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Abstract 
 
High pressure vessels such as gun barrels are autofrettaged in order to increase their 
operating pressure and fatigue life.  Autofrettage causes plastic expansion of the inner 
section of the cylinder – setting up residual compressive stresses at the bore after 
relaxation. Subsequent application of pressure has to overcome these compressive 
stresses before tensile stresses can be developed, thereby increasing its fatigue lifetime 
and safe working pressure. 
 
A series of Finite Element (FE) models of hydraulic autofrettage were created, to 
establish the correct boundary conditions required and means of developing accurate 
but computationally efficient models.  Close agreement was observed between the 
solutions obtained from the developed models and those from existing analytical and 
numerical models.  These initial models used a simplistic bi-linear stress-strain material 
representation; this deficiency was then addressed through the development of two 
means of creating radial position dependent non-linear material behaviour within FE, 
crucial for accurate prediction of residual stresses. 
 
The first utilised a method of altering the elastic properties of the material to achieve 
non-linear stress-strain response.  This provided accurate results that compared well 
with existing methods, but was unable to be used in simulation of swage autofrettage 
due to its elastic nature.  The second method achieved non-linear behaviour through 
direct manipulation of the stress and plastic strain states of the FE model at a 
fundamental level.  This was hence suitable for arbitrary loading procedures, including 
swage autofrettage. 
 
A swage-like model that applied deformation via a band of pressure was developed, to 
investigate the influence of localised loading and shear stresses that result on the 
residual stress field. 
 
A full model of swage autofrettage was then developed, which was optimised on the 
basis of accuracy and solution effort.  It was then used to investigate the effects of 
various mandrel and contact parameters on the creation of residual stresses.  The model 
is suitable for use in future optimisation studies of the swage autofrettage procedure. 
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A1-4 Material Model Parameters (Huang's Model) 
B1,2 Material Model Exponents (Huang's Model) 
c A723 Material-fit constant 
d A723 Material-fit constant 
E1,2 Loading and Unloading Young’s Moduli 
ElAx Number of axial elements in mesh 
ElAx-ll Number of axial elements along the parallel section of a mandrel 
ElRad Number of radial elements in mesh 
ElTan Number of tangential elements in mesh 
G Material Shear Modulus  
GP Pressure gradient (Band of Pressure model, moving band) 
H1,2 Loading and Unloading reverse Tangent Moduli 
k Material Yield Stress in pure torsion (σY /√3 using Mises Yield Criterion) 
K Tube Wall Ratio, rb/ra  

lBW Length of pressure band (Band of Pressure model, static band)  
lEl Length of element edge 
l ll Length of parallel section of mandrel  

lm Mandrel Length 
lr Wall Depth, rb - ra  

lz Tube Section Length 
m Multiplicative constant (Band of Pressure model, static band)  
NEl-Ax Number of element lengths moved by the mandrel as it passes through the 

tube undergoing swage autofrettage (a distance of lz + lm) 
nj Unit vector, normal and outwards to the surface 
PAF Autofrettage pressure 
PMB Mid-band pressure (Band of Pressure model, moving band)  
PSB Static band pressure (Band of Pressure model, static band) 
PS Scaling parameter used to control the number of sub-steps specified during 

the sensitivity analysis of the value, documented in Chapter 8. 
∆P Pressure increment between elements (Band of Pressure model, moving 

band) 
pe Limiting Elastic Pressure at which yielding initiates (at ra) 
pi Interface Pressure (at ra) 
ra, rb Inner and Outer tube radii 
r i Mandrel-Tube Interface radius 
rM Mandrel radius (to parallel portion)  
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rN Normalised radial position, given by (r – ra)/(rb - ra) 
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sij Deviatoric stress tensor. 
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µ Second Lamé Constant 
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σE Elastic stress range between peak plastic strain and onset of reverse yielding. 
σij Stress tensor.  
σMax Maximum stress reached during initial deformation  
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φ Uni-axial stress-strain function, relating equivalent stress and equivalent 

plastic strain (Jahed and Dubey method) 
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L Loading superscript 
UL Unloading superscript 



 

 xxii

APDL Variables 
 
Axi_Div  Number of axial elements 
Rad_Div  Number of radial elements 
Tan_Div  Number of tangential elements 
 
 

FORTRAN Variables 
 
absdpleq  Absolute value of plastic strain increment 
BEF Bauschinger effect factor 
MatParms  Array used to store material-fit parameters 
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Acronyms and Abbreviations 
 
AF Autofrettage 
APDL ANSYS Parametric Design Language 
EMPRAP Elastic Modulus and Poisson’s Ratio adjustment procedure 
Fortran A portmanteau of Formula Translator/Translation; a procedural 

programming language, in which ANSYS UPFs may be written 
GB Gigabyte, a measure of computer storage capacity, 10243 bytes. 
ID Inner Diameter 
OD Outer Diameter 
UPF User Programmable Feature, a means of extending/customising various 

features within ANSYS.  Generally written in the Fortran language, then 
compiled and linked with ANSYS. 

USERMAT A UPF in which a material’s stress-strain state may be customised. 
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GLOSSARY 
 
Elastic Range The stress range between peak stress in initial deformation (σMax) and the 

reverse yield stress (β σY0). 
Loading The pressurisation phase of the hydraulic autofrettage procedure, during 

which pressure is increased from zero to the specified autofrettage 
pressure. 

Overstrain Defined as the proportion of the tube wall that has undergone plastic 
deformation; often defined as a percentage of the wall thickness. 

Unloading The depressurisation phase of the hydraulic autofrettage procedure, 
during which pressure is decreased from the specified autofrettage 
pressure to zero, and residual stresses are developed. 

 
 

ANSYS PROPERTY NAMES 
 

Symbol ANSYS 
Property 

Description 

σr S,X Radial Stress 
σθ S,Z Hoop Stress 
σz S,Y Axial Stress 

σrz S,XY 
Shear Stress (in the radial direction on the plane 
perpendicular to the tube axis) 

σvM S,EQV von Mises Equivalent Stress 
ε
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r EPEL,X Elastic Radial Strain 
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θ EPEL,Z Elastic Hoop Strain 

ε
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vM EPEL,EQV von Mises Equivalent Elastic Strain 

ε
p
r EPPL,X Plastic Radial Strain 
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z EPPL,Y Plastic Axial Strain 
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rz EPPL,XY Plastic Shear Strain (oriented identically to σrz) 

ε
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vM EPPL,EQV von Mises Equivalent Plastic Strain 
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NOTES 
 
ANSYS “Classic” v11.0 SP1 was used to generate all results presented in this 
document, and any references made to the software are specific to this version and its 
associated documentation.  However, the models created and references made are 
thought to be mostly compatible with earlier (beyond v8.0, the first version used in 
these studies) and future versions. 
 
Throughout this thesis, the word mandrel is used solely to refer to the physical object 
that is passed through the inner diameter of a tube, while swaging refers to the process 
of swage autofrettage. 
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1. INTRODUCTION 
 
Even today, in the era of guided missiles and smart munitions, guns and other tube 
weapons are crucial in the defence of national interests.  In terms of large bore 
weapons, artillery and other indirect fire platforms deliver long range and preparatory 
strikes in support of other forces (indeed, Stalin designated artillery the ‘god of war’), 
and direct fire weapons as found on tanks provide the ability to engage and destroy 
other such vehicles so that they may take and hold ground. 
 
Guns must be able to contain high pressures, as the amount of work done on the 
projectile depends on the pressure acting upon its base as it travels along the barrel.  
This is quantified by (1.1), which applies the principle of conservation of energy to the 
projectile.  Neglecting losses due to friction between the projectile and barrel, and any 
changes in gravitational potential energy, the amount of kinetic energy gained by the 
projectile equals the mechanical work done on it by the expanding propellant gases, or: 
 

 ( ) 2

0
2

1
m

l

b mvdxxPAKE
b

== ∫  (1.1) 

 
Where: 
A = base area of projectile, 
lb = barrel length, 
m = mass of projectile, 
Pb(x) = shot base pressure (pressure acting upon the base of the projectile), 
vm = muzzle velocity of projectile, 
x = location in barrel. 
 
Kinetic energy may be imparted to either a small payload projectile launched at a high 
muzzle velocity (allowing for long range and/or a high-velocity impact) or a large 
payload projectile launched at a lower velocity; maximising the pressure for a given 
gun geometry allows the highest possible kinetic energy. 
 
In addition, high pressure vessels are used in a number of other applications, namely: 
 

• Food sterilisation, using high pressure to kill large proportions of bacteria 
present in foods, 

• Sintering of components from powders to create near final dimensions and 
minimise material usage and subsequent machining, 

• Hyper-sonic (up to Mach 16) wind tunnels, 
• Power generation, 
• Water jet cutting. 

 
To contain a high pressure would typically require a very thick tube wall due to the 
concentration of tensile hoop stresses at the inner diameter (ID), creating a heavy 
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weapon system.  The magnitude of pressure is also limited by the material yield stress, 
which must not be exceeded in normal use. 
 

 

Figure 1.1:  Turkish Bombard – given the relatively low density stone shot it fired, its thick wall is 
testament to its poor material utilisation (Public domain photograph taken at Royal Armouries, 

Fort Nelson, Portsmouth, England) 

 
This may be allowable in large or static domains, where size and mass are relatively 
unconstrained, but is not feasible for land based mobile weapon systems. Simply 
selecting a high strength steel, or other metal, is not practical as high ultimate tensile 
strength (UTS) is rarely accompanied by high fracture toughness.  Hence a gun made 
from a high UTS steel in order to permit high pressure operation will have a shorter 
fatigue lifetime than its lower-pressure equivalent. 
 
Autofrettage is a means of pre-stressing thick-walled tubes to better distribute the 
tensile hoop stress throughout the tube wall, so reducing the magnitude of the hoop 
stresses found at the ID when the tube is re-pressurised subsequent to pre-stressing.  
This is achieved by overloading the ID of the tube to cause plastic expansion of some 
or all of the tube wall, such that residual compressive hoop stresses are created in the 
near-bore region whilst residual tensile hoop stresses are created in the outer portion. 
 
Use of autofrettage allows the wall thickness (rb – ra) of gun barrels to be reduced 
considerably, by definition decreasing its wall ratio, K, given by rb/ra.  This greatly 
lessens its mass which, for a cylindrical barrel of constant cross-section, is given by: 
 

 
( )

( )122

22

−⋅⋅⋅=

−⋅⋅⋅=

Krl

rrlm

ab

abbb

πρ
πρ

 (1.2) 

 
Where: 
K = Wall ratio, rb/ra, 
mb = Mass of barrel, 
ra = Inner radius of barrel, 
rb = Outer radius of barrel, 
ρ = Density of barrel material. 
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Hence, for a given calibre of round such that ra is fixed, the mass is proportional to (K2 
– 1).  This reduction in mass may be used to allow greater portability of the weapon, 
and/or extending the barrel length, lb, to increase muzzle velocity (by allowing the 
pressure of the propellant gas to act on the projectile along a longer distance), provided 
barrel droop (curvature) does not affect accuracy.  Such curvature of the barrel causes 
lateral acceleration of projectiles as they travel along it, the reaction force to which 
induces lateral vibration of the barrel; such vibration may alter the orientation of the 
projectile as it leaves the barrel, modifying its trajectory. 
 
However, the amount that the wall thickness may be reduced depends on how well the 
residual stresses are known; if they are not precisely known the factor of safety must be 
increased, limiting the amount by which the wall may be thinned. 
 
In addition to reducing barrel mass, autofrettage is used to increase their fatigue life, 
expressed in terms of the number of full effective firing cycles.  This allows for fewer 
interruptions in service, reduced load on the logistic chain and reduced acquisition cost.  
Wear life can be increased with barrel liners and coatings so it is essential that fatigue 
lifetime should equal or exceed wear lifetime.  This requires accurate knowledge of 
residual stresses present and the nature of cyclic loading. 
 
There are two methods of autofrettage: hydraulic and swage. Hydraulic autofrettage 
involves the application of high pressure to the ID of a tube, until the desired extent of 
plastic deformation is achieved.  Swage autofrettage creates the required deformation 
by passing an oversized mandrel through the ID of the tube, causing a moving, axially-
localised outward radial displacement at the bore of the tube. 
 
Swage autofrettage generally makes the pre-stressing process less complex than 
hydraulic autofrettage; the latter requires careful pressure sealing arrangements and 
accurate control of the applied pressure and monitoring of tube expansion, as small 
changes in the material yield stress may result in large changes in the depth of yielding.  
Conversely, swage autofrettage applies displacement based loading, which generally 
creates consistent depths of autofrettage yielding despite normal variations in material 
yield stress. 
 
Analytical modelling of hydraulic autofrettage of constant cross-section cylindrical 
tubes, subject to some of the range of end conditions, is possible through the use of 
simplifying assumptions, such as choice of yield criteria and material compressibility 
and, critically, material stress-strain behaviour.  However, the transient and localised 
nature of swage autofrettage, and resultant deviation from plane conditions, makes it 
intractable to analytical solution.  In addition, very few numerical studies of swage 
autofrettage have been published. 
 
Autofrettage causes large plastic strains around the ID of the tube, which noticeably 
alters the unloading properties of those materials commonly used and causes the early 
onset of non-linearity; a phenomenon termed the Bauschinger effect.  This non-
linearity is dependent on prior plastic strain, as well as the material in question, and 
typically causes significant deviation from those material models that are often 
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assumed.  The effect is most pronounced around the ID, which experiences the greatest 
initial deformation, where compressive residual stresses are most desired. 
 
This in turn has a significant effect on the residual stresses developed when the 
autofrettage load is removed, especially as it can cause reverse yielding to occur when 
it otherwise would not be expected. 
 
To avoid such assumptions, or to model swage autofrettage, requires the utilisation of 
numerical methods; it was clear that these must be adopted to allow the goals of the 
research to be achieved.  It was decided to use Finite Element Analysis (FEA) to 
develop firstly a general model of hydraulic autofrettage incorporating a realistic 
material representation, and then a model of swage autofrettage, for which no analytical 
solution exists. 
 
The original contributions in this work are: 
 

1. Validation and configuration of an FEA package called ANSYS, to accurately 
represent a thick-walled tube undergoing hydraulic autofrettage and subsequent 
unloading allowing its stress-strain state to be assessed at both peak pressure 
and after removal of such pressure. 

 
2. Implementation of an existing method for simulating non-linear material 

behaviour through linear-elastic analysis (Elastic Modulus and Poisson’s Ratio 
Adjustment Procedure (EMPRAP)), as an initial method of incorporating non-
linear material behaviour in the developed model of hydraulic autofrettage. 

 
3. Development of a custom material model (within the ANSYS package) to 

represent general non-linear material behaviour in arbitrary geometry and 
loading configurations, allowing it to be used within models of both hydraulic 
and swage autofrettage. 

 
4. Assessment of the transient and residual stress-strain and displacement 

distributions in a swage-like procedure.  An initial model of localised transient 
loading was created, utilising a cylindrical band of pressure moving along the 
ID in a manner analogous to the passage of a mandrel. 

 
5. Assessment of the transient and residual stress-strain and displacement 

distributions in a realistic model of swage autofrettage.  This more advanced 
model uses a sliding contact between the deformable mandrel and the ID of the 
tube; the displacements resulting from this interference cause the requisite 
plastic strains for autofrettage. 

 
The significance of the work presented in this thesis lies in the newly-developed 
capability of incorporating a realistic material representation and hence predicting the 
residual stress fields created during both: 
 

1. Hydraulic autofrettage of a non-uniform cross-section pressure vessel, 
2. Swage autofrettage. 
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This knowledge allows more accurate prediction of fatigue life and safe-working 
pressures for gun barrels, which can lead to either lighter weight and/or better system 
performance characteristics.  It will also provide a greater degree of confidence in these 
calculations for real systems.  The contents of the thesis chapters are summarised 
below. 
 
Chapter 2 introduces the topic of thick-walled, high-pressure, vessels, and gives a brief 
description of their history.  A review of literature pertinent to the topic is then 
presented, including relevant analysis techniques. 
 
Chapter 3 introduces the different material models relevant to this study, and describes 
an early analytical model of autofrettage.  The adaption of this model to include 
additional stress-strain behaviours, and use in a pseudo-swage interference model, is 
then detailed.  The chapter ends with a summary of the selected models and their usage, 
for comparison with numerical models to be developed in future chapters. 
 
Chapter 4 documents the development of a set of models of hydraulic autofrettage that 
were created in an FEA package, called ANSYS.  The models use a simplistic, bi-linear 
kinematic hardening, material model but span the range of four end conditions which 
are generally assessed when hydraulic autofrettage is considered; the simplistic 
material model allowed structural constraints to be focussed upon.  The chapter ends 
with a comparison of the FEA results with those from two other models (one analytical, 
one numerical), which serves to validate ANSYS as a suitable platform for modelling 
the geometrical aspects of hydraulic autofrettage. 
 
Chapter 5 introduces initial material non-linearity, using a quasi-elastic model, into the 
set of hydraulic autofrettage models developed in Chapter 4.  Results from the 
combined model are then compared with the same numerical model used in Chapter 4, 
verifying the ability of ANSYS to include material non-linearity in the context of 
hydraulic autofrettage. 
 
Chapter 6 describes the development of a more general method for incorporating 
material non-linearity, which would then be of use in models of swage autofrettage.  
The material was initially checked via simulation of a uni-axial test which accurately 
reproduces the original uni-axial stress-strain data.  In addition, the material was 
validated in hydraulic autofrettage through comparison with both the numerical model 
used in Chapters 4 and 5, and the material model implemented in Chapter 5. 
 
Chapter 7 documents the creation of a swage-like model, in which autofrettage loading 
is applied to a long section of tube by a band of pressure that travels along its ID.  This 
developed the methodology for modelling a long tube section in ANSYS, and gave a 
first approximation of stresses that would be developed during swage autofrettage.  
These results were then available for comparison with those that would be generated by 
a more accurate swage autofrettage model. 
 
Chapter 8 details the development of an accurate model of swage autofrettage, adding a 
deformable mandrel to the long tube model described in Chapter 7.  Several sensitivity 
analyses were conducted on the model, to ensure mesh sizing, section length and time 
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stepping were specified such that representative mid-section properties of a swaged 
tube could be derived from the model.  A systematic analysis was then made of various 
mandrel geometry parameters, allowing transient and residual stress-strain states to be 
assessed. 
 
Chapter 9 collates compares and contrasts various aspects of issues raised within 
individual chapters, and addresses them in a context relevant to the overall thesis. 
 
Chapter 10 then summarises the conclusions drawn throughout the thesis, and assesses 
the various strands of work collectively. 
 
Chapter 11 compiles the appendices for the thesis, containing information and results 
felt important, but not appropriate for inclusion within the main body of work 
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2. LITERATURE REVIEW AND FUNDAMENTAL 

THEORY 

2.1. INTRODUCTION 
 
This chapter introduces the topics relevant to the work described in this thesis and the 
literature underpinning them.  It begins by presenting a brief overview of the history of 
cannons, the first form of pressure vessel widely adopted, and efforts made to refine 
them. 
 
The two methods of autofrettage, a means of pre-stressing cylindrical vessels, are then 
described, followed by a summary of models of hydraulic autofrettage that are pertinent 
to this study. 
 
Several methods of numerical modelling are then described and subsequently assessed 
based on their suitability for use in this investigation. 
 
The conclusions drawn within this chapter are then summarised, and followed by a 
programme of work which was developed based on them to achieve the desired aims. 
 
 

2.2. HISTORY OF CANNONS 
 
The first pressure vessels of note that were widely utilised were cannons, making their 
history synonymous with that of pressure vessels.  Indeed, the word “cannon” is 
derived from the Latin canna, meaning tube, which reinforces their place in the wider 
thick-walled pressure vessel field.  As has been the case many times throughout history, 
and particularly during the mid-19th and 20th Centuries, military demands have focussed 
development efforts, causing rapid progress in specific areas.  Such progress is 
eventually disseminated, resulting in many advances across wide fields of application.  
This is, and continues to be, true for cannons and pressure vessels even in the age of 
rockets and airborne munitions.  Even today, cannons continue to be developed, with 
particular focus on reducing mass to allow enhanced air-portability, to satisfy tactical 
requirements that cannot be fulfilled with rockets (such as rapid target engagement, low 
minimum range, continuous fire, with the ability to switch targets rapidly). 
 
The first cannon were comparatively low pressure devices, due mainly to the poor seal 
between the projectile and the tube wall and ineffective gunpowder (serpentine 
powder).  However, combustion pressures soon increased as corned powder was 
developed (a more consistent gunpowder) and heavier spherical projectiles were 
introduced.  Projectiles were primarily made from stone (such as granite or marble) or 
iron.  By the end of the 1400s, it was realised that high operating pressures led to early 
fracture of cannons, often causing them to split. 
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Although some early cannon were assembled from strips of metal and held together 
with metal hoops (as a wooden barrel might be), since then cannon have almost 
invariably been cast. 
 
Gun designers during the mid-1800s recognised the poor utilisation of material (uneven 
stress distribution) within thick-walled guns, applying a practical upper limit on the 
range of wall ratios that could be used.  It was realised that if some inwards force could 
be applied to a barrel, the effect of poor material utilisation could be mitigated.  To this 
end, barrels were “hooped” to pre-compress the inner surface of the barrel – for 
example, William Armstrong [1] assembled compound cylinders from wrought iron 
tubes. 
 
Additionally, it was recognised by Rodman [2] that if the cooling of a cast cannon were 
controlled, the sequence of crystallisation from liquid could influence the residual 
stress distribution and hardness of the tube material at the bore. 
 
 

2.2.1. Early Modelling 
 
The earliest form of modelling that reflected the uneven stress distribution in 
pressurised thick-walled cylinders, practically addressed via compound barrels by 
manufacturers such as Armstrong, was that from Lamé’s solution [3].  However, a 
model of a pressurised tube incorporating plasticity would be required to model one 
method of overcoming the stress concentration.  The envisaged method would achieve 
pre-stressing by causing plastic expansion of the near-bore region, achieving similar 
pre-stressing to that developed by compound tubes; the barrel could be made to hoop 
itself.  
 
The term autofrettage, or self-hooping, is generally attributed to a French artillery 
officer, L. Jacob, who appears to have coined the expression in 1907, hence its French 
origin.  In 1909 LB Turner presented a “complete mathematical study” at King’s 
College, Cambridge.  Autofrettage was adopted by the French in 1923, and soon after 
saw widespread use.  Macrae, a British artillery officer, produced a “complete solution” 
[4].  Additional contributions were made by Manning [5], Dirmoser [6] and Faupel [7]. 
 
To correctly model the plastic deformation and subsequent residual stress field within a 
thick-walled cylinder, several physical requirements must be addressed: 
 

1. Equilibrium and Compatibility Equations, 
2. Stress-strain profile of the considered material, 
3. Equivalence/Yield criterion, 
4. End conditions of the tube, 
5. Flow Rule and Compressibility. 

 



 

 10 

2.3. PRE-STRESSING OF MODERN CANNONS AND 

PRESSURE VESSELS 
 
As mentioned above, cannon are cast and/or forged then machined to intermediate 
dimensions.  They are then autofrettaged, and then undergo a final stage of machining 
to ensure accurate sizing of the finished article.  Autofrettage introduces compressive 
hoop stresses in the region surrounding the ID to reduce the magnitude of the hoop 
stresses developed there when the tube is pressurised.  This may be accomplished in 
one of two ways, as described in sub-sections 2.3.1 and 2.3.2. 
 
Generally, the greater the amount of residual compressive stress developed around the 
ID, the more beneficial pre-stressing resulting from autofrettage is.  However a 
phenomenon termed the Bauschinger effect, typically observed in steels often used for 
high-pressure vessels, limits the degree of pre-stressing that may be applied.  In 
particular, it causes the early onset of non-linearity around the ID when compressive 
stresses are developed following tensile deformation experienced during autofrettage.  
The Bauschinger effect is described more fully in sub-section 3.2.3. 
 

2.3.1. Hydraulic Autofrettage 
 
Hydraulic autofrettage involves the application of hydrostatic pressure to the ID of the 
tube, such that equivalent stress at the ID exceeds the material yield stress and plastic 
deformation begins.  Pressure is further increased such that the deformation propagates 
to the desired depth within the tube wall.  Oil is used to pressurise the tube as it is non-
corrosive and only slightly compressible; compared to a highly compressible gas, this 
reduces both the work done when increasing its pressure, and danger if failure should 
occur.  Typically a solid spacer is first inserted into the centre of the tube to be 
autofrettaged, reducing the volume of fluid that must be pumped into the tube. 
 
The ends of the tube must be sealed to contain the pressurised oil; this is achieved 
either through use of floating bungs or caps that attach to tube, which in turn carries the 
applied axial force.  The net axial force applied to the tube in the Closed-Ends case will 
alter the ratio of component stresses (compared to the Open-Ends case) found at peak 
pressure conditions, potentially altering the residual stresses developed.  These two 
states, or end conditions, are classified as Open- and Closed-Ends, respectively, and the 
details of their modelling are found in Chapter 4.  Hydraulic autofrettage, and the two 
end conditions described above, are depicted by Figure 2.1. 
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Figure 2.1:  Hydraulic Autofrettage Diagram, for Open- and Closed-Ends 

 
Hydraulic autofrettage tends to be time consuming, as the applied pressure must be 
very carefully controlled to ensure the desired deformation is achieved; for a given 
pressure, small variations of the material yield stress may cause considerable changes 
in the depth of overstrain.  Also, sealing the ends of the tube is non-trivial because the 
tube expands as the applied pressure increases. 
 

2.3.2. Swage Autofrettage 
 
Swage autofrettage achieves the required plastic expansion of the inner portions of the 
subject tube via mechanical interference between an oversized mandrel and the inner 
surface of the tube; Davidson, Kendall and Rainer conducted an early scientific 
investigation [8].  The nature of the loading deviates considerably from that 
encountered during hydraulic autofrettage because of the small, travelling area of 
contact.  Shear stresses are developed due to the localised loading and friction between 
the mandrel and tube surface.  Residual stresses in relatively short tube section were 
modelled by O’Hara [9], and mandrel driving force was investigated by Iremonger and 
Kalsi [10]; aside from these studies, few investigations have been reported. 
 
Mandrels typically consist of two conical sections joined by a short length of constant 
diameter; the forward conical section has a shallower slope than the rear section.  The 
conical sections not only aid alignment of the mandrel, but also help control the initial 
deformation (forward cone) and subsequent unloading (rear cone) of the tube. 
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Figure 2.2:  Mandrel and Swage Autofrettage Diagram 

 
The contact between the mandrel and the tube is lubricated to reduce the sliding 
friction, for example with a stearate based lubricant impregnated into a porous 
phosphorus coating [9]. 
 
Despite the use of lubrication, a considerable axial force is applied by the mandrel to 
the tube, which then must be constrained.  The choice of constraint location, either the 
mandrel entry or exit end, determines whether the deformed length of tube is held is 
tension (the former case) or the un-deformed length is compressed (the latter).  As with 
the Open- and Closed-Ends cases of hydraulic autofrettage, these axial stresses may 
influence the precise nature of the residual stress pattern developed.  The tube modelled 
by O’Hara [9] was constrained at its mandrel entry end, around its OD. 
 

 

Figure 2.3:  Tube Constraint during Swage Autofrettage 

 

2.3.3. Post-Autofrettage Machining 
 
Machining is conducted on the autofrettaged tube (hydraulic or swage) to ensure it 
possesses the correct final dimensions and that the applied pre-stressing is consistent 
along the required length.  This generally involves the removal of the tube’s ends which 
would have had developed a different initial deformation during autofrettage due to the 
interruption of axial stresses at the tube ends, and machining of the inner diameter to 
that desired.  This also removes the most highly deformed material and alters the 
residual stress field. 
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2.4. MODERN MODELLING 
 
This section introduces the concepts and theories underpinning the analytical modelling 
of pressurised tubes and describes some of the initial approximate solution methods 
considered.  The assumptions, presented in sub-section 2.4.1, underlie all modelling 
techniques hence their early placement within this thesis. 
 
 

2.4.1. Problem Formulation 
 
The typical geometry of a thick-walled high pressure vessel is shown in Figure 2.4.  
Given the shape of the vessel it is natural to model it in cylindrical polar co-ordinates, 
r, θ, and z, corresponding, in the case of plane end conditions and hydraulic loading, to 
the principal stress-strain directions, radial, circumferential and axial. 
 

 

Figure 2.4:  Tube Geometry and Dimensions 

 
The dimensions shown on the diagram are: 
ra Inner radius 
rb Outer radius 
lz Tube length 
 
The Wall Ratio, K, is the geometrical value that has the most influence on autofrettage 
and residual stress fields developed within the tube walls; it is defined as: 
 

a

b

r

r
K =  
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2.4.1.1. Element Diagram 
 
Figure 2.5 displays the stresses acting upon a small element of a tube, modelled in 
cylindrical co-ordinates. 
 

 

Figure 2.5:  Element Diagram (in Plane Conditions) 

 
The standard assumptions for such a system are: 
 

1. Normal Stress in the z-direction (σz) is assumed to have no effect on the r,θ 
plane equilibrium. 

2. Due to axial symmetry, there are no variations of in-plane stress with θ. 
3. Axial Symmetry implies mirror symmetry i.e. τrθ = τθr = 0. 
4. Axial symmetry precludes a body force in the θ direction, but allows one in the 

radial direction – e.g. a centrifugal effect. 
5. Radial body forces, represented as Fr in Figure 2.5, are ignored, as the tube is 

defined as non-rotational (no centrifugal effects), and gravitational forces are 
considered negligible. 

 
While it is conceivable that non-axi-symmetric conditions may arise during 
autofrettage (for example localised deformation during hydraulic autofrettage or an un-
aligned mandrel during swage autofrettage), such conditions are the exception to the 
mainstream and are sufficiently unpredictable to be ignored during the analyses 
presented in this thesis.  It is likely that a tube autofrettaged under such conditions 
would be discarded. 
 

2.4.1.2. Equilibrium Equation 
 
Assessing the radial equilibrium of the element gives: 
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Assuming δθ is small (i.e. sin(δθ/2) � δθ/2), taking δr � 0, and dividing through by 
rδrδθδz gives: 
 

0=+−+
∂

∂
r

rr F
rr

θσσσ
 

 
As explained above the body force, Fr, is assumed to be zero.  As r is the only 
independent variable the partial derivative becomes total, giving the following 
equilibrium equation: 
 

 
rdr

d rr σσσ θ −=  (2.1) 

 

2.4.1.3. Strain Relationship in cylindrical co-ordinates 
 
Figure 2.6 displays the radial deflections (given in terms of u) observed during axi-
symmetric expansion, at two radii – r and r+dr. 
 

 

Figure 2.6:  Deflection Diagram 

 
Strains (deflection/original length) may then be defined as shown below. 
 
Radial strain: 
 

 
dr

du
r =ε  (2.2) 

 
Hoop strain, given that circumference is 2πr: 
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The following, standard, constitutive relations also apply: 
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 ( )ztrrtE σσνσε θ +−=  (2.4) 

 
 ( )zrttE σσνσε θθ +−=  (2.5) 

 
 ( )θσσνσε +−= rtzztE  (2.6) 

 
 

2.4.2. Analytical Models 
 
A selection of analytical models are presented below, starting with Lamé’s elastic 
solution; while treatment of autofrettage inherently requires consideration of plasticity, 
Lamé’s solution highlights the large tensile stresses found around the ID and allows the 
onset of yielding (sub-sub-section 2.4.2.2) to be predicted.  Generally, it is only 
possible to create an analytical model (or closed form solution) of autofrettage using 
Hencky’s total stress-strain relationship as the Prandtl-Reuss incremental stress-strain 
relations don’t allow this. 
 
This is followed by an assessment of some of the more prominent analytical elastic-
plastic solutions of hydraulic autofrettage.  While many other solutions have been 
developed, for brevity only those most relevant to this study are summarised here. 
 

2.4.2.1. Lamé’s Solution of a Thick-Walled Elastic Tube 
 
The Lamé solution is the simplest treatment of stresses within a thick tube, and as such 
was the first aspect studied – Lamé elected to solve an elastic plane strain case using 
constitutive and compatibility relationships.  The development of the solution, as given 
in the “Theory of Elasticity” [11] is repeated in Appendix A1. 
 
Although in its pure form this solution is limited to elastic loading, it is utilised in later 
elastic-plastic models, as well as quasi-elastic models, making a thorough 
understanding of it important. 
 
From Equation (11.4) it is noted that, at the inner diameter (r = ra), pi is the lower limit 
of hoop stress (σθ), reached when K tends to infinity.  Thus in an elastically behaving 
vessel, even for impractically large values of K, the tensile hoop stresses at the inner 
diameter will always in practice exceed the internal pressure.  Figure 2.7 shows the 
through wall hoop stresses for a range of elastic tubes. 
 
In the context of high-pressure vessels, this directly limits the maximum allowable 
pressure and fatigue life.  Accordingly some means of better distributing the hoop 
stresses, such as pre-stressing, must be adopted. 
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Figure 2.7:  Hoop Stresses, in a series of Elastic tubes with a range of Wall Ratios 

 

2.4.2.2. Elastic Limit and onset of Yield 
 
Autofrettage induces compressive residual stresses at the inner diameter, by causing 
plastic deformation as a result of internal expansion; these residual stresses then reduce 
the size of tensile stresses encountered at the inner diameter.  Lamé’s model describes 
the elastic behaviour of a pressurised tube but predicts neither yielding nor subsequent 
plastic behaviour; therefore Lame’s solution is not capable of simulating autofrettage. 
 
Instead, a model that incorporates a yield criterion is required such that stresses within 
the tube wall are related to a stress value representative of the material’s elastic limit.  
Yield criteria incorporate the following: 
 

1. A means of translating a set of component/principal values into a single 
equivalent value, 

2. An initial yield stress that is usually based on the yield stress either in simple 
tension (σY0) or pure shear (k). 

 
The two most common yield criteria, Tresca and von Mises (or Maxwell), are presented 
formally below, in terms of principal stresses [12]. 
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Tresca Yield Criterion 
Also called the Maximum shear stress criterion, as yielding is predicted to occur when 
the greatest of the three shear stresses reaches a critical value – the yield stress in pure 
shear, k. 
 
 k2133221 =−∨−∨− σσσσσσ  (2.7) 

 
At the onset of yield in simple tension, σ1 = σY0, σ2 = σ3 = 0, hence σY0 = 2k. 
 
von Mises Yield Criterion 
Also called the Maximum shear strain energy criterion, as yielding is predicted to occur 
when the shear strain energy (or energy of distortion) per volume (τ2/2G) reaches a 
critical value.  The energy of distortion, US, is given by: 
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Substituting E = 2G(1 + ν), and equating the shear stress τ to the yield stress in pure 
shear, k, gives: 
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At the onset of yield in simple tension, σ1 = σY0, σ2 = σ3 = 0, hence: 
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The above equations show the different relationships between the yield stresses in 
simple tension (σY0) and pure shear (k) in the two yield criteria present. 
 
This means that depending on the stress combination present (see Figures 2.8 and 2.9) 
the Tresca criterion will likely underestimate the strength of the material compared 
with the von Mises criterion. 
 
To apply the above general formulae to this cylindrical case, σθ > σz > σr is assumed, 
hence: 
 
Tresca’s Yield Criterion gives: 
 
 kYr 20 ==− σσσθ  (2.10) 

 
von Mises’ Yield Criterion gives: 
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Tresca’s Yield criterion was chosen for initial analyses (detailed in Chapter 3) due to 
the correlation between its stress equivalence (LHS of Equation (2.10)) and the 
numerator on the RHS of the equilibrium Equation (2.1).  This allows separation of 
variables and subsequent integration of the equilibrium equation, leading to an explicit 
solution.  The von Mises criterion was reserved for later use, as the lower accuracy of 
Tresca was not thought to be excessive during the early stages of this investigation.  
Some degree of error was expected, as (discussed above) the Tresca yield criterion 
tends to gives a more conservative estimation of material yield stress than the von 
Mises criterion does. 
 
 

Figure 2.8:  Yield Prisms Figure 2.9:  π-Plane Projection 

Source:  “Engineering Plasticity”, Johnson, W and Mellor, P B, van Nostrand 
Reinhold, 1973 

 

2.4.2.3. Hill’s Model 
 
Hill et al. [13] formulated a model of a non-strain-hardening hydraulically 
autofrettaged tube in plane strain that uses the Prandtl-Reuss stress-strain relationship.  
Importantly, it includes the effects of elastic strain components within the plastic region 
(i.e. it is considered compressible); many solutions neglect them.  The Tresca yield 
criterion is used, allowing axial stress to be considered independently from radial and 
hoop stresses as it is the intermediate stress.  However, it is shown that the solution is a 
close approximation of one based on the von Mises criterion (a 3% error in flow stress, 
that only occurs during the initial increment of plasticity for each element, is quoted for 
the given example). 
 
The main finding is that an error of greater than 60% occurs (for the presented case) in 
axial stress if elastic strains in the plastic region are ignored. 
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2.4.2.4. Avitzur’s Model 
 
Avitzur developed a model [14,15] of an elastic-plastic tube undergoing hydraulic 
autofrettage, using the von Mises yield criterion for both plane strain and stress 
conditions.  It models a smooth transition at rp between an incompressible plastic 
portion and compressible elastic portion, but assumes axial stresses in the plastic zone, 
when pressurised, to be calculated using Hooke’s law due to the elastic strains present 
(as plastic strains are of the same order of magnitude as elastic strains). 
 
A substantial limitation is that the tube material is considered to be elastic, perfectly 
plastic; this does not exert a great influence over conditions at peak autofrettage 
pressure, but will significantly alter residual stresses.  Arguably, the lack of accurate 
material representation will have a greater impact on residual stresses than the choice of 
the von Mises rather than Tresca yield criterion, given the early onset of non-linearity 
displayed by the materials of interest. 
 

2.4.2.5. Huang’s Model 
 
Huang [16] developed a von Mises solution of an elastic-plastic tube, which is made 
possible by the following simplifications – 
 

1. Incompressibility: εr + εθ + εz = 0 
2. Plane Strain: εz = 0 

 
Although more restrictive than Avitzur’s model, due to the incompressibility criterion, 
Huang’s model very easily yields a solution making it of more practical use for 
comparison with other methods – specifically numerical methods.  This makes it a 
considerable advancement in the field of analytical models of hydraulic autofrettage. 
 
The incompressibility criterion means that the plane strain state is similar to the closed-
ended case (which applies a tensile axial load of magnitude pi* ra

2*π), due to the greater 
tensile axial stresses developed in the elastic region. 
 
Crucially, the model includes an impressive degree of flexibility of modelling material 
stress-strain behaviour, allowing bi-linear or non-linear response to be specified 
independently for both loading and unloading procedures.  Non-linear behaviour is 
restricted to power-law relationships but this allows reasonable flexibility, dependent 
on the desired stress-strain profile.  With respect to the materials used in high pressure 
vessels, whose behaviour is dependent on prior plastic strain, the main limitation is that 
only one unloading profile may be used.  The use of Huang’s model is described in 
Chapter 3. 
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2.4.3. Numerical Models 
 
When a particular set of equations cannot be solved analytically, it is often possible to 
numerically solve (usually to high and predictable accuracy) instead.  This may be used 
when a differentiation or integration procedure cannot be achieved through normal 
means, or if variables cannot be separated sufficiently to allow direct solution.  A 
selection of models that use these methods, to overcome some inherent restrictions of 
analytical solution of hydraulic autofrettage, are described below. 
 

2.4.3.1. Chu’s Method 
 
Chu [17] made a good review of existing models, and developed a finite difference 
model of a hydraulically autofrettaged tube under general plane strain conditions.  The 
autofrettaged tube may consist of a strain hardening material, be subject to end loads in 
addition to internal and external pressures, and behave according to von Mises yield 
criterion and Prandtl-Reuss incremental stress-strain laws.  These combine to make an 
effective model of hydraulic autofrettage, which showed excellent agreement when 
compared with the models of Hill [13] and Hodge [18] for the autofrettage of an elastic, 
perfectly plastic tube. 
 
Selection of a finite difference approach was pragmatic at the time the model was 
developed; computing resources were far scarcer than today, and commercial FEA 
packages were in their early stages.  Chu notes that in the finite element method, 
stresses and strains must be determined via numerical differentiation, and that a fine 
mesh is required for accurate results.  He then states, in reference to his method, 
“incremental stresses and strains at each nodal point are directly used as variables and, 
hence, numerical differentiation in the evaluation of stresses and strains is not 
required.” 
 
Given the development of computational resources and FEA packages to run on them, 
the use of the finite element method is now a much more viable, accessible and 
accepted means of creating an autofrettage model.  Such packages automatically 
generate and solve the required FE equations, in addition to providing tools for the 
creation of model geometry and other features. 
 

2.4.3.2. Jahed and Dubey’s Method 
 
Jahed and Dubey [19] developed a method for solving non-linear behaviour using a 
quasi-elastic analysis, which treats elastic properties as field variables such that the 
stress-strain state may be calculated for each location within the considered region.  It 
builds on a method [20] for the solution of elastic-plastic conditions, using Hencky-
Ilyushin total deformation theory, which transforms the constitutive relations into a 
form analogous to elastic relations.  Effective elastic properties are iteratively applied, 
such that the desired stress-strain profile is followed, until a converged solution is 
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reached.  Their method (expanded upon in Appendix A3, then used within FEA in 
Chapter 5) is then applied to a thick-walled tube undergoing hydraulic autofrettage, 
which is broken down into a series of strips to allow properties to be varied throughout 
the tube wall. 
 
The authors investigate the effect of a variable Bauschinger Effect Factor (β), using 
empirical results from Milligan, Koo and Davidson [21], on the depth of reyielding 
following pressure removal, and residual hoop and axial stresses.  Based on the 
material profile used, they conclude that the variable β only has significant impact on 
the three values when the degree of overstrain is relatively small.  This is logical, as β is 
effectively constant for initial plastic strains of more than 2%, and the greater the 
degree of overstrain the greater the depth of tube that will have exceeded this threshold.  
However, they did not exploit the full potential of the method as the material did not 
exhibit non-linearity. 
 

2.4.3.3. Hencky Programme 
 
The Hencky Programme allows accurate simulation of hydraulic autofrettage for a wide 
range of end conditions (Plane strain and stress, open- and closed-ended) and materials, 
using von Mises yield criterion.  It was developed by Parker [22] from a basic 
EMPRAP formulation by Jahed and Dubey [19] (described in Appendix A3) and 
allows radial variation of unloading properties (which are crucial when determining 
residual stresses) based on prior plastic strain experienced.  Notably, the Hencky 
Programme can simulate the often significant nonlinearity exhibited by various 
candidate gun steels (e.g. A723, HY180, PH 13-8Mo) during unloading following 
initial plastic deformation. 
 
It achieves this by considering a thick-walled tube to consist of a series of thinner, 
concentric, cylindrical shells.  Each shell is obliged (via the formulation) to satisfy 
requirements of equilibrium and compatibility at its inner and outer interfaces where it 
interacts with its neighbours.  The behaviour of the shells is treated elastically such that 
it may be modelled using Lamé’s tube equations [23]; these provide the hoop and radial 
stresses in a cylinder, when subjected to internal and external pressure. 
 
By using a large number (of the order of 100) of cylindrical shells, radial variation of 
material behaviour due to plastic strain can be easily modelled.  Jahed and Dubey’s 
method is employed to tailor the elastic properties (E and ν) of each shell, such that its 
stress-strain profile matches the desired material behaviour.  This allows the hydraulic 
autofrettage (and subsequent unloading) of tubes in a variety of end conditions, 
consisting of virtually any material, to be accurately simulated.  The range of end 
conditions is achieved by applying suitable constraints – for example, σz = 0 for plane 
stress, εz = 0 for plane strain. 
 
Numerical modelling of the pressurisation phase of autofrettage begins with an initial 
quasi-elastic, or hypothetical, stress distribution (normally the elastic solution for the 
original homogeneous, isotropic material and selected bore pressure).  From this 
solution initial yielding is assessed, and effective elastic properties (Eeff and νeff) are 
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calculated.  The effective elastic properties are refined through a series of iterations.  
An iterative procedure is employed to refine Eeff for each strip, as illustrated in Figure 
11.3, which represents three iterations, leading to E3

eff.  Convergence is monotonic, 
reasonably rapid, and easily assessed. 
 
Loading and unloading phases are solved as separate phases, each using essentially the 
same procedure.  However, whereas during loading there is a single profile associated 
with all radii, during unloading there is potentially a different profile associated with 
each radius, uniquely defined by the prior maximum plastic strain experienced at that 
radius.  In terms of Figure 5.1, the 2-3- section of the plot is rotated through 180° and 
translated so that point 2 (now at the lower left of the line segment) lies at the origin of 
the graph.  This is illustrated, for a given radius, in Figure 5.4. 
 
The unloading stresses are calculated by the autofrettage (to the same pressure as was 
originally used) of a tube whose material loading profiles have been modified to be that 
of the unloading profiles.  Finally, the total residual stresses are obtained by subtracting 
the unloading stresses from the loading stresses. 
 

