)% + 9%(—w(s)) =

Inserting value of @ from equation 3.21 we can write

aw d D d nz d 1z
— = -w(s) * [ E(E) ““Clz(’lz)e‘ + sz(rzz)e ]

v §+C1e’lz+C2e’zz] . f,i;(“w(s)) = 0 (3.23)

3.3.1 SOLUTION PROCEDURE

Following functions are required to be evaluated analytically in order to solve equations
3.22 and 3.23.

6, = 0
GI,
d
fi = 2(9 0)
d
o= 2o
fs - (ET )senscoter
d
fs = E(fs)

The analytical procedure for evaluating above mentioned functions is outlined below

g, =
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! / b/ /
L = 2% ((% D) Frtd ]+ 24 (50D Ftd' )

2 () Fut 38 )

Here b and d are the lengths for flange and web of each cell at the root of the restrained

multi-cell box beam and 5’ and d’ are the respective lengths at any location z from
the restrained end. Figure 3.5 shows side elevation and Plan of the box , showing angles

a & f,and b & d'.
b =b-2ztanp

d =d-2ztan a

hence
6, = r

Gl

_ 2*%T
90 N * /%% * * 4/ I %%\ ks xp/
G*(( b **2) *t, *d +(d **2)*1,*b")

d d o 3 143 »

Next f; = Z(ﬁo) and f, = d_( f,) are shown in Appendix “B”.
z

EF:%((Z*d’*tw*Ew/*w(s)§)+(2*d/ %1 *E, *w(s)?)
o 2% *t,*E, *w(s)})
+ 4x s 1" *Ef/ *w(s)2) + (w(s); *w(s)e ) +(w($)Z) )

Here E =
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therefore (ET" )penscorer - Ez
n
di (ET )penscoter  is defined in Appendix “B” as f5 .
4

All above mentioned factors are required to be evaluated analytically and then using
following factors which shall be evaluated numerically, the required equations can be
solved.

The solution of equation 3.22 and 3.23 in order to evaluate values of C; and C, also
requires evaluation of various functions by numerical methods. Moreover during the
evaluation of warping , axial stresses and shear stresses in later sections these functions
will be required to be evaluated again. It is therefore considered appropriate to highlight
the procedure for numerical evaluation of following functions in this section.

d
E(GZ)
dZ
E(rlz)

d
Z(rzz)
2
E(’zz)
d D
pAYEL

d* D

dz’ C)

< 0v(s)
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The procedure for evaluating di(rlz) by numerical method is being highlighted here ,
Z

same procedure can be adopted for evaluating other functions mentioned above.

Figure 3.12 shows a plot of “r1*z” Vs “z”. In order to evaluate the slope of this
curve, we need to take any two points on X axis, say x=500 mm and x=600 mm are the
two points selected. The corresponding values of Y co-ordinate or “r1*z ” at these two
locations are noted to be 18.58682 and 23.77683 . Now in order to evaluate the slope
of this curve at the mid-point of these two given locations, i.e. the slope at x=550 mm
will be determined by following formula.

Slope at x=550 mm =

tan @ = (Value of Y Co-ordinate at x=600) - (Value of Y Co-ordinate at x=500)
(Distance on X axis between x=600 and x=500)

Therefore, in this example
Slope at x=550 mm =

tan @ = 23.77683 - 18.58682 = 0.0519001
100

Hence the slope of “r1*z” atx =550 mm , which is referred to as di(rlz) at x =550
z

mm , is found to be 0.0519001 .

Now after calculating the slope of “r1*z” at x =550 mm , we may look at figure 3.14
. .y d . :
, which shows the variation of d—(rlz) Vs Z , it can be seen that the Y value of this
z

curve at x = 550 mm is 0.0519001, which is infact the value of slope of “r1*z” at x =
550 mm calculated from figure 3.12 using above numerical technique.

In order to get accurate values of slope at all locations along the X axis , the length of
box beam (x=600mm) was divided into 6000 equal divisions of 0.1 mm each. Hence in
order to get slope at x=550 mm , we use the corresponding two points on its either sides
x=550.1 mm and x=549.9 mm , and divide the difference of their Y co-ordinate values by
0.2 mm which is the distance between these points on x axis .

This in turn would result in getting very accurate slopes at all locations along the length
of the box beams. As is obvious the manual calculations of such slopes at all 6000 points
along the length would become very tedious, it therefore becomes necessary to use the
computer power for getting these slopes with such desired high accuracy . A computer
programme was used to evaluate all above mentioned functions numerically using above
mentioned technique.
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. . d d’ d d? d D d* D
All the required functions Z(rlz) , ?(rlz), Z(rzz) , E(rzz) , Z(E) , F(E)

and 5—(w(s)) can be obtained in similar fashion applying numerical method and using
¥4

data from figures 3.12 to 3.22.