2.4.3.4. Single Effective Material (SEMAT) 
 
The complexity of accurate material modelling (including the Bauschinger effect) that 
reflects radial variation within autofrettage models has acted as a major obstacle in the 
development of accurate models of hydraulic autofrettage.  Various co-authors of 
Parker et al. [24] developed a method of representing a series of prior strain dependent 
unloading profiles with a single effective material (SEMAT) stress-strain profile.  This 
is accomplished by selecting a material profile based on the final stress-strain loci that 
are observed within a hydraulically autofrettaged tube.  When the material profile is 
applied to a hydraulic autofrettage simulation, this ensures that the final residual stress 
state is accurate, although the path taken is not; however, this is of little importance as 
partially unloaded stress states are rarely investigated. 
 
It is demonstrated [24] that numerical solutions may be obtained using a single 
‘fictitious’ material in this manner; whist this requires a very small number of iterations 
for accurate convergence, it dramatically reduces the material-modelling challenges.  
Furthermore, SEMAT may be implemented into an analytical procedure thereby 
permitting highly accurate modelling of a real material whose unloading behaviour 
varies with radius.  Comparisons indicate that this is a robust, accurate procedure. 
 
SEMAT was not utilised within the work presented in this thesis, partly due to being 
developed following the work in Chapter 6, and partly due to the focus on swage 
autofrettage.  Unlike hydraulic autofrettage, a material’s stress-strain behaviour 
throughout unloading is important in the development of shear stresses during swage 
autofrettage, making it crucial that any material used follow the correct stress-strain 
profile during the entire unloading process. 
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2.5. NUMERICAL METHODS 
 
Whilst a range of analytical models of hydraulic autofrettage exist, all include 
simplifying assumptions which limit their applicability, especially in terms of material 
modelling.  Additionally, no analytical models of swage autofrettage exist.  As such, it 
was recognised that numerical modelling would be required to achieve the goals of this 
study. 
 
Given the increase in computational capabilities of PCs in recent years, numerical 
methods are very much more practical than was previously the case; in particular, 
commercial Finite Element packages have become more widespread. 
 

2.5.1. Numerical Modelling Procedure 
 
Regardless of the method employed, the process generally involves the same three 
stages: pre-processing, solution and post-processing.  These are described below, in the 
context of the mechanical stress analysis that will be utilised in this study. 
 
Pre-Processing describes the process of assessing the system that is to be analysed, and 
formulating its properties within the selected modelling method such that solution may 
commence.  This generally comprises the following stages: 
 

• Rendering the model geometry into discrete portions, suitable for the selected 
method. 

• Application of special properties, such as plane strain behaviour and appropriate 
symmetries. 

• Formulation of governing equations (for example, element matrices in FEM). 
• Specification of material behaviour. 
• Application of boundary conditions and loads. 

 
The Solution procedure encompasses the computation of results, as well as the setting 
of method-specific values such as the number of time steps to be used or accuracy 
tolerances. 
 
Post-Processing covers the extraction of poignant data from the complete set computed 
during solution, as well as any subsequent calculations performed on them and 
arrangement for presentation. 
 
 

2.5.2. Finite Difference Method 
 
Finite differences are described as the discrete analogue of derivatives, and are often 
used to evaluate boundary value problems when the governing differential equations 
are known but the function is not.  Pressurised thick-walled tubes may be addressed 
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using this method; typically the boundary values of radial stress (at ra and rb) will be 
known, and the equilibrium equation is a differential expression that relates radial and 
hoop stresses. 
 
Essentially, finite difference terms are used to replace derivatives in differential 
equations; progressive numerical solution is then possible.  While potentially of use, it 
was not expected that a reconfigurable model of swage autofrettage could practicably 
be formulated using finite differences. 
 
 

2.5.3. Boundary Element Method 
 
The boundary element method (BEM) again requires the considered region to be 
decomposed into discrete portions, but differs in that the boundary, not the entire 
region, is considered; this reduces the dimensionality of the problem by one order.  
Compared to the FEM, the BEM is a relatively recent development; it is based on the 
solution of partial differential equations, formulated as integral equations, via 
numerical means.  Boundary conditions are used to fit boundary values into the integral 
equation selected for the problem; once this is achieved, the integral equation may be 
evaluated within the considered region to obtain the required solution data. 
 
The BEM is in some cases less computationally demanding than, for example, the finite 
element method, particularly when the considered region has a small surface area to 
volume ratio.  However, in many cases, the opposite is true as the computational cost 
(in terms of both memory requirements and processing) of BEM tends to increase with 
the square of the model size, whereas a more linear relationship is observed for finite 
element models. 
 
An additional restriction on the applicability of the BEM is that for any problem that is 
considered, it must be possible to calculate a Green’s function; this generally requires 
that the region consist of a linear homogenous medium.  Non-linear properties may be 
modelled, but this generally requires the use of volume integrals, which in turn need to 
be decomposed into sub-sections and addressed numerically.  This negates one of the 
main advantages of BEM over FEM, especially as a core component of this study will 
be material non-linearity. 
 
Given the linear homogenous restriction, relative maturity of FEM tools and 
complexities of translating the transient displacement boundary condition imposed by 
the mandrel during swage autofrettage, the BEM was not used in this study.  
 
 

2.5.4. Finite Element Method 
 
The finite element method (FEM) concerns itself primarily with geometrical 
rationalisation of the considered region, by which means the problem is reduced to one 
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which may be solved numerically.  Such rationalisation is achieved through the 
decomposition of an arbitrary region into a finite number of geometrically simple sub-
regions, or elements, collectively termed a mesh.  The field properties within elements 
may then be evaluated individually and assembled to obtain them for the whole region. 
 
The decomposition of the considered region into elements reduces an otherwise 
intractable problem into a finite number of unknowns, which are then solved by 
expressing the unknowns (field variables) within each element in terms of the 
approximation (or interpolation) function.  Such functions are defined in terms of nodal 
values; nodes are shared by adjacent elements, “stitching” the mesh together by 
ensuring continuity of field variables between elements. 
 
Forces arising from the physical interaction of bodies modelled in FE may be 
calculated using contact analysis, which made the FEM a likely candidate for use in 
this research.  Combined with the relative maturity of commercial FE packages (that 
would allow model geometry to be rapidly formulated), is the reason the FEM was 
selected for use. 
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2.6. SUMMARY  
 
Gun barrels have been made for many hundreds of years, with growing understanding 
of the processes that influence their performance and lifetime.  “Hooping,” and “self-
hooping” methods were developed to mitigate the high tensile stresses found at their 
bores when pressurised, and these have become the subject of study since the early 
twentieth century.  Many models of hydraulic autofrettage have been developed (both 
analytical and numerical), each based on different assumptions of yield criterion, flow 
behaviour and, critically, material stress-strain profile – particularly when unloading 
from peak pressure, when the early onset of non-linearity occurs, described as the 
Bauschinger effect.  However some models, particularly numerical, do achieve accurate 
behaviour in some or all of these respects. 
 
Swage autofrettage has not been addressed to the same degree; the travelling, localised 
load, and associated shear stresses and non-plane behaviour put it beyond the reach of 
analytical solution, and make it complex to address numerically, especially if accurate 
material response is included. 
 
However, in recent years the abilities of computers have developed rapidly, as have 
commercial FE packages.  This means that swage autofrettage, with all its associated 
complexities, may now be more practically modelled. 
 
 

2.7. PROGRAMME OF WORK 
 
Initial work will focus on investigating material behaviour relevant to autofrettage, and 
the selection of existing hydraulic autofrettage models suitable for comparison with and 
validation of FE models of the same. 
 
Models of hydraulic autofrettage will then be developed within FE, featuring simplistic 
material stress-strain profiles, and validated against the previously selected existing 
models. 
 
Accurate material stress-strain behaviour will then be implemented within FE, and 
subsequently validated against existing models to confirm its behaviour. 
 
A model of swage autofrettage will be developed, to emulate the physical process as 
closely as possible.  This will be compared against the only known solution in open 
literature. 
 
Finally, accurate material behaviour will be combined with the swage model, to allow 
accurate residual stresses to be calculated. 
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3. MATERIAL AND ANALYTICAL MODELS 

3.1. INTRODUCTION 
 
This chapter utilises the models introduced in Chapter 2, and assesses their suitability 
for use in validation of numerical models of autofrettage developed at later stages 
throughout this course of research. 
  
The Tresca-based elastic-plastic model of hydraulic autofrettage is initially investigated 
and implemented.  This is then extended to incorporate different responses to plastic 
strain, and subsequently a swage-like scenario in which the applied pressure is 
calculated from interference with a solid disc (mandrel). 
 
Finally, an overview of a range of more suitable pre-existing hydraulic autofrettage 
models is presented, ready for use in subsequent verification of future models. 
 
 

3.2. MATERIAL MODELS 
 
When modelling a system, in addition to accurate representation of its geometry and 
applied loads, the stress-strain behaviour of its constituent material must be simulated.  
In the context of conventional thick-walled high-pressure vessels in general, and this 
study in particular, engineering metals are of interest – specifically, high strength, high 
alloy steels.  The stress-strain behaviour of such materials is hence fundamental to this 
study, both pre- and post-yield. 
 

3.2.1. Plasticity following Initial Yield 
 
Engineering metals exhibit a linear stress-strain response within the elastic regime, up 
to their initial yield stress, σY0; their post-yield stress-strain behaviour is described by 
one of the following models: bi-linear, multi-linear and non-linear.  Figure 3.1 plots 
these behaviours. 
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Figure 3.1:  Post-Yield Stress-Strain Response 

 
While they often display a small amount of non-linearity during initial yield, 
engineering metals can often be satisfactorily approximated by a bi-linear 
representation.  A special case of the bi-linear model is that when no strain hardening 
occurs (the plastic modulus, H, equals zero) – the elastic, perfectly plastic (Figure 2.4) 
case.  This is the simplest form of modelling plasticity, as the yield stress always equals 
the initial value (this fact is utilised by the derivation given in section 3.3). 
 

 
Figure 3.2:  Stress-Strain Diagram of an Elastic, Perfectly-Plastic Material 
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3.2.2. Strain Hardening 
 
Once the stress-strain behaviour in initial yield has been modelled, the response of the 
yield stress to plastic strain, when the direction of load is reversed, must be considered.  
One model assumes that the stress range, between peak tensile stress and the 
compressive yield stress, is twice the initial yield stress (kinematic hardening); the 
other that the stress range is twice the peak tensile stress (isotropic hardening).  These 
are illustrated in Figure 3.3. 
 

 
Figure 3.3:  Material Hardening Models 

 
The above diagrams compare uni-axial stresses and strains; the same behaviours, in 
multi-axial stress conditions, can be plotted on the π-plane (see Figure 2.9).  When this 
is done, loci of equal equivalent stress can be plotted on the π-plane; if von Mises 
equivalence is used the locus forms a circle, and if Tresca equivalence is used the locus 
forms a hexagon.  In both cases, the yield loci are centred on the zero deviatoric stress 
axis.  In the von Mises case, the yield stress of the material is represented by a circle of 
radius σY0 (or the Tresca case, a hexagon circumscribed by a circle of radius σY0).  
Subsequent descriptions will be based on the von Mises case, but will be applicable to 
the Tresca case also. 
 
Once the initial yield stress of the material has been exceeded, the yield circle behaves 
differently depending on whether Kinematic or Isotropic hardening occurs; during 
Kinematic hardening the yield circle moves, and during Isotropic hardening the yield 
circle enlarges.  The translation of the yield circle during Kinematic hardening causes 
yielding to occur at a lower stress on the opposite side of the zero deviatoric stress axis.  
However, given the relatively small plastic moduli of metals (often several orders of 
magnitude less than the elastic modulus), any significant movement/enlargement of the 
yield circle would generally require large plastic strains. 
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However, while the initial yield behaviour of steels may well be suitably described by 
the above models, neither describes the unloading behaviour (from maximum stress) 
well.  Typically, when unloading from initial deformation, such materials experience an 
early onset of non-linearity (significantly earlier that that modelled even during 
Kinematic hardening), termed the Bauschinger effect.  This is further explained in the 
following sub-section. 
 
 

3.2.3. Bauschinger Effect 
 
The Bauschinger effect [25] describes the early halt of linear elastic behaviour observed 
in most polycrystalline metals during load reversal when unloading from prior plastic 
strain, compared with that which would be predicted by the hardening models 
described above.  The reduction of yield stress observed when the loading direction is 
reversed is generally explained in terms of dislocations within grains.  Strain hardening 
occurs when the movement of dislocations is impeded, for example by grain 
boundaries.  One explanation of the Bauschinger effect is that residual elastic stresses 
present in some grains (caused by their uneven plastic deformation) following plastic 
deformation allow dislocations to move more easily in the reverse direction.  Another 
explanation is that dislocations of the opposite sign to those generated during initial 
deformation are created by the same sources.  When unloading, the dislocations of 
opposite signs annihilate each other, reducing dislocation density and hence the 
strength of the material. 
 
Again dependent on plastic strain, the location of the early non-linearity depends on the 
peak plastic strain encountered (typically in tension at peak pressure in the case of 
hydraulic autofrettage).  It is quantified by the Bauschinger Effect Factor, β, (a function 
of prior plastic strain – see Figure 3.5) such that the reverse yield stress is defined by –
βσY0, as demonstrated in Figure 3.4: 
 

 

Figure 3.4:  Material exhibiting the Bauschinger Effect and Strain Hardening 
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applied to a thick-walled cylinder before reverse yielding occurs; clearly any accurate 
simulation of autofrettage must include it. 
 
While the slight reduction in reverse yield stress present in Kinematic hardening may 
be described using β, Kinematic hardening is generally not an accurate model of 
material behaviour given that the plastic modulus, H, is often small hence β ≈ 1.  Figure 
3.5 compares the elastic stress range, σE, between peak and reverse yield stresses, as the 
initial plastic deformation is varied, to illustrate this difference for the case of a gun 
steel named A723-1130 (see sub-section 5.1.1 for details of the material-fit). 
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Figure 3.5:  Comparison of Elastic Stress Range, σE, between Kinematic Hardening model and 
A723-1130 
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3.3. INITIAL AUTOFRETTAGE ANALYSIS 
 
A model of a tube undergoing hydraulic autofrettage, in plane strain conditions, was 
created using Tresca’s yield criterion to predict behaviour in the yield zone; elastic 
stresses in the region beyond this are calculated using Lamé’s relationships.  It is hence 
referred to as the Tresca Elastic-Plastic solution.  While this model was developed [26] 
and expanded upon (e.g. by Bland [27]) many years prior to this study, it builds upon 
the Lamé solution to incorporate plasticity into an elegant analytical solution.  This 
provides a convenient means of introducing many terms and concepts, so is included 
here.  In addition it was used as the basis of an initial swage model, described in section 
3.5.  The development of the Tresca Elastic-Plastic solution is given in Appendix A2, 
and the resultant equations are summarised below. 
 
 

3.3.1. Overview 
 
Whether autofrettage is achieved hydraulically or through swaging, the process 
involves expansion and plastic deformation of the tube, followed by relaxation and the 
development of compressive stresses around the ID. 
 
Consider a tube loaded by an internal pressure, pi, which increases from zero to the 
final autofrettage pressure, pAF.  Once the pressure is high enough (pe) tensile yielding 
initiates at the ID (r = ra), propagating outwards as the pressure increases; Lamé’s 
solution clearly shows that the Tresca equivalent stress is highest at the ID.  When the 
applied pressure reaches pAF, the maximum radius of plasticity is termed the Primary 
Yield Radius, rp (ra ≤ rp ≤ rb). 
 
Upon removal of the autofrettage pressure compressive hoop stresses are developed 
within the expanded material found within the primary yield region (ra ≤ r ≤ rp), 
partnered by tensile hoop stresses in the elastic region (rp ≤ r ≤ rb).  As in the pressure 
application phase, these compressive stresses are greatest around the ID.  If the change 
in stress state (i.e. equivalent stress) between peak pressure and residual conditions 
exceeds the elastic stress range (σE), compressive yielding initiates at the ID and 
propagates outwards – the limit of this reyielding is termed the Secondary Yield Radius, 
rs.  As will be demonstrated, unless the tube material ra ≤ r ≤ rp loses all strength (σY = 
0) following the plastic strain experienced during autofrettage, rs < rp.  Figure 3.6 
illustrates these radii. 
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Figure 3.6:  Yield Diagram 

 
As noted towards the end of sub-section 2.4.2.2, the first elastic-plastic solution 
investigated is that based on Tresca’s yield criterion, which allows for explicit solution 
of the stress field (within a hydraulically autofrettaged tube that remains plane 
throughout).  An elastic, perfectly plastic material (i.e. σY

comp = σY
tension) is used which is 

the most simple stress-strain response that includes plasticity (see Figure 3.2). 
 
 

3.3.2. Autofrettage Stresses 
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The primary yield radius, rp, cannot be determined through rearrangement or other 
direct means; instead, it must be found through a short iteration using the boundary 
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condition σr = pAF at the ID (r = ra) applied to the radial stress expression from 
Equation (11.6).  This was achieved (using Matlab, but any other suitable numerical 
method would quickly achieve a converged answer) by incrementing r from an initial 
value of ra. 
 
A special case of the radial stress from Equation (11.6) can be formed to give an 
expression for the minimum pressure required for yielding (or limiting elastic pressure) 
at the inner face, pe.  Setting r and rp to ra: 
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If the autofrettage load is hydraulic, a simple comparison of the applied pressure to the 
limiting elastic pressure, from Equation (11.8), will determine the presence of yielding. 
 
 

3.3.3. Unloading Stresses 
 
Unloading stresses are calculated in a separate process to the autofrettage stresses, and 
then subtracted from the autofrettage stresses to determine the residual stresses.  
Unloading from peak autofrettage conditions may occur either elastically or otherwise 
involve further plasticity; this is found to occur at the ID in the first instance, and may 
be detected by assessing the Tresca equivalent stress were the tube to remain elastic.  
This can be more easily seen by rearranging Equation (11.9), and making the 
substitution r = ra: 
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If unloading occurs elastically, residual stresses are calculated by superposing standard 
Lamé elastic stresses, caused by the application of pAF, from Equations (11.4) upon 
those created during pressurisation  If residual stresses are sufficient to cause reverse 
yielding, a secondary yield radius, rs, must be designated and unloading stresses 
calculated by the following: 
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Elastic Region 
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The secondary yield radius, rs, is found using the zero internal pressure after relaxation 
criterion.  This means that the residual radial stress (from Equation (11.12)) summed 
with the radial stress during Autofrettage (from Equation (11.6)) must give an answer 
of zero (at r = ra), as seen below. 
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As with rp from Equation (11.6), rs may be calculated by a short iteration; it will be 
found to be smaller than rp.  It can be seen from Equation (11.9) that as p/pe increases 
from 2 (for the elastic, perfectly plastic case), secondary yielding occurs for radii 
progressively greater than ra.  Plots of residual hoop and axial stresses within a tube 
with Wall Ratio 3.0 can be seen in Figure 11.2. 
 
 

3.3.4. Strains 
 
While Equations (2.4) – (2.6) provide a means for assessing component elastic strains, 
they are not capable of calculating plastic strains; these are found by subtracting elastic 
strain components from the total values.  Total hoop strains are found to be: 
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Plastic hoop strains may then be found by subtracting elastic hoop strains, calculated by 
Equation (11.16), from the total value, Equation (11.21). 
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Where σ represents the yield strength during loading of the material at that position.  
Hence when modelling the Bauschinger effect if there is no strain hardening present 
(i.e. H = 0) it equals σY0, and when modelling strain hardening it increases according to 
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the hardening relationship defined.  Also, given the associated integrated flow rule, 
plastic radial strain is given by: 
 
 pp

r θεε −=  (3.10) 
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3.4. VARIATIONS ON THE TRESCA SOLUTION 
 
The model described in section 3.3 incorporates an elastic, perfectly plastic material – 
this is a simplistic plasticity model, which maintains a constant equivalent stress of σY0 
while in the plastic regime.  As such, it is not representative of the stress-strain 
response of candidate steels to plastic deformation (especially during unloading), as 
described in section 3.2.  In light of this, a series of adaptations are applied to the 
Tresca solution to reflect the different responses to plastic strain described in section 
3.2. 
 
Not only does the development of the variants allow the influence of these responses to 
be observed, it increases experience in the development of modelling autofrettage 
scenarios.  The adaptations allow the following behaviours to be modelled: 
 

1. Isotropic Hardening, 
2. Kinematic Hardening, 
3. Bauschinger Effect, 
4. Pseudo von Mises. 

 
 

3.4.1. Effects of Plastic Deformation 
 
Equations (11.12) to (11.14) provide a means of assessing stresses within the tube 
subsequent to secondary yielding, providing the material properties of the tube remain 
unchanged.  However, after tensile yielding (as experienced by the tube during either 
hydraulic or swage autofrettage), metallic materials experience changes to their 
properties, as described in section 3.2. 
 
As can be seen from Figure 3.3, strain hardening alters the stress-strain state of a 
material once plastic deformation has begun.  With respect to autofrettage, strain 
hardening would manifest as a reduction in rp for a given value of pAF as the material in 
the region ra ≤ r < rp would carry more pressure load than in an autofrettage tube of a 
perfectly plastic material (although the minimum pressure required for autofrettage, pe, 
would be unchanged).  This is most obviously true in a model that utilises the Tresca 
yield criterion, given the commonality with the equilibrium equation (used in Equation 
(11.5)).  As strain hardening occurs, the difference between hoop and radial stresses 
increases, allowing for greater hoop stresses and hence greater pressure load.  
Subsequent unloading would also be affected; following the load reversal rs would 
either be increased or decreased, for kinematic or isotropic hardening, respectively. 
 
The Bauschinger effect occurs solely during unloading after plastic strain (Figure 3.4 
shows this, and defines the Bauschinger Effect Factor, β); the primary yielding process 
is unaffected, hence rp remains unchanged. 
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3.4.2. Implementation 
 
Strain Hardening and the Bauschinger effect are modelled by multiplying the yield 
stresses from the Tresca yield criterion (Equation (2.10)) by a scaling factor.  Stresses 
in both loading and unloading procedures must be altered, requiring a scaling factor for 
each case – designated FSL and FSU for loading and unloading, respectively. 
 
During loading only strain hardening occurs as the Bauschinger effect does not 
influence yield stress until load reversal commences, hence only material within the 
deformed region (ra ≤ r ≤ rp) is affected; accordingly FSL is only applied to the stresses 
equations within the deformed region.  Hence, the autofrettage loading stress equations, 
adapted from Equations (11.6), are scaled using FSL, becoming: 
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Extending the principle of an altered yield stress into the unloading phase, a second 
scaling factor, FSU, is introduced to alter yield during unloading – in this case to the 
unloading yield criterion, Equation (11.9). 
 
During unloading both strain hardening and the Bauschinger effect influence yield 
stress; in addition, when isotropic hardening is present, the increased yield stress 
extends beyond the reyield region (ra ≤ r ≤ rs) to rp, which must be reflected by the 
elastic stresses in the region rs ≤ r ≤ rp.  FSU is calculated to incorporate this behaviour 
(and must equal 1 in the undeformed region, rp ≤ r ≤ rb), and is used to scale unloading 
stress equations, adapted from Equations (11.12) and (11.13), in both elastic and plastic 
regimes: 
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The secondary yield radius is then found by summing radial stresses at r = ra, from 
Equations (3.12) and (3.11), to zero, forming Equation (3.14) (this is equivalent to the 
formulation of Equation (11.14)): 
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In summary, FSL and FSU are used to control post-yield stress-strain relationships; it 
now remains to define FSL and FSU so as to give the desired behaviour during plastic 
deformation. 
 
 

3.4.3. Plastic Strain 
 
As both the Bauschinger effect and Strain Hardening are dependant on plastic strain, 
the (loading) plastic strain must be identified before they may be addressed.  Plastic 
hoop and radial strains are given by Equations (11.22) and (11.23), and may be 
combined into the Tresca equivalent plastic strain using the following: 
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At this stage, it was thought that making strain hardening proportional to the Tresca 
equivalent plastic strain was a sensible balance of accuracy versus simplicity. 
 
Now the plastic strain which occurs during autofrettage has been quantified, it remains 
to formulate relationships between it and material yield stress. 
 
 

3.4.4. Strain Hardening 
 
The increased strength of the tube material during autofrettage in the deformed region 
(ra ≤ r ≤ rp) is represented by raising the yield strength above σY0 – in general, treating it 
as a function of Tresca equivalent plastic strain: 
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 ( )p
TrYr F εσσσθ ==−  (3.16) 

 
Assuming linear isotropic hardening, the altered yield stress of the strain-hardened 
material is given by: 
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Where σY is the modified yield stress of the material, and H (the Tangent modulus) is a 
constant, typically assumed to be 0.05 to 0.1 E.  Substituting for Tresca equivalent 
plastic strain (Equation (3.15)) and rearranging, the Tresca yield criterion (from 
Equation (2.10)) in a linearly strain hardened tube is found: 
 

 

( )

( ) 




 −+












−+

==−

E

H

Er

Hrp
Y

r
2

2

2
2

0

121

121

ν

νσ
σσσθ  (3.17) 

 
Accordingly the yield stress scaling factor in loading, FSL, is given by: 
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It must then be decided if the tube material behaves isotropically or kinematically in 
plastic deformation, such that the elastic stress range (σE) may be calculated.  If 
isotropic hardening is desired, σE = 2σMax hence FSU = FSL, or if kinematic hardening is 
desired, σE = 2σY0 hence FSU = 1 (FSU operates on the stresses developed in Equations 
(3.12), which, as described in sub-section 11.2.5, already incorporate the stress range σE 
= 2σY0). 
 
Figure 3.7 plots the residual stresses within a kinematic hardening tube with Wall Ratio 
3.0 subject to Strain Hardening of H = E/10, again with an autofrettage pressure ratio, 
pi/σY, = 1.0909.  The normalised primary yield radius decreases to 0.4090, and the 
normalised secondary yield radius decreased to 0.0072 – resulting from the increased 
yield stress of the material. 
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Figure 3.7:  Residual Stresses in a Tube subject to Linear Strain Hardening 

 
 

3.4.5. Bauschinger Effect 
 
As described in sub-section 3.4.2, the Bauschinger effect was implemented through 
selection of the scaling factor in unloading, FSU (given by Equations (3.12)). 
 
The Bauschinger effect was addressed by considering the degree of weakening to be a 
function of Tresca equivalent plastic strain (εTr

p), so that as initial plastic strain drops 
from a maximum at ra to zero at rp, β varies accordingly with radius in the tube. 
 
As described above, the loading stage is unaffected by the Bauschinger effect (e.g. FSL 
= 1), leaving FSU to be defined.  To model a decrease in yield strength: 
 

 
2

1 β+=SUF  0 ≤ β ≤ 1 (3.19) 

 
Milligan, Koo and Davidson [21] assessed the Bauschinger effect in high strength 
steels, providing a basis for the selection of values of the Bauschinger Effect Factor (β) 
used here. 
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The unloading profile of a material subject to the Bauschinger effect is determined by 
prior plastic strain – accordingly, as prior plastic decreases from a maximum at ra to a 
minimum at rp, β was varied in this region.  In this study, it was thought that scaling the 
decrease in yield stress in proportion to prior Tresca equivalent plastic strain, εTr

p, was a 
good approximation for this study, i.e.: 
 
 p

TrSF εβ β ⋅−=1  (3.20) 

 
Where FSβ is a positive scaling factor.  We may now apply an end constraint to identify 
FSβ – if β = β0 at r = ra, then: 
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Now that β has been found, FSU may be found using Equation (3.19); subsequently, 
Equations (3.12) and (3.13) may be evaluated to give unloading and hence residual 
stresses. 
 
The formation of the above equations rely on the assumption that rs ≤ rp; to confirm 
this, Equation (3.14) is evaluated with rs is set to the limiting case of equality with rp, 
FSL = 1, giving: 
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In view of Equation (3.22), it is clear that rs ≤ rp when 0 ≤ β; hence the range 0 ≤ β ≤ 1 
is valid without exception for Equations (3.12) and (3.13). 
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Figure 3.8:  Residual Stresses in a Tube subject to the Bauschinger Effect 

 
Figure 3.8 plots the residual stresses within a tube with Wall Ratio, K, = 3.0 subject to 
the Bauschinger effect (β0 = 0.7)), again with an autofrettage pressure ratio, pi/σY, = 
1.0909.  Compared with the elastic, perfectly plastic case (Figure 11.2), the normalised 
primary yield radius remains at 0.8703 (the Bauschinger effect is an unloading 
phenomenon); however, the normalised secondary yield radius increased to 0.1291 – 
resulting from the reduced yield stress of the material under reverse loading.  
Additionally, the magnitudes of the stresses within the yielded region are reduced.  This 
is unfavourable, as the size of residual stresses determines the amount of benefit 
obtained from autofrettage. 
 
 

3.4.6. Pseudo von Mises 
 
The Pseudo von Mises model uses the relationship between the yield stresses calculated 
by the Tresca and von Mises yield criteria, developed in sub-section 2.4.2.2, to scale 
the Tresca yield stress to the von Mises yield stress, in plane stress. 
 
By assuming a plane stress (σz = 0) case, and approximating σr = –σθ, we may then 
assume, using Equation (2.9), that k becomes the von Mises value, and increases in 
magnitude by ~15.5%.  This new yield stress (in pure shear) may then be used in the 
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above Tresca method to approximate a von Mises solution of a plane stress tube.  This 
should be used with caution, as it is not a state that generally exists in long tubes. 
 
 

3.5. PSEUDO-SWAGE MODEL 
 
Once an insight into stresses (and methods to find them) in pressurised tubes had been 
gained from Lamé’s solution, the focus of work changed to form an analytical model of 
autofrettage.  The process of pseudo-swage autofrettage is modelled by treating the 
mandrel as a short solid disc (in Plane Stress) travelling down a tube.  It is assumed that 
the mandrel behaves elastically, while the tube is subjected to plastic deformations.  
However, as there are no axial variations incorporated, the model is effectively that of 
hydraulic autofrettage, albeit incorporating the interference fit of the mandrel – which 
gives an insight into the required mandrel size and deflections encountered. 
 

 

Figure 3.9:  Interference Diagram 

 

3.5.1. Initial Stages 
 
First, the Compatibility criterion is introduced, on the basis that the inner surface of the 
tube is in contact with the mandrel, at some radius r i (as shown in Figure 3.9), where ra 
≤ r i ≤ rm.  Ensuing from this requirement, the combined deflection of the tube (ut) and 
mandrel (um) must equal the difference between the mandrel radius (rm) and the inner 
radius of the tube (ra).  Letting this difference (rm - ra) equal δ: 
 
 am rr −=δ  (3.23) 

 
It also follows that: 
 
 tm uu +−=δ  (3.24) 
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Sub-section 11.2.6 develops and number of strain relationships in tubes; in particular, 
Equations (11.15) and (11.16) are used to link strains to displacements, which are used 
below.  Additionally, the tube and mandrel are also linked by the continuity of radial 
stress across the interface (at r = r i) between them.  Hence, at r i: 
 
 ( ) imrr p−== σσ  (3.25) 

 
The tube and mandrel will now be addressed separately. 
 

3.5.2. Mandrel  
 
The mandrel is assumed to be an elastically behaving tube, of inner radius zero.  As it is 
assumed to behave elastically, the stresses within the mandrel may be assessed using 
Lamé’s case, Equations (11.2) and (11.3).  However, as the mandrel is solid r decreases 
to zero at its centre; hence, the constant B must be set to zero to avoid singularities.  
This means: 
 
 Ar == θσσ  (3.26) 

 
It is now possible to assess the hoop stress in the mandrel (required for compatibility – 
Equation (3.24)).  Substituting the Plane Stress criterion (σz = 0) into the general elastic 
hoop strain Equation (2.5), the following is obtained: 
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We may substitute for σθ in Equation (3.27), using Equation (3.26), obtaining the 
following simplification: 
 

 ( ) ( )( )
m

mrm
m E

σνεθ
−

=
1

 (3.28) 

 
By substituting for σr from Equation (3.25) into the above, the following equation is 
yielded. 
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Equation (11.16) is then used to change Equation (3.29) into a deflection expression. 
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Aside from the interface pressure, pi, all terms on the right hand side of Equation (3.30) 
are known.  It now remains to form an expression for the deflection of the tube, to solve 
the compatibility requirement between the mandrel and tube using Equation (3.24). 
 
 

3.5.3. Tube Stresses 
 
In the case of swage autofrettage the applied pressure results from the interference fit 
between mandrel and tube.  The interface pressure is found by solving Equation (3.24), 
given the interference from Equation (3.23).  The (elastic) mandrel deformation, um, is 
found from Equation (3.30) – an expression for the tube deflection is needed to solve 
Equation (3.24). 
 
Sub-section 11.2.6 develops a relationship for the total hoop strain in an elastic-plastic 
tube, given by Equation (11.21).  This can then be converted into a deflection equation 
by multiplying through by r (as when formulating Equation (3.30)).  At the inner 
surface of the tube, where r = ra and σr = -pi, this then becomes: 
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Substituting Equations (3.30) and (3.31) into Equation (3.24), yields: 
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A value for the axial strain, εz, must now be selected.  As the length of the tube is 
considered to be large, it is appropriate to assume the Plane Strain case – meaning axial 
strain is set to zero.  The radial stress at the inner surface of the tube, from Equations 
(11.6), is then used to introduce an expression for pi, by substituting from Equation 
(3.25). 
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This leaves Equation (3.32) with one unknown – rp.  While rp cannot be separated and 
solved analytically, an iterative method quickly yields a value numerically.  Once 
found, the value of rp can then be used to evaluate Equations (11.6) and (11.7), to 
identify the stresses within the tube when deflected by the mandrel. 
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3.6. OTHER SOLUTIONS 
 
A selection of solutions is presented below, both analytical and numerical; these were 
chosen on the grounds of their suitability for comparison and validation of numerical 
methods developed subsequently in this research.  While they have been appraised in 
the Literature Review, this section expands upon their specific suitability and 
subsequent use. 
 
 

3.6.1. Avitzur’s Model 
 
While Avitzur’s method is quite general in terms of hydraulic autofrettage load cases it 
can model, it does not give an explicit solution for the component stresses or yield 
radii, and hence large amounts of iterations are required to obtain an output.  This made 
it awkward to implement within a spreadsheet, and hence it was not used for validation 
of later numerical simulations.  Although Avitzur’s method offers an answer for 
hydraulic autofrettage using von Mises, the ultimate aim of this research is swage 
autofrettage.  Critically, without the ability to model material non-linearity, Avitzur’s 
model is of little use to this study, beyond its initial stage.  As such, a more practical 
comparison model is required, even if more limited in terms of the end conditions 
which may be considered. 
 
 

3.6.2. Huang’s Model 
 
Although restricted to the incompressible plane strain case, and hence more restrictive 
than Avitzur’s model, Huang’s model very easily yields a solution.  This makes it of 
more practical use for comparison with numerical models developed later in this course 
of study.  In addition Huang’s model can represent both bi-linear and non-linear 
material behaviours, making it suitable for comparison with future autofrettage models 
(depending on the specific stress-strain relationship), with the noted exception that a 
single unloading profile must be used.  The use of Huang’s model is described below, 
which reuses the nomenclature used in the initial publication for clarity. 
 
The model considers the tube material to behave linearly in the elastic phase (both 
loading and unloading), and either linearly or according to a power-law in the plastic 
phase (loading and unloading may be treated independently).  Figure 3.10 shows a 
material following a power-law relationship in both loading and unloading.  Yielding 
occurs in the loading phase at point 1, when the equivalent stress reaches σY

+; during the 

unloading phase yielding occurs at point 3 when equivalent stress equals σY
–. 

 
Table 3.1 summarises the set of stress-strain relations, in both elastic and plastic 
regimes.  As well as Young’s Modulus (in both loading and unloading; as described in 
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sub-section 5.1.1, Young’s Modulus can change following plastic strain), the relations 
require the following parameters to describe the plastic behaviour of the material: A1, 
A2, A3, A4, B1 and B2.  The parameters form three groups: constant (A1 and A3), linear 
(A2 and A4) and exponential (B1 and B2). 
 

Loading Unloading 
Phase Stress Response Phase Stress Response 

0-1 εσ 1E=  2-3 ULUL E εσ 2=  

1-2 1
21

BAA εσ +=  3- ( ) 2

43

BULUL AA εσ +=  

Table 3.1:  Summary of Material Parameters, Huang’s Method 

 
A1 and A3 are selected such that the two sets of elastic and plastic equations produce 
continuous results at εY.E1 and εY

UL.E2 (points 1 and 3 on Figure 3.10) respectively: 
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A2 and A4 are multipliers in the plastic regime; when a bi-linear material is modelled 
they give the plastic slopes, and respectively are set equal to H1 and H2, the plastic 
slopes in loading and unloading.  B1 and B2 are exponents of plastic strain; when a bi-
linear material is to be modelled they are set to equal one, denoting linear stress 
response to plastic strain. 
 

 

Figure 3.10:  Stress-Strain Diagram of Material-Fit used by Huang 

 
Huang’s model is used in the comparisons presented in Chapter 4, where it is used with 
a bi-linear material model.  It was considered for comparison with results from material 
models developed in Chapters 5 and 6, which allow representation of the gun steel 
A723-1130 (the material-fit is described in sub-section 5.1.1) within ANSYS.  
However it was thought that the single, fixed unloading profile used by Huang's Model, 
combined with the requirement for an incompressible material under zero axial strain 
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would complicate comparison; instead, only results from the Hencky Programme were 
used. 
 

3.6.3. Hencky Programme 
 
Given the ability of the Hencky Programme to model hydraulic autofrettage, using von 
Mises equivalence, over the full range of end conditions and including realistic material 
behaviour, it was deemed suitable for validation of hydraulic autofrettage models that 
would be created.  It was used in Chapter 4 to simulate a bi-linear material behaviour, 
and in Chapters 5 and 6 to simulate a non-linear stress-strain response in unloading. 
 
 

3.7. SUMMARY  
 
A review of material models was conducted, with emphasis on response to plastic 
strain.  The Tresca elastic-plastic solution was then implemented and subsequently 
adapted to reflect some of the plastic strain responses previously identified.  Finally, the 
solution was extended to include an interference fit with a solid, elastic, cylinder within 
the tube’s ID. 
 
A review of analytical and numerical models suitable for comparison with future 
models of hydraulic autofrettage was then made. 
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4. HYDRAULIC AUTOFRETTAGE MODELS IN FEA 

4.1. INTRODUCTION 
 
After the investigation of analytical models in Chapters 2 and 3, Finite Element models 
were developed; this allowed a wider range of more realistic hydraulic autofrettage 
conditions to be simulated, than is practically possible through analytical methods.  
This will form the basis of future work, in particular the model of swage autofrettage – 
of crucial importance to this study. 
 
To be useful to this study, it is essential that any method used meets the following 
criteria: 
 

1. Uses the von Mises equivalence relation, 
2. Offers suitable material modelling capabilities, 
3. Allows constraints to be applied to suitably model a wide range of conditions, 
4. Allows for batch processing of cases so that optimisation, convergence and 

parametric analysis may be conducted. 
 
As ANSYS [28] was immediately available, it was assessed on the above criteria; it 
was found to fulfil all points, with the following notes: 
 

1. Strong scripting through the ANSYS Parametric Design Language (APDL), 
allows for very effective parametric/batch modelling, 

2. It includes a well developed means of customisation of many features, including 
material models, through User Programmable Features (UPFs). 

 
It is accepted that most modern FE packages offer many or all of the required features, 
ANSYS’s known strengths and immediate availability made it the clear choice. 
 
The analyses presented in this thesis, conducted within the ANSYS FEA programme, 
utilise Lagrangian methods, as the amounts of deflection that occur in the various 
models are not sufficient to require Eulerian-based methods. 
 
Eulerian methods represent the modelled geometry within a fixed frame of reference, 
making them more suitable for modelling flow (such as that which occurs during large 
plastic deformation); instead, Langrangian methods utilise a moving frame of reference 
more suitable for modelling discrete objects. 
 
In terms of geometrical discretisation as used in FEA, the Lagrangian method considers 
a predefined section of material to be contained within the periphery of an element 
which deforms with the material, whereas the Eulerian method considers cells to 
remain stationary whilst material flows into, out of and through the cells. 
 
This chapter describes the work conducted to model the hydraulic autofrettage process, 
and subsequent unloading, in a range of end-conditions.  To this end, simplistic bi-
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linear material models are used; elastic, perfectly plastic during the optimisation stage 
(section 4.6) and kinematic hardening for comparison with other methods (section 4.7). 
 
This allows development work to focus on the modelling of the physical conditions of 
autofrettage, allowing errors to be rapidly identified and inconsistencies between 
models to be addressed with confidence.  Accurate material representation will then be 
added at a later stage. 
 
 

4.1.1. Summary of Hydraulic Autofrettage Models 
 
The Hydraulic Autofrettage models created within ANSYS were designed to simulate 
the mid-section properties of a long internally pressurised tube, subject to a range of 
end conditions.  Additionally, as simulation of the hydraulic case would serve as a 
precursor to that of swage autofrettage, modelling work done on the former should be 
transferable to the latter to avoid duplication of effort. 
 
The first model simulated an r,θ section of tube, which allowed both plane strain (εz = 
0) and plane stress (σz = 0) conditions to be created through application of element 
properties.  Results from this initial model were suitable for comparison with those 
from analytical and numerical methods studied earlier (see Chapter 3), and gave good 
agreement. 
 
As the r,θ section model was limited in the range of end conditions it could simulate, 
and could not include axial variation (which would be important when modelling 
swage autofrettage), it was then necessary to simulate an autofrettaged tube in another 
way, this time modelling an r,z section. 
 
Using an r,z section it was possible to predict the stress distribution in both plane stress 
and general plane strain conditions (εz = constant w.r.t. r), comprising true plane strain 

as well as open-ends (net axial force sums to zero, or 0
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axial variations can be included, making the model an effective mile-stone towards 
simulating swage autofrettage. 
 
As in the analytical models, gravitational effects are ignored in all FE models used in 
this study; given the tiny size of gravitational forces compared to those resulting from 
pressure loading, inclusion of gravitational forces would add needless complexity and 
preclude the use of axial symmetry in the r,z section model. 
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4.2. COMMON MODELLING NOTES 
 

4.2.1. Model Optimisation 
 
This sub-section describes the optimisation procedure, as applied to FEA; it is 
employed generically for all models, both described in this chapter and subsequently.  
 
Once ANSYS models were confirmed to be generating suitable results, their meshes 
were optimised to balance computational size against accuracy of results; this dilemma 
is faced almost universally whenever a process is modelled. While the meshes 
described in this chapter remained relatively simple, allowing results to be obtained in 
10-20 seconds, it was recognised that models can quickly become more complex.  
Accordingly, optimisation was crucial to minimise computational requirements while 
keeping element size small enough to resolve radial variation in material behaviour, 
particularly during unloading. 
 
The optimisation was conducted in a relative manner – results from one mesh geometry 
were compared against those from the next mesh in the appropriate “fineness” series 
(i.e. a coarse mesh was compared against a slightly less coarse mesh). 
 
This may seem counter-intuitive when like-for-like comparisons with different methods 
are possible, but relative error convergence is a useful measure (and in some cases 
necessary) due to the following: 
 

1. Available Comparisons – like-for-like comparisons would not always be 
possible, especially as swage models were developed; accordingly it was 
important to confirm that ANSYS is able to generate sufficiently stable results 
to allow convergence to be monitored as element size is decreased. 

 
2. Numerical Accuracy – even though different numerical and analytical models 

may be used to model identical conditions, differences in iterative procedures 
and rounding (some of which will not be known or controllable) will mean that 
no two methods ever give exactly the same answer.  These inter-method 
differences may be small, but will skew convergence graphs. 

 
Once the optimisation process had been conducted for each model, results from the 
optimised models were compared and validated against data from other sources 
(numerical or empirical), where available.  For the Axial section model developed in 
this chapter (section 4.4), such comparisons are made in section 4.7. 
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4.2.2. Material Model 
 
A bi-linear material model was chosen – while a simplistic representation, it allowed 
the structural aspects of the model to be developed without the complexities of material 
non-linearity (the implementation of which is detailed in Chapters 5 and 6).  Such a 
model is defined in two stages in ANSYS; elastic and plastic behaviour.  To model the 
apparent drop in reverse yield strength (see section 3.2) of steel, a kinetic hardening 
model was selected (rather than isotropic).  While this is not an accurate model, it is 
generally more representative than isotropic hardening.  ANSYS refers to such a 
material as BKIN. 
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4.3. HOOP SECTION MODEL 
 
The following description has been kept brief, summarising early work, with notes on 
element selection and details of tests moved to section 4.5 to reduce the duplication of 
material between Hoop and Axial section models. 
 
During the development of the model, familiarity was gained with ANSYS, and 
modelling methodologies were developed that would prove valuable when developing 
future models.  For this reason, future models (such as the Axial Section) are presented 
in more detail. 
 

4.3.1. Overview 
 
After following initial tutorials contained within the ANSYS documentation, a 
transverse section of the tube was modelled.  Figure 4.1 displays the dimensioning of 
the model, and Figure 4.2 describes the manner in which the model is loaded and 
constrained. 
 

 

Figure 4.1:  Hoop Section Model Geometry 

 

Figure 4.2:  Hoop Section Model Constraint 

 
Initially a single quadrant (Figure 4.3 was used to demonstrate that the developed 
stresses when autofrettaged were as expected, and that rotational symmetry could be 
used to reduce the model size.  This was refined into a 1° segment (Figure 4.4)) to 
further exploit the rotational symmetry of the tube, allowing a finer mesh for a given 
number of elements.  In both cases, the meshes were retained by constraining the 
section surfaces as lines of symmetry. 
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Figure 4.3:  Initial Mesh 

The first quadrant mesh, showing a contour 
plot of von Mises stress during autofrettage. 

 
Figure 4.4:  Refined Mesh 

The above mesh gave finer radial granularity, 
allowing more accurate comparison of stresses. 

 
Preliminary investigations showed that the angle of section (θSec) had no influence on 
the generated results, which left mesh fineness as the next topic of study.  Mesh 
fineness is effectively represented by two values, the number of division in the hoop 
and radial directions; these two variables were then investigated. 
 
Initially, both the number of radial and circumferential divisions were varied, to 
determine which had the most influence on error.  The number of radial divisions used 
were 10, 20, 30 and 40, and the number of circumferential divisions used were 1, 2, 3 
and 4 (Figure 4.11 shows the mesh structure).  θSec was selected to give square elements 
at the ID (see Figure 4.11).  The convergence plots, showing errors (relative to Huang’s 
method) in radial and hoop stresses at the inner diameter during peak pressure 
conditions, are shown in Figure 4.5. 
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Figure 4.5:  Initial Error Convergence Plots 

 
Results were taken at the ID for an incompressible tube of K = 2, of bi-linear material 
(E = 209 GPa, ν = 0.4999999999, σY0 = 1,100 MPa, H = 20.9 GPa), autofrettaged to 
791 MPa (nominally 50% overstrain).  These were matched in Huang’s model. 
 
It was quickly discovered that while the number of circumferential divisions had 
virtually no effect on error (the data sets for different numbers of circumferential 
divisions are almost coincident), the number of radial divisions strongly influenced the 
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accuracy and smoothness of results.  Consequently, the number of radial divisions then 
became the focus of a more thorough sensitivity analysis, described in section 4.6. 
 
Following these initial investigations, optimisation of the number of radial divisions 
was systematically assessed, as described in sub-section 4.6.2. 
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4.4. AXIAL SECTION MODEL 

4.4.1. Overview 
 
Once initial work, developing the hoop section (r,θ) model, had been completed, a 
series of axial section (taken on the r,z plane) models were created.  As well as 
allowing Open-Ends and Closed-Ends (in addition to true Plane Strain and Plane 
Stress) conditions to be investigated, axial variation would also be able to be 
incorporated.  In turn, a similar model could be used as the basis for simulating swage 
autofrettage, as well as tapered sections and non-uniform pressure loading. 
 
Switching to an axi-symmetric model had the additional benefits of effectively 
eliminating any unnecessary simulation overhead by reducing the considered angle of 
tube to zero, and presenting a rectangular area for meshing (avoiding problems with 
element geometry at high values of K). 
 
General plane strain (in the context of tubes) describes the condition when initially 
plane sections remain plane while under load, i.e. εz is invariant with respect to radius.  
General plane strain is a collective term encompassing engineering plane strain – in 
which all sections of the tube possess an equal amount of axial strain – and true plane 
strain – a special case of engineering plane strain that occurs when εz = 0 throughout the 
tube wall. 
 
In general, it would be necessary to model a long section of tube to allow accurate mid-
section properties to be calculated (Saint-Venant’s principle implies that stresses 
resulting from a point load applied to the end of a beam may be considered uniform 
when more than one thickness from its end).  However, in the models described below 
the end constraints (on surfaces 1 and 3) are selected to reproduce the conditions found 
at the mid-sections of the respective tubes, eliminating the need for long models.  For 
the general plane strain cases (i.e. all excepting the Plane Stress model), the end 
constraints maintain plane strain conditions (εz is constant throughout the tube wall) and 
apply an appropriate axial load; details are given with the model descriptions. 
 

4.4.2. Axi-Symmetric Modelling 
 
When creating an axi-symmetric model in ANSYS it is only necessary to represent one 
half of the section, as rotational symmetry equates to, is a special case of, reflectional 
symmetry.  ANSYS requires that the axis of symmetry is placed on the global Y-axis – 
this means the following conversions apply when the polar co-ordinates of the 
considered section are translated to the Cartesian co-ordinates used: r to X, θ to Z, z to 
Y.   This is shown in Figure 4.6. 
 
Accordingly an axi-symmetric model is created by creating an area as described above, 
which is then meshed with a suitable planar element, to which has been applied the axi-
symmetric property (through a KEYOPT). 
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Applying the axi-symmetric properties establishes a constitutive relationship between 
hoop and radial properties, much like that in the equilibrium equation (2.1).  This 
provides effective constraint in the radial direction, requiring only the application of 
axial restraint to achieve a fully constrained model.  In addition to restraining the 
model, axial constraint is used to control axial stresses within the section; accordingly 
the particulars of the constraints applied are specific to each end condition, and are 
hence given with the description of each end condition. 
 

 

Figure 4.6:  Co-Ordinate System and Model Dimensions 

 
 

4.4.3. Notes Common to ANSYS Modelling 
 
The following notes apply to all models. 
 

4.4.3.1. Element Selection 
 
As explained in sub-section 4.5.4, PLANE183 elements were again selected for this 
model, to which the axi-symmetric property was applied. 
 

4.4.3.2. Model Geometry and Meshing 
 
To represent a mid-section segment of a tube, only a simple rectangle is required; thus 
the model consisted solely of a rectangle, appropriately constrained.  The aspect ratio of 
the rectangle was determined in a subsequent sensitivity analysis (see sub-section 
4.6.3), but was based on the premise that the mesh would always contain two axial 
elements.  When developing the initial model (prior to the sensitivity analysis) it was 
quickly determined that the number of axial elements had virtually no effect on the 
accuracy of the results.  This would suggest the use of just one axial element.  
However, it was found that the resolution of results was improved slightly if they were 
taken along an element boundary.  For this reason two axial elements were used, rather 
than one. 
 
 

rb 
ra 

Walldepth, 
lr = rb - ra 

lz 

Y 

1 

2 

3 

4 

X 



 

 61 

4.4.4. General Plane Strain Models 
 
The three plane strain (True Plane Strain, Open- and Closed-Ends) conditions used 
identical meshes; one end of which (A-C, as shown in Figure 4.7) is constrained to zero 
axial displacement, the other (B-D) is constrained to create the desired end condition. 
 

 

Figure 4.7:  Geometry and Common Constraint of General Plane Strain Model 

 
Descriptions of the three Plane Strain conditions, and the constraints required to 
achieve them, are given below; Figure 4.8 then provides a graphical summary. 
 

4.4.4.1. True Plane Strain 
 
The True Plane Strain condition specifies that total axial strain remains at zero 
throughout the autofrettage process (and subsequent unloading) at all points within the 
tube wall; this is achieved through the application of a zero axial displacement 
constraint to the free end of the section (B-D), as shown by the additional constraints 
applied to B-D on the left hand diagram of Figure 4.8.  If required an arbitrary axial 
strain may be created within the tube, as the applied displacement need not be zero. 
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4.4.4.2. Open-Ends 
 
The Open-Ends condition requires that the tube must carry no net axial load (axial 
stresses summed through the tube wall must sum to zero).  Simply leaving the end (B-
D) free would achieve this, but the section would not remain plane (indeed, for a thin 
section this would approximate the Plane Stress condition); instead, the axial 
displacements of the nodes along B-D are coupled.  As the tube axis is perpendicular to 
the surface, this has the effect of keeping the section plane whilst avoiding a constraint 
load.  This is shown by the dashed line along B-D on the central diagram of Figure 4.8. 
 
The Open-Ends condition is one that conceptually would, due to its free end, have the 
greatest axial variation – to capture these details a long tube section would be required.  
Figure 2.1 describes the Open-Ends condition graphically. 
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4.4.4.3. Closed-Ends 
 
The Closed-Ends condition represents a tube which experiences an additional tensile 
axial force, which results from the pressure of the autofrettage fluid acting on end caps 
that retain the fluid within the tube.  These caps are attached to the ends of the tube 
(they are not free floating as in the Open-Ends case); essentially the tube develops the 
required reaction force to resist the pressure force. 
 
The Closed-Ends condition is created within the section by coupling the nodes along B-
D (as in the Open-Ends condition) and applying an additional load to that surface.  The 
load is scaled to equal the reaction force of the autofrettage pressure acting over a 
circular area, of radius ra.  Figure 2.1 describes the Closed-Ends condition graphically. 
 
 ( )2

aAFAx rPF ⋅⋅= π  (4.1) 

 

 

Figure 4.8:  Constraint Diagrams, General Plane Strain Models 
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4.4.5. Plane Stress 
 
The plane stress condition stipulates that there be no axial stresses present (i.e. stresses 
lie on the r-θ plane).  Unlike the Hoop Section model, the Axial Section model cannot 
use through-plane properties to achieve plane stress (the tube axis now lies in-plane); 
instead it is accomplished using a very short section.  In the absence of an applied 
pressure (such is the case for the free ends of the section), no normal stresses can exist 
at a free surface. 
 
The short section is constrained by setting the axial displacement of a single node, at 
the mid-point of the ID, to zero.  The final length was selected during the sensitivity 
analysis described in section 4.6. 
 

 

Figure 4.9:  Geometry and Constraint Diagram, Plane Stress Model 
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4.5. FE MODELLING, AND SUMMARY OF COMPARISONS  
 
This section describes how the four different end conditions were modelled within 
ANSYS; although the final sizing of elements within the models was not established 
until the section that follows, the models used for both optimisation and comparison 
shared the same constraint, loading and meshing methodologies. 
 
For that reason, the above methodologies are presented in this section, alongside a 
summary of the two sets of tests that are detailed fully in the following two sections. 
 
 

4.5.1. Summary of Comparisons 
 
The comparisons were conducted in two stages to first ensure the stability of results 
from the ANSYS models, and secondly to assess the accuracy of results obtained from 
them. 
 
The first stage (section 4.6) was accomplished by investigating the sensitivity of 
representative results to the size of element used; this allowed meshes to be identified 
that generated sufficiently accurate results while not being too onerous to solve. 
 
The second stage (section 4.7) used results from the model optimised in the previous 
stage, and compared them with equivalent results from existing analytical and semi-
analytical methods (respectively, Huang’s model and the Hencky Programme). 
 
 

4.5.2. Constraint 
 
With the exception of the Axial Section Plane Stress case, lines are constrained in all 
models to retain the tube sections.  In addition these constrained lines act as lines of 
symmetry, which is crucial for the Hoop section models as they do not include the axi-
symmetric element property used in the Axial section models. 
 
 

4.5.3. Loading 
 
The pressure applied to the tube during the comparisons were determined iteratively 
based on the desired amount of overstrain, as detailed in section 4.7.  Conversely, the 
precise amount of overstrain was not important for the optimisation process; instead, all 
models were loaded to a specific pressure (see below for the value).  While it would be 
possible to apply load such that an equal amount of overstrain occurred in all models, 
the basis of the comparisons was to assess how the models respond to the same input.  
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Additionally, gauging the extent of plastic strain in the more coarsely meshed models is 
somewhat imprecise, and reliant upon manual interpolation. 
 
All autofrettage pressures are applied to the lines representing the inner diameters of 
the respective models, using the ANSYS SFL command.  The magnitude of loading 
would have to be sufficient to cause a significant amount of overstrain (greater than 
50%), to provide a valid test of autofrettage conditions and residual stresses. 
 
Selection of a suitable pressure required some initial experimentation which indicated a 
pressure of similar magnitude to the material yield stress would be suitable.  For this 
reason, the material yield stress was used as the initial value of PAF. 
 
However during initial mesh sensitivity tests it became apparent that in the Plane Stress 
case, hoop stresses at the inner diameter at peak pressure tended to zero.  This 
exaggerated the relative errors, making the trends effectively meaningless.  It was 
subsequently realised that given a small amount of strain hardening (post-yield 
equivalent stress ≈ σY0), this would always occur in Plane Stress conditions when PAF = 
σY0; at the inner diameter σr = PAF = σY0, and σz = 0, so given the von Mises yield 
criterion, σθ = 0. 
 
For this reason, 109 Pa was selected as the value for PAF for the optimisation process. 
 
 

4.5.4. Meshing 
 
For both the Hoop and Axial section models, a two-dimensional (planar) element was 
required.  For a mechanical loading scenario, ANSYS includes four such elements: 
 

Element Number of Nodes 
PLANE42  4 
PLANE82 8 
PLANE182 4 
PLANE183 8 

Table 4.1:  Element Summary 

 
While the two sets of elements (PLANE42 and PLANE182, and PLANE82 and 
PLANE183) are very similar, PLANE42 and PLANE82 do not support custom material 
models (see Chapter 6), which immediately ruled out their use.  PLANE182 and 
PLANE183 do support custom material models – being more recently developed, their 
abilities are a superset of the earlier elements. 
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Figure 4.10:  Element Nodal Configuration 

 
The addition of mid-side nodes allows for non-linear (quadratic) deformation along the 
side of an eight-node element; similar results could be obtained using quadruple the 
number of four-node elements, compared to eight-node elements.  It is arguable that the 
results obtained from the larger number of four-node elements may be somewhat more 
precise than those using the smaller number of eight-node elements, as a group of four, 
four-node, elements is more easily able to distort.  This precision would require 
approximately 25% more nodes as well as four times the number of integration points 
(each of the elements mentioned has four). 
 
However, for an otherwise identical mesh eight-node elements would generate more 
accurate results than would be the case if four-node elements were used.  Also, due to 
the quadratic deformation which is possible along their sides, eight-node elements are 
better suited to model curved boundaries. 
 
For this reason, it was decided to use eight-node elements – while this is little different 
from using four four-node elements, it would reduce the number of element, nodes and 
integration points required, and it would still be possible to increase the number of 
eight-node elements beyond the 1:4 ratio if required.  Accordingly, PLANE183 
elements were selected and used for both Hoop and Axial section models. 
 
Given a section of constant size, the number of elements used to mesh has a great 
influence on the accuracy of results generated from the model.  As such it is important 
to be able to readily refer to the number of elements specified in different directions 
along the model.  Given the ability to explicitly set the number of divisions along a line 
when meshing an area in ANSYS, the number of divisions specified to a line was 
selected as a suitable measure of mesh fineness. 
 
Given the three orthogonal dimensions (radial, axial and tangential), the variables 
representing the number of divisions were named as listed in Table 4.2: 
 

Property Symbol APDL 
Variable 

Number of axial elements ElAx Axi_Div  
Number of radial elements ElRad Rad_Div  
Number of tangential elements ElTan Tan_Div  

Table 4.2:  Mesh Sizing Variables 
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These are illustrated in the mesh diagrams given in the following two figures. 
 

 

Figure 4.11:  Hoop Section Mesh 

 

 

Figure 4.12:  Axial Section Mesh 

 
With regards to the axial section model, elements are initially created as square using 
the following relationship to determine axial length, lz, from radial length, l r (rb - ra): 
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4.5.5. Material 
 
As this stage work was focussed upon modelling of the autofrettage process and the 
different conditions in which it could occur, hence only a simplistic material was 
required.  Accordingly a bi-linear, kinematic hardening material (see sub-section 3.2.2 
for a description) was selected for the initial optimisation tests.  This would allow for 
plasticity in both the loading and unloading sections of the process.  Table 4.3 
summarises the material properties applied. 
 

ElRad = 3 

ElAx = 2 

ElRad = 3 

ElTan = 2 
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Property Value 

E 209 GPa 
ν 0.3 
σY 1,130 MPa 
H E/109 = 209 Pa 

Table 4.3:  Material Properties 

 
During the Comparison tests, to better approximate the early onset of yield following 
plastic strain, described by the Bauschinger effect, an artificial Bauschinger effect 
factor (β) was applied to the tube material during unloading.  While the material model 
remains bi-linear, and hence only a rough approximation of the non-linear behaviour 
observed in metals, material behaviour is one step closer to that desired – a convenient 
first opportunity for tailoring material properties during unloading. 
 
Alteration of the yield strength in unloading caused a greater degree of reverse yielding 
to occur, allowing a more meaningful comparison of residual stresses to be made, 
especially for smaller values of K.  See Table 4.6 in section 4.7 for details of the 
material parameters used. 
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4.6. MESH SENSITIVITY AND OPTIMISATION 
 

4.6.1. Overview of Tests 
 
The discrete loading/unloading nature of the hydraulic autofrettage models lends them 
to be assessed both during peak pressure and after total removal of the applied pressure.  
All cases were assessed using the following tests: 
 
1. Summation of Hoop Stresses at peak pressure 

Hoop stresses are summed throughout the tube wall, and compared with the 
applied pressure load (demonstrated by Figure 4.13), to investigate how well the 
internal hoop force agrees with the applied load. 

 

 

Figure 4.13:  Virtual Longitudinal Section, showing Pressure-Hoop Stress Equilibrium 

 
2. Summed residual Hoop Stresses 

The magnitude of residual hoop stresses are summed to determine how well the 
sum matches the zero pressure load applied.  The measure is effectively a mean 
magnitude, which would equal zero in a perfectly accurate model. 

 
3. Autofrettage and Residual Hoop Stresses at the Inner Diameter. 
 
In addition to the above it was required that sufficient elements be used to allow a 
reasonable number of results to be taken without excessive interpolation, for 
meaningful comparison with other methods.  It was felt that 100 data points would be a 
suitable number for such comparisons. 
 
 

4.6.2. Hoop Section Model 
 
As both the Plane Strain and Plane Stress models were effectively the same (excluding 
the through-element properties applied), they were both tested in the same ways. 
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Given the initial refinement of the model (reducing it from a 90° to 1° section), it was 
already known that the number of tangential element used had virtually no effect on the 
through-wall results.  Accordingly, the mesh sensitivity investigation focused on the 
effect of the number of radial (through-wall) elements present. 
 
The number of radial elements was varied from 10 to 200, while the number of 
tangential elements was kept at 2, the smallest number that would still allow results to 
be taken along element edges at the midpoint of the section.  This is potentially more 
accurate, as the mid-side nodes of the PLANE183 element effectively double the 
number of nodes on the results path. 
 
Solely varying the number of radial elements would be detrimental to element 
geometry, if the angle of section, θSec, was not adjusted.  For this reason the model was 
scripted to calculate θSec on a case by case basis, to ensure near square element 
geometry at the inner diameter (where maximum stresses and strains are observed 
during autofrettage). 
 
Figure 4.14 shows the mesh geometries resulting from the following values of ElRad: 
10, 30 and 100. 
 

 
 

ElRad = 10 

 
 

ElRad = 30 

 
 

ElRad = 100 

Figure 4.14:  Mesh Geometry of Hoop Section model as radial elements increase  

 
The values of θSec that result from the selected range of ElRad values are summarised in 
Table 4.4. 
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ElRad θSec (°) 
10 17.189 
20 8.594 
30 5.730 
40 4.297 
50 3.438 
60 2.865 
70 2.456 
80 2.149 
90 1.910 
100 1.719 
110 1.563 
120 1.432 
130 1.322 
140 1.228 
150 1.146 
160 1.074 
170 1.011 
180 0.955 
190 0.905 
200 0.859 

Table 4.4:  Angles of Section 
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Figure 4.15:  Relative Error of Summed Hoop Stresses at Peak Pressure 
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Figure 4.16:  Relative Error of Hoop Stresses (at Peak Pressure) at the ID 
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Figure 4.17:  Summed Residual Hoop Stresses 
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Figure 4.18:  Relative Error of Residual Hoop Stresses at the ID 

 

4.6.2.1. Discussion 
 
The summed hoop stresses tend to approximate the applied pressure load closely; 
Figure 4.15 shows the errors exhibit relatively high value when ElRad = 10 
(approximately 0.020% and 0.0125% in the Plane Strain and Plane Stress cases, 
respectively), which decrease rapidly – error is within 0.01% for ElRad = 50, and 
approximately 0.001% when ElRad = 100.  The slight fluctuation is likely due to the fact 
the axi-symmetry is not intrinsically understood by the model, and is hence reliant upon 
the applied constraints.  That the fluctuations centre on the zero error line indicates 
internal force equilibrium is accurately achieved. 
 
Figure 4.16 shows that in both cases the relative error of hoop stresses at the inner 
diameter decreases monotonically towards zero, and is comfortably less than 1% once 
ElRad equals 50 or more. 
 
The summed residual hoop stresses (relative error is not assessed as the value 
converges to zero) also decrease rapidly to within 50 kPa for values of ElRad = 50 or 
more, as shown in Figure 4.17.  This reduced to within 10 kPa once ElRad equals 70 or 
more. 
 
Aside from the first point, the plot given in Figure 4.18 shows a progressive decrease of 
the relative error of hoop stresses as ElRad increases.  Specifically, error reduces to less 
than 0.1% once ElRad equals 50, and continues decreasing thereafter. 
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Based on the above observations of errors, it was apparent that a value of ElRad = 70 or 
greater would give suitable accuracy.  Hence, it was decided to use a value of ElRad = 
100 for future investigations; this increased value would allow 100 data points to be 
comfortably taken. 
 
 

4.6.3. Axial Section Model 
 
For all four Axial Section model, it was necessary to ensure that they possessed 
sufficient radial elements to allow for accurate results.  In addition, it was also 
necessary to ensure the section used for the Plane Stress model was thin enough such 
that axial stresses were small enough to be neglected. 
 
The Axial Section models were optimised using the same procedure as the Hoop 
section models, albeit by varying section length, lz, (as opposed to θSec that was varied 
in the Hoop section) to ensure square element geometry.  In the Plane Stress case, the 
range of ElRad values was adjusted to provide the thinner sections required to 
approximate plane stress.  Figure 4.19 contains images of the meshes generated for 
three of the ElRad values used in the optimisation. 
 

 
 

ElRad = 10 

 
 

ElRad = 30 

 
 

ElRad = 100 

Figure 4.19:  Mesh Geometry of Axial Section model as radial elements increase 

 
The range of radial divisions used for the optimisation of both the general plane strain 
and Plane Stress model are listed in Table 4.5. 
 
All four models were subjected to the tests laid out in sub-section 4.6.1, and additional 
tests were carried out on the Plane Stress model to ensure the plane stress state was 
being effectively simulated.  The results are displayed in sub-sub-sections 4.6.3.1 and 
4.6.3.3, respectively.  The Plane Stress specific tests are also detailed in sub-sub-section 
4.6.3.3. 
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Plane Strain, Open- and 

Closed-Ends 
Plane Stress 

ElRad lz/ra ElRad lz/ra 
10 3.000*10-1 200 1.500*10-2 
20 1.500*10-1 400 7.500*10-3 
30 1.000*10-1 600 5.000*10-3 
40 7.500*10-2 800 3.750*10-3 
50 6.000*10-2 1000 3.000*10-3 
60 5.000*10-2 1200 2.500*10-3 
70 4.286*10-2 1400 2.143*10-3 
80 3.750*10-2 1600 1.875*10-3 
90 3.333*10-2 1800 1.667*10-3 
100 3.000*10-2 2000 1.500*10-3 
110 2.727*10-2 2200 1.364*10-3 
120 2.500*10-2 2400 1.250*10-3 
130 2.308*10-2 2600 1.154*10-3 
140 2.143*10-2 2800 1.071*10-3 
150 2.000*10-2 3000 1.000*10-3 
160 1.875*10-2 3200 9.375*10-4 
170 1.765*10-2 3400 8.824*10-4 
180 1.667*10-2 3600 8.333*10-4 
190 1.579*10-2 3800 7.895*10-4 
200 1.500*10-2 4000 7.500*10-4 

Table 4.5:  Lengths of Section 

 

4.6.3.1. Common Tests 
 
The results to the tests described in sub-section 4.6.1 are given below.  Figure 4.20 
compares the summed hoop stresses throughout the tube wall at peak pressure with the 
applied pressure load.  Figure 4.21 plots the relative error of hoop stresses at the ID 
between progressively finer meshes.  Figure 4.22 sums the residual hoop stresses 
calculated.  Figure 4.23 plots the relative error of residual hoop stresses at the ID 
between progressively finer meshes. 
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Figure 4.20:  Summed Hoop Stresses at Peak Pressure (Plane Stress results plotted on second x-
axis) 
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Figure 4.21:  Relative Error of Hoop Stresses (at Peak Pressure) at the ID (Plane Stress results 
plotted on the second set of axes) 
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Figure 4.22:  Summed Residual Hoop Stresses (Plane Stress results plotted on the set of axes) 
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Figure 4.23:  Relative Error of Residual Hoop Stresses at the ID (Plane Stress results plotted on the 
set of axes) 
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4.6.3.2. Discussion 
 
The following Discussion makes no mention of the results from the Plane Stress model, 
as the high number of radial elements used caused errors to be well within acceptable 
levels; also the observed error decreases progressively with increasing ElRad.  Instead, 
the following observations apply solely to the general plane strain models. 
 
No particular trend was observed (Figure 4.20) when comparing summed hoop stresses 
with the applied pressure; as the errors were consistently small, and given the range of 
radial divisions applied, it was judged that all meshes used satisfied the equilibrium 
criterion.  Although the errors transition from negative to positive, given the small 
errors this pattern was thought to be insignificant. 
 
This outcome was not unexpected, as the FE solution must reach equilibrium, even 
when using a coarse mesh, to attain a converged solution; a finer mesh would instead 
generate more accurate predictions of the distribution of stresses within the model. 
 
The relative error of hoop stresses at the inner diameter (Figure 4.21) showed a 
stereotypical, non-linear decrease as the number of radial elements was increased – 
indicating that the calculated distribution of stresses becomes more accurate as the 
mesh is made finer.  A relative error of 0.2% was obtained when 80 radial elements 
were used. 
 
Similar to the summed hoop stresses during autofrettage, the summed residual hoop 
stresses (Figure 4.22) reveal little regarding the effect of mesh fineness on total residual 
stresses.  As such, they do not provide any extra information for the optimisation of the 
mesh. 
 
Conversely, the residual hoop stresses at the inner diameter (Figure 4.23) are a useful 
means of optimising the mesh; the data form another curve, showing progressive 
reduction of relative error.  Relative error reduced to less than 1% once ElRad > 30. 
 
Taken together, the observations made on the above plots indicate that 70-80 radial 
elements would be required to give the required accuracy.  Accordingly ElRad = 100 
was selected, which would also serve to give enough resolution when taking results 
along radial paths for meaningful future comparisons. 
 
The Plane Stress results show much lower levels of error, as would be expected due to 
the far greater number of elements used.  For this reason the above tests are not useful 
for sizing the mesh for the Plane Stress case; as described in sub-section 4.4.5, 
obtaining a sufficiently thin section would determine the model geometry, and hence 
mesh.  Instead, the results serve as an indicator of how the errors vary for values of 
ElRad much greater than were used for the general plane strain cases. 
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4.6.3.3. Plane Stress 
 
As the Axial Section model does not have the facility to explicitly set the plane stress 
conditions, it must approximate it using a thin section (short lz).  For this reason, it was 
important to ensure that the approximation was good, so that axial stresses could be 
considered to be effectively zero (these checks were in addition to those described 
above for all Axial Section models). 
 
This was achieved in two ways: 
 
1. Summing the magnitude of axial stresses through the tube wall, to assess the 

total amount of stress present, 
2. Comparison of peak axial stresses. 
 
The requisite data were taken during the simulations used to generate the results for the 
hoop stress sensitivity checks (sub-sub-section 4.6.3.1), and are plotted below (stress 
values are normalised with respect to the initial yield stress, σY0). 
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Figure 4.24:  Peak Axial Stress during Autofrettage, and Relative Error 
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Figure 4.25:  Summed Axial Stresses during Autofrettage 
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Figure 4.26:  Peak Residual Axial Stress, and Relative Error 
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Figure 4.27:  Summed Residual Axial Stresses 

 

4.6.3.4. Discussion 
 
The peak axial stress, shown in Figure 4.24, rapidly decreases until ElRad = 800 by 
which point the value plateaus.  Relative error is larger than would otherwise be 
expected as axial stress is converging towards zero (the reason the autofrettage pressure 
was adjusted, described in sub-section 4.5.3, to ensure hoop stress at the inner diameter 
in the Plane Stress case did not converge to zero). 
 
Figure 4.25 shows summed axial stresses following a similar pattern to the peak value; 
the value rapidly drops until ElRad = 800, after which decrease is more gradual.  
 
Peak residual axial stresses (Figure 4.26) exhibit a pattern similar to that shown by the 
autofrettage values, albeit with the rapid decrease occurring by the point when ElRad = 
600.  While the initial magnitude of the stresses are larger than in the autofrettage case 
they rapidly reach that of the autofrettage stresses, again once ElRad = 600 or more. 
 
Figure 4.27 shows the summed residual axial stresses rapidly decreasing in the range 
200 < ElRad < 400, then undergoing a period of moderate reduction, until finally 
reaching a consistently low level once ElRad = 1200. 
 
The above observations show that axial stresses (peak and summed) generally reduce to 
acceptable levels once ElRad exceeds 600-800, or in the summed residual case, 1200.  
Accordingly, 1500 was selected as a suitable value of ElRad to use; comfortably above 
the values indicated by the sensitivity analysis, but not excessively so (keeping model 
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size manageable).  This value also far exceeds that required to output results of a 
resolution suitable for comparison with other methods. 
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4.7. COMPARISON AND VALIDATION  

4.7.1. Overview 
 
Once the mesh sensitivity analysis had been completed, the Axial Section model was 
validated against two other existing methods (Huang’s method, and the Hencky 
Programme) of simulating hydraulic autofrettage [29].  All three methods use the von 
Mises criterion to establish equivalent stresses and strains, and hence predict yielding 
and subsequent plasticity.  At this stage it was decided that, whilst it produced accurate 
answers, the Hoop Section model was too limited in potential to be worth formal 
validation. 
 
The tests carried out were intended to determine whether the physical process of 
autofrettage was accurately simulated by the ANSYS model, hence a simple bi-linear 
material representation was used.  Non-linear material representation would be 
implemented and validated at a later stage, independent to this analysis; development of 
the customised material model commenced once the accuracy of modelling autofrettage 
under the range of four end conditions had been confirmed. 
 
 

4.7.2. Comparisons 
 
The FE model was tested in two sets of comparisons, to 70% overstrain: firstly, against 
both Huang’s model and the Hencky programme in the incompressible, True Plane 
Strain condition; secondly, against the Hencky programme in a variety of end 
conditions (True Plane Strain, Plane Stress, Open- and Closed-ended) for a more 
standard material – ν = 0.3.  The modelling of the four end conditions is described 
earlier this chapter, in sub-sections 4.4.4 and 4.4.5.  For each, two wall ratios were 
used, K = 2.0 and K = 2.5, to ensure the models were not limited to a specific geometry. 
 
As stated above, the focus of this comparison was upon geometric accuracy rather than 
material fidelity – accordingly, a simplistic bi-linear kinematic hardening material was 
used, as well as keeping the Young’s and Tangent moduli constant in loading and 
unloading (i.e. E1 = E2 = E, H1 = H2 = H).  This allowed plasticity during both loading 
and unloading to be investigated, whilst leaving the physical constraints as the focus of 
the comparison. 
 
It was desired to apply some rudimentary alteration to the material in unloading, so that 
the yield stress was defined by the Bauschinger effect (i.e. equals –βσY0).  For each 
method, once peak pressure had been released the reverse yield stress of the material 
was altered to equal βσy (peak equivalent stress is not known prior to the calculation of 
the peak pressure state).  This was desirable for the two wall ratios used, as it allowed 
and similar amounts reverse yielding to occur, both sufficient to be properly assessed.  
In addition, reverse yielding would occur to a radius more similar to that expected if a 
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realistic material model had been used.  This was accomplished using temperature 
profiles; the means of achieving such alteration are described in sub-section 4.7.3. 
 
Accordingly, two temperature profiles are defined (one for the loading process, one for 
unloading); between load steps, the material is swapped from the loading profile to 
unloading.  Additionally, an extra solution control was set, to cause the material to be 
immediately changed, stepped rather than progressively interpolated between the two 
profiles during the course of the second load step.  
 
Figure 4.28 gives a graphical interpretation of the material. 
 

 

Figure 4.28:  Bi-linear material model, incorporating the Bauschinger effect 

 
The material parameters are summarised in Table 4.6 (compare with Tables 4.7 and 
4.8, which contain the values used in Huang’s Method).  Two values of β were 
specified to ensure sufficient reverse yielding occurred to allow a useful comparison of 
it to be made between methods. 
 

Property Value 
E 209 GPa 
ν 0.3 
σY0 1,100 MPa 
H E/10, 20.9 GPa 
β 0.7, K = 2.5 
β 0.45, K = 2.0 

Table 4.6:  Material Parameters for Comparison Tests 

 

4.7.3. Specification of Material Model within ANSYS 
 
To model the Bauschinger effect, between the loading and unloading load steps the 
tube material must be altered from the default kinematic hardening model; the 
Bauschinger effect is represented by changing the yield stress of the region of the tube 
which underwent plastic deformation – the primary yield zone (ra ≤ r ≤ rp). 
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It is not possible to directly edit material properties or change material during solution 
– in terms of the hydraulic autofrettage models described here, redefining the material 
properties assigned to the tube once autofrettage pressure is released, would cause the 
plastic strain history of the tube being lost.  However, a different temperature profile 
may be selected without any such loss.  This is a common method of altering material 
properties in FEA when it would not otherwise be possible, and doesn’t necessarily 
involve actual temperature change.  A material may be defined with multiple 
temperature profiles, each (for example) containing values for E, ν, σY0 and H. 
 
In this case the process is considered to be isothermal, hence no consideration of 
temperature change is required.  By default, ANSYS assumes a temperature change is a 
thermal process, and uses Rice’s Hardening law to calculate stress relaxation due to 
temperature change; this is deactivated. 
 
As stated in sub-section 4.7.2, two temperature profiles were used; the first matching 
the initial material state, the other the deformed material state, calculated between 
stages of the procedure.  The deformed profile is again a bi-linear kinematic hardening 
material, but differs from the initial state as the initial yield stress (σY0

U) is selected to 
ensure σY0

U = σE/2, where, from Figure 4.28, σE = σY0 (1 + β) + H1.εpl).  Reverse 
yielding then begins at 2σY0

U below the peak value (kinematic hardening), which equals 
σE.  The peak equivalent stress experienced by the tube at its ID is used to determine σY0 
+ H1.εpl. 
 
To reiterate, the material properties are otherwise unchanged between the two 
temperature profiles – i.e. a change in temperature is not being simulated – as 
mentioned above, the titular change of temperature is merely a convenient method of 
tailoring the material properties to simulate the Bauschinger effect. 
 
 

4.7.4. First Comparison 
 
The following notes detail how the three models were configured for use in this 
comparison. 
 

4.7.4.1. Huang’s Model 
 
As the Plane Strain, incompressible conditions are already present, only material 
properties need to be set.  Material properties are defined through appropriate selection 
of the parameters used by the model; sub-sub-section 2.4.2.4 describes the model, with 
the material’s governing equations given in Table 3.1, which are described in, and 
illustrated in Figure 3.10. 
 
Calculation of A1 and A3 is described in sub-section 3.6.2, and B1 and B2 are exponents 
of plastic strain (which here equal one, denoting linear stress response to plastic strain).  
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Table 4.7 summarises the values used as the material parameters during the loading 
phase. 
 

K = 2.0 K = 2.5 
A1 990 MPa A1 990 MPa 
A2 20.9 GPa A2 20.9 GPa 
B1 1 B1 1 

Table 4.7:  Loading Parameters, Huang’s Method 

 
Table 4.8 contains the three parameters relating to the unloading phase, which depend 
upon the prior plasticity in the tube.  Accordingly, two sets of unloading parameters 
must be defined, one for each wall ratio.  These account for the fact that for a given 
overstrain, the bore plastic strain, on which strain hardening and the Bauschinger effect 
depend, increases with wall ratio.  Huang’s method assumes a uniform response to 
plastic strain in the initial yield zone (as does the ANSYS model), meaning that the 
elastic range (from peak stress to reverse yield), σE, is the same throughout the primary 
yield zone. 
 

K = 2.0 K = 2.5 
A3 1,623 MPa A3 1,999 MPa 
A4 20.9 GPa A4 20.9 GPa 
B2 1 B2 1 

Table 4.8:  Unloading Parameters, Huang’s Method 

 

4.7.4.2. ANSYS Model 
 
Plane Strain conditions are applied, as described in sub-sub-section 4.4.4.1, and a 
Poisson’s ratio, ν, of 0.499999 (to match the incompressible assumption made by 
Huang’s Model) is specified when defining the elastic material properties (using the 
MPDATA command). 
 
Setting ν = 0.5 is possible within ANSYS, but it will likely cause the solution to fail as 
singularities appear when calculating the stiffness matrix. 
 

4.7.4.3. Hencky Programme 
 
Plane Strain conditions are set within the Hencky Programme by specifying that all of 
the concentric shells possess zero axial strain.  Also, ν is set to 0.5 during direct 
comparison with Huang’s (incompressible) model. 
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4.7.5. Second Comparison 
 
The FE model was then tested against the Hencky Programme, across the full range of 
end conditions, using a compressible material.  Configuration of the methods was as in 
the first comparison, albeit with ν set to 0.3, and the use of Plane Strain, Plane Stress, 
Open- and Closed-Ends conditions. 
 
 

4.7.6. Results 
 
The results obtained during this validation process are plotted below.  During any 
analysis consisting of a number of stages (for example, this analysis treats autofrettage 
and subsequent unloading as separate stages), it is important to make comparison at 
each stage, thus allowing causes for deviation to be more readily identified.  However, 
only one set of autofrettage stresses (for K = 2.0 in the first comparison) is displayed 
here, as during these analyses it was observed that autofrettage stresses were so similar 
that any more would be repetitious. 
 
Indeed residual stresses are of more interest, both in this study and whenever fatigue 
life assessments are made, especially the hoop component at the inner diameter; 
consequently, all such results are displayed below.  Additionally, as the unloading 
process is fundamental to the prediction of residual stresses, it is crucial that it be 
investigated. 
 

4.7.6.1. Normalisation of Results 
 
The radial position is normalised using the following expression to relate it to the tube 
wall thickness: 
 

 
ab

a
N rr

rr
r

−
−=  (4.3) 

 
The stresses are normalised against the yield stress in simple tension (σY0): 
 

 
0Y

N σ
σσ =  (4.4) 

 

4.7.6.2. First Comparison: Huang-Hencky-ANSYS, ν = 0.5 
 
The results from the first stage of the comparison are shown below: Figure 4.29 plots 
the Autofrettage stresses (radial, hoop and axial) from the ANSYS model against those 
predicted by Huang’s method and the Hencky Programme for K = 2.0; Figure 4.30 
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plots the residual hoop stresses from the ANSYS model against those predicted by 
Huang’s method and the Hencky Programme for both K = 2.0 and 2.5.  In both Figures, 
the results from the Hencky Programme and Huang’s method are shown as lines 
(generally too close to be distinguishable), and the results from the ANSYS model are 
shown as symbols overlying the corresponding plots from the other two methods. 
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Figure 4.29:  Comparison of Autofrettage Stresses, ν = 0.5, K = 2.0, β = 0.45 

 
All three principal stresses show good agreement with the Hencky Programme and 
Huang’s model.  The plots for K = 2.5 showed similar agreement and are omitted in the 
interest of brevity. 
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Figure 4.30:  Comparison of Residual Hoop Stresses, ν = 0.5, for K = 2.0, β = 0.45 and K = 2.5, β = 
0.7 

 
Figure 4.30 shows a comparison of the ANSYS calculated values (shown by symbols) 
against those from the Hencky Programme and Huang’s method.  A very close 
agreement can be seen throughout the tube wall, including at the bore.  This indicates 
the ANSYS model can accurately reproduce results from Huang’s model, when using a 
bi-linear material. 
 

4.7.6.3. Second Comparison: Hencky-ANSYS, ν = 0.3 
 
The results from the second comparison, of the ANSYS model against the Hencky 
Programme for the four specified end conditions, are shown below in Figures 10-13 for 
K = 2.0 and 2.5. 
 
The graphs plot the Residual hoop stresses throughout the tube walls – they show the 
ANSYS results as symbols overlaid on the continuous lines generated using the 
Hencky Programme results.  
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Figure 4.31:  Residual Hoop Stresses for the Plane Strain Tube 
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Figure 4.32:  Residual Hoop Stresses for the Plane Stress Tube 
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Figure 4.33:  Residual Hoop Stresses for the Open-Ended Tube 
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Figure 4.34:  Residual Hoop Stresses for the Closed-Ended Tube 

 
The Autofrettage pressures required to achieve 70% overstrain are listed in Tables 4.9 
and 4.10. 
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 Pressure (MPa) 
End State ANSYS Hencky 
Open-Ended 877.4 879.1 
Closed-Ended 913.2 914.7 
Plane Strain 906.5 908.4 
Plane Stress 877.3 878.8 

Table 4.9:  Autofrettage Pressures, K = 2.0 

 
 Pressure (MPa) 
End State ANSYS Hencky 
Open-Ended 1220 1223 
Closed-Ended 1254 1257 
Plane Strain 1246 1249 
Plane Stress 1224 1227 

Table 4.10:  Autofrettage Pressures, K = 2.5 

 
 

4.8. DISCUSSION 
 
The key property of all the residual hoop stress plots is the presence of secondary 
yielding near the bore which ultimately restricts the degree of pre-stressing possible in 
tubes.  The reyielding depends on the autofrettage pressure (due to the compressive 
effects of its removal) and the strength of the material (altered from initial properties by 
deformation during loading). 
 
For the incompressible conditions, Figures 4.29 and 4.30 show excellent agreement 
between the ANSYS model, the Hencky programme and Huang’s model.  This 
indicates that the ANSYS model can accurately predict stresses in such a case. 
 
The comparisons between the ANSYS model and Hencky programme for the wider 
range of end conditions and a more realistic Poisson’s ratio, are given in Figures 4.31 to 
4.34.  Again, a close match is exhibited.  A slight variation may be seen in the reyield 
zones (ra ≤ r ≤ rs) away from the bore, more clearly visible for K = 2.0 and ν = 0.3; the 
ANSYS results show a small decrease in the magnitude of residual hoop stresses, and a 
slight, commensurate, increase of reyield radius (rs). 
 
The autofrettage pressures in Tables 4.9 and 4.10 show two sets of very similar values.  
The pressures for the Open-Ended condition are most similar to those for the Plane 
stress. This is not surprising since the former represents a tube in which the axial 
stresses sum to zero net force and the latter one in which all axial stresses are zero. The 
autofrettage pressures for the Closed-Ended condition are most similar to those for the 
Plane Strain condition. This is likewise unsurprising since they reduce to almost the 
same problem for the case of an incompressible material. 
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Finally, the fact that autofrettage pressure for plane strain/open-ends exceeds that for 
plane stress reflects the observations in [22]. This could also be inferred, using von 
Mises criterion, from the presence of an axial stress which, in the near-bore region, 
generally varies between 0.3 and 0.5 times hoop stress, depending upon Poisson’s ratio. 
 
From Tables 4.9 and 4.10 it can be seen that the pressure required for a given depth of 
autofrettage is affected by the chosen end condition.  This is controlled by the von 
Mises yield criterion that considers all three principal stresses. The axial stress is the 
intermediate principal stress and is influenced by the chosen end condition; it therefore 
influences the degree of yielding. The variation between the various models in the near-
bore reyield zone is modest. 
 
 

4.9. SUMMARY  
 

4.9.1. Mesh Sensitivity Tests 
 
The sensitivity tests, documented in section 4.6, demonstrate how the four models react 
to variations in mesh density; the trends observed were used to select appropriate 
meshes that would deliver results of sufficient accuracy while consuming minimal time 
and computational resources. 
 
The tests conducted on the general plane strain models, discussed in sub-sub-section 
4.6.3.2, indicated that using 100 radial elements (ElRad = 100) would provide ample 
accuracy (the results suggested that more than 70-80 were needed), while keeping 
model size small enough for rapid solution.  Likewise, for the Plane Stress model it was 
observed that setting ElRad equal to 600-800 (or in the summed residual case, 1200) 
generally achieved the desired accuracy.  Accordingly, 1500 was selected as the value 
of ElRad to be used; sufficient to make any quantisation error negligible while keeping 
the model size acceptable. 
 
In both cases, two axial elements are used (sub-sub-section 4.4.3.2); to maintain square 
element geometry, the length of section, lz, is scaled from the wall depth, lr, using 
Equation (4.2). 
 