Hence solving above equations 3.22 and 3.23 we get the two unknowns C; and C,.

The values of C; and C, depend upon the geometry of beam and also its material
properties “E” and “G” , i.e. change of taper angle or change in dimensions/
characteristic properties of beam will change the values of C; and C,

Hence after the two unknowns C; and C,have been found the solution &
of the general equation 3.20 is known

2
Adf +B% Lcy - D (3.20)
dz dz

and its solution @ is

6= §+C1e"z +C,e™ (3.21)

here r; and r, are the two roots at each location along the length of the box
and are defined as

-B + «B*-44C

r C——
! 24

-B - WB*-44C
24

) =



68

3.3.2 WARPING

Hence once we know 6 from equation 3.21 above, we can find warping at any point
along the length and across the cross section of beam by using following relation .

W= - wE) *e

where w(s) is the Sectorial Co-ordinate at any given location and has been defined
above.

3.3.3 AXIAL STRESS
Since
D nz nz
6’:E+Clel +i(,e*® (3.21)
therefore
deé d D d . d .
A = Z(E) +C1£(’12)*e‘ + Czd—z(rzz)*e2
Since Axial Stress o = E é’l
oz
op = E Z(w9*e]
oz

o = Lo+ et L) ]t E
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d D d s d 2
Or = [{Z(E) +C1£(rlz)*el + Cz'd_z(rzz)*e }* w(s)

+

D nz n7 \ % i *
{E+C1e +C,e*} dz(w(s))] E (3.24)

Above equation 3.24 can be used to get Axial stress at any location along length and
across the cross-section of the beam by using the respective value of Sectorial Co-
ordinate w(s) , r; and r; at that particular location along “z” .

3.3.4 SHEAR STRESS

Shear stress is defined as follows

O — . 2p (3.25)
os oz
o4 r o dw
— = _t — E —
os [ é’z( dz)]
oq - 17 d
— = -t [ —{E— (- * 6
4 [ SES= (- w(s) )]
Since o, = E i’l
z
and
w = - w(s) *6

hence



o = E i [-w(s) * 6 ]
oz

or = [ Dy + orLws)] * E
dz dz

Therefore

oo 1 V7, de d

v = L (E*. * 22 4 ogx (-

e e { w(s) = dz( w(s)) }
oo d*o de . d
it W — - E % * 4+ —*%__

oz [ we) dz* dz dz ()

4 sy + 42
+ 6 E(W(S)) + Z(W(s)) 7 ]

since
oq - 4 oo .
os oz

Therefore integrating we get

d*e
dz*

qr = B I w(s)tds
0

Sectorial shear function S (s) is defined as

S, = jw(s)tds

Therefore

70
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Since

d9 d D d nz d nz

Z = Z(E) +C12(rlz)*el + Cz;(rzz)*e

therefore

d*6 d* D d d .
= ) O (G a2

d s d ey (o
+ 0 (G D )+ ()

d*o
dz?

Since q = E S, (s)

Hence Shear flow is given by equation 3.26 below as

ar = E %S0
L L&+ o (Eenr Lenren @ L)
£ G G L e D) 62

Equation 3.26 can be used to get shear flow at any location along length and across the
cross section of the beam by using the respective value of Sectorial shear function
S, (s) at that particular location.

Once the warping shear flow has been calculated using above equation, total shear flow
is obtained adding warping shear flow to the Bredt Batho shear flow. Figure 3.4 shows
shear flow patterns across the thickness of the thin walled box beam.

qToTAL = (qr T ( BREDTBATHO
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Figure 3.1 Thin walled multi-cell box
beam cross section

Figure 3.2 warping distribution for a multi-cell box
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Figure 3.3 Sectorial Coordinate Distribution
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Figure 3.4 Shear flow patterns across the thickness of
thin walled box beam



(a) Side Elevation

(b) Plan

Figure 3.5 Side Elevation and Plan of Box showing angles « and 3
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Figure 3.6 Dimensions of example isotropic three-cell box
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Figure 3.7 Bredt Batho Shear Flows in each of the 3 cells of example
isotropic three-cell box
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Figure 3.8 Three cells shown separately for calculation of w(s)
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Figure 3.9 w(s) final distribution in each of the 3 cells of
example isotropic three-cell box
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Figure 3.10 §,,(s) distribution for the isotropic three cell box
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