 

4.9.2. Comparison Tests 
 
During the comparison tests, described in section 4.7, good agreement was observed 
between the results generated by the ANSYS FE model, the Hencky numerical 
programme and Huang’s analytical model.  This demonstrates that given a correctly 
calculated degree of plastic strain at the bore, an accurate value of residual stress may 
be predicted by the ANSYS model for a number of end conditions. However, the bi-
linear stress-strain profile used here is an approximation. To obtain more realistic 
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values of residual stress a more accurate material model is required that properly 
follows the non-linear unloading and also encompasses the varying degree of plastic 
strain experienced by the material throughout the tube wall.  These enhancements, 
achieved through implementation of an EMPRAP and use of ANSYS User 
Programmable Features, are detailed in Chapters 5 and 6 respectively. 
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5. AN INITIAL APPROACH TO MODELLING NON-
LINEAR MATERIAL BEHAVIOUR  

5.1. INTRODUCTION 
 
Hydraulic autofrettage modelling in ANSYS, described in Chapter 4, centred on 
modelling four different end conditions, and the constraints required to achieve those 
conditions.  In addition, the use and modification of the Bi-linear Kinematic hardening 
(BKIN) material was investigated.  Effectively, the physical conditions of hydraulic 
autofrettage had been accurately simulated, but the material model used was not 
representative of high-strength steels.  Figure 5.1 shows the general stress-strain 
relationship of a typical gun steel, specifically the non-linearity exhibited by such steels 
during unloading, following prior plastic strain (experienced during autofrettage); this 
is not represented by the BKIN material. 
 

 

Figure 5.1:  Generalised Stress-Strain relationship for a typical gun steel 

 
This was significant as the region around the inner diameter is of the most interest 
when investigating autofrettage, which also experiences the greatest amount of plastic 
strain during hydraulic autofrettage.  This region will hence unload with the greatest 
degree of non-linearity, with a commensurate divergence from the residual stresses 
predicted using a bi-linear material. 
 
The next step towards achieving the overall goal is the development of a method to 
model the non-linear unloading of materials following the plastic strain experienced by 
tubes during autofrettage, which varies with radius.  The first stage of such material 
modelling is described in this chapter. 
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As mentioned at the end of Chapter 4, two means of achieving the desired non-linear 
unloading were identified: User Programmable Features (UPFs) or an “Elastic Modulus 
and Poisson’s Ratio adjustment procedure” (EMPRAP).  A UPF was thought to be the 
most useful in the long term, but initially an EMPRAP was selected because it 
permitted implementation of real (experimentally determined) material behaviour 
within FEA, and will provide an independent validation of UPF in due course. 
 
Accordingly, an EMPRAP was the first means of customised non-linear material 
modelling developed, and is described in Appendix A3.  Note that the EMPRAP is 
limited to modelling hydraulic autofrettage, but such results could still be compared 
with any UPF analysis of swage autofrettage. 
 
 

5.1.1. Selected Material Model 
 
A723-1130, was selected as a suitable material for use throughout the course of this 
research; a gun steel which displays the characteristic non-linearity when unloading 
from prior plastic strain, central to these studies.  A set of material-fit equations (given 
below) was developed for A723 by Parker et al. [30] from uni-axial tension-
compression tests, and are summarised by Figure 5.2: 
 

 

Figure 5.2:  Material Stress-Strain Model 

 
The loading/unloading cycle can be broken up into four parts: 
 
0-1 – Elastic Loading 
Behaviour defined by Hooke's Law using the modulus EL. 
 
1-2 – Plastic Loading 
Material stress given by 
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Slope given by 
 

 ( ) 0
2 100sech Y

p
Lp

L

p
L dcca

d

d σε
ε
σ ⋅⋅+⋅⋅⋅=  (5.2) 

 
2-3 – Elastic Unloading 
Behaviour defined by Hooke's Law, albeit with an altered modulus EUL. 
 
3- – Plastic Unloading 
Material stress given by 
 
 [ ] [ ]( )p
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p
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Slope given by 
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For A723-1130, the values of the three constants are given in Table 5.1.  A723-1130 is 
used throughout the comparisons presented in this thesis. 
 

Parameter Value 
a 0 
c 0 
d 0.013 

Table 5.1:  Material-fit Parameters 

 
The Bauschinger Effect Factor, β, is given by: 
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The unloading parameter, γ, is given by: 
 

( ) 323.0
1002858.1

−⋅⋅= p
Lεγ  

 
The above material fit is assumed to be a function only of strain, although it is 
recognised that other factors such as temperature, strain rate and time (for creep 
analysis) would be required for a full constitutive relationship.  However, it is felt that 
the presented relationship is suitable for the analyses described in this thesis, as 
deformation rates are very small and temperature variation (resulting from stress-strain 
hysteresis and, in the case of swage autofrettage, friction) is felt to be small enough to 
be ignored. 
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5.2. IMPLEMENTATION WITHIN ANSYS 
 

5.2.1. Overview 
 
The meshes developed and optimised in Chapter 4 are used for the analysis presented 
in this chapter, allowing the implemented material model to be tested in the range of 
end conditions described therein: general plane strain (Plane Strain, Open- and Closed-
Ends) and Plane Stress.  Instead of the bi-linear kinematic hardening material used in 
the previous model, a continually altered elastic material was used in this model, 
befitting the EMPRAP. 
 
The EMPRAP developed by Jahed and Dubey was used to govern the manipulation of 
E and ν, such that the non-linear behaviour of an elastic-plastic material was emulated 
by the purely elastic material employed.  Their model was extended, in the same way as 
was done in the Hencky Programme, such that both material non-linearity and position 
dependency were incorporated.  This was necessary to model the variable plastic strain 
throughout the wall of an autofrettaged tube, and the selected material, A723-1130 (see 
sub-section 5.1.1). 
 
While only one material (A723-1130) is used in the comparisons presented in this 
chapter, neither the EMPRAP nor the implementation of it within ANSYS is limited for 
use with it; the methods are general, and all that would be required to simulate another 
material would be alteration of the material-fit expression to match the desired material. 
 
 

5.2.2. Implementation of the EMPRAP 
 
Given the nature of the EMPRAP, it is clear that the tube material’s elastic properties 
must be altered progressively during the solution process, in response to encountered 
plastic strain.  Moreover, as plastic strain varies throughout the tube wall it is necessary 
to alter material properties on a fine-grained basis; this was achieved by defining a 
material for each element, so that material properties for each element could be altered 
dependent on the simulated plastic strain experienced by the element. 
 
The models were created as follows: 

1. Linear elastic materials are defined (as the actual material’s E and ν values) for 
each element (to be created), and data arrays are created to store the iterated 
solution data, 

2. Geometries are created, meshed, constrained and loaded as described in Chapter 
4, 

3. Each element has its own material assigned to it (using the MPCHG command). 
 
In addition, using normal methods it is not possible to alter material properties during 
ANSYS’s solution process (such control becomes possible when using UPFs), meaning 
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a model based on an EMPRAP cannot be solved in a single solution.  Instead, a series 
of solutions must be run, in between which material properties are altered.  To allow 
this, the solution state must be retained outside of the normal ANSYS database; this 
was achieved using parameters within the ANSYS environment. 
 
The modelling process and the iteration solution procedure, described above, are 
summarised by the flow diagram given in Figure 5.3. 
 

 

Figure 5.3:  EMPRAP Solution Process 

 
The fact that a material must be created and assigned to each element, and data must be 
retained and incremented for each element, strengthens the case for the optimisation 
documented in Chapter 4 – all consume memory, so it is important to minimise element 
numbers.  In addition, the large number of elements (and hence, materials) used, when 
combined with the multiple iterations required to obtain a converged solution, made 
manual manipulation of parameters impractical; instead, the model was automated 
using APDL. 
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The drawback of this method is its reliance on elastic analysis; if the applied hydraulic 
pressure were released following autofrettage, the tube would completely and 
elastically unload to its original size with no residual stresses present.  Accordingly, it 
is not possible to simulate the application and removal of pressure simply by mapping 
the two stages of the procedure onto their FE analogues, as was done within the models 
based on bi-linear materials in Chapter 4.  For the same reason, swage autofrettage may 
not be modelled using such a quasi-elastic material as it is inherently a single 
continuous process; once the load is removed the tube would contract back to its 
original size, with no residual stresses present.  This is reflected upon in the summary 
of this chapter (section 5.6). 
 
Instead two separate pressurisation procedures are conducted, corresponding to the 
loading and unloading processes; the unloading stresses represent the changes in 
component stresses between their autofrettage (peak pressure) and residual states. 
 
The unloading analysis is conducted in the same way as loading, albeit with material 
properties in the initial deformed region of the tube (ra ≤ r ≤ rp) altered to reflect the 
plastic strain experienced at that radius.  The unloading stresses are calculated by 
autofrettaging the modified tube, to the same pressure as that used for the initial 
autofrettage procedure.  Initially the elements constituting the deformed region of the 
tube have their Young’s modulus altered to EUL; the iterative solution then proceeds as 
in the loading phase.  If the yield stress (which here equals σER, as explained below) is 
exceeded, E and ν are again adjusted so that the stress-strain response matches the 
unloading section of the material-fit curve, as illustrated in Figure 5.4 (compare with 
Figure 5.1). 
 

 

Figure 5.4:  Stress-Strain relationship showing unloading profile mapped onto the loading profile 
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Again, material alteration is conducted on an element-by-element basis, using the 
plastic strain calculated for that element during the loading stage.  Specifically: 
 
1. The unloading Young's modulus, EUL, is altered (generally reduced) – in the 

case of A723-1130: 
 

( )[ ]p
LLUL EE ε1002.1tanh15.01 ×−=  

 
2. The yield stress is altered to equal the elastic range, σER, from peak autofrettage 

stress to reverse yield: 
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>+=
=+=
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σPeak is the stress experienced during autofrettage; this is used as a dummy value such 
that reverse yield occurs at –σY0.  While reverse yield will never occur in this region (rp 
≤ r ≤ rb) in the absence of an external pressure (meaning no reverse yield stress is 
strictly required), σPeak is calculated to keep the model as general as possible, allowing 
more potential for future use. 
 
Once the solution of the unloading phase is complete, residual stress components are 
calculated using super-positioning; the unloading stresses are subtracted from the 
loading stresses, on a component-by-component basis.  Equivalent stress is then 
calculated from the residual components that result. 
 
In summary, avoiding the use of UPFs meant that all material modification had to be 
scripted within ANSYS using APDL.  This was achieved by conducting a series of 
elastic analyses, between which the elastic properties (Young’s modulus, E, and 
Poisson’s ratio, ν) were altered using Jahed and Dubey’s method [19] according to 
material-fit parameters by Parker et al. [30], based on the results from the previous 
analysis stage. 
 
 

5.2.3. Solution Control 
 
For any numerical solution, a convergence criterion must be set; in this case as E and ν 
are the altered properties, they are used here to determine convergence.  The innermost 
element (that in contact with the bore) is used for convergence checking as it undergoes 
the greatest plastic strain and hence changes in Eeff and νeff, quantified by the 
expressions in Equations (5.5). 
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As Eeff and νeff converge over successive iterations, E∆ and ν∆ converge to zero from a 
positive value.  They are summed to give ∆ (see Equation (5.6)), which also converges 
to zero with its components. 
 
 ∆∆ +=∆ νE  (5.6) 
 
∆ is used as the convergence variable; once it has dropped below a set value (the 
convergence criterion), convergence is assumed.  A suitable value for ∆ was 
determined by a sensitivity analysis, documented in sub-section 5.3.2, and is used 
during subsequent comparisons. 
 
As these differences are relative to the values from the previous iteration, a given value 
of convergence criterion yields a more converged answer than would be the case if 
differences were relative to the initial value of the variables. 
 
 

5.2.4. Progression of Solution 
 
In the case of an autofrettaged tube, during the first solution a relatively small depth 
around the bore will experience stress greater than the yield stress.  In subsequent 
solutions, as the modulus of these over-stressed portions decreases, more of the load 
must be carried by the outer regions of the tube, progressively causing a larger degree 
of yielding.  This continues until a converged solution, gauged using Equation (5.6), is 
developed. 
 
It should be noted that the Jahed and Dubey method operates using equivalent stresses 
and strains; therefore aside from the loss of deformation following load removal, there 
is no reason, in principal, why it would not be applicable to swage autofrettage, in 
which the tube behaves in a non-plane fashion.  In this case, the von Mises equivalent 
stress and strain are calculated from the direct and shear components present (or from 
principal values). 
 
Typical autofrettage stresses can be seen in Figure 5.6, found within the Results section 
(5.4) – in this case for the Plane Strain case. 
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5.3. SUMMARY OF TESTS 
 
This section describes the tests conducted to ascertain the accuracy of the implemented 
EMPRAP.  The model utilises the previously developed and optimised meshes (see 
Summary of Chapter 4), which allowed material modelling immediately to become the 
focus of investigation. 
 
As before, the tests constitute both a sensitivity analysis and a comparison with an 
established model (the Hencky Programme).  The sensitivity analysis focussed on 
optimisation of the value of the convergence criterion, ∆; as such the tests were limited 
in scope, and their findings are given later in this section (sub-section 5.3.2).  The 
comparison investigated how well results, generated when using the optimised 
criterion, agreed with those from an established method (the Hencky Programme). 
 
 

5.3.1. Common Features 
 
Both the sensitivity tests and the comparison feature a tube of Wall Ratio 2.5, 
consisting of the material A723-1130, autofrettaged such that PAF = σY.  The stress-
strain behaviour of A723-1130 is described fully in sub-section 5.1.1, but salient 
aspects are summarised below for convenience along with tube and autofrettage 
parameters. 
 

Property Value 
Wall Ratio, K 2.5 
Autofrettage Pressure, Paf 1130 MPa 
Young's Modulus, EUL 209 GPa 
Poisson's Ratio, ν 0.3 
Yield Stress, σY0 1130 MPa 

Table 5.2:  Model Parameters 

 

5.3.2. Preliminary Convergence Sensitivity Analysis 
 
To investigate the effect of the convergence criterion, ∆, its magnitude was varied 
whilst keeping model and loading parameters constant.  This was conducted for the 
Plane Strain model, using the following values of ∆: 10-1, 10-2, 10-3, 10-4, 10-5, 10-6, 10-

7. 
 
Table 5.3 lists the iterations required for solution, alongside the respective values of ∆.  
The number of required iterations increases, including the sharp increase between ∆ = 
10-2 and 10-3 cases.  Solution time may be considered to be effectively proportional to 
the total number of iterations, because plasticity very rapidly propagates through the 
tube.  This means that during most iterations (for any value of ∆), the majority of 
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elements within ra ≤ r ≤ rp must be operated upon.  Also, as autofrettage is to the same 
pressure (and hence very similar depth, or overstrain), rp is effectively constant. 
 

 Iterations 
∆ Values Loading Unloading Total 

10-1 5 2 7 
10-2 6 3 9 
10-3 21 5 26 
10-4 31 6 37 
10-5 40 8 48 
10-6 51 9 60 
10-7 60 11 71 
10-8 70 12 82 

Table 5.3:  Iterations required for Solution using the EMPRAP Implementation, varying the 
Convergence Criterion 

 
The relative errors for the cases enumerated above were calculated, and are presented in 
Table 5.4.  The errors decrease monotonically as the convergence criterion is reduced, 
with a significant change (more than an order of magnitude) between the ∆ = 10-2 and 
10-3 cases, reflecting the increase in iterations to solution also observed. 
  

 % Relative Error 
∆ Values Loading Unloading Residual 

10-1 -1.8655 3.5101 5.0977 
10-2 -1.0452 1.3668 2.1017 
10-3 -0.0709 0.0119 0.0372 
10-4 0.0378 0.0120 0.0041 
10-5 -0.0014 0.0002 0.0007 
10-6 -0.0002 0.0001 0.0001 
10-7 -8.193*10-6 3.829*10-7 3.123*10-6 
10-8 n/a n/a n/a 

Table 5.4:  Relative Error using the EMPRAP Implementation, varying the Convergence Criterion 

 
To make a cost-benefit analysis of the above data, the total number of iterations to 
solution (Table 5.3) was multiplied by the percentage error values for the residual hoop 
stresses (Table 5.4).  The residual stresses were selected as the most relevant to this 
study, and the total number of iterations to solution was most representative of total 
solution time.   
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Figure 5.5:  EMPRAP Implementation Error/Solution Time Comparison 

 
While the product of relative error and number of iterations to solution rapidly 
approach zero, the absolute size of the decrease in error rapidly decreases also.  For this 
reason, it was deemed that ∆ = 10-4 was suitable; solution is then achieved in 
approximately 40 iterations, and the relative error is within a few hundredths of a 
percent. 
 
 

5.3.3. Comparison with Hencky Programme 
 
The ANSYS model, implementing Jahed and Dubey’s EMPRAP, was assessed via 
comparison with like-for-like hydraulic autofrettage results from the Hencky 
Programme.  The comparisons were conducted over a range of end conditions (Plane 
Strain, Plane Stress, Open- and Closed-Ends), with matched material and autofrettage 
parameters (see Table 5.2); results from both methods during both autofrettage and 
residual conditions were compared.  In each case, a pressure equal to σY0 (1130 MPa) 
was applied to the tubes. 
 
A convergence criterion, ∆, equal to 10-4 was selected for the ANSYS model based on 
the convergence study (sub-section 5.3.2); as in the convergence tests, the model used 
the mesh developed during the earlier mesh sensitivity analysis (Chapter 4).  
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5.4. RESULTS 
 
This section presents the results generated from the comparison between the ANSYS 
model and the Hencky Programme, described in sub-section 5.3.3. 
 
For the sake of brevity, only results from the Plane Strain case (both the sensitivity 
analysis and the comparison) are shown here; the remainder (for the Plane Stress, 
Open- and Closed-ended cases) are presented in Appendix A4.  Specifically, results 
from the ANSYS implementation (EMPRAP(ANSYS)) of the Jahed and Dubey 
EMPRAP are overlaid as data points upon equivalent results from the Hencky 
Programme (EMPRAP(Hencky)), depicted as continuous lines. 
 
Three sets of results (Loading, Unloading and Residual stresses) are displayed, each in 
component form. 
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5.4.1. Comparisons 

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Normalised Radial Position (r  - r a)/(r b  - r a)

N
o

rm
al

is
ed

 S
tr

es
se

s,
 σ

/σ
Y

0

EMPRAP (Hencky) Plots

EMPRAP (FEA) Radial

EMPRAP (FEA) Hoop

EMPRAP (FEA) Axial

 

Figure 5.6:  Autofrettage Stresses in a Plane Strain Tube 
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Figure 5.7:  Unloading Stresses in a Plane Strain Tube 
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Figure 5.8:  Residual Stresses in a Plane Strain Tube 

 
 

 Residual Hoop Stress at ID, 
normalised w.r.t. σY0 

 

End Condition EMPRAP 
(Hencky) 

EMPRAP 
(ANSYS) 

% Error 

Plane Strain -0.74534 -0.71719 -3.77743 
Plane Stress -0.80373 -0.77178 -3.97588 
Open Ends -0.74258 -0.71248 -4.05410 
Closed Ends -0.74636 -0.71935 -3.61824 

Table 5.5:  Residual Hoop Stresses at the ID and errors, w.r.t. Hencky results 
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5.5. DISCUSSION 
 
The Preliminary Convergence Sensitivity analysis identified how the required number 
of iterations varied as the magnitude of the relative error criterion was reduced.  It was 
found that a convergence criterion (∆) of 10-4 typically achieved complete solution 
within 40 iterations; taking approximately 31 iterations for the loading phase and 6 for 
the unloading phase.  This tallies with what would be expected and is logical, given that 
the EMPRAP method iterates to find the elastic-plastic stress-strain state.  As a greater 
degree of plastic strain (both quantity and extent) is observed in the loading process, 
compared to the unloading process, a much higher number of iterations would be 
expected to solve for the greater plastic strain encountered. 
 
The autofrettage stresses show excellent agreement, indicating that the material has 
been modelled accurately in loading.  However, the unloading stresses do show a small 
disagreement – specifically the hoop stresses (and to a lesser degree, the axial stresses) 
calculated by the ANSYS model are slightly less than those obtained from the Hencky 
programme.  This leads to the ANSYS model slightly underestimating the residual 
hoop stresses by approximately 4% when compared to the Hencky programme. 
 
Given the mesh sensitivity (Chapter 4) and convergence (sub-section 5.3.2) analyses 
conducted, numerical error is thought to be unlikely; instead, the different structural 
representations are thought to be responsible. 
 
The two models employ the same method of material representation, but represent the 
tube structure differently; the Hencky Programme simulates a series of concentric 
cylinders each behaving according to Lamé’s solution, and the ANSYS model uses an 
axi-symmetric mesh.  Hence the most significant influence of such modelling 
differences would be upon the inter-relation of stress components, as is seen in the 
results – radial stress distributions agree much more closely than the hoop (and to a 
lesser degree, axial) stress distributions. 
 
However each method is internally consistent, in that when summed through the tube 
wall, the hoop stresses equal the applied pressure load (in both loading and unloading 
processes).  This supports the above observation regarding the inter-relation of stress 
components, as small variations would alter the precise distribution of stresses even 
though the summed stresses reached equilibrium with the applied pressure load.  Given 
the lower amount of yielding that occurs during unloading, it is likely that a small error 
in the amount predicted would be more noticeable in unloading.  On this basis, it is felt 
the difference between the unloading results is probably due to small differences in the 
detection of yield and calculation of plastic increment within the two models. 
 
As would be expected, given the pre-existing constraint sets used, the results also 
indicate that the four end conditions are well simulated by the ANSYS model.  This 
suggests that the material representation and end conditions are sufficiently 
independent to allow either to be changed as needed during future analyses, while 
retaining the integrity of the solution. 
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No abrupt changes in gradient are observed in the residual stress plots (Figure 5.8) at 
the reyield radius, rb, compared with equivalent results from the bi-linear kinematic 
case in Figure 4.31.  This is due to the stress-strain profile associated with A723 
(Figure 5.2), which also shows no sudden change at the onset of reverse yield; the 
opposite is true for the bi-linear kinematic model used in Chapter 4 (Figure 3.3). 
 
Although not compared here, the implementation within ANSYS of the EMPRAP is 
generic enough to be capable of simulating virtually any material (certainly any of 
interest in the context of pressure vessels).  All that would be required to adapt it to 
another material is the replacement of the stress-strain relationships in the loading and 
unloading stages, along with the required material parameters. 
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5.6. SUMMARY  
 
An existing mesh and constraint set, optimised and developed in Chapter 4, was utilised 
to provide the basis for a model in which the Jahed and Dubey EMPRAP could be 
implemented.  The EMPRAP was used to represent the gun steel A723-1130, which 
exhibits non-linear unloading from plastic strain, within an ANSYS model; the model 
was then used to simulate the hydraulic autofrettage of a series of thick-walled tubes.  
With the exception of a small discrepancy in the unloading stresses near the ID, the 
calculated stresses matched very well against equivalent results from the Hencky 
programme.  This supports its use in comparisons with future material models 
developed. 
 
In addition, there is no reason why the model, in principle, would not be able to 
simulate the hydraulic autofrettage of tubes of more complex geometry, featuring 
tapers or steps for example.  Combined with its flexibility in terms of material 
modelling, this method potentially allows a wide range of hydraulically autofrettage 
tubes to be modelled. 
 
This method is well suited to modelling hydraulic autofrettage due to the discrete 
nature of the loading and unloading allowing residual stresses to be calculated using 
super-positioning; however, swage autofrettage is not so easily modelled due to the 
continuous nature of the process.  Effectively, as the material is inherently elastic it will 
always return to it original unstressed state when the load is removed – ergo after the 
passage of the mandrel such a tube would return to its un-deformed, unstressed state.  
This also would affect the peak stress state, and predicted depth of plasticity, as the 
peak stress point is influenced (via shear stresses) by the tube both in front and behind 
the mandrel, the latter would be altered by the absence of residual stresses behind the 
mandrel.  This necessitated the development of a different form of material modelling, 
described in Chapter 6.  Additionally, although ANSYS seemed to contain no explicit 
limit to the number of definable material models (1,000,000 models were defined to 
investigate), its performance is reduced by excessive numbers of materials. 
 
In summary, an FEA procedure for simulating non-linear stress-strain behaviour during 
hydraulic autofrettage has been implemented and investigated. 
 
Whilst it is unsuitable for modelling swage autofrettage, a single continuous process 
during which stresses vary axially, it has provided valuable experience of implementing 
real material behaviour into FEA. 
 
In addition, it is a source of results suitable for comparison with special cases such as 
the UPF, which was subsequently developed; this work is described in the next chapter. 
 
Hence modelling swage autofrettage with accurate material representation remains the 
key focus for future work.  A possible method is the use of a bi- or multi-linear ANSYS 
(elastic-plastic), which would retain the plastic strain experienced during loading; non-
linear unloading would again be achieved through the modification of elastic 
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properties.  This assumes that stresses in the non-linear unloading region remain below 
the reverse yield stress calculated by the ANSYS material, and that the loading profile 
of the material may be satisfactorily modelled using a bi-/multi-linear representation. 
 



 

 114 

6. DEVELOPMENT OF AN FE ROUTINE TO MODEL 

REAL MATERIAL BEHAVIOUR  
 
(Chapter 6 may be omitted on a first reading of the thesis.) 
 

6.1. INTRODUCTION 
 
This chapter details the adaptation of an ANSYS User Programmable Feature (UPF) 
to create an accurate model of a real world material, and its subsequent use in a 
simulation of hydraulic autofrettage.  This is necessary in order to provide an accurate 
material model for use in simulation of swage autofrettage; as documented in Chapter 
5, the EMPRAP material is not suitable for such circumstances. 
 
The accuracy of the customised material behaviour is verified through: 
 
1. Comparison of uni-axial stress-strain results with data taken directly from the 

material-fit equations, 
2. Comparison in Hydraulic autofrettage with the Hencky Programme and the 

ANSYS EMPRAP model (developed in Chapter 5), both employing the same 
material-fit. 

 
Given that the ANSYS EMPRAP model could satisfactorily be used in the simulation 
of hydraulic autofrettage, the main purpose for developing the UPF-based material 
model is for its later use simulating swage autofrettage. 
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6.2. USER PROGRAMMABLE FEATURES (UPFS) 
 
ANSYS provides a set of customisable routines that may be employed to achieve non-
standard behaviours; collectively they are referred to as User Programmable Features 
(UPFs). 
 
UPFs are supplied as individual source code (Fortran 90) files, which generally recreate 
a standard feature in ANSYS.  These files may then be altered to achieve the desired 
behaviour, after which they are compiled and statically linked with the main ANSYS 
object file, creating a second customised version of ANSYS containing the UPF.  With 
the necessary compiler installed, the custom executable file is easily created – the 
“Relink” option is selected from the ANSYS Admin utility.  This runs a batch file 
which runs through the required procedures, resulting in a custom executable file.  
Static linking, as opposed to dynamic linking, creates a single executable file 
containing all compiled and linked code, rather than dynamically linking the external 
code at run time. 
 
A wide variety of UPFs exist, but those of interest are those that alter the stress-strain 
behaviour of a material in a mechanical analysis.  Of these, the USERMAT routine is 
of particular interest as it allows the stress-strain state in both elastic and plastic 
regimes to be controlled.  It is important to be able to control the elastic behaviour, as 
some metals (A723, for example) exhibit a slight change in their Young’s Modulus 
during unloading subsequent to plastic loading. 
 
 

6.2.1. ANSYS Solution Procedure 
 
Before explaining the function of USERMAT, it is appropriate to describe the ANSYS 
solution procedure and where material sub-routines, such as USERMAT, are used 
within it. 
 
ANSYS divides its solution hierarchy into three layers: load steps, sub-steps and 
equilibrium iterations.  Load steps are user defined, and separate the solution into 
successive stages which reflect the details of the applied loading on the system being 
modelled; in the hydraulic autofrettage model used in this study, load steps are used 
separately to model the loading and unloading procedures. 
 
Sub-steps divide load steps into shorter periods, between which the applied loads are 
(by default) altered to achieve gradual progression between the initial and final values 
defined for the load step.  Minimum, maximum and suggested numbers of sub-steps 
may be defined by the user; sufficient must be employed to capture the details of loads, 
especially when transient (such as the sliding contact present during swage 
autofrettage), while keeping the simulation computationally tractable. 
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During each sub-step, ANSYS employs a series of equilibrium iterations to gauge a 
suitable increment of the input (during mechanical analyses, strain increments are the 
input), by assessing the output from the selected sub-routine (in this case, USERMAT) 
for the analysis. 
 
 

6.2.2. USERMAT and its Sub-Routines 
 
In a nutshell, USERMAT accepts increments of total strain as inputs, and outputs both 
the stress and plastic strain state.  In addition, it outputs a stress-strain Jacobian matrix 
(the best linear approximation to a differentiable function near a given point; in this 
case, the multi-axial stiffness) which is used to help estimate the next set of total strain 
increments.  Like a standard material USERMAT is called for at each integration point, 
during each equilibrium iteration. 
 
USERMAT consists of a number of components – the first determines the complexity 
of the load case, and then calls the suitable component specific to the load case.  The 
degree of complexity is primarily determined by the number of strain components, 
which in turn depends on the element selected.  The range of load cases is listed in 
Table 6.1, along with the related sub-routine.  Note: the number of shear strain 
components equals the difference between the number of strain and direct strain 
components. 
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Load Case 
Strain 

Components 
Direct Strain 
Components 

Sub-Routine 
Called 

One Dimensional 1 1 usermat1d 
Three Dimensional Beam 3 1 usermatbm 
Plane Stress 3 2 usermatps 
Plane Strain or Axi-Symmetric 4 3 usermat3d 
Three Dimensional 6 3 usermat3d 

Table 6.1:  Summary of USERMAT Sub-Routines 

 
Of the listed sub-routines usermat3d was adapted and used due to its utility in the axi-
symmetric case, in addition to the three dimensional case (which was used to create 
uni-axial specimens, described in sub-section 6.4.3).  In addition, usermat1d was used 
as an intermediary during the customisation of usermat3d, allowing development to 
progress without dealing with multi-component stress-strain. 
 
 

6.2.3. Using the USERMAT Routine 
 
The custom executable, once compiled and relinked, may either be selected from the 
ANSYS Profile Manager, or may be invoked (in the case of ANSYS 11.0) using the 
following command: 
 

ansys110 -custom <filename> 
 
The USERMAT UPF is activated in much the same way as a normal material mode.  
First, the state variable environment is initialised, in this case with three components.  
The TB,STATE command specifies nStatev , which in turn sizes statev , the array that 
contains the state variables between Newton-Raphson iterations: 
 

TB,STATE,1,,3, 
TBDATA,1,C1,C2,C3, 

 
The state variable retains equivalent plastic strain, component plastic strains and 
current yield stress; thus for the bi-linear isotropic model supplied, its size must equal 
the number of strain components (from Table 6.1) plus two.  Effectively, it maintains 
the state of the solution for each integration point as the procedure iterates through 
them, throughout the sequence of sub-steps that constitute the solution.   In addition, 
the state variable may be dimensioned to retain extra data to suit the requirements of 
the customised USERMAT (as was done in this case). 
 
Then the material properties are assigned to the material: 
 

TB,USER,1,1,4 
TBTEMP,1.0 
TBDATA,1,E1,nut,YS1,UniAxPlMod 

 



 

 118 

The above example would be used to initialise a single temperature profile for the 
unmodified, bi-linear isotropic hardening material supplied with ANSYS.  The four 
properties listed are: Young's Modulus, Poisson's Ratio, Yield Stress and Uni-Axial 
Plastic Modulus. 
 
The user material may then be used with a number of elements: LINK180, SHELL181, 
PLANE182, PLANE183, SOLID185, SOLID186, SOLID187, BEAM188, BEAM189, 
SOLSH190, SHELL208 and SHELL209.  For the purposes of this work 8-node 
PLANE183 elements will be used in two-dimensional analyses. 
 
Prior to the quoted code, a number of "housekeeping" tasks are carried out – the 
subroutine is passed a number of variables, most notably the total strain increments and 
the contents of the state variable; the subroutine's local variables are then declared.  
After each invocation of the sub-routine, it passes data back to the main programme 
and stores it for use in subsequent iterations. 
 
The initial preparation code is followed by the "functional" code, given below in 
section 6.2.4; the code is that supplied with ANSYS 9.0, due to difficulties encountered 
(described in section 8.1) adapting the code for ANSYS 11.0. 
 
 

6.2.4. Documentation of Supplied USERMAT Code 
 
The code shown here in boxes, labelled as “Code Blocks”, is in the Fortran language, 
and is distinct from the APDL (ANSYS Parametric Design Language) scripts that are 
used to automate the execution of the ANSYS programme.  Line length is limited to 72 
characters, and may be continued using the “&” character. 
 
The first section creates the local variables based on the information passed to the sub-
routine by the main ANSYS executable, and calculates the equivalent plastic modulus 
(dsigdep ) from the uni-axial value, and shear modulus (i.e. the 2nd Lamé Constant, µ).  
Finally, the elastic stiffness (stress-strain) matrix (dsdeEl ) is calculated.  In this one-
dimensional case the matrix has only one component, but in the axi-symmetric case it 
has 4x4 components, and 6x6 in the full three-dimensional case. 
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Code Block 6.1 

 
The second section uses the elastic stiffness matrix as an initial value for the plastic 
stiffness matrix, dsdePl , which is then used as the Jacobian matrix (if plastic 
deformation occurs, dsdePl  is modified – see Code Block 6.6).  The stress (sigElp ) is 
then incremented elastically using dsdeEl , and the strain increment vector, dStrain .  
In the one-dimensional case presented here, both matrices and the vector have only one 
component, but higher-order cases utilise appropriately dimensioned tensors. 
 
The second half of the code block determines the sign and von Mises equivalent of the 
incremented stress; signTens  assumes the value of 1 or -1 (respectively, tensile or 
compressive), and qEl  equals the von Mises equivalent stress.  The tensile/compressive 
check is not made in the higher-dimensional models as the state is not readily apparent.  
In this case however, it is a useful example of the kind of checks than can be made to 
establish the load status of the material. 
 
Finally, the current yield stress, sigy , is calculated based on the initial yield stress 
(sigy0 ), the plastic slope (dsigdep ) and current equivalent plastic strain (pleq ). 
 

 
Code Block 6.2 

 
Code Block 6.3 checks for yielding – if the equivalent stress, qEl  is less than the 
current yield stress, sigy , fratio  takes a value below zero.  The IF  statement is then 

c *** calculate the trial stress and  
c     copy elastic moduli dsdeEl to material Jacobi an matrix 
      sigElp(1)   = stress(1) 
      dsdePl(1,1) = dsdeEl(1,1) 
      sigElp(1)   = sigElp(1) + dsdeEl(1,1) * dStra in(1) 
c *** sign of predicted stress 
      signTens = sign (ONE, sigElp(1)) 
c *** compute von-mises equivalent stress 
      qEl = abs(sigElp(1)) 
c *** compute current yield stress 
      sigy    = sigy0 + dsigdep * pleq 

      keycut   = 0 
      dsigdep  = ZERO  
      pleq_t   = statev(1) 
      pleq     = pleq_t 
c *** get Young's modulus and Poisson's ratio, init ial yield stress 
c       and others 
      young    = prop(1) 
      posn     = prop(2) 
      sigy0    = prop(3) 
c *** calculate plastic slope 
      dsigdep  = young*prop(4)/(young-prop(4)) 
      twoG     = young / (ONE+posn) 
c *** define tsstif(1) since it is used for calcula tion of 
hourglass stiffness 
      tsstif(1) = HALF * twoG 
c *** calculate elastic stiffness matrix  
c 
      dsdeEl(1,1)= young 
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satisfied, and the GO TO command instructs the execution point to jump ahead, skipping 
the plasticity-handling code.  If qEl  exceeds sigy  the reverse happens, and the 
plasticity code is executed.   
 

 
Code Block 6.3 

 
If the yield stress has been exceeded, and plasticity has been detected, Code Block 6.4 
is executed.  The yield stress from the start of the iteration is recorded as sigy_t , and 
the plastic strain increment (dpleq ) is found by dividing the difference in the current 
equivalent and yield stresses by Young's Modulus.  
 
The equivalent plastic strain (pleq ) is then incremented, and a new yield stress is 
calculated by adding the product of the plastic slope (dsigdep ) and increment plastic 
strain to the initial yield stress. 
 

 
Code Block 6.4 

 

 

Figure 6.1:  Estimation of Plastic Strain Increment, dpleq 

 
Code Block 6.5 increments the sole plastic strain component (epsPl(1) ) with dpleq  
(sign is determined by signTens ) and sets the value of stress.  As this is a one-
dimensional example the stresses and strains present have only one component, which 
each equal the equivalent value.  This is not so for the higher-dimensional cases, in 
which the components are calculated individually.  The sole stress component 
(stress(1) ) is then assigned the value of the final yield stress (sigy ) – this value is 
multiplied by signTens  as the yield stress is a scalar property. 
 

      sigy_t   = sigy 
c *** initial guess of incremental equivalent plast ic strain 
      dpleq    = (qEl - sigy) / young 
      pleq     = pleq_t + dpleq 
      sigy     = sigy0 + dsigdep * pleq 

E 
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l 

dpleq 

σ 

ε 

      fratio = qEl / sigy - ONE 
c *** check for yielding 
      IF (sigy .LE. ZERO.or.fratio .LE. -SMALL) GO TO 500 
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Code Block 6.5 

 
Code Block 6.6 uses pleq  (an internal variable) twice to define values to be returned to 
the main ANSYS programme  – once to set the value of statev(1)  (which is used to 
define pleq_t  in the following iteration) and secondly to set the value of epseq  (which 
the main ANSYS programme uses). 
 
It then estimates the plastic work increment, sedPl , using the trapezium rule (this gives 
an exact value for the linear plasticity model used by the supplied material), as 
demonstrated in Figure 6.2. 
 

 

Figure 6.2:  Estimation of Plastic Work Increment 

 
Finally the Jacobian matrix (the dsdePl  matrix) is calculated, for the plastic case. 
 

 
Code Block 6.6 

 

c ***  update plastic strains 
      epseq  = pleq 
c *** Update state variables 
      statev(1) = pleq 
      statev(2) = epsPl(1) 
c *** Update plastic work 
      sedPl = sedPl + HALF * (sigy_t + sigy) * dple q 
c 
c *** Material Jcobian matrix 
c 
      dsdePl(1,1) = dsdeEl(1,1) * dsigdep /(dsdeEl( 1,1) + dsigdep) 
c *** Allow a small number for Jcobian matrix if it  is an ideal 
c       plasticity 
      if(dsdePl(1,1).LE.ZERO) dsdePl(1,1) = SMALL*d sdeEl(1,1) 
c 
      goto 600 

c ***  update plastic strains, stresses 
      epsPl(1) = epsPl(1) + dpleq * signTens 
      stress(1) =  signTens * sigy 

si
gy

_t
 si
gy

 

dpleq 

σ 

ε 

Area = 0.5 *(sigy_t + sigy) * dpleq 
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Code Block 6.7 starts with a continue statement, which resumes the execution path 
following the goto statement in Code Block 6.3.  The single line of code given below 
copies the stresses determined by elastic analysis (sigElp ) into the stress  vector, 
which is output to the main programme.  (In the one-dimensional case shown only one 
stress component is present.) 
 

 
Code Block 6.7 

 
Code Block 6.8 is executed during both elastic and plastic behaviour (the continue 
statement resumes the plasticity code path, following the goto statement in Code Block 
6.6).  The elastic work (sedEl ) is calculated based on the area of a triangle 
(representing the area under the elastic loading ramp), using the stress and elastic strain 
present.  Finally, the last entry of the state variable, statev(nStatev) , is updated with 
the current value of the yield stress and the sub-routine ends. 
 

 
Code Block 6.8 

 
 

6.2.5. Modifications to Model A723 
 
The description of the modifications made to the USERMAT routine will be made in 
two sections; firstly, how the desired stress-strain behaviour was applied to the one-
dimensional variant of the material, usermat1d, and secondly, how these modifications 
were applied and adapted to usermat3d, material variant used for axi-symmetric and 
three-dimensional analyses.  This reflects the nature of the development work 
conducted on the material routine, and splits the description logically so that material 
representation issues and load cycle position are treated separately. 
 
The main difference between the supplied BISO material and the behaviour of A723 is 
the response to plastic strain; the BISO model retains the peak equivalent stress as the 
future yield strength, whereas A723 displays the Bauschinger effect and significant 
non-linearity in unloading dependant on the degree of plastic strain in loading. 
 
Indeed the isotropic property of the BISO material means that regardless of the 
configuration of the applied stress components the material retains equal yield strength, 

  600 continue 
c *** elastic strain energy 
      sedEl = HALF * stress(1) * (Strain(1)+dStrain (1)-epsPl(1)) 
c *** update state variables 
      statev(nStatev) = sigy 
c 
      return 
      end 

  500 continue 
 
c *** Update stress in case of elastic/unloading 
      stress(1) = sigElp(1) 
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whilst the Bauschinger effect means that A723 begins to yield at lower stress in 
compression following tensile plastic strain. 
 
The above makes it clear that to successfully simulate A723, the material model must 
be altered to record the peak plastic loading strain experienced.  Without this the 
characteristic plastic strain-dependent unloading profile, crucial for an accurate 
assessment of residual stresses, would not be achieved. 
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6.3. ONE-DIMENSIONAL MODEL 
 
As mentioned in sub-section 6.2.5, the one-dimensional model, usermat1d, was the first 
to be modified, to allow the material representation to be perfected without the 
complexities of multi-component stress-strain. 
 
Specifically, it is trivial to determine whether loading or unloading is occurring as 
strain increments are either positive (loading) or negative (unloading).  In addition to 
this, no equivalent values (stress or strain) need be calculated. 
 
The modifications to usermat1d were designed to allow it to be tested in simplistic 
tension-compression model, made up of a single link element.  Thus the load cycle 
would be kept simple allowing the position within the cycle to be determined via 
rudimentary checks. 
 

6.3.1. Overview of Modifications 
 
To adapt the supplied sub-routine to allow it to model the desired non-linear stress-
strain profile (given in Figure 5.2), a number of alterations were required.  The raison 
d’être for the alterations are detailed below. 
 
Specification of Material Constants 
Material-fit equations generally require additional parameters to be assigned for their 
proper evaluation.  These must either be supplied through the material definition, or 
“hard coded” into the sub-routine.  It was decided to hard code (specify values within 
the Fortran source code) any required parameters, given space limitations within the 
TBDATA variable and infrequent changes of material-fits. 
 
Initial Elasticity and Yield left unchanged 
No material models of relevance (especially not the A723 model used here) include 
anything other than linear elastic behaviour for non-deformed material, of constant 
Young’s Modulus and initial yield stress. 
 
Stresses during Initial Plasticity altered 
While the material models of interest generally prescribe a linear response to initial 
plasticity, the slopes are often case specific and given by a fit equation.  As such the 
sub-routine was altered to use such equations, and to use their derivatives as the uni-
axial plastic gradient (used to calculate dsigdep ). 
 
Values Retained at Peak Stress 
In order to track unloading of properties (stress and strain) from peak values, it was 
necessary to retain these peak values within the state variable.  In the one-dimensional 
case (usermat1d) only the peak plastic strain needed to be retained (hence the state 
variable is enlarged from three to four entries), with other values calculated from it.  



 

 125 

The extra values requiring retention for the three-dimensional case (usermat3d) are 
detailed in section 6.4.2. 
 
Detection of Unloading from Prior Plastic Strain 
Given the change in properties (Young’s Modulus and reverse yield stress) that occur 
following prior plastic strain, it is essential that unloading be detected and its presence 
declared to the relevant portions of code.  This is simply done for the one-dimensional 
case, and is done informally where needed.  The three-dimensional case required more 
formal treatment, including an unloading flag, to avoid excess repetition. 
 
Reverse Plasticity and Yield Stress altered 
When unloading is detected, both Young’s Modulus and the reverse yield stress are 
calculated, dependent on prior plastic strain. 
 
Non-Linearity during reverse Yielding 
Once the material is detected to have exceeded the reverse yield stress calculated at that 
point, non-linear unloading commences in accordance with the material-fit equations. 
 
 

6.3.2. Narration of Modifications 
 
The modifications made to the one-dimensional case, usermat1d, the reasons for which 
are given in sub-section 6.3.1, are presented below in the order they appear in the code. 
 
The first additional task that must be conducted is reading the value of maximum 
tensile plastic strain in from the state variable.  This is achieved by the contents of Code 
Block 6.9, which is placed after the line assigning a value to pleq  in Code Block 6.1, 
which reads the value into the local variable tensepeq .  The value is returned to the 
state variable by Code Block 6.15 (the description for which explains the assignment of 
values to the different entries within the state variable). 
 

 
Code Block 6.9 

 
An additional array, MatParms , is added to the list of those defined during the 
initialisation portion of the sub-routine.  Its four entries are used to contain the material-
fit constants (a, c and d), and γ once unloading commences.  Code Block 6.10 assigns 
the values of a, c and d. 
 

 
Code Block 6.10 

 

      MatParms(1) = 0.d0 
      MatParms(2) = 0.d0 
      MatParms(3) = 0.013d0 

      Tensepeq = statev(3)  
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It is then necessary to determine whether the material is unloading, and if so 
conditionally set or modify values.  This is easily achieved in the one-dimensional 
tension-compression case investigated here – given prior plastic strain, the sign of the 
strain increment (dStrain ) defines whether loading or unloading is occurring.  (It was 
recognised that this is not a rigorous check, but was satisfactory for the limited scope in 
which the usermat1d sub-routine was used.) 
 
Code Block 6.11 checks for unloading; if detected the relevant variables, listed below, 
are altered appropriately, dependant on the degree of tensile plastic strain experienced. 
 

• Young’s Modulus (young ), 
• Bauschinger effect Factor (BEF), 
• γ (MatParms(4) ), 
• Maximum Equivalent Stress (MaxEqSig ) – used for calculating the amount of 

elastic unloading strain, 
• Reverse Elastic Strain (RevElStrn ), used to determine reverse plastic strain, 
• Initial Reverse Equivalent Plastic Strain (Revpleq_t ). 

 
Figure 6.3 helps explain these terms. 
 

 

Figure 6.3:  Strains in Unloading 

 
As well as the calculations made, the final line within the IF structure checks to ensure 
Revpleq_t  does not assume a negative value, which would be nonsensical in terms of 
the material representation. 
 

ε 
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Revpleq  
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σ 

–BEF* sigy0  
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Code Block 6.11 

 
Code Block 6.12 checks for loading/unloading by inspecting both the total strain 
increment and tension-compression status; this means that the tensile yield stress is 
retained while unloading down the line 2-3 until the stress becomes compressive.  In 
addition, initial and final yield stresses (sigy_t  and sigy , respectively) are calculated 
directly using the material-fit equations and initial and final plastic strains, not the 
plastic slope, dsigdep .  This means that dsigdep  (now calculated in Code Block 6.14) 
is only required when calculating the Jacobian matrix. 
 

 
Code Block 6.12 

 
Code Block 6.13 then calculates the incremented reverse equivalent plastic strain, and 
ensures it is positive, in the same way the initial value was obtained. 
 

 
Code Block 6.13 

 
Code Block 6.14 again checks for loading/unloading and calculates the incremented 
yield stress, in the same way that the initial yield stress is calculated in Code Block 
6.12.  The Stress  array, due to be passed back to the main ANSYS programme at the 
end of the current pass through the material sub-routine, is then updated.  Finally the 
plastic modulus, dsigdep , is calculated as the gradient between the initial and final 
yield stresses. 
 
During reverse yielding, this will slightly over-estimate the actual gradient that will be 
encountered during the following iteration as the gradient of A723 reduces as reverse 
plastic strain increases.  However, given the prescribed displacement that will be 
applied to the one-dimensional test model (which means the strain increment, dStrain , 

      IF (dStrain(1) .GT. ZERO .and. signTens .GT. ZERO) THEN 
        sigy_t = sigy0 * (ONE + MatParms(1) * DTANH (MatParms(2) *  
     &   pleq_t) + MatParms(3) * pleq_t * 1.d2) 
      ELSE IF (dStrain(1) .LT. ZERO .and. signTens .LT. ZERO) THEN 
        sigy_t = sigy0 * ((ONE+MatParms(1)-BEF) * D TANH 
     &  (MatParms(4)*Revpleq_t*1.d2) + BEF + MatPar ms(3)*Revpleq_t) 
      END IF 

      IF (dStrain(1) .LT. ZERO) Revpleq = Revpleq_t -dStrain(1) 
      IF (Revpleq    .LT. ZERO) Revpleq = ZERO 

      IF (dStrain(1) .LT. ZERO .and. Tensepeq .GT. ZERO) THEN 
        young = prop(1) * (ONE - 0.15d0*DTANH(1.2d0 *Tensepeq*1.d2)) 
        IF (Tensepeq .GE. 0.01d0) BEF = 0.17d0 
        IF (Tensepeq .LT. 0.01d0) BEF = 0.1684d0 * 
     &    (DTAN(ONE - Tensepeq*1.d2))**3.6d0 + 0.17 d0 
        MatParms(4) = 1.2858d0 * (Tensepeq*1.d2) **  -0.323d0 
        MaxEqSig = sigy0 * (ONE + MatParms(1) * DTA NH 
     &    (MatParms(2) * Tensepeq) + MatParms(3) * Tensepeq * 1.d2) 
        RevElStrn = (MaxEqSig + BEF*sigy0)/young 
        Revpleq_t = (Tensepeq+sigy0/prop(1) - RevEl Strn) - Strain(1)  
        IF (Revpleq_t .LT. ZERO) Revpleq_t = ZERO 
      END IF 
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is calculated directly from the applied displacement), the precise value of the slope is 
not important.  However, usermat3d will need to include an accurate means of 
predicting the required slope for the next iteration as the applied loads are not 
displacement based. 
 

 
Code Block 6.14 

 
The final alteration, as shown in Code Block 6.15, updates the maximum tensile plastic 
strain for the integration point if the current value exceeds that stored in the state 
variable.  The state variable is enlarged by the APDL code that assigns the custom 
material to the ANSYS model – the original size of the state variable for the one-
dimensional version of the USERMAT sub-routine is three entries, and this was 
increased to four to store the maximum tensile plastic strain. 
 
For this and higher dimensional variants of the sub-routine, it was decided not to store 
the maximum tensile plastic strain as the final value in the array, as the modified yield 
stress (sigy ) is always stored as such, and accessed using statev(nStatev) .   Instead, 
it was stored between the plastic strain vector and the yield stress value. 
 

 
Code Block 6.15 

 
Following the modifications detailed above, usermat1d.f was compiled and linked with 
ANSYS, which was then ready to be used in the test model.  
 
The changes described above were made incrementally, to allow different portions to 
be developed separately and errors to be identified quickly – the stages are given 
below: 
 

1. The supplied bi-linear material was altered and its responses to them observed, 
2. The initial tensile behaviour was programmed to model that of A723 in loading, 
3. The initial tensile behaviour was programmed to model that of A723 in 

unloading from initial tensile plastic strain, 
4. Loading and unloading behaviours were combined, creating the code described 

above. 
 
 

      IF (dStrain(1) .GT. ZERO .and. signTens .GT. ZERO) THEN 
        sigy = sigy0 * (ONE + MatParms(1) * DTANH(M atParms(2) *  
          pleq) 
     &   + MatParms(3) * pleq * 1.d2) 
      ELSE IF (dStrain(1) .LT. ZERO .and. signTens .LT. ZERO) THEN 
        sigy = sigy0 * ((ONE+MatParms(1)-BEF) * DTA NH 
     &  (MatParms(4)*Revpleq*1.d2) + BEF + MatParms (3)*Revpleq) 
      END IF 
      d sigdep   = (sigy -  sigy_t)/dpleq  

      IF (pleq .GT. statev(3)) statev(3) = pleq  
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6.3.3. ANSYS Test Model 
 
As described at the beginning of section 6.3, as simple tension-compression model was 
required to test the customised usermat1d sub-routine.  To do so, a model consisting of 
a single LINK180 element was created, one end of which was fully constrained while 
the other was displaced along the axis of the element.  This is shown in Figure 6.4. 
 

 

Figure 6.4:  Uni-Axial Test Model 

 
The above model was first progressively loaded in tension to a maximum value 
(sufficient to cause plastic deformation), and then progressively unloaded from this 
maximum value.  At each increment the stress-strain state in the element was recorded 
into a table, from which the results could easily be compared and plotted against those 
calculated from the material-fit equations. 
 
These procedures were scripted and automated using APDL to reduce the time taken 
for requisite stages to be completed; this allowed a range of maximum strains and 
material parameters to be tested, to further verify the model. 
 
 

6.3.4. Results 
 
Figure 6.5 plots the results obtained from the model, detailed in sub-section 6.3.3, using 
the custom material.  The link element was extended such that the total strain equalled 
several multiples (1.5, 2, 2.5 and 3) of the yield strain, εY, and material parameters were 
as specified. 
 
The results from ANSYS are plotted against those obtained directly from the material-
fit equations, for the same conditions. 
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Figure 6.5:  Tensile-Compressive Profiles, usermat1d 

 

6.3.5. Summary of One-Dimensional Material 
 
The results from the ANSYS custom material, presented in Figure 6.5, show excellent 
agreement when compared against those from the material-fit equations, across a range 
of maximum initial strains.  In additional, results were compared across a range of 
variations of material parameters (a, c and d), which all showed equally close matching 
(results are omitted for brevity). 
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6.4. THREE-DIMENSIONAL MODEL FOR AUTOFRETTAGE 

SIMULATION  
 
Once the one-dimensional model had been adapted and verified, the three-dimensional 
model became the focus for development.  This section first describes the extra 
complexity required to model multi-component stress-strain, and then the additional 
modifications made to the source code to achieve the desired material behaviour. 
 

6.4.1. Differences between the one- and three-dimensional 
models 
 
To calculate initial elastic stresses, the sub-routine uses the stiffness matrix, K , to 
calculate the stress increments from the strain increments.  This is from Hooke’s Law, 
and is given by Equation (6.1): 
 
 { } [ ]{ }εσ K=  (6.1) 
 
Fully expanded to the six component (three direct, three shear) case, the above becomes 
that given in Equation (6.2) – the form used by the material sub-routine: 
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Standard elastic relationships, given in Equations (6.3) and (6.4), are used to determine 
the two Lamé constants: 
 

 ( )( )νν
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 (6.4) 

 
The following, in Code Block 6.16, is used to populate the elastic stiffness matrix, 
dsdeEl .  G is a small mask vector (not shear modulus), the first three values (G(1)  to 
G(3) ) equalling one, the last three equalling zero.  The DO loops at the end exploit the 
diagonal symmetry of the matrix to save calculation time by mirroring 16 of the values 
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over into the opposite corner.  The mask vector is used solely to allow the calculations 
to be encoded more succinctly. 
 
When used in Plane Strain and Axi-Symmetric cases only four strain components exist 
(three direct, one shear); accordingly the upper left 4x4 block of matrix values are used.  
In the full three-dimensional case, the entire 6x6 matrix is used as six strain 
components are present (three direct, three shear). 
 

 
Code Block 6.16 

 
Next, the plastic stiffness matrix is created using the values from the elastic stiffness 
matrix as the first value; as in the one-dimensional case, dsdePl  is output to the main 
programme as the Jacobian matrix, so unless plasticity occurs this equals K .  At the 
same time, the elastic component trial stresses (sigElp ) are incremented, in accordance 
with the standard method of evaluating matrices. 
 

 
Code Block 6.17 

 
Code Block 6.18 calculates the hydrostatic stress, and hence obtains the deviatoric 
stresses, sigDev , from which the equivalent stress, qEl , is determined. 
 

      dsdeEl(1,1)=(elast1+TWO*elast2)*G(1)*G(1) 
      dsdeEl(1,2)=elast1*G(1)*G(2)+elast2*TWO*G(4)* G(4) 
      dsdeEl(1,3)=elast1*G(1)*G(3)+elast2*TWO*G(5)* G(5) 
      dsdeEl(1,4)=elast1*G(1)*G(4)+elast2*TWO*G(1)* G(4) 
      dsdeEl(1,5)=elast1*G(1)*G(5)+elast2*TWO*G(1)* G(5) 
      dsdeEl(1,6)=elast1*G(1)*G(6)+elast2*TWO*G(4)* G(5) 
      dsdeEl(2,2)=(elast1+TWO*elast2)*G(2)*G(2) 
      dsdeEl(2,3)=elast1*G(2)*G(3)+elast2*TWO*G(6)* G(6) 
      dsdeEl(2,4)=elast1*G(2)*G(4)+elast2*TWO*G(1)* G(4) 
      dsdeEl(2,5)=elast1*G(2)*G(5)+elast2*TWO*G(1)* G(5) 
      dsdeEl(2,6)=elast1*G(2)*G(6)+elast2*TWO*G(2)* G(6) 
      dsdeEl(3,3)=(elast1+TWO*elast2)*G(3)*G(3) 
      dsdeEl(3,4)=elast1*G(3)*G(4)+elast2*TWO*G(5)* G(6) 
      dsdeEl(3,5)=elast1*G(3)*G(5)+elast2*TWO*G(5)* G(3) 
      dsdeEl(3,6)=elast1*G(3)*G(6)+elast2*TWO*G(6)* G(3) 
      dsdeEl(4,4)=elast1*G(4)*G(4)+elast2*(G(1)*G(2 )+G(4)*G(4)) 
      dsdeEl(4,5)=elast1*G(4)*G(5)+elast2*(G(1)*G(6 )+G(5)*G(4)) 
      dsdeEl(4,6)=elast1*G(4)*G(6)+elast2*(G(4)*G(6 )+G(5)*G(2)) 
      dsdeEl(5,5)=elast1*G(5)*G(5)+elast2*(G(1)*G(3 )+G(5)*G(5)) 
      dsdeEl(5,6)=elast1*G(5)*G(6)+elast2*(G(4)*G(3 )+G(5)*G(6)) 
      dsdeEl(6,6)=elast1*G(6)*G(6)+elast2*(G(2)*G(3 )+G(6)*G(6)) 
      do i=1,ncomp-1 
        do j=i+1,ncomp 
          dsdeEl(j,i)=dsdeEl(i,j) 
        end do 
      end do 

      do i=1,ncomp 
         sigElp(i) = stress(i) 
         do j=1,ncomp 
            dsdePl(j,i) = dsdeEl(j,i) 
            sigElp(i) = sigElp(i)+dsdeEl(j,i)*dStra in(j) 
         end do 
      end do 
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Code Block 6.18 

 
None of the above procedures was altered – as in the one-dimensional case, the altered 
elastic stiffness following plasticity is achieved by modifying Young’s Modulus (and 
any other elastic values derived from it) before being entered into the procedures.  Thus 
suitable stress increments may be calculated. 
 
In overview, Code Block 6.19 calculates the increment in plastic strain (dpleq ), then 
the incremented plastic strain, pleq , and resultant equivalent stress magnitude (based 
on linear hardening), sigy .  It then updates the vectors of stress components, stress , 
and plastic strain components, epsPl , which are output to ANSYS. 
 

 
Code Block 6.19 

 
The flow rule is used to calculate the stress and strain increments – as the stress 
function used is also the yield function, this then becomes the associative flow rule 

c *** hydrostatic pressure stress 
      pEl = -THIRD * (sigElp(1) + sigElp(2) + sigEl p(3)) 
c *** compute the deviatoric stress tensor 
      sigDev(1) = sigElp(1) + pEl 
      sigDev(2) = sigElp(2) + pEl 
      sigDev(3) = sigElp(3) + pEl 
      sigDev(4) = sigElp(4) 
      sigDev(5) = sigElp(5) 
      sigDev(6) = sigElp(6) 
c *** compute von-mises stress 
      qEl =  
     &  sigDev(1) * sigDev(1)+sigDev(2) * sigDev(2) + 
     &  sigDev(3) * sigDev(3)+ 
     &  TWO*(sigDev(4) * sigDev(4)+ sigDev(5) * sig Dev(5)+  
     &  sigDev(6) * sigDev(6)) 
      qEl = sqrt( ONEHALF * qEl) 

c *** compute derivative of the yield function 
      DO i=1, ncomp 
         dfds(i) = threeOv2qEl * sigDev(i) 
      END DO 
      oneOv3G  = ONE / threeG 
      qElOv3G  = qEl * oneOv3G 
c *** initial guess of incremental equivalent plast ic strain 
      dpleq    = qElOv3G - sigy * oneOv3G 
      pleq     = pleq_t + dpleq 
      sigy     = sigy0 + dsigdep * pleq 
c 
c ***  update stresses 
      DO i = 1 , ncomp 
         stress(i) =  sigElp(i) - TWOTHIRD * (qEl-s igy) * dfds(i) 
      END DO 
c 
c ***  update plastic strains 
      DO i = 1 , nDirect 
         epsPl(i) = epsPl(i) + dfds(i) * dpleq 
      END DO 
      DO i = nDirect + 1 , ncomp 
         epsPl(i) = epsPl(i) + TWO * dfds(i) * dple q 
      END DO 
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(meaning plastic strains occur in the direction of the normal to the yield surface [31).  
The different components of the partial derivative are stored within the dfds  vector.   
 
Equation (6.5) shows the general form of the associative flow rule [32]: 
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ANSYS employs the discrete form, such that small increments of plastic strain are 
used, rather than derivatives, as shown in Equation (6.6): 
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dfds  corresponds with the partial derivative of f, the plasticity criterion function (which 
defines the yield surface, f = 0), and dpleq  to ∆εeq

p, the multiplier of time-independent 
plasticity. 
 
Code Block 6.20 then stores the equivalent (pleq ) and component (epsPl(i) ) plastic 
strain values in the state variable, and increments the plastic work, sedPl . 
 

 

Code Block 6.20 

 
Code Block 6.21 calculates the current plastic Jacobian matrix, dsdePl . 

c *** Update state variables 
      statev(1) = pleq 
      do i=1,ncomp 
         statev(i+1) = epsPl(i) 
      end do 
c *** Update plastic work 
      sedPl = sedPl + HALF * (sigy_t+sigy)*dpleq 
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Code Block 6.21 

 
Code Block 6.22 copies the elastic trial stresses to the output stress vector if no plastic 
deformation occurred during the current iteration. 
 

 

Code Block 6.22 

 
Code Block 6.23 iterates through each component present to calculate the current 
elastic work, sedEl , stores the current yield stress, sigy , in the state variable, then exits 
the sub-routine. 

c *** Material Jcobian matrix 
c 
      IF (qEl.LT.sqTiny) THEN 
         con1 = ZERO 
      ELSE 
         con1 = threeG * dpleq / qEl 
      END IF 
      con2 = threeG/(threeG+dsigdep) - con1 
      con2 = TWOTHIRD * con2 
      DO i=1,ncomp 
         DO j=1,ncomp 
            JM(j,i) = ZERO 
         END DO 
      END DO 
      DO i=1,nDirect 
         DO j=1,nDirect 
            JM(i,j) = -THIRD 
         END DO 
         JM(i,i) = JM(i,i) + ONE 
      END DO 
      DO i=nDirect + 1,ncomp 
         JM(i,i) = HALF 
      END DO 
      DO i=1,ncomp 
         DO j=1,ncomp 
            dsdePl(i,j) =    dsdeEl(i,j) - twoG 
     &           * (  con2 * dfds(i) * dfds(j) + co n1 * JM(i,j) ) 
         END DO 
      END DO 
c 
      goto 600 

  500 continue 
 
c *** Update stress in case of elastic/unloading 
      do i=1,ncomp 
         stress(i) = sigElp(i) 
      end do 
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Code Block 6.23 

 

6.4.2. Modifications made to the three-dimensional model 
 
Having successfully created a one-dimensional material model of the gun steel A723, 
the main tasks necessary to formulate a three-dimensional version were: 
 

1. Develop more robust loading/unloading detection 
2. Introduce the use of equivalent stresses and strains 
3. Add in automatic selection of behaviour when employed in plane strain/axi-

symmetric and three-dimensional cases. 
 
The most important of the above tasks is detection of loading/unloading.  To 
accomplish this reliably and succinctly, once unloading for a given integration point is 
detected, the decision (see Code Block 6.26) is stored as a flag within the state variable.  
Within the sub-routine, the value was assigned the name UnldFlag  (unloading flag). 
 
To properly determine the current stress-strain state when multiple components are 
present, equivalent values must be used.  In addition to this, a separate set of unloading 
variables must be maintained, just as the reverse plastic strain (Revpleq ) was in 
usermat1d.  The retained values were: 
 

1. Peak (total) component strains, 
2. Peak component stresses, 
3. Reverse component stresses, 
4. Reverse (plastic) component strains. 

 
A summary of the calculation process used is given below, which is followed by a 
more detailed explanation interspersed with the source code that achieves the described 
features. 
 
The peak stresses and strains were stored to allow reverse values to be calculated as the 
material contracts.  Specifically, the current (total) reverse strains are calculated; from 
these reverse strain increments, reverse elastic trial stresses are incremented (as in the 
“forwards” case). 
 
These reverse elastic trial stresses are then assessed against the reverse yield stress, σMax 
+ β*σY0; as in the forwards case, an extra stage of plasticity calculations are conducted 

  600 continue 
      sedEl = ZERO 
      DO i = 1, ncomp 
        sedEl = sedEl + stress(i)*(Strain(i)+dStrai n(i)-epsPl(i)) 
      END DO 
      sedEl = sedEl * HALF 
      statev(nStatev) = sigy 
c 
      return 
      end 
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if the reverse yield stress is exceeded, otherwise the elastic stress components are taken 
as the final reverse stress components for that iteration.  The final reverse stress 
components are then subtracted from the peak component stresses to determine the 
final values of the “forward” stress components for that iteration. 
 
Code Block 6.24 handles reading in the values of both Tensepeq  and UnldFlag  from 
the state variable at the start of each pass through the sub-routine.  In addition, several 
other values are read in from the state variable and/or calculated from other parameters: 
peak total strain is read into PeakStrn , peak stress is read into PeakStress , reverse 
stresses are read into RevStress , reverse strains and strain increments are calculated 
and stored in RevStrain  and dRevStrain , respectively. 
 
The initial reverse yield stress, Revsigy_t , is also read in from the state variable, the 
value of which is also used as the incremented reverse yield stress, Revsigy . 
 
As different numbers of components are present in the three-dimensional and axi-
symmetric/plane strain cases, statev  varied in size to accommodate this.  Thus, it was 
important to ensure references to statev  reflected its variable size, and hence were 
relative and/or procedural; for example, UnldFlag  and Tensepeq are respectively 
third and second from last, and are referenced relative to the last entry.  Finally, the 
initial reverse plastic strain, Revpleq_t , is calculated. 
 

 
Code Block 6.24 

 
Following the extra code used to read in values, the first addition, given in Code Block 
6.25, to usermat3d was the calculation of a set of equivalent total strain values.  The 
peak value (MaxTotStrn ), the initial value (qStrn_t ) and incremented value (qStrn ) 
for the current iteration (based on the Strain  array and the element-by-element sum of 
the Strain  and dStrain  arrays, respectively).  The calculations are conducted in three 
stages to allow for the variable number of shear components that may be present. 
 
Finally, the maximum stress at the integration point experienced in loading (MaxEqSig ) 
is calculated, by substituting the value of maximum plastic strain in loading (Tensepeq ) 
into the material-fit equation (see sub-section 5.1.1).  This peak stress value is used 
when calculating the reverse yield stress.  
 

      pleq_t   = statev(1) 
      pleq     = pleq_t 
      DO i = 1, ncomp 
        PeakStrn(i)   = statev(i + (ncomp+1)) 
        PeakStress(i) = statev(i + (2*ncomp+1)) 
        RevStress(i)  = statev(i + (3*ncomp+1)) 
        RevStrain(i)  = Strain(i) - PeakStrn(i) 
        dRevStrain(i) = -dStrain(i) 
      END DO 
      Revsigy_t = statev(nstatev-3) 
      Revsigy   = Revsigy_t 
      UnldFlag  = statev(nstatev-2) 
      Tensepeq  = statev(nstatev-1) 
      Revpleq_t = Tensepeq - pleq_t 
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Code Block 6.25 

 
Code Block 6.26 conditionally sets the unloading flag, UnldFlag , to indicate to 
following code that the material is unloading from prior plastic strain (determined by 
the outer IF  statement), using the tolerance value UnldFact  to help prevent false 
positives of unloading detection. 
 
Given the potential for a more complex load cycle it was important that the code be 
able to cope with small drops in equivalent strain before peak strain is reached, and 
small increases in strain during unloading from peak strain.  The IF  statements in Code 
Block 6.26 ensure that once equivalent strain drops below the peak value encountered, 
and only resumes loading (by setting UnldFlag  to zero) if strain exceeds the previous 
maximum. 
 
Using a numerical value for the unloading flag allows for convenient future expansion, 
through the addition of extra material states.  This would be material dependent, but 
could allow ratchetting or re-autofrettage to be investigated. 
 

 
Code Block 6.26 

 
If unloading is detected, Code Block 6.27 calculates the requisite values for subsequent 
unloading stress calculations: Young’s Modulus (young ), multiples of the shear 
modulus (twoG and threeG ), the Bauschinger Effect Factor (BEF) and gamma (stored in 
MatParms(4) ).  In addition to these, the initial value of reverse yield stress 
(Revsigy_t ) is calculated if the current iteration is the first in which unloading follows 
loading (this means that if unloading is briefly detected during loading, Revsigy_t  will 

      MaxTotStrn = (PeakStrn(1)-PeakStrn(2))**2 
     &+ (PeakStrn(2)-PeakStrn(3))**2 + (PeakStrn(3) -PeakStrn(1))**2 
 
      qStrn_t = (Strain(1)-Strain(2))**2 + (Strain( 2)-Strain(3))**2 
     &   + (Strain(3)-Strain(1))**2 
      
      qStrn = ((Strain(1)+dStrain(1))-(Strain(2)+dS train(2)))**2 
     &   +      ((Strain(2)+dStrain(2))-(Strain(3)+ dStrain(3)))**2 
     &   +      ((Strain(3)+dStrain(3))-(Strain(1)+ dStrain(1)))**2 
      
      DO i = 4, ncomp 
        MaxTotStrn = MaxTotStrn + 1.5d0*PeakStrn(i) **2 
        qStrn_t = qStrn_t + 1.5d0*Strain(i)**2 
        qStrn = qStrn + 1.5d0*(Strain(i)+dStrain(i) )**2 
      END DO 
       
      MaxTotStrn = DSQRT(MaxTotStrn) / (DSQRT(TWO)* (ONE+posn_eff)) 
      qStrn_t = DSQRT(qStrn_t) / (DSQRT(TWO)*(ONE+p osn_eff)) 
      qStrn = DSQRT(qStrn) / (DSQRT(TWO)*(ONE+posn_ eff)) 
 
      MaxEqSig  = sigy0 * (ONE + MatParms(1) * DTAN H 
     &(MatParms(2) * Tensepeq) + MatParms(3) * Tens epeq * 1.d2) 

      IF (Tensepeq .GT. ZERO) THEN 
        IF (qStrn .LT. qStrn_t) UnldFlag = ONE 
        IF (qStrn .GT. MaxTotStrn) UnldFlag = ZERO 
      END IF  
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be correctly recalculated when unloading restarts – reflecting the true peak stress during 
loading).  For any case other than initial unloading, Revsigy_t  is read in from the state 
variable by Code Block 6.24. 
 

 
Code Block 6.27 

 
The elastic stiffness matrix, dsdeEl , is then calculated (as described in Code Block 
6.16) which means that it reflects the value of the elastic constants whether in loading 
or unloading.  The value of the elastic stress increments is then calculated, as given in 
Code Block 6.17, which is followed by a conditional GOTO command (Code Block 
6.28) that jumps to the elastic unloading segment (at execution point 400) if UnldFlag  
equals one. 
 

 

Code Block 6.28 

 
If unloading is not present, and the above GOTO is not followed, the elastic loading path 
is followed.  This is unchanged, apart from writing the elastic stresses to the stress  
vector (which is later written to the state variable) when behaviour remains elastic (it 
was previous done at execution point 500). 
 
If unloading is detected, an equivalent set of calculations is made for a set of dummy 
“reverse” variables, as would be made for the “forward” variables.  This is 
accomplished by Code Block 6.29. 

      IF (UnldFlag .EQ. ONE) THEN 
        young = prop(1) * (ONE - 0.15d0*DTANH(1.2d0 *Tensepeq*1.d2)) 
        twoG    = young / (ONE+posn) 
        threeG  = ONEHALF * twoG 
        IF (Tensepeq .LT. 1.d-2) BEF = 0.1684d0 * 
     &   (DTAN(ONE - Tensepeq*1.d2))**3.6d0 + 0.17d 0 
        IF (Tensepeq .GE. 1.d-2) BEF = 0.17d0 
        IF (statev(nstatev-2) .EQ. ZERO .and. UnldF lag .EQ. ONE) 
     & THEN 
          Revsigy_t = MaxEqSig + BEF*sigy0 
          Revsigy = Revsigy_t 
        END IF 
        MatParms(4) = 1.2858d0 * (Tensepeq*1.d2) **  -0.323d0 
      END IF 

      IF (UnldFlag .EQ. ONE) GOTO 400  
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Code Block 6.29 

 
As in the “forward” case, yielding is determined by the ratio of the equivalent stress to 
the current yield stress.  In this “reverse” case, Revfratio  is the name assigned to the 
variable.  If no reverse yielding is detected (Revfratio  is zero or less), Code Block 
6.30 assigns the elastic reverse stress components as the final reverse stress components 
for the iteration, subtracts these values from the peak component stresses to find the 
current “forward” values, and stores the reverse stresses in the state variable.  Finally it 
jumps to execution point 600.  If yield is detected, execution jumps to the reverse 
plasticity section (440). 
 

 

Code Block 6.30 

 
As in the elastic case described above, the plasticity code comprises two paths: loading 
and unloading.  A plasticity path is followed if its respective elastic precursor 
calculated a trial stress that exceeded the current yield stress. 
 

      DO i=1,ncomp 
        RevsigElp(i) = RevStress(i) 
        DO j=1,ncomp 
          dsdePl(j,i) = dsdeEl(j,i) 
          RevsigElp(i) = RevsigElp(i) + dsdeEl(j,i) *dRevStrain(j) 
        END DO 
      END DO 
c *** Reverse hydrostatic pressure stress 
      RevpEl = -THIRD * (RevsigElp(1) + RevsigElp(2 ) +  
     &  RevsigElp(3)) 
c *** compute the reverse deviatoric stress tensor 
      DO i=1,nDirect 
        RevsigDev(i) = RevsigElp(i) + RevpEl 
      END DO 
      DO i=nDirect+1,ncomp 
        RevsigDev(i) = RevsigElp(i) 
      END DO 
 
      RevqEl = ((RevsigElp(1)-RevsigElp(2))**2 +  
     & (RevsigElp(2)-RevsigElp(3))**2 +  
     & (RevsigElp(3)-RevsigElp(1))**2)/TWO +  
     & 3*(RevsigElp(4)**2 + RevsigElp(5)**2 + Revsi gElp(6)**2) 
      RevqEl = DSQRT(RevqEl) 
 
      Revfratio = RevqEl/Revsigy_t - ONE 
      IF (RevqEl .EQ. ZERO) Revfratio = ZERO 

      IF (Revsigy_t .LE. ZERO .or. Revfratio .LE. - SMALL) THEN 
        DO i = 1, ncomp 
          RevStress(i) = RevsigElp(i) 
          stress(i) =  PeakStress(i) - RevStress(i)  
          statev(i + (3*ncomp+1)) = RevStress(i) 
        END DO 
        GOTO 600 
      END IF 
  
      GOTO 440 
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The plastic case in loading was altered little from that supplied with the bi-linear 
isotropic material.  Specifically, the incremented yield stress (sigy ) calculation was 
changed to match that given by the material-fit, and the uni-axial plastic modulus (here 
named TM_UniAx ) is calculated as the derivative of the material-fit equation.  These are 
summarised by Code Block 6.31. 
 

 

Code Block 6.31 

 
The plastic case in unloading was, like the elastic case in unloading, a new addition that 
was based on the structure supplied with the isotropic case.  Code Block 6.32 lists the 
code which computes the values for the dummy “reverse” variables – from calculation 
of reverse plastic strain increment (dRevpleq ) and new reverse yield stress (Revsigy ), 
to updating the reverse stress (RevStress(i) ) and plastic strain (RevepsPl(i) ) 
components. 
 

 

Code Block 6.32 

 
Once the “reverse” variables are calculated, the “forward” variables are determined 
using them, as shown in Code Block 6.33.  The variables used are the same as those in 
the supplied material, with the exception of the additional values (reverse stress 

      sigy = sigy0 * (ONE + MatParms(1)*DTANH(MatPa rms(2)*pleq) 
     & + MatParms(3) * pleq * 1.d2) 
 
      TM_UniAx = sigy0*MatParms(3)*100.d0 

      threeOv2RevqEl = ONEHALF / RevqEl 
 
c *** compute derivative of the reverse yield funct ion 
      DO i = 1, ncomp 
        Revdfds(i) = threeOv2RevqEl * RevsigDev(i) 
      END DO 
      oneOv3G  = ONE / threeG 
 
c *** initial guess of incremental equivalent plast ic strain    
      dRevpleq = (RevqEl - Revsigy_t) * oneOv3G 
      Revpleq  = Revpleq_t + dRevpleq 
      Revsigy = MaxEqSig + sigy0 * ((ONE+MatParms(1 )-BEF) * DTANH 
     & (MatParms(4)*Revpleq*1.d2) + BEF + MatParms( 3)*Revpleq*1.d2) 
 
c ***  update reverse stresses 
      DO i = 1, ncomp 
        RevStress(i) = RevsigElp(i) -  
     &   TWOTHIRD * (RevqEl-Revsigy) * Revdfds(i) 
      END DO 
 
c ***  update reverse plastic strains 
      DO i = 1, nDirect 
        RevepsPl(i) = RevepsPl(i) + Revdfds(i) * dR evpleq 
      END DO 
      DO i = nDirect+1, ncomp 
        RevepsPl(i) = RevepsPl(i) + TWO * Revdfds(i ) * dRevpleq 
      END DO 
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components, Revstress(i) , and reverse plastic strain components, RevepsPl(i) ) 
written to the state variable array by the final DO loop. 
 

 

Code Block 6.33 

 
Once the “forward” values are determined, the plastic work and Jacobian matrix are 
calculated – the latter to give ANSYS a hint for when it formulates the conditions for 
the next iteration. 
 
Given the non-linear behaviour that is simulated in unloading, formulating the “hint” is 
not straight forwards without knowing the strain increment for the following iteration.  
As the strain increment is determined in some part by the Jacobian matrix output by the 
material routine, and not knowing the precise method by which ANSYS formulates the 
strain increment, it is impossible to explicitly calculate an exact Jacobian matrix. 

c *** update equivalent plastic strain    
      dpleq   = -dRevpleq 
      pleq    = Tensepeq - Revpleq 
c *** compute derivative of the yield function 
      DO i = 1, ncomp 
        dfds(i) = -Revdfds(i) 
      END DO 
c *** update actual stresses 
      DO i = 1, ncomp 
        stress(i) =  PeakStress(i) - RevStress(i) 
      END DO 
c *** update actual plastic strains 
      DO i = 1 , nDirect 
        epsPl(i) = epsPl(i) + dfds(i) * dpleq 
      END DO 
      DO i = nDirect + 1, ncomp 
c *** BEGIN MODIFICATION 009.08 
        epsPl(i) = epsPl(i) + TWO * dfds(i) * dpleq  
      END DO 
      epseq  = pleq 
c *** Update state variables 
      statev(1) = pleq 
      DO i = 1, ncomp 
        statev(i+1) = epsPl(i) 
        statev(i + (3*ncomp+1)) = RevStress(i) 
        statev(i + (4*ncomp+1)) = RevepsPl(i) 
      END DO 
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Code Block 6.34 

 
Once the stress calculations have been made (be they in loading or unloading, elastic or 
plastic), the final section of the sub-routine is run.  This is mostly unaltered from the 
supplied code, aside from the extra values that are written to the state variable array; 
Code Block 6.35 details how this is accomplished.  The values are: peak total 
component strain (if the incremented equivalent strain exceeded the previous 
maximum), reverse yield stress, unloading flag and peak tensile plastic strain. 
 

 

Code Block 6.35 

 
 

c *** Update plastic work 
      sedPl = sedPl + HALF * (Revsigy_t+Revsigy)*dR evpleq 
c *** Estimate plastic slope for next iteration 
      dsigdep = (Revsigy - Revsigy_t)*0.75d0/dRevpl eq 
c *** Material Jacobian matrix 
      IF (RevqEl.LT.sqTiny) THEN 
        con1 = ZERO 
      ELSE 
        con1 = threeG * dRevpleq / RevqEl 
      END IF 
      con2 = TWOTHIRD * (threeG/(threeG+dsigdep) - con1)  
      DO i=1,ncomp 
        DO j=1,ncomp 
          JM(j,i) = ZERO 
        END DO 
      END DO  
      DO i = 1, nDirect 
        DO j = 1, nDirect 
          JM(i,j) = -THIRD 
        END DO 
        JM(i,i) = JM(i,i) + ONE 
      END DO  
      DO i = nDirect + 1, ncomp 
        JM(i,i) = HALF 
      END DO  
      DO i = 1, ncomp 
        DO j = 1, ncomp 
          dsdePl(i,j) = dsdeEl(i,j) - twoG 
     &     * (con2*Revdfds(i)*Revdfds(j) + con1*JM( i,j)) 
        END DO 
      END DO 

      IF (qStrn .GT. MaxTotStrn) THEN 
        DO i=1, ncomp 
          statev(i + (ncomp+1)) = Strain(i)+dStrain (i) 
        END DO 
      END IF 
      statev(nstatev-3) = Revsigy 
      statev(nstatev-2) = UnldFlag 
      IF (pleq .GT. statev(nstatev-1)) statev(nstat ev-1) = pleq 
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6.4.3. Uni-Axial Testing 
 
As an initial check, usermat3d was used in the simulation of a uni-axial sample.  This 
used a three dimensional model of high aspect ratio, to minimise through-section 
stresses, to allow stress from a tension-compression cycle to be compared with those 
from the material-fit equations.  This follows the same methodology as the comparison 
of the results from usermat1d with spreadsheet data, allowing the accuracy of the 
material-fit to be easily assessed in simple stress conditions (no shear stresses present). 
 
The model consisted of a tall cuboid (see Figure 6.6) – its “height” (in the z-axis) was 
100 times its depth and width (in the x- and y-axes).  Its base area was constrained to 
zero z-displacement, and two lines around the base were constrained – one to zero x-
displacement and one to zero y-displacement (the lines lying along the y- and x-axes, 
respectively).  The upper surface was then displaced in the z-axis to achieve the tensile-
compressive load cycle. 
 
The model was meshed using 100 SOLID185 elements, such that each element is cube-
shaped in its undeformed state.  SOLID185 elements are 8-noded (one at each corner) 
elements, which makes them well suited to this investigation (the stress distribution is 
uniform, so there is no need of higher-order elements to improve the resolution of 
results). 
 

 

Figure 6.6: Uni-Axial Sample Mesh 
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The results are given in Figure 6.7.  Agreement is generally very good, aside from a 
slight underestimation of the stress made by the FEA results in the moderate reverse 
plastic strain region.  Inspection of the other stress components reveals that they are of 
the order of 10 kPa in this same region (they are much lower elsewhere), indicating the 
equivalent stress is accurate.  While undesirable, this is understandable given the 
following: 
 

1. The stress components are entirely dependent on the increments of component 
strain that are input to the sub-routine. 

2. In turn, component strain increments are determined in part by the stress-strain 
Jacobian matrix output by the sub-routine in the previous iteration.  

3. Given the unknown strain increment for the current iteration, it is impossible to 
calculate an effective gradient for the non-linear stress-strain relationship during 
the previous iteration.  The Jacobian matrix cannot then be accurately 
calculated. 
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Figure 6.7:  Tensile-Compressive Profiles, usermat3d 
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6.5. COMPARISON AND VALIDATION  
 
Following the verification of both the one- and three-dimensional models in their 
ability to simulate uni-axial conditions, usermat3d was tested in a series of hydraulic 
autofrettage simulations.  Results from the material model, used within ANSYS, were 
used in a set of comparisons with two other models, previously reported by Gibson et 
al. [33]. 
 
 

6.5.1. Details of Comparisons 
 
The custom material, usermat3d, was compared with two other methods: the Hencky 
Programme and the ANSYS implementation of the EMPRAP (described in Chapter 5).  
Respectively, the methods are referred to as ANSYS (UPF), EMPRAP (Hencky) and 
EMPRAP (FEA) in subsequent tables and figures.  Each method was programmed to 
model A723-1130, the behaviour of which is defined in sub-section 5.1.1. 
 
As was the case in Chapter 5, the three methods were compared in four different end 
conditions (Plane Strain and Plane Stress, Open- and Closed-Ends), for two different 
Wall Ratios (2.0 and 2.5). 
 
The meshes developed in Chapter 4 (and also used in Chapter 5) were retained and 
again used here for both the ANSYS (UPF) and EMPRAP (FEA) models.  This meant 
that any variation between the two sets of results would be directly attributable to the 
different material representations. 
 
 

6.5.2. Results 
 
Autofrettage pressures for each of the configurations are presented in Table 6.2.  Table 
6.3 and Table 6.4 respectively show the peak autofrettage plastic equivalent strains at 
the ID at peak pressure for K = 2 and K = 2.5 respectively. 
 

 Pressure (MPa) 
End Condition K = 2.0 K = 2.5 
Plane Strain 873.9 1092.8 
Plane Stress 849.1 1067.4 
Open-Ends 853.2 1081.7 
Closed-Ends 877.3 1095.0 

Table 6.2:  Autofrettage Pressures 
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 Strain (%) 
End Condition ANSYS 

(UPF) 
EMPRAP 

(FEA) 
EMPRAP 
(Hencky) 

% Error 
UPF, w.r.t. 

Hencky 

Plane Strain 1.21 1.20 1.22 -0.81 
Plane Stress 1.28 1.34 1.35 -5.18 
Open-Ends 1.08 1.08 1.09 -0.93 
Closed-Ends 1.26 1.26 1.27 -0.68 

Table 6.3:  Peak Plastic Equivalent Strains at ID during AF, K = 2.0 

 
 Strain (%) 
End Condition ANSYS 

(UPF) 
EMPRAP 

(FEA) 
EMPRAP 
(Hencky) 

% Error 
UPF, w.r.t. 

Hencky 

Plane Strain 1.51 1.51 1.53 -1.08 
Plane Stress 2.17 2.44 2.45 -11.27 
Open-Ends 1.43 1.44 1.45 -1.11 
Closed-Ends 1.55 1.55 1.57 -0.98 

Table 6.4:  Peak Plastic Equivalent Strains at ID during AF, K = 2.5 

 
Figure 6.8 shows equivalent plastic strains throughout the tube at peak pressure under 
Plane Strain.  Figure 6.9 shows the same results in the near-bore region.  Tables 6.5 and 
6.6 show residual hoop stresses at the bore for K = 2 and K = 2.5, respectively. 
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Figure 6.8:  Equivalent Plastic Strains at Peak Pressure in Plane Strain 
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Figure 6.9:  Equivalent Plastic Strains at Peak Pressure in Plane Strain, Expanded 

 
 Stress (MPa) 
End Condition ANSYS 

(UPF) 
EMPRAP 

(FEA) 
EMPRAP 
(Hencky) 

% Error 
UPF, w.r.t. 

Hencky 

Plane Strain -651.3 -667.4 -676.0 -3.64 
Plane Stress -629.6 -635.1 -644.1 -2.25 
Open-Ends -622.1 -638.0 -647.2 -3.88 
Closed-Ends -657.3 -674.6 -682.1 -3.63 

Table 6.5:  Residual Hoop Stresses at Bore, K = 2.0 

 
 Stress (MPa) 
End Condition ANSYS 

(UPF) 
EMPRAP 

(FEA) 
EMPRAP 
(Hencky) 

% Error 
UPF, w.r.t. 

Hencky 

Plane Strain -781.3 -787.3 -808.4 -3.35 
Plane Stress -828.0 -814.4 -834.5 -0.77 
Open-Ends -768.0 -773.4 -795.1 -3.41 
Closed-Ends -784.5 -791.2 -811.6 -3.35 

Table 6.6:  Residual Hoop Stresses at Bore, K = 2.5 

 
Figures 6.10 – 6.13 show full residual hoop stress profiles for Plane Strain, Plane 
Stress, Open Ends and Closed Ends respectively.  Tables 6.7 and 6.8 show residual 
plastic equivalent strains at ID, for K = 2.0 and K = 2.5 respectively.  Figures 6.14 and 
6.15 show variation through the wall under plane strain. 
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Figure 6.10:  Residual Hoop Stresses in Plane Strain 
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Figure 6.11:  Residual Hoop Stresses in Plane Stress 
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Figure 6.12:  Residual Hoop Stresses, Open Ends 
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Figure 6.13:  Residual Hoop Stresses, Closed Ends 
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 Strain (%) 
End Condition ANSYS 

(UPF) 
EMPRAP 

(FEA) 
EMPRAP 
(Hencky) 

% Error 
UPF, w.r.t. 

Hencky 

Plane Strain 0.87 0.86 0.85 1.74 
Plane Stress 0.97 1.02 1.01 -4.25 
Open-Ends 0.77 0.76 0.75 1.82 
Closed-Ends 0.91 0.89 0.89 1.73 

Table 6.7:  Residual Plastic Equivalent Strains at ID, K = 2.0 

 
 Strain (%) 
End Condition ANSYS 

(UPF) 
EMPRAP 

(FEA) 
EMPRAP 
(Hencky) 

% Error 
UPF, w.r.t. 

Hencky 

Plane Strain 1.02 1.01 1.00 1.89 
Plane Stress 1.71 1.94 1.93 -11.29 
Open-Ends 0.96 0.95 0.94 1.93 
Closed-Ends 1.05 1.04 1.03 1.88 

Table 6.8:  Residual Plastic Equivalent Strains at ID, K = 2.5 

 

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Normalised Radial Position

(r  - ra)/(rb - r a)

P
la

st
ic

 E
qu

iv
al

en
t 

S
tr

ai
n,

 R
es

id
ua

l EMPRAP (Hencky) K=2.5
EMPRAP (FEA) K=2.5
ANSYS (UPF) K=2.5
EMPRAP (Hencky) K=2.0
EMPRAP (FEA) K=2.0
ANSYS (UPF) K=2.0

 

Figure 6.14:  Residual Equivalent Plastic Strains in Plane Strain 
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Figure 6.15:  Residual Equivalent Plastic Strains in Plane Strain, Expanded 

 
These results are assessed in section 6.6. 
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6.6. DISCUSSION 
 
The initial set of results (sub-section 6.3.4) demonstrates the high accuracy with which 
the one-dimensional implementation of the material model (usermat1d) is able to match 
spreadsheet-derived data, within the iterative solution procedure used by ANSYS.  The 
uni-dimensional stress-strain model makes it trivial to determine when unloading 
begins, based on the sign of the strain increment.  In addition it means that no 
ambiguity exists when calculating the Jacobian matrix, which is used by ANSYS when 
it determines the strain increment for the next iteration. 
 
The second comparison (results given in sub-section 6.4.3, Figure 6.7) investigates how 
well the three-dimensional material model (usermat3d) is able to match the same 
spreadsheet-derived data when used in a uni-axial model.  Not only did this test how 
well the material model was able to detect the loading/unloading state, but also how the 
sub-routine interacted with ANSYS to recreate the uni-axial stress that should be 
present.  The two issues are not exclusive, as the off-axis stress components contribute 
to the equivalent value, on which yielding is determined.  Hence, although the stress-
strain data from ANSYS generally matched those from the spreadsheet closely, the 
region in which agreement is less close (for mid-range values of reverse plastic strain) 
is also the region in which off-axis stresses are at their maximum. 
 
Stress increments are determined by the strain increments, which are supplied as inputs 
to the sub-routine by ANSYS.  In turn, ANSYS uses the Jacobian matrix which is 
returned to it by the sub-routine, to determine the strain increments for the next 
iteration.  Taking this and the results of the first investigation together, indicates that 
the material stress calculations are accurate, while the value of the Jacobian matrix does 
not equal that which would be expected by ANSYS. 
 
The third comparison (section 6.5) utilises the three-dimensional material model to 
simulate the stress-strain state within a series of autofrettaged tubes.  Consequently it 
experiences three direct stress components (no shear stresses are present), which makes 
the comparison a good test of how accurately the material calculates these components, 
as well as detecting unloading.  As the custom material was developed for use in 
autofrettage simulation (while being as general as possible), this comparison warrants 
more comprehensive treatment, given below. 
 
The two EMPRAP models both implement a non-linear material in the same way but 
differ structurally – the EMPRAP (FEA) model uses an FE mesh while the EMPRAP 
(Hencky) model considers the thick-walled vessel to be a series of concentric thin 
cylinders behaving according to Lamé’s equations. The EMPRAP (FEA) model and the 
ANSYS (UPF) model are identical structurally (they use the same mesh geometry), but 
implement material behaviour differently. 
 
Note that subtle differences between the three constant axial strain cases relate to the 
interplay between axial stress distribution, dominated by end-load, and the other 
principal stresses.  In the case of an incompressible material, the plane strain state is 
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similar to the closed-ended case.  Throughout the autofrettage cycle, at each radial 
location, the axial stress is the mean of the hoop and radial stress. In more general 
cases, axial stress continues to be the intermediate principal stress and to make a 
contribution to the residual stress outcomes.  For a given overstrain this contribution 
differs with end conditions, producing some small differences in hoop stress. 
 
During the loading phase, for each configuration, autofrettage pressures to achieve 70% 
and 55% overstrain (K = 2.0 and 2.5, respectively) were within 0.1% across the three 
models. Peak hoop stresses were also well within 0.1% agreement.  Given the diversity 
of the models, this is a strong validation of their elastic-plastic response to autofrettage 
pressure loading. 
 
Equivalent plastic strains and associated hoop stresses at peak autofrettage pressure 
were compared.  The Plane Strain, Open- and Closed-Ends conditions all show good 
agreement between the three methods. In the Plane Stress condition plastic strains are 
much larger than in the other three conditions, and there is a larger disparity between 
the ANSYS (UPF) results and those from the two EMPRAP methods.  Pressures, 
stresses and strains for plane strain and open-end conditions were compared with 
available data and discussed in detail in [22]. The EMPRAP (Hencky) results presented 
herein use the same numerical model as in [22]. The agreement between EMPRAP 
(Hencky), EMPRAP (FEA) and ANSYS (UPF) is therefore reassuring. 
 
Although the hoop stress values at the ID at peak pressure differ between 
configurations, it can be confirmed that the hoop stresses sum throughout the tube wall 
to equilibrate the autofrettage pressure. The fidelity of the plastic strain response of the 
three models was confirmed by overlaying stress-strain data from the ANSYS (UPF) 
model on a plot generated from the material-fit equations, showing very close 
agreement. 
 
Unloading, and residual values show fairly acceptable agreement across the three 
models; typically, ANSYS (UPF) predicted slightly less compressive residual bore 
hoop stress than EMPRAP (FEA) (2.5% difference) and EMPRAP (Hencky) (4% 
difference). 
 
There is a subtle but significant issue here. For each configuration, the stress fields at 
peak pressure were in very close agreement. Differences therefore arose principally 
during the depressurization process, during which the Bauschinger effect occurs. 
Considering the case K = 2, Open-Ends, the range of hoop stress during unloading is 
circa. 920 MPa. Using this value to estimate differences during the unloading phase the 
4% and 2.7% values referred to above reduce to 2.7% and 1.7%. These values are 
typical for a non-linear numerical solution. 
 
In addition to the results presented here, the customised USERMAT was used in 
comparison [24] with hydraulic autofrettage results from the SEMAT method of 
material representation, and subsequently used to implement the SEMAT within 
ANSYS.  Close agreement is generally observed between the various implementations 
(using the Hencky Programme, Huang’s method and the ANSYS model presented 
here) of cases including full unloading profiles and the SEMAT approach. 
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6.7. SUMMARY  
 
The first, one-dimensional material model was created to gain familiarity with the 
ANSYS solution procedure, and determine how to programme the desired material 
within it.  The close match between the results generated using it, with data from the 
material-fit equations confirm that the sub-routine calculates stress states accurately, 
and in a manner that allows ANSYS to reach solution normally. 
 
The three-dimensional material model (usermat3d) was created to be used in all 
autofrettage simulations (hydraulic and swage), hence confirmation of its accuracy was 
vital.  The uni-axial tests (sub-section 6.4.3) demonstrate a generally close match 
between results from the material model and the material-fit equations.  Agreement is 
less complete where off-axis (direct) stresses increase in magnitude, altering the 
relationship between equivalent and axial stress.  These off-axis stresses arise from the 
circular relationship between the Jacobian matrix output to ANSYS from the sub-
routine, and the resultant strain increments that ANSYS supplies in return. 
 
The three-dimensional material model was then used in a series of hydraulic 
autofrettage simulations, under a range of end conditions.  The results showed good 
agreement; disparities are in line with the variations expected from the different 
numerical methods.  Apart from the plastic strains calculated for the Plane Stress case, 
all residual stress and strain values showed very close agreement.  Differences between 
constant-strain end condition cases may be explained by variations in the axial stress 
which is the intermediate principal stress. 
 
It is inferred that variations of stresses and plastic strains between models is most likely 
due to subtle differences in the way each model calculates component stress. 
 
Overall, with some reservations regarding the Plane Stress case, the ANSYS (UPF) 
model accurately calculates the stress-strain state resulting from the hydraulic 
autofrettage in a single procedure. 
 
In summary, a custom material model of a real world gun steel (A723-1130) has been 
programmed utilising the USERMAT feature within ANSYS.  USERMAT behaves as 
a standard material and, crucially, retains plastic strains; this makes the customised 
material suitable for use in more general load cases than allowed by the EMPRAP 
method – in particular, simulating swage autofrettage of a pressure vessel. 
 
Hence this custom FE material model may now be used with reasonable confidence to 
simulate the swage autofrettage process.  This work is described in Chapter 8, 
following an investigation of the influence of friction on the swaging process, using a 
moving band of pressure, in Chapter 7. 
 
Such analyses will be conducted in an axi-symmetric model, but should the need for a 
full three-dimensional model arise the custom material will be suitable for such use 
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(subject to a small amount of additional verification, over that done in sub-section 
6.4.3).  
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7. BAND OF PRESSURE MODEL 

7.1. INTRODUCTION 
 
To help demonstrate the differences between Hydraulic and Swage autofrettage, the 
Band of Pressure models were created.  This would separate the influences of shear 
stresses and axial forces, thought to be the main differentiators between hydraulic and 
swage autofrettage, allowing the influence of each on residual stresses to be 
investigated. 
 
The models allow a band of pressure to be applied to the bore of the modelled tube in 
two ways: as a static band which expands longitudinally (starting from the centreline 
and working towards the ends) and as a moving band.  The models are fully 
parameterised to allow tube geometry, tube material, end conditions, applied pressure, 
and band properties to be altered easily. 
 
The models utilise the inbuilt ANSYS BKIN material; although it does not simulate 
non-linear material unloading (after prior plastic strain), accurate material 
representation was not required as the loading mechanism is the focus of this portion of 
the investigation. 
 
 

7.2. CONCEPTUAL NOTES 
 
Given the ability to investigate autofrettage in the presence of shear stresses, without 
the frictional and axial stresses that arise during swaging, several issues needed to be 
investigated to help understand the reasons for the different residual stress fields 
created by hydraulic and swage autofrettage (the differences between which are 
explored in sub-section 7.2.2).  The main issues identified were: 
 

1. Increase in pressure as band width decreases (for constant autofrettage depth), 
2. The relationship between shear stresses, band width and pressure, 
3. Whether there is an optimum pressure band width, 
4. When residual stress patterns transition from Hydraulic to Swage, 
5. Similarity between the end effects in Band of Pressure and Swage cases. 

 
 

7.2.1. Plan of Work 
 
It was decided to first investigate the relationship between the width of the band of 
pressure and autofrettage depth – the band of pressure would initially act on the entire 
length of tube (i.e. hydraulic autofrettage), and during subsequent simulations the band 
width would be systematically shortened while keeping pressure constant. 
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Pressure for each case would then be adjusted to achieve the initial depth of 
autofrettage for each value of band width (the results would be used to inform the 
choice of pressure in the moving band case).  Shear stresses would be recorded and 
investigated at the same time.  Once the response during loading was identified, the 
effects of band of pressure loading on residual stresses would be investigated. 
 
The second stage of the investigation would then investigate how shear stresses near a 
moving band of pressure varied over the length of the tube section, which would help 
to reveal the exact causes of asymmetry near the tube ends.  Additionally, and crucially, 
residual stresses would be compared with those hydraulic autofrettage results 
developed in earlier chapters. 
 
These results would then be available for comparison with results from swage 
autofrettage (presented in Chapter 8).  For the mid-section of a long tube (along which 
a constant contact pressure would be expected), the main difference between the band 
of pressure and swage loading mechanisms would be the absence of friction, and the 
resultant axial and shear stresses.  
 
It was realised that the application of a band of high pressure (rather than a 
displacement-based load, similar to that experienced by a tube during swaging) could 
cause large deformation of the tube, especially in the presence of a small plastic 
modulus, as the applied pressure remains constant while the tube expands.  However, 
this would likely only occur near the ends of a tube, which are generally discarded 
following autofrettage, so this was felt to be of secondary importance (although 
potentially worthy of future work). 
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7.2.2. Comparison of Autofrettage Methods 
 
Swage and hydraulic autofrettage differ mostly due to: 
 
1. Hydraulic autofrettage is applied equally to the whole length of the tube, while 

swage autofrettage applies localised loading leading to non-uniform deflection 
along the length which results in through-wall shear stresses, as shown in Figure 
7.1, 

 

 

Figure 7.1:  Shear Stresses in Swage Deflected Region 

 
2. Hydraulic autofrettage generates axial stresses (which are independent of axial 

position), which may result in a net axial load (depending on the end conditions).  
Conversely, swage autofrettage definitely generates an axial load, equal to the 
swage driving force, which varies with axial position.  The axial load results from 
both friction between the mandrel and tube, and a greater mean pressure on the 
forward face (Pff) of the mandrel than on the rear face (Prf), due to stress-strain 
hysteresis reducing the tube stiffness on unloading, and plastic deformation.  In 
Figure 7.2, this translates into Pff being larger than Prf. 

 

 

Figure 7.2:  Swage Contact Forces 
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7.2.3. Modified Element Diagram 
 
Graphically assessing the stresses acting upon an element within a tube, lying on the r-z 
plane, gives the diagram shown in Figure 7.3.  This differs from diagram shown in 
Chapter 2 in that shear stresses are present and the fact that stresses may vary with axial 
position, allowing the effects of a localised load, such as a band of pressure, to be 
investigated.  The tube is still considered to be axi-symmetric, precluding any variation 
of any property with θ, and requiring that τrθ = τθz = 0, and initially plane sections are 
assumed to remain plane. 
 

 

Figure 7.3:  Shear Stresses acting on an element in the r-z plane 

 
 

7.2.4. Equilibrium Equations 
 
Applying the equilibrium criterion to the element shown in Figure 7.3 yields the 
following expressions. 
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Rotational 
 
Summing the moments about the centre of the element yields the following: 
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Cancelling by rδrδθδz/2, and rearranging gives: 
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Taking δr and δz as tending towards zero, the following simplification can be made: 
 
 rzzr ττ =  (7.1) 
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Cancelling by rδrδθδz, and taking δr � 0: 
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7.3. MODELLING NOTES 
 

7.3.1. Overview 
 
The Band of Pressure model was based on previous hydraulic autofrettage models, with 
the main difference being axial length (lz).  The previous models were loaded by a 
uniform pressure acting along the whole of the modelled length with only mid-section 
properties assessed, but in this case localised loading was achieved through the 
application of a band of pressure – resulting in significant axial variation in stresses. 
 
For this reason, the modelled section was long enough to capture variation resulting 
from the end effects.  The end effects arise from the axial stresses caused by model 
constraints (not present in a tube uniformly loaded along it length), which in turn alter 
the proportions of the stress components when calculating equivalent stresses. 
 
It is generally good practice when modelling to exploit whatever symmetry there is 
present to reduce the size of the modelled region (so that for a given number of 
elements, resolution is increased).  Unlike the Hydraulic Autofrettage models 
(developed in Chapter 4), no axial symmetry existed in the Band of Pressure model, 
due to the axial variation inherent that results from the localised loading used.  This 
precluded extensive use of such methods to achieve large reductions in the length of 
tube modelled. 
 
The in-built bi-linear kinematic hardening material model (BKIN) was used for this 
investigation; while it was felt that using A723 would yield interesting results, the lack 
of empirical results for comparison would render them of little use.  Instead, a simple 
material behaviour was selected, to allow easy observation of the effects of this unusual 
loading scenario.  Young’s Modulus, Poisson’s ratio, yield stress and plastic modulus 
were selected to match that of A723 1130 during initial loading (the values are also 
used by the BKIN model during unloading and subsequent yielding). 
 
To control the application of pressure, it was applied to elements along the ID rather 
than to entire line (as was done in the hydraulic autofrettage models). 
 
 

7.3.2. Model Geometry 
 
The model used to simulate hydraulic autofrettage (featured in Chapters 4-6) was 
largely suitable for use in the Band of Pressure model, with exception of the length of 
tube represented.  To produce results that were comparable to those from swaging 
along the full length of a tube, the Band of Pressure model would need to represent a 
section of similar length; accordingly a section length of ten times the wall depth was 
selected (lz = 10lr).  Thus, the mid-length position was five times the wall depth from 
the applied constraints and hence the axial stresses resulting from such could be 
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considered uniform (using St. Venant’s principle), equalling zero given the zero net 
axial force from the end constraint. 
 
The wall ratio (K) was also selected to allow broad comparability with swage, in that it 
would need to be large enough to induce reverse yielding (a crucial aspect when 
considering the residual stresses developed).  To achieve this, K = 2.5 was selected; 
therefore normalised wall depth, lr/ra, equalled 1.5.  Figure 7.4 depicts these 
dimensions. 
 

Property Value 
Wall Ratio, K 2.5 
Section Length, lz 10lr 
Young’s Modulus, E 209 GPa 
Poisson’s Ratio, ν 0.3 
Yield Stress, σY0 1130 MPa 
Plastic Modulus, H 1469 MPa 

Table 7.1:  Summary of Input Parameters 

 

7.3.3. Model Constraint 
 
Choice of constraint was determined by two factors: 
 

1. Retaining similarity with previous hydraulic autofrettage models to allow 
comparison, 

2. Ensuring results taken from the Band of Pressure model would be suitable for 
comparison with those to be generated by the Swage model. 

 
The first criterion essentially required the constraint set to generate end conditions 
matching one or more of those used by the hydraulic models used in Chapters 4-6.  The 
second criterion required that the constraints be suitable for application to long, but 
finite length, tube sections, and should match the conditions created by the retention 
mechanisms used during swaging (described in sub-section 2.3.2). 
 
Of the four end conditions used in the hydraulic models, Plane Stress was immediately 
rejected as it applies only to thin sheets (i.e. very short sections).  However, general 
plane strain conditions (Plane Strain, Open- and Closed-Ends) may be applied to a long 
section. 
 
Given the three general plane strain conditions, Open-Ends best matches the constraint 
of a tube being swaged as it doesn’t apply an axial load (as does Closed-Ends) or 
prescribe a length (as does Plane Strain). 
 
As a long section is being used, it would initially seem logical to leave the ends of the 
tube free.  However, to fulfil the first criterion, the end nodes of the tube must again be 
coupled such that when the pressure band is applied to the whole tube, the modelled 
state is equivalent to that used in the hydraulic autofrettage models (see Figure 4.8).  In 
addition were a real-life tube hydraulically autofrettaged under Open-End conditions, 
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pressure would not be applied to the whole length of the tube – the floating bungs 
would be inset (as shown in Figure 2.1).  Otherwise, with a constant pressure applied to 
the whole length, the unconstrained ends of the tube would undergo significant 
yielding.  Accordingly, the model was constrained as shown in Figure 7.4, with the 
axial displacements of the nodes along the tube end A-C were coupled, such that the 
initially plane end remains so (and perpendicular to the axis), and end B-D constrained 
to zero axial deflection. 
 
This results in zero axial load, both during and following the application of pressure. 
 

 

Figure 7.4:  Model Geometry and Mesh 

 

7.3.4. Meshing 
 
The geometry of the model used here differs significantly from that of the model used 
during the hydraulic autofrettage investigation; previously the intention was to shorten 
the tube length as much as possible, while the opposite is true in the model described 
here.  Additionally, while important (as in any investigation), absolute accuracy of the 
generated results is not the primary objective.  Instead, the focus was upon the trends 
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observed while the band of pressure is altered, either in length or position.  Lastly, 
retaining such small element size over the length of the tube could lead to an intractable 
model, in terms of both memory requirements and solution time. 
 
Consequently, principally using Figure 4.21, the element size was increased such that 
the number of radial divisions, ElRad, of the mesh was 20; the number of axial elements, 
ElAx, was scaled from this using the ratio of length (lz) to wall depth (rb – ra) to give 
ElAx = 100 for the static band and ElAx = 200 for the moving band. 
 
 

7.3.5. Loading 
 
Both static and moving band models achieved the desired pressure load to the desired 
section of tube by determining the appropriate elements along the ID of the tube and 
applying pressure to their exposed face (previous models had applied pressure to the 
entire line representing the ID).  In the static case, the length over which the band of 
pressure was applied is termed lBW. 
 
For the static case a uniform pressure, PSB, was applied to all elements; however, to 
better reflect the tapered profile of a mandrel, a gradient was applied to the pressure 
band in the moving case.  As well as making the results from the moving band model 
more comparable to those from swaging, the pressure gradient made the individual 
stages of the solution easier to solve (and hence more rapid) as excessive element 
distortion was avoided.  This was important as the model required many such stages.  
The gradient was achieved by applying the specified pressure, PMB, to a single element, 
and applying progressively smaller pressures to each set of neighbouring elements 
towards the edge of the fringe.  The difference in the pressures applied to successive 
elements was termed ∆P, itself a multiple of PMB.  The loading mechanisms for both 
models are given in Figure 7.5. 
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Figure 7.5:  Mesh Loading Diagram 

 

7.3.6. Recorded Results 
 
In addition to the results taken along a single radial path in the hydraulic autofrettage 
models, it was important that extra results were recorded to allow axial variation and 
shear stresses to be investigated.  Specifically, results were also taken along a radial 
path aligned with the edge of the pressure bands; as shown in Figure 7.6, results were 
taken from the forward edge of the Expanding Band, and both forward and rear edges 
of the Moving Band. 
 

 

Figure 7.6:  Data Path Diagram 
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7.4. STATIC, EXPANDING BAND 
 
The Static band model was the first investigated, to explore the nature of the 
relationship between width of band and autofrettage depth; this would then be 
compared with data from the swage case to help determine the effects of friction and 
the slopes on the front and rear faces of the mandrel. 
 
The first of results was gained by applying a constant pressure, PSB, to a progressively 
larger portion of the ID, until hydraulic autofrettage was achieved when the portion 
equalled the full length, lz.  The pressure applied (1050 MPa) was that which was found 
to cause 55% overstrain when used in hydraulic autofrettage for the Open-Ends 
condition, with the material parameters given in Table 7.1.  The second results were 
obtained by increasing PSB, in the cases from the first set where depth of autofrettage 
had dropped below 55%, until overstrain again equalled 55%. 
 
Figure 7.5 illustrates how the tube is progressively loaded, during the first three tests of 
the series, from its mid-point to its ends, until hydraulic autofrettage conditions are 
achieved. 
 
 

7.4.1. Results 
 
Figure 7.7 plots the overstrain (depth of autofrettage), plus equivalent and hoop plastic 
strains, against the width of the applied pressure band. 
 
Figure 7.8 plots the mid-length residual hoop stress found at the ID, against the width 
of the applied pressure band. 
 
Figure 7.9 plots the pressure required to achieve a consistent overstrain (55%) against 
the width of the applied pressure band.  Also included is a fit line based on a 
rudimentary assessment of the stress state within the tube, describe in sub-section 7.4.2. 
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Figure 7.7:  Overstrain, Equivalent Plastic Strain and Plastic Hoop Strain at ID for constant 
pressure, variable width Band 
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Figure 7.8:  Residual Hoop Stress at midpoint, ID for constant pressure, variable width Band 
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Figure 7.9:  Autofrettage Pressure required for constant Overstrain as band width varies 

 

7.4.2. Discussion of Results 
 
It was noted (see Figure 7.7) that equivalent plastic strains at the ID drop slightly from 
their peak at band width of 50%; this results from decreased equivalent stress, which in 
turn results from the decreasing contribution of the (σθ – σz) term, as σz becomes less 
negative (as the full section length is exposed to the applied pressure).  The (σr – σθ) 
and (σz – σr) terms peak at 100% band width, but their rate of increase is less than the 
rate of decrease of (σθ – σz) in the 50-100% band width range. 
 
This pattern is also observed for the plastic hoop strains during autofrettage (also 
Figure 7.7), which is then reflected by residual hoop stresses at the ID (Figure 7.8) 
which peak at a band width of 50%. 
 
The second set of results (Figure 7.9) reveal that the required pressure increases rapidly 
as the band width decreases, in a form similar to an inverse proportionality.  Indeed, it 
may be imagined that when the majority of the tube is unpressurised, the restraining 
force it applies is constant, which must be overcome by the pressure, as well as the 
strength of the loaded section (constant per unit length).  This assessment is formalised 
by (7.4). 
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The constant value, PAF, is the pressure required for 55% overstrain when the full 
length of the tube is loaded (i.e. hydraulic autofrettage), hence PAF = 1,050 MPa.  The 
multiplicative constant, m, represents the restraining force of the unpressurised section.  
A value for m was obtained by making it the subject of the above equation, and 
entering the recorded data into the resulting expression.  The mean value of 54.43 MPa 
was obtained from the data points for lBW values of 1 to 10% of lz, inclusive. 
 
While this over-simplifies the details of the stress state in the tube, particularly in the 
yielding region, the concept appears to be well supported by the agreement between the 
FEA data and proposed relationship. 
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7.5. MOVING BAND 
 
The second series of tests assessed the differences resulting from autofrettaging with a 
moving band of pressure, rather than an application of pressure to the whole tube length 
simultaneously.  The influence of the width of pressure band and pressure gradient 
were investigated, which are analogous to mandrel length and taper angle, respectively. 
 
Initially, the fringe width was varied, while maintaining an overstrain of 55% by 
altering the applied pressure, PMB (that at the centre of the band); see Figure 7.5 for a 
diagram of fringe width.  As 200 elements were used to mesh the tube along its length, 
each element represents 0.5% of the tube length.  The following values were used: 
 

Fringe Width 
(elements) 

% Tube Length Pressure, PMB (MPa) 

2 1.0 3,170 
3 1.5 2,750 
4 2.0 2,500 
5 2.5 2,300 

Table 7.2:  Moving Pressure Band, Fringe Width Investigation Inputs 

 
The results from the investigation of the effects of fringe width are given in sub-section 
7.5.1. 
 
Once the effects of fringe width had been investigated, the influence of the pressure 
gradient was assessed by varying it while keeping fringe width constant at 4.  Between 
each successive element away from the central band, the applied pressure decreased by 
∆P, where ∆P is given by the gradient, GP, multiplied by the central pressure, PMB.  
The following values of GP were used: 
 

GP ∆P (MPa) Pressure, PMB (MPa) 
0% 0.0 2,200 
5% 117.5 2,500 
10% 275.0 2,750 

Table 7.3:  Moving Pressure Band, Pressure Gradient Investigation Inputs 

 
The results from the investigation of the effects of pressure gradient are given in sub-
section 7.5.2. 
 

7.5.1. Fringe Width Investigation Results 
 
Figure 7.10 and Figure 7.11 plot the hoop and axial stresses, respectively, through the 
tube wall at mid-length, when the pressure band is also at the mid-length position of the 
tube.  For comparison, Figure 7.10 also plots the peak pressure hoop stresses for a 
hydraulically autofrettaged (i.e. uniform pressure along its whole length) open-ended 
tube of wall ratio 2.5 (as would be obtained from the model used in Chapter 4, with an 
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autofrettage pressure of 1082 MPa).  Figure 7.12 and Figure 7.13 plot the residual (i.e. 
once the pressure band has finished acting on the tube) hoop and axial stresses, 
respectively, at the mid-length position. 
 
Figure 7.14 plots the residual plastic axial strains through the tube wall at mid-length.  
Figure 7.15, Figure 7.16 and Figure 7.17 each show the shear stress (σrz) through the 
tube wall at mid-length, respectively at the forward edge, middle and rear edge of the 
pressure band. 
 
All radial positions, r, are normalised w.r.t. the wall thickness (giving rN), and stresses 
are normalised w.r.t. the initial yield stress, σY0. 
 

-2.00

-1.50

-1.00

-0.50

0.00

0.50

1.00

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Normalised Radial Position, (r  - r a )/(r b  - r a )

N
o

rm
al

is
ed

 H
o

o
p

 S
tr

es
s,

 σ
θ
/σ

Y
0

2

3

4

5

Hydraulic

 

Figure 7.10:  Hoop Stresses during Autofrettage at Mid-Length 
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Figure 7.11:  Axial Stresses during Autofrettage at Mid-Length 
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Figure 7.12:  Residual Hoop Stresses at Mid-Length 
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Figure 7.13:  Residual Axial Stresses at Mid-Length 

 
 

-0.005

-0.004

-0.003

-0.002

-0.001

0.000

0.001

0.002

0.003

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Normalised Radial Position, (r  - r a )/(r b  - r a )

P
la

st
ic

 R
ad

ia
l S

tr
ai

n
, ε

z

2

3

4

5

 

Figure 7.14:  Residual Plastic Axial Strains at Mid-Length 
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Figure 7.15:  Shear Stresses at Forward Edge of Pressure Band, at Tube Mid-Section 
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Figure 7.16:  Shear Stresses at middle of Pressure Band, at Tube Mid-Section 
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Figure 7.17:  Shear Stresses at Rear Edge of Pressure Band, at Tube Mid-Section 

 
 

7.5.2. Pressure Gradient Investigation Results 
 
Figure 7.18 and Figure 7.19 plot the residual (i.e. once the pressure band has finished 
acting on the tube) hoop and axial stresses, respectively, at the mid-length position of 
the tube.  These compare with Figure 7.12 and Figure 7.13 from the Fringe Width 
investigation. 
 
All radial positions, r, are normalised w.r.t. the wall thickness (giving rN), and stresses 
are normalised w.r.t. the initial yield stress, σY0. 
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Figure 7.18:  Residual Hoop Stresses at Mid-Length 
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Figure 7.19:  Residual Axial Stresses at Mid-Length 
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7.5.3. Discussion of Results 
 
The following points of discussion refer to the variable fringe width results, unless they 
specifically reference the variable pressure gradient results. 
 
As expected, it was found (Table 7.2) that the narrower the pressure band, the higher 
the pressure required to achieve a given depth of overstrain.  This is logical, given the 
local nature of loading; as discussed in for the Static, Expanding band case (section 
7.4.2), the pressure band not only has to overcome the strength of the material 
surrounding the band, it also has to overcome the supportive force of the tube – in front 
of, and behind the band.  For a given band pressure, as the width of band decreases 
these supportive forces become a larger relative to the applied load. 
 
The intensity of shear stresses was also seen to increase (Figure 7.15 to Figure 7.17), 
which is a natural consequence of the support forces discussed above; such forces are 
exerted on the pressurised section primarily through shear stress, and partially through 
axial stresses, given the outwards deflection of the pressurised section of tube. 
 
From Figure 7.10 it is apparent that the through-wall hoop stresses at the centre of the 
pressure band do not equal the applied load (if the load on a single element is compared 
to the through-wall hoop stresses of a tube section one element long).  This is another 
symptom of the pressurised section being supported via shear stresses, by neighbouring 
non-loaded sections. 
 
The negative hoop stresses seen around the ID during peak pressure represents an 
outwards force by that section of the tube; this may seem counter-intuitive, given the 
net inwards force produced by the tube as a whole.  However, this reflects the shear 
stresses present in the region surrounding the ID at the forward and rear edges of the 
pressure band (shown in Figure 7.15 and Figure 7.17), which apply a net inwards force 
to the loaded section.  This fact tallies with the above observation that summed hoop 
stresses in the loaded region do not equal the applied load; indeed the inwards force 
resulting from the shear stresses is sufficient that a net outwards force is required from 
the hoop stresses to maintain force equilibrium.  The radial location of the region of 
compressive hoop stresses is determined by the distribution shear stresses, which are in 
turn determined by the relative radial deflections of the loaded and surrounding 
sections. 
 
The magnitude of residual hoop stresses (Figure 7.12) found at the ID increases as the 
pressure band width decreases.  A similar pattern was observed in the variable pressure 
gradient case; Figure 7.18 shows residual hoop stress magnitude increasing with 
pressure gradient (and mid-band pressure).  This results from the less positive values of 
residual axial stress found at the ID as band width decreases (Figure 7.13), or pressure 
gradient increases (Figure 7.19); the decreased difference between hoop and axial, and 
radial and axial stress components allows for a more negative residual hoop stress for a 
given equivalent stress.  The process by which less negative axial stresses are 
developed is explained in the following paragraphs. 
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The nature of radial load transferral via shear stresses is described by Figure 7.3.  
Considering a pressure band progressing along a tube in the direction of z (coincident 
with the tube axis) increasing, such that the forward edge of the band first encounters 
the right hand side of the considered element; an inwards force applied to the surface 
via τzr would have a negative sign – this is observed in Figure 7.15.  The converse 
occurs at the left hand side of the element; a positive τzr would be expected, and is 
indeed observed in Figure 7.17. 
 
The shear stresses at the forward and rear edges of the pressure band (Figure 7.15 and 
Figure 7.17) show a large degree of similarity near the ID, but the plots begin to 
diverge once 0.25 < rN with the narrower pressure bands showing greater amounts of 
divergence.  Once beyond rN ≈ 0.25, the magnitude of the shear stresses decreases 
(relative to those at the forward edge of the pressure band), and plots from fringe 
widths of 2 and 3 even cross the axis.  This may be explained by the deformation and 
expansion of the section of tube behind the pressure band; the loaded section is less 
dissimilar in radius to the non-loaded but previously deformed section, so that shear 
strains are smaller and hence so are shear stresses.  The shear stresses remain similar 
(albeit of opposite sign) near the ID due to the close proximity of the pressure load 
discontinuity. 
 
The large compressive residual axial stresses observed in Figure 7.13 at and around the 
ID (resulting from the tensile plastic strains found there, as seen in Figure 7.14), for the 
case fringe width equals two, are explained by the large tensile deformation 
experienced by the region near the ID, shortly after the centre of the band of pressure 
passes.  This is shown by Figure 7.20. 
 

 

Figure 7.20:  Tensile Axial deformation at rear edge of pressure band 

 
The high pressure found at the band edge in this case differentiates it from the wider 
pressure band cases.  This rapid change of axial stress experienced as the pressure band 
passes (compare with the highly compressive axial stresses experienced by the tube ID 
at the centre of the pressure band, in Figure 7.11) suggests, via Equation (7.2), a higher 
rate of change of τrz w.r.t. r (and hence τzr, from Equation (7.1)).  This would agree with 
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the more intense shear stress observed for the narrower pressure band cases; the greater 
the magnitude and the shorter the length over which it varies, the greater the value of its 
derivative. 
 
The same pattern is observed, without developing tensile residual axial stresses at the 
ID, in the variable pressure gradient case (Figure 7.19), resulting from the increased 
shear stresses at the edge of the pressure band resulting from decreased pressure 
gradient. 
 
Note: whilst the shear stress inclusive equilibrium equations, developed above, assume 
that initially plane sections of tube remain so non-plane behaviour is observed. It is felt 
however, the principles remain true and hence the equations remain useful for 
qualitative description of the stress field near the applied pressure band. 
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7.6. SUMMARY  
 
The results from the static band model supported the observation that the required 
pressure for a constant depth of autofrettage increases as the width of the pressure band 
decreases. 
 
The relationship between band width and pressure was observed to follow a pattern 
similar to an offset inverse ratio; based on this, a representative relationship (7.4) was 
created, the results from which (Figure 7.9) showed reasonable agreement with the 
data. 
 
The results from the moving band model showed the same trend; the narrower the 
fringe width, the greater was the pressure needed to obtain a given depth of overstrain.  
As would also be expected, shear stress magnitude near the band was seen to increase 
as fringe width decreased due to the greater step size between the applied pressure and 
zero pressure in the non-loaded section. 
 
Shear stresses switched sign appropriately, given the element diagram in Figure 7.3, 
between the front (Figure 7.15) and rear (Figure 7.17) edges of the pressure band. 
 
Through wall hoop stresses at peak pressure (Figure 7.10) were found to be markedly 
different from those observed at peak pressure during hydraulic autofrettage; indeed, at 
and around the ID, they were seen to be strongly negative (compressive) – creating a 
net outwards force for that section.  This is due to the propagation, via shear stresses, of 
the applied load to more than just the directly loaded section. 
 
Residual hoop stresses at the ID were seen to increase in magnitude as the pressure at 
the band edge increased (found with lower fringe widths and pressure gradients); the 
increasing curvature resulting from the more sudden change in pressure causes 
decreasingly tensile residual axial stresses at the ID, allowing more compressive 
residual hoop stresses to be developed. 
 
While compressive axial stresses are found at the ID at the centre of the pressure band 
(Figure 7.13), towards the edges of the band stresses become increasingly tensile.  If 
the band is narrow enough, this can cause sufficient tensile axial plastic strains to result 
in significant compressive residual axial stresses at the ID, as was the case when fringe 
width equalled 2.  
 
The deflections resulting from the pressure-based loading used in this investigation are 
not identical to those resulting from the essentially displacement-based loading that 
occurs during swage autofrettage (for example, the ID of the tube cannot be deflected 
beyond the size of the mandrel).  In addition, the selected pressure profile was intended 
to be representative of that found over the mandrel’s surface but not particularly 
accurate (for example, it is symmetrical).  However, the investigation was nonetheless 
useful, allowing the above assessments to be made, and the influence of localised 
loading and shear stresses to be understood and documented. 
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8. DEVELOPMENT OF A METHOD OF MODELLING 

SWAGE AUTOFRETTAGE 

8.1. INTRODUCTION 
 
Once the material model had been completed, and experience of simulating long tube 
sections had been gained, it was then appropriate to formulate a model of swage 
autofrettage.  Given the paucity of open literature investigations of the swaging of long 
tube sections, it was important to follow this route, and then conduct additional 
sensitivity analyses to investigate both mesh fineness and contact parameters. 
 
While it is recognised that mandrels are used to pre-stress structures in other contexts, 
such as holes within panels of aerospace vehicles [34,35], they have not been assessed 
in this thesis.  This is based on the differences that arise between such panels and long 
tubes, due to the dissimilar length/radius ratios of the pre-stressed hole, as well as the 
prevalence of aluminium alloys in the different classes of components.  The principles 
of the model developed in this chapter could be relevant to such applications. 
 
Once the initial swage model had been formulated, and the means of adding a contact 
to the ANSYS model investigated, it was used to generate results for comparison with 
those from an earlier model developed by O’Hara [9] using the ABAQUS FEA 
package.  It featured a relatively short section length, reasonably sparse mesh, and a bi-
linear kinematic hardening material, making it ideal for a first check of the model 
described here.  Additionally, the comparison was a suitable test bed to confirm the 
mandrel-tube contact had been specified correctly. 
 
All results given in this chapter use the ANSYS bi-linear kinematic (BKIN) material.  
Between the customisation of the USERMAT sub-routine and the development of the 
swage model presented here, a change of ANSYS version (v9.0 to v11.0 SP1) was 
required for licensing reasons, introducing some changes to the format of the 
USERMAT sub-routine.  This also required a change of Fortran compiler (from 
Compaq Visual Fortran 6.6A to Intel Visual Fortran 8.1).  Unfortunately, some 
combination of the change in ANSYS version and Fortran compiler caused the material 
model developed in Chapter 6 to cease working as intended; solution failed upon 
unloading from prior plastic strain.  After some work, the material was altered such that 
the solution would fail when unloading, but the stress-strain profile was erroneous 
when unloading into reverse plasticity.  Insufficient time was available to correct this 
behaviour, so the decision was made to conduct these analyses using an inbuilt 
material.  While the exact value of the results calculated may not be fully reflective of 
experimental values, it is nonetheless felt that the trends observed and conclusions 
drawn remain true. 
 
 



 

 185 

8.2. MODEL DEVELOPMENT 
 

8.2.1. Overview 
 
The geometry and material used for the tube were initially based on that created for the 
moving Band of Pressure model (the tube was later refined following a sensitivity 
analysis), with loading applied via contact with an additional body (the mandrel) which 
passes along the ID of the tube.  To enable the stresses resulting from the tube-mandrel 
interference to be assessed, a contact pair was created from the ID of the tube and outer 
surface of the mandrel.  When the two surfaces intersect the contact pair applies 
compatibility, linking the deflections of both surfaces, from which strain and thence 
stresses are calculated (in the manner described in Chapter 6). 
 
The model is considered isothermal (temperature is not considered and is assumed to be 
constant and uniform), despite the fact that, in addition to material hysteresis, heating 
would result from friction at the sliding contact between mandrel and tube.  This is 
largely due to absence of information on the temperature dependent properties of the 
model, namely: 
 

1. Softening of material due to temperature, altering reverse yielding, 
2. Nature of friction relationship. 

 
In essence this is equivalent to assuming the process is carried out very slowly.  
Although it cannot be verified, it was felt that material softening would have a 
relatively small effect on reverse yielding as the temperature increase would likely be 
modest.  In addition, it was possible that the temperature increase might mitigate the 
Bauschinger effect, counter-acting the conventional softening. 
 
The friction relationship is a closed-loop problem, as without knowing its temperature 
dependency it is impossible to calculate the incremental frictional heating, so the 
iterated friction properties cannot be calculated accurately, etc. 
 
In summary, it was felt that ignoring temperature effects was a sensible compromise for 
this model; they could then be investigated in future studies. 
 
 

8.2.2. Geometry 
 
The tube was dimensioned largely as that in the moving Band of Pressure model, in 
Chapter 7; namely, long enough to capture the significant axial variation implicit 
between those regions near and far from the tube ends.  As in the Band of Pressure 
model, representative dimensions of Wall Ratio, K, of 2.5 and a provisional length, lz, 
of 10lr were selected. 
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As described in Chapter 2, the mandrel consists of three main sections – the forward 
slope, parallel section and rear slope; this is shown in Figure 8.1, along with the critical 
dimensions. 
 

 

Figure 8.1:  Mandrel Geometry 

 

8.2.3. Contact Analysis 
 
It was at this time that contact between two bodies was introduced.  In all of the 
investigations documented earlier in this thesis, loading had been achieved entirely 
through the application of pressure.  Accordingly, contact analysis and its use within 
ANSYS to simulate swage autofrettage, is described here; the ANSYS Contact 
Technology Guide [36] and a textbook by Madenci and Guven [37] were referred to 
during the implementation of the contact analysis. 
 
In general, the initial considerations that must be made of contacting bodies is where 
and when they will contact, and the nature of friction between the two bodies (as 
mentioned in sub-section 8.2.1).  The time and location of contact between the tube and 
mandrel are easily identified, eliminating the first of these concerns.  However 
information is sparse regarding the nature of friction between the bodies, which 
depends on, among other properties, surface finish, contacting materials, lubrication, 
pressure and temperature. 
 
For this reason it was decided to make the friction force proportional to the contact 
pressure (the Coulomb friction model), via a coefficient, µ, of constant value; this is 
defined by Equation (8.1). 
 
 Cohesion+=

= arrrrz σµσ  (8.1) 

 
This type of friction was defined within ANSYS, selecting the isotropic variant.  
O’Hara [9] used a value for µ of 0.015, but Bihamta, Movahhedy and Mashreghi [38] 
suggest a higher value, 0.05 ≤ µ ≤ 0.18.  However, to allow comparison with O’Hara’s 
results, an initial value of µ = 0.015 was chosen.  O’Hara does not specify a value for 
cohesion, so it was set as zero.  For comparison, in the case of a lubricated sliding 
contact between two surfaces of hardened steel, µ ≈ 0.05-0.15 [39]. 

θMF θMR 

l ll 

rM 
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It was then necessary to determine the type of contact, based on the relative rigidities of 
the contacting bodies (both material and geometry based).  The options are either 
Rigid-Flexible (R-F), where the rigid body is non-deformable, or Flexible-Flexible (F-
F).  The use of an R-F contact is not realistic as, although the mandrel is stiffer (both its 
material and geometrically), it still deforms due to the contact pressure.  Accordingly F-
F contact was selected, in which special elements are added to the contacting surfaces 
to detect the contact and enforce compatibility between the boundaries. 
 
ANSYS contains three contact models: node-node, node-surface and surface-surface.  
Of these, only the surface-surface contact type is suitable as the mandrel and tube 
surfaces will undergo a large amount of sliding during contact.  Node-node contacts are 
not suitable when a large amount of sliding will occur, and the geometry of the two 
bodies is not suitable for a node-surface contact. 
 
F-F analyses may be of two forms: asymmetric and symmetric.  In the asymmetric case 
“target” elements are applied to one boundary, and “contact” elements to the other.  
The choice is not always obvious (section 3.5 of the ANSYS Contact Technology 
Guide gives several criteria to inform the decision), but generally the stiffer boundary 
would be defined as the target surface.  Indeed, in an R-F contact, the rigid boundary 
would be the target surface.  Symmetric analysis requires that both boundaries are 
designated both target and contact, which is required if the choice of target/contact is 
not clear, and/or excessive penetration occurs at the contact surface. 
 
While it was recognised that the mandrel is stiffer than the tube (in terms of both 
geometry and material), it was not apparent whether the difference was enough to 
justify an asymmetric contact, and would need to be tested.  Two cases were run using 
the initial values (for the contact pair, model and geometry) described in section 8.3; 
the first used asymmetric contact (with the mandrel designated the target, the tube the 
contact), the second used symmetric contact.  TARGE169 and CONTA172 elements 
were used to mesh the target and contact surfaces, respectively, using the same number 
of divisions applied to the tube ID and mandrel surfaces.  They are each 3-node line 
elements, and are the optimum elements with which to mesh the boundaries of the 8-
node PLANE183 elements used within the tube and mandrel. 
 
The test showed that contact pressure and equivalent plastic strain were slightly 
(approximately 0.75%) higher in the symmetric case than in the asymmetric case.  This 
was due to the zero penetration condition applied to the tube by its designation as a 
target.  Residual hoop stresses were also greater in magnitude at the ID in the 
symmetric case, reflecting the slightly larger initial plastic strains.  Processor time 
increased to 1,348 s for the symmetric case, compared to 1,275 s for the asymmetric 
case; this is a 5.8% increase, although the total time taken would lengthen by a ratio of 
effectively half this value, as the ANSYS solution stage was observed to be disc-bound 
for approximately 50% of the time. 
 
Given the importance of accurate calculation of initial deformation to this study, it was 
felt that it warranted the small increase in solution time required for the use of 
symmetric contacts. 
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The remainder of the settings for the contact pair are specified through two methods: 
 

1. Defining a set of “real” constants, and associating the contact/target elements 
with them, 

2. Applying KEYOPTs to the contact elements. 
 
The properties specified via KEYOPTs are summarised in Table 8.1, with those values 
changed from the default are shown in bold text.  Section 3.8.2, of the ANSYS Contact 
Technology Guide [36], details the full range of properties that may be specified via 
KEYOPTs, for all contact algorithms. 
 

KEYOPT  Description Setting 
1 Selects DOF 0 – UX and UY. 
2 Contact algorithm 0 – Augmented Lagrangian. 
3 Stress state when super-element is 

present 
0 – no super-elements present. 

4 Location of contact detection point 0 – Gaussian points. 
5 CNOF/ICONT adjustment – initial 

gap or penetration reduction. 
3 – Either closes the initial gap or reduces 
penetration, to enhance conditioning. 

5 CNOF/ICONT adjustment – initial 
gap or penetration reduction. 

0 – bodies are well constrained so do not 
require restraint from the contact, and 
contact is made/broken smoothly. 

6 Contact stiffness variation 1 – Make a nominal refinement to the 
allowable stiffness range, to allow 
stiffness variation from KEYOPT(10) 
more latitude. 

7 Element level time increment control 0 – automatic time stepping is activated, and 
contact status is steady. 

8 Asymmetric contact selection 0 – no automatic selection. 
9 Effect of initial penetration or gap 0 – Include both initial geometrical 

penetration or gap and offset. 
10 Contact stiffness update 2 – update stiffness every equilibrium 

iteration (entire movement is modelled by 
one load step). 

11 Beam/shell thickness effect 0 – No such elements present. 
12 Behaviour of contact surface 0 – Standard (non-rough, non-bonded, may 

separate). 

Table 8.1:  Contact Parameters specified via KEYOPTs 

 
The most important setting made via the KEYOPTs is the selection of contact 
algorithm (that used to evaluate compatibility between the contacting boundaries); the 
default Augmented Lagrangian algorithm was selected.  The Augmented Lagrangian 
algorithm iterates using the “penalty method”, and augments contact pressure and 
frictional stress during equilibrium iterations, until the calculated penetration is within 
the specified tolerance.  The penalty method uses “spring” stiffnesses between the 
contacting boundaries to calculate contact properties.  In comparison the Augmented 
Lagrangian method generally leads to better conditioning of the contact, and is less 
sensitive to the magnitude of the contact stiffness.  Section 3.8.3 of the ANSYS Contact 
Technology Guide [36] explains the choice of contact algorithms. 
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Additional parameters were then specified by defining a set of real constants for the 
pair.  The Augmented Lagrangian algorithm (and the penalty method) requires normal 
and tangential contact stiffnesses, FKN and FKT respectively.  The normal stiffness 
influences the amount of penetration between contact and target surfaces, and the 
tangential stiffness influences the amount of slip in sticking contact.  Allowable 
penetration and slip tolerances, FTOLN and SLTO, are used to ensure the contact 
simulation remains within desired behaviour; the values must be within the tolerances 
for the equilibrium iteration to be deemed to have converged. 
 
ANSYS provides default values of 1.0 for both FKN and FKT, which the manual 
describes as appropriate for most cases.  The manual recommends FKN = 1.0 for bulk 
deformation problems, and FKN = 0.1 for those with bending deformation; as swaging 
deforms slightly more than 50% of the tube section, an intermediate value of FKN = 
0.5 was felt appropriate.  In addition, setting KEYOPT(10) = 2 allows the programme 
to update the value each equilibrium iteration, and setting KEYOPT(6) = 1 gives it 
slightly more range when doing so, so it was felt sensible to use the default values 
unless they proved problematic.  The same applies to FTOLN and SLTO; FTOLN 
defaults to 0.1 (i.e. allowable penetration is 10% of the thickness of the underlying 
element), and SLTO defaults to 1% of the mean contact length within the pair.  These 
defaults were retained for the initial analysis. 
 
The Newton-Raphson (controlled using the NROPT command) solver was left with its 
default setting of “Auto”, which allows ANSYS to determine the influence of frictional 
stresses on the overall displacement field and select which algorithm to use.  If the 
influence is small, ANSYS uses a symmetrical solver, if it is large it uses an 
unsymmetrical solver.  The former is less computationally demanding but can require 
many iterations to solve, whereas the latter is more computationally intensive but 
allows for a more timely convergence when large frictional stresses are present.  The 
output of the initial analysis would be checked to determine which algorithm was used; 
if the unsymmetrical was widely used, it would be engaged by default for future 
analyses. 
 

8.2.4. Meshing 
 
The ANSYS Contact Technology Guide suggests the use of similar sized elements for 
each contacting body.  This was borne out by initial tests; not only does this tend to 
yield more consistent stresses along the contact, but also allows a converged solution to 
be reached more rapidly.  With this is mind, it was important to identify the smallest 
length scale (which must be meshed by an integer number of elements) within the 
contacting region, and scale the mesh from this.  The smallest feature was the parallel 
section of the mandrel. 
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8.3. INITIAL COMPARISON WITH O’HARA 

8.3.1. Introduction 
 
O’Hara [9] developed a model of swage autofrettage, the primary aim of which was the 
calculation of the resultant residual stress field – much like the aim of this 
investigation.  His analysis was conducted using ABAQUS, an FEA package capable 
of modelling the required contacts between bodies and non-linear material behaviour.  
Additionally, the solution was made computationally feasible using axial symmetry to 
reduce a three-dimensional geometry to two dimensions, and solved on a Convex C-
220.  The computational abilities of the C-220 far exceeded those of standard PCs at 
the time of publication – for a machine in 1991, 64 bit processors, 256 megabytes of 
RAM and 16 gigabytes of hard disc space was astounding. 
 
The key assumptions incorporated into O’Hara’s model were: 
 

1. Axi-symmetry of the geometry, 
2. Bi-linear behaviour of the material, obeying kinematic hardening. 

 
An equivalent model was constructed in ANSYS, using the dimensions and material 
properties given below (sub-section 8.3.2) along with the contact parameters described 
in sub-section 8.2.3.  The comparison of the two models acted as an initial check of the 
contact model, and then as a first stage of optimisation; the mesh fineness was 
progressively increased, and successive sets of results were assessed relative to each 
other. 
 
 

8.3.2. O’Hara’s Model 
 
O’Hara [9] modelled the swage autofrettage of a relatively short length of steel tube, lz  
= 0.405 m, ra = (0.105/2) m, hence lz/ra = 7.714, of moderate wall ratio, K = 2.257.  The 
mandrel was considered to consist of tungsten carbide, of 2.5% interference (with 
respect to the tube ID) along a parallel section of 0.0063 m (0.12ra).  The forward 
slope, θMF, equalled 1.5°, and the rear slope, θMR, equalled 3.0°.  Axi-symmetry of the 
section was created by using CAX8 (8-node, rectangular axi-symmetric) elements, and 
axial restraint was achieved by constraining the second node from the entrance end, at 
the OD, to radial displacement only.  This represents the practice of clamping a real-
world tube around a groove cut near the entrance end, and hence develops a net axial 
force within the tube.  64 elements are used along the ID of the tube, which morphs to 
32 along the OD, and 6 through the tube wall (306 elements, after modification of mesh 
at the constraint point, rather than 384 had the tube been meshed with rectangular 
elements); Figure 8.2 illustrates the mesh used.  This form of mesh topology allows 
more effective investigation of the stress field near the ID, for a given amount of 
computer memory, than would a mesh of uniform rectangular elements. 
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The interface between the swage and tube was modelled as a “softened contact”; this 
treats the interface pressure as an exponential function of separation, using a starting 
value of 17.2 MPa at a separation of 2.7 µm.  The contact surfaces were modelled as 
“slide lines” – one covering all 64 elements of the ID of the tube, the other the 
contacting surface of the mandrel. 
 
The contact was modelled with a coefficient of friction equal to 0.015, simulating a 
stearate-based high pressure lubricant held at the contact surface in a porous phosphate 
coating.  The contact length on the mandrel is five elements, with the parallel section 
made up of one element. 
 

 

Figure 8.2:  Mesh Diagram of O'Hara's Model 

 
The mandrel is pushed by a solid block, representing a short length (length is half its 
diameter, which in turn is assumed, from Figure 1 in [9], to be slightly less than the ID 
of the tube) of solid steel ram, to the rear surface of which is applied a moving 
constraint.  A coefficient of friction of 0.05 (he states the exact value isn’t particularly 
important as little sliding occurs, and this author agrees with him) is applied between 
the ram and mandrel.  Residual stress data is taken from a radial path at the mid-length 
position of the tube.  Figure 8.3 illustrates these properties. 
 

 

Figure 8.3:  Diagram of O'Hara's Model 

Results 
Path 
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O’Hara’s model also included tapers at both the entry and exit ends of the tube (see 
Figure 8.4); this reflects the actual geometries used in the workshop during swaging 
operations to make the process more readily achievable, primarily by easing the 
alignment of the mandrel with the tube.  The slopes would somewhat alter the 
simulated driving force, and would potentially make solution of the contact pair more 
easily achieved, but would have little or no effect on the residual stresses developed at 
the mid-length position.  For this reason, these slight tapers were omitted from the 
ANSYS model, but it was recognised they may have an effect if driving force were to 
be studied.  Also, solution of the contact pair was achieved without difficulty. 
 
One last point is that O’Hara does not specify the length of the short taper at the entry 
end of the tube, making a precise like for like comparison impossible.  Normalisation 
of the final radius at the exit, rexit, end w.r.t. ra yields rexit/ra = 1.0126, and the 13 mm 
length of its taper is approximately 1/32nd of the section length or two elements in the 
O’Hara model. 
 

 

Figure 8.4:  Taper Details 

 
As stated, O’Hara used a bi-linear kinematic hardening material of yield stress, σY0, 
equalling 1,195 MPa, which hardened to 1,332 MPa at a plastic strain of 0.0368.  
Young’s Modulus and Poisson’s ratio are not given, but are assumed to be 209 GPa and 
0.3, respectively.  The stress values equate to a plastic modulus, H, of (1,332 - 
1,195)*106/0.0368 = 3.723 GPa, or E/H = 56.14. 
 
The mandrel material is stated only as being Tungsten Carbide, and no mention is made 
of yielding (which would not be expected for a reusable mandrel), so it is assumed the 
mandrel behaves elastically.  The following properties: Young’s Modulus, Em = 500 
GPa, Poisson’s ratio, νm = 0.24.  Different sources state a range of values for the 
Young’s Modulus of Tungsten Carbide (450-650 GPa and 668.35-713.82 GPa), so an 
intermediate value of 500 GPa was used. 
 
The motion of the mandrel is achieved by applying a moving constraint to the rear of 
the ram, which in turn moves the swage.  O’Hara adds an extra constraint to prevent 
free body motion of the swage as it exits the tube. 
 
560 time increments were used to simulate the progression of the mandrel through the 
tube – as with the ANSYS analyses described earlier, O’Hara states that this definition 
of time is merely to control the solution process, not to dictate rate effects, and as such 
the solution is termed quasi-static. 

13 mm 

0.66 mm 1.5° 

Short 
Taper 

Entry End Exit End 
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8.3.3. ANSYS Model 

8.3.3.1. Geometry 
 
To ensure a meaningful comparison, the ANSYS model was dimensioned to the same 
ratios as that used by O’Hara; specifically, this meant that the values of wall ratio, K, 
length ratio, lz/ra, length of parallel section of mandrel, l ll, and the mandrel’s forward 
and rear slopes, θMF and θMR, were matched.  Figure 8.5 shows the mandrel dimensions 
used; as the lengths of the sloped sections are not stated by O’Hara, they are terminated 
when the radius reduces to ra. 
 

 

Figure 8.5:  Mandrel Dimensions 

 
The tapers featured in O’Hara’s model, at the tube entrance and exit were omitted; they 
are used primarily to align the mandrel with the tube when it is swaged, which is not 
strictly needed in an FE model due to the alignment and constraints present.  The tapers 
would have a secondary effect on mandrel driving force and residual stresses within the 
tube, but they are thought to be of very small magnitude. 
 
It was also felt that the inclusion of a short section of ram, to apply the axial force to 
the mandrel, would have little or no effect.  Given the stiffness of the mandrel, it was 
thought that applying a uniform displacement directly to its rear surface (such that it 
moves and remains plane) would be indistinguishable from applying it via the ram. 
 
To determine the influence of the ram, the analyses were run twice; once with ram 
section, once without (residual hoop stresses from both cases are compared in Figure 
8.13).  Whilst the presence of the ram is of little consequence when replicating the 
mesh used by O’Hara on a modern computer, computational load increases with 
increased mesh fineness.  Any computer model is a compromise between precision and 
speed of solution, and any modification that reduces complexity, and helps improve the 
compromise, must be sought. 
 
The ram-mandrel contact was specified as asymmetric as both surfaces are flat 
(minimising penetration) and the mandrel is noticeably stiffer than the ram.  In 
addition, as yielding was unexpected at the interface (and none was observed, and the 

l ll = 0.12ra 

ra ra 

1.5° 3° 

1.025ra 
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stresses were well below the yield stress), there was not the same requirement to 
minimise penetration as there was at the tube-mandrel interface.  The Augmented 
Langrangian algorithm was again used, configured as at the tube-mandrel interface 
apart from setting FKN to 0.1 as no yielding was expected. 
 

8.3.3.2. Mesh 
 
The tube, mandrel and ram were meshed with PLANE183 elements.  A mapped 
meshed was applied to the mandrel, allowing continuous horizontal and vertical lines of 
elements that followed the form of the mandrel. 
 
To correctly model the “corners” of the mandrel, it was necessary to ensure that a node 
was present at each.  These could not be mid-side nodes (before deformation, elements 
are quadrilateral), meaning the parallel section of the mandrel would have to be meshed 
with an integer number of elements.  This element size, normalised with respect to ra, is 
given by the (normalised) length of the parallel section divided the number of elements 
along it: 
 

 
llAx

ll
El El

l
l

−

=  (8.2) 

 
lEl is then used to scale the elements within the rest of the mandrel, ram and tub, as 
similarly sized elements are one of the key requirements for an accurate contact 
analysis.  The number of radial and axial elements in the tube is hence determined by 
the results of the following, rounded to the nearest integer: 
 

 
El

z
Ax

El

ab
Rad l

l
El

l

rr
El =−= ,  (8.3) 

 
Due to “top-down” approach used to create the model, it was decided to mesh the tube 
with rectangular elements; the uniformity lent itself well to scaling the mesh via 
scripting using APDL, allowing the sensitivity analysis to be automated.  While not as 
efficient as the mesh used by O’Hara (requiring 640 rather than 306 elements), the 
mesh would be no less accurate.  The ram was also meshed with rectangular elements. 
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Figure 8.6:  Mesh Sizing Diagram 

 

8.3.3.3. Constraint 
 
The tube was constrained axially in a similar manner to O’Hara’s model, via a node on 
the OD 1/32nd of lz from the entry end.  However it was found that when finer meshes 
were used, large deformation of the tube resulted around the constrained node.  To 
avoid this, the nodes along 1/32nd of the OD were constrained – a length equal to the 
edge of an element at the OD of O’Hara’s model.  This prevented large deformation 
while still localising the constraint force to a similar area. 
 

8.3.3.4. Material 
 
The tube material was specified to match that used by O’Hara as closely as possible (as 
stated in sub-section 8.3.2, he does not specify the elastic properties of the material), as 
was that of the mandrel.  The ram material was specified as steel (again, Er = 209 GPa, 
νr = 0.3) with a yield stress of 600 MPa and a plastic modulus equal to 5% of it is 
Young’s Modulus (Hr = 10.45 GPa).  These values are summarised in Table 8.2. 
 
The analysis was specified as a single load step broken down into a number of “sub-
steps”, which are synonymous with the time steps described in O’Hara’s report.  
Dynamic effects are not implied, and such steps merely serve to ensure that the 
progression of the mandrel through the ID of the tube is analysed sufficiently 
frequently enough to capture the plastic response of the tube accurately.  To achieve 
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this, the analysis is initially set to use 5,000 sub-steps; automatic time-stepping is 
employed to dynamically vary this throughout the solution between 1,000 and 10,000 
according to the state of the model at a given time in the solution.  The number of sub-
steps effectively sets bounds on the size of the time increments applied; in this case the 
size is bounded between 1/1,000th and 1/10,000th of the applied time span.  ANSYS 
also employs equilibrium iterations between these sub-steps to achieve a converged 
solution, but sub-steps are the primary mechanism of ensuring the solution is analysed 
at an appropriate granularity. 
 
The analysis of mesh fineness sensitivity was conducted by varying the number of 
elements along the parallel section of the mandrel from one to seven, and scaling the 
meshes for each component using the resultant element edge length. 
 

8.3.3.5. Summary 
 
The following tables summarise the various properties used in O’Hara’s analysis: 
 

1. Table 8.2 contains the tube, mandrel and ram material properties, 
2. Table 8.3 contains the geometrical properties,  
3. Table 8.4 contains the contact parameters. 

 
Property Value  Property Value  Property Value 

Et 209 GPa  Em 500 GPa  Er 209 GPa 
νt 0.3  νm 0.24  νr 0.3 
σY0t 1195 MPa  σY0m n/a  σY0r 600 MPa 
Ht 3.723 GPa  Hm n/a  Hr 10.45 GPa 

Table 8.2:  O'Hara Comparison Material Properties 

 
Property Value 

K 2.257 
lz 7.714ra 

Interference 2.5% 
θMF 1.5° 
θMR 3.0° 
l ll 0.12ra 

Table 8.3:  O'Hara Comparison Geometric Properties 

 
Property Value  Property Value 
Friction 0.015  Friction 0.05 

Normal Contact 
Stiffness, FKN 

0.5 
 Normal Contact 

Stiffness, FKN 
0.1 

Normal Penetration 
Tolerance, FTOLN 

0.1 
 Normal Penetration 

Tolerance, FTOLN 
0.1 

     
Tube-Mandrel Contact  Ram-Mandrel Contact 

Table 8.4:  O'Hara Comparison Contact Properties 
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8.3.4. Results 
 
Below are plotted the residual radial (Figure 8.7), hoop (Figure 8.8), axial (Figure 8.9) 
and equivalent (Figure 8.10) stresses; seven sets of results (from meshes of increasing 
fineness) are plotted against those calculated by O’Hara. 
 
O’Hara’s results are reproduced from Figure 2 in his paper.  While this was done as 
accurately as possible, it is a source of potential error.  In addition, it appears that the 
original graph was slightly mis-plotted as the radial positions of some near-OD results 
seem too small.  This is most noticeable in the radial stress case (Figure 8.7). 
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Figure 8.7:  Residual Radial Stresses at mid-length resulting from Swage Autofrettage, as mesh 
fineness varies, compared with O’Hara’s results 
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Figure 8.8:  Residual Hoop Stresses at mid-length resulting from Swage Autofrettage, as mesh 
fineness varies, compared with O’Hara’s results 
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Figure 8.9:  Residual Axial Stresses at mid-length resulting from Swage Autofrettage, as mesh 
fineness varies, compared with O’Hara’s results 
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Figure 8.10:  Residual Equivalent Stresses at mid-length resulting from Swage Autofrettage, as 
mesh fineness varies, compared with O’Hara’s results 

 

8.3.5. Discussion 
 
Inspection of the solution monitoring output from ANSYS revealed that the progression 
was consistent and achieved within an acceptable number (typically between one and 
three for ElAx-ll = 1, rising to between seven and nine for ElAx-ll = 7) of equilibrium 
iterations per sub-step.  This indicates that the model is generally specified well, in 
particular the contact parameters and number of sub-steps specified.  As would seem 
logical, the number of equilibrium iterations is to some degree proportional to the 
number of axial elements in the tube (ElAx); the motion of the mandrel must be 
simulated at enough locations to allow each element to accurately experience the 
applied deflection.  The exact number of equilibrium iterations will depend on the 
number of sub-steps specified. 
 
Additionally, the fact that the number of equilibrium iterations is fairly consistent 
suggests that the solution proceeds smoothly without intermittent difficulties, such as 
excessive penetration. 
 
During processing, ANSYS set the Newton-Raphson to “Full” (which uses a symmetric 
matrix) at solution time, indicating frictional effects did not alter the displacement field 
sufficiently to require an unsymmetrical matrix.  As the coefficient of friction for the 
tube-mandrel contact was low (0.015), the Newton-Raphson options were left as 
“Auto”; future cases may involve higher coefficient values, which may then affect the 
displacement field sufficiently to make an unsymmetrical matrix necessary. 
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In terms of mesh sensitivity, the lowest mesh fineness (ElAx-ll = 1) set of results appear 
quite similar to those calculated by O’Hara; as the number of elements along the 
parallel section of the mandrel was increased, the four sets of residual stress data 
converge relatively quickly.  The relative error of residual hoop stress at mid-length on 
the ID, a key indicator of the degree of pre-stressing applied, is plotted in Figure 8.11. 
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Figure 8.11:  Relative Error of Residual Hoop Stresses at mid-length on the ID 

 
Although relative error does not appear to decrease asymptotically to zero, when the 
residual hoop stresses for values of ElAx-ll ≥ 4 are replotted (Figure 8.12) for clarity, the 
sets show very close agreement. 
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Figure 8.12:  Residual Hoop Stresses at mid-length resulting from Swage Autofrettage, as mesh 
fineness varies, compared with O’Hara’s results, ElAx-ll ≥ 4 

 
On this basis, ElAx-ll = 4 was selected as a suitable initial value to use for the sensitivity 
analyses that would follow.  This would be subject to re-evaluation if element sizing 
did subsequently appear to be non-optimal. 
 
Using ElAx-ll = 4, residual hoop stresses were compared for the cases with and without 
the driving ram.  As may be seen from Figure 8.13, the results are almost identical, but 
the solution time increased by approximately 10% when the ram was present (11.75 
hours to 13 hours).  For this reason, the ram was omitted from future models.  While 
the ram could potentially be added in a less computationally demanding manner, it was 
felt that the possible extra precision would be meaningless without full knowledge of 
the exact mandrel dimensions.  For example, not knowing the precise lengths of the 
mandrel for which the slopes decrease in radius below ra would have a potentially 
greater effect on mandrel deformation given the greater stiffness of the mandrel 
material. 
 
If the ANSYS swage model were used to investigate a real world example where all 
geometrical details were known, it would then be appropriate to model the ram and all 
such features. 
 



 

 202 

-1.25

-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Normalised Radial Position, (r  - r a )/(r b  - r a )

N
o

rm
al

is
ed

 H
o

o
p

 S
tr

es
s,

 σ
θ
/ σ

Y
0

With Without
 

Figure 8.13:  Residual Hoop Stresses at mid-length resulting from Swage Autofrettage,  with and 
without ram, from ANSYS model with ElAx-ll = 4 

 
As with any numerical analysis, it is always desirable to increase the number of sub-
divisions employed; however, due to the large number elements required to mesh the 
long length of tube, the progressive solution and contact analysis, swage autofrettage 
takes considerably longer to solve than hydraulic autofrettage. 
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8.4. SENSITIVITY ANALYSIS 

8.4.1. Introduction 
 
After completing the initial comparison with O’Hara’s results, and the behaviour of the 
model had been demonstrated to be representative of swage autofrettage, it was then 
necessary to ensure that results obtained during the parametric analysis were 
representative of those expected to be found in a real swaged tube.  Specifically, this 
meant checking that the section length was sufficient to allow consistent results to be 
gathered in the mid-section zone, and that enough sub-steps were being used to prevent 
axial irregularity of the calculated properties. 
 
Two sets of sensitivity analyses were conducted to investigate these issues, each of 
which are described below. 
 

8.4.2. Model Parameters 
 
The dimensions were largely as used in the comparison with O’Hara’s results, with the 
exception of wall ratio and tube length.  To be more consistent with previous results, 
wall ratio, K, of 2.5 was selected, and the length of the tube was normalised with 
respect to its inner radius, ra.  Both the sensitivity analyses described below, utilised a 
swage geometry identical to that used in the O’Hara comparison. 
 
Whilst it was expected all stress and strain components would show axial variation, it 
was felt that axial components would show the most variation.  This would be caused 
mainly by two factors: 
 

1. Axial stresses must become zero at the tube ends, as no force acts upon them, 
2. Hoop and radial properties are strongly linked, as demonstrated for plane 

sections by the equilibrium equations (2.1) and (7.3). 
 
For this reason, as well as assessing the residual properties at mid-length, axial stresses 
were recorded along four axial paths to allow their axial variation to be investigated.  
The locations of the axial paths are shown in Figure 8.14. 
 

 

Figure 8.14:  Axial Data Path locations within tube 

rN = 0 
rN = 0.3 

rN = 0.1 

rN = 0.5 

Tube Axis 
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8.4.3. Stage 1 – Tube Length Analysis 
 
To determine what length of tube was required to generate suitable mid-length values 
of residual stress, required during a parametric analysis of the swage autofrettage 
process, the tube section length was systematically altered and residual stresses were 
compared.  This way, the results of a parametric analysis could be confidently deemed 
free of “end effects” that are observed at and near the ends of a swage autofrettaged 
tube. 
 
Tube lengths, lz, of 5ra, 10ra, 15ra, 20ra, 25ra and 30ra were used. 
 

8.4.4. Results 1 – Tube Length Analysis 
 
Residual hoop and axial stresses from the tube length analysis are plotted below in 
Figure 8.15 and Figure 8.16, respectively. 
 
Residual axial stresses, in the region 0 ≤ l ≤ lz, for the tube length analysis are shown 
below for the rN = 0 path (Figure 8.17), rN = 0.1 path (Figure 8.18), rN = 0.3 path 
(Figure 8.19) and rN = 0.5 path (Figure 8.20), 
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Figure 8.15:  Residual Hoop Stresses at mid-length resulting from Swage Autofrettage, as tube 
section length varies 
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Figure 8.16:  Residual Axial Stresses at mid-length resulting from Swage Autofrettage, as tube 
section length varies 
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Figure 8.17:  Residual Axial Stresses along axial path at rN = 0, resulting from Swage Autofrettage, 
as tube section length varies 
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Figure 8.18:  Residual Axial Stresses along axial path at rN = 0.1, resulting from Swage 
Autofrettage, as tube section length varies 
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Figure 8.19:  Residual Axial Stresses along axial path at rN = 0.3, resulting from Swage 
Autofrettage, as tube section length varies 
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Figure 8.20:  Residual Axial Stresses along axial path at rN = 0.5, resulting from Swage 
Autofrettage, as tube section length varies 

 

8.4.5. Discussion 1 – Tube Length Analysis 
 
Inspection of the mid-length residual stresses (Figure 8.15 and Figure 8.16) reveals a 
visible difference between results from tube lengths of 5ra and 10ra, and only very 
slight differences between those from tube lengths of 10ra and 15ra. 
 
The residual axial stresses (Figure 8.17 to Figure 8.20), taken along axial paths, show a 
similar pattern; a tube length of 5ra shows no stable central region where consistent 
values prevail for a certain length.  Results from a tube length of 10ra also do not show 
a consistent central band, but the rates of change of axial stress are decreased.  Results 
from a tube length of 15ra do show a consistent central band. 
 
For this reason, a tube length of 15ra was selected as suitable for generation of results 
that may confidently be assumed to be representative of mid-length properties.  This 
value was used for all subsequent analyses, including the sub-step optimisation that is 
presented below. 
 
In all cases (Figure 8.17 to Figure 8.20) residual axial stresses are observed to become 
zero at the free ends; a useful check that the applied constraints behaved as was 
intended.  Figure 8.17 shows negative (compressive) residual axial stresses over much 
of the length of the ID (for all tube lengths), but small regions around the end show 
positive (tensile) stresses.  This may be explained by Figure 7.20; as the ends of the 
tube are not constrained in the same way the mid-length section is, tensile axial 
deformation of the near ID region does not occur at the tube ends. 
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8.4.6. Stage 2 – Sub-Step Analysis 
 
The influence of the number of sub-steps specified was investigated by varying the 
minimum, maximum and initial number of sub-steps.  The number of sub-steps the load 
step is divided into, which is potentially of importance in a progressive analysis such as 
in this swage model.  The number of sub-steps specified is based on the number of 
element lengths moved by the mandrel as it passes through the tube undergoing swage 
autofrettage (a distance of lz + lm).  This number is then scaled using a parameter 
(termed PS below), which was iterated through the values of 0.2, 0.4, 2 and 4. 
 
The number of element lengths moved by the mandrel is given by the following: 
 

( )
z

mzAx
AxEl l

llEl
N

+⋅=−  

 
The number of sub-steps specified is then given by the following: 
 
Minimum sub-steps = ElN-Ax * PS 
Maximum sub-steps = ElN-Ax * 10 * PS  
Initial sub-steps = ElN-Ax * 5 * PS 
 
These numbers of sub-steps were applied to the swage autofrettage of a tube of section 
length equal to 15ra. 
 
 

8.4.7. Results 2 – Sub-Step Analysis 
 
Residual hoop (Figure 8.21), axial (Figure 8.22) and equivalent (Figure 8.23) stresses 
are plotted below for the values of PS specified.  Residual radial stresses were 
considered similar enough not to warrant plotting. 
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Figure 8.21:  Residual Hoop Stresses at mid-length resulting from Swage Autofrettage, as time 
steps vary 
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Figure 8.22:  Residual Axial Stresses at mid-length resulting from Swage Autofrettage, as time 
steps vary 
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Figure 8.23:  Residual Equivalent Stresses at mid-length resulting from Swage Autofrettage, as 
time steps vary 

 

8.4.8. Discussion 2 – Sub-Step Analysis 
 
Both residual hoop and equivalent stresses at the mid-length position (Figure 8.21 and 
Figure 8.23) show almost no variation with the number of sub-steps used, and hence 
are not a useful measure of their effect. 
 
Residual axial stresses at the mid-length position (Figure 8.22) do show some variation 
at the ID between PS = 4 and the other values; it is logical that differences are most 
apparent at the ID as this region is adjacent to the localised loading from the mandrel. 
 
It was observed that the number of sub-steps used by ANSYS during the solution 
procedure was constant at approximately 445 for the PS = 0.2 and 0.4 cases, which 
explains the similarity between the two sets of results.  However, for the PS = 2 and 4 
cases the number of sub-steps was only slightly higher than the specified minimum; 
this explains why the solution time for the PS = 4 case was approximately twice that for 
the PS = 2 case. 
 
Ideally, PS = 4 would be used in future solutions, meaning that incremental movements 
of the mandrel would be 0.25 element lengths (lEl), hence its parallel section would take 
ElAx-ll * 4, or 16 sub-steps to pass.  However, the computer used to solve the cases 
presented in this chapter was a shared resource; for this reason, it was necessary to 
select PS = 2 to ensure the required results could be obtained within the time available.  
It is felt that the resultant loss of accuracy was acceptable, as variation was effectively 
only present in the residual axial stresses calculated. 
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Based on these findings, it was decided to specify 10ElN-Ax sub-steps initially, with 
2ElN-Ax sub-steps as the minimum allowable and 20ElN-Ax as the maximum allowable.  
While this would alter the exact values of results, it was felt that the change would be 
small enough such that trends could be meaningfully identified during parametric 
analyses. 
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8.5. PARAMETRIC STUDY 1 – PARALLEL SECTION 

LENGTH INVESTIGATION 

8.5.1. Overview 
 
The first parameter to be investigated was the length of the parallel section of the 
mandrel, l ll; intuitively a longer section would increase the depth of deformation 
resulting from the swaging operation, but it was not clear what other effects would 
manifest. 
 
To achieve this, a series of swaging simulations were run between which l ll was varied 
whilst all other parameters remained static and as determined by section 8.4.  The 
following values of l ll were used: 0.25l ll-0, 0.5l ll-0, 0.75l ll-0, 1l ll-0, 1.5l ll-0, 3l ll-0 and 4.5l ll-0, 
where l ll-0 is the value of l ll used previously, equal to 0.12ra. 
 

8.5.2. Results 
 
Figure 8.24 plots the depth of overstrain (plastic deformation) achieved against the 
parallel section length, l ll, of the mandrel used. 
 
Autofrettage (i.e. values taken from the mid-length position of the tube, when the 
centre of the parallel surface of the mandrel is coincident) values are shown in Figure 
8.25, Figure 8.26, Figure 8.27 and Figure 8.28, which respectively show radial, hoop 
and axial stresses and plastic hoop strains through the tube wall. 
 
Residual values are shown in Figure 8.30, Figure 8.31 and Figure 8.32, which 
respectively show hoop and axial stresses and plastic hoop strains through the tube 
wall. 
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Figure 8.24:  Overstrain Depth, at mid-length, as Parallel Section Length, lll, varies 
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Figure 8.25:  Autofrettage Radial Stresses, at mid-length, as Parallel Section Length, lll, varies 
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Figure 8.26:  Autofrettage Hoop Stresses, at mid-length, as Parallel Section Length, lll, varies 
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Figure 8.27:  Autofrettage Axial Stresses, at mid-length, as Parallel Section Length, lll, varies 
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Figure 8.28:  Autofrettage Plastic Hoop Strains, at mid-length, as Parallel Section Length, lll, varies 

 
 

-0.015

-0.010

-0.005

0.000

0.005

0.010

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Normalised Radial Position, (r  - r a )/(r b  - r a )

P
la

st
ic

 A
xi

al
 S

tr
ai

n
, ε

zp

0.25

0.50

0.75

1.00

1.50

3.00

4.50

 

Figure 8.29:  Autofrettage Plastic Axial Strains, at mid-length, as Parallel Section Length, lll, varies 
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Figure 8.30:  Residual Hoop Stresses, at mid-length, as Parallel Section Length, lll, varies 
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Figure 8.31:  Residual Axial Stresses, at mid-length, as Parallel Section Length, lll, varies 
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Figure 8.32:  Residual Plastic Hoop Strains, at mid-length, as Parallel Section Length, lll, varies 
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Figure 8.33:  Residual Plastic Axial Strains, at mid-length, as Parallel Section Length, lll, varies 
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8.5.3. Discussion 
 
As was expected, the longer the parallel section length, the greater the depth of 
overstrain (Figure 8.24). 
 
Contact pressure (equal to -σr) was observed to decrease (Figure 8.25) as l ll increased, 
due to the resultant widening of the yielded band.  This decreases the relative stiffness 
of the portions of tube that immediately border the section of tube over the centre of the 
parallel section, reducing the radial support transferred by shear stress from these 
neighbouring portions. 
 
Autofrettage hoop stresses (Figure 8.26) near the ID indicate greater shear loading for 
shorter values l ll as the region generates a greater net outwards force.  This may be 
compared with the observations made when the pressure band width was varied (sub-
section 7.5.3).  As observed for the contact pressures, the reduced relative stiffness of 
the neighbouring portions of the tube for longer values of l ll reduce the transferral of 
radial force through shear stresses. 
 
Autofrettage axial stresses (Figure 8.27) near the ID become more negative for short 
values of l ll.  This occurs because smaller radii of curvature arise (due to the outward 
deflection of the tube around the mandrel) for shorter l ll causing greater compressive 
axial stresses at the ID. 
 
Very similar residual hoop stresses are observed at the ID, apart from the shorter values 
of l ll – indeed, the value of l ll-0 seems optimum (that used in [9]).  This appears to be 
due to the values of residual axial stress (σz) at the ID; from the von Mises yield 
criterion, the maximum residual hoop stress for a given residual equivalent stress is 
achieved when σz is the mean of σr and σθ.  Table 8.5 compares the measured values of 
σz with the mean of σr and σθ; the closest match is observed when l ll/l ll-0 = 1. 
 
 

lll/lll-0 Residual Axial 
Stress, σz 

Mean Residual Radial and 
Hoop Stress, (σr + σθ)/2 

% Difference, w.r.t. (σr 
+ σθ)/2 

0.25 -0.8823 -0.5303 -66.38 
0.50 -0.7826 -0.5542 -41.21 
0.75 -0.6426 -0.5671 -13.32 
1.00 -0.5028 -0.5649 10.99 
1.50 -0.3781 -0.5485 31.06 
3.00 -0.3464 -0.5413 36.00 
4.50 -0.4193 -0.5524 24.09 

Table 8.5:  Residual Axial Stress Comparisons (stress values are normalised w.r.t. σY0) 

 
The optimum value of l ll is likely to depend on several factors such as tube wall ratio 
(K), mandrel slopes, mandrel-tube interference and material used. 
 
The magnitude of residual hoop stresses (Figure 8.30), for the cases l ll = 3l ll-0 and 4.5l ll-
0, in the region 0 ≤ rN ≤ 0.3 drop due to an increasingly positive peak in residual axial 
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stresses (Figure 8.31), resulting from compressive plastic axial strain.  The plastic axial 
deformation occurs, for these cases, on the rear surface of the mandrel, due to the 
greater shear stresses that exist there for larger values of l ll.  The changes in residual 
hoop stresses decrease the summed residual compressive hoop force, lessening the 
efficacy of autofrettage. 
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8.6. PARAMETRIC STUDY 2 – FRICTION COEFFICIENT 

INVESTIGATION 
 

8.6.1. Overview 
 
The second parameter to be investigated was the coefficient of friction, µ, between the 
mandrel and the tube, for which a value of 0.015 had been used until this stage.  
According to the Coulomb model of friction used, the shear stress (σrz) at the surface 
when sliding occurs is given by Equation (8.1).  This constitutes a boundary value for 
the shear stress field within the tube during the swaging procedure, hence the shear 
stress field will vary as friction coefficient is changed, in turn influencing the other 
stress components. 
 
To achieve this, a series of swaging simulations were run between which µ was varied 
whilst all other parameters remained static and as determined by section 8.4.  The 
following values of µ were used: 0, 0.015, 0.03, 0.045, 0.06, 0.12, 0.18 and 0.24. 
 
 

8.6.2. Results 
 
Autofrettage stresses are shown in Figure 8.34, Figure 8.35 and Figure 8.36, which 
respectively plot radial, axial and shear components through the tube wall. 
 
Residual hoop and axial stress components are plotted in Figure 8.37 and Figure 8.38, 
respectively. 
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Figure 8.34:  Autofrettage Radial Stresses, at mid-length, as Coefficient of Friction varies 
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Figure 8.35:  Autofrettage Axial Stresses, at mid-length, as Coefficient of Friction varies 
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Figure 8.36:  Autofrettage Shear Stresses, at mid-length, as Coefficient of Friction varies 
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Figure 8.37:  Residual Hoop Stresses, at mid-length, as Coefficient of Friction varies 
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Figure 8.38:  Residual Axial Stresses, at mid-length, as Coefficient of Friction varies 

 

8.6.3. Discussion 
 
The depth of overstrain increases slightly when friction coefficient is increased, most 
clearly seen as the radial position of the onset of constant axial stress in Figure 8.38, in 
the region 0.6 ≤ rN ≤ 0.7.  This occurs because shear stresses do not directly cause 
outward deflection of the tube (the strongest influence on the depth of autofrettage), 
and only significantly vary near the ID; Figure 8.36 shows such variation effectively 
limited to 0 ≤ rN ≤ 0.2. 
 
Radial (Figure 8.34) and axial (Figure 8.35) stresses during autofrettage show only 
small variation with change in the friction coefficient.  Particularly, contact pressure (σr 
at ra) remains relatively stable while friction coefficient varies.  Axial stresses generally 
become more positive/less negative as friction coefficient increases, but follow a 
similar trend.  This reflects the increased tensile axial load resulting from a greater 
frictional force. 
 
The shear component of stress during autofrettage shows the greatest variation with 
change in friction coefficient.  The magnitudes of shear stresses at the ID conform to 
the frictional stress between the mandrel and tube, which applies a boundary condition 
of µσr. 
 
For the cases µ = 0.12, 0.18 and 0.24, a drop in magnitude of residual hoop stress is 
observed for 0.02 < rN < 0.17.  This is caused by a similar pattern observed in the 
residual axial stress distribution in the same region; to maintain a similar equivalent 
stress, the differences between stress components must also remain similar.  Hence, for 
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a largely static radial stress, when axial stress increases, so must hoop stress.  The 
fluctuation in axial stress in the tube is likely due to the step change in contact friction 
that occurs when the mandrel breaks contact with a given point on the tube. 
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8.7. PARAMETRIC STUDY 3 – MANDREL SLOPE 

INVESTIGATION 

8.7.1. Overview 
 
The third set of parameters to be investigated was the forward and rear slopes of the 
mandrel, for which initial values of 1.5° and 3.0°, respectively, had been used until this 
stage.  The slopes of the mandrel determine the rate of change of deflection w.r.t. axial 
position which directly affects shear stresses in the deflected region.  Shear stresses in 
turn influence the other stress components. 
 
To achieve this, a series of swaging simulations were run between which a scaling 
parameter PFR was varied whilst all other parameters remained static and as 
determined by section 8.4.  The original slope values of 1.5° and 3.0° (forward and 
rear) were multiplied by PFR, for which the following values were used: 1/3, 2/3, 1.0, 
1.5, 2.0 and 2.5. 
 

PFR 
Forward 
Slope (°) 

Rear Slope (°) 

1/3 0.5 1.0 
2/3 1.0 2.0 
1.0 1.5 3.0 
1.5 2.25 4.5 
2.0 3.0 6.0 
2.5 3.75 7.5 

Table 8.6:  Mandrel Slopes for the range of Scaling Factors (PFR) used 

 

8.7.2. Results 
 
Autofrettage stresses are shown in Figure 8.39, Figure 8.40, Figure 8.41 and Figure 
8.42, which respectively plot radial, hoop, axial and shear components through the tube 
wall. 
 
Residual hoop and axial stress components are plotted in Figure 8.45 and Figure 8.46, 
respectively. 
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Figure 8.39:  Autofrettage Radial Stresses, at mid-length, as Slope Scaling Factor varies 
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Figure 8.40:  Autofrettage Hoop Stresses, at mid-length, as Slope Scaling Factor varies 
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Figure 8.41:  Autofrettage Axial Stresses, at mid-length, as Slope Scaling Factor varies 
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Figure 8.42:  Autofrettage Shear Stresses, at mid-length, as Slope Scaling Factor varies 
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Figure 8.43:  Autofrettage Plastic Hoop Strains, at mid-length, as Slope Scaling Factor varies 
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Figure 8.44:  Autofrettage Plastic Axial Strains, at mid-length, as Slope Scaling Factor varies 
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Figure 8.45:  Residual Hoop Stresses, at mid-length, as Slope Scaling Factor varies 
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Figure 8.46:  Residual Axial Stresses, at mid-length, as Slope Scaling Factor varies 
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Figure 8.47:  Residual Plastic Axial Strains, at mid-length, as Slope Scaling Factor varies 

 

8.7.3. Discussion 
 
Figure 8.39 shows the contact pressure (radial stress at ra) increases as the mandrel 
slopes increase.  This is due to the greater length of tube that is deflected by mandrels 
whose slopes are shallower, which in turn reduces the inward loading of the tube over 
the parallel section of the mandrel by the neighbouring regions (via shear stresses).  
Figure 8.42 shows the intensity of shear stresses decrease with mandrel slope angle. 
 
Figure 8.40 shows that the degree of overstrain (given by the radial location of the peak 
hoop stress in the upper-right quadrant) increases as mandrel slopes decrease, and 
Figure 8.43 also shows the plastic hoop strains increase towards the ID as mandrel 
slopes increase; both result from the more intense shear stresses present, exerting an 
inwards force on the tube around the mandrel parallel section, when greater mandrel 
slopes are used. 
 
In addition, hoop stresses (Figure 8.40) become more negative around the ID as the 
mandrel slopes increase, another indication of the inwards loading by shear stresses 
(compare with discussion of hoop and shear stresses for the Band of Pressure model, in 
sub-section 7.5.3). 
 
Shear stresses, shown in Figure 8.42, show a marked difference compared to those 
observed during the friction coefficient investigation (Figure 8.36).  This highlights the 
difference between those shear stresses arising mostly due to friction, and those largely 
developed due to axial variation of radial deflection. 
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Residual hoop stresses (Figure 8.45) were observed to be static except in the PFR = 1/3 
and 2/3 cases, when the magnitude decreased.  This coincided with residual axial 
stresses becoming less negative (Figure 8.46), limiting the residual hoop stress that may 
be developed for a given equivalent stress. 
 
Figure 8.46 shows significant variation of residual axial stresses near the ID, especially 
for shallower slope values, resulting from different degrees of plastic axial strain 
(Figure 8.47) that had previously occurred in the region.  Comparison with plastic axial 
strains developed during the initial loading of the tube (Figure 8.44) reveals that the 
variation of axial stresses is largely due to the axial deformation that occurs as the tube 
unloads from its loaded state. 
 
 
 

8.8. SUMMARY  
 
Generally, a good match was achieved with O’Hara’s results; for the case of the most 
similar mesh to that used in O’Hara’s analysis, strong likeness was observed between 
the stress distributions calculated by the two models.  This indicates the relevant 
aspects of the swage model developed by O’Hara were incorporated into the ANSYS 
model.  The finer meshes generate results that follow the trends displayed by O’Hara’s, 
and converge relatively quickly; a mesh of effectively four times the linear density of 
that used by O’Hara was judged to produce suitably accurate results. 
 
A tube length of 15ra was found to allow stable mid-length results to be obtained; an 
initial number of 10ElN-Ax sub-steps, with upper and lower limits of 20ElN-Ax and 2ElN-

Ax, respectively, was found to give suitably consistent results while remaining 
computationally feasible.  
 
The length of the parallel section specified for the mandrel had a significant impact on 
axial stress and plastic strain profiles within the tube, both during and following the 
swaging procedure.  It was found that the initial value of l ll-0 = 0.12ra used by O’Hara 
gave the best degree of pre-stressing (compressive residual hoop stresses near the ID), 
although pre-stressing values are relatively consistent apart from the longer parallel 
section cases (l ll = 3.0l ll-0 and 4.5l ll-0).  The optimum value for a given mandrel-tube 
system is likely to depend on several factors such as tube wall ratio (K), mandrel 
slopes, mandrel-tube interference and material used. 
 
Mandrel slopes were also found to have a large influence on the developed stresses.  
Both effect the initial deformation of the tube (the forward slope has the greatest 
influence, as its shallower slope deforms a greater length of tube), but the rear slope 
more directly influences residual stresses due to its creation of residual compressive 
axial stresses near the ID.  Investigation of the effect of the forward and rear mandrel 
slopes independently would reveal more details of these relationships. 
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No investigation was made of the effects of mandrel-tube interference on the 
development of residual stresses, as analysis of the influence of other properties was 
felt to be more beneficial for the understanding of the swage autofrettage process.  
Investigation of the precise effects of varying interference would be a suitable topic for 
future study, especially with the addition of an accurate material model. 
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9. DISCUSSION 

9.1. OVERVIEW 
 
When this study commenced, the process of autofrettage was relatively unexplored in 
terms of finite element analysis.  The two distinct phases of hydraulic autofrettage 
allow it to be more easily tackled (via super-positioning) than the single continuous 
process of swage autofrettage, which is reflected by the distribution of models 
developed for the two methods. 
 
A number of analytical models of hydraulic autofrettage existed, although each was 
limited by the simplifying assumptions which had been incorporated into it.  Crucially, 
accurate material representation was often not possible, which was of particular 
importance when calculating residual stresses; the materials often used for high 
pressure vessels typically display significant non-linearity when unloading from prior 
plastic strain. 
 
Several numerical models of hydraulic autofrettage had also been developed, mostly 
more general in their application than analytical methods.  In addition, adoption of 
numerical means of solution made it possible to introduce accurate material behaviour 
into models. 
 
Despite this, swage autofrettage had not been modelled with accurate material 
behaviour, particularly non-linear unloading (Bauschinger effect); the progressive 
nature and axial variation of the swaging process, the inherent shear stresses that result 
and the contact between the mandrel and tube all conspire to make the process non-
trivial to model.  The only openly published investigation of swage autofrettage, 
modelling only a single case, was that by O’Hara [9], which modelled the material as 
subject only to simplistic bi-linear kinematic hardening. 
 
Once an initial review of existing methods had been made, early work (Chapter 3) 
centred on the implementation and adaptation of the Tresca elastic-plastic solution, and 
assessment of existing models of hydraulic autofrettage that would be suitable for 
comparison with FE-based models of the same that would subsequently be developed.  
Once this was accomplished, research efforts shifted to the development of a series of 
FE models. 
 
Throughout the different stages of development, an FEA package (ANSYS) was 
progressively applied and verified for a series of hydraulic autofrettage scenarios.  In 
the first (Chapter 4), the structural models for a set of tube sections under a range of 
end conditions were developed, using a simplistic bi-linear kinematic hardening 
material.  This allowed the constraint sets to be developed, and the relative error due to 
mesh fineness to be investigated. 
 
Two methods of modelling accurate material behaviour were then investigated, to 
replicate the significant non-linearity exhibited by relevant steels when unloading from 
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prior plastic strain.  The first model (Chapter 5) was quasi-elastic, which allowed the 
desired stress-strain response to be obtained by iterative alteration of elastic properties; 
this worked well in the context of hydraulic autofrettage due to the discrete 
loading/unloading cycle.  However it was recognised that due to its elastic nature the 
material representation could not calculate residual stresses resulting from swage 
autofrettage. 
 
Instead a material routine (USERMAT) was customised (Chapter 6), allowing direct 
control over the stress-strain state and plasticity.  This is applicable in both hydraulic 
and swage autofrettage, and was verified against both spreadsheet data in a uni-axial 
test, and against an existing numerical method in hydraulic autofrettage comparisons. 
 
A swage-like model was then developed (Chapter 7), in which a band of pressure (both 
static and moving) caused the plastic deformation required for autofrettage.  This 
allowed the effect of a shear component on the stress field to be investigated, in the 
absence of frictional effects and without the complexity of a contact analysis.  The 
understanding gained would then be useful when interpreting the results generated 
during simulations of swage autofrettage. 
 
Finally a full model of swage autofrettage was developed (Chapter 8), which included a 
deformable mandrel.  After sensitivity analyses were completed, it was used in a series 
of parametric analyses to investigate the effects of several properties on the resultant 
autofrettage and residual stress field. 
 
 

9.2. CONFIDENCE LEVELS 
 
For any analysis that is made, it is of crucial importance to assess the different sources 
of imprecision so that an objective judgement may be made as to the level of 
confidence in which conclusions drawn from the results should be held.  The principle 
sources are addressed below. 
 
 

9.2.1. Suitability of Analysis Tools 
 
It is felt that the case for the use of numerical methods was clearly made in the opening 
chapters of this thesis, so only the suitability of the selected tools is addressed here.  
Aside from initial implementation of the Tresca elastic-plastic hydraulic autofrettage 
case within Matlab, all numerical analysis presented within this thesis was conducted 
within ANSYS and a spreadsheet application (Microsoft Excel).  Both Matlab and 
Microsoft Excel were readily available, which is the primary reason for their initial 
selection for use. 
 
The conditional operators present within the Matlab programming language provide all 
the features required, for example to detect yield; coupled with the graphing 
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capabilities also present, it makes Matlab a rational choice.  Use of a spreadsheet 
application allows for rapid and interactive manipulation of output values, as well as 
the implementation of some hydraulic autofrettage models. 
 
The choice of the finite element method, as opposed to other numerical methods, is still 
thought to be appropriate.  The presence of non-plane deflection during swage 
autofrettage would make the use of a finite difference model arduous at best, especially 
given the progressive nature of the process.  The boundary element method could have 
been employed, with the possibility of reduced solution time.  However, the 
requirement for non-linear material behaviour would probably have eliminated this 
potential advantage, and it is not known what the effect of the mandrel-tube contact 
would have had on model preparation.  Finally, relatively few BEM tools are available, 
which would have likely required manual preparation of structural equations – time 
consuming and potentially error prone.  Compare this with finite element tools, of 
which several well-developed examples are readily available.  This makes choice of the 
finite element method sensible, as it allows low level structural modelling to be 
conducted by the software package; this in turn reduces the development cost of 
modelling different geometries. 
 
After extensive use of ANSYS, it is the author’s opinion that it was a suitable FEA 
package for the prosecution of the goals of this research.  The combination of both GUI 
operation and scripted batch running allow for rapid model development and 
refinement, and the internal post-processing tools allow results to be extracted with 
reasonable convenience.  The ability to create UPFs added the crucial flexibility that 
was required to simulate general non-linear material behaviour.  While other FEA 
packages may all offer some, or maybe all, of these features, it is felt that they would 
not have been more suitable for this research than ANSYS. 
 
 

9.2.2. Applicability of Models and Boundary Conditions 
 
More fundamental than concerns of precision, it must be ensured that the modelled case 
accurately reflects the true conditions of the physical case that is considered.  In 
addition, it is essential to assess whether the physical case is useful. 
 
The three sets of autofrettage models which were created are enumerated and addressed 
below, based on the above. 
 

9.2.2.1. Hydraulic Autofrettage Models 
 
The four hydraulic autofrettage models consist of three general plane strain cases 
(Plane Strain, Open- and Closed-Ends) and the Plane Stress case.  The Plane stress 
represents a thin sheet, and as such the modelled geometry is close to that in which the 
considered conditions would apply.  The general plane strain cases instead model the 
mid-length position of the tube, but only the Open-Ends case would experience any 
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significant axial variation during autofrettage, due to the short portions at each end of 
the tube not subjected to the applied pressure.  Even then these end sections would be 
removed from the finished tube, practically eliminating any axial variation. 
 
As such, all four cases are felt to represent their respective end conditions.  Of the four, 
it is considered that the Open- and Closed-Ends conditions most closely reflect actual 
conditions generated during hydraulic autofrettage process, as they would be most 
practically sealed. 
 

9.2.2.2. Band of Pressure Model 
 
As described in Chapter 7, the Band of Pressure model was not intended to be truly 
representative of a real autofrettage.  Instead, it was developed to allow swage-like 
loading to be investigated prior to the creation of a swage model.  In this role, it was fit 
for purpose. 
 

9.2.2.3. Swage Model 
 
Conceptually, the swage model may simulate the swage autofrettage of any axi-
symmetric tube, and if so needed it could be expanded into a three-dimensional model 
to allow a non-axi-symmetric tube to be modelled.  The mandrel profile used was that 
described by O’Hara [9], but may be easily adjusted to whatever shape is desired.  Two 
features of O’Hara’s model were omitted: the tapers at the ends of the ID, and the ram 
that was used to drive the mandrel.  The reasons for their omission are explained in 
Chapter 8, and the author still deems this to be a suitable decision as they had 
negligible impact on mid-length stresses and strains. 
 
As noted in the description of swage autofrettage in Chapter 2, it differs substantially 
from hydraulic autofrettage due to the large amount of axial variation present, in 
addition to shear stresses and friction.  This required the length optimisation 
documented in Chapter 8, to ensure the mid-length properties recorded were 
representative of the conditions found along the central band that would be retained 
following post-autofrettage machining. 
 
Although every effort has been made to ensure the materials data used were accurate, 
they are often proprietary in nature and hence are not necessarily fully accurate.  
However, the parametric nature of the model means that it can be rapidly adjusted to 
reflect new parameter values so this is not a major problem.  Overall, it was felt that the 
model is reasonably representative of real world swaging conditions. 
 

9.2.2.4. Overview 
 
The hydraulic and swage autofrettage models, and their boundary conditions, are both 
felt to be suitably representative of their respective processes, although it is recognised 
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that in each case the models could be refined with process-specific information.  Such 
refinement could be accomplished rapidly, given the nature of the models, once precise 
conditions are known. 
 
In particular, post-autofrettage material removal from the ID has not been addressed in 
these studies; hence residual stresses presented here are not fully representative of those 
in finished vessels.  Generally only a small amount of material is removed, so large 
changes in residual stresses are unlikely unless a substantial change of reverse yield 
stress occurs over the removed region.  The cases presented in this thesis utilise either a 
bi-linear kinematic hardening material or the A723 fit, both of which feature a 
consistent reverse yield stress near the ID; as such, it is thought that material removal 
would cause only a small change in the presented residual stresses. 
 
 

9.2.3. Precision 
 
Although defects exist in all pieces of software, the author is aware of no errors in 
ANSYS, Matlab or Microsoft Excel that would compromise the accuracy of results 
generated by them, aside from the limits of numerical precision.  It is impractical to 
fully assess the effects of numerical precision (or to alter them), but it is felt that they 
would remain very small even after many stages of calculation. 
 
However, several aspects of the way the different software packages are used do affect 
the precision of results generated; these all affect only the use of ANSYS.  Neither 
Matlab nor Excel were used in iterative processes, which could allow errors to 
accumulate, so the accuracy of the CPU is likely the limit of precision (typically 80 bits 
for floating point calculations for modern CPUs). 
 

9.2.3.1. Meshing 
 
For both autofrettage models, mesh sensitivity tests were conducted to ensure sufficient 
accuracy while minimising solution times.  Were computing resources unlimited, a near 
infinite number of elements would have been used which would have allowed near 
perfectly accurate solutions of the posed problems to be gained.  This is not the case, 
however, hence the requirement for the sensitivity tests. 
 
For the hydraulic case, a mesh of 100 radial elements was selected for the general plane 
strain cases, and a mesh of 1500 radial elements for the Plane Stress case.  This keeps 
relative errors of hoop stresses at the ID (both at peak pressure and residual) well 
within 0.5% for the general plane strain cases, and approximately an order of 
magnitude smaller for the Plane Stress case.  For the comparisons specific to the Plane 
Stress case, summed axial stresses become a tiny portion of σY0 at the selected mesh 
size (relative error is exaggerated as axial stresses are converging to zero). 
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The relative error of residual hoop stresses in the swage case (Figure 8.11) shows a 
similar trend to that observed for the hydraulic case but the magnitude of the errors is 
larger.  In part this is due to the comparatively lower number of radial elements present; 
the highest number used in the swage model was 73, meaning the stress field is not 
sampled as accurately.  It is felt, based on the error trend observed, that the error of the 
selected case (42 radial elements) is within 1-2% of a high accuracy mesh (for example, 
using 200 radial elements).  While higher than the hydraulic case, it was felt that this 
was acceptable as the plots of residual stresses through the wall at mid-length rapidly 
converge when plotted (Figure 8.7 to Figure 8.10). 
 

9.2.3.2. Material Modelling 
 
It is considered that the translation of the material-fit into the necessary Fortran code 
would not have caused noticeable error, since the same stages of calculation would be 
required whatever the method used.  In addition, double precision functions were used 
throughout. 
 
As the calculated stresses depend on the strain increments that are supplied as inputs to 
the material sub-routine by ANSYS, for the correct stresses to be calculated the correct 
strains must first be supplied.   As this may only be indirectly controlled (via the 
Jacobian matrix that is returned to ANSYS by the material sub-routine), all that can be 
ensured is that the stresses returned are correct for the given strain input.  This is 
demonstrated by the uni-axial test presented in Chapter 6, so this is not thought to be a 
meaningful source of error. 
 

9.2.3.3. Reliance on Results 
 
The hydraulic autofrettage results presented in this thesis are compared with equivalent 
data from independently validated models, providing appropriate validation of the FE-
based hydraulic autofrettage model described in Chapters 4-6. 
 
However, the only means of comparison for the swage model was the single set of data 
produced by O’Hara, and, indirectly, the Band of Pressure model.  Although this is not 
desirable, the use of the bi-linear kinematic material within the swage model allowed it 
to be compared with O’Hara’s results; strong similarity was observed, particularly in 
the notable differences between axial stress values obtained for swage autofrettage 
compared to those resulting from hydraulic autofrettage. 
 
Both sets of swage results were obtained using FEA, but different packages were used 
(ANSYS and ABAQUS) on very different computer platforms, and the two models 
were developed independently, separated by more than a decade.  For this reason, it is 
felt reasonable to consider the swage model with some level of confidence.  A more 
thorough validation will be possible once the USERMAT is correctly adapted to the 
latest ANSYS and Fortran compiler pairing, allowing accurate material behaviour to be 
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modelled; these results would then be suitable for comparison with empirical data of 
measured residual stresses. 
 
 

9.3. COMPUTING ISSUES 
 
While the issues listed below only indirectly affect the research presented in this thesis, 
they are considered relevant to its review. 
 

9.3.1. ANSYS 
 
While ANSYS will run on most modern PCs, the solution time is heavily dependent on 
CPU speed, size of physical memory and hard disc speed.  Aside from raw processing 
capability, it is crucial to store the structural matrices within the PCs physical memory 
(termed “in core” by ANSYS) to ensure calculations proceed at the maximum rate.  
Beyond this, it is highly beneficial if the PC possesses sufficient physical memory to 
cache the results file(s) to minimise the amount of data that must be read from the hard 
disc.  In addition, a fast hard disc (or array thereof) will allow all disc writes and any 
non-cached reads to be more rapidly accomplished.  It was found that the results files 
placed the greatest restriction on the mesh fineness that could be used in the swage 
case; when they became too large to be satisfactorily cached within physical memory, 
solution time became prohibitively long. 
 
The author found great benefit, especially when running the swage model, from 
increases in physical memory.  The desktop machine, used initially, possessed 1 
gigabyte (GB) and ran the hydraulic cases easily, but the band of pressure and swage 
models placed great demands on physical memory making it impractical to use the 
machine for other tasks.  Instead, workstations with 2 GB of physical memory, and a 
server machine with 16 GB of physical memory greatly expedited solution.  
 

9.3.2. Principles of modelling in ANSYS 
 
The models presented in this thesis were initially developed using the ANSYS 
graphical user interface (GUI).  The “log” files (containing sequences of APDL 
commands) generated by these operations were then revised and adapted (crucially, to 
introduce variable substitution.) such that they could subsequently be read by ANSYS 
to repeat the simulation.  This allows parametric models to be interactively developed, 
modified and run. 
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9.3.3. Efficiency of computing 
 
At all stages, efforts were made to make the developed models most efficient 
computationally, so that they could be run rapidly, parameters could be iterated, and to 
allow maximum scalability.  Primarily this was achieved by the use of axi-symmetric 
sections, reduction of section lengths while maintaining mid-length properties with 
appropriate boundary conditions, and mesh sensitivity analyses. 
 

9.3.4. Customisation of material model 
 
The apparent simplicity of the customised USERMAT model presented in Chapter 6 
belies the complications that were encountered during its development.  The 
development was conducted incrementally, as the process of developing a UPF is 
sparsely documented and many aspects had to be explored and deciphered.  When the 
material did not behave as expected (which occurred many times), debugging was a 
lengthy task as it was often not apparent whether an error had been made or a variable 
had been mis-specified or wrongly configured. 
 
Once completed, however, the benefits of the customised USERMAT relative to the 
EMPRAP were plain: not only was it possible to use a custom material in an analysis 
other than hydraulic autofrettage, but solution was achieved far more rapidly as one 
level of iteration was removed. 
 
 

9.4. SIGNIFICANCE OF FINDINGS 
 
As was discussed in Chapter 2, hydraulic autofrettage has already been well 
investigated; in light of this, the main significance of the findings from this study relate 
to swage autofrettage.  The swage model developed during this study has the ability to 
predict residual stresses for any combination of mandrel and tube geometries, and 
contact parameters.  Following a small amount of additional work, it will also be 
possible, via the customised USERMAT model, to include realistic material behaviour 
for any stress-strain profile. 
 
The “band of pressure” model, although not directly reflecting a real world process, 
provided some significant insights.  It was interesting to note that for the narrowest 
pressure band, compressive residual axial stresses were developed on the ID at the mid-
length position, as was observed in the swage cases modelled.  This happened because 
of the tensile axial deformation that occurred at the edges of the narrowest band of 
pressure; normally the compressive axial deformation that takes place mid-band 
prevails, leaving tensile residual axial stresses. 
 
During swage autofrettage, an analogous process to this takes places over the rear 
surface of the mandrel.  Large compressive axial stresses are observed at the ID of the 
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tube as the centre of the parallel surface of the mandrel passes (which would otherwise 
cause a tensile residual axial stress).  Compressive residual axial stresses are favourable 
as they reduce the magnitude of tensile axial stresses seen in use, helping to prevent 
circumferential cracks opening around the ID, thereby increasing fatigue lifetime. 
 
In addition, a compressive residual axial stress half the magnitude of the (compressive) 
residual hoop stress allows for a greater residual hoop stresses by reducing the 
magnitude of the difference between stress components, which in turn determine the 
von Mises equivalent stress. 
 
This suggests that the rear surface of the mandrel is of critical importance in the 
development of favourable residual stresses. 
 
A parallel section length of 0.12ra does indeed seem to generate an optimum 
distribution of residual hoop stresses; the value at the ID possesses the equal highest 
magnitude, and that value is retained through the inner ~15% of the tube wall. 
 
It appears that minimising the coefficient of friction between the mandrel and tube is 
generally beneficial; residual hoop stresses are predicted to be slightly degraded when a 
large coefficient is used, and increasing the friction coefficient would only increase the 
required driving force. 
 
The magnitude of the slopes on the mandrel were observed to have a greater effect on 
the stress field developed; increasing the slopes (both front and rear) caused an increase 
in mandrel-tube contact pressure, and a decrease in the depth of overstrain.  Residual 
hoop stress experienced a slight drop in magnitude when the slope scaling factor 
decreased below one; conversely, residual axial stresses near the ID became 
significantly more negative as the slope scaling factor increased. 
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9.5. FUTURE WORK 
 
This programme of work has achieved its primary goals of developing a method for 
determining the residual stress distribution resulting from swage autofrettage.  Below 
are listed a number of areas of future work which would usefully expand the scope of 
this study. 
 

9.5.1. Develop USERMAT 
 
Despite the author’s best effort, it was not possible to combine the USERMAT with the 
swage model, as the swage investigations were conducted following the upgrade to 
ANSYS v11 and the required Intel Visual Fortran compiler.  Continued development of 
the USERMAT is hence the first piece of suggested future work; it is the author’s 
opinion that the material model is viable, but some unforeseen change in behaviour of 
the UPF scheme has occurred between versions. 
 
Although impossible to predict, given the awkward environment in which debugging 
must be conducted, it is felt that a working USERMAT could be achieved relatively 
rapidly building on the work done so far. 
 
A further feature that could be added is temperature dependence, which would allow 
thermal treatments of autofrettaged vessels to be investigated. 
 

9.5.2. Model further Materials in USERMAT 
 
Once the USERMAT is altered to work with the current ANSYS version, altering the 
material profile modelled by it would be the author’s next recommendation.  This 
would demonstrate the ability of the USERMAT to be adapted to reflect arbitrary 
material behaviour, and hence the ability of ANSYS to accurately model both the 
swage process and candidate materials. 
 

9.5.3. Optimisation of swage parameters 
 
With the two above items accomplished, it would then be possible to make a detailed 
assessment of the precise influence of various parameters on the residual stresses 
developed during swage autofrettage.  These could include mandrel shape, friction 
coefficient and autofrettage sequence (i.e. multiple passes of the mandrel). 
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9.5.4. Effect of machining 
 
Finally, the effect of machining and material removal could be investigated, allowing 
the residual stresses within finished articles to be assessed.  This has not been 
previously modelled. 
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10. CONCLUSION 
 
The following are the key conclusions arising from the work presented in this thesis. 
 

10.1. CONCLUSIONS FROM CHAPTER 3 
 
A review of material models was made, with emphasis on response to plastic strain.  
The Tresca elastic-plastic solution was then implemented and subsequently adapted to 
reflect some of the plastic strain responses previously identified.  Finally, the solution 
was extended to include an interference fit with a solid, elastic, cylinder within the 
tube’s ID. 
 
A review of analytical and numerical models suitable for comparison with future 
models of hydraulic autofrettage was then made. 
 

10.2. CONCLUSIONS FROM CHAPTER 4 
 
Models of hydraulic autofrettage under four end conditions (three general plane strain, 
and a Plane Stress model) were developed; sensitivity tests were conducted to 
demonstrate their response to variations in mesh density.  The observed trends were 
used to optimise the meshes for accuracy and solution time/computational resources. 
 

10.2.1. Comparison Tests 
 
During comparison tests, good agreement was observed between the results generated 
by the ANSYS FE model, the Hencky numerical programme and Huang’s analytical 
model.  This demonstrates that given a correctly calculated degree of plastic strain at 
the bore, an accurate value of residual stress may be predicted by the ANSYS model 
for a number of end conditions.  The bi-linear stress-strain profile used is an 
approximation; a more accurate material model is required to obtain more realistic 
values of residual stress. 
 

10.2.2. Mesh Sizing 
 
Mesh Sensitivity tests conducted on the general plane strain models indicated that 100 
radial elements (ElRad = 100) would provide suitable accuracy (the results suggested 
that more than 70-80 were needed).  Likewise, to attain a sufficient short section such 
that σz → 0, ElRad =1500 was selected for the Plane Stress model.  Achieving the 
desired levels of summed residual axial stress largely determined this value; it was the 
measure most sensitive to section length.  In both cases, two axial elements are used. 
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10.3. CONCLUSIONS FROM CHAPTER 5 
 
An existing mesh and constraint set, optimised and developed in Chapter 4, was utilised 
to provide the basis for a model in which the Jahed and Dubey EMPRAP could be 
implemented.  The EMPRAP was used to represent the gun steel A723-1130, which 
exhibits non-linear unloading from plastic strain, within the ANSYS model.  The 
combined model was then used to simulate the hydraulic autofrettage of a series of 
thick-walled tubes.  With the exception of a small discrepancy in the unloading stresses 
near the ID, the calculated stresses matched very well against equivalent results from 
the Hencky programme.  This supports its use in comparisons with future material 
models developed. 
 
In summary, an FEA procedure for simulating non-linear stress-strain behaviour during 
hydraulic autofrettage was implemented and investigated. 
 
 

10.4. CONCLUSIONS FROM CHAPTER 6 
 
A one-dimensional material (usermat1d) model was created to gain familiarity with the 
ANSYS solution procedure, and determine how to programme the desired material 
within it.  A close match between the results generated using it and data from the 
material-fit equations, indicating that the sub-routine calculates stress states accurately, 
and in a manner that allows ANSYS to reach solution normally. 
 
A three-dimensional material model (usermat3d) was created to be used in all 
autofrettage simulations (hydraulic and swage), hence confirmation of its accuracy was 
vital.  Uni-axial tests demonstrated a generally close match between results from the 
material model and the material-fit equations.  Agreement is less complete where off-
axis (direct) stresses increase in magnitude, altering the relationship between equivalent 
and axial stress.  These off-axis stresses arise from the circular relationship between the 
Jacobian matrix output to ANSYS from the sub-routine, and the resultant strain 
increments that ANSYS supplies in return. 
 
The three-dimensional material model was then used in a series of hydraulic 
autofrettage simulations, under a range of end conditions.  The results showed good 
agreement; disparities are in line with the variations expected from the different 
numerical methods.  Apart from the plastic strains calculated for the Plane Stress case, 
all residual stress and strain values showed very close agreement.  Differences between 
constant-strain end condition cases may be explained by variations in the axial stress 
which is the intermediate principal stress. 
 
In summary, a custom material model of a real world gun steel (A723-1130) was 
programmed utilising the USERMAT feature within ANSYS.  USERMAT behaves as 
a standard material and, crucially, retains plastic strains; this makes the customised 
material suitable for use in more general load cases than allowed by the EMPRAP 
method – in particular, simulating swage autofrettage of a pressure vessel.  
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10.5. CONCLUSIONS FROM CHAPTER 7 
 
A band of pressure model was developed to represent some of the key characteristics of 
the swage autofrettage process.  Two variants of the model were developed: a static, 
expanding band model and a moving band model.  Although neither model is a true 
representation of swage autofrettage, they both provided valuable insights into the 
difference between swage and hydraulic autofrettage. 
 
As would be expected, the results from the static band model supported the observation 
that the required pressure for a constant depth of autofrettage increases as the width of 
the pressure band decreases. 
 
The relationship between band width and pressure was observed to follow a pattern 
similar to an offset inverse ratio; based on this a representative relationship was 
created, the results from which showed reasonable agreement with the data. 
 
The results from the moving band model showed the same trend; the narrower the 
fringe width, the greater the pressure needed to obtain a given depth of overstrain.  As 
would also be expected, shear stress magnitude near the band was seen to increase as 
fringe width decreased, due to the greater step size between the applied pressure and 
zero pressure in the non-loaded section. 
 
Shear stresses switched sign appropriately between the front and rear edges of the 
pressure band. 
 
Through wall hoop stresses at peak pressure were found to be markedly different from 
those observed at peak pressure during hydraulic autofrettage; indeed, at and around the 
ID, they were seen to be strongly negative (compressive) – creating a net outwards 
force for that section.  This is due to the propagation, via shear stresses, of the applied 
load to more than just the directly loaded section. 
 
Residual hoop stresses at the ID were seen to increase in magnitude as the pressure at 
the band edge increased (found with lower fringe widths and pressure gradients); the 
increasing curvature resulting from the more sudden change in pressure causes 
decreasingly tensile residual axial stresses at the ID, allowing more compressive 
residual hoop stresses to be developed. 
 
While compressive axial stresses are found at the ID at the centre of the pressure band, 
towards the edges of the band stresses become increasingly tensile.  If the band is 
narrow enough, this can cause sufficient tensile axial plastic strains to result in 
significant compressive residual axial stresses at the ID, as was the case when fringe 
width equalled two.  
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10.6. CONCLUSIONS FROM CHAPTER 8 
 
A model of swage autofrettage was developed to simulate the deformation of a tube by 
contact with a mandrel moving through its inner void.  It was initially dimensioned to 
match an existing analysis of swage autofrettage, developed by O’Hara, against which 
it was also assessed.  Generally, a good match was achieved; for the case of the most 
similar mesh to that used in O’Hara’s analysis, strong likeness was observed between 
the stress distributions calculated by the two models.  This indicates the relevant 
aspects of the swage model developed by O’Hara were incorporated into the ANSYS 
model.  The finer meshes generate results that follow the trends displayed by O’Hara’s, 
and converge relatively quickly; a mesh of effectively four times the linear density of 
that used by O’Hara was judged to produce suitably accurate results. 
 
Two sensitivity analyses were conducted to determine both the minimum length of tube 
section and number of sub-steps required.  It was determined that a tube length of 15ra 
was needed for stable mid-length results to be obtained; an initial number of 10ElN-Ax 
sub-steps, with upper and lower limits of 2ElN-Ax and 20ElN-Ax, respectively, was found 
to give suitably consistent results while remaining computationally feasible.  If more 
computational resources were available, these numbers would be doubled. 
 
The length of the parallel section specified for the mandrel had a significant impact on 
axial stress and plastic strain profiles within the tube, both during and following the 
swaging procedure.  It was found that the initial value of 0.12ra used by O’Hara gave 
the best degree of pre-stressing (compressive residual hoop stresses near the ID), 
although pre-stressing values are relatively consistent apart from the longer parallel 
section cases (l ll = 3.0l ll-0 and 4.5l ll-0).  The optimum value for a given mandrel-tube 
system is likely to depend on several factors such as tube wall ratio (K), mandrel 
slopes, mandrel-tube interference and material used. 
 
Observations made while mandrel-tube friction coefficient was varied confirmed what 
would be expected; during autofrettage, shear stresses increased in magnitude with 
friction coefficient, and axial stresses became less negative/more positive (in response 
to greater axial load) while retaining a relatively similar distribution. 
 
Mandrel slope angles were also found to have a large influence on the developed 
stresses.  Both effect the initial deformation of the tube (the forward slope has the 
greatest influence, as its shallower slope deforms a greater length of tube), but the rear 
slope more directly influences residual stresses due to its creation of residual 
compressive axial stresses near the ID.  Investigation of the effect of the forward and 
rear mandrel slopes independently would reveal more details of these relationships. 
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11. APPENDICES 

11.1. A1 – LAMÉ’S SOLUTION 
 
The Equilibrium Equation (2.1) is statically indeterminate – σr and σθ cannot be 
separated and solved for without further relationships.  To the axial constitutive 
relation, Equation (2.6), Lamé applied the compatibility requirement that initially plane 
transverse sections remain so after loading (εz is constant w.r.t. r). 
 
Substituting the deflection-based definition of hoop strain from (2.3) for that in the 
constitutive Equation (2.5), manipulating, applying the plane strain criterion, and 
conducting further manipulation, yields: 
 
 Ar 2=+ θσσ  (11.1) 

 
Where A is a constant.  Substituting for σθ in the Equilibrium Equation (2.1) and 
rearranging, the following is obtained: 
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Integrating yields: 
 

 
2r

B
Ar −=σ  (11.2) 

 
Substituting the above into Equation 11.1 gives: 
 

 
2r

B
A+=θσ  (11.3) 

 
A and B may be solved for, given suitable boundary conditions; applying an internal 
pressure, pi, and setting the external pressure, po, to zero is achieved by the following: 
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For a fully elastic tube, this gives: 
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(Axial stresses are calculated from the radial and hoop values using the constitutive 
relation, Equation (2.6)). 
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11.2. A2 – TRESCA ELASTIC-PLASTIC SOLUTION 
 

11.2.1. Autofrettage 
 
Whether autofrettage is achieved hydraulically or through swaging, the process 
involves expansion and plastic deformation of the tube, followed by relaxation and the 
development of compressive stresses around the ID. 
 
Consider a tube loaded by an internal pressure, pi, which increases from zero to the 
final autofrettage pressure, pAF.  Once the pressure is high enough (pe) tensile yielding 
initiates at the ID (r = ra), propagating outwards as the pressure increases.  Lamé’s 
solution clearly shows that the Tresca equivalent stress is highest at the ID.  When the 
applied pressure reaches pAF, the maximum radius of plasticity is termed the Primary 
Yield Radius, rp (ra ≤ rp ≤ rb). 
 
Upon removal of the autofrettage pressure compressive stresses are developed within 
the expanded material found within the primary yield region (ra ≤ r ≤ rp), partnered by 
tensile stresses in the elastic region (rp ≤ r ≤ rb).  As in the pressure application phase, 
these compressive stresses are greatest around the ID.  If these stresses become large 
enough, compressive yielding initiates at the ID and propagates outwards – the limit of 
this reyielding is termed the Secondary Yield Radius, rs.  As will be demonstrated, 
unless the tube material ra ≤ r ≤ rp loses all strength (σY = 0) following the plastic strain 
experienced during autofrettage, rs < rp.  Figure 11.1 illustrates these radii. 
 

 

Figure 11.1:  Yield Diagram 

 
As noted towards the end of sub-section 2.4.2.2, the first elastic-plastic solution 
investigated was that based on Tresca’s yield criterion, which allows for explicit 
solution of the stress field (within a hydraulically autofrettaged tube).  An elastic, 
perfectly plastic material was used which is the most simple stress-strain response that 
includes plasticity (see Figure 3.2). 
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11.2.2. Autofrettage Stresses 
 
First the stresses in the elastic region, rp ≤ r ≤ rb, are established.  Introducing the Lamé 
stresses (11.2, 11.3) at r = rp into the yield criterion (2.10), the following value is 
obtained for B: 
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Re-inserting this value into the Lamé radial stress Equation (11.2) at r = rb, gives the 
following value for A: 
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Substituting these values back into the Lamé stress Equations (11.2, 11.3) gives: 
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Given conditions at r = rp it is now possible to solve for stresses within the plastic 
region.  Substituting from the Tresca yield criterion (2.10) into the equilibrium 
Equation (2.1): 
 

 
rdr

d Yr 0σσ =  (11.5) 

 
Separating the variables and integrating gives: 
 

( ) CrY
r += 20 ln

2
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As σr is continuous across the elastic-plastic interface (at r = rp), its value from the 
above formula will be equal to that given by Lamé’s Equations. 
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Hence the following expression for σr is found: 
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It is now possible to substitute the above value for σr and its derivative into the 
equilibrium equation, to find σθ. 
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These equations are summarised below, along with those for axial stress found from the 
constitutive law (Equation (2.6)). 
 
Plastic Region 
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Elastic Region 
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The primary yield radius, rp, cannot be determined through rearrangement or other 
direct means; instead, it must be found through a short iteration using the boundary 
condition σr = pAF at the ID (r = ra) applied to the radial stress expression from 
Equation (11.6).  This was achieved (using Matlab, but any other suitable numerical 
method would quickly achieve a converged answer) by incrementing r from an initial 
value of ra. 
 
A special case of the radial stress from Equation (11.6) can be formed to give an 
expression for the minimum pressure required for yielding (or limiting elastic pressure) 
at the inner face, pe.  Setting r and rp to ra: 
 

 




 −=







−=

2
0

2

2
0 1

1
2

1
2 Kr

r
p Y

b

aY
e

σσ
 (11.8) 

 
If the autofrettage load is hydraulic, a simple comparison of the applied pressure to the 
limiting elastic pressure, from Equation (11.8), will determine the presence of yielding. 
 
 

11.2.3. Unloading 
 
Once the autofrettage stresses within the tube have been determined, the unloading 
stresses must then be assessed so that the residual values may be calculated.  
Depending on the magnitude of the compressive residual stresses developed, unloading 
may follow one of two paths – elastic or elastic-plastic.  Accordingly, a check must first 
be made.  
 
To determine whether secondary yielding occurs, Tresca’s yield criterion (2.10) is 
again employed. 
 
Assessing the value of σθ - σr using Equations (11.6), (11.7) and (11.4), yields: 
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It is found that σθ - σr has its most positive value when r = rb; however, it is of greatest 
magnitude when r = ra, i.e. when ra

 2/r2 reaches its maximum value of 1.   Here, the 
contents of the brackets of Equation (11.9) evaluate as –1 or greater (in magnitude) if p 
≥ 2pe.  This means that σθ - σr exceeds the magnitude of σY0 – the Tresca yield criterion 
(2.10) at which point secondary yielding is considered to occur.  This can more easily 
be seen by rearranging Equation (11.9), and making the substitution r = ra: 
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If the left hand side of Equation (11.11) exceeds the right hand side, secondary yielding 
is assumed to take place; if less that the RHS, unloading proceed elastically.  It can be 
shown [26] that even with maximum autofrettage (i.e. rp = rb) secondary yielding will 
not occur unless rb/ra ≥ 2.22. 
 
 

11.2.4. Residual Stresses – Elastic Unloading 
 
If the residual stresses are insufficient to cause compressive reverse yielding, residual 
stresses are calculated by superposing standard Lamé elastic stresses, caused by the 
application of –pAF, from Equations (11.4) upon those created during pressurisation. 
 
 

11.2.5. Residual Stresses – Plastic Unloading 
 
If residual stresses are sufficient to cause reverse yielding, a secondary yield radius, rs, 
must designated.  It is then possible to form two further sets of equations to describe 
secondary yielding of the tube, equivalent to Equations (11.6) and (11.7) (from the 
primary yielding stage).  They take the place of the elastic stresses from Equations 
(11.4), and are subtracted from the autofrettage stresses in the same way.  As shown in 
Figure 3.2, as an autofrettaged tube is depressurised, the tube material must unload 
from a peak stress of +σy to –σy before reverse yielding occurs.  Therefore the 
unloading stresses achieve double the magnitude of the autofrettage before reverse 
yielding occurs; this is reflected in Equations (11.12) and (11.13) as their apparent 
magnitude is twice that of Equations (11.6) and (11.7).  For example, hoop stress is 
tensile at the bore during autofrettage – after load removal, it becomes compressive. 
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Elastic Region 
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The secondary yield radius, rs, is found using the zero internal pressure after relaxation 
criterion.  This means that the residual radial stress (from Equation (11.12)) summed 
with the radial stress during Autofrettage (from Equation (11.6)) must give an answer 
of zero (at r = ra), as seen below. 
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As with rp from Equation (11.6), rs may be found by a short iteration.  The secondary 
yield radius, rs, will be found to be smaller than rp. 
 
It can be seen from Equation (11.9) that as p/pe increases from 2, secondary yielding 
occurs for radii progressively greater than ra. 
 
Plots of residual hoop and axial stresses within a tube with Wall Ratio 3.0 can be seen 
in Figure 11.2.  The ratio of autofrettage pressure to yield strength, pi/σY0, is equal to 
1.0909; the normalised primary and secondary yield radii are 0.8703 and 0.0612 
respectively (they are indicated by the peak magnitudes of hoop stress). 
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Figure 11.2:  Residual Stresses from the Tresca Solution, for K = 3.0 

 

11.2.6. Strains 
 
While Equations (2.4) – (2.6) provide a means for assessing component elastic strains, 
they are not capable of calculating plastic strains; this will now be addressed, by 
subtracting elastic strain components from the total values.  As axial strain is assumed 
to be entirely elastic, Equation (2.6) is true throughout the tube.  Plane strain conditions 
(εz = 0) are then applied to Equation (2.6): 
 

( )θσσνσ += rz  

 
Substituting this value back into Equations (2.4) and (2.5), equating each with 
Equations (2.2) and (2.3) respectively, the following are obtained. 
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This means that at a given radius, deflections can be found if the circumferential strains 
are known. 
 
It then remains to assess the total strains within the deformed region, ra ≤ r ≤ rp.  First, 
the Equilibrium Equation (2.1) is integrated by parts, the following is obtained: 
 

 ( ) ( )rr r
r

r σσσ θ
2

∂
∂=+  (11.17) 

 
While plastic strains remain small – as is the case when wall ratios remain less than ~5, 
and less than total yielding has occurred – positional changes may be ignored.  
Summing Equations (11.15) and (11.16) yields: 
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In terms of the associated integrated flow rule we have 0=+ pp

r θεε   – this gives: 
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Substituting Equations (11.19) and (2.6), and the relationship G = E/2(1 + ν) into 
Equation (11.18): 
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This is valid throughout both elastic and plastic regions of the tube.  Integrating 
Equation (11.20) w.r.t. r, using the boundary condition σr = 0 when r = rb, the 
following is obtained: 
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Plastic hoop strains may then be found by subtracting elastic hoop strains, calculated by 
Equation (11.16), from the total value, Equation (11.21). 
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Where σ represents the yield strength during loading of the material at that position.  
Hence when modelling the Bauschinger effect if there is no strain hardening present 
(i.e. H = 0) it equals σY, and when modelling strain hardening it increases according to 
the hardening relationship defined. 
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Also, given the associated integrated flow rule, plastic radial strain is given by: 
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11.3. A3 – JAHED AND DUBEY’S METHOD 
 
Jahed, Sethuraman and Dubey [20] proposed a method, subsequently termed an 
EMPRAP; it describes how an iterative, numerical linear elastic analysis can be 
transformed into a complex non-linear stress-strain analysis, through manipulation of E 
and ν.  Jahed and Dubey [19] employed the procedure to implement a single, non-linear 
loading behaviour and a single, non-linear unloading behaviour for plane stress and 
plane strain conditions.  Their method was extended by Parker [22] to incorporate 
unloading behaviour that varies with radius as a function of loading plastic strain.  
Designated the Hencky Programme, it was subsequently further extended to solve any 
plane condition, including the crucial open-ends case.  The theoretical basis of the 
EMPRAP method is explained below, together with the routine used for solution of Eeff 
and νeff in an FE environment. 
 
A body, Ω, is defined, enclosed within a surface Γ.  The boundary value problem is 
formulated on the following conditions: 
 

1. Traction and displacements applied to Γ, 
2. Stress equilibrium within Ω. 

 
The stress equilibrium condition specifies that, in the absence of body forces: 
 
 

Ω
= 0ijσ  i, j = 1, 2 & 3 

 
Traction (a vector of the surface density of cohesive forces), ti

*, over the boundary, Γ1: 
 

1

*

Γ
= ijij tnσ  

 
Displacements, ui

*, over the boundary Γ2: 
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The full boundary, Γ, is summed from the other part boundaries: 
 

21 Γ+Γ=Γ  
 
The total strain tensor is the sum of the elastic and plastic strain tensors: 
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The elastic strain is given by Hooke’s Law: 
 



 

 262 

 ijkkij
e
ij EE

δσνσνε −+= 1
 (11.25) 

 
The plastic strain is given by Hencky’s total deformation equation: 
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From the above expression, sij is the deviatoric stress tensor: 
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The uni-axial relationship,φ , between equivalent stress and equivalent plastic strain is 
defined as: 
 

 
eq

p
eq

σ
ε

φ
2

3=  (11.28) 

 
In turn the equivalent plastic strain, ε p

eq, and equivalent (total) stress, σeq, are defined as: 
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The total strain tensor, Equation (11.24), can then be rewritten, using Equations 
(11.25), (11.26) and (11.27): 
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Substituting to alter Equation (11.29) to the same form as (11.25), i.e. to reduce it to 
elastic form: 
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Where Eeff and νeff are the effective Young’s modulus and Poisson’s ratio, representing 
plastic behaviour: 
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Eeff may be determined from the material stress-strain relationship, from which νeff may 
then be determined using Equation (11.31): 
 



 

 263 

 
E

E
Eeffeff 3

3 φνν +=  (11.31) 

 
To be used within a model, the model must simulate the geometry and loads present; 
the stress-strain state is then calculated using the initial, elastic properties of the 
material.  If any parts of the model are assessed to have exceeded the yield stress (or 
the limit of linearity, according to the material-fit), the EMPRAP is invoked.  The 
EMPRAP accepts (equivalent) strain as its input; this value is entered into the material-
fit σ-ε expression, which calculates the stress magnitude that would result.  A new, 
effective, elastic modulus is calculated using Equation (11.32): 
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Figure 11.3 shows how En

eff is calculated iteratively, until σn tends to the stress value 
generated by the material-fit, given εn.  When the non-linear section of the material σ-ε 
fit has a positive gradient, σn monotonically approaches the final value. 
 

 

Figure 11.3:  Eeff  convergence diagram, when material is loaded beyond Yield Stress 

 
In addition, φ  must be calculated (Equation (11.28)), using: 
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This is achieved by: 
 

1. Solving the initial system using a linear elastic analysis 
2. Equivalent stresses in elements are evaluated against σY0 – if the yield stress is 

exceeded, E and ν are calculated (using Equations (11.32) and (11.31)) on a per-
element basis, depending on the degree by which the yield stress is exceeded. 

3. Solve using modified values. 
4. Check for convergence – if error is greater than that desired, return to step 2. 
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11.4. A4 – ADDITIONAL EMPRAP RESULTS FROM 

CHAPTER 5 
 

11.4.1. Autofrettage Stresses 
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Figure 11.4:  Plane Stress 
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Figure 11.5:  Open Ends 
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Figure 11.6:  Closed Ends 
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11.4.2. Unloading Stresses 
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Figure 11.7:  Plane Stress 
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Figure 11.8:  Open Ends 
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Figure 11.9:  Closed Ends 

 



 

 269 

11.4.3. Residual Stresses 
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Figure 11.10:  Plane Stress 
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Figure 11.11:  Open Ends 
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Figure 11.12:  Closed Ends 
